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In this thesis we study scalable methods to perform regression with Operator-Valued Kernels in order to learn vector-valued functions.

When data present structure, or relations between them or their different components, a common approach is to treat the data as a vector living in an appropriate Hilbert space rather than a collection of real numbers. This representation allows to take into account the structure of the data by defining an appropriate space embbeding the underlying structure. Thus many problems in machine learning can be cast into learning vector-valued functions. Operator-Valued Kernels and vector-valued Reproducing Kernel Hilbert Spaces provide a theoretical and practical framework to address the issue of learning vector-valued functions by naturally extending the well-known framework of scalar-valued kernels. In the context of scalar-valued functions learning, a scalar-valued kernel can be seen a similarity measure between two data points. A solution of the learning problem has the form of a linear combination of theses similarities with respect to weights (to determine), in order to have the best "fit" of the data. When dealing with Operator-Valued Kernels, the evaluation of the kernel is no longer a scalar similarity, but a function (an operator) acting on vectors. A solution is then a linear combination of operators with respect to vector weights.

Although Operator-Valued Kernels generalize strictly scalarvalued kernels, large scale applications are usually not affordable with these tools that require an important computational power along with a large memory capacity. In this thesis, we propose and study scalable methods to perform regression with Operator-Valued Kernels.

To achieve this goal, we extend Random Fourier Features, an approximation technique originally introduced for scalar-valued kernels, to Operator-Valued Kernels. The idea is to take advantage of an approximated operator-valued feature map in order to come up with a linear model in a finite dimensional space.

First we develop a general framework devoted to the approximation of shift-invariant Mercer kernels on Locally Compact Abelian groups and study their properties along with the complexity of the algorithms based on them. Second we show theoretical guarantees by bounding the error due to the approximation, with high probability. Third, we study various applications of Operator Random Fourier Features to different tasks of Machine learning such as multi-class v classification, multi-task learning, time series modeling, functional regression and anomaly detection. We also compare the proposed framework with other state of the art methods. Fourth, we conclude by drawing short-term and mid-term perspectives.

"We have at our command computers with adequate data-handling ability and with sufficient computational speed to make use of machine-learning techniques, but our knowledge of the basic principles of these techniques is still rudimentary. Lacking such knowledge, it is necessary to specify methods of problem solution in minute and exact detail, a time-consuming and costly procedure. Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort." -Arthur Samuel [START_REF] Samuel | Some studies in machine learning using the game of checkers[END_REF] A
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Operator-Valued Kernels [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF][START_REF] Brouard | Semisupervised Penalized Output Kernel Regression for Link Prediction[END_REF][START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF][START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF] extend the classic scalar-valued kernels to functions with values in some output Hilbert space. As in the scalar case, Operator-Valued Kernels (OVKs) are used to build Reproducing Kernel Hilbert Spaces (RKHS) in which representer theorems apply as for ridge regression or other appropriate loss functional. In these cases, learning a model in the RKHS boils down to learning a function of the form f(x) = ∑ N i=1 K(x, x i )α i where x 1 , . . . , x N are the training input data and each α i , i = 1, . . . , N is a vector of the output space Y, and each K(x, x i ) is an operator on vectors of Y.

However, OVKs suffer from the same drawbacks as classic (scalarvalued) kernel machines: they scale poorly to large datasets because they are exceedingly demanding in terms of memory and computations. We propose to approximate OVKs by extending a methodology called Random Fourier Features (RFFs) [START_REF] Bach | On the Equivalence between Quadrature Rules and Random Features[END_REF][START_REF] Le | Fastfood -Computing Hilbert Space Expansions in loglinear time[END_REF][START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF][START_REF] Rudi | Generalization properties of learning with random features[END_REF][START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF]191] so far developed to speed up scalar-valued kernel machines. The RFF approach linearizes a shift-invariant kernel model by generating explicitly an approximated feature map φ. RFFs has been shown to be efficient on large datasets and has been further improved by efficient matrix computations such as [START_REF] Le | Fastfood -Computing Hilbert Space Expansions in loglinear time[END_REF]"FastFood"] and [61, "SORF"], which are considered as the best large scale implementations of kernel methods, along with Nyström approaches proposed in Drineas and Mahoney [START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF]. Moreover thanks to RFFs, kernel methods have been proved to be competitive with deep architectures [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF][START_REF] Lu | How to scale up kernel methods to be as good as deep neural nets[END_REF][START_REF] Yang | Deep fried convnets[END_REF].

outline

Chapter 2. In this introductory chapter we recall some elements of the statistical learning theory started by Vapnik [START_REF] Vapnik | Statistical learning theory[END_REF]. Then we recall kernel methods [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] which are used to construct spaces of scalar-valued functions (called RKHSs) that are used model and learn non linear dependencies from the data. We finish by a literature review on largescale implementations of kernel methods based on random Fourier features [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] and the Nyström method [START_REF] Williams | Using the Nyström Method to Speed Up Kernel Machines[END_REF].

Chapter 3. In this chapter, to conclude the introduction, we develop briefly the mathematical tools used throughout this manuscript. We give a full table of notations, and present elements of functional analysis [START_REF] Kurdila | Convex functional analysis[END_REF] and abstract harmonic analysis [START_REF] Folland | A course in abstract harmonic analysis[END_REF]. Then we turn our attention to the case where the functions we want to learn are not real-valued, but vector-valued. To learn vector-valued functions we define Operator-Valued Kernels [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF] that generalize the scalarvalued kernel presented in Chapter 2. We conclude by giving a nonexhaustive list of Operator-Valued Kernels along with the context in which they have been used.

Chapter 4. In this first contribution chapter we present a generalization of the RFF framework introduced in Chapter 2 [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF]. This is based on an operator-valued Bochner theorem proposed by Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. We use this theorem to show how to construct an Operatorvalued Random Fourier Feature (ORFF) from an OVK. Conversely we also show that it is possible to construct an ORFF from the regularization properties it induces rather than from an OVK. We give various examples of ORFF maps such as an ORFF map for the decomposable kernel, the curl-free kernel and the divergence-free kernel.

Chapter 5. In this contribution chapter we refine the bound on the OVK approximation with ORFF we first proposed in [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF] and presented in [START_REF] Brault | Borne sur l'approximation de noyaux à valeurs opérateurs à l'aide de transformées de Fourier[END_REF]. It generalizes the proof technique of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] to OVK on LCA groups thanks to the recent results of Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF], Minsker [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF], Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF], and Tropp [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]. As a Bernstein bound it depends on the variance of the estimator for which we derive an "upper bound". Chapter 6. This contribution chapter focus on explaining how to define an efficient implementation and algorithm to train an ORFF model. First we recall the supervised ridge regression with OVK and the celebrated representer theorem [START_REF] Wahba | Spline model for observational data[END_REF]. Then we show under which conditions learning with an ORFF is equivalent to learn with a kernel approximation. Eventually we give the gradient for the ridge regression problem, useful to find an optimal solution with gradient descent algorithms, as well as a closed form algorithm. We conclude by showing how viewing ORFFs as linear operators rather than matrices yields a more efficient implementation and finish with some numerical applications on toy and real-world datasets.

Chapter 7. This contribution chapter deals with a generalization bound for the a regression problem with ORFF based on the results of Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF] and Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF]. We also discuss the case of Ridge regression presented in Chapter 6.

Chapter 8. This contribution chapter shows how to use the ORFF methodology for non-linear vector autoregression. It is an instantiation of the ORFF framework to X = Y = ( R d , +

) . We also give a generalization of a stochastic gradient descent [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF] to ORFF. This is a joint work with Néhémy Lim and Florence d'Alché-Buc and has been published at a workshop of ECML. It is based on the previous work of Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] for time series vector autoregression with operator-valued kernels [START_REF] Brault | Scaling up Vector Autoregressive Models With Operator-Valued Random Fourier Features[END_REF].

Chapter 9. To conclude our work we present some work in progress. We show practical applications of operator-valued kernels acting on an infinite dimensional space Y. We give two examples. First we show how to generalize many quantile regression to learn a continuous function of the quantiles on the data. Second we apply the same methodology to the One-Class Support Vector Machine (OCSM) algorithm in order to learn a continuous function of all the level sets. We conclude by presenting Operalib, a python library developed during this thesis which aims at implementing OVK-based algorithms in the spirit of Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. 

about statistical learning

We focus on the context of supervised learning. Supervised learning aims at building a function that predicts an output from a given input, by exploiting a "training set" composed of pairs of observed inputs/outputs. Denote X, an input space and Y, the output space. In this chapter, Y ⊆ R. When Y = { 1, . . . , C }, we talk about supervised classification. When Y = R, supervised learning corresponds to usual regression. We are given an independent identically distributed (i. i. d.) sample of size N of traning data s = (x i , y i ) N i=1 , drawn from an unknown but fixed joint probability law Pr. We call learning algorithm, a function A that takes a class of functions F, a training sample s and returns a function in F. The learning algorithm can be studied through many angles, from a computational point of view to a statistical point of view.

From a limited number of observations, we wish to build a function that captures the relationship between the two random variables X and Y. More specifically, we search for a function f in some class of functions, denoted F and called the hypothesis class such that the f ∈ F makes good predictions for the pair (X, Y) distributed according Pr. To convert this abstract goal into a mathematical definition, we define a local loss function L : X × F × Y → R + that evaluates the capacity of a function f to predict the outcome y from an input x.

Hence, the goal of supervised learning is to find a function f ∈ F that minimizes the following criterion, called the true risk associated to L:

R (f) = E Pr [L(X, f, Y)],
(2.1) using the training dataset. However, this definition comes with an important issue: we do not know Pr(X, Y) and thus we cannot compute this risk nor minimize it. A first proposition is to replace this true risk by its empirical counterpart, the empirical risk, i. e. the empirical mean of the loss computed on the training data:

R emp (f, s) = 1

N N ∑ i=1 L(x i , f, y i ).
Since the training data are usually supposed to be i. i. d., the celebrated strong law of large numbers tells us that for any given function f in F, the empirical risk converges almost surely to the true risk.

Intuitively the empirical risk measures the performance of a model on the training data, while the true risk measures the performance of a model with respect to all the possible experiments (even the ones that are not present in the training set). Although the convergence of the empirical risk to the true risk is guaranteed by the strong law of large numbers, for a given value of N, the function produced by minimization of the empirical risk may suffer from overfitting, i. e. being too much adapted to the training data and having a poor behavior on new unseen data.

Generalization error bounds, first introduced by the seminal work of Vapnik [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF] in the context of supervised binary classification and then largely studied in wider contexts (see for instance, Mohri, Rostamizadeh, and Talwalkar [START_REF] Mohri | Foundations of Machine Learning[END_REF]), provide a tool to understand how the difference between the true risk and the empirical risk behaves given N, the size of the sample used to compute the empirical risk, and d, a measure of the capacity the hypothesis class. These bounds usually take the following form. For any δ ∈ (0, 1), with probability 1δ, the following holds for any function f ∈ F of capacity |F| ∈ R:

R (f) ⩽ R emp (f, s) + C(δ, N, |F|)
Especially for the functions of interest f s returned by a learning algorithm, we have

R (f s ) ⩽ R emp (f s , s) + C(δ, N, |F|).
Usually it is expected from the quantity C(δ, N, |F|) to increase with the capacity of the class of functions |F|, and to decrease when the number of points N increases. This suggests to control the complexity of the hypothesis class while minimizing the empirical risk. In other words, is the class of functions F is not too big, we expect that a low empirical risk implies a low true risk in particular when the number of training points N is large. Also when δ goes to zero, it is expected for C(δ, N, |F|) to go to infinity since 1δ is the probability of the bound to be valid 1 .

Most of the approaches in machine learning, and specifically in supervised learning, are based on regularizing approaches: in this case, learning algorithms minimize the empirical loss while controlling a penality term on the model f. In Subsection 2.1.1, we will choose an hypothesis class as an Hilbert space where the penalty can be expressed as the ℓ 2 norm in this Hilbert space.

There is a crucial difference between the strong law of large numbers and the generalization property of a learning algorithm. The strong law of large numbers holds after a model f has been selected and fixed in F. Thus minimizing the empirical risk does not yield ipso facto a model that minimizes the true risk (which measures the adequation of the model on unseen data). This can be illustrated by an intuitive example adapted from Cornuéjols and Miclet [47, page 64] and the infinite monkey theorem. Example 2.1 Suppose we have a recruiter (a learning algorithm) whose task is to select the best students from a pool of candidates (the class of functions). Given ten students the recruiter makes them pass a test with N questions. If the exam is well constructed and there are enough questions the recruiter should be able to retrieve the best student. Now suppose that ten million monkeys ≫ N take the test and answer randomly to the questions. Then with high probability a monkey will score better or as well as the best student (strong law of large numbers). Can we say then that the recruiter has identified the best student?

Intuitively we see that when the capacity of the class of function grows (the number of students and random monkeys), the performance of the best element a posteriori (minimizing the empirical risk) is not linked to the future performance (minimizing the true risk). In the present example we see that the capacity of the class of function is too large with respect to the number of data and thus presents a risk of overfitting.

On the contrary the generalization property ensures that the difference between the empirical risk and the true risk is controlled because the bound does not depend on a single fixed model, but on the whole class of functions. In this case if there are too many random monkeys, C(δ, N, |F|) will blow-up, resulting in a poor generalization property.

A slightly stronger requirement is the consistency of learning algorithm. Given a loss function L and a class of function F there exists a optimal solutions that minimize the true risk.

f * ∈ arg min f∈F R (f) .
The excess risk is defined as the difference between the empirical risk of a model returned by a learning algorithm and f * . A learning algorithm is said to be consistent when it is possible to bound the excess risk uniformly over all the solutions returned by a learning algorithm.

be Positive Semi-definite (PSD) if for any (x 1 , . . . , x N ) ∈ X N , the (Gram) matrix

K = ( k(x i , x j ) ) i=N,j=N i=1,j=1 ∈ M N,N (R)
is Symmetric Positive Semi-definite (SPSD)2 .

The following proposition gives necessary and sufficient conditions to obtain a SPSD matrix:

Proposition 2.1 (SPSD matrix). K is SPSD if and only if it is symmetric and one of the following assertions holds:

• The eigenvalues of K are non-negative

• for any column vector c = (c 1 , . . . , c N ) T ∈ M N,1 (R),

c T Kc = N ∑ i,j=1 c i K ij c j ⩾ 0
One of the most important property of PD kernels [START_REF] Mohri | Foundations of Machine Learning[END_REF] is that a PD kernel defines a unique RKHS. Note that the converse is also true.

Theorem 2.1 (Aronszajn [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]). Suppose k is a symmetric, positive definite kernel on a set X. Then there is a unique Hilbert space of functions H on X for which k is a reproducing kernel, i. e.

(2.2a)

∀x ∈ X, k(•, x) ∈ H (2.2b) ∀h ∈ H, ∀x ∈ X, h(x) = ⟨h, k(•, x)⟩ H .
H is called a reproducing kernel Hilbert space (Reproducing Kernel Hilbert Space) associated to k, and will be denoted, H k .

Another way to use Aronszajn's results is to state the feature map property for the PSD kernels.

Proposition 2.2 (Feature map). Suppose k is a symmetric, positive definite kernel on a set X. Then, there exists a Hilbert space H and a mapping φ from X to H such that: ∀x, x ′ ∈ X, k(x, x ′ ) = ⟨φ(x), φ(x ′ )⟩ H .

The mapping φ is called a feature map and H, a feature space.

Remark 2. [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] Aronszajn's theorem tells us that there always exists at least one feature map, the so-called canonical feature map and the feature space associate, the Reproducing Kernel Hilbert Space H k φ(x) = k(•, x) and H = H k . However there exists several pairs of feature maps and features spaces for a given kernel k.

Learning in Reproducing Kernel Hilbert Spaces

Back to learning and minimizing the empirical risk, a fair question is how to pick-up functions that minimize the empirical risk, in a space H k with infinite cardinality in polynomial time? The answer comes from the regularization and interpolation theory. To limit the size of the space in which we search for the function minimizing the empirical risk we add a regularization term to the empirical risk.

R λ (f, s) = R emp (f, s) + λ 2 ∥f∥ 2 H k = 1 N N ∑ i=1 L (x i , f, y i ) + λ 2 ∥f∥ 2
H k and we minimize R λ instead of R emp . Then the representer theorem (also called minimal norm interpolation theorem) states the following.

Theorem 2.2 (Representer theorem, Wahba [START_REF] Wahba | Spline model for observational data[END_REF]). If f s is a solution of arg min f∈H k R λ (f, s), where λ > 0 then f s = ∑ N i=1 k(•, x i )α i . We note the vector α = (α i ) N i=1 and the matrix K = (k(x i , x k )) N i,k=1 . Because of the representer theorem, stating that a solution of the empirical risk minimization is a linear combination of kernel evaluations weighted by a vector α, with mild abuse of notation we identify the function f ∈ H k with the vector α. Thus we rewrite the loss L(x, f, y) as L(x, α, y). Then we can rewrite R λ (α, s) = 1

N N ∑ i=1 L(x i , α, y i ) + λ 2 ⟨α, Kα⟩ 2 ,
and f(x i ) = (Kα) i for any x i in the training set. For instance if we choose L(x, f, y) = 1 2 |f(x) -y| 2 to be the least square loss, then

L(x i , α, y i ) = 1 2 |(Kα) i -y i | 2 .
In this case L is convex in α, thus it is possible to derive a polynomial time (in N) algorithm minimizing R λ for the least square loss, which is called kernel Ridge regression:

(2.3) R λ (α, s) = 1 2N Kα -(y i ) N i=1 2 2 + λ 2 ⟨α, Kα⟩ 2 .
As a result of the representer theorem we see that we search a minimizer over α ∈ R N instead of f ∈ H k . By strict convexity and coercivity of R λ , and because K + λI N is invertible 3 for any λ > 0, a solution is α s = arg min α∈R N R λ (α, s) = (K/N + λI N ) -1 (y i ) N i=1 . This is an O ( N 3 ) algorithm.

Another way of describing positive definite kernels and RKHS consists in defining a feature map φ : X → H where H is a Hilbert space. Then any function in H k can be written f(x) = ⟨φ(x), θ⟩ H In a nutshell the function φ is called feature map because it "extracts characteristic elements from a vector". Usually a feature map takes a vector in an input space with low dimension and maps it to a potentially infinite dimensional Hilbert space. Put it differently, any function in H k is the composition of linear functional θ * with a non linear feature map φ. Thus if the feature map φ is fixed (which is equivalent to fixing the kernel), it is possible to "learn" with a linear class of functions θ ∈ H (see Figure 2.3). If we note ϕ = ( φ(x 1 ) . . . φ(x N )

)

the "matrix" where each column represents the feature map evaluated at the point x i with 1 ⩽ i ⩽ N, the regularized risk minimization with the least square loss reads

R λ (θ, s) = 1 2N ϕ T θ -(y i ) N i=1 2 2 + λ 2 ∥θ∥ 2 2 .
and if λ > 0 the unique minimizer is θ s = ( ϕϕ T /N + λI H ) -1 ϕ. This is an

O t ( dim(H) 2 (N + dim H) ) .
time complexity algorithm. This algorithm seems more appealing than its kernel counterpart when many data are given since once the space H has been fixed, the algorithm is linear in the number of training points. However many questions remains. First although it is possible to design a feature map ex nihilo, can we design systematically a feature map from a kernel? For some kernels (e. g. the Gaussian kernel) it is well known that the Hilbert space corresponding to it has dimension dim(H) = ∞. Is it possible to find an approximation of the kernel such that dim(H) < ∞? If such a construction is possible and we know that N training data are available, is it possible to have a sufficiently good approximation 4 with dim(H) ≪ N?

Towards large scale learning with kernels

Motivated by large scale applications, different methodologies have been proposed to approximate kernels and feature maps. This subsection briefly reminds the main approaches based on Random Fourier Features and Nyström techniques. Notice that another line of research concerns online learning method such as NORMA developed in [START_REF] Kivinen | Online learning with kernels[END_REF], later extended to the operator-valued kernel case by Audiffren and We map the two circles in R 2 to R 3 . In R 3 it is now possible to separate the circles with a linear functional: a plane. We used the feature map

φ(x) = 0.82    
cos(1.76x 1 + 2.24x 2 + 2.75) cos(0.40x 1 + 1.87x 2 + 5.6) cos(0.98x 1 -0.98x 2 + 6.05)

    .
Here φ : R 2 → R 3 has been chosen as a realization of an RFF map (see Equation 2.5). A "cleaner" feature map adapted to this problem could have been

φ(x) =     x 1 x 2 x 2 1 + x 2 2     .
Kadri [START_REF] Audiffren | Online learning with operatorvalued kernels[END_REF]. We start with the seminal work of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] who show that given a continuous shift-invariant kernel (∀x, z, t ∈ X, k(x + t, z + t) = k(x, z)), it is possible to obtain a feature map called RFF that approximate the given kernel.

Random Fourier Features map

The Random Fourier Features methodology introduced by Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] provides a way to scale up kernel methods when kernels are Mercer and translation-invariant. We view the input space X as a group endowed with the addition. Extensions to other group laws such as Li, Ionescu, and Sminchisescu [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF] are described in Subsubsection 4.2.2.2 within the general framework of operator-valued kernels.

Denote k : R d × R d → R a positive definite kernel on X = R d . A kernel k is said to be shift-invariant or translation-invariant for the addition if for for all (x, z, t) ∈ ( R d ) 3 we have k(x + t, z + t) = k(x, z). Then, we define k 0 : R d → R the function such that k(x, z) = k 0 (xz). k 0 is called the signature of kernel k. Bochner's theorem [START_REF] Folland | A course in abstract harmonic analysis[END_REF] is the theoretical result that leads to the Random Fourier Features. and we can write the above equation as an expectation over µ. For all

x, z ∈ R d k 0 (x -z) = E µ [ exp(-i⟨ω, x -z⟩) ] .
Eventually, if k is real valued we only write the real part,

k(x, z) = E µ [cos⟨ω, x -z⟩] = E µ [cos⟨ω, z⟩ cos⟨ω, x⟩ + sin⟨ω, z⟩ sin⟨ω, x⟩].
Let ⊕ D j=1 x j denote the Dd-length column vector obtained by stacking vectors x j ∈ R d . The feature map φ : R d → R 2D defined as (2.4)

φ(x) = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ sin ⟨x, ω j ⟩ ) , ω j ∼ F -1 [k 0 ] i. i. d.
is called a Random Fourier Features (map). Each ω j , j = 1, . . . , D is independently and identically sampled from the inverse Fourier transform µ of k 0 . This Random Fourier Features map provides the following Monte-Carlo estimator of the kernel: k(x, z) = φ(x) * φ(z). Using trigonometric identities, Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] showed that the same feature map can also be written

(2.5) φ(x) = √ 2 D D ⊕ j=1 ( cos(⟨x, ω j ⟩ + b j )
) ,

where ω j ∼ F -1 [k 0 ], b j ∼ U(0, 2π) i. i. d.. The feature map defined by Equation 2.4 and Equation 2.5 have been compared in Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] where they give the condition under wich Equation 2.4 has lower variance than Equation 2.5. For instance for the Gaussian kernel, Equation 2.4 has always lower variance. In practice, Equation 2.5 is easier to program. In this manuscript we focus on random Fourier feature of the form given in Equation 2. [START_REF] Alfsen | A simplified constructive proof of the existence and uniqueness of Haar measure[END_REF].

The dimension D governs the precision of this approximation, whose uniform convergence towards the target kernel (as defined in Theorem 2.3) can be found in Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] and in more recent papers with some refinements proposed in Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] and Sriperumbudur and Szabo [START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF]. Finally, it is important to notice that Random Fourier Features approach only requires two steps before the application of a learning algorithm: (1) define the inverse Fourier transform of the given shift-invariant kernel, (2) compute the randomized feature map using the spectral distribution µ. Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] show that for the Gaussian kernel k 0 (xz) = exp(-γ∥x -z∥ 2 2 ), the spectral distribution µ is a Gaussian distribution. For the Laplacian kernel k 0 (xz) = exp(-γ∥x -z∥ 1 ), the spectral distribution is a Cauchy distribution.

We now focus on another famous way of obtaining feature maps for any scalar valued kernel called the Nyström method.

Nyström approximation

To overcome the bottleneck of Gram matrix computations in kernel methods, Williams and Seeger [START_REF] Williams | Using the Nyström Method to Speed Up Kernel Machines[END_REF] have proposed to generate a lowrank matrix approximation of the Gram matrix using a subset of its columns. Since this feature map is based on a decomposition of the Gram matrix, the feature map resulting from the Nyström method is data dependent. Let k : X 2 → R be any scalar-valued kernel and let s = (x i ) N i=1 be the training data. We note a subsample of the training data

s M = (x i ) M i=1
where M ⩽ N and s M is a subsequence of s. Then construct the Gram matrix K M on the subsequence s M . Namely

K M = ( k(x i , x j ) ) M i,j=1 .
Then perform the singular-valued decomposition K M = UΛU T . The Nyström feature map is given by φ

(x) = Λ -1/2 U T ( ⊕ M i=1 k(x, x i )
) .

Here M plays the same role as D in the RFF case: it controls the quality of the approximation. Let K be the full Gram matrix on the training data s, let

K b = ( k(x i , x j ) ) i=N,j=M i=1,j=1 .
Then it is easy to verify that ϕ

T ϕ = K b K † M K T b ≈ K, where K † M is the pseudo-inverse of K M and the quantity K b K † M K T b is a low rank approximation of the Gram matrix K.

Random features vs Nyström method

The main conceptual difference between the Nyström features and the Random Fourier Feature is that the Nyström construction is data dependent, while the RFF is not. The advantage of random Fourier feature lies in their fast construction. For N data in R d , it costs O(NDd) to featurize all the data. For the Nyström features it costs

O ( M 2 (M + d) )
. Moreover if one desires to add a new feature, the RFF methodology is as simple as drawing a new random vector ω ∼ F -1 [k 0 ], compute cos(⟨ω, x⟩ + b), where b ∼ U(0, 2π) and concatenate it the existing feature. For the Nyström features one needs to recompute the singular value decomposition of the new augmented Gram matrix K M+1 .

To analyse the RFF and Nyström features authors usually study the approximation error of the approximate Gram matrix and the targer kernel ϕ T ϕ -K (see [START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Rosasco | On learning with integral operators[END_REF][START_REF] Yang | Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison[END_REF]) or the supremum of the error between the approximated kernel and the true kernel over a compact subset X of the support if k: Bach [12], Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF], Rudi, Camoriano, and Rosasco [START_REF] Rudi | Generalization properties of learning with random features[END_REF], and Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF]). Because Bartlett and Mendelson [START_REF] Bartlett | Rademacher and Gaussian complexities: Risk bounds and structural results[END_REF] showed that for generalization error to be below ϵ ∈ R >0 for kernel methods is O(N -1/2 ), the number of samples M or D required to reach some approximation error below ϵ should not grow faster than O(M -1/2 ) for the Nyström method or O(D -1/2 ) for the RFF method to match kernel learning. Concerning the Nyström method, Yang et al. [START_REF] Yang | Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison[END_REF] suggest that the number of samples M is reduced to O(M -1 ) to reach an error below ϵ when the gap between the eigenvalues of K is large enough. As a result in this specific case, one should sample M = O( √ N) Nyström features to ensure good generalization. On the other hand Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] reported that the generalization performance of RFF learning is O(N -1/2 + D -1/2 ), which indicates that D = O(N) features should be sampled to generalize well. As a result the complexity of learning with the RFF seems not to decrease. However the bounds of Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] are suboptimal and very recently (end of 2016) Rudi, Camoriano, and Rosasco [START_REF] Rudi | Generalization properties of learning with random features[END_REF] proved that in the case of ridge regression (Equation 2.3), the generalization error is O(N -1/2 + D -1 ) meaning that D = O( √ N) random features are required for good generalization with RFFs. We refer the interested reader to Yang et al. [START_REF] Yang | Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison[END_REF] for an empirical comparison between the Nyström method and the RFF method.

sup (x,z)∈C⊆X 2 φ(x) T φ(z) -k(x, z) (see

Extensions of the RFF method

The seminal idea of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] has opened a large literature on random features. Nowadays, many classes of kernels other than translation invariant are now proved to have an efficient random feature representation. Kar and Karnick [START_REF] Kar | Random Feature Maps for Dot Product Kernels[END_REF] proposed random feature maps for dot product kernels (rotation invariant) and Hamid et al. [START_REF] Hamid | Compact Random Feature Maps[END_REF] improved the rate of convergence of the approximation error for such kernels by noticing that feature maps for dot product kernels are usually low rank and may not utilize the capacity of the projected feature space efficiently. Pham and Pagh [START_REF] Pham | Fast and scalable polynomial kernels via explicit feature maps[END_REF] proposed fast random feature maps for polynomial kernels.

Li, Ionescu, and Sminchisescu [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF] generalized the original RFF of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF]. Instead of computing feature maps for shift-invariant kernels on the additive group (R d , +), they used the generalized Fourier transform on any locally compact abelian group to derive random features on the multiplicative group (R d >0 , * ). In the same spirit Yang et al. [START_REF] Yang | Random laplace feature maps for semigroup kernels on histograms[END_REF] noticed that an theorem equivalent to Bochner's theorem exists on the semi-group (R d + , +). From this they derived "Random Laplace" features and used them to approximate kernels adapted to learn on histograms.

To speed-up the convergence rate of the random features approximation, Yang et al. [START_REF] Yang | Quasi-Monte Carlo feature maps for shift-invariant kernels[END_REF] proposed to sample the random variable from a quasi Monte-Carlo sequence instead of i. i. d. random variables. Le, Sarlós, and Smola [START_REF] Le | Fastfood -Computing Hilbert Space Expansions in loglinear time[END_REF] proposed the "Fastfood" algorithm to reduce the complexity of computing a RFF -using structured matrices and a fast Walsh-Hadarmard transform-from O t (Dd) to O t (D log(d)). More recently Felix et al. [START_REF] Felix | Orthogonal random features[END_REF] proposed also an algorithm "SORF" to compute Gaussian RFF in O t (D log(d)) but with bet-ter convergence rates than "Fastfood" [START_REF] Le | Fastfood -Computing Hilbert Space Expansions in loglinear time[END_REF]. Mukuta and Harada [124] proposed a data dependent feature map (comparable to the Nystro m method) by estimating the distribution of the input data, and then finding the eigenfunction decomposition of Mercer's integral operator associated to the kernel.

In the context of large scale learning and deep learning, Lu et al. [START_REF] Lu | How to scale up kernel methods to be as good as deep neural nets[END_REF] showed that RFFs can achieve performances comparable to deep-learning methods by combining multiple kernel learning and composition of kernels along with a scalable parallel implementation. Dai et al. [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF] and Xie, Liang, and Song [START_REF] Xie | Scale up nonlinear component analysis with doubly stochastic gradients[END_REF] combined RFFs and stochastic gradient descent to define an online learning algorithm called "Doubly stochastic gradient descent" adapted to large scale learning. Yang et al. [START_REF] Yang | Deep fried convnets[END_REF] proposed and studied the idea of replacing the last fully interconnected layer of a deep convolutional neural network [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF] by the "Fastfood" implementation of RFFs.

Eventually Yang et al. [191] introduced the algorithm "À la Carte", based on "Fastfood" which is able to learn the spectral distribution corresponding to a kernel rather than defining it from the kernel. Very recently Kawaguchi, Xie,and Song [88] proposed to use semi-random features which are a tradeoff between the random features based on kernel methods (e. g. RFFs) and the trainable layer in deep learning.

q B A C K G R O U N D
In this chapter we introduce briefly the mathematical tools used throughout this manuscript. We give a full table of notations, and present elements of functional analysis [START_REF] Kurdila | Convex functional analysis[END_REF] and abstract hamonic analysis [START_REF] Folland | A course in abstract harmonic analysis[END_REF]. Then we turn our attention to the case when the functions we want to learn are not real-valued, but vector-valued. To learn vector-valued functions we define Operator-Valued Kernels that generalize the scalar-valued kernel presented in Chapter 2. We conclude by giving a non-exhaustive list of Operator-Valued Kernels and in which context they have been used. 

notations

In this section we summarize briefly important notions used throughout this document. It is mainly based on books and lecture notes of Cotaescu [START_REF] Cotaescu | Elements of Linear Algebra[END_REF] and Kurdila and Zabarankin [START_REF] Kurdila | Convex functional analysis[END_REF].

Algebraic structures

We note K any Abelian 1 field and call its elements scalars. R is the 1 Commutative.

Abelian field of real numbers and C is the Abelian field of complex numbers. The unit pure imaginary number √ -1 ∈ C is denoted i and the Euler constant exp(1) ∈ R is denoted e. N represents the set of natural numbers and N n , n ∈ N the set of natural numbers smaller or equal to n. For any space S, S d , d ∈ N represents the Cartesian product space S d = S × • • • × S. For any two algebraic structures S and S ′ we write S ∼ = S ′ if there exist an isomorphism between these two structures. If a

+ ib = x ∈ C then x = a -ib ∈ C denotes the complex conjugate. By extension if x ∈ R, x = x ∈ R.

Topology and continuity

In order to define a proper notion of continuity, we focus on topological spaces. A topological space is a pair of sets (X, T x ) where X describes the points considered, and T x describes the possible neighbourhoods. The standard axioms of topology suppose that T x ⊆ P(X) is a collection of subsets of X such that the empty set and X itself belongs to T x , any (finite or infinite) union of members of T x still belongs to T x and the intersection of any finite number of members of T x still belongs to T x . The elements of T x are called open sets and the collection T x is a topology on X. If (X, T x ) and (Y, T y ) are topological spaces, a function f is said to be continuous if for every open set V ∈ T y , the inverse image

f -1 (V) = { x ∈ X | f(x) ∈ V } is an open subset of T x .
Since the notion of continuity depends on open sets, it depends on the topology of the spaces X and Y.

If (X, T x ) is a topological space and x is a point in X, a neighbour- hood of x is a subset V of X that includes an open set U containing x.
A topological space X is said to be Hausdorff (T2) when all distinct points in X are pairwise neighbourhood-separable. i. e. if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint. It implies the uniqueness of limits of sequences and existence of nets used throughout this thesis. Therefore in the whole document we always assume that a topological space X is Haussdorff.

A topological space is said to be second countable if it has a countable base. Every second-countable space is separable and Lindelöf 2 (The reverse implications do not hold). A space is metrisable if and 2 Every open cover has a countable subcover.

only if it is second countable.

A topological space is said to be separable if there exists a sequence (x n ) n∈N * of elements of X such that every nonempty open subsets of the space contains at least one element of the sequence. Separability plays an important role in numerical analysis because many theorems have only constructive proofs for separable spaces. Such constructive proofs can be turned into algorithms which is the primary goal of this work. In this document we also assume that any topological space is separable if there is no specific mention of the contrary. Moreover we recall that a Hilbert space is separable if and only if it has a countable orthonormal basis (Hence separable Hilbert spaces are second countable). Hence an operator between two separable Hilbert spaces can be written as an infinite dimensional matrix. In some cases we also introduce Polish spaces which are separable topological spaces X that have at least one metric d such that (X, d) is complete. Then d induces the topology T x of X. As metrisable spaces, Polish spaces are always second countable. Moreover every second countable locally compact Hausdorff space is a Polish space and every separable Banach space is a Polish space.

If X and Y are two topological spaces, we denote by F(X; Y) the topological vector space of functions f : X → Y and C(X; Y) ⊂ F(X; Y) the subspace of continuous functions, endowed with the product topology (topology of pointwise convergence).

Measure theory

A σ-algebra on X is a set M ⊆ P(X) of subsets of X, containing the empty set, which is closed under taking complements and countable unions. A pair (X, M) where X is a set and M is a σ-algebra is called a measure space. The Borel σ-algebra B(X) is a σ-algebra generated by the open sets of X. A measure on a measurable space (X, B(X)) is a map µ : B(X) → R + which is zero on the empty set and countably additive, i. e. for any subset (Z n ) n∈N is a sequence of pairwise disjoint measurable sets,

µ ( ∪ n∈N Z n ) = ∑ n∈N µ(Z n ).
We note N(m, σ) the Gaussian distribution with mean m ∈ R and variance σ 2 ∈ R. U(a, b) is the uniform distribution with support (a, b) and S(m, σ) is the hyperbolic secant distribution with mean m and variance σ 2 . background 3.1.4 Vector spaces, linear operators and matrices Given any vector space H over an Abelian field K, the (continuous) dual space1 H * is defined as the set of all continuous linear functionals x * : H → K. When H is a vector space, there is a natural duality pairing between H * and H defined for all x * ∈ H * and all z ∈ H as (x * , z) H * ,H = x * (z) = x * z. The duality paring (•, •) H * ,H is then a bilinear form.

Let H 1 and H 2 be two vector spaces. We call operator any linear function from H 1 to H 2 . The transpose (or dual) of an operator W :

H 1 → H 2 is defined as W T : H * 2 → H * 1 such that W T : x * → x * (W). It is characterized by the relation (x * , Wz) H * 2 ,H 2 = ( W T x * , z ) H * 1 ,H 1 for all x * ∈ H * 2 and all z ∈ H 1 . An operator is called self-dual when W T = W.
Let H 1 and H ∈ be two vector space. We set L(H 1 ; H 2 ) to be the space of bounded (linear) operators from H 1 to H 2 . The vector space H 1 is called the domain, noted Dom and H 2 the codomain. We use the shortcut notation L(H) = L(H; H). Interestingly if H 1 and H 2 are normed vector spaces, they can be viewed as topological vector spaces, and the notion of continuity coincides with that of boundedness. We recall that the norm of a linear operator is given by

∥W∥ H ∞ ,H 2 = sup x̸ =0 ∥Wx∥ H 2 ∥x∥ H 1 . If W ∈ L(H 1 , H 2 ) Ker W = { x ∈ Dom (W) | Wx = 0 }
denotes the kernel (nullspace), which is a vector subspace of the domain and

Im W = { y ∈ H 2 | y = Wx, x ∈ Dom (W) }
the image (range) which is a vector subspace of the codomain H 2 .

If H is an Hilbert space on a field K we denote its scalar product by ⟨•, •⟩ H and its norm by

∥•∥ H . When the base field of H is R, ⟨•, •⟩ H is a bilinear form. When the base field of H is C, ⟨•, •⟩ H is a sesquilinear form.
Let H be a Hilbert space. From Riesz's representation theorem, there is a unique isometric isomorphism ι R : H → H * such that for any x and y ∈ H, (ι R (x), y) 

⟩ H * = ⟨ι -1 R (x * ), ι -1 R (z * )⟩ H for all x * , z * ∈ H * .
Let H 1 and H 2 be two Hilbert spaces. The adjoint of an operator

W : H 1 → H 2 is the unique mapping W * : H 2 → H 1 such that ⟨W * x, z⟩ H 1 = ⟨x, Wz⟩ H 2 for all x ∈ Dom (W * ), z ∈ Dom (W).
Its existence is guaranteed by Riesz's representation theorem. An operator W : Dom (W) ⊆ H → H is said to be symmetric when W * = W, and self-adjoint when W is bounded, symmetric, Dom (W * ) = Dom (W) and Dom (W) is dense in H. If W is bounded, symmetric and Dom (W) = H then W is self-adjoint. Notice that the transpose is linked to the adjoint by the relation

W * = ι -1 R W T ι R . When H is a Hilbert space, if x ∈ H, we always define x * ∈ H * to be x * = ι R (x) = ⟨x, •⟩ H . H 2 H 1 H * 2 H * 1 W * ι R ι R W T ι -1 R Figure 3
.1: Riesz map, dual spaces and adjoints.

Let H be a separable Hilbert space and let (e i ) i∈N * be a basis of H. We call (e * i ) i∈N * the dual basis of H, the basis of H * such that for all i, j ∈ N * , e * i (e j ) = ⟨e i , e j ⟩ H = δ ij . In the whole document we consider that H * is always equipped with the dual basis of H. For a vector x ∈ H with a basis (e i ) i∈N * we write 

x i = e * i (x
(W T ) ij = e * * j W T e ′ * i = e * * j e ′ * i W = e ′ * i We j = W ji .
We call matrix M of size (m, n) ∈ N 2 on an Abelian field K a collection of elements M = (m ij ) 1⩽i⩽m,1⩽j⩽n , m ij ∈ K. We note M m,n (K) the vector space of all matrices. If H 1 and H 2 are two separable Hilbert spaces on an Abelian field K, any linear operator L ∈ L(H 1 ; H 2 ) can be viewed as a (potentially infinite) matrix. Let n = dim(H 1 ), m = dim(H 2 ) and let B = (e i ) n i=1 and C = (e ′ i ) m i=1 be the respective bases of H 1 and H 2 . We note mat B,C :

L(H 1 ; H 2 ) → M m,n (K) such that M = mat B,C (L) = (e ′ * j Le i ) 1⩽i⩽n,1⩽j⩽m ∈ M m,n (K). Let M 1 ∈ M m,n (K) and M 2 ∈ M n,l (K). The product between two matri- ces is written M 1 M 2 ∈ M m,l (K) and obey (M 1 M 2 ) ij = ∑ n k=1 M ik M kj . Given two linear operator L 1 ∈ L(H 1 ; H 2 ) and L2 ∈ L(H 2 ; H 3 ) we have L 1 L 2 ∈ L(H 1 ; H 3 ) and i mat B,D (L 1 L 2 ) = mat B,C (L 1 )mat C,D (L 2 ).
The operator mat B,C is a vector space isomorphism allowing us to identify L(H 1 ; H 2 ) with M mn (K) where n = dim(H 1 ) and m = dim(H 2 ). All these notations are summarized in Tables 3.1 and 3.3.

elements of abstract harmonic analysis

Locally compact Abelian groups

Definition 3.1 (Locally Compact Abelian (LCA) group.).

A group X endowed with a binary operation ⋆ is said to be a Locally Compact Abelian group if X is a topological commutative group w. r. t. ⋆ for which every point has a compact neighborhood and is Hausdorff (T2).

Moreover given a element z of a LCA group X, we define the set

z ⋆ X = X ⋆ z = { z ⋆ x | ∀x ∈ X } and the set X -1 = { x -1 ∀x ∈ X } .
We also note e the neutral element of X such that x ⋆ e = e ⋆ x = e for all x ∈ X. Throughout this thesis we focus on positive-definite functions. Let Y be a complex separable Hilbert space. A function f : X → Y is positive definite if for all N ∈ N and all y ∈ Y,

(3.1) N ∑ i,j =1 ⟨ y i , f ( x -1 j ⋆ x i ) y j ⟩ Y ⩾ 0 for all sequences (y i ) i∈N * N ∈ Y N and all sequences (x i ) i∈N * N ∈ X N .
If Y is real we add the assumption that f(x -1 ) = f(x) * for all x ∈ X. A consequence is that a positive-definite function is bounded, as shown by Falb [START_REF] Falb | On a theorem of Bochner[END_REF], ∥f(x)∥ Y,Y ⩽ 2∥f(e)∥ Y,Y for all x ∈ X, however positivedefinite functions are not necessarily continuous. This motivates the introduction of functions of positive type which are nothing but continuous positive-definite function. 

Symbol

Meaning := Equal by definition.

N

The semi-group of natural numbers.

K

Any non-discrete Abelian field endowed with an absolute value. Elements of K are called scalars.

R

The Abelian field of real numbers.

C

The Abelian field of complex numbers.

U

The circle group of complex numbers with unit module.

i ∈ C Unit pure imaginary number i 2 := -1.

e ∈ R Euler constant.

e ∈ X

The neutral element of the group X.

δ ij Kronecker delta function. δ ij = 0 if i ̸ = j, 1 otherwise. ⟨•, •⟩ 2 Euclidean inner product. ∥•∥ 2 Euclidean norm. X Input space.

X

The Pontryagin dual of X when X is a LCA group.

Y

Output space (Hilbert space).

H

Feature space (Hilbert space).

⟨•, •⟩ Y

The canonical inner product of the Hilbert space Y.

∥•∥ Y

The canonical norm induced by the inner product of the Hilbert space Y.

F(X; Y) Topological vector space of functions from X to Y.

C(X; Y)

The topological vector subspace of F of continuous functions from X to Y.

L(H; Y)

The set of bounded linear operator from a Hilbert space H to a Hilbert space Y.

∥•∥ Y,Y ′ The operator norm ∥Γ ∥ Y,Y ′ = sup ∥y∥ Y =1 ∥Γ y∥ Y ′ for all Γ ∈ L(Y, Y ′ ) M m,n (K)
The set of matrices of size (m, n).

L(Y)

The set of bounded linear operator from a Hilbert space Y to itself.

L + (Y)

The set of non-negative bounded linear operator from a Hilbert space H to itself.

B(X)

Borel σ-algebra on a topological space X.

µ(X)

A scalar positive measure of X.

Leb(X)

The Lebesgue measure of X.

Haar(X)

A Haar measure of X.

background Table 3.3: Mathematical symbols and their signification (part 2).

Symbol Meaning

Pr µ,ρ (X) A probability measure of X whose Radon-Nikodym derivative (density) with respect to the measure µ is ρ.

F [•]

The Fourier Transform operator.

F -1 [•]
The Inverse Fourier Transform operator.

ess sup

The essential supremum.

L p (X, µ) The Banach space of |•| p -integrable function from (X, B(X), µ) to C for p ∈ R + . L p (X, µ; Y) The Banach space of ∥•∥ p Y (Bochner)-integrable func- tion from (X, B(X), µ) to Y for p ∈ R + . L p (X, µ, R) := L p (X, µ). ⊕ D j=1 x i The direct sum of D ∈ N vectors x i 's in the Hil- bert spaces H i . By definition ⟨ ⊕ D j=1 x j , ⊕ D j=1 z j ⟩ = ∑ D j=1 ⟨x j , z j ⟩ H i [11]. ∥•∥ p The L p (X, µ, Y) norm. ∥f∥ p p := ∫ X ∥f(x)∥ p Y dµ(x). When X = N * , Y ⊆ R
and µ is the counting measure and p = 2 it coincide with the Euclidean norm ∥•∥ 2 for finite dimensional vectors.

∥•∥ ∞ The uniform norm ∥f∥ ∞ = ess sup { ∥f(x)∥ Y | x ∈ X } = lim p→∞ ∥f∥ p .

T

The transpose operator of a linear operator. *

The adjoint operator of a linear operator.

|Γ |

The absolute value of the linear operator

Γ ∈ L(Y), i. e. |Γ | 2 = Γ * Γ . Tr [Γ ]
The trace of a linear operator Γ ∈ L(Y).

σ(Γ )

The spectrum of the bounded linear operator

Gamma ∈ L(Y) where Y is a Hilbert space, i. e. σ(Γ ) = { λ ∈ C | ∄s, s(λe -Γ ) = e }. λ i (Γ )
The i-th eigenvalue of Γ ∈ L(Y), ranked by increasing modulus, where Y is a separable Hilbert space and i ∈ N * .

ρ(Γ )

The spectral radius of the linear operator Γ i. e.

ρ(Γ ) = sup { |λ| | λ ∈ σ(Γ ) }. ∥•∥ σ,p The Schatten p-norm, ∥Γ ∥ p σ,p = Tr [|Γ | p ] for Γ ∈ L(Y), where Y is a Hilbert space. Note that ∥Γ ∥ σ,∞ = ρ(Γ ) ⩽ ∥Γ ∥ Y,Y .

≽

"Greater than" in the Loewner partial order of operators.

Γ 1 ≽ Γ 2 if σ(Γ 1 -Γ 2 ) ⊆ R + .

R

The one point compacification of the real line R ∪ { ∞ }. ∼ = Given two sets X and Y, X ∼ = Y if there exists an isomorphism φ : X → Y.

The Haar measure

Measures on topological spaces which appear in practice often satisfy the following regularity properties.

Definition 3.2 (Radon measure).

A Radon measure µ = Rad on a topological measurable space X is a measure on (X, B(X)) which satisfies the following properties.

1. The measure Rad is finite on every compact set.

Rad(K) < ∞, for any compact set K ∈ B(X).
2. The measure Rad is outer regular on any Borel sets E.

Rad(E) = inf { Rad(U) | E ⊆ U } , for any open set U.
3. The measure Rad is inner regular on open sets E.

Rad(E) = sup { Rad(K) | K ⊆ E } , for any compact set K.
When dealing with topological groups it is natural to look for measures which are invariant under translation. There exists, up to a positive multiplicative constant, a unique countably additive, nontrivial measure Haar on any LCA group. For more details and constructive proofs see Alfsen [START_REF] Alfsen | A simplified constructive proof of the existence and uniqueness of Haar measure[END_REF], Conway [START_REF] Conway | A course in functional analysis[END_REF], and Folland [START_REF] Folland | A course in abstract harmonic analysis[END_REF]. 2. For all Z ∈ B(X) and x ∈ X, Haar(x ⋆ Z) = Haar(Z).

Such a measure on a LCA group X is called a Haar measure 3 . An 3 If X was not supposed to be Abelian, we should have defined a left Haar measure and a right Haar measure. In our case both measure are the same, so we refer to both of them as Haar measure immediate consequence of the invariance is that for any s ∈ X,

∫ X f(s ⋆ x)dHaar(x) = ∫ X f(x)dHaar(x).
It can be shown that Haar(U) > 0 for every non-empty open subset U. In particular, if X is compact then Haar(X) is finite and positive, so we can uniquely specify a Haar measure on X by adding the normalization condition Haar(X) = 1. We call measured space the space (X, B(X), Haar). In other words the (topological) space X endowed with its Borel σ-algebra B(X) and a measure Haar. If Haar(X) = 1 then the space (X, B(X), Haar) is called a probability space. Last but not least, on the additive group (R, +), the Lebesgue measure noted Leb is a valid Haar measure. For a concise introduction and important properties we refer the reader to the lecture of Tornier [START_REF] Tornier | Haar measures[END_REF]. 

