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Chapter 1

Introduction

Nowadays, with the development of standardizations on networking, the ideas of
"Internet of Things"1, "Smart City" 2 and "ubiquitous computing"3 have been pro-
posed and attracted great attentions from researchers and industries. The common
point of these innovations is to make use of our physical world to facilitate daily lives
of human beings. Computing and communicating units are implanted into physical
objects (as, e.g., cars, lamps, electronic devices, buildings and products), to collect
and exchange data through wireless networks without any human intervention. The
collected information allows to interact with the environment in real time.

For instance, in the Libelium Smart Cities design, sensors are implanted in the
tunnels to monitor the air quality and tra�c, put into containers of rubbish to
optimize the trash collection routes, integrated into buildings to monitor real time
noises and air pollutions, installed on bridges and historical monuments to monitor
material conditions. Similar ideas and techniques have already been tested and
applied in cities like Oslo, San Francisco and Singapore.

For deploying such real time information systems, well performing wireless sen-
sor networks (WSNs) are essential and indispensable. Small, rugged, inexpensive
and low power wireless sensors are required to reach any kind of environment at
reasonable costs. At the same time, the sensed data has to be collected e�ciently
in a central unit, called the base station, where it is analyzed or delivered to the
Internet for a real time sharing. A crucial property for such systems is to be power
aware, that is to consume energy as little as possible.

In most of the available sensors in the market, the primary power supply is two
�xed typical AA batteries, like Telos, Iris or Mica. However, even the ultra low power
sensor Telos can only achieve a maximum of 241 hours of node operation [83]. From a
long term perspective, the notion of power-awareness helps to reduce the operations
and maintenance costs. Moreover, in some cases, when the moves of the sensors
are not under control, it may be di�cult or undesirable to access these sensors
frequently (cf., Bird Species Recognition [29], ZebraNet [80]). Therefore, once a
sensor depletes its available energy, to obtain additional energy is almost impossible.
This may cause a signi�cant deterioration of the performance of the network. For
instance, the sensors out of energy can break the network into two disconnected
parts. If this happens, neither broadcasting nor gathering of information could
ever be achieved. In recent years, the techniques for harvesting energy from the

1The Internet of Things is the network of physical devices, vehicles, and other items embedded
with electronics, software, sensors, actuators, and network connectivity which enable these objects
to collect and exchange data.

2A smart city is an urban development vision to integrate information and communication
technology and the Internet of Things technology in a secure fashion to manage city's assets.

3Ubiquitous computing aims to make computing to appear anytime and everywhere.
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Chapter 1. Introduction

environment (e.g. solar or wind energy) have been developed for wireless sensor
networks, enabling sensors to increase their lifetime [83]. However, such techniques
are highly constrained by the weather conditions, which introduce uncertain factors
to the performance. Hence, power-aware designs are required and studied at every
level of operation (like sensing or communicating). For example, compressed sensing
has been studied to preserve energy when the signal is sparse and compressible [112].
Global Positioning System (GPS) is integrated to provide location information for
sensors, which allows them to adjust the transmission power for a communication
[80].

In this thesis, a general interest is to design power-aware protocols for wireless
sensor networks. More precisely, we design protocols, which consider energy con-
sumption, for the fundamental task of data collection. The goal of data collection
is to collect at the base station all the data (e.g., temperature, pressure or altitude)
sampled by the sensors, for further data processing. For example, gathering the
data of soil moisture tension in the �elds allows to better regulate irrigation [39].
Collecting the infrasonic signals generated by volcanic activities helps to predict
paroxysmal events and triangulate precise locations of individual eruptions [139].
Having a real-time physiological data of a patient, enables disease diagnosis and
remote assistance [4]. Note that data collection di�ers from data aggregation, which
aims at eliminating redundant data transmissions and provides fused information
to the base station [110]. Data aggregation is not within the scope of this thesis.
Refer to Sect. 1.2.2 for a formal de�nition of data collection used here.

The �rst and essential step in our study is to choose a proper network model.
In common designs, factors that may a�ect the network performance (e.g., noise of
channels, delays of packets, mobility patterns of the nodes, network faults) are in-
volved as many as possible, in order to make the model more realistic. These factors
are presented by parameters, obtained from experiments or experiences. They could
be deterministic, stochastic or just �totally" randomized. Such a network model is
complex and complicated, making the pure theoretical analyses hard or even impos-
sible to perform. Therefore, in most cases, designs are validated by simulations, i.e.,
tested on benchmarks to demonstrate their performances on computations. Indeed,
simulations could be useful for intuitive comparisons among di�erent approaches.
However, these results are generally not truly objective, because they are highly
a�ected by the computing resources, the coding levels, the lack of considerations of
other scenarios, etc. Moreover, sometimes, it is hard to explain the reasons for the
good performances appearing in the simulations.

Contrary to the simulation approach, we consider at �rst a distributed comput-
ing model, called population protocols, which allows purely analytical analysis for a
speci�c type of WSNs. In this model, nodes have limited power resources and com-
municate only in pairs. They have no identi�ers and their memory size is uniformly
bounded (i.e., independent of the number of nodes). This model has a wide domain
of applications, especially in the case where the mobility of nodes are unpredictable,
such as in mobile sensor networks with resource-limited communicating devices at-
tached to animals, humans or vehicles (cf., habitat monitoring applications of Bird
Species Recognition [29] or ZebraNet [80]). However, this model does not have an
energy framework, considering in some way the energy consumption of its entities
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Section

during executions. Hence, for being able to design power-aware protocols, we en-
hance the population protocols model with an energy consumption scheme. Even
though this enhancement considers and models energy consumption of real mobile
WSNs, it is still compact and elegant enough to allow a pure analytical analysis of
energy or other aspects of e�ciency. Then, using this enhanced model, we develop
and analyze new power-aware data collection protocols and establish explicit upper
and lower bounds on energy consumption. This demonstrates the usefulness of the
proposed energy model.

Note that for making the protocols power-aware, parameters (related to energy
consumption, evolving during an execution) should be integrated into the design to
save energy when an abnormal consumption is observed. Therefore, in our power-
aware design, choosing such proper parameters for protocols, is an important con-
sideration. However, when a large number of parameters are involved, this may
cause large problem dimensions and a lot of dependencies between parameters and
bounds. This may make the problem hard, or even impossible, to be solved an-
alytically. That is why we adopt optimization techniques: giving a mathematical
model taking parameters as variables and optimizing the analytical bound for the
performance.

In the second part of this thesis, we try to apply the same methodology for
analyzing energy consumption, to a completely di�erent type of networks. We choose
the wireless body area network (WBAN) model, as energy is a crucial factor to be
considered in its design. WBAN consists of bio-sensors implanted into the body of
human beings for health-care. Power-awareness is the main issue because humans
are sensitive to the heat generated by the sensors and recharging the battery is
de�nitely not comfortable.

Together with that, there are many di�erences between WBAN and networks
modeled by population protocols. The former are small and almost static sensor net-
works using neighboring broadcast communications, while the latter are large scale
mobile peer-to-peer networks. Especially due to this fact, WBAN has a particular
interest for this thesis. The interest is in performing a broader study of power-aware
data collection concerning very di�erent types of WSNs. This is for learning the
di�erences and the similarities between their protocol design approaches as well as
between the methods useful for analyzing these protocols.

Compared to population protocols, data collection in WBAN can be managed
o�-line, i.e., the path for delivering values to the base station can be programmed
in advance. It stems from the fact that WBAN is a small WSN of no more than
256 sensors, whose memory sizes are of kilobytes [85]. Hence, each sensor unit in
a WBAN could have its own unique identi�er and the identi�ers of its neighbors
(contrary to population protocols). In addition, since the communication range of
each sensor in WBAN is adjustable by changing its transmitting power, the commu-
nications between sensors are not as opportunistic as in population protocols (which
are almost completely unpredictable). Therefore, to accomplish data collection in
a WBAN, optimization techniques can be applied to have an optimal strategy for
each sensor, by modeling the routing problem and solving this model centrally. Such
an o�-line solution obtained by combinatorial optimization is generally impossible
in the case of population protocols. Nevertheless, and maybe somewhat surpris-
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Chapter 1. Introduction

ingly, we �nd such an approach applicable and useful also in the case of population
protocols (See Chapter 3).

One of the main insights of this thesis is that, although population protocols and
WBAN are networks of di�erent natures, having di�erent characteristics, there is a
common point in both approaches for power-awareness. This common point is the
bene�t to use optimization techniques. The main reason is that power-awareness
takes into account a large number of parameters, which can be dealt with by opti-
mization.

1.1 Main Results and Outlines

Main results. In the �rst part of this thesis, we study the complexities of data
collection in population protocols, in terms of time and energy. The contribution
is fourfold. First, a model for analyzing energy consumption in networks of mobile
sensors is introduced (Chapter 2). This model can be considered as an extension
to the classical model of population protocols, which takes into account energy con-
sumption. The interest of the extended model is to allow a purely analytical analysis
of the energy complexity of a protocol, in the same spirit as for time and space com-
plexity, without appealing to simulations. Second, this model is used for studying
energy complexity of distributed protocols for the task of data collection. Starting
from analyzing the energy complexity of the existed time-optimal data collection
protocol, called TTFM (given in [26]), we propose and analyze a new power-aware
version of it, called EB-TTFM. Then, lower bounds on energy complexity for any
data collection protocol are established. This demonstrates also the cases where
these lower bounds are reached by the proposed protocols (Chapter 2). Third, the
study of non-uniform random fairness (a generalized random fairness) is initiated in
the context of population protocols, where a meeting pair is independently selected
from the population with a discrete probability (Chapter 3). Fourth, a power-aware
population protocol for data collection is then developed to justify the relevance and
operability of this enhanced model, which integrates also the optimization approach.
This demonstrates that optimization can be applied to the design of parametrized
distributed algorithms.

In the second part of this thesis, we adopt optimization approach to study power-
aware data collection in wireless body area networks. While, to have a better and
profound comprehension on methods for solving optimization models, we study a
stochastic semi-de�nite program which is complex but applicable to many realis-
tic problems. In addition, this stochastic model is a variant of the one proposed
previously, in the �rst part. Studying it in depth helps to combine mathematical
optimization and distributed computing for future research. The contribution in
the second part is twofold. First, a minmax multi-commodity net�ow formulation is
proposed to optimally route data packets in a wireless body area network (Chapter
4). Second, a simulation-based approximation method is studied to solve a stochas-
tic semi-de�nite program (Chapter 5). This method can be easily applied to solve
other optimization problems casted into the same model.
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Section 1.2. Preliminaries

Outlines. Chapter 2 consists of three parts. First, the formal energy model de-
signed for population protocols is presented. Second, the energy worst-case com-
plexity of an extended version of the existed data collection protocol TTFM is stud-
ied. Then, a power-aware version of TTFM, called EB-TTFM (Energy-Balanced
TTFM), is presented with analytical formulas for energy consumption. EB-TTFM
takes residual energy into account and improves TTFM in terms of the maximum
energy spent by an agent. At the end, lower bounds for energy consumption are
established, and the cases where these lower bounds are reached, are presented.

Chapter 3 enhances the classical population protocols with the novel non-uniform
random fairness. Explicit lower bounds on the expected convergence time of any
data collection protocol are given. Followed by an average-case analysis on time for
a simple data collection protocol, the relevance of this enhanced model in protocol
analysis and its operability are justi�ed. Moreover, a new parametrized power-aware
protocol is presented and a polynomial-time optimization problem is formulated to
obtain optimal parameters. At last, numerical results are presented to show the
e�ciency of this power-aware protocol.

Chapter 4 presents a minmax multi-commodity net�ow optimization model for the
data collection in wireless body area networks, which is transformed then into a
mixte integer linear program. After solving this program, each sensor node obtains
a decision on its activation and the �ows to transmit during one data collection. A
variable neighborhood search approach is proposed to obtain a near-optimal solu-
tion to this program. Numerical experiments on small instances are conducted in
the end to show the e�ciency of our approach and the quality of our solutions.

Chapter 5 studies the methods to solve chance constrained semi-de�nite programs.
It can be seen as an invariant of the model applied in Chapter 3 for designing
distributed algorithms. A novel simulation-based method is then proposed, which
obtains less conservative solutions within reasonable cpu time. Experiments of our
methods on a real control theory problem are conducted then, which demonstrate
the usefulness of the proposed method.

1.2 Preliminaries

1.2.1 Wireless sensor networks

Wireless sensor networks consist of tiny, lower powered sensors, distributed in the
environment to achieve functionalities like monitoring, detection and communica-
tion. The research of WSNs starts in the 80's for military applications, including
battle�eld surveillance, forces monitoring, battle damage assessment et al.

In the 90's, civilian applications of sensor networks became possible with the
advances in the fabrication of sensors. The sizes of sensor can range from a pack
of cards to dust particle within an a�ordable price. In addition, network research
and developments on highly dynamic ad hoc environments make the wireless sen-
sor networks applicable to more and more realistic scenarios. In industry, sensors
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Chapter 1. Introduction

are attached to the goods and the products, to track their positions during the
transportation. In a smart home, sensors are installed into vacuum cleaners, micro-
wave ovens, and refrigerators, allowing owners to control home devices locally and
remotely.

WSNs are also applied for habitat monitoring [90], like helping biologists to
settle large-scale land-use issues a�ecting animals like birds, cows and whales. It
prevents the potential disturbances of human presence during the research of life
sciences. For instance, audio sensors are used to monitor bird species [29]. In
the ZebraNet project [80], sensors are attached to wild-life zebras to track their
movements in central Kenya. In the Pigeon Air Patrol Network project4, sensors
are carried by the pigeons in London to measure nitrogen dioxide and the real time
measurement is accessible to the public by the Internet. For this kind of networks,
the communication graph is always changing and the network is thus opportunistic.

1.2.2 Population protocols

In this thesis, the �rst model studied, population protocols [14], is a theoretical dis-
tributed computing model proposed in 2004. It can simulate collections of molecules
undergoing chemical reactions and passively mobile sensor networks (e.g., a �ock of
birds equipped with sensors, WSNs for habitat monitoring). In this model, tiny in-
distinguishable agents (sensors) with bounded memory5 move unpredictably. They
have no identi�ers and execute all the same code. As their communication power is
limited, they do not communicate by broadcasting, but only, in pairs. That is, when
two agents are su�ciently close to each other, they can communicate (i.e., an inter-
action happens). During an interaction, they exchange and update their respective
states according to a transition rule (the protocol). Such successive interactions
contribute to the realization of some global tasks.

Though many restrictions are imposed on the agents in population protocols
(like limited memory size or the lack of identi�ers), the computational power of this
model is not trivial. In [15], the authors showed that any predicate in the class
of Presburger arithmetic6 can be computed. Later in [16], it was proven that in
a probabilistic population protocol model, where all pairs of agents are equally to
be chosen for each interaction, semilinear predicate can be computed in O(n log5 n)
interactions, provided a unique leader in the initial population. Then, the fun-
damental tasks and topics of distributed computing, like leader election [10, 51],
majority [11], counting [22], fault tolerance [18] and self-stabilization [19] have been
studied. Their performances in the probabilistic population protocol model are eval-
uated by the expected (parallel) interactions (time complexity) and by the number
of states available at each agent (space complexity). In [6], the authors showed
that any leader election or majority protocol converges in o(n/polylog n) parallel
time using Ω(log log n) states. Then, a space optimal leader election was presented,

4http://www.pigeonairpatrol.com/
5The size of their memory is uniformly bounded, independently of the total number of sensors

in the network.
6The language of Presburger arithmetic contains constants 0 and 1 and a binary function +,

interpreted as addition, relations <,>,=,≤,≥ and the standard connectives and quanti�ers of
�rst-order predicate calculus.
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which requires only O(log log n) space usage and converges in O(log2 n) parallel
time. Another trade-o� between time and space complexity in population protocols
was shown latter in [8]. It stated that any majority protocol which converges in
O(nc) (c < 1) parallel time, requires Ω(log n) space. Then, the authors proposed a
space optimal majority protocol, using O(log n) states and converging in O(n log n)
parallel time. The counting problem, where a distinguished agent (called the base
station) counts a non-initialized population, can be solved in time O(n log n), when
using an optimal space of only one bit [22]. The community detection problem,
asking for each agent to recover its community in a regular clustered communica-
tion graph, can be solved in O(log2 n) parallel time using O(log2 n) states [28]. On
the other hand, self stabilizing leader election (SSLE) in population protocols was
proven to be impossible for arbitrary graphs [19]. By applying the oracle Ω?, which
is able to detect the presence or the absence of leaders, SSLE can be solved in the
complete graphs using just one bit of memory space [57]. Moreover, by using a com-
position of two copies of Ω?, there exists a solution for SSLE for arbitrary graphs
[24]. However, without an oracle, for solving SSLE in a complete graph, under
global fairness, at least n states are needed and the best known protocol converges
in O(n2) parallel time in the probabilistic model [35].

Formal de�nition

Formally, a system consists of a collection A of pairwise interacting agents, also
called a population. The size of the population |A| = n is unknown to the agents.
Among the agents, there is a distinguishable agent called the base station (BST),
which can be as powerful as needed, in contrast with the resource-limited non-BST
agents. The non-BST agents are also called mobile, interchangeably. Each agent has
a state taken from a �nite set of states. When two agents i, in state p, and j, in state
q, interact (meet), they execute a transition (p, q)→ (p′, q′). As a result, i changes
its state from p to p′ and j from q to q′. The table T of all the transition rules de�nes
the population protocol. A protocol is called deterministic, if for every pair of states
(p, q), there is exactly one (p′, q′) such that (p, q) → (p′, q′). Otherwise, they are
non-deterministic. Note that, as interactions are supposed to be asymmetric (with
one agent acting as the initiator and the other as the responder), the transition
rules for (p, q) and (q, p) may be di�erent.

A con�guration of the system is de�ned by the vector of agents' states. If,
in a given con�guration C, a con�guration C ′ can be obtained by executing one
transition of the protocol (between two interacting agents), it is denoted by C → C ′.
An execution of a protocol is a sequence of con�gurations C0, C1, C2, . . . such that
C0 is the initial con�guration and for each i ≥ 0, Ci → Ci+1. The sequence of the
corresponding interactions in an execution is provided by an external entity called
scheduler, whose behavior will be discussed later in Sect. 1.2.2.

An execution is said to be �nite, if and only if from some point onwards, no
applicable transition changes the con�guration. In this case, this non-changing
con�guration is said to be terminal. When a terminal con�guration is reached, we
say that the termination has occurred. If an execution e is �nite, its length |e| is
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the number of interactions until termination.

Usually, the length of an execution is considered as the time reference, i.e., each
interaction adds one time unit to the global time. This is similar to the step com-
plexity, a common measure in population protocols (cf. [7, 15]) and in distributed
computing in general [128].

Communication graph

Since the mobilities of agents may have physical constraints, it is possible that,
due to the physical distances, an agent never meets some other agents far away
from itself. A communication (directed) graph G = (A,E) illustrates the possible
interactions in population protocols, where A is the set of nodes and E is the set
of edges. A directed edge (i, j) ∈ E intuitively represents a possible interaction
between two agents, where agent i is the initiator and agent j is the responder.

Scheduler and fairness

In population protocols, the interactions are unpredictably chosen from E and or-
dered by the scheduler. Whatever the order of interactions is, a correct population
protocol should reach a terminal con�guration.

However, if the scheduler chooses to isolate agents in groups and orders only the
interactions between agents from the same group, no protocol could ever realize any
non-trivial task correctly. Thus, a fairness condition is introduced for the scheduler
to restrict its behavior. In the following, three di�erent fairness conditions appeared
in the literature of population protocols, are presented: global fairness, random
fairness and cover time fairness.

Global Fairness. Global fairness imposes constraints on con�gurations appearing
in an execution. The basic idea is that if in an execution there is an in�nitely often
reachable con�guration, then it is in�nitely often reached [15]. More formally, an
execution is said globally fair, if for every two con�gurations C and C ′ such that
C → C ′, if C occurs in�nitely often in the execution, then C ′ also occurs in�nitely
often in the execution.

Notice that this fairness does not ensure that every interaction happens in�nitely
often, it requires only that certain con�gurations appear in a fair execution no matter
which transitions are used. Global fairness is certainly the most common fairness
assumption appearing in the literature on population protocols. For instance in [15],
the authors show that any predicate in the class of Presburger arithmetic7 can be
computed under global fairness. Or in [25], the authors design a counting protocol,
which requires only one bit of memory under global fairness.

Random Fairness. Random fairness imposes to the scheduler to choose interact-
ing pairs independently and uniformly at random from E [15]. More formally, an

7The language of Presburger arithmetic contains constants 0 and 1 and a binary function +,
interpreted as addition.
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execution is said randomly fair, if for each interaction in the execution, a pair of
agents in E is chosen uniformly at random.

Random fairness gives a natural notion of parallel time equal to the total number
of interactions divided by the number of agents. Indeed, as each agent participates
in an expected number of Θ(1) of interactions per parallel time unit, this fairness
allows an average-case analysis on the parallel time of a protocol (cf. leader election
protocols [10, 51], exact majority protocols [11]).

In chapter 3, a novel generalized random fairness is introduced, where each in-
teracting pairs (i, j) is chosen with a discrete (not necessarily uniform) probability
Pi,j such that

∑
(i,j)∈E Pi,j = 1. Such a scheduler is called non-uniformly random

scheduler, which is one of our main results in this thesis. In the real mobile net-
works, some agents may meet more frequently than others (due to their moving
speeds or limited areas), i.e., the probabilities for choosing interacting pairs are no
more identical. Under our designed fairness, the inter-contact time 8 of two agents
is distributed geometrically, which corresponds to the experimental observation in
practical mobile networks. More motivations and details are given in chapter 3.2.

Cover Time Fairness. Cover time fairness introduces an idea similar to partial
synchrony in [52], in the sense that constraints are imposed on the relative (activa-
tion) speeds of agents. An agent interacts with the others with a certain �frequency",
expressed by a cover time parameter [26]. This is an upper bound on the �time",
counted in number of global interactions (pairwise meetings), for an agent to inter-
act with all the others. The �faster" an agent meets the others, the smaller its cover
time is. As shown by recent experimental and analytical studies [74, 91], such an
assumption of bounded cover times may model well the mobility in many practical
sensor networks (e.g., where agents have di�erent communication capabilities and
move within a bounded area).

Formally, every agent i ∈ A has (an unknown to agents) a parameter cvi ∈ N
called cover time s.t. during any cvi time units (consecutive interactions in an
execution), agent i interacts with every other agent at least once. cvi is the minimum
of such a number of interactions.9 For two agents x and y, if cvx < cvy, then we say
that x is faster than y, and y is slower than x. The minimum cover time value is
denoted by cvmin and the maximum one by cvmax. A fastest (resp. slowest) agent
z has cvz = cvmin (resp. cvz = cvmax). We denote by F the set of fastest mobile
agents, and by NF the set of non-fastest ones.

It should be noted that cover time fairness enables a worst-case analysis on the
global time (the number of interactions until termination) of a protocol [26, 141].

8the time period between two successive interactions of the same two mobile agents
9Note that there are mappings from agents to their cover times for which the cover time fairness

cannot be satis�ed (e.g, if cv1 = 4, cv2 = 6, cv3 = 9 and cv4 = 16). From now on, we assume
mappings allowing at least one possible fair execution. For an additional discussion on the validity
of the cover time values, refer to [26].
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Population protocols for the task of data collection

Data Collection. We assume that each agent, except the base station (BST),
owns initially an input value (which is constant during one execution of the proto-
col). Eventually, every input value has to be delivered to BST, and exactly once
(as a multi-set). When this happens, we say that the protocol (its execution) has
converged. The convergence time of a protocol is the maximum length of a pos-
sible execution (until convergence). We denote by M the number of values that
a non-BST agent can receive from other agents (on top of its own initial value).
When describing or analyzing a considered protocol, the term �to transfer a value"
from agent x to y means to copy it to y's memory, and erase it from the memory of x.

