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Résumé 

 Le transport de matières dangereuses est connu pour son haut risque potentiel 

pour le réseau routier. Un accident peut avoir de graves conséquences pour la santé 

publique et l’environnement sur une longue période. L’optimisation du transport de 

matières dangereuses est une problématique importante. Cette thèse propose, pour la 

première fois dans la littérature, une stratégie de réservation de voies pour le transport 

de matières dangereuses. L’objectif est de proposer des itinéraires pour le transport de 

matières dangereuses qui minimisent à la fois le risque potentiel et l’impact négatif 

sur le trafic dans un réseau de transport dû à la réservation de voies. 

 Dans cette thèse, nous nous focalisons sur deux nouveaux problèmes : 

l’optimisation de transport de matières dangereuses grâce à la stratégie de réservation 

de voies dans un réseau de transport selon si le risque dépend de l’instant de passage 

(appelé LRPTDR) ou pas (appelé LRPTIR). Pour chaque problème étudié, nous 

proposons un nouveau modèle d’optimisation multi-critères. Pour le LRPTIR, nous 

développons d’abord une méthode combinant la méthode de -contrainte et la logique 

floue pour obtenir des solutions Pareto optimales and une solution préférée en 

fonction des critères du gestionnaire. Ensuite, une méthode qui combine le 

« cut-and-solve » and le « cutting plane» est proposée pour réduire le temps de calcul. 

Pour le LRPTDR, une méthode de « cut-and-solve » est appliquée, dans laquelle une 

nouvelle technique de « piecing cut » et une stratégie de relaxation partielle sont 

développées pour améliorer la performance. Les performances des algorithmes 

proposés sont évaluées à l’aide d’instances générées aléatoirement. Les résultats 

numériques montrent que les algorithmes proposés sont plus performants que le 

logiciel commercial CPLEX pour les problèmes étudiés. 

 

Mots clé: Transport de matières dangereuses, Réservation de voies, Optimisation 

multi-critères, Optimisation combinatoire 

 



 

Abstract 

Hazardous material transportation is well-known for its high potential risk. An 

accident may cause very serious economic damage and negative impacts on the public 

health and the environment over the long term. Optimization for hazardous material 

transportation is an important issue. For the first time in the literature, this thesis 

introduces the lane reservation strategy into the hazardous material transportation 

problem. The goal is to obtain a best compromise between the impact on normal 

traffic due to lane reservation and the transportation risk. 

 In this thesis, we focus on two novel problems: hazardous material transportation 

problem via lane reservation in networks with time-invariant and time-dependent risk, 

called LRPTIR and LRPTDR, respectively. For these problems, multi-objective 

integer programming and mixed integer programming models are formulated, 

respectively. For the LRPTIR, we first develop an ε-constraint and fuzzy-logic based 

method to obtain Pareto optimal solutions and a preferred solution. Then a 

cut-and-solve and cutting plane combined method is proposed to reduce the 

computation time. For the LRPTDR, an improved cut-and-solve based ε-constraint 

method is proposed, in which a new technique of generating piercing cuts is 

developed and a partial integral relaxation strategy is applied. The performance of the 

proposed algorithms is evaluated by randomly generated instances. Computational 

results demonstrate that for the considered problems, the cut-and-solve method 

outperforms software package CPLEX. 

 

Keywords: Hazardous material transportation, Lane reservation, Multi-objective 

optimization, Combination optimization
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Notation 

G (V, A): bidirected transportation network  

V: set of nodes i 

A: set of directed arcs (i, j), i j, i, jV 

O: set of origin nodes, {o1, o2, …, o|W|}V 

D: set of destination nodes, {d1, d2, …, d|W|}V 

W: set of hazardous materials shipments, {1, 2, …, |W|} 

K: set of time periods, {1, . . . , |K|} 

Cij: impact on the normal traffic due to the lane reservation on arc (i, j) 

Tij: travel time on the reserved lane of arc (i, j) 

ij: travel time on the general lane(s) of arc (i, j) 

w

ijP : accident probability of hazardous material w on a reserved lane of arc (i, j) 

w

ij : accident probability of hazardous material w on the general lane(s) of arc (i, 

j) 

Eij: population exposure along arc (i, j) 

Eijk: population exposure along arc (i, j) at time period k 

Mij: total number of lanes on arc (i, j) 

Sw: deadline of accomplishing shipment w 

Qij: threshold of the accident probability on arc (i, j) 

Tint: safety time interval between any two shipments passing a same arc 

N: average degree of a graph 
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CHAPTER 1 INTRODUCTION 

This thesis investigates a hazardous material transportation problem via lane 

reservation (HMTLR). Its goal is to develop a new idea and methodology for reducing 

the risk during hazardous material transportation. This chapter first introduces the 

research background and then presents the outline and framework of the thesis. 

1.1 Background 

 Hazardous materials are defined as the substances or materials that can 

potentially cause harm to people, property, and environment. With industrial 

development, the production of hazardous materials has been increasing year by year. 

Usually, most kinds of hazardous materials are not used directly in the place of 

production but disposed through long-distance transportation. This causes that a great 

amount of hazardous materials need to be shipped in the transportation network every 

day. According to related statistics, more than 95% of hazardous materials in China 

need to be transported among different cities. Annually, 200 million tons of hazardous 

materials are transported, of which 82% are transported through the road. For example, 

the annual transportation volume of liquid ammonia and liquid chlorine is 0.8 and 1.7 

million tons, respectively. According to the Office of Hazardous Materials Safety of 

the U.S. Department of Transportation (US DOT), 800 000 hazardous material 

shipments were carried out daily in 1998 [1]. With a conservative estimation, 

production and shipment of hazardous materials tend to increase by 2% annually, and 

the total number of shipments every year in America has been over one million since 

2005 [1]. Thus, large quantity and high frequency becomes a feature of hazardous 

material transportation. 

 Hazardous material transportation is well known for its high potential risk. 

Transport Canada reports that in 2002, over 99% of hazardous material shipments 

safely arrive at their destination in Canada [1]. Although rare, accidents do happen 

during their transportation. An accident can cause very serious economic damage and 
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might have a negative impact on public health and the environment over the long term. 

In particular, many transport routes pass through urban areas. In accordance with the 

US DOT statistics, there were 488 serious incidents (among a total of 15178 incidents) 

in 2003, resulting in 15 deaths, 17 major and 18 minor injuries, and total property 

damage of $37.75 million [1]. In European countries, there are also many accidents 

involving hazardous material transportation on roads and railways. For example, the 

chemical accident in Seveso, Italy, in 1976 caused the contamination by 2, 3, 7, 

8-tetrachlorodibenzo-p-dioxin (a kind of hazardous chemical substance) to a large 

population. Twenty years later, possible long-term effects, which were examined 

through mortality and cancer incidence studies, indicated that the consequences of 

hazardous material transportation accidents were not only enormous but also 

far-reaching [2]. Moreover, an accidental spill may also take place in environmentally 

sensitive areas, such as in or near the natural protection areas or World Heritages. 

 Nowadays, traffic safety has been one of the hot research issues in the field of 

intelligent transportation systems [3]-[5]. As for hazardous material transportation, 

many researchers have pointed out that the potential risks of transporting hazardous 

material may be as huge as those of fixed installations according to historical 

accidents [6], [7]. Thus, it is necessary to pay the same attention to the former to keep 

them under control and reduce them. It has been also pointed out in much relevant 

literature that the essential objective of hazardous material transportation is to 

minimize the transportation risk due to its nature. Therefore, how to reduce the 

hazardous material transportation risk becomes an important focus. Reducing 

transportation risks can be achieved by many different ways. Governments may enact 

some laws on hazardous material transportation and provide guidelines and specific 

requirements on it. For example, information with regard to hazardous material 

packaging, labeling and depositing, and specific training for carriers and regulations 

for vehicle maintenance are clearly specified by US DOT. 

 In transportation networks, risk varies with traffic flow and road structure etc. 

Hazardous material transportation via dedicated lines will make the overall traffic 

flow on these lanes more homogeneous and smooth, which may lead to a potential 
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decrease in the probability of accident [8]. It is also found in [9] that the likelihood of 

a traffic accident varies with road structure (e.g., the number of lanes and their use). 

The dedicated lane for special vehicles is called reserved lane in this thesis. Lane 

reservation strategy refers to reserving one or several lanes in road segments by 

specific traffic signs, such as marking or isolation facilities and so on, and allowing 

only special vehicles to use them (within a specified time), in order to provide the 

passage priority for them in public traffic. Lane reservation strategy is a flexible and 

economic option for special events or situation, such as sport games and emergencies. 

In fact, it has been successfully applied in real life. For example, reserved lanes were 

applied to the Asian Sport Games in 2010 in Guangzhou, China. In France, one of the 

lanes of A1 between Charles De Gaulle Airport and Saint Denis has been recently 

dedicated to taxis and buses only between 7:00 A.M.–10:00 A.M. Other applications, 

such as exclusive bus lanes and high-occupancy vehicle lanes have been applied in 

many cities around the world. 

 On a road segment, if one of its lanes is selected as a reserved lane, the other(s) 

are called the general lane(s) accordingly. Thus, the number of general-lanes will be 

decreased, which may make the general lanes more congested and worsen traffic 

situation on the network. The most direct impact of reserved lanes on public traffic is 

the increase in the travel time on the general lanes. Therefore, it is important to 

effectively select lanes to be reserved in the existing transportation network so as to 

minimize the total traffic impact on the network.  

 From the above analysis, the hazardous material transportation optimization 

problem via lane reservation can be considered as a multi-objective problem with at 

least two objectives: minimizing the total transportation risk and the total traffic 

impact. To the best of our knowledge, there are very few studies on the topic. The 

problem considered in this thesis is different from some classical hazardous material 

transportation problems, such as routing problem, combined facility location and 

routing problem, and network design problem. The hazardous material transportation 

optimization problem via lane reservation provides a new idea of reducing 

transportation risk. This thesis focuses on the application of lane reservation to 
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hazardous material transportation and developing new mathematical models and 

methods for it. 

1.2 Content 

 This thesis mainly investigates hazardous material transportation via lane 

reservation in networks with time-invariant and time-dependent risk, respectively. Its 

aim is to choose lanes to be reserved in the existing transportation network and select 

the path for each shipment from the reserved lanes. Its objectives are to minimize the 

impact on normal traffic resulted from lane reservation and the transportation risk.  

1.2.1 Contribution 

 The contributions of this thesis are presented as follows: 

 (1) A new hazardous material transportation problem via lane reservation in 

networks with time-invariant risk is investigated. A multi-objective integer 

programming model is formulated for the considered problem. To solve the model, an 

ε-constraint and fuzzy-logic based method is proposed to obtain Pareto optimal 

solutions and a preferred solution. 

 (2) A cut-and-solve and cutting plane combined method is developed to solve the 

transformed single objective problems, in which cut-and-solve method is applied to 

find an optimal solution and cutting plane method for finding valid inequalities is 

exploited to accelerate the convergence of cut-and-solve method. A property of the 

considered problem is developed to reduce the solution space. 

(3) A new hazardous material transportation problem via lane reservation in 

networks with time-dependent risk is investigated. A multi-objective mixed integer 

programming model is developed. A property of this problem is also developed to 

reduce the solution space. An improved cut-and-solve based ε-constraint method is 

proposed for it, in which a new technique of generating piercing cuts based on the 

characteristics of the considered problem is developed and a partial integral relaxation 

strategy is applied. 
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1.2.2 Outline 

 This thesis is organized as follows: 

 Chapter 1 introduces the research background and the research significance. Then, 

the contribution and the outline of this thesis are presented. 

 In Chapter 2, a review on hazardous material transportation is first addressed. The 

related hazardous material transportation problems and their state of the arts, 

including risk assessment, routing problem and network design problem, are 

described in detail. Then, a review on lane reservation problem is also addressed. 

Some applications of lane reservation are introduced and their studies are reviewed. 

Finally, basic principles of key technologies, which will be applied to solving the 

proposed problems, are introduced.  

 Chapter 3 investigates a hazardous material transportation problem via lane 

reservation in networks with time-invariant risk. In this chapter, the background of the 

problem is first explained. Then, a multi-objective integer linear programming model 

is presented for the considered problem. An ε-constraint and fuzzy-logic based 

method is developed to obtain Pareto optimal solutions and a preferred solution. The 

ε-constraint method is applied to transform the multi-objective problem into the single 

objective ones. For the transformed single objective problems, optimization software 

package CPLEX is applied. Finally, computational results on an instance based on a 

real network topology and randomly generated instances are reported. 

 In Chapter 4, a cut-and-solve and cutting plane combined method is developed to 

solve the transformed single objective problems more efficiently. Cut-and-solve 

method is applied to find an optimal solution and cutting plane method is exploited to 

accelerating the process of cut-and-solve method. A property of the considered 

problem is also explored to reduce the solution space. Finally, the performance of the 

proposed method is evaluated by comparing the cut-and-solve method with CPLEX, 

and computational results on randomly generated instances are reported. 

 In Chapter 5, hazardous material transportation via lane reservation in networks 

with time-dependent risk is investigated. The background of the time-dependent 

javascript:void(0);
javascript:void(0);
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problem is given and then the problem is formulated as a multi-objective mixed 

integer programming one. Its property is also explored. Then an improved 

cut-and-solve based ε-constraint method is proposed. In the method, a new technique 

of generating piercing cuts based on the characteristics of the considered problem is 

developed and a partial integral relaxation strategy is applied. Finally, the 

performance of the proposed method is evaluated by comparing the cut-and-solve 

method with CPLEX, and computational results on randomly generated instances are 

reported. 

 Chapter 6 concludes the thesis, discusses its shortcoming, and indicates the 

direction of the future research.
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CHAPTER 2 LITERATURE REVIEW 

 This chapter provides literature reviews on hazardous material transportation and 

lane reservation. Firstly, several related hazardous material transportation problems 

and their formulation are presented. Their characteristics are analyzed to explain the 

differences between the considered HMTLR problem and them. Secondly, some 

applications of lane reservation and studies on it are reviewed. Its state-of-the-art 

indicates that hazardous material transportation via lane reservation is a promising 

application. This chapter also introduces the principles of some technologies in detail, 

which will be used for solution algorithms.  

2.1 Literature review on hazardous material transportation 

 To summarize the studies on the hazardous material transportation problem, this 

subsection first classifies the problem. There are commonly three types of problems 

on hazardous material transportation [1]: 

(1) Risk assessment for hazardous material transportation; 

(2) Routing problem for hazardous material transportation; 

(3) Network design problem for hazardous material transportation. 

 These problems deal with hazardous material transportation from different 

perspectives. They are related to the HMTLR problem proposed in this thesis. This 

section provides a review on them.  