Even and odd functions

Let X be a LCA group and K be a field viewed as an additive group. We say that a function f :

X → K is even if for all x ∈ X, f(x) = f ( x -1 ) and odd if f(x) = -f ( x -1 )
. The definition can be extended to operatorvalued functions. Definition 3.4 (Even and odd operator-valued function on a LCA group). Let X be a measured LCA group and Y be a Hilbert space, and L(Y) the space of bounded linear operators from Y to itself viewed as an additive group. A function f : X → L(Y) is (weakly) even if for all x ∈ X and all y, y ′ ∈ Y,

(3.2) ⟨y, f ( x -1 ) y ′ ⟩ Y = ⟨y, f(x)y ′ ⟩ Y
and (weakly) odd if

(3.3) ⟨y, f ( x -1 ) y ′ ⟩ Y = -⟨y, f(x)y ′ ⟩ Y It is easy to check that if f is odd then ∫ X ⟨y, f(x)y ′ ⟩ Y dHaar(x) = 0. Proof ∫ X ⟨y, f(x)y ′ ⟩ Y dHaar(x) = ∫ X ⟨ y, ( f ( x -1 ) + f(x) 2 ) - ( f ( x -1 ) -f(x) 2 ) y ′ ⟩ Y dHaar(x) = 1 2 ( - ∫ X ⟨y, f(x)y ′ ⟩ Y dHaar(x) + ∫ X ⟨y, f(x)y ′ ⟩ Y dHaar(x) ) = 0.

□

Besides the product of an even and an odd function is odd. Indeed for all f, g ∈ F(X; L(Y)), where f is even and g odd. Define h(x) = ⟨y, f(x)g(x)y ′ ⟩. Then we have

(3.4) h ( x -1 ) = ⟨y, f ( x -1 ) g ( x -1 ) y ′ ⟩ Y = ⟨y, f(x) (-g(x)) y ′ ⟩ Y = -h(x).

Characters

Locally Compact Abelian (LCA) groups are central to the general definition of Fourier Transform which is related to the concept of Pontryagin duality [START_REF] Folland | A course in abstract harmonic analysis[END_REF]. Let (X, ⋆) be a LCA group with e its neutral element and the notation, x -1 , for the inverse of x ∈ X. A character is a complex continuous homomorphism ω : X → U from X to the set of complex numbers of unit module U. The set of all characters of X forms the Pontryagin dual group X. The dual group of an LCA group is an LCA group such that we can endow X with a "dual" Haar measure noted Haar. Then the dual group operation is defined by

(ω 1 ⋆ ′ ω 2 )(x) = ω 1 (x)ω 2 (x) ∈ U.
The Pontryagin duality theorem states that X ∼ = X. i. e. there is a canonical isomorphism between any LCA group and its double dual. To emphasize this duality the following notation is usually adopted

(3.5) ω(x) = (x, ω) = (ω, x) = x(ω),
where x ∈ X ∼ = X and ω ∈ X. The form (•, •) defined in Equation 3.5 is called (duality) pairing. Another important property involves the complex conjugate of the pairing which is defined as

(3.6) (x, ω) = ( x -1 , ω ) = ( x, ω -1
) .

We notice that for any pairing depending of ω, there exists a function h ω : X → R such that (x, ω) = exp(ih ω (x)) since any pairing maps into U. Moreover,

( x ⋆ z -1 , ω ) = ω(x)ω ( z -1 ) = exp (+ih ω (x)) exp ( +ih ω ( z -1 )) = exp (+ih ω (x)) exp (-ih ω (z)) .
The following example shows how to determine the (Pontryagin) dual of a LCA group.

Example 3.1 (Folland [65]

). On the additive group X = (R, +) we have

R ∼

= R with the duality pairing (x, ω) = exp (ixω) for all x ∈ R and all ω ∈ R. The Haar measure on X is the Lebesgue measure.

Proof If ω ∈ R then ω(0) = 1 since ω is an homeomorphism from R to U. Therefore there exists a > 0 such that ∫ a 0 ω(t)dLeb(t) ̸ = 0. Setting Aω = ∫ a 0 ω(t)dLeb(t) we have

(Aω)(x) = ∫ a 0 ω(x + t)dLeb(t) = ∫ a+x x ω(t)dLeb(t).
so ω is differentiable and

ω ′ (x) = A -1 (ω(a + x) -ω(x)) = cω(x) where c = A -1 (ω(a) -1).
It follow that ω(x) = e cx , and since |ω| = 1, one can take c = iξ for some ξ ∈ R. Hence we can identify ω with ξ and R with R since ξ uniquely determines ω, thus we identify ω = ξ. □

We also especially mention the duality pairing associated to the skewed multiplicative LCA product group. This group together with the operation ⊙ has been proposed by Li, Ionescu, and Sminchisescu [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF] to handle histograms features especially useful in image recognition applications. Let X = (-c k ; +∞) d k=1 , where c k ∈ R + , endowed with the group operation ⊙ defined component-wise for all x, z ∈ X as follow.

x ⊙ z : = ((x k + c k )(z k + c k ) -c k ) d k =1 .
Example 3.2 (Li, Ionescu, and Sminchisescu [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF]). On the skewed multiplicative group X = ((-c, +∞), ⊙) we have (-, +∞) ∼ = R, with duality pairing (x, ω) = exp(i log(x + c)ω) for all x ∈ X and all ω ∈ X. The Haar measure on X is given for all Z ∈ B(X) by

Haar(Z) = ∫ Z (z + c) -1 dLeb(z). Proof Let a, b ∈ (-c, +∞) and µ([a, b]) = ∫ b a (z + c) -1 dLeb(z). Then for all d ∈ (-c, +∞) µ([d ⊙ a, d ⊙ b]) = ∫ (d+c)(b+c)-c (d+c)(a+c)-c (z + c) -1 dLeb(z) = log(d + c)(b + c) -log(d + c)(a + c) = log(b + c) -log(a + c) = ∫ b a (z + c) -1 dLeb(z) = µ([a, b]).
Thus µ is translation invariant, making Haar = λµ a valid Haar measure on X for any multiplicative constant λ ∈ R * . Let (x, ω) = exp(i log(x + c)ω) for all x ∈ X and all ω ∈ X. We have for all z ∈ X

(x ⊙ z, ω) = exp(i log((x + c)(z + c))ω) = exp(i log(x + c)ω) exp(i log(z + c)ω) = (x, ω)(z, ω)
Thus ω(x ⊙ z) := ω(x)ω(z), which defines a valid pairing, therefore we can identify X = (-c, +∞) ∼ = R where R is the additive group endowed with the Haar measure being the Lebesgue measure. □

It is easy to extend the Pontryagin dual of groups to dual groups, as well as defining the pairing on the dual group using the following proposition [START_REF] Folland | A course in abstract harmonic analysis[END_REF] Proposition 3.1 (Folland [START_REF] Folland | A course in abstract harmonic analysis[END_REF]). Let (X i ) i∈N be a collection of LCA groups. Then

( ∏ i∈N X i ) ∼ = ∏ i∈N X i Proof Each ω = (ω 1 , . . . , ω N ) ∈ ∏ N i=1 X i defines a character on ∏ N i=1 X i by ((x 1 , . . . , x N ), (ω 1 , . . . , ω N )) = (x 1 , ω 1 ) • • • (x N , ω N ).
Moreover, every character ω on ∏ N i=1 X i is of this form, where ω i is defined by (x i , ω i ) = ((e 1 , . . . , e i-1 , x j , e i+1 , . . . , e N ), ω), where e i 's denotes the neutral elements of the LCA group X i .

□

Hence R d ∼ = R d with duality pairing (x, ω) = exp ( i d ∑ k=1 x k ω k ) , hence h ω (x) = ∑ d k=1 ω k x k = ⟨x, ω⟩ 2 .
For the skewed multiplicative group (-c k ; +∞) d k=1 ∼ = R d and the duality pairing is defined by

(x, ω) = exp ( i d ∑ k=1 log(x k + c k )ω k ) . Hence h ω (x) = ∑ d k=1 log(x k + c k )ω k = ⟨log(x + c), ω⟩ 2 .
Eventually the natural Haar measure on a product group is the product measure. e. g. for X = R d , the Haar measure on R d is the d-th power of the Lebesgue measure on R. Table 3.5 provides an explicit list of pairings for various groups based on R d or its subsets. The interested reader can refer to Folland [START_REF] Folland | A course in abstract harmonic analysis[END_REF] for a more detailed construction of LCA, Pontryagin duality and Fourier Transforms on LCA. 

X = X ∼ = Operation Pairing R d R d + (x, ω) = exp (i⟨x, ω⟩ 2 ) R d * ,+ R d • (x, ω) = exp (i⟨log(x), ω⟩ 2 ) (-c; +∞) d R d ⊙ (x, ω) = exp (i⟨log(x + c), ω⟩ 2 )

The Fourier Transform

For a function with values in a separable Hilbert space, f ∈ L 1 (X, Haar; Y), we denote F [f] its Fourier Transform (FT) which is defined by

∀ω ∈ X, F [f] (ω) = ∫ X (x, ω)f(x)dHaar(x).
The Inverse Fourier Transform (IFT) of a function g ∈ L 1 ( X, Haar; Y)

is noted F -1 [g] defined by ∀x ∈ X, F -1 [g] (x) = ∫ X (x, ω)g(ω)d Haar(ω),
We also define the flip operator R by (Rf)(x) := f ( x -1 ) .

Theorem 3.1 (Fourier inversion (Folland [65])). Given a measure Haar defined on X, there exists a unique suitably normalized dual measure Haar on X such that for all f ∈ L 1 (X, Haar; Y) and if

F [f] ∈ L 1 ( X, Haar; Y) we have (3.7) f(x) = ∫ X (x, ω)F [f] (ω)d Haar(ω), for Haar-almost all x ∈ X. i. e. such that (RFF [f])(x) = F -1 F [f] (x) = f(x) for Haar-almost all x ∈ X.
If f is continuous this relation holds for all x ∈ X.

Proof

The proof is based on Bochner's theorem and the Pontryagin duality theorem. We refer the reader to Folland [65, 

∈ X = R d (3.8) F [f] (ω) = ∫ X (x, ω)f(x)dHaar(x) = ∫ R d exp(-i⟨x, ω⟩ 2 )f(x)dLeb(x),
the Haar measure being here the Lebesgue measure. Notice that the normalization factor of Haar on X depends on the measure Haar on X and the duality pairing. For instance let X = (R d , +). In Example 3.1 we showed that X ∼ = R d with pairing (x, ω) = exp(i⟨x, ω⟩ 2 ), for all x ∈ X and ω ∈ X. If one endows X with the Lebesgue measure as the Haar measure, the Haar measure on the dual is defined for all Z ∈ B(R d ) by Haar(Z) = Leb(Z), and Haar(Z) = 1 (2π) d Leb(Z), in order to have F -1 F [f] = f. If one usess the cleaner equivalent pairing (x, ω) = exp(2iπ⟨x, ω⟩ 2 ) rather than (x, ω) = exp(i⟨x, ω⟩ 2 ), then

Haar(Z) = Leb(Z).

The pairing (x, ω) = exp(2iπ⟨x, ω⟩ 2 ) looks more attractive in theory since it limits the messy factor outside the integral sign and makes the Haar measure self-dual. However it is of lesser use in practice since it yields additional unnecessary computation when evaluating the pairing. Hence for symmetry reason on (R d , +) and reduce computations we settle with the Haar measure on R d groups (additive and multiplicative) defined as

Haar(Z) = Haar(Z) = 1 √ 2π d Leb(Z).
We conclude this subsection by recalling the injectivity property of the Fourier Transform. for which all the maps X → H defined for all v ∈ H as x → π(x)v, are continuous. The space H in which the representation takes place is called the representation space of π. A representation π of a group X in a vector space H defines an action defined for all x ∈ X by

π x :    H → H v → π(x)v.
If for all x ∈ X, π(x) is a unitary operator, then the group representation π is said to be unitary (i. e. ∀x ∈ X, π(x) is isometric and surjective). Thus π is unitary when for all x ∈ X π(x

) * = π(x) -1 = π ( x -1
) .

The representation π of X in H is said to be irreducible when H ̸ = { 0 } and { 0 } and H are the only two stable invariant subspaces under all operators π(x) for all x ∈ X. i. e. for all

U ⊂ H, U ̸ = { 0 }, { π(x)v | ∀x ∈ X, ∀v ∈ U } ̸ = U.
To study LCA groups we also introduce the left regular representation of X acting on a Hilbert space of function H ⊂ F(X; Y). For all x, z ∈ X and for all f ∈ H,

(λ z f)(x) : = f(z -1 ⋆ x).
The representation λ of X defines an action λ x on H which is the translation of f(x) by z -1 . With this definition one has for all x, z ∈ X, λ x λ z = λ x -1 ⋆z . Such representations are faithful, that is λ x = 1 ⇐⇒ x = e.

on operator-valued kernels

We now introduce the theory of Vector Valued Reproducing Kernel Hilbert Space (VV-RKHS) that provides a flexible framework to study and learn vector-valued functions. The fundations of the general theory of scalar kernels is mostly due to Aronszajn [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] and provides a unifying point of view for the study of an important class of Hilbert spaces of real or complex valued functions. It has been first applied in the theory of partial differential equation. The theory of Operator-Valued Kernels (OVKs) which extends the scalar-valued kernel was first developped by Pedrick [START_REF] Pedrick | Theory of reproducing kernels for Hilbert spaces of vector-valued functions[END_REF] in his Ph. D Thesis. Since then it has been successfully applied to machine learning by many authors. In particular we introduce the notion of Operator-Valued Kernels following the propositions of Carmeli, De Vito, and Toigo [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem[END_REF], Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF], and Micchelli and Pontil [START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF].

Definitions and properties

In machine learning the goal is often to find a function f belonging to a class (space) of functions F(X; Y) that minimizes a criterion called the true risk (see Section 2.1). The class of functions we consider are functions living in a Hilbert space H ⊂ F(X; Y). The completeness allows to consider sequences of functions f n ∈ H where the limit f n → f is in H. Moreover the existence of an inner product gives rise to a norm and also makes H a metric space. Among all these functions f ∈ H, we consider a subset of functions f ∈ H K ⊂ H such that the evaluation map ev x : f → f(x) is bounded for all x. i. e. such that ∥ev x ∥ H K ⩽ C x ∈ R for all x. For scalar valued kernel the evaluation map is a linear functional. Thus by Riesz's representation theorem there is an isomorphism between evaluating a function at a point and an inner product: f(x) = ev x f = ⟨K x , f⟩ K . From this we deduce the reproducing property K(x, z) = ⟨K x , K z ⟩ K which is the cornerstone of many proofs in machine learning and functional analysis. When dealing with vector-valued functions, the evaluation map ev x is no longer a linear functional, since it is vector-valued.

However, inspired by the theory of scalar valued kernel, many authors showed that if the evaluation map of functions with values in a Hilbert space Y is bounded, a similar reproducing property can be obtained; namely ⟨y ′ , K(x, z)y⟩ = ⟨K x y ′ , K z y⟩ K for all y, y ′ ∈ Y. This motivates the following definition of a Vector Valued Reproducing Kernel Hilbert Space (VV-RKHS). Definition 3.5 (Vector Valued Reproducing Kernel Hilbert Space [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF]). Let Y be a (real or complex) Hilbert space. A Vector Valued Reproducing Kernel Hilbert Space on a locally compact second countable topological space X is a Hilbert space H such that 1. the elements of H are functions from X to Y (i. e. H ⊂ F(X, Y));

2. for all x ∈ X, there exists a positive constant

C x ∈ R such that for all f ∈ H (3.9) ∥f(x)∥ Y ⩽ C x ∥f∥ H .
Throughout this section we show that a VV-RKHS defines a unique positive-definite function called Operator-Valued Kernel (OVK) and conversely an OVK uniquely defines a VV-RKHS. The bijection between OVKs and VV-RKHSs has been first proved by Senkene and Tempel'man [START_REF] Senkene | Hilbert Spaces of operatorvalued functions[END_REF] in 1973. In this introduction to OVKs we follow the definitions and most recent proofs of Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. Definition 3.6 (Positive-definite Operator-Valued Kernel acting on a complex Hilbert space). Given X a locally compact second countable topological space and Y a complex Hilbert Space, a map K :

X × X → L(Y) is called a positive-definite Operator-Valued Kernel if (3.10) N ∑ i,j =1 ⟨K(x i , x j )y j , y i ⟩ Y ⩾ 0,
for all N ∈ N, for all sequences of points (x i ) N i=1 in X N and all sequences of points (y i ) N i=1 in Y N . If Y is a real Hilbert space, a positive-definite Operator-Valued Kernel is always self-adjoint, i. e. K(x, z) = K(z, x) * . This gives rise to the following definition of positive-definite Operator-Valued Kernel acting on a real Hilbert space. Definition 3.7 (Positive-definite Operator-Valued Kernel acting on a real Hilbert space). Given X a locally compact second countable topological space and Y a real Hilbert Space, a map K :

X × X → L(Y) is called a positive-definite Operator-Valued Kernel kernel if (3.11) K(x, z) = K(z, x) * and (3.12) N ∑ i,j =1 ⟨K(x i , x j )y j , y i ⟩ Y ⩾ 0,
for all N ∈ N, for all sequences of points (x i ) N i=1 in X N , and all sequences of points (y i ) N i=1 in Y N . As in the scalar case any Vector Valued Reproducing Kernel Hilbert Space defines a unique positive-definite Operator-Valued Kernel and conversely a positive-definite Operator-Valued Kernel defines a unique Vector Valued Reproducing Kernel Hilbert Space. Proposition 3.2 (Carmeli, De Vito, and Toigo [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem[END_REF]). Given a Vector Valued Reproducing Kernel Hilbert Space there is a unique positive-definite Operator-Valued Kernel K : X × X → L(Y).

Proof Given x ∈ X, Equation 3.9 ensures that the evaluation map at x defined as ev x :

   H → Y f → f(x)
is a bounded operator and the Operator-Valued Kernel K associated to H is defined as

K : X × X → L(Y) K(x, z) = ev x ev * z .
Since for all (x i ) N i=1 in X N and all

(y i ) N i=1 in Y N , N ∑ i,j =1 ⟨K(x i , x j )y j , y i ⟩ Y = N ∑ i,j=1 ⟨ev * x j y j , ev * x i y i ⟩ Y = ⟨ N ∑ i=1 ev * x i y i , N ∑ i=1 ev * x i y i ⟩ Y = N ∑ i=1 ev * x i y i Y ⩾ 0, the map K is positive-definite. □ Given x ∈ X, K x : Y → F(X; Y)
denotes the linear operator whose action on a vector y is the function K x y ∈ F(X; Y) defined for all z ∈ X by K x = ev * x . As a consequence we have that (3.13)

K(x, z)y = ev x ev * z y = K * x K z y = (K z y)(x).
Some direct consequences follow from the definition.

1. The kernel reproduces the value of a function f ∈ H at a point x ∈ X since for all y ∈ Y and x ∈ X, ev * x y = K x y = K(•, x)y such that

(3.14) ⟨f(x), y⟩ Y = ⟨f, K(•, x)y⟩ H = ⟨K * x f, y⟩ Y . 2. The set { K x y | ∀x ∈ X, ∀y ∈ Y } is total in H. Namely, ( ∪ x∈X Im K x ) ⊥ = { 0 } . If f ∈ (∪ x∈X Im K x ) ⊥ , then for all x ∈ X, f ∈ (Im K x ) ⊥ = Ker K * x , hence f(x) = 0 for all x ∈ X that is f = 0. 3. Finally for all x ∈ X and all f ∈ H, ∥f(x)∥ Y ⩽ √ ∥K(x, x)∥ Y,Y ∥f∥ H . This comes from the fact that ∥K x ∥ Y,H = ∥K * x ∥ H,Y = √ ∥K(x, x)∥ Y,Y
and the operator norm is sub-multiplicative.

Additionally given a positive-definite Operator-Valued Kernel, it defines a unique VV-RKHS.

Proposition 3.3 (Carmeli, De Vito, and Toigo [40]

). Given a positivedefinite Operator-Valued Kernel K : X × X → L(Y), there is a unique Vector Valued Reproducing Kernel Hilbert Space H on X with reproducing kernel K.

Proof Let K x,y = K(•, x)y ∈ F(X; Y) and let

H 0 = span { K x,y | ∀x ∈ X, ∀y ∈ Y } ⊂ F(X; Y). If f = ∑ N i=1 c i K x i ,y i and g = ∑ N i=1 d i K z i ,y ′ i are elements of H 0 we have that N ∑ j =1 d j ⟨f(z j ), y ′ j ⟩ Y = N ∑ i,j =1 c i d j ⟨K(z j , x i )y i , y ′ j ⟩ Y = N ∑ i =1 c i ⟨y i , g(x i )⟩ Y ,
such that the sesquilinear form on

H 0 × H 0 ⟨f, g⟩ H 0 = N ∑ i,j=1 c i d j ⟨K(z j , x i )y i , y ′ j ⟩ Y
is well defined. Since K is a positive-definite Operator-Valued Kernel, we have that ⟨f, f⟩ H 0 ⩾ 0 for all f ∈ H 0 . Because the sesquilinear form is positive if Y is a complex Hilbert space, it is also Hermitian. If Y is a real Hilbert space, by assumption K(x, z) = K(z, x) * , making ⟨•, •⟩ H 0 an Hermitian sesquilinear form. Choosing g = K x,y in the above definition yields for all x ∈ X, all f ∈ H 0 and all y ∈ Y ⟨f, K x,y ⟩ H 0 = ⟨f(x), y⟩ Y .

Besides if f ∈ H 0 for all unitary vector y ∈ Y, by the Cauchy-Schwartz inequality we have

|⟨f(x), y⟩ Y | = ⟨f, K x,y ⟩ H 0 ⩽ √ ⟨f, f⟩ H 0 √ ⟨K x,y , K x,y ⟩ Y = √ ⟨f, f⟩ H 0 √ ⟨K(x, x)y, y⟩ Y ⩽ √ ⟨f, f⟩ H 0 √ ∥K(x, x)∥ Y,Y , which implies that ∥f(x)∥ Y ⩽ ∥f∥ H 0 √ ∥K(x, x)∥ Y,Y
Therefore if ⟨f, f⟩ H 0 = 0 then f = 0. Eventually we deduce that ⟨•, •⟩ H 0 is an inner product on H 0 . Hence H 0 is a pre-Hilbert space. To make it a (complete) Hilbert space we need to take the completion of this space. Let H be the completion of H 0 . Moreover let

K x : Y → H where K x y = K x,y . By construction K x is bounded. Let W : H → F(X; Y) where (Wf)(x) = K * x f. The operator W is injective. Indeed if Wf = 0 then for all x ∈ X, f ∈ Ker K * x = (Im f) ⊥ . Since the set ∪ x∈X Im K x = { K x y | ∀x ∈ X, ∀y ∈ Y } generates by definition H 0 , we have f = 0. Besides, as W is injective, we have for all f 1 , f 2 ∈ H 0 (Wf 1 )(x) = (Wf 2 )(x) =⇒ f 1 (x) = f 2 (x) pointwise in H so that we can identify H with a subspace of F(X; Y). Hence K * x f = (Wf)(x) = f(x) = ev x f, showing that H is a Vector Valued Reproducing Kernel Hilbert Space with reproducing kernel K H (x, z)y = (ev * z y)(x) = K(x, z)y.
The uniqueness of H comes from the uniqueness of the completion of H 0 up to an isometry. □

The above theorem also holds if Y is a real Hilbert space provided we add the assumption that K(x, z) is self-adjoint i. e. K(x, z) = K(z, x) * for all x, z ∈ X. Then K(x, z) still defines a valid symmetric bilinear form on Y when Y is a real Hilbert space.

Since an positive-definite Operator-Valued Kernel defines a unique Vector Valued Reproducing Kernel Hilbert Space (VV-RKHS) and conversely a VV-RKHS defines a unique Operator-Valued Kernel, we denotes the Hilbert space H endowed with the scalar product ⟨•, •⟩ respectively H K and ⟨•, •⟩ K . From now we refer to positive-definite Operator-Valued Kernels or reproducing Operator-Valued Kernels as Operator-Valued Kernels whether they act on complex or real Hilbert spaces. As a consequence, given K an Operator-Valued Kernel, define

K x = K(•, x) we have (3.15a) K(x, z) = K * x K z ∀x, z ∈ X , (3.15b) H K = span { K x y | ∀x ∈ X, ∀y ∈ Y } .
Where span is the closed span of a given set. Another way to describe functions of H K consists in using a suitable feature map. Proposition 3.4 (Feature Operator (Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF])). Let H be any Hilbert space and Φ : X → L(Y; H), with Φ x := Φ(x). Then the operator W : H → F(X; Y) defined for all g ∈ H, and for all x ∈ X by (Wg)(x) = Φ *

x g is a partial isometry from H onto the VV-RKHS H K with reproducing kernel

K(x, z) = Φ * x Φ z , ∀x, z ∈ X. W * W is the orthogonal projection onto (Ker W) ⊥ = span { Φ x y | ∀x ∈ X, ∀y ∈ Y } . Then (3.16) ∥f∥ K = inf { ∥g∥ H | ∀g ∈ H, Wg = f } . Proof The operator (Wg)(x) = Φ(x) * g ensures that the nullspace of W is N = Ker W = ∩ x∈X Ker Φ(x) * . Since Φ(x) is bounded, Φ(x) is a contin- uous operator, thus for all x ∈ X, Ker Φ(x) * is closed so that N is closed. Moreover, N = Ker W = ∩ x ∈X Ker Φ(x) * = ∩ x ∈X (Im Φ(x)) ⊥ = ( ∪ x∈X Im Φ(x) ) ⊥ So that N ⊥ = ∪ x∈X Im Φ(x)
and the restriction of W to N ⊥ is injective.

Let H K = Im W be a vector space. Define the unique inner product on H K such that W becomes a partial isometry from H onto H K . We call this new partial isometry (again) W. We show that H K is a Vector Valued Reproducing Kernel Hilbert Space. Since W * W is a projection on N ⊥ , given f ∈ H K , where f = Wg and g ∈ N ⊥ we have for all x ∈ X f(x) = (Wg)(x) = Φ(x) * g = Φ(x) * W * Wg = (WΦ(x)) * f. Since Ker W is closed, W is bounded, and Φ(x) is bounded by definition such that the evaluation map ev x = (WΦ(x)) * is bounded, thus continuous. Then the reproducing kernel is given for all x, z ∈ X by

K(x, z) = ev x ev * z = (WΦ(x)) * (WΦ(z)) = Φ(x) * W * WΦ(z) = Φ(x) * Φ(z), Since W * W is the identity on Im Φ(z). Hence H K is a VV-RKHS (see proof of Proposition 3.2). □
We call Φ a feature map, W a feature operator and H a feature space. Since W is an isometry from (Ker W) ⊥ onto H K , the map W allows us to identify H K with the closed subspace (Ker W) ⊥ of H. Notice that W is a partial isometry, meaning that there can exist multiple functions g ∈ H, the redescription space, such that Wg = f where f is a function of the VV-RKHS H K . However Equation 3.16 shows that there is a unique function g ∈ H such that Wg = f, and ∥g∥ H = ∥f∥ H K = ∥f∥ K . Among all functions g ∈ H such that Wg = f, the only one making the norm in the VV-RKHS and the redescription space is the one with minimal norm.

background

In this work we mainly focus on the class of kernels inducing a VV-RKHS of continuous functions. Such kernels are named Y-Mercer kernels.

Definition 3.8 (Y-Mercer kernel (Carmeli et al. [41])). A reproducing kernel

K : X × X → L(Y) is called Y-Mercer kernel if H K is a subspace of C(X; Y).
The following proposition characterizes Y-Mercer kernel in terms of the properties of a kernel rather than properties of the VV-RKHS. Proof If H K ⊂ C(X; Y), then for all x ∈ X and all y ∈ Y, K x y is an element of C(X; Y) (see Equation 3.15b). In addition for all

f ∈ H K , ∥K * x f∥ Y =∥f(x)∥ Y ⩽ ∥f∥ ∞ . Hence there exists a constant M ∈ R + such that for all x ∈ X, ∥K x ∥ Y,K ⩽ M. Therefore from Equation 3.15a, for all x ∈ X, ∥K(x, x)∥ Y,Y = ∥K * x ∥ 2 K,Y ⩽ M 2 . Conversely assume that the function x → ∥K(x, x)∥ Y,Y is locally bounded and K x y ∈ C(X; Y). For all f ∈ H K and all x ∈ X, ∥f(x)∥ Y = ∥f∥ K √ ∥K(x, x)∥ Y,Y ⩽ M∥f∥ K .
Thus convergence in H K implies uniform convergence. Since by assumption

{ K x t | ∀x ∈ X, ∀y ∈ Y } ⊂ C(X; Y),
then the Vector Valued Reproducing Kernel Hilbert Space

H K = span { K x y | ∀x ∈ X, ∀y ∈ Y } ⊂ C
is also a subset of C(X; Y) by the uniform convergence theorem. □

The next lemma shows that when X and Y are separable and H K is a space of continuous functions then H K is separable. It is worth mentioning that when the Hilbert space H K is separable, it admits a countable orthonormal basis. Proof The separability of X ensure that there exist a countable dense subset X 0 ⊆ X. Since Y is separable, (3.17) K(x ⋆ t, z ⋆ t) = K(x, z).

S = ∪ x∈X 0 Im K x = { K x y | ∀x ∈ X 0 , ∀y ∈ Y } ⊂ H K is separable too. We show that S is total in H K so that H K is separable. If for all x ∈ X 0 , f ∈ S ⊥ , then f ∈ Ker K * x . Namely f(x) = ev x f = 0. Since f is continuous and X 0 is dense in X, for all x ∈ X, f(x) = 0 thus f = 0. □ Since a Y-
A shift-invariant kernel can be characterized by a function of one variable K e called the signature of K. Here e denotes the neutral element of the LCA group X endowed with the binary group operation ⋆.

We recall the definition of left regular representation of X acting on H K which is useful to study LCA groups. For all x, z ∈ X and for all f ∈ H K ,

(λ z f)(x)G : = f(z -1 ⋆ x).
A group representation λ z describes the group by making it act on a vector space (here H K ) in a linear manner. In other words, the group representation let us see a group as a linear operator which are well studied mathematical objects. 2. There is a positive-definite function K e : X → L(Y) such that K(x, z) = K e (z -1 ⋆ x).

If one of the above conditions is satisfied, then the representation λ leaves invariant H K , its action on H K is unitary and

(3.18a) K(x, z) = K * e λ x -1 ⋆z K e , ∀(x, z) ∈ X 2 , (3.18b) ∥K(x, x)∥ Y,Y = ∥K e (e)∥ Y,Y , ∀x ∈ X.
Proof Assume Proposition 3.7 item 1 holds true. Given x, z ∈ X, Equation 3.13 and Equation 3.17 yields

K e (z -1 ⋆ x) = K(z -1 ⋆ x, e) = K(x, z).
Since K is a reproducing kernel, K e is of completely positive type, so that Proposition 3.7 item 2 holds true. Besides if Proposition 3.7 item 2 holds true obviously the definition of a reproducing kernel (definition 3.6) is fulfilled so that Proposition 3.7 item 1 holds true.

Suppose that K is a shift-invariant reproducing kernel. Given t ∈ X and y ∈ Y, for all x, z ∈ X,

(λ x K t y)(z) = (K t y)(x -1 ⋆ z) = K(x -1 ⋆ z, t) = K(z, x ⋆ t) = (K x⋆t y)z, that is λ x K t = K x⋆t .
Besides for all y, y ′ ∈ Y and all x, z, t, t ′ ∈ X,

⟨λ x K t y, λ x K t ′ y ′ ⟩ K = ⟨K x⋆t y, K x⋆t ′ y ′ ⟩ K = ⟨K(x ⋆ t ′ , x ⋆ t)y, y ′ ⟩ Y,Y = ⟨K(t ′ , t)y, y ′ ⟩ Y,Y = ⟨K t y, K t ′ y ′ ⟩ K This means that λ leaves the set { K x y | ∀x ∈ X, ∀y ∈ Y } invariant. Since { K x y | ∀x ∈ X, ∀y ∈ Y }
is total in H K (see Equation 3.15b), λ is surjective and because it also leaves the inner product invariant, the first two claims follow. □

The notation K e for the function of completely positive type associated with the reproducing kernel K is consistent with the definition given by Equation 3.13 since for all x ∈ X and all y ∈ Y (K e y)(x) = K e (x)y.

Moreover notice that shift-invariant Y-Mercer kernels are directly linked to functions of positive type (see Equation 3.1), since shiftinvariant Y-Mercer kernels are nothing but functions whose signature is of positive type (continuous positive-definite functions).

Examples of Operator-Valued Kernels

In this subsection we list some Operator-Valued Kernels (OVKs) that have been used successfully in the litterature. We do not recall the proof that the following kernels are well defined and refer the interrested reader to the respective authors original work.

OVKs have been first introduced in Machine Learning to solve multi-task regression problems. Multi-task regression is encountered in many fields such as structured classification when classes belong to a hierarchy for instance. Instead of solving independently p single output regression task, one would like to take advantage of the relationships between output variables when learning and making a decision. Proposition 3.8 (Decomposable kernel (Micchelli and Pontil [START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF])). Let Γ be a non-negative operator of L + (Y). K is said to be a decomposable kernel 5 if for all (x, z) ∈ X 2 , 5 Some authors also refer to as separable kernels.

K(x, z) : = k(x, z)Γ,
where k is a scalar kernel.

When Y = R p , the operator Γ can be represented by a matrix which can be interpreted as encoding the relationships between the outputs coordinates. If a graph coding for the proximity between tasks is known, then it is shown in Álvarez, Rosasco, and Lawrence [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF], Baldassarre et al. [START_REF] Baldassarre | Vector Field Learning via Spectral Filtering[END_REF], and Evgeniou, Micchelli, and Pontil [START_REF] Evgeniou | Learning Multiple Tasks with kernel methods[END_REF] that Γ can be chosen equal to the pseudo inverse L † of the graph Laplacian such that the norm in H K is a graph-regularizing penalty for the outputs (tasks). When no prior knowledge is available, Γ can be learned with one of the algorithms proposed in the literature [START_REF] Dinuzzo | Learning Output Kernels with Block Coordinate Descent[END_REF][START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF][START_REF] Sindhwani | Scalable Matrixvalued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality[END_REF]. Another interesting property of the decomposable kernel is its universality (a kernel which may approximate an arbitrary continuous target function uniformly on any compact subset of the input space). A reproducing kernel K is said universal if the associated VV-RKHS H K is dense in the space of continuous functions C(X, Y). The conditions for a kernel to be universal have been discussed in Caponnetto et al. [START_REF] Caponnetto | Universal MultiTask Kernels[END_REF] and Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. In particular they show that a decomposable kernel is universal provided that the scalar kernel k is universal and the operator Γ is injective. Given (e k ) p k=1 a basis of Y, we recall here how the matrix Γ acts as a regularizer between the components of the outputs

f k = ⟨f(•), e k ⟩ Y of a function f ∈ H K .
Proposition 3.9 (Kernels and Regularizers (Álvarez, Rosasco, and Lawrence [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF])). Let K(x, z) := k(x, z)Γ for all x, z ∈ X be a decomposable kernel where Γ is a matrix of size p × p. Then for all f ∈ H K ,

(3.19) ∥f∥ K = p ∑ i,j=1 ( Γ † ) ij ⟨f i , f j ⟩ k where f i = ⟨f(•), e i ⟩ Y (resp f j = ⟨f(•), e j ⟩ Y ), denotes the i-th (resp j-th) component of f(•).
We prove a generalized version of Proposition 3.9 to any Operator-Valued Kernel in Subsection 4.3.4. Curl-free and divergence-free kernels provide an interesting application of operator-valued kernels [START_REF] Baldassarre | Multioutput learning via spectral filtering[END_REF][START_REF] Macedo | Learning Div-Free and Curl-Free Vector Fields by Matrix-Valued Kernels[END_REF][START_REF] Micheli | Matrix-valued kernels for shape deformation analysis[END_REF] to vector field learning, for which input and output spaces have the same dimensions (d = p). Applications cover shape deformation analysis [START_REF] Micheli | Matrix-valued kernels for shape deformation analysis[END_REF] and magnetic fields approximations [START_REF] Wahlström | Modeling magnetic fields using Gaussian processes[END_REF]. These kernels discussed in [START_REF] Fuselier | Refined Error Estimates for Matrix-Valued Radial Basis Functions[END_REF] allow encoding input-dependent similarities between vector-fields. An illustration of a synthetic 2D curl-free and divergence free fields are given respectively in Figure 3.2 and Figure 3.3. To obain the curl-free field we took the gradient of a mixture of five two dimensional Gaussians (since the gradient of a potential is always curl-free). We generated the divergence-free field by taking the orthogonal of the curl-free field. Proposition 3.10 (Curl-free and Div-free kernel (Macedo and Castro [START_REF] Macedo | Learning Div-Free and Curl-Free Vector Fields by Matrix-Valued Kernels[END_REF])). Assume X = (R d , +) and Y = R p with d = p. The divergencefree kernel is defined as

K div (x, z) = K div 0 (δ) = (∇∇ T -∆I)k 0 (δ)
and the curl-free kernel as

K curl (x, z) = K curl 0 (δ) = -∇∇ T k 0 (δ),
where ∇ is the gradient operator 6 , ∇∇ T is the Hessian operator and ∆ is 6 See Subsection 6.2.1 for a formal definition of the operator ∇.

the Laplacian operator.

Although taken separately these kernels are not universal, a convex combination of the curl-free and divergence-free kernels allows to learn any vector field that satisfies the Helmholtz decomposition theorem [START_REF] Baldassarre | Multioutput learning via spectral filtering[END_REF][START_REF] Macedo | Learning Div-Free and Curl-Free Vector Fields by Matrix-Valued Kernels[END_REF]. The next class of kernels we present are transformable kernels, whose action on each coordinate of an output vector is determined by "views" of an input data.

Proposition 3.11 (Transformable kernel (Caponnetto et al. [39])).

Let k : X ′ × X ′ → R be a scalar-valued kernels and ψ 1 , . . . , ψ p be a collection functions from X → X ′ . Then the transformable kernel is defined for all (i, j) ∈ (N * p ) 2 as

K(x, z) ij = ⟨e i , K(x, z)e j ⟩ Y = k(ψ i (x), ψ j (z)),
for all x, z ∈ X.

Transformable kernels have been successfully used for network inference from time series by means of autoregressive models (Lim et al. [START_REF] Lim | OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF][START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF]), and by Vazquez and Walter [START_REF] Vazquez | Multi-output support vector regression[END_REF] for cokriging the multioutput version of kriging 7 , which takes into account the correlations 7 Gaussian process regression.

between the outputs. We also introduce an example of Operator-Valued Kernel acting on a function space which found applications in Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF]. Proposition 3.12 (Hilbert Schmidt Integral kernel (Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF])). Let k X : X × X → R be a scalar valued kernel acting on the inputs and k T : T × T → R be a scalar valued kernel acting on the outputs.

Define the integral operator L

T g = ∫ Y k T (•, t)g(t)dµ(t).
Then the Hilbert Schmidt Integral kernel is defined as

K :    X × X → L(Y) (x, z) → k X (x, z)L T .
This kernel is useful to learn functions f that are function valued. In other words, f ∈ F(X; F(T; R)) and the Operator-Valued Kernel K act on a function g in the following way.

(3.20)

K(x, z)g = k X (x, z) ∫ Y k Y (•, t)g(t)dµ(t).
In Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF], the authors studied the case where T = R with k Y (t, s) = exp(-|t -s|) and applied it to speech inversion (Which and how Human articulators are activated from an audible speech signal). Notice that the Hilbert Schmidt integral kernel is a particular case of decomposable kernel, where Y = F(T; R).

Some use of Operator-valued kernels

We give here a non exhaustive list of works concerning Operator-Valued Kernels. A good review of Operator-Valued Kernels has been conducted in Álvarez, Rosasco, and Lawrence [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF]. For a theoretical introduction to OVKs the interested reader can refer to the papers Caponnetto et al. [START_REF] Caponnetto | Universal MultiTask Kernels[END_REF], Carmeli, De Vito, and Toigo [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem[END_REF], and Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. Generalization bounds for OVK have been studied in Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF], Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF], Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF], and Sindhwani, Minh, and Lozano [START_REF] Sindhwani | Scalable Matrixvalued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality[END_REF].

Operator-valued Kernel Regression has first been studied in the context of Ridge Regression and Multi-task learning by Micchelli and Pontil [START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF].

Baldassarre et al. [START_REF] Baldassarre | Multioutput learning via spectral filtering[END_REF] and Macedo and Castro [START_REF] Macedo | Learning Div-Free and Curl-Free Vector Fields by Matrix-Valued Kernels[END_REF] showed the interest of spectral algorithms in Ridge regression and introduced vector field learning as a new multiple output task in Machine Learning community. Wahlström et al. [START_REF] Wahlström | Modeling magnetic fields using Gaussian processes[END_REF] applied vector field learning with OVK-based Gaussian processes to the reconstruction of magnetic fields (which are curl-free).

Multi-task regression [START_REF] Micchelli | Kernels for Multi-task Learning[END_REF] and structured multi-class classification [START_REF] Dinuzzo | Learning Output Kernels with Block Coordinate Descent[END_REF][START_REF] Minh | A unifying framework for vector-valued manifold regularization and multiview learning[END_REF][START_REF] Mroueh | Multiclass learning with simplex coding[END_REF] are undoubtedly the first target applications for working in Vector Valued Reproducing Kernel Hilbert Space. Operator-Valued Kernels have been shown useful to provide a general framework for structured output prediction [START_REF] Brouard | Semisupervised Penalized Output Kernel Regression for Link Prediction[END_REF][START_REF] Brouard | Input Output Kernel Regression[END_REF] with a link to Output Kernel Regression [START_REF] Kadri | A generalized kernel approach to structured output learning[END_REF]. Beyond structured classification, other various applications such as link prediction, drug activity prediction or recently metabolite identification [START_REF] Brouard | Fast metabolite identification with input output Kernel regression[END_REF] and image colorization [START_REF] Ha Quang | Image and video colorization using vector-valued reproducing kernel Hilbert spaces[END_REF] have been developed.

The works of Kadri et al. [START_REF] Kadri | Nonlinear functional regression: a functional RKHS approach[END_REF] and Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF] have been the precursors of regression with functional values, opening a new avenue of applications. Appropriate algorithms devoted to on-line learning have been also derived by Audiffren and Kadri [START_REF] Audiffren | Online learning with operatorvalued kernels[END_REF].

Kernel learning was addressed at least in two ways: first with using Multiple Kernel Learning in Kadri et al. [START_REF] Kadri | Multiple operator-valued kernel learning[END_REF] and second, using various penalties, smooth ones in Ciliberto et al. [START_REF] Ciliberto | Convex Learning of Multiple Tasks and their Structure[END_REF] and Dinuzzo et al. [START_REF] Dinuzzo | Learning Output Kernels with Block Coordinate Descent[END_REF] for decomposable kernels and non smooth ones in Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] using proximal methods in the case of decomposable and transformable kernels.

Dynamical modeling was tackled in the context of multivariate time series modelling in Lim et al. [START_REF] Lim | OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF][START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] and Sindhwani, Minh, and Lozano [START_REF] Sindhwani | Scalable Matrixvalued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality[END_REF] and as a generalization of Recursive Least Square Algorithm in Amblard and Kadri [START_REF] Amblard | Operator-valued kernel recursive least squares algorithm[END_REF].

Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] recently explored the minimization of a pinball loss under regularizing constraints induced by a well chosen decomposable kernel in order to handle joint quantile regression.

q Part II C O N T R I B U T I O N S O P E R AT O R -VA L U E D R A N D O M F O U R I E R F E AT U R E S
In this first contribution chapter we present a generalization of the RFF framework introduced in Chapter 2 [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF]. This is based on an operator-valued Bochner theorem proposed by Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. We use this theorem to construct an Operator-valued Random Fourier Feature (ORFF) from an OVK. Conversely we also show that it is possible to construct an ORFF from the regularization properties it induces rather than from an OVK. We give various examples of ORFF maps such as an ORFF map for the decomposable kernel, the curl-free kernel and the divergence-free kernel. We present in this chapter a construction methodology devoted to shift-invariant Y-Mercer operator-valued kernels defined on any Locally Compact Abelian (LCA) group, noted (X, ⋆), for some operation noted ⋆. This allows us to use the general context of Pontryagin duality for Fourier Transform of functions on LCA groups. Building upon a generalization of the celebrated Bochner's theorem for operator-valued measures, an operator-valued kernel is seen as the Fourier Transform of an operator-valued positive measure. From that result, we extend the principle of RFF for scalar-valued kernels and derive a general methodology to build Operator-valued Random Fourier Feature (ORFF) when operator-valued kernels are shift-invariant according to the chosen group operation. Elements of this chapter have been developped in Brault, Heinonen, and Buc [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF].

We present a construction of feature maps called Operator-valued Random Fourier Feature (ORFF), such that f : x → Φ(x) * θ is a continuous function that maps an arbitrary LCA group X as input space to an arbitrary output Hilbert space Y. First we define a functional Fourier feature map, and then propose a Monte-Carlo sampling from this feature map to construct an approximation of a shift-invariant Y-Mercer kernel. Then, we prove the convergence of the kernel approximation K(x, z) = Φ(x) * Φ(z) with high probability on compact subsets of the LCA X.

theoretical study

The following proposition of Neeb [START_REF] Neeb | Operator-valued positive definite kernels on tubes[END_REF] and Zhang, Xu, and Zhang [START_REF] Zhang | Refinement of Operatorvalued Reproducing Kernels[END_REF] extends Bochner's theorem to any shift-invariant Y-Mercer kernel.

Proposition 4.1 (Operator-valued Bochner's theorem [START_REF] Neeb | Operator-valued positive definite kernels on tubes[END_REF][START_REF] Zhang | Refinement of Operatorvalued Reproducing Kernels[END_REF]). If a function K from X × X to Y is a shift-invariant Y-Mercer kernel on X, then there exists a unique positive operator-valued measure Q : B(X) → L + (Y) such that for all x, z ∈ X,

(4.1) K(x, z) = ∫ X (x ⋆ z -1 , ω)d Q(ω),
where Q belongs to the set of all the projection-valued measures of bounded variation on the σ-algebra of Borel subsets of X. Conversely, from any positive operator-valued measure M, a shift-invariant kernel K can be defined by Equation 4.1.

Although this theorem is central to the spectral decomposition of shift-invariant Y-Mercer OVK, the following results proved by Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF] provides more insights about this decomposition that are more relevant in practice. It first gives the necessary conditions to build shift-invariant Y-Mercer kernel with a pair (A, µ) where A is an operator-valued function on X and µ is a real-valued positive measure on X (instead of a operator-valued measure as in Proposition 4.1). Note that obviously such a pair is not unique and the choice of this paper may have an impact on theoretical properties as well as practical computations. Secondly it also states that any OVK has such a spectral decomposition when Y is finite dimensional or X is compact.

Proposition 4.2 (Carmeli et al. [41]

). Let µ be a positive measure on B( X) and A : X → L(Y) such that ⟨A(•)y, y ′ ⟩ ∈ L 1 (X, µ) for all y, y ′ ∈ Y and A(ω) ≽ 0 for µ-almost all ω ∈ X. Then, for all δ ∈ X,

(4.2) K e (δ) = ∫ X (δ, ω)A(ω)d µ(ω) is the kernel signature of a shift-invariant Y-Mercer kernel K such that K(x, z) = K e (x ⋆ z -1 ). The VV-RKHS H K is embed in L 2 ( X, µ; Y ′ ) by means of the feature operator (4.3) (Wg)(x) = ∫ X (x, ω)B(ω)g(ω)d µ(ω),
Where B(ω)B(ω) * = A(ω) and both integrals converge in the weak sense. If Y is finite dimensional or X is compact, any shift-invariant kernel is of the above form for some pair (A, µ).

When p = 1 one can always assume A is reduced to the scalar 1, µ is still a bounded positive measure and we retrieve the Bochner theorem applied to the scalar case (Theorem 2.3). Proposition 4.2 shows that a pair (A, µ) entirely characterizes an OVK. Namely a given measure µ and a function A such that ⟨y ′ , A(.)y⟩ ∈ L 1 (X, µ) for all y, y ′ ∈ Y and A(ω) ≽ 0 for µ-almost all ω, give rise to an OVK. Since (A, µ) determines a unique kernel we can write H (A, µ) =⇒ H K where K is defined as in Equation 4.2. However the converse is not true: Given a Y-Mercer shift invariant Operator-Valued Kernel, there exist infinitely many pairs (A, µ) that characterize an OVK.

The main difference between Equation 4.1 and Equation 4.2 is that the first one characterizes an OVK by a unique Positive Operator-Valued Measure (POVM), while the second one shows that the POVM that uniquely characterizes a Y-Mercer OVK has an operator-valued density with respect to a scalar measure µ; and that this operatorvalued density is not unique. Finally Proposition 4.2 does not provide any constructive way to obtain the pair (A, µ) that characterizes an OVK. The following Subsection 4.2.1 is based on another proposition of Carmeli, De Vito, and Toigo and shows that if the kernel signature K e (δ) of an OVK is in L 1 then it is possible to construct explicitly a pair (C, Haar) from it. Additionally, we show that we can always extract a scalarvalued probability density function from C such that we obtain a pair (A, Pr Haar,ρ ) where Pr Haar,ρ is a probability distribution absolutely con- For any function f : X × X × Y → R, we also use the notation

E Haar,ρ [f(x, ω, y)] = E ω∼Pr Haar,ρ [f(x, ω, y)] = ∫ X f(x, ω, y)dPr Haar,ρ (ω) = ∫ X f(x, ω, y)ρ(ω)d Haar(ω).
where the two last equalities hold by the transfer theorem and the fact that Pr Haar,ρ has density ρ.

Sufficient conditions of existence

While Proposition 4.2 gives some insights on how to build an approximation of a Y-Mercer kernel, we need a theorem that provides an explicit construction of the pair (A, Pr µ,ρ ) from the kernel signature K e . Proposition 14 in Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF] gives the solution, and also provides a sufficient condition for Proposition 4.2 to apply.

Proposition 4.3 (Carmeli et al. [41]

). Let K be a shift-invariant Y-Mercer kernel of signature K e . Suppose that for all z ∈ X and for all y, y ′ ∈ Y, the function

⟨K e (.)y, y ′ ⟩ Y ∈ L 1 (X, Haar),
where X is endowed with the group law ⋆. Denote C : X → L(Y), the function defined for all ω ∈ X that satisfies for all y, y ′ in Y:

(4.4) ⟨y ′ , C(ω)y⟩ Y = ∫ X (δ, ω)⟨y ′ , K e (δ)y⟩ Y dHaar(δ) = F -1 [ ⟨y ′ , K e (•)y⟩ Y ] (ω). Then 1. C(ω) is a bounded non-negative operator for all ω ∈ X, 2. ⟨y, C(•)y ′ ⟩ Y ∈ L 1 ( X , 
Haar
) for all y, y ′ ∈ X,

3. for all δ ∈ X and for all y, y ′ in Y,

⟨y ′ , K e (δ)y⟩ Y = ∫ X (δ, ω)⟨y ′ , C(ω)y⟩ Y d Haar(ω) = F [ ⟨y ′ , C(•)y⟩ Y ] (δ). 
We found that there has been confusion in the literature whether a kernel is the Fourier Transform or Inverse Fourier Transform of a measure. However Lemma 4.1 clarifies the relation between the Fourier Transform and Inverse Fourier Transform for a translation invariant Operator-Valued Kernel.Here we show that inthe real scalar case the Fourier Transform and Inverse Fourier Transform of a shift-invariant kernel are the same as well as in the operator-valued case.