There are four existing population protocols under cover time fairness for the task
of data collection, studied by Beauquier et al. [26]. The �rst one, SIMPLE, makes
every agent transfer its value directly to the base station. Thus, the convergence time
of SIMPLE depends on the speed of the slowest agent, which is cvmax. The second
one, STRONG, supposes that every agent i could check a predicate 2 · cvmin < cvx
at the start of the protocol. This predicate gives each agent an idea about its speed
compared with others. So, if the predicate is true, agent i transfers its value to the
fastest agent. Otherwise, agent i waits to meet the base station. The worst case
(convergence) time complexity decreases to min{2cvmin, cvmax} in the case where
the memory is unbounded. However, this protocol requires that every agent knows
the value of the cover time of a fastest agent and the value of its own cover time,
which is a very strong assumption. Then, the third one, "Transfer To the Faster"
(TTF), is proposed, where the agent transfers its values only to a faster agent or
the base station. The agents are not assumed to know the cover times, instead, two
interacting agents can compare their respective cvs. Then, the worst case complexity
of TTF is m · cvmin− |F |, where m is the number of di�erent cvs in the system and
|F | is the number of fastest agents. Last but not least, a time-optimal population
protocol, called TTFM (Transfer To the Faster Marked), is introduced. The basic
strategy for data transfer in TTFM, is that a mobile agent only transfers its values
either to BST, or to a faster agent that has never met (yet) another mobile agent
faster than itself. This protocol will be presented in more details in Sect. 2.3. The
authors showed that when cvmax ≥ 2cvmin − |F | and the memory is unbounded,
TTFM has optimal worst case (convergence) time complexity (Corollary 18 in [26]).

However, none of these protocols is designed with energy consumption in mind.
So, in the �rst part of this thesis, we �rst built an energy consumption framework
for population protocols. Then we design power-aware population protocols for the
task of data collection and study their performances in terms of time and energy.

1.2.3 Wireless body area networks

The second model studied in this thesis, is Wireless Body Area Networks (WBAN).
With the advances of electrical sensors and the development of intelligent health-
care, WBAN was designed in 2001 [132], for taking care of human body's health
using wireless biological sensors. So far, WBAN has received lots of attentions
from the researchers [79, 133, 135], as it enhances the current health care practices
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Figure 1.1: Example of distributions of WBAN nodes on a patient [85]

(e.g., MobiHealth [134], CodeBlue[120]) and copes with the high costs of health
care system. Besides, it can also be applied for sports training [122] and military
operations [75] as well.

A wireless body area network (WBAN) is composed of tiny biological sensors
(bio-sensors), which are placed in or on the body of a person in order to remotely
monitor health-care status such as fever, blood pressure, body temperature, heart
rate, blood glucose concentration, among many others. Each intelligent sensor has
enough capability to process and forward information to a base station for diagnosis
and prescription. The base station can be a personal device, such as smart phone,
acting as a sink for the data. In addition, there is another kind of nodes in WBAN,
called actuators, who take actions according to the data received from the bio-sensors
or the base station. For a better understanding, we use the example given in [85] to
illustrate the roles of nodes in WBAN. In the example of Fig. 1.1, the bio-sensors
are placed for measuring heart rate (ECG), brain activities (EEG), blood pressure,
glucose level, etc. Next to these sensors, the patient has actuators, such as insulin
injection, acting as drug delivery systems. The medicine can be delivered by the
prede�ned program, once the actuator is triggered by an event. The event can be
either the order sent by a doctor after analyzing the data or the signal from the
bio-sensor when it detects abnormal statistics. For instance, when the sensor of
glucose monitors a sudden drop of glucose level, it activates the injection of insulin.

To integrate a WBAN (a patient) into health care system where the patient
can be remotely consulted, monitored and treated, a communication between the
base station (the patient's personal device) and an external network should be con-
structed. Take the complete real-time infrastructure for patient's rehabilitation (Fig.
1.2) as an example, it enables the connection between patients and doctors. The
health data of patients is transferred and stored in a medical server where doctors
can access. In the mean time, a patient can require real time diagnostic recommen-
dations given by doctors. Moreover, when the data of a patient exceeds a prede�ned
threshold, the base station can make an emergency call for the hospital with the
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Figure 1.2: Infrastructure for a real health care system [85]

real time monitoring data.

WBAN vs. Population Protocols. There are three major di�erences between
WBAN and population protocols. Firstly, WBAN are small sensor networks with
the expected number of sensors up to 50 [102] and a maximum number up to 256
de�ned in IEEE 802.15.6. While population protocols assumes a large population
(hundreds, even thousands) and the number of agents is unknown to the network.
Secondly, sensors in WBAN are heterogeneous in terms of available energy, com-
puting power and identi�ers. So in WBAN, a prede�ned lower power consumption
routing could be scheduled as sensors distinguish their neighbors. However, the
agents in population protocols are anonymous and homogeneous. Thirdly, pop-
ulation protocols are asynchronous networks, while WBAN could be synchronous
networks under some designs in MAC layer (See Chapter 2.2 in [87]). Finally, in
population protocols, agents are supposed to communicate in a pair-wise (peer-2-
peer) fashion, while in WBAN they communicate by neighboring broadcast.
For the common parts, the �rst one is that, for both, communications are in short
range of distance. A maximum operating range of 3 meters is required in WBAN
[94]. In population protocols, the communication is established only when two
agents are close enough. Second, in both designs of data collection protocols, net-
work control packets are limited since both nodes have bounded memory and limited
energy resources. In addition, in WBAN, since the propagation of the radio in hu-
man body su�ers from the fading, noise and interference, the available bandwidth
for the communication channel is narrow. All in all, for data collection protocols in
both networks, the energy consumption is a necessary and crucial concern.

Data collection protocols in WBAN

Unlike typical WSN, WBAN su�er from very limited energy resources and hence
preserving the energy of the nodes is of great importance. Additionally, an extremely
low transmit power per node is required in order to minimize interference and to
cope with health concerns such as avoiding tissue heating of skin on patients. One
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possible approach to minimize power consumption as well as tissue heating of skin
problems is by improving the performance of routing protocols. In WBAN, routing
protocols must have self-con�guration features and must be capable of �nding the
best route for communication in order to increase delivery insurance and decrease
energy consumption between nodes.

So far, there have been several algorithmic approaches to control bio-e�ects for
WBAN. The authors in [127] propose a Thermal Aware Routing Algorithm (TARA)
that balances the communication over the sensor nodes in order to route data away
from high temperatures. The algorithm achieves better energy e�ciency levels and
low temperatures, however it requires that all nodes have complete knowledge about
the temperatures of all remaining nodes in the network. Another attempt is a
protocol known as Anybody [138]. The underlying idea of Anybody is to form
clusters and a backbone network with selected cluster heads in order to reduce
the number of direct transmissions to the base station. This algorithm also achieves
energy savings, but does not consider other aspects such as reliability of messages for
example. In [84], the authors compare and analyze di�erent protocols from WBAN
requirements to energy e�ciency whereas in [76] the authors propose a weighted
random value protocol for multiuser WBANs (WRAP). In [33], authors show that
the proper placement of relay nodes can permit a better energy performance for the
nodes far away from the base station. Then an integer linear programming model is
proposed in [54], which optimizes the number and location of relays to be deployed
and the data routing towards the sinks. Other e�orts consider explicit mathematical
programming formulations in order to e�ciently design optimal routing protocols in
WBANs ([2],[3]). For more details on recent advances in data collection protocols,
readers can refer to the survey [53].

In this thesis, we consider a multi-commodity net-�ow problem to optimally rout
packets in WBAN, which minimizes the worst power consumption and subjects to
�ow conservation and maximum capacity energy constraints.
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Chapter 2

Power-Aware Population

Protocols

2.1 Introduction

In this chapter, we enhance population protocol (PP) with an energy consump-
tion framework. Basically, an agent consumes energy when: (1) interacting and
exchanging data, and (2) signaling its presence and sensing the wireless medium
continuously (to allow detection of other agents in proximity). An interacting agent
is said to be in awake mode and spends an amount Ewkp of energy. When it does
not interact, but senses the medium, it is in sleep mode, and spends Eslp for every
global interaction (that can be seen as a time unit). We also consider an additional
mode called terminated, in which an agent consumes no energy. This mode can
allow saving energy of agents having terminated their part in a task. The interest of
this extended model is to allow a purely analytical analysis of the energy complexity
of a protocol without simulations.

To adapt this general energy model to population protocols, we make some
additional considerations and assumptions detailed in Sect. 2.2. For instance, as the
data exchanged during an interaction is bounded by the small agent's memory, we
can assume that any transmitted data �ts in one packet and thus the energy spent
in a communication is constant. In addition, as the agents communicate only in
pairs when they come close to each other, it is likely to assume that the sensing of
the medium is done by proximity sensors (cf. [58, 106]) and thus, agents signal their
presence only passively, spending no energy.

In order to illustrate the power and the usefulness of this enhanced model, we
consider the issue of determining the amount of agents' initial energy necessary and
su�cient for being able to perform a given task. This issue is crucial for choosing, in
practice, a category of sensors (in respect with their power capacities) adapted both
to the task and to the number of times it should be repeated (before the sensors are
replaced or recharged).

In this context, we analyze the maximum amount of energy spent by an agent for
performing a one-time collaborative task, of data collection in our case. This metric
is clearly related to the lifetime of the network and to the amount of the required
initial energy for each agent. The formal analysis of this metric allows, in advance, to
adjust the network both in terms of size and battery power allocated to the agents. It
is particularly important in the case of networks where it is di�cult or undesirable
to access the sensors frequently (cf., Bird Species Recognition [29]). Due to the
nature of the considered problem, a worst case analysis has to be done. However, it
is important to note that, if no guarantees are imposed on the agents' interactions,
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such analysis is in general impossible (for non-trivial protocols). For example, in the
case of global fairness, protocols converge only eventually, consuming an arbitrary
energy till convergence. On the contrary, with random fairness where pairs of agents
interact according to some probability distribution, an average complexity analysis
of energy consumption can be computed.

Here, for having a bounded convergence and still being able to perform a worst
case analysis of the maximum energy spent, we do not adopt the probabilistic
approach, but we assume that the enhanced model satis�es cover times fairness
(Sect. 1.2.2).

2.1.1 Overview and outline

The chapter is organized as follows. The framework allowing an analytical compu-
tation of energy consumption is presented in Section 2.2. Using this energy model,
we start by analyzing energy consumption of the data collection protocol, TTFM,
proposed and proven to be time optimal in [26] (Section 2.3). In this analysis, our
approach is motivated by the observation that the energy spent is proportional to
the length of an execution. However, further investigation shows that this is not the
only factor that can a�ect the energy spent, and other factors, as the residual energy
of an agent, if considered by a solution, can improve energy performance. This gives
an idea for developing a better solution in terms of energy consumption, and we
propose a power-aware protocol. We prove its correctness and analyze its energy
complexity (Section 2.4). Not surprisingly, it appears that it needs less energy than
the �rst protocol when correctly adjusting the protocol's parameters. Having ana-
lytical formulas for energy consumption under the form of functions allows to draw
graphs and plots, on which remarkable points, zones and limits appear immediately
(Sect. 2.4.2 and 2.4.2). This is particularly advantageous when a great number of
parameters are involved and when the exhibited functions are hybrid (i.e., composed
of several functions). Getting the same or approximative results from simulations
would certainly be longer and more costly, while here exact results can be obtained
almost immediately. This chapter contains such plots as an illustration of this
methodology. Section 2.5 presents lower bounds concerning energy consumption of
any possible data collection protocols. Cases where this lower bound is reached by
the presented protocols are also given. Finally, Sect. 2.6 is a summary of the results
in this chapter.

This work has been published in ICDCS 2017 [141].

2.1.2 Related work

There is a very large literature on power-aware network protocols. However, most
of the works on energy consumption do not present an analytical study of energy
complexity, and the validation of the approaches is made by simulation. In this sec-
tion, we will only mention the studies directly linked to our approach by restricting
our attention to those for which a formal model of energy consumption is presented
and its mathematical analysis is done.

In this category, we should �rst mention [101] where authors study the problem of
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energy balancing between non �nite state agents (interacting uniformly at random)
in a model inspired by population protocols. The considered model is not an energy
consumption one. An interacting agent can transfer some part of its energy to the
other agent during the interaction (by using a corresponding energy equipment)
and there may be a constant energy loss for each unit of the transferred energy.
However, contrary to our study, energy consumption for interacting and sensing
is not considered. Three protocols, for balancing (averaging) the distribution of
energy given to agents, are presented and their analytical and simulation analysis is
presented.

Then, one can mention [140], which studies a synchronized scheduling of wake-up
times for improving the data collection in a non-mobile sensor network. It proposes
protocols with energy consumption of at most twice the optimum. Synchronization
of the wake-up times is also studied in [72], where several self-stabilizing protocols
to solve the problem of temporal partition are presented and analyzed.

In [146], a 2-approximation (energy consumption) centralized heuristic and a
distributed power-aware heuristic are developed for wireless sensor networks with
unique identi�ers, to ensure that all packets are delivered with the minimum energy
cost within a required deadline. Authors develop an evaluation function of energy
cost for one transmission, considering residual energy, quality of link and the type
of nodes.

In [23], authors propose a randomized clustering algorithm for non-mobile wire-
less sensor networks which minimizes the energy spent for transmissions. It is proven
formally that the algorithm has a time complexity of much less than O(n).

In [137], authors give an approximated cone-based topology scheme to increase
ad-hoc network lifetime with adaptive transmission power control, while maintaining
connectivity for routing. In an analytical way, it is shown that the power consump-
tion of each route can be made arbitrarily close to the optimal.

[44] studies the performance of a class of simple and local algorithms for energy-
e�cient construction of minimum spanning trees in a wireless ad hoc setting. Bounds
on the performance of these algorithms, in instances obtained by uniformly dis-
tributed points in the unit square, are given.

For being complete, we should also mention that there exist studies presenting
a mathematical model for optimizing the energy-consumption of a single entity,
independently of the protocol run, which is one of the main focus of the second part
in this thesis, but not in our preoccupations here.

Finally, even if some approaches considering energy consumption are in spirit
similar to ours, none of them is devoted to the speci�c type of networks that we
consider: anonymous resource-limited mobile sensors moving unpredictably and con-
stituting a highly dynamic opportunistic network.

2.1.3 Assumptions

In the protocol analysis, we consider only the case where cvBST > cvmin, that
maximizes time and energy consumption (for data collection). In some cases, for
simplicity, we also assume that cvmin � O(n2). This assumption holds for a large
and natural family of cover time vectors. It is especially natural for the case of
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passively mobile sensor networks, which is exactly the type of networks modeled
by population protocols. Intuitively, as cvmin (in this family) is much larger than
the number of all possible pair-wise interactions, agents are free to interact in many
di�erent ways, as it would be naturally expected with passive mobility. Still very
particular schedules are possible and there are guarantees that agents interact ac-
cording to the cover times.
We emphasize that agents are not assumed to know cover times (to conform with
the �nite state population protocol model). Instead, we do assume that two inter-
acting agents can only compare their respective cvs. This can be implemented by
comparing categories instead of cvs, in applications where the overall number of
categories is likely to be uniformly bounded.

2.2 Energy Consumption Scheme and Metrics

Up to now, energy does not appear in the literature on population protocols. Al-
though energy is crucial, its introduction in a formal model is di�cult, because it
involves a lot of parameters. That can be seen in the studies using simulations.
In the present work, we realize this introduction. For being realistic, we studied
energy saving schemes already developed in wireless sensor network. We summarize
them below and discuss their adaptability to population protocols (Sect. 2.2.1). Fi-
nally, we propose the design of energy consumption scheme for population protocols
(Sect. 2.2.2).

2.2.1 Energy saving schemes in wireless sensor networks

Generally speaking, there are two ways to save energy in WSN. One is to recharge
directly the battery with outer supply such as magnetic resonance, re�ected solar
energy. Another way is to apply e�cient energy saving schemes. Readers can refer
to [13, 48] for a well-organized survey on energy management in WSN.

Figure 2.1 shows the taxonomy of energy saving schemes for WSN. In the sequel,
a brief introduction to each kind of schemes is presented. And the reason why on-
demand schemes (marked in red color in Fig. 2.1) are chosen as the energy framework
for population protocols, is followed.

There are three main categories in energy saving schemes: duty cycling, data
driven and mobility. Duty cycling enables the nodes to switch between active and
sleep periods depending on network activity, and thus to reduce the energy con-
sumption on idle listening. Duty cycle is de�ned as the fraction of time during
which nodes are active, during their lifetime. Data driven techniques are designed
to reduce the energy consumption on sending redundant or unneeded sensing data.
Finally, mobility techniques are used to add mobile nodes to relay data and thus
avoid energy depletion on a speci�c node.

Among duty cycling techniques, topology control refers to �nd the optimal subset
of nodes (to be active) that guarantees connectivity of the network. MAC protocols
with low duty cycle aim to schedule duty cycles such that the corresponding channel
accesses have as few collisions as possible. While Sleep/Wakeup protocols turn the
idle agents into sleep for a certain period of time (on top of the MAC protocols).
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Figure 2.1: The taxonomy of energy saving schemes for WSN [13]

For designing as general as possible energy framework for population protocol,
data driven and mobility schemes are not within the scope of the interest. At
the same time, as agents have high mobility, which causes frequent changes in the
topology of the network, topology control is not applicable neither in the design.
The Sleep/Wakeup protocols are investigated furthermore in the following.

Sleep/Wakeup protocols. There are three di�erent strategies for deciding how
long an agent sleeps and when it wakes up: scheduled rendezvous, on-demand and
asynchronous schemes.

Scheduled rendezvous schemes assume that agents agree on a speci�c moment to
communicate (e.g, S-MAC [147], T-MAC [133]). This kind of approach is adopted in
ZebraNet [148], where agents are synchronized through a Global Positioning System
(GPS). However, it seems hard to add synchronization in population protocols, since
it would cost a lot of time and energy.

On-demand schemes consider that a node wakes up only when it needs to com-
municate. This basic idea is realized by adding a low power stand-by radio for
signaling ([69],[119],[108]) or applying radio-triggered techniques ([66],[81]) where
sleeping nodes are triggered to be woken by a wakeup radio. All on-demand proto-
cols require a short communication distance in WSN because of the supplementary
radios, restricted to a dozen meters in most cases. For instance, Radio Frequency
Identi�cation (RFID) systems [65] require a read range less than 6 meters and Near
Field Communication (NFC) [45] requires a few centimetres. Since population pro-
tocols assume that agents communicate only when they are close to each other,
on-demand schemes can be introduced in the framework design (details are given in
the next subsection).

Asynchronous schemes (like periodic listening [78], wakeup scheduling [149])
allow each node to wake up independently of the others by guaranteeing that neigh-
bors always have overlapped active periods with duty cycles. This scheme allows
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Figure 2.2: Transitions between modes.

a longer communication distance than the on-demand ones, but it is less energy
e�cient. Since, in population protocols, the communication distance between two
agents is supposed to be small, to have the most energy e�cient design, we adopt
the on-demand schemes in stead of the asynchronous ones.

2.2.2 On-demand scheme for population protocols

In the sequel, we present in details our energy consumption scheme for population
protocols, which belongs to the category of on-demand schemes as explained above.
During an execution, each non-BST agent consumes energy according to three dif-
ferent modes: sleep, awake and terminated. The transitions between modes are
depicted in Fig. 2.2 and the overall consumption scheme can be summarized by the
following points:

1. Each agent starts with the same amount of initial energy E0 (e.g., all agents
are fully charged). It is in sleep mode, and consumes Eslp per time unit
(every interaction). During this mode, an agent consumes a reduced amount
of energy. It senses the vicinity for detecting other agents in proximity, and
signals its presence. The signalling can be done either actively, by emission of
small beacon messages (as, e.g., in IEEE 802.11), or passively, only by agent's
presence (radio triggered techniques). The latter can be carried out by sensing
the vicinity using proximity sensors (cf. [58, 106]). In this work, we consider
this latter case of sensing, as it is the most energy e�cient one which can be
applied to population protocols.

2. When two agents in sleep mode have successfully detected each other, the
interaction happens and both turn into awake mode to proceed with a com-
munication. For that, they have to switch on their radio transceivers, which is
generally a high energy consuming operation (cf. [111]). During the interac-
tion, both agents stay awake and each consumes Ewkp = Esw+Etx+Erx+Eslp,
where Esw is the energy consumed for switching to the main radio, Etx and
Erx are consumed during the sending and the reception of data, and Eslp is
due to point 1.
Since in the considered types of networks (and in PP) non-BST agents have
a small memory, independent of the network size, transmitted data can �t in
very few, and even one, packets in every communication. Thus, we can assume
that the energy consumed by the communication, Etx + Erx, is constant.
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3. During an interaction, two awake agents decide to turn either to sleep or to
terminated mode, according to the protocol. No energy is consumed by a
terminated agent. This mode is useful for saving energy of agents that have
terminated their protocol activities. Together with that, the scheme can be
adapted in such a way that a terminated agent could be restored into sleep
mode, whenever it is required to restart a task. This can be done, for example,
by a global signal from BST, which, at the same time, can also recharge the
mobile agents, to prepare them for the next task [126].1

4. We assume that when a sleeping agent x meets a terminated agent y, x wakes
up and thus, spends Ewkp. This assumption makes sense in networks deploying
proximity sensors for sensing close agents. In this case, the terminated agent
y is detected by the proximity sensor, and as x is not aware of y's mode in
this step, x wakes up and only then detects that y is terminated.2

Evaluation Metrics. There are many di�erent power-aware metrics in the related
literature on sensor networks. The term lifetime of a network is generally used and
can be evaluated, e.g., as the maximum time until one or all sensors have no energy,
or until there are more than a ratio β of surviving nodes, or until �connectivity" is
lost. Alternatively, to analyze the lifetime, one can evaluate the maximum energy
spent per node for a given task (e.g., per data collection from all nodes to BST, or
per packet routing to the next node, or to the �nal destination). Refer to surveys
on such metrics [42, 121].

In this work, we choose to evaluate and minimize the maximum energy spent
per node across the network in each data collection, thereby enhancing the lifetime
performance. Given a protocol P, let E(P) be the set of all executions in P and
Esmax(e) the maximum energy spent by an agent at the end of the execution e ∈
E(P). Then we denote by Esmax(P) the maximum energy spent by an agent in an
execution of P, i.e., Esmax(P) = maxe∈E(P)Esmax(e). This metric is one of the
most popular metrics studied in power-aware routing protocols for MANET [121].
Minimizing it can be also seen as balancing the distribution of energy consumption
among agents. Moreover, as already mentioned in the introduction (Sect. 2.1),
evaluation of this metric can allow, in advance, to adjust the network both in terms
of size and battery power allocated to the agents.

2.3 Energy Consumption of TTFM

Our starting point is TTFM [26], which was designed without energy consumption
in mind, and we perform its energy consumption analysis, using the proposed energy
model.

The basic strategy for data transfer in TTFM (Protocol 1), is that a mobile
agent only transfers its values either to base station, or to an agent that has never

1In this work, we do not consider this possibility, as we analyze energy consumption for only
one data collection.

2However, with a beacon based approach for agents' detection (described in the �rst point),
neither x, nor y spend Ewkp in such an interaction.
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Protocol 1 TTFM
(for a mobile agent i interacting with an agent j)

1: fastest_marki ∈ {0, 1} (* initialized to 1 *)
2: if (j is not base station) then
3: if (cvj < cvi and fastest_markj := 1) then
4: fastest_marki := 0
5: if (fastest_markj > fastest_marki and there is a free place in j's memory)

then
6: agent i transfers to j as many values as would �t in the free part of j's

memory
7: if (j is base station) then
8: agent i transfers all values to BST

met (yet) another mobile agent faster than itself. When two fastest agents meet,
there is no transfer of data. The idea of TTFM is to make use of the fastest agents,
which are more likely to bring sooner the values to base station. In protocol 1,
fastest_marki, initialized to one, is a bit mark to record if agent i has already
met a faster agent. Lines 3-4 are to a�ect the value of fastest_marki during the
meetings of agents. Lines 5-6 ensure that agent i transfers its values only to an
agent that has never met (yet) another faster agent.

For illustrating the usage of terminated mode, we adapt TTFM in such a way
that a mobile agent turns into terminated mode once it has transferred all of its
values to a faster agent (excluding BST). Indeed, according to TTFM, once this
happens, the slower agent does not receive any value till the end of the execution.
Therefore, turning into terminated mode saves energy. For the fastest agents, as
they never transfer values to other agents except to BST, they stay non-terminated
until convergence. This adapted protocol, called E-TTFM, is presented below (Pro-
tocol 2).

