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1.1 Context and Motivation

1.1.1 General Context of the Research

The Internet of Things (IoT) paradigm was rst coined in 1999 by Kevin Ash-
ton [10]. The term referred to machines enhancement with the ability to provide
contextual and environmental information over the Internet. Such idea aimed to
replace humans and automatically provide data to computer systems with context-
aware object$ (i.e. Things). Unlike humans who are error prone, these connected
objects have better accuracy, reliability, and working time. The IoT evolved to
encompass a broader vision as de ned in [11]:

The 10T allows people and things to be connected Any-time, Any-place,
with Any thing and Anyone, ideally using Any path/network and Any
service.

Furthermore, the 10T integrated an extensive range of domains such as health-
care, transportation, agriculture, industry, building management, energy, logistics,
and many others [12{16]. Nowadays, the I0T optimizes processes regarding cost,
e ciency, performance, and e ectiveness. It minimizes the operational cost for
businesses and industries by reducing the man power and thriving for autonomic
systems able to operate without human intervention. Moreover, the 0T increases
e ciency using sensor-driven analytics and decision making reasoning for optimiz-
ing real world resources consumption such as the energy, maintenance operations,
and environments monitoring. The prompt reporting and actuation in complex
autonomous systems allow the loT to increase performance while saving time and
reducing costs.

Bene ts mentioned above accelerated the integration of I0T solutions in domestic
environments (e.g. wearables, automated homes), businesses (e.g. retails, factories),
and wide-scope deployments (e.g. smart cities, environmental monitoring). The
quick adoption of the loT resulted in an unprecedented growth rate of connected
objects which are expected to reach 50 billion units in 2020 based on a study by
Cisco [17]. Moreover, the proliferation of 10T device manufacturers alongside the
diversity of application domains produced heterogeneous connected objects with
di erent capabilities, properties, and functions. This huge amount of heterogeneous
connected objects interacting over the network has been identi ed as one of the
major open issues related to the IoT as discussed in several recent studies [12{
16]. Consequently, the IoT produces a signi cant amount of unstructured data
generated by connected objects [18]. These data need to be managed and handled
by the network between 10T devices and third party applications. As a result, loT
infrastructures need to be scalable to cope with the huge amount of heterogeneous
devices communicating over the Internet.

lwe use the terms: "objects," "things," "connected objects,” "loT nodes," and "loT devices"
interchangeably in this thesis to give the same meaning as they are frequently used in 10T related
documentation. Other terms are also employed by the research community such as "smart objects.”
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In this context, Cloud Computing [19] emerged as a promising solution for the
loT scalability challenge. Cloud Computing o ers on-demand network access to a
theoretically unlimited pool of con gurable virtual resources such as networking,
computing, and storage. These resources can be automatically provisioned, scaled,
and released with a pay-per-use business model on the y. Hence, Cloud Computing
presents several essential characteristics namely: on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured service. Such features are
compatible with the 10T requirements as they transfer the processing power from
resource-constrained devices to powerful data centres. Moreover, the cloud o ers
virtually in nite scalability which is needed to encompass large scale 10T infras-
tructures and corresponding big data. In this perspective, existing cloud providers
such as Amazohand Googlé developed loT related cloud services to ease the man-
agement, development, and maintenance of IoT applications. Besides, new cloud
platforms specializing solely in 10T o erings have appeared [20] such as Xively

The convergence of Cloud Computing and the IoT is possible in two distinct
ways [21]: bringing the cloud to connected objects or bringing loT devices to the
cloud. The rst case refers to the conventional approach which consists in using
the cloud to compensate for low-powered connected objects. Such approach treats
loT devices as data sources with no additional capabilities while using the cloud
to collect, process, store, and visualize generated data. Separately, bringing I0T
devices to the cloud leverages connected objects capabilities with some of the cloud's
characteristics such as the on-demand provisioning. This integration model provides
a cloud environment aware of the underlying IoT resources (i.e. sensing, actuating)
and able to o er them on-demand alongside cloud resources (i.e. compute, network,
storage). This latter model is sometimes referred to as the Cloud of Things (CoT)
[22].

1.1.2 Motivation of the Thesis

In a CoT context, things are abstracted and o ered as cloud services accessible
over the Internet from any place and at any time. Such software representations of
connected objects in the cloud are known as Virtual Objects (VOs). They promote
exible on-demand provisioning of I0T resources. Indeed, VOs are only deployed
when their corresponding connected objects are used. Furthermore, their allocated
cloud resources can auto-scale as needed to cope with end-users demand. These VOs
interconnect with each other or with traditional cloud services (e.g. data analytics,
storage service, visualization dashboard) to deliver 10T applications. Consequently,
the CoT environment provides means to perform end-to-end loT applications provi-
sioning, deployment, auto-scaling, and release on the y with minimal management
e orts. Hence, the CoT is a step closer towards realizing the IoT vision. Figure
1.1 illustrates the process of deploying an IoT application in a CoT infrastructure.
A CoT customer species an IoT application request which is consumed by end-

2https://aws.amazon.com/iot/
3https://cloud.google.com/solutions/iot/
4https://www.xively.com/
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users. We refer to this request as a CoT request. We also might refer to a CoT
infrastructure as a CoT substrate throughout this thesis.

In this thesis, we aim to provide a means for CoT customers to describe their
requests and CoT providers to represent their infrastructure. Furthermore, we pro-
vide a solution for CoT providers to orchestrate an incoming request. Let's consider
a scenario where a CoT customer requests a weather forecasting application from a
CoT provider to serve end-users. The weather forecasting application (see Figure
1.1) is composed by multiple interconnected atomic services. It contains two data
sources (e.g. temperature sensors), two VOs (i.e. data collection services), and
three distinct cloud services. These cloud services represent a storage service (to
store collected temperature data), a data analytics service (to calculate the weather
forecasting), and a visualization service (to provide a dashboard for end-users). The
solutions proposed in this thesis aim to help CoT providers to represent and deploy
such a CoT request in a CoT infrastructure.

Several challenges should be addressed to realize the described scenario. These
challenges are the following:

How to e ciently deliver selected 10T resources through VOs to deployed
cloud services (i.e. cloud applications) while reducing the operational cost
and maintaining minimal data transmission latency?

How to e ciently provision and orchestrate the entire CoT request in a single-
stage (i.e. provision IoT and cloud resources at the same time) while minimiz-
ing the operational cost, considering end-users demands, and respect Quality
of Service (QoS) terms?

The rst question addresses the optimization of cloud resources allocated for
VOs as well as their placement across cloud data centres. The orchestration of VOs
should account for the placement of cloud applications across data centres and the
geographical location of corresponding connected objects. On the one hand, data
streams produced by connected objects should be routed via VOs to cloud appli-
cations through least costly network paths with available bandwidth and low data
transmission latency. On the other hand, VOs should be deployed in low cost cloud
data centres to minimize computing and networking costs. Hence, a provisioning
mechanism is needed to determine the optimal placement of VOs across data cen-
tres. Such optimal placement aims to minimize the operational cost for hosting VOs,
the data transmission cost through selected hosts, and the communication latency
over corresponding network links. Therefore, the rst problem is, more speci cally,
how to optimally distribute VOs over di erent cloud data centres to minimize cloud
resources cost (i.e. compute, storage, network) and communication latency while
respecting required QoS terms.

This approach is in line with the current trend of major cloud providers such
as Amazon and Google. They provide VOs for abstracting connected objects in
the cloud. These VOs are internally managed and spanned across di erent geo-
graphically distributed data centres. Furthermore, these VOs can be connected to
available services o ered by cloud providers' catalogues. For example, the Amazon
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Figure 1.1: Problem lllustration.

Web Services (AWS) instantiates "device shadows" (i.e. VOs) to connect customers'
loT devices. It also automates the connection of these device shadows to available
complementary services such as the Amazon storage services. Thus, there is a need
to optimize the provisioning of these VOs to increase pro ts.

The second problem addressed in this thesis is related to a holistic view of the
loT application request and the CoT infrastructure. In fact, a CoT request pro-
visioning consists of several steps: (1) the selection of connected objects, (2) the
placement of cloud services, and (3) the orchestration of VOs linking connected ob-
jects and cloud services. These provisioning steps can be performed either without
coordination, in a multiple-stage coordination, or a single-stage coordination. An
uncoordinated provisioning implies that each step is performed independently. A
multiple-stage coordination means the steps are executed separately but the relation
between di erent steps is considered. For example, the orchestration of VOs is ex-
ecuted while considering the geographical location of selected connected objects. A
single-stage coordination suggests that all steps are performed simultaneously while
taking into account the e ect each step has on the other. For example, the selection
of connected objects and the orchestration of VOs are done at the same time. In this
context, the execution of these provisioning steps in uncoordinated or coordinated
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multiple-stage is ine cient as di erent placement decisions are based on a partial
view of the infrastructure [23]. Such an approach reduces the provisioning e ciency
compared to a coordinated single-stage provisioning [23]. Therefore, a provisioning
mechanism should map in a single-stage a given CoT request onto the CoT sub-
strate. However, such a provisioning mechanism requires a novel resource-oriented
model which provides a means to describe a requested loT application. Further-
more, the model should also describe the CoT substrate on which the CoT request
will be deployed.

These problems are the research challenges addressed in this thesis, and their
corresponding solutions constitute the main achieved contributions. These contri-
butions are brie y presented in the following section.

1.2 Contributions

Concerning the challenges identi ed in the previous section, the rst contribution
of this thesis consists in optimizing the provisioning of VOs in a cloud infrastruc-
ture. VOs hide the heterogeneity of underlying I0T resources and connect them
to cloud applications via standardized Application Programming Interfaces (APISs).
Therefore, it becomes crucial to optimize the placement of VOs across cloud data
centres to minimize their operational cost and the network latency between con-
nected objects and cloud applications. There exist di erent possible strategies when
employing VOs to deliver 10T resources. In fact, each connected object can be linked
to one or multiple VOs. Furthermore, each VO can serve one or several applications.

In our approach, we consider that each connected object is associated with a sin-
gle VO that can be shared among multiple applications. The sharing strategy aims
to minimize the number of connected objects that are needed to satisfy applications'
requirements. Therefore, less VOs are required to be deployed which reduces the
operational cost. However, a shared strategy increases the model complexity since
the placement decision for each VO becomes dependent on multiple applications
QoS requirements. We formulate this problem as a Linear Program (LP) with an
objective function that aims to minimize VOs' operational cost alongside the data
transmission latency between connected objects and cloud applications. This LP
outputs the optimal placement of VOs in an infrastructure with no previously de-
ployed VOs or cloud applications. We refer to this model as the static model. Once
VOs are deployed in the infrastructure, they can be reused for subsequent cloud
applications. In this case, the provisioning process should remap reused VOs based
on the new cloud applications requirements and con guration. In this perspective,
we introduce a second LP. Its objective function adds the migration cost in addition
to the costs considered in the previous LP. This model aims to orchestrate a set of
VOs which contains previously deployed and newly requested VOs. We refer to the
latter model as the dynamic model.

The second contribution of this thesis focuses on de ning a resource-oriented
model able to describe a CoT request and substrate. A CoT request corresponds to
a requested loT application speci ed by a CoT customer as illustrated in Figure 1.1.
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The CoT substrate corresponds to the interconnected entities on which a CoT re-
guest can be mapped. CoT entities correspond to cloud data centres, connected
objects, gateways, and many others. Moreover, CoT requests and substrates can
be speci ed on the infrastructure level or the platform level. On the infrastructure
level, only hardware level resources are described such as compute, network, storage,
sensors, and actuators. On the platform level, software components speci cations
are described alongside hardware level information. We identify the requirements of
such requests and substrates to de ne a formalism for describing them at the infras-
tructure and platform levels. We focus on the orchestration aspects in our model.
However, the described model can be extended to perform deployment operations
in the CoT environment. We base our model on the Open Cloud Computing Inter-
face (OCCI) speci cations de ned by the Open Grid Forum (OGF). We adopt the
OCCI because it is simple, open, and expandable. We adapt and extend the OCCI
infrastructure [24] and platform [25, 26] models previously de ned for the cloud to
encompass the CoT environment. Since we focus on provisioning aspects, we propose
a graph-based model to represent the CoT requests and substrates. However, an
associated mechanism to perform the mapping between both CoT graphs is needed
which leads to the last contribution in this thesis.

Finally, the third contribution addresses the coordinated single-stage provision-
ing problem of a CoT request onto a CoT substrate. An loT application request
description includes end-users expected demands, requested cloud services (e.g. an-
alytics, storage, visualization), needed connected objects, and required VOs for con-
necting needed IoT devices to requested cloud services. Nowadays, the provisioning
of these components has been done separately, with or without coordination. For
example, provisioning VOs while considering that connected objects are already se-
lected and cloud services are previously deployed is identical to the rst contribution.
Consequently, the provisioning process of a given CoT request is not able to opti-
mize e ciently all resources simultaneously which degrade the QoS and increases
the operational cost. Therefore, we provide a global analytical model which provides
a holistic view of a CoT substrate. We derive a LP able to orchestrate the entire
CoT request at the same time. It also takes into consideration end-users demands
and QoS requirements (i.e. latency).

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 1 introduces the context and the motivation of the research. This chap-
ter identi es the objectives of the thesis and presents the main contributions brie y.

Chapter 2 presents the state of the art on the integration of Cloud Computing
and the IoT. It provides an overview of the basic elements forming the CoT. For
this matter, existing integration strategies are also discussed. They highlight the
di erent approaches used to integrate Cloud Computing and the loT. Then, the
main challenges to achieving a seamless convergence are discussed.

Chapter 3 addresses the placement optimization of VOs within a cloud infras-



tructure to deliver 10T resources for cloud applications. Firstly, related works are
discussed to position our work which emphasizes VOs sharing. Then, challenges
related to the placement of shared VOs in the cloud are presented. We propose
two LPs to orchestrate VOs across cloud data centres. The problem is expressed
in function of the average data tra ¢ between connected objects, VOs, and cloud
applications. Both LPs objective functions aim to minimize the operational costs
as well as the data delivery latency. However, one model deals with a CoT environ-
ment without previously deployed VOs. The other considers that VOs are partially
deployed.

Chapter 4 is dedicated to model the resources of a CoT environment. It discusses
existing standards and resource-oriented models specied in the literature. The
purpose is to identify a suitable set of speci cations for modelling the CoT requests
and substrates. We select the OCCI standard due to its exibility and comprehensive
description of the Cloud Computing service models. In this thesis, we propose to
extend and adapt the OCCI standard to encompass the CoT infrastructure and
platform resource models. Finally, several scenarios are provided to show how the
proposed resource-oriented model enables the representation of a CoT request and
substrate, as well as the execution of a single-stage mapping.

Chapter 5 deals with an end-to-end IoT application provisioning in converged
Cloud Computing and loT environments. It deals with the provisioning of a CoT
request graph onto a CoT substrate graph in a single-stage. Two LPs are devised
for CoT infrastructure and platform service levels mapping. In addition, we demon-
strate by simulations the advantage of a coordinated single-stage provisioning pro-
cess compared to a multiple-stage provisioning process.

Finally, Chapter 6 concludes this thesis. It synthesizes the overall contributions
and highlights some perspectives for this research.
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2.1 Introduction

The Internet of Things (IoT) is a concept which evolved over the years and is
enabled by a growing set of key technologies. Nowadays, the 10T envisions inter-
connecting every thing and person via the Internet. For example, IoT applications
such as smatrt cities tend to attach sensors and actuators to every object in a city to
facilitate our everyday lives and optimize the city's management processes such as
transportation, garbage collection, tra c distribution, etc. The realization of such
wide scope loT applications called for the adoption of technologies including com-
munication, computing, machine learning, data mining, and many others. Actually,
large scale loT applications promote pervasive computing in any thing, which gen-
erates big data that need to be stored and processed [18]. However, I0T devices are
constrained objects un t for dealing with the large amount of produced data.

In this context, Cloud Computing has emerged as a suitable technology for over-
coming the technological intrinsic limitations of the 10T. It provides virtually unlim-
ited computing, storage and networking resources with highly resilient energy supply
which are required by IoT applications. Furthermore, such convergence enhances
Cloud Computing service catalogue with l1oT application o erings. As a result,
Cloud Computing becomes able to provision 10T resources alongside its computing,
networking, and storage resources.

On this basis, the integration of Cloud Computing and the 10T was inevitable [27]
and resulted in the Cloud of Things (CoT) [28]. This integration has been also
referred to as Sensor Cloud [29] or CloudloT [27] in the literature. Moreover, the
distinct visions of the IoT and Cloud Computing service models resulted in many
possible integration strategies to realize the CoT.

In addition, di erent applications dictate diverse characteristics (i.e. mobility,
geo-distribution) and requirements (i.e. low latency) which cannot be satis ed only
by the cloud. Moreover, large scale loT applications produce a large amount of data.
Routing all these data for processing and storage at cloud data centres implies high
bandwidth usage. Consequently, Fog Computing [30] was introduced as an interme-
diary layer between Cloud Computing and the IoT. Fog Computing allows parts of
the application to execute closer to the network edge to reduce latency and band-
width usage. In particular, Fog Computing is used for large-scale, geographically
distributed, and latency sensitive applications.

This chapter aims to present the state of the art on the integration of Cloud Com-
puting and the IoT. It is structured in 4 sections. Section 2.2 presents the basic
concepts and key elements forming the CoT. We introduce the IoT enabling tech-
nologies, Cloud Computing, and Fog Computing. Section 2.3 presents the di erent
possible integrations of Cloud Computing and the 10T. We highlight the resource
allocation problem related to each integration model. In section 2.4, we present and
discuss open research issues and challenges with respect to the integration of both
paradigms. Finally, in section 2.5, we conclude this chapter.
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2.2 Background and Basic Concepts

As previously mentioned, the CoT includes multiple main components, namely:
the 10T, Cloud Computing, and Fog Computing. Moreover, the 10T is enabled by
multiple key technologies. This section introduces brie y each of these key elements
to clarify the context of this thesis.

2.2.1 Internet of Things

The evolution of embedded devices, communication technologies, and Internet
protocols, eased the enhancement of physical objects with sensing, actuating, pro-
cessing, and communication capabilities [12]. Hence, transforming dumb things into
connected objects able to send and receive data over the Internet, sense their envi-
ronment, and perform actions based on shared information. These connected objects
collaborate with each other and with services over the Internet to deliver what we
call today the 10T. This paradigm promotes loT applications which rely on sensory
data streams, actuators actions, and services (i.e. data analytics) to provide value-
added information and functionalities for end-users and service providers. These IoT
applications improve many real-world domains such as healthcare [31], ambient as-
sisted living [32], smart cities [33], and many others. Nowadays, for example, instead
of hiring nurses to watch seniors, connected objects and advanced analytics are used
to monitor them in real-time and trigger alerts such as calling an ambulance in case
of health problems [34]. Likewise, connected objects are used in agriculture to mon-
itor climate, soil, and crops to optimize the cultivation process and detect anomalies
without relying on human resources [35]. Several elements are needed however to
deliver the functionality of the loT [16] as illustrated in Figure 2.1, namely: iden-
ti cation/addressing, communication, computation, sensing/actuating, semantics,
services.

Identi cation and Addressing

Connecting loT devices to applications requires identifying the requested ob-
jects and con guring the network connections between them. Several methods as-
sign Identi ers (IDs) to 10T devices to ensure they are uniquely identi able. These
identi cation methods provide universal hardware IDs such as the Electronic Prod-
uct Code (EPC) and Ubiquitous Code (uCode) [36]. Alongside their object IDs,
loT devices need network addresses to be accessible over the Internet. Addressing
methods applied to connected objects are the Internet Protocol version 4 (IPv4)
and the Internet Protocol version 6 (IPv6). However, IPv6 is better adapted for
the 10T due to its ability to encompass the large anticipated number [17] of con-
nected objects [27,37]. Moreover, the IPv6 over Low-power Wireless Personal Area
Networks (6LOWPAN) mechanism [38, 39] provides a compression of IPv6 head-
ers between the Internet and low power wireless networks to cope with resource-
constrained devices. It reduces the overhead of IPv6 in resource-limited environ-
ments, thus enabling a seamless communication and integration of 10T devices to
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the Internet.
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Figure 2.1: Internet of Things Essential Building Blocks.

Communication

The integration of connected objects in multiple domains involves di erent en-
vironments, hence di erent needs. Consequently, the 10T relies on several commu-
nication technologies to cope with applications' bandwidth and range requirements.
Most of these technologies adopt wireless integration of the 10T due to its exibility.
Some of the communication technologies used for I0T are the following: RFID, Near
Field Communication (NFC), Ultra Wide-Band (UWB), WiFi (i.e. IEEE 802.11
standards), Bluetooth, IEEE 802.15.4, Z-Wave, and Long Term Evolution (LTE).

Radio Frequency Identi cation (RFID) tags were the rst enablers of the IoT.
They emit universal IDs which allow readers to identify objects and rely on existing
databases to retrieve additional information. These tags operate within 200 meters
and can be passive, active, or semi-passive/active [40]. The NFC protocol has a
smaller range (i.e. up to 10 cm) and permits a 424 Kbps transmission rate [41].
Another Personal Area Network (PAN) technology is the UWB. It is suitable for
short range, low power, and high bandwidth transmissions [42]. Similarly, the IEEE
802.15.4 standard targets low-power PANs. It is used alongside the 6LoWPAN to
enable IPv6 over low-powered wireless networks.

IEEE 802.11 standards are more suited to Local Area Network (LAN) such as
home, healthcare, and industrial environments. These connected objects reach the
Internet via access points. The IEEE 802.11&H43, 44] was introduced speci cally

Ihttp://standards.ieee.org/ ndstds/standard/802.11-2016.html
2https://standards.ieee.org/ ndstds/standard/802.11ah-2016.html
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for the IoT to cope with devices requiring power e cient communications with up
to 1 km range coverage and a minimum data rate of 100 Kbps.

Bluetooth, on the other hand, is used to exchange data between devices over short
distances. Recently, the Low Energy Bluetooth (BLE) was introduced to provide
more e cient power consumption while maintaining the same communication range
and transmission rate. Furthermore, the BLE meshpro le and model speci cations
were released in 2017 to enable many to many communication. The Bluetooth mesh
supports sensor networks.

For long range communication, technologies such as LTE and LTE Advanced
are used for high-speed data transfer, while others such as SigkdoRa® [45], and
Narrow Band IoT (NB-IoT) [46] are adequate for low-rates and energy e cient data
transfer. SigFox and LoRa are proprietary standards.