The following lemma is a direct consequence of the definition of C(ω) as the Fourier Transform of the adjoint of K e and also helps to simplify the definition of ORFF.

Lemma 4.1 Let K e be the signature of a shift-invariant Y-Mercer kernel such that for all y, y ′ ∈ Y, ⟨y ′ , K e (•)y⟩ Y ∈ L 1 (X, Haar) and let ⟨y ′ , C(•)y⟩ Y = F -1 [ ⟨y ′ , K e (•)y⟩ Y ] . Then 1. C(ω) is self-adjoint and C is even. 2. F -1 [⟨y ′ , K e (•)y⟩ Y ] = F [⟨y ′ , K e (•)y⟩ Y ].
3. K e (δ) is self-adjoint and K e is even.

Proof For any function f on (X, ⋆) define the flip operator R by

(Rf)(x) : = f ( x -1
) .

For any shift invariant Y-Mercer kernel and for all δ ∈ X, K e (δ) = K e ( δ -1 ) * . Indeed from the definition of a shift-invariant kernel,

K e ( δ -1 ) = K ( δ -1 , e ) = K (e, δ) = K (δ, e) * = K e (δ) * .
Item 1: taking the Fourier Transform yields,

⟨y ′ , C(ω)y⟩ Y = F -1 [ ⟨y ′ , K e (•)y⟩ Y ] (ω) = F -1 [ ⟨y ′ , (RK e (•)) * y⟩ Y ] (ω) = F -1 [ ⟨RK e (•)y ′ , y⟩ Y ] (ω) = F -1 [ R⟨K e (•)y ′ , y⟩ Y ] (ω) = RF -1 [ ⟨K e (•)y ′ , y⟩ Y ] (ω) = R⟨C(•)y ′ , y⟩ Y (ω) = ⟨ y ′ , C ( ω -1 ) * y ⟩ Y . Hence C(ω) = C ( ω -1 ) * . Suppose that Y is a complex Hilbert space. Since for all ω ∈ X, C(ω) is bounded and non-negative so C(ω) is self-adjoint. Besides we have C(ω) = C ( ω -1
) * so C must be even. Suppose that Y is a real Hilbert space. The Fourier Transform of a real valued function obeys

F [f] (ω) = F [f] (ω -1 ). Therefore since C(ω) is non-negative for all ω ∈ X, ⟨y ′ , C(ω)y⟩ Y = ⟨y ′ , C ( ω -1 ) y⟩ Y = ⟨y, C ( ω -1 ) * y ′ ⟩ Y = ⟨y, C (ω) y ′ ⟩ Y .
Hence C(ω) is self-adjoint and thus C is even.

Item 2: simply, for all y, y ′ ∈ Y, ⟨y, C(ω -1 )y ′ ⟩ Y = ⟨y ′ , C(ω)y⟩ Y thus F -1 [ ⟨y ′ , K e (•)y⟩ Y ] (ω) = ⟨y ′ , C(ω)y⟩ Y = R⟨y ′ , C(•)y⟩ Y (ω) = RF -1 [ ⟨y ′ , K e (•)y⟩ Y ] (ω) = F [ ⟨y ′ , K e (•)y⟩ Y ] (ω). Item 3: from Item 2 we have F -1 [⟨y ′ , K e (•)y⟩ Y ] = F -1 R⟨y ′ , K e (•)y⟩ Y . By injectivity of the Fourier Transform, K e is even. Since K e (δ) = K e (δ -1 ) * , we must have K e (δ) = K e (δ) * .
□ While Proposition 4.3 gives an explicit form of the operator C(ω) defined as the Fourier Transform of the kernel K, it is not really convenient to work with the Haar measure Haar on B( X). However it is easily possible to turn Haar into a probability measure to allow efficient (Monte-Carlo) integration over an infinite domain.

The following proposition allows to build a spectral decomposition of a shift-invariant Y-Mercer kernel on a LCA group X endowed with the group law ⋆ with respect to a scalar probability measure, by extracting a scalar probability density function from C(•).

Proposition 4.4 (Shift-invariant Y-Mercer kernel spectral decomposition).

Let K e be the signature of a shift-invariant Y-Mercer kernel. If for all y, y ′ ∈ Y, ⟨K e (.)y, y ′ ⟩ Y ∈ L 1 (X, Haar) then there exists a positive probability measure Pr Haar,ρ and an operator-valued function A such that for all y, y ′ ∈ Y,

(4.5) ⟨y ′ , K e (δ)y⟩ Y = E Haar,ρ [ (δ, ω)⟨y ′ , A(ω)y⟩ Y ] , with (4.6) ⟨y ′ , A(ω)y⟩ Y ρ(ω) = F [ ⟨y ′ , K e (•)y⟩ Y ] (ω). Moreover 1. for all y, y ′ ∈ Y, ⟨A(•)y, y ′ ⟩ Y ∈ L 1 ( X, Pr Haar,ρ ) , 2. A(ω) is non-negative for Pr Haar,ρ -almost all ω ∈ X, 3. A(•) and ρ(•) are even functions.
Proof This is a simple consequence of Proposition 4.3 and Lemma 4.1. By

taking ⟨y ′ , C(ω)y⟩ Y = F -1 [⟨y ′ , K e (•)y⟩ Y ] (ω) = F [⟨y ′ , K e (•)y⟩ Y ] (ω)
we can write the following equality concerning the OVK signature K e .

⟨y ′ , K e (δ)y⟩(ω) = ∫ X (δ, ω)⟨y ′ , C(ω)y⟩ Y d Haar(ω) = ∫ X (δ, ω) ⟨ y ′ , 1 ρ(ω) C(ω)y ⟩ Y ρ(ω)d Haar(ω).
It is always possible to choose ρ(ω) such that for all Z ∈ B( X). □

∫ X ρ(ω)d Haar(ω) = 1. For instance choose ρ(ω) = ∥C(ω)∥ Y,Y ∫ X ∥C(ω)∥ Y,Y d Haar(ω) Since for all y, y ′ ∈ Y, ⟨y ′ , C(•)y⟩ Y ∈ L 1 ( X, Haar) and Y is a separable Hilbert space, by Pettis measurability theorem, ∫ X ∥C(ω)∥ Y,Y d Haar(ω) is finite and so is ∥C(ω)∥ Y,Y for all ω ∈ X. Therefore ρ(ω)
In the case where Y = R p , we rewrite Equation 4.6 coefficient-wise by choosing an orthonormal basis (e j ) j∈N * p of R p . (4.7)

A(ω) ij ρ(ω) = F [ K e (•) ij ] (ω).
It follows that for all i and j in N * p , (4.8)

K e (x ⋆ z -1 ) ij = F [ A(•) ij ρ(•) ] (x ⋆ z -1 )
Remark 4.1 Note that although the Fourier Transform of K e yields a unique operator-valued function

C(•), the decomposition of C(•) into A(•)ρ(•)
is again not unique. The choice of the decomposition may be justified by the computational cost.

Another difficulty arises from the fact that the quantity

sup ω ∈ X ∥A(ω)∥ Y,Y
obtained in Proposition 4.4 might not be bounded. Later, when we will focus on Monte-Carlo approximation of these integrals, we will have to take care of the unboundedness of ∥A(•)∥ Y,Y that forbids the use of the most simple concentrations inequalities that require the boundedness of the random variable to be controlled. Therefore in the context of Operator-Valued Kernel concentration inequalities for unbounded random operators should be used.

However, as pointed out by Minh [START_REF] Minh | Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning[END_REF], under some condition on the trace of K e (δ), it is possible to turn A(•) into a bounded random operator for all ω in X. The idea is to define a sum measure ρ = ∑ j∈N * ρ e j , which gives rise to a bounded operator A(ω) and is independent of the { e j } j∈N * base, instead of constructing a measure from the operator norm as in Proposition 4.4. Additionally with such construction the measure associated to A(•) is independent from the basis of Y. We present this result and in this proof we relax the assumptions of Minh [START_REF] Minh | Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning[END_REF] which requires ∫ X |Tr K e (δ)|dHaar(δ) to be well defined. We only require Tr K e (e) to be well defined.

Proposition 4.5 (Bounded shift-invariant Y-Mercer kernel spectral decomposition (adaptation of Minh [118]).

Let K e be the signature of a shift-invariant Y-Mercer kernel (Y separable). If for all y and y ′ in Y, ⟨K e (.)y, y ′ ⟩ Y ∈ L 1 (X, Haar) and Tr K e (e) ∈ R, then (4.9)

⟨y ′ , K e (δ)y⟩ Y = E Haar,ρ Tr [ (δ, ω)⟨y, A Tr (ω)y ′ ⟩ Y ] . with (4.10a) ⟨y ′ , C(•)y⟩ Y = F [ ⟨y ′ , K e (•)y⟩ Y ] (4.10b) c Tr = Tr [K e (e)] (4.10c) A Tr (ω) = c Tr Tr [C(ω)] -1 C(ω) (4.10d) ρ Tr (ω) = c -1 Tr Tr [C(ω)] . Moreover 1. For all y, y ′ ∈ Y, ⟨y, A Tr (•)y ′ ⟩ ∈ L 1 ( X,

Pr Haar,ρ Tr

).

A Tr

(ω) is non-negative for all ω ∈ X, 3. ess sup ω∈ X ∥A Tr (ω)∥ Y,Y ⩽ c p , 4.
A Tr (•) and ρ Tr are even functions.

Proof Let { e j } j∈N * be a basis of Y. Notice that ∫ X ⟨e j , C(ω)e j ⟩ Y d Haar(ω) = ∫ X (e, ω) =1 ⟨e j , C(ω)e j ⟩d Haar(ω) = ⟨e j , K e (e)e j ⟩ Y .
Since C(ω) is non-negative, all the ⟨e j , C(ω)e j ⟩ Y . Thus using the monotone convergence theorem,

∫ X Tr [C(ω)] d Haar(ω) = ∫ X ∑ j∈N * ⟨e j , C(ω)e j ⟩ Y d Haar(ω) = ∑ k∈N * ⟨e j , K e (e)e j ⟩ Y = Tr [K e (e)] = c Tr < ∞.
Let A Tr (ω) and ρ Tr (ω) be defined as in Equation 4.10c and Equation 4.10d, respectively. By definition,

∫ X ρ Tr (ω)d Haar(ω) = 1 and A Tr (ω)ρ Tr (ω) = C(ω). Now it remains to check the finiteness of Tr [C(ω)] for all ω ∈ X. Since for all ω ∈ X, Tr [C(ω)] ⩾ 0, Tr [C(ω)] ⩽ ∫ X Tr [C(ω)] d Haar(ω) = Tr [K e (e)] < ∞.
Since Tr [C(ω)] is positive and its integral is finite, ρ Tr is a probability density function. In particular

C(ω) is self-adjoint operator thus ∥C(ω)∥ σ,∞ = ∥C(ω)∥ Y,Y for all ω ∈ X. Thus the Schatten norms ∥•∥ σ,p verifies Tr [|•|] = ∥•∥ σ,1 ⩾ ∥•∥ σ,p ⩾ ∥•∥ σ,q ⩾ ∥•∥ σ,∞ = ∥•∥ Y,Y for all p, q ∈ N * such that 1 ⩽ p ⩽ q ⩽ ∞. Therefore since for all ω ∈ X, C(ω) is non-negative, we have for Pr Haar,ρ -almost all ω ∈ X, ∥A Tr (ω)∥ Y,Y = c Tr Tr [C(ω)] -1 ∥C(ω)∥ σ,∞ ⩽ c Tr Tr [C(ω)] -1 ∥C(ω)∥ σ,1 = c Tr Tr [C(ω)] -1 Tr [|C(ω)|] = c Tr Tr [C(ω)] -1 Tr [C(ω)] ⩽ c Tr < ∞. Thus ess sup ω∈ X ∥A(ω)∥ Y,Y ⩽ c Tr < ∞. As C is an even func- tion, so are A Tr and ρ Tr . Eventually ⟨y ′ , C(•)y⟩ is in L 1 ( X, Haar), thus ⟨y, A Tr (•)ρ Tr (•)y ′ ⟩ is in L 1 ( X, Haar), hence ⟨y, A Tr (•)y ′ ⟩ ∈ L 1 ( X,

Pr Haar,ρ Tr

). Since the trace is independent of the basis of Y, so is ρ Tr .□

If Y is finite dimensional then Tr [K e (e)
] is well defined hence Proposition 4.5 is valid as long as K e (•) ij ∈ L 1 (X, Haar) for all i, j ∈ N * p , where p is the dimension of Y.

Examples of spectral decomposition

In this section we give examples of spectral decomposition for various Y-Mercer kernels, based on Proposition 4.4 and Proposition 4.5.

Gaussian decomposable kernel

Recall that a decomposable R p -Mercer introduced in the Background section has the form K(x, z) = k(x, z)Γ , where k(x, z) is a scalar Mercer kernel and Γ ∈ L(R p ) is a non-negative operator. Let us focus on K 

k gauss 0 (δ) = exp ( - 1 2σ 2 ∥δ∥ 2 2 )
where σ ∈ R + is an hyperparameter corresponding to the bandwidth of the kernel. The -Pontryagin-dual group of

X = (R d , +) is X ∼ = (R d , +) with the pairing (δ, ω) = exp (i⟨δ, ω⟩)
where δ and ω ∈ R d . In this case the Haar measures on X and X are in both cases the Lebesgue measure. However in order to have the property that

F -1 [F [f]] = f and F -1 [f] = RF [f] one must normalize both measures by √ 2π -d , i. e. for all Z ∈ B ( R d ) , √ 2π d Haar(Z) = Leb(Z) and √ 2π d Haar(Z) = Leb(Z).
Then the Fourier Transform on (R d , +) is

F [f] (ω) = ∫ R d exp ( -i⟨δ, ω⟩ 2 ) f(δ)dHaar(δ) = ∫ R d exp ( -i⟨δ, ω⟩ 2 ) f(δ) dLeb(δ) √ 2π d .
Since k gauss 0

∈ L 1 and Γ is bounded, it is possible to apply Proposition 4.4, and obtain for all y and y ′ ∈ Y,

⟨ y ′ , C dec,gauss (ω)y ⟩ = F [⟨ y ′ , K dec,gauss 0 (•)y ⟩ Y ] (ω) = F [ k gauss 0 ] (ω) ⟨ y ′ , Γ y ⟩ Y . Thus C dec,gauss (ω) = ∫ R d exp ( -i⟨ω, δ⟩ - ∥δ∥ 2 2 2σ 2 ) dLeb(δ) √ 2π d Γ. Hence C dec,gauss (ω) = 1 √ 2π 1 σ 2 d exp ( - σ 2 2 ∥ω∥ 2 2 ) √ 2π d ρ(•)=N(0,σ -2 I d ) √ 2π d Γ A(•)=Γ .
Therefore the canonical decomposition of C dec,gauss is

A dec,gauss (ω) = Γ and ρ dec,gauss = N(0, σ -2 I d ) √ 2π d , where
N is the Gaussian probability distribution. Note that this decomposition is done with respect to the normalized Lebesgue measure Haar, meaning that for all Z ∈ B( X),

Pr Haar,N(0,σ -2 I d ) √ 2π d (Z) = ∫ Z N(0, σ -2 I d ) √ 2π d d Haar(ω) = ∫ X N(0, σ -2 I d )dLeb(ω) = Pr N(0,σ -2 I d ) (Z).
Thus, the same decomposition with respect to the usual -nonnormalized-Lebesgue measure Leb yields

(4.11a) A dec,gauss (•) = Γ (4.11b) ρ dec,gauss = N(0, σ -2 I d ).
If Γ is a trace class operator, applying Proposition 4.5 yields the same

decomposition since Tr [ K dec,gauss 0 (0) ] = Tr [Γ ]
and

Tr [ C dec,gauss (•) ] = N(0, σ -2 I d ) √ 2π d Tr [Γ ] .

Skewed-χ 2 decomposable kernel

The skewed-χ 2 scalar kernel [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF], useful for image processing, is defined on the LCA group X = (-c k ; +∞) d k=1 , with c k ∈ R + and endowed with the group operation ⊙. Let (e k ) d k=1 be the standard basis of X and k : x → ⟨x, e k ⟩. The operator ⊙ : X × X → X is defined by

x ⊙ z = ((x k + c k )(z k + c k ) -c k ) d k=1 .
The identity element e is (1

-c k ) d k=1 since (1 -c) ⊙ x = x. Thus the inverse element x -1 is ((x k + c k ) -1 -c k ) d k=1 .
The skewed-χ 2 scalar kernel reads (4.12)

k skewed 1-c (δ) = d ∏ k=1 2 √ δ k + c k + √ 1 δ k +c k . The dual of X is X ∼ = R d with the pairing (δ, ω) = d ∏ k=1 exp ( i log(δ k + c k )ω k ) .
The Haar measure are defined for all Z ∈ B((-c; +∞) d ) and all

Z ∈ B(R d ) by √ 2π d Haar(Z) = ∫ Z d ∏ k=1 1 z k + c k dLeb(z) √ 2π d Haar( Z) = Leb( Z).
Thus the Fourier Transform is

F [f] (ω) = ∫ (-c;+∞) d d ∏ k=1 exp ( -i log(δ k + c k )ω k ) δ k + c k f(δ) dLeb(δ) √ 2π d .
Then, applying Fubini's theorem over product space, and the fact that each dimension is independent

F [ k skewed 0 ] (ω) = d ∏ k=1 ∫ +∞ -c k 2 exp ( -i log(δ k + c k )ω k ) (δ k + c k ) ( √ δ k + c k + √ 1 δ k +c k ) dLeb(δ k ) √ 2π d .
Making the change of variable

t k = (δ k + c k ) -1 yields F [ k skewed 0 ] (ω) = d ∏ k=1 ∫ +∞ -∞ 2 exp (-it k ω k ) exp ( 1 2 t k ) + exp ( -1 2 t k ) dLeb(t k ) √ 2π d = √ 2π d d ∏ k=1 sech(πω k ). Since k skewed 1-c
∈ L 1 and Γ is bounded, it is possible to apply Proposition 4.4, and obtain

C dec,skewed (ω) = F [ k skewed 1-c ] (ω)Γ = √ 2π d d ∏ k=1 sech(πω k ) ρ(•)=S(0,2 -1 ) d √ 2π d Γ A(•)
.

Hence the decomposition with respect to the usual -non-normalized-Lebesgue measure Leb yields

(4.13a) A dec,skewed (•) = Γ (4.13b) ρ dec,skewed = S ( 0, 2 -1 ) d .

Curl-free Gaussian kernel

The curl-free Gaussian kernel is defined as K curl,gauss 0 = -∇∇ T k gauss 0 . Here X = (R d , +) so the setting is the same than Subsubsection 4.2.2.1.

C curl,gauss (ω) ij = F [ K curl,gauss 1-c (•) ij ] (ω) = F [ - ∂ 2 ∂δ i ∂δ j k gauss 0 ] (ω) = -(iω i )(iω j )F [ k gauss 0 ] (ω) = ω i ω j F [ k gauss 0 ] (ω) = √ 2π 1 σ 2 d exp ( - σ 2 2 ∥ω∥ 2 2 ) √ 2π d ω i ω j .
Hence

C curl,gauss (ω) = 1 √ 2π 1 σ 2 d exp ( - σ 2 2 ∥ω∥ 2 2 ) √ 2π d µ(•)=N(0,σ -2 I d ) √ 2π d ωω T A(ω)=ωω T .
Here a canonical decomposition is A curl,gauss (ω) = ωω T for all

ω ∈ R d and ρ curl,gauss = N(0, σ -2 I d ) √ 2π
d with respect to the normalized Lebesgue measure Leb. Again the decomposition with respect to the usual -non-normalized-Lebesgue measure is for all

ω ∈ R d (4.14a) A curl,gauss (ω) = ωω T (4.14b) ρ curl,gauss = N(0, σ -2 I d ).
Notice that in this case A curl,gauss (•) 2,2 is not bounded. However applying Proposition 4.5 yields a different decomposition where the quantity A curl,gauss

Tr (•) 2,2 is bounded. First we have for all δ ∈ R d and for all i, j ∈ N * d ∂ 2 ∂δ i ∂δ j k gauss 0 (δ) = exp ( -1 2σ 2 ∥δ∥ 2 2 ) σ 2    δ i δ j σ 2 if i ̸ = j ( 1 - δ i δ j σ 2 ) otherwise.
Hence

-∇∇ T k gauss 0 (δ) = ( I d - δδ T σ 2 ) exp ( -1 2σ 2 ∥δ∥ 2 2 ) σ 2 .
Thus

Tr [ K curl,gauss 0 (0) ] = Tr [ ∇∇ T k gauss 0 (0) ] = dσ -2
and 

Tr [C(ω)] = ∥ω∥ 2 2 N(0, σ -2 I d ) √ 2π d .

Apply

(ω) = σ 2 d -1 ∥ω∥ 2 2 N ( 0, σ -2 ) √ 2π d for all ω ∈ R d ,
(ω) = ωω T ∥ω∥ 2 2 (4.15b) ρ curl,gauss Tr (ω) = σ 2 d ∥ω∥ 2 2 N ( 0, σ -2 ) (ω).
This example also illustrates that there exists many decompositions of C(ω) into (A(ω), Pr Haar,ρ (ω)).

Divergence-free kernel

The divergence-free Gaussian kernel is defined as

K div,gauss 0 = (∇∇ T -∆)k gauss 0 on the group X = (R d , +). The setting is the same than Subsubsection 4.2.2.1. Hence C div,gauss (ω) ij = F [ K div,gauss 0 (•) ij ] (ω) = F [ ∂ 2 ∂δ i ∂δ j k gauss 0 -δ i=j d ∑ k=1 ∂ 2 ∂δ k ∂δ k k gauss 0 ] (ω) = ( -(iω i )(iω j ) -δ i=j d ∑ k=1 (iω k ) 2 ) F [ k gauss 0 ] = ( δ i=j d ∑ k=1 ω 2 k -ω i ω j ) F [ k gauss 0 ] (ω). Hence C div,gauss (ω) = 1 √ 2π 1 σ 2 d exp ( - σ 2 2 ∥ω∥ 2 2 ) √ 2π d ρ(•)=N(0,σ -2 I d ) √ 2π d ( I d ∥ω∥ 2 2 -ωω T ) A(ω)=I d ∥ω∥ 2 2 -ωω T .
Thus the canonical decomposition with respect to the normalized Lebesgue measure is A div,gauss (ω) = I d ∥ω∥ 2 2ωω T and the measure

ρ div,gauss = N(0, σ -2 I d ) √ 2π d .
The canonical decomposition with respect to the usual Lebesgue measure is (4.16a)

A div,gauss (ω) = I d ∥ω∥ 2 2 -ωω T (4.16b) ρ div,gauss = N(0, σ -2 I d ).
To obtain the bounded decomposition, again, apply Proposition 4.5.

For all δ ∈ R d , d ∑ k =1 ∂ 2 ∂δ k ∂δ k k gauss 0 (δ) = ( d - ∥δ∥ 2 2 σ 2 ) exp ( -1 2σ 2 ∥δ∥ 2 2 ) σ 2 .
Thus overall,

K div,gauss 0 (δ) = ( δδ T σ 2 + ( (d -1) - ∥δ∥ 2 2 σ 2 ) I d ) exp ( -1 2σ 2 ∥δ∥ 2 2 ) σ 2 . Eventually Tr [ K div,gauss 0 (0) ] = Tr [ (∇∇ T -∆)k gauss 0 (0) ] = d(d - 1)σ -2 and Tr [C(ω)] = (d -1)∥ω∥ 2 2 N(0, σ 2 I d ) √ 2π d .
As a result the decomposition with respect to the normalized Lebesgue measure is A div,gauss

Tr (ω) = (I d -ωω T ∥ω∥ -2
2 ) and ρ div,gauss

Tr (ω) = d -1 σ 2 ∥ω∥ 2 2 N(0, σ 2 I d ) √ 2π d .
The decomposition with respect to the normalized Lebesgue measure being

(4.17a) A div,gauss Tr (ω) = I d - ωω T ∥ω∥ 2 2 (4.17b) ρ div,gauss Tr = σ 2 d ∥ω∥ 2 2 N(0, σ -2 I d ).

Functional Fourier feature map

We introduce a functional feature map, we call Fourier Feature map, defined by the following proposition as a direct consequence of Proposition 4.2. which defines a Y-Mercer according to Proposition 4.2 of Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. □

(Φ x y)(ω) = (x, ω)B(ω) * y, is a feature map 8 of some shift-invariant Y-Mercer kernel K. 8 i. e. it satisfies for all x, z ∈ X, Φ * x Φ z = K(x, z) where K is a Y-Mercer OVK. Proof For all y, y ′ ∈ Y and x, z ∈ X, ⟨y, Φ * x Φ z y ′ ⟩ Y = ⟨Φ x y, Φ z y ′ ⟩ L 2 ( X, µ;Y ′ ) = ∫ X (x, ω)⟨y, B(ω)(z, ω)B(ω) * y ′ ⟩d µ(ω) = ∫ X (x ⋆ z -1 , ω)⟨yB(ω)B(ω) * y ′ ⟩d µ(ω) = ∫ X (x ⋆ z -1 , ω)⟨y, A(ω)y ′ ⟩d µ(ω), Φ x ∈ L(Y;H) Y Φ x ∈ L ( Y;L 2 ( X, Pr Haar,ρ ;Y ′ )) Y Φ(x) ∈ L ( Y; H ) Y x ∈ X x ∈ X x ∈ X Φ * x g f Φ Φ * x g f Φ Φ(x) * θ f Φ                                                                        Φ * x Φ z = K(x, z) K e ( x ⋆ z -1 ) K e ( x ⋆ z -1 ) = Φ(x) * Φ(x) = ≈ Fourier, Φ x (ω)y = (x, ω)B(ω) * y. Monte-Carlo, Φ(x)y = 1 √ D ⊕ D j=1 (Φ x y)(ω j ), ω j ∼ Pr Haar,ρ i. i. d..
With this notation we have Φ : 

X → L(Y; L 2 ( X, µ; Y ′ )) such that Φ x ∈ L(Y; L 2 ( X, µ; Y ′ ))
⟨y, A(ω)y ′ ⟩ Y ρ(ω) = F [ ⟨y ′ , K e (•)y⟩ ] Y (ω).
If (ω j ) D j=1 be a sequence of D ∈ N * i. i. d. random variables following the law Pr Haar,ρ then the operator-valued function K defined for (x, z) ∈ X × X as

K(x, z) = 1 D D ∑ j=1 (x ⋆ z -1 , ω j )A(ω j )
is an approximation 9 of K. 9 i. e. it satisfies for all x, z ∈ X,

K(x, z) a. s. ----→ D→∞ K(x, z) in the weak operator topology, where K is a Y-Mercer OVK.
Proof From the strong law of large numbers

1 D D ∑ j =1 (x ⋆ z -1 , ω j )A(ω j ) a. s. ----→ D →∞ E Haar,ρ [(x ⋆ z -1 , ω)A(ω)]
where the integral converges in the weak operator topology. Then by Proposition 4.4,

E Haar,ρ [ (x ⋆ z -1 , ω)A(ω) ] = K e (x ⋆ z -1 ).

□

Now, for efficient computations as motivated in the introduction, we are interested in finding an approximated feature map instead of a kernel approximation. Indeed, an approximated feature map will allow to build linear models in regression tasks. The following proposition deals with the feature map construction. 

) * y ′ ⟩ Y ρ(ω) = ⟨y, A(ω)y ′ ⟩ Y ρ(ω) = F [ ⟨u, K e (•)v⟩ Y ] (ω),
then the (random operator-valued) function whose realization are Φ :

X → L(Y, ⊕ D j=1 Y ′
) defined for all y ∈ Y as follows:

Φ(x)y = 1 √ D D ⊕ j=1 (x, ω j )B(ω j ) * y, ω j ∼ Pr Haar,ρ i. i. d.,
is an approximated feature map 10 for the kernel K. 10 i. e. it satisfies

Φ(x) * Φ(z) a. s. ----→ D→∞ K(x, z) in the weak operator topology, where K is a Y-Mercer OVK Proof Let (ω j ) D
j=1 be a sequence of D ∈ N * i. i. d. random variables following the law Pr Haar,ρ . For all x, z ∈ X and all y, y ′ ∈ Y,

⟨ Φ(x)y, Φ(z)y ′ ⟩ ⊕ D j=1 Y ′ = 1 D ⟨ D ⊕ j=1 ( (x, ω j )B(ω j ) * y ) , D ⊕ j=1 ( (z, ω j )B(ω j ) * y ′ ) ⟩ ⊕ d j=1 Y ′
By definition of the inner product in direct sum of Hilbert spaces,

1 D ⟨ D ⊕ j=1 ( (x, ω j )B(ω j ) * u ) , D ⊕ j=1 ( (z, ω j )B(ω j ) * v ) ⟩ ⊕ D j=1 Y ′ = 1 D D ∑ j=1 ⟨ u, (x, ω j )B(ω j )(z, ω j )B(ω j ) * v ⟩ Y = ⟨ u,   1 D D ∑ j=1 (x ⋆ z -1 , ω j )A(ω j )   v ⟩ Y ,
Eventually apply Proposition 4.7 to obtain the convergence of the Monte-Carlo plug-in estimator to the true kernel K. □ Remark 4.2 We find a decomposition such that A(ω j ) = B(ω j )B(ω j ) * for all j ∈ N * D either by exhibiting a closed-form or using a numerical decomposition.

Notice that an ORFF map as defined in Proposition 4.8 is also the Monte-Carlo sampling of the corresponding functional Fourier feature map Φ x : Y → L 2 ( X, Pr Haar,ρ ; Y ′ ) as defined in Proposition 4.6. Indeed, for all y ∈ Y and all x ∈ X, 

Φ(x)y = D ⊕ j=1 (Φ x y)(ω j ), ω j ∼ Pr Haar,ρ i. i. d..
Output : A random feature Φ(x) such that Φ(x) * Φ(z) ≈ K(x, z)
1 Define the pairing (x, ω) from the LCA group (X, ⋆); 2 Find a decomposition (A, Pr Haar,ρ ) and B such that

B(ω)B(ω) * ρ(ω) = A(ω)ρ(ω) = F -1 [K e ] (ω); 3 Draw D i. i. d. realizations (ω j ) D j=1 from the probability distribution Pr Haar,ρ ; 4 return    Φ(x) ∈ L(Y, H) : y → 1 √ D ⊕ D j=1 (x, ω j )B(ω j ) * y Φ(x) * ∈ L( H, Y) : θ → 1 √ D ∑ D j=1 (x, ω j )B(ω j )θ j ;
We give a numerical illustration of different K built from different i. i. d. samples (ω 1 , . . . , ω D ). In Figure 4.2, we represent the approximation of a reference function (black line) defined as (y 1 , y 2 ) T = f(x i ) = ∑ 250 j=1 K ij u j where u j ∼ N(0, I 2 ) and K is a Gaussian decomposable kernel defined as

K ij = exp ( - (x i -x j ) 2 2(0.1) 2 ) Γ , for i, j ∈ N * 250 .
We took Γ = .5I 2 + .51 2 such that the outputs y 1 and y 2 share some similarities. We generated 250 points (x i ) N i=1 , equally separated on the segment (-1; 1). Then we computed an approximate kernel matrix K ≈ K for 25 increasing values of D ranging from 1 to 10 4 . The top row of the two graphs in Figure 4.2 shows that the more the number of features increases the closer the model f(x i ) = ∑ 250 j=1 Kij u j is to f. The bottom row shows the same experiment but for a different realization of K. When D is small the curves of the bottom and top rows are very dissimilar -and sine wave like -while they both converge to f when D increases.

and by the strong law of large numbers,

1 D D ∑ j =1 (x ⋆ z -1 , ω j )A(ω j ) a. s. ----→ D →∞ E Haar,ρ [(x ⋆ z -1 , ω)A(ω)]
in the weak operator topology. Now from Proposition 4.2 with µ = Pr Haar,ρ

we obtain E Haar,ρ [(x ⋆ z -1 , ω)A(ω)] = K e (x ⋆ z -1 ), K e being the signature of some shift-invariant Y-Mercer kernel. □

The difference between Proposition 4.9 and Proposition 4.8 is that in Proposition 4.9 we do not assume that A(ω) and Pr Haar,ρ have been obtained from Proposition 4.4. We conclude by showing that any realization of an approximate feature map gives a proper operator valued kernel. Hence we can always view K(x, z) = Φ(x) * Φ(z) -where Φ is defined as in Proposition 4.7 (construction from an OVK) or Proposition 4.9-as a Y-Mercer and thus apply all the classic results of the Operator-Valued Kernel theory on K.

Proposition 4.10 Let ω ∈ X D . If for all y, y ′ ∈ Y ⟨y ′ , K e ( x ⋆ z -1 ) y⟩ Y = ⟨ Φ(x)y ′ , Φ(z)y⟩ H = ⟨ y ′ , 1 D D ∑ j=1 (x ⋆ z -1 , ω j )B(ω j )B(ω j ) * y ⟩ Y , for all x, z ∈ X, then K is a shift-invariant Y-Mercer Operator-Valued Ker- nel.
Proof Apply Proposition 3.4 to Φ considering the Hilbert space H to show that K is an OVK. Then Proposition 3.7 shows that K is shift-invariant since K(x, z) = K e ( x ⋆ z -1 ) . Since B(ω) is a bounded operator, K is Y-Mercer because all the functions in the sum are continuous. □ Note that the above theorem does not consider the ω j 's as random variables and therefore does not show the convergence of the kernel K to some target kernel K. However it shows that any realization of K when ω j 's are random variables yields a valid Y-Mercer operatorvalued kernel.

Indeed, as a result of Proposition 4.10, in the same way we defined an ORFF, we can define an approximate feature operator W which maps H onto H K , where 

K(x, z) = Φ(x) * Φ(z), for all x, z ∈ X.
K e = 1 D D ∑ j=1 (•, ω j )B(ω j )B(ω j ) * .
We call random Fourier feature operator the linear application W : H → H K defined as

( Wθ ) (x) : = Φ(x) * θ = 1 √ D D ∑ j=1 (x, ω j )B(ω j )θ j where θ = ⊕ D j=1 θ j ∈ H. Then from Proposition 3.4, ( Ker W ) ⊥ = span { Φ(x)y ∀x ∈ X, ∀y ∈ Y } ⊆ H.
The random Fourier feature operator is useful to show the relations between the random Fourier feature map with the functional feature map defined in Proposition 4.6. The relationship between the generic feature map (defined for all Operator-Valued Kernel) the functional feature map (defining a shift-invariant Y-Mercer Operator-Valued Kernel) and the random Fourier feature map is presented in Figure 4.1.

Proposition 4.11 For any

g ∈ H = L 2 ( X, Pr Haar,ρ ; Y ′ ), let θ : = 1 √ D D ⊕ j =1 g(ω j ), ω j ∼ Pr Haar,ρ i. i. d. . Then 1. ( Wθ 
) (x) = Φ(x) * θ a. s. ----→ D→∞ Φ * x g = (Wg)(x), 2. ∥θ∥ 2 H a. s. ----→ D→∞ ∥g∥ 2 H ,
Proof (of Proposition 4.11 item 1) Since (ω j ) D j=1 are i. i. d. random vectors, for all y ∈ Y and for all y ′ ∈ Y ′ , ⟨y, B(•)y ′ ⟩ ∈ L 2 ( X, Pr Haar,ρ ) and g ∈ L 2 ( X, Pr Haar,ρ ; Y ′ ), from the strong law of large numbers

( Wθ)(x) = Φ(x) * θ = 1 D D ∑ j=1 (x, ω j )B(ω j )g(ω j ), ω j ∼ Pr Haar,ρ i. i. d. a. s. ----→ D→∞ ∫ X (x, ω)B(ω)g(ω)dPr Haar,ρ (ω) = (Wg)(x) := Φ * x g. □
Proof (of Proposition 4.11 item 2) Again, since (ω j ) D j-1 are i. i. d. random vectors and g ∈ L 2 ( X, Pr Haar,ρ ; Y ′ ), from the strong law of large numbers

∥θ∥ 2 H = 1 D D ∑ j=1 g(ω j ) 2 Y ′ , ω j ∼ Pr Haar,ρ i. i. d. a. s. ----→ D→∞ ∫ X ∥g(ω)∥ 2 Y ′ dPr Haar,ρ (ω) = ∥g∥ 2 L 2 ( X,Pr Haar,ρ ;Y ′
) . □

We write Φ(x) * Φ(x) ≈ K(x, z) when Φ(x) * Φ(x) a. s.

--→ K(x, z) in the weak operator topology when D tends to infinity. With mild abuse of notation we say that Φ(x) is an approximate feature map of the functional feature map Φ x i. e. Φ(x) ≈ Φ x , when for all y ′ , y ∈ Y,

⟨y, K(x, z)y ′ ⟩ Y = ⟨Φ x y, Φ z y ′ ⟩ L 2 ( X,Pr Haar,ρ ;Y ′ ) ≈ ⟨ Φ(x)y, Φ(x)y ′ ⟩ H := ⟨y, K(x, z)y ′ ⟩ Y
where Φ x is defined in the sense of Proposition 4.6.

Examples of Operator Random Fourier Feature maps

We now give two examples of operator-valued random Fourier feature map. First we introduce the general form of an approximated feature map for a matrix-valued kernel on the additive group (R d , +).

Example 4.1 (Matrix-valued kernel on the additive group).

In the following let K(x, z) = K 0 (xz) be a Y-Mercer matrix-valued kernel on X = R d , invariant w. r. t. the group operation +. Then the function Φ defined as follow is an Operator-valued Random Fourier Feature of K 0 .

Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 B(ω j ) * y sin ⟨x, ω j ⟩ 2 B(ω j ) * y ) , ω j ∼ Pr Haar,ρ i. i. d.. for all y ∈ Y. Proof The (Pontryagin) dual of X = R d is X ∼ = R d ,
and the duality pairing is (xz, ω) = exp(i⟨xz, ω⟩ 2 ). The kernel approximation yields

K(x, z) = Φ(x) * Φ(z) = 1 D D ∑ j=1 ( cos ⟨x, ω j ⟩ 2 sin ⟨x, ω j ⟩ 2 ) ( cos ⟨z, ω j ⟩ 2 sin ⟨z, ω j ⟩ 2 ) A(ω j ) = 1 D D ∑ j=1 cos ⟨x -z, ω j ⟩ 2 A(ω j ) a. s. ----→ D→∞ E ρ [ cos ⟨x -z, ω⟩ 2 A(ω) ]
in the weak operator topology. Since for all x ∈ X, sin⟨x, •⟩ 2 is an odd function and

A(•)ρ(•) is even, E ρ [ cos ⟨x -z, ω⟩ 2 A(ω) ] = E ρ [ exp(-i⟨x -z, ω⟩ 2 )A(ω) ] = K(x, z). Hence K(x, z) a. s. ----→ D→∞ K(x, z). □
In particular we deduce the following feature maps for the kernels proposed in Subsection 4.2.2.

• For the decomposable Gaussian kernel K dec,gauss

0 (δ) = k gauss 0 (δ)Γ for all δ ∈ R d , let BB * = Γ . A bounded -and unbounded-ORFF map is Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 B * y sin ⟨x, ω j ⟩ 2 B * y ) = ( φ(x) ⊗ B * )y,
where

ω j ∼ Pr N(0,σ -2 I d ) i. i. d. and φ(x) = 1 √ D ⊕ D j=1 ( cos ⟨x, ω j ⟩ 2 sin ⟨x, ω j ⟩ 2
) is a scalar RFF map [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF].

• For the curl-free Gaussian kernel, K curl,gauss

0 = -∇∇ T k gauss 0 an unbounded ORFF map is (4.20) Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 ω T j y sin ⟨x, ω j ⟩ 2 ω T j y
) , ω j ∼ Pr N(0,σ -2 I d ) i. i. d. and a bounded ORFF map is

Φ(x)y = 1 √ D D ⊕ j=1    cos ⟨x, ω j ⟩ 2 ω T j ∥ωj∥ y sin ⟨x, ω j ⟩ 2 ω T j ∥ωj∥ y    , ω j ∼ Pr ρ i. i. d.. where ρ(ω) = σ 2 ∥ω∥ 2 d N(0, σ -2 I d )(ω) for all ω ∈ R d .
• For the divergence-free Gaussian kernel K div,gauss

0 (x, z) = (∇∇ T -∆I d )k gauss 0 (x, z) an unbounded ORFF map is (4.21) Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 B(ω j ) T y sin ⟨x, ω j ⟩ 2 B(ω j ) T y )
where ω j ∼ Pr ρ i. i. d. and

B(ω) = ( ∥ω∥I d -ωω T ) and ρ = N(0, σ -2 I d ) for all ω ∈ R d . A bounded ORFF map is Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 B(ω j ) T y sin ⟨x, ω j ⟩ 2 B(ω j ) T y ) , ω j ∼ Pr ρ i. i. d.,
where

B(ω) = ( I d -ωω T ∥ω∥ 2 ) and ρ(ω) = σ 2 ∥ω∥ 2 d N(0, σ -2 I d ) for all ω ∈ R d .
The second example extends scalar-valued Random Fourier Features on the skewed multiplicative group -described in Subsection 3.2.4 and Subsubsection 4.2.2.2-to the operator-valued case.

Example 4.2 (Matrix-valued kernel on the skewed multiplicative group). In the following,

K(x, z) = K 1-c (x ⊙ z -1
) is a Y-Mercer matrixvalued kernel on X = (-c; +∞) d invariant w. r. t. the group operation 12 ⊙. Then the function Φ defined as follow is an Operator-valued Random 12 The group operation ⊙ is defined in Subsubsection 4.2.2.2.

Fourier Feature of K 1-c .

Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨log(x + c), ω j ⟩ 2 B(ω j ) * y sin ⟨log(x + c), ω j ⟩ 2 B(ω j ) * y ) , ω j ∼ Pr Haar,ρ i. i. d., for all y ∈ Y. Proof The dual of X = (-c; +∞) d is X ∼ = R d ,
and the duality pairing is

(x ⊙ z -1 , ω) = exp(i⟨log(x ⊙ z -1 + c), ω⟩ 2 ). Following the proof of Exam- ple 4.1, we have K(x, z) = 1 D D ∑ j=1 cos ⟨ log ( x + c z + c ) , ω j ⟩ 2 A(ω j ).
which converges almost surely to

E ρ [ exp ( -i ⟨ log(x ⊙ z -1 + c) ⟩ 2 ) A(ω) ] = E ρ [(x ⊙ z -1 , ω)A(ω)] = K(x, z)
when D tends to infinity, in the weak operator topology. □

• For the skewed-χ 2 decomposable kernel defined as

K dec,skewed 1-c (δ) = k skewed 1-c (δ)Γ for all δ ∈ X, let BB * = Γ . A bounded -and unbounded-ORFF map is Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨log(x + c), ω j ⟩ 2 B * y sin ⟨log(x + c), ω j ⟩ 2 B * y ) , ω j ∼ Pr ρ i. i. d. = ( Φ(x) ⊗ B * )y,
where ρ = S(0, 2 -1 ) and

Φ(x) = 1 √ D ⊕ D j=1 ( cos ⟨log(x + c), ω j ⟩ 2 sin ⟨log(x + c), ω j ⟩ 2
) is a scalar RFF map [START_REF] Li | Random Fourier Approximations for Skewed Multiplicative Histogram Kernels[END_REF].

Regularization property

We have shown so far that it is always possible to construct a feature map that allows to approximate a shift-invariant Y-Mercer kernel. However we could also propose a construction of such map by studying the regularization induced with respect to the Fourier Transform of a target function f ∈ H K . In other words, what is the norm in

L 2 ( X, Haar; Y ′ ) induced by ∥•∥ K ? Proposition 4.12 Let K be a shift-invariant Y-Mercer Kernel such that for all y, y ′ in Y, ⟨y ′ , K e (•)y⟩ Y ∈ L 1 (X, Haar). Then for all f ∈ H K (4.22) ∥f∥ 2 K = ∫ X ⟨ F [f] (ω), A (ω) † F [f] (ω) ⟩ Y ρ(ω) d Haar(ω).
where ⟨y

′ , A(ω)y⟩ Y ρ(ω) := F [⟨y ′ , K e (•)y⟩ Y ] (ω).
Proof We first show how the Fourier Transform relates to the feature operator. Since H K is embedded into H = L 2 ( X, Pr Haar,ρ ; Y ′ ) by means of the feature operator W, we have for all f ∈ H k , for all f ∈ H and for all x ∈ X

F [ F -1 [f] ] (x) = ∫ X (x, ω)F -1 [f] (ω)d Haar(ω) = f(x) (Wg)(x) = ∫ X (x, ω)ρ(ω)B(ω)g(ω)d Haar(ω) = f(x).
By injectivity of the Fourier Transform,

F -1 [f] (ω) = ρ(ω)B(ω)g(ω)
. From Proposition 3.4 we have

∥f∥ 2 K = inf { ∥g∥ 2 H ∀g ∈ H, Wg = f } = inf { ∫ X ∥g(ω)∥ 2 Y ′ dPr Haar,ρ (ω) ∀g ∈ H, F -1 [f] = ρ(•)B(•)g(•)
} .

The pseudo inverse of the operator B(ω) -noted B(ω) † -is the unique solution of the system

F -1 [f] (ω) = ρ(ω)B(ω)g(ω) w. r. t. g(ω) with minimal norm 1 . Eventually, ∥f∥ 2 K = ∫ X B(ω) † F -1 [f] (ω) 2 Y ρ(ω) 2 dPr Haar,ρ (ω)
Using the fact that

F -1 [•] = FR[•] and F 2 [•] = R[•], ∥f∥ 2 K = ∫ X R [ B(•) † ρ(•) ] (ω)F [f] (ω) 2 Y ρ(ω) 2 d Haar(ω) = ∫ X B(ω) † ρ(ω)F [f] (ω) 2 Y ρ(ω) 2 d Haar(ω) = ∫ X ⟨B(ω) † F [f] (ω), B(ω) † F [f] (ω)⟩ Y ρ(ω) d Haar(ω) = ∫ X ⟨F [f] (ω), A(ω) † F [f] (ω)⟩ Y ρ(ω) d Haar(ω). □ Note that if K(x, z) = k(x, z
) is a scalar kernel then for all ω in X, A(ω) = 1. Therefore we recover the well known result for kernels that is for any [START_REF] Smola | The connection between regularization operators and support vector kernels[END_REF][START_REF] Vert | Regularization of Kernel Methods by Decreasing the Bandwidth of the Gaussian Kernel[END_REF][START_REF] Yang | Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison[END_REF]. Eventually from this last equation we also recover Proposition 3.9 for decomposable kernels.

f ∈ H k we have ∥f∥ k = ∫ X F [k e ] (ω) -1 F [f] (ω) 2 d Haar(ω)
If A(ω) = Γ ∈ L + (R p ), (4.23) ∥f∥ K = p ∑ i,j=1 ( Γ † ) ij ⟨f i , f j ⟩ k
Algorithm 2: Construction of ORFF Input :

• The pairing (x, ω) of the LCA group (X, ⋆).

• A probability measure Pr Haar,ρ with density ρ w. r. t. the haar measure Haar on X.

• An operator-valued function B :

X → L(Y, Y ′ ) such that for all y y ′ ∈ Y, ⟨y ′ , B(•)B(•) * y⟩ ∈ L 1 ( X, Pr Haar,ρ ).
• D the number of features. Output : A random feature Φ(x) such that Φ(x) * Φ(z) ≈ K(x, z).

1 Draw D random vectors (ω j ) D j=1 i. i. d. from the probability law Pr Haar,ρ ;

2 return    Φ(x) ∈ L(Y, H) : y → 1 √ D ⊕ D j=1 (x, ω j )B(ω j ) * y Φ(x) * ∈ L( H, Y) : θ → 1 √ D ∑ D j=1 (x, ω j )B(ω j )θ j ;
We also note that the regularization property in H K does not depends (as expected) on the decomposition of A(ω) into B(ω)B(ω) * . Therefore the decomposition should be chosen such that it optimizes the computation cost. For instance if A(ω) ∈ L(R p ) has rank r, one could

find an operator B(ω) ∈ L(R p , R r ) such that A(ω) = B(ω)B(ω) * .
Moreover, in light of Equation 4.22 the regularization property of the kernel with respect to the Fourier Transform, it is also possible to define an approximate feature map of an Operator-Valued Kernel from its regularization properties in the VV-RKHS as proposed in Algorithm 2.

conclusions

We have presented a generic framework that generalizes scalarvalued RFFs presented in Chapter 2. We first showed how to construct an ORFF from an OVK in the very general case when X is an LCA group and Y is an infinite dimensional space. Then, conversely, how to use the regularization properties (Proposition 4.12) to construct an ORFF without defining an OVK.

q B O U N D I N G T H E E R R O R O F T H E O R F F A P P R O X I M AT I O N
In this chapter we refine the bound on the OVK approximation with ORFF we first proposed in [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF] and presented in [START_REF] Brault | Borne sur l'approximation de noyaux à valeurs opérateurs à l'aide de transformées de Fourier[END_REF]. It generalizes the proof technique of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] to OVK on LCA groups thanks to the recent results of Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF], Minsker [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF], Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF], and Tropp [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]. As a Bernstein bound it depends on the variance of the estimator for which we derive an "upper bound". In order to bound the error with high probability, we turn to concentration inequalities devoted to random matrices [START_REF] Boucheron | Concentration Inequalities[END_REF]. The concentration phenomenon can be summarized by the following sentence of Ledoux [START_REF] Ledoux | The concentration of measure phenomenon[END_REF]. "A random variable that depends (in a smooth way) on the influence of many random variables (but not too much on any of them) is essentially constant".