Protocol 2 E-TTFM
(for a mobile agent i interacting with an agent j)

1: fastest_marki ∈ {0, 1} (* initialized to 1 *)
2: if (j is not BST) then
3: if (cvj < cvi and fastest_markj := 1) then
4: fastest_marki := 0
5: if (fastest_markj > fastest_marki and there is a free place in j's memory)

then
6: agent i transfers to j as many values as would �t in the free part of j's

memory
7: if (agent i has no value in its memory) then
8: agent i turns into terminated mode
9: if (j is BST) then
10: agent i transfers all values to BST

E-TTFM has the same time complexity as TTFM, because the adaption we did
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does not in�uence the worst case convergence time of data collection. Therefore, the
longest execution in E-TTFM is of length 2cvmind |NF |M |F |e − 1 (Th. 11 in [26]). The
worst case on the maximum energy spent by an agent is reached in the longest exe-
cution, in which one fastest agent participates in a maximum number of interactions
(being in awake mode as long as possible). This implies the result:

Proposition 1. An upper bound on the maximum energy spent by an agent in
E-TTFM is (2cvmind |NF |M×|F |e− 1)Ewkp. This bound is reached when cvmin � O(n2).

Proof. The upper bound is easy to obtain, as the longest execution in E-TTFM is
of length (2cvmind |NF |M×|F |e − 1) [26]. Thus, no agent can consume more energy than

(2cvmind |NF |M×|F |e −1)Ewkp.

Next, we prove that this bound can be reached when cvmin � O(n2). Consider the
following schedule which repeats the segment X1X2, where X1X2 is of length cvmin.
We denote by f one of the fastest agents.
X1 ≡ [ repeat as much as possible all interactions between f and every agent in
A\BST ],
X2 ≡ [ all the other necessary interactions to satisfy cvs constraints ].
Consider the execution e of E-TTFM corresponding to this schedule. This execution
reaches the upper bound on time presented in [26] and then |e| = (2cvmind |NF |M×|F |e−
1).
In E-TTFM, a fastest agent never turns into terminated mode. Therefore in e,
it consumes the most (Ewkp in each interaction in X1). Thus, Esmax(e) = (|e| −
ε|X2|)Ewkp + ε|X2|Eslp where ε|X2| is the number of (necessary) interactions in e
not involving agent f .
Notice that |X2| ≤ n(n−1)

2 = O(n2) and as cvmin � O(n2), the length of X2 is
negligible compared with |e|. Therefore,

Esmax(E-TTFM) = Esmax(e) = |e|Ewkp = (2cvmind
|NF |

M × |F | e − 1)Ewkp.

2.4 Energy-Balanced Protocol EB-TTFM

A �rst step towards a protocol balancing the distribution of energy consumption
would be to consider the following strategy: When an agent notices that it becomes
�low" in energy, it tries to transfer its values to a higher energy level agent and turns
into terminated mode, as soon as possible. The issue raised by this strategy is that
the convergence time for data collection could be possibly considerably augmented,
especially if some values are transferred to a slow agent. An increased convergence
time means more energy spent.
Therefore, the level of the amount of residual energy that is considered to be �low"
should be carefully set. Below, we discuss the possible choices of such a level. We
make these choices depend on a parameter λ, by de�ning the �low" level by E0

λ where
λ ≥ 1. To conform with the �nite state population protocol model, we assume that
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E0
λ can only take a �nite number of values. In the same way as for cover times,
we assume that the agents do not know their residual energies but can compare
them when they interact. Adding the test of the energy level to E-TTFM yields
the protocol EB-TTFM(λ) (for Energy Balanced TTFM, Protocol 3). In the code
below, eli denotes the residual energy of the mobile agent i.

Protocol 3 EB-TTFM(λ)
(for a mobile agent i interacting with an agent j)

1: if (j is not BST) then
2: if (eli <

E0
λ and eli < elj and there is a free place in j's memory) then

3: agent i transfers to j as many values as would �t in the free part of j's
memory

4: if (agent i has no value in its memory) then
5: agent i turns into terminated mode
6: else
7: execute E-TTFM
8: if (j is BST) then
9: agent i transfers all values to BST

2.4.1 Energy Consumption Analysis

Intuitively, by observing the code of EB-TTFM(λ), it can be seen that, if the thresh-
old E0

λ is too high, many interactions result in the execution of lines 3-5, since the
condition in line 2 is satis�ed more easily. That concerns especially the fastest
agents, since they interact more frequently. As a consequence, all the fastest agents
switch quickly to terminated mode and the values are carried to BST by slower
agents, even possibly the slowest agent. Then worst case convergence time and
energy consumption depend on cvmax instead of cvmin, which is worse than for
E-TTFM (Prop. 1).

On the other hand, if the threshold E0
λ is too small, EB-TTFM(λ) executes line

7 more often, i.e., behaves like E-TTFM, since the condition in line 2 is di�cult to
satisfy. Thus, in the perspective of improving the performance of EB-TTFM, we
�rst study the conditions excluding the two previous (uninteresting) cases. More
precisely, we study the corresponding upper and lower bounds for E0 with respect
to λ (Lem. 1 and 2). Then, for E0 and λ given inside these bounds, we study the
worst-case performance of EB-TTFM(λ) in terms of maximum energy spent by an
agent (Th. 1). Next, we try to �gure out, for a given E0, the best choice for λ
(Sect. 2.4.2), according to the results for the worst-case. Then, plots are drawn to
show the performance of EB-TTFM(λ) (Sect. 2.4.2 and 2.4.2).

As explained above, the number of fastest agents turning into terminated mode
during an execution plays an important role in the energy performance of EB-TTFM(λ).
Therefore, in the sequel, we classify the executions by the number of fastest agents
in terminated mode at the end of the execution. Then, we study the length of the
longest execution in each classi�cation set (Prop. 2, 3 and 4), we use these results to
obtain bounds for E0 (Lem. 1 and 2) and we determine the worst-case performance
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of EB-TTFM(λ) (Th. 1).

Notations. We denote by Ξd the set of executions of EB-TTFM(λ) with exactly d
fastest agents in terminated mode at their ends (d ∈ {0, 1, ..., |F |}). For a non-empty
set Ξd, mni(d) is the minimum number of interactions until d fastest agents are in
terminated mode in the executions of Ξd, and mnv(d) is the minimum number of
values that have been delivered to BST at the mni(d)th interaction. We denote
by emaxd a longest execution in Ξd and by θ the ratio between Eslp and Ewkp (θ =
Eslp/Ewkp < 1).

If ∪|F |i=1Ξi = ∅, no fastest agent ever turns into terminated mode and fastest
agents only execute E-TTFM (line 7). In this case, EB-TTFM(λ) has the same
performance as E-TTFM. On the contrary, if Ξ|F | 6= ∅, there exists at least one
execution, at the end of which all fastest agents are in terminatedmode. Then, some
values could be delivered to BST by a slow agent, increasing the convergence time

of EB-TTFM(λ) (to be dependent on cvmax). The case ∪|F |i=1Ξi = ∅ is uninteresting
and the case Ξ|F | 6= ∅ is undesirable. That is why we are looking now for conditions

on E0 and λ ensuring that ∪|F |i=1Ξi 6= ∅ and Ξ|F | = ∅.
Prop. 2 presents a lower bound on mni(d) for any non-empty set Ξd, denoted by

l(d). This bound is tight when cvmin � O(n2). Therefore, to ensure ∪|F |i=1Ξi 6= ∅,
mind6=0 l(d) must be smaller than or equal to the length of the longest execution in
E-TTFM (see proof of Lem. 1). To ensure Ξ|F | = ∅, l(|F |) must be greater than

the length of the longest execution in the set ∪|F |−1
i=0 Ξi, i.e., the set of executions

converging before all the fastest agents are in terminated mode (see proof of Lem.
2). In addition, in order to obtain an upper bound on the length of the longest
execution in Prop. 4, we compute the values of mnv(d) (Prop. 3).

Proposition 2. [mni(d)]. A lower bound on the minimum number of interactions
before d fastest agents are in terminated mode, taken over all executions in a non-

empty set Ξd of EB-TTFM(λ), is l(d) =
⌈
(E0 − E0

λ )[1 − (1− θ)d d2 e]/Eslp
⌉
. This

bound is reached when cvmin � O(n2).

Proof. Consider an execution and a fastest agent i. In EB-TTFM(λ), agent i turns
into terminated mode when the condition (in line 2) is satis�ed, which means that
its residual energy is less than E0

λ . During each interaction, agent i cannot spend
more energy than Ewkp, corresponding to the cost of the awake mode. Then the

number of interactions until agent i turns into terminated mode is at least dE0−E0
λ

Ewkp
e.

As both participants in one interaction consume energy,mni(2) = mni(1),mni(4) =
mni(3), ..., and more generally mni(2m) = mni(2m− 1). In addition, we have the
following recursive equations when d > 2: (mni(d)−mni(d− 2))× (Ewkp−Eslp) +
mni(d)× Eslp ≥ E0 − E0

λ . Recursively, we obtain the following inequality:

mni(d) ≥
⌈E0 − E0

λ

Eslp
[1− (1− θ)d d2 e]

⌉
= l(d). (2.1)

For the same reason as in the proof of Prop. 1, when cvmin � O(n2), the number
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of necessary interactions not involving these d fastest agents is negligible in every
cvmin interactions. In this case, the lower bound on mni(d) is reached.

Proposition 3. [mnv(d)]. When cvmin � O(n2), the minimum number of values
that have been delivered to BST at the mni(d)th interaction, taken over all executions
in a non-empty set Ξd of EB-TTFM(λ), is

mnv(d) = M(|F |−2β)×bmni(d)

2cvmin
c+2M×bmni(1)

2cvmin
c× [1+

β

θ
− 1− θ

θ2
(1−(1−θ)β)],

where β = b(d− 1)/2c.
Proof. It has been shown that in any segment of 2cvmin consecutive interactions
of an execution of TTFM , at least M |F | values (tight bound) are transferred to
the fastest agents (Th. 11 of [26]). Similarly, it is easy to see that every 2cvmin
interactions, at least M |F | values (tight bound) are delivered to BST. However,
in EB-TTFM(λ), since the fastest agents can turn into terminated mode (line
5), this property is no longer true. But it still holds for the segments of 2cvmin
consecutive interactions where all fastest agents are non-terminated. According
to the de�nition of mni(d), before the mni(1)th interaction, all fastest agents are
surely non-terminated in any execution of EB-TTFM(λ). So, we obtain the min-
imum number of values that have been collected at the mni(1)th interaction in

EB-TTFM(λ), which is: mnv(1) = M |F | × bmni(1)
2cvmin

c. As mni(1) = mni(2), we have
mnv(1) = mnv(2).
Then, we consider the segment [mni(1),mni(3)) in an execution. There are at least
|F | − 2 fastest agents which are non-terminated in this segment. Then at least

M(|F | − 2) ×
(
bmni(3)

2cvmin
c − bmni(1)

2cvmin
c
)
values are delivered to BST in this segment.

Recursively, we obtain the following relation between mnv(d) and mnv(d− 2):

mnv(3) = mnv(4)

= mnv(1) +M(|F | − 2)

(
bmni(3)

2cvmin
c − bmni(1)

2cvmin
c
)

= M(|F | − 2)× bmni(3)

2cvmin
c+ 2M × bmni(1)

2cvmin
c ;

mnv(5) = mnv(6)

= mnv(3) +M(|F | − 4)

(
bmni(5)

2cvmin
c − bmni(3)

2cvmin
c
)

= M(|F | − 4)× bmni(5)

2cvmin
c+ 2M × (bmni(1)

2cvmin
c+ bmni(3)

2cvmin
c) ;

...

mnv(d) = mnv(d− 2) +M(|F | − 2bd− 1

2
c)×

(
bmni(d)

2cvmin
c − bmni(d− 2)

2cvmin
c
)

= M(|F | − 2bd− 1

2
c)× bmni(d)

2cvmin
c+ 2M

b d−1
2
c∑

j=1

bmni(2j − 1)

2cvmin
c .
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Let β = bd−1
2 c. From Prop. 2, we have, when cvmin � O(n2):

mnv(d) = M(|F | − 2β)× bmni(d)

2cvmin
c+ 2M × bmni(1)

2cvmin
c × [1 +

β

θ
− 1− θ

θ2
(1− (1− θ)β)].

Proposition 4. [|emax
d |].

When cvmin � O(n2) and d < |F |, the length of the longest execution emaxd in a
non-empty set Ξd, is at most ρ(d) =

d
|NF | − 2Mbmni(1)

2cvmin
c[1 + 1

θdd2e − 1−θ
θ2

(1− (1− θ)dd/2e)]
M(|F | − d)

e × 2cvmin. (2.2)

Proof. A longest execution emaxd in Ξd is obtained by turning d fastest agents into
terminated mode as fast as possible, i.e., at themni(d)th interaction. Moreover, the
data is delivered to BST in the slowest way. It means that there are |NF |−mnv(d)
values not delivered to BST at the mni(d)th interaction of emaxd . And from the
mni(d)th interaction until termination, only M(|F | − d) values are delivered to
BST during every 2cvmin consecutive interactions. Thus, the longest execution is of
length:

|emaxd | = mni(d) + d |NF | −mnv(d)

M × (|F | − d)
e × 2cvmin.

Therefore, when cvmin � O(n2), according to Prop. 2 and Prop. 3, we have:

|emaxd | ≤ d
|NF | − 2Mbmni(1)

2cvmin
c[1 + 1

θdd2e − 1−θ
θ2

(1− (1− θ)dd/2e)]
M(|F | − d)

e

×2cvmin = ρ(d).

It appears that ρ(d) is an increasing function of d. Therefore, the longest exe-

cution in ∪|F |−1
i=0 Ξi is of length at most ρ(|F | − 1).

Using the results above, to exclude the two previously described uninteresting
cases for energy analysis, we compute the corresponding lower and upper bounds
on the initial energy E0 in EB-TTFM(λ).

Lemma 1. [Upper Bound on E0 (∪|F |i=1Ξi 6= ∅)].
When E0 ≤

(
2cvmind |NF |M |F |e − 1

)
λ
λ−1Ewkp and cvmin � O(n2), there exists at least

one execution of EB-TTFM(λ), in which a fastest agent turns into terminated
mode.

Proof. We know that the time complexity of E-TTFM is 2cvmind |NF |M |F |e − 1, when

cvmin � O(n2) (Prop. 1). In addition, when cvmin � O(n2), for a non-empty set
Ξd, mni(d) = l(d).

Therefore, to ensure that ∪|F |i=1Ξi 6= ∅, i.e., there exists at least one execution of
EB-TTFM(λ) in which a fastest agent i turns into terminated mode, mind6=0l(d)
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must be less than or equal to 2cvmind |NF |M |F |e − 1. Elsewhere, EB-TTFM(λ) would

behave as E-TTFM. Thus, according to (2.1), we have:

min
d6=0

l(d) = l(1) ≤
(

2cvmind
|NF |
M |F | e − 1

)

⇒ E0 ≤
(

2cvmind
|NF |
M |F | e − 1

)
λ

λ− 1
Ewkp .

Lemma 2. [Lower Bound on E0 (Ξ|F | = ∅)].
When cvmin � O(n2), θ ≤ 1/2 and E0 ≥ d |NF |M×|F |e λ

λ−1cvminEwkp, in any execution

of EB-TTFM(λ), there is at least one fastest agent, which is not in terminated
mode at the end of the execution. 3

Proof. We know from the proof of Prop. 4 that, when cvmin � O(n2), the longest

execution in ∪|F |−1
i=0 Ξi is of length ρ(|F | − 1).

According to the de�nition of mni(d), the con�guration where all fastest agents are
in terminated mode, can appear only at or after the mni(|F |)th interaction. Then,

if all executions in ∪|F |−1
i=0 Ξi are of length less than the lower bound of mni(|F |),

no execution reaches such a con�guration, i.e., there is no execution e such that all
fastest agents are in terminated mode at the end of e. Thus, ρ(|F | − 1) < l(|F |)
implies Ξ|F | = ∅.
When cvmin � O(n2), substituting (2.1) and (2.2) in ρ(|F | − 1) < l(|F |), we obtain
a lower bound of E0:

E0 > d
|NF |
M
× θ2

θ2 + (d |F |+1
2 e+ 1/2)θ − 1

e λ

λ− 1
cvminEwkp.

This lower bound can also be seen as a function of θ, denoted by lb(θ).
Since lb(θ) is an increasing function of θ and θ ≤ 1

2 , we have lb(θ) ≤ lb(1
2) ≤

d |NF |M × 1
|F |e λ

λ−1cvminEwkp. So, we have a su�cient condition for Ξ|F | = ∅, which is:

E0 ≥ d |NF |M×|F |e λ
λ−1cvminEwkp .

Next, we consider the worst-case performance of EB-TTFM(λ), supposing that
every agent has an initial energy E0 inside the bounds established above (Th. 1)
and outside the bounds (Th. 2 and 3). Then from the analysis of the worst-case
performance on energy consumption, we will determine the best choice for λ in
EB-TTFM.
Notice that if there is only one fastest agent (|F | = 1), the conditions of Lem. 1
and 2 are incompatible. This case is not considered by Th. 1. However, with
the conditions of Lem. 2, this fastest agent stays non-terminated during all the
executions and executes only E-TTFM. In this case, the upper bound in Prop. 1
(depending on cvmin) holds. Otherwise, the bound is worse, as it depends on a cover
time greater than cvmin.

3Recall that Ewkp > Eslp. For simplicity and following the study in [111], we choose θ ≤ 1/2.
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Theorem 1. [Worst Case Energy Analysis I]. Assume d |NF |M×|F |e λ
λ−1cvminEwkp ≤

E0 ≤ (2cvmind |NF |M |F |e − 1)λEwkp/(λ− 1), cvmin � O(n2) and |F | > 1. Then

Esmax(EB-TTFM(λ)) ≤ λ− 1

λ
E0 + (ρ(|F | − 1)− l(1))Ewkp,

where l(d), ρ(d) are the functions de�ned in (2.1) and (2.2), respectively.

Proof. Consider an execution e of EB-TTFM(λ). As E0 ≥ d |NF |M×|F |e λ
λ−1cvminEwkp,

Ξ|F | = ∅ (Lem. 2). Moreover, for a non-empty set Ξd, |emaxd | ≤ ρ(d) when cvmin �
O(n2) (Prop. 4). Therefore, since ρ(d) is an increasing function of d, we have
|e| ≤ maxd<|F | |emaxd | ≤ ρ(|F |−1). Let i ∈ F be the agent which consumes the most
in e. There are two possibilities at the end of e:

1. The energy spent by agent i is smaller or equal to E0−E0
λ . Thus, the maximum

energy spent by one agent in e is smaller or equal to λ−1
λ E0.

2. The energy spent by agent i is greater than E0 − E0
λ . Let ti be the number

of past interactions when the residual energy of agent i reaches E0
λ . As when

cvmin � O(n2), l(1) is the minimum number of interactions when a fastest
agent turns into terminated mode (Prop. 2), we have ti ≥ l(1). Thus, the
length of the interval [ti, |e|] is |e|−ti ≤ |e|−l(1). Consequently, the maximum
energy spent by an agent in e is smaller or equal to E0− E0

λ + (|e|− ti)Ewkp ≤
λ−1
λ E0 + (|e| − l(1))Ewkp.

In conclusion, when cvmin � O(n2), the maximum energy spent by an agent
in the worst case of EB-TTFM(λ), Esmax(EB-TTFM(λ)), is at most λ−1

λ E0 +
(ρ(|F | − 1)− l(1))Ewkp.

Theorem 2. [Worst Case Energy Analysis II]. Assume E0 > (2cvmind |NF |M |F |e−
1)λEwkp/(λ−1) and cvmin � O(n2). Then Esmax(EB-TTFM(λ)) = Esmax(E-TTFM).

Proof. We know from the proof of Lemma. 1 that, when cvmin � O(n2) and

E0 > (2cvmind |NF |M |F |e − 1)λEwkp/(λ − 1), EB-TTFM(λ) behaves like E-TTFM. So

we have Esmax(EB-TTFM(λ)) = Esmax(E-TTFM).

Theorem 3. [Worst Case Energy Analysis III]. Assume E0 < d |NF |M×|F |e λ
λ−1cvminEwkp

and cvmin � O(n2). Then Esmax(EB-TTFM(λ)) = Ω(cvmaxEwkp).

Proof. According to Lemma. 2, when cvmin � O(n2) andE0 < d |NF |M×|F |e λ
λ−1cvminEwkp,

there exists one execution e = X1X2, composed of two segments X1 and X2, where
at the end ofX1, all fastest agents are in terminated mode and some values are trans-
ferred to the slowest agent. Then we can construct another execution e′ = X1X3X4.
In X3, the slowest agent meets as much as possible the terminated agents. When
cvmin � O(n2), |X3| ≈ cvmax. Therefore, we know that the maximum energy spent
by an agent in e′ is at least cvmaxEwkp.
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A natural issue is to determine the best value for λ, that is the value that
minimizes the upper bound in Th. 1. This determination is not easy because of the
ceiling and �oor functions appearing in Th. 1. Thus, in order to get an exploitable
expression, we drop, in the next subsection, the assumption of bounded memory
and we consider that an agent can hold an arbitrary number of values. Then we
obtain a better upper bound using such a λ.

2.4.2 Special Case of Non-Bounded Memory (M ≥ n− 1)

The following improved bound for E0 (with respect to Lem. 2) is obtained when the
lower bound of mni(|F |) is larger or equal to cvmin. This condition ensures that at
least one fastest agent is not terminated during the �rst cvmin interactions (and not
until convergence as in Lem. 2). During this period, the fastest agents meet all the
non-fastest ones, collect all their values (as M is large enough), and turn them into
terminated mode, as it is stated by Lem. 6. This certainly ensures that Ξ|F | = ∅.

Lemma 3. [Lower Bound on E0 when M ≥ n− 1 (Ξ|F | = ∅)].
When E0 ≥ λ

λ−1( θ

1−(1−θ)d
|F |
2 e

)cvminEwkp andM ≥ n−1, in any execution of EB-TTFM(λ),

all non-fastest agents are in terminated mode after the �rst cvmin interactions.

Proof. We know that a con�guration where all fastest agents are in terminatedmode
can appear only at or after themni(|F |)th interaction. Thus, if l(|F |) ≥ cvmin, in any
execution of EB-TTFM(λ), there is at least one non-terminated fastest agent at the
end of the �rst cvmin. Moreover, all the non-fastest mobile agents are in terminated
mode, since every non-fastest mobile agent interacts with a non-terminated fastest
agent during the �rst cvmin and has transferred all of its value (as the memory is
unbounded) in this interval.
Substituting (2.1) in l(|F |) and expressing the formula in function of E0 yields the
formula appearing in Lemma 6.

Then, similarly to the bounded case in the previous section, we compute Esmax(EB-TTFM(λ))
for E0 satisfying the bounds of Lemmas 1 and 6.

Theorem 4. [Worst Case Energy Analysis when M ≥ n− 1].
If λ

λ−1( θ

1−(1−θ)d
|F |
2 e

)cvminEwkp ≤ E0 ≤ (2cvmin − 1) λ
λ−1Ewkp and cvmin � O(n2),

then Esmax(EB-TTFM(λ)) ≤ λ−1
λ E0 + (1 + 1

2−θ )cvminEwkp = Θ(cvminEwkp).

Proof. Assume that for an execution e, the energy of agent i decreases to E0
λ at time

ti. Then, there are two possible states for agent i after ti + cvmin:

� Agent i is in terminated mode: It means that agent i has already transferred
its value. Therefore, in this case, its residual energy at the end of execution,
eli(|e|) = eli(ti + cvmin) ≥ E0

λ − cvminEwkp.

� Agent i is not in terminated mode:
If agent i is still alive after ti + cvmin, for any interaction (i, j) at time t ∈
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[ti, ti+cvmin] with an agent j still non-terminated, elj(t) < eli(t) ≤ E0
λ . Thus,

after ti + cvmin, agent i is the only non-terminated agent. And agent i is the
agent that transfers the last value to the base station.
Let agent j be the last agent turning into terminated mode during [ti, ti +
cvmin] and let tj be the time where its energy decreases to E0

λ . Let tij ∈
[ti, ti + cvmin] be the time when non-terminated j interacts with i. We know
that tij > tj since elj(tij) < elj(tj) = E0

λ . Denoting by xi the number of
interactions of agent i during [ti, tij ] and by xj the number of interactions of
agent j during [tj , tij ]:

1. First, according to the de�nition of xi and xj , we have xi ≤ tij − ti, xj ≤
tij − tj .

2. As elj(tij) < eli(tij),
E0
λ −xj(Ewkp−Eslp)−(tij−tj)Eslp < E0

λ −xi(Ewkp−
Eslp)−(tij−ti)Eslp. Thus, we have xi < xj+(ti−tj) θ

1−θ where θ =
Eslp
Ewkp

.