Computation

Connected objects are the key components of the emerging 1oT. Traditionally,
organizations needed to own, con gure, and deploy sensors/actuators. Furthermore,
they had to spend additional resources maintaining these connected objects. There-
fore, connected objects were application speci c. However, research e orts aim to
decouple applications and underlying sensors/actuators networks to realize the loT
vision. Such e orts relied on sensing and actuating virtualization to share them
among multiple applications. We notice several approaches in the literature to ad-
dress connected objects virtualization: (1) node level virtualization [47], (2) network
level virtualization [47], and (3) objects virtualization [48{50].

Node level virtualization  consists in executing on the connected object, se-
guentially (i.e. event driven programming model) or simultaneously (i.e. thread-
based programming model), several tasks. Each task serves a particular applica-
tion [51]. Event driven solutions (i.e. SenSmart [52]) consist of executing tasks
when an event occurs such as the temperature exceeding a given threshold. Event
driven Operating Systems (OSs) have a simpler implementation. However, tasks
should wait in a queue until previously triggered tasks nish. Thread-based so-
lutions (i.e. RIOT® OS) execute threaded tasks in a time slicing fashion, hence,
di erent tasks do not block each other. The disadvantage of thread-based OS is
their complexity.

Network level virtualization enables several applications to share connected
objects by dividing them into logical networks. Each application is assigned a logical
network based on its needs. Therefore, formed logical networks contain di erent
amounts and types of connected objects. Furthermore, logical networks dynamically
change with time as applications needs change. They can be composed of connected
objects belonging to di erent physical networks. Moreover, connected objects in the
same physical network can be assigned to di erent virtual networks. However, a

3https://www.bluetooth.com/speci cations/mesh-speci cations
“https://www.sigfox.com/en
Shttps://www.lora-alliance.org/technology

Shttps://riot-0s.org/
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connected object belongs solely to one virtual network.

Objects virtualization consists in abstracting connected objects via Virtual
Objects (VOs) which are wrappers encapsulating sensors or actuators to provide
their functionalities to multiple applications. Such abstraction helps to mirror
connected objects while providing additional resources for managing their non-
functional aspects (e.g. availability, reliability). Also, wrappers provide unied
Application Programming Interfaces (APIs) for applications and developers to ease
the interaction with sensors and actuators. Hence, VOs hide the heterogeneity of
connected objects. Generally, middleware solutions [53] manage VOs and provide
necessary functionalities for applications to interact with the underlying 10T infras-
tructure.

Sensing/Actuating

Sensors and actuators constitute primary loT resources. Sensors translate world
phenomena into digitized information, while actuators transform logical states to
actions in the physical world. Together, they allow information systems to gather
knowledge about things and a ect the physical world. Nowadays, the low cost of
sensing and actuating technologies made it possible to integrate sensors and actua-
tors in everyday objects, industrial machines, health devices, etc.

Semantics

The World Wide Web Consortium (W3C) thrives toward a standardized repre-
sentation of knowledge on the web. It de nes semantics for various domains and
relationships between di erent concepts. Such technology enables the semantic in-
teroperability between di erent systems. Furthermore, semantic web technology
enables discovering, querying, and reasoning on top of available information. There-
fore, the semantic web is seen as an enabler of the [oT. A semantic representation of
heterogeneous connected objects and corresponding data facilitates the integration
of 10T resources with domain oriented applications (e.g. healthcare, agriculture,
transportation). Also, it enables data streams retrieval based on applications re-
guirements. The W3C introduces the Resource Description Framework (RDF) and
the Ontology Web Language (OWL) speci cations which can be used to model
concepts and their relationships.

Services

Sensors and actuators provide means to interact with the real world. How-
ever, collecting data or producing actions requires services to deliver needed IoT
resources, aggregate data streams, take decisions, etc. 10T services are categorized
in [54] as follows: identity-related, information aggregation, collaborative aware,
and ubiquitous. Identity-related services focus on delivering the appropriate IoT
resources based on application requests. These services are essential to identify ex-
isting sensors/actuators types, operational region, and properties to expose their
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functionalities for applications. VOs fall under this category of services. Infor-
mation aggregation services summarize collected raw sensory data. Collaborative
aware services analyse received data to provide insights, alerts, noti cations, and
decisions which can be presented to the user or transmitted directly to existing ac-
tuators. Ubiquitous services represent the previously described services when o ered
any-time and anywhere for end-users and applications.

2.2.2 Cloud Computing

Cloud Computing evolved as the future generation computing paradigm. The
National Institute of Standards and Technology (NIST) presents Cloud Comput-
ing building blocks [19] as illustrated in Figure 2.2. Cloud Computing o ers pools
of compute, network, and storage resources which can be accessed from anywhere
on-demand. Cloud Computing o ers di erent service models, (1) Infrastructure
as a Service (laaS), (2) Platform as a Service (PaaS), and (3) Software as a Ser-
vice (SaaS). Each service model de nes the scope of control of the cloud provider
and the cloud customer over the provisioned resources. For an laaS service model,
the cloud provider o ers physical resources (processing, storage, and network), and
the cloud customer can run over it arbitrary operating systems and applications.
A PaaS service model provides the cloud customer an application hosting environ-
ment which is con gurable, but the cloud customer does not control the underlying
infrastructure and operating system. Finally, the SaaS o ers cloud customers an ap-
plication running in the cloud with limited con guration settings such as Dropbox.
Cloud Computing does not bind clients to a particular service model, enabling a
exible environment for all IT needs. However, the bene ts of the Cloud go beyond
its service models. In fact, the cloud's essential characteristics render three major
trends in Information Technology (IT): (1) agility, (2) elasticity, and (3) autonomous
deployment.
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Figure 2.2: Traditional Cloud Computing Service Layers and Key Characteristics.

Cloud Computing o ers on-demand self-service for cloud customers, allowing
them to provision resources (i.e. networks, servers, storage, applications, and ser-
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vices) without human intervention and to only pay for what they consume. Cloud
users could also optimize their cost using cloud's elasticity to provision new re-
sources on the y or quickly release some reserved resources to keep the exact
amount needed for satisfying their demand. Moreover, the capacity to measure the
Quality of Service (QoS) of provisioned resources helps cloud providers and users
monitor resources behaviour and state [55]. These characteristics encouraged the
adoption of Cloud Computing and made possible the development of mechanisms
for auto-scaling operations to dynamically optimize resources as the load varies.
Furthermore, errors and faults (e.g. virtualization problems, work ow disruption)
can be reported so appropriate actions can be enforced automatically. As a result,
the cloud enables end-to-end autonomous service composition and delivery on de-
mand, along with dynamic optimization of allocated resources. Such optimization
maintains the QoS with minimal allocated resources. Consequently, the cloud mini-
mizes the cloud customer cost, maximizes the cloud provider's pro t, and optimizes
energy consumption.

The capabilities of the cloud accelerated the adoption of this computing model
by many businesses seeking to reduce their capital expenditure by moving their in-
frastructure to the cloud. Moreover, the "pay-as-you-go" business model of the cloud
reduces the infrastructure cost. Businesses do not have to worry any more about
maintenance, scalability issues, and hiring specialized sta to manage and deploy IT
systems and software, thus reducing their operating expenditure. Furthermore, the
wide range of services provided by service providers in the cloud creates an attrac-
tive marketplace for existing and emerging businesses. In fact, using tuned services
with auto deployment and scaling mechanisms eases the development of IT solu-
tions and allows businesses to focus on their main product without worrying about
the back-end. For example, with Google App Engine DatastofgNo SQL based
storage) and CloudSQE (SQL based storage) businesses can deploy needed storage
instantly without worrying about scalability, reliability, and disaster recovery.

2.2.3 Fog Computing

Cisco rst introduced Fog Computing in 2011 [17,56]. It was further developed
and de ned by the Open Fog Consortium (OFC). Fog Computing falls under the
wider de nition of Edge Computing which stands for pushing applications and ser-
vices, completely or partially, to the network edge. As a result, some functions (e.g.
processing, temporary storage, data aggregation) become closer to end-users and
connected objects which improves applications and services response time [57]. Al-
though Cloud and Fog Computing paradigms have virtualization as common ground,
their characteristics are di erent. The cloud infrastructure is composed of large data
centres with virtually unlimited capacity distributed in several countries or regions
of a country. The cloud is a centric solution for service providers [56]. However,
Fog Computing is characterized by highly distributed and location aware virtualized
nodes with limited capacity.

"https://cloud.google.com/datastore/docs/
8https://cloud.google.com/sql/docs/
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Another concept, cloudlets [58,59], coincides with Fog Computing. A Cloudlet
is a resource-rich computer like "cloud in a box," which is available for use by
nearby mobile devices [30]. However, Fog Computing includes various types of
nodes, dierently to servers in the cloud or cloudlets. These nodes can be small-
sized servers [60], gateways [28], routers [61, 62], and resource rich machines [58].
Hence, Fog nodes capabilities depend on their type and capacity, which can a ect
the nature and size of services these nodes can host. For example, authors in [57]
consider all virtualized nodes between the cloud and connected objects as the Fog,
while authors in [28] consider the Fog as the set of smart gateways at the network
edge.
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Figure 2.3: Fog Computing Conceptual Architecture (Source [63]).

Figure 2.3 shows the integration of Fog Computing between the cloud and end
devices. The Fog complements the cloud and provides several bene ts. Firstly,
it extends services deployment to the edge of the network, enabling higher QoS
for applications with low latency requirements such as video streaming, augmented
reality, and gaming [61,64]. Secondly. Fog Computing increases resources e ciency
and QoS for widely distributed and large scale applications such as environment
monitoring, and for applications introducing connected objects with high mobility
such as vehicles. For example, it can decrease the tra ¢ load on cloud applications
by aggregating and processing data at the edge. Many uses cases are presented for
Fog Computing in [63] such as IoT applications, mobile network acceleration, and
content delivery networks.
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2.3 Integrating Cloud Computing and the Inter-
net of Things

Previous works have presented the bene ts of converging Cloud Computing and
the loT. Botta et al. and Diaz et al. in [27,53] show the importance of integrating
these two domains. In fact, both technologies have complementary characteristics
as represented in Table 2.1. Authors also presented the di erent drivers for Cloud
Computing and the 10T integration such as Big Data and seamless |IoT applications
execution. More precisely, in [27], authors introduced novel applications resulting
from the CoT paradigm and presented the state of the art of some research projects
in this area. Diaz et al. [53] showed the di erent academic and industrial solutions
enabling such integration with several case studies. They presented existing solutions
which can be combined to deliver the CoT. In this perspective, Diaz et al. surveyed
big data solutions such as Hadodmnd Apache Spark®, Cloud Computing platforms
such as OpenNebula [65], and middlewares for the loT such as the Global Sensor
Network (GSN).

Table 2.1: Complementary aspects of Cloud Computing and the Internet of Things
(Source [27])

Internet of Things Cloud Computing
Displacement pervasive centralized
Reachability limited ubiquitous
Components real world things virtual resources
Computational Capabilities limited virtually unlimited
Storage limited or none virtually unlimited
Role of the Internet point of convergence| means for delivering services
Big Data source means to manage

The broad de nition of the loT and the various service models of Cloud Com-
puting made such integration possible using di erent approaches. As previously
mentioned, there are two main manners to integrate both domains: bringing the
cloud to connected objects or bringing 10T devices to the cloud. When Cloud Com-
puting is used to shift the processing power from connected objects to powerful data
centres, 10T devices become simple data sources. Such integration does not modify
the respective functionalities of both domains. The IoT provides sensory data while
the cloud provide services to process and store these data. We refer to this method
as the loose integration. However, adding 10T devices to the cloud can be done by
enhancing connected objects with cloud characteristics. Such convergence considers
the 10T as part of the service models provided by the cloud. It can happen at the
application level, the platform level, or the infrastructure level. Some works in the

9http://hadoop.apache.org/
Onhttps://spark.apache.org/
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literature focused on a single layer integration while others consider multiple-layer
integration resulting respectively in partial or full integration strategies. In the
following, we discuss in details the di erent levels of integration.

2.3.1 Loose Integration

A loose integration of Cloud Computing and IoT consists in a set of solutions that
use both technologies without introducing a novel service model. Hence, preserving
the traditional purposes of both domains. The IoT provides connected sensors and
actuators, while the cloud o ers compute and storage resources to host an applica-
tion managing the latter 10T infrastructure. Moreover, the [oT application might
expose sensors and actuators functionalities via APIs for developers. In the latter
case, the cloud acts as the intermediary layer between the IoT infrastructure and
domain speci c applications. The loT application deployed in cloud data centres
bene ts from the cloud characteristics such as the rapid elasticity and the "pay as
you go" business model. For example, allocated resources for the 10T application
might scale up or down based on the applications usage [34]. However, the cloud
platform remains unaware of I0T resources and rely solely on compute, storage,
and network usage in cloud data centres for the decision making. Furthermore, the
cloud characteristics are not transferred to the loT. Therefore, I0T resources are
not o ered on-demand and their usage cannot be optimized. For example, the 10T
application uses cloud resources for storing, analysing, and visualizing collected sen-
sory data at all times without considering users actual needs which lead to ine cient
use of 10T and cloud resources [66{70].

Figure 2.4: Conceptual IoT Framework with Cloud Computing at the Centre
(Source [34]).

Several works follow a loose integration in their approach. For instance, authors
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in [32,34] de ne a cloud application for managing and collecting sensory data. The
work in [34] considers a general context, while [32] focuses on ambient assisted living.
However, both studies rely on storing sensors data and provide them via APIs or
a web interface to developers or end-users respectively. Furthermore, existing loT
platforms realize the loose integration of cloud and loT such as Xivély[20]. This
kind of platforms provides means to connect I0T devices, store their data, and expose
them via APIs over the Internet. Some of these platforms o er also analytics services
to process collected data and visualization tools to plot stored streams. Figure 2.4
illustrates the cloud and the 10T roles in a loose integration approach. This method
is out of the scope of this thesis as it does not relate to the CoT vision.

2.3.2 Partial Integration

A partial integration consists in introducing a novel service model within Cloud
Computing which delivers 10T resources [21,27]. Such approach extends the cloud
reach to the physical world. Therefore, cloud o erings become wider and include loT
resources. Furthermore, Cloud Computing characteristics are also passed on to loT
devices and resources. Hence, the pay as you go business model and the on-demand
provisioning of resources become applicable on the I0T. This partial integration
of Cloud Computing and the 10T is possible through: (1) a data-centric approach
[50,71], (2) a device-centric approach [50,72,73], or (3) a hybrid approach [50]. A
data-centric approach relies on gathering and storing connected objects generated
data which are shared among multiple applications. In this case, connected objects
are used as data sources. Hence, end-users do not have control over the underlying
loT infrastructure nor the storage units. A data-centric approach provides additional
service models such as the Sensing as a ServicaéS) [74{77] for end-users. It is
considered a PaaS [50] since it forbids access to 10T devices con gurations.

Separately, a device-centric approach focuses on delivering Sensor/Actuator as
a Service (SAaaS) [50,72,78{80]. It is also referred to as Smart Object as a Service
(SOaaS) [81] or Things as a Service (TaaS) [82,83]. In this case, a set of connected
objects satisfying requested requirements are selected. Then, appropriate services
such as VOs will be deployed to abstract the functionalities of selected connected
objects via standardized APIs. Hence, the end-user gains control over 10T devices
con gurations such as data transmission rate. A device-centric approach allows
end-users to provision 10T devices. A hybrid approach consists of a combination of
the data-centric and device-centric approaches. It realizes the laaS and PaaS service
models for the 10T and enables the allocation of connected objects as well as sensory
data streams. Figure 2.5 illustrates the di erence between the data-centric (a) and
the device-centric (b) approaches.

Despite the selected approach to achieve a partial integration of Cloud Com-
puting and loT infrastructures, orchestration mechanisms are required to optimize
resource utilization. In contrast to the loose integration, a partial convergence pro-
vides an additional service model in the cloud responsible for delivering needed loT

L https://www.xively.com/
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Figure 2.5: Di erence between (a) the Data-Centric, and (b) the Device-Centric
Approaches.

resources to upper applications as seen in Figure 2.5. Therefore, connected objects
selection techniques are necessary to pick appropriate IoT resources for applications
e ciently. Furthermore, cloud provisioning processes are crucial to optimize allo-
cated compute, storage, and network for abstracting selected IoT resources. These
orchestration mechanisms should be adaptable to the dynamic changes in Cloud
Computing and IoT infrastructures. In the literature, several works have addressed
the resource allocation problem in such an environment. Most techniques for se-
lecting connected objects aim to minimize their energy consumption and extend
their lifetime [66,68{70, 84, 85]. However, some contributions focus on selecting the
best set of loT devices based on applications requirements [86,87] without worrying
about energy consumption. These studies perform the selection based on provided
functional and non-functional properties of required connected objects. They con-
sider properties such as accuracy, reliability, energy, availability, and cost. From
the cloud perspective, resources optimization focuses on minimizing bandwidth con-
sumption [68, 84, 88], storage usage [89], and QoS violation [68,90, 91].

We refer throughout this work to platforms performing partial integration of the
cloud and the 10T as cloud-based loT platforms. There exist many research projects
as well as commercial solutions which provide this kind of IoT platforms. In the
following, we represent some of these works.

OpenloT

The OpenloT [71,92] aims at providing an loT platform with semantically in-
teroperable data streams generated from heterogeneous l0T devices. This project
presents the eXtended Global Sensor Network (X-GSN) which is an extension of the
GSN middleware. The X-GSN connects to I0T devices and semantically annotates
received raw data points which hide the heterogeneity of collected data, allow the
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uni cation of data description, and link related data. The OpenloT follows a data-
centric approach. It stores annotated collected data in a cloud storage and allows
loT applications to access them via APIs. The OpenloT has a scheduler component
which receives data streams requests from 0T applications. This component is re-
sponsible for allocating needed cloud resources and deploying appropriate services
to retrieve and deliver needed data streams.

FIWARE

The FIWARE *? project [93] aims to create a cloud-based IoT platform based
on the Internet of Things Architecture (IoT-A) reference model [94]. The IoT-A
de nes a set of functional groups needed for a seamless delivery of 10T resources
to third party applications. Some of these functional groups are: abstracting con-
nected objects, discovering IoT resources, and storing sensory data. Furthermore,
they include a set of services for delivering e ciently registered 0T resources. The
FIWARE project implements these functional groups as Generic Enablers (GES).
Each GE is a software component which provides the key functionalities of a func-
tional group. For example, the Backend Device Management GE is responsible for
abstracting gateways, sensors, and actuators. The set of interconnected GEs com-
pose the FIWARE cloud-based 10T platform. Such approach enables a modular
composition of cloud-based IoT platforms depending on the providers needs. GEs
use the Next Generation Services Interface (NGSF)API to communicate with each
other and with third party applications. The FIWARE project also includes GEs
for managing, orchestrating, and provisioning cloud and loT resources such as the
laaS GE, the PaaS Manager GE, and the loT Broker GE.

Commercial Solutions

Multiple commercial solutions provide partial integration of Cloud Computing
and loT resources. We can cite the Google Cloud 187, the Amazon Web Services
(AWS) 10T 15, the IBM Watson IoT ¢ platform, and many others. These platforms
0 er seamless connection and integration of 10T devices with cloud services such as
storage, analytics, and visualization. They abstract 0T devices, collect their data,
and provide means to manages these data. For example, the AWS loT platform
abstracts connected objects as virtual shadows (i.e. VOs) and expose their data
via APlIs for third party applications. Moreover, it enables the integration of AWS
services to manage collected data within the AWS cloud. Some solutions, such as the
IBM Watson loT platform, enables even the automatic deployment of 1oT work ows
which can be de ned using the Node-REE tool. Commercial solutions uses also
optimization mechanisms to maximize their infrastructure utilization. However,

https://www. ware.org/
Bhttp://www.openmobilealliance.org/release/NGSI/

Y https://cloud.google.com/solutions/iot/
BShttps://aws.amazon.com/iot-platform/how-it-works/

B https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://nodered.org/
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they integrate Cloud Computing and loT technologies solely on the platform level
which remains a partial integration.

2.3.3 Full Integration

A full integration consists in extending all traditional Cloud Computing service
models (i.e. laaS, PaaS, and SaaS) to include the IoT. Such expansion enables cloud
and loT resources to be consumed seamlessly as integrated cloud services. Hence,
clients are able to provision compute, network, storage, sensing, and actuating re-
sources on-demand from cloud data centres and connected objects. Such resources
allocation is possible at the infrastructure, the platform, or the software level. For
example, a Raspberry Pl connected to a virtual machine might be deployed for a
given customer as an laaS o ering. Furthermore, a developer can allocate on the y
an android development environment alongside pollution data streams of multiple
sensors spanned across a particular city. The latter scenario should be provisioned
seamlessly without human intervention in a full Cloud Computing and IoT inte-
gration. In addition, a fully integrated environment must be able to provision 0T
platforms similar to those de ned in the loose and partial integrations.

CSaas Intelligence Service SaaS
(Application and User Interface)
CPaaS
PaaS
) i . ) ) o Service and Business Operation
City Service Composition City Data Processing o (Service Composition and Business Process
5- Middleware)
’ City Resource Access ‘ 2
o
@]
ClaaS _fé laaS
’ City Infrastructure Management ‘ =4
(Y]
- - - . = WoT Infrastructure
’ Interoperability and City Resources Virtualization ‘ Ej (Network and Computing Resources)
Sensorization and Internet of Things| Computing and
Actuatorization Kernel Storage
. . Cloud Computing Hardware and Gateways with
Cloud Computing and Internet of Things Hardware RESTful Web Service
(a) ClouT Project Cloud of Things Architecture (b) Cloud of Things Architecture based on Gateway:

Figure 2.6: Cloud of Things Service Models as De ned by Existing Works (Sources
[95, 96])).

In this perspective, some works have de ned a reference architecture for the
CoT [95,96] as depicted in Figure 2.6. Authors in [96] describe the CoT for smart
cities in the context of the ClouT*® project (Figure 2.6.a). They represent the City
Infrastructure as a Service (ClaaS), the City Platform as a Service (CPaaS), and the
City Software as a Service (CSaaS). The ClaaS layer is responsible for delivering
abstraction services for the 10T as well as traditional infrastructure level resources

Bhttp://clout-project.eu/
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for the cloud. The CPaaS provides development environments with accessible data
streams. In this layer, developers are able to produce applications which consume
sensory data or actuate in the real world while having a set of available integrated
services such as data processing. The CSaaS layer enables the deployment of 10T
applications for smart cities. Similarly, the study in [95] provides a three layered
architecture to integrate l0T resources with cloud o erings (Figure 2.6.b). It de nes

the lowest layer as the Web of Things (WoT) infrastructure which is composed of
gateways exposing underlying connected objects. Each gateway hosts a RESTful
WoT web service. The second layer is the PaaS layer which handles service compo-
sition and business processes deployment. The uppermost layer represents the SaaS
and o er visualization services. To the best of our knowledge, there exists no work
addressing the resource allocation problem in a fully integrated environment.