Contents

A typical application is the study of the deviation of the empirical mean of independent identically distributed random variables to their expectation. This means that given an error ϵ between the kernel approximation K and the true kernel K, if we are given enough samples to construct K, the probability of measuring an error greater than ϵ is essentially zero (it drops at an exponential rate with respect to the number of samples D). To measure the error between the kernel approximation and the true kernel at a given point, many metrics are possible. For instance, any matrix norm such as the Hilbert-Schmidt norm, trace norm, the operator norm or Schatten norms. In this work we focus on measuring the error in terms of operator norm. For all x, z ∈ X we look for a bound on

Pr ρ { (ω j ) D j=1 K(x, z) -K(x, z) Y,Y ⩾ ϵ } = Pr ρ    (ω j ) D j=1 sup 0̸ =y∈Y ( K(x, z) -K(x, z))y Y ∥y∥ Y ⩾ ϵ   
In other words, given any vector y ∈ Y we study how the residual operator K -K is able to send y to zero. We believe that this way of measuring the "error" to be more intuitive. Moreover, on contrary to an error measure with the Hilbert-Schmidt norm, the operator norm error does not grows linearly with the dimension of the output space as the Hilbert-Schmidt norm does. On the other hand the Hilbert-Schmidt norm makes the studied random variables Hilbert space valued, for which it is much easier to derive concentration inequalities [START_REF] Naor | On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon-Roichman graphs[END_REF][START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF][START_REF] Smale | Learning theory estimates via integral operators and their approximations[END_REF]. Note that in the scalar case (A(ω) = 1) the Hilbert-Schmidt norm error and the operator norm are the same and measure the deviation between K and K as the absolute value of their difference.

A raw concentration inequality of the kernel estimator gives the error on one point. If one is interesting in bounding the maximum error over N points, applying a union bound on all the point would yield a bound that grows linearly with N. This would suggest that when the number of points increase, even if all of them are concentrated in a small subset of X, we should draw increasingly more features to have an error below ϵ with high probability. However if we restrict ourselves to study the error on a compact subset of X (and in practice data points lies often in a closed bounded subset of R d ), we can cover this compact subset by a finite number of closed balls and apply the concentration inequality and the union bound only on the center of each ball. Then if the function K e -K e is smooth enough on each ball (i. e. Lipschitz) we can guarantee with high probability that the error between the centers of the balls will not be too high. Eventually we obtain a bound in the worst case scenario on all the points in a subset C of X. This bound depends on the covering number N(C, r) of X with ball of radius r. When X is a Banach space, the covering number is proportional to the diameter of C ⊆ X.

Prior to the presentation of general results, we briefly recall the uniform convergence of RFF approximation for a scalar shift invariant kernel on the additive LCA group R d and introduce a direct corollary about decomposable shift-invariant OVK on the LCA group (R d , +).

Random Fourier Features in the scalar case and decomposable OVK

Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] proved the uniform convergence of Random Fourier Feature (RFF) approximation for a scalar shift-invariant kernel on the LCA group R d endowed with the group operation ⋆ = +. In the case of the shift-invariant decomposable OVK, an upper bound on the error can be obtained as a direct consequence of the result in the scalar case obtained by Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] and other authors [START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF].

Theorem 5.1 (Uniform error bound for RFF, Rahimi and Recht [139]

). Let C be a compact subset of R d of diameter |C|. Let k be a shift invariant kernel, differentiable with a bounded second derivative and Pr ρ its normalized Inverse Fourier Transform such that it defines a probability measure. Let

k = D ∑ j=1 cos ⟨•, ω j ⟩ ≈ k(x, z) and σ 2 = E ρ ∥ω∥ 2 2 .
Then we have

Pr ρ { (ω j ) D j=1 k -k C×C ⩾ ϵ } ⩽ 2 8 ( σ|C| ϵ ) 2 exp ( - ϵ 2 D 4(d + 2) )
From Theorem 5.1, we can deduce the following corollary about the uniform convergence of the ORFF approximation of the decomposable kernel. We recall that for a given pair

x, z in C, K(x, z) = Φ(x) * Φ(z) = Γ k(x, z) and K 0 (x -z) = Γ E Haar,ρ [ k(x, z)].

Corollary 5.1 (Uniform error bound for decomposable ORFF).

Let C be a compact subset of R d of diameter |C|. Let K be a decomposable kernel built from a positive operator self-adjoint Γ , and k a shift invariant kernel with bounded second derivative such that

K = D ∑ j=1 cos ⟨•, ω j ⟩Γ ≈ K and σ 2 = E ρ ∥ω∥ 2 2 .
Then

Pr ρ { (ω j ) D j=1 K -K C×C ⩾ ϵ } ⩽ 2 8 ( σ∥Γ ∥ Y,Y |C| ϵ ) 2 exp ( - ϵ 2 D 4∥Γ ∥ 2 2 (d + 2)
)

Proof The proof directly extends Theorem 5.1 given by [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF]. Let k be the Random Fourier approximation for the scalar-valued kernel k. Since

sup (x,z) ∈C×C K(x, z) -K(x, z) Y,Y = sup (x,z)∈C×C ∥Γ ∥ Y,Y k(x, z) -k(x, z) , taking ϵ ′ = ∥Γ ∥ Y,Y ϵ
gives the following result for all positive ϵ ′ :

Pr ρ { (ω j ) D j=1 sup x,z∈C Γ ( k(x, z) -k(x, z) ) Y,Y ⩾ ϵ ′ } ⩽ 2 8 ( σ∥Γ ∥ Y,Y |C| ϵ ′ ) 2 exp ( - (ϵ ′ ) 2 D 4∥Γ ∥ 2 Y,Y (d + 2)
) which concludes the proof. □ Note that a similar corollary could have been obtained for the recent result of Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] who refined the bound proposed by Rahimi and Recht by using a Bernstein concentration inequality instead of the Hoeffding inequality. More recently Sriperumbudur and Szabo [START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF] showed an optimal bound for Random Fourier Feature. The improvement of Sriperumbudur and Szabo [START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF] is mainly in the constant factors where the bound does not depend linearly on the diameter |C| of C but exhibit a logarithmic dependency log (|C|), hence requiring significantly less random features to reach a desired uniform error with high probability. Moreover, Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] also considered a bound on the expected max error E Haar,ρ K -K ∞ , which is obtained using Dudley's entropy integral [START_REF] Boucheron | Concentration Inequalities[END_REF][START_REF] Dudley | The sizes of compact subsets of Hilbert space and continuity of Gaussian processes[END_REF] as a bound on the supremum of an empirical process by the covering number of the indexing set. This useful theorem is also part of the proof of Sriperumbudur and Szabo [START_REF] Sriperumbudur | Optimal Rates for Random Fourier Features[END_REF].

Uniform convergence of ORFF approximation on LCA groups

In this analysis, we assume that Y is finite dimensional, in Subsection 5.1.3, we discuss how the proof could be extended to infinite dimensional output Hilbert spaces. We propose a bound for Operator-valued Random Fourier Feature approximation in the general case. It relies on two main ideas:

1. a matrix-Bernstein concentration inequality for random matrices need to be used instead of concentration inequality for scalar random variables, 2. a general theorem, valid for random matrices with bounded norms (such as decomposable kernel ORFF approximation) as well as unbounded norms (such as the ORFF approximation we proposed for curl and divergence-free kernels, for which the norm behave as subexponential random variables).

Before introducing the new theorem, we give the definition of the Orlicz norm which gives a proxy-bound on the norm of subexponential random variables.

Definition 5.1 (Orlicz norm [176]

). Let ψ : R + → R + be a nondecreasing convex function with ψ(0) = 0. For a random variable X on a measured space (Ω, T(Ω), µ), the quantity

∥X∥ ψ = inf { C > 0 | E µ [ψ (|X|/C)] ⩽ 1 } . is called the Orlicz norm of X.
Here, the function ψ is chosen as ψ(u) = ψ α (u) where ψ α (u) := e u α -1. When α = 1, a random variable with finite Orlicz norm is called a subexponential variable because its tails decrease at an exponential rate. Let X be a self-adjoint random operator. Given a scalar-valued measure µ, we call variance of an operator X the quantity Var µ

[X] = E µ [X -E µ [X]] 2 . With this convention if X is a p × p Hermitian matrix, Var µ [X] ℓm = p ∑ r=1 Cov µ [X ℓr , X rm ].
Among the possible concentration inequalities adapted to random operators [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF][START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF][START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF][START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF][START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF], we focus on the results of Minsker [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF] and Tropp [START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF], for their robustness to high or potentially infinite dimension of the output space Y. To guarantee a good scaling with the dimension of Y we introduce the notion of intrinsic dimension (or effective rank) of an operator.

Definition 5.2

Let A be a trace class operator acting on a Hilbert space Y.

We call intrinsic dimension the quantity

IntDim(A) = Tr [A] ∥A∥ Y,Y .
Indeed the bound proposed in our first publication at ACML [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF] based on Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF] depends on p while the present bound depends on the intrinsic dimension of the variance of A(ω) which is always smaller than p when the operator A(ω) is Hilbert-Schmidt (p ⩽ ∞). 

m ⩾ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω) < ∞ and u ⩾ 4 ( ∥∥A(ω)∥ Y,Y ∥ ψ 1 + sup δ∈D C ∥K e (δ)∥ Y,Y ) < ∞ and v ⩾ sup δ∈D C D∥V(δ)∥ Y,Y < ∞.
Define p int ⩾ sup δ∈D C IntDim(V(δ)), then for all 0 < ϵ ⩽ m|C|,

Pr Haar,ρ { (ω j ) D j=1 K -K C×C ⩾ ϵ } ⩽ 8 √ 2 ( m|C| ϵ ) ( p int r v/D (ϵ) ) 1 d+1      exp ( -D ϵ 2 8v(d+1)(1+ 1 p ) ) , ϵ ⩽ v u 1+1/p K(v,p) exp ( -D ϵ 8u(d+1)K(v,p) )
, otherwise,

where

K(v, p) = log ( 16 √ 2p ) + log ( u 2 v ) and r v/D (ϵ) = 1 + 3 ϵ 2 log 2 (1+Dϵ/v) .

Sketch of the proof

In the following, let

F(δ) = F(x ⋆ z -1 ) = K(x, z) - K(x, z). Let D C = C ⋆ C -1 = { x ⋆ z -1 x, z ∈ C } . Since C is supposed compact, so is D C . Its diameter is at most 2|C| where |C| is the diameter of C.
Since C is supposed to be a closed ball of a Banach space it is then possible to find an ϵ-net covering D C with at most T = (4|C|/r) d balls of radius r [START_REF] Cucker | On the mathematical foundation of learning[END_REF]. We call δ i for i ∈ { 1, . . . , T } the center of the i-th ball, called anchors of the ϵ-net. Denote L F the Lipschitz constant of F. We introduce the following lemma proved in [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF].

Lemma 5.1 For all δ ∈ D C , if (5.2) L F ⩽ ϵ 2r and (5.3) ∥F(δ i )∥ Y,Y ⩽ ϵ 2 , for all i ∈ N * T then ∥F(δ)∥ Y,Y ⩽ ϵ for all δ ∈ D C .
To apply the lemma, we must check assumptions Equation 5.2 and Equation 5.3. 5.2) Lemma 5.2 Let H ω ∈ R + be the Lipschitz constant of h ω (•) and assume that

Sketch of the proof (Equation

∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω) < ∞.
Then the operator-valued function K e : X → L(Y) is Lipschitz with

(5.4) ∥K e (x) -K e (z)∥ Y,Y ⩽ d X (x, z) ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω).
In the same way, considering Ke (δ) = 1 D ∑ D j=1 cos h ω j (δ)A(ω j ), where ω j ∼ Pr Haar,ρ , we can show that Ke is Lipschitz with

Ke (x) -Ke (z) Y,Y ⩽ d X (x, z) 1 D D ∑ j=1 H ω j A(ω j ) Y,Y .
Taking the expectation yields

E Haar,ρ [L F ] = 2 ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ
Thus by Markov's inequality, (5.5)

Pr Haar,ρ { (ω j ) D j=1 | L F ⩾ ϵ } ⩽ E Haar,ρ [L F ] ϵ ⩽ 2 ϵ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ .

Sketch of the proof (Equation 5.3)

To obtain a bound on the anchors we apply theorem 4 of Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF]. We suppose the existence of the two constants

v i = DVar Haar,ρ [ K(δ i ) ]
and

u i = 4 ( ∥∥A(ω)∥ Y,Y ∥ ψ 1 + ∥K e (δ i )∥ Y,Y
)

Then ∀i ∈ { 1, . . . , T }, Pr Haar,ρ { (ω j ) D j=1 ∥F(δ i )∥ Y,Y ⩾ ϵ } ⩽      4IntDim(v i ) exp ( -D ϵ 2 2∥v i ∥ Y,Y (1+ 1 p ) ) r v i /D (ϵ), ϵ ⩽ ∥v i ∥ Y,Y 2u i 1+1/p K(v i ,p) 4IntDim(v i ) exp ( -D ϵ 4u i K(v i ,p) ) r v i /D (ϵ), otherwise.
where

K(v i , p) = log ( 16 √ 2p ) + log ( u 2 i ∥v i ∥ Y,Y
) and

r v i /D = 1 + 3 ϵ 2 log 2 (1 + Dϵ/∥v i ∥ Y,Y ) .
Combining Equation 5.2 and Equation 5.3. Now applying the lemma and taking the union bound over the centers of the ϵ-net yields

Pr Haar,ρ { (ω j ) D j=1 K -K C×C ⩾ ϵ } ⩽ 4    rm ϵ + p int ( 2|C| r 
) d r v/D (ϵ)      exp ( -D ϵ 2 8v(1+ 1 p ) ) , ϵ ⩽ v u 1+1/p K(v,p) exp ( -D ϵ 8uK(v,p) )
, otherwise.

  

The right hand side of the equation has the form ar + br -d with

a = m ϵ and b = p int (2|C|) d r v/D (ϵ)      exp ( -D ϵ 2 8v(1+ 1 p ) ) , ϵ ⩽ v u 1+1/p K(v,p) exp ( -D ϵ 8uK(v,p) )
, otherwise.

Following [START_REF] Minh | Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning[END_REF][START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF], we optimize over r. It is a convex continuous function on R + and achieve the minimum value

r * = a d d+1 b 1 d+1 ( d 1 d+1 + d -d d+1 ) , hence Pr Haar,ρ { (ω j ) D j=1 K -K C×C ⩾ ϵ } ⩽ 8 √ 2 ( m|C| ϵ ) ( p int r v/D (ϵ) ) 1 d+1      exp ( -D ϵ 2 8v(d+1)(1+ 1 p ) ) , ϵ ⩽ v u 1+1/p K(v,p) exp ( -D ϵ 8u(d+1)K(v,p) )
, otherwise, which concludes the sketch of the proof. □

We give a comprehensive full proof of the theorem in Appendix A.1. It follows the usual scheme derived in Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] and Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] and involves Bernstein concentration inequality for unbounded symmetric matrices (Theorem A.3).

Dealing with infinite dimensional operators

We studied the concentration of ORFFs under the assumption that Y is finite dimensional. Indeed a d term characterizing the dimension of the input space X appears in the bound proposed in Corollary 5.2, and when d tends to infinity, the exponential part goes to zero so that the probability is bounded by a constant greater than one. Unfortunately, considering unbounded random operators [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF] does not give any tighter solution.

In our first bound presented at ACML, we presented a bound based on a matrix concentration inequality for unbounded random variable. Compared to this previous bound, Corollary 5.2 does not depend on the dimensionality p of the output space Y but on the intrinsic dimension of the operator A(ω). However to remove the dependency in p in the exponential part, we must turn our attention to operator concentration inequalities for bounded random variable. To the best of our knowledge we are not aware of concentration inequalities working for "unbounded" operator-valued random variables acting on infinite dimensional spaces. Following the same proof than Corollary 5.2 we obtain 

m ⩾ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω) < ∞ and u ⩾ ess sup ω∈ X ∥A(ω)∥ Y,Y + sup δ∈D C ∥K e (δ)∥ Y,Y < ∞ and v ⩾ sup δ∈D C D∥V(δ)∥ Y,Y < ∞. define p int ⩾ sup δ∈D C IntDim (V(δ)) then for all √ v D + u 3D < ϵ < m|C|, Pr Haar,ρ { (ω j ) D j=1 sup δ∈D C ∥F(δ)∥ Y,Y ⩾ ϵ } ⩽ 8 √ 2 ( m|C| ϵ ) p 1 d+1 int exp (-Dψ v,d,u (ϵ))
where

ψ v,d,u (ϵ) = ϵ 2 2(d+1)(v+uϵ/3) .
Again a full comprehensive proof is given in Appendix A.1 of the appendix. Notice that in this result, The dimension p = dim Y does not appear. Only the intrinsic dimension of the variance of the estimator. Moreover when d is large, the term p

1 d+1
int goes to one, so that the impact of the intrinsic dimension on the bound vanish when the dimension of the input space is large.

Variance of the ORFF approximation

We now provide a bound on the norm of the variance of K, required to apply Corollaries 5.2 and 5.3. This is an extension of the proof of Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] to the operator-valued case, and we recover their results in the scalar case when A(ω) = 1. An illustration of the bound is provided in Figures 5.2 and 5.3 for the decomposable and the curl-free OVK. ) 

Proof
(δ) = ⟨ω, log(δ + c)⟩. Therefore sup δ ∈C ∥∇h ω (δ)∥ 2 = sup δ∈C ∥ω/(δ + c)∥ 2 .
Eventually C is compact subset of X and finite dimensional thus C is closed and bounded. Thus H ω = ∥ω∥ 2 /(min δ∈C ∥δ∥ 2 + c).

Now we compute upper bounds on the norm of the variance and Orlicz norm of the three ORFFs we took as examples.

Decomposable kernel

Notice that in the case of the Gaussian decomposable kernel, i. e. A(ω) = A, e = 0, K 0 (δ) = Ak 0 (δ), k 0 (δ) ⩾ 0 and k 0 (δ) = 1, then we have

D Var µ [ K0 (δ) ] Y,Y ⩽ (1 + k 0 (2δ))∥A∥ Y,Y /2 + k 0 (δ) 2 .
5.1.5.2 Curl-free and divergence-free kernels:

recall that in this case p = d. For the (Gaussian) curl-free kernel,

A(ω) = ωω * where ω ∈ R d ∼ N(0, σ -2 I d ) thus E µ [A(ω)] = I d /σ 2 and Var µ [A(ω)] = (d + 1)I d /σ 4 . Hence, D Var µ [ K0 (δ) ] Y,Y ⩽ 1 2 1 σ 2 K 0 (2δ) -2K 0 (δ) 2 Y,Y + (d + 1) σ 4 .
This bound is illustrated by Figure 5.1 B, for a given datapoint. Eventually for the Gaussian divergence-free kernel,

A(ω) = I∥ω∥ 2 2 -ωω * , thus E µ [A(ω)] = I d (d -1)/σ 2 and Var µ [A(ω)] = d(4d -3)I d /σ 4 . Hence, D Var µ [ K0 (δ) ] Y,Y ⩽ 1 2 (d -1) σ 2 K 0 (2δ) -2K 0 (δ) 2 Y,Y + d(4d -3) σ 4 .
To conclude, we ensure that the random variable ∥A(ω)∥ Y,Y has a finite Orlicz norm with ψ = ψ 1 in these three cases.

Computing the Orlicz norm

For a random variable with strictly monotonic moment generating function (MGF), one can characterize its inverse ψ 1 Orlicz norm by taking the functional inverse of the MGF evaluated at 2 (see Lemma A.3 of the appendix). In other words ∥X∥ -1 ψ 1 = MGF(x) -1 X (2). For the Gaussian curl-free and divergence-free kernel,

A div (ω) Y,Y = A curl (ω) Y,Y = ∥ω∥ 2 2 ,
where ω ∼ N(0,

I d /σ 2 ), hence ∥A(ω)∥ 2 ∼ Γ (p/2, 2/σ 2 ). The MGF of this gamma distribution is MGF(x)(t) = (1 -2t/σ 2 ) -(p/2) . Eventually A div (ω) Y,Y -1 ψ 1 = A curl (ω) Y,Y -1 ψ 1 = σ 2 2 ( 1 -4 -1 p
) .

conclusions

In this chapter we have seen how to bound K -K in the operator norm with high probability (Section 5.1). We studied the case of unbounded finite dimensional OVKs and bounded potentially infinite dimensional OVKs. The current lack of concentration inequalities working for both unbounded and infinite dimensional with the operator norm (Banach space) in the literature prevents us to unify these bounds.

q

This contribution chapter focuses on explaining how to define an efficient implemenation and algorithm to train an ORFF model. First we recall the supervised ridge regression with OVK and the celebrated representer theorem [START_REF] Wahba | Spline model for observational data[END_REF]. Then we show under which condition learning with an ORFF is equivalent to learning with a kernel approximation. Eventually we give the gradient for the Ridge regression problem, in order to find an optimal solution with gradient descent algorithms, as well as a closed form algorithm. We conclude by showing how viewing ORFFs as linear operators rather than matrices yields a more efficient implementation and finish with some numerical applications on toy and real-world datasets. 

s = (x i , y i ) N i=1 ∈ (X × Y)
N be a sequence of training samples. Given a local loss function L : X × F × Y → R such that L is proper, convex and lower semi-continuous in F, we are interested in finding a vector-valued function f s : X → Y, that lives in a VV-RKHS and minimizes a tradeoff between a data fitting term and a regularization term to prevent from overfitting. Namely finding f s ∈ H K such that (6.1)

f s = arg min f∈H K 1 N N ∑ i=1 L(x i , f, y i ) + λ 2 ∥f∥ 2 K
where λ ∈ R + is a regularization 13 parameter. We recall that the quan-

13 Tychonov regularization. tity R emp (f, s) = 1 N N ∑ i=1 L(x i , f, y i ), ∀f ∈ H K , ∀s ∈ (X × Y) N .
is called the empirical risk of the model f ∈ H K according the local loss L. A common choice for L is the quadratic loss L : (x, f, y) → ∥f(x) -y∥ 2 Y . We introduce a corollary from Mazur and Schauder proposed in 1936 showing that Equation 6.1 -and Equation 6.3-attains a unique mimimizer (see Górniewicz [START_REF] Górniewicz | Topological fixed point theory of multivalued mappings[END_REF] and Kurdila and Zabarankin [START_REF] Kurdila | Convex functional analysis[END_REF]). Theorem 6.1 (Mazur-Schauder). Let H be a Hilbert space and R : H → R be a proper, convex, lower semi-continuous and coercive function. Then R is bounded from below and attains a minimizer. Moreover if R is strictly convex the minimizer is unique. This is easily verified for Ridge regression. Define

(6.2) R λ (f, s) = 1 N N ∑ i=1 ∥f(x i ) -y i ∥ 2 Y + λ 2 ∥f∥ 2 K ,
where f ∈ H K and λ ∈ R >0 . R λ is continuous 14 and strictly con-

14 Reminder, if f ∈ H k , ev x : f → f(x) is continuous, see Proposition 3.2. vex. Additionally R λ is coercive since ∥f∥ K is coercive, λ ∈ R >0 ,
and all the summands of R λ are positive. Hence for all positive λ, f s = arg min f∈H K R λ (f) exists, is unique and attained.

Remark 6.1 (Kadri et al. [86]

). We consider the optimization problem proposed in Equation 6.2 where L :

(x i , f, y i ) → ∥f(x i ) -y i ∥ 2 Y . If given a training sample s, we have 1 N N ∑ i =1 ∥y i ∥ 2 Y ⩽ σ 2 y , then λ∥f s ∥ K ⩽ 2σ 2 y . Indeed, since H K is a Hilbert space, 0 ∈ H K , thus λ 2 ∥f s ∥ 2 K ⩽ 1 N N ∑ i=1 L(x i , f s , y i ) + λ 2 ∥f s ∥ 2 K ⩽ 1 N N ∑ i=1 L(x i , 0, y i ) ⩽ σ 2 y , by optimality of f s . Since for all x ∈ X, ∥f(x)∥ Y ⩽ √ ∥K(x, x)∥ Y,Y ∥f∥ K , the maximum value that the solution ∥f s (x)∥ Y of Equation 6.2 can reach is σ y √ 2∥K(x,x)∥ Y,Y λ
. Thus when solving a Ridge regression problem, given a shift-invariant kernel K e , one should choose

0 < λ ⩽ 2∥K e (e)∥ Y,Y σ 2 y C 2 .
with C ∈ R >0 to have a chance to fit all the y i with norm ∥y i ∥ Y ⩽ C in the train set.

Representer theorem and Feature equivalence

Regression in Vector Valued Reproducing Kernel Hilbert Space has been well studied [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF][START_REF] Argyriou | When Is There a Representer Theorem? Vector vs Matrix Regularizers[END_REF][START_REF] Brouard | Input Output Kernel Regression[END_REF][START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF][START_REF] Minh | A unifying framework for vector-valued manifold regularization and multiview learning[END_REF][START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF][START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF], and a cornerstone of learning in VV-RKHS is the representer theorem 15 , which allows to 15 Sometimes referred to as minimal norm interpolation theorem.

replace the search of a minimizer in a infinite dimensional VV-RKHS by a finite number of parameters (u i ) N i=1 , u i ∈ Y.

In the following we suppose we are given a cost function c : Y × Y → R, such that c(f(x), y) returns the error of the prediction f(x) w. r. t. the ground truth y. A loss function of a model f with respect to an example (x, y) ∈ X × Y can be naturally defined from a cost function as L(x, f, y) = c(f(x), y). Conceptually the function c evaluates the quality of the prediction versus its ground truth y ∈ Y while the loss function L evaluates the quality of the model f at a training point (x, y) ∈ X × Y. Theorem 6.2 (Representer theorem). Let K be a Y-Mercer Operator-Valued Kernel and H K its corresponding VV-RKHS. y) is a proper convex lower semi-continuous function in f for all x ∈ X and all y ∈ Y.

Let c : Y × Y → R be a cost function such that L(x, f, y) = c(f(x),
Eventually let λ ∈ R >0 be the Tychonov regularization hyperparameter. The solution f s ∈ H K of the regularized optimization problem (6.3)

f s = arg min f∈H K 1 N N ∑ i=1 c(f(x i ), y i ) + λ 2 ∥f∥ 2 K has the form f s = ∑ N j=1 K(•, x j )u s,j where (u s ) j ∈ Y and u s = arg min u∈ ⊕ N i=1 Y 1 N N ∑ i=1 c   N ∑ j=1 K(x i , x j )u j , y i   + λ 2 N ∑ j,k=1 u * j K(x j , x k )u k . (6.4)
The first representer theorem was introduced by Wahba [START_REF] Wahba | Spline model for observational data[END_REF] in the case where Y = R. The extension to an arbitrary Hilbert space Y has been proved by many authors in different forms [START_REF] Brouard | Semisupervised Penalized Output Kernel Regression for Link Prediction[END_REF][START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF]. The idea behind the representer theorem is that even though we minimize over the whole space H K , when λ > 0, the solution of Equation 6.3 falls inevitably into the set

H K,s =    N ∑ j=1 K x j u j ∀(u i ) N i=1 ∈ Y N    .
Therefore the result can be expressed as a finite linear combination of basis functions of the form K(•, x k ). Remark that we can perform the kernel expansion of f s = ∑ N j=1 K(•, x j )u s,j even though λ = 0. However f s is no longer the solution of Equation 6.3 over the whole space H K but a projection on the subspace H K,s . While this is in general not a problem for practical applications, it might raise issues for further theoretical investigations. In particular, it makes it difficult to perform theoretical comparison of the "exact" solution of Equation 6.3 with respect to the ORFF approximation solution given in Theorem 6.3.

Proof Since f(x) = K *
x f (see Equation 3.14), the optimization problem reads

f s = arg min f∈H K 1 N N ∑ i=1 c(K * x i f, y i ) + λ 2 ∥f∥ 2 K Let W s : H K → ⊕ N i=1
Y be the restriction 1 linear operator defined as

W s f = N ⊕ i=1 K * x i f, with K * x i : H K → Y and K x i : Y → H K . Let Y = ⊕ N i=1 y i ∈ Y N . We have ⟨Y, W s f⟩ ⊕ N i =1 Y = N ∑ i=1 ⟨y i , K * x i f⟩ Y = N ∑ i=1 ⟨K x i y i , f⟩ H K .
1 W s is sometimes called the sampling or evaluation operator as in Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF]. However we prefer calling it "restriction operator" as in Rosasco, Belkin, and Vito [START_REF] Rosasco | On learning with integral operators[END_REF] since W s f is the restriction of f to the points in s.

Thus the adjoint operator W * s :

⊕ N i=1 Y → H K is W * s Y = N ∑ i=1 K x i y i ,
and the operator W * s W s :

H K → H K is W * s W s f = N ∑ i=1 K x i K * x i f. Let R λ (f, s) = 1 N N ∑ i=1 c(f(x i ), y i ) =R c + λ 2 ∥f∥ 2 K
To ensure that R λ has a global minimizer we need the following technical lemma (which is a consequence of the Hahn-Banach theorem for lowersemicontimuous functional, see Kurdila and Zabarankin [START_REF] Kurdila | Convex functional analysis[END_REF]).

Lemma 6.1 Let R be a proper, convex, lower semi-continuous functional, defined on a Hilbert space H. If R is strongly convex, then R is coercive.

Proof Consider the convex function G(f) := R(f) -λ∥f∥ 2 , for some λ > 0. Since R is by assumption proper, lower semi-continuous and strongly convex with parameter λ, G is proper, lower semi-continuous and convex. Thus Hahn-Banach theorem apply, stating that G is bounded by below by an affine functional. i. e. there exists f 0 and f 1 ∈ H such that

G(f) ⩾ G(f 0 ) + ⟨f -f 0 , f 1 ⟩, for all f ∈ H.
Then substitute the definition of G to obtain

R(f) ⩾ R(f 0 ) + λ (∥f∥ -∥f 0 ∥) + ⟨f -f 0 , f 1 ⟩.
By the Cauchy-Schwartz inequality, ⟨f,

f 1 ⟩ ⩾ -∥f∥∥f 1 ∥, thus R(f) ⩾ R(f 0 ) + λ (∥f∥ -∥f 0 ∥) -∥f∥∥f 1 ∥ -⟨f 0 , f 1 ⟩,
which tends to infinity as f tends to infinity. Hence R is coercive □ Since c is proper, lower semi-continuous and convex by assumption, thus the term R c is also proper, lower semi-continuous and convex. Moreover the term λ 2 ∥f∥ 2 K is strongly convex. Thus R λ is strongly convex. Apply Lemma 6.1 to obtain the coercivity of R λ , and then Theorem 6.1 to show that R λ has a unique minimizer and is attained. Then let

H K,s =    N ∑ j=1 K x j u j ∀(u i ) N i=1 ∈ Y N    . For f ∈ H ⊥ K,s 16 
, the operator W s satisfies

16 H ⊥ K,s ⊕ H K,s = H K because W s is bounded. ⟨Y, W s f⟩ ⊕ N i =1 Y = ⟨ f ∈H ⊥ K,s , N ∑ i=1 K x i y i ∈H K,s ⟩ H K = 0
for all sequences (y i ) N i=1 , since y i ∈ Y. Hence, (6.5)

(f(x i )) N i =1 = 0 Now for an arbitrary f ∈ H K , consider the orthogonal decomposition f = f ⊥ + f ∥ , where f ⊥ ∈ H ⊥ K,s and f ∥ ∈ H K,s . Then since f ⊥ + f ∥ 2 H K = f ⊥ 2 H K + f ∥ 2 H K
, Equation 6.5 shows that if λ > 0, clearly then

R λ (f, s) = R λ ( f ⊥ + f ∥ , s ) ⩾ R λ ( f ∥ , s )
The last inequality holds only when f ⊥ H K = 0, that is when f ⊥ = 0. As a result since the minimizer of R λ is unique and attained, it must lies in H K,s . □

The representer theorem shows that minimizing a functional in a VV-RKHS yields a solution which depends on all the points in the training set. Assuming that for all x i , x ∈ X and for all u i ∈ Y it takes time P, to compute K(x i , x)u i , making a prediction using the representer theorem takes NP. If Y = R p , we can view K(x i , x) as a matrix and then P = O t (p 2 ) thus making a prediction cost O t (Np 2 ) operations.

Learning with Operator Random Fourier Feature maps

Instead of learning a model f that depends on all the points of the training set, we would like to learn a parametric model of the form f(x) = Φ(x) * θ, where θ lives in some space H. We are interested in finding a parameter vector θ s such that (6.6)

θ s = arg min θ∈ H 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H
The following theorem states that when λ > 0 then learning with a feature map is equivalent to learn with a kernel. Moreover if f s ∈ H K is a solution of Equation 6.7 and θ s ∈ H is the solution of Equation 6.8, then f s = Φ(•) * θ s . This equivalence could have been obtained by means of Lagrange duality. However in this proof we do not use such tool: we only focus on the representer theorem and the fact that there exist a partial isometry W between the VV-RKHS and a feature space H. We show that if θ s is a solution of Equation 6.8, then theta belongs to (Ker W) ⊥ , thus there is an isometry between θ s ∈ H and H K : namely W.

Theorem 6.3 (Feature equivalence).

Let K be an Operator-Valued Kernel such that for all x, z ∈ X, Φ(x) * Φ(z) = K(x, z) where K is a Y-Mercer OVK and H K its corresponding Y-Reproducing kernel Hilbert space.

Let c : Y × Y → R be a cost function such that L ( x, f, y

) = c ( f(x), y
) is a proper convex lower semi-continuous function in f ∈ H K for all x ∈ X and all y ∈ Y.

Eventually let λ ∈ R >0 R + be the Tychonov regularization hyperparameter. The solution f s ∈ H K of the regularized optimization problem (6.7)

f s = arg min f∈H K 1 N N ∑ i=1 c ( f(x i ), y i ) + λ 2 f 2 K has the form f s = Φ(•) * θ s , where θ s ∈ (Ker W) ⊥ and (6.8) θ s = arg min θ∈ H 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H
Proof Since K is an operator-valued kernel, from Theorem 6.2, Equation 6.7 has a solution of the form

f s = N ∑ i=1 K(•, x i )u i , u i ∈ Y, x i ∈ X = N ∑ i=1 Φ(•) * Φ(x i )u i = Φ(•) * ( N ∑ i=1 Φ(x i )u i ) =θ∈ ( Ker W ) ⊥ ⊂ H . Let θ s = arg min θ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 Φ(•) * θ 2 K . Since θ ∈ (Ker W) ⊥ and W is an isometry from (Ker W) ⊥ ⊂ H onto H K , we have Φ(•) * θ 2 K = ∥θ∥ 2 H . Hence θ s = arg min θ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H
Finding a minimizer θ s over ( Ker W ) ⊥ is not the same as finding a minimizer over H. Although in both cases Mazur-Schauder's theorem guarantees that the respective minimizers are unique, they might not be the same. Since W is bounded, Ker W is closed, so that we can perform the decomposition

H = ( Ker W ) ⊥ ⊕ ( Ker W )
. Then clearly by linearity of W and the fact that for all θ ∥ ∈ Ker W, Wθ ∥ = 0, if λ > 0 we have

θ s = arg min θ∈ H 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H Thus θ s = arg min θ ⊥ ∈(Ker W) ⊥ , θ ∥ ∈Ker W 1 N N ∑ i=1 c     ( Wθ ⊥ ) (x) + ( Wθ ∥ ) (x) =0 for all θ ∥ , y i     + λ 2 θ ⊥ 2 H + λ 2 θ ∥ 2 H =0 only if θ ∥ =0
Thus

θ s = arg min θ ⊥ ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c (( Wθ ⊥ ) (x), y i ) + λ 2 θ ⊥ 2 H .
Hence minimizing over ( Ker W ) ⊥ or H is the same when λ > 0. Eventually,

θ s = arg min θ∈ H 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H .

□

In the aforementioned theorem, we use the notation K and Φ because our main subject of interest is the ORFF map. However this theorem works for any feature maps Φ(x) ∈ L(Y, H) even when H is infinite dimensional. 2 . This shows that when λ > 0 the solution of Equation 6.4 with the approximated kernel K(x, z) ≈ K(x, z) = Φ(x) * Φ(z) is the same than the solution of Equation 6.6 up to a linear transformation. Namely, if u s is the solution of Equation 6.4, θ s is the solution of Equation 6.6 and λ > 0 we have

θ s = N ∑ i=1 Φ(x i )(u s ) i ∈ (Ker W) ⊥ ⊆ H.
If λ K = 0 we can still find a solution u s of Equation 6.4. By construction of the kernel expansion, we have u s ∈ (Ker W) ⊥ . However looking at the proof of Theorem 6.3 we see that θ s might not belong to (Ker W) ⊥ . We can compute a residual vector

r s = N ∑ i=1 Φ(x i )(u s ) i -θ s .
Since ∑ N j=1 Φ(x j ) ∈ (Ker W) ⊥ by construction, if r s = 0, it means that λ K is large enough for both representer theorem and ORFF representer theorem to apply. If r s ̸ = 0 but Φ(•) * r s = 0 it means that both θ s and ∑ N j=1 Φ(x j )u s are in (Ker W) ⊥ , thus the representer theorem fails to find the "true" solution over the whole space H K but returns a projection onto H K,s of the solution. If r s ̸ = 0 and Φ(•) * r s ̸ = 0 means that θ s is not in (Ker W) ⊥ , thus the feature equivalence theorem fails to apply. Since

r s = ∑ N i=1 Φ(x i )(u s ) i -θ ⊥ s -θ ∥ s and ∑ N i=1 Φ(x i )(u s ) i is in (Ker W) ⊥ ,
with mild abuse of notation we write r s = θ ∥ . This remark is illustrated in Figures 6.1 and 6.2.

In Figure 6.1, we generated the data from a sine wave to which we add some Gaussian noise. We learned a Gaussian kernel based RFF model (blue curve) and a kernel model (yellow curve) where the kernel is obtained from the RFF map. The left column represents the fit of the model to the points for four different valued of λ (top to bottom: 10 -2 , 10 -5 , 10e -10 , 0). The middle column shows if the RFF solution θ s is in (Ker W) ⊥ . This is true for all values of λ. The right column shows that even though θ s is in (Ker W) ⊥ , when λ → 0 learning with RFF is different from learning with the kernel constructed from the RFF maps since the coefficients of θ ∥ are all different from 0. Figure 6.2 is the same setting than Figure 6.1 except that we decreased the scale parameter σ of the Gaussian kernel to make it overfit, and emphasize that when λ = 0, θ s might not belong to (Ker W) ⊥ , as represented on the middle column.

solving orff-based regression

In order to find a solution to Equation 6.6, we first turn our attention to gradient descent methods. In the following we let

R λ (θ) = 1 N N ∑ i=1 c ( Φ(x i ) * θ, y i ) + λ 2 ∥θ∥ 2 H
Then, we study the complexity in time of the proposed algorithm.

Gradient descent methods

Since the solution of Equation 6.6 is unique when λ > 0, a sufficient and necessary condition is that the gradient of R λ at the minimizer θ s is zero. We use the Frechet derivative, the strongest notion of derivative in Banach spaces 17 [START_REF] Conway | A course in functional analysis[END_REF][START_REF] Kurdila | Convex functional analysis[END_REF] which directly generalizes the notion 17 Here we view the Hilbert space H (feature space) as a reflexive Banach space.

of gradient to Banach spaces. A function f :

H 0 → H 1 is call Frechet differentiable at θ 0 ∈ H 0 if there exists a bounded linear operator A ∈ L(H 0 , H 1 ) such that lim ∥h∥ H 0 →0 ∥f(θ 0 + h) -f(θ 0 ) -Ah∥ H 1 ∥h∥ H 0 = 0
We write 

(D F f)(θ 0 ) = ∂f(
H 0 → H 1 is Frechet differentiable at θ and g : H 1 → H 2 is Frechet differentiable at f(θ) then g • f is Frechet differentiable at θ and for all h ∈ H 0 ∂ ∂θ (g • f)(θ) • h = ∂g(f(θ)) ∂f(θ) • ∂f(θ) ∂θ • h,
or equivalently,

D F (g • f)(θ) • h = (D F g)(f(θ)) • (D F f)(θ) • h. If f : H → R then (D F f)(θ 0 ) ∈ H *
for all θ 0 ∈ H, and by Riesz's representation theorem we define the gradient of f noted ∇ θ f(θ) ∈ H as the the vector in H such that

⟨∇ θ f(θ), h⟩ H = (D F f)(θ) • h = ∂f(θ) ∂θ • h.
For a function f :

H 0 → H 1 we note the jacobian of f as J θ f(θ) = ∂f(θ) ∂θ . In this context if f : H 0 → H 1 and g : H 1 → R the chain rule reads for all h ∈ H 0 ∂ ∂θ (g • f)(θ) • h = ∂g(f(θ)) ∂f(θ) • J θ f(θ) • h.
By Riesz's representation theorem,

⟨∇ θ (g • f)(θ), h⟩ H 0 = ⟨∇ f(θ) g(f(θ)), J θ f(θ)h⟩ H 0 = ⟨(J θ f(θ)) * ∇ f(θ) g(f(θ)), h⟩ H 0 Hence ∇ θ (g • f)(θ) = (J θ f(θ)) * ∇ f(θ) g(f(θ)).
Thus by linearity and applying the chaine rule to Equation 6. [START_REF] Amblard | Operator-valued kernel recursive least squares algorithm[END_REF] we have

∇ θ c ( Φ(x i ) * θ, y i ) = Φ(x i )V * ( ∂ ∂y c (y, y i ) y= Φ(x i ) * θ ) * , ∇ θ ∥θ∥ 2 H = 2θ.
Provided that c(y, y i ) is Frechet differentiable w. r. t. y, for all y and y i ∈ Y we have ∇ θ R λ (θ) ∈ H and (6.9) 

∇ θ R λ (θ) = 1 N N ∑ i=1 Φ(x i ) ( ∂ ∂y c (y, y i ) y= Φ(x i ) * θ ) * + λθ
′ ) = 1 2 ∥y -y∥ 2 Y . Then ( ∂ ∂y c (y, y i ) y= Φ(x i ) * θ ) * = ( Φ(x i ) * θ -y i
) .

Thus, since the optimal solution θ s verifies ∇ θ s R λ (θ s ) = 0 we have

1 N N ∑ i =1 Φ(x i ) ( Φ(x i ) * θ s -y i ) + λθ s = 0.
Therefore, (6.10)

( 1 N N ∑ i=1 Φ(x i ) Φ(x i ) * + λI H ) θ s = 1 N N ∑ i=1 Φ(x i )y i .
Suppose that Y ⊆ R p , and for all x ∈ X, Φ(x) : R r → R p where all spaces are endowed with the euclidean inner product. From this we can derive Algorithm 3 which returns the closed form solution of Equation 6.6 for c(y, y

′ ) = 1 2 ∥y -y ′ ∥ 2 2 .
If one considers a Mahalanobis inner product, evaluation of operators has to be done with extra care since the adjoint operator is not the classic conjugate transpose of the operator (see Remark 6.2). Indeed let x, z ∈ Y = C p endowed with its standard basis B, and ⟨x, y⟩ Y = ⟨x, Σ -1 z⟩ 2 where Σ is some symmetric positive-definite operator w. r. t. the basis B. Some simple calculations shows that given an operator A ∈ L(Y),

(A * ) ij : = ⟨e j , Σ -1 A * e i ⟩ 2 = ⟨Σ -1 A * e i , e j ⟩ 2 = ⟨e i , AΣ -1 e j ⟩ 2 := (ΣAΣ -1 ) ji Thus A * = Σ -1 A T Σ.
Remark 6.2 Notice that the evaluation of each operator ∇ θ R λ (θ), V * , Φ(x i ) * 's depends on the inner product of the respective spaces in which they are defined. Namely Y, and H. For instance if one chooses

H = ⊕ D j=1 Y ′ , Y ′ = R u ′ endowed with the Euclidean inner product ⟨θ ′ , θ⟩ Y ′ = ⟨θ ′ , θ⟩ 2 , Y
endowed with a Mahalanobis inner product ⟨u ′ , u⟩ U = ⟨u ′ , Σ -1 u⟩ 2 where Σ is some symmetric positive definite operator, then for all x ∈ X,

Φ(x) ij = ⟨e j Φ(x)e i ⟩ 2 = ⟨e i , Σ -1 Σ Φ(x) * e j ⟩ 2 = (Σ Φ(x) * ) ji .
Thus Φ(x) * = Σ -1 Φ(x) T and then Equation 6.10 reads

( 1 N N ∑ i=1 Φ(x i )Σ -1 Φ(x i ) T + λI H ) θ s = 1 N N ∑ i=1 Φ(x i )y i .

Complexity analysis

Algorithm 3 constitutes our first step toward large-scale learning with Operator-Valued Kernels. We can easily compute the time complexity of Algorithm 3 when all the operators act on finite dimensional Hilbert spaces. Suppose that p = dim(Y) < ∞ and for all x ∈ X, Φ(x) : Y → H where r = dim( H) < ∞ is the dimension of the redescription space H = R r . Since p and r < ∞, we view the operators Φ(x) and I H as matrices.

Step 1 costs O t (Nr 2 p). Steps 2 costs O t (Nrp). For step 3, the naive inversion of the operator costs O t (r 3 ). Eventually the overall complexity of Algorithm 3 is

O t ( r 2 (Np + r) ) ,
while the space complexity is O s (r 2 ). This complexity is to compare with the kernelized solution. Let

K :    Y N → Y N u → ⊕ N+U i=1 ∑ N+U j=1 K(x i , x j )u j When Y = R, K =     K(x 1 , x 1 ) . . . K(x 1 , x N+U ) . . . . . . . . . K(x N+U , x 1 ) . . . K(x N+U , x N+U )    
is called the Gram matrix of K. When Y = R p , K is a matrix-valued Gram matrix of size pN × pN where each entry K ij ∈ M p,p (R). Then the equivalent kernelized solution u s of Theorem 6.2 is

( 1 N K + λI ⊕ N i=1 Y ) u s = N ⊕ i=1 y i .
which has time complexity O t ( N 3 p 3 ) and space complexity O s ( N 2 p 2 ) . Suppose we are given a generic ORFF map (see Subsection 4.3.3). Then r = 2Dp, where D is the number of samples. Hence Algorithm 3 is better than its kernelized counterpart when r = 2Dp is small compared to Np. Thus, roughly speaking it is better to use Algorithm 3 when the number of features, r, required is small compared to the number of training points. Notice that Algorithm 3 has a linear complexity with respect to the number of supervised training points N, thus it is more suitable for large scale learning provided that D does not grow linearly with N.

Yet naive learning with Algorithm 3 by viewing all the operators as matrices is still problematic. Indeed learning p independent models with scalar Random Fourier Features would cost O t ( D 2 p 3 (N + D) )

Algorithm 3: Naive closed form for the squared error cost. Input :

• s = (x i , y i ) N i=1 ∈ (X × R p ) N a sequence of supervised training points, • Φ(x i ) ∈ L (R p , R r ) a feature map defined for all x i ∈ X, • λ ∈ R >0 the Tychonov regularization term, Output : A model h :    X → R p x → Φ(x) T θ s ,
such that θ s minimizes Equation 6.6, where c(y, y ′ ) = ∥yy ′ ∥ 2 2 and R r and R p are Hilbert spaces endowed with the Euclidean inner product.

1 P ← 1 N ∑ N i=1 Φ(x i ) Φ(x i ) T ∈ L(R r , R r ); 2 Y ← 1 N ∑ N i=1 Φ(x i )y i ∈ R r ; 3 θ s ← solve θ ((P + λI r )θ = Y) ; 4 return h : x → Φ(x) T θ s ;
since r = 2Dp. This means that learning a vector-valued function has increased the (expected) complexity from p to p 3 . However in some cases we can drastically reduce the complexity by viewing the featuremaps as linear operators rather than matrices.

efficient learning with orff

When developing Algorithm 3 we considered that the feature map Φ(x) was a matrix from R p to R r for all x ∈ X, and therefore that computing Φ(x) φ(z) T has a time complexity of O t (r 2 p). While this holds true in the most generic senario, in many cases the feature maps present some structure or sparsity allowing to reduce the computational cost of evaluating the feature map. We focus on the Operatorvalued Random Fourier Feature given by Algorithm 1, developped in Section 4.3 and Subsection 4.3.3 and treat the decomposable kernel, the curl-free kernel and the divergence-free kernel as an example. We recall that if Y ′ = R p ′ and Y = R p , then H = R 2Dp ′ thus the Operator-valued Random Fourier Features given in Chapter 4 have the form

     Φ(x) ∈ L ( R p , R 2Dp ′ ) : y → 1 √ D ⊕ D j=1 (x, ω j )B(ω j ) T y Φ(x) T ∈ L ( R 2Dp ′ , R p ) : θ → 1 √ D ∑ D j=1 (x, ω j )B(ω j )θ j ,
where ω j ∼ Pr Haar,ρ i. i. d. and B(ω j ) ∈ L ( R p , R p ′ ) for all ω j ∈ X. Hence the Operator-valued Random Fourier Feature can be seen as the block matrix (6.11)

Φ(x) =          cos⟨x, ω 1 ⟩B(ω 1 ) T sin⟨x, ω 1 ⟩B(ω 1 ) T . . . cos⟨x, ω D ⟩B(ω D ) T sin⟨x, ω D ⟩B(ω D ) T          ∈ M 2Dp ′ ,p (R) ,
ω j ∼ Pr Haar,ρ i. i. d..

Case of study: the decosubmposable kernel

Throughout this section we show how the mathematical formulation relates to a concrete (Python) implementation. We propose a Python implementation based on NumPy [START_REF] Oliphant | A guide to NumPy[END_REF], SciPy [START_REF] Jones | {SciPy}: open source scientific tools for {Python}[END_REF] and Scikitlearn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Following Equation 6.11, the feature map associated to the decomposable kernel would be

Φ(x) = 1 √ D          cos⟨x, ω 1 ⟩B T sin⟨x, ω 1 ⟩B T . . . cos⟨x, ω D ⟩B T sin⟨x, ω D ⟩B T          = 1 √ D          cos⟨x, ω 1 ⟩ sin⟨x, ω 1 ⟩ . . . cos⟨x, ω D ⟩ sin⟨x, ω D ⟩          φ(x)
⊗B T , ω j ∼ Pr Haar,ρ i. i. d., which would lead to the following naive python implementation for the Gaussian (RBF) kernel of parameter γ, whose associated spectral distribution is Pr ρ = N(0, 2γ).

def NaiveDecomposableGaussianORFF(X, A, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Naive ORFF map associated with the data X.