3. There is no interaction between i and j during the interval [min(ti, tj), tij).
Indeed, suppose that there is one at time t′ ∈ [min(ti, tj), tij) , k1 =
arg min

x∈{i,j}
tx and k2 = {i, j}\k1. We know that elk1(t′) ≤ elk1(tk1) = E0

λ .

If elk1(t′) < elk2(t′), agent k1 transfers its values to agent k2. If elk1(t′) >
elk2(t′), as elk2(t′) < elk1(t′) ≤ E0

λ , agent k2 transfers its values to agent
k1. Then, after the interaction at time t′, either agent k1 or agent k2 is
in terminated mode which contradicts the interaction of (i, j) at time tij
where both agents are non-terminated.
Since there is no interaction between agent i and j during the interval
[min{ti, tj}, tij) and since there is at least one interaction between i and
j for each cvmin time interval, according to the de�nition of a cover time,
we have tij ≤ min{ti, tj}+ cvmin. Thus, xi + xj ≤ cvmin.

Taken all the inequalities obtained above into consideration, xi reaches its
maximum value 1

2−θ cvmin when tij − tj = cvmin, tij − ti = 1
2−θ cvmin, xj =

1−θ
2−θ cvmin. Figure 2.3 gives an illustration of this case.

⏟titj
⏞⏞

cvmin

x i=
cvmin

2−θ

x j=
1−θ

2−θ
⋅cvmin

tij

Figure 2.3: Illustration of the case where xi has the maximum value.

As the execution ends before tij + cvmin, agent i interacts at most cvmin times
after tij . Thus, from ti to the end of execution, agent i interacts at most
xi + cvmin = 3−θ

2−θ times. Therefore, in the worst case, agent i will consume
3−θ
2−θ cvminEwkp energy at the end of execution e.

In conclusion, for any agent i ∈ F whose energy decreases to E0
λ before the end of

an execution e, we have proved that agent i should consume at most 3−θ
2−θ cvminEwkp
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energy. Therefore, we have:

Esmax(EB-TTFM(λ)) ≤ λ− 1

λ
E0 + (1 +

1

2− θ )cvminEwkp.

Best Choice for λ.

Now, given E0 (large enough for accomplishing the task), we study the best choice for
λ for minimizing Esmax(EB-TTFM(λ)). We can see from Th. 4 thatEsmax(EB-TTFM(λ))
decreases with λ, provided that λ satis�es, in particular, E0 ≥ λ

λ−1(θ/(1 − (1 −
θ)d

|F |
2
e))cvminEwkp.

Therefore, the smallest value of λ is obtained when λ
λ−1( θ

1−(1−θ)d
|F |
2 e

)cvminEwkp =

E0 , which is

λ̃ = E0/(E0 − (
θ

1− (1− θ)d |F |2 e
)cvminEwkp).

Now, we study the consequences of setting λ to λ̃ in EB-TTFM(λ). The best energy
level is:

E0

λ̃
= E0 − (

θ

1− (1− θ)d |F |2 e
)cvminEwkp

, that is the initial energy minus a �xed amount, which is precisely

Efix = (
θ

1− (1− θ)d |F |2 e
)cvminEwkp.

What is the explanation for that? Actually, in the analysis of EB-TTFM(λ), an
important point is the relation between E0 and λ ensuring that there is at least
one non-terminated fastest agent at the end of the �rst cvmin, i.e., Ξ|F | 6= ∅. Efix
is the minimum energy consumption of an agent that ensures that Ξ|F | 6= ∅. The

interpretation of Efix in the process of EB-TTFM(λ̃) is the following. Once an
agent has consumed more than Efix energy, it transfers its values to more powerful
agents and turns into terminated mode.

So, we can say that Efix is the amount of energy to activate the condition in
line 2 of EB-TTFM(λ̃). In other words, the best strategy to increase the lifetime
in the worst case of EB-TTFM(λ) is to activate the condition as soon as an agent
has consumed Efix energy, i.e., when it is certain that there will be at least one
non-terminated fastest agent at the end of the �rst cvmin.

Thus, the best worst-case performance of EB-TTFM(λ) is when λ is set to λ̃:

Esmax(EB-TTFM(λ̃)) = Efix + (1 + 1
2−θ )cvminEwkp

= (1 + θ

1−(1−θ)d
|F |
2 e

+ 1
2−θ )cvminEwkp .
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Figure 2.4: The comparison of Esmax between EB-TTFM(λ̃) and E-TTFM

Interpretation of Results: Comparison of Energy Performance between
EB-TTFM(λ̃) and E-TTFM

We give a meaningful example of the interest to have analytical functions for describ-
ing the energy consumption performance. This example considers the unbounded
memory case and illustrates conditions under which EB-TTFM(λ̃) outperforms
E-TTFM.
When the memory is not bounded and cvmin � O(n2), by Prop. 1, Esmax(E-TTFM) =
(2cvmin − 1)Ewkp, and by Th. 4, when λ is set to λ̃, Esmax(EB-TTFM(λ̃)) ≤
(1 + θ/(1 − (1 − θ)d

|F |
2
e) + 1

2−θ )cvminEwkp. Then, we obtain that for |F | ≥ 10

and θ ≤ (3 −
√

5)/2 ≈ 0.38, Esmax(EB-TTFM(λ̃)) ≤ Esmax(E-TTFM), i.e.,
EB-TTFM(λ̃) outperforms E-TTFM.
Figure. 2.4 represents the comparison ofEsmax between EB-TTFM(λ̃) and E-TTFM
with di�erent |F | and θ. The red (lighter) plane shows Esmax(E-TTFM) and the
blue (darker) one represents Esmax(EB-TTFM(λ̃)). We can see that EB-TTFM(λ̃)
is more energy balanced when θ is small, i.e., when the energy spent in sleep mode
is much less than the energy spent in awake mode.

Interpretation of Results: Relationship between λ, E0 and Esmax in EB-TTFM(λ).

In Section 2.4.2, we discussed the best choice for λ in EB-TTFM(λ). But what
if the value of λ is not set to λ̃ and what is the performance of EB-TTFM(λ) in
this case? In this section, we use 3D plots to show the relation among λ, E0 and
Esmax(EB-TTFM(λ)).
Firstly, from Lemma 6, we have a lower bound for E0 depending on λ. Then, 3D
plots of λ, E0 and Esmax can be constructed following Th. 4. Figure 2.5 shows the
performance of EB-TTFM(λ) where |F | = 10, θ = 0.2. x axis represents λ, y axis
E0 and z axis Esmax(EB-TTFM(λ)).
The blue polytope in Figure 2.5a presents the possible values of λ and E0 for which
EB-TTFM(λ) does not behave like E-TTFM. As we can see, λ should be carefully
chosen to a small value for EB-TTFM(λ) to perform better than E-TTFM in the

35



Chapter 2. Power-Aware Population Protocols

(a):

(b):

Figure 2.5: 3D plot on the relationship of λ, E0 and Esmax

worst case. The green border on the blue polytope represents the best choice for λ
(Sect. 2.4.2). The red polygon in Figure 2.5a shows the region of values for λ and
E0 where EB-TTFM(λ) behaves like E-TTFM.
Figure 2.5b gives a view of x, y axis which shows the feasible values of λ and E0

(blue and red area).

2.5 Lower bound on Esmax

In this section, we present a lower bound (Th. 5) on the maximum energy spent
by an agent (Esmax) for achieving data collection. The protocols considered here,
like in the whole study, are those that can compare (but not use in any other way)
the cover times and the residual energies of interacting agents. Let us denote this
class of protocols by Pcv∪e. Following the intuition above for strategies of energy-
balanced data collection protocols, we study the lower bound for di�erent sub-classes
of protocols in Pcv∪e, distinct in their strategies of turning agents into terminated
mode.
Hence, we decompose Pcv∪e into subsets Pi, de�ned below. For that, we order the
agents according to their cover times and denote by Fi the set of mobile agents with
the the ith smallest cover time. Thus the set of fastest agents is F1, cv

i is the value of
the ith smallest cover time and ns is the number of di�erent cover times. Then, we
de�ne Pi as the class of protocols for which, there is at least one non-terminated
agent in ∪ij=1Fj at the end of any execution (or turning into terminated mode
during the last interaction of the execution). Moreover, in Pi, when i > 1, there
exists at least one execution in which all agents in ∪i−1

j=1Fj are terminated before
the end of execution, i.e.,

Pi = {P ∈ Pcv∪e|
∀ e ∈ e(P), ∃f ∈ ∪ij=1Fj ,Mode(f, e) 6= terminated ∧
if (i > 1) :

∃ e ∈ e(P), ∀f ∈ ∪i−1
j=1Fj ,Mode(f, e) = terminated},

where Mode(f, e) ∈ {awake, sleep, terminated} indicates the energy consumption
mode of agent f just before the last interaction in execution e and e(P) is the set
of all executions of protocol P.
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By de�nition, the Pi's are disjoint and ∪nsi=1Pi = Pcv∪e. Moreover, E-TTFM belongs
to P1. Note that EB-TTFM(λ) can belong to di�erent subsets depending on the
value of E0

λ . Under the conditions of Lem. 2, EB-TTFM(λ) is in P1.

We obtain the lower bound on energy, using in particular the lower bound on
time (the length of an execution) of [26]. This bound holds for any data collection
protocol using only cover time comparisons. Let Pcv be this class of protocols. The
proof of the lower bound on time for Pcv in [26] holds also for Pcv∪e, because only
constraints related to the data collection problem are invoked. For example, it is
necessary that every mobile agent either meets BST by itself, or meets at least
one other agent that meets BST, before convergence. Then comparisons of the
residual energies of two interacting agents cannot produce a shorter execution. This
is expressed in the following observation.

Observation: The lower bound on time for any data collection in Pcv [26] is also
correct for any protocol in Pcv∪e.

Recall that this bound is tight and equal to the upper bound on time of the
protocol TTFM, also presented in [26]. Hence, we denote this bound here by
|emax(TTFM)|.
We still assume that cvmin � O(n2) (see justi�cations in Sect. 2.1.3).

Lemma 4. [First Lower Bound on Esmax for Protocols in Pi]
If cvmin � O(n2), for any protocol P in Pi, the energy spent by an agent in the

worst case is at least Esmax(E-TTFM/d |∪
i
j=1Fj |

2 e.

Proof. First, consider the following schedule which repeats the segmentX1X2, where
X1X2 is of length cvmin.
X1 ≡ [ repeat as much as possible all the possible interactions between agents in
∪ij=1Fj ],
X2 ≡ [ all the other necessary interactions to satisfy cvs ].
Consider now the execution of P ∈ Pi for this schedule, denoted by e. Since no
agent consumes more than Esmax(P) amount of energy in any execution of P, when
an agent consumes Esmax(P) in e, either it turns into terminated mode or e reaches
the �nal con�guration. And as P ∈ Pi, there is at least one agent in ∪ij=1Fj which

is non-terminated at the end of e. Moreover, notice that |X2| ≤ n(n−1)
2 = O(n2)

and as cvmin � O(n2), the length of X2 is negligible. Thus, following the above

schedule, at time t = Esmax(P) × d |∪
i
j=1Fj |

2 e/Ewkp, all agents in ∪ij=1Fj consume
Esmax(P) amount of energy. However, the length of e must be smaller than or equal
to t. Because otherwise, either there would be a non-terminated agent consuming
more than Esmax, or all agents would be terminated, which contradicts the fact
that P ∈ Pi. Thus, we have t ≥ |e|, i.e.,

Esmax(P)

Ewkp
× d
| ∪ij=1 Fj |

2
e ≥ |e|.

By the observation above, execution e satis�es the lower bound on time of [26].
Thus, we obtain |e| ≥ |emax(TTFM)|
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= |emax(E-TTFM)|, as E-TTFM has the same time performance as TTFM (Sect. 2.3).
Moreover, by Prop. 1, when cvmin � O(n2), |emax(E-TTFM)|Ewkp = Esmax(E-TTFM).
Then, we have

Esmax(P) ≥ |e| × Ewkp
d |∪

i
j=1Fj |

2 e
≥ |emax(E-TTFM)|Ewkp

d |∪
i
j=1Fj |

2 e

= Esmax(E-TTFM)/d
| ∪ij=1 Fj |

2
e.

Lemma 5. [Second lower Bound on Esmax for Protocols in Pi]
If cvmin � O(n2), for any protocol P in Pi, the energy spent by an agent in the
worst case is at least cviEwkp.

Proof. When i > 1, as P ∈ Pi, there exists at least one execution e in which all
agents in ∪i−1

j=1Fj are terminated before the end of the execution. Let t indicate

the time when all agents in ∪i−1
j=1Fj are terminated in e and let f 6∈ ∪i−1

j=1Fj be a

non-terminated agent (with cover time cvf ≥ cvi), holding one of the values not yet
collected by BST at time t+ 1. We prove the existence of another execution e′ such
that Esmax(e′) ≥ cviEwkp. The execution e′ begins with the same pre�x of t events
as e and continues by meetings between agent f and the terminated agents until
f meets BST at time t+ cvf . In our energy consumption scheme, when a sleeping
agent meets a terminated agent, it consumes Ewkp and does not change its mode
(See Sect. 2.2). Therefore and because cvf > cvmin � O(n2), during the interval
[t, t + cvf ], agent f consumes cvfEwkp (the necessary interactions involving other
agents than f during cvf are negligible, as in the proof of Lem. 4). So, when i > 1,
we have Esmax(P) ≥ Esmax(e′) ≥ cvfEwkp ≥ cviEwkp.

Next, we consider the case where i = 1. We prove that Esmax(P) ≥ cvminEwkp
by contradiction. Suppose that there exists a protocol P ∈ P1 such thatEsmax(P) <
cvminEwkp. To contradict this, we construct an execution e of P with Esmax(e) ≥
cvminEwkp. Consider again the schedule X1X2 in the proof of Lem. 4. It is possible
that at time t = Esmax(P)/Ewkp < cvmin, an agent j ∈ F1 consumes Esmax(P) and
turns into terminated. For the same reason as above, we can construct e in which
a non-terminated agent f meets the terminated agent j repetitively until it meets
others at time t+ cvf . Thus, when i = 1, we have Esmax(P) ≥ cvminEwkp.

Theorem 5. [Lower Bound on Esmax for Protocols in Pcv∪e] If cvmin �
O(n2), for any protocol in Pcv∪e, the energy spent by an agent in the worst case is

at least max{Esmax(E-TTFM)/d |F |2 e, cvminEwkp}.
Proof. The result comes directly from Lem. 4 and 5, since ∪iPi = Pcv∪e and

min
i

max{Esmax(E-TTFM)/d
| ∪ij=1 Fj |

2
e, cviEwkp}

= max{Esmax(E-TTFM)/d |F |
2
e, cvminEwkp}.
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Next, we identify the cases where this bound is reached by the presented proto-
cols (Cor. 1), and where it di�ers only by a constant multiplicative factor from the
energy complexity of EB-TTFM(λ), for the case of non-bounded memory and with
a good choice of λ (Cor. 2).

Corollary 1. When |F | ≤ 2 and cvmin � O(n2), E-TTFM is energy-optimal in
Pcv∪e, with respect to the energy spent by an agent in the worst case.

Proof. From Th. 5, if |F | ≤ 2, ∀P ∈ Pcv∪e, Esmax(P) ≥ Esmax(E-TTFM). As
E-TTFM ∈ Pcv∪e, E-TTFM is energy optimal in Pcv∪e.

Corollary 2. When |F | > 2 and cvmin � O(n2), for any protocol in Pcv∪e, the
energy spent by an agent in the worst case is at least cvminEwkp. For the case where
M ≥ n−1 and λ satis�es the conditions of Th. 4, EB-TTFM(λ) reaches this bound
asymptotically.

Proof. This result comes directly from Th. 5 and Th. 4.

2.6 Conclusion

In this chapter, a formal energy model for population protocols has been presented
and studied. Designing a good model is di�cult. If the model is too abstract (or
general), it won't easily apply to reality. If it is too low level and considers too
many parameters, it won't allow formal treatments. We believe that the model we
introduced is a good compromise between the two approaches. On the one hand, it is
based on practical information on how real resource-limited mobile sensor networks
are functioning, and on the other hand, as shown in this chapter, it allows to obtain
analytically precise formulas, which are obviously not directly intuitive.

Moreover, the proposed energy model is adaptable to many types of mobile sen-
sor networks and their applications, and to those that are not considered in this work
(e.g., to the case where the transmitted data does not always �t into one packet and
in general, to the case of less limited agents). As already noticed, the assumption
on the cover times does not particularize the model, since almost all real mobile
sensor networks either operate in a bounded area (town, factory, security zone, etc.)
or satisfy the home coming tendency (networks related to human or animal mo-
bility). Nevertheless, other kinds of �periodic� conditions on the interactions (e.g.,
probabilistic interactions) can be considered to study energy consumption using the
proposed framework. Finally, other important communication problems (as broad-
cast, all-to-all communication, routing, etc.) have many points in common with
data collection (excepted that unique identi�ers may be needed, like in community
protocols [67]). Hence, the techniques developed here can be useful in the future
studies of these problems.

The second contribution of the chapter consists in establishing analytical formu-
las for lower bounds and for the energy consumption of two proposed data collection
algorithms. We want to emphasize that having analytical formulas allows obtaining
information that could not be obtained by the sole intuition, and that would be
di�cult to obtain by simulations. On one hand, the study of the curves and plots
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allows to get easily the conditions on the parameters (e.g., think of the value of 3−
√

5
2

for θ in Sect. 2.4.2). On the other hand, the analytical approach allows obtaining
general upper and (always di�cult to establish) lower bounds.

To conclude, we summarize the main technical results of this chapter. In Sect. 2.4.1,
we obtain formulas for the worst-case performance of energy in EB-TTFM(λ). Then,
for the case of non-bounded memory, we compute the best value for λ with respect to
E0, |F |, Ewkp, Eslp and cvmin (Sect. 2.4.2). Further analysis with the best λ shows
that no matter how much initial energy an agent has, once it consumes more than
some calculated amount Efix, the best strategy is to switch to terminated mode,
when interacting with a more powerful agent. We interpret the formulas graphically,
and show that EB-TTFM(λ) is more energy e�cient in the case where the number
of fastest agents are more than 10 and the ratio between Eslp and Ewkp is less then
3−
√

5
2 (Sect. 2.4.2). At the end (Sect. 2.5), we give a uniform lower bound for energy

consumption for all possible data collection protocols. We identify the cases where
this bound is reached by the presented protocols (Cor. 1), and where it di�ers only
by a constant multiplicative factor from the energy upper bound of EB-TTFM(λ)
(Cor. 2).
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Chapter 3

Power-Aware Population

Protocols under Non-uniformly

Random Scheduler

3.1 Introduction

In population protocols, the fact that agent moves are unpredictable is usually
modeled by assuming the uniformly random scheduler ([11, 15, 16, 22]). That is,
the interactions between any two agents are drawn uniformly at random. However,
for some practical sensor networks, this assumption may be unrealistic. Consider,
for instance, agents moving at di�erent speeds. In this case, an agent interacts more
frequently with a faster agent than with a slower one. In other networks, certain
agents may be frequently prevented from communicating with some others, because
they move in di�erent limited areas, or disfunction from time to time, etc. In all
these examples, the interactions are clearly not uniformly random. There are thus
strong arguments for enhancing the basic model.

This chapter initiates the study of non-uniform schedulers in the context of
population protocols. Considering the scheduler as a generator of sequences of
pairwise interactions, non-uniform means that the next interacting pair (i, j) is
chosen with a non-uniform probability Pi,j , depending on i and j.

As an additional justi�cation for studying a non-uniform scheduler, notice that
many experimental and analytical studies of di�erent (�nite boundary) mobile sensor
networks show and exploit (respectively) the assumption that the inter-contact time
of two agents (the time period between two successive interactions of the same two
mobile agents) is distributed exponentially (cf. [34, 60, 117, 150]). Similarly, under
a non-uniformly random scheduler, it appears that the inter-contact time Ti,j , of any
two agents i and j, follows a geometric distribution (P [Ti,j = t] = (1−Pi,j)t−1Pi,j),
which is the discrete analogue of the exponential case (observed in practical mobile
networks).

The counterpart of considering a non-uniform scheduler is a more complex anal-
ysis. Though, it remains feasible in certain cases, as it is shown in this chapter. To
illustrate this point, we consider the previously studied fundamental task, data col-
lection. In the context of population protocols (assuming non-random schedulers),
several data collection protocols have been proposed and their complexity in time
has been studied [26] under cover times fairness. Notice that the analysis there
was only for the worst case. However, we are not aware of any previous results
concerning the average complexity of these protocols. The current chapter presents
protocols that basically use the simple ideas of the TTF (Transfer To the Faster)
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Scheduler

protocol of [26] (See Sect. 1.2.2). The new protocols are adapted to a non-uniform
scheduler and improve energy consumption, as explained further.

First, consider the original version of TTF. The data transfer between the agents
in TTF depends on the comparison of cover times of two interacting agents. Here
we follow this idea. However, as the scheduler is probabilistic, we adapt the corre-
sponding de�nition of the cover time to be the expected (instead of the maximum)
number of interactions for an agent to interact with every other agent (see Sect. 3.2).
Moreover, in this preliminary study, we make the assumption that every agent has
enough memory to store n values. With these conditions, agent i could transfer any
number of values to j (there is never more than n). This assumption is common in
the literature [11, 68].

The complexity analysis starts with the proofs of two lower bounds on the ex-
pected convergence time of any protocol solving data collection (Sect. 3.3). Then,
an analysis of execution times in expectation and with high probability (w.h.p.), for
the new version of TTF, is given (Sect. 3.4). The complexity in expectation indi-
cates how the protocol is good in average, while the complexity w.h.p. tells how it
is good almost all the time. We obtain explicit bounds, thus justifying the relevance
of the enhanced model in protocol analysis and its operability.

We further investigate the non-uniform model by addressing also energy com-
plexity. The goal is to improve energy consumption of TTF, while keeping good
time complexity. For that, we propose a new parametrized protocol, called lazy
TTF (Sect. 3.5). As opposed to TTF, it does not execute necessarily the transition
of TTF resulting from an interaction. Instead, during an interaction (i, j), TTF
is executed with probability pi (depending on agent i, playing the role of initiator
in the interaction). Analysis and the corresponding numerical study show that a
good choice of the parameters pi results in lower energy consumption. To �nd such
parameters, we formulate and solve a polynomial-time optimization program. The
resulting optimized lazy TTF is compared to TTF in respect with time and energy
complexity (Sect. 3.6). For this analysis, we adopt the energy scheme proposed for
population protocols in Sect. 2.2.

This work is presented in ALGOSENSORS 2017 [27].

3.1.1 Related work

The uniformly random scheduler has been introduced and studied in the context of
population protocols in the seminal paper [14]. Later, leader election protocols (cf.
[10, 51]) and exact majority protocols (cf. [11]) have been proposed in this uniform
model. Their performances are evaluated by the parallel expected convergence time
and by the number of states available at each agent (space complexity). In several
papers (cf. [6]), trade-o�s between time and space complexities of protocols solving
these problems are studied. Any leader election or majority protocol converges in
Ω(n/polylog n) expected time using O(log log n) states. A recent work [9] shows
that, by employing �phase clocks�, both problems can be solved in O(log2 n) ex-
pected time, using O(log n) states. Other complex problems, such as counting [22],
community detection [28] and proportion computation [92], have been also studied
under similar uniform scheduler model.
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Besides the uniformly random scheduling independent of the agents states, there are
works assuming a scheduling depending on the states of agents, like the transition
function scheduler in [41] or the scheduling of reactions in CRN (Chemical Reaction
Network model) according to the model of stochastic chemical kinetics (cf. [46]).
We should also mention the randomized gossip algorithm in [31] designed for the
problem of averaging, in an arbitrarily connected network. Each node runs an inde-
pendent Poisson clock (asynchronous time model), and at each clock tick, the node
randomly selects a neighbor, with the probability given by the algorithm. Then,
it averages its value with the chosen neighbor. Observe that this algorithm can be
seen as a population protocol under non-uniformly random scheduler, in which two
meeting agents average their values. For more details on gossip algorithms, refer to
the surveys [115] and [49].