2.4 Open Issues and Challenges

Although some work has been done to de ne the CoT, this new paradigm is still
in its infancy. Many open issues still need to be addressed by the research commu-
nity. In this section we present some challenges from the resources management and
provisioning perspectives in the CoT.

2.4.1 Interoperability

Individual Cloud Computing and 10T have interoperability challenges [13, 97].
On the one hand, Cloud Computing su ers from vendors lock-in due to proprietary
solutions which prevent applications portability and interoperability between cloud
providers. On the other hand, the 0T encompasses heterogeneous devices with a
wide range of capabilities, types, data encodings, and properties. Such diversity
makes it harder to build interoperable 10T solutions. In this perspective, several ini-
tiatives aimed to enhance interoperability by developing standards for Cloud Com-
puting and the IoT which are discussed with more details in Chapter 4. However,
these standards were designed speci cally for each domain which make them un't
for leveraging the convergence of Cloud Computing and the IoT. Moreover, the lack
of a clear de nition and a reference architecture [98] for the CoT resulted in di erent
solutions for combining both technologies as seen in Section 2.3. This variety of ex-
isting solutions decreases further the interoperability of CoT platforms. Hence, the
need to de ne a CoT reference architecture and standards for managing compute,
network, storage, sensing, and actuating resources.

Reference Architecture

In the 10T, several reference architectures have been proposed such as the I0T-A
[94] to provide guidelines for developing IoT platforms. They de ne domain, in-
formation, and functional models alongside needed security measures for the IoT.
Furthermore, Cloud Computing also has a well de ned reference model [19] describ-
ing its service models and characteristics. However, integrating Cloud Computing
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and the IoT requires novel reference models which consider both domains simulta-
neously. In fact, existing reference architectures are unt for representing the CoT.
As a result, current solutions for describing the CoT propose di erent strategies to
connect IoT devices and cloud applications which do not t in neither cloud ser-
vice models nor the I0T-A functional blocks. For example, studies in [72,80] used
a software component named the SAaaS framework to deliver 10T resources in a
cloud environment. This component extends the I0T-A functionalities to enable
on-demand and elastic provisioning of sensing and actuation resources in the cloud.
Other works [29, 48,81, 99] used VOs to link between connected objects and cloud
applications. However, they do not integrate seamlessly cloud service models and
result in additional o erings such as the %aaS, the SAaaS, the SOaaS, and many
others. Fully integrated solutions provide a clearer representation of 0T o erings
applied to Cloud Computing service models. However, di erent works [95,96] present
multiple de nitions. Since the I0T-A is an established reference architecture for loT
platforms and has been used in several works such as [72,80] and cloud-based loT
projects such as OpenloT and FIWARE [93], it can be used as a starting point for
de ning a CoT reference architecture. In such case, the 10T-A concepts need to be
adapted for a cloud-like service model and encompass cloud characteristics such as
rapid elasticity, on-demand provisioning, etc.

Standards

Integrating Cloud Computing and the 10T creates a highly heterogeneous envi-
ronment. Firstly, connected objects o er proprietary interfaces which do not follow
any sort of standardization. Secondly, di erent sensors generate raw data in distinct
formats and di erent actuators encode their state information variously. Finally,
multiple solutions for connecting 10T devices to cloud applications are presented in
the literature as stated in Section 2.3. However, these methods are not standard-
ized nor compatible with one another. Moreover, CoT platforms need to support
loT applications portability between di erent providers to avoid vendors lock-in.
Currently, there exist several standards which address some of the standardization
issues. The Semantic Sensor Network (SSN) ontology, the Sensor Web Enable-
ment (SWE) Sensor Model Language (SensorML), and the SWE Observations and
Measurements (O&M) provide means to describe sensors and their data streams
(see Section 4.2). However, some work is still needed to include actuators descrip-
tion within these standards. Furthermore, the SWE suite of speci cations also
de nes standardized interfaces to interact with IoT resources such as the Sensor
Observations Service (SOS). Other standards related to Cloud Computing ensure
applications portability such as the OASIS Topology and Orchestration Speci ca-
tion for Cloud Applications (TOSCA)?°. Also, standardized resources management
interfaces exist for Cloud Computing such as the Open Cloud Computing Inter-
face (OCCI). They can be extended or combined with 10T related interfaces such
as the SWE SOS to provide a CoT resource management interface. As we notice,
existing standards solve interoperability issues in individual Cloud Computing and

Pnttps://www.oasis-open.org/committees/tosca
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loT environments. However, further e orts are needed to adapt existing standards
to a CoT environment similarly to the work in [100] which uses TOSCA to describe
and deploy loT applications.

2.4.2 Resource Provisioning

Resource provisioning is one of the major challenges in Cloud Computing [101]
and the 10T [102,103]. On the one hand, resource provisioning in Cloud Computing
consists in mapping Virtual Networks (VNs) onto a Substrate Network (SN). the
VN is a set of interconnected nodes which represent Virtual Machines (VMSs) in
an laaS deployment, or software components in PaaS and SaaS. Moreover, the
SN represents the cloud infrastructure (i.e. cloud data centres and network links).
Allocating resources consists in mapping the VN nodes onto candidate SN data
centres then selecting the best candidates as illustrated in Figure 2.7.a. Therefore,
the optimal solution is the set of candidates which ensures the mapping of the entire
VN and optimizes the objective function of the cloud provider. This function aims
to maximize the provider's prot, minimize the energy consumption, etc. On the
other hand, the |oT resource provisioning process aims to choose the set of sensors
and actuators which satisfy applications requests (see Figure 2.7.b). Similarly to
Cloud Computing, 10T devices are picked based on an objective such as maximizing
QoS, minimizing energy consumption, etc.

Figure 2.7: Cloud Computing and the IoT Separate Provisioning Processes.

However, provisioning separately cloud and IoT resources in a CoT environment
prevents reaching an optimal resource utilization and control. In fact, a seamless
integration of Cloud Computing and the 10T requires a holistic approach with global
orchestration mechanisms that consider all CoT resources simultaneously (i.e. com-
pute, network, storage, sensing, actuating). Such holistic provisioning cannot be
reached with previous works as it needs to account for multiple aspects regarding
Cloud Computing and IoT at the same time:



Selecting the set of connected objects which satisfy the requested functional
(e.g. type) and non-functional (e.g. accuracy) requirements speci ed by the
loT application.

Provisioning cloud services responsible for managing previously selected con
nected objects across cloud data centres.

Provisioning connectivity services (e.g. VOS) to link selected connected objects
and deployed cloud services.

These aspects should be considered while aiming to minimize the CoT infras-
tructure resource utilization and maximizing the QoS experienced by end-users con-
suming the deployed IoT applications. In addition, orchestrating loT connectivity
services such as IoT middlewares or VOs requires the consideration of multiple de-
livery strategies as de ned in the 10T-A project [94]. For example, an loT device
might be connected directly, through a VO, or through an loT middleware. Other
methods also exist such as the data-centric approach. Therefore, the provisioning
process should be aware of all possible deployment strategies and be able to select
the optimal con guration which reduces the operational cost of the deployment.
Furthermore, these delivery methods can be provisioned to serve one or multiple ap-
plications. Hence, methods for considering previously deployed loT delivery services
and re-using them are needed to avoid the excessive use of resources. These chal-
lenges are still to be addressed when composing and provisioning 10T applications
in a CoT environment.

2.5 Conclusion

The CoT o ers a new scope of loT applications and services which, in contrast to
traditional 10T infrastructures, can be self-managed, self-con gured, and automat-
ically deployed without human intervention. In this chapter, we surveyed several
works in the literature thriving for realizing such vision. We classi ed these works
based on the way they integrate the IoT and Cloud Computing to realize the CoT.
Such classi cation resulted in three categories: the loose integration, the partial in-
tegration, and the full integration. We highlighted the resource allocation problem
addressed within each integration strategy. Furthermore, we presented the open
issues related to resource modelling and provisioning in the CoT. More contribu-
tions are needed to achieve autonomous end-to-end loT applications provisioning
and deployment.
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3.1 Introduction

Cloud-based Internet of Things (IoT) platforms were rst proposed in [29]. These
platforms aim to take benet from cloud resources and characteristics to deliver
loT service models such as the Sensing as a ServicéaéS) [74, 75, 77,104] and
the Sensor/Actuator as a Service (SAaaS) [79, 80]. These platforms provide 0T
resources to multiple applications running in the Cloud by abstracting heterogeneous
physical and logical 0T devices using Virtual Objects (VOs). A VO is a software
component which abstracts the interaction with a real 10T device. It wraps all
the functionalities of the object (i.e. sensing, actuating, con guration) and provide
them via common Application Programming Interfaces (APIs). Cloud-based IoT
platforms deploy and manage VOs on-demand to provide required 10T resources for
cloud applications. Such platforms bene t from cloud features to scale up/down or
migrate VOs to cope with applications requirements and Quality of Service (QoS)
terms. The dynamic allocation of 10T resources permits also to increase the lifetime
of 0T devices reducing their solicitation when information is already available in
their associated VO [67].

VOs are not deployed individually in independent Virtual Machines (VMs) which
will be ine cient and resources consuming. The large-scale nature of the 1oT makes
it impossible to run one VM for each VO. Therefore, 10T middlewares manage
collections of VOs and provide APIs to access them individually. Middlewares are
themselves executed in VMs hosted in a Cloud Computing infrastructure. It starts
and stops VOs as needed. Launching a VO consists on instantiating a wrapper
that connects to a given IoT device. In such context, the distribution of VOs and
VMs within the cloud infrastructure a ects the resources utilization e ciency, the
loT applications QoS, and the operation cost of the overall system. For example,
provisioning two VOs in a single VMs costs less than provisioning them in multiple
VMs. However, if these VOs communicate with di erent applications, separating
them might have an important impact on the QoS (e.g. latency for each application).
Consequently, provisioning mechanisms are very important and have an important
impact on the QoS and deployment cost of VOs.

Figure 3.1: Virtual Object Provisioning Approaches.
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Moreover, several applications might request similar 10T resources (e.g. temper-
ature sensing in the same location) and the same loT object might serve multiple
applications. In such case, there are several possible con gurations to abstract sens-
ing and actuating resources in cloud-based IoT platforms. These con gurations are
depicted in Figure 3.1. In part (a) of the gure each IoT device connects to one
VO which belongs to a single application, in part (b) connected objects are shared
between applications in contrast to VOs, in part (c) IoT resources and VOs can
be shared. In cases (b) and (c), connected objects might be shared or not based
on their capabilities. To the best of our knowledge, most previous works in the
area have only considered the rst case (i.e. case a). However, sharing connected
objects and VOs reduces needed cloud resources to deliver sensing and actuating
functionalities to applications. In this thesis, we highlight the bene t of sharing loT
resources between di erent applications in the context of cloud-based IoT platforms.
We propose two analytical formulations of the problem and associated solutions to
optimize the placement of shared IoT resources (i.e. VOSs) in the Cloud Computing
in order to satisfy the global system performances.

The chapter is organized as follows. First, We present the speci c related works
in Section 3.2. we present the challenges to share e ciently 10T resources in Section
3.3. In Sections 3.4 and 3.5 we present our model to provision shared VOs in the
Cloud Computing. We provide two analytical formulations of the VOs placement
optimization: (a) static (Section 3.4) and (b) dynamic (Section 3.5). Both analytical
models are based on the Linear Program (LP). The static LP considers a new
environment with no previously deployed VOs, while the dynamic model takes into
consideration the previously deployed VOs when placing a new request. Afterwards,
simulations results are discussed in section 3.6. Finally, we conclude the chapter with
an overview outlining the bene ts of our approach.

3.2 Related Works

The selection of connected objects is an important functionality of cloud-based
loT platforms. There are several techniques proposed in the literature [105] to
achieve this selection. Contributions made by [86,87] propose several techniques to
select the bestk connected objects based on an application request: comparative-
priority based heuristic Itering, relational-expression based Itering and a dis-
tributed object searching technique. The search techniques take into consideration
non functional requirements of 10T devices with distinct priorities in the selection
process. Authors consider accuracy, reliability, energy, availability, and cost of con-
nected objects. However they do not try to optimize the number of used objects.
This issue was addressed later in [68]. The focus of this work is the optimal selec-
tion of connected objects to satisfy the applications requirements while preserving
the e ciency of resource utilization. The authors propose two algorithmsCoV-I
and CoV-Il addressing two particular cases: when physical objects are homoge-
neous and fall within the same geographical area (i.eCoV-l), and when objects
are heterogeneous and geographically distributed (i.€€oV-1l ). Results show that
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both algorithms enhance the resources utilization by selecting only the necessary
loT devices for each application.

Other related works have addressed the network resources utilization as described
in [3,69,88,90,106]. The approach presented in [70,88] relies on the control of data
transmission rates between di erent entities in a cloud-based IoT platform to re-
duce the consumption of the network resources and increase the physical connected
objects lifetime. Phan et al. [88] focus on optimizing communication bandwidth in
SC-iPaaS (Sensor-Cloud Integration PaaS). In SC-iPaaS, loT devices send data peri-
odically to corresponding sinks, who relay them at di erent frequency rates to VOSs.
When end-users request data streams to their applications running in the cloud,
applications invoke the corresponding VOs. VOs reply directly if the requested data
streams are locally available, otherwise they request up to date information to the
connected objects. Authors seek in this work the Pareto-optimal data transmission
rate for each connected to object and sink node to maximize applications requests
success rate while minimizing objects' energy consumption and network resource
utilization. Phan et al. de ne three objective functions: (a) maximizing the objects
data yield (i.e. data availability) for cloud applications, (b) minimizing the band-
width consumption between the cloud layer and the edge layer, and (c) minimizing
the energy consumption of connected objects in the 10T infrastructure.

Moreover, other related works have addressed the limited processing, storage,
and energy capabilities of connected objects and how to use them in an optimal
manner. In [106], Xu et al. increase loT devices lifetime by optimizing the data re-
guests from these devices, and the data demand from applications. Authors propose
a bi-directional waterfall optimization framework which relies on data/application
caching. Instead of only caching data while it is moving up to the applications in the
cloud-based loT platform, authors move parts of the applications logic down to the
edges. Hence, the amount of data to send to the cloud applications decreases which
reduces the bandwidth overhead for data transmission. In [69], authors optimize
the transmission of data streams by assigning the closest data centre to host virtual
objects, then schedule a particular data centre to aggregate data from these VOs.

Finally, several works focused on the QoS in an I0T environment, in particular,
delay and response times. Misra et al. introduced in [90] a gateway selection mech-
anism to establish an e cient, reliable and cost-e ective health monitoring system
and to minimize transmission delay with cloud applications. Authors considered
static connected object devices while authors in [3] considered instead a Mobile
Cloud Computing (MCC) environment where 10T devices can be mobile and VOs
deployed in the cloud process the incoming data streams. Authors formulated the
problem as a linear program to jointly optimize the gateway selection and the ser-
vices deployment cost in the cloud. Authors objective was to minimize data ows
uctuation in each cloud data centre and the rate of required recon guration oper-
ations to satisfy the changing load.

In the mentioned related works, several approaches have been used to optimize
network resources when transmitting data streams to applications via virtual ob-
jects, however, all these approaches considered that virtual objects are dedicated
to a particular application and not shared among them. In our work, we consider
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that sharing VO is very important and can help to derive a more e cient solution.
Therefore, we take a di erent approach and we propose that virtual objects can be
shared among multiple applications when they are requesting the same data and
that the objective is to further minimize resources utilization while maintaining the
same level of QoS for the applications. This allows to go one step forward in the
optimization of the resources, QoS assurance and reduction of operational cost for
such applications.

3.3 Problem Statement

A provisioning mechanism of cloud resources to deliver shared 10T devices must
address several challenges. Firstly, the 10T large-scale infrastructure increases sub-
stantially the problem size. Such infrastructure consists of highly distributed nu-
merous connected objects spanned over multiple geographical areas. Consequently,
orchestrating VOs for a large number of allocated sensing and actuating resources
can be time consuming. The provisioning algorithm must cope with such large
scale 10T environment. It should scale with large number of requests and produce
solutions in an acceptable response time. Furthermore, such algorithm should con-
sider two data ows: (a) the data exchange between connected objects and VOs
hosted in cloud data centres, and (b) the data transmission between VOs and cloud
applications.

Figure 3.2: Virtual Object Sharing Challenges Examples.

Secondly, sharing VOs amongst multiple applications requires a trade-o be-
tween optimal placements of each application individually. The provisioning process
should optimize the placement of each request without penalizing a particular one.
For example, let's consider 4 VOs requested by two application¥Q belongs to one
of these applications, while/Q and VQ serve the other one. Each application's VOs
are deployed in separate data centres as shown in Figure 3.2.a. W@ sends data
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to both applications. In this example,VQ has two possible candidates with already
deployed VMs. Both candidates satisfy applications QoS terms. We consider that
the costs of hostingVQ in both data centres are similar for all types of resources
(i.e. compute, network, and storage). Therefore, the provisioning decision is mainly
impacted by the QoS requirements of each application (e.g. latency). In this partic-
ular case, an e cient orchestration algorithm should nd the placement that best
satis es all the applications QoS requirements instead of nding a placement based
on other criteria.

Finally, a sharing strategy of connected objects might require that new requests
are served by already deployed VOs. However, VOs might need to satisfy some par-
ticular QoS requirements for the initiating applications. In this case, the migration
feature of Cloud Computing might be used to move VOs to a location that permits
to satisfy these QoS requirements instead of creating new VOs. Figure 3.2.b illus-
trates such use case: a new application requir®$) which is already deployed for
another one. Since the previous placement violates the QoS of the new application,
the VQ is migrated to another host that is more appropriate in term of QoS as-
surance. The migration operation induces additional costs for the cloud operator.
Therefore, the proposed model needs to take into account the migration cost and try
to minimize the recon guration operations performed on previously deployed VOs.
Additional granularity might be considered as well during the provisioning process.
For example, if the migration cost of a previously deployed VO is high, another
VO is instantiated without performing the migration operation. In such case, two
VOs connect multiple applications to the same 0T device. However, such consid-
erations increase considerably the algorithm complexity and its computation time.
Therefore, we decided to not consider such a solution since we aim to propose only
a scalable algorithm with acceptable time complexity. Therefore, in the proposed
approach, we consider that a VO and an |oT device can be shared between several
applications with the restriction that only one VO can be associated with an loT
device.

3.4 Static Virtual Objects Placement Optimiza-
tion Model

In this section, we address the challenges of sharing VOs among di erent appli-
cations. First of all, we formulate an analytical model of the problem which is an
optimization problem under constraints, then we propose solutions to optimize the
placement of VOs in such environment. Table 3.1 is a notation table that illustrates
the signi cant variables used in the model.

3.4.1 Internet of Things Objects Clustering

In the 10T, connected objects usually belong to various geographical areas. When
loT devices belong to the same geographical areas, communication costs with their
associated cloud data centre are similar. Indeed, since the data follows the same
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routing path, experienced bandwidth capacity and QoS (such as latency) are simi-
lar. Therefore, there is no need to consider each connected object individually and
it is therefore possible to treat them as a collection. We propose therefore to reduce
the problem size by clustering the connected objects in the IoT based on di erent
geographical areas. Such grouping does not alter the e ciency of the placement
process. However, since selected IoT devices in each geographical area may commu-
nicate with di erent applications hosted in di erent data centres, QoS experience
may be di erent. Therefore, in order to assure the required level of QoS, we propose
to subdivide further the cluster and group together connected objects serving the
same set of applications. Each obtained cluster at the end of the partitioning should
belong to only one geographical area. Each cluster is also associated with the same
group of cloud applications and QoS requirements.

$SSOLFDWLR( $SSOLFDWLRQ

,R7 ,QIUDVWUXFWXUH

Figure 3.3: Clustering Steps Before the Provisioning Process.

Figure 3.3 shows the proposed clustering process. First, the selected pool of
connected objects is separated into geographical groups. Then, they are further
separated by similar requirements groups (i.e. same set of served applications).
Let's consider a set of applicationdA = a;:::;a, having each a set of associated
connected objects (IoT devicesD = Oq;::;;O,. Each set of connected object has
a cardinality n; and is represented a©; = 0;1;::};0.,,. Having these elements,
we propose the Algorithm 3.1 to compute the set of cluster€. This clustering
approach permits to reduce the size of the problem to derive a solution with a
reduced complexity.
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Algorithm 3.1 Clustering Algorithm for the Static Optimization Model

Cluster-Static (A;0)

In:  Set of n applicationsA = fay;:::;a,g; Sets of assigned connected objects for
each applicationO = fOqy;::;;0ng = f0y; 500

Out: Sets of clustersC = fCy;:::g where each clusteC; groups connected objects
with similar requirements. Sets of requirement® = f Ry; :::g for each cluster.

:C ; ;R ;
2: for all selected connected objectg 2 O do

R f Tg fadd the new group of requirements t&Rg

C f qg fcreate a new cluster for new requirementsg
10: end if

11: end for

12: return C;R

3 create a temporary sefl containing the geographical location 06.
4: add to T all the cloud applicationsA; 2 A served byo.

5: if 9Ry such that R, = T then

6: Cx (0]

7 else

8:

9:

3.4.2 Placement Optimization Problem Formulation

Cluster-Static  (A; O) produces a nite number of clustersC = fCy;:::; Ch0.
Each clusterC; represents a set of connected objects, has a geographical location
g 2 R, and serves a set of applications ; Rj such that ; = Rjnfgg. VOs
mirror connected objects within these clusters in data centrd3 = fd,;:::; d,g and
provide their services to cloud applications. Figure 3.4 shows the network schema
of such environment. We de neef! and €* as network links. An edgeef! lies
between a clustelC; and a data centredJ , Whl|e eOla connects a data centrel, and an
application g;. Each network link possesses functlonal and non-functional properties

such as available bandwidth I, K!?) and network latency (&7, 15?) respectively.

Network Model

loT devices exchange data with VOs. Therefore, each clust& produces an
average transmission rate represented a$. The generated average transmission
rate for a clusterC; is equal to the sum of all individual average rates produced by
connected objects within this cluster. However, VOs abstracting 10T devices in one
cluster might not be deployed in the same data centre. Hence, a data centre receives
a portion of a cluster's average transmission rate. This portion is represented by the
variable ;. It corresponds to the fraction of connected objects within the cluster
Ci managed by VOs in the data centred;. As a result, the arrival rate (i.e ,°Jd
generated by a given clusteC; at a data centred; is:

=yt (3.1)
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Figure 3.4: Network Model of the Placement Problem.