Parameters ----------X : {array-like}, shape = [n_samples, n_features] Samples. A : {array-like}, shape = [n_targets, n_targets]

Operator 

Φ(x)y = 1 √ D D ⊕ j=1 ( cos⟨x, ω j ⟩B T y sin⟨x, ω j ⟩B T y ) =   1 √ D D ⊕ j=1 ( cos⟨x, ω j ⟩ sin⟨x, ω j ⟩ )   ⊗ (B T y)
and (6.12)

Φ(x) T θ = 1 √ D D ∑ j=1 cos⟨x, ω j ⟩Bθ j + sin⟨x, ω j ⟩Bθ j = B   1 √ D D ∑ j=1 ( cos⟨x, ω j ⟩ + sin⟨x, ω j ⟩ ) θ j   .
Which requires only evaluation of B on y and can be implemented easily in Python thanks to SciPy's LinearOperator. Note that the computation of these expressions can be fully vectorized 18 using the vec-18 See Walt, Colbert, and Varoquaux [START_REF] Walt | The NumPy array: a structure for efficient numerical computation[END_REF].

torization property of the Kronecker product. In the following we consider Θ ∈ M 2D,u ′ (R) and the operator vec : M p ′ ,2D (R) → R 2Dp ′ which turns a matrix into a vector (i. e.

θ p ′ i+j = vec(Θ ij ), i ∈ N (2D-1) and j ∈ N * p ′ ). Then ( φ(x) ⊗ B T ) T θ = ( φ(x) T ⊗ B ) vec(Θ) = vec (BΘ φ(x)) .
with this trick, many authors [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF][START_REF] Rosasco | On learning with integral operators[END_REF][START_REF] Sindhwani | Scalable Matrixvalued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality[END_REF] notice that the decomposable kernel usually yields a Stein equation [START_REF] Penzl | Numerical solution of generalized Lyapunov equations[END_REF]. Indeed rewriting step 3 of Algorithm 3 gives a system to solve of the form

φ(X) φ(X) T ΘB T B+λΘ-Y = 0 ⇔ ( φ(X) φ(X) T ⊗ B T B + λI 2Dp ′ ) θ -Y = 0.
Many solvers exist to solve efficiently this kind of systems 19 , but 19 See for instance Sleijpen, Sonneveld, and Van Gijzen [START_REF] Sleijpen | Bi-CGSTAB as an induced dimension reduction method[END_REF].

most of them share the particularity that they are not just restricted to Kernel Φ(X) * Φ(X)

Decomposable 1 Θ → B (Θ φ(X)) Y → B T ( Y φ(X) T ) Gaussian curl-free 2 Θ c , Θ s → D ∑ j=1 ω j ( Θ c j φ c (X) j• + Θ s j φ s (X) j• ) Y → Θ e j = ω T j ( Y φ e (X) T •j ) Gaussian divergence-free 2,3 Θ c , Θ s → D ∑ j=1 ( B(ω j )Θ c •j ) φ c (X) j• + ( B(ω j )Θ s •j ) φ s (X) j• Y → Θ e •j = B(ω j ) ( Y φ e (X) T •j ) Where φ(X) = ( φ(X •1 ) . . . φ(X •N )
) ∈ M r,N is any design matrix, with scalar feature map φ : R d → R r such that φ(x) * φ(z) = k(x, z) ∈ R for all x, z ∈ X. The input data X ∈ M d,N (R), the output data U ∈ M p,N (R), the parameter matrices Θ c and Θ s ∈ M p ′ ,r (R) and the decomposable operator

B ∈ M p,p ′ (R). Where φ c (X) ji = cos⟨ω j , x i ⟩ and φ s (X) ji = sin⟨ω j , x i ⟩, j ∈ N * D and i ∈ N * N . Thus φ c (X) ∈ M D,N (R) and φ s (X) ∈ M D,N (R). The input data X ∈ M d,N (R), the output data U ∈ M d,N (R), the parameter matrices Θ c and Θ s ∈ R D , ω j ∼ Pr N(0,σ -2 I d ) i. i. d. for all j ∈ N * D . Eventually e ∈ { s, c }, namely Θ c = ( Θ e=c 1 . . . Θ e=c D ) T and Θ s = ( Θ e=s 1 . . . Θ e=s D ) T .
Here, Θ c and

Θ s ∈ M d,D (R) thus Θ c = ( Θ e=c •1 . . . Θ e=c •D ) , Θ s = ( Θ e=s •1 . . . Θ e=s •D ) and B(ω) = ( ∥ω∥ 2 I d -ωω T ∥ω∥ 2 ) ∈ M d,d .
handle Stein equations. Broadly speaking, iterative solvers (or matrixfree solvers) are designed to solve any system of equation of the form PX = C, where P is a linear operator (not a matrix). This is exactly our case where φ(x) ⊗ B T is the matrix form of the operator Θ → vec(BΘ φX).

This leads us to the following (more efficient) Python implementation of the Decomposable ORFF "operator" to be fed to a matrix-free solvers.

def EfficientDecomposableGaussianORFF(X, A, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the efficient ORFF map associated with the data X.

Parameters ----------X : {array-like}, shape = [n_samples, n_features] Samples. A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite) gamma : {float}, Gamma parameter of the RBF kernel.

D : {integer} Number of random features. eps : {float} Cutoff threshold for the singular values of A. random_state : {integer}

Seed of the generator. 

Returns -------\tilde{\Phi}(X) : Linear Operator, callable """ # Decompose

Linear operators in matrix form

For convenience we give the operators corresponding to the decomposable, curl-free and divergence-free kernels in matrix form. Let

(x i ) N i=1 , N ∈ N * , x i 's in R d , d ⩽ ∞ be a sequence of points in R d . We note X = ( x 1 . . . x N ) ∈ M d,N
the data matrix where each column represents a data point 3 . Naturally if Φ(x) : R u → R r 1 and φ(x) : R → R r 2 , for all x ∈ R d we define

Φ(X) = ( Φ(x 1 ) . . . Φ(x N ) ) ∈ M r 1 ,Nu and φ(X) = ( φ(x 1 ) . . . φ(x N ) ) ∈ M r 2 ,N and 
Y = ( y 1 . . . y N ) ∈ M u,N .
Given a matrix X ∈ M m,n (R), we note X •i the column vector corresponding to the i-th column of the matrix X and X i• the row vector (covector) corresponding to the i-th line of the matrix X. With these notations, if X ∈ M m,n and Z ∈ M n,m ′ , X i• Z •j ∈ R is the inner product between the i-th row of X and the j-th column of Z and ) is the outer product between the i-th column of X and j-th row of X.

X •i Z j• ∈ M m,m ′ (R
For the curl-free and divergence-free kernel given in Subsection 4.3.3 we recall the unbounded ORFF maps are respectively for all y ∈ Y

Φ(x)y = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ 2 ω T j y sin ⟨x, ω j ⟩ 2 ω T j y ) , and 
Φ(x)y = 1 √ D D ⊕ j=1     cos ⟨x, ω j ⟩ 2 ( ω j 2 I d - ω j ω T j ∥ωj∥ 2 ) y sin ⟨x, ω j ⟩ 2 ( ω j 2 I d - ω j ω T j ∥ωj∥ 2 ) y     ,
where ω j ∼ Pr N(0,σ -2 I d ) . To avoid complex index notations we decompose the feature maps Φ(X) into two sub feature maps Φ c and Φ s corresponding to the cosine part and the sine part of each feature map. Namely, for the curl-free kernel, for all y ∈ Y

Φ(x)y =      Φ c (x)y = 1 √ D ⊕ D j=1 ( cos ⟨x, ω j ⟩ 2 ω T j y ) , Φ s (x)y = 1 √ D ⊕ D j=1 ( sin ⟨x, ω j ⟩ 2 ω T j y
) . In the same way, for the divergence-free kernel,

Φ(x)y =        Φ c (x)y = 1 √ D ⊕ D j=1 ( cos ⟨x, ω j ⟩ 2 ( ω j 2 I d - ω j ω T j ∥ωj∥ 2 ) y ) , Φ s (x)y = 1 √ D ⊕ D j=1 ( sin ⟨x, ω j ⟩ 2 ( ω j 2 I d - ω j ω T j ∥ωj∥ 2 ) y
) .

We also introduce Φ e , e ∈ { s, c } which denotes either Φ s or Φ c . This equivalent formulation allows us to keep the notation "lighter" and closer to a proper Python/Matlab implementation with vectorization. With these notations, a summary of efficient linear operators in matrix form is given in Table 6.1. The complexity of evaluating all this operators is given in Table 6.3.

It is worth mentioning that the same strategy can be applied in many different language. For instance in C++, the library Eigen [START_REF] Guennebaud | [END_REF] allows to wrap a sparse matrix with a custom type, where the user overloads the transpose and dot product operator (as in Python). Then the custom user operator behaves as a (sparse) matrix -see https://eigen.tuxfamily.org/dox/ group__MatrixfreeSolverExample.html. With this implementation the time complexity of Φ(x) T θ and Φ(x)y falls down to O t (Dp ′ + p ′ p) and the same holds for space complexity.

A quick experiment shows the advantage of seeing the decomposable kernel as a linear operator rather than a matrix. We draw N = 100 points (x i ) N i=1 in the interval (0, 1) 20 and use a decomposable kernel with matrix Γ = BB T ∈ M p,p (R) where B ∈ M p,p (R) is a random matrix with coefficients drawn uniformly in (0, 1). We compute Φ(x) T θ for all x i 's, where θ ∈ M 2D,1 (R), D = 100, with the implementation EfficientDecomposableGaussianORFF, Equation 6.12, and NaiveDe-composableGaussianORFF, Equation 6.11. The coefficients of θ were drawn at random uniformly in (0, 1). We report the execution time in Figure 6.3 for different values of p, 1 ⩽ p ⩽ 100. The left plot reports the execution time in seconds of the construction of the feature. The images. The inputs are images represented as a vector x i ∈ [0, 255] 784 and the targets y i ∈ N 9 are integers between 0 and 9.

First we scaled the inputs such that they take values in [-1, 1] 784 . Then we binarize the targets such that each number is represented by a unique binary vector of dimension 10. The vector y i is zero everywhere except on the dimension corresponding to the class where it is one. For instance the class 4 is encoded ( 0 0 0 0 1 0 0 0 0 0

) T .
To predict classes, we use the simplex coding method presented in Mroueh et al. [START_REF] Mroueh | Multiclass learning with simplex coding[END_REF]. The intuition behind simplex coding is to project the binarized labels of dimension p onto the most separated vectors on the hypersphere of dimension p -1. For ORFF we can encode directly this projection in the B matrix of the decomposable kernel

K 0 (δ) = BB * k 0 (δ)
where k 0 is a Gaussian kernel. The matrix B is computed via the recursion

B p+1 = ( 1 u T 0 p-1 √ 1 -p -2 B p ) , B 2 = ( 1 -1
)

,

where u = ( -p -2 . . . -p -2 ) T ∈ R p-1 and 0 p-1 = ( 0 . . . 0 ) T ∈ R p-1 .
For Operator-Valued Kernels we project the binarized targets on the simplex as a preprocessing step, before learning with the decomposable K 0 (δ) = I p k 0 (δ), where k 0 is a scalar Gaussian kernel.

The second dataset is a simulated five dimensional (5D) vector field with structure. We generate a scalar field as a random function f : [-1, 1] 5 → R, where f(x) = φ(x) * θ where θ is a random matrix with each entry following a standard normal distribution, φ is a scalar Gaussian RFF with bandwidth σ = 0.4. The input data x are generated from a uniform probability distribution. We take the gradient of f to generate the curl-free 5D vector field.

The third dataset is a synthetic of data from R 20 → R 4 as described in Audiffren and Kadri [START_REF] Audiffren | Online learning with operatorvalued kernels[END_REF]. In this dataset, inputs (x 1 , . . . , x 20 ) are generated independently and uniformly over [0, 1] and the different outputs are computed as follows. Let Then, the outputs of the different tasks are generated as y i = w i φ(x).

φ(x) = (x 2 1 , x 2 4 , x 1 x 2 , x 3 x 5 , x 2 , x 4 ,
We use this dataset with p = 4, 10 5 instances and for the train set and also 10 

conclusion

ORFF approximations open the door to the literature of efficient learning with linear models: the feature map can be seen as a function that linearize non linear functions by embedding them in a high dimensional feature space in which we can learn with linear models. Indeed, we described in this chapter how learning a non linear, non parametric model with OVKs is converted into learning a linear and parametric model based on ORFF.

The complexity in time of these approximations together with the linear learning algorithm make this implementation scalable with the data size and thus appealing compared to OVK regression as shown in numerical experiments. Further work concerns generalization bounds and consistency for ORFF-regression. Finally this work opens the door to building deeper architectures by stacking vectorvalued functions while keeping a kernel view for large datasets.

q C O N S I S T E N C Y A N D G E N E R A L I Z AT I O N B O U N D F O R O R F F
This short chapter deals with a generalization bound for a regression problem with ORFF based on the results of Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF] and Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF]. We also discuss the case of Ridge regression presented in Chapter 6. 

generalization bound

In this section, we are interested in finding a function f * : X → Y, where X is a Polish space and Y a separable Hilbert space such that for all x i in X and all y i in Y that minimizes a criterion. In statistical supervised learning, we consider a training set sequence s = (x i , y i ) N i=1 ∈ (X × Y) N , N ∈ N * drawn i. i. d. from an unknown probability law Pr. We suppose we are given a cost function c : X × Y → R, such that c(f(x), y) returns the error of the prediction f(x) w. r. t. the ground truth y. We define the true risk as the sum of the cost over all possible training examples drawn from a latent probability law Pr,

R (f) = ∫ X×Y L(x, f, y)dPr(x, y) = ∫ X×Y c(f(x), y)dPr(x, y)
Thus given a class of functions F, the goal of a learning algorithm is to find an optimal model f * that minimizes the true risk. Namely

f * ∈ arg min f∈F R (f) = arg min f∈F ∫ X×Y c(f(x), y)dPr(x, y).
Since in practice we do not have access to the joint probability law of (X, Y), we define its empirical counterpart as the empirical mean estimate, where the sequence s = (x i , y i ) N i=1 is made of (X × Y)-valued random vectors drawn i. i. d. from some law Pr. The empirical risk then reads

R emp (f, s) = 1 N N ∑ i=1 c(f(x i ), y i ), (x i , y i ) ∼ Pr i. i. d..
As a result, in practice we seek a function f s such that (7.1)

f s ∈ arg min f∈F R emp (f, s) = arg min f∈F 1 N N ∑ i=1 c (f(x i ), y i ) .
The basic requirement for any learning algorithm is the generalization property: the empirical error must be a good proxy of the expected error, that is the difference between the two must be "small" when N is large. A generalization bound allows to study, for any f ∈ F the difference between its true risk R (f) and its empirical risk, R (f, s). This quantifies the impact of having a limited number of observations. Generalization (upper) bounds [START_REF] Vapnik | Statistical learning theory[END_REF] involve two components: one being the empirical risk and the other depends on the dataset size as well as some capacity notion that reflects the richness of the family of functions F considered. First generalization bounds proved by Vapnik and Chervonenkis involve the dimension of Vapnik-Chervonenkis dimension of F. In practice, generalization bounds suggest that when learning a function from a finite dataset, it is necessary to control the size (richness) of the class of functions F. Hence, a regularizer is added to the data-fitting term in order to maintain the solution f s of Equation 7.1 unique and belong to a ball of F. As a result if F is a Banach space, it is common to find f s such that

f s = arg min f∈F R emp (f, s) + λ 2 ∥f∥ 2 F .
(Tychonov regularization) or

f s =    arg min f∈F R emp (f, s) subject to ∥f∥ F < M ∈ R >0 (Ivanov regularization) or f s =    arg min f∈F R emp (f, s) subject to ∥f∥ ∞ < M ∈ R >0 .

Generalization by bounding the function space complexity

In the following we consider functions living in a Vector Valued Reproducing Kernel Hilbert Space, with kernel K (or K).

Proposition 7.1 (Bartlett and Mendelson [17] and Maurer [112]).

Suppose that f ∈ H K a VV-RKHS where 

f ∈ H K , (7.2) R (f) ⩽ R emp (f, s) + 2 √ 2 N ( LMT 1/2 + C √ ln(2/δ) ) .
The following proof is due to Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF] generalizing the work of Bartlett and Mendelson [17, section 4.3]: we do not claim any originality for this proof.

Proof First let us introduce the notion of Rademacher complexity of a class of functions F. We recall that the probability mass function of a uniformly distributed Rademacher random variable is given for any k ∈ { -1, 1 } by

f(k) =    1/2 if k = -1
1/2 otherwise.

Definition 7.1 (Bartlett and Mendelson [17]

). Let X be any set. Let ϵ 1 , . . . , ϵ N be N independent Rademacher random variables, identically uniformly distributed on {-1; 1}. For any class of functions F : X → R, then for all x 1 , . . . x N ∈ X the quantity

R N (F) : = E [ sup f∈F N ∑ i=1 ϵ i f(x i ) x 1 , . . . , x N ]
is called Rademacher complexity of the class F.

In a few words the Rademacher complexity measures the richness of a class a function by its capacity to be correlated to noise. In generalization bounds, the Rademacher complexity of a class of functions often involves a composition between a target function to be learn and a cost function, part of the risk we want to minimize. The idea is to bound the Rademacher complexity with a term that does not depends on the cost function, but only on the target function.

Proposition 7.2 (Maurer [112]

). Let X be any set and (x 1 , . . . , x N ) in X N and let F be a class of functions f : X → Y and for i=1, . . . , N, each function h i : Y → R be a L-Lipschitz function, where Y is a separable Hilbert space endowed with Euclidean inner product. Then

E [ sup f∈F N ∑ i=1 ϵ i h i (f(x i )) x 1 , . . . , x N ] ⩽ √ 2LE [ sup f∈F i=N ∑ i=1,k ϵ ik f k (x i ) x 1 , . . . , x N ] ,
where ϵ ik is a doubly indexed independent Rademacher sequence and f k (x i ) is the k-th component of f(x i ). We use the shortcut notation ∑ N i=1,k which stands for ∑ N i=1 ∑ k . From now on, we consider functions f ∈ H K a Vector Valued Reproducing Kernel Hilbert Space. Then there exists an induced feature-map Φ : X → L(Y, H) such that for all y, y ′ ∈ Y the kernel is given by

⟨y, K(x, z)y ′ ⟩ Y = ⟨Φ x y, Φ z y ′ ⟩ H .
We say that the feature space H is embedded into the RKHS H K by means of the feature operator (Wθ)(x) := (Φ * x θ). Indeed W defines a partial isometry between H and H K . Suppose that Y is a separable Hilbert space and let the class of Y-valued functions F be

F = { f | f : x → (Wθ)(x), ∥θ∥ H < M } ⊂ H K .
Let c y i = c(•y i ), for all in ∈ N N . Then from Proposition 7.2 and if K is trace class, we have

E sup ∥θ∥ H <B N ∑ i =1 ϵ i c y i (Φ * x i θ) ⩽ √ 2LE sup ∥θ∥ H <B i=N ∑ i=1,k ϵ ik ⟨Φ * x i θ, e k ⟩ = √ 2LE sup ∥θ∥ H <B ⟨ θ, i=N ∑ i=1,k ϵ ik Φ x i e k ⟩ Y . Thus (7.3) E sup ∥θ∥ H <B N ∑ i =1 ϵ i c y i (Φ * x i θ) ⩽ √ 2LME i=N ∑ i=1,k ϵ ik Φ x i e k Y ⩽ √ 2LM i=N ∑ i=1,k ∥Φ x i e k ∥ 2 Y ⩽ √ 2LM N ∑ i=1 Tr [K(x i , x i )] ⩽ √ 2LM √ N √ sup x∈X Tr [K(x, x)].
Then we apply the following theorem (Theorem 7.1) from Bartlett and Mendelson [START_REF] Bartlett | Rademacher and Gaussian complexities: Risk bounds and structural results[END_REF] and Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF] to conclude.

Theorem 7.1 Let X be any set, F a class of functions f : X → [0, C] and let X 1 , . . . , X N be a sequence of i. i. d. random variables with value in X.

Then for δ ∈ (0, 1), with probability at least 1δ, we have for all f ∈ F that

Ef(X) ⩽ 1 N N ∑ i=1 f(X i ) + 2 N R N (F) + C √ 8 ln(2/δ) N (7.4) 
Conclude by pluging Equation 7.3 in Theorem 7.1. □

As an example, let us consider Equation 6.1, which is a solution of the regularized empirical risk, and Algorithm 3. We first list the following assumptions useful in the rest of the section. Let s = (x i , y i ) N i=1 ∈ X N × Y N be the training samples. Under assumption 7.3, from Remark 6.1, we know that ∥f∥

H K ⩽ √ 2 λ σ y = M, where 1 N N ∑ i =1 ∥y i ∥ 2 Y ⩽ σ 2 y ⩽ C 2 .
Thus we see straight away that it is possible to choose B = √

2 λ C. Let κ = K e (e) Y,Y
the Lipschitz constant of the least square loss c(f s (x), y)

= 1 2 ∥f s (x) -y∥ 2 Y with respect to f s (x) is L = max ( √ 2κ λ C, C
)

and the loss takes values in [ 0, 1 2 L 2 ] . Hence under assumption that λ < 2κ and assumption 7.2, and assumption 7.3, Equation 7.2 applies especially that for any f s ∈ H K , solution of Algorithm 3,

(7.5) R (f s ) ⩽ R emp (f s , s) + 8 C 2 λ √ κ N ( T 1/2 + √ κ ln(1/δ) 2
)

.
This bound is to be compared to the results of Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF] in the context of β-stability.

Algorithm stability

The approach to generalization bounds presented in Proposition 7.1 is based on controlling the complexity of the hypothesis space 20 using 20 Other methods using covering numbers [START_REF] Tewari | Learning theory[END_REF][START_REF] Zhou | The covering number in learning theory[END_REF] or VC-dimension [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF] have also been used as a proxy on the complexity of the hypothesis space.

Rademacher complexity. On the other hand, the idea of stability is that a reliable algorithm should not change its solution too much if we modify slightly the training data. Given a training sequence s = ((x 1 , y 1 ), . . .

(x N , y N )) ∈ (X × Y) N ,
we note s \i the training sequence s \i = ((x 1 , y 1 ), . . . , (x i-1 , y i-1 ), (x i+1 , y i+1 ), . . . , (x N , y N )) ∈ (X × Y) N , the subsequence of s from which we removed the i-th element.

Definition 7.2 (Uniform stability Bousquet and Elisseeff [26, definition 6]

). A learning algorithm s → f s has uniform stability β with respect to the loss function L if the following holds

∀i ∈ N * N , ∀s ∈ (X × Y) N sup x∈X,y∈Y |L(x, f s , y) -L(x, f s \i , y)| ⩽ β.
As shown by Bousquet and Elisseeff [START_REF] Bousquet | Stability and generalization[END_REF], algorithm stability has direct link with generalization. Indeed if an algorithm has β-stability, and a "bounded" loss for all x ∈ X and y ∈ Y (assumption 7.4), it is possible to exhibit a generalization bound.

Theorem 7.2 (Bousquet and Elisseeff [26, theorem 12]). Let s → f s be a learning algorithm with uniform stability β with respect to a loss L that satisfies assumption 7.4. Then ∀N ∈ N * , ∀δ ∈ (0, 1), the following bound holds with probability at least 1δ over the i. i. d. drawn training samples s.

R (f s ) ⩽ R emp (f s , s) + 2β + (4Nβ + ξ) √ ln(1/δ) 2N .
In their original paper on learning function-valued output data, Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF] showed that under assumption 7.1, assumption 7.3, and provided that K is weakly measurable, the algorithm is β-stable with β = σ 2 κ 2 2λN . Moreover assumption 7.4 holds with ξ = σ 2 /2, where σ = σ y (1 + κ/ √ λ). Thus another generalization bound for Algorithm 3 is

(7.6) R (f s ) ⩽ R emp (f s , s) + κ 2 C 2 ( 1 + κ √ λ ) 2 λN + C 2 ( 1 + κ √ λ ) 2 ( 4κ 2 λ + 1 
) √ ln(1/δ) 2N .
Although both bounds have a convergence rate in O(N 1/2 ), an importance difference between the bound Equation 7.5 and the bound Equation 7.6 is that in Equation 7.6 C, κ and λ play a role, while Equation 7.5 add also the trace constant T . This means that Equation 7.5 is less general than Equation 7.5 because when Y is infinite dimensional, κ is always well defined, while the trace T can be possibly infinite. On the other hand Equation 7.5 is a simpler bound, with a better behaviour in λ when λ < 1. Indeed Equation 7.5 is a bound in O(λ -1 ) while Equation 7.6 is in O((λ √ λ) -1 ). Thus the choice between Equation 7.6 and Equation 7.5 has to be done according the the kind of OVK used, as well as the regularization parameter λ.

consistency of learning with orff

In this section we are interested by measuring how R ( f s

) is close to the smallest true risk achieved in the function class F. The quantity of interest is:

R ( f s ) -min f ∈F R (f) .
In other words, we quantify the difference between the risk of the optimal solution belonging to a given class of functions F, and the risk given a solution f s returned by some learning algorithm. Here to derive a consistency result, we study an algorithm slightly different from Algorithm 3. Given a loss function L : X × F × Y → R + and its canonical cost function c(f(x), y) := L(x, f, y) such that c is Lipschitz in its first argument. We consider learning with an ORFF Φ(x) : Y → ⊕ D j=1 Y ′ thanks to the algorithm (7.7)

θ s =      arg min θ∈ ⊕ D j=1 Y ′ 1 N ∑ N i=1 c( Φ(x) * θ) subject to max j∈N * D θ j Y ⩽ M D
, where M ∈ R + is some regularization hyperparameter. Then the associated output function return is f s = Φ(•) * θ s . We suppose that the operator A(ω) used in the construction of Φ(x) has bounded trace Pr ρ, Haar -almost everywhere.

Proposition 7.3 Let Φ x = (x, •)B(•) be a Fourier feature such that there exists a constant T ∈ R + such that ess sup ω ∈ X Tr [A(ω)] < T and a constant u ∈ R + such that ess sup ω ∈ X √ ∥A(ω)∥ 2 Y,Y < u.
where A(ω) = B(ω)B(ω) * . Let ρ be the density of a probability distribution with respect to the Haar measure Haar and define the set

F = { f f : x → ∫ X Φ x (ω)θ(ω) * d Haar(ω), ∥θ(ω)∥ Y < Mρ(ω) } ⊆ H K .
Eventually let c : Y 2 → [0, C] be a cost function L-Lipschitz in its first argument. Then for any δ ∈ (0, 1), given a training sequence s = (x i , y i ) ∈ (X × Y) N drawn i. i. d., if f s is given by Equation 7.7 then we have

R ( f s ) -min f ∈F R (f) ⩽ 4 √ 2 N ( LMT 1/2 + C √ ln(2/δ) ) Estimation error. + uLM √ D ( 1 + √ 2 ln(1/δ) )
Approximation error.

. with probability 1 -2δ over the training sequence and the random vectors (ω j ) D j=1 . Proof We follow the proof idea of Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] in the scalar case and adapt it to the vector-valued case in the light of the results of Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF]. We first define the two following sets.

F = { f f : x → ∫ X Φ x (ω) * θ(ω)d Haar(ω), ∥θ(ω)∥ Y < Mρ(ω), ∀ω ∈ X } and F =    f f : x → D ∑ j=1 Φ x (ω j ) * θ j , ∀j ∈ N * D , θ j Y < M D    .

Proposition 7.4 (Existence of an approximate function).

Let µ be a measure on X, and f * a function in F. Moreover let ess sup ω∈ X ∥B(ω)∥ 2 Y,Y ⩽ u. If (ω j ) D j=1 are drawn i. i. d. from a probability distribution of density ρ w. r. t. Haar, then for any δ ∈ (0, 1), with probability at least 1δ over (ω j ) D j=1 , there exists a function

f in F such that √ ∫ X f(x) -f * (x) 2 Y dµ(x) ⩽ uM √ D ( 1 + √ 2 ln(1/δ) ) . Proof Since f * ∈ F, we can write f * (x) = ∫ X (x, ω)B(ω)θ(ω)d Haar(ω). Construct the functions f j = (•, ω j )B(ω j )β j with β j := θ(ω j ) ρ(ω) , so that E ρ, Haar f j = f * pointwise. Let f(x) = D ∑ j=1 Φ x (ω j ) * β j D
be the sample average of these functions. Then, f ∈ F because β j Y /D < M/D. Also, under the inner product ∫ X ⟨f(x), g(x)⟩ Y dµ(x), we have almost surely that

(•, ω j )B(ω j )β j L 2 (X,µ;Y) ⩽ ess sup ω∈ X ∥B(ω)∥ Y,Y Mµ(X).
Since µ is a probability measure over X, µ(X) = 1. We introduce the following technical lemma of Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] for concentration of random variable in Hilbert spaces (similar to Pinelis [START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF]).

Lemma 7.1 Let X 1 , . . . , X D be i. i. d. random variables with values in a ball of radius R centered at the origin in a Hilbert space H. Denote the sample average X = 1 D ∑ D j=1 X j . Then for any δ ∈ (0, 1) with probability 1δ,

E X -X Y ⩽ R √ D ( 1 + √ 2 ln(1/δ) ) .
Eventually apply Lemma 7.1 to f 1 , . . . , f D under the canonical inner product of the vector valued function space L 2 (X, µ; Y) to conclude the proof. □ Proposition 7.5 (Bound on the approximation error). Let L(x, f, y) be a loss function and c y (f(x)) = L(x, f, y) be a L-Lipschitz cost function for all y ∈ Y. Let f * be a function in F. Suppose there exists a constant u ∈ R + such that

ess sup ω ∈ X √ ∥A(ω)∥ Y,Y ⩽ u.
If (ω j ) D j=1 are i. i. d. random variables drawn from a probability distribution of density ρ, then for any δ ∈ (0, 1) there exists, with probability 1δ over

(ω j ) D j=1 , a function f ∈ F such that R ( f ) ⩽ R (f * ) + uLM √ D ( 1 + √ 2 ln(1/δ) ) .
Proof Given any functions f and g in F, the Lipschitz hypothesis on c y i followed by the concavity of the square root (Jensen's inequality) gives 

R (f) -R (g) = E µ c y (f(x)) -c y (g(x)) ⩽ E µ |c y (f(x)) -c y (g(x))| ⩽ LE µ ∥f(x) -g(x)∥ Y ⩽ L √ E µ ∥f(x) -g(x)∥ 2 Y .
) ⩽ R emp ( f, s ) + 2 √ 2 N ( LMT 1/2 + C √ ln(2/δ) ) .
where

Tr [ K e (e) ] < T ∈ R + . Proof Since f ∈ F and forall j ∈ N * D , θ j Y < B/D, Thus ∥θ∥ ⊕ D j=1 Y < M/ √ D. Moreover, if we define Φ(x) = ⊕ D j=1 Φ x (ω j )
, it gives birth to a RKHS with kernel DΦ *

x Φ z for all x, z ∈ X. Thus with arguments similar to Equation 7.3, noticing that the terms in √ D cancels out, we obtain a bound on the Rademacher complexity

R N ( F ) ⩽ √ 2BL √ N Tr [ K e (e)
] .

Eventually apply Theorem 7.1. □

We are now ready to prove the main claim. Let f * be a minimizer of R over F, f a minimizer of R emp over F and f * a minimizer of R over F. Then

(7.8) R ( f ) -R (f * ) = R ( f ) -R ( f * ) + R ( f * ) -R (f * ) .
The first difference in the right hand side of the equation is the estimation error. By Proposition 7.6, with probability

1 -δ, R ( f * ) -R emp ( f * , s ) ⩽ ϵ est and simultaneously, R ( f ) -R emp ( f, s ) ⩽ ϵ est . By optimality of f, R emp ( f, s ) ⩽ R ( f * )
. Combining these facts, with probability 1δ,

R ( f ) -R ( f * ) ⩽ 4 √ 2 N ( LMT 1/2 + C √ ln(2/δ) ) = 2ϵ est .
Applying Proposition 7.5 yields

R ( f * ) -R (f * ) ⩽ uLM √ D ( 1 + √ 2 ln(1/δ) ) = ϵ app .
Conclude by the union bound with probability (Maurer [112]) or using algorithm stability arguments (Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF]). Then we used the results of Maurer [START_REF] Maurer | A vector-contraction inequality for Rademacher complexities[END_REF] to prove the consistency of the algorithm obtained by minimizing Equation 7.7, which is a variant of Algorithm 3, where we replace the Tychonov regularizer by a projection in a ∥•∥ ∞ ball. This bound generalizes the work of Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] to vectorvalued learning.

Notice that we cannot directly derive a consistency bound from Proposition 7.3 to Algorithm 3. Indeed with arguments similar to Remark 6.1, we can show that f s = Φ(x) * θ has a parameter vector θ

such that θ j Y < √ 2 λD σ y , where σ 2 y = 1 N ∑ N i=1 ∥y i ∥ 2 Y .
Thus if f s is a solution of Algorithm 3, we do not have f s ∈ F, i. e. the Tychonov regularization is not "powerful" enough to guarantee that f s belongs to F. One could argue that we could choose λ = O( √ D) to obtain consistency with Tychonov regularization, however this makes little sense since in this case if D → ∞ then λ → ∞ the Algorithm 3 will always return f s = 0.

While the bound in Proposition 7.3 shows the consistency of learning with ORFF it still has low and possibly suboptimal rate. Moreover it does not allow to derive a number of features D smaller than the number of data since both of them decrease the error in O(D -1/2 ) (respectively O(N -1/2 )) as in the reference bound for scalar-valued random features by Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF]. In the scalar-valued kernel literature, recent work of Bach [START_REF] Bach | On the equivalence between quadrature rules and random features[END_REF] with much more involved analysis, gives similar results to Rahimi and Recht [START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] in the case of Tichonov regularization. Moreover it suggests that the number of features D to guarantee an error below some constant is linked to the decrease rate of the eigenvalues of the Mercer decomposition of scalar-valued kernel k. If the eigenvalues decrease in O(m -2s ) then the error is in O (log(D) s D -s ). Lastly the new results of Rudi, Camoriano, and Rosasco [START_REF] Rudi | Generalization properties of learning with random features[END_REF] show that for scalar-valued kernels, the kernel ridge regression algorithm (which is Algorithm 3 with A = 1) generalizes optimality with a number of features D = O( √ N). Thus the time complexity required for optimal generalization with RFFs in the case of kernel ridge regression is O(ND 2 ) = O(N 2 ) and the space complexity is in O(N 1.5 ), if the random features are all stored and not computed, on the fly, in an online fashion 21 .

This chapter shows how to use the ORFF methodology to non-linear vector autoregression. It is an instantiation of the ORFF framework to X = Y = (R d , +). We also give a generalization of a stochastic gradient descent [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF] to ORFF. This is a joint work with Néhémy Lim and Florence d'Alché-Buc and has been published at a workshop of ECML. It is based on the previous work Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] for time series vector autoregression with operator-valued kernels [START_REF] Brault | Scaling up Vector Autoregressive Models With Operator-Valued Random Fourier Features[END_REF]. Time series are ubiquitous in various fields such as climate, biomedical signal processing, videos understanding to name but a few. When linear models are not appropriate, a generic nonparametric approach to modelling is relevant. In this work we build on a recent work about Vector Autoregressive models using Operator-Valued Kernels [START_REF] Lim | OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF][START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF]. Vector autoregression is addressed in a Vector Valued Reproducing Kernel Hilbert Space with the important property to allow for couplings between outputs. Given a d-dimensional time series of N data points { x 1 , . . . , x N }, autoregressive models based on operatorvalued kernels have the form xt+1 = h(x t ) = ∑ N-1 ℓ=1 K(x t , x ℓ )c ℓ where coefficients c ℓ ∈ R d , ℓ = 1, . . . , N -1 are the model parameters. A naive approach for training such a model requires a memory complexity O(N 2 d 2 ), which makes the method prohibitive for large-scale problems.

To scale up standard algorithms, we define an approximated operator-valued feature map Φ : R d → R D that allows to approximate the aforementioned model h in the RKHS by the following function

h(x t ) = Φ(x t ) * θ ≈ h(x t ).
The features maps are matrices of size D × d where D controls the quality of the approximation, d is the dimension of the inputs and θ is here the parameter vector to learn. This formulation allows to reduce the memory complexity to O((N -1)D + (N -1)d) which is now linear w. r. t. the number of data points (see Section 6.1). The principle used for building the feature map extends the idea of scalar Random Fourier Features to the operator-valued case [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF].

operator-valued kernels for vector autoregression

Assume that we observe a dynamical system composed of d ∈ N * state variables at N ∈ N * evenly-spaced time points. The resulting discrete multivariate time series is denoted by x 1:N = (x ℓ ) N i=1 where x ℓ ∈ R d denotes the state of the system at time t ℓ , ℓ ∈ N * N . It is generally assumed that the evolution of the state of the system is governed by a function h, such that x t = h(x t-p , . . . , x t-1 ) + u t where t is a discrete measure of time and u t is a zero-mean noise random vector. Then h is usually referred to as a vector autoregressive model of order p. In the remainder of the chapter, we consider first-order vector autoregressive models, that is p = 1. In a supervised learning set-ting, the vector autoregression problem consists in learning a model ĥ : R d → R d from a given training set

s = ((x 1 , x 2 ), . . . , (x N-1 , x N )) ∈ ( R d × R d ) N .
In the literature, a standard approach to vector autoregressive modelling is to fit a VAR model. The VAR(1) model reads h(x t ) = Ax t where A is an d × d matrix whose structure encodes the temporal relationships among the d state variables.

However, due to their intrinsically linear nature, VAR models fail to capture the nonlinearities underlying realistic dynamical systems. In this chapter we builds upon the work of Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] where the authors introduced a family of nonparametric nonlinear autoregressive models called OKVAR. OKVAR models rely on the theory of operator-valued kernels [START_REF] Pedrick | Theory of reproducing kernels for Hilbert spaces of vector-valued functions[END_REF][START_REF] Senkene | Hilbert Spaces of operatorvalued functions[END_REF], which provides a versatile framework for learning vector-valued functions [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF][START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF]. Those models can be regarded as natural extensions of VAR models to the nonlinear case.

Next, we recall key elements of the theory of VV-RKHS of functions from R d to R d (see Section 4.2 for the detailed construction). We first introduced the matrix-valued kernel which is an instance of OVKs.

Definition 8.1 (Matrix-valued kernels). A function

K : R d × R d → R d×d is said to be a positive R d×d -valued kernel if : 1. ∀x, z ∈ R d , K(x, z) = K(z, x) * , 2. ∀N ∈ N, ∀((x i , y i )) N i=1 ∈ ( R d × R d ) N , ∑ N i,j=1 y * i K(x i , x j )y j ⩾ 0.
Furthermore, for a given R d×d -valued kernel K, we associate K with a unique VV-RKHS (H K , ⟨•, •⟩ H K ) of functions from R d to R d . The precise construction of H k can be found in Section 3.3. In this section, we assume that all functions h ∈ H K are continuous. Then K is called an R d -Mercer kernel (see definition 3.8).

Similarly to the case of scalar-valued kernels, working within the framework of VV-RKHS allows to take advantage of representer theorems (Theorem 6.2) for a class of regularized loss functions such as ridge regression. More precisely, we consider h, a nonparametric vector autoregressive model of the following form assuming we have observed N data points. Given x t the state vector at time t, we have xt+1 =

∑ N-1 ℓ=1 K(x t , x ℓ )c ℓ where

x 1:N = (x i ) N i=1 ∈ ( R d ) N is the observed time series, K : R d × R d → R d×d is a matrix-valued kernel and (c 1 ) N-1 i=1 ∈ ( R d ) N-1
are the model parameters. We call OKVAR any model of the above form. In Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF], the authors developed a family of OKVAR models based on appropriate choices of kernels to address the problem of network inference where both the parameters c ℓ , ℓ ∈ N * N-1 and the OVK itself are learned using a proximal block coordinate descent algorithm 22 under sparsity constraints. In the fol- 22 

See for instance

Parikh and Boyd [START_REF] Parikh | Proximal algorithms[END_REF] about proximal algorithms and Fercoq and Peter [START_REF] Fercoq | Accelerated, parallel, and proximal coordinate descent[END_REF], Fercoq and Richtárik [START_REF] Fercoq | Smooth minimization of nonsmooth functions with parallel coordinate descent methods[END_REF], and Richtárik and Takáč [START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF] for proximal block coordinate descent. lowing, we will not consider the kernel learning problem and will use a simple ridge loss. We will also illustrate our approach to a well known class of OVK, called decomposable or separable matrix-valued kernels [START_REF] Caponnetto | Universal MultiTask Kernels[END_REF][START_REF] Micchelli | On Learning Vector-Valued Functions[END_REF], and instance of Decomposable OVK that were originally introduced to solve multi-task learning problems [START_REF] Evgeniou | Learning Multiple Tasks with kernel methods[END_REF]. Other kernels may also be considered as developed in Subsection 3.3.3. 

× R d → R d×d defined for all (x, z) ∈ R d × R d as K(x, z) = k(x, z)Γ is a decomposable matrix-valued kernel.
A common choice for the scalar-valued kernel is the Gaussian kernel

k Gauss (x, z) = exp(- 1 2σ 2 ∥x -z∥ 2 2 )
for any x, z ∈ R d and σ ∈ R + . Notice that k Gauss can equivalently be written with an hyperparameter γ ∈ R + :

k Gauss (x, z) = exp(-γ∥x -z∥ 2 2 ),
with σ = (2γ) -1/2 . The corresponding decomposable kernel is referred to as K dec and is as K dec (x, z) = k Gauss (x, z)Γ with Γ a positive semidefinite matrix.

While the model parameters c ℓ 's are estimated under sparsity constraints in Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF], here we consider the classic kernel ridge regression setting where the loss function to minimize is

(8.1) R λ (h, s) = 1 N -1 N ∑ ℓ=2 ∥h(x ℓ-1 ) -x ℓ ∥ 2 2 + λ∥h∥ 2 H K with λ ⩾ 0 and ∥h∥ 2 H K = ∑ N-1 t,ℓ=1 c * t K(x t , x ℓ )c ℓ .
The optimization problem is solved using a L-BFGS-B [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] which is well suited for optimization problems with a large number of parameters, and is widely used as a training algorithm on small/medium-scale problems. However, like standard kernel methods, OKVAR suffers from unfavourable computational complexity both in time and memory since it needs to store the full Gram matrix, preventing its ability to scale to large data sets and making it really slow on medium scale problem. We argue that this obstacle can be effectively overcome: in the following we develop a method to scale up OKVAR to successfully tackle medium/large scale autoregression problems.

operator-valued random fourier features

We now introduce our methodology to approximate OVKs. Given a shift-invariant kernel K(x, z) = K 0 (xz), we approximate K by finding an explicit feature map such that Φ(x) * Φ(z) ≈ K 0 (xz). The idea is to use a generalization of Bochner's theorem for the OVK family that states that any translation-invariant OVK can be written as the Fourier transform of a positive operator-valued measure. More precisely, we build on the following proposition first proved in [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]. More details can be found in Section 4.2.

In the following, suppose that K 0 = k 0 (•)A is a decomposable kernel. Decomposable kernels belong to the family of translationinvariant OVKs. From Proposition 4.3 we see that

C(ω) ij = F -1 [k 0 (•)] (ω)A ij .
We decompose A as A = BB * , note that A does not depend on ω, and we denote ⊕ D j=1 z j the Dm-long column vector obtained by stacking vectors z j ∈ R m . Then we define an approximate feature map for K 0 , called Operator-valued Random Fourier Feature (ORFF) map [START_REF] Brault | Scaling up Vector Autoregressive Models With Operator-Valued Random Fourier Features[END_REF] as follows (see Subsection 4.2.2 and Section 4.3). For all

x ∈ R d , Φdec (x) = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩B * sin ⟨x, ω j ⟩B * ) , ω j ∼ F -1 [k 0 ],
which can also be expressed as a Kronecker product ⊗ of a scalar feature map with a matrix (see Subsection 6.3.1): Φdec (x) = φ(x) ⊗ B * where

φ(x) = 1 √ D D ⊕ j=1 ( cos ⟨x, ω j ⟩ sin ⟨x, ω j ⟩ ) , ω j ∼ F -1 [k 0 ]
is a scalar-valued feature map. In particular, if k 0 is a Gaussian kernel with bandwidth σ 2 , then F -1 [k 0 ] = N(0, 1/σ 2 ) as proven in Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF]. More examples on different OVK can be found in Subsection 4.2.2 as well as a proof of the uniform convergence of the kernel approximation in Section 5.1 defined by K(x, z) = Φ(x) * Φ(z) towards the true kernel. In the case of vector autoregression, we consider a model h of the form: xt+1 = Φ(x t ) * θ. That model is referred to as ORFFVAR in the remainder of the section. Now, given the operatorvalued feature map, we get a linear model, and we want to minimize the regularized risk

R λ (θ, s) = 1 N -1 N ∑ ℓ=2 ∥( φ(x ℓ-1 ) * ⊗ B)θ -x ℓ ∥ 2 2 + λ∥θ∥ 2 2
with λ > 0 instead of Equation 8.1 (see Theorem 6.3). In their paper Brault, Lim, and Buc [START_REF] Brault | Scaling up Vector Autoregressive Models With Operator-Valued Random Fourier Features[END_REF] proposed to formulate the learning problem as a Stein equation when dealing with decomposable kernels, and then used an appropriate solver [START_REF] Sonneveld | IDR (s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations[END_REF]. We opted here for a more general algorithm, which is a variant of the doubly stochastic gradient descent [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF]. In a few words, this algorithm is a stochastic gradient descent that takes advantage of the feature representation of the kernel allowing the number of features to grow along with the number of points. Dai et al. [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF] show that the number of iterations needed for achieving a desired accuracy ϵ using a stochastic approximation is Ω(1/ϵ), making it competitive compared to other stochastic methods for kernels such as NORMA [START_REF] Kivinen | Online learning with kernels[END_REF] and its OVK adaptation ONORMA [START_REF] Audiffren | Online learning with operatorvalued kernels[END_REF]. We propose here in Algorithm 4, an extension of the doubly stochastic gradient descent of Dai et al. [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF] to OVKs. Additionally we consider a batch approach w. r. t. the data and the features, and make it possible to "cap" the maximum number of features. The inputs of the algorithm are: X the input data, Y the targets, K e the OVK used for learning, γ t the learning rate (see Dai et al. [51] for a discussion on the selection of a proper learning rate), T the number of iterations, n the size of data batch, b the size of the feature batch, and D the maximum number of features. Note that if K 0 is a scalar kernel, D = T , b = 1 and n = 1, we recover the algorithm formulated in Dai et al. [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF]. 

6 A t = X t × Y t , a random subsample of n data from X × Y; 7 h (X t ) = predict ( X t , θ t , K e ) ;
// Make a prediction.

8

Ω i ∼ µ with seed i, where i = ((t -1) mod D b ) + 1 ; // Sample b features from µ.

9

for ω ∈ Ω i // Update the parameters from the gradient.

do

θ t+1 i,ω = θ t i,ω -γ t   1 |A t | ∑ (x,y)∈A t B(ω) * (ω, x)(h(x) -y) √ D + λθ t i,ω   ; end end return θ t+1
In addition, the convergence of the algorithm can be speeded-up by preconditioning by the Hessian of the system. An experimental C++ code is available at https://github.com/RomainBrault/OV2SGD.

Algorithm 5: h (X) =predict(X, θ, K e ) Data: X, θ, K 0 1 Find (ω, x), B(ω) and µ(ω) from K 0 ; 2 f(X) = 0; 3 for x ∈ X do 

Numerical Performance

We now apply Algorithm 4 to toy and real datasets.

Simulated data

To assess the performance of our models, we start our investigation by generating discrete d-dimensional time series (x t ) t⩾1 as follows (8.2)

   x 1 ∼ N(0, Σ x ) x t+1 = h(x t ) + u t+1 , ∀t > 0.
where the residuals are homoscedastic and distributed according to u t ∼ N(0, Σ u ). We study two different kinds of noise: an isotropic noise with covariance Σ u = σ 2 u I d and an anisotropic noise with Toeplitz structure Σ u,ij = ν |i-j| , where ν lives in (0, 1). We generated N = 1000 data points and used a Sequential cross-validation (SCV) with time windows N t = N/2 to measure the Mean Squared Error SCV-MSE of the different models. Next, we compare the performances of VAR(1), OKVAR and ORFFVAR through three scenarios. Across the simulations, the topological structures of the underlying dynamical systems are encoded by a matrix A of size 5 × 5. All entries of A are set to zero except for the diagonal where all coefficients are equal to 0.9 for Settings 1 and 3 and 0.5 for Setting 2. Then five offdiagonal coefficients are drawn randomly from N(0, 0.3) for Settings 1 and 3 and N(0, 0.5) for Setting 2. We check that all the eigenvalues of A are less than one to ensure the stability of the system. More specifically, we picked the following values of parameters for each scenario.

• Setting 1: Linear model.: h(x t ) = Ax t , ν = 0.9 and σ u = 0.9,

• Setting 2: Exponential model.: h(x t ) = A exp(x t ) where exp is the element-wise exponential function, ν = 0.09 and σ u = 0.09,

• Setting 3: Sine model.: h(x t ) = A sin(x t ) where sin is the element-wise sine function, ν = 0.9 and σ u = 0.009.

ORFFVAR is instantiated with D = 25 random features in presence of a white noise while we set D = 50 in case of a Toeplitz noise. We summarize the computational efficiency and the statistical accuracy of the models in Table 8.1. Throughout all the experiments, we set B as the identity matrix of size d × d. This reflects the absence of a prior on the structure of the data. A further study on the influence of the choice of B can be found in Álvarez, Rosasco, and Lawrence [START_REF] Álvarez | Kernels for vector-valued functions: a review[END_REF] and Propositions 3.9 and 4.12.

In Setting 1, we observe that OKVAR does not provide any advantage over VAR [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] as expected since the data were generated according to a linear VAR(1) model. Note that OKVAR takes orders of magnitude more time to achieve the same performance as VAR(1) while ORFFVAR performs equally well with a competitive timing. In nonlinear scenarios (Settings 2 and 3), OKVAR and ORFFVAR consistently outperform VAR [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]. Noticeably, ORFFVAR reaches the accuracy of OKVAR with the computation time of VAR(1). 