3.2 Model and De�nitions

Non-uniformly random scheduler. Such a scheduler, denoted by S(P ), is de-
�ned by a matrix of probabilities P ∈ Rn×n. During an execution, S(P ) chooses the
next pair of agents (i, j) to interact (taking i as initiator and j as responder) with the
probability Pi,j . Notice that, in the case of the matrix with entries Pi,j = 1/n(n−1)
for i 6= j, and Pi,i = 0, the scheduler chooses each pair of agents uniformly at ran-
dom for each next interaction (i.e., the scheduler is uniformly random).

The matrix P satis�es
n∑
i=1

n∑
j=1

Pi,j = 1 and ∀i ∈ {1, ..., n}, Pi,i = 0, since interactions

are pairwise. Moreover, for any edge (i, j) in the interaction graph G, Pi,j > 0. As
the graph considered here is complete, every pair of agents is chosen in�nitely often
with probability 1.

For a given P , one can compute the expected (�nite) time for a given agent i to meet
all the others. We call it cover time of agent i and denote it by cvi. By resolving
the coupon collector's problem with a non-uniform distribution [59], we obtain the
cover time of each agent: cvi =

∫∞
0 (1−∏j 6=i(1− e−(Pi,j+Pj,i)t))dt. Similarly to [26],

for two agents i and j, if cvi < cvj , we say that i is faster than j, and j is slower
than i. If cvi = cvj , i and j are said to be in the same category of cover times. We
denote by m the number of di�erent categories of cover times.

Time Complexity Measures. The convergence time of a data collection proto-
col P can be evaluated in two ways: �rst, in terms of expected time until termination,
denoted by TE(P), and second, in terms of time until termination w.h.p.1, denoted
by Twhp(P). The termination of a data collection protocol has been de�ned in Sect.
??.

Remark 1. The notion of parallel time, which is common when considering the
uniformly random scheduler (cf. [16, 17]), is not used in this study. When using
this measure of time, it is assumed that each agent participates in an expected number
Θ(1) of interactions per time unit. With the uniformly random scheduler, this time

1An event Ξ is said to occur w.h.p., if P(Ξ) ≥ 1− 1
nc , where c ≥ 1.
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measure is asymptotically equal to the number of interactions divided by n. However,
with non-uniformly random scheduler, this is no more true.

3.3 Lower Bounds on the Expected Convergence Time

We now give two nontrivial lower bounds on the expected convergence time of data
collection protocols. The �rst one (Th. 6) only depends on the number of agents.
The second one (Th. 7) depends on the speci�c values of the probability matrix P
used by the scheduler. The bounds are incomparable in general. To obtain the
bounds, we observe that, for performing data collection, each agent has to interact
at least once (otherwise, its value simply would not be delivered), and we com-
pute the expected time ensuring that. The proof of Th. 6 uses an analogy with a
generalization of the classical coupon collector's problem, which we introduce next.

Let k be a positive integer. Given a probability distribution (p1, . . . , pk) on
[k] = {1, . . . , k}, the corresponding k-coupon collector's problem is de�ned by its
coupon sequence (X1, X2, . . . ) of independent and identically distributed (i.i.d.) ran-
dom variables with P(Xt = i) = pi for all i ∈ [k] and all t ≥ 0. The k-coupon
collector's problem's expected time is the expectation of the earliest time T such
that {X1, . . . , XT } = [k], i.e., all coupons were collected at least once.

More generally, given a set A of subsets of [k] such that
⋃
A∈AA = [k], and a

probability distribution (pA) on A, the corresponding A-group k-coupon collector's
problem is de�ned by its coupon group sequence (X1, X2, . . . ) of i.i.d. random vari-
ables with P(Xt = A) = pA for all A ∈ A and all t ≥ 0. Its expected time is the
expectation of the earliest time T such that

⋃T
t=1Xt = [k], i.e., all coupons were

collected in at least one coupon group.
Given an integer 1 ≤ g ≤ k, the g-group k-coupon collector's problem is the

A-group k-coupon collector's problem where A =
{
A ⊆ [k] | |A| = g

}
. This general-

ization of the classical coupon collector's problem has been studied, among others,
by Stadje [124], Adler and Ross [5], and Ferrante and Saltalamacchia [56].

The following lemma characterizes the probability distributions that lead to a
minimal expected time for the group coupon collector's problem. To the best of
our knowledge, this is a new result which generalizes the characterization in the
classical coupon collector's problem [59, 95], for which it is known that the uniform
distribution leads to the minimal expected time.

Lemma 6. The expected time of any A-group k-coupon collector's problem is greater
than or equal to the B-group k-coupon collectors problem with uniform probabilities
where B ⊆ A is of minimal cardinality such that

⋃B = [k].
In particular, the expected time of any g-group k-coupon collector's problem is

Ω(k log k) for every constant g ≥ 1.

Proof. We say that a set B ⊆ A of coupon groups is covering if
⋃B = [k].

For every B ⊆ A, denote by TB the time until all coupon groups in B appear at
least once in the coupon group sequence. Denoting by T the time until all coupons
appear at least once in the coupon group sequence, we have

T = min
{
TB | B is covering

}
. (3.1)
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For every covering B, let FB be the event that B is the �rst covering coupon group
set to completely appear in the coupon group sequence. The law of total expectation
gives

E(T ) =
∑

B covering

E
(
T | FB

)
· P(FB) ≥ min

B covering
E
(
T | FB

)
. (3.2)

By de�nition of FB, we have E
(
T | FB

)
= E

(
TB | FB

)
. The latter is greater than

or equal to the expected time of a |B|-collector's problem, which can be seen by
shifting probabilities of non-B coupon groups into B. By [95, Theorem 1], this time
is then at most that of the B-coupon collector's problem with uniform probabilities,
i.e., |B|H(|B|) where H(m) =

∑m
`=1 1/` denotes the mth harmonic number. This

proves the �rst part of the lemma.

To show the second part, we note that dk/ge coupon groups of size g are needed
to cover the set [k], i.e., |B| ≥ dk/ge, which means

E(T ) ≥
⌈
k

g

⌉
·H
(⌈

k

g

⌉)
∼ k

g
· log

k

g
= Ω(k log k) (3.3)

as k →∞ if g is a constant.

Theorem 6. The expected convergence time of any protocol solving data collection
with non-uniformly random scheduler is Ω(n log n).

Proof. For data collection, each agent has to transfer its value at least once, and the
base station has to receive values at least once. Therefore, in any execution, each
agent has to interact at least once. The expected time of every agent interacting
at least once is that of a 2-group n-coupon collector's problem, i.e., is Ω(n log n) by
Lemma 6.

Theorem 7. The expected convergence time of any protocol solving data collection
with random scheduler S(P ), is Ω(max

i

1∑n
j=1(Pi,j+Pj,i)

).

Proof. For any agent i, it is required at least
∑n

j=1 1/(Pi,j+Pj,i) time in expectation
to establish one interaction. Thus, to complete one data collection, for which it is
required that each agent interacts at least once, it takes at least max

i

1∑n
j=1(Pi,j+Pj,i)

expected time.

The next corollary considers a very simple protocol solving the data collection
problem. In this protocol, agents transfer their values only when they interact with
the base station. We consider it as a reference, to compare with other proposed
protocols. The corollary follows from Th. 7.

Corollary 3. With random scheduler S(P ), the expected convergence time of the
protocol solving data collection and where each agent transfers its value only to the
base station is Ω(max

i
1/(Pi,BST + PBST,i)).
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3.4 Protocol �Transfer To the Faster� (TTF)

Corollary 3 formalizes the straightforward observation that, if the only transfers
performed by the agents are towards the base station, the convergence time depends
on the slowest agent i. It can be very large, e.g. if Pi,BST + PBST,i � 1/n2.
Therefore, to obtain better time performances, we propose to study another data
collection protocol based on the idea of the TTF protocol of [26]. In the sequel, the
studied protocol is called TTF too, since its strategy is the same and there is no
risk of ambiguity. The only di�erence is the de�nition of the cover time parameter
(Sect. 3.2) used by this strategy (as explained in Sect. 3.1).

The strategy of TTF is simple. When agent i meets a faster agent j, i transfers
to j all the values it has in its memory (recall that transfer means to copy to the
memory of the other and erase from its own). The intuition behind is that the faster
agent j is more likely to meet the base station before i. Of course, whenever any
agent i meets the base station, it transfers all the values it (still) has in its memory
at that time to the base station. As a matter of fact, no transition depends on
the actual value held by the agents. It depends only on the comparison between
cover times, which are constants. Thus, the input values can be seen as tokens and
the states of every agent can be represented by the number of tokens it currently
holds. Recall, that in this study, it is assumed that each agent has enough memory
for storing the tokens (i.e., an O(n) memory), and each pair of agents interacts
in�nitely often (i.e., the interaction graph is complete).

The sequel concerns analytical results on the time performance of TTF. Firstly,
we associate to each con�guration a vector of non-negative integers representing the
number of tokens held by each agent. Then, it is shown that the evolution of such
vectors during executions can be expressed by a stochastic linear system. Next,
Twhp(TTF) is expressed in terms of distances between the con�guration vectors
(Th. 8) and, by applying stochastic matrix theory ([77, 113, 130]) an upper bound
on Twhp(TTF) is obtained (Th. 9). Finally, using this result, we obtain also an
upper bound on the convergence time in expectation, TE(TTF) (Th. 10).

Formally, we represent a con�guration by a non-negative integer vector x ∈ Nn

that satis�es
∑n

i=1 xi = n− 1. By abusing the terminology, we sometimes call such
a vector a con�guration. We denote the con�guration vectors' space by V. By
convention, the �rst element of x is the number of tokens held by the base station.
Since, at the beginning of an execution, every mobile agent owns exactly one token
and no token is held by the base station, the initial con�guration is xinit = 1− e1,

where ei =
(
0, . . . , 0, 1, 0, . . . , 0

)T
is the n × 1 unit vector with the ith component

equal to 1. The terminal con�guration is xend = (n− 1)e1.

Let x(t) ∈ V be the discrete random integer vector that represents the con�guration
just after the tth interaction in executions of TTF. We can see that P(x(0) = xinit) =
1, and since the base station never transfers tokens to others, P(x(t+ 1) = xend) ≥
P(x(t) = xend). Moreover, since at any moment there is a positive probability
for delivering any of the tokens to the base station, limt→∞ P(x(t) = xend) = 1.
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Furthermore, the time complexities of TTF can be formalized using x(t) by

TE(TTF) =

∞∑

t=1

t · (P(x(t) = xend ∧ x(t− 1) 6= xend))

and

Twhp(TTF) = inf
{
t | P(x(t) = xend) ≥ 1− 1

n

}
.

To evaluate these time complexities, we study the evolution of x(t) during ex-
ecutions of TTF. Given time t, consider a transition rule applicable from a con-
�guration represented by a vector vt and resulting in a con�guration with vector
vt+1. Suppose that at time t, the interaction (i, j) is chosen by the scheduler. If
neither i nor j are the base station and if i is faster than j (cvi < cvj), agent
j transfers all its tokens to i. Thus, vt+1

i = vti + vtj and vt+1
j = 0. The rela-

tion between vt and vt+1, in this case, can be expressed by the linear equation
vt+1 = W (t + 1)vt, where W (t + 1) = I + eie

T
j − eje

T
j ∈ {0, 1}n×n. If cvi = cvj ,

no token is transferred and vt+1 = vt. We still have vt+1 = W (t + 1)vt, but with
W (t+1) = I. On the other hand, if j is the base station,W (t+1) = I+eie

T
j −eje

T
j ,

as agent i transfers all of its tokens to the base station.
As the pair of agents is chosen independently with respect to P , W (t + 1) can be
seen as a random matrix such that with probability Pi,j + Pj,i:

W (t+ 1) =

{
I + eie

T
j − eje

T
j if cvi < cvj or i = 1 or j = 1

I if cvi = cvj
(3.4)

By comparing the resulting probability distributions, we readily verify that the
relation between x(t) and x(t+1), i.e., x(t+1) = W (t+1)x(t), is a stochastic linear
system with the matrices speci�ed in (3.4).

Distance. Consider a function dγ(x) : V → R. It associates any x in V to a
real number representing a �weighted� Euclidian norm distance between the con-
�guration vector x and the vector representing a terminal con�guration. That is,
dγ(x) = ||(x− xend) ◦ γ||2, where γ ∈ Rn is a real vector, ◦ the entry-wise product,
and || · ||2 the Euclidean norm. The vector γ can be viewed as a weight vector. We
choose γ in such a way that, if there is a transfer of tokens in interaction t + 1,
then dγ(vt+1) is smaller than dγ(vt). Intuitively this means that, when a transfer is
performed, the resulting con�guration is closer to termination.

Lemma 7. Let i and j be two agents with cvi < cvj. Consider an interaction
between i and j in a con�guration represented by vt and resulting in vt+1. If γj/γi ≥√

2n− 3, then dγ(vt+1) ≤ dγ(vt).

Proof. During an interaction (i, j) where i is faster than j, j transfers its tokens to
i. Suppose that agent i holds a tokens in vt. To ensure dγ(vt+1) ≤ dγ(vt), it su�ces
to have ((a + 1)2 − a2)γ2

i ≤ γ2
j , which is equivalent to γj/γi ≥

√
2a+ 1. If agent

j has tokens, agent i cannot have more than n − 2 tokens in vt, thus a ≤ n − 2.
Therefore, if γj/γi ≥

√
2n− 3, the lemma is satis�ed.
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Recall that m ≤ n denotes the number of cover time categories (Sect. 3.2).

Theorem 8. The convergence time with high probability of TTF, Twhp(TTF), is

equal to inf
{
t | P

(
dγ(x(t))
dγ(xinit)

< (2n)
−(m−1)

2

)
≥ 1− 1/n

}
if γBST = 0 and γj/γi ≥

√
2n

whenever cvi < cvj.

Proof. Given a con�guration vector vt at time t, if vt 6= xend, we have dγ(vt) ≥ γmin

where γmin = min{γi | i 6= BST}. Further, using the relation γj/γi ≥
√

2n, we have

dγ(xinit) = ||γ||2 ≤
√∑m−2

i=0 (2n)i + (n−m+ 1)(2n)m−1 ≤
√

(2n)(m−1)/2. There-

fore, if vt 6= xend, we have
dγ(vt)
dγ(xinit)

≥ 1
||γ||2 ≥ (2n)−(m−1)/2.

Thus, if vt satis�es
dγ(vt)
dγ(xinit)

< (2n)−(m−1)/2, it is necessarily the terminal con�g-

uration. Since Twhp(TTF) = inf{t | P(x(t) = xend) ≥ 1 − 1/n}, we obtain the
result.

We are now ready to state and prove the main upper bound on the convergence
time of TTF, Twhp(TTF) (Th. 9). For that, we apply the stochastic matrix theory
to the stochastic linear system de�ned above for x(t).

Without loss of generality, we assume that cv2 ≤ cv3 ≤ · · · ≤ cvn. We choose
γ ∈ Rn by setting γ1 = 0, γ2 = 1, and γi+1 = γi, if cvi+1 = cvi, and γi+1 = γi

√
2n,

if cvi+1 > cvi. In particular, γn = (2n)(m−1)/2.

Theorem 9. With a non-uniformly random scheduler S(P ), the convergence time
of TTF is at most m log 2n

log λ2(W̃ )−1
with high probability, where γ is de�ned above. Γi,j =

γi/γj, W̃ =
∑

i<j∧cvi<cvj

(Pi,j + Pj,i)W
Γ2

ij +
∑

i<j∧cvi=cvj

(Pi,j + Pj,i)I, W
Γ2

ij = I +

Γi,j(eie
T
j + eje

T
i ) + (Γ2

i,j − 1)eje
T
j , and λ2(A) denotes the modulus of the second

largest eigenvalue of matrix A.

Proof. Firstly, we study the evolution of the vectors y(t) =
(
x(t)− xend

)
◦ γ, which

appear in the formulation of Twhp(TTF) (Th. 8). As xend = (n− 1)e1 and γ1 = 0,
y(t) reduces to x(t) ◦ γ. Since x(t+ 1) = W (t)x(t), we obtain

y(t+ 1) = x(t+ 1) ◦ γ =
(
W (t)x(t)

)
◦ γ = WΓ(t)y(t) (3.5)

where WΓ(t) = W (t) ◦Γ is the entry-wise product and matrix Γ ∈ Rn×n has entries
Γi,j = γi/γj when j 6= 1 and Γi,1 = 0 for all i ∈ {1, . . . , n}. Hence we get:

E
(
y(t+ 1)T y(t+ 1) | y(t)

)
= y(t)T E

(
WΓ(t)T ·WΓ(t)

)
y(t) (3.6)

From (3.4), we know that with probability Pi,j+Pj,i, matrixWΓ(t)T ·WΓ(t) is equal
to {

I + Γi,j(eie
T
j + eje

T
i ) + (Γ2

i,j − 1)eje
T
j if cvi < cvj or i = 1 or j = 1

I if cvi = cvj
(3.7)

Then, setting WΓ2

ij = I + Γi,j(eie
T
j + eje

T
i ) + (Γ2

i,j − 1)eje
T
j , we have:

W̃ = E
(
WΓ(t)T ·WΓ(t)

)

=
∑

i<j∧cvi<cvj

(Pi,j + Pj,i)W
Γ2

ij +
∑

i<j∧cvi=cvj

(Pi,j + Pj,i)I (3.8)
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In particular:

W̃1,1 = 1 and W̃i,1 = W̃1,i = 0 for all i ∈ {1, . . . , n} (3.9)

SinceWΓ(t)T ·WΓ(t) is symmetric and positive semi-de�nite, so is its expectation W̃ .
Now, we turn to study the properties of the eigenvalues in W̃ . By (3.9), matrix W̃
is of the form

W̃ =




1 0 · · · 0
0
... W ′

0


 (3.10)

for some W ′ ∈ R(n−1)×(n−1). Denoting the kth largest eigenvalue of matrix A by
λk(A), we have λ1(W ′) ≤ ‖W ′‖∞ = max1≤i≤n

∑n
j=1W

′
i,j where ‖·‖∞ denotes the

operator norm with respect to the supremum norm on Rn−1, i.e., the largest 1-norm
of rows of the matrix. According to (3.8), the ith row sum of W̃ is

n∑

j=1

W̃i,j =
∑

w 6=i

∑

v 6=w
Pw,v +

∑

j:cvj=cvi

(Pi,j + Pj,i) (3.11)

+
∑

j:cvj<cvi

Γ2
j,i(Pi,j + Pi,j) +

∑

j:cvj>cvi

Γi,j(Pi,j + Pi,j) (3.12)

for all i ∈ {2, . . . , n}. As Γi,j = γi
γj
< 1 whenever cvi < cvj , we obtain

∑
jW

′
i,j < 1

for all i. By the block decomposition (3.10), we thus have λ1(W̃ ) = 1 and

λ2(W̃ ) = λ1(W ′) ≤ ‖W ′‖∞ = max
i

∑

j

W ′i,j < 1 . (3.13)

Now, using the Rayleigh quotient, we have:

E
(
y(t+ 1)T y(t+ 1) | y(t)

)
≤ λ2(W̃ ) · ‖y(t)‖22 (3.14)

Repeatedly using (3.14), we obtain the bound

E‖y(t)‖22 = E
(
y(t)T y(t)

)
≤ λ2(W̃ )t‖y(0)‖22 . (3.15)

Applying Markov's inequality, we obtain

P

(
dγ(x(t))

dγ(xinit)
≥ (2n)

−(m−1)
2

)
= P

( ‖y(t)‖22
‖y(0)‖22

≥ (2n)−(m−1)

)

≤ (2n)m−1 ‖y(t)‖22
‖y(0)‖22

(3.16)

≤ (2n)m−1λ2(W̃ )t (3.17)

Thus, if (2n)m−1λ2(W̃ )t ≤ 1/n, i.e., t ≥ m log 2n

log λ2(W̃ )−1
, then P

(
dγ(x(t))
dγ(xinit)

≥ (2n)
−(m−1)

2

)
≤

1/n. So, we obtain Twhp(TTF) ≤ m log 2n

log λ2(W̃ )−1
.
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Now, we study the performance of TTF with respect to the convergence time in
expectation, i.e. TE(TTF).

Theorem 10. The expected convergence time of the TTF protocol is O
(

m logn

log λ2(W̃ )−1

)

where W̃ is the matrix appearing in Theorem 9.

Proof. Let T be the convergence time and Tθ = inf
{
t | P(x(t) = xend) > 1− θ

}
=

inf
{
t | P(T ≥ t) ≤ θ

}
. Analogously to (3.17) in Th. 9, we know that

Tθ ≤
log 2n(m−1)θ−1

log λ(W̃ )−1
=

(m− 1) log 2n

log λ(W̃ )−1
+

log(1/θ)

log λ(W̃ )−1
= A+B log(1/θ) . (3.18)

Since T is a non-negative random number, we have

TE(TTF) =
∞∑

t=1

P(T ≥ t)

= P(T ≥ 1) + P(T ≥ 2) + ...+ P(T ≥ Tθ) +

∞∑

t=1+Tθ

P(T ≥ t)

≤ Tθ +

Tθ/2∑

t=1+Tθ

P(T ≥ t) +

Tθ/4∑

t=1+Tθ/2

P(T ≥ t) + ...

≤ Tθ + Tθ/2 · θ + Tθ/4 · θ/2 + ... = Tθ +
∞∑

i=1

Tθ/2i ·
θ

2i−1

≤ Tθ +
∞∑

i=1

(A+B log
2i

θ
) · θ

2i−1

= Tθ +Aθ ·
∞∑

i=1

1

2i−1
+Bθ · (log 2 ·

∞∑

i=1

i

2i−1
+ log θ−1

∞∑

i=1

1

2i−1
)

= Tθ + (Aθ +Bθ log θ−1) ·
∞∑

i=1

1

2i−1
+ 2Bθ log 2 ·

∞∑

i=1

i

2i

≤ (1 + 2θ) ·A+B log(1/θ) + 4Bθ log 2

Choosing θ = 1/n leads to

TE(TTF) ≤ (m− 1)[(1 + 2/n) log 2n] + [(1 + 2/n) log n+ log 16/n]

log λ2(W̃ )−1
.

3.5 Lazy TTF

The strategy of TTF may result in a long execution when an input value is trans-
ferred many times before being �nally delivered to the base station. These transfers
are certainly energy consuming. Then a natural issue is to transform TTF in order
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to save energy, while keeping the time complexity as low as possible. The idea is
to prevent certain data transfers, for example, when it is more likely to meet soon
a faster agent and thus possibly make fewer transfers in overall. We propose a
simple protocol based on TTF, called lazy TTF. In contrast with TTF, lazy TTF
does not necessarily execute the transition resulting from an interaction. It chooses
randomly to execute it or not. Formally, during an interaction (i, j), with agent i
acting as initiator, TTF is executed with probability pi, where p ∈ Rn is a vector of
probabilities.

Notice that the choice of executing TTF depends uniquely on the initiator i. In
practical terms, an initiator represents an agent that, by sensing the environment,
has detected another agent j. At this moment i takes the random decision (with
probability pi) whether a TTF transition should be executed and the interaction
itself should take place, or not. In the latter case, not only the energy for the
eventual data transfer is saved, but also the energy for establishing the interaction.

Observe that when p is the vector of all ones, lazy TTF behaves as TTF and
its energy consumption is the same as for TTF. However, when p is the vector of
all zeros, lazy TTF does not solve the problem of data collection as no value is ever
transferred to the base station, but no energy is consumed for transferring of data
or establishing interactions.
Depending on p, time complexities of lazy TTF can be worse than of TTF, given
the same scheduler. At the same time, longer executions of lazy TTF may be more
energy e�cient. Thus, there is a trade-o� between time and energy performance
depending on the values of p. We now investigate the choice of p for obtaining good
time-energy trade-o�. Firstly, we give upper bounds on the time complexities of
lazy TTF. Then, we introduce an optimization problem that takes p as a variable.
Finally, numerical results in Sect. 3.6 demonstrate energy e�ciency of lazy TTF,
given the optimal p.

3.5.1 Convergence time of lazy TTF

To obtain an upper bound on the convergence time of lazy TTF, we show a particular
equivalence of lazy TTF under scheduler S(P ) with TTF under scheduler S(P ◦ (p ·
1T )), where 1 is the vector of all ones and ◦ presents the entry-wise product. This
equivalence is on the level of distribution of con�gurations of the two protocols.
Precisely, as we show below, the random vector x(t) for these two protocols is
exactly the same, allowing to use Th. 9 to obtain a time complexity upper bound
for lazy TTF.