Consequently, we can derive the overall ingress rate at any data centig as
following:

R N RETI (3.2)
[ R O S .
| |
In some cases, VOs hosted in data centres do aggregation operations on data
or add additional information such as semantic annotations. Therefore, the egress
trac of VOs is not equal to the ingress tra c of connected objects. We use a
coecient > 0 to represent the e ect of VOs operations on received data. If
2 ]0;1[, the deployed VOs aggregate data. However, for> 1, the instantiated
VOs provide additional information regarding the data for cloud applications. Also,
the communication overhead di erence between ingress and egress trac can be
handled by the coe cient . In our work, we consider that the cloud-based loT
platform deploys a single type of VOs similarly to existing platforms discussed in
Section 2.3. As a result, the value of is constant for all VOs. Thus, the egress
tra c for a data centre d; is the following:
d— o c 81! m (3.3)
SR St .
|
Each application receives the amount of data transmitted by its assigned con-
nected objects. However, the latter connected objects are spread across di erent
clusters. Also, they are represented by VOs in cloud data centres. Hence, we can
express the tra c received by each application as a function of: (a) the transmitted
rate of clusters, or (b) the egress tra ¢ of VOs. We de ne the binary variable .
It equals 1 if the applicationa, belongs to the set j, it is O otherwise. As a result,
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Table 3.1: Notation Table

Symbol | De nition

C Set of connected objects clusters; = fCy;:::; Ch0.
D Set of data centresD = fd;:::; dy0.
A Set of cloud applicationsA = fay;:::;a,g.

i The set of applications served by the clusteg;.

itk Binary value equal to 1 ifay 2 , and O otherwise.
0] Geographical location of a clustec;.

i Total egress tra c of a cluster C;.

] Network bandwidth between a clusterC; and a data centred, .
Iifjd Network latency between a clustelC; and a data centred, .

i Ingress tra c of a data centre d; from a clusterC;.

j Total ingress tra c of a data centre d.

2 Ingress tra c of an application a, from a data centred, .

R Network bandwidth between a data centred; and an application ay.
deﬁ‘ Network latency between a data centre, and an applicationa.

cd Price of a data unit between a clusteC; and a data centred, .

da Price of a data unit between a data centr&;, and an applicationa.

j Price of one virtual machine in the data centreg, .
i The fraction of VOs mirroring cluster C; and hosted in data centred .

the average arrival rate sent by a clusteC; or a data centred, to an application a
can now be expressed respectively as follows:

K= ik § (3.4)
X X _
Jd|? = Jdlil = ik i?jd = ik IC 8i:1l! m (35)
i i
with:
o 1 if a2
'k~ 0 otherwise (3.6)

As well, the overall tra ¢ received by an application a is:
X .
g = ik © 8i:1! m (3.7)
i
The tra c between clusters, data centres, and applications, is handled by net-
work links. Transmitted data rates on a given network link should not exceed its
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available bandwidth capacity (constraints 3.8 and 3.9). Furthermore, the data cen-
tres has to be capable of handling the received tra ¢ (constraint 3.10). In fact,
each data centre is able to manage a maximal amount of tra ¢ represented by™.
Also, the received tra ¢ by an application ax should comply with its requested QoS
terms. In our work, we consider the latency of network links as the QoS indicator.
Each applicationay QoS is represented by its highest acceptable latengy*™> (con-
straint 3.11). These network constraints must be satis ed when mapping VOs to
cloud data centres and are expressed as follows:

S 8it1l m; 8 :1! p (3.8)
BoHf 8 1! p; 8k:ll n (3.9)
gooomogii1lop (3.10)

ao i I+ 1% IP™) 0 8i:1! m; 8k:1l n; 81! p (3.11)

Quality of Service Index

During the deployment process, some VOs might have several hosts candidates
with similar cloud resources costs (see Section 3.3) as illustrated in Figure 3.5. In
this case, the provisioning process should select the data centre which provides the
best QoS for all applications. Therefore, we de ne a normalised parameter, the
QoS indexq; 2 [0;1]. This index re ects the inverse of the QoS level experienced
by the set of applications ; using clusterC; when their VOs are installed in data
centre d;. The lower the value ofqg; is, the higher the QoS level is. We use this
to prioritize hosts providing better QoS for cloud applications (See equation 3.16).
The QoS index is expressed as follows:

P

SR g gy g (3.12)
O (e S 1! .
with:
L = m_all(x(li‘?jd;lj‘.’li‘) 8 :1! m; 8 :1! p; 8:1! n (3.13)
L) h '

Cost Function

We provide a model for orchestrating VOs in the cloud. The selection of con-
nected objects suitable for each application is out of the scope of this work. Conse-
guently, we do not consider costs related to the allocation of 10T resources. We only
represent costs associated with cloud resources. The basic resource in the cloud is
the VM. As mentioned previously, VMs manage instantiated VOs which are soft-
ware components within VMs. These VOs consume VMs resources based on the
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Figure 3.5: Provisioning Scenario with the QoS Index.

tra c they handle. In our work, we consider that all VMs are able to handle the
same arrival rate . Therefore, we can calculate the total number of VMs needed
in each data centre based on the overall tra ¢ managed by it. Each data centre,
has a di erent VM cost represented as /™. As a result, the cost of needed VMs for
orchestrating requested VOs is expressed as follows:

X &4 &p
FYm( )= ym L= ovm LA L gii1l m; 8 :1! p (3.14)
j j
In order to linearise FY™( ) we introduce the variableu; to replace the ceiling
function. The relation between the variabley; is de ned asu; = d /= e and mod-

elled with constraints (3.15a), (3.15b), and (3.15c). The VM cost function is now
represented as follows:

X
FYM( )= Mup 81! m; 8 1! p (3.15)
j
with:
d
uy L+ g :1! p (3.15a)
d
uy L +1 8 :1! p (3.15b)
u2z" 8 :1! p (3.15c)

Moreover, the network cost represents the price of data exchanges between con-
nected objects, data centres, and applications. We de ne the cost of transmitting a
unit of data on a network link between two nodes); and n; as {j . The network
cost is the following:
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n X X cd cd X X X da c
F'( )= Gi i i t O ik ik i |

i ik (3.16)
8i:1! m; 8 :1! p; 8k:1! n

Our objective is to calculate the provisioning plan which minimizes the previously
de ned costs. Therefore, the objective function is de ned as follows:

min F( )= IF "™( )+ F"()

3.17
st.+ =1 ( )
subjected to:
Bandwidth constraints:
s 8i:1l m; 8 :1! p (3.17a)
BooHR 81l p; 8k:l! n (3.17b)
Data centre capacity constraint:
d -
J- 81l p (3.17¢)
QoS related constraint:
ki (Ii?jd+ lj?l? g>) O
8i:1! m; 8 :1! p; 8k:1! n (3.17d)
Domain variable constraints:
X
ij =1 8i:1! m (3.17¢)
j
iy 0 8i:1! m; 8 :1! p (3.17f)
d
uy L g :1! p (3.179)
d
uy L +1 8 1! p (3.17h)
u 22z 8 :1! p (3.17i)

I and are coe cients to specify the weight of each cost in the total value of the
function F. The constraint (3.17e) enforces the orchestration of all needed VOs, and
veri es that each connected object is assigned to only one VO. Also, the constraint
(3.17f) limits the values of ;; to positive real numbers only.
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3.5 Dynamic Virtual Objects Placement Optimiza-
tion Model

Unlike the static approach described in Section 3.4, a dynamic orchestration
process must adapt to changes at the software and infrastructure levels. Software
level changes are characterized by new applications or variations in previous applica-
tions requests, while infrastructure level changes are initiated by connected objects
mobility or failure (e.g. empty battery). On both levels, the orchestration process
needs to reallocate and adapt continuously cloud and IoT resources to cope with
these variations. In this work, we do not deal with the dynamic selection of loT
resources. Such problem is well studied in the literature and various solutions are
provided [103]. We focus on the provisioning of cloud resources, and therefore the
distribution of VOs in such a dynamic environment. As a result, changes in the in-
frastructure are presented and processed as variations in existing applications needs.
In this section, we adapt the model presented in Section 3.4 to include the dynamic
aspect of cloud-based loT platforms.

3.5.1 Internet of Things Objects Clustering

The dynamic arrival of applications requests populates data centres with VOs
over time. These VOs are shareable and therefore might be reused by forthcoming
applications requests. However, the placement of reused VOs might violate the QoS
required by new requests. Therefore, the provisioning process should investigate the
validity of such VOs placement and migrate them to suitable hosts if needed. Such
control is not necessary for unshared VOs. In fact, shared VOs should satisfy all
the QoS requirements of applications consuming them as mentioned in Section 3.4.
Hence, migrating VOs should be performed while accounting for all their connected
applications requirements, and not only new ones. Considering these applications
in the orchestration process enforces their QoS terms.

Figure 3.6 depicts this scenario. It illustrates a new application requesting con-
nected objectso,, 05, and o4, while an existing application usesy, and 0,. Both
applications share the connected objeat, and therefore its related VO (i.e. VQ).

In this example, we notice that the current placement oVQ does not comply with
the QoS required by the new application. Thereforé/Q should be migrated. If the
provisioning process considers solely the QoS requirements of the new application, it
might migrate VQ to the data centre in locationB. The latter data centre violates
the QoS terms of the existing application. Hence, the provisioning process should
include both applications requirements in the provisioning process to select the best
placement for both (i.e. data centre at locatiorC).

In this perspective, clustering connected objects in the dynamic model should
not operate solely on new applications. It should consider previously deployed ap-
plications consuming these connected objects as well. Therefore, we consider two
sets of applicationsA' = faj;::;alg and At * = fa} *;::;8) g corresponding to
new and existing applications respectively. The set of new applicatioss requests
sets of connected object®©' = fO!;:::; OLg, while existing applicationsA! ! con-
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Application 1 = - _ —w| New Application
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Figure 3.6: Scenario of A Migration Operation.

sume sets of connected objec®' * = fO} ;:::; O] lg. Based on these elements, we
propose the Algorithm 3.2 to compute the set of cluster€ and their requirements.

3.5.2 Domain Variable De nition

Cluster-Dynamic  (A!; O%; At 1; 0! 1) produces a nite number of clustersC =
fCy; ::;; Cng. The notation of clusters is similar to Section 3.4. Hence, each cluster
has a set of requirementR; containing a geographical locatiom and a set of served
applications ; R;. Furthermore, a clusterC; generated an average transmission
rate . However, unlike the static model, connected objects in clusters might have
corresponding VOs assigned to di erent data centres. Therefore, we de négj Las
the fraction of connected objects belonging to the clusté?; and have corresponding
VOs in data centred; at time t 1. It describes the previous placement of shared

VOs in the infrastructure. Similarly, we introduce the variable {; which represents

the distribution of VOs after orchestrating the new set of applicationsA'. };j is
related to |; * as follows:
o= ottt o8iill o m; g i1l p (3.18)
with:

L08i:1! m; 8 :1! p (3.18a)
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Algorithm 3.2  Clustering Algorithm for the Dynamic Optimization Model

Cluster-Dynamic  (A%; 0% At 1O D)

In:  Set of x new applicationsA' = fa;:::;al g; Sets of assigned connected objects
for each new applicationO' = fO};::;; Olg = foy;:::g; Set of y existing ap-
plications At 1 = fa} % a{, 1g; Sets of assigned connected objects for each
existing application O' * = fO} *;::;; 0} 'g= foy; Q.

Out: Sets of clustersC = fCy;:::g where each clusteC; groups connected objects
with similar requirements. Sets of requirement® = fRy; :::g for each cluster.

C ;R
. for all selected connected objects 2 O' do
create a temporary sefl containing the geographical location 06.
add to T all the cloud applicationsAf 2 A' and A} 12 At 1 served byo.
if 9Ry such that Ry = T then
Ck o
else
R f Tg fadd the new group of requirements tdRg
C f qg fcreate a new cluster for new requirementsg
10: end if
11: end for
12: return C;R

©o N RN R

=1 8:1lp (3.18b)
J

The variable rit;j ! corresponds to the recon guration operations to perform on

clusteri with respect to data centrej . A negative recon guration operationrit;j l=
v means that a portionv of VOs in data centred; mirroring connected objects in

Ci need to be migrated. A positive valuerit;j ! = + v means that a portionv of VOs
corresponding to the clustelC; needs to be in data centrel,. Figure 3.7 illustrates
an example of recon guration operations between timets 1 andt.

We can notice that the clusterC; at time t 1 has a third partition which
does not correspond to any data centre. This addition part re ects the portion
of unshared VOs in the cluster before the orchestration process. We refer to this

portion at cluster C; by n; and calculate it as follows:

X

ni=1 81l m (3.19)
j

Moreover, we can see that the 40% fraction was divided between data centres
d; and d, with respective portions 35% and 5%. The second cluster su ered from
a migration operation. 55% of connected objects previously mapped to the data
centred, were shifted tod;. As we can see, the migration operation is characterized
by a negativer}.,' and a positiver}.,'. If a data centre does not satisfy a cluster's
QoS requirements, all related VOs of the latter cluster in this data centre should be
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Figure 3.7: Example of A Provisioning Recon guration Between Times 1 andt.

moved. This is mandatory because a cluster represents applications with the same
QoS.

Our objective is to nd the values ofr{; * which minimize the cost of VOs dis-
tributed on data centres while maintaining the applications QoS requirements. Once
the variablesri; ! are determined, the nal distribution values of VOs ( ij) can be
deduced. The constraint (3.18b) guarantees that each connected object has a VOs
instance in a data centre. Also, the constraint (3.18a) stops migration operations
from exceeding available VOs.

3.5.3 Placement Optimization Problem Formulation

Similarly to the domain variable, the network model variables are computed at
the time t. We distinguish between (1) variables that are not a ected by the VOs
distribution across data centres, (2) variables that are a ected only by the new
deployment, and (3) variables that represent the global status of the infrastructure.
Variables in category (1) remain as de ned in Section 3.4 and ar€}, §, and
g, . Category (2) variables are related to clusters processed during the provisioning
process such asf{™, &, and &'. They are adapted by replacing ;; with | as
follows:
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cdit — t ¢ — t 1 t 1 c
T T Y B B i (3.20)

n #
X X
dait _ dat _ cd;it _ t 1 t 1 HE
i i

t d

Category (3) refers to variables jd; and j;t which represent the overall tra c
handled by each data centre. They are expressed as a function of their value at
the time t 1 and performed recon guration operationsri‘;j 1. Their value might
increase or decrease since the valuerg‘.af1 can be negative or positive. Accordingly,
they are calculated as follows:

X
dt — dit 1 .
= e ot p o8l m (3.22)
|
dit _ dit _ dit 1 X t 1 ¢ P11
[ A 8i:1! m (3.23)
|
Since our objective is to minimize the distribution of VOs, we do not consider the
migration cost of VOs from one data centre to the other. In fact, the migration is
mandatory as it will a ect VOs that do not comply with the requested QoS. Based

on these elements, the dynamic objective function is formulated as follows:

min F(r) = IF M(ry+ F "(r)

3.24
st.!+ =1 ( )
with:
X -
FY™(r) = [Mui 8 11! p (3.24a)
X :
Fh(r) = G f G
i
X X X
Gi feik Gotryt ol
ik
8i:1! m; 8 :1! p; 8:1! n (3.24b)
subjected to:
Bandwidth constraints:
SpY 81! m; 8 1! p (3.24¢)
ot 8 1! p; 8k:l! n (3.24d)

Data centre capacity constraint:
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d;t H.
j g1l op (3.24€)

QoS related constraint:

ac (T DAT IR )0

8i:1! m; 8 :1! p; 8k:1! n (3.24f1)
Domain variable constraints:
X t 1 t 1 HEN
| (- *ryH=1 8i:1!' m (3.249)
j
r to8iill m; 8 1! p (3.24h)
dit
uy - g :1!l p (3.24i)
dit
uy S—+1 8 :1! p (3.24))
ujt 2Z° 8 :1! p (3.24Kk)

Constraints (3.249) and (3.24h) are adaptations of constraints (3.18a) and (3.18b)
presented previously. They hide the term };j :

3.6 Implementation and Evaluation

In this section, we investigate the bene t of our static and dynamic approaches
against a non sharing approach through simulations. Furthermore, we evaluate
the role of clustering in reducing the problem size and the processing time of our
algorithm with respect to requested applications and connected objects. We use
JAVA CPLEX to implement our model.

3.6.1 Evaluation Settings

Table 3.2 summarizes simulations setting. We generate 10 interconnected data
centres spanned across 4 geographical areas. We x the price of a running VM
to 50% per month in all data centres. We consider no network charges between
data centres in the same availability zone similarly to commercial cloud providers
such as Amazon Web Services (AWS) However, we set communications costs
between data centres in di erent geographical locations at:01$ per GB. We refer
to the network between data centres as the intra-cloud network. Links latencies are
selected randomly from the range [10B00] (milliseconds) if communicating nodes
(i.e. data centres, connected objects) belong to the same region. Otherwise, we pick
a latency value from [200500].

Ihttps://aws.amazon.com/
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Table 3.2: Con guration Settings

Parameters Values
Number of data centres 10
Data centre network capacity Uniform in [4000Q 60000]
Virtual machine capacity 1200
Network latency for data transfer in one region (ms) Uniform in [100; 300]
Network latency for data transfer across regions (ms Uniform in [200; 500]
Network links available bandwidth (blocks per minute) 2000
Applications requested latency (ms) Uniform in [600; 1000]
Number of geographical locations 4
Total number of connected objects 100000
Connected object throughput (blocks) Uniform in [0:1; 5]
Price of one million blocks($) Uniform in [5; 8]
Price of intra-cloud data transfers ($ per GB) f0;0:01g
Price of a virtual machine ($ per month) 50
First Simulation
Number of applications 10
Connected objects per application Uniform in [200x; 200 + 1)]
X f0;1;2; 3;:::;449
Second & Third Simulations
Number of applications f4;6;8;:::;509
Connected objects per application Uniform in [200; 400]

Cloud providers charge for connected objects data units separately. Cloud-based
loT platforms such as AWS loT charge for the number of data blocks received from
loT devices. In particular, the AWS loT sets the price of a million data blocks
at 5% to 8% depending on the geographical location. One data block corresponds
to 512 bytes. We use the same pricing strategy. Moreover, we simulate up to
10K connected objects spread across the 4 geographical areas. Their throughput
is expressed in number of blocks per minute and is generated randomly from the
range [01;5]. We consider that the tra ¢ handled by a data centre cannot exceed
a maximal value selected from the range [400(D000] (blocks per minute). Also,

a VM can manage up to 1200 blocks per minute. Furthermore, the bandwidth
capacity for all network links is xed at 2000 blocks per minute.

We perform three simulations. In the rst one, we x the number of appli-
cations to 10 while varying the number of connected objects per application. At
each iteration, applications select a random number of connected objects in range
[200«; 200 + 1)] with x = 0 ! 44. We use the static approach for provisioning
VOs cloud resources. In the second and third simulations, we x the range of con-
nected objects per application to [208+00] while varying the number of applications
from 4 to 50 with a step 2. We use the static approach to map VOs for all applica-
tions at each step in the second simulation, while we rely on the dynamic approach
to orchestrate VOs dynamically for applications as they arrive in the nal simula-
tion. In all simulations, the latency requested by an application belong to the range
[60Q 1000] (ms). In this context, we measure in simulations 1 and 2 the e ect of the
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QoS index on the provisioning process.

3.6.2 Evaluation Results
Overall Performance

As argued, clustering connected objects reduces the problem size and decreases
the needed processing time to calculate a mapping solution. Figure 3.8 shows the
number of clusters against the number of connected objects in simulations 1 and 2.
We notice the considerable reduction in the problem size when relying on clusters
to solve the provisioning problem. Furthermore, the numbers of clusters increases
in the shared approach even though the number of selected I0T devices decreases.
In fact, the clustering algorithm groups connected objects with the same served
applications which leads to additional clusters when these loT devices are shared.
Furthermore, when the number of applications increases linearly, the number of
clusters increase rapidly (Figure 3.8.a) but remains lower than connected objects
amount. However, increasing the number of connected objects per application has
minimal e ect of clusters numbers (Figure 3.8.b).

It is obvious in Figure 3.9 that the processing time of the LP solver increases
proportionally to the number of applications (i.e. clusters). However, such time can
be reduced using the dynamic approach. In real life scenarios, applications are not
requested simultaneously. In fact, they are distributed in time and therefore are
not considered collectively when mapping VOs to cloud data centres. However, as
mentioned in Section 3.5, previously deployed applications need to be considered
in the provisioning process when their connected objects are shared with incoming
applications.

As a result, even if only one new application is being requested, multiple applica-
tions might be considered during the orchestration process. However, the number of
applications considered at each orchestration process did not exceed 15 applications
in our simulations which kept the performance time acceptable and slightly higher
than the unshared approach (Figure 3.9). Therefore, the dynamic model provides
faster mapping than the static approach. Moreover, algorithms applied for select-
ing connected objects can be tuned to maximize shared connected objects while
minimizing the number of shared sets of connected objects between applications.

Cost

Since the number of allocated connected objects decreases with the shared ap-
proach as seen in Figure 3.8, the physical resources needed for VOs decrease. Figures
3.10 and 3.11 show the cost of VMs and bandwidth reserved to deliver I0oT services
for cloud applications. The costs related to the dynamic approach are similar to the
static one. The main di erence between both approaches is the way applications
are considered during the mapping as mentioned earlier.

We notice that the cost of physical resources in the shared approach increases
slowly when the number of applications or connected objects increases. In contrast,
this cost increases rapidly with the unshared approach. It is worth noting that
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connected objects can be linked directly to applications without using VOs in the
unshared approach. This is not possible when sharing connected objects. Since
loT devices are resource-constrained, they are not able to manage requests from
multiple applications at the same time. However, Figure 3.10 shows that when the
number of connected objects increases signi cantly, the bandwidth cost exceeds the
network and compute costs combined for the shared approach. Therefore, it is more
pro table to use VOs to share I0T resources between applications.

Quality of Service Index

As mentioned, the QoS index provides means to balance the latency between
di erent applications. Hence, the analytical model can satisfy applications latency
constraints without prioritizing an application placement over the other. The results
in Figures 3.12, 3.13, 3.14, and 3.15 show the e ect of the QoS index on VOs
resources cost and the mean latency experienced by cloud applications. The similar
results in simulations 1 and 2 indicate that the QoS index a ects the provisioning
whether we increase the number of applications, the number of connected objects
per application, or both.

