Characterization and modeling of advanced charge trapping non volatile memories - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2013

Characterization and modeling of advanced charge trapping non volatile memories

Caractérisation et Modélisation des Mémoires Avancées non Volatiles à Piégeage de Charge

Résumé

The silicon nanocrystal memories are one of the most attractive solutions to replace the Flash floating gate for nonvolatile memory embedded applications, especially for their high compatibility with CMOS process and the lower manufacturing cost. Moreover, the nanocrystal size guarantees a weak device-to-device coupling in an array configuration and, in addition, for this technology it has been shown the robustness against SILC. One of the main challenges for embedded memories in portable and contactless applications is to improve the energy consumption in order to reduce the design constraints. Today the application request is to use the Flash memories with both low voltage biases and fast programming operation. In this study, we present the state of the art of Flash floating gate memory cell and silicon nanocrystal memories. Concerning this latter device, we studied the effect of main technological parameters in order to optimize the cell performance. The aim was to achieve a satisfactory programming window for low energy applications. Furthermore, the silicon nanocrystal cell reliability has been investigated. We present for the first time a silicon nanocrystal memory cell with a good functioning after one million write/erase cycles, working on a wide range of temperature [-40°C; 150°C]. Moreover, ten years data retention at 150°C is extrapolated. Finally, the analysis concerning the current and energy consumption during the programming operation shows the opportunity to use the silicon nanocrystal cell for low power applications. All the experimental data have been compared with the results achieved on Flash floating gate memory, to show the performance improvement.
Les mémoires à nanocristaux de silicium sont considérées comme l’une des solutions les plus intéressantes pour remplacer les grilles flottantes dans les mémoires Flash pour des applications de mémoires non-volatiles embarquées. Ces nanocristaux sont intéressants pour leur compatibilité avec les technologies de procédé CMOS, et la réduction des coûts de fabrication. De plus, la taille des nanocristaux garantie un faible couplage entre les cellules et la robustesse contre les effets de SILC. L’un des principaux challenges pour les mémoires embarquées dans des applications mobiles et sans contact est l’amélioration de la consommation d’énergie afin de réduire les contraintes de design de cellules. Dans cette étude, nous présentons l’état de l’art des mémoires Flash à grille flottante et à nanocristaux de silicium. Sur ce dernier type de mémoire une optimisation des principaux paramètres technologiques a été effectuée pour permettre l’obtention d’une fenêtre de programmation compatible avec les applications à faible consommation d’énergie. L’étude s’attache à l’optimisation de la fiabilité de la cellule à nanocristaux de silicium. On présente pour la première fois une cellule fonctionnelle après un million de cycles d’écriture et effacement dans une large gamme de températures [-40°C;150°C], et qui est capable de retenir l’information pendant dix ans à 150°C. Enfin, une analyse de la consommation de courant et d’énergie durant la programmation montre l’adaptabilité de la cellule pour des applications à faible consommation. Toutes les données expérimentales ont été comparées avec les résultats d’une cellule standard à grille flottante pour montrer les améliorations apportées.
Fichier principal
Vignette du fichier
thesis_della_marca.pdf (10.09 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

tel-01760693 , version 1 (06-04-2018)

Identifiants

  • HAL Id : tel-01760693 , version 1

Citer

V. Della Marca. Characterization and modeling of advanced charge trapping non volatile memories. Micro and nanotechnologies/Microelectronics. Université d'Aix-Marseille, 2013. English. ⟨NNT : ⟩. ⟨tel-01760693⟩
100 Consultations
529 Téléchargements

Partager

Gmail Facebook X LinkedIn More