Let us express x(t) for lazy TTF in a similar way as we did before for TTF in
Sect. 3.4. First, P(x(0) = xinit) = 1 is the same as for TTF. Then, x(t + 1) =
W (t+1)x(t) andW (t+1) can be seen as a random matrix such that, with probability
Pi,j × pi + Pj,i × pj , W (t + 1) is as in Eq. 3.4. Notice that x(t) in case of TTF
under S(P ◦ (p · 1T )) is expressed exactly in the same way (Sect. 3.4). Thus, by
applying Th. 9 for TTF under S(P ◦ (p · 1T )), we obtain the upper bound on
Twhp(lazy TTF(p)).

Theorem 11. With a non-uniformly random scheduler S(P ), the convergence time
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with high probability of lazy TTF is at most m log 2n

log λ2(W̃ )−1
,

where W̃ =
∑

cvi<cvj

(Pi,jpi + Pj,ipj)W
Γ2

ij +
∑

cvi<cvj

(Pi,j(1− pi) + Pj,i(1− pj)I

+
∑

cvi=cvj

(Pi,j + Pji)I, and WΓ2

ij = I + Γi,j(eie
T
j + eje

T
i ) + (Γ2

i,j − 1)eje
T
j .

(3.19)

Then, the upper bound on TE(lazy TTF(p)) can be obtained in the same way as
in Th. 10.

To summarize, note that, as executions of lazy TTF are equivalent to those
of TTF under S(P ◦ (p · 1T )) in the sense explained above, one can imagine that
lazy TTF transforms the matrix of interaction probabilities "on the �y" (during
executions). It can be also seen as if it transforms the interaction graph itself.
Indeed, certain vectors p may make some pairs of agents to interact with extremely
small probability (or not interact at all), thus e�ectively remove these pairs from
the graph. This is illustrated by the numerical results given in Section 3.6.2 . Next,
we are looking for vectors p, optimizing an upper bound on the time performance
of lazy TTF(p) to ensure a good time energy trade-o�. Equivalently, we are looking
for schedulers (matrices P ) for which the original TTF is e�cient in this sense.

The goal is to �nd a vector p minimizing the upper bound on Twhp(lazy TTF(p))
(Th. 11). To that end, an optimization program OP1, taking p as a variable, is
proposed as follows:

OP1 : min
p∈Rn

λ2(W̃ )

s.t Eq. 3.19

0 ≤ pi ≤ 1 ∀i ∈ {1, ..., n}

By Th. 11, minimizing the upper bound of Twhp(lazy TTF(p)) is equivalent to
minimizing the second largest eigenvalue of W̃ . According to Appendix A.2.2, OP1

can be reformulated as a semi-de�nite programOP2 (Appendix A.2), which is convex
and can be solved in polynomial time.

OP2 : min
p∈Rn,s

s

s.t sI − W̃ � 0

Eq. 3.19

0 ≤ pi ≤ 1 ∀i ∈ {1, ..., n}

Let p̂ be the optimal solution of OP2. We can see that if p̂ is all ones vector, lazy
TTF(p̂) performs as TTF. Otherwise, lazy TTF(p̂) outperforms TTF in terms of
the upper bounds on time. This optimized upper bound ensures that lazy TTF(p̂)
converges in a reasonable time. In the next section, by the numerical results obtained
for di�erent small examples, we demonstrate the e�ciency of lazy TTF(p̂), in terms
of energy consumption.
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Figure 3.1: Relation between Twhp(TTF) and Tupp(TTF).

3.6 Numerical Results

3.6.1 The relation between Twhp(TTF) and its upper bound

The goal of this section is to justify the relevance of the method for obtaining the
optimal probability vector p for lazy TTF. To justify this, we show by simulation
that the time upper bound value for TTF is well correlated with the exact value of
its time complexity (calculated by Markov chains, for small systems). This implies
the same correlation for lazy TTF, because the bounds in Th. 9 and Th. 11 are
obviously well correlated too (one is obtained from the other; see Sect. 3.5). That
is why the optimal probability vector p for the upper bound of lazy TTF is close to
the optimal vector for the real (tight) convergence time.
From Th. 9, we have an upper bound on time w.h.p. for TTF, denoted here
by Tupp(TTF). In this section, we show the relation between Tupp(TTF) and
Twhp(TTF). In our experiment, two systems of size 4 and 5 are considered and 100
schedulers are generated randomly for each system. Since the system is of small size,
for each scheduler s, the exact value of T swhp(TTF) can be obtained by constructing
the corresponding Markov Chain. The upper bound, T supp(TTF), can be calculated
by Th. 9. Then, for every generated s, we plot T swhp(TTF) and T supp(TTF) on the
�gure with x-axis for Twhp(TTF) and y-axis for Tupp(TTF).

From Fig. 3.1, we can see that Tupp(TTF) has a nearly linear relation with
Twhp(TTF). It means that Tupp(TTF) in Th. 9 captures well the relation of the
scheduler's behavior to the time performance of TTF in most of the cases. Moreover,
it demonstrates that, for lazy TTF, minimizing Twhp(lazy TTF(p)) in Sect. 3.5 is
reasonable for improving the energy performance.

3.6.2 TTF vs. Lazy TTF(p̂) in terms of time complexity bounds

The comparison is made considering the upper bounds given in Th. 9 and Th. 11.
The justi�cation (by numerical experiments) that such a comparison makes sense
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appears in Sect. 3.6.1. The main goal of this section is to illustrate the e�ect of the
application of the optimal vector p̂ on TTF and its scheduler, in the sense explained
in Sect. 3.5.

The numerical experiments, in this section, are performed as follows. First, we
generate randomly the probability matrix P to simulate a non-uniformly random
scheduler S(P ). Here, we present results for 3 representative schedulers. Second, by
solving OP2 (Sect. 3.5), we get the best p̂ for lazy TTF(p) and we compare the upper
bounds on convergence time w.h.p. of TTF and of lazy TTF(p̂) (Th. 9 and Th. 11,
see Tab. 3.1). At last, we interpret the values of p̂ for a better understanding of
lazy TTF (Fig. 3.3).

The systems under consideration are composed of four agents, the base station
(BST), the fastest agent f , the slowest agent nf2, and an intermediate non-fastest
agent (nf1). Thus, cvf < cvnf1 < cvnf2 .
The matrix P , for each considered S(P ) of the three, is encoded by edge labels in a
complete interaction graph corresponding to the considered population. The three
schedulers are depicted in Fig. 3.2. In the graph (a), take for instance the label
0.021 between f and BST. It means that the probability that the next interaction
concerns the fastest agent (as initiator) and BST, is 0.021.

(a) (b) (c)

Figure 3.2: Graph illustrations for three random schedulers.

Table 3.1 below presents the numerical results for each scheduler given in Fig.
3.2. The second column gives the vector p̂ in the order [BST, f, nf1, nf2]. The
third and forth columns present the upper bounds on the time w.h.p. for TTF and
lazy TTF(p̂), computed using Th. 9 and Th. 11 respectively and rounded down to
integers.

S p̂ TTF lazy

a [1, 1, 0, 0] 80 67
b [1, 0.35, 1, 0] 23 22
c [1, 1, 1, 1] 13 13

Table 3.1: Time complexity of TTF vs. lazy TTF(p̂).

Lines a and b in Table 3.1 show that the tentative to save energy by inhibiting
some interactions, e.g., p̂nf2(a) = 0 and p̂nf2(b) = 0, is not really signi�cant for the

54



Section 3.6. Numerical Results

execution time bounds (80 vs. 67, 23 vs. 22). In line c (in case of scheduler (c),
Fig. 3.2) lazy TTF behaves as TTF.

As explained in Sect. 3.5, lazy TTF(p̂) under S(P ) is equivalent to TTF under
S(P ′), where P ′i,j = Pi,j × p̂i, ∀(i, j) ∈ E. Fig. 3.3 presents the interaction graphs
encoding P ′ for schedulers (a) and (b).

Observe that according to graph (a) in Fig. 3.2, for both nf1 and nf2, the
probability to meet BST is about the same (0.092+0.122 = 0.214 vs. 0.065+0.156 =
0.221). Moreover, the probability for a token to be transferred to BST from nf1 or
nf2 through f is very small. Thus, when meeting nf1, a better heuristic for nf2 is
to wait for meeting BST, rather than to transfer tokens to nf1. The value obtained
for p̂ con�rms this heuristic, since p̂nf1 = p̂nf2 = 0 (line a, Table 3.1).
According to graph (b), Fig. 3.2, nf1 and nf2 have a better probability to meet
BST than f . Thus, when nf1 or nf2 meets f , transferring tokens to f does not
seem to be a good choice. This intuition is con�rmed by the computed value for p̂,
since f executes TTF with a small probability 0.35 (line b, Table 3.1).

(a') (b')

Figure 3.3: Resulting schedulers with p̂.

3.6.3 Gaps on time and energy between TTF and Lazy TTF(p̂)

For the energy consumption analysis, we consider the energy model proposed in Sect.
2.2 for population protocols. In this model, an agent senses its vicinity by proximity
sensor, consuming a negligible amount of energy [112]. Once the interaction is
established, each participant consumes a �xed amount of energy Ewkp (mainly for
switching on its radio, which is known to be very energy consuming; cf.[111]). Now,
recall that, with lazy TTF, the choice of executing TTF depends on the probability
pi of the initiator i. If TTF should not be executed, the initiator does not proceed
to establish the interaction (i.e., Ewkp is not spent), as explained in Sect. 3.5.

We study the expectation of the total energy consumption of a protocol P, de-
noted E(P). According to the energy scheme explained above, E(P) is evaluated
by the expected total energy spent for establishing all the interactions till conver-
gence. It is proportional to the time expectation TE(P). In particular, E(TTF) =
2TE(TTF) ·Ewkp and E(lazyTTF(p)) = 2TE(lazy TTF(p))×∑i

∑
j(Pi,jpi+Pj,ipj)×

Ewkp.
For the systems of small size with a scheduler s, the exact values of T sE(TTF)

and T sE(lazy TTF(p̂s)) can be calculated by constructing the corresponding Markov
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Chain. In the experiments, systems of size 4,5,6,7 and 8 are considered and for each
size n, 10000 di�erent schedulers are generated randomly. Denote by S(n) the set
of these schedulers. For each scheduler s ∈ S(n), T sE(TTF), p̂s, T sE(lazy TTF(p̂s)),
Es(TTF) and Es(lazy TTF(p̂s)) are evaluated. Then, the gaps on time and on
energy between lazy TTF(p̂s) and TTFs are denoted by Gap(TE, n) and Gap(E , n),
respectively, and are computed as follows.

Gap(TE, n) =


 ∑

s∈S(n)

T sE(lazy TTF(p̂s))− T sE(TTF)

T sE(TTF)


 /10000

and

Gap(E , n) =


 ∑

s∈S(n)

Es(lazy TTF(p̂s))− Es(TTF)

Es(TTF)


 /10000.

Size n Gap(TE, n) Gap(E , n)

4 11.60% -15.32%
5 17.10% -23.60%
6 22.04% -30.79%
7 26.31% -36.99%
8 27.41% -39.07%

Table 3.2: Gaps on time and energy.

Results appear in Table. 3.2. In column 3, it can be seen that lazy TTF consumes
less energy than TTF for all systems. Lazy TTF saves at least 15% of energy. The
counterpart is (a slight) increase in the execution time, as shown in column 2.
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Chapter 4

An Optimization Model for Data

Collection in Wireless Body Area

Networks

4.1 Wireless Body Area Networks

Power consumption characteristics of WBAN. WBAN di�er from the other
WSN considering the speci�c characteristics of the wireless environment on the
human body. First, during the communication, bio-sensors produce heat, which
is absorbed by the surrounding tissue and thus increases the temperature of the
body. Thus, the transmit power of each bio-sensor is strictly limited. Secondly, for
the convenience of wearing and implantation, bio-sensors are tiny and lightweight.
Therefore, they have limited energy resources, memory space and computational
power. Furthermore, it may be hard to recharge or change the batteries of bio-
sensors, specially of those which are implanted into human's body. Thus, a long
lifetime is necessarily required for bio-sensors and for WBAN. For example, a glucose
monitor would require a lifetime of more than 5 years.

Therefore, unlike the traditional WSN, where the maximum throughput of data
and minimal routing overhead are the �rst requirements on the designs, the energy
problem is the �rst concern and challenge in WBAN. The goal of all designs in every
layer of WBAN, is to make the network energy-e�cient. For instance, in [55], the
authors propose an energy e�cient medium access control (MAC) protocol referred
to as BodyMAC which uses �exible bandwidth allocation to improve node energy
e�ciency. Besides, it includes a new e�cient sleep mode so as to reduce the idle
listening duration.
Nowadays, WBAN has been standardized by IEEE 802.15.6 in physical and MAC
layers which provide low complexity, low cost and ultra-low power communication
in or around the human body. Readers can refer to surveys [85, 94, 131] for an
overview of the development of WBAN in recent years.

This chapter will focus on designing energy e�cient data collection protocol for
WBAN, using optimization methods. First, a minmax multi-commodity net-�ow
formulation is presented to schedule the routing of data to the base station, which is
a mixed integer linear program (Sect. 4.2). This optimization model minimizes the
worst power consumption of each bio-sensor plus the total heating costs produced by
the nodes subject to �ow conservation and maximum power available constraints for
each node. Then a variable neighborhood search (VNS) meta-heuristic procedure is
proposed to compute tight near optimal solutions (Sect. 4.3) of this model. Finally,
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preliminary numerical results for the VNS approach are provided when compared
to the optimal solution of the problem (Sect. 4.4).

This work has been published in ICORES 2014 [4].

4.2 Problem Formulation

We model a �xed WBAN by the means of a graph G = (V,E), where V denotes the
set of sensor (bio-sensor) nodes and E is a set of directed arcs. The assumption of
directed arcs is valid for WBANs since before any message is transmitted, the route
between the source and the destination can be established using Ad-hoc On-demand
Distance-Vector routing (AODV) protocols. Without loss of generality, we assume
that every node has a �xed initial power capacity Cap ∈ R+. The set of nodes
V is composed of a subset of source nodes Vs which sense and collect the data to
be transmitted, a set of intermediate transmitters VI and a set of sink nodes Vt
where all data is received. For each node j ∈ V we de�ne the sets δ−(j) = {i ∈
V : (i, j) ∈ E} and δ+(j) = {i ∈ V : (j, i) ∈ E}. We denote by C the set of
commodities to be transmitted, where each commodity c ∈ C consists of routing
Dc packets from a source node i ∈ Vs to a destination node j ∈ Vt. Let ei,j be the
unitary energy needed for transmission of packets on arc (i, j) ∈ E and de�ne the
total energy consumption of node j ∈ V as

∑
c∈C

∑
i∈δ−(j) ei,jDcf

c
i,j where Dcf

c
i,j

is the number of packets of commodity c transmitted on arc (i, j). Note that this
amount of energy is computed under the assumption that the transmission energy
requirement is negligible compared to the energy required for receiving packets at
each node. This is a valid assumption since an extremely low transmit power per
node is required in short range ultra-wide band in WBANs, and thus the e�ort
is considerably higher when the nodes are receiving packets [118]. Moreover, this
allows signi�cant energy saving when using network coding techniques with the
objective of providing reliability under lower-energy constraints [21]. We consider
the following multi-commodity net�ow formulation denoted hereafter by P0 as

P0 : min
f,x

{
∑

i∈V
aixi + max

j∈V

∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j} (4.1)

s.t.
∑

j∈δ+(i)

f ci,j −
∑

j∈δ−(j)

f cj,i = bci ,∀i ∈ V,∀c ∈ C (4.2)

∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j ≤ Cap× xj ,∀j ∈ V (4.3)

−xi ≤ bci ≤ xi, ∀i ∈ V,∀c ∈ C (4.4)

f ci,j ∈ [0, 1],∀(i, j) ∈ E, c ∈ C (4.5)

xi ∈ {0, 1},∀i ∈ V (4.6)

where the �ow variables f ci,j represent the fraction of commodity c ∈ C to be trans-
mitted on an arc (i, j) ∈ E. The binary variables xi, i ∈ V are used to decide
whether node i ∈ V will be active when transmitting packets through the network.
The objective function in (4.1) is to minimize the total heating costs ai, i ∈ V pro-
duced by bio-sensors, which are placed in the body of a patient plus the worst case
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power consumption of each active node in the network. The later is a crucial aspect
in a WSN since by de�nition, its lifetime is equal to the minimum lifetime of all
nodes in the network [121]. In other words, the network lifetime ends as soon as
any node runs out of battery. Let bci be equal to 1 if node i ∈ Vs, or be equal to
−1 if node i ∈ Vt, and zero otherwise. Constraint (4.2) are �ow conservation con-
straints for each node i ∈ V and for each commodity c ∈ C while constraint (4.3)
imposes the condition that each node has a maximum available power to receive
packets in the network. Note that this constraint is forced to be equal to zero when
its respective node is set to an inactive state condition. Constraint (4.4) imposes
the condition that all sources and sink nodes must always be active, otherwise the
network can not sense or relay the collected data toward the base station. Finally,
constraints (4.5)-(4.6) are the domain constraints. Note that model P0 can be easily
converted into a mixed integer linear programming (MILP) problem, denoted by
P1, by introducing an upper bounding variable z instead of using the max term in
its objective function.
We remark that model P1 provides an optimal routing strategy. However, it does
not consider other technical aspects such as broadcasting control �ows and organi-
zation of the network. The routing strategy is mandatory in WBANs as it allows
signi�cant power savings when transmitting sensed data through the network.

P1 : min
f,x

z +
∑

i∈V
aixi

s.t. z ≥
∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j , ∀j ∈ V

∑

j∈δ+(i)

f ci,j −
∑

j∈δ−(j)

f cj,i = bci ,∀i ∈ V,∀c ∈ C

∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j ≤ Cap× xj ,∀j ∈ V

−xi ≤ bci ≤ xi,∀i ∈ V,∀c ∈ C
f ci,j ∈ [0, 1], ∀(i, j) ∈ E, c ∈ C
xi ∈ {0, 1},∀i ∈ V

In the next section, we introduce a variable neighborhood search meta-heuristic
approach to compute near optimal solutions for P1.

4.3 Near Optimal Solution: Meta-heuristics approach

Meta-heuristics are simple algorithmic procedures commonly used to �nd near op-
timal (suboptimal) solutions for combinatorial optimization problems. In practice,
they have been proven to be highly e�ective when solving several hard problems.
Especially when the dimension of the problem increases rapidly, which is often the
case in real world applications, and when no solver is available to solve these prob-
lems to optimality. The most frequently utilized meta-heuristics approaches are
genetic algorithms [73], tabu search [62], ant colony system [50], particle swarm op-
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timization [82], variable neighborhood search [70], simulated annealing [1], among
others. For a more detailed on meta-heuristics, refer to the book [63].

4.3.1 Variable neighborhood search

Variable Neighborhood Search (VNS) was �rst proposed by Hansen and Mladenovic
and used the idea of neighborhood change during the descent toward local optima
while avoiding the valleys that contain them [70]. There are three essential consec-
utive phases in VNS procedure: shake, local search and move. These three phases
are repeated until a certain criteria set by the user is reached. Note that, before the
start of VNS, a pre-selected neighborhood structure should be de�ned according
to the optimization problem, i.e., for each solution x, we de�ne Nk(x) the set of
solutions in the kth neighborhood of x.
We give a short explanation here for each phase of VNS. In the shake phase, the
algorithm jumps randomly from the current solution x to another solution x′ in
Nk(x). Then, a local search starting with x′ (e.g. Greedy algorithm) is launched,
and a local optimum solution x′′ is returned at the end of the local search phase.
During the move phase, the algorithm decides whether x′′ is kept as optimal solution
and the value of k (neighborhood structure parameter) for the next interaction.

4.3.2 Communication topology

In WBAN, several types of communication topology are proposed and considered in
di�erent situations, e.g. star, tree [114], mesh [21, 33]. The most common topology
is a star, where the nodes are connected to a central coordinator in star manner [131].
However, the star con�guration follows a single hop strategy which is not always
the best choice. In [114], the authors discuss about energy e�cient topology design
for WBANs. They consider a tree network topology and discuss on the energy
savings when using single hop and multi hop strategies. They conclude that the
distance between nodes plays an important role and that both single hop or multi
hop strategies achieve energy savings under di�erent conditions. In [33], authors
show that for nodes located far away from the base station, single hop is ine�cient
with respect to energy consumption and network reliability. Therefore, relay nodes
are designed and implemented for delivering data, which constructs a mesh topology
in WBAN.
Here, we consider the mesh topology, which is a valid assumption in WBAN as it
provides more reliable communications when using cooperative and diversity coding
transmission schemes with enhanced throughout [21]. As depicted in Fig. 4.1, bio-
sensors are placed in each stage. In particular, stage 1 consists of the source nodes
and stage 2 to the �nal stage consist of intermediate nodes. Finally one node is
acting as a sink (base station) to receive all sensed and collected information sent
by the source nodes through the network. We denote by Nst the number of nodes
placed at stage st ∈ {1, ..., ST} where ST refers to the �nal stage in Fig. 4.1.
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Figure 4.1: WBAN with mesh topology

4.3.3 Design of VNS for WBAN problem

In principle, a genetic algorithm or a tabu search approach would serve to compute
feasible solutions for our proposed multicommodity �ow formulation in a straightfor-
wardly manner. Here, we choose VNS mainly due to its simplicity and low memory
requirements. In particular, we adopt a reduced VNS strategy which drops the local
search phase of the basic VNS algorithm as it is the most time consuming step [70].
In order to compute feasible solutions for problem P1 using a VNS approach, we
observe that for any �xed assignment of vector x in P1, the problem reduces to solve
the following linear programming problem

P̄1(x) : min
f

z

s.t. z ≥
∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j , ∀j ∈ V

∑

j∈δ+(i)

f ci,j −
∑

j∈δ−(j)

f cj,i = bci ,∀i ∈ V,∀c ∈ C

∑

c∈C

∑

i∈δ−(j)

ei,jDcf
c
i,j ≤ Cap× xj ,∀j ∈ V

f ci,j ∈ [0, 1], ∀(i, j) ∈ E, c ∈ C

There are 2|N |−|Ns|−|Nl| feasible assignments for vector x in P1. It is obvious
that some of them are not feasible as they might turn problem P̄1(x) infeasible. We
propose a VNS approach to compute feasible solutions for P1 by randomly generating
these binary vectors.
We de�ne the neighborhood structureNk(x) for P1 as the set of neighbor solutions x

′

in P1 at a distance "k" from x, where the distance "k" corresponds to the Hamming
distance between the binary vectors x and x′.

The VNS approach is presented in Protocol 4. Steps 0-1 give an initial solution
to P1 and Step 2 is the main VNS procedure to obtain a near optimal solution.
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Protocol 4 VNS algorithm

1: Input: a problem instance of P1

2: Output: a feasible solution (x̃, f̃ , ṽ) for P1

3: Step 0:
4: Time← 0; k ← 1;
5: count← 0; xi ← 0, ∀i ∈ V \Vs ∪ Vt;
6: xi ← 1,∀i ∈ Vs ∪ Vt;
7: Step 1:
8: for st = 2 to St do
9: r ← min(ai, i ∈ Vst)
10: xr ← 1
11: (x̄, f̄ , v̄)← Solve the linear problem P̄1(x).
12: v̄ ← v̄ +

∑
i∈V aix̄i

13: (x̃, f̃ , ṽ)← (x̄, f̄ , v̄)
14: Step 2:
15: while Time ≤ maxTime do
16: for j = 1 to k do
17: choose randomly i′ ∈ VI
18: if xi′ = 0 then
19: xi′ ← 1
20: else
21: xi′ ← 0
22: (x̄, f̄ , v̄)← Solve the linear problem P̄1(x).
23: v̄ ← v̄ +

∑
i∈V aix̄i

24: if v̄ < ṽ then
25: k ← 1; (x̃, f̃ , ṽ)← (x̄, f̄ , v̄)
26: Time← 0; count← 0
27: else
28: Keep previous solution
29: count← count+ 1
30: if (k ≤ |VI |) and (count > η) then
31: k ← k + 1; count← 0
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Initialization: We denote by (x̄, f̄ , v̄) the solution returned by solving the linear
program P̄1(x) where v̄ represents the objective function value of P̄1(x). We initialize
all the required variables in Step 0. Then in Step 1, we obtain an initial feasible
assignment for vector x, by simply setting one node r at each stage st to be active,
where r = min{ai, i ∈ Nst}. This allows solving P̄1 and obtaining an initial feasible
or infeasible solution (x̃, f̃ , ṽ) for P1 that we keep.