We notice in Figures 3.12 and 3.14 that the latency perceived by applications
is lower if the QoS index is included in the model. However, achieving a better
deployment regarding the QoS (i.e. latency) leads to greater resources allocation
cost. As a result, the cost of provisioning shared VOs can be reduced even more
while satisfying the applications QoS requirements. However, such approach would
penalize some applications. It is clear that without the QoS index, applications
su er from high latencies. Moreover, when the number of selected connected objects
increases, the e ect of the QoS index decreases. Such behavior appears better in
Figures 3.13 and 3.15. The relative gain plots for resources cost and latency, with
and without the QoS index, become closer to 0 when the number of applications or
connected objects increases. This evolution of relative gains is due to the reduction
of available resources which decreases possible candidates and therefore converges
for similar solutions. Therefore, the QoS index e ect on the provisioning decreases.

3.7 Conclusion

In this chapter, we proposed a mechanism to share VOs among multiple loT
applications deployed in cloud-based loT infrastructure. We aimed to optimize
network and system resources utilization as well as satisfy the applications' QoS re-
quirements (i.e. latency). This proposition was made to leverage previous solutions
that do not permit VOs to be shared among applications, which could lead to a
waste of resources and increase operational cost. We formulated the problem as an
optimization problem under constraints. The problem was described as a Linear
Programming Problem with an objective function. The latter function formulates
the relation between physical resources usage and the data transmission rate of con-
nected objects to each application. The proposed algorithm aims to optimize the
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distribution of VOs and VMs across data centres taking into consideration the in-
frastructure's capacity and the applications' QoS requirements. We provided two
models: a static model for the initial deployment of VOs and a dynamic model for
recon guring VOs as needed to cope with incoming applications requirements. We
implemented the solution and performed several simulations that show how such
an approach reduces the number of deployed VMs (system resources saving) while
satisfying the QoS constraints of the applications deployed in the Cloud Computing
infrastructure. Our solution was calculated based on the placement of applications
within the cloud data centre, and the selected connected objects. The orchestration
processes of latter elements happen in separate phases and therefore prevent a holis-
tic optimization of cloud and IoT resources. However, cloud-based loT platforms
are not able to provide the global vision of Cloud Computing and IoT infrastruc-
tures needed for such a global optimization. Hence, the need for a full integration of
cloud and IoT platforms to enable a seamless deployment and optimization of 0T
applications.
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4.1 Introduction

Nowadays, proposed Cloud of Things (CoT) platforms [95,96] are either domain-
speci c or represent a simpli ed view of the Internet of Things (loT) infrastructure.
Furthermore, these works do not provide a resource management framework to deal
with an integrated Cloud Computing and loT infrastructure. Currently, cloud plat-
forms and cloud-based loT platforms are used alongside one another to manage
end-to-end loT applications provisioning and deployment. Figure 4.1.a illustrates
the roles of these two types of platforms in the management and orchestration of
loT applications. Cloud-based IoT platforms abstract connected objects capabilities
and o er them on-demand as cloud services; while cloud platforms provide means
to manage the life cycle of end-users oriented cloud services such as data analytics
services and web applications. We can then state that existing platforms do not
achieve a holistic approach of the integration of Cloud Computing and the IoT and
there is a need to leverage them to build the CoT vision.

Figure 4.1: Cloud-Based loT Platform and and Cloud of Things Architectures

As previously introduced, CoT envisions the seamless integration of Cloud Com-
puting and IoT. It promotes a holistic management of both domains. Figure 4.1.b
depicts the environment architecture of CoT platforms. Such platforms might man-
age in a homogeneous way resources hosted in cloud data centres as well as connected
objects. They might intervene at all Cloud Computing layers namely: Infrastructure
as a Service (laaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Moreover, CoT platforms provide IoT related service models such as the Sensing as
a Service (%aaS) [74,75] and the Sensor/Actuator as a Service (SAaaS) [80] might
as part of the PaaS and SaaS. The CoT platforms should be able to orchestrate
in one stage requests involving both Cloud Computing and IoT resources. Such
integrated orchestration mechanism will permit a global optimization of underlying
infrastructures resources and eventually the introduction of new types of services.
However, existing Cloud Computing and loT management platforms are not able
to describe such an integrated CoT resource model [21]. Also, they prevent a one
stage provisioning mechanism for CoT requests. Therefore, there is a clear need to
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leverage existing resource models to design a new one that is able to support the
CoT vision and its service provisioning models for the infrastructure (i.e. laaS), the
development environment (i.e. PaaS), and the CoT applications (i.e. SaaS). It is
worth noting that the SaaS and PaaS models are similar. Their di erence will only
be in the scope of the control each model provides over deployed applications. This
chapter will then focus on the proposition of a new model for CoT laaS and PaaS.

The chapter is organized as follows. First, we present and discuss existing ap-
proaches for modelling Cloud Computing and the 10T in Section 4.2. We compare
existing models and select a suitable design pattern for the foundation of our CoT
model in Section 4.3. In the following section 4.4, we study the CoT infrastructure
requirements and extend the core model accordingly. We provide scenarios to show
the capability of our proposed design to describe a CoT infrastructure and perform
resource provisioning in one stage laaS level orchestration. Afterwards, we detail
possible data delivery methods at the PaaS layer in Section 4.5. In particular, we
present a model that is capable of (1) capturing di erent possible data delivery
con gurations, and (2) mapping a CoT request graph considering the di erent con-
gurations. Finally, we conclude the chapter with an overview outlining key aspects
of our contribution.

4.2 Existing Models and Standards

To the best of our knowledge, there exist no standards for the CoT. Current
works dealing with the convergence of Cloud Computing and the IoT are signi cantly
di erent from one to another [21]. They focus also on the functional and architec-
tural aspects of the CoT. Moreover, proposed management platforms in each domain
have distinct resource models and Application Programming Interfaces (APISs), even
though they o er sometime similar functionality. This heterogeneity of approach
that exists already in each domain has motivated several standardization initia-
tives to be launched mainly focusing on platform architectures and resource models.
These standardized models for Cloud Computing and the IoT have been speci ed
independently without having in mind that these two domains may converge in the
future.

These models indeed do have part of the information that is required to build
the CoT model since several concepts are similar. Therefore, the objective of this
work was to analyse, reuse, extend, and adapt current standards to leverage them
to the level that is required in CoT. Moreover, we aimed to remain aligned with
existing speci cations to ensure the compatibility with standardized models and
de nitions. However, we only considered standards which focus on the modelling of
the orchestration process in Cloud Computing and the IoT. The two sections 4.2.1
and 4.2.2 detail the considered IoT and cloud standards.
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4.2.1 Internet of Things Environment

loT related speci cations could be divided into three categories as depicted in
Figure 4.2: (1) sensor web, (2) sensor semantic web, and (3) lIoT middlewares. These
groups of solutions are complementary and can work alongside one another. Basi-
cally, in a heterogeneous IoT environment, sensor web solutions provide syntactic
interoperability, sensor semantic web ontologies apply more meaningful representa-
tion of sensory data, while loT middlewares provide further management operations
such as resource orchestration.

Figure 4.2: Internet of Things Web Model Levels

Sensor Web Initiatives

The Open Geospatial Consortium (OGC) established the Sensor Web Enable-
ment (SWE) [107, 108] suite of speci cations. These standards de ne models to
describe the 10T environment and web service interfaces to o er a high-level manage-
ment layer over low-level sensing and actuating resources. The main adopted SWE
framework standards are the Sensor Model Language (Sensor¥lthe Observations
and Measurements (O&M§ model, and the Sensor Observations Service (SO®)-
terface. The SensorML describes sensor systems capabilities, properties, measure-
ments, and processes. It provides information which helps to manage, discover,
locate, and identify sensors. Moreover, it provides an eXtensible Markup Lan-
guage (XML) document model to represent this information. The O&M o ers an
XML schema for encoding connected objects observed and measured data. The
SOS interface describes methods (e.BescribeSensor() , GetObservation() ) for

Lhttp://www.opengeospatial.org/standards/sensorml
2http://www.opengeospatial.org/standards/om
3http://www.opengeospatial.org/standards/sos
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managing, discovering, requesting, lItering, and retrieving sensor descriptions and
their generated data. The SOS methods use O&M and SensorML schemata to en-
code exchanged messages. There exist several implementations of the OGC SWE
speci cations [109, 110].

The OGC SWE suite is relatively complex as it supports a wide variety of sensor
types ranging from simple Wireless Sensor Networks (WSNSs) to earth imaging satel-
lites. Therefore, it is heavyweight and unt for resource-constrained 10T devices.
Accordingly, the OGC presents SensorThindg§111] APIs which are lightweight and
designed speci cally for the 10T. The SensorThings APIs are based on existing
SWE standards hence easily integrated with OGC services such as the SOS. In con-
trast to prior speci cations, SensorThings is RESTful and adopts the OASIS Open
Data (OData) URL pattern and query options. Moreover, it uses JSON encoding
instead of XML and supports the MQTT messaging protocol. Figure 4.3 illustrates
the SensorThings data model.
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Figure 4.3: SensorThings UML Diagram (Source [111])

Another model, the Web of Things (WoT), is based on work undertaken within
the COMPOSE European project [78] and submitted to the World Wide Web Con-
sortium (W3C) for processing. The WoT [112,113] aims to seamlessly integrate
connected objects to the World Wide Web (WWW) by applying on them the
REpresentational State Transfer (REST) architectural style. Consequently, each
loT device becomes a uniquely identi ed resource via a Uniform Resource ldenti-
er (URI) on which HTTP operations can be performed (e.g. GET, POST, PUT,

4https://github.com/opengeospatial/sensorthings
Sfollows the REpresentational State Transfer speci cations.
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DELETE). Furthermore, each resource links to other related resources. For exam-
ple, an loT device might connect to multiple sensors (e.g. temperature, humidity)
or can reference its model description on a remote machine. For further interoper-
ability, the WoT proposes a common model to describe connected objects resources
on the WWW, called the Web Things Mode!. It de nes a set of APIs and syntactic
messages data structures. The evrythAglatform supports the WoT concept.

Similarly, the Devices Pro le for Web Services (DPWS) [114, 115] brings Web
services to resource-limited connected objects. It is based on the W3C Web ser¥ices
standards. However, the DPWS uses a minimal set of Web services speci cations
to enable messaging, discovery, description, and eventing for resource-constrained
devices. Moreover, it adopts the SOAP-over-UDP bindirfgto minimize connection
overhead and to use multicast addressing for discovery mechanisms. In fact, the
DPWS uses the Web Services Dynamic Discovery (WS-Discovery). It applies a
decentralized discovery mechanism adapted for large scale networks with resource-
limited devices and no centralized registry. This mechanism employs an ad-hoc
mode to leverage networks with minimal networking services (e.g. no DNS). It
can switch to managed mode with multicast suppression behaviour if networking
services exist to reduce network tra c. Web services joining or leaving the network
send announcement messages to minimize the need for polling. Therefore, DPWS
is suitable for IoT devices. Although the DPWS is lightweight and can operate on
low-power devices [116], several issues still need to be addressed [37] such as its
integration with the IPv6 and 6LoWPAN [117,118]. The DPWS is used with the
Constrained Application Protocol (CoAP) to minimize the communication cost on
constrained devices.

Sensor Semantic Web Initiatives

Sensor web solutions provide syntactic interoperability but not a domain seman-
tic compatibility [119]. In fact, semantic technologies add a shared domain knowl-
edge layer that gives common meaning to data across di erent platforms. The work
in [120] extends an SWE SOS implementation with an O&M-OWL ontology. An
O&M-XML to O&M-OWL adapter integrates the ontology with other SWE com-
ponents such as the SOS. The O&M ontology enables reasoning on top of sensor
observations. It was further studied and aligned with upper ontologies in [121,122].
However, the resulting ontology is limited to measurements and observations and
does not represent the 10T domain knowledge.

Subsequently, the W3C Semantic Sensor Network Incubator Group (SSN-XG)
produced the Semantic Sensor Network (SSN) ontology [119]. The S%Kntology
includes the O&M vocabulary. It is capable of describing sensors (e.g. location,
type), their properties (e.g. precision, resolution, unit), and the measurements ob-

Shttp://www.w3.0rg/Submission/wot-model/

"https://evrythng.com

8http://www.w3.org/TR/ws-arch/

9http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp
©Ohttp://purl.oclc.org/NET/ssnx/ssn
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served by a sensor (e.g. values). Furthermore, the SSN enables context awareness
by linking sensor observations to features of interest and events. Hence, data evolve
from a sensor measurement (e.g. temperature, humidity) to a part of a broader
context (e.g. soil condition) enabling a higher level of knowledge representation.
Consequently, the SSN improves and simpli es sensors identi cation and selection
processes. The OpenldT project [71] uses the SSN ontology to annotate collected
data semantically and store them in an RDF cloud store managed by the LSM mid-
dleware [123]. Therefore, applications can use high-level SPARQL queries to fetch
data streams originally generated as raw data by various underlying sensors.
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Figure 4.4: Overview of the 10T-O Architecture (Source [124])

However, the SSN does not capture the full extent of the 10T which stimulated
several initiatives for creating an IoT ontology. Although many ontologies were
designed for the 10T (e.g. OWL-l0T-$?, loT-Lite '3 [125]), not all of them apply
good practices. In fact, they do not follow the Ontology Design Patterns (ODP)
introduced in [126,127], reuse existing sources, align with upper ontologies, or com-

Y http://www.openiot.eu/
2nttp://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/OWL-10T-S.owl
Bhttp:/fiot.ee.surrey.ac.uk/ ware/ontologies/iot-lit
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ply with the Linked Open Vocabularies (LOV)“ for loT (LOV4IoT °). Authors

in [128] study these aspects for several ontologies and present the Internet of Things
Ontology (IoT-O)!®. It respects previously mentioned design rules, de nes some
missing concepts relevant to the 10T such ashing, Actuator , and Actuation .
The 10T-O reuses the SSN, the Semantic Actuator Network (SAN}J, the Stimulus-
Sensor-Observation (SSO) [129], and several other ontologies as illustrated in Figure
4.4. Although the 10T-O is not an approved standard, it aligns with existing on-
tologies. Similarly, the W3C is integrating the SSN and the Sensor, Observation,
Sample, and Actuator (SOSAJ® ontologies for a better representation of the loT.

Internet of Things Middlewares

The complex nature of 10T devices put in motion several attempts, from indus-
try and academia, to encapsulate connected objects and o er their resources on the
web. Wrapping an 10T device hides its vendor speci c interface thus simplifying
loT resources discovery, management, and access. However, the large-scale nature
of IoT makes it impossible to manage functional and non-functional aspects of each
loT device separately via its wrapper. Consequently, many middlewares for loT
were developed [53, 103] to aggregate connected objects, hide their heterogeneity,
and optimize their utilization. 10T middlewares act as virtual gateways and o er
management, querying, and con guration operations for the myriad of underlying
heterogeneous connected objects. Furthermore, they implement optimization oper-
ations on managed IoT resources such as orchestration, search techniques, and data
aggregation. There exist indeed no speci c standard for IoT middlewares. In fact,
they reuse previously presented sensor web and semantic web solutions to provide
loT resources for applications.

Cloud4Sens [50] middleware implements the previously mentioned OGC SWE
suite of speci cations to connect, discover, and provision sensors. It provides a
uniform interface for third party applications based on the eXtensible Messaging
and Presence Protocol (XMPP). Cloud4Sens de nes two provisioning options for
loT consumers: (1) data-centric, and (2) device-centric. The rst option provisions
only sensory data streams without giving direct access to connected objects, while
the second allocates sensor devices instead and enables the client to access them
(pull produced data, con gure properties).

The Sensor Node Plug-in System (SNPS) middleware [130] o ers sensors re-
sources following Software Oriented Architecture (SOA). It provides a Service Layer
Integration (SLI) which transforms underlying sensors into web services. Accord-
ingly, the SNPS implements a registry which holds sensors information (e.g. geo-
graphic position), deployed wrapper components, and other provided services. As a
result, the sensors composition service component of the middleware is now able to

Yhttp://lov.okfn.org
Shttp://lwww.sensormeasurement.appspot.com/?p=ontologies
B http://www.irit.frirecherches/MELODI/ontologies/loT-O

Y https:/iwww.irit.frirecherches/MELODI/ontologies/SAN
Bhttp://www.w3.org/ns/sosa/
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aggregate sensors based on a given request and expose them to third party appli-
cations. The SNPS implements methods for searching, retrieving, composing, and
con guring sensors. It uses the SensorML and O&M speci cations as data models

for describing sensors and exchanging sensor observations.

The eXtended Global Sensor Network (X-GSN) middleware [131] uses system-
generated wrappers based on XML sensor descriptions documents described in [132]
to enable automatic connection to sensors. The X-GSN semantically annotates
collected sensory data using the SSN ontology. It stores collected data in Resource
Description Framework (RDF) format. Therefore, SPARQL Protocol and RDF
Query Language (SPARQL) gueries can be used to fetch desired data streams based
on sensors properties (e.g. location, type, precision). Similarly, the SemSOS [120]
uses semantic technology with the SWE speci cations suite. It extends the SOS
with the O&M ontology enabling a high-level knowledge of the environment.

4.2.2 Cloud Infrastructure Management Initiatives

Cloud Computing standards® deal with management interfaces (e.g. CIMI),
applications portability (e.g. TOSCA??), virtual appliances packaging (e.g. OVE),
and many others. In our work, we focus on standards providing a comprehensive
view of Cloud Computing resources. Therefore, we consider management interfaces
speci cations. They specify entity-relationship models for manageable resources
in the cloud. Also, these speci cations provide standardized APIs and protocols
to manage these resources as depicted in Figure 4.5. In this perspective, we study
current cloud resource management interfaces. We identify the Cloud Infrastructure
Management Interface (CIMI), the Open Cloud Computing Interface (OCCI), and
the Cloud Application Management for Platforms (CAMP).

Figure 4.5: CIMI, OCCI, and CAMP Role in Cloud Architecture

Phttp://cloud-standards.org/
2Ohttps://www.oasis-open.org/committees/tosca/
2https://www.dmtf.org/standards/ovf
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Cloud Infrastructure Management Interface

CIMI is a standard developed by the Distributed Management Task Force
(DMTF) to describe the laaS model in Cloud Computing. The CIMI speci cation
de nes a data model and a RESTful communication protocol for cloud platforms.
The responsible working group is also considering a Simple Object Access Proto-
col (SOAP) interface. The CIMI represents the cloud infrastructure as a set of
resources based on key entities managed at the laaS layer. It de nes such basic re-
sources as machines, storage volumes, networks, and cloud environment monitoring
components.

Service Consumer

Choos/ew\l:ills In
» Sa

Resource Resource
Template Configuration

Resource
Instance

Figure 4.6: Resources Forms in CIMI (Source [133])

The CIMI model captures the steps a cloud consumer undergoes to deploy a
resource in the cloud. It includes selecting the product from the cloud operator's
catalog, tuning the product, and validating the process for the deployment phase.
Accordingly, each resource has three forms as illustrated in Figure 4.6: (1) template
resource, (2) con guration resource, and (3) resource instance. The template is the
operator's prede ned resources properties which belong to the operator's catalogue
of o erings. A con guration resource is the client's modi ed version of an existing
template. However, an instantiated resource is a deployed resource in the cloud
infrastructure.

These resources follow a RESTful architectural style. Thus, they are uniquely
addressable via URIs and can be created, retrieved, updated, and deleted using
Hypertext Transfer Protocol (HTTP) methods. Furthermore, CIMI resources are
interconnected via embedded URIs links. The root endpoint is th€loudEntity-

Point which describes and locates the resources available in the cloud infrastructure.
Moreover, the CIMI model describes an additional class nameystem It repre-
sents a set of interconnected machines, storage volumes, networks, and monitoring
components to form a more complex composition of deployable resources.
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Open Cloud Computing Interface

The OCCI?? is a set of speci cations delivered by the Open Grid Forum (OGF§
and led by community contributions. The OCCI de nes a RESTful protocol and
APIs for resource management frameworks. An extensible and domain independent
core model is at the heart of the OCCI speci cations as depicted in Figure 4.7. It
can be extended to describe various resources, relations, and possible actions on
both. The core's essential classes are theénd, Entity , Action , and Mixin .
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Figure 4.7: Open Cloud Computing Interface Core Model (Source [134])

The Kind class classi es managed resources. Eakind instance represents a
type of resource with related attributes and possible associated actions. ThA&
tribute and Action classes provide details about attributes and actions respec-
tively. For example, a Cloud Computing infrastructure has the computéind. It
de nes compute attributes (e.g. cores), attributes properties (e.g. hame, type, re-
quired), and possible actions (e.g. start, stop).

The Entity is an abstract class withResource and Link sub-classes. In contrast
to Kind instances which specify a platform's types of resources, entity instances
represent available resources within the platform. Each entity has oi@nd instance
which de nes its properties and invocable actions. MoreoveL,ink instances bind
together related Resource instances. For example, in the Cloud Computing case,

22nttp://occi-wg.org/
23nttps://www.ogf.org/ogf/doku.php
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the computeKind induces aComputeclass which inherits theResource class. Each
Computeinstance mirrors a Virtual Machine (VM) in the cloud which can be started
or stopped. Also, the VM might be linked to otherResource instances usingLink
items.

The Mixin class is an extension mechanism which provides additional exibility
to the OCCI model. It de nes attributes and actions that can be associated with
Kind and Entity instances at creation time or run time. Therefore, Mixin adds
new capabilities for available resources without changing the prede ned model.

Entity| Entity|
—1> &RUH 5HVRKU VRXUFH &RUH /LQN
VXPPDU\ [ oWULQJ WDUJHW 85,

WDUJHW NLQG .LQG > @

T 7
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Figure 4.8. OCCI Infrastructure UML Representation (Source [24])

At rst, the OCCI was used to create an interface for managing laaS [24] re-
sources for cloud platforms. Such initiative enabled laaS level operations such as
the deployment to have standard APIs. The OCCI laaS speci cation promotes
interoperability between distinct platforms. Several frameworks adopted it such
as OpenStack, OpenNebuf4, cloudStack®, European Grid Infrastructure (EGI)?,
and FI-WARE?’. Figure 4.8 shows the OCCI infrastructure classes. Then, the com-
munity extended existing models to manage additional aspects of the cloud (e.g.
PaaS [135], laaS monitoring and automatic scaling [26]).

OCCI speci cations are nowadays more adopted than the CIMI model [133,136]
by cloud management frameworks (e.g. OpenStack, OpenNebula) and European
projects (e.g. FI-WARE, OCClware® [137], EGI). Also, many librarieg® imple-
menting the OCCI protocol exist in numerous programming languages such as JAVA,

24https://opennebula.org/
2Shttps://cloudstack.apache.org/
26https:/iwww.egi.eu/
2Thttps://www. ware.org/
28http://www.occiware.org
2http://occi-wg.org/author/alansill/
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Ruby, and Erlang.