2.1.1 Literature review on risk assessment 

 As we know, risk is the most important factor that distinguishes the hazardous 

material transportation problem from other transportation problems. For the hazardous 

material transportation problem, risk is a measure of the probability and severity of 

harm to an exposed receptor resulted from some potential undesired events involving 

a hazardous material [1][10]. The exposed receptor can be persons, environment, or 

properties in the neighborhood. The undesired event refers to the release of a 
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hazardous material due to an accident. Specifically speaking, the undesirable 

consequences of a release can be a health effect (death, injury, or long-term effects 

due to exposure), property loss, cleanup costs, product loss, an evacuation of nearby 

population, traffic interruption along the impacted route and an environmental effect 

(such as soil contamination or health impacts on flora and fauna) [1]. All the impacts 

should be converted to the same unit (for example dollars) to permit comparison and 

computation of the total impact cost [1]. 

 Risk assessment can be qualitative and quantitative. In risk assessment, the 

identification of possible accident scenarios and the estimation of the undesirable 

consequences are required. When the reliable data to estimate the probability of an 

accident and its consequences are absent, the qualitative risk assessment is usually a 

helpful tool. The elements of quantitative risk assessment are probabilities and 

consequences. In order to obtain these data, the risk assessors ought to collect 

considerable historical information on accident frequencies and fairly accurate 

consequence models for hazardous material releases in case of accidents. Therefore, 

unlike in qualitative risk analysis, quantitative risk assessment can obtain a precise 

numerical result of risks. As the main purpose of this thesis is to develop 

mathematical models and their resolution approach, we focus on quantitative risk 

assessment in this thesis. 

Next, the traditional method to assess risk in the literature will be introduced. In 

quantitative risk assessment, as stated previously, risk is defined as the product of the 

probability of a hazardous material accident and its consequences. Although there can 

be many kinds of consequences in a hazardous material accident, almost all studies in 

this area are only concerned with fatalities. They also assume that each individual 

within the danger zone should be impacted equally and nobody outside of this area 

can be affected. Therefore, the undesirable consequence is considered to be 

proportional to the size of the population in the neighborhood of the accident, where 

the size of the population exposure depends on the substance carried [11]. Population 

exposure refers to the number of population affected by a transportation accident. In a 

word, the traditional method to assess risk in the literature is to multiply the 



 9  

probability of hazardous material accidents by population exposure. This method is 

used as a surrogate for risk measure, as expressed by 

R = p * c 

where p is the probability of a hazardous material accident, and c is the estimated 

population exposure.  

Risk assessment intends to provide a risk analysis methodology for hazardous 

material transportation. It can be useful to practitioners in identifying effective ways 

to manage and reduce the risk during the transport of hazardous materials. Generally 

speaking, risk analysis for hazardous material transportation is not within the scope of 

Operations Research (OR), since most studies on risk assessment do not involve OR 

models and techniques but probability statistics, geometry and systematical analysis 

method such as logical diagram-based techniques. However, it can offer useful 

information on hazardous material transportation modeling and analysis for 

researchers in OR as well as other relevant fields. 

2.1.2 Literature review on routing problem for hazardous material 

transportation 

Routing problems for hazardous material transportation have attracted the 

attention of many OR researchers since 1970s and there are fruitful results in this area. 

Hazardous material routing problem involves selecting a path for each shipment 

among its alternative paths between given origin-destination (OD) pairs so as to 

minimize total transportation risk. The problem can be distinguished into local route 

planning problem and global route planning problem. In local route planning problem, 

shipments can be considered independently from a carrier’s perspective and a routing 

decision needs to be made for each shipment [1]. At the macro level, global route 

planning problem is a “many to many” routing problem with multiple origins and an 

even greater number of destinations [1] [12]; it is also a problem from different 

stakeholders’ perspectives. 

For each shipment, local route planning problem aims to find a single commodity 

and a single origin-destination route decision. Since these decisions are often made at 

javascript:void(0);
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the micro level [1], some arcs in the transportation network are likely to be overused 

by hazardous material shipments. This could directly lead to an increase of accident 

probabilities on some road segments, and further cause the inequity in the spatial 

distribution of risk. Although transportation risk may be considered by most carriers 

in their routing decisions, the carriers still pay more attention to transportation cost. 

However, in global route planning problem, government has to make the global 

hazardous material route decision by taking into account all shipments. For this 

reason, this problem usually involves multicommodity and multiple origin-destination 

routing decisions. Besides the total transportation risk, government may consider the 

equity in the spatial distribution of risk. 

In this subsection, route planning problem refers to the local one and it is 

reviewed. In next subsection, hazardous material network design problem, as a typical 

global route planning problem, will be reviewed. 

2.1.2.1 A basic routing problem for hazardous material transportation  

 The (local) routing problem is to select the route(s) between a given 

origin-destination pair for a given hazardous material, transport mode, and vehicle 

type. Iakovou investigated a classical routing problem for hazardous material 

transportation [13]. He considered a transportation network G = (V, A), where V was 

the set of nodes and A was the set of arcs. An arc was characterized by its length, 

transport rate per ton mile, risk cost and capacity. To define the problem, the 

following notations are first defined. 

 W {1, 2, …, |W|}: set of hazardous materials type 

 O {o1, o2, …, o|W|}V: set of origin nodes  

 D {d1, d2, …, d|W|}V: set of destination nodes  

w

ijX : amount of commodity w which will be transported from node i to node j  

w

ijc : transportation cost for transporting one unit of volume of commodity w from 

node i to node j  

w

ijR : expected risk cost for transporting one unit of volume of commodity w from 

node i to node j 
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jws : amount of product w required at node j 

ijU : flow capacity for arc (i, j)  

Based on the above notations, the problem can be formulated as follows: 

1

( , )

min w w

ij ij

i j A w W

f c X
 

           (2.1) 

2

( , )

min w w

ij ij

i j A w W

f R X
 

           (2.2) 

Subject to    

:( , ) :( , )

, if ,

0,if \ , , ,

, if ,

jw

w w

ij jl

i i j A l j l A

jw

s j O w W

X X j N O D w W

s j D w W
 

  


    
   

    (2.3) 

, ( , ) ,w

ij ij

w W

X U i j A


           (2.4) 

0, ( , ) , .w

ijX i j A w W               (2.5) 

Constraint (2.3) imposes the flow balance at nodes for each commodity, while 

Constraint (2.4) ensures that the total flow of commodities on arc (i, j) does not 

exceed the appropriate capacity. 

The HMTLR problem addressed in this thesis is different from the routing 

problem for hazardous material transportation. Although both of them involve 

multiple origin-destination routing decisions and aim to find the set of Pareto optimal 

routes between given origin-destination pairs, the routing problem also involves 

multicommodity routing decisions while the considered problem in this thesis does 

not. The difference between the considered problem and other hazardous material 

transportations mainly comes from a novel way of reducing transportation risk, that is, 

via lane reservation.  

2.1.2.2 Classification of routing problems for hazardous material transportation 

The models of the routing problem can be grouped according to their 

characteristics, for example, number of objectives and the nature of transportation 

networks. Thus, the existing route planning models are presented in various forms, 

including single-objective or multi-objective models, time-invariant or time-dependent 

models.  
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Hazardous material routing problem is usually considered to be multi-objective 

due to its nature of multiple stakeholders (e.g., Kalelkar and Brinks [14], Marianov 

and ReVelle [15], Huang et al. [16]). And a few studies focused on single objective 

problems such as Erkut and Verter [11]; Kara et al. [17]; Verter and Erkut [18]. A 

single objective routing problem with a given OD pair can be considered as the 

classical shortest path problem. A label-setting algorithm (e.g., Djikstra’s algorithm) 

can be applied to find an optimal route for this problem. Kara et al. [17] proposed a 

simple modification of Djikstra’s algorithm, called the impedance-adjusting node 

labeling shortest path algorithm, to find a route that minimizes the path incident 

probability. The modification relies on the adjustment of the link attribute (such as 

travel time, link volume, queue length, and so on [19]) that is used to update the node 

label and the scanning process. This modified algorithm has the same computational 

complexity as that of Djikstra’s. As for a multi-objective problem, there is often no 

solution that can simultaneously optimize all the conflicting objective functions. 

Instead, a set of Pareto optimal solutions can be found. A Pareto optimal solution is 

the one where an objective can be improved while without worsening at least one 

other objective. Multi-objective route planning is to find the set of Pareto optimal 

routes between given OD pairs, see for example [13][20]. 

In the literature, most hazardous material routing problems are time-invariant in 

risk, which fail to capture the dynamic nature of transportation risk at the tactical level. 

In fact, the traffic conditions and risk factors such as probabilities of hazardous 

material accidents and population exposure in transportation networks often vary with 

time. For example, for a truck carrying hazardous materials, risk on road segments is 

time-dependent on population density subject to time-of-day variation, peak and 

off-peak periods, various weather conditions and so on. The time-dependent risk is 

one of the important features of hazardous material transportation. Time-dependent 

hazardous material transportation problems can be distinguished into deterministic 

and stochastic settings.  

In a deterministic time-dependent problem, all of the link attributes are assumed 

to be known and part or all of them vary over time. For example, Nozick et al. [21] 
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investigated a hazardous material routing and scheduling problem with deterministic 

time-dependent risk. But their approach could not guarantee to generate all Pareto 

optimal paths. Jia et al. [22] investigated a hazardous material transportation problem 

with deterministic time-dependent risk for minimizing the transportation risk. The 

model guaranteed the minimum distance between hazardous material shipments at 

any time. They transformed the problem into a set of time-dependent shortest path 

problems for each truck and proposed an iterative heuristic. In [23][24], given a 

departure time, a single least time path between an OD pair can be obtained by a 

specific search which mainly relies on comparing deterministic link attributes, such as 

label-setting and label-correcting algorithms.  

In a stochastic time-dependent problem, part or all of the link attributes are 

known as random variables with distribution functions that vary over time. For 

example, the travel time and the transportation risk in [25]-[27] belongs to such a kind 

of link attribute. Erhan and Osman [25] proposed an integrated routing and scheduling 

problem for hazardous material transportation in a network with stochastic 

time-dependent accident probability, population exposure and travel time. The model 

aimed to minimize risk subject to a constraint on the total travel time of the shipment. 

Meng et al. [26] examined a similar problem with multiple objectives, which could be 

transformed into the time-dependent multi-objective shortest path problem subject to 

three kinds of time constraints. A dynamic programming method was developed by 

constructing a time-space network to solve this problem. Both the methods of two 

works [25] and [26] are pseudo-polynomial. Chang et al. [27] proposed an effective 

algorithm for finding a path in a stochastic time-dependent network that could address 

multiple optimization criteria. In their work, travel time, transportation risk and other 

link attributes along paths were random variables. However, the performance of the 

algorithm was sensitive to some parameters and the computational burden increases 

with the number of the dominated paths. 
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2.1.3 Literature review on network design problem for hazardous material 

transportation 

2.1.3.1 A basic network design problem for hazardous material transportation 

 Network design problem for hazardous material transportation is a typical global 

route planning problem. Kara and Verter [28] first gave a definition of hazardous 

material transportation network design problem as follows: given an existing 

transportation network, the network design problem intends to select the road 

segments that should be open to hazardous material transportation so as to minimize 

total transportation risk. A classical hazardous material transportation network design 

problem was presented by Bianco et al. in [29]. Consider an undirected transportation 

network G’ = (V, E), where V is the set of nodes and E is the set of (undirected) links. 

Assume that each link <i, j>E can be traversed in both directions; let A = {(i, j), (j, i): 

<i, j>E} be the set of (directed) arcs, where arc (i, j) A represents link <i, j> when 

traversed from node i to node j. Let W denote a set of hazardous material shipments 

(in the remaining of this subsection also called hazardous material commodities). 

Each hazardous material commodity w corresponds to a source destination pair (ow, 

dw) and a amount of flow fw. Let w

ijR ,
w

ijX , and ijz be the unitary risk of arc (i, j) related 

to commodity w, the amount of flow of commodity w on arc (i, j) and the capacity of 

arc (i, j), respectively. The bi-level model is presented as follows: 

     (P1):   * m i n
z

             (2.6) 

       Subject to 

           ' '( ) , ,w w w w

ij ij ji ji

w W

R X R X i j E


         (2.7) 

           0, ( , )ijz i j A            (2.8) 

  where 
' { }w

ijX X  solves the low level problem 

     (P2): *

( , )

( ) min w w

tot ij ij
X

w W i j E

R y R X
 

         (2.9) 

    Subject to                              
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      (2.10) 

     , ( , )w

ij ij

w W

X z i j A


              (2.11) 

     0, ( , ) ,w

ijX i j A w W               (2.12) 

 The high level formulation models the leader problem P1, where the government 

selects minimum risk routes as a subset of the transportation network. Expression 

' '( )w w w w

ij ij ji ji

w W

R X R X


  denotes the link total risk over link <i, j>, thus   is the 

maximum link total risk over each link <i, j>. The leader problem P1 assures an 

equitable distribution of the risk over the network. Constraint (2.7) states that the total 

risk over each link should not exceed  , and constraint (2.8) is the non-negative 

restriction on zij.  

The low level formulation models the follower problem P2, where the carriers 

select paths to minimize the transportation cost on the subnetwork. In P2, given the 

capacity vector z = {zij} imposed by the leader decision-maker (DM), the total risk 

over network G’ is minimized. Constraint (2.10) is the flow balance equation. 

Constraint (2.11) ensures that the total flow on arc (i, j) cannot be greater than its 

capacity. Constraint (2.12) is the non-negative restriction on 
w

ijX . 

 Both this classical problem and the considered problem in this thesis aim to select 

the road segments for hazardous material transportation so as to minimize the total 

transportation risk. Nevertheless, this does not mean that they are the same problem. 

In classical hazardous material transportation network design problem, vehicles 

carrying hazardous materials share all the lanes on the chosen road segments with 

other users in the transportation network implicitly. However, in the considered 

problem in this thesis, lane reservation strategy is introduced into hazardous material 

transportation problem. 

2.1.3.2 Studies on network design problem for hazardous material transportation 

Network design problem for hazardous material transportation has attained 
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relatively little attention in the literature compared to route planning problems. 

Therefore, there are only a few published works, see, for example, [28]-[33]. As 

mentioned above, Kara and Verter [28] first defined this problem and also presented a 

bi-level decision model for it. With some special transformations, the bi-level IP 

model is reformulated as a single level MIP model and solved by commercial 

optimization software package CPLEX. Erkut and Gzara [30] presented a bi-level 

bi-objective (cost and risk minimization) network design problem similar to that 

considered by Kara and Verter in [28]. They proposed a heuristic algorithm that 

exploited the network flow structure at both levels, instead of transforming the 

bi-level IP problem to a single level formulation. Erkut and Alp [31] addressed a 

hazardous material network design problem with the objective of minimizing risk. 