VNS details: During the execution of the while loop in VNS algorithm, if for any
x, the model P̄1(x) is infeasible, then the solution x is discarded and not considered
as a valid solution. In the shake phase (line 16-21), VNS is performed by randomly
assigning binary values in k ≤ |NI | positions of vector x where these positions belong
to the set NI . From line 24 to line 31, it is the move phase of our VNS algorithm.
Initially, k ← 1 while it is increased in one unit, when there is no improvement after
a certain number (η) of solutions have been evaluated. On the other hand, if a new
current solution is better than the best found so far, then k ← 1, the new solution
is recorded and the process goes on. The whole process is repeated until the cpu
time variable "Time" is less than or equal to the maximum available "maxTime".
Note that we set "Time ← 0" when a new better solution is found. This gives the
possibility to search other "maxTime" units of time with the hope of �nding better
solutions.

4.4 Numerical Results

We �rst present preliminary numerical results for the proposed VNS approach using
only one sample for the input data of the instances. Subsequently, as the proposed
model has two con�icting objectives, we provide preliminary numerical comparisons
for P1 while adopting a weighted sum criteria for the objective function of P1 while
adopting a weighted sum criteria for the objective function of P1 in order to analyze
the behavior of the model. Finally, we compute average numerical results.

4.4.1 Numerical results for the VNS algorithm

Parameter settings. In order to present preliminary numerical results for prob-
lem P1 using the proposed VNS, the input data is randomly generated as follows.
The entries in matrix (eij) are uniformly drawn from [0, 1] while the heating costs
ai, i ∈ V and packets Dc, c ∈ C are uniformly distributed in [0, 10]. The maximum
energy available for each node is set equal to Cap = 0.4×∑i∈V ei,1×

∑
c∈C Dc/|C|.

The value of η in the VNS algorithm is calibrated to 20. We set the maximum num-
ber of commodities be equal to |C| = |Vs|, i.e., we assume that each source node
can only sense one type of commodity. This is a valid assumption as bio-sensors are
usually designed for sensing specialized information in a WBAN. Finally, we set the
parameter maxTime = 100.

Implementation. A matlab program is implemented using CPLEX 12 to solve
problem P1, its linear programming relaxation, and each P̄1(x) within each iteration
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Table 4.1: Numerical results for the VNS algorithm

of the VNS algorithm. The numerical experiments have been carried out on a
Pentium IV, 1 GHz with 2 GoBytes of RAM under windows XP.

In Table. 4.1, column 1 shows the number of nodes considered in each instance.
Columns 2 and 3 show the number of stages and number of nodes per stage for
each of the instances, respectively. Columns 4 and 5 provide the optimal solution
of P1 and the cpu time in seconds needed by CPLEX, respectively. Columns 6
and 7 provide the optimal solutions for the LP relaxation of P1 and the cpu time
respectively. Similarly, columns 8 and 9 show the best solution found with our VNS
algorithm and its cpu time in seconds, respectively. Finally, columns 10, 11 and
12 give the gaps for the LP relaxation, the gaps for the initial solution of VNS
and the gaps for the �nal solution of VNS, respectively. The gaps are computed
as GapLP = (P1−LP1

P1
)× 100 for the LP case, GapIniV NS = (V NSini−P1

P1
)× 100 for the

initial solution obtained with the VNS algorithm and GapV NS = (V NS−P1
P1

)×100 for
the best solution found with VNS, respectively. The numerical results presented in
Table. 4.1 are computed using only one sample for the input data of each instance.

From Table. 4.1, we mainly observe that the gaps obtained with the VNS algo-
rithm are near optimal for all the instances we test, e.g., not larger than 3% from
the optimal solution of the problem. Regarding the cpu times, we observe that
the VNS approach requires more time when the number of stages is less than the
number of nodes per stage. Furthermore, this cpu time is even larger than the cpu
time required by CPLEX. This is mainly caused by the fact that the VNS algorithm
needs to solve many linear programs in this case. Ultimately, we observe that the
gaps obtained when using the initial solutions found with VNS are not very tight
which shows somehow the e�ectiveness of the VNS approach. On the other hand,
when the number of stages is larger than the number of nodes per stage, we observe
that the VNS algorithm is signi�cantly faster than CPLEX. Moreover, in this case
we see that the initial solution found with the proposed algorithm is very tight and
in some cases optimal, e.g. this is the case for instances with 49 and 61 nodes. In
particular, we see that the cpu time required by CPLEX becomes prohibitive for
some of these instances. Finally, we observe that the gaps obtained with the LP
relaxation of P1 are far from the optimal solution of the problem.
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Table 4.2: Numerical results for weighted objectives

4.4.2 Weighted objective function

In order to explore the behavior of model P1 when the two con�icting objectives
have di�erent degree of importance, we adopt a weighted objective function criteria
and write the objective function in P1 as

min
f,x

αz + (1− α)
∑

i∈V
aixi, (4.7)

where α ∈ [0, 1]. From a practical point view, the weighted objective function in
(4.7) provides an alternative way to handle the trade-o� between the total heat
generated on patients with more delicate skin versus power energy savings in order
to maximize the network lifetime. This would allow to avoid possible hazardous
damages on the patients.

In Table. 4.2, we present preliminary numerical results for di�erent values of
parameter α and for three instances having di�erent number of nodes, stages and
nodes per stage. More precisely, in column 1 we give the value of α. In columns
2,3 and 4,5, we present the optimal function value of P1 (resp. LP1) and their cpu
time in seconds needed by CPLEX, respectively. Finally, column 6 shows the gaps
for the LP relaxation which are computed exactly as in Table. 4.1. Without loss of
generality, the input data is randomly generated exactly as for Table. 4.1 as well.

From Table. 4.2, we mainly observe that the gaps of the LP relaxation goes to
zero when the value of α← 1. This means that solving the LP relaxation of P1, in
this case, su�ces to obtain the optimal solution of the problem. On the opposite,
when 0 ≤ α < 1, the gaps of its relaxation deteriorates considerably which turns
the problem more di�cult to solve.

4.4.3 Average numerical results

In order to provide more insight regarding our VNS algorithm, we further present
average numerical results for the instances presented in Table. 4.1. These results
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Table 4.3: Average numerical results for the VNS algorithm

are presented in Table. 4.3 and the column information is exactly the same as for
Table. 4.1. We generate 50 samples for the input data of the instances in row 1−13.
While for the instances in rows 14 − 16, we use only 10 samples to compute the
averages as their cpu times become highly prohibitive. In particular, we arbitrarily
set the maximum time for CPLEX to solve these instances be at most 3600 seconds.

From Table. 4.3, we observe similar trends as in Table. 4.1 concerning the gaps
obtained with VNS. They are no larger than 3.5% for all the instances tested, com-
pared to the optimal solution of the problem. We also see that the cpu times required
by the VNS approach are larger than those required by CPLEX, e.g., the instances
in rows 1-9. While for the instances in rows 10-16, CPLEX requires more cpu time.
In particular, the instances in rows 14-16 require a huge amount of cpu time using
CPLEX while the VNS algorithm �nds very tight near optimal solutions with gaps
no larger than 2% in less than 25 seconds approximately. Another observation is
that the initial solutions obtained with VNS approach are not feasible for instances
in rows 1-8, i.e., at least in one of the 50 samples, the initial solution was infeasible.
Conversely, �nding initial solutions for instances in rows 9-16 is easier. In general,
the gaps of initial solutions are not larger than 10%. Finally, the gaps obtained with
the LP relaxation of P1 are not tight, compared to the optimal solution. We note
that the LP gaps deteriorate signi�cantly when the number of stages is larger than
the number of nodes per stage which is the cases for instances in rows 9-16.

4.5 Conclusion

In this chapter, we proposed a minmax multi-commodity net�ow formulation to
optimally route data packets in a health-care wireless body area network. The aim of
the model is to minimize the worst power consumption of each bio-sensor node over
the body of a patient plus the total heating costs subject to �ow conservation and
maximum capacity energy constraints. The model is formulated as a mixed integer
linear program. Thus, we proposed a variable neighborhood search procedure to
obtain near optimal solutions. Preliminary numerical results indicate that the VNS
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approach obtains near optimal solutions with integrality gaps no larger than 3.5%.
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Chapter 5

Stochastic Semide�nite

Optimization Using Sampling

Methods

5.1 Introduction

It is well known that optimization models are used for decision making as it �nds
the best solution from all the feasible solutions. In the traditional models, all the
parameters are assumed to be known, which con�icts with many real world prob-
lems. For instance, in portfolio problems, the return of assets are uncertain [103].
Further, real world problems almost invariably include some unknown parameters,
e.g., random demands in power, gas networks, random obstacles in robotics and
random precipitation in power production [86, 144]. As a result, the problem is
often modeled with random constraints, as shown below:

min
x∈Rn

f(x)

s.t. G(x, ξ) ≥ 0 (5.1)

x ∈ X,

where ξ ∈ Rd is a random vector with distribution F and support Ξ 1, X is a
deterministic feasible region, 0 ∈ Rm is a vector of zeros and f :Rn → R, G:Rn ×
Rd → Rm are given mapping functions.

In chapter 3, we enhanced population protocols with uniformly random sched-
uler, where agent i meets agent j with (discrete) probability Pi,j during an inter-
action. However, it happens that the measure of Pi,j in the system may be not
precise, i.e., the value of Pi,j is uncertain. Under the assumption of uncertainty, the
optimization program OP2 for the parametrized lazy TTF protocol (3.20), which
takes Pi,j as parameter, has random constraints exactly like (5.1).

Since the methods developed for deterministic optimization are not applicable to
the model with random constraints, stochastic programming is proposed to handle
this uncertainty, which combines the concepts of optimization theory with the theory
of probability and statistics (See [116] for lectures on stochastic programming).

In this chapter, we focus on chance constrained programs [40], one branch of
stochastic programming, which is widely applied in �nancial industry for risk man-
agement [89], in engineering for safety requirement [93], in power system manage-
ment [86, 144].

1The support of a random vector is the set of values that it can take.
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5.1.1 Chance constrained programs

To deal with the random constraints (5.1), if we suppose that Ξ is a �nite set, one
substitution for (5.1) is G(x, ξ) ≥ 0, ∀ξ ∈ Ξ, which ensures an absolutely robust
solution, since every feasible solution of the resulting deterministic program satis�es
every possible values of ξ ∈ Ξ (worst-case analysis). However, the resulting pro-
gram is obviously expensive to be solved, whereas feasible solutions may not ever
exist. On the other hand, another substitution G(x,E[ξ]) ≥ 0, which takes only
the expectation of each parameter into account (average-case analysis), converts the
origin program to a deterministic one easy to solve. But its solution may have no
robustness against the perturbations of parameters. As a result, another type of
constraints, called chance constraints, are designed for a balance between the ro-
bustness of the solution and the solvability of the program, which was �rst proposed
in [40] to deal with an industrial problem. And the corresponding program is called
chance constrained program (CCP), de�ned as follows:

CCP : min
x∈Rn

f(x)

s.t. Pr{G(x, ξ) ≥ 0} ≥ 1− ε (5.2)

x ∈ X,

where ε ∈ (0, 1] is a risk parameter. Usually, ε is a small value ensuring the con-
straints to be satis�ed with high probability, i.e., the solution has an �acceptable"
performance under most realizations of the uncertain parameters.

In real world, many problems can be modeled with constraints like (5.2). For
example, in power management system, since wind and solar energy contain many
uncertainties to be predicted, depending on the weather and the location, a power
plant should be designed to meet energy demand at least to a certain con�dence
level (1− ε). In �nancial investment, since market conditions are unpredictable, an
investment should be guaranteed to a certain amount of returns at a high con�dence
level. Moreover, in the design of safety in the system, which requires fault tolerance
and reliability, chance constrained program is also useful. Readers can refer to
[47, 71, 107] for a background of CCP and some convexity theorems.

5.1.2 Methods to solve chance constrained program

In order to circumvent CCP, we usually consider tractable approximation. For
instance, convex approximation [98, 99] is a way which analytically generates de-
terministic convex problems which can be solved e�ciently. However, it requires
to know the structure of the distribution and structural assumptions on the con-
straints. Another way is simulation-based approach based on Monte-Carlo sampling,
for example the well-known scenario approach [36, 37, 100].

Scenario approach. Scenario approach is easy to be understood, where random
parameters are sampled under their distributions, which turns the origin model
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(CCP) to a deterministic one, as shown below:

CCP-SA : min
x∈Rn

f(x)

s.t. G(x, ξi) ≥ 0,∀i ∈ {1, · · · , N}
x ∈ X,

where N is the number of samplings and the samplings (scenarios) ξ1, · · · , ξN are
assumed to be independently chosen from the distribution F . In [37], the authors
proved that CCP-SA yields a feasible solution to CCP with probability at least
1− β, given that

N ≥ d2
ε

log(
1

β
) + 2n+

2n

ε
log(

2

ε
)e, (5.3)

supposing X is a convex set and G(x, ξ) is a convex function.

Scenario approach with constraint removal. However, the solution of CCP-
SA is possibly too conservative compared to the optimal solution of CCP. In [103],
the authors showed this conservativeness by testing a portfolio selection problem.
Thus, to enhance the performance of CCP-SA, in [38], the authors developed a
sampling-and-discarding approach which removes some sampling constraints from
CCP-SA, and thus results in a less conservative solution. They gave theoretical
proofs, showing that when the number of discarded constraints k satis�es

(
k

k + n− 1

) k+n−1∑

j=0

(
N

j

)
εj(1− ε)N−j ≤ β, (5.4)

the solution of the reduced model (with optimal constraint removal) remains feasible
for CCP and intact with probability at least 1− β.

A greedy algorithm was proposed in [104], to select the constraints to be removed
by solving multiple problems of the form CCP-SA. In details, at each iteration i, an
initial program of form CCP-SA with N−i+1 constraints is solved to determine the
set of ni candidate constraints to be removed. Next, each candidate constraint is
removed at a time and we solve the corresponding CCP-SA with N − i constraints.
After that, the constraint whose removal yields the greatest diminution (in our case)
in the objective value, is chosen to be discarded. The greedy algorithm requires
solving 1 +

∑k
i=1 ni programs of form CCP-SA. Recent work of [61] presented a

precise procedure of this algorithm on control design.

Although the calculation is more expensive here compared with CCP-SA, it
allows a less conservative solution.

Sample average approximation. Besides scenario approaches, sample average
approximation [88] is another simulation-based approach widely studied and applied,
in which some of the sampled constraints are allowed to be violated. The model is
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shown below.

CCP-SAA : min
x∈Rn

f(x)

s.t.
1

N

N∑

i=1

I(G(x, ξi) ≥ 0) ≥ 1− α

x ∈ X,

where α ∈ [0, ε) and I(y) : {True, False} → {0, 1} is the indicator function which
equals to one when y is true, and zero otherwise.

We can see that when α = 0, CCP-SAA is equivalent to CCP-SA. In [88], the
authors proved that supposing X is a �nite set of size less then Un, every feasible
solution to CCP-SAA will be feasible to CCP with probability at least 1− β, given
that N ≥ 1

2(ε−α)2
log( 1

β ) + n
2(ε−α)2

log(U). Thus, N has a quadratic dependence on

ε − α, indicating that N grows quite large for α near ε. The advantage of sample
average approximation is that we do not need to solve CCP-SAA to optimality
to obtain a solution to CCP and the solution is less conservative than the one of
CCP-SA even though more samplings are required.

In [88], the authors conduct experiments on the probabilistic set cover problem
and probabilistic transportation problem. Both are modeled in forms of mixte-
integer programs. Let Pr{G(x, ξ) 6≥ 0} be the risk of solution x. The results show
that using α > 0 and a larger sample size in CCP-SAA yields solutions with smaller
risks than using α = 0 and a small sample size. More important, optimal solutions
obtained in CCP-SAA are less conservative than the optimal solutions of CCP-SA,
i.e., smaller �nal values are obtained in our case. Readers can refer to [105] for
applications of CCP-SAA.

5.1.3 The problem

In this chapter, we study chance constrained semide�nite program (CCSDP), which
will be de�ned explicitly later in Sect. 5.2. This model has been used to study
minimum-volume invariant ellipsoid problem in control theory [43], design problems
in RC circuit [151]. Moreover, the example given previously in the introduction
considering lazy TTF protocol (the model OP2), if we look into its formulation
taking matrix P as random parameters, it can also be modeled as a CCSDP. Thus,
we are interested in this chapter to understand how to solve CCSDP e�ciently. For
the related work and applications of CCSDP, readers can refer to [20, 145, 151].

5.1.4 Overview

This chapter is organized as follows. In Sect. 5.2, the mathematical formulation
of CCSDP is presented. In Sect. 5.3, scenario approaches applied to CCSDP are
presented and our novel simulation-based method is introduced. To illustrate its
strength, in Sect. 5.4, a well known CCSDP problem in control theory is studied
and numerical experiments are conducted to compare our results with the state-of-
the-art. In the end, a conclusion is given.

This work has been published in ICORES 2015 [142, 143].
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5.2 Chance Constrained Semide�nite Programs

To study chance constrained semide�nite programs, we start by a more generalized
model, called conic program with chance constraints (CCC) 2:

(CCC): min{f(x) : Pr{G(x, ξ) ∈ K} ≥ 1− ε, x ∈ X},

where x ∈ Rn is a vector of decision variables, X is a deterministic feasible region,
ξ ∈ Rd is a random vector supported by a distribution Ξ ⊆ Rd, K ⊂ Rl is a closed
convex cone 3, G : Rn ×Rd → Rl is a random vector-valued function and ε is a risk
parameter given by a decision maker.

Setting K to a positive semide�nite cone which is a closed convex cone (See
Prop. 2 in Appendix), we have chance constrained semide�nite program (CCSDP).
Formally,

(CCSDP) min{f(x)x∈X : Pr{F (x, ξ) � 0} ≥ 1− ε},
where F (x, ξ) � 0 is a linear matrix inequality (See Appendix A.2).

5.3 Simulation-based Approximation

To solve CCSDP, the classical simulation-based methods presented in Sect. 5.1.2 can
be applied. Firstly, we show explicitly how to apply scenario approach and sample
average approximation to CCSDP (Sect. 5.3.1 and 5.3.2). Then, a novel method
which combines these two is introduced in Sect. 5.3.3.

5.3.1 Scenario approach

According to Sect. 5.1.2, the approximation of classical scenario approach is:

(CCSDP-SA) min{f(x)x∈X : F (x, ξi) � 0,∀i = 1, ..., N}

where N is the number of samplings and ξi is a random sample.

5.3.2 Sample average approximation - Big-M sampling approach

To adopt sample average approximation (Sect. 5.1.2) to CCSDP, we introduce the
"big-M" function with integer variables y to be the indicator function. Then, we
have the following tractable approximation:

(CCSDP-BM) minx,y f(x)

s.t. F (x, ξi) + yiMI � 0, ∀i ∈ 1, ..., N
N∑

i=1

yi ≤ ε×N

x ∈ X, y ∈ {0, 1}N ,
2A conic optimization problem consists of minimizing a convex function over the intersection

of an a�ne subspace and a convex cone.
3A convex cone is a subset of a vector space over an ordered �eld that is closed under linear

combinations with positive coe�cients
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where I is an identity matrix and M is a large constant.

We see that if yi = 1, the constraint F (x, ξi)+yiMI � 0 is satis�ed for any can-
didate solution x, including those x ∈ {x|F (x, ξi) 6� 0, x ∈ X} discarded by scenario
approach (CCSDP-SA). Therefore, CCSDP-BM is less conservative than CCSDP-
SA. However, since CCSDP-BM introduces the binary variables, which makes the
model NP-hard. It requires a great e�ort on computation.

5.3.3 Combination of Big-M and constraints discarding

To have a balance between the conservativeness of the solution and the computation
e�orts, a new method combining the sampling average approximation and scenario
approach is proposed.

At the �rst step, we solve a relaxed CCSDP-BM model, where y is no more
an integer vector but a real vector whose values are between zero and one. Then,
the resulting relaxed solution y helps us to select the set of removal constraints
from CCSDP-SA. The idea of removing constraints was �rst proposed in [38] (See
Sect. 5.1.2). We suppose that the optimal value of yi ∈ [0, 1] obtained by solving
the relaxed CCSDP-BM, indicates the probability of discarding the corresponding
constraint. Because when yi is close to one, the solution x obtained in CCSDP-BM
violates the constraint F (x, ξi) � 0 in CCSDP-SA with high probability. So the
constraints F (x, ξi) � 0 in CCSDP-SA whose yis are large, can then be discarded,
which returns back a reduced CCSDP-SA model. One can use the criterion given
in (5.4) to decide the number of constraints to be discarded. At last, we solve this
new reduced model.

In a word, we make use of a relaxed sample average approximation for CCSDP to
generate a reduced sampling model CCSDP-SA. Using this method, only two convex
SDP programs are needed to be solved. We obtain a less conservative solution than
the one obtained in CCSDP-SA (Sect. 5.3.1), while it costs less on computation
compared with the method in Sect. 5.3.2.

5.4 Numerical Experiments

To show the strength of our method proposed to solve CCSDP, we conduct numer-
ical experiments. The problem that we choose to test our method is a minimum-
volume invariant ellipsoid problem in control theory [43], whose classical mathe-
matical model is a semide�nite program. Firstly, we present the problem and its
mathematical model with random parameters (Sect. 5.4.1). Then, in Sect. 5.4.2, we
explicitly show the models obtained by our method and by two other scenario ap-
proaches (Sect. 5.1.2): the classical one and the one with greedy constraint removal.
In Sect. 5.4.3, the instances and the implementation in our experiments are given.
Finally, numerical results are given (Sect. 5.4.4).
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5.4.1 Control system problem

First of all, we state out the considered problem in control theory and its mathe-
matical model. Consider the following discrete-time controlled dynamical system:

x(t+ 1) = Ax(t) + bu(t), t = 0, 1, ...

x(0) = x̄,

where A ∈ Rn×n and b ∈ Rn are system speci�cations, t is the index of discrete
time, x̄ ∈ Rn is the initial state and u(t) ∈ [−1, 1] is the control at time t. For
such control system, the interest is to characterize the evolution of x(t) so that its
stability on the initial state x̄ can be determined. We say that a control system
is stable, if there exists a controlled invariant set S that any state starting from S
remains inside S. Thus, the controlled invariant set de�nes the safe region for the
initial state.

There are two important families of controlled invariant set for control systems:
ellipsoids and polyhedral sets4. An ellipsoid is expressed by:

E(Z) = {x ∈ Rn : xTZx ≤ 1},
where Z is a symmetric positive de�nite matrix.5

For the control system de�ned above, it has been shown that an invariant ellip-
soid E(Z) exists if and only if ||A|| < 1 and there exists a λ ≥ 0 such that

[
1− bTZb− λ −bTZA
−ATZb λZ −ATZA

]
� 0. [97]

Then, a natural optimization problem for this control system is proposed, aim-
ing to �nd such an invariant ellipsoid with the minimum-volume, i.e., to have
arg minZ Vol(E(Z)) where Vol(E(Z)) denotes the volume of ellipsoid E(Z). Since
the above condition is a linear matrix inequality, the corresponding optimization
model belongs to a semide�nite program (Appendix A.2). Notice that, Vol(E(Z))
is proportional to (detZ)−1/n, where detZ denotes the determinant of matrix Z.

Till now, we consider a deterministic control system. But in this chapter, we
suppose that the system speci�cation b is corrupted with noises, i.e., b is a vector
of random parameters. Under this assumption, the original optimization problem is
then formulated as a set of CCSDPs [43], which is {CCMVIE(λ), λ ∈ D}:
CCMVIE(λ) : max

w∈R,Z∈Rn×n
w

s.t. w ≤ (detZ)1/n

Pr
{[ 1− bTZb− λ −bTZA

−ATZb λZ −ATZA

]
� 0
}
≥ 1− ε

Z � 0,

where D = {0.00, 0.01, ..., 0.99, 1.00} is a �nite set, b and A are system speci�cations
and ε ∈ (0, 1] is the risk parameter.