Real datasets

We now investigate three real datasets. The performances of the models on those datasets are recorded in Table 8. gesture phase. This dataset2 is constructed using features extracted from seven videos with people gesticulating. We present the results for videos 1 and 4, consisting in 1069 data points and 31 features. Data are normalized prior to learning. We measure SCV-MSE using a time window of 200 points. We implemented ORFFVAR with γ t = 1, λ = 10 -3 , D = 100, T = 2 and b = 50.

climate. This dataset [START_REF] Liu | Learning temporal causal graphs for relational time-series analysis[END_REF] 

discussion

Operator-Valued Random Fourier Feature provides a way to approximate OVK and in the context of time series, allows for nonlinear Vector Autoregressive models that can be efficiently learned both in terms of computing time and memory. We illustrate the approach with a simple family of Operator-valued kernels, the so-called decomposable kernels but other kernels may be used. While we focused on first-order autoregressive models, we will consider extensions of our models for higher orders. In this work, the kernel hyperparameter B is given prior to learning, however it would be interesting to learn B as in OKVAR. Thus, a promising perspective is to use these models in tasks such as network inference and search for causality graphs among the state variables for large-scale time series [START_REF] Lim | OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks[END_REF][START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF].

q
3 http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html

Part III C O N C L U S I O N A N D W O R K I N P R O G R E S S W O R K I N P R O G R E S S
To conclude our work we present some work in progress. We show practical applications of operator-valued kernels acting on an infinite dimensional space Y. We give two examples. First we show how to generalize many quantile regression to learn a continuous function of the quantiles on the data. Second we apply the same methodology to the one-class SVM algorithm in order to learn a continuous function of all the level sets. We conclude by presenting Operalib, a python library developed during this thesis which aims at implementing OVK-based algorithms in the spirit of Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. In this section we show how to use OVK in hand with the ORFF framework to learn function-valued functions. We focus on two application cases: quantile regression and one-class classification. This section is rather an informal (but detailed) discussion on ideas that we plan to improve for future publications.

Quantile regression

This introduction to quantile regression is adapted from the paper of Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF]. As we have seen in the introductory Chapter 2, a standard task in Machine Learning is to estimate the con-

ditional expectation f(x) = E Pr [Y|X = x],
where (X, Y) ∼ Pr with some function belonging to a hypothesis space f ∈ F. Yet, many sensitive applications need more than the expected valued of the relationship between random variables. To control the "quality" of the predicted value from an input x, fields such as economics, medicine, physics or social science require to have access to the different quantile to model the distribution around the mean f(x) ∈ R and strengthen their analysis.

Here we are interested in learning and predicting simultaneously all the quantiles on the compact [0, 1], of the scalar-valued random variable Y|X. We place ourselves in the setting of conditional quantile regression by minimization of the pinball loss [START_REF] Koenker | Regression quantiles[END_REF]. For τ ∈ [0, 1] the pinball loss reads

L τ (x, f, y) = max(τ (f(x) -y) , (τ -1) (f(x) -y)).
In a nutshell, this loss has been introduced by noticing that finding the optimal location parameter µ = f(x) in the ℓ 1 loss L(x, f, y) = |f(x) -y| yields an estimator of the unconditional median [START_REF] Koenker | Regression quantiles[END_REF]. Recently Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] proposed to learn simultaneously many quantiles by minimizing the multi-quantile loss function.

Given a vector of quantiles

τ = (τ 1 , . . . τ p ) ∈ [0, 1] p L τ (x, f, y) = p ∑ i=1 max(τ i (f(x) i -y) , (τ i -1) (f(x) i -y)).
We see that now it is necessary for f(x) ∈ R p to be vector-valued. In this work we push further the idea by considering that f(x) is a function of an arbitrary quantile τ ∈ [0, 1]. Thus we view f as a vectorvalued function f : R → ([0, 1] → R). For the sake of simplicity we note f(x) = f x and introduce the generalized pinball loss

(9.1) L(x, f, y) = ∫ [0,1] max(τ (f x (τ) -y) , (τ -1) (f x (τ) -y)) dτ.

Functional output data

Pioneer work on learning function-valued function has been done by Kadri et al. [START_REF] Kadri | Operator-valued kernels for learning from functional response data[END_REF]. Inspired by them we develop an ORFF methodology to learn functional data where the outputs are functions that we suppose living in a RKHS.

Namely, we suppose that the image of a funtion f, has values f(x) ∈ H k T in a RKHS, where k T : T 2 → R is a scalar-valued kernel and H k T is the corresponding RKHS. From this hypothesis we see that

f x (τ) = ⟨f(x), k T (•, τ)⟩ H k T
If we add the second hypothesis that f ∈ H K , where H K is a Vector Valued Reproducing Kernel Hilbert Space for some Operator-Valued Kernel K, Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF] showed in example 6 page 17-18 that in this case the operator K is given by

(9.2) K =    X × X → L(H k T ) x, z → k X (x, z)I H k T ,
where k : X × X → R is another scalar-valued kernel. Moreover Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF] showed in example 7 page 18-19 that the VV-RKHS induced by K is the same RKHS than the one induced by the kernel K ′ defined as follow for some measure µ with support T.

K ′ =    X × X → L ( L 2 (T, µ) ) x, z → ( g → k X (x, z) ∫ T k T (•, τ)g(τ)dµ(τ)
) .

This is exactly the decomposable kernel introduced in Proposition 3.12 in Chapter 2. Because the RKHSs induced by K and K ′ is the same, we can either view its elements as functions from X into H k T (through H K ) or as functions from X into L 2 (T, µ) (through H K ′ ).

ORFF for functional output data

Because Y = H k T is a proper (infinite dimensional) Hilbert space, we can apply the ORFF methodology. Let k X be a scalar Mercer kernel and X = R. Then by Proposition 4.8 applied to the decomposable kernel (see Subsection 4.3.3) we have the following approximate feature map for K defined in Equation 9.2:

Φ(x)y = 1 √ D D ⊕ j=1 ( cos(xω j )B * y sin(xω j )B * y ) , ω j ∼ F [k X ] i. i. d.
where BB * = I H k T and y ∈ H k T . At this point we could choose B = I H k T . However this is not really useful since it would make the redescription space H = ⊕ D j=1 H k T , which is a direct sum of infinite dimensional RKHS. Yet since H k T is a RKHS, according to Proposition 3.4 it is possible to define a feature operator W : H → H k T such that (Wg)(τ) = Φ * τ g. Moreover W * W is the identity on Im Φ τ which is here H k T . (see the proof of Proposition 3.4 and Carmeli et al. [START_REF] Carmeli | Vector valued reproducing kernel Hilbert spaces and universality[END_REF]). Thus we can choose Φ τ = Φ(τ) to be the functional Fourier feature map associated to k T defined in Proposition 4.6. Then we have BB * = I H k T = WW * . Thus we can choose B = W = Φ(•) * and the approximate feature map reads

Φ(x) ∈ L   H k T ; D ⊕ j=1 L 2 ( T, Pr Haar,ρ )   and ( Φ(x)g)(τ) = 1 √ D D ⊕ j=1 ( cos(xω j )W * g sin(xω j )W * g ) , ω j ∼ F [k X ] i. i. d.
Then it is easy to verify that the adjoint operator is given by

( Φ(x) * θ ) (τ) = 1 √ DD ′ D ∑ j=1 ( cos(xω j ) + sin(xω j ) )   D ′ ⊕ k=1 ( cos(τω ′ k ) sin(τω ′ k ) )   * θ j = 1 √ DD ′ D ∑ j=1 ( cos(xω j ) + sin(xω j ) ) θ jk ( cos(τω ′ k ) + sin(τω ′ k ) ) , ω j ∼ F [k X ] i. i. d. and ω ′ k ∼ F [k T ] i. i. d.. where θ k ∈ R D ′ , for all k ∈ N *
D and θ jk ∈ R for all j ∈ N * D and all k ∈ N * D ′ . The above equations can be rewritten in matrix form which results in the following conjecture.

Conjecture 9.1 If φ X is an RFF for k X such that φ(x) ∈ R D and φ T is an RFF for k T , such that φ(τ) ∈ R D ′ then an ORFF map for K(x, z) = k X (x, z)I H kT is given for all x ∈ R, all τ ∈ R and all Θ ∈ M D,D ′ (R) by ( Φ K (x) * Θ ) (τ) = φ X (x) * Θ φ T (τ)
and (

Φ K (x)G ) (τ) = φ X (x) φ T (τ) * G, where g ∈ R D ′ . Moreover if one defines Φ K (x, τ) = ( Φ K (x) * Θ ) (τ) one have of course Φ K (x, τ) * Θ = φ X (x) * Θ φ T (τ) 9.1.

Many quantile regression

From the loss defined in Equation 9.1 we defined the regularized risk using the "continuous" pinball loss for the quantile regression problem. For all f ∈ H K ,

R λ (f, s) = 1 N N ∑ i=1 ∫ [0,1]      τ (f x i (τ) -y i ) if f x i (τ) ⩾ y i (1 -τ) (y i -f x i (τ)) otherwise   + λ∥f∥ 2 K .
The issue with the above risk is that the different quantile for a given point x ∈ R may cross (see Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF]). To avoid this to happen we need to force the function f x (τ) to be increasing in τ for any x ∈ R. Because a decreasing function has a negative derivative we can add a penalty term to the risk to avoid f x (τ) to be decreasing in τ.

Ω cross (f x i ) = -min ( ∂f x i ∂τ (τ), 0
)

Thus the regularized risk with the no crossing constraint is

R λ 1 ,λ 2 (f, s) = 1 N N ∑ i=1 ∫ [0,1]      τ (f x i (τ) -y i ) if f x i (τ) ⩾ y i (1 -τ) (y i -f x i (τ)) otherwise -λ 1 min ( ∂f x i ∂τ (τ), 0 )   + λ 2 ∥f∥ 2 K .
Eventually we replace the integral by a Monte-Carlo sampling with the uniform law U([0, 1]) and plug in the approximate function of f using the ORFF map proposed in conjecture 9.1. The final regularized risk to be minimized reads

R λ 1 ,λ 2 (Θ, s) = 1 NT N ∑ i=1 T ∑ t=1      τ t ( f x i (τ t ) -y i ) if f x i (τ t ) ⩾ y i (1 -τ t ) (y i -f x i (τ t )) otherwise -λ 1 min ( ∂ f x i ∂τ (τ t ), 0 )   + λ 2 ∥Θ∥ 2 fro .
where

f x (τ) = φ X (x) * Θ φ T (τ), τ t ∼ U([0, 1]) and ∂ f x ∂τ (τ) = φ X (x) * Θ ∂ φ T ∂τ (τ) = φ X (x) * Θ D ′ ⊕ k=1 ( -ω ′ k sin(ω ′ k τ) ω ′ k cos(ω ′ k τ) ) , ω ′ k ∼ F [k T ] i. i. d..

Some results

We minimized the quantity R λ 1 ,λ 2 (Θ, s) on a toy dataset: a sine wave with some heteroscedastic noise. First we compared our methodology to the joint quantile regression proposed in Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF]. We generate N = 2500 for the train set and N ′ = 1000 points for the test set and use a Gaussian kernel for both k X and k T . We choosed σ X = 0.25 and σ T has been set to be the median of the pairwise distance of the τ t 's drawn randomly from U([0, 1]). Notice that R λ 1 ,λ 2 (Θ, s) is convex in Θ. To avoid computing complex gradients and by lack of time, we used Tensorflow [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] to perform a gradient descent (with RMSProp [START_REF] Tieleman | Lecture 6.5-RMSProp, COURS-ERA: Neural networks for machine learning[END_REF]) with automatic symbolic differentiation. Figure 9.1 show the result for the quantile at 0.05, 0.275, 0.5, 0.775 and 0.95 using the ORFF methodology. Figure 9.2 shows the joint quantile regression of Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] on the same dataset. Not only our method matched the the performances of Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] 1 but we cutted down the computation time from circa 1330 seconds to circa 30 seconds (training and testing). Moreover on contrary to Sangnier, Fercoq, and Buc [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF] we have access to all the quantile of the model (see Figure 9.3).

One-class SVM revisited

We also propose an extension of the celebrated One-Class Support Vector Machine (OCSM) such that it is possible to learn jointly all the level sets. One-class classification, also known as unary classification, tries to identify objects of a specific class amongst all objects, by learning from a training set containing only the objects of that class.

In this framework, we assume that we only observe examples of one class (referred to as the inlier class). The second class is called outlier class. We turn our attention to the OCSM of Schölkopf et al. [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF] which extends the Support Vector Machine (SVM) methodology [START_REF] Cortes | Support-Vector Networks[END_REF][START_REF] Shawe-Taylor | Kernel methods for pattern analysis[END_REF] to handle training using only inliers.

We recall that given an hyperparameter ν ∈ [0, 1] that controls the proportion of inlier, given as scalar kernel k, the OCSM problem reads arg min

f ∈H k ,τ∈R ν 2 ∥f∥ 2 H k -ντ + 1 N N ∑ i =1 max(τ -f(x i ), 0)
The decision function is then

h(x, τ) = 1 [τ,∞) (f(x)) .
As in Subsection 9.1.1 we can rewrite the optimization problem as an integral over all the value of ν and suppose that f is function-valued (a function of ν). Moreover τ must also change its value according to ν. Thus given a kernel k X on the inputs x ∈ R d with its approximate feature map φ X and a kernel k T on the level sets with its approximate feature map φ T , we define the continuous one-class SVM problem as arg min

f ∈H K ,τ∈H kτ 1 N N ∑ i =1 ∫ [0,1] max ( 0, τ(ν) -f x i (ν) ) dν + 1 2 ∫ [0,1] ν∥f • (ν)∥ 2 H k X dν - ∫ [0,1]
ντ(ν)dν.

Again we can compute the integral by Monte-Carlo sampling and replace f and τ by their respective approximation. Notice that the RKHS of τ should match the RKHS of the output space of f K . Hence arg min

Θ ∈M D,D ′ (R),τ∈R D 1 NT N ∑ i =1 T ∑ t =1 max ( 0, τ(ν t ) -f x i (ν t ) ) + 1 2T T ∑ t =1 ν t f • (ν t ) 2 2 - 1 T T ∑ t =1 ν t τ(ν t ),
where

ν t ∼ U([0, 1]) i. i. d., τ(ν) = φ T (ν) and f x (ν) = φ(x) * Θ φ T (ν). We also deduce that f • (ν) = Θ φ T (ν).
Here the natural decision function is

(9.3) h(x, ν) = 1 [ τ(ν),∞) ( f x (ν)
) .

Proof of concept

First we ensure that the variable ν is a good proxy for the proportion of inlier. For this we generate a dataset of points in X = R 2 from a mixture of three Gaussians. One Gaussian is located at µ 1 = (0, 0), the second at µ 2 = (5, 5) and th third at µ 3 = (10, 10). Each Gaussian has unit variance and we draw 250 points from the first and third one and 100 from the second one, so that we have 600 points in the dataset. We take k X as a Gaussian kernel with scale parameter γ X = 2 and k T another Gaussian kernel with scale parameter γ T (see Subsubsection 4.2.2.2). After training we apply the decision function to the train test to which we add 100 points generated from a uniform distribution to model the novelty detection setting. We refer to this new augmented set as the test set. In Figure 9.4 we show the proportion of inliner with respect to ν. The top figure shows the result for a model trained with γ T = 100 the middle figure for γ T = 1 and the bottom figure for γ T = 0.01. We see that when γ T = 0.01, the proportion of inlier on the train and test set does not follows the theoretical black curve, because the algorithm regularize too much between the level sets. When γ T = 1 or 100 the proportion of inliers almost follows the theoretical black curve. We see that when γ T = 100 the curves are less stable than when γ T = 0 especially around ν = 0. The gap between the train curve (orange) and test curve (blue) corresponds to the "novel" points that are not distributed according to the mixture of Gaussians.

We can give an interpretation to k T and k X . k X control the complexity of the boundary of each level set and k T tells how much each level set differ from the neighbour level sets.

We propose a second experiment in a context of outlier detection. This time the train set is polluted with outliers. We replicate the example given in the documentations of Scikit-Learn at http://scikit-learn.org/stable/auto_examples/covariance/ plot_outlier_detection.html We compare our method to three other well known outlier detection methods from the literature: Isolation Forest [START_REF] Liu | Isolation Forest[END_REF], OCSM [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF] and a Robust Covariance estimator [START_REF] Campbell | Robust procedures in multivariate analysis I: Robust covariance estimation[END_REF][START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] on Figure 9.5. Our method achieves the state of the art on this simple example which is encouraging. However the computation time of our continuous OCSM is higher than the other methods. It took circa 0.25 second for the OCSM. 10 seconds for our method, 5 seconds for isolation forest and 0.1 second for the Robust covariance estimator. This can be due to the implementation since we used a (suboptimal) hand-crafted full gradient descent. Notice that however our method is able to retrieve all the level sets after training, not only the one presented in Figure 9.5. When one is interested in a specific level set or range of level set one could sample the ν t from another distribution than the uniform distribution U[0, 1] to give more importance to the desired range of level sets.

operalib

During this Thesis we started the development of a library named "Operalib" implementing various machine learning algorithms based on operator-valued kernels. We are grateful to Alexandre Gramfort (LTCI, Télécom ParisTech) who served as a technical mentor at the beginning of this software development and provided many advices. Operator-valued kernels defines a framework allowing learning vector/function/structured output. To install the library it should be as simple as Listing 9.1: Installation of Operalib.

pip install operalib

The library currently features: • Quantile regression [START_REF] Sangnier | Joint quantile regression in vector-valued RKHSs[END_REF],

• ONORMA [START_REF] Audiffren | Online learning with operatorvalued kernels[END_REF],

• semi-supervised Ridge regression [START_REF] Brouard | Input Output Kernel Regression[END_REF],

• some elements of the ORFF framework [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF].

The algorithms work for a selection of popular operator-valued kernels such that the matrix-valued decomposable kernel, the curl-free kernel and the divergence-free kernel. The library is structured so that it is easy for the user to define its own operator-valued kernel and plug it to the existing optimisation algorithms, while keeping efficient computations thanks to the methodology presented in Equation 6.10 (i. e. by seeing operator-valued kernels as operators along with matrix-free solver rather than plain matrices). We designed the library in order to have a close compatibility with Scikit-learn. Code and documentation are publicly available at https://github.com/ operalib/operalib. In a near future we plan to add the family of works of Brouard, d'Alché-Buc, and Szafranski [START_REF] Brouard | Input Output Kernel Regression[END_REF] around Input Output Kernel Regression, the work of Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF] about the two learning algorithms defined in Lim et al. [START_REF] Lim | Operator-valued kernel-based vector autoregressive models for network inference[END_REF]: a sparse learning of OVK and a learning algorithm for both kernel and weights with a block coordinate descent scheme and a proximal gradient method to deal with non-smooth constraints. Development for modeling time series will be also included. We hope to expand with more algorithms from various authors of the OVK community and welcome any new contributor! q

To conclude this work we would like to summarize our contributions, and show how they answered the initial question of large-scale learning with Operator-Valued Kernels. Then we finish with some short and mid term perspectives. In Machine Learning, many algorithms focus on learning functions that model dependencies between inputs and outputs where outputs are real numbers. However in numerous application fields such as biology, economics, physics, etc. the output data are not reals: they can be a collection of reals, present complex structures or can even be functions. To overcome this difficulty and take into account the structure of the data, a common approach is to see them as vectors of some Hilbert space. From this observation, in this thesis, we took interest in vector-valued functions. Looking at the literature we focused on mathematical objects called Operator-Valued Kernels to learn such functions.

contributions

OVKs naturally extend the celebrated kernel methods used to learn scalar-valued functions, to the case of learning vector-valued functions. Yet, although OVKs are appealing from a theoretical aspect, these methods scale poorly in terms of computation time when the number of data is high. Indeed, in order to evaluate a function on a unknown point with an Operator-Valued Kernel, it requires to evaluate an Operator-Valued Kernel on all the point in the given dataset. Hence naive learning with kernels usually scales cubicly in time with the number of data. In the context of large-scale learning such scaling is not acceptable. Through this work we propose a methodology to tackle this difficulty.

Enlightened by the literature on large-scale learning with scalarvalued kernel, in particular the work of Rahimi and Recht [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF], we propose to replace an OVK by a random feature map that we called Operator-valued Random Fourier Feature. Our contributions start with the formal mathematical construction of this feature from an OVK. Then we show that it is also possible to obtain a kernel from an ORFF. Eventually we analyse the regularization properties in terms of Fourier Transform of Y-Mercer kernels. Then we moved on giving a bound on the error due to the random approximation of the OVK with high probability. We showed that it is possible to bound the error even though the ORFF estimator of an OVK is not a bounded random variable. Moreover we also give a bound when the dimension of the output data infinite.

After ensuring that an ORFF is a good approximation of a kernel, we moved on giving a framework for supervised learning with Operator-Valued Kernels. We showed that learning with a feature map is equivalent to learning with the reconstructed OVK under some mild conditions. Then we focused on an efficient implementation of ORFF by viewing them as linear operators rather than matrices and using matrix-free (iterative) solvers and concluded with some numerical experiments. Eventually we gave a generalization bound for ORFF learning that suggests that the number of features sampled in an ORFF should be proportional to the number of data. We concluded our contribution by applying the ORFF framework to learning vector-valued time series.

perspectives

To start with the theoretical perspectives, following Rahimi and Recht we gave a generalization bound for ORFF kernel ridge that suggests that the number of features to draw is proportional to the number of data. However new results of Rudi, Camoriano, and Rosasco [START_REF] Rudi | Generalization properties of learning with random features[END_REF] suggest that the number of feature should be proportional to the square root of the number of data. In a future work, we shall investigate this result and extend it to ORFF.

On the methodological perspectives we gave an intuition on how Operator-Valued Kernels can be used to learn outputs that are functions. We used the ORFF framework to speed up quantile regression and at the same time obtain the full quantile function. We applied the same methodology to the anomaly detection setting and showed that it is possible to learn jointly all the level sets of a distribution with an extension of a One-Class Support Vector Machine. We are convinced that this will open the door to many new applications. Given a problem with some hyperparameters, the combination of ORFF and Operator-Valued Kernels allow to learn functions of the hyperparameters.

Another nice extension would be to be able to learn the structure of an ORFF i. e. the spectral distribution and the operator from the data, as in Yang et al. [191] so that we avoid to inject directly ourselves a prior on the data by the mean of an Operator-Valued Kernel.

On the implementation level, we are really enthusiastic about Operalib, a library for learning with Operator-Valued Kernels started during this thesis as a project of Paris-Saclay Center for Data Science1 , and will extend the library with other OVK-based algorithms. Moreover much work is remaining to do concerning the implementation of efficient algorithms based on (O)RFFs. We could extend the Multiple Kernel learning setting to OVKs to see if we can match the performances of Deep Neural Networks as in Lu et al. [START_REF] Lu | How to scale up kernel methods to be as good as deep neural nets[END_REF]. We could also improve the Doubly Stochastic Gradient descent in the light of the recent results of Rudi, Camoriano, and Rosasco [START_REF] Rudi | Generalization properties of learning with random features[END_REF] on generalization.

Eventually during these three years, we have witnessed the rise of deep-learning methods with neural networks. As pointed out by many authors, random features share deep connections with neural networks: an ORFF-based shallow architecture can be seen as a onelayer neural architecture. Conversely, a neural network can be seen as a compositional feature map. As in the work of Yang et al. [START_REF] Yang | Deep fried convnets[END_REF] we could replace the last layer of a convolutional neural network [START_REF] Lecun | Convolutional networks for images, speech, and time series[END_REF] with an ORFF map in order to open these architectures to the setting offered by OVK to deal with structured and functional outputs.

Part IV

A P P E N D I X A P R O O F S O F T H E O R E M S
In this appendix we detail the proofs of Corollary 5.2 and Corollary 5.3. These two corollaries applying on compact subsets of Banach spaces are the consequences of more generic propositions (Proposition A.1 and Proposition A.2) working on any compact subsets of Polish spaces. Eventually we give a proof on the variance bound given in Proposition A.3. We recall the notations δ = x ⋆ z -1 , for all x, z ∈ X, K(x, z) = Φ(x) * Φ(z), Kj (x, z) = Φ x (ω j ) * Φ z (ω j ), where ω j ∼ Pr Haar,ρ and K e (δ) = K(x, z) and Ke (δ) = K(x, z). For the sake of readabilty, we use throughout the proof the quantities

Contents

F(δ) : = K(x, z) -K(x, z) F j (δ) : = 1 D ( Kj (x, z) -K(x, z) ) .
We also view X as a metric space endowed with the distance d X : X × X → R + . Compared to the scalar case, the proof follows the same scheme as the one described in [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF], but we consider an operator norm as measure of the error and therefore concentration inequality dealing with these operator norm. The main feature of Proposition A.1 is that it covers the case of bounded ORFF as well as unbounded ORFF. In the case of bounded ORFF, a Bernstein inequality for matrix concentration such that the one proved in Mackey et al. [START_REF] Mackey | Matrix Concentration Inequalities via the method of exchangeable pairs[END_REF]Corollary 5.2] or the formulation of Tropp [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] recalled in Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF] is suitable. However some kernels like the curl and the divergence-free kernels do not have obvious bounded

F j Y,Y
but exhibit F j with subexponential tails. Therefore, we use an operator Bernstein concentration inequality adapted for random matrices with subexponential norms.

a.1.1 Epsilon-net

Let C ⊆ X be a compact subset of X.

Let D C = { x ⋆ z -1 x, z ∈ C }
with diameter at most 2|C| where |C| is the diameter of C. Since C is supposed compact, so is D C . Since D C is also a metric space it is well known that a compact metric space is totally bounded. Thus it is possible to find a finite ϵ-net covering D C . We call T = N(D C , r) the number of closed balls of radius r required to cover D C . For instance if D C is a subspace finite dimensional Banach space with diameter at most 2|C| it is possible to cover the space with at most T = (4|C|/r) d balls of radius r (see Cucker and Smale [50, proposition 5]).

Let us call δ i , i = 1, . . . , T the center of the i-th ball, also called anchor of the ϵ-net. Denote L F the Lipschitz constant of F. Let ∥•∥ Y,Y be the operator norm on L(Y) (largest eigenvalue). We introduce the following technical lemma.

Lemma A.1 ∀δ ∈ D C , if (A.1) L F ⩽ ϵ 2r and (A.2) ∥F(δ i )∥ Y,Y ⩽ ϵ 2 , for all i ∈ N * T then ∥F(δ)∥ Y,Y ⩽ ϵ. Proof ∥F(δ)∥ Y,Y = ∥F(δ) -F(δ i ) + F(δ i )∥ Y,Y ⩽ ∥F(δ) -F(δ i )∥ Y,Y + ∥F(δ i )∥ Y,Y
for all 0 < i < T . Using the Lipschitz continuity of F we have

∥F(δ) -F(δ i )∥ Y,Y ⩽ d X (δ, δ i )L F ⩽ rL F hence ∥F(δ)∥ Y,Y ⩽ rL F + ∥F(δ i )∥ Y,Y = rϵ 2r + ϵ 2 = ϵ.
To apply the lemma, we must bound the Lipschitz constant of the operator-valued function F (Equation A.1) and ∥F(δ i )∥ Y,Y , for all i = 1, . . . , T as well (Equation A.2).

a.1.2 Bounding the Lipschitz constant

This proof is a slight generalization of Minh [START_REF] Minh | Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning[END_REF] to arbitrary metric spaces. It differ from our first approach [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF], based on the proof of Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] which was only valid for a finite dimensional input space X and imposed a twice differentiability condition on the considered kernel.

Lemma A.2 Let H ω ∈ R + be the Lipschitz constant of h ω (•) and assume that

∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω) < ∞.
Then the operator-valued function K e : X → L(Y) is Lipschitz with

(A.3) ∥K e (x) -K e (z)∥ Y,Y ⩽ d X (x, z) ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω).
Proof We use the fact that the cosine function is Lipschitz with constant 1 and h ω Lipschitz with constant H ω . For all x, z ∈ X we have

Ke (x) -K e (z) Y,Y = ∫ X (cos h ω (x) -cos h ω (z)) A(ω)dPr Haar,ρ Y,Y ⩽ ∫ X |cos h ω (x) -cos h ω (z)|∥A(ω)∥ Y,Y dPr Haar,ρ ⩽ ∫ X |h ω (x) -h ω (z)|∥A(ω)∥ Y,Y dPr Haar,ρ ⩽ d X (x, z) ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ
In the same way, considering Ke (δ) = 1 D ∑ D j=1 cos h ω j (δ)A(ω j ), where ω j ∼ Pr Haar,ρ , we can show that Ke is Lipschitz with

Ke (x) -Ke (z) Y,Y ⩽ d X (x, z) 1 D D ∑ j=1 H ω j A(ω j ) Y,Y .
Combining the Lipschitz continuity of Ke and K (Lemma A.2) we obtain

∥F(x) -F(z)∥ Y,Y = Ke (x) -Ke (x) -Ke (z) + K e (z) Y,Y ⩽ Ke (x) -Ke (z) Y,Y + ∥K e (x) -K e (z)∥ Y,Y ⩽ d X (x, z)   ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ + 1 D D ∑ j=1 H ω j A(ω j ) Y,Y  
Taking the expectation yields

E Haar,ρ [L F ] = 2 ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ (ω) 
Thus by Markov's inequality, To bound ∥F(δ i )∥ Y,Y , Hoeffding inequality devoted to matrix concentration [START_REF] Mackey | Matrix Concentration Inequalities via the method of exchangeable pairs[END_REF] can be applied. We prefer here to turn to tighter and refined inequalities such as Matrix Bernstein inequalities (Sutherland and Schneider [START_REF] Sutherland | On the Error of Random Fourier Features[END_REF] also pointed that for the scalar case). The first non-commutative (matrix) concentration inequalities are due to the pioneer work of Ahlswede and Winter [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF], using bound on the moment generating function. This gave rise to many applications Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF], Oliveira [START_REF] Oliveira | Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges[END_REF], and Tropp [START_REF] Tropp | User-friendly tail bounds for sums of random matrices[END_REF] ranging from analysis of randomized optimization algorithm to analysis of random graphs and generalization bounds usefull in machine learning. The following inequality has been proposed in [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF].

(A.4) Pr Haar,ρ { (ω j ) D j=1 | L F ⩾ ϵ } ⩽ E Haar,ρ [L F ] ϵ ⩽ 2 ϵ ∫ X H ω ∥A(ω)∥ Y,
Theorem A.1 (Bounded non-commutative Bernstein). From Theorem 3 of Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF], consider a sequence (X j ) D j=1 of D independent Hermitian p × p random matrices acting on a finite dimensional Hilbert space Y that satisfy EX j = 0, and suppose that there exist some constant U ⩾ X j Y,Y for each index j. Denote the proxy bound on the matrix variance

V ≽ D ∑ j =1 EX 2 j .
Then, for all ϵ ⩾ 0,

Pr    D ∑ j=1 X j Y,Y ⩾ ϵ    ⩽ p exp ( - ϵ 2 2∥V∥ Y,Y + 2Uϵ/3
) This bound we used in our original paper [START_REF] Brault | Random Fourier Features For Operator-Valued Kernels[END_REF] has the default to grow linearly with the dimension p of the output space Y. However if the evaluation of the operator-valued kernel at two points yields a lowrank matrix, this bound could be improved since only a few principal dimensions are relevant. Moreover this bound cannot be used when dealing with operator-valued kernel acting on infinite dimensional Hilbert spaces. Recent results of Minsker [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF] consider the notion of intrinsic dimension to avoid this "curse of dimensionality".

Definition A.1

Let A be a trace class operator acting on a Hilbert space Y. We call intrinsic dimension the quantity

IntDim(A) = Tr [A] ∥A∥ Y,Y .
When A is approximately low-rank (i. e. many eigenvalues are small), or go quickly to zero, the intrinsic dimension can be much lower than the dimensionality. Indeed,

1 ⩽ IntDim(A) ⩽ Rank(A) ⩽ dim(A).
Theorem A.2 (Bounded non-commutative Bernstein with intrinsic dimension [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF][START_REF] Tropp | An introduction to matrix concentration inequalities[END_REF]). Consider a sequence (X j ) D j=1 of D independent Hilbert-Schmidt self-adjoint random operators acting on a separable Hilbert Y space that satisfy EX j = 0 for all j ∈ N * D . Suppose that there exist some constant U ⩾ 2 X j Y,Y almost surely for all j ∈ N * D . Define a semi-definite upper bound for the the operator-valued variance

V ≽ D ∑ j =1 EX 2 j .
Then for all ϵ ⩾ √ ∥V∥ Y,Y + U/3,

Pr    D ∑ j=1 X j Y,Y ⩾ ϵ    ⩽ 4IntDim(V) exp (-ψ V,U (ϵ))
where

ψ V,U (ϵ) = ϵ 2 2∥V∥ Y,Y +2Uϵ/3
Essentially, compared to Theorem A.1, Theorem A.2 replace the dimension of Y by four times the intrinsic dimension of the variance of the matrix valued random variable. The concentration inequality is restricted to the case where ϵ ⩾ √ ∥V∥ Y,Y + U/3 since the probability is vacuous on the contrary. The assumption that X j 's are Hilbert-Schmidt operators comes from the fact that the product of two such operator yields a trace-class operator, for which the intrinsic dimension is well defined. However, to cover the general case including unbounded ORFFs like curl and divergence-free ORFFs, we choose a version of Bernstein matrix concentration inequality proposed in [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF] that allows to consider matrices that are not uniformly bounded but have subexponential tails. In the following we use the notion of Orlicz norm to bound random variable by their tail behavior rather than their value.

Definition A.2 (Orlicz norm).

We follow the definition given by Koltchinskii [START_REF] Koltchinskii | From Probability to Statistics and Back: High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner[END_REF]. Let ψ : R + → R + be a non-decreasing convex function with ψ(0) = 0. For a random variable X on a measured space (Ω, T(Ω), µ)

∥X∥ ψ := inf { C > 0 | E[ψ (|X|/C)] ⩽ 1 } .
For the sake of simplicity, we now fix ψ(t) = ψ 1 (t) = exp(t) -1. Although the Orlicz norm should be adapted to the tail of the distribution of the random operator we want to quantify to obtain the sharpest bounds. We also introduce two technical lemmas related to Orlicz norm. The first one relates the ψ 1 -Orlicz norm to the moment generating function (MGF).

Lemma A. [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF] Let X be a random variable with a strictly monotonic momentgenerating function. We have ∥X∥ -1

ψ 1 = MGF -1 |X| (2). Proof We have ∥X∥ ψ 1 = inf { C > 0 | E[exp (|X|/C)] ⩽ 2 } = 1 sup { C > 0 MGF |X| (C) ⩽ 2 } X has strictly monotonic moment-generating thus C -1 = MGF -1 |X| (2). Hence ∥X∥ -1 ψ 1 = MGF -1 |X| (2) 
. The second lemma gives the Orlicz norm of a positive constant.

Lemma A. [START_REF] Alfsen | A simplified constructive proof of the existence and uniqueness of Haar measure[END_REF] If a ∈ R + then ∥a∥ ψ 1 = a ln(2) < 2a. Proof We consider a as a positive constant random variable, whose Moment Generating Function (MGF) is MGF a (t) = exp(at).

From Lemma A.3, ∥a∥ ψ 1 = 1 MGF -1 X (2)
. Then MGF -1 |a| (2) = ln(2) |a| , a ̸ = 0. If a = 0 then ∥a∥ ψ 1 = 0 by definition of a norm. Thus ∥a∥ ψ 1 = a ln(2) . □

We now turn our attention to Minsker [START_REF] Minsker | On some extensions of Bernstein's inequality for self-adjoint operators[END_REF]'s theorem to for unbounded random variables.

Theorem A.3 (Unbounded non-commutative Bernstein with intrinsic dimension

). Consider a sequence (X j ) D j=1 of D independent selfadjoint random operators acting on a finite dimensional Hilbert space Y of dimension p that satisfy EX j = 0 for all j ∈ N * D . Suppose that there exist some constant U ⩾ X j Y,Y ψ for all j ∈ N * D . Define a semi-definite upper bound for the the operator-valued variance

V ≽ D ∑ j =1 EX 2 j .
Then for all ϵ > 0,

Pr    D ∑ j=1 X j Y,Y ⩾ ϵ    ⩽      2IntDim(V) exp ( - ϵ 2 2∥V∥ Y,Y (1+ 1 p ) ) r V (ϵ), ϵ ⩽ ∥V∥ Y,Y 2U 1+1/p K(V,p) 2IntDim(V) exp ( - ϵ 4UK(V,p) ) r V (ϵ), otherwise.
where

K(V, p) = log ( 16 √ 2p ) + log ( DU 2 ∥V∥ Y,Y ) and r V (ϵ) = 1 + 3 ϵ 2 log 2 (1+ϵ/∥V∥ Y,Y )
Let ψ = ψ 1 . To use Theorem A.3, we set X j = F j (δ i ). We have indeed E Haar,ρ [F j (δ i )] = 0 since K(δ i ) is the Monte-Carlo approximation of K e (δ i ) and the matrices F j (δ i ) are self-adjoint. We assume we can bound all the Orlicz norms of the F j (δ i ) = 1 D ( Kj (δ i ) -K e (δ i )). In the following we use constants u i such that u i = DU. Using Lemma A.4 and the sub-additivity of the ∥•∥ Y,Y and ∥•∥ ψ 1 norm,

u i = 2D max 1⩽j⩽D F j (δ i ) Y,Y ψ 1 ⩽ 2 max 1⩽j⩽D Kj (δ i ) Y,Y ψ 1 + 2∥∥K e (δ i )∥ Y,Y ∥ ψ 1 < 4 max 1⩽j⩽D A(ω j ) Y,Y ψ 1 + 4∥K e (δ i )∥ Y,Y = 4 ( ∥∥A(ω)∥ Y,Y ∥ ψ 1 + ∥K e (δ i )∥ Y,Y )
In the same way we defined the constants v i = DV,

v i = D D ∑ j=1 E Haar,ρ F j (δ i ) 2 = DVar Haar,ρ [ K(δ i ) ]
Then applying Theorem A.3, we get for all i ∈ N * N(D C ,r) (i is the index of each anchor)

Pr Haar,ρ { (ω j ) D j=1 ∥F(δ i )∥ Y,Y ⩾ ϵ } ⩽      4IntDim(v i ) exp ( -D ϵ 2 2∥v i ∥ Y,Y (1+ 1 p ) ) r v i /D (ϵ), ϵ ⩽ ∥v i ∥ Y,Y 2u i 1+1/p K(v i ,p) 4IntDim(v i ) exp ( -D ϵ 4u i K(v i ,p) )
r v i /D (ϵ), otherwise.

with

K(v i , p) = log ( 16 √ 2p ) + log ( u 2 i ∥v i ∥ Y,Y
) and

r v i /D = 1 + 3 ϵ 2 log 2 (1 + Dϵ/∥v i ∥ Y,Y ) .
To unify the bound on each anchor we define two constant 

u = 4 ( ∥∥A(ω)∥ Y,Y ∥ ψ 1 + sup δ∈D C ∥K e (δ)∥ Y,Y ) ⩾ max i=1,...T u i and v = sup
∪ i=1 ∥F(δ i )∥ Y,Y ⩾ ϵ    ⩽ 4N(D C , r)r v/D (ϵ)IntDim(v)      exp ( -D ϵ 2 2∥v∥ Y,Y (1+ 1 p ) ) , ϵ ⩽ ∥v∥ Y,Y 2u 1+1/p K(v,p) exp ( -D ϵ 4uK(v,p)
( ∥∥A(ω)∥ Y,Y ∥ ψ 1 + sup δ∈D C ∥K e (δ)∥ Y,Y ) < ∞ and v ⩾ sup δ∈D C D∥V(δ)∥ Y,Y < ∞.
Define p int ⩾ sup δ∈D C IntDim(V(δ)), then for all 0 < ϵ ⩽ m|C|,

Pr Haar,ρ { (ω j ) D j=1 K -K C×C ⩾ ϵ } ⩽ 8 √ 2 ( m|C| ϵ ) ( p int r v/D (ϵ) ) 1 d+1      exp ( -D ϵ 2 8v(d+1)(1+ 1 p ) ) , ϵ ⩽ v u 1+1/p K(v,p) exp ( -D ϵ 8u(d+1)K(v,p) )
, otherwise, where K(v, p) = log

( 16 √ 2p ) + log ( u 2 v ) and r v/D (ϵ) = 1 + 3 ϵ 2 log 2 (1+Dϵ/v) .
Proof As we have seen in Appendix A.1.1, suppose that X is a finite dimensional Banach space. Let C ⊂ X be a closed ball centered at the origin of diameter |C| = C then the difference ball centered at the origin 

D C = C ⋆ C -1 = { x ⋆ z -1 ∥x∥ X ⩽ C/2, ∥z∥ X ⩽ C/2, (x, z) ∈ X 2 } ⊂ X
C ∥K e (δ)∥ Y,Y < ∞ and v ⩾ sup δ∈D C D∥V(δ)∥ Y,Y < ∞. define p int ⩾ sup δ∈D C IntDim (V(δ)) then for all √ v D + u 3D < ϵ < m|C|, Pr Haar,ρ { (ω j ) D j=1 sup δ∈D C ∥F(δ)∥ Y,Y ⩾ ϵ } ⩽ 8 √ 2 ( m|C| ϵ ) p 1 d+1 int exp (-Dψ v,d,u (ϵ))
where ψ v,d,u (ϵ) = ϵ 2 2(d+1)(v+uϵ/3) .

a.2 proof of the orff estimator variance bound

We use the notations δ = x ⋆ z -1 for all x, z ∈ X, K(x, z) = Φ(x)

* Φ(z), Kj (x, z) = Φ x (ω j ) * Φ z (ω j ) and K e (δ) = K e (x, z). We present here a direct extension of Chapter 6 to semi-supervised learning with ORFF. Semi-supervised learning in vv-RKHS has been first presented at the same time by Brouard, d'Alché-Buc, and Szafranski [START_REF] Brouard | Semisupervised Penalized Output Kernel Regression for Link Prediction[END_REF] and Minh and Sindhwani [START_REF] Minh | Vector-valued Manifold Regularization[END_REF], and then more deeply developed in Brouard, d'Alché-Buc, and Szafranski [START_REF] Brouard | Input Output Kernel Regression[END_REF] and Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF]. We have chosen to adopt here the presentation of Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF] slighlty more general, encompassing Vector-valued Manifold Regularization [START_REF] Belkin | Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[END_REF][START_REF] Brouard | Semisupervised Penalized Output Kernel Regression for Link Prediction[END_REF][START_REF] Minh | A unifying framework for vector-valued manifold regularization and multiview learning[END_REF] and Co-regularized Multi-view Learning [START_REF] Brefeld | Efficient co-regularised least squares regression[END_REF][START_REF] Rosenberg | A kernel for semi-supervised learning with multi-view point cloud regularization[END_REF][START_REF] Sindhwani | An RKHS for multi-view learning and manifold co-regularization[END_REF][START_REF] Sun | Multi-view Laplacian support vector machines[END_REF]. Eventually let λ K ∈ R >0 and λ M ∈ R + be two regularization hyperparameters and (M ik ) N+U i,k=1 be a sequence of data dependent bounded linear operators in L(U), such that

N+U ∑ i,j =1 ⟨u i , M ik u k ⟩ U ⩾ 0, ∀(u i ) N+U i=1 ∈ U N+U and M ik = M * ki .
The solution f z ∈ H K of the regularized optimization problem (B.1)

f z = arg min f∈H K 1 N N ∑ i=1 c(Vf(x i ), y i ) + λ K 2 ∥f∥ 2 K + λ M 2 N+U ∑ i,k=1 ⟨f(x i ), M ik f(x k )⟩ U
has the form f z = ∑ N+U j=1 K(•, x j )u z,j where u z,j ∈ U and (B.2)

u z = arg min u∈ ⊕ N+U i=1 U 1 N N ∑ i=1 c ( V N+U ∑ k=1 K(x i , x j )u j , y i ) + λ K 2 N+U ∑ k=1 u * i K(x i , x k )u k + λ M 2 N+U ∑ i,k=1 ⟨ N+U ∑ j=1 K(x i , x j )u j , M ik N+U ∑ j=1 K(x k , x j )u j ⟩ U .
We present here the proof of the formulation proposed by Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF]. In the mean time we clarify some elements of the proof. Indeed the existence of a global minimizer is not trivial and we must invoke the Mazur-Schauder theorem. Moreover the coercivity of the objective function required by the Mazur-Schauder theorem is not obvious when we do not require the cost function to take only positive values. However a corollary of Hahn-Banach theorem linking strong convexity to coercivity gives the solution.

Proof Since f(x) = K * x f (see Equation 3.14), the optimization problem reads

f z = arg min f∈H K 1 N N ∑ i=1 c(VK * x i f, y i ) + λ K 2 ∥f∥ 2 K + λ M 2 N+U ∑ i,k=1 ⟨K * x i f, M ik K * x k f⟩ U Let W V,s : H K → ⊕ N i=1
Y be the restriction linear operator defined as

W V,s f = N ⊕ i=1 VK * x i f, with VK * x i : H K → Y and K x i V * : Y → H K . Let Y = ⊕ N i=1 y i ∈ Y N . We have ⟨Y, W V,s f⟩ ⊕ N i =1 Y = N ∑ i=1 ⟨y i , VK * x i f⟩ Y = N ∑ i=1 ⟨K x i V * y i , f⟩ H K .
Thus the adjoint operator W * V,s :

⊕ N i=1 Y → H K is W * V,s Y = N ∑ i=1 K x i V * y i ,
and the operator W * V,s W V,s :

H K → H K is W * V,s W V,s f = N ∑ i=1 K x i V * VK * x i f where V * V ∈ L(U). Let J λ K (f) = 1 N N ∑ i=1 c(Vf(x i ), y i ) =J c + λ K 2 ∥f∥ 2 K + λ M 2 N+U ∑ i,k=1 ⟨f(x i ), M ik f(x k )⟩ U =J M
Since c is proper, lower semi-continuous and convex by assumption, thus the term J c is also proper, lower semi-continuous and convex. Moreover the term J M is always positive for any f ∈ H K and λ K 2 ∥f∥ 2 K is strongly convex. Thus J λ K is strongly convex. Apply Lemma 6.1 to obtain the coercivity of J λ K , and then Theorem 6.1 to show that J λ K has a unique minimizer and is attained. Then let

H K,z =    N+U ∑ j=1 K x j u j ∀(u i ) N+U i=1 ∈ U N+U    . For f ∈ H ⊥ K,z , the operator W V,s satisfies ⟨Y, W V,s f⟩ ⊕ N i =1 Y = ⟨ f ∈H ⊥ K,z , N+U ∑ i=1 K x i V * y i ∈H K,z ⟩ H K = 0 for all sequences (y i ) N i=1 , since V * y i ∈ U. Hence, (B.3) (Vf(x i )) N i =1 = 0 In the same way, N+U ∑ i =1 ⟨K * x i f, u i ⟩ U = ⟨ f ∈H ⊥ K,z , N+U ∑ j=1 K x j u j ∈H K,z ⟩ H K = 0.
for all sequences (u i ) N+U i=1 ∈ U N+U . As a result, (B.4) (f(x i )) U+N i =1 = 0. Now for an arbitrary f ∈ H K , consider the orthogonal decomposition f =

f ⊥ + f ∥ , where f ⊥ ∈ H ⊥ K,z and f ∥ ∈ H K,z . Then since f ⊥ + f ∥ 2 H K = f ⊥ 2 H K + f ∥ 2 H K , Equation B.3 and Equation B.4 shows that if λ K > 0, clearly then J λ K (f) = J λ K ( f ⊥ + f ∥ ) ⩾ J λ K ( f ∥ )
The last inequality holds only when f ⊥ H K = 0, that is when f ⊥ = 0. As a result since the minimizer of J λ K is unique and attained, it must lies in H K,z . □ Theorem B.2 (Feature equivalence). Let K be an Operator-Valued Kernel such that for all x, z ∈ X, Φ(x) * Φ(z) = K(x, z) where K is a U-Mercer OVK and H K its corresponding U-Reproducing kernel Hilbert space. Let V : U → Y be a bounded linear operator and let c : Y × Y → R be a cost function such that L(x, f, y) = c(V f(x), y) is a proper convex lower semi-continuous function in f ∈ H K for all x ∈ X and all y ∈ Y.