Cloud Applications Management Initiatives

The Organization for the Advancement of Structured Information Standards
(OASIS) advances the CAMP [138, 139] speci cation. It describes APIs, models,
mechanisms, and protocols for packaging and deploying applications in the cloud.
It enables a cloud provider independent interface to perform PaaS level activities
such as provisioning, monitoring, and control on applications. Therefore, CAMP
eliminates vendor lock-in by providing a standardized application description model.
CAMP promotes interoperability among PaaS clouds by specifying artefacts and
de ning APIs which are necessary to manage the building, running, administration,
monitoring and patching of applications in any PaaS cloud. It de nes resources in a
PaaS environment as depicted in Figure 4.9. Main resources amatform , plan,
assembly, service , component and collection
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Figure 4.9: CAMP Basic Resources Relationships (Source [139])
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They inherit the root resourcecampresource . The platform represents the
primary view of the platform and reference provided services, running applications
(i.e. assembly resources), supported resources. Furthermore, it provides sharing
permissions across deployed applications. Thwmponentresources are dynamic
atomic elements composingssembly items (e.g. database instance), whil@lan
resources describe static artefacts required for an application (e.g. SQL script).
Moreover, the service resource de nes a blueprint of acomponent or exposes a
platform-provided service. Acollection instance represents a homogeneous set
of any resource described in CAMP. Figure 4.9 shows the relations between these
resources.

Also, operation and sensor elements are de ned. Their objective is to provide
means of interacting with a deployed application via the CAMP APIs. On the one
hand, theoperation resource describes a set of actions which can be performed on a
resource. On the other hand, theensor class represents dynamic data produced by
a resource (e.g. state). It does not abstract a connected object, however, it is used
to expose a provided information or a con gurable property of @ampresource .

4.3 Cloud of Things Core Model

A myriad of separate standards exists for respectively cloud and 10T environ-
ments. We cited related speci cations in Section 4.2. Figure 4.10 illustrates the
standards landscape. Our objective is to identify the proper standard for modelling
the CoT. Once selected, we aim to adapt and extend it as necessary to enable
a one-stage provisioning process in CoT for laaS and PaaS levels. Also, we reuse
concepts from other existing standards when possible to stay aligned with current
speci cations and vocabulary. First, we classify studied speci cations based on sev-
eral criteria. Table 4.1 summarizes the classi cation synthesis. Then, we select the
appropriate standard and de ne the core model which will be used in the rest of the
Chapter.

Figure 4.10: Cloud and loT Studied Standards
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4.3.1 Standards Classi cation

Cited standards cover Cloud Computing and the IoT. They were designed for
di erent environments with distinct properties and challenges. For example, Cloud
Computing standards target the vendor lock-in problem for various service models.
However, 10T speci cations aim to homogenize connected objects description and
semantics. Also, these standards target precise domain-dependent issues and do
not provide a comprehensive overview of all the domain aspects. For instance, the
CAMP speci cation targets application description and deployment in the PaaS.
Mentioned speci cations use di erent technologies as well, such as W3C Web Ser-
vices and W3C Ontology Web Language (OWL). Moreover, they de ne di erent
structures which are incompatible with one another. Hence the necessity to select
one standard as the foundation of our model. Afterwards, we extend the chosen
standard to cope with the CoT provisioning model requirements.

Classi cation Criteria

The CoT combines Cloud Computing and the 1oT. Each studied standard en-
compasses a partial part of the CoT. Thus, we aim to identify the correlation
between these standards and required factors for the CoT model. In particular, we
focus on factors related to the provisioning aspect. We select the standard with the
highest correlation. Also, we determine speci cations which are complementary to
the selected core model. The de ned classi cation criteria are the following:

Resources: We consider compute, network, storage, sensing, and actuating
resources which represent Cloud Computing and IoT infrastructures o erings.
They are the core elements of the provisioning process at the laaS level. We
add the feature of interest resource which shows the ability of the standard
to provide a high-level representation of data. It allows users to request con-
nected objects using their context. Furthermore, we include the component
resource. It implies that the standard adopts the Service Component Archi-
tecture (SCA) model and adapts it to Cloud Computing or 10T environments.
We are interested in the component resource because the provisioning process
deals with software components at the PaaS level.

Service Models : Since the CoT inherits the cloud's characteristics, it pro-
vides resources on di erent service levels. Furthermore, our objective is to
model the CoT environment on infrastructure and platform layers. Therefore,
the provisioning of resources in the CoT requires a separation of service mod-
els. We consider the laaS and PaaS levels for the classi cation. There exist
other IoT related service models such as the&S model [22, 74,75, 80, 105].
However, they belong to the broader PaaS level. Hence, we do not include
them.

Extensibility : The selected base standard will be extended to model the
CoT. Therefore we de ne an extensibility property which indicates how much
the standard is exible and extensible. It is low (L) if the standard is rigid
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and any extension requires major modi cations to the model's structure. An
average (A) value represents standards that are not hard to expand but require
several extensions and considerable e ort to achieve the CoT model. A high
(H) extensibility refers to standards which are easily extended, require no
modi cations to their core model, and already cover a large part of the CoT
aspects. Thus, they minimize the e ort needed to model the CoT.

Graph Modelling : Orchestration mechanisms for network based environ-
ments rely on the graphical representation [23] of requests and their targeted
substrate. The CoT falls under this category. It consists of a network of in-
terconnected cloud data centres, fog elements, and IoT devices. Therefore,
a standard which enables networks modelling facilitates describing the CoT
environment and requires no further extensions.

4.3.2 Synthesis of Existing Works on Cloud and IoT Models
and Standards

Sensor and semantic web models are similar. They focus on describing con-
nected objects capabilities and represent their data in a uni ed manner. Most of
these models represent sensing and actuating resources except SSN and O&M spec-
i cations. They model these resources on the PaaS and SaaS levels. However, they
achieve their objectives with di erent technologies. Sensor web standards use syn-
tactic approaches to enforce interoperability while semantic web speci cations rely
on technology standards de ned by the W3C (e.g. RDF, OWL) to design and de-
scribe data on the web. Syntactic approaches are rigid and di cult to extend. In
particular, sensor web approaches are focus on modelling data types rather than de-
vice networks. They are not exible, and their extensibility is low. On the contrary,
ontologies are extensible and able to describe complex systems. Moreover, they rely
on the W3C standards to encode de ned classes, properties, and relations. Hence,
existing models are easily expandable. However, extending ontologies requires some
e ort to validate new classes and properties’ alignment with existing de nitions.
Therefore, we consider that semantic web standards have an average level of ex-
tensibility. It is worth noting that the DPWS and the 10T-O o er the component
resource.

On the cloud's side, OCCI and CIMI standards focus on the laaS level, while
the CAMP aims to model the PaaS. However, community contributions to the
OCCI model has expanded its reach today all service layers. In the laaS level,
cloud speci cations consider the compute, network, and storage resources. The
component resource exists on higher service layers such as the PaaS. It is provided
by the OCCI and the CAMP. Since the CAMP standard focuses on application
description, packaging and deployment, it does not support cloud infrastructure
modelling. Moreover, CIMI and CAMP standards enable a graphical representation
of laaS and PaaS resources respectively.

The OCCI core separatefResource and Link entities thus loosely coupling re-
sources and their relations. This split makes the OCCI de ned models more ex-
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Table 4.1: Summary of Studied Cloud Computing and IoT Models and Standards

Resources B Service Models

4 o

5 <
= 5 :E;
HHBEEEE =R
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SWE SensorML X | X X L)
SWE O&M X X (L)
Sensor SmartThings X | x| X X (L)
web WoT X | X X )
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SSN X X X (A)
Semantic | '0T-O X | X | X|X X (A)
Web SWE O&M-OWL X X (A)
SSN & SOSA X | X |X]|X X (A)
OcCCl X [ X | X X X X (H)
Cloud CIMI X | X | X X X | (L)
CAMP X X X | (L)

tensible and reusable with no major changes to their structure. Unlike the OCCI,
the CIMI and the CAMP standards are more rigid with tightly coupled resources
and links. Furthermore, they de ne complete data model structures in contrast to
the OCCI which introduces theMixin concept [133,136]. ThéMixin class enables
augmenting a given data model with additional capabilities without a ecting its
initial structure. For example, VM images are added ablixin objects to the OCCI
infrastructure Computeinstances. Such addition does not change the prede ned
standard but enables cloud management frameworks to link @omputeinstance
with an Operating System (OS) image. We consider that the OCCI has a high
extensibility. It describes most of the needed resources and has speci cations for all
service layers. Therefore, it covers a large part of the CoT. Moreover, it is the most
adopted standard for the cloud.

The OCCI provides a high extensibility in contrast to other cloud speci cations
and loT related standards. Also, it is the only analysed standards which describes
PaaS and laaS service models simultaneously. Therefore, we select the OCCI spec-
i cations to model the CoT environment. However, we reuse cloud and IoT speci -
cations when necessary to stay aligned with prede ned concepts and vocabulary.

Some recent works [140, 141] extended existing OCCI models to represent the
IoT. Ciu oletti et al. [140] de ne an Aggregator and RealWorldObject Resource s
with a Sensor Link. They consider that one or multiple sensors observe a real
world object and report measured information to aggregators. They perform an
orchestration scenario to show how their model can be used to deploy a CoT request
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in a converged cloud and IoT environments. However, their approach does not
consider actuators nor represent the laaS service model in the CoT environment.
Furthermore, authors in [141] de ne an extension of the OCCI model to Il the gap
between the cloud and the robotics world. The work focuses on developing an OCCI
enabled gateway to hide underlying heterogeneous and mobile robots. Unlike our
approach, they consider solely a gateway integration pattern (see Section 4.4) and
de ne a domain speci c extension.

4.4 Cloud of Things Infrastructure

Cloud infrastructure includes servers with virtualization support, power source,
and high bandwidth connections. However, integrating loT devices with cloud
servers alters the infrastructure’'s homogeneity. Consequently, deploying laaS level
request graphs requires a more granular representation of the infrastructure. In fact,
the 10T physical nodes belong to various categories (sensors, gateways, Fog nodes)
and objects within the same category represent di erent hardware capabilities. In
this section, we describe the OCCI CoT infrastructure model.

4.4.1 Network Graph Model

The provisioning process in the CoT is similar to the Virtual Network Em-
bedding (VNE) problem described in [23]. The set of requested virtual machines,
sensors, actuators, and the relations between them can be considered as the Virtual
Network (VN) (i.e. CoT request graph). Furthermore, the set of cloud data cen-
tres, 10T devices, and network links can be mapped as the Substrate Network (SN)
(i.e. CoT substrate graph). Hence, the OCCI CoT should enable a network graph
representation of its resources.

Table 4.2: Attribute s De ned for the NetworkLink Type

Attribute Type Mult. Mutability Description

occi.networklink.bandwidth Double 0..1 Mutable Bit-rate of available or consumed in-
formation capacity (Mbps).

occi.networklink.hops Integer 0..1 Mutable Number of intermediate devices
(routers) through which data must
pass.

occi.networklink.latency Double 0..1 Mutable Delay that happens in data commu-

nication over the link.

A graph is a set of interconnected nodes. In the CoT, nodes represent cloud
data centres, Fog elements, and 10T devices. Moreover, edges are network links
connecting these nodes. Hence, we aditbdeand NetworkLink entities as shown
in Figure 4.11. A Nodeinstance used.ink items to identify its available and pro-
vided resources (e.g.Compute Component A NetworkLink instance connects
two Nodeobjects and provides their network connection attributes such as latency
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(NetworkLink.latency ) and bandwidth (NetworkLink.bandwidth ). Table 4.2 de-
tails the NetworkLink type. Section 4.4.5 illustrates an infrastructure CoT graph
created using theNodeand NetworkLink entities.

Entity| Entity|

&RUH 5HVA®UFA — &RUH /LQN

VXPPDU\ [6WULQJ WDUJHW 85,
WDUJHW NLQG .LC

1 5

1RGH IHWZRUN/LQN

RFFL QHWZRUNOLQN|E
RFFL QHWZRUNOLQN|K
RFFL QHWZRUNOLQN|C

Figure 4.11: OCCI Extensions (coloured boxes) to Enable a CoT Graph Represen-
tation.

4.4.2 Sensing and Actuating

Sensors and actuators are the main functional blocks of 10T that permit to
interact with the real world. Sensors observe a physical or logical object property
and provide therefore sensing resources. Observable properties can be logical (e.g.
system state) or physical (e.g. temperature, humidity). On the other side, actuators
act on a property of an object. They do o er therefore actuating resources. In this
case, the resource property must be changeable and its modi cation should trigger
a modi cation in the corresponding physical object (e.g. turn light on/o ) or logical
one (e.g. tweet).

Hence, we addedSensor and Actuator resources to represent sensor and
actuator properties in the CoT model as illustrated in Figure 4.12. The sen-
sor entity is presented in CAMP, SSN, and SmartThings under di erent names
but they all represent sensors. A sensor is identi ed by the type of observation
(Sensor.quantityKind ), the measurement unit Sensor.unit ), the feature of in-
terest (Sensor.featureOfinterest ), and the geographical location. In our model,
we adopted the vocabulary used by the SSN ontology. These elements are the same
for an actuator. Tables 4.3 and 4.4 detail the attributes of sensing and actuating
resources.

A sensing or actuating resource might need to be bound to a geographical area.
For example, climate temperature measurement is irrelevant if not bound to a loca-
tion. However, a location is not a resource in the system and it does not exist on its
own. The location is always attached to an existing resource in the model. There-
fore, the addedLocation class inheritsMixin and can be associated with sensors
or actuators. A location point is represented withLocation.longitude  and Lo-
cation.latitude attributes as speci ed in Table 4.5. Moreover, the CoT includes
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Figure 4.12: Extensions of the OCCI Infrastructure for the Cloud of Things.

devices with several sensing and actuating resources such as high-powered connected
objects (e.g. Raspberry PI). Consequently, we added th&ensor.quantity and
Actuator.quantity  to avoid representing similar sensors and actuators (i.e. with
same properties) several times for the same device. This is possible since we focused
on the provisioning aspects of the CoT, hence there is no need to model each sensor
as a separate instance. In fact, aggregating the information decreases the network
overhead since the amount of data to update a device's information is reduced.

Previously described properties represent functional requirements. However, sev-
eral non-functional requirements such as accuracy, response time, and resolution can
be associated with sensors and actuators. The SSN ontology considers these require-
ments as subclasses of th8ystemProperty class. We did not model all possible
non-functional requirements, however, we illustrate how additional attributes are
added with a SystemProperty Mixin . Table 4.6 shows considered attributes in
details.

4.4.3 Things Virtualization

loT devices have di erent capabilities regarding virtualization resulting in dis-
tinct characteristics, thus the need to specify how to model this aspect in the CoT.
It is possible that an 10T device does not retain any virtualization capabilities incur-
ring no pool of available compute and storage resources. However, it still provides
sensing and actuating resources through an API. Another type of possible virtual-
ization is the network-level virtualization [47]. This kind of virtualization aims to
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Table 4.3: Attribute s De ned for the Sensor Type

Attribute Type Mult. Mutability Description

occi.sensor.featureOfinterest String 0..1 Mutable Object whose property is being mea-
sured, estimated, or calculated

occi.sensor.quantity Integer 1 Mutable Number of sensor objects.

occi.sensor.quantityKind String 1 Mutable Kind of quantity that can be measured
using de ned and unrestricted units of
measurement.

occi.sensor.unit String 0.1 Mutable De nite magnitude of a the measured
quantity.

Table 4.4: Attribute s De ned for the Actuator Type

Attribute Type Mult. Mutability Description

occi.actuator.featureOfinterest  String 0.1 Mutable Object whose property is being ma-
nipulated

occi.actuator.quantity Integer 1 Mutable Number of actuator objects.

occi.actuator.quantityKind String 1 Mutable Kind of quantity that can be
manipulated.

occi.actuator.unit String 0.1 Mutable De nite magnitude of a quantity be-

ing manipulated.

Table 4.5: Attribute s De ned for the Location Type

Attribute Type Mult. Mutability Description

occi.location.longitude Double 1 Mutable Lines between the North and South
Poles. They measure east-west posi-
tion.

occi.location.latitude Double 1 Mutable Angle which ranges from Oat the
Equator to 90 (North or South) at
the poles.

Table 4.6: Attribute s De ned for the SystemProperty Type

Attribute Type Mult. Mutability Description

occi.property.accuracy Double 0..1 Mutable Maximum di erence in percentage
that will exist between the actual
value and measured value.

occi.property.resolution Double 0..1 Mutable Smallest reliable measurement that
a system can make.
occi.property.responseTime Double 0..1 Mutable Time for a sensor to respond from

no load to a step change in load.
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create sub-networks by deploying an overlay network on top of connected objects or
by physically clustering a group of 0T devices. The latter virtualization type is per-
formed during the deployment process and does not a ect the resource provisioning
step thus it is not considered in the model.
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Figure 4.13: Representation oNodelnstances with Di erent Virtualization Types.

The last kind is the node-level virtualization. It de nes the virtualization tech-
nology supported on top of the node's hardware. As illustrated in Figure 4.13,
it consists of: (1) hypervisor-based, (2) OS-based containers, (3) application-based
containers, and (4) threading virtualization. On the one hand, hypervisor-based and
OS-based containers virtualization are on the infrastructure level. Nodes capable
of such virtualization are able to provide compute, storage, network, sensing, and
actuating resources. Figure 4.13.a shows such a node representation. Furthermore,
they allow VMs or OS containers deployment over the latter resources. On the other
hand, the application-based containers and threading virtualization are on the plat-
form service level. Therefore, related nodes do not have virtualized infrastructure
resources such as compute and storage. However, they can host concurrent soft-
ware components (e.g. containers, threads). Hence, they are linked@Gomponent
instances. TheComponentclass is de ned in the OCCI platform speci cation as
shown in Figure 4.17.

It's worth noting that the main di erence between nodes with no virtualization
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support, and nodes with application-based virtualization is the possibility to deploy
software components in this node. A node with no virtualization support has no
compute or storage resources therefore it should be linked in the model to only
one Componentinstance which is already deployed. The latte€Componentinstance

o ers sensing and actuating resources via a web interface. Figure 4.13.b shows a
node with no virtualization support. In contrast, a node with application-based
virtualization has multiple associated software components which can be deployed
on-demand as illustrated in Figure 4.13.c. Even thouglomponentinstances are
visible at the PaaS level, they can also be o ered in the laaS layer. Anyhow, in
the latter case,Componentinstances are not shared between di erent applications,
and provide full control over the allocated sensing and actuating resources (e.qg.
con guration settings).

4.4.4 Things Integration Patterns

Integration patterns represent di erent ways I0T devices connect to the Internet
and get accessed by third party applications. There exist three integration patterns:
(1) direct connectivity, (2) gateway-based connectivity, and (3) cloud-based connec-
tivity. Figure 4.14 depicts these integration patterns. Direct connectivity means
that the loT device has an Internet Protocol (IP) address and is able to commu-
nicate directly over the Internet. The device might be a high-powered connected
object with compute, storage, sensing and actuating resources (e.g. Raspberry PI)
as illustrated in Figure 4.14.a. It might be also a constrained device o ering sensing
and actuating resources via an HTTP or WS interface with no compute resources.

Gateway-based connectivity represents connected objects in a non-IP network
(e.g. IEEE 802.15.4). These loT devices lie behind a gateway which performs
protocol translation between the Internet and its internal network. Attached con-
nected objects might be uniquely identi ed and accessible from the Internet (Figure
4.14.b) or hidden behind the gateway (Figure 4.14.c). In the rst case, we rep-
resented them individually in the infrastructure (e.g. gatewayBasedSensorland
gatewayBasedSensor2in Figure 4.14.c). In the second case, there is no need to
model them independently. Therefore, we represented the gateway as the association
of attached connected objects (e.gs4 in Figure 4.14.b). It describes all the sensing
and actuating resources provided by abstracted loT devices. Such aggregation of
available resources reduces the number of nodes within the infrastructure. Likewise,
the cloud-based connectivity consists of a virtual gateway in the cloud such as loT
middlewares. Its representation is identical to gateway-based connectivity in both
cases.

4.45 Scenarios

The OCCI CoT infrastructure model enables representing CoT laaS requests
and substrates as a network graphs. Also, it facilitates mapping incoming requests
on available resources during the provisioning process. We illustrate two scenarios
to show the ability of the proposed model to describe the CoT.
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Figure 4.14: Integration Pattern Modelled using the OCCI CoT Infrastructure.

Resources Description

We de ne only a substrate graph for the demonstration, however, creating a
CoT request graph is similar. The main di erence is that a request graph represents
needed resources, while a substrate graph describes available resources. Figure 4.15
illustrates the needed OCCI instances and their relations for representing a CoT
substrate. The described infrastructure graph corresponds to two physical nodes
infra _n1:Node and infra _n2:Node. The rst one is a Raspberry Pl with four
cores and 1 GB of RAM. The other one is a cloud server. The Raspberry Pl has 10
connected temperature sensors, while the cloud server has a 1000 GB storage unit.
We can associate nodes with theocation Mixin to extend their attributes. Fur-
thermore, both physical nodes are connected with a 100 Gbps network link having
a latency of 20 ms.
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Figure 4.15: Cloud of Things Substrate Graph Description with OCCI Infrastruc-
ture Extended Model.

Mapping Process

Moreover, the proposed OCCI CoT model enables mapping requests onto a CoT
infrastructure. In order to simplify the mapping example in Figure 4.16, we rep-
resented graphically the OCCI CoT instances and their relations. We give a brief
description for nodes as well. Itincludes theiNode.id attribute and attached infras-
tructure resources. MoreoverNetworkLink instances are presented as inter-nodes
connectors.

In the mapping process, candidate hosts are identi ed for each requested node
based on infrastructure resources. We noticed that nodes requiring sensing and actu-
ation resources are mapped towards 10T devices and gateways in the infrastructure.
However, nodes demanding more computational power are mapped to cloud servers.
Furthermore, the request nodeC (i.e. requestDataAggl) has an additional resource
constrained connected object (i.enfraDataSource2 ) candidate. Consequently, we
achieved a one-stage mapping. In fact, Cloud Computing and loT requests are com-
bined, and they can be mapped to available hosts in both domains infrastructures
simultaneously.

Furthermore, the gateway (i.e.infraGatewayl ) is exposing the sensors resources
collectively. This model is similar to a WoT enabled gateway with temperature and
humidity sensors. As a result, we minimized the problem size. Otherwise, request
nodesA and B would have been mapped to additional candidate hosts. In large-scale
loT infrastructures, such aggregation of available resources reduces considerably the
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Figure 4.16: laaS Mapping Process using the de ned OCCI Infrastructure Model.

problem size and the solution computation time. After the mapping, a selection
process picks the best candidates to host a given CoT request. This stage of the
provisioning process is studied in Chapter 4.