4A polyhedral set is {x ∈ Rn : Ax ≤ b} for a matrix A ∈ Rm×n and b ∈ Rm.
5A symmetric real matrix M is said to be positive de�nite if the scalar zTMz is positive for

every non-zero column vector z of n real numbers.
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5.4.2 Experiment approaches

In our experiments, three models are tested to solve CCMVIE(λ) respectively. The
�rst one comes from the classical scenario approach explained in Sect. 5.3.1, the
second one refers to the scenario approach with greedy constraint removal (Sect.
5.1.2) and the last one is the application of our proposed method (Sect. 5.3.3). In
the sequel, we present these three models.

I: Scenario approach. According to Sect. 5.3.1, we obtain the following model
{CCSC(λ), λ ∈ D} with

CCSC(λ) max w

s.t. w ≤ (detZ)1/n

[
1− bTi Zbi − λ −bTi ZA
−ATZbi λZ −ATZA

]
� 0, ∀i = {1, ..., N}

Z � 0,

where N is the number of samplings.

II: Scenario approach with greedy constraints removal. The greedy algo-
rithm for constraint removal is presented in Sect. 5.1.2. The �nal solution is obtained
by solving the following sample counterpart (SP) of CCMVIE(λ).

CCSP(λ) : max w

s.t. w ≤ (detZ)1/n

[
1− bTi Zbi − λ −bTi ZA
−ATZbi λZ −ATZA

]
� 0,∀i = {1, ..., N} − A

Z � 0,

where A is the set of the indexes of the k removed constraints obtained by the greedy
procedure.

III: Our method. According to Sect. 5.3.3, our method contains two parts. First,
we solve the following relaxed "big-M" model CCRBM(λ) and obtain the solution
of y ∈ RN :

CCRBM(λ) max w

s.t. w ≤ (detZ)1/n

[
1− bTi Zbi − λ −bTi ZA
−ATZbi λZ −ATZA

]
+ yiMI � 0,∀i = 1, ..., N

N∑

i=1

yi ≤ ε×N

Z � 0

0 ≤ yi ≤ 1,∀i = 1, ..., N.
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Procedure:

1. For each λ ∈ D:

(a) Solve CCRBM(λ) and obtain the relaxation values of y,

(b) Determine the set A of removed constraints according to y,

(c) Solve CCSP(λ), and let v(λ) be the objective value and Z(λ) be the
corresponding solution.

2. Return Z(λ∗) as the optimal solution, where λ∗ = argmaxλ∈Dv(λ).

Figure 5.1: The procedure of our simulation-based method

We sort the elements of y in descending order and take the �rst k indexes into set
A = {i1, ..., ik}. Then, we solve CCSP(λ). The whole procedure of our method for
obtaining the �nale matrix Z is shown in Fig. 5.1.

5.4.3 Design of the experiments

Data. We use the same instances as in [43]. We have two groups of data.

Data 1 : A =

[
−0.8147 −0.4163
0.8167 −0.1853

]
, b̄ =

[
1

0.7071

]
,

ε = 0.05, ρ = 0.01, β = 0.05

Data 2 : A =




0 2 0 0 0
0 0 0.0028 0.0142 0
0 0 0 1 0
0 0 −0.0825 −0.4126 0
1 0 0 0 0



,

b̄ =




0
0.0076

0
−0.1676

0



, ε = 0.03, ρ = 0.001, β = 0.05,

where β is a parameter needed to decide the sample size N and number of removal
constraints k. We assume that bi = b̄i + ρξi,∀i = 1, ..., n where b̄i ∈ R is the
nominal value, ρ ≥ 0 is a �xed parameter to control the level of perturbation and
ξi is a standard Gaussian random variable.

Selecting the Sample Size and the Number of Constraints to be Removed.

As we have shown previously in Sect. 5.1.2, the minimum number of samplings to
ensure the feasibility of solution can be calculated by (5.3). For each sample size
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N , according to (5.4), the number of constraints to be removed is calculated as
following :

k = bεN − d+ 1−
√

2εNIn
(εN)d−1

β
c, (5.5)

where d is the dimension of the matrix Z.

For data 1, we consider four sample sizes: N = 400, 600, 800 and 1000. For each
sample size, in addition to the k obtained by (5.5), we vary the ratio of k/N from
0.03 to 0.05 to study the in�uence of k on the result.

For data 2, we consider three sample sizes: N = 1000, 1200 and 1400. Similar
to data 1, in addition to the k obtained by (5.5), we vary the ratio of k/N from 0.02
to 0.03.

Implementation.

All experiments are run under MATLAB R2012b on a Windows 7 operating system
with i7 CPU 2GHz and 4GB of RAM. The computations are performed using CVX
2.1 [64]6 with semide�nite program solver SeDuMi [125].7

5.4.4 Numerical results

Table 5.1 and Table 5.2 provide the computational results of Data 1 and Data 2 re-
spectively. N presents the sampling number. k is the number of removal constraints
and k/N is the corresponding ratio. We use the average linear size measure for el-
lipsoid, which is de�ned as ALS(E(Z)) = (Vol(E(Z))1/n) [43]. Readers can refer to
page 265 in [97] for the motivation of using this measure. The smaller the volume
of an ellipsoid is, the smaller its average linear size is. The columns SC, Greedy,
BMSP give the average linear size of ellipsoid obtained by scenario approach (I
of Sect. 5.4.2), scenario approach with greedy constraint removal (II of Sect. 5.4.2)
and our method (III of Sect. 5.4.2), respectively. 1−V io shows the satisfaction rate
of each solution estimated under 100000 simulated random samples. Gap presents
the gap between the solution of the current method and the solution of the scenario
approach.

Table 5.3 shows the CPU time expressed in seconds. The columns SC, Greedy,
BMSP show the average CPU time of all tests in Table 5.1 and Table 5.2 when
applying scenario approach, scenario approach with greedy constraint removal and
our method respectively.

We observe that the real violation is signi�cantly below 5% and 3% respectively
in Tables 5.1 and 5.2. It is easy to see that as k increases, we obtain a better solution
both with scenario approach with greedy constraint removal and with our method;
and the violation of the solution is larger. The reason is that more constraints we
remove, the larger feasible set of CCSP(λ) we obtain, which involves more violated

6cvx is a modeling system for disciplined convex programming.
7SeDuMi is an add-on for MATLAB, which solves optimization problems with linear, quadratic

and semide�nite constraints.
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Table 5.1: Results for Data 1 with ε = 0.05, ρ = 0.01, β = 0.05

N k k/N SC 1-Vio Greedy 1-Vio Gap(%�) BMSP 1-Vio Gap(%�)

400 - 4.1348 0.9988 - - - - - -
3 0.008 4.1328 0.9988 0.5 4.1234 0.9948 2.7
12 0.030 4.1309 0.9992 0.9 4.1090 0.9902 6.3
16 0.040 4.1190 0.9928 3.8 4.1065 0.9842 6.9
20 0.050 4.1148 0.9818 4.8 4.0988 0.9767 8.8

600 - 4.1438 0.9988 - - - - - -
9 0.015 4.1098 0.9884 8.2 4.1095 0.9892 8.3
18 0.030 4.1060 0.9829 9.1 4.1025 0.9811 10.0
24 0.040 4.1050 0.9835 9.3 4.0976 0.9744 11.2
30 0.050 4.1043 0.9799 9.5 4.0962 0.9720 11.5

800 - 4.1482 0.9998 - - - - - -
15 0.019 4.1151 0.9891 7.9 4.1138 0.9923 8.2
24 0.030 4.1106 0.9917 9.0 4.1066 0.9859 10.0
32 0.040 4.1083 0.9883 9.6 4.1028 0.9781 10.9
40 0.050 4.1047 0.9846 10.4 4.0990 0.9776 11.8

1000 - 4.1455 0.9994 - - - - - -
22 0.022 4.1228 0.9968 5.4 4.1124 0.9889 7.9
30 0.030 4.1221 0.9938 5.6 4.1066 0.9865 9.4
40 0.040 4.1144 0.9916 7.5 4.1027 0.9791 10.3
50 0.050 4.1050 0.9861 9.7 4.0974 0.9734 11.6

Table 5.2: Results for Data 2 with ε = 0.03, ρ = 0.001, β = 0.05

N k k/N SC 1-Vio Greedy 1-Vio Gap(%) BMSP 1-Vio Gap(%)

1000 - 0.0689 0.9995 - - - - - -
14 0.014 0.0634 0.9980 7.9 0.0631 0.9966 8.5
20 0.020 0.0615 0.9958 10.7 0.0613 0.9920 11.1
30 0.030 0.0603 0.9908 12.5 0.0603 0.9915 12.4

1200 - 0.0677 0.9994 - - - - - -
6 0.013 0.0631 0.9933 6.7 0.0629 0.9970 7.1
24 0.020 0.0611 0.9925 9.7 0.0612 0.9917 9.6
36 0.030 0.0592 0.9877 12.5 0.0596 0.9890 12.0

1400 - 0.0664 0.9992 - - - - - -
17 0.012 0.0617 0.9958 7.1 0.0615 0.9943 7.3
28 0.020 0.0603 0.9943 9.2 0.0605 0.9933 8.9
42 0.030 0.0592 0.9868 10.8 0.0596 0.9927 10.3
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Table 5.3: Average CPU time of calculation

Data 1 Data 2

SC Greedy BMSP SC Greedy BMSP

CPU time 13.6 201.5 23.3 251.7 4955.2 521.4

Figure 5.2: Comparison of average linear size for Data 1

elements of CCSC(λ).

In Table 5.1, for each sampling number N , our method (BMSP ) obtains bet-
ter solution than scenario approach with greedy constraint removal (Greedy) with
smaller �nal value (average linear size of ellipsoid) and a larger violation which is
below 5%. For Greedy, the gap is between 0.5%�-10.4%�, compared with scenario
approach. While for our method, the gap is between 2.7%�-11.8%�. Figure 5.2 gives
a precise look on the �nal value obtained by Greedy and BMSP for di�erent values
of k for 400 samples. In Fig.5.3, we compare the violation of Greedy and BMSP .
We observe that the increasing rate of violation is nearly the same. Figure 5.4 shows
the local view of ellipsoid for Data 1 obtained by scenario approach, greedy approach
and our method with N = 400 and k = 20. We can see that the ellipsoid obtained
by our method has the smallest volume.

In Table 5.2, we obtain a Gap more obvious than the previous one on Data

Figure 5.3: Comparison of violation ratio for Data 1
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Figure 5.4: Local view of chance-constrained invariant ellipsoid of Data 1 with
N = 400, k = 20.

1. For the case where k is chosen by (5.5), our method obtains a gap better than
Greedy method with 0.2% to 0.6% improvement. While for other choices of k, their
gaps are very close to each other.

The advantage of our method (BMSP ) compared with scenario approach with
greedy constraint removal (Greedy) is on the computing time. In the Greedy pro-
cedure, we need to solve k + 1 times the semide�nite program CCSP(λ) in order
to decide the removal constraints. While in our method, we only need to solve
2 semide�nite programs. Therefore, we observe from Table 5.3 that BMSP con-
sumes much less CPU time than Greedy and almost twice CPU time than scenario
approach. But as a counterpart of the CPU time, we obtain better solution than
scenario approach.

5.5 Conclusion

In this chapter, we introduced a new simulation-based method to solve chance con-
strained semide�nite program. This method is a combination of sample average
approximation and scenario approach. We apply this method to semide�nite pro-
gramming problem in control theory. The numerical results show that our method
provides better solutions within a reasonable CPU time.
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Chapter 6

Conclusion

6.1 Summary

To conclude, we summarize the main contributions of this thesis. Firstly, the formal
energy model proposed in Sect. 2.2.2 initiated the study on power-aware population
protocols. This enhanced model allowed a purely analytical analysis of the energy
complexity of a protocol, in the same spirit as for time and space complexity, without
appealing to simulations. The worst case (Chapter 2) and the average case (Chapter
3) analyses were performed to obtain general bounds on time and energy. Moreover,
it is adaptable to other types of mobile sensor networks, for example, where the
mobility pattern of agents is no more �periodic", but follows other mobility models
(like random waypoint model, Brownian model or Rush hour (human) tra�c model).

Secondly, we emphasized the importance of using analytical approaches on de-
signing protocols for WSN. By establishing analytical formulas for the energy con-
sumption of data collection protocols, we got information that could hardly be
obtained by simulations. For example, we obtained general lower and upper bounds
(Sect. 2.5 and 3.3), showing the explicit relations between the protocols' perfor-
mances and the characteristics of the network system (e.g., cover times, network
size, energy consumption for a communication). Moreover, we obtained the ex-
plicit conditions on these characteristics (Sect. 2.4.2) after comparing the analytical
bounds.

Thirdly, we showed a promising application of mathematical optimization in
the design of (parametrized) distributed algorithms. When a great number of pa-
rameters are involved in the protocol (like the vector p in lazy-TTF), the resulting
analytical bound for the performance turns to be high-dimensional and complex with
complicated constraints imposed on these parameters (e.g., Eq. 3.19). Accordingly,
having proper parameters with analytical approaches becomes nearly impossible.
However, optimization techniques can be adapted for solving this issue. An op-
timization model can be built, taking parameters as variables and the analytical
bound as the objective function, such as OP1 in Sect. 3.5.

At last, we demonstrated the usefulness of mathematical optimization when de-
signing a (centralized) power-aware protocol for wireless body area networks (Chap-
ter 4). In addition, we enhanced the study to more complicated scenarios, where
random factors are involved (Chapter 5), showing that optimization is a general
tool widely used in decision makings. Meanwhile, by proposing heuristics (Sect. 4.3
and 5.3.3), we advanced the techniques for solving two complex basic optimization
models. These heuristics are adaptable for any realistic problem expressed in the
same framework.
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6.2 Perspectives

The di�erent contributions of this thesis, listed in the paragraphs above, have several
natural developments.

At �rst, our analytical model and approach can be used to study the energy issues
for a speci�c kind of mobile WSNs, where sensors with unpredictable movements
communicate only when they are in proximity. Nowadays, many realistic networks,
with similar characteristics, become new topics of interest in scienti�c and industry
communities. For example, in Vehicular Ad Hoc Networks (VANETs), vehicles
share information and communicate between each other only when physically close,
due to the mobility constraints. In Near Field Communication (NFC), two NFC
devices, usually smartphones, establish communication within a range of 4 cm, for
social networking, mobile payment, etc. Our formal energy model (based on the
real-world networks) can be considered as a reference to the future enhancement
of analytical approach for such networks. It is simple and easy to adapt to various
applications (e.g., to the case where the transmitted data does not �t into one packet
or to the case where the energy consumption for transferring data depends on the
distance between agents). Moreover, besides the worst-case energy consumption (the
maximum energy spent per node) studied in this thesis, other energy metrics (e.g.,
the total energy consumption, the maximum time until one sensor has no energy) are
also analytically measurable, by using this model for power-aware designs. Finally, in
addition to the data collection problem, other fundamental problems of distributed
computing, such as routing, broadcast, leader election or consensus, can also be
studied analytically in terms of energy consumption.

The idea of using optimization tools for analyzing power-aware population proto-
cols can also be applied when designing other (parametrized) distributed algorithms.
Moreover, this approach is not limited to energy metrics, but can also be used for
time and space metrics, provided that the analytical formulas for the performances
are given. Using such formulas, the optimization model can be easily constructed.
However, this gives rise to the following technical question, which should be investi-
gated further : Can the resulting optimization model (possibly complex) be solved
e�ciently and in a fully distributed manner?

Solving optimization problem in a distributed way, referred to as distributed op-
timization, has been proposed in the 90's and studied since. Distribute optimization
appears in various �elds (e.g., distributed learning, decision makings in sensor net-
works and vehicle coordination), and is adapted to the scenarios where agents in the
network measure data, which cannot be treated or analyzed centrally. One example
is a system where nodes can only coordinate their decisions with their neighbors.
Each node has its own local cost function known only to itself, and they need to
agree on a �nal solution that minimizes the sum of all costs. For instance, in sensors
network, to track the position of an acoustic source, each node measures the received
signal's strength (including noise), and thus can guess the position of this source.
At the end, they cooperate and agree on a single position which minimizes the sum
of deviations from their guesses.

In the distributed optimization �eld, researchers have focused mostly on the fol-
lowing convex optimization model. Formally, in a network of n agents, each agent i
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has a local variable xi ∈ Rm and a private convex function fi(x) : Rm → R. Agents
cooperate to minimize the average function f(x) = 1/n

∑n
i=1 fi(x), such that the lo-

cal variable xi(t) converges to the optimal solution x∗ = arg minx∈Rm f(x). The sub-
gradient method in optimization theory is adapted, such that each agent computes
its sub-gradient step locally using only local information, e.g., the asynchronous it-
erative (consensus) algorithms ([129], [123]) and the incremental algorithms ([109],
[96]). The alternating direction method of multipliers (ADMM) [32] was proposed
to distributively solve a more general convex optimization model. These methods
are developed and widely applied in message passing models or similar ones with
shared memory. In most of the cases, the convergence rate of ADMM is very slow.

In population protocols, agents are anonymous and have no knowledge of the
size of the system. In this case, the developed classical methods for distributed
optimization can not be applied directly to obtain a converged optimal solution.
Hence, novel methods are required to adapt distributed optimization to the case of
population protocols.
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Annexe A

Semide�nite Programming

A.1 Positive semi-de�nite matrix

A symmetric real matrix A ∈ Rn×n is said to be positive semi-de�nite, denoted by
A � 0, if the scalar zTAz is greater than or equal to zero for every non-zero vector
z ∈ Rn, where zT is the transpose of z. The set of positive semi-de�nite matrices is
denoted by Sn+.

Property 1. For any matrix A, the matrix ATA is positive semide�nite.

Property 2. The set of positive semide�nite symmetric matrices, Sn+, is convex.
That is, if A and B are positive semi-de�nite, then for any α between 0 and 1,
αA + (1 − α)B is also positive semide�nite, i.e., if A,B ∈ Sn+, ∀α ∈ [0, 1], αA +
(1− α)B ∈ Sn+.

Property 3. All eigenvalues of a symmetric positive semi-de�nite matrix are non-
negative.

Lemma 8. The expectation of random positive semi-de�nite matrix is positive semi-
de�nite.

Démonstration. Let A ∈ Rn×n be a random semi-de�nite matrix. That is, A is
symmetric and for all z ∈ Rn, we have

zTAz =
∑

i,j

Ai,jzizj ≥ 0 . (A.1)

The expected matrix EA is symmetric since Ai,j = Aj,i implies EAi,j = EAj,i.
Moreover, for all z ∈ Rn, we have

zT
(

EA
)
z =

∑

i,j

(
EAi,j

)
zizj = E

∑

i,j

Ai,jzizj ≥ 0 (A.2)

by Equation (A.1).

A.2 Semi-de�nite programming

A.2.1 Linear matrix inequality

A linear matrix inequality in the variable x ∈ Rn has the form

A(x) = A0 + x1A1 + ...+ xmAm � 0,
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where A0 ∈ Rn×n, ..., Am ∈ Rn×n are symmetric matrices.

The semide�nite programming [136] is to minimize a linear function of a vector
of variables x ∈ Rm subject to a matrix inequality :

min
x∈Rm

cTx

s.t. A0 +
m∑

i=1

xiAi � 0

where c ∈ Rm and A0, A1, · · ·Am ∈ Rn×n are symmetric matrices.

A semide�nite program (SDP), de�ned as above, is a convex optimization, since
the objective function and constraint are both convex (Prop. 2). Many programs can
be cast into SDP, such as linear programs, convex quadratically constrained quadra-
tic programs and second-order cone programs. And more importantly, SDP can be
solvable e�ciently both in theory and in practice (applying interior point methods
[12]). Thus, SDP has many applications including transitional convex constrained
optimization, combinatorial optimization [12] and control theory [30].

A.2.2 Maximum eigenvalue minimization

Let A(x) = A0 + x1A1 + · · · + xmAm be a symmetric matrix of size n depending
a�nely on x ∈ Rm, where ∀i ∈ {0, ...,m}, Ai = ATi ∈ Rn×n. The problem of
minimizing the maximum eigenvalue of A(x), i.e. minx∈Rm λmax(A(x)), is equivalent
to the following SDP :

min
x∈Rm,s∈R

s

s.t. sI −A(x) � 0 (A.3)

where I ∈ Rn×n is the identity matrix.
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Annexe B

Sythèse en français

Le sujet de la thèse consiste à développer les protocols pour les réseaux de capteurs
sans �l, prenant en compte leur consommation d'énergie.

Ce manuscrit contient d'abord l'étude d'une extension du modèle des protocoles
de populations, qui représentent des réseaux de capteurs asynchrones, passivement
mobiles, limités en ressources et anonymes. Il n'existe pas actuellement de modèle
communément accepté pour l'étude analytique de la consommation d'énergie. Les
travaux dans ce domaine reposent sur des simulations ou des expérimentations.
Pour la première fois (à notre connaissance), un modèle formel de consommation
d'énergie est proposé pour les protocoles de populations. Ce modèle est utilisable
pour développer des protocoles originaux pour des problèmes classiques et fournit
un cadre formel pour étudier la consommation d'énergie en tant que paramètre de
complexité.

A titre d'application, nous étudions à la complexité en énergie (dans le pire des
cas et en moyenne) pour le problème de collecte de données. Deux protocoles prenant
en compte la consommation d'énergie sont proposés. Le premier (EB-TTFM) est
déterministe et e�cace sous certaines conditions. Nous avons réussi à obtenir une
borne inférieure pour le problème de collecte de données qui justi�e l'e�cacité de EB-
TTFM. Le second (lazy TTF) est randomisé. Nous avons considéré un cadre où les
interactions entre capteurs se font selon une loi non-uniforme (naturelle) et étudié le
temps et l'énergie dépensés dans le contexte de collecte de données. Des techniques de
matrices stochastiques sont utilisées pour l'analyse de comportements non-uniformes
de capteurs mobiles. Ensuite, nous avons traduit le problème de collecte de données
en un problème d'optimisation de temps et de consommation d'énergie. Nous avons
pu en déduire ce protocole probabiliste e�cace. Des simulations ont été faites pour
véri�er son e�cacité.

Pour déterminer les valeurs optimales des paramètres, nous faisons appel aux
techniques d'optimisation. Nous appliquons aussi ces techniques dans un cadre dif-
férent, celui des réseaux de capteurs corporels (WBAN). Une formulation de �ux est
proposée pour acheminer de manière optimale les paquets de données en minimisant
la pire consommation d'énergie. Une procédure de recherche à voisinage variable est
développée et les résultats numériques montrent son e�cacité. En�n, nous considé-
rons le problème d'optimisation avec des paramètres aléatoires. Précisément, nous
étudions un modèle semi-dé�ni positif sous contrainte en probabilité. Un nouvel
algorithme basé sur la simulation est proposé et testé sur un problème réel de théo-
rie du contrôle. Nous montrons que notre méthode permet de trouver une solution
moins conservatrice que d'autres approches en un temps de calcul raisonnable.
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Résumé : Ce manuscrit contient d'abord l'étude

d'une extension du modèle des protocoles de po-

pulations, qui représentent des réseaux de capteurs

asynchrones, passivement mobiles, limités en res-

sources et anonymes. Pour la première fois (à notre
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Abstract : In this thesis, we propose a formal

energy model which allows an analytical study

of energy consumption, for the �rst time in the

context of population protocols. Population pro-

tocols model one special kind of sensor networks

where anonymous and uniformly bounded memory

sensors move unpredictably and communicate in

pairs. To illustrate the power and the usefulness of

the proposed energy model, we present formal ana-

lyses on time and energy, for the worst and the ave-

rage cases, for accomplishing the fundamental task

of data collection. Two power-aware population

protocols, (deterministic) EB-TTFM and (rando-

mized) lazy-TTF, are proposed and studied for two

di�erent fairness conditions, respectively. Moreo-

ver, to obtain the best parameters in lazy-TTF,

we adopt optimization techniques and evaluate the

resulting performance by experiments. Then, we

continue the study on optimization for the power-

aware data collection problem in wireless body area

networks. A minmax multi-commodity net�ow for-

mulation is proposed to optimally route data pa-

ckets by minimizing the worst power consumption.

Then, a variable neighborhood search approach is

developed and the numerical results show its e�-

ciency. At last, a stochastic optimization model,

namely the chance constrained semide�nite pro-

grams, is considered for the realistic decision ma-

king problems with random parameters. A novel

simulation-based algorithm is proposed with expe-

riments on a real control theory problem. We show

that our method allows a less conservative solution,

than other approaches, within reasonable time.
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