Eventually let λ K ∈ R >0 and λ M ∈ R + be two regularization hyperparameters and (M ik ) N+U i,k=1 be a sequence of data dependent bounded linear operators in L(U), such that

N+U ∑ i,j =1 ⟨u i , M ik u k ⟩ ⩾ 0, ∀(u i ) N+U i=1 ∈ U N+U and M ik = M * ki .
The solution f z ∈ H K of the regularized optimization problem (B.5)

f z = arg min f∈H K 1 N N ∑ i=1 c ( V f(x i ), y i ) + λ K 2 f 2 K + λ M 2 N+U ∑ i,k=1 ⟨ f(x i ), M ik f(x k )⟩ U
has the form f z = Φ(•) * θ z , where θ z ∈ (Ker W) ⊥ and (B.6)

θ z = arg min θ∈ H 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 ∥θ∥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨θ, Φ(x i )M ik Φ(x k ) * θ⟩ H .
Proof Since K is an operator-valued kernel, from Theorem B.1, Equation B.5 has a solution of the form

f z = N+U ∑ i=1 K(•, x i )u i , u i ∈ U, x i ∈ X = N ∑ i=1 Φ(•) * Φ(x i )u i = Φ(•) * ( N+U ∑ i=1 Φ(x i )u i ) =θ∈ ( Ker W ) ⊥ ⊂ H . Let θ z = arg min θ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 Φ(•) * θ 2 K + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ, M ik Φ(x k ) * θ ⟩ U . Since θ ∈ (Ker W) ⊥ and W is an isometry from (Ker W) ⊥ ⊂ H onto H K , we have Φ(•) * θ 2 K = ∥θ∥ 2 H . Hence θ z = arg min θ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 ∥θ∥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ, M ik Φ(x k ) * θ⟩ U .
Finding a minimizer θ z over ( Ker W ) ⊥ is not the same as finding a minimizer over H. Although in both cases Mazur-Schauder's theorem guarantees that the respective minimizers are unique, they might not be the same. Since W is bounded, Ker W is closed, so that we can perform the decomposition

H = ( Ker W ) ⊥ ⊕ ( Ker W )
. Then clearly by linearity of W and the fact that for all θ ∥ ∈ Ker W, Wθ ∥ = 0, if λ > 0 we have

θ z = arg min θ∈ H 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 ∥θ∥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ, M ik Φ(x k ) * θ ⟩ U Thus θ z = arg min θ ⊥ ∈(Ker W) ⊥ , θ ∥ ∈Ker W 1 N N ∑ i=1 c     V ( Wθ ⊥ ) (x) + V ( Wθ ∥ ) (x) =0 for all θ ∥ , y i     + λ K 2 θ ⊥ 2 H + λ K 2 θ ∥ 2 H =0 only if θ ∥ =0 + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ ⊥ , M ik ( Wθ ⊥ ) (x k ) ⟩ U + λ M 2 N+U ∑ i,k=1 ⟨ ( Wθ ∥ ) (x i ) =0 for all θ ∥ , M ik ( Wθ ⊥ ) (x k ) ⟩ U + λ M 2 N+U ∑ i,k=1 ⟨ ( Wθ ⊥ ) (x i ), M ik ( Wθ ∥ ) (x k ) =0 for all θ ∥ ⟩ U + λ M 2 N+U ∑ i,k=1 ⟨ ( Wθ ∥ ) (x i ) =0 for all θ ∥ , M ik ( Wθ ∥ ) (x k ) =0 for all θ ∥ ⟩ U .
Thus

θ z = arg min θ ⊥ ∈ ( Ker W ) ⊥ 1 N N ∑ i=1 c ( V ( Wθ ⊥ ) (x), y i ) + λ K 2 θ ⊥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ ⊥ , M ik ( Wθ ⊥ ) (x k ) ⟩ U .
Hence minimizing over ( Ker W ) ⊥ or H is the same when λ K > 0. Eventually,

θ z = arg min θ∈ H 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 ∥θ∥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨ Φ(x i ) * θ, M ik Φ(x k ) * θ ⟩ U = arg min θ∈ H 1 N N ∑ i=1 c ( V Φ(x i ) * θ, y i ) + λ K 2 ∥θ∥ 2 H + λ M 2 N+U ∑ i,k=1 ⟨ θ, Φ(x i )M ik Φ(x k ) * θ ⟩ H .
This theorem is illustrated by Figure B.1. We use the classic two moons dataset 1 . We first perform an unsupervised spectral clustering step [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] and construct the matrix where C ik is 1 if x i and x k are in the same cluster, 0 otherwise. Then we take the inverse Laplacian of this matrix and use it as the data dependent operator M. E

b.1.2 Gradients

By linearity and applying the chaine rule to Equation B.6 and since M * ik = M ki for all i, k ∈ N * N+U , we have

∇ θ c ( V Φ(x i ) * θ, y i ) = Φ(x i )V * ( ∂ ∂y c (y, y i ) y=V Φ(x i ) * θ ) * , ∇ θ ⟨ Φ(x i ) * θ, M ik Φ(x k ) * θ ⟩ U = Φ(x i ) (M ik + M * ki ) Φ(x k ) * θ, ∇ θ ∥θ∥ 2 H = 2θ.
Provided that c(y, y i ) is Frechet differentiable w. r. t. y, for all y and y i ∈ Y we have ∇ θ J λ K (θ) ∈ H and Therefore after factorization, considering λ K > 0,

∇ θ J λ K (θ) = 1 N N ∑ i=1 Φ(x i )V * ( ∂ ∂y c (y, y i ) y=V Φ(x i ) * θ ) * + λ K θ + λ M N+U ∑ i,k=1 Φ(x i )M ik Φ(x k ) * θ
∇ θ J λ K (θ) = 1 N N ∑ i=1 Φ(x i )V * ( ∂ ∂y c (y, y i ) y=V Φ(x i ) * θ ) * + λ K ( I H + λ M λ K N+U ∑ i,k=1 Φ(x i )M ik Φ(x k ) * ) θ
We note the quantity

(B.7) M (λ K ,λ M ) = I H + λ M λ K N+U ∑ i,k=1 Φ(x i )M ik Φ(x k ) * ∈ L( H) so that ∇ θ J λ K (θ) = 1 N N ∑ i=1 Φ(x i )V * ( ∂ ∂y c (y, y i ) y=V Φ(x i ) * θ ) * + λ K M (λ K ,λ M ) θ (B.8)
Example B.1 (Naive closed form for the squared error cost). Consider the cost function defined for all y, y ′ ∈ Y by c(y, y

′ ) = 1 2 ∥y -y∥ 2 Y . Then ( ∂ ∂y c (y, y i ) y=V Φ(x i ) * θ ) * = ( V Φ(x i ) * θ -y i
) .

Thus, since the optimal solution θ z verifies ∇ θ z J λ K (θ z ) = 0 we have

1 N N ∑ i =1 Φ(x i )V * ( V Φ(x i ) * θ z -y i ) + λ K M (λ K ,λ M ) θ z = 0.
Therefore, (B.9)

( 1 N N ∑ i=1 Φ(x i )V * V Φ(x i ) * + λ K M (λ K ,λ M ) ) θ z = 1 N N ∑ i=1 Φ(x i )V * y i .
Suppose that Y ⊆ R p , V : U → Y where U ⊆ R u and for all x ∈ X, Φ(x) : R r → R u where all spaces are endowed with the euclidean inner product. From this we can derive Algorithm 6 which returns the closed form solution of Equation 6.6 for c(y, y ′ ) = 1 2 ∥yy ′ ∥ 2 2 .

b.1.3 Complexity

Suppose that u = dim(U) < +∞ and u ′ = dim(U ′ ) < ∞ and for all x ∈ X, Φ(x) : U ′ → H where r = dim( H) < ∞ is the dimension of the redescription space H = R r . Since u, u ′ , and r < ∞, we view the operators Φ(x), V and M (λ K ,λ M ) as matrices. Computing V * V cost O t (u 2 p).

Step 1 costs O t (r 2 u + ru 2 ). Steps 5 (optional) has the same cost except that the sum is done over all pair of N + U points thus it while the space complexity is O s (r 2 ). This complexity is to compare with the kernelized solution proposed by Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF]. Let

K :    U N+U → U N+U u → ⊕ N+U i=1 ∑ N+U j=1 K(x i , x j )u j and M :    U N+U → U N+U u → ⊕ N+U i=1 ∑ N+U k=1 M ik u k . When U = R, K =     K(x 1 , x 1 ) . . . K(x 1 , x N+U ) . . . . . . . . . K(x N+U , x 1 ) . . . K(x N+U , x N+U )    
is called the Gram matrix of K. When U = R p , K is a matrix-valued Gram matrix of size u(N + U) × u(N + U) where each entry K ij ∈ M u,u (R). When U = R u , M can also be seen as a matrix-valued matrix where each entry is M ik ∈ M u,u (R). We also introduce the matrices V T V := I N+U ⊗ (V T V) and

P :    U N+U → U N+U u → ( ⊕ N j=1 u j ) ⊕ ( ⊕ N+U j=N+1 0
)

The operator P is a projection that sets all the terms u j , N < j ⩽ N + U of u to zero. When U = R u it can also be seen as the block matrix of size u(N + U) × u(N + U) and 

P =             0 
           
Then the equivalent kernelized solution u z of Theorem B.1 is given by Minh, Bazzani, and Murino [START_REF] Minh | A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning[END_REF] ( def EfficientDecomposableGaussianORFF(X, A, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Efficient ORFF map associated with the data X.

N V T VPK + λ M MK + λ K I ⊕ N+U i=1 U ) u z = ( N ⊕ i=1 V T y i ) ⊕ ( N+U ⊕ 1 

Parameters ----------X : {array-like}, shape = [n_samples, n_features]

Samples )), b), rmatvec=lambda r: dot((phiX.reshape((phiX.shape[0], 1, phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF])) * phi_s.random_weights_.reshape((1, -1, phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]))).reshape (phiX.shape[0] * X.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]).T, r), def EfficientDivergenceFreeGaussianORFF(X, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Efficient ORFF map associated with the data X. ----------X Returns -------\tilde{\Phi}(X) : array """ phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state) phiX = phi_s.fit_transform(X) W = phi_s.random_weights_.reshape((1, -1, 1, phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF])) Wn = norm(phi_s.random_weights_, axis=0).reshape((1, 1, 1, -1)) return LinearOperator((phiX.shape[0] * X.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], phiX.shape[1] * X.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]), matvec=lambda b: dot(_rebase(phiX, W, Wn), b), rmatvec=lambda r: dot(_rebase(phiX, W, Wn).T, r), dtype=float) Anomalies, novelties or outliers are usually assumed to lie in low probability regions of the data generating process. This assumption drives many statistical anomaly detection methods. Parametric techniques [START_REF] Barnett | Outliers in statistical data[END_REF][START_REF] Eskin | Anomaly Detection over Noisy Data using Learned Probability Distributions[END_REF] suppose that the inliers are generated by a distribution belonging to some specific parametric model a priori known. Here and hereafter, we denote by inliers the "not abnormal" data, and by outliers/anomalies/novelties the data from the abnormal class. Classical non-parametric approaches are based on density (level set) estimation [START_REF] Breunig | LOF: identifying density-based local outliers[END_REF][START_REF] Quinn | A least-squares approach to anomaly detection in static and sequential data[END_REF][START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF][START_REF] Scott | Learning minimum volume sets[END_REF], on dimensionality reduction [2, 157] or on decision trees [START_REF] Liu | Isolation Forest[END_REF][START_REF] Shi | Unsupervised learning with random forest predictors[END_REF]. Relevant overviews of current research on anomaly detection can be found in Chandola, Banerjee, and Kumar [START_REF] Chandola | Anomaly detection: A survey[END_REF], Hodge and Austin [START_REF] Hodge | A survey of outlier detection methodologies[END_REF], Markou and Singh [START_REF] Markou | Novelty detection: a review part 1: statistical approaches[END_REF], and Patcha and Park [START_REF] Patcha | An overview of anomaly detection techniques: Existing solutions and latest technological trends[END_REF].

Parameters

q D O N E C L A S S S P L I T T I N G C R I T E R I A F O R R A N D O M F O R E S T S
The algorithm proposed in this paper lies in the novelty detection setting, also called one-class classification. In this framework, we assume that we only observe examples of one class (referred to as the normal class, or inlier class). The second -hidden-class is called the abnormal class, or outlier class. The goal is to identify characteristics of the inlier class, such as its support or some density level sets with levels close to zero. This setup is for instance used in some -nonparametric-kernel methods such as OCSM [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], which extends the SVM methodology [START_REF] Cortes | Support-Vector Networks[END_REF][START_REF] Shawe-Taylor | Kernel methods for pattern analysis[END_REF] to handle training using only inliers. Recently, LSAD [START_REF] Quinn | A least-squares approach to anomaly detection in static and sequential data[END_REF], a kernel method similarly extends a multi-class probabilistic classifier [START_REF] Sugiyama | Superfast-trainable multi-class probabilistic classifier by least-squares posterior fitting[END_REF] to the one-class setting.

Random Forests (RFs) are strong machine learning tools [START_REF] Breiman | Random Forests[END_REF], comparing well with state-of-the-art methods such as SVM or boosting algorithms [START_REF] Freund | Experiments with a new boosting algorithm[END_REF], and used in a wide range of domains [START_REF] Díaz-Uriarte | Gene selection and classification of microarray data using random forest[END_REF][START_REF] Genuer | Variable selection using random forests[END_REF]168]. These estimators fit a number of decision tree classifiers on different random sub-samples of the dataset. Each tree is built recursively, according to a splitting criterion based on some impurity measure of a node. The prediction is done by an average over each tree prediction. In classification the averaging is based on a majority vote. Practical and theoretical insights on RFs are given in Biau, Devroye, and Lugosi [START_REF] Biau | Consistency of random forests and other averaging classifiers[END_REF], Biau and Scornet [START_REF] Biau | A random forest guided tour[END_REF], Genuer, Poggi, and Tuleau [START_REF] Genuer | Random Forests: some methodological insights[END_REF], and Louppe [START_REF] Louppe | Understanding random forests: From theory to practice[END_REF].

Yet few attempts have been made to transfer the idea of RFs to one-class classification [START_REF] Désir | One Class Random Forests[END_REF][START_REF] Liu | Isolation Forest[END_REF][START_REF] Shi | Unsupervised learning with random forest predictors[END_REF]. In Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF], the novel concept of isolation is introduced. The Isolation Forest algorithm isolates anomalies, instead of profiling the inlier behavior which is the usual approach. It avoids adapting splitting rules to the one-class setting by using extremely randomized trees, also named extra trees [START_REF] Geurts | Extremely randomized trees[END_REF]: isolation trees are built completely randomly, without any splitting rule. Therefore, Isolation Forest is not really based on RFs, the base estimators being extra trees instead of classical decision trees. Isolation Forest performs very well in practice with low memory and time complexities. In Désir et al. [START_REF] Désir | One Class Random Forests[END_REF] and Shi and Horvath [START_REF] Shi | Unsupervised learning with random forest predictors[END_REF], outliers are generated to artificially form a second class. In Désir et al. [START_REF] Désir | One Class Random Forests[END_REF] the authors propose a technique to reduce the number of outliers needed by shrinking the dimension of the input space. The outliers are then generated from the reduced space using a distribution complementary to the inlier distribution. Thus their algorithm artificially generates a second class, to use classical RFs. In Shi and Horvath [START_REF] Shi | Unsupervised learning with random forest predictors[END_REF], two different outliers generating processes are compared. In the first one, an artificial second class is created by randomly sampling from the product of empirical marginal -inlier-distributions. In the second one outliers are uniformly generated from the hyper-rectangle that contains the observed data. The first option is claimed to work best in practice, which can be understood from the curse of dimensionality argument: in large dimension [START_REF] Tax | Uniform object generation for optimizing one-class classifiers[END_REF], when the outliers distribution is not tightly defined around the target set, the chance for an outlier to be in the target set becomes very small, so that a huge number of outliers is needed.

Looking beyond the RF literature, Scott and Nowak [START_REF] Scott | Learning minimum volume sets[END_REF] proposes a methodology to build dyadic decision trees to estimate minimumvolume sets [START_REF] Einmahl | Generalized quantile processes[END_REF][START_REF] Polonik | Minimum volume sets and generalized quantile processes[END_REF]. This is done by reformulating their structural risk minimization problem to be able to use the algorithm in Blanchard, Schäfer, and Rozenholc [START_REF] Blanchard | Oracle bounds and exact algorithm for dyadic classification trees[END_REF]. While this methodology can also be used for non-dyadic trees pruning (assuming such a tree has been previously constructed, e. g. using some greedy heuristic), it does not allow to grow such trees. Also, the theoretical guaranties derived there relies on the dyadic structure assumption. In the same spirit, Clémençon and Robbiano [START_REF] Clémençon | Anomaly Ranking as Supervised Bipartite Ranking[END_REF] proposes to use the two-class splitting criterion defined in Clémençon and Vayatis [START_REF] Clémençon | Tree-based ranking methods[END_REF]. This two-class splitting rule aims at producing oriented decision trees with a "leftto-right" structure to address the bipartite ranking task. Extension to the one-class setting is done by assuming a uniform distribution for the outlier class. Consistency and rate bounds relies also on this left-to-right structure. building process to a recursive optimization procedure, thus allowing Thus, these two references [START_REF] Clémençon | Anomaly Ranking as Supervised Bipartite Ranking[END_REF][START_REF] Scott | Learning minimum volume sets[END_REF] impose constraints on the tree structure (designed to allow a statistical study) which differs then significantly from the general structure of the base estimators in RF. The price to pay is the flexibility of the model, and its ability to capture complex broader patterns or structural characteristics from the data.

In this paper, we make the choice to stick to the RF framework. We do not assume any structure for the binary decision trees. The price to pay is the lack of statistical guaranties -the consistency of RFs has only been proved recently [START_REF] Scornet | Consistency of random forests[END_REF] and in the context of regression additive models. The gain is that we preserve the flexibility and strength of RFs, the algorithm presented here being able to compete well with state-of-the-art anomaly detection algorithms. Besides, we do not assume any -fixed in advance-outlier distribution as in Clémençon and Robbiano [START_REF] Clémençon | Anomaly Ranking as Supervised Bipartite Ranking[END_REF], but define it in an adaptive way during the tree building process.

To the best of our knowledge, no algorithm structurally extends (without second class sampling and without alternative base estimators) RFs to one-class classification. The main purpose of this work is to introduce such a methodology. It builds on a natural adaptation of two-class Gini-based criterion specially designed for splitting criteria to the one-class setting, as well as an adaptation of the two-class majority vote.

The basic underlying idea is the following. To split a node without second class examples (outliers), we proceed as follows. Each time we look for the best split for a node t, we simply replace (in the two-class impurity decrease to be maximized going to the left child node t L by the proportion expectation Leb(t L )/Leb(t) (idem for the right node), Leb(t) being the Lebesgue measure, i. e. the volume of the rectangular cell corresponding to node t. It ensures that one child node manages to capture the maximum number of observations with a minimal volume, while the other child looks for the opposite. This simple idea corresponds to an adaptive modeling of the outlier distribution. The proportion expectation mentioned above is weighted proportionally to the number of inliers in node t. Thus, the resulting outlier distribution is tightly concentrated around the inliers. the latter concentrates outside, closely around but also inside the support of the normal distribution. Besides, and this attests the consistency of our approach with the two-class framework, it turns out that the one-class model promoted here corresponds to the asymptotic behavior of an adaptive outliers generating methodology. This paper is structured as follows. Appendix D.1 provides the reader with necessary background, to address Appendix D.2 which proposes an adaptation of RFs to the one-class setting and describes a generic one-class random forest algorithm. The latter is compared empirically with state-of-the-art anomaly detection methods in Appendix D.3. Finally a theoretical justification of the one-class criterion is given in Appendix D.4.

d.1 background on decision trees

Let us denote by X ⊂ R d the d-dimensional hyper-rectangle containing all the observations. Consider a binary tree on X whose node values are subsets of X, iteratively produced by splitting X into two disjoint subsets. Each internal node t with value X t is labeled with a split feature m t and split value c t (along that feature), in such a way that it divides X t into two disjoint spaces

X t L := { x ∈ X t | x m t < c t } and X t R := { x ∈ X t | x m t ⩾ c t },
where t L (respectively t R ) denotes the left (respectively right) children of node t, and x j denotes the jth coordinate of vector x. Such a binary tree is grown from a sample X 1 , . . . , X n (∀i ∈ N * n , X i ∈ X) and its finite depth is determined either by a fixed maximum depth value or by a stopping criterion evaluated on the nodes (e. g. based on an impurity measure). The external nodes (the leaves) form a partition of X.

In a supervised classification setting, these binary trees are called classification trees and prediction is made by assigning to each sample x ∈ X the majority class of the leaves containing x. This is called the majority vote. Classification trees are usually built using an impurity measure i(t) whose decrease is maximized at each split of a node t, yielding an optimal split (m * t , c * t ). The decrease of impurity (also called goodness of split) ∆i(t, t L , t R ) w. r. t. the split (m t , c t ) and corresponding to the partition X t = X t L ⊔ X t R of the node t is defined as

(D.1) ∆i(t, t L , t R ) = i(t) -p L i(t L ) -p R i(t R ),
where p L = p L (t) (respectively p R = p R (t)) is the proportion of samples from X t going to X t L (respectively to X t R ). The impurity measure i(t) reflects the goodness of node t: the smaller i(t), the purer the node t and the better the prediction by majority vote on this node. Usual choices for i(t) are the Gini index [START_REF] Gini | Variabilita e mutabilita[END_REF] or the Shannon entropy [START_REF] Shannon | A mathematical theory of communication[END_REF]. To produce a randomized tree, these optimization steps are usually partially randomized (conditionally on the data, splits (m * t , c * t )'s become random variables). A classification tree can even be grown totally randomly [START_REF] Geurts | Extremely randomized trees[END_REF]. In a two-class classification setup, the Gini index is

(D.2) i G (t) = 2 ( n t n t + n ′ t ) ( n ′ t n t + n ′ t )
where n t (respectively n ′ t ) stands for the number of observations with label 0 (respectively 1) in node t. The Gini index is maximal when n t /(n t + n ′ t ) = n ′ t /(n t + n ′ t ) = 0.5, namely when the conditional probability to have label 0 given that we are in node t is the same as to have label 0 unconditionally: the node t does not discriminate at all between the two classes. For a node t, maximizing the impurity decrease Equation D.1 is equivalent to minimizing p

L i(t L ) + p R i(t R ). Since p L = (n t L + n ′ t L )/(n t + n ′ t ) and p R = (n t R + n ′ t R )/(n t + n ′ t )
, and the quantity (n t + n ′ t ) being constant in the optimization problem, this is equivalent to minimizing the following proxy of the impurity decrease, (D.3)

I(t L , t R ) = (n t L + n ′ t L )i(t L ) + (n t R + n ′ t R )i(t R ).
Note that with the Gini index i G (t) given in Equation D.2, the corresponding proxy of the impurity decrease is

(D.4) I G (t L , t R ) = n t L n ′ t L n t L + n ′ t L + n t R n ′ t R n t R + n ′ t R .
In the one-class setting, no label is available, hence the impurity measure i(t) does not apply to this setup. The standard splitting criterion which consists in minimizing the latter cannot be used anymore.

d.2 adaptation to the one-class setting

The two reasons why RFs do not apply to one-class classification are that the standard splitting criterion does not apply to this setup, as well as the majority vote. In this section, we propose a one-class splitting criterion and a one-class version of the majority vote. In the naive approach, G does not depends on the tree and is constant on the input space. In the adaptive approach the distribution depends on the inlier distribution F through the tree. The outliers density is constant and equal to the average of F on each node before splitting it.

As one does not observe the second-class (outliers), n ′ t needs to be defined. In the naive approach below, it is defined as n ′ t := n ′ Leb(X t )/Leb(X), where n ′ is the assumed total number of -hiddenoutliers. In the adaptive approach hereafter, it is defined as n ′ t := γn t , with typically γ = 1. Thus, the class ratio γ t := n ′ t /n t is well defined in both approaches and in the naive approach, goes to 0 when Leb(X t ) → 0 while it is maintained constant to γ in the adaptive one.

d.2.1.1 Naive approach

A naive approach to extend the Gini splitting criterion to the oneclass setting is to assume a uniform distribution for the second class (outliers), and to replace their number n ′ t in node t by the expectation n ′ Leb(X t )/Leb(X), where n ′ denotes the total number of outliers (for instance, it can be chosen as a proportion of the number of inliers). The problem with this approach appears when the dimension is not small. As mentioned in the introduction (curse of dimensionality), when actually generating n ′ uniform outliers on X, the probability that a node (sufficiently small to yield a good precision) contains at least one of them is very close to zero. That is why data-dependent distributions for the outlier class are often considered [START_REF] Désir | One Class Random Forests[END_REF][START_REF] Shi | Unsupervised learning with random forest predictors[END_REF]. Taking the expectation n ′ Leb(X t )/Leb(X) to replace the number of points in node t does not solve the curse of dimensionality mentioned in the introduction: the volume proportion L t := Leb(X t )/Leb(X) is very close to 0 for nodes t deep in the tree, especially in large dimension. In addition, we typically grow trees on sub-samples of the input data, meaning that even the root node of the trees may be very small compared to the hyper-rectangle containing all the input data. An other problem is that the Gini splitting criterion is skew-sensitive [START_REF] Flach | The geometry of ROC space: understanding ml metrics through ROC isometrics[END_REF], and has here to be apply on nodes t with 0 ≃ n ′ t ≪ n t . When trying empirically this approach, we observe that splitting such nodes produces a child containing (almost) all the data (see Appendix D.4).

Example D.1

To illustrate the fact that the volume proportion

L t : = Leb(X t ) Leb(X)
becomes very close to zero in large dimension for lots of nodes t (in particular the leaves), suppose for the sake of simplicity that the input space is X = [0, 1] d . Suppose that we are looking for a rough precision of 1/2 3 = 0.125 in each dimension, i. e. a unit cube precision of 2 -3d . To achieve such a precision, the splitting criterion has to be used on nodes/cells t of volume of order 2 -3d , namely with L t = 1/2 3d . Note that if we decide to choose n ′ to be 2 3d times larger than the number of inliers in order that n ′ L t is not negligible w. r. t. the number of inliers, the same -reversed-problem of unbalanced classes appears on nodes with small depth.

d.2.1.2 Adaptive approach

Our solution is to remove the uniform assumption on the outliers, and to choose their distribution adaptively in such a way it is tightly concentrated around the inlier distribution. Formally, the idea is to maintain constant the class ratio γ t := n ′ t /n t on each node t: before looking for the best split, we update the number of outliers to be equal (up to a scaling constant γ) to the number of inliers, n ′ t = γn t , i. e. γ t ≡ γ. These -hidden-outliers are uniformly distributed on node t. The parameter γ is typically set to γ = 1, see suppl. Appendix D.6.1 for a discussion on the relevance of this choice (in a nutshell, γ has an influence on optimal splits). Note that G is a piece-wise constant approximation of the inlier distribution F. Considering the Neyman-Pearson test X ∼ F versus X ∼ G instead of X ∼ F versus X ∼ U may seem surprising at first sight. Let us try to give some intuition on why this works in practice. First, there exists (at each step) ϵ > 0 such that G > ϵ on the entire input space, since the density G is constant on each node and equal to the average of F on this node before splitting it. If the average of F was estimated to be zero (no inlier in the node), the node would obviously not have been split, from where the existence of ϵ. Thus, at each step, one can also view G as a piece-wise approximation of F ϵ := (1ϵ)F + ϵU, which is a mixture of F and the uniform distribution. (ϵ depending on the step/number of splits) Yet, one can easily show that optimal tests for the Neyman-Pearson problem H 0 : X ∼ F vs. H 1 : X ∼ F ϵ are identical to the optimal tests for H 0 : X ∼ F vs. H 1 : X ∼ U, since the corresponding likelihood ratios are related by a monotone transformation, see Scott and Blanchard [START_REF] Scott | Novelty detection: Unlabeled data definitely help[END_REF] for instance (in fact, this reference shows that these two problems are even equivalent in terms of consistency and rates of convergence of the learning rules). An other intuitive justification is as follows. In the first step, the algorithm tries to discriminate F from U. When going deeper in the tree, splits manage to discriminate F from a (more and more accurate) approximation of F. Asymptotically, splits become irrelevant since they are trying to discriminate F from itself (a perfect approximation, ϵ → 0). Remark D.1 (Consistency with the two-class framework) Consider the following method to generate outliers -tightly concentrated around the support of the inlier distribution. Sample uniformly n ′ = γn outliers on the rectangular cell containing all the inliers. Split this root node using classical two-class impurity criterion (e. g. minimizing Equation D.4). Apply recursively the three following steps: for each node t, remove the potential outliers inside X t , re-sample n ′ t = γn t uniform outliers on X t , and use the latter to find the best split using Equation D.4. Then, each optimization problem Equation D.4 we have solved is equivalent (in expectation) to its one-class version Equation D.5. In other words, by generating outliers adaptively, we can recover (in average) a tree grown using the one-class impurity, from a tree grown using the two-class impurity.

Remark D.2 (Extension to other impurity criteria) Our extension to the one-class setting also applies to other impurity criteria. For instance, in the case of the Now that RFs can be grown in the one-class setting using the oneclass splitting criterion, the forest has to return a prediction adapted to this framework. In other words we also need to extend the concept of majority vote. Most usual one-class (or more generally anomaly detection) algorithms actually provide more than just a level-set estimate or a predicted label for any new observation, abnormal versus normal. Instead, they return a real valued function, termed scoring function, defining a preorder/ranking on the input space. Such a function s : R d → R allows to rank any observations according to their supposed "degree of abnormality". Thresholding it provides level-set estimates, as well as a decision rule that splits the input space into inlier/normal and outlier/abnormal regions. The scoring function s(x) we use is the one defined in Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF] in view of its established high performance. It is a decreasing function of the average depth of the leaves containing x in the forest. An average term is added to each node containing more than one sample, say containing N samples. This term c(N) is the average depth of an extremely randomized tree [START_REF] Geurts | Extremely randomized trees[END_REF] (i. e. built without minimizing any criterion, by randomly choosing one feature and one uniform value over this feature to split on) on N samples. Formally, (D.6) log 2 s(x) = -

( ∑ t leaves 1 { x∈t } d t + c(n t ) ) /c(n),
where d t is the depth of node t, and c(n) = 2H(n -1) -2(n -1)/n, H(i) being the harmonic number. Alternative scoring functions can be defined for this one-class setting (see Appendix D.6.2).

d.2.3 OneClassRF: a Generic One-Class Random Forest algorithm

Let us summarize the One Class Random Forest algorithm, based on generic RFs [START_REF] Breiman | Random Forests[END_REF]. It has 6 parameters, namely max_samples, max_features_tree, max_features_node, gamma, max_depth, n_trees. Each tree is classically grown on a random subset of both the input samples and the input features [START_REF] Ho | The random subspace method for constructing decision forests[END_REF][START_REF] Panov | Combining bagging and random subspaces to create better ensembles[END_REF]. This random subset is a sub-sample of size max_samples, with max_features_tree variables chosen at random without replacement (replacement is only done after the tree is grown). The tree is built by minimizing Equation D.5 for each split, using parameter γ (recall that n ′ t := γn t ), until either the maximal depth max_depth is achieved or the node contains only one point. Minimizing Equation D.5 is done as introduced in Amit and Geman [START_REF] Amit | Shape quantization and recognition with randomized trees[END_REF]: at each node, we search the best split over a random selection of features with fixed size max f eatures n ode. The forest is composed of a number n t rees of trees. The predicted score of a point x is given by s(x), with s defined by Equation D.6. Remarks on alternative stopping criteria and variable importances are available in Appendix D.6.3. 

d.3 benchmarks

In this section, we compare the OneClassRF algorithm described above to seven state-of-art anomaly detection algorithms: the IForest algorithm [START_REF] Liu | Isolation Forest[END_REF], a one-class RFs algorithm based on sampling a second class OCRFsampling [START_REF] Désir | One Class Random Forests[END_REF], One-Class Support Vector Machine (OCSM) [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF], Local Outlier Factor (LOF) [START_REF] Breunig | LOF: identifying density-based local outliers[END_REF], Orca [START_REF] Bay | Mining distance-based outliers in near linear time with randomization and a simple pruning rule[END_REF], Least Squares Anomaly Detection (LSAD) [START_REF] Quinn | A least-squares approach to anomaly detection in static and sequential data[END_REF], Random Forest Clustering (RFC) [START_REF] Shi | Unsupervised learning with random forest predictors[END_REF].

d.3.1 Default parameters of OneClassRF

The default parameters taken for our algorithm are the followings.

• max_samples is fixed to 20% of the training sample size (with a minimum of 100);

• max_features_tree is fixed to 50% of the total number of features with a minimum of 5 (i. e. each tree is built on 50% of the total number of features);

• max_features_node is fixed to 5;

• γ is fixed to 1;

• max_depth is fixed to log 2 (logarithm in base 2) of the training sample size as in Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF];

• n_trees is fixed to 100 as in the previous reference.

The other algorithms in the benchmark are trained with their recommended (default) hyper-parameters as seen in their respective paper or author's implementation. See Appendix D.7 for details. The characteristics of the twelve reference datasets considered here are summarized in Table D.1. They are all available on the UCI repository [START_REF] Lichman | UCI Machine Learning Repository[END_REF] and the preprocessing is done as usually in the literature (see Appendix D.8).

d.3.2 Results

All the code is available at https://github.com/ngoix/OCRF. The experiments are performed in the novelty detection framework, where the training set consists of inliers only. No significance level test are We consider a r. v. X : Ω → R d w. r. t. a probability space (Ω, F, Pr).

The law of X depends on another r. v. y ∈ {0, 1}, verifying Pr { y = 1 } = 1 -Pr { y = 0 } = α. We assume that conditionally on y = 0, X follows a law F, and conditionally on y = 1 a law G;

X | y = 0 ∼ F, Pr { y = 0 } = 1 -α, X | y = 1 ∼ G, Pr { y = 1 } = α.
Then, considering We model the one-class framework as follows. Among the n i. i. d. observations, we only observe those with y = 0 (the inliers), namely N realizations of (X | y = 0), where N is itself a realization of a r. v. N of law N ∼ Bin(n, (1α)). Here and hereafter, Bin(n, p) denotes the binomial distribution with parameters (n, p). As outliers are not observed, it is natural to assume that G follows a uniform distribution on the hyper-rectangle X containing all the observations, so that G has a constant density g(•) = 1/Leb(X) on X. Note that this assumption will be removed in the adaptive approach described below -which aims at maintaining a non-negligible proportion of (hidden) outliers in every nodes.

p(t L |t) = Pr { X ∈ X t L | X ∈ X t } , and 
p(t R |t) = Pr { X ∈ X t R | X ∈ X t } ,
Let us define L t = Leb(X t )/Leb(X). Then, Pr { X ∈ X t | y = 1 } = Pr { y = 1 } Pr { X ∈ X t | y = 1 } = αL t . Replacing Pr { X ∈ X t | y = 0 } by its empirical version n t /n in Equation D.8, we obtain the one-class empirical Gini index (D.9) i OC G (t) = n t αnL t (n t + αnL t ) 2 . This one-class index can be seen as a semi-empirical version of Equation D.8, in the sense that it is obtained by considering empirical quantities for the (observed) inlier behavior and population quantities for the (non-observed) outlier behavior. Now, maximizing the population version of the impurity decrease ∆i theo G (t, t L , t R ) as defined in Equation D.7 is equivalent to minimizing (D.10)

p(t L |t)i theo G (t L ) + p(t R |t)i theo G (t R ).
Considering semi-empirical versions of p(t L |t) and p(t R |t), as for Equation D.9, gives p n (t L |t) = (n t L + αnL t L )/(n t + αnL t ) and p n (t R |t) = (n t R + αnL t R )/(n t + αnL t ). Then, the semi-empirical version of Equation D. ), the number of second class instances in t L (respectively in t R ). When generating αn of them uniformly on X, αnL t is the expectation of n ′ t . As detailed in Appendix D.2.1, this approach suffers from the curse of dimensionality. We can summarize the problem as follows. Note that when setting n ′ t := αnL t , the class ratio γ t = n ′ t /n t is then equal to (D.13) γ t = αnL t /n t . This class ratio is close to 0 for lots of nodes t, which makes the Gini criterion unable to discriminate accurately between the -hidden-outliers and the inliers. Minimizing this criterion produces splits corresponding to γ t ≃ 0 in Figure D.2: one of the two child nodes, say t L contains almost all the data.

d.4.2 Adaptive approach

The solution presented Appendix D.2 is to remove the uniform assumption for the outlier class. From the theoretical point of view, the idea is to choose in an adaptive way (w. r. t. the volume of X t ) the number αn, which can be interpreted as the number of (hidden) outliers. α). Doing so, we aim at avoiding αnL t ≪ n t when L t is too small. Namely, with γ t defined in Equation D. [START_REF] Bach | On the equivalence between quadrature rules and random features[END_REF], we aim at avoiding γ t ≃ 0 when L t ≃ 0. The idea is to consider α(L t ) and n(L t ) such that α(L t ) → 1, n(L t ) → ∞ when L t → 0. We then define the one-class adaptive proxy of the impurity decrease by (D.14)

I OC-ad G (t L , t R ) = n t L α(L t )n(L t )L t L n t L + α(L t )n(L t )L t L + n t R α(L t )n(L t )L t R n t R + α(L t ) • n(L t ) • L t R .
In other words, instead of considering one general model One-Class-Model(n, α) defined in Appendix D.4.1, we adapt it to each node t, considering One-Class-Model(n(L t ), α(L t )) before searching the best split. We still consider the N inliers as a realization of this model. When growing the tree, using One-Class-Model(n(L t ), α(L t )) allows to maintain a non-negligible expected proportion of outliers in the node to be split, despite L t becomes close to zero. Of course, constraints have to be imposed to ensure consistency between these models. Recalling that the number N of inliers is a realization of N following a Binomial distribution with parameters (n, 1α), a first natural constraint on (n(L t ), α(L t )) is (D.15) (1α)n = (1α(L t )) • n(L t ), for all t, so that the expectation of N remains unchanged.

Remark D. [START_REF] Alfsen | A simplified constructive proof of the existence and uniqueness of Haar measure[END_REF] In our adaptive model One-Class-Model(n(L t ), α(L t )) which varies when we grow the tree, let us denote by N(L t ) ∼ Bin (n(L t ), 1α(L t )) the r. v. ruling the number of inliers. The number of inliers N is still viewed as a realization of it. Note that the distribution of N(L t ) converges in distribution to P ((1α)n) a Poisson distribution with parameter (1α)n when L t → 0, while the distribution Bin (n(L t ), α(L t )) of the r. v. n(L t ) -N(L t ) ruling the number of (hidden) outliers goes to infinity almost surely. In other words, the asymptotic model (when L t → 0) consists in assuming that the number of inliers N we observed is a realization of N ∞ ∼ P ((1α)n), and that an infinite number of outliers have been hidden.

A second natural constraint on (α(L t ), n(L t )) is related to the class ratio γ t . As explained in Appendix D.2.1, we do not want γ t to go to zero when L t does. Let us say we want γ t to be constant for all node t, equal to γ > 0. From the constraint γ t = γ and Equation D.13, we get (D.16) α(L t )n(L t )L t = γn t := n ′ t .

The constant γ is a parameter ruling the expected proportion of outliers in each node. Typically, γ = 1 so that there is as much expected uniform (hidden) outliers than inliers at each time we want to find the best split minimizing Equation D. Leb(X t ) , so that we recover Equation D.5.

d.5 conclusion

Through a natural adaptation of both (two-class) splitting criteria and majority vote, this paper introduces a methodology to structurally extend RFs to the one-class setting. Our one-class splitting criteria correspond to the asymptotic behavior of an adaptive outliers generating methodology, so that consistency with two-class RFs seems respected. While no statistical guaranties have been derived in this paper, a strong empirical performance attests the relevance of this methodology.

d.6 further insights on the algorithm d.6.1 Interpretation of parameter gamma

In order for the splitting criterion Equation D.5 to perform well, n ′ t is expected to be of the same order of magnitude as the number of inliers n t . If γ = n ′ t /n t ≪ 1, the split puts every inliers on the same side, even the ones which are far in the tail of the distribution, thus widely over-estimating the support of inliers. If γ ≫ 1, the opposite effect happens, yielding an estimate of a t-level set with t not close enough to 0. Figure D.2 illustrates the splitting criterion when γ varies. It clearly shows that there is a link between parameter γ and the level t γ of the induced level-set estimate. But from the theory, an explicit relation between γ and t γ is hard to derive. By default we set γ to 1. One could object that in some situations, it is useful to randomize this parameter. For instance, in the case of a bi-modal distribution for the inlier/normal behavior, one split of the tree needs to separate two clusters, in order for the level set estimate to distinguish between the two modes. As illustrated in Figure D.4, it can only occur if n ′ t is large with respect to n t (γ ≫ 1). However, the randomization of γ is somehow included in the randomization of each tree, thanks to the sub-sampling inherent to RFs. Moreover, small clusters tend to vanish when the sub-sample size is sufficiently small: a small sub-sampling size is used by Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF] to isolate outliers even when they form clusters.

d.6.2 Alternative scoring functions

Although we use the scoring function defined in Equation D.6 because of its established high performance [START_REF] Liu | Isolation Forest[END_REF], other scoring functions can be defined. A natural idea to adapt the majority vote to the one-class setting is to change the single vote of a leaf node t into the fraction n t Leb(X t ) , the forest output being the average of the latter quantity over the forest, s(x) = ∑ t leaves 1 { x∈t } n t

Leb(X t ) . In such a case, each tree of the forest yields a piece-wise density estimate on its induced partition. The output produced by the forest is then a step-wise density estimate. We could also think about the local density of a typical cell. For each point x of the input space, it returns the average number of observations in the leaves containing x, divided by the average volume of such leaves. The output of OneClassRF is then the scoring function s(x) = (∑

t leaves 1 { x∈t } n t ) (∑ t leaves 1 { x∈t } Leb(X t ) ) -1 ,
where the sums are over each leave of each tree in the forest. This score can be interpreted as the local density of a "typical" cell (typical among those usually containing x).

d.6.3 Alternative stopping criteria

Other stopping criteria than a maximal depth may be considered. We could stop splitting a node t when it contains less than n_min observations, or when the quantity n t /Leb(X t ) is large enough (all the points in the cell X t are likely to be inliers) or close enough to 0 (all the points in the cell X t are likely to be outliers). These options are not discussed in this work.

d.6.4 Variable importance

In the multiclass setting, Breiman [START_REF] Breiman | Random Forests[END_REF] proposed to evaluate the importance of a feature j ∈ { 1, . . . d } for prediction by adding up the weighted impurity decreases for all nodes t where X j is used, averaged over all the trees. The analogue quantity can be computed with respect to the one-class impurity decrease proxy. In our one-class setting, this quantity represents the size of the tail of X j , and can be interpreted as the capacity of feature j to discriminate between inliers/outliers.

d.7 hyper-parameters of tested algorithms

Overall we chose to train the different algorithms with their (default) hyper-parameters as seen in their respective paper or author's implementation. Indeed, since we are in an unsupervised setting, there is no trivial way to select/learn the hyperparameters of the different algorithm in the training phase -the labels are not supposed to be available. Hence the more realistic way to test the algorithms is to use their recommended/default hyperparameters.

The OCSM algorithm uses default parameters: kernel='rbf' with tol=1e-3, nu=0.5, shrinking=True and gamma=1/n_features, where tol is the tolerance for stopping criterion.

The LOF algorithm uses default parameters: n_neighbors=5 with the leaf_size=30 and metric='minkowski' and contamination=0.1 and algorithm='auto', where the algorithm parameters stipulates how to compute the nearest neighbors (either ball-tree, kd-tree or brute-force). The OCRFsampling algorithm uses default parameters: the number of dimensions for the Random Subspace Method krsm=-1, the number of features randomly selected at each node during the induction of the tree krfs=-1, n_tree=100, the factor controlling the extension of the outlier domain used to sample outliers according to the volume of the hyper-box surrounding the target data alpha=1.2, the factor controlling the number of outlier data generated according to the number of target data beta=10, whether outliers are generated from uniform distribution optimize=0 and eventually whether data outside target bounds are considered as outlier data rejectOutOfBounds=0.

The Orca algorithm uses default parameter k=5 (number of nearest neighbors) as well as N=n/8 (how many anomalies are to be reported). The last setting, set up in the empirical evaluation of iForest in Liu, Ting, and Zhou [START_REF] Liu | Isolation-Based Anomaly Detection[END_REF], allows a better computation time without impacting Orca's performance.

The RFC algorithm uses default parameters: no.forests=25 with the number of trees no.trees=3000, the Addcl1 Random Forest dissimilarity addcl1=T, addcl2=F use the importance measure imp=T, the data generating process oob.prox1=T, the number of features sampled at each split mtry1=3.

The LSAD algorithm uses default parameters: the maximum number of samples per kernel n_kernels_max=500, the center of each kernel (the center of the random sample subset by default) kernel_pos='None', the kernel scale parameter (using the pairwise median trick by default [START_REF] Jaakkola | Using the Fisher kernel method to detect remote protein homologies[END_REF]) gamma='None', the regularization parameter rho=0.1.

d.8 description of the datasets

The characteristics of the twelve reference datasets considered here are summarized in Table D.1. They are all available on the UCI repository [START_REF] Lichman | UCI Machine Learning Repository[END_REF] and the preprocessing is done in a classical way. In anomaly detection, we typically have data from two class (inliers/outliers) -in novelty detection, the second class is unavailable in training in outlier detection, training data are polluted by second class (anonymous) examples. The classical approach to adapt multi-class data to this framework is to set classes forming the outlier class, while the other classes form the inlier class.

We removed all categorial attributes. Indeed, our method is designed to handle data whose distribution is absolutely continuous w. r. t. the Lebesgue measure. The http and smtp datasets belong to the KDD Cup '99 dataset [START_REF] Kddcup | The third international knowledge discovery and data mining tools competition dataset[END_REF][START_REF] Tavallaee | A detailed analysis of the KDD CUP 99 data set[END_REF], which consist of a wide variety of hand-injected attacks (anomalies) in a closed network (normal/inlier background). They are classically obtained as described in Yamanishi et al. [START_REF] Yamanishi | On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[END_REF]. This two datasets are available on the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. The shuttle dataset is the fusion of the training and testing datasets available in the UCI repository. As in Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF], we use instances from all different classes but class 4. In the forestcover data, the inliers are the instances from class 2 while instances from class 4 are anomalies (as in Liu, Ting, and Zhou [START_REF] Liu | Isolation Forest[END_REF]). The ionosphere dataset differentiates "good" from "bad" radars, considered here as abnormal. A "good" radar shows evidence of some type of structure in the ionosphere. A "bad" radar does not, its signal passing through the ionosphere. The spambase dataset consists of spam or non-spam emails. The former constitute our anomaly class. The annthyroid medical dataset on hypothyroidism contains one nor- mal class and two abnormal ones, which form our outliers. The arrhythmia dataset reflects the presence and absence (class 1) of cardiac arrhythmia. The number of attributes being large considering the sample size, we removed attributes containing missing data. Besides, we removed attributes taking less than 10 different values, the latter breaking too strongly our absolutely continuous assumption (w. r. t. to Leb). The pendigits dataset contains 10 classes corresponding to the digits from 0 to 9, examples being handwriting samples. As in Schubert et al. [START_REF] Schubert | On Evaluation of Outlier Rankings and Outlier Scores[END_REF], the outliers are chosen to be those from class 4. The pima dataset consists of medical data on diabetes. Patients suffering from diabetes (inlier class) were considered outliers. The wild dataset involves detecting diseased trees in Quickbird imagery. Diseased trees (class 'w') is our outlier class. In the adult dataset, the goal is to predict whether income exceeds $ 50K/year based on census data. We only keep the 6 continuous attributes.

d.9 further details on benchmarks and outlier detection results some algorithms have far higher computation times (OCRFsampling, OCSM, LOF and Orca have computation times higher than 30 minutes in some datasets). Our approach yields results similar to quite new algorithms such as IForest and LSAD. We also present experiments in the outlier detections setting. For each algorithm, 10 experiments on random training and testing datasets are performed. Averaged ROC and PR curves AUC are summarized in Table D. [START_REF] Alfsen | A simplified constructive proof of the existence and uniqueness of Haar measure[END_REF]. For the experiments made in an unsupervised framework (meaning that the training set is polluted by outliers), the anomaly rate is arbitrarily bounded to 10% max (before splitting data into training and testing sets). 
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 3 Bochner's theorem). Any continuous positive definite function is the Fourier Transform of a bounded non-negative Borel measure.It implies that any positive definite, continuous and shift-invariant kernel k, has a continuous and positive semi-definite signature k 0 , which is the Fourier Transform F of a non-negative measure µ. Hence we have k(x, z) = k 0 (xz) = ∫ R d exp (-i⟨ω, x -z⟩) dµ(ω) = F [k 0 ] (ω). Moreover µ = F -1 [k 0 ]. Without loss of generality, we assume that µ is a probability measure, i. e. ∫ R d dµ(ω) = 1 by renormalizing the kernel since ∫ i⟨ω, 0⟩) dµ(ω) = k 0 (0).
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 33 The Haar measure). A Haar measure µ = Haar on a LCA group X = (G, ⋆) is a Radon measure on (X, B(X)) which is non-zero on non-empty open sets and is invariant under translation. Namely 1. if Z ⊆ X is open and not empty, then Haar(Z) > 0.

  background
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 35 Characterization of Y-Mercer kernel (Carmeli et al. [41])). Let K be a reproducing kernel. The kernel K is Mercer if and only if the function x → ∥K(x, x)∥ Y,Y is locally bounded and for all x ∈ X and all y ∈ Y, K x y ∈ C(X; Y).
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 37 Kernel signature (Carmeli et al. [41])). Let K : X × X → L(Y) be a reproducing kernel. The following conditions are equivalents. 1. K is a positive-definite shift-invariant Operator-Valued Kernel.
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 3 Figure 3.2: Synthetic 2D curl-free field .
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 33 Figure 3.3: Synthetic 2D divergence-free field .
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  tinuous with respect to Haar and with associated probibility density function (p. d. f) ρ. Thus for all Z ⊂ B( X), Pr Haar,ρ (Z) = ∫ Z ρ(ω)d Haar(ω). When the reference measure Haar is the Lebesgue measure, we note Pr Haar,ρ = Pr Leb,ρ = Pr ρ .

  is the density of a probability measure Pr Haar,ρ , i. e. conclude by taking Pr Haar,ρ (Z) = ∫ Z ρ(ω)d Haar(ω),

  Γ , the Gaussian decomposable kernel where K dec,gauss e and k gauss e are respectively the signature of K and k on the additive group X = (R d , +)i. e. δ = xz and e = 0. The well known Gaussian kernel is defined for all δ ∈ R d as follows

  = ωω T ∥ω∥ -2 2 and the measure ρ curl,gauss Tr
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 46 Functional Fourier feature map). Let Y and Y ′ be two Hilbert spaces. If there exist an operator-valued function B : X → L(Y, Y ′ ) such that for all y, y ′ ∈ Y, ⟨y, B(ω)B(ω) * y ′ ⟩ Y = ⟨y ′ , A(ω)y⟩ Yµ-almost everywhere and ⟨y ′ , A(•)y⟩ ∈ L 1 ( X, µ) then the operator Φ x defined for all y in Y by(4.18) 

Figure 4 . 1 :

 41 Figure 4.1: Relationships between feature-maps. For any realization of ω j ∼ Pr Haar,ρ i. i. d., H = ⊕ D j=1 Y ′ .
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 48 Assume the same conditions as Proposition 4.7. Moreover, if one can define B : X → L(Y ′ , Y) such that for Pr Haar,ρ -almost all ω, and all y, y ′ ∈ Y, ⟨y, B(ω)B(ω

Proposition 4 .Algorithm 1 :

 41 8 allows us to define Algorithm 1 for constructing ORFF from an operator valued kernel. Construction of ORFF from OVK Input : K(x, z) = K e (δ) a shift-invariant Y-Mercer kernel such that ∀y, y ′ ∈ Y, ⟨y ′ , K e (•)y⟩ ∈ L 1 (R d , Haar) and D the number of features.
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 41 Random Fourier feature operator). Let ω = (ω j ) D j=1 ∈ X D and let
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 52 Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel, where Y is a finite dimensional Hilbert space of dimension p and X a finite dimensional Banach space of dimension d. Moreover, let C be a closed ball of X centred at the origin of diameter |C|, A : X → L(Y) and Pr Haar,ρ a pair such that Ke = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d... Let D C = C ⋆ C -1 and V(δ) ≽ Var Haar,ρ Ke (δ), for all δ ∈ D C and H ω be the Lipschitz constant of the function h : x → (x, ω). If the three following constants exist
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 53 Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel, where Y is a Hilbert space and X a finite dimensional Banach space of dimension D. Moreover, let C be a closed ball of X centered at the origin of diameter |C|, subset of X, A : X → L(Y) and Pr Haar,ρ a pair such that Ke = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d.. where A(ω j ) is a Hilbert-Schmidt operator for all j ∈ N * D . Let D C = C ⋆ C -1 and V(δ) ≽ Var Haar,ρ Ke (δ), for all δ ∈ D C and H ω be the Lipschitz constant of the function h : x → (x, ω). If the three following constants exists
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 51 Bounding the variance of K). Let K be a shift invariant Y-Mercer kernel on a second countable LCA topological space X. Let A : X → L(Y) and Pr Haar,ρ a pair such that Ke = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d.. (2δ) + K e (e)) E Haar,ρ [A(ω)] -2K e (δ) 2 + Var Haar,ρ [A(ω)]
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 61 Naive closed form for the squared error cost). Consider the cost function defined for all y, y ′ ∈ Y by c(y, y

  A=BB^\transpose u, s, v = svd(A, full_matrices=False, compute_uv=True) B = dot(diag(sqrt(s[s > eps])), v[s > eps, :]) # Sample a RFF from the scalar Gaussian kernel phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state) phiX = phi_s.fit_transform(X) # Create the ORFF linear operator cshape = (D, B.shape[0]) rshape = (X.shape[0], B.shape[1]) return LinearOperator((phiX.shape[0] * B.shape[1], D * B.shape[0]), matvec=lambda b: dot(phiX, dot(b.reshape(cshape), B)), rmatvec=lambda r: dot(phiX.T, dot(r.reshape(rshape), B.T)))

  [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] and (w i ) denotes the i. i. d. copies of a seven dimensional Gaussian distribution with zero mean and covariance Σ ∈ M 7,7 (R) such that
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  x)] < T and ∥f∥ H K < M. Moreover let c : Y → [0, C] be a L-Lipschitz cost function and Y a separable Hilbert space. Then if we are given N i. i. d. random variables with values in X (training samples, noted s), then we have with at least probability 1δ, δ ∈ (0, 1) over the drawn training samples s that for any

Assumption 7 . 1 Assumption 7 . 3 Assumption 7 . 4

 717374 There exists a positive constant κ ∈ R ⩾0 such thatmax i ∈N * N K(x i , x i ) There exists a positive constant T ∈ R ⩾0 such that max There exists a positive constant C ∈ R ⩾0 such that max i ∈N * N ∥y i ∥ Y ⩽ C.Given a Loss function L, there exists a positive constant ξ ∈ R ⩾0 such that for all x ∈ X, for all y ∈ Y and for any s ∈ X N × Y N , L(x, f s , y) ⩽ ξ.