They considered it as a Steiner tree selection problem. With the topology of this tree, 

the bi-level problem was converted into a single level one by prohibiting the carriers 

to select route, but it also leaded to circuitous and high-cost routes. To avoid this 

drawback, they added edges to the Steiner tree. And they proposed a greedy heuristic, 

in which shortest paths were added to the tree so as to keep the risk increase to a 

minimum. These works have bi-level models in common. The difference among them 

is the approach that transforms the bi-level model into a single level one. 

2.1.4 Literature review on other problems for hazardous material transportation 

 In the literature, there are also other classical problems for hazardous material 

transportation, such as k-shortest path problem, network planning problem, vehicle 

routing and scheduling problem, and location and routing problem. A comprehensive 

literature survey on them is shown in Table 2.1. 

 Table 2.1 provides five important attributes of the problems considered in 

reference [33]-[47], including risk assessment, type of the considered problems, 

objectives of the considered problems, method of dealing with multiple objectives, 

and resolution method for the transformed single problem. We can observe from 

Table 2.1 that (1) the traditional risk measure is a common method of assessing the 

transportation risk in the literature such as [33]-[38] and in some works, population 

exposure is directly regarded as the surrogate of risk, see, for example, [42]-[46]; (2) 
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all of the problems are considered to be multi-objective and the common objectives 

include the transportation risk [33]-[47], the transportation cost [35]-[37],[40]-[41], 

[43]-[47] and the total travel time [33][34][38]; (3) the weighted sums method is 

extensively applied to transform the original multi-objective problem into a single 

objective one in the literature except [38]-[39]; (4) almost all of the problems are 

considered to be time-invariant and only reference [34] addressed a k-shortest path 

problem with time-dependent risk. 

Table 2.1 Review on other problems for hazardous material transportation 

Author(s) Risk assessment Problem Objectives Method of dealing with 

multiple objectives 

Resolution method 

Dadkar et. al 

[33] 

traditional risk 

measure 

k-shortest path 

problem 

minimizing travel 

time and risk  

weighted sums method mixed integer program 

Androutsopoulos 

and Zografos 

[34] 

traditional risk 

measure 

k-shortest path 

problem 

minimizing 

time-dependent risk 

and travel time 

 Tabu search 

Verma [35] traditional risk 

measure with 

TRA dataset and 

GIS 

network planning 

problem 

minimizing risk and 

cost 

weighted sums method CPLEX Optimizer 

Verma et. al [36]  traditional risk 

measure 

intermodal 

planning problem 

minimizing risk and 

cost 

weighted sums method an approach based on 

lead-time 

Nema and Gupta 

[37]  

traditional risk 

measure 

planning and 

design problem 

minimizing risk and 

cost 

weighted sums method  

Pradhananga 

[38] 

traditional risk 

measure 

 minimizing number 

of vehicles, travel 

time and risk 

pareto-based 

evolutionary algorithm 

ant colony algorithm 

Ghatee et al. [39] Risk is a given 

parameter. 

fuzzy minimal 

cost flow problem 

minimizing risk and 

fuzzy cost flow 

pareto-based 

evolutionary algorithm 

 

Zografos and 

Androutsopoulos 

[40]  

Risk is a given 

parameter. 

vehicle routing 

and scheduling 

problem  

minimizing risk and 

cost  

weighted sums method heuristic algorithm 

List and 

Mirchandani[41] 

traditional risk 

measure 

location and 

routing problem 

minimize risk, risk 

equity, and cost 

weighted sums method  

Shobrys [42] population 

exposure 

location and 

routing problem 

minimizing 

ton-miles and 

risk-tons 

weighted sums method p-median problem 

Alumur and Kara 

[43] 

population 

exposure  

location and 

routing problem 

minimizing risk and 

cost   

weighted sums method mixed integer 

programming model 

Revelle et al. population discrete location minimizing cost and weighted sums method p-median problem. 
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[44] exposure and routing 

problem 

risk 

Giannikos [45] population 

exposure 

location and 

routing problem 

minimizing four 

objectives* 

weighted sums method goal-programming 

technique 

Current and 

Ratick [46] 

population 

exposure 

location and 

routing problem 

minimizing five 

objectives** 

weighted sums method  

Jacobs and 

Warmerdam [47] 

 location and 

routing problem 

minimizing cost and 

risk 

weighted sums method  

* The five objectives are minimizing risk, cost, maximum individual risk and maximum disutility 

caused by the operation of treatment facilities 

**The five objectives are minimizing transportation risk, facility risk, maximum transportation 

exposure faced by any individual, maximum facility risk faced by any individual, and 

transportation, facility, and operating costs. 

 

It can be concluded from this section that 1) the traditional risk measure is widely 

employed in hazardous material transportation problems because of its computational 

availability; 2) multi-objective hazardous material transportation problems are widely 

studied due to their nature; 3) weighted sums method is usually applied to deal with 

multiple objectives in hazardous material transportation problems because of its 

operational simplification, but studies on other methods such as ε-constraint method 

and pareto-based evolutionary algorithms are still very few in the literature; 4) 

although there are many classical hazardous material transportation problems, the 

hazardous material transportation problem via lane reservation is still rare in the 

literature. This thesis will investigate hazardous material transportation problems via 

lane reservation in networks with time-invariant and time-dependent risk, respectively. 

Before proceeding, a comprehensive review on lane reservation is given in next 

section. 

2.2 Literature review on lane reservation 

 With the development of society, urbanization accelerates quickly. Urban 

population and the number of vehicles are increasing year by year. Consequently, 

traffic congestion becomes a serious problem, which attracts more and more 

attentions of government and people. Traffic condition can be improved by means of 

economical and flexible traffic management strategies. For example, lanes on some 
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road segment can be reserved only for some special tasks. This is usually called lane 

reservation strategy. In other words, it refers to restricting one or several lanes in road 

segments and allowing only special vehicles to use them (within a specified time). In 

this section, some applications of lane reservation in real life, such as Bus lane and 

BRT, HOV, and lane for large special events, are first introduced. Then, studies on 

lane reservation are reviewed. 

2.2.1 Applications of lane reservation 

2.2.1.1 Bus lane and BRT 

 The first bus lane in the world appeared in Chicago, American, in 1940 [48][49]. 

Hamburg, Germany, built the first European public bus lanes in 1963 [50]. Afterwards, 

many European cities began to build bus lanes to relieve the increasingly serious 

congestion of urban traffic. In 1997, the first bus lane was put into operation on 

Chang’an Avenue in Beijing, which opens the door of bus lane strategy in China [51]. 

At present, the strategy of separating buses from other vehicles via bus lanes is 

prevalent in more and more countries. For example, bus lane strategy develops rapidly 

and is highly accepted by the public in Brazil, Thailand and Japan. In China, there are 

also many cites in which bus lane strategy is being implemented, such as Beijing, 

Kunming, Xi’an, Jinan, Guangzhou, Chengdu and so on.  

 The implementation of bus lanes has positive impact on the speed of buses with 

an increase from 10% to 30%, up to 20-35 km/h [52]. Choi and Choi [53] also pointed 

out that in South Korea, after the implementation of bus lanes, the travel time of buses 

was greatly reduced; as a result, about 12% of private car owners chose the public 

transit, and the rate of traffic accidents also decreased. However, the traditional bus 

lane strategy (usually referring to exclusive bus lane, XBL) may have negative impact 

on the general traffic. For example, in the peak hour, the general lanes will be more 

congested due to the exclusiveness of the bus lane. Thus, the vehicles on the general 

lanes would slow down. In order to weaken the negative impact due to bus lane 

strategy, a new innovative dynamic bus lane (DBL) operation system, in which bus 

lanes are opened only in some time periods, is introduced. Like XBL, DBL has the 

javascript:void(0);
javascript:void(0);
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positive impact on buses in terms of their travel time reduction and the negative 

impact on non-bus vehicles in terms of their travel time increase. However, it is 

shown that DBL performs better than XBL in improving bus operation and limiting 

the negative impact on non-bus vehicles in terms of traffic conflicts risk [54]. 

 Bus Rapid Transit (BRT) system is a new and practicable passenger-transported 

traffic mode based on exclusive bus lanes. A BRT system generally includes 

specialized design, services and infrastructure [55]. One of its main features is that 

exclusive bus lanes in BRT system result in a faster travel and ensure that buses are 

not delayed by traffic congestion. Sometimes it is described as a "surface subway". 

BRT originated from Curitiba in Brazil 30 years ago. After employing BRT system in 

Curitiba, the bus travel rate of passengers is up to 75%, and the number of passengers 

in a day reaches up to 1.9 million. BRT system can apply to not only small cities with 

a population of hundreds of thousands but also super large cities [56]. Nowadays, 

BRT can be found in lots of cities all over the world. Fig. 2.1 and 2.2 show the bus 

lane and BRT lane in some cities, respectively [57]. 

    

         a. Exclusive bus lane (XBL)                 b. Dynamic bus lane (DBL) 

Fig. 2.1 Examples of bus lane in a city 

 

Fig. 2.2 Example of BRT lane in a city 

http://en.wikipedia.org/wiki/Traffic_congestion
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2.2.1.2 High occupancy vehicle lane 

 High occupancy vehicle, HOV, is a vehicle with multiple occupants. An HOV 

lane is a lane reserved at peak hours for the exclusive use of vehicles with a driver and 

one or more passengers, including carpools, vanpools, and transit buses [58]. 

Sometimes vehicles on HOV lanes can be free for getting through toll bridges or 

roads. HOV lanes derived from North America in the late 1960s, and developed 

rapidly in the 1970s [59][60]. During this period, HOV lanes were prevalently 

installed in New York, Los Angeles, Seattle, San Francisco, Washington DC, and 

Honolulu. It was widely recognized in the mid of 1980s, and nowadays HOV lanes 

have been widely applying not only in more than 40 cities of North America, but also 

in many cities around the world, such as Canada, Australia, UK, Spain, the 

Netherlands, and Austria in Europe [61] [62]. Fig. 2.3 gives an example of HOV lane 

in a Canadian city [57]. 

 

Fig. 2.3 Example of HOV lane in a city 

 HOV lane is a large capacity vehicle lane, which helps to carry more passengers 

by fewer vehicles. Therefore, the installation of HOV lanes has been considered as an 

efficient traffic management measure of improving the efficiency of road use, easing 

traffic congestion, saving energy and reducing emission. It has been mainly applied 

on road segments where in the peak hours the congestion is very serious and saving 

travel time is particularly important. More information on HOV lanes can reference 

[63]. 

http://en.wikipedia.org/wiki/Traffic_lane
http://en.wikipedia.org/wiki/Rush_hour
http://en.wikipedia.org/wiki/Carpool
http://en.wikipedia.org/wiki/Vanpool
http://en.wikipedia.org/wiki/Public_transit
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2.2.1.3 Lane for large special events 

 In modern society, many large special events such as Olympic Games and World 

Exposition are held frequently in many cities around the world. For example, in 

Shanghai, there were 30 international and 40 national sport events, 176 large 

expositions held in 2009 [64]. These events have a common feature that there are a lot 

of people entering the host city during the event period, which brings great pressure to 

its traffic in a short time. The organizers of the large special events have realized such 

a pressure and began to resort to some various measures. One of effective methods is 

to set up temporary reserved lanes on the existing road segments only for the 

participants of large special events. 

 In real life, lane reservation strategy has been successfully applied to some large 

events, for example, the Olympic Games in 2000 in Sydney [65], in 2004 in Athens 

[66], in Beijing and the Asia sports Games in Guangzhou, China [67]. Olympic lanes 

refer to the lanes reserved only for the vehicles among competition and training 

stadiums, Olympic family residence, Media Hotel, airport, Main Press Center, 

Broadcast and TV Center and other service facilities for the Olympic Games. Fig. 

2.4.a shows Olympic lanes for the Olympic Games in 2008 in Beijing, and all the 

reserved road segments are remarked with red in the urban transportation network of 

Beijing, as illustrated in Fig. 2.4.b [68].  

  

a. An Olympic lane for the Olympic Games      b. Reserved road segments in the city network 

Fig. 2.4 Lane reservation for the Olympic Games in 2008 in Beijing 
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2.2.2 Studies on lane reservation 

 In the previous subsection, various applications of lane reservation in real life are 

introduced. As an interesting traffic management strategy, lane reservation has been 

extensively investigated in the literature. In this subsection, a review on lane 

reservation is given. 

 Study on the impact due to lane reservation is one of the interesting topics in 

intelligent transportation system. Li and Ju [69] presented a multimode dynamic 

traffic assignment (DTA) model for analyzing the impact of exclusive bus lanes. They 

found that the total bus queue length became zero after the installation of bus lanes 

and the average travel cost of bus travelers was significantly reduced compared with 

that of car travelers, which attracted more travelers to change their modes from 

private cars to buses. Chen et al. [70] presented a microscopic traffic simulation 

approach to analyze the impact of weaving sections on the capacity of general traffic 

caused by the installation of XBLs on an urban expressway. Three typical 

configurations of XBLs in Beijing were considered, including median bus lane with 

off-on-ramp, curbside bus lane with on-off-ramp, and curbside bus lane with 

off-on-ramp. It was found that the weaving section length and headway had different 

impacts on the capacity of general traffic in different configurations. Arasan and 

Vedagiri [71] developed a micro-simulation model to analyze the impact on 

heterogeneous traffic flow due to XBLs. The impact was measured by the reduction in 

speed of other vehicles on general lanes. With an XBL, the average speed of buses 

could be up to 65 km/h; at the capacitated level of traffic flow, the travel time for 

buses reduced around 70%; for other personal vehicles, the increase in travel time 

varied from 3% to 8%. Yang and Wang [54] employed micro-simulation approach to 

examine the impact on buses and non-bus vehicles due to XBL and DBL in terms of 

travel time and traffic conflicts. Simulation results showed that both XBL and DBL 

had positive impact on buses in terms of the decrease of their travel time and negative 

impact on non-bus vehicles in terms of the increase of their travel time. However, 

DBL performed better than XBL on achieving the improvement of bus operation and 
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limiting negative impact on other vehicles as traffic conflicts risk. Martin et al. [72] 

reported a two-year study evaluation on the impact of HOV lane on I-15 in Salt Lake 

City. It was reported that a HOV lane could carry the same number of people as a 

non-HOV lane with only 44% of vehicles during the P.M. peak period. The results 

also revealed that the average vehicle occupancy on HOV lane increased by 17% and 

HOV lane could save about 13% and 30% of travel time during the A.M. and P.M. 

peak period, respectively.  

 Another important topic is lane reservation network design problem. At the 

macro level, lane reservation network design problem is a global route planning 

problem from different stakeholders’ perspectives. For example, in bus lane network 

design problem, the stakeholders include government transport agency, private car 

owners, and bus passengers. Therefore, lane reservation network design problem is 

usually considered as a bi-level problem. Chen et al. [73] developed a bi-level 

programming model for the layout of bus lanes. The upper level problem was to 

minimize the total travel time and the total bus lanes’ length and the total transfer 

times; the lower level problem was formulated as a capacity-constrained traffic 

assignment model which described the passenger flow assignment on bus lanes. 

Mesbah et al. [74] investigated a network design problem to determine which lanes to 

be reserved as exclusive transit lanes on the existing network. The problem was 

formulated as a bi-level model. The upper level model was to minimize the impact 

due to XBLs from a manager’ perspective, whereas the lower level model was 

formulated from a user’ perspective and consisted of modal split model, traffic 

assignment model and transit assignment model. A decomposition method was 

adopted to solve the proposed model. Mesbah et al. [75] proposed a genetic algorithm 

approach for the above problem, which could be applied to large-size networks. Wu 

and Lam [76] addressed a bi-level model for the HOV lane design problem in a 

multi-modal transportation network. The upper level sought to minimize the total cost 

of the multi-modal transport system while in the lower level, a multi-modal stochastic 

traffic assignment model was formulated. The model was solved by two heuristic 

algorithms.  
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In recent years, there has been a new lane reservation problem in the literature. 

The essence of the lane reservation problem is to decide which lanes to be reserved in 

the existing transportation network so as to minimize the negative impact caused by 

lane reservation subject to a total travel time constraint. For this reason, this problem 

can be considered a global route planning problem from a manager’s perspective, 

such as government transport agency. Wu et al. [67] first presented an integer 

programming model for lane reservation problem for the Asian Games in 2010 in 

Guangzhou, China. They proposed a heuristic to obtain near optimal solutions. Fang 

et al. [77] proposed a cut-and-solve algorithm for the lane reservation problem in 

automated truck freight transportation and proved that the problem was NP-hard. 

Then, their work was extended to a capacitated lane reservation problem [78]. Fang et 

al. [79] considered a lane reservation problem with time-dependent travel times. The 

problem was formulated as a mixed integer programming model and a cut-and-solve 

based algorithm was proposed for it. However, their work did not consider 

transportation risk.  

From the analysis of the above related literature, the state of the arts on lane 

reservation problem can be concluded as follows. Firstly, researchers have paid close 

attention to studies on the impact due to lane reservation, including the performance 

of lane reservation, the effect on the travel behavior of people, and the travel time of 

special vehicles on reserved lanes and general vehicles on non-reserved lanes. The 

common approaches are based on empirical data and simulation experiments by some 

traffic simulators. These studies mainly provide sufficient supports for 

decision-makers when considering lane reservation as a traffic management strategy. 

Secondly, a few researchers have studied on lane reservation network design problem 

to some extent. The problems are usually formulated as multi-level and multi-criteria 

models from different perspectives of different stakeholders. These models are useful 

tools to analyze the requirements of different stakeholders in the different level. 

Thirdly, lane reservation strategy has been already applied to various applications 

such as HOV lane, bus lane and Olympic lane. However, few studies have focused on 

hazardous material transportation via lane reservation. To address this issue, this 
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thesis integrates hazardous material transportation with lane reservation strategy and 

proposes a multi-objective hazardous material transportation problem via lane 

reservation. Before proceeding, the principles of some key technologies that will be 

applied in this thesis are recalled. 

2.3 Key technologies 

2.3.1 Risk assessment 

This subsection deals with how risk is incorporated into hazardous material 

transportation models, starting with the risk assessment on an arc and shifting it into 

the risk assessment along a path. 

As pointed out in [11], researchers have not come to a consensus on how to 

model the risk associated with hazardous material transportation. Different measures 

can be used to estimate the transportation risk. Note that in quantitative risk 

assessment, it is common to define risk as the product of the probability of hazardous 

material accident and its consequence.  

One of the simple methods to assess risk is to multiply the probability of 

hazardous material accidents by population exposure, assuming that the consequence 

is proportional to the size of the population in the neighborhood of the accident. Risk 

assessment is a quite important task, but it is out of the scope of this thesis. Therefore, 

in this thesis, this method is used as a surrogate for risk measure. The risk of 

transporting hazardous material w on arc (i, j) is defined as the following equation:  

ij ij ijR p c  

where pij is the probability of an incident on arc (i, j) and cij is the population exposure 

within the danger zone along arc (i, j). 

The risk of transporting hazardous material w along path P is defined as the 

following equation:  

( , )

P ij ij

i j P

R p c


   

How to deduce the transportation risk along a path from that on an arc can be found in 

[11]. 
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As we know, it is difficult to estimate, a priori, the probability of an accident and 

its undesirable consequences. Therefore, like the most studies on hazardous material 

transportation in the literature, the probability of an accident and the consequences are 

considered as parameters when formulating the considered problems in this thesis. 

2.3.2 Multi-objective optimization problem 

 Multi-objective optimization is a very important research topic both for scientists 

and engineers, not only because of the multi-objective nature of most real-world 

problems, but also because there are still many open questions in this area.  

 Without loss of generality, a multi-objective minimization problem can be 

formulated as follows: 

Minimize f(x) = [f1(x), f2(x),..., fm(x)]T 

Subject to 

gj(x)≤0, j=1,2,…,J 

hl(x)=0, l=1,2,…,L 

where m, J and L are the number of objective functions, inequality constraints, and 

equality constraints, respectively, and x and f(x) is the decision variable vector and the 

objective vector, respectively. 

 A multi-objective optimization problem (MOP) requires the simultaneous 

satisfaction of a number of objectives. These objectives are usually different and 

conflicting, and often characterized by various measures of performance that may be 

(in)dependent and incommensurable [80]. The aim of a MOP is to determine, among 

the set of all feasible solutions, a particular one which provides the optimum values 

for all the objective functions. Thus, MOP can be reduced to finding an x such that f(x) 

is optimized. The difficulty encountered in solving MOPs is that this unique optimal 

solution seldom exists for practical problems. However, there commonly exists a set 

of good quality solutions. This set of solutions comprises all decision vectors that 

cannot be improved in one objective without causing any degradation in other 

objectives. Since the notion of an optimum solution of a MOP is different from that of 

a single objective optimization problem, the concept of Pareto optimal is introduced.  
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  Let set  {x|gj(x) ≤0, j=1,2,…,J and hl(x)=0, l=1,2,…,L} be the feasible 

solution space. x*  is said to be a weakly Pareto optimal solution if and only if 

there is no x  such that fi(x) < fi(x*) for all i{1,…,m}. x*  is said to be a 

strictly Pareto optimal solution if and only if there is no x  such that fi(x) ≤ fi(x*) 

for all i{1,…, m} and at least one strict inequality [81]. Set Z {f(x)|x } is called 

the feasible objective space. The image of all the Pareto optimal solutions under 

objective functions is called Pareto front. The points on Pareto front are referred to as 

named non-dominated points. 

2.3.3 ε-Constraint method 

 There have been many techniques proposed for solving multi-objective 

optimization problems over the last several years. The strategies of handling 

objectives for an MOP can be mainly divided into two general categories: 

scalarization method and Pareto-based evolutionary algorithm. Scalarization method 

often refers to transforming the multi-objective problem into the single objective 

problem by some scalarization techniques, such as weighted sum method, and 

ε-constraint method. Pareto methods, which use the concept of Pareto dominance to 

evaluate the quality of a solution, are mainly combined with evolutionary algorithms, 

such as genetic algorithm.  

 The most popular scalarization method is the weighted sum method. The essence 

of this method is to add all the objective functions together using different weighting 

coefficients for each of them and transform the original MOP into a scalarized 

optimization problem. This technique is relatively easy to implement and can be used 

together with some heuristics or meta-heuristics. However, it still has several 

disadvantages. Firstly, it is a difficult task to determine appropriate weights according 

to the importance of the objectives. Secondly, this method can only find the solutions 

on the convex hull of the Pareto optimal set, but it does not work for the non-convex 

search spaces [82].  

Pareto-based evolutionary algorithms use the concept of Pareto dominance to 

classify the individuals in the population and a mechanism to assign suitable fitness 
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values to promote the dispersion of the population. Since evolutionary algorithms use 

the concept of population, they may be able to obtain multiple Pareto optimal 

solutions simultaneously in a single run of algorithms. However, the performance of 

the Pareto-based evolutionary algorithms is highly dependent on an appropriate 

selection of initial population. In addition, it is difficult to evaluate the evolutionary 

algorithms. 

 To alleviate the difficulties faced by the weighted-sum method and Pareto-based 

evolutionary algorithms, the ε-constraint method is employed in this thesis. The 

ε-constraint method, also called the e-constraint or trade-off method, is introduced by 

Haimes et al. [83]. This method is aimed to minimize only one objective function n 

(commonly, it may be the most preferred or primary one) and bounding the others by 

some allowable values εi, i  {1,…,m}\{n}. In this way, the multi-objective 

optimization problem can be transformed into a single objective one. Given a vector 

of ε =(ε1,…,εj-1, εj+1,…,εm), one point on the Pareto front is produced. Accordingly, the 

entire Pareto front can be shaped by changing the vector of ε. To solve the single 

objective problem, appropriate εi needs be determined. A general mathematical 

guideline for selecting εi is provided as follows:  

* *( ) ( ), {1,..., }\{ }i i i i nf x f x i m n    

Note that for each objective function
if , there is an optimal decision vector *

ix such 

that *( )i if x is a minimum.  

Miettinen in 1999 [84] proved the following theorems. 

Theorem 1. If an objective n and a vector ε = (ε1,…, εn-1, εn+1,…, εm) Rm-1 exist, 

such that x* is an optimal solution to the following problem: 

Minimize fn(x) 

Subject to  

fi(x) ≤ εi,  i{1,…,m}\{n} 

x , 

then x* is a weakly Pareto optimal solution. 
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Theorem 2. x* is a strict Pareto optimal solution if and only if for each objective n, n 

= 1,…,m, there exists a vector ε = (ε1,…, εn-1, εn+1,…, εm)Rm-1 such that f(x*) is the 

unique objective vector corresponding to the optimal solution to the problem above. 

2.3.4 Cut-and-solve method 

2.3.4.1 Principle of cut-and-solve method 

 Cut-and-solve (CS) method was firstly proposed for combinatorial optimization 

problems by Climer and Zhang in 2006 and it was proved that CS method was very 

effective for Asymmetric Traveling Salesman Problem [85]. 

Traditionally, branch-and-bound method is a very general exact procedure for 

solving combinatorial optimization problems. Basically, branch-and-bound is a 

divide-and-conquer approach that tries to solve the original problem by splitting it 

into smaller problems. The splitting of problems can be represented by the 

branch-and-bound tree. If the entire tree is generated, every feasible solution can be 

represented by at least one leaf node. If feasible solutions are too many, the search 

tree will be too large to be completely explored. The efficiency of branch-and-bound 

heavily depends on its pruning rules, which means pruning some nodes while 

guaranteeing optimality. If the search tree is pruned to an enough small one, the 

problem can be easier to be solved to optimality. Branch-and-cut is an extension of 

branch-and-bound by increasing the probability of pruning. At some or all of the 

levels in the search tree, cutting planes are added to tighten the corresponding relaxed 

subproblems of the nodes, which can reduce its solution space.  

 Cut-and-solve method is different from traditional tree search methods such as 

branch-and-bound and branch-and-cut, since it has no branching steps. That is to say, 

it is a special branch-and-bound search strategy but can avoid making wrong choices 

in depth-first branch-and-bound. Cut-and-solve method owns two favorable properties. 

Firstly, there are no “wrong” subtrees in which the search may get lost because of the 

absence of branching. Furthermore, compared with branch-and-bound and 

branch-and-cut, its memory requirement is negligible. For these reasons, it has 

potential for problems that are difficult to solve using depth-first or best-first search 
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tree methods [85]. 

Given an integer programming problem (IP) with the minimization of an objective 

function, at each level of the CS search tree, there are only two nodes, corresponding 

to Sparse Problem (SP) and Remaining Problem (RP), respectively. SP, whose 

solution space is relatively small, can be solved optimally within a reasonable time 

and its solution if it exists provides an upper bound of the IP, denoted as UB. And if it 

is “good” enough, then the best upper bound of the IP found so far, denoted as UBmin 

is updated. Meanwhile, a lower bound of the IP, denoted as LB, can be obtained by 

solving the linear relaxation of RP. Obviously, if this lower bound is greater than or 

equal to the best upper bound found so far, then the optimal value of RP is also 

greater than or equal to it. In this case, RP has no better feasible solutions than the 

solution corresponding to the best upper bound found. At this point, an optimal 

solution of the IP is found. Otherwise, the current RP is further decomposed into a 

new SP and a new RP by adding a branching constraint for the next iteration. The 

above procedure is repeated until a global optimum of the IP is found. The general 

procedure of cut-and-solve method is given in Fig 2.5. 

Cut-and-solve method 

1. define current problem as original problem. Solve the linear relaxation of current 

problem. 

2. generate a cut 

3. find an optimal solution in solution space removed by the cut and obtain the best 

upper bound, UBmin 

4.    update UBmin if necessary 

5. add the cut to remaining problem 

6. find a lower bound, LB 

7. if (LB ≥ UBmin) return UBmin 

otherwise, define the current problem as remaining problem and repeat from step 2 

Fig. 2.5 General procedure of cut-and-solve method 

 To well understand this method, the following points should be emphasized: 1) 
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Since SP is a subproblem of the original problem, its optimal value is an upper bound 

of the original problem. In the iteration, the best upper bound will be updated if it can 

be improved. 2) After solving SP, its corresponding solution space is removed away 

from the whole solution space. Hence, the size of the solution space of the current 

problem in the next iteration will be reduced. 3) It is relatively difficult to solve RP 

optimally because its solution space is larger. So only its linear relaxation problem is 

solved for the ease of resolution. Apparently, the optimal value of RP is greater than 

or equal to the lower bound obtained by its linear relaxation problem. 4) Since the 

solution space of the RP (that is, the current problem in the next iteration) is reduced 

iteratively, its linear relaxation problem may also be tighter with the iteration. If the 

constraints of this relaxed problem are tight enough, the lower bound is no less than 

the best upper bound. In this case, the termination criterion is satisfied and the 

iteration stops. 

 Climer and Zhang [85] explicitly gave two theorems to explain the optimality and 

termination criterion of the cut-and-solve method, as follows. 

Theorem 1 When the cut-and-solve algorithm terminates, the current incumbent 

solution must be an optimal solution. 

Theorem 2 If the solution space for the original problem is finite, and both the 

algorithm for solving the relaxed remaining problem and the algorithm for selecting 

and solving the sparse problem are guaranteed to terminate, then the cut-and-solve 

algorithm is guaranteed to terminate. 

 The proof of the two above theorems can be found in [85] and see it for more 

details.  

2.3.4.2 Definition of piercing cut, remaining problem and sparse problem 

 The key to the cut-and-solve method is how to cut the solution space of the 

current problem into RP and SP. Unlike the cutting planes in branch-and-cut search, 

the cuts used in cut-and-solve method intend to separate solutions from the original 

solution space, which leads to the generation of RP and SP. Climer and Zhang used 

the term piercing cut to refer to a cut that could remove at least one feasible solution 
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from the original (unrelaxed) problem solution space. 

 The piercing cuts play a very important role in the cut-and-solve method. 

Actually, the efficiency of this method heavily depends on selecting appropriate 

piercing cuts. For example, if the solution space of SP, partitioned by the piercing cut, 

is not small enough, it will be difficult to solve SP within a reasonable time; 

conversely, there may be no better feasible solutions in the solution space of SP, and 

thus the best upper bound found so far cannot also be improved rapidly in the iteration. 

Therefore, it is important to generate effective piercing cuts. Climer and Zhang also 

offered some desirable properties of piercing cuts, as follows [85]:  

1) The piercing cut should remove the optimal solution of the relaxed RP in order to 

prevent this solution from being found in next iterations. 

2) The subspace removed by the piercing cut from the solution space of the relaxed 

RP should be adequately small so that SP can be solved to optimality relatively easily. 

3) The piercing cuts should attempt to capture an optimal solution of the original 

problem. The algorithm will not be terminated until an optimal solution of the original 

problem has been found in the sparse problem. 

4) In order to guarantee termination, the subspace removed by each piercing cut 

should contain at least one feasible solution of the original problem. 

 Climer and Zhang defined a variable set that includes the decision variables 

whose reduced cost values are greater than a given value alpha. Notice that each 

decision variable has a reduced cost value. The reduced cost value is defined as a 

lower bound on the increase of the LP solution cost if the value of the variable is 

increased by one unit, and can be obtained from the optimal solution of the linear 

relaxed RP. Then the piercing cut is defined as a constraint such that the sum of the 

decision variables in this special variable set is greater than or equal to one. The key 

of the problem becomes how to determine the variables in the certain set.  

 Let Ur (r ≥ 1) denote such a set composed of some decision variables in r-th 

iteration. As decision variables are all binary ones, the sum of the values of the 

variables in Ur must be either equal to zero, or greater than or equal to one. With the 

piercing cut at r-th iteration, denoted by PCr, RPr is generated by adding the 
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constraint such that the sum of the values of the variables in Ur is greater than or 

equal to one to the current problem CPr; SPr is generated by adding the constraint 

such that the sum of the values of the variables in Ur is equal to zero to CPr. Note that 

the cut-and-solve method will not terminate until an optimal solution of SPr is found 

and the solution is proved to be the optimal solution of the original problem. Then the 

variables whose values are non-zero in this optimal solution cannot be in Ur because 

all variables in Ur are set to zero in SPr.  

As stated above, Climer and Zhang introduced a concept of reduced cost as a tool 

to select variables for Ur. An optimal solution of the linear relaxation of RPr can 

provide the reduced cost value of each variable, which is defined as a lower bound on 

the increase of the objective value if the value of this variable is increased by one unit. 

For example, given a variable x, suppose that its reduced cost is ten and its value is 

zero in the optimal solution of an LP problem. If the value of x is increased by one 

unit, in other words, x has the value of one, then the objective value will be increased 

by at least ten. Moreover, the values of decision variables with large reduced cost 

have a small chance of being non-zero in the optimal solution of the original IP 

problem. Therefore, Ur can be defined as a set of the decision variables whose reduced 

costs are greater than a positive given parameter hr. In this thesis, the value for hr is 

chosen according to the following way: if the expected number of elements in Ur is n, 

the n-th largest reduced cost of these decision variables in Ur is set as the value of hr.  

2.3.5 Cutting plane method 

 As we know, integer programming (IP) problem is a kind of optimization 

problem which is usually NP-hard and difficult to be solved. There have been many 

solution approaches for solving it, such as enumeration method, branch-and-bound. 

Bounding is commonly considered to be crucial for solving IP problems by these 

methods. In recent years, valid inequalities have received increasing attention as a 

bounding technique. One purpose of this thesis is to propose a cutting plane method 

as a way of finding valid inequalities to obtain a tighter lower bound for linear 

programming (LP) problems so that the convergence of the cut-and-solve method can 
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accelerate. 

 The fundamental principle of the cutting plane method can be briefly described as 

follows. Initially, there is such an integer linear program (IP) with the non-negativity 

constraints. IP and its corresponding LP relaxation can be formulated as 

min{ : }IPc S  and min{ : }LPc S  respectively, where n

IP LPS S Z and 

{ : }n

LPS R A b    . To explain the cutting plane method, consider an integer 

programming problem as follows: 

  Minimize  － 2x1 － 3x2 

Subject to 

             x1 + 3x2 ≤ 7, 

x1 － x2 ≤ 3, 

x1, x2N. 

 This problem is illustrated in Fig. 2.6. The feasible integer points of the problem 

are indicated by black solid dots. The LP relaxation of the IP problem is obtained by 

relaxing the integrality restrictions and its feasible solution space is represented by the 

polygon contained in the solid lines. The boundary of the convex hull of these feasible 

integer points, denoted by conv(SIP), is indicated by dashed lines. Obviously, it 

represents the smallest convex set that can contain the solution space of IP, SIP. If the 

optimal solution of LP, *

LP , is integral, it will be an extreme point of SIP; that is to 

say, it is on the conv(SIP). If not, it is absolutely outside of conv(SIP). There may exist 

a linear inequality that can separate *

LP  from conv(SIP). The linear inequality is 

satisfied by all the feasible integer solutions of IP and violated by *

LP . Such linear 

inequality is called a cutting plane for SIP. The inequality is added to LP as an 

additional linear constraint, and a new LP is generated. Thus, the non-integer solution 

*

LP  is no longer feasible for the new LP. This process continues until an integral 

optimal solution of the new LP is found. It is also an optimal solution of the original 

IP. 
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Fig. 2.6 A cutting plane example 

 The general procedure of a cutting plane method is illustrated as follows: 

Step 1. Solve the LP relaxation of an IP problem. 

Step 2. If the solution to the LP relaxation is also feasible for the IP problem, the 

optimal solution of IP problem is obtained and the algorithm terminates. Otherwise, 

go to Step 3. 

Step 3. Find one or more cutting planes that separate the optimal solution of the LP 

relaxation from the convex hull of feasible integer points, and add these constraints to 

the LP relaxation. 

Step 4. Return to Step 1. 

 In a word, at each iteration, the current LP problem is first solved, and valid 

inequalities that are violated by the optimal solution of LP problem are found. Then 

these inequalities are added to the LP problem until the optimal solution of the IP 

problem is found. 

 From the above analysis, we know that a cutting plane is a linear constraint which 

can reduce the solution space without loss of optimal feasible points and cutting plane 

method combined with other techniques can be used to obtain bounds for the global 

optimum. Then, the key to the cutting plane method is to find inequalities violated by 

the current LP relaxation, that is, the generation of valid cutting planes.  

 The generation of cutting planes is also called separation algorithm, which is the 

main feature of various cutting plane methods. Specifically speaking, the separation 
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algorithm is to find inequalities violated by a given fractional solution * , but valid 

by a given set of linear inequality constraints of the original problem, or verify that 

any such inequalities do not exist. The separation algorithm is presented as follows. 

 As we know, a knapsack constraint can be usually written as follows: 

       
i i

i

b


                             (2.13) 

where   is a set of items, i  is the weight of item i, b is the capacity of the 

knapsack. Binary variable   = {
1 2, ,...,    } {0,1} |


  indicates that whether item i 

is selected in the knapsack (i.e., i  = 1) or not (i.e., i  = 0). Its knapsack polytope is 

the convex hull of feasible solutions in the following formula: 

           conv{ {0,1} | }t i i

i

H b




   .               (2.14) 

Set C   is called a cover for (2.13) if i

i C

b


 . For any cover C, the cover 

inequality (CI) for (2.14) is defined in the following form: 

                        1i

i C

C


  .                     (2.15) 

Constraint (2.15) is valid by all points in Ht. A CI is called valid if it is satisfied by the 

all points in Ht and violated by the given fractional solution, * . 

 It was pointed out in [86] that valid CIs could be obtained by solving a 0–1 

knapsack problem, PKP, as follows: 

       
*min (1 )i i

i

v 


               (2.16) 

          Subject to   

           ,i i

i

v b


           (2.17) 

         { 0 , 1} , .iv i                     (2.18) 

The above problem can be solved by the dynamic program proposed by Kaparis and 

Letchford [87].  

Define cover 
*{ | 1}iC i v   , where

*v is the optimal solution of problem 

PKP. Thus, we have 
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* * * * * *
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        . 

 According to the definition of C, if i∈C, 
*

iv = 1; otherwise 
*

iv = 0. Then the 

following formula holds: 

* * *(1 ) | |i i i

i C i C

v C  
 

     . 

If 1  , that is, 
*| | 1i

i C

C 


  , we have 

* | | 1i

i C

C


  . 

The above process proves that the CI defined by (2.15) is violated by fractional 

solution *  and it is a valid CI. Therefore, in order to find CIs for (2.13), problem 

PKP needs be solved. If its optimal value is greater than one, then the CI defined by 

(2.15) is a valid CI.  

2.4 Conclusion 

In this chapter, hazardous material transportation problems were divided into 

three categories. For each related problem, its description, notation and formulation 

are introduced, its characteristics were analyzed to explain the differences between it 

and the considered problem in this thesis and its literature review was conducted. 

Then, lane reservation strategy was introduced as a traffic management measure and 

several applications of this strategy in real life were described in detail. Additionally, 

the state of the arts on the impact of lane reservation and the lane reservation network 

design problem was reviewed. Thus, this thesis was motivated to apply lane 

reservation strategy to hazardous material transportation for the sake of reducing the 

transportation risk. Finally, some optimization methods and techniques for solving 

multi-objective and single objective problems were introduced, which would be used 

for the considered problems in this thesis. 
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CHAPTER 3 MODEL AND METHOD FOR 

HMTLR WITH TIME-INVARIANT RISK 

3.1 Introduction 

As stated in Chapter 1, in industrial production, a huge quantity of hazardous 

substances are shipped everyday through the transportation networks. Although 

almost hazardous material shipments can safely arrive to their destination [1], 

hazardous material accidents can happen en-route and result in undesirable 

consequences. Under this background, hazardous material transportation problems 

have been widely studied in the literature. 

It has been pointed out in much relevant literature that the essential objective of 

hazardous material transportation problems is to minimize the transportation risk due 

to its nature. As we know, the selection of routes in a network for hazardous material 

transportation can affect its risk factors, such as the probability of hazardous material 

accidents and the risk exposure to the surrounding population and environment. 

Therefore, appropriate routing decisions are very important for hazardous material 

transportation management. In the last couple of decades, various applications of 

Operations Research models to hazardous material transportation have focused on risk 

reduction and fruitful achievements in this area have been published, please see [1] 

for details. As reviewed in Chapter 2, the hazardous material transportation problem 

can be divided into the time-invariant problem and the time-dependent problem 

according to the feature of the transportation network. Like most hazardous material 

transportation problems studied in the literature, we first investigate in this chapter a 

time-invariant HMTLR problem, in which the transportation risk is considered 

constant throughout the day. 

As reviewed in Chapter 2, the problems closely related to HMTLR include the 

routing problem, the network design problem and the location and routing problem 
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for hazardous material transportation. The routing problem for hazardous material 

transportation involves multiple stakeholders, such as carriers and governments, 

which have their own different role in safely shipping hazardous materials from 

origins to destinations. In addition, each stakeholder may have different priority. For 

example, the transportation department authorized by government is commonly 

responsible for designating allowable routes with less risk as soon as possible in view 

of public safety and healthy, while carrier companies usually try to choose a route that 

can minimize transportation costs and travel times. Therefore, this problem can be 

considered a typical multi-objective problem with multiple stakeholders. Other hot 

research topics in this area, such as the network design problem and the location and 

routing problem for hazardous material transportation, also indicates the nature of 

multiple criteria of hazardous material transportation problem.  

It can be observed from section 2.2 that in all the models presented in the 

literature, hazardous material shipments share the chosen road segments with other 

transportation tasks. In this chapter, an alternative transportation way involving a lane 

reservation strategy is presented. The essence of a lane reservation strategy is to 

reserve lanes on some road segments (in some time intervals) in the transportation 

network and to only allow special transportation tasks to pass through them. 

Transporting hazardous materials on reserved lanes can reduce the risk. However, the 

lane reservation strategy may worsen the traffic situation. Therefore, when planning 

the reserved lanes for hazardous material transportation, a government agency has to 

consider minimizing the negative impact caused by the lane reservation strategy. As 

stated in Chapter 2, it has been successfully applied in bus traffic, and sportive games. 

It is worthwhile to point out that there have been a few mathematical models to 

optimally determine which road segments to be reserved [67] [77]-[79]. However, 

their work did not consider transportation risk factor explicitly. This chapter addresses 

a multi-objective HMTLR problem with time-invariant risk. 

In this chapter, the HMTLR problem with time-invariant risk is formulated as a 

multi-objective model. Then, an ε-constraint method is adopted to solve the 

multi-objective model and a fuzzy-logic-based approach is applied to choose a 
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preferred solution. An instance based on real network topologies and randomly 

generated instances are tested to evaluate the proposed method. Finally, the 

conclusions and some potential directions for future research are discussed. 

3.2 Problem formulation 

3.2.1 Problem description 

Let G = (V, A) be a bidirected hazardous material transportation network, which 

is composed of a number of nodes. V is the set of nodes. A is the set of the arcs that 

connect the nodes. Arc (i, j) denotes a road segment from node i to node j. |W| kinds 

of hazardous materials must be carried from origins O∈V to their corresponding 

destinations D∈V. 

The problem considered in this chapter is to choose lanes to be reserved in the 

transport network and select the path of each shipment from the reserved lanes to 

guarantee that each shipment must be finished within its deadline, and the risk caused 

by all the shipments that pass the same road segment cannot exceed its threshold of 

the accident probability. In the considered network, if one of the lanes on a road is 

selected as a reserved lane, the other(s) are called the general lane(s), as shown in 

Fig.3.1. Hazardous material transportation through the reserved lanes can reduce the 

probability of accidents. Nevertheless, lane reservation will certainly impact the 

normal traffic because only special shipment can pass them. The goal of the problem 

is to seek a best tradeoff for minimizing the total impact on the normal traffic and the 

total transportation risk, which provides useful decision supports for decision-makers. 

Risk is the primary ingredient that distinguishes hazardous material transportation 

problems from others. Before proposing a formulation, some notions of risk 

assessment is recalled. 
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Reserved lane

Reserved lane

Vehicle carrying 
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Vehicle carrying 

hazardous materials

General lane

General lane

 

Fig. 3.1 Sketch of a road segment with reserved lanes 

3.2.2 Assumption, notation and formulation 

Before proposing the multi-objective model, some assumptions and notations are 

presented here. 

Assumptions: 

1. Both the probability of a hazardous material accident happening on an arc and 

the population exposure along a road segment are constant, and time-invariant.  

2. Potential accidents involving hazardous materials independently happen. 

3. There are at least two lanes on a road such that one lane is allowed to be 

reserved; otherwise, the impact on the normal traffic will be too heavy.  

4. Hazardous material shipments pass only through reserved lanes. That is, it is 

required to reserve a lane on an arc if there is at least one type of hazardous shipment 

passing through this arc. 

Notations: 

W {1, 2, …, |W|}: set of hazardous materials type  

Tij: travel time on the reserved lane of arc (i, j) 

ij : travel time on the general lane(s) of arc (i, j). Note that ij > Tij 

Cij: impact on the normal traffic due to the lane reservation on arc (i, j) 

Mij: total number of lanes on arc (i, j) 

Sw: deadline of accomplishing shipment w 

Qij: threshold of the accident probability on arc (i, j) 

w

ijP : accident probability of hazardous material w on a reserved lane of arc (i, j) 
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w

ij : accident probability of hazardous material w on the general lane(s) of arc (i, 

j). Note that w

ij > w

ijP  

Eij: population exposure along arc (i, j) 

Decision variables: 

1      if there is a reserved lane on arc ( , )  and the shipment  passes the arc    

0     otherwise

w

ij

i j A w
x


 


 
1      if there is a reserved lane on arc ( , )   

0     otherwise
ij

i j A
y


 


 

Formulation: 

The hazardous material transportation problem with lane reservation can be 

formulated as the following two-objective integer linear programming model. 

Problem P: 

Minimize 
1

( , )

ij ij

i j A

f C y


             (3.1) 

Minimize 
2

( , )

w w

ij ij ij

W i j A

f E P x


            (3.2) 

Subject to  

:( , )

1,  , ,  
w

w

w

o j w

j o j A

x w W o O


               (3.3) 

w

:( , )

1,  , ,  
w

w

w

id

i i d A

x w W d D


               (3.4) 

         
:( , ) :( , )

,  , , ,w w

ij ji w w

j i j A j i j A

x x w W i o d
 

           (3.5) 

,  ( , ) , w

ij ijx y i j A w W                   (3.6) 

( , )

,  w

ij ij w

i j A

T x S w W


                     (3.7) 

,  ( , )w w

ij ij ij

w W

P x Q i j A


                 (3.8) 

{0,1}, ( , )w

ijx i j A                  (3.9) 

{0,1}, ( , )ijy i j A                     (3.10) 

 Objective (3.1) is to minimize the total impact of all reserved lanes on the normal 

traffic, where Cij is defined by 
1

ij

ijM




 according to [67]. The impact can be 

considered as the increase in travel time on the general lane(s) caused by the lane 
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reservation strategy, which is proportional to the travel time on the general lane(s) of 

arc (i, j) and inversely proportional to the total number of lanes on arc (i, j). According 

to [70], an actually statistical result showed that the travel time of the general lanes 

increased about 53% after one of three lanes was reserved in A1 highway in Paris. 

This figure is very close to the theoretical test result (50%) obtained by the 

computational experiment done in [77] using the above formula. If the lane is not 

reserved, then Cij =0. Objective (3.2) is to minimize the total transportation risk. 

Constraints (3.3) and (3.4) respectively mean only one path for each shipment w 

starting from its origin ow and arriving to its destination dw. Constraint (3.5) ensures 

the flow conservation. Constraint (3.6) expresses that there is a shipment w on arc (i, j) 

if and only if a lane is reserved on it. Constraint (3.7) guarantees that the total travel 

time of shipment w cannot exceed its deadline Sw. Constraint (3.8) requires that the 

risk caused by all the shipments that pass arc (i, j) cannot exceed its risk threshold for 

the sake of equity in the spatial distribution of risk. Constraints (3.9) and (3.10) 

specify that 0-1 restrictions on the variables. 

3.3 Solution approach 

In this section, an ε-constraint method is adopted to solve the proposed problem. 

After that, a fuzzy-logic-based approach is applied to obtain a preferred solution. 

3.3.1 ε-constraint method for the multi-objective problem 

There are several common techniques to solve a multi-objective problem, such as 

the weighted sum method, the ε-constraint method, the goal attainment approach and 

metaheuristics [81]. The advantages of the ε-constraint method have been presented in 

Section 2.3.2. With the ε-constraint method, the multi-objective IP model in this 

chapter can be transformed into a series of single objective IP models, which can be 

solved with a commercial MIP solver, such as CPLEX.  

The model proposed in Section 3.2.3 has two competing objective functions 

subject to a set of constraints. The first one f1 is the impact on the normal traffic due to 

lane reservation while the second one f2 is the total transportation risk on those 
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reserved lanes. Only when the lane is reserved for hazardous material transportation, 

the shipment can pass the road segment. Therefore, the first objective function is 

considered as the main objective function. Then, the multi-objective model is 

transformed into a single one, in which only f1 is minimized while f2 is added as a new 

constraint to the feasible solution space. 

The ε-constraint method for the proposed problem is described as follows: 

1) Problem P in Section 3.2.3 is transformed into problem P0(ε) according to 

basic principles of the ε-constraint method. Problem P0(ε) can be represented as 

follows. 

Problem P0(ε): 

Minimize
( , )

ij ij

i j A

C y


             (3.1) 

Subject to 

          
( , )

,w w

ij ij ij

W i j A

E P x 


               (3.11) 

       and constraints (3.3)-(3.10). 

where ε is an upper limit of the value of f2. 

Complexity analysis: If the shipments all start from the same origin and the 

deadline of each shipment, the risk threshold of each arc and the upper limit of the 

second objective function are all large enough, then the single objective IP problem 

P0(ε) can be reduced to a Steiner tree problem [88]. As a Steiner tree problem is 

NP-hard [89], the single objective IP problem is also NP-hard. At present, the 

commercial IP solver like CPLEX can be strong enough to solve medium-size IP 

problems. Hence, CPLEX is applied to solve the single objective IP problems, P0(ε), 

in this chapter. 

2) In order to solve problem P0(ε), it is necessary to determine ε that is limited by 

the range of objective function f2. To obtain the appropriate range of f2, the 

multi-objective problem P is decomposed into two single problems P1 and P2 with 

objective functions f1 and f2 respectively. 

A. Lower limit of each objective 

The optimum values 1

If and 2

If  of objective function f1 and f2 can be obtained 
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by solving the following problems P1 and P2, respectively. 

Problem P1: 

             Minimize
( , )

ij ij

i j A

C y


              (3.1) 

   Subject to 

            constraints (3.3)-(3.10). 

Note that an optimal vector ( *1
ij

y , *1w
ij

x ) can be found by solving P1. 

Obviously, *1

1 1( )I

ijf f y . 

Problem P2: 

       Minimize
( , )

w w

ij ij ij

W i j A

E P x


          (3.2) 

   Subject to 

            constraints (3.3)-(3.10). 

Note that an optimal vector ( *2
ij

y , *2w
ij

x ) can be found by solving P2. Similarly, 

*2

2 2 ( )I w

ijf f x . 

Let vertical and horizontal axes represent the values of f1 and f2 respectively, as 

shown in Fig.3.2. The objective vector, ( 2

If , 1

If ), minimizing each of the objective 

functions corresponds to a point in the objective space, called the ideal point. If the 

ideal objective vector were feasible, the optimal solution of the multi-objective model 

is found. Generally, this is impossible because some conflicts among objectives exist. 

Nevertheless, it can be considered as a reference point. The ideal point indicates the 

lower limit of each objective. 

B. Upper limit of each objective 

The nadir objective vector represents the upper limit of each objective in the 

entire Pareto set, but not in the entire objective space. We calculate the upper limit of 

each objective according to the following process. Firstly, let f2 and f1 equal 2

If  and 

1

If  obtained by solving P2 and P1, respectively. They can be considered as new 

constraints (3.12) and (3.13) respectively. Then new constraint (3.12) (resp. (3.13)) 

and constraints (3.3)-(3.10) with objective function f1 (resp. f2) compose problem P3 
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(resp. P4). 

Problem P3: 

      Minimize
( , )

ij ij

i j A

C y


            (3.1) 

    Subject to 

            2

( , )

w w I

ij ij ij

W i j A

E P x f


              (3.12) 

          constraints (3.3)-(3.10). 

Problem P4: 

      Minimize
( , )

w w

ij ij ij

W i j A

E P x


           (3.2) 

    Subject to 

        1

( , )

I

ij ij

i j A

C y f


           (3.13) 

           constraints (3.3)-(3.10). 

Optimal values of problems P3 and P4 are noted as 1

Nf and 
2

Nf respectively. Obviously, 

1

If < 1

Nf and 2

If < 2

Nf . ( 2

Nf , 1

Nf ) is defined as the nadir point, as shown in Fig.3.2. 

 

Fig. 3.2 Ideal and nadir points 

3) In order to calculate the values of ε, the range of the objective function f2, 

range2, needs to be determined. For values of f2 bounded by [ 2

If , 2

Nf ], range2 can be 

defined as 

           range2 = 2

Nf － 2

If          (3.14) 
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where 2

If  and 2

Nf  are obtained by solving problems P2 and P4. 

Then range2 is divided into S equal intervals by S +1 points, namely equidistant 

grid points. ε in constraint (11) is set by these grid points as the following formula 

     2
2

s N range
f s

S
    , s = 0, 1, ..., S       (3.15) 

4) Repeat to solve problem P0(ε) with different values of ε, and finally obtain S+1 

Pareto optimal solutions. 

3.3.2 Selection of a preferred solution 

After S +1 solutions are obtained, a DM may wish to select a preferred one from 

them and also wants to know its degree of optimality. In the literature, there are 

several approaches related to the selection of preferred solutions, such as the k-mean 

clustering procedure, the weighted-sum approach and the fuzzy-logic-based approach. 

Cluster analysis can classify data into groups in which individuals are similar to each 

other [90]. As one of the most common clustering techniques, the k-mean clustering 

procedure [91] is used when any preference of the objectives is absent. This method 

chooses a set of solutions rather than a single solution and moreover, it is usually used 

together with evolution algorithms such as genetic algorithms. The DM can choose a 

preferred solution by the weighted-sum approach when a preferred weight vector is 

provided. However, the method only gives the absolute weighted-sum of objective 

values of a solution, but fails to indicate the degree of optimality of a solution. The 

fuzzy-logic-based approach [92] cannot only provide a most preferred solution but 

also indicate its degree of optimality. Therefore, in this chapter, fuzzy-logic-based 

approach is applied to assist a DM in choosing a preferred solution. 

 In the m-objective optimization problem with S+1 Pareto optimal solution, the 

membership function ( )s

i if  indicates the degree of optimality for the i-th objective 

function in the s-th solution [92]. It is defined as follows.  

In the case of objective functions being minimized, 



 49  

1                   

( )    ,

0                

s I

i i

N s
s I s Ni i

i i i i iN I

i i

s N

i i

f f

f f
f f f f

f f

f f



 



  


 

1≤i≤m, 1≤s≤S+1     (3.16) 

where I

if  and N

if  denote the lower and upper limits of objective function fi of P 

respectively, and s

if  represents the value of the i-th objective function in the s-th 

Pareto optimal solution, such that s

if  [ I

if , N

if ]. 

For each solution s, the membership degree s  is calculated based on its 

individual membership functions as follows [92]. 

1

1

1 1

( )

( )

m
s

i i
s i

S m
s

i i

s i

f

f











 





           (3.17) 

The solution with the maximum value of s is selected as the most preferred 

solution. If a DM can offer a preferred weight vector for impact on normal traffic and 

transportation security, another way of calculating s  is provided by adding weight 

factors, i.e, 

1

1

( )
m

s

i i i
s i

m

i

i

f













           (3.18) 

where ωi is the weight of the i-th objective function and it can be any positive real 

number. The weight factor ωi can be selected by a DM according to his/her specific 

preference of the application. In this chapter, the latter formula is employed.  

Generally, the algorithm to obtain a single preferred solution for the proposed 

multi-objective problem is described in the following figure. 

 

 

 



 50  

Algorithm 

I. Apply the ε-constraint method to obtain Pareto optimal solutions 

1. Transform the multi-objective model P into a single objective model P0(ε)  

2. Solve problems P1 - P4 to obtain ideal and nadir points 

3. Determine the range of objective function f2 by (3.14) 

4. Set S and determinate values of ε by (3.15)  

5. Solve problem P0 (ε) and obtain Pareto optimal solutions  

II. Apply the fuzzy-logic-based approach to choose a preferred solution 

6. Calculate the membership function ( )s

i if by (3.16) 

7. Calculate the membership degree s by (3.18) 

8. Select a preferred solution 

Fig. 3.3 Procedure of the ε-constraint and fuzzy-logic based method 

3.4 Computational results 

In this section, the performance of the proposed algorithm is evaluated by an 

instance using a real network topology and 85 sets of randomly generated instances. 

Each set includes five randomly generated instances and each item in the 

computational result tables is the average value of the five instances. The algorithm 

was implemented in C, with which CPLEX (Version 12.5) was combined to solve the 

transformed single objective IP problems, i.e., Problems P0(ε)-P4. CPLEX was run in 

default settings. All the computational experiments were done on a HP PC with a 

Pentium IV Processor 3.1 GHZ and 4.00GB RAM in the window 7 environment. 

In this thesis, the average degree of graph G is defined as N =|A|/|V| [93] [94], 

where |V| and |A| is the number of nodes and arcs, respectively. The average degree of 

graph G is defined as its number of arcs per node, which implies the density of the 

graph. Parameter S is set to 20. That means 21 Pareto optimal solutions can be 

obtained for an instance. Total computation time represents the total running time for 

obtaining S +1 solutions and choosing a preferred solution.  

To check whether it is beneficial to reserve lanes for hazardous material 
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transportation, the total transportation risk and average transportation duration of 

shipments using reserved lanes will be compared with those on a no reserved-lane 

network. To achieve this purpose, it is also necessary to solve a new shipment 

problem with minimum-risk objective on a no reserved-lane network. That means 

finding a minimum-risk path for each shipment when no lanes are reserved. The no 

lane-reservation problem is modeled with decision variable 
w

ijx  which is redefined as 

w

ijx =1 if and only if shipment w passes arc (i, j), and constraints (3.2)-(3.5), (3.7)-(3.9) 

in which 
w

ijP  and Tij are replaced by 
w

ij  and ij  respectively. However, since both 

the accident probability and the travel time would be higher compared to those of the 

lane-reservation case, it is possible that no feasible solutions exist for this new 

problem due to the deadline constraint (3.7) and risk threshold constraint (3.8). Hence, 

in this no lane-reservation problem, these two constraints are relaxed to guarantee that 

feasible solutions can be obtained. 

Let Riskr and Durationr represent the total transportation risk and average 

transportation duration of shipments for problem P, respectively. Let Risknr be the total 

transportation risk for the relaxed problem without using reserved lanes and 

Durationnr be its corresponding average transportation duration of shipments. To 

check whether it is beneficial to reserve lanes for hazardous material transportation, 

the ratios Riskr/Risknr and Durationr/Durationnr should be calculated. They indicate 

how the transportation risk and duration change before and after reserving lanes for 

hazardous material vehicles. On the other hand, it can also examine how much the 

travel time on the general lane(s) increases due to the lane reservation strategy. Let 

GR be the growth rate of travel time, which is defined as the total increase in travel 

time divided by the total travel time on the general lane(s) before implementation of 

the lane reservation strategy. That is, GR = 
( , )

( , )

w

ij ij

W i j A

w

ij ij

W i j A

C x

x





 

 
. 

3.4.1 An instance based on a real network topology 

Firstly, an instance based on a real network topology from the city of Ravenna, 
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Italy [31] was tested. In [31], the instance of Ravenna has 105 nodes, 134 arcs. A 

transportation network with the same number of nodes and arcs as those of the 

network of Ravenna was produced based on Waxman’s network topology generator 

[95]. 12 shipments in the form of origin-destination pairs were set. The data of the 

parameters including ij , Tij, 
w

ij , 
w

ijp  and Sw were generated based on the 

Euclidean distance between nodes. Let U(a, b) be a uniform distribution between 

parameters a and b, with a < b. The value of Tij was generated as Tij = ij * U(0.5, 0.8) 

and Qij was generated as Qij= 
=1

W
w

ij

w

p * U(0.4, 0.6). The proposed algorithm finds the 

Pareto solutions in 53.305s. The transportation risk and the transportation duration 

can be reduced by 73.8% and 12.5% after reserving lanes for hazardous material 

vehicles, respectively. The travel time on the general lane(s) due to the lane 

reservation strategy increases 11.9%. For the instance, 21 grid points are produced 

and 15 different objective vectors are obtained. The distribution of the non-dominated 

points on the trade-off curve is shown in Fig. 3.4, where vertical ordinate and 

horizontal abscissa represent the value of the first and second objective functions, 

respectively. It is observed that the points are diverse and well distributed over the 

Pareto front. DMs can choose one of them as a preferred one for the problem 

according to the proposed fuzzy-logic-based approach.  
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Fig. 3.4 Distribution of non-dominated points of the problem with a real network topology in Italy  

3.4.2 Randomly generated test instances 

Test instances were generated in the following way. The transportation network G 
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(V, A) was generated based on the random network topology generator introduced by 

Waxman [95]. The nodes were randomly and uniformly generated in the plane [0, 100] 

× [0, 100] and the arcs were generated by the probability function that depended on 

the distances between the nodes. The probability function between two nodes i, j was 

defined as ( , )

( , )
expi j

d i j
p

L





 , where d(i, j) and L were the Euclidean distance and 

the maximum distance between nodes i and j, respectively, and 0<α, β≤1. The OD 

pairs were randomly generated from the set of nodes.  

Let ij  = d(i, j) and Tij = ij * U(0.5, 0.8). The deadline Sw was set to be dis(ow, 

dw) * U(1, 2 ) [77], where dis(ow, dw) was the shortest travel time from ow to dw in a 

reserved path. Similarly, let 
w

ij = d(i, j) *U(8, 20), considering the effects of the 

number of lanes, truck configuration, population density, and road condition on the 

accident probability given by [96]. 
w

ijP = 
w

ij * U(0.2, 0.3), whose unit was 10-7. Note 

that Qij= 
=1

W
w

ij

w

p * U(0.4, 0.6). Eij was generated by U(10, 80), whose unit was 104. 

Lastly, Mij was generated by U(2, 5) [96]. 

For simplicity, in Case 1, the weights for the two objective functions are set to be 

equal, i.e., ω1 = ω2 = 0.5. Table 3.1 summarizes the computational result of Case 1 

on the random generated instances with N = 4. It is observed in Table 3.1 that the total 

computation time (in CPU seconds) moderately increases with the number of nodes 

and shipments but not for the membership degree of the preferred solution. Given the 

number of shipments, the more the number of nodes is, the more computation time is 

needed. For example, the computation times of sets 31-35 dramatically increase with 

|V| from 70 to 110, as shown in Fig. 3.5. Likewise, given the number of nodes, the 

more the number of shipments, the more time is needed. For example, the 

computation time for sets 16-19 is more than that for sets 12-15, respectively. One of 

the largest instances that can be solved by CPLEX within 3 h of CPU time limit has 

110 nodes, 440 arcs, and 30 shipments, while the membership degree of the preferred 

solution for each set almost settles down between 0.8 and 0.9. From Table 3.1, the 
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values of Riskr/Risknr and Durationr/Durationnr range from 0.247 to 0.283 and from 

0.590 to 1.335, respectively, while GR ranges from 0.121 to 0.137. In other words, the 

transportation risk can be reduced from 71.7% up to 75.1% after reserving lanes, and 

the average transportation duration of shipments after reserving lanes is less than or 

almost equal to that before reserving lanes. On the other hand, the travel time on the 

general lane(s) caused by the lane reservation strategy increases by no more than 34%. 

This indicates that lane reservation can offer great benefits to hazardous material 

transportation at a reasonable cost. 

Table 3.1 Computational results of Case 1 on the random generated instances with N = 4 

set |V| |W| 

Membership 

degree of the 

preferred solution 

Total 

computation 

time (CPU s) 

Riskr / 

Risknr 

Durationr/ 

Durationnr 
GR 

1 30 10 0.822 14.527 0.253 0.841 0.134 

2 40 10 0.818 20.463 0.263 0.886 0.127 

3 50 10 0.782 22.761 0.247 0.685 0.134 

4 60 10 0.854 29.688 0.252 0.709 0.134 

5 70 10 0.835 47.155 0.270 0.800 0.126 

        

6 40 15 0.875 31.430 0.248 0.923 0.132 

7 50 15 0.860 58.578 0.280 1.017 0.136 

8 60 15 0.859 104.721 0.271 0.971 0.128 

9 70 15 0.886 142.079 0.258 1.040 0.129 

10 80 15 0.868 159.863 0.263 0.900 0.127 

        

11 50 20 0.848 93.207 0.267 0.882 0.134 

12 60 20 0.872 158.480 0.258 1.000 0.130 

13 70 20 0.870 212.329 0.259 0.987 0.137 

14 80 20 0.863 317.590 0.261 0.956 0.133 

15 90 20 0.867 750.118 0.250 1.119 0.126 

        

16 100 20 0.867 785.301 0.275 1.124 0.124 

17 110 20 0.875 587.669 0.261 1.006 0.127 

18 120 20 0.825 3464.027 0.259 0.976 0.127 

19 130 20 0.854 3188.770 0.254 1.055 0.123 

20 140 20 0.869 9263.910 0.265 1.067 0.129 

        

21 150 20 0.870 14159.337 0.251 0.964 0.120 

22 160 20 0.860 10303.592 0.260 0.951 0.124 

23 170 20 0.856 23491.573 0.265 1.054 0.119 
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24 180 20 0.878 38234.871 0.251 1.088 0.136 

25 190 20 0.861 21964.948 0.259 1.062 0.121 

        

26 60 25 0.862 285.351 0.269 1.057 0.136 

27 70 25 0.893 714.119 0.280 1.065 0.133 

28 80 25 0.847 748.568 0.274 1.054 0.130 

29 90 25 0.883 1498.118 0.250 1.119 0.126 

30 100 25 0.868 4518.394 0.283 1.155 0.126 

        

31 70 30 0.871 1033.827 0.270 1.050 0.135 

32 80 30 0.889 1556.263 0.262 1.104 0.131 

33 90 30 0.881 3214.654 0.260 1.198 0.130 

34 100 30 0.894 10639.205 0.270 1.335 0.127 

35 110 30 0.885 30164.856 0.270 1.174 0.121 
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Fig. 3.5 Computation times of sets 31-35 

Table 3.2 shows that, given the number of nodes and shipments, the total 

computation time increases with the graph degree. For example, the computation 

times of sets 51-55 increase with N from 5 to 9, as shown in Fig. 3.6. It is worth 

pointing out that the larger the size of the instances is, the sharper the increase is. For 

example, the computation time for set 40 with |V| = 50, |W| = 5, and N = 9 is 1.683 

times more than that of set 36 with |V| = 50, |W| = 5, and N = 5, whereas the 

computation time for set 60 with |V| = 90, |W| = 25, and N = 9 is 17.759 times more 

than that of set 56 with |V| = 90, |W| = 25, and N = 5. 
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Table 3.2 Computational results of Case 1 on the random generated instances with different N 

set |V| |W| N 

Membership 

degree of the 

preferred solution 

Total 

computation 

time (CPU s) 

Riskr / 

Risknr 

Durationr/ 

Durationnr 
GR 

36 50 5 5 0.855 13.069 0.266 0.711 0.126 

37   6 0.768 15.253 0.267 0.618 0.131 

38   7 0.774 16.561 0.257 0.659 0.126 

39   8 0.742 18.600 0.286 0.642 0.128 

40   9 0.765 21.995 0.282 0.643 0.121 

         

41 60 10 5 0.836 47.444 0.266 0.719 0.127 

42   6 0.817 51.377 0.259 0.714 0.120 

43   7 0.816 55.393 0.273 0.662 0.117 

44   8 0.808 71.565 0.254 0.660 0.126 

45   9 0.860 146.428 0.257 0.821 0.119 

         

46 70 15 5 0.852 114.028 0.255 0.962 0.120 

47   6 0.846 200.269 0.258 0.943 0.120 

48   7 0.843 310.696 0.265 0.867 0.122 

49   8 0.870 350.886 0.274 0.895 0.120 

50   9 0.858 418.692 0.269 0.943 0.118 

         

51 80 20 5 0.870 360.217 0.259 1.005 0.127 

52   6 0.862 646.714 0.254 1.340 0.120 

53   7 0.850 1137.061 0.260 0.965 0.122 

54   8 0.838 1487.926 0.300 0.953 0.120 

55   9 0.865 2853.311 0.327 1.332 0.117 

         

56 90 25 5 0.886 2835.420 0.281 1.217 0.123 

57   6 0.868 12828.213 0.290 1.203 0.127 

58   7 0.864 8310.987 0.270 1.173 0.149 

59   8 0.872 9033.214 0.290 1.095 0.111 

60   9 0.863 50355.016 0.318 1.064 0.118 

Table 3.3 shows how the membership degree of the preferred solution and the 

average membership degree of solutions change with the number of grid points given 

the number of nodes, number of shipments, and graph degree. The average 

membership degree is defined as the total membership degree of all solutions divided 

by the number of solutions. It can be observed from Table 3.3 that the membership 

degree of the preferred solution does not necessarily increase with the number of grid 

points. However, the average membership degree of solutions increases with it. 
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Fig. 3.6 Computation times of sets 51-55 

Table 3.3 Computational results of Case 1 on the random generated instances with different S 

set |V| |W| N S 
Membership degree of the 

preferred solution 

Average membership degree 

for a solution 

61 50 8 7 10 0.813 0.682 

62    15 0.813 0.691 

63    20 0.824 0.701 

64    25 0.815 0.695 

65    30 0.814 0.697 

       

66 75 12 6 10 0.863 0.744 

67    15 0.861 0.746 

68    20 0.869 0.751 

69    25 0.868 0.754 

70    30 0.868 0.754 

       

71 100 16 5 10 0.857 0.705 

72    15 0.855 0.716 

73    20 0.859 0.719 

74    25 0.858 0.723 

75    30 0.860 0.724 

       

76 125 20 4 10 0.863 0.722 

77    15 0.864 0.727 

78    20 0.866 0.733 

79    25 0.866 0.734 

80    30 0.866 0.734 

 

Now, it is the turn to analyze how the membership degree of the preferred 

solution and the average membership degree of solutions change with the weight 
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vector given the number of nodes, number of shipments, and graph degree. Note that, 

in Case 1, the weights for the two objective functions are set to be equal, i.e., ω1 = ω2 

= 0.5. Let us consider other two cases, called Cases 2 and 3, in which the weight 

factor for the main objective function is larger than the other one. In Case 2, set ω1 = 

0.7 and ω2 = 0.3; in Case 3, set ω1 = 0.9 and ω2 = 0.1. In Table 3.4, both the 

membership degree of the preferred solution and the average membership degree of 

solutions for Case 2 (respectively, Case 3) are higher than those for Case 1 

(respectively, Case 2). As we know, the membership degree indicates how ideal the 

solution is. It is clear that the performance of the preferred solution is degraded when 

the weight of the main objective function is reduced. 

Table 3.4 Computational results of Case 1, 2 and 3 on the random generated instances 

set |V| |W| N Case 
Membership degree of the 

preferred solution 

Average membership 

degree for a solution 

81 40 5 9 1 0.842 0.713 

    2 0.842 0.773 

    3 0.913 0.833 

       

82 50 10 8 1 0.856 0.762 

    2 0.864 0.806 

    3 0.943 0.906 

       

83 60 15 7 1 0.864 0.722 

    2 0.878 0.803 

    3 0.928 0.875 

       

84 70 20 6 1 0.883 0.736 

    2 0.885 0.815 

    3 0.943 0.906 

       

85 80 25 5 1 0.873 0.732 

    2 0.886 0.812 

    3 0.936 0.885 

3.5 Conclusions 

In this chapter, a new hazardous material transportation problem with a lane 

reservation strategy was presented. The proposed multi-objective model intended to 
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minimize two competing objective functions: the impact on the normal traffic and the 

transportation risk. Then, an efficient algorithm based on the ε-constraint method was 

developed to solve the multi-objective model and a fuzzy-logic-based approach was 

proposed to help DMs derive a best compromise solution. The results of 

computational experiments showed that the ε-constraint method could solve the 

multi-objective optimization problem within a reasonable time and find efficient 

Pareto optimal solutions. The computational results also showed that the lane 

reservation strategy could greatly reduce the transportation risk at a reasonable cost of 

its traffic impact on the normal traffic.
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CHAPTER 4 A NEW AND EXACT METHOD 

FOR TRANSFORMED SINGLE OBJECTIVE 

PROBLEMS OF HMTLR WITH 

TIME-INVARIANT RISK 

4.1 Introduction 

 In Chapter 3, we investigated a problem which intended to choose lanes to be 

reserved in the transportation network and select the path of each shipment from the 

reserved lanes. Its objectives were to minimize the total impact due to lane reservation 

and minimize the total transportation risk. We developed a multi-objective integer 

programming model for HMTLR with time-invariant risk and proposed an 

ε-constraint method for it. With the ε-constraint method, the proposed problem was 

transformed into a series of single objective IP problems. In this method, the 

transformed single objective problems were solved by a commercial optimization 

software package CPLEX, which was easy to be carried out. It is well known that the 

performance of the ε-constraint method depends on the solution time of the 

transformed single objective problems. However, although CPLEX is able to 

optimally solve the transformed single objective problem, the time consumption of 

CPLEX is a big burden for large size instances, as indicated in Chapter 3. So it is 

necessary to resort to other efficient algorithms for these single objective problems 

based on their characteristics, with which it may be possible to solve larger-size 

problems within a shorter time.  

 As described in Chapter 2, the cut-and-solve method has two favorable properties. 

Firstly, unlike the traditional tree searches, the cut-and-solve search have no 

branching but a search path. That means that there are no “wrong” subtrees in which 

the search may get lost. In addition, the cut-and-solve search consumes very little 

memory space so that its memory requirement can be neglected. Due to these 
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properties of the cut-and-solve method, it has a high potential for problems that are 

difficult to solve using depth-first or best-first search tree methods [85]. In this 

chapter, to reduce the computation time of the transformed single objective problems, 

we propose a new cut-and-solve and cutting plane combined method for them.  

4.2 Solution approach 

 In this section, the cut-and-solve and cutting plane combined method is 

introduced to solve the transformed single objective problems. In this method, based 

on the property of the problem, a pre-processing is presented to reduce the search 

space of solutions. After that, the remaining problems and sparse problems related to 

the transformed single objective problems are presented. To obtain better lower 

bounds, a cutting plane method is embedded in the cut-and-solve method to tighten 

the remaining problems. 

4.2.1 Pre-processing 

 Before using the cut-and-solve method, properties of the model proposed in 

Chapter 3 are analyzed so as to reduce the search space. If the values of some 

variables can be determined in advance, the search space can be reduced, which may 

help to reduce the solution time. 

 In transformed single objective model P0(ε), for  j ∈  N, let p(ow, j) and p(j, dw) 

denote the shortest travel durations from ow to j and from j to dw in an exclusively 

reserved path, respectively, where ow and dw are the original node and destination 

node of shipment w, respectively. p(ow, j) and p(j, dw) can be obtained using Floyd’s 

shortest path algorithm. Define set Aw as follows: 

   For w ∈  W, Aw = {j| p(ow, j) + p(j, dw) > Sw ,  j ∈  N }. 

 Apparently, if shipment w passes through the nodes in Aw, the travel time 

deadline constraint (3.7) will be violated. So in any feasible solution, shipment w 

would not pass through any node in Aw. Thus, we have: 

:( , ) :( , )

0, ,w w

ij ji w

i i j A i j i A

x x w W j A
 

                (4.1) 

 With the pre-processing, the solution space of the original problem is reduced 
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without losing the optimality of the original problem, because the values of some 

decision variables are fixed to zero and no feasible solution of P0(ε) is excluded. After 

the pre-processing, a new tightened model P′(ε) is obtained by adding constraint (4.1) 

to P0(ε). In the next subsection, a cut-and-solve and cutting plane combined method 

for P′(ε) will be presented. 

4.2.2 Definition of piercing cut, sparse problem and remaining problem 

 The principle of the cut-and-solve method has been described in Chapter 2. In the 

cut-and-solve method, piercing cut (PCr), sparse problem (SPr) and remaining 

problem (RPr) play a very important role. To apply the cut-and-solve method, we 

need to define them. 

 For P0(ε), we use the technique of generating piercing cuts introduced by Climer 

and Zhang [85]. They defined a variable set including the decision variables whose 

reduced cost values are greater than a given value alpha. Then the piercing cut is 

defined as a constraint such that the sum of the decision variables in this special 

variable set is greater than or equal to one. The key to generating piercing cuts 

becomes how to determine the variable set. 

 Let Ur (r ≥ 1) denote such a set. The Ur should be also defined according to some 

properties of the problem. As our problem is different from the asymmetric traveling 

salesman problem studied in [85], it is necessary to analyze its properties to obtain an 

appropriate Ur. Note that our problem has two kinds of decision variables in two 

different levels: the lane reservation variable yij in the strategic level and the shipment 

path variable 
w

ijx  in tactical level. The former variable yij is considered to be more 

important than 
w

ijx  for the following reason. The path of each shipment is composed 

of all reserved lanes, which means that only the reserved lane can be selected for the 

shipment path. For example, given an arc (i, j), if yij = 0, then 
w

ijx  = 0 for all 

shipments. Because arc (i, j) is not reserved, any shipment cannot pass through it. As 

implied in constraint (3.6), the reservation of one lane or not may result in different 

shipment paths. Therefore, yij is considered as the more relevant variable to Ur, rather 
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than w

ijx . 

 Let Y(yij) denote the reduced cost value of yij in the optimal solution of the linear 

relaxation problem of CPr. Then Ur (r ≥ 1) is defined as follows: 

     Ur = { yij | Y(yij) > hr,  (i, j) ∈  A }           (4.2) 

where hr is a given positive number.  

 Once Ur is determined, PCr (r ≥ 1) is defined as the following formula: 

PCr : 

                        1 , ( , )
i j r

ij

y U

y i j A


                   (4.3) 

Using PCr, the solution space of CPr is separated into two subspaces, and SPr and RPr 

can be obtained by adding new constraints to CPr. 

 SPr and RPr are defined as follows: 

SPr:   

               Minimize 1

( , )

ij ij

i j A

f C y


          (3.1) 

Subject to  

              Constraints (3.3)-(3.11), (4.1) 

   and    1 , 1 , . . . , 1 ,
i j l

ij

y U

y l r


            (4.4) 

       0.
ij r

ij

y U

y


               (4.5) 

RPr:  

      Minimize 1

( , )

ij ij

i j A

f C y


           (3.1) 

Subject to  

             Constraints (3.3)-(3.11), (4.1), (4.4),  

     and 1.
ij r

ij

y U

y


                 (4.6) 

 It is worth pointing out that when r = 1, the original problem P′ is considered as 

CP1. For this reason, constraint (4.4) should be removed for RP1 and SP1. 
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4.2.3 Cutting plane method to tighten remaining problem 

 As described in Chapter 2, in the cutting plane method, cutting planes are 

iteratively generated and their corresponding constraints are added successively to the 

current relaxed problem until its fractional solution becomes an integer one. Valid 

inequalities for a problem, separated by the cutting plane method, can reduce the 

solution space. A tight lower bound of the remaining problem for HMTLR can be 

obtained by the cutting plane method. In the cut-and-solve method, when the lower 

bound obtained by the remaining problem is greater than or equal to the current best 

upper bound, an optimal solution of the original problem is found and the CS method 

stops. If a tighter lower bound is obtained, fewer iterations should be required. On the 

other hand, a tight lower bound can also provide some useful information for the 

generation of the piercing cut. In a word, the cutting plane method may contribute to 

faster convergence of the cut-and-solve method.  

 The separation algorithm for the proposed problem is presented as follows. 

 As stated in Chapter 2, a knapsack constraint can be written in the following 

form: 

       i i

i

b


                               (2.13) 

where  , i , and b are a set of items, the weight of item i, and the capacity of the 

knapsack, respectively. i  is a binary variable, and if i  = 1, item i is selected in 

the knapsack; otherwise, it is not.  

 Set C   is called a cover for (2.13) if i

i C

b


 . Then, the cover inequality 

(CI) for (2.13) is defined as follows: 

                       1i

i C

C


  .                         (2.15) 

A CI is called valid if it is satisfied by the feasible solution and violated by a given 

fractional solution of the original problem. 

 Let Tij, Sw, 
w

ijx  correspond to i , b and i  in the knapsack problem, 

respectively. Then, travel time deadline constraint (3.7) 
( , )

,  w

ij ij w

i j A

T x S w W


    can 
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be considered as a standard knapsack constraint form. Therefore, the CI for (3.7) has 

the following form: 

       
( , )

1,  
x

w

ij ij x

i j A

T x A w W


     

where Ax is a subset of A. 

 Similarly, the CI for risk threshold constraint (3.8) has the following form: 

       1,  ( , )
x

w w

ij ij x

w W

P x W i j A


     

where Wx is a subset of W.  

 Valid CIs for constraints (3.7) and (3.8) could be obtained by solving a 0–1 

knapsack problems, Pkp1 and Pkp2, respectively, as follows: 

 Problem Pkp1: 

        
*

1 m i n ( 1 )w

i j w

w W

x v


                  (4.10) 

     Subject to  

         ,i j w w

w W

T v S


                  (4.11) 

         { 0 , 1} , .wv w W                      (4.12) 

 Problem Pkp2: 

      
*

2

( , )

min (1 )w

ij ij

i j A

x u


                 (4.13) 

     Subject to 

         
( , )

,w

ij ij ij

i j A

P u Q


                 (4.14) 

         { 0 , 1} , ( , ) .iju i j A               (4.15) 

 The above problems can be solved by the dynamic program proposed by Kaparis 

and Letchford [87]. The separation algorithm for finding valid CIs for constraint (3.7) 

is presented in the following figure, and that for constraint (3.8) is omitted here. 
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Separation algorithm 

Given a fraction solution *x , for h = 1, … , |W| and n = 0, … , Sw, define: 

*

1 1

( , ) : min{ (1 ) | , {0,1}, 1,..., }
h h

w

ij w ij w w

w w

f h n x v T v n v w h
 

       

*

1 1

( ) : min{ (1 ) | 1, {0,1}, 1,..., }
h h

w

ij w ij w w w

w w

g h x v T v S v w h
 



1. Set f(h, n) := ∞ for h = 1, … , |W| and n = 0, … , Sw. Set f(0, 0) := 0. 

2. Set g(h) := ∞ for h = 1, … , |W|. 

3. for h = 1 to |W| do 

4.   for n = 0 to Sw do 

5.     if f(h − 1, n) < f(h, n) then 

6.        Set f(h, n) := f(h − 1, n) 

7.       end if 

8.    end for 

9.    for n = 0 to Sw − ijT do 

10.      if f(h − 1, n) + (1− *h

ijx ) < f(h, n +
ijT ) then 

11.        Set f(h, n +
ijT ) := f(h − 1, n) + (1− *h

ijx ) 

12.      end if 

13.   end for 

14.   for n = Sw −
ijT + 1 to Sw do 

15.      if f(h − 1, n) + (1− *h

ijx ) < g(h) then 

16.        Set g(h) := f(h − 1, n) + (1− *h

ijx ) 

17.   end if 

18.   end for 

19.   if g(h) < 1 then 

20.     Output the violated cover inequality. 

21.   end if 

22. end for 

Fig. 4.1 Procedure of the separation algorithm 

4.2.4 Overall algorithm 

 The procedure of the proposed algorithm combined the cut-and-solve method 
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with the cutting plane method is given in the Fig. 4.2. 

Cut-and-solve and cutting plane combined method 

1. Set r := 0 and best upper bound UBmin := +∞. 

2. Obtain a new model P′ after the pre-processing for original model P, and then set 

current problem CP1 := P′. 

3. Solve the linear relaxation problem of CP1 and obtain a lower bound LB0 and its 

corresponding solution. If the solution is integral, an optimal solution of the 

original problem is found and the algorithm terminates. 

4. Find possible CIs by the separation algorithm. If there exist any CIs, add them to 

CP1 and go to step 3. 

5. while (LBr ≤ UBmin) do 

6. Set r := r + 1.  

7. Define piercing cut PCr by (4.4) and obtain SPr and RPr. 

8. Solve SPr optimally and obtain its optimal value UBr if it exists. Set UBmin := 

UBr if UBr < UBmin. 

9. Solve the linear relaxed RPr and obtain a lower bound LBr and its solution. If the 

solution is integral, set UBmin := LBr if LBr < UBmin, and go to step 13. 

10. Find possible CIs by the separation algorithm described in Fig. 4.1. If there 

exist any CIs, add them to RPr and go to step 9; otherwise set CPr+1 := RPr. 

12. end while 

13. Return UBmin and its corresponding solution as the optimal value and the 

optimal solution of the original problem, respectively. 

Fig. 4.2 Procedure of the cut-and-solve and cutting plane combined method 

4.3 Computational results 

In this section, the performance of the proposed method is evaluated. In order to 

compare the computation time of the cut-and-solve method with that of CPLEX, the 

same randomly generated test instances in Chapter 3 were used. The proposed method 

was coded in C. The computational experiments were also carried out on an HP PC 

with a 3.10-GHz Intel Core processor and 4-GB RAM under Windows 7 environment. 



 68  

Table 4.1 summarizes the computational results on the randomly generated 

instances with N =4. Columns T1 and T2 represent the average computation time (in 

CPU seconds) of five instances for each set by CPLEX and the cut-and-solve method, 

respectively. Firstly, it is worth pointing out that the total computation times of the 

cut-and-solve method moderately increase with the number of nodes and shipments. 

Given the number of shipments, the more the number of nodes, the more computation 

time is required. For example, the computation times for sets 11-15 increase with the 

number of nodes. Given the number of nodes, the more the number of shipments, the 

more time is required. For example, the computation time for sets 16-19 is more than 

that for sets 12-15, respectively.  

Secondly, it can be also observed from Table 4.1 that the proposed method is 

more efficient than CPLEX for large size instances. For example, for most instances 

in Table 4.1, i.e., sets 4-35, the computation time required by the cut-and-solve 

method is less than that by CPLEX. Fig. 