4.5 Cloud of Things Platform

A PaaS level request consists of interconnected atomic components. In a cloud
environment, the provisioning process identi es appropriate hosts based on com-
ponents and infrastructure resources availability. Also, it decides whether software
elements mapped to the same potential host should be deployed in a single or multi-
ple VMs. Afterwards, the provisioning process identi es the best candidate host and
deployment con guration (i.e. install multiple components on one or several VMs).
Anyhow, a CoT application at the PaaS layer requires data streams from connected
objects towards some of its components. Even though di erent 0T devices deliver
similar resources, they host device-speci c software with proprietary APIs. Also,
connected objects can be accessed individually or collectively via 10T middlewares.
Therefore, additional aspects such as data delivery methods, I0T devices selection,
components compatibility check, and many others should be considered during the
CoT PaaS provisioning process. In this section, we describe the OCCI CoT platform
model which enables such operations.

4.5.1 Cloud of Things Deployment Options

The heterogeneous nature of 10T devices leads to distinct architecture speci ca-
tions for di erent 10T systems and use cases. Consequently, di erent deployment
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Figure 4.17: OCCI Platform UML Representation

models were introduced to link 10T devices and applications. The diverse approaches
motivated several academic and industrial projects [142] to de ne reference mod-
els for the l1oT and o er generic guidelines for implementing loT platforms. Al-
though these reference models di er in some aspects, their deployment models are
similar. However, the Internet of Things Architecture (loT-A) project [94] pro-
vides a more thorough and abstract representation in contrast to industrial ap-
proaches [143, 144] which focus more on business features. Furthermore, the I0T-A
Reference Model (IoT-A ARM) is adopted by several European projects (e.g. FlI-
WARE [93], OpenloT [71]) and illustrates a reverse mapping to validate its ability

to model existing standards (ETSI M2M [145], EPCgobal) and concrete architec-
tures.

loT-A Deployment Con gurations

loT devices have various manufacturers and o er distinct capabilities. Hence,
consuming loT devices requires deploying hardware-dependent software components
to access their sensing and actuation capabilities. The 10T-A ARM de nes these
components as device-speci ¢ (i.e DeviceComponen} which act on physical en-
tities. However, DeviceComponens are bound to particular devices and specic
hardware architecture and expose a proprietary interface. Therefore, they do not
allow easily interoperability. Two types of device-speci c components could exist:
(1) network (i.e. NetworkComponenfand (2) on-device (i.e.OnDeviceComponent
Network components are usually deployed on remote hardware such as gateways to
access loT devices (e.g. WSN). Such approach is needed whenever the 10T devices
cannot be accessed individually and directly via a public network. Whilst, on-device

30nttp://www.gs1.org/epcglobal
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software components are deployed locally and are bound to the devices' capabilities.
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Figure 4.18: UML Representation of the IoT Environment Services Based on the
loT-A.

The shortcomings of device-speci c components are overcome by using loT wrap-
pers that encapsulate their proprietary functionality and provide a standard API.
The wrappers also aim to manage the related non-functional aspects as seen in Sec-
tion 4.2.1. In fact, loT wrapper components can be hosted on powerful hardware
(e.g. capable devices, fog nodes, cloud servers), therefore, they can perform addi-
tional processing such as aggregation, ltering, access control, etc. to reduce band-
width, energy consumption, and enhance security. Furthermore, wrappers handle
non-functional aspects for device-speci c components. They are divided into two
categories: (1) wrapper componentsWrapperComponentand (2) virtual entity
components VirtualEntityComponent ). The rst category accesses loT devices
directly, connects to them, and manages quality aspects of device's resources such
as dependability, resilience, security, and performance. However, virtual entity com-
ponents o er higher level of abstraction and manage multiple wrapper instances or
other virtual entities without connecting directly to things. They may add additional
processing for underlying 10T devices such as data streams querying. Virtual enti-
ties imitate a virtual gateway for virtual 10T devices (wrapped connected objects).
Therefore, WrapperComponenand VirtualEntityComponent  portray cloud-based
connectivity for connected objects. The di erence is the multiplicity of managed
sensors and the level of abstraction and management enabled by each. Figure 4.18
illustrates the relation between described services while Figure 4.19 depicts the pos-
sible deployment options for the I0T based on the loT-A.

It's worth mentioning that since the device-speci ¢ components have propri-
etary APIs, establishing a connection between these components and wrappers can
be challenging. However, multiple researchers have already addressed this issue and
provided valuable solutions. For example, the Global Sensor Network (GSN) mid-
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Figure 4.19: Cloud of Things Deployment Options Based on [0T-A.

dleware [132] generates device-speci c wrappers relying on a devices' description
le known as the Sensor Device De nitions (SDDs). Furthermore, recent speci ca-
tions for constrained devices such as DPWS enable more standardized and de ned
interfacing with constrained devices [37].

Provisioning Deployment Con gurations

Even though multiple delivery methods are referenced by the 10T-A project as
illustrated in Figure 4.19, the provisioning process does not require such granular-
ity. Mapping a CoT request graph aims to select candidates for cloud components,
data delivery components, and data sources. At the PaaS lay@eviceComponens
represent data sources, whil®irtualEntityComponent s andWrapperComponerg
perform data delivery operations. MoreoverWWrapperComponerst are generally de-
ployed alongside the/irtualEntityComponent s as seen in Chapter 2. For example,
wrappers are instantiated within the X-GSN to abstract sensors as illustrated in Fig-
ure 4.20.

Also, CoT users have no control over infrastructure resources and the deployment
architecture on the PaasS level. Consequently, 10T applications request data streams
without constraints on deployed delivery methods. CoT operators are responsible
for managing data delivery for cloud applications and should avoid ine cient deploy-
ment con gurations. Authors in [68] show that using virtual entities to aggregate
multiple data streams and distribute them among cloud applications consumes less
energy than individual I0T devices access. Therefore, we us¥dtualEntity-
Componers to deliver data streams and did not rely otwWrapperComponers which
manage devices independently.

As a result, WrapperComponers connect solely IoT devices td/irtualEnti-
tyComponens which relay data streams to applications. Therefore, the explicit
description of WrapperComponer#t in the CoT request increases the problem size
and the provisioning phase complexity without a ecting its decision. We de ned
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Figure 4.20: X-GSN Container Architecture. Sources [131, 146]
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Figure 4.21: Collector Component Architecture Example

the CollectorComponent as illustrated in Figure 4.21. Consequently, we only rep-
resentedDeviceComponens and CollectorComponent s in the CoT request. Such
representation does not a ect the provisioning phase result and global cost. The
ComponentLink indicates whether aDeviceComponentconnects to a particular
CollectorComponent such as X-GSN or not.

4.5.2 Data Components Sharing

In CoT, data streams should be reused to maximize resources utilization and
minimize energy consumption. Several works [7,57,67{69, 84] show that sharing
sensing and actuating resources among various applications increases usage e -
ciency. Hence,CollectorComponent s instances which already exist in the CoT
environment should be reused. They result from previous deployed requests or from
instances provided by third party data providers. These instances can be partially or
completely reused by incoming requests based their sensing/actuating needs. Fur-
thermore, reusing existing components speeds up the deployment process.
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Figure 4.22: Extensions of the OCCI Platform for the Cloud of Things.

As a result, during the provisioning process, already deployedollectorCom-
ponent and DeviceComponententities should be considered. The already de ned
Component.state attribute speci es whether components are instantiated or not.
Also, these components should be shareable among applications. However, a newly
requested application might require I0T resources which are not all managed by ex-
isting CollectorComponent s. In such case, it is possible to utilize already deployed
services and add missing resources to them. Therefore, the provisioning process
should be aware of existing services and their maximal capacity.

We added theCollectorComponent Mixin attributes which enables to extend
the capabilities of the existingComponentresource in the OCCI platform. It is
described in Table 4.7. TheCollectorComponent includes the CollectorCompo-
nent.shareable boolean attribute to indicate whether an instance is shareable or
not. Furthermore, the capacities of the component are given b§ollectorCom-
ponent.maxRequestsPerVCPUand CollectorComponent.maxWrappersPerVCPU
They represent the maximal number of data streams it can collect from devices
or dispatch to applications based on its allocated infrastructure resources. In some
cases, a connected object might be linked to two di erenCollectorComponent s.
Therefore, we needed to know how many connections it can accept. If it only ac-
cepts one connection, it means the connected object cannot be shared among data
delivery components. We represented thBeviceComponent Mixin to describe IoT
devices relatedComponers. It is described in Table 4.8.
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Table 4.7: Attribute s De ned for the CollectorComponent Mixin

Attribute Type Mult. Mutability Description

occi.component.shareable Boolean 0..1 Mutable Indicates whether the component
is shared among multiple applica-
tions or not.

occi.component.maxRequestsPerVCPU Integer 1 Mutable Maximal request rate supported
per an allocated VCPU unit.

occi.component.maxWrappersPerVCPU Integer 1 Mutable Maximal managed connected ob-
jects wrappers per an allocated
VCPU unit.

Table 4.8: Attribute s De ned for the DeviceComponent Mixin

Attribute Type Mult. Mutability Description
occi.component.maxConnections Integer 0..1 Mutable Maximal number of concurrent
connections.

Mapping Replication

CoT request graphs describe needed IoT device components. However, if a de-
ployed CollectorService  component satis es requested sensing and actuating re-
sources, there is no need to redo the mapping of IoT device components. Let's con-
sider two separate requests needing an X-GSN component delivering a temperature
data stream as illustrated in 4.23. When the rst request arrives, the provisioning
process will search for a suitable X-GSN host and a connected device able to mea-
sure the temperature. Once the rst request is satis ed, the cloud operator will have
an interconnected temperature sensor and an X-GSN instance. However, when the
second request is received, the orchestration process will redo the same steps even
though it can directly reuse the already deployed X-GSN instance. Such operation
is time and resources consuming which is ine cient. Therefore, it should not be
replicated for each request.

To solve this problem, we attached in the proposed model each existiQpl-
lectorComponent s to managed sensing and actuating resources viaAacessLink
entity instance. The AccessLink instance provides information about already pro-
visioned resources. Therefore, the provisioning process checks directly if existing
collector instances satisfy user request or not without scanning further existing com-
ponents. In the previous example, with this change in the model, the orchestration
process will be able to detect that the X-GSN instance is already attached to a
temperature data stream and therefore select it directly instead of creating another
instance. This not only speeds up the provisioning process but reduces the resources
utilization.
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Figure 4.23: Avoiding Mapping Replication Example Scenario.

4.6 Conclusion

Combining the cloud and the Internet of Things evolved over the years. At rst,
loT middlewares managed data collection on premise while distant cloud compo-
nents analysed gathered data on-demand. Then, IoT components were migrated
to the cloud to benet from its characteristics (e.g. elasticity). However, sensing
and actuating resources were still managed separately from cloud resources. In fact,
provisioning mechanisms were divided into two stages: (1) the cloud components
orchestration, and (2) the loT resources selection and integration. Such partition-
ing prevented a global optimization of both domains infrastructures. Therefore,
the next logical evolution of such convergence is the uni ed management of Cloud
Computing and 0T resources. The seamless integration of both domains is referred
to as the Cloud of Things. In this chapter, we modelled the CoT resources on the
laaS and PaaS levels. Our objective is to enable a joint management of underly-
ing resources. In this perspective, we studied existing standards for the cloud and
the 10T to identify the most suitable one for modelling the CoT. We selected the
OCCI standard due to its extensibility and comprehensive modelling of the cloud.
We extended the existing OCCI model with respect to the CoT characteristics for
laaS and PaaS. Also, we showed through scenarios how the proposed model enables
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the management of CoT resources and allows CoT mapping processes to interpret
resources description.
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5.1 Introduction

In a partially integrated Cloud Computing and Internet of Things (loT) environ-
ments, orchestrating an IoT application undergoes three separate stages: (1) cloud
services provisioning, (2) connected objects selection, and (3) Virtual Objects (VOs)
placement in cloud data centres. Even though these steps might be coordinated to
achieve a more e cient provisioning, they are still executed in multiple phases which
prevents a global optimization of resources. Therefore, the use of Cloud Computing
and loT resources becomes less e cient. Moreover, state of the art mechanisms for
selecting connected objects are separated from the placement decisions which can
be ine cient [68,87,103].

Figure 5.1: Cloud of Things Integral Mapping Scenario

The Cloud of Things (CoT) needs to support and facilitate end-to-end IoT ap-
plications delivery. However, such vision requires novel mechanisms for resource
allocation and optimization. Such mechanism should consider the entire 10T ap-
plication and CoT infrastructure in a single stage. Recently, several approaches
were proposed to optimize bandwidth usage, energy consumption, and sensors life-
time. However, to the best of our knowledge, none of these approaches have tackled
the problem of an IoT application deployment in a CoT infrastructure in a holistic
manner.

In this chapter, we propose an e cient solution to address the mentioned chal-
lenge. We formulate the problem as a graph mapping problem similarly to Figure
5.1 illustration. We represent graphically the required cloud services, connected
objects, and VOs. We then use a Linear Program (LP) to calculate the optimal
solution which minimizes the cost of the deployment.

This chapter is organized as follows. In Section 5.2, we highlight the di erent
challenges regarding the resource allocation problem of services/applications in a
CoT infrastructure. In Section 5.3, we present the analytical model of the prob-
lem which optimizes the mapping process of the CoT request graph onto the CoT
substrate. The model has two instances. The rst considers infrastructure level re-
sources while the other addresses platform level resources. In section 5.4, we present
our simulation environment and discuss the obtained results. Finally, the chapter is
concluded in Section 5.5.
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5.2 Problem Statement

An abstract CoT request is composed of a set of nodes related to either the
cloud computing environment or to the 0T environment as depicted in Figure 5.2.a.
Let us consider that data request nodes indicate how many temperature sensing
services the CoT customer wants to deploy, while the cloud service indicates the
number of requested vCPUs to process the data. In a traditional Cloud Computing
provisioning model, one request node is mapped to one substrate node that satis es
the requested resources. Consequently, the cloud service in Figure 5.2.a is mapped
to a single substrate node. However, such mapping is not necessarily e cient for
loT resources. In fact, the requested temperature sensing services can be allocated
from di erent substrate nodes. As we notice, the data request node in Figure 5.2.a
is mapped to two di erent substrate nodes.

Figure 5.2: Distribution of Request Nodes with IoT Resources on Multiple Substrate
Nodes

Some request nodes might require I0T resources alongside with compute and
storage resources as depicted in Figure 5.2.b. Indeed, there exist some high-powered
connected objects able to o er compute and storage resources beside sensing and
actuating. For example, a gateway o ering temperature sensing services might have
also available virtualized computing and storing resources. Such gateway is able
to host a service requiring a limited amount of the compute resource and providing
temperature sensing data. In such case, we can also collect temperature sensing data
from di erent substrate nodes. However, we must make sure that these nodes can
also provide the requested vCPU resources. In contrast to loT resources, Virtual
Central Processing Units (vCPUs) cannot be divided. In Figure 5.2.b, a request
node with 10 temperature sensors and 1 vCPU can be mapped to multiple substrate
nodes. The loT resources are divided between these substrate nodes, while vCPUs
need to be satis ed entirely at each host as illustrated in Figure 5.2.b.

The provisioning process of a CoT request onto a CoT substrate should take into
consideration the possibility of dividing a request node into a set of IoT resources
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on multiple substrate nodes. Otherwise, the CoT customer has to de ne himself
multiple data request nodes and assign to each one a portion of needed loT resources.
In this case, the request might get rejected because its data request node requires
to interact with too many connected objects. In addition, such approach is not

e cient regarding the complexity of the process since it increases the CoT request
size and therefore the problem size. Furthermore, it requires a prior knowledge of
the infrastructure topology and available resources.

Figure 5.3: Re-using loT Resources and Corresponding Deployed Delivery Services

As previously stated in Chapter 3, 0T resources might be shared among appli-
cations. It is therefore necessary that the provisioning process should be able to
verify whether delivery services such as VOs has been already deployed and check if
it is possible to reuse them for new incoming requests. As illustrated in Figure 5.3.b
(i.,e. time t + 1) the services deployed in 5.3.a (i.e. timé&) can be reused for the
request at timet + 1. If sharing IoT resources was not possible, the second request
at time t + 1 would not have been satis ed because there are not enough resources
available in the infrastructure at that time.

We argue therefore that deploying an loT application in a CoT infrastructure
is di erent from the traditional Cloud Computing deployment. There is a need
to consider the possibility of mapping one request node to multiple nodes while
verifying the availability of each resource type dierently. This is due to the fact
that some resources are partitioned across a set of nodes, while others should be
entirely made available in each selected node. Moreover, the provisioning process in
the CoT environment should consider previously allocated resources and reuse them
in future deployments if possible to minimize the resources utilization and therefore
the deployment cost.
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5.3 Proposed Resources Provisioning Model

A uni ed representation of Cloud Computing and IoT allows a holistic view of the
infrastructure. Such a uni ed model of available resources will eventually facilitate
the one stage coordinated provisioning. To highlight the proposed approach, let's
consider a substrate node elememt? which represents either a cloud data centre,

a fog node, or a connected object. Each noat is attached to a set of resources
r> which identify its nature and geographical locationg;. In this model, on one
hand, we identify the compute ¢), storage (i), sensing &), and actuating (A;)
resources. On the other hand, we identify the communication (network) resources
that are represented as the available bandwidth; between any two nodesy and
n?. Cloud data centres possess large (V|rtuaIIy unlimited) amounts of compute,
storage, and network resources.

Fog nodes are characterized by the same type of cloud resources but in contrast
to cloud data centres, these resources are limited. Not to mention that Fog nodes
have also relatively lower latencies to connected objects since they are geographically
closer to them. 10T devices do have communication capabilities and therefore net-
work resources to connect to the network. High powered connected objects might be
deployed to provide on-device compute and storage resources. It's worth noting that
all connected objects have processing and storage capabilities even limited, however,
low-powered connected objects reserve them for their sensing and actuating opera-
tions. Such resources are not available for external use. In the latter case, the node
is represented without compute and storage resources in our model. With the same
logic, a request node (i.e. virtual nodep" represents an element which needs to be
mapped and deployed into a substrate node.

A request node in the CoT Infrastructure as a Service (IaaS) level might represent
a Virtual Machine (VM), a sensor, or an actuator. A VM request node is not
attached to any sensing and actuating resources. Furthermore, the same request
node in the CoT Platform as a Service (PaaS) level might represent a cloud service,
a sensing service, data stream, etc. However, in the CoT PaaS level, infrastructure
level resources are also represented as software components might be requested with
minimal hardware requirements. We de ne the set of available atomic services at
each substrate noden? as P = f ?;; 2,;:::9. Similarly, the requested service by
a requested noden/ is noted as /. *:d and °:s indicate respectively whether a
substrate service ° is deployed or not, and is shareable or not.> and Y represent
the service ID, hence, we can check if two services are the same by the simple
comparison 5V =0.

Let us consider a request graphN"; EY) and a substrate graph N3;E®). The
request graph needs to be mapped onto the substrate grapk’ and N ® correspond
to the sets of requested nodes and infrastructure nodes respectively. A request
graph hasm' nodes, while the substrate graph has a cardinalityn®. A substrate
noden? 2 N*° o ers a set of available resources’ = fc; t?; S°; A’g, while a request
node requires a set of resources = fc';t’;S';A’g. Unlike compute, storage,
and network resources, a node can have multiple types of sensing and actuating
resources. For example, a connected object might o er several temperature and
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humidity sensors. Therefore, we represent sensing and actuating resources at a
given noden; as a set of sensor§; and actuators A;. We consider that the CoT
infrastructure includes k types of sensors ang types of actuators. Hence, the
sensing and actuation resources of a substrate nodgcan be represented aS’® =
fsfi i skg and AP = faiy; i af, g respectively. s7; is the number of sensors of
type 1 available at the substrate nodens

For example, a Raspberry Pl node having only one compute resource and two
sensors of type 1 has® = 11,0;f2;0;:::;0g;f0; :::;09g. Sensing and actuating re-
sources are represented similarly for request nodes. Such grouped representation
of 10T resources decreases the request and infrastructure sizes in terms of nodes,
and therefore reduces the problem size. Furthermore, it allows the representation
of complex infrastructure nodes providing large amounts of 10T resources such as
gateways.E*® and EV represent requested network edges and substrate nodes inter-
connections. A substrate edge,s connects two substrate nodes; and n;. It has
an available bandwidthl; and a latencyl?; . Similarly, a request edgee; Ilnks two
request nodesy and ny'. Such request edge requires a minimal available bandwidth
b and a maximal Iatencyl¥j . A summary of variables is presented in Table 5.2.

The de ned variables can be also identi ed from the previous de ned model
which helps parsing described CoT requests and substrates using our OCCI model
for laaS and PaaS. We show in Table 5.1 the equivalence between the OCCI model
and the analytical model.

Table 5.1: Equivalence between the Analytical Model and the CoT OCCI model

Parameter OCCI CoT Equivalence

nf, nY The NodeClass

e € The NetworkLink Class

Iﬁj , Ii\{j The NetworkLink attribute occi.networklink.latency
b, B The NetworkLink attribute occi.networklink.bandwidth
Sihs Sph The Sensor attribute occi.sensor.quantity

&h, ah The Actuator attribute occi.actuator.quantity

h The Actuator or Sensor attribute quantityKind

g The Location Class

T The Componentclass

TR The Componentattribute occi.component.state

HS The Componentattribute occi.component.shareable

5.3.1 Domain Variable

Once the request and substrate graphs are modelled using previous notations, the
request graph should be mapped onto the substrate graph. Such mapping aims to
optimize a given objective function such as minimizing the resources utilization. We
consider j; 2 [0;1] as the domain variable which indicates whether a request node
n{ is mapped onto a substrate node? or not. However, di erent types of resources
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Table 5.2: Notation Table

Symbol | De nition
(NS;E®) | CoT Substrate Graph.
(NVY;EY) | CoT Request Graph.

NS Set of substrate nodesn? 2 NS. [N3j = mS.

NV Set of request nodesny 2 NY. [NYj = m".

s, ry Set of available resources atf?, Set of requested resources foy.

c, q Available amount of compute atn?, Requested amount of compute fon;'.
te, tf Available amount of storage atn?, Requested amount of storage fan;’.

S’ S Set of available sensors at?, Set of requested sensors for'.
A7, A] | Set of available actuators atn?, Set of requested actuators fon'.

5 Set of available services in substrate nod®, Requested service fon;'.
Sin» Sjn | Available amount of sensor typeh at nf, The requested amount fom;.
ah, & | Available amount of actuator typeh at n?, The requested amount fom;'.

k The total number of sensor types in the CoT infrastructure.

p The total number of actuator types in the CoT infrastructure.

ES Set of edges between substrate nodes.

EY Set of edges between request nodes.

€] Network edge between two substrate node® and n.

o Network bandwidth between two substrate nodes and n?.

I3 Network latency between two substrate nodes} and n?.

€] Network edge between two request nodeg and n;.

o Minimal required network bandwidth between two request nodes/ and ny'’.

I Maximal tolerated network latency between two request nodeg’ and ny'.

I Acceptable latency between the users groug and the request nodeny'.
i The fraction of request noden{ mapped to substrate noden?.
i d e

Table 5.3: Prices De nitions Table

Symbol | De nition

The price of a compute unit at substrate noden?.

The price of a storage unit at substrate node;.

The price of a sensos},, of type h at substrate noden?.

The price of an actuatoray, of type h at substrate noden;’.
The price of a data unit on edgee; connecting nodesi} and n?.
ih The price ofh™ service %, at substrate noden?.

e Eiad Raiis}

=

= | =
oS
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require di erent mapping strategies. For example, several gateways can be used to
satisfy a request node operating several temperature and humidity sensors. Unlike
the classical Cloud Computing mapping [23, 147], a CoT request node might be
mapped to multiple substrate nodes as illustrated in Figure 5.4. We can notice

that the sensing resources are here retrieved from di erent substrate nodes while
the compute resource is retrieved entirely from each used substrate node.

Figure 5.4: The Mapping of a Request Node with Sensing Resources.

It is important to notice that some resources such as compute cannot be frag-
mented. As a result, the constraints for verifying resources availability when map-
ping request nodes should take into consideration such speci city in the mapping
strategies. Constraints (5.1) and (5.2) illustrate two constraint models. The rst
model is used for resources which must be made available as a whole in the sub-
strate node, even though a fraction of the request node is mapped to it. This rst
model will be used to verify the availability of the compute resources for example.
The second model is more appropriate for resources which can be fragmented across
several substrate nodes. In this case, we only verify the availability of the required
fraction at the substrate host. The constraint (5.2) is used for sensing and actuating

resources.

X

Xy X 8 i1l m? (5.1)
i
X \ S - S

i Xi Xy 8 1l m (5.2)
i

with:
( 1 if 4 >0
) (5.3)

T 0 otherwise
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The relation between ;; and ;; can be expressed through the following con-
straints:

isj i 81! mY;j : 1! mS
ij 2f0;1g 8 :1! mY;j:1! m°

Since j; is a numeric variable (i.e. i; 2 [0; 1]), cloud services will be mapped
also onto multiple data centres. In such case, once the mapping is nished, we
obtain a set of values indicating the fraction of the cloud service mapped to each
data centre. We select the data centre with the larger fragment. We verify during
the mapping that only data centres with su ciently available compute, storage, and
network resources are selected.

5.3.2 Cloud of Things Infrastructure

We formulate our placement problem similarly to the Cloud Computing VM
placement problem formulation presented in [148]. The latter formulation lin-
earises the traditional quadratic problem for VM placement [149]. Considering a
binary mapping variable x;; that indicates whether a request node should be
hosted on a substratg, it is possible to introduce a new variabley;;.., such that
Yijvaw = Xij Xvaw. Such variable represents edges mapping while hiding the quadratic
expression as follows:

min F(x) = F x)+ 'F "(x) st +1 =1 (5.4)
with:
X X , :
F(x) = Xij ( f¢/+ itY) 8i:1! mY; 8 :1! m® (5.4a)
n —_ XI XJ X X e H . | V. ) . | S
F (X) = Yijvw ij h;v 8iv i1l mY 8J’W P11t m (5'4b)
i j v ow
subjected to:
X X v . s
Yigwvw By By 8w 11l m (5.4¢)
X X
Yisjiviw ljs'w iy 8i;v:ill mY (5.4d)
T
- Xi ¢ ¢ §:1! m® (5.4e)
XI
Cxpt! 8 1l me (5.4f)
XI
Cxip =1 81l m? (5.49)
xl
Xijlowy Ny 8 11 m% 8v:ll z (5-4h)

Xij 2f0;1g 8 :1! m";8 :1! m° (5.4i)
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X
Yijvw = Xyw 8iv:i1l mY; 8 :1! m® (5.4j)
j
Yijvw = Yvwij 8iv i1l mY; 8w :1! m® (5.4k)
0 Vijvw 1 8iv:1! mY; 8jw:1! m® (5.41)

The functions F(x) (5.4a) consists of compute and storage allocated resources
while F"(x) (5.4a) corresponds to the network utilization price. ¢, !, and [ are
compute, storage and network unit prices as de ned in Table 5.3. Firstly, constraints
(5.4c), (5.4e), and (5.4f) make sure that requested nodes are mapped to substrate
nodes with su cient resources. Secondly, constraints (5.4d) and (5.4h) preserve the
Quality of Service (QoS) required by the CoT request graph in terms of communi-
cation latency. Finally, constraints (5.4q), (5.4i), (5.4)), (5.4k) and (5.4l) verify that
all requested resources are mapped, de ne the relation between and y;;..» , and
specify the boundaries of domain variables.

We adapt and extend this model to include sensor and actuator resources. More-
over, there is no need to consider the possibility of sharing 10T resources for the laaS.
In fact, at the laaS level, customers have full control over the resources and their
con guration. Therefore, it would not be possible to share 10T resources among
multiple applications as it limits the ability of the customer to con gure them as
pleased. Under these assumptions, the model is formulated as follows:

mnF()= F )+ FO()+!F"() st + +1!1=1 (5.5)
with:

X X

Fe( )= i (fa+ i) 8i:1! p; 8 :1! m (5.5a)

(o] Xl JX \") S \" a

F°( )= ij (Stn jh + @& jh)
i j h

8i:1! mY; 8 :1! m® 8h:1l! z (5.5b)
X X X X _ _

F'( )= Yijww By w85V i1l p; 8w 1l m (5.5¢)

i jovow

subjected to:

N ey, By Biw 1l me (5.50)
i v

XX Vijvw S 1Yy 8iv i1l mY (5.5€)
i w

%_ G ¢ 8 11! m® (5.5f)
Xf Gty 8 11! m® (5.59)
XI

iSth S 8 11! m°% 8h:ll z (5.5h)
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X

aaln & 81l mt shill 2 (55

XI
=1 8 :1! m® (5.5))

i
i 2[0;1] 8i:1! mY;8 :1! m° (5.5k)

X
Yijvw = vw 8iv:i1l mY; 8 :1! m® (5.50)

i
Yijvw = Yowij 8iv:1l mY; 8w :1! m® (5.5m)
0 VYijvw 1 8iv:1l mY; 8jw:1! m® (5.5n)
i 81l mYj:1! mS (5.50)
j 2f0jlg 8 :1! m¥%j:1! m? (5.5p)

F< (5.5a), F° (5.5b), and F" (5.5c) correspond to the compute, 10T, and net-
work resources costs respectively. Firstly, constraints (5.5f), (5.5g), (5.5h), and
(5.5i) make sure that requested nodes are mapped to substrate nodes with su cient
resources. Secondly, constraints (5.5e) preserve the QoS requested by the CoT re-
guest graph in terms of communication latency. Also, constraint (5.5j) verify that
all requested resources are mapped while constraints (5.5k) and (5.5n) verify that
domain variables remain in their value range. Constraints (5.51) and (5.5m) de ne
the relation between ;; and y;j,.w While constraints (5.50) and (5.5p) de ne the
relation between ;; and ;.

5.3.3 Cloud of Things Platform

For the CoT PaaS mapping we have to consider the availability of requested
services at each substrate node. However, we need to account for previously de-
ployed services as well. Therefore, a substrate node has additional constraints. The
constraint aims for checking whether a requested service is available at the sub-
strate node or not, whether this service is deployed or not, and whether this service
is shareable or not. A mapping is possible only in two cases when the service is
available at the substrate node: (1) the service is not deployed, or (2) the service is
deployed and shareable. This constraint is represented as follows:

i ohed( B j")(l th:is)=0 8i:1! m%8j 1! m";8h:1!j 7 (5.6)

with:
s.._ 1 ifthe service is deployed
A= 0 otherwise (5.7)
( . o
sa 1 if the service is shareable (5.8)

0 otherwise
Therefore the model for the CoT PaaS model becomes as follows:
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mnF()= F9 )+ F°()+IF"() st + +!1=1 (59)
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5.4 Implementation and Evaluation

We use IBM CPLEX to implement the proposed model in JAVA. The simulation
compares between a global one stage mapping in the CoT and a two-stage mapping
of Cloud Computing and loT resources. We generate CoT request graphs with
ms =51 20 requesting a total numbeu =20! 320 of connected objects. We only
consider sensors during the simulation. The created CoT graphs are then divided
into separate cloud and IoT graphs which are also mapped with the proposed model.
This is possible since the model takes into consideration cloud and IoT resources
simultaneously. This way, we simulate a two-stage mapping. We measure the gain
of both orchestration approaches as well as di erent compute, 10T, and network
costs. Results are shown in Figures 5.5 and 5.6.

5.4.1 Evaluation Results

We notice the bene t of mapping the CoT graph with a global representation of
the infrastructure. This di erence is mainly due to the cost of data units exchanged
between cloud and 10T nodes. During a two-stage mapping, such information can-
not be accounted for. Either nodes in both graphs are mapped separately, or one of
the two mappings uses the results of the other to coordinate its nodes placement.
However, in the latter cases, at least one of the mappings will aim for less expen-
sive hosts while ignoring the network cost. Hence, when the number of connected
objects increase, the transmitted data between the cloud data centres and IoT de-
vices increases, leading to additional costs. Our model captures the network state
between cloud and 10T resources and therefore is able to adapt the orchestration
of resources accordingly to minimize the overall cost. When the number of nodes
increases, the gain decreases because the one stage mapping process selects more
costly nodes when the network links bandwidth is not su cient. However, the two-
stage mapping does not consider these constraints because it is not aware of the
bandwidth consumption between loT and cloud resources. Hence, it always maps
to the less costly substrate nodes.

5.5 Conclusions

With the growing market of the Internet of Things, a huge number of physical
devices is expected to be deployed worldwide which will generate a very large amount
of data that could constitute a huge value added if correctly managed. To manage
these IoT devices and the corresponding generated data, it is necessary to create new
e cient e cient CoT services/applications deployment and resources allocation.

Many research e orts focused on creating loT platforms to address the chal-
lenges of 10T following a data-centric approach (e.g. OpenloT and FI-WARE). In
this research work, we proposed an alternative solution that provides a coordinated
one-stage provisioning of 0T application in the CoT infrastructure. We argue that
this approach while introducing some level of complexity (holistic management of
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the environment), it also enables more re ned optimization of the resource alloca-
tion of both Cloud Computing and loT resources along with the optimization of the
network resources. We formulated the problem as an optimization problem identify-
ing the objective function and the constraints. We speci ed the problem as a linear
programming problem and solve it (in a speci ed use case) using IBM CPLEX. The
results show that a holistic provisioning process proves to be 10%0% more e cient
than two separate orchestration processes for cloud and I0T resources respectively.
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Figure 5.5: Relative Cost Gain of a One Stage Mapping over a Two Stages Mapping
in CoT.

Figure 5.6: Cost of a One Stage Mapping Compared to a Two Stages Mapping.
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Chapter 6

General Conclusion and
Perspectives

The integration of Cloud Computing and the Internet of Things (1oT) realizes the
Cloud of Things (CoT). Such integration makes possible the autonomous delivery
of end-to-end loT applications. In this thesis, we addressed the resources modelling
and provisioning aspects in a CoT environment. First, we considered a partially
integrated Cloud Computing and IoT infrastructures. In this context, we aimed at
provisioning Virtual Objects (VOs) responsible for connecting a set of 10T devices to
their corresponding cloud applications. Unlike existing approaches, we considered
that connected objects and corresponding VOs could be shared among multiple
applications to reduce the total amount of needed connected objects for a set of
applications requirements. Such consideration increases the Quality of Service (QoS)
constraints on each VO to deploy. To simplify the problem, we group VOs with
identical constraints together and map grouped VOs instead of individual ones. We
formulate the latter problem as two Linear Program (LP)s which aim to reduce the
computing and networking cost of deployed VOs. The rst deals with provisioning
VOs for a set of application in an empty CoT environment, while the other considers
that the CoT infrastructure contains previously deployed VO that can be reused. We
introduce within the objective function a QoS index to minimize the communication
latency between connected objects and cloud applications as well. As we notice,
grouping VOs reduces the problem size and speeds up the execution of the LPs.
Simulation results show that the shared approach is less costly than an unshared
one. We show how the QoS index reduces the overall communication latency and
achieves a better QoS concerning latency for all applications. However, employing
the QoS index increases the cost as it forces a trade-o between cost and QoS.

Second, we surveyed existing standards for modelling the IoT and Cloud Com-
puting. We synthesized the e orts to model the resources for 1oT and cloud infras-
tructures to select a mature standard for modelling the CoT. We singled out the
Open Cloud Computing Interface (OCCI) model. This model provides a complete
representation of the cloud and has been adopted widely by researchers and existing
cloud platforms such as OpenNebula. Then, we identi ed the basic resources which
need to be added to the OCCI model to enable a representation of the CoT envi-
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ronment at the Infrastructure as a Service (laaS) and Platform as a Service (PaaS)
levels. Such model constitutes the rst step towards the auto-deployment of 10T ap-
plications in a CoT infrastructure. We present some example scenarios to illustrate
how the model can be used to represent resources in the CoT. Furthermore, the
model can be used to describe CoT request graphs and the CoT infrastructure. Such
graphical representation of resources allows provisioning processes to parse directly
incoming CoT request graphs and map them to the infrastructure.

Finally, we provided a model to specify analytically a CoT request and infras-
tructure as graphs. Such representation allows to map the CoT request on the
infrastructure similarly to the virtual network embedding problem. We formulated
an objective function with constraints to perform the optimal mapping of the CoT
request onto the infrastructure. Such request contains interconnected cloud services
and connected objects. Hence, the model can map cloud services to cloud data cen-
tres and perform a selection of 10T devices simultaneously. Simulations show that
the provisioning of the CoT request in a single-stage outperforms the mapping in
two separate stages considering cloud and IoT resources separately.

Several directions have been identi ed for future works:

In chapter 3, we do not take into consideration the selection of connected objects
and consider they are already picked. However, as discussed in Chapter 3, combining
the selection of connected objects and the deployment of VOs knowing the applica-
tions placement helps to enhance further the QoS. In fact, sharing VOs reduces the
cloud resources utilization which minimizes the customers overall cost and increases
the CoT provider pro ts as he becomes able to serve additional customers. However,
sharing VOs among applications should consider the QoS requested by all applica-
tions. In our approach, such constraints cannot be altered which results in the
rejection of some requests if the constraints are not met. Therefore, the provision-
ing process should be able to decide on sharing or not VO during the provisioning
process to be able to satisfy applications constraints when it is not possible using
a shared approach. Such exibility in the model avoids rejecting incoming requests
while minimizing as much as possible the resource utilization. Furthermore, sharing
VOs can be tuned with the selection of connected objects to optimize the execution
time while maintaining the cost reduction. As we notice, when the number of VO
clusters increases, the execution time of the provisioning process increases. However,
the number of clusters increases when connected objects do not have many similar
sets of applications in common which can be controlled by the I0oT selection process.
A selection process can be employed to optimize the set of connected objects for
each application in such a way as to minimize the number of clusters formed but
maintain the total number of connected objects used to satisfy applications.

In chapter 4, the proposed model is a backbone for representing a CoT infras-
tructure. However, appropriate Mixin s should be de ned by the CoT provider to
personalize the model based on the properties of available components in his infras-
tructure (e.g. OpenStack data centre, Raspberry Pl gateway). Works in [140, 141]
can be used as an inspiration for extending our model. The objective of such model
is to enable the automatic deployment of end-to-end loT applications. Several cloud
orchestration software exists which rely on the OCCI model. These models can be
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used as a base for developing a CoT orchestrator. Such model can also be linked
with the node-RED project which helps de ne a work ow that can be then deployed
automatically within the CoT infrastructure. IBM uses this project to facilitate

the creation of work ows and enables their deployment in its cloud infrastructure
(Bluemix). It also allows the deployment of IoT applications. However, such de-
ployment is not yet fully automated as the connected objects are not provisioned on
the y. Intel is going in the same direction by adding an lIoT module in its platform
architecture. Such trends have been applied with OCCI PaaS for Cloud Comput-
ing to enable autonomous management and deployment of applications. The same
approach can be applied for 10T applications. However, such approach is challeng-
ing in the CoT environment as self-con guration and self-adaptation mechanisms
should consider di erent nature of hardware components which do not permit the
same exibility and scalability as cloud data centres.
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Titre : Mocklisation et Optimisation du Placement de Services Compo®s dans une
Infrastructure Convergente de I'Informatique en Nuage et de I'Internet des Objets.

Keywords : Cloud Computing, Internet des Obijects, Cloud des Objects, Optimisation des
Resources, Mocklisation des Resources.

Resune : La convergence de l'Internet des Objets 1dO (Internet of Things) et de
I'Informatique en Nuage (Cloud Computing) est une approche prometteuse. D'une part,
I'Informatique en Nuage fournit des ressources de calcul, de eseau, et de stockage treoriquement
illimiees, et d'autre part, I''dO permet l'interaction des services en nuage avec des objets du
monde eel. Une convergence e cace de ces deux technologies aura un impact certainement
important sur les innovations dans les domaines des services IT par l'introduction de nouveaux
mockles de services d'ldOa la demande. Dans un tel contexte, les objects connecks sont vitu-
alies et o erts commeetant des services en nuage accessibles sur Internet depuis n'importe a
eta n'importe quel moment. Ces services sont connus sous le nom d'Objets Virtuels (OVs). lls
cachent I'reerogereie de I'ldO et lient les objects conneces aux services en nuage traditionnels
(i.e. services de stockage) pour fournir des applications 1dO.

Dans cette these, nous consicerons d'abord une inegration partielle de I'dO et de
I'Informatique en Nuage. Cette inegration fournit I''/dO au sein d'un seul niveau de service de
I'Informatique en Nuage. Dans ce cas, les ressources de I'ldO et de I'Informatique en Nuage
sont approvisionrees epaement. Nous nous concentrons dans ce travail sur I'orchestration des
OVs dans une infrastructure en Nuage. Nous ke nissons un algorithme d'approvisionnement
base sur une stratgie de partage ai chaque objet connece est assocea un seul OV et peut étre
consomne par plusieurs applications. Nous proposons deux programmes lireaires pour e ectuer
I'approvisionnement des OVs. Le premier en cas ai il n'y a pas des OVs peedemment ceployes
dans l'infrastructure, tandis que l'autre prend en compte le cas a il y a des OVs cep teployes.
Notre approche minimise les codts operationnels des OVs et la latence de communication par
rapport aux approches qui consicerent une straegie de non-partage.

La deuxeme partie de cette these consicere une inegration compkte de I'ldO et de
I'Informatique en Nuage. Nous appelons cette inegration le Nuage des Objects (NdO). Dans
ce contexte, un client sera capable de demander un approvisionnement, un deploiement, et
une mise a lechelle automatique d'une application 1dO de bout en bouta la voke avec un
minimum d'e orts de gestion. En particulier, nous abordons l'aspect de I'approvisionnement.
Nous e nissons un mocele oriene ressources capable de decrire une demande d'une appli-
cation 1dO et une infrastructure NdO sur dierents niveaux de service. Nous basons notre
moctle sur les speci cations OCCI e nies par 'OGF. En outre, nous ¢ nissons un algo-
rithme d'approvisionnement en uneetape coordonree pour orchestrer une application IdO dans
une infrastructure NdO. L'algorithme consicere les ressources de I'ldO et de I'Informatique en
Nuage simultarement. Les simulations montrent qu'un processus d'approvisionnement en une
etape coordonree est 10% 20% plus e cace que deux processus d'orchestration des ressources
de I'dO et de I'Informatique en Nuage ®paes.

Universit e Paris-Saclay
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Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



Title : Modelling and Placement Optimization of Compound Services in a Con-
verged Infrastructure of Cloud Computing and Internet of Things.

Keywords : Cloud Computing, Internet of Things, Cloud of Things, Resource Optimization,
Resource Modeling.

Abstract : The convergence of the Internet of Things (IoT) and Cloud Computing technolo-
gies is a promising approach. On the one hand, Cloud Computing provides virtually unlimited
computing, networking, and storage resources for constrained IoT devices. On the other hand,
the IoT enables the interaction of cloud services with real world things. Such integration stim-
ulates innovation in both areas and provides novel service delivery models such as the Sensing
as a Service in di erent application domains (i.e. healthcare, transportation, smart-city, smart-
building). In such convergence, things are abstracted and o ered as cloud services accessible
over the Internet from any place and at any time. Such abstractions are known as Virtual
Objects (VOs) and connect things to traditional cloud services (e.g. data analytics, storage
services) to deliver 10T applications.

In this thesis, we consider rst a partial integration of the 10T and Cloud Computing.
Such integration focuses on delivering the 10T within a single service level of Cloud Computing,
namely: the application, the platform, or the infrastructure level. In this context, IoT and Cloud
Computing resources are provisioned separately. We focus in this work on the orchestration
of VOs in a cloud infrastructure. For this purpose, we de ne a provisioning algorithm based
on a sharing strategy where each connected object is associated with a single VO and can be
consumed by multiple applications. We propose two linear programs to perform the provisioning
of VOs. The rst considers no previously deployed VOs in the infrastructure, while the other
takes into consideration pre-deployed VOs. Our approach minimizes VOs operational cost and
communication latency in both cases compared to those with a non-sharing strategy.

The second part of this thesis considers a full integration of the 1oT and Cloud Computing.
We refer to such integration as the Cloud of Things (CoT). In this context, a customer should be
able to request end-to-end IoT application provisioning, deployment, auto-scaling, and release
on the y with minimal management e orts. In this thesis, we address the provisioning aspect.
We de ne a resource-oriented model able to describe an 10T application request and a CoT
infrastructure on di erent service levels. We base our model on the OCCI speci cations de ned
by the OGF. Furthermore, we de ne a single stage provisioning algorithm to orchestrate a
described IoT application into a CoT infrastructure. The algorithm considers cloud and loT
resources simultaneously. Simulations show that a one-stage provisioning process is 1%
more e cient than two separate orchestration processes for cloud and loT resources.
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