Proposition 7 . 6 (

 76 apply Proposition 7.4 to conclude. □ Bound on the estimation error). Let c y : Y → [0; C] be a L-Lipschitz cost function for all y ∈ Y. Let (ω j ) D j=1 be D fixed vectors in X. If s = (x i , y i ) N i=1 ∈ (X × Y) N are i. i. d. random variables then for all δ ∈ (0, 1), then it holds with probability 1δ for all f ∈ F that R ( f
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 81 Decomposable matrix-valued kernels). Let the function k : R d × R d → R be a scalar-valued kernel and Γ ∈ R d×d a positive semidefinite matrix of size d × d. Then function K : R d

Algorithm 4 :

 4 Block-coordinate mini-batch doubly SGD. Data: X, Y, K e , γ t , λ, T , n, D, b Result: Find θ 1 Let D b = D/b and find (ω, x), B(ω) and µ(ω) from K e ; 2 for i = 1 to D b t = 1 to T do

4 for i = 1 to D do 5 Ω 6 for ω ∈ Ω i do 7 h

 4567 i ∼ µ(ω) with seed i; (x) = h(x) + (ω, x)B(ω)θ i,ω ;

3 .

 3 Throughout the experiments, the hyperparameters are set as follows: the bandwidth of the Gaussian kernel σ is chosen as the median of the Euclidean pairwise distances and the regularization parameter λ was tuned on a grid. The number of random features D and the parameters in Algorithm 4 were picked so as to reach the level of accuracy of OKVAR/VAR. macrodata This dataset is part of the Python library Statmodels 1 . It contains 204 US macroeconomic data points collected on the period 1959-2009. Each data point represents 12 economic features. No pre-processing is applied before learning. We measure SCV-MSE using a window of 25 years (50 points). We instantiated Algorithm 4 as follows: γ t = 1, λ = 10 -3 , D = 100, T = 2 and b = 50 for ORFF and λ = 0.00025 and σ = 11.18 for OKVAR.
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 495 Figure 9.5: Continuous OCSVM for outlier detection.
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 1 , otherwise. Hence combining Equation A.4 and Equation A.5 gives and summing up the hypothesis yields the following proposition Proposition A.1 Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel, where Y is a finite dimensional Hilbert space of dimension p and X a metric space. Moreover, let C be a compact subset of X, A : X → L(Y) and Pr Haar,ρ a pair such that Ke = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d...With slight modification we can obtain a second inequality for the case where the random operators A(ω j ) are bounded almost surely. This second bound with more restrictions on A has the advantage of working in infinite dimension as long as A(ω j ) is a Hilbert-Schmidt operator.Proposition A.2 Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel,where Y is a Hilbert space and X a metric space. Moreover, let C be a compact subset of X, A : X → L(Y) and Pr Haar,ρ a pair such thatKe = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e ,ω j ∼ Pr Haar,ρ i. i. d... where A(ω j ) is a Hilbert-Schmidt operator for all j ∈ N * D . Let D C = C ⋆ C -1 and V(δ) ≽ Var Haar,ρ Ke (δ), for all δ ∈ D C and H ω be the Lipschitz constant of the function h : x → (x, ω). If the three following constant existsm ⩾ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ < ∞ and u ⩾ ess sup ω∈ X ∥A(ω)∥ Y,Y + sup δ∈D C ∥K e (δ)∥ Y,Y < ∞ and v ⩾ sup δ∈D C D∥V(δ)∥ Y,Y < ∞. define p int ⩾ sup δ∈D C IntDim (V(δ)) then for all r ∈ R * + and all ϵ > √ v int N(D C , r) exp (-Dψ v,u (ϵ)))whereψ v,u (ϵ) = ϵ 2 2(v+uϵ/3) .When the covering number N(D C , r) of the metric space D C has an analytical form, it is possible to optimize the bound over the radius r of the covering balls. As an example, we refine Proposition A.1 and Proposition A.2 in the case where C is a finite dimensional Banach space. Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel, where Y is a finite dimensional Hilbert space of dimension p and X a finite dimensional Banach space of dimension d. Moreover, let C be a closed ball of X centered at the origin of diameter |C|, A : X → L(Y) and Pr Haar,ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d.. Let D C = C ⋆ C -1 and V(δ) ≽ Var Haar,ρ Ke (δ), for all δ ∈ D C Let H ω be the Lipschitz constant of h ω : x → (x, ω). If the three following constant exists m ⩾ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ < ∞ and u ⩾ 4

  is closed and bounded, so compact and has diameter |C| = 2C. It is possible to cover it with N(D C , r) = ( 2|C| r ) d Corollary A.2 Let K : X × X → L(Y) be a shift-invariant Y-Mercer kernel, where Y is a Hilbert space and X a finite dimensional Banach space of dimension D. Moreover, let C be a closed ball of X centered at the origin of diameter |C|, subset of X, A : X → L(Y) and Pr Haar,ρ a pair such that Ke = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d.. where A(ω j ) is a Hilbert-Schmidt operator for all j ∈ N * D . Let D C = C ⋆ C -1 and V(δ) ≽ Var Haar,ρ Ke (δ), for all δ ∈ D C and H ω be the Lipschitz constant of the function h : x → (x, ω). If the three following constant exists m ⩾ ∫ X H ω ∥A(ω)∥ Y,Y dPr Haar,ρ < ∞ and u ⩾ ess sup ω∈ X ∥A(ω)∥ Y,Y + sup

  δ∈D
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 311841118913 Bounding the variance of K). Let K be a shift invariant Y-Mercer kernel on a second countable LCA topological space X. Let A : X → L(Y) and Pr Haar,ρ a pair such thatKe = D ∑ j=1 cos (•, ω j )A(ω j ) ≈ K e , ω j ∼ Pr Haar,ρ i. i. d.. (2δ) + K e (e)) E Haar,ρ [A(ω)] -2K e (δ) 2 + Var Haar,ρ [A(ω)]) Proof Let δ ∈ D C be a constant. From the definition of the variance of a random variable and using the fact that the (ω j ) D j=1 are i. i. d. random variables, Kje (δ) 2 -Kj e (δ)K e (δ) -K e (δ) Kj e (δ) + K e (δ) 2 ]From the definition of Kj e , E Haar,ρ Kj e (δ) = K e (δ), which leads toVar Haar,ρ [ Ke (δ) ] = E Haar,ρ [ Kj e (δ) 2 -K e (δ) 2 ]A trigonometric identity gives us (cos(δ, ω)) 2 = 1 2 (cos(2δ, ω) + cos(e, ω)). ThusVar Haar,ρ [ Ke (δ) ] = 1 2D E Haar,ρ [ (cos(2δ, ω) + cos(e, ω)) A(ω) 2 2K e (δ) 2 ] .Also,E Haar,ρ [ cos(2δ, ω)A(ω) 2 ] = E Haar,ρ [cos(2δ, ω)A(ω)] EHaar,ρ [A(ω)] + Cov Haar,ρ [cos(2δ, ω)A(ω), A(ω)] = K e (2δ)E Haar,ρ [A(ω)] + Cov Haar,ρ [cos(2δ, ω)A(ω), A(ω)] Similarly we obtain E Haar,ρ [ cos(e, ω)A(ω) 2 ] = K e (e)E Haar,ρ [A(ω)] + Cov Haar,ρ [cos(e, ω)A(ω), A(ω)] (2δ) + K e (e)) E Haar,ρ [A(ω)] -2K e (δ) 2 +Cov Haar,ρ [(cos(2δ, ω)+cos(e, ω)) A(ω), A(ω)] ) (2δ) + K e (e)) E Haar,ρ [A(ω)] -2K e (δ) 2 Cov Haar,ρ [ (cos(δ, ω)) 2 A(ω), A(ω) (2δ) + K e (e)) E Haar,ρ [A(ω)] -2K e (δ) 2 Var Haar,ρ [A(ω)] ) q B M I S C E L L A N E O U S In this appendix chapter we present how to use ORFF framework in the context of semi-supervised learning. We use the setting of Minh, Bazzani, and Murino [119, 120] Contents b.1 Learning with semi-supervision . . . . . . . . . . . Representer theorem and feature equivalence . . . . . . . . . . . . . . . . . . . . . . 184 b.1.2 Gradients . . . . . . . . . . . . . . . . . . . . Complexity . . . . . . . . . . . . . . . . . . 191 183 b.1 learning with semi-supervision

b. 1 . 1

 11 Representer theorem and feature equivalenceWe suppose that we are given a training sample u = (x i ) N+U i=N ∈ X U of unlabeled exemples. We note z ∈ (X × Y) N × X U the sequence z = su concatenating both labeled (s) and unlabeled (u) training examples. Theorem B.1 (Representer theorem, Minh, Bazzani, and Murino [120]). Let K be a U-Mercer Operator-Valued Kernel and H K its corresponding U-Reproducing Kernel Hilbert space. Let V : U → Y be a bounded linear operator and let c : Y × Y → R be a cost function such that L(x, f, y) = c(Vf(x), y) is a proper convex lower semi-continuous function in f for all x ∈ X and all y ∈ Y.

Figure B. 1 :

 1 Figure B.1: ORFF equivalence theorem (semi-supervised). Each row compares the scalar ORFF Φ method constructed from a Gaussian with the kernel method where K = Φ T Φ. The top row corresponds to the case λ K = 0.1 and λ M = 0.075. Since λ K > 0, the solution with K and Φ are exactly the same (Theorem B.2 applies) and we see that θ ∥ = 0. The bottom row corresponds to the case λ K = 0 and λ M = 0.075. Here the solution with K and Φ doesn't match (Theorem B.2 fails to apply since λ K = 0). Moreover we can see that θ ∥ ̸ = 0 and Φ(x) * θ ̸ = 0, thus θ is not in (Ker W) ⊥ .

0 ).c. 3 c. 4 c. 5

 0345 which has time complexity O t (((N + U)u)3 + Nup) and space complexity O s (((N + U)u) 2 ). Notice that computing the data dependent norm C R E L E VA N T P I E C E O F C O D E In the following, we give minimal short samples of Python code showing how to implement efficient ORFF. Each section represent an independent snippet of code, and a simple copy-paste in a python editor should generate the corresponding figure presented in this manuscipt. Contents c.1 Python code for figure 3.1 . . . . . . . . . . . . . . . 196 c.2 Python code for figure 5.1 . . . . . . . . . . . . . . . 197 Python code for figure 5.3 . . . . . . . . . . . . . . . 199 Python code for figure 5.4 . . . . . . . . . . . . . . . 201 Python code for figure 5.5 . . . . . . . . . .

  cshape = (D, B.shape[0]) rshape = (X.shape[0], B.shape[START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]) return LinearOperator((phiX.shape[0] * B.shape[START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], D * B.shape[0]), matvec=lambda b: dot(phiX, dot(b.reshape(cshape), B)), rmatvec=lambda r: dot(phiX.T, dot(r.reshape(rshape), B.T)), dtype=float) def main(): r"""Plot figure: Efficient decomposable gaussian ORFF.""" N = 100 # Number of points pmax = 100 # Maximum output dimension d = 20 # Input dimension D = 100 # Number of random features seed(0) X = rand(N, d) R, T = 10, 10 time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T)) time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T)) for i, p in enumerate(logspace(0, log10(pmax), T)): A = rand(int(p), int(p)) A = dot(A.T, A) + eye(int(p)) # Perform \Phi(X)^T \theta with Efficient implementation for j in range(R): start = time() phiX1 = EfficientDecomposableGaussianORFF(X, A, D) time_Efficient[j, i, 0] = time() -start theta = rand(phiX1.shape[1], 1) start = time() phiX1 * theta time_Efficient[j, i, 1] = time() -start mem_Efficient[j, i] = asizeof(phiX1, code=True) # Perform \Phi(X)^T \theta with naive implementation for j in range(R): start = time() phiX2 = NaiveDecomposableGaussianORFF(X, A, D) time_naive[j, i, 0] = time() -start theta = rand(phiX2.shape[

  dtype=float) def main(): r"""Plot figure: Efficient decomposable gaussian ORFF.""" N = 1000 # Number of points dmax = 100 # Input dimension D = 500 # Number of random features seed(0) R, T = 50, 10 time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T)) time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T)) for i, d in enumerate(logspace(0, log10(dmax), T)): X = rand(N, int(d)) # Perform \Phi(X)^T \theta with Efficient implementation for j in range(R): start = time() phiX1 = EfficientCurlFreeGaussianORFF(X, D) time_Efficient[j, i, 0] = time() -start start = time() phiX1 * rand(phiX1.shape[1], 1) time_Efficient[j, i, 1] = time() -start mem_Efficient[j, i] = asizeof(phiX1, code=True) # Perform \Phi(X)^T \theta with naive implementation for j in range(R): start = time() phiX2 = NaiveCurlFreeGaussianORFF(X, D) time_naive[j, i, 0] = time() -start start = time() phiX2 * rand(phiX2.shape[

  def main(): r"""Plot figure: Efficient decomposable gaussian ORFF.""" N = 100 # Number of points dmax = 100 # Input dimension D = 100 # Number of random features seed(0) R, T = 10, 10 time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T)) time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T)) for i, d in enumerate(logspace(0, log10(dmax), T)): X = rand(N, int(d)) # Perform \Phi(X)^T \theta with Efficient implementation for j in range(R): start = time() phiX1 = EfficientDivergenceFreeGaussianORFF(X, D) time_Efficient[j, i, 0] = time() -start theta = rand(phiX1.shape[1], 1) start = time() phiX1 * theta time_Efficient[j, i, 1] = time() -start mem_Efficient[j, i] = asizeof(phiX1, code=True) # Perform \Phi(X)^T \theta with naive implementation for j in range(R): start = time() phiX2 = NaiveDivergenceFreeGaussianORFF(X, D) time_naive[j, i, 0] = time() -start theta = rand(phiX2.shape[

Figure D. 1 :

 1 Figure D.1: Outliers distribution G in the naive and adaptive approach.In the naive approach, G does not depends on the tree and is constant on the input space. In the adaptive approach the distribution depends on the inlier distribution F through the tree. The outliers density is constant and equal to the average of F on each node before splitting it.

Figure D. 1

 1 Figure D.1 shows the corresponding outlier density G (we drop the dependence in the number of splits to keep the notations uncluttered). Note that G is a piece-wise constant approximation of the inlier distribution F. Considering the Neyman-Pearson test X ∼ F versus X ∼ G instead of X ∼ F versus X ∼ U may seem surprising at first sight. Let

Figure D. 3 :

 3 Figure D.3: OneClassRF with one tree, level-sets of the scoring function.

Figure D. 3

 3 Figure D.3 represents the level sets of the scoring function produced by OneClassRF, with only one tree of maximal depth 4, without sub-sampling, and using the Gini-based one-class splitting criterion with γ = 1.

d. 4 4 . 1

 441 theoretical analysis This section aims at recovering Equation D.5 from a natural modeling of the one-class framework, along with a theoretical study of the problem raised by the naive approach. d.Underlying model In order to generalize the two-class framework to the one-class one, we need to consider the population versions associated to empirical quantities Equation D.1, Equation D.2 and Equation D.3, as well as the underlying model assumption. The latter can be described as follows. d.4.1.1 Existing Two-Class Model (n, α).

  the population version (probabilistic version) of Equation D.1 is(D.7) ∆i theo (t, t L , t R ) = i theo (t)p(t L |t)i theo (t L )p(t R |t)i theo (t R ).It can be used with the Gini index itheo G = 2Pr { y = 0 | X ∈ X t } Pr { y = 1 | X ∈ X t }which is the population version of Equation D.2. d.4.1.2 One-Class-Model (n, α).

1 Figure D. 4 :

 14 Figure D.4: Illustration of the standard splitting criterion on two modes when the proportion γ varies.

Figure D. 5 :

 5 Figure D.5: Performances of the algorithms on each dataset in the novelty detection framework: ROC AUCs are displayed on the top, PR AUCs in the middle and training times on the bottom, for each dataset and algorithm. The x-axis represents the datasets.

Figure D. 5 Figure D. 6 :

 56 Figure D.5 shows that the amount of time to train 1 and test any dataset takes less than one minute with OneClassRF, whereas

Figure D. 7 :

 7 Figure D.7: ROC and PR curves for OneClassRF (novelty detection framework)
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  H * ,H = ⟨x, y⟩ H and ∥ι R (x)∥ H * = ∥x∥ H . The Riesz map ι R is self-dual, thus if H is a Hilbert space, H is reflexive. i. e. H * * ∼ = H. When the base field of H is C, then the Riesz map ι R is an anti-linear form since ⟨•, •⟩ H is sesquilinear and (•, •) H * ,H is bilinear. In the same way when the base field of H is R then ι R is linear since both ⟨•, •⟩ H and (•, •) H * ,H are bilinear. If H is a Hilbert space we make the dual space H * a Hilbert space by endowing it with the inner product ⟨x * , z *

  ). For a linear operator W : H 1 → H 2 where H 1 and H 2 are Hilbert spaces with respective basis (e i ) i∈N * and (e ′ j ) j∈N * , we note W i = We i and W ij = e * j (We i ). Eventually given two separable Hilbert spaces H 1 and H 2 , an operator W : H 1 → H 2 , (e i ) i∈N * a basis of H 1 and (e ′ i ) i∈N * a basis of H 2 we have
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 3 1: Mathematical symbols and their signification (part 1).
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 3 5: Classification of Fourier Transforms in terms of their domain and transform domain.

  theorem 4.22 page 105 and theorem 4.33 page 111] for the full proof. □ Thus when a Haar measure Haar on X is given, the measure on X that makes Theorem 3.1 true is called the dual measure of Haar, noted Haar. Let c ∈ R * If cHaar is the measure on X, then c -1 Haar is the dual measure on X. Hence one must replace Haar by c -1 Haar in the inversion formula to compensate. Therefore, we always take the Haar measure Haar on X to be the dual of the given Haar measure Haar on X.

	Whenever Haar = Haar we say that the Haar measure is self-dual.
	Moreover if Haar is normalized, the Fourier Transform on
	L 1 (X, Haar; Y) ∩ L 2 (X, Haar; Y)
	extends uniquely to a unitary isomorphism from L 2 (X, Haar, Y) onto
	L 2 ( X, Haar; Y) (Plancherel theorem). For the familiar case of a scalar-
	valued function f on the LCA group (R d , +), we have for all ω

Corollary 3.1 (Fourier Transform injectivity (Folland [65])). Given

  µ and ν two measures, ifF [µ] = F [ν] then µ = ν. Moreover given two functions f and g ∈ L 1 (X, Haar; Y) if F [f] = F [g] then f = g

	Proof We refer the reader to the proof of Folland [65, corollary 4.34
	page 112].	□
	3.2.6 Representations of Groups	
	Representations of groups are convenient tools that allows group--
	theoretic problems to be replaced by linear algebra problems. Let
	Gl(H) be the group of continuous isomorphism of H, a Hilbert space,
	onto itself. A representation π of a LCA group X in H is an homo-
	morphism π:	
	π : X → Gl(H)	

Lemma 3.1 (Separable VV-RKHS (Carmeli, De Vito, and Toigo [40])). Let

  H K be a Vector Valued Reproducing Kernel Hilbert Space of continuous function f : X → Y. If X and Y are separable then H K is separable.

nel (Carmeli, De Vito, and Toigo [40])). Let

  Mercer kernel K defines a VV-RKHS H K of continuous functions, H K is separable when X and Y are separable. K : X × X → Y be a reproducing kernel where X and Y are separable spaces. If K is a Y-Mercer kernel then H K is separable.

	Proposition 3.6 (Separable	VV-RKHS	for	Y-Mercer	ker-
	Proof From Proposition 3.5 K is a Y-Mercer kernel if and only if H K ⊂ C(X; Y). Applying Lemma 3.1 of Carmeli, De Vito, and Toigo [40], we have
	that H K is separable.				□
	Thus since H K is also a Hilbert space and is separable it is second
	countable (i. e. it has a countable orthonormal basis). An important
	consequence is that if K is a Y-Mercer and X and Y are separable then H K is isometrically isomorphic to ℓ 2 .
	3.3.2 Shift-Invariant OVK on LCA groups			
	The main subjects of interest of Chapter 4 are shift-invariant Opera-
	tor-Valued Kernel. When referring to a shift-invariant OVK K : X × X → L(Y) we assume that X is a locally compact second countable topological group with identity e.

Definition 3.9 (Shift-invariant OVK). A

  reproducing Operator-Valued Kernel K : X × X → L(Y) is called shift-invariant 4 if for all x, z, t ∈ X,

	4 Also referred to as
	translation-
	invariant
	OVK.

  1 Sufficient conditions of existence . . . . . . 56 4.2.2 Examples of spectral decomposition . . . . 62 4.2.3 Functional Fourier feature map . . . . . . . 67 4.3 Operator-valued Random Fourier Features . . . . . 69Random Fourier Features have been proved useful to implement efficiently kernel methods in the scalar case. In this work, we propose to extend Random Fourier Feature methodology in order to approximate OVKs. As in the scalar case, we are mainly interested on explicit approximated feature maps because they open the door to learning linear models. Our final goal is to come up with the definition of Φ : X → L(Y, H) for some Hilbert spaces Y and H, a feature map of some approximation K of a given OVK, K. This chapter is devoted to the construction of these approximations based on Random Fourier Feature principles. It is followed by a non asymptotical study of the error of approximation (Chapter 5) and the development of learning tools based on Operator Random Fourier Feature maps with practical and theoretical insights.
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  where Φ x := Φ(x). Pr Haar,ρ ) from a shift invariant Y-Mercer Operator-Valued Kernel K e such that Pr Haar,ρ is a probability measure, i. e. ∫ X ρd Haar = 1 where ρ is the density of Pr Haar,ρ and K e (δ) = E

	4.3 operator-valued random fourier features
	4.3.1 Building Operator-valued Random Fourier Features
	As shown in Propositions 4.4 and 4.5 it is always possible to find
	a pair (A,

ρ (δ, ω)A(ω). In order to obtain an approximation of K from a decomposition (A, Pr Haar,ρ ) we turn our attention to a Monte-Carlo estimation of the expectations in Equation

4

.9 and Equation 4.5 characterizing a Y-Mercer shift-invariant Operator-Valued Kernel. Proposition 4.7 Let K(x, z) be a shift-invariant Y-Mercer kernel with signature K e such that for all y, y ′ ∈ Y, ⟨y ′ , K e (•)y⟩ ∈ L 1 (X, Haar). Then one can find a pair (A, Pr Haar,ρ ) that satisfies Proposition 4.4. i. e. for Pr Haar,ρalmost all ω, and all y, y ′ ∈ Y,

  It relies on the i. i. d. property of the random vectors ω j and trigonometric identities (see the proof in Proposition A.3 of the appendix). □ 5.1.5 Application on decomposable, curl-free and divergence-free OVK First, the two following examples discuss the form of H ω for the additive group and the skewed-multiplicative group. Here we view X = R d as a Banach space endowed with the Euclidean norm. Thus the Lipschitz constant H ω is bounded by the supremum of the norm of the gradient of h ω . On the additive group, h ω (δ) = ⟨ω, δ⟩.Hence H ω = ∥ω∥ 2 .

	Example 5.1 (Additive group). Example 5.2 (Skewed-multiplicative group). On the skewed multi-
	plicative group, h ω
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  θ) ∂θ θ=θ 0 = A and call it Frechet derivative of f with respect to θ at θ 0 . With mild abuse of notation we write The chain rule is valid in this context [93, theorem 4.1.1 page 140]. Namely, let H 0 , H 1 and H 2 be three Hilbert spaces. If a function f :

	∂f(θ) ∂θ θ=θ 0	=	∂f(θ 0 ) ∂θ 0	.

  Let θ ∈ R 2Dp ′ and y ∈ R. With such implementation evaluating a matrix vector product such as Φ(x) T θ or Φ(x)y have O t (2Dp ′ p) time complexity and O s (2Dp ′ p) of space complexity, which is utterly inef-

	\tilde{\Phi}(X) : array
	"""
	# Decompose A=BB^\transpose
	u, s, v = svd(A, full_matrices=False, compute_uv=True)
	B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])
	# Sample a RFF from the scalar Gaussian kernel
	phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)
	phiX = phi_s.fit_transform(X)
	# Create the ORFF linear operator
	return matrix(kron(phiX, B))
	( Φ(x) corresponding to the decomposable kernel is R p ′ ) is matrix, the operator ficient. Indeed, recall that if B ∈ M p,p ′
	of the Decomposable kernel (positive semi-definite)
	gamma : {float},
	Gamma parameter of the RBF kernel.
	D : {integer}
	Number of random features.
	eps : {float}
	Cutoff threshold for the singular values of A.
	random_state : {integer}
	Seed of the generator.
	Returns
	-------
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1: Efficient linear-operator (in matrix form) for different Feature maps.

Table 6 .

 6 3: Time complexity of efficient linear-operator (in matrix form) for different Feature maps given in Table6.1.

	Kernel		Φ(X) *			Φ(X)
	Decomposable	O t ((p ′ D + p ′ p)N) O t ((pN + p ′ p)D)
	Curl-free Divergence-free O t	O t (pND) ( (p 2 + pN)D	)	O t	O t (pND) ( (p 2 + pN)D )

Table 6 .

 6 5: Error (% of nMSE) on SARCOS dataset.

  In this chapter we reviewed two ways of obtaining generalization bounds (see Section 7.1 and Subsection 7.1.2) for OVKs by bounding the function class complexity

	1 -2δ Equation 7.8 is bounded by above by 2ϵ est + ϵ app . Notice that Tr [ K e (e) ] =
	1 D	∑ D j=1 A(ω

j ). Thus if we have ess sup x∈ X Tr [A(ω)] < ∞, Tr [ K e (e) ] ⩽ ess sup x∈ X Tr [A(ω)]. □ 7.3 discussion

.000994(s) 0.001003 0.000647 0.001284(s)

  

	Setting	1		2		3	
	model	noise	SVC-MSE variance	time	SVC-MSE variance	time	SVC-MSE variance	time
	VAR(1)	White Toeplitz 1.091096 1.267880 0.004822(s) 0.017014 0.013498 0.002050(s) 0.116901 0.127396 0.001702(s) 0.914979 0.572485 0.002467(s) 0.001275 0.000994 0.002346(s) 0.009534 0.006003 0.001697(s)
	ORFFVAR	White Toeplitz 1.097183 1.268978 0.001022(s) 0.012635 0.008837 0.012144(s) 0.116964 0.127395 0.000934(s) 0.919663 0.572936 00.009536 0.005998 0.002377(s)
	OKVAR	White Toeplitz 1.410969 1.312243 0.289046(s) 0.013854 0.010977 1.856988(s) 0.160133 0.136570 0.019170(s) 0.958790 0.591934 0.104706(s) 0.001100 0.000731 0.027099(s) 0.009227 0.005717 0.014458(s)

Table 8 .

 8 Influence of the number of random featuresHere, we investigate the impact of D, the number of random features for ORFFVAR. To this end, we generated N = 10000 data points following Equation8.2, with exponential nonlinearities and white noise as in Setting 2. We performed a sequential cross-validation on a window of N/2 data. As expected the error decreases with the number of random features D (Table8.2). For the same computation time (D = 25) as VAR(1), ORFFVAR achieves an SCV-MSE that is twice as small.

	1: Sequential SCV-MSE and computation times for VAR(1), ORFF-
	VAR and OKVAR on synthetic data (Settings 1, 2 and 3).
	8.3.3

Table 8 .

 8 2: SVC-MSE with respect to D the number of random features for ORFFVAR.

  contains monthly meteorological measurements of 18 variables (temperature, CO2 concentration, . . . ) collected at 135 different locations throughout the USA and recorded over 13 years, thus resulting in 135 time series of dimension 18 and length 156. Data are standardized at each station. A unique model is learned for all stations. SCV-MSE is measured on a window of 1872 points, corresponding to the data of all the 135 stations over one year. Specifically, we set the parameters of ORFFVAR as follows: γ t = 1, λ = 10 -6 , D = 100, T = 1 and b = 100.heart. The dataset is a multivariate time-serie recorded from a patient in the sleep laboratory of the Beth Israel Hospital in Boston, Massachusetts3 . The attributes are the heart rate, the chest volume (respiration force) and the blood oxygen concentration. The time-serie contains 17000 points recorded at 2Hz during roughly 4 hours 30 minutes. We used a window of 240 points for the sequential crossvalidation (corresponding to 2 minutes of observations).

	application to time series modelling				
					ORFFVAR			VAR(1)			OKVAR	
	Dataset	N	d	SCV-MSE variance	time	SCV-MSE variance	time	SCV-MSE variance	time
	Macrodata	#203	#12	445.9	84.5	0.014(s)	449.1	1021	0.0005(s)	499.8	793.0	0.641(s)
	Gesture phase 1 #1743 #31	0.741	2.999	0.009(s)	0.980	3.370	0.0014(s)	N. A.	N. A.	N. A.
	Gesture phase 4 #1069 #31	0.473	2.406	0.061(s)	0.768	6.49	0.0075(s)	N. A.	N. A.	N. A.
	Climate	#19375 #18	0.237	0.2128	0.396(s)	0.266	0.218	0.0124(s)	N. A.	N. A.	N. A.
	Heart	#16999 #3	0.262	1.020	0.011(s)	0.259	1.040	0.0010(s)	N. A.	N. A.	N. A.

Table 8 . 3
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: SCV-MSE and computation times for ORFFVAR, VAR(1) and OK-VAR on real datasets.

  . . . . . 204 c.6 Python (tensorflow) code for continuous quantile regression . . . . . . . . . . . . . . . . . . . . . . . . 207

	if k == 3:	sigma = .3
	w = np.random.randn(d, D) / sigma # Realization of (\omega_j)_{j=1}^D axis[k, 2].set_xlabel(
	r'$|\theta^{\parallel}_j|$, \% of relative error')
	phiX = phi(x, w, D) # Train RFF plt.savefig('representer.pgf', bbox_inches='tight')
		phiXt = phi(xt, w, D) # Test RFF
	return err	
		# Create plot
	plt.close() if __name__ == "__main__":
	main()	plt.rc('text', usetex=True)
		plt.rc('font', family='serif')
		f, axis = plt.subplots(4, 3, gridspec_kw={'width_ratios': [3, 3, 1.5]},
	figsize=(16, 6), sharex='col', sharey='col') f.subplots_adjust(hspace=.25) c.3 python code for figure 5.3
	formatter = matplotlib.ticker.ScalarFormatter() formatter.set_powerlimits((-3, 4)) r"""Efficient implementation of the Gaussian ORFF decomposable kernel."""
	from time import time	# For different hyperparameters \lambda
	for k, lbda in enumerate([1e-2, 5e-6, 1e-10, 0]): # Train with ORFF with kernel approximation (dual) from pympler.asizeof import asizeof
	ck = np.linalg.lstsq(np.dot(phiX, phiX.T) + lbda * np.eye(N), y, rcond=-1)[0] from numpy.random import rand, seed from numpy.linalg import svd # Train with ORFF without kernel approximation (primal) from numpy import (dot, diag, sqrt, kron, zeros, c = np.linalg.lstsq(np.dot(phiX.T, phiX) + lbda * np.eye(2 * D), logspace, log10, matrix, eye, int, float) np.dot(phiX.T, y), rcond=-1)[0] from scipy.sparse.linalg import LinearOperator cc = np.sum((phi(x, w, D) * ck), axis=0) from sklearn.kernel_approximation import RBFSampler # Link dual coefficient with primal coefficients cr = (cc -c.ravel()) / np.linalg.norm(c) * 100 from matplotlib.pyplot import savefig, subplots, tight_layout
		err = np.array([np.linalg.norm(np.dot(phiXt, c) -yt) ** 2 / Nt,
	np.linalg.norm(np.dot(np.dot(phiXt, def NaiveDecomposableGaussianORFF(X, A, gamma=1., phiX.T), D=100, eps=1e-5, random_state=0): ck) -yt) ** 2 / Nt, np.linalg.norm(np.dot(phiXt, cr)) ** 2 / Nt, r"""Return the Naive ORFF map associated with the data X.
	Parameters	np.linalg.norm(cr)])
	----------X : {array-like}, shape = [n_samples, n_features] # Plot lmin = -1.8 Samples. lmax = 3. A : {array-like}, shape = [n_targets, n_targets] axis[k, 0].set_xlim([-1.5, 1]) Operator of the Decomposable kernel (positive semi-definite) axis[k, 0].set_ylim([lmin, lmax]) gamma : {float}, axis[k, 0].plot(xt, np.dot(phiXt, c), Gamma parameter of the RBF kernel. label=r'$\widetilde{\Phi}^* \theta$') D : {integer}, axis[k, 0].plot(xt, np.dot(np.dot(phiXt, phiX.T), ck), Number of random features. label=r'$\widetilde{K}u$', linestyle='-.') eps : {float}, axis[k, 0].scatter(x, y, c='r', marker='+', label='train', lw=2) Cutoff threshold for the singular values of A. axis[k, 0].scatter(xt, yt, c='k', marker='.', label='test') random_state : {integer}, axis[k, 0].legend(loc=3) axis[k, 0].set_ylabel('y') Seed of the generator.
	Returns -------	if k == 3: axis[k, 0].set_xlabel('x')
	\tilde{\Phi}(X) : array """ # Decompose A=BB^T u, s, v = svd(A, full_matrices=False, compute_uv=True) lmin = -1.8 lmax = 3. pred = np.dot(phi(xt, w, D), cr) axis[k, 1].set_xlim([-1.5, 1]) axis[k, 1].set_ylim([lmin, lmax]) B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])
	axis[k, 1].plot(xt, pred, # Sample a RFF from the scalar Gaussian kernel label=r'$\widetilde{\Phi}^* \theta^{\parallel}$') phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state) axis[k, 1].scatter(x, y, c='r', marker='+', label='train', lw=2) axis[k, 1].scatter(xt, yt, c='k', marker='.', label='test') phiX = phi_s.fit_transform(X)
	axis[k, 1].legend(loc=3) # Create the ORFF linear operator if k == 3: axis[k, 1].set_xlabel('x') return matrix(kron(phiX, B))
		xs = np.arange(cr.size)
		axis[k, 2].barh(xs, np.abs(cr), edgecolor="none", log=True)
		axis[k, 2].set_ylabel(r'$j$')

  This thesis has also been the opportunity to be part of a collaborative work on anomaly detection with random forests, with other fellow Ph. D. students of Télécom ParisTech. The following paper Goix et al.[START_REF] Goix | One Class Splitting Criteria for Random Forests[END_REF] is based on a original idea of Nicolas Goix and a joint work with Nicolas Drougard and Maël Chiapino. It is currently under review at ECML. Our original paper can be found at https://arxiv.org/pdf/ 1611.01971.pdf. Conclusion . . . . . . . . . . . . . . . . . . . . . . . 227 d.6 Further insights on the algorithm . . . . . . . . . . 228 Description of the datasets . . . . . . . . . . . . . . 231
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  The left part represents the dataset under study and the underlying density. The node X t obtained after some splits is illustrated in the right part of this figure: without the proposed adaptive approach, the class ratio γ t becomes too small and yields poor splits (all the data are in the "inlier side" of the split, which thus does not discriminate at all). Contrariwise, setting γ to one, i. e. using the adaptive approach, is far preferable.With this methodology, one cannot derive a one-class version of the Gini index Equation D.2, but we can define a one-class version of the proxy of the impurity decrease Equation D.4, by simply replacing n ′ t L (respectivelyn ′ t R ) by n ′ t λ L (resp. n ′ t λ R ), where λ L := Leb(X t L )/Leb(X t ) and λ R := Leb(X t R )/Leb(X t ) are the volume proportion of the two child nodes L , t R ) = n t L γn t λ L n t L + γn t λ L + n t R γn t λ R n t R + γn t λ R . L , t R) at each step of the tree building process, corresponds to generating n ′ t = γn t outliers each time the best split has to be chosen for node t, and then using the classical two-class Gini proxy Equation D.4. The only difference is that n ′ t L and n ′ t R are replaced by their expectations n ′ t λ t L and n ′ t λ t R in our method.

	X t	
	X	X t
		adaptivity
		t γ
		γ = 1	γ t ≃ 0
	Figure D.2: (D.5) I OC-ad G (t Minimization of the one-class Gini improvement proxy Equation D.5
	is illustrated in Figure D.2. Note that n ′ t λ L (resp. n ′ t λ R ) is the expecta-tion of the number of uniform observations (on X t ) among n ′ t (fixed to n ′ t = γn t ) falling into the left (respectively right) node.
	Choosing the split minimizing I OC-ad G (t d.2.1.3 Resulting outlier distribution

  Shannon entropy defined in the two-class setup byL , t R ) = n t L log 2 n t L + γn t λ L n t L + n t R log 2 n t R + γn t λ R n t R .

	i S (t) =	n t n t + n ′ t	log 2	n t + n ′ t n t	+	n ′ t n t + n ′ t	log 2	n t + n ′ t t n ′	,
	the one-class impurity improvement proxy becomes	
	I OC-ad S	(t						

d.2.2 Prediction: scoring function of the forest

Table D .

 D 1: Original datasets characteristics

	Datasets	nb of samples nb of features anomaly class	
	adult	48842	6	class '> 50K'	(23.9%)
	annthyroid arrhythmia	7200 452	6 164	classes ̸ = 3 14 removed) classes ̸ = 1 (features 10-	(7.42%) (45.8%)
	forestcover	286048	10	class 4 (versus class 2 ) (0.96%)
	http	567498	3	attack	(0.39%)
	ionosphere	351	32	bad	(35.9%)
	pendigits	10992	16	class 4	(10.4%)
	pima	768	8	pos (class 1)	(34.9%)
	shuttle	85849	9	moved) classes ̸ = 1 (class 4 re-	(7.17%)
	smtp	95156	3	attack	(0.03%)
	spambase	4601	57	spam	(39.4%)
	wilt	4839	5	class 'w' (diseased	(5.39%)
				trees)	

Table D .

 D 3: Results for the novelty detection setting. , but experiements or each algorithm are repeated 10 times on random training and testing datasets are performed, yielding averaged ROC and PR curves whose AUCs are summarized in TableD.3 (higher is better). The training time of each algorithm has been limited (for each experiment among the 10 performed for each dataset) to 30 minutes, where N. A. indicates that the algorithm could not finish training within the allowed time limit. In average on all the datasets, our proposed algorithm OneClassRF achieves both best AUC ROC and AUC PR scores (with LSAD for AUC ROC). It also achieves the lowest cumulative training time. For further insights on the benchmarks c. f. Appendix D.6. It appears that OneClassRF has the best performance on five datasets in terms of ROC AUCs, and is also the best in average. Computation times (training plus testing) of OneClassRF are also very competitive. Experiments in an outlier detection framework (the training set is polluted by outliers) have also been made (see Appendix D.9). The anomaly rate is arbitrarily bounded to 10% max (before splitting data into training and testing sets).

	Datasets	OneClassRF	IForest	OCRFsampling	OCSM	LOF		Orca	LSAD	RFC	
	AUC	ROC	PR	ROC	PR	ROC	PR	ROC	PR	ROC	PR	ROC	PR	ROC	PR	ROC	PR
	adult	0.665 0.278 0.661 0.227 N. A.	N. A.	0.638 0.201 0.615 0.188 0.606 0.218 0.647 0.258 N. A. N. A.
	annthyroid	0.936 0.468 0.913 0.456 0.918	0.532	0.706 0.242 0.832 0.446 0.587 0.181 0.810 0.327 N. A. N. A.
	arrhythmia	0.684 0.510 0.763 0.492 0.639	0.249	0.922 0.639 0.761 0.473 0.720 0.466 0.778 0.514 0.716 0.299
	forestcover	0.968 0.457 0.863 0.046 N. A.	N. A.	N. A. N. A. 0.990 0.795 0.946 0.558 0.952 0.166 N. A. N. A.
	http	0.999 0.838 0.994 0.197 N. A.	N. A.	N. A. N. A. N. A. N. A. 0.999 0.812 0.981 0.537 N. A. N. A.
	ionosphere	0.909 0.643 0.902 0.535 0.859	0.609	0.973 0.849 0.959 0.807 0.928 0.910 0.978 0.893 0.950 0.754
	pendigits	0.960 0.559 0.810 0.197 0.968	0.694	0.603 0.110 0.983 0.827 0.993 0.925 0.983 0.752 N. A. N. A.
	pima	0.719 0.247 0.726 0.183 0.759	0.266	0.716 0.237 0.700 0.152 0.588 0.175 0.713 0.216 0.506 0.090
	shuttle	0.999 0.998 0.996 0.973 N. A.	N. A.	0.992 0.924 0.999 0.995 0.890 0.782 0.996 0.956 N. A. N. A.
	smtp	0.922 0.499 0.907 0.005 N. A.	N. A.	0.881 0.656 0.924 0.149 0.782 0.142 0.877 0.381 N. A. N. A.
	spambase	0.850 0.373 0.824 0.372 0.797	0.485	0.737 0.208 0.746 0.160 0.631 0.252 0.806 0.330 0.723 0.151
	wilt	0.593 0.070 0.491 0.045 0.442	0.038	0.323 0.036 0.697 0.092 0.441 0.030 0.677 0.074 0.896 0.631
	average	0.850 0.495 0.821 0.311 0.769	0.410	0.749 0.410 0.837 0.462 0.759 0.454 0.850 0.450 0.758 0.385
	cum. train time	61s		68s			N. A.	N. A.	N. A.	2232s	73s		N. A.

given

Direct link with the two-class framework

  10 isp n (t L |t)i OC G (t L ) + p n (t R |t)i OC G (t R ) = 1 (n t + αnL t ) ( n t L αnL t L n t L + αnL t L + n t R αnL t R n t R + αnL t R ) (D.11)where 1/(n t + αnL t ) is constant when the split varies. This means that finding the split minimizing Equation D.11 is equivalent to finding the split minimizing (D.12)I OC G (t L , t R ) = n t L αnL t L n t L + αnL t L + n t R αnL t R n t R + αnL t R .Note that Equation D.12 can be obtained from the two-class impurity decrease Equation D.4 as described in the naive approach paragraph in Appendix D.2. In other words, it is the naive one-class version of Equation D.4. ). The twoclass proxy of the Gini impurity decrease Equation D.4 is recovered from Equation D.12 by replacing αnL t L (resp. αnL t R ) by n ′ t L (respectively n ′ t R

	Remark D.3 (

  14. Equation D.15 and Equation D.16 allow to explicitly determine α(L t ) and n(L t ):α(L t ) = n ′ t /((1α)nL t + n ′ t ) and n(L t ) = ((1α)nL t + n ′ t ) /L t . Regarding Equation D.14, α(L t )n(L t )L t L =Leb(X t ) by Equation D.16 and α(L t )n(L t )L t R = n ′

	t	n ′ t L t L t L = n ′ t Leb(X t R )	Leb(X t L )

We give examples of such bounds in Chapter 7.

Note that for historical reasons valid kernels are called "Positive Definite kernels", although for any sequences of points the corresponding Gram matrix needs only to be (symmetric) Positive Semi-Definite [67].

Note that although K + λI N is always invertible if λ > 0, choosing a too small value of λ can leads to an ill-conditioned system if the eigenvalues of K + λI N are too small.

When dim(H) ⩾ N then is it is better to use the kernel algorithm than the feature algorithm. This is called the kernel trick.

The continuous dual space is also called topological dual space. This must be differentiate from the algebraic dual space, which is the space of linear functionals from the original vector-space to its base field. Hence the continuous dual space is a subset of the algebraic dual space. The continuous and the algebraic dual space only match when considering finite dimensional vector-spaces

Note that since B(ω) is bounded the pseudo inverse of B(ω) is well defined for Haar-almost all ω.

bounding the error of the orff approximation

If Φ(x) : L(Y, H) and dim(H) = ∞, the decomposition H = (Ker W) ⊕ (Ker W) ⊥ holds since H is a Hilbert space and W is a bounded operator.

In many programming language, such as Python, C, C++ or Java each data point is traditionally represented by a row in the data matrix (row major formulation). While this is more natural when parsing a data file, it is less common in mathematical formulations. In this document we adopt the column major formulation used by Matlab, Fortran or Julia. Moreover although C++ is commonly row major, some libraries such as Eigen are column major. When dealing with row major formulation, one should "transpose" all the equations given in Table6.1.

See Subsection 6.2.2. q

https://github.com/statsmodels/statsmodels

https://archive.ics.uci.edu/ml/datasets/Gesture+Phase+Segmentation

work in progress

We reported an error computed with the pinball loss on the test set of 0.818 for our method and 0.817 for joint regression (note that we don't report here an average on many experiments to avoid randomness introduced by the random features, but the results seems robust in practice.)

As a collaboration with Alexandre Gramfort

Available at http://scikit-learn.org/stable/modules/generated/sklearn. datasets.make_moons.html.

For OneClassRF, Orca and RFC, testing and training time cannot be isolated because of algorithms implementation: for these algorithms, the sum of the training and testing times are displayed in Figure D.5 and Figure D.6.

Define p int ⩾ sup δ∈D C IntDim(V(δ)) then for all r ∈ R * + and all ϵ ∈ R * + ,

, otherwise. 

, otherwise.

closed balls of radius r. Pluging back into Equation A.5 yields

)

, otherwise.

  

The right hand side of the equation has the form ar + br -d with

)

, otherwise.

Following [START_REF] Minh | Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning[END_REF][START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF][START_REF] Sutherland | On the Error of Random Fourier Features[END_REF], we optimize over r. It is a convex continuous function on R + and achieve minimum at

and the minimum value is

, otherwise,

where

. Eventually when X is a Banach space, the Lipschitz constant of h ω is the supremum of the gradient

Following the same proof technique we obtain the second bound for bounded ORFF. Input :

• λ M ∈ R + the manifold regularization term.

such that θ z minimize Equation 6.6, where c(y, y ′ ) = ∥yy ′ ∥ 2 2 and R u , R r and R p are Hilbert spaces endowed with the euclidean inner product.

Steps 7 costs O t (N(ru + up)). For step 8, the naive inversion of the operator costs O t (r 3 ). Eventually the overall complexity of Algorithm 6 is def NaiveCurlFreeGaussianORFF(X, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Naive ORFF map associated with the data X. ----------X Returns -------\tilde{\Phi}(X) : array """ phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state) phiX = phi_s.fit_transform(X) phiX = (phiX.reshape((phiX.shape[0], 1, phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF])) * phi_s.random_weights_.reshape((1, -1, phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF])))

Parameters

return matrix(phiX.reshape((-1, phiX.shape[2])))

def EfficientCurlFreeGaussianORFF(X, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Efficient ORFF map associated with the data X. ----------X )) * (eye(W.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]).reshape(1, W.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], W.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], 1) * Wn -W * W.reshape(1, 1, W.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF], phiX.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF]) / Wn)).reshape( (-1, W.shape [START_REF] Abadi | Tensorflow: Large-scale machine learning on heterogeneous distributed systems[END_REF] * Wn.shape [START_REF] Ahlswede | Strong converse for identification via quantum channels[END_REF])) def NaiveDivergenceFreeGaussianORFF(X, gamma=1., D=100, eps=1e-5, random_state=0): r"""Return the Naive ORFF map associated with the data X. ----------X 

Parameters

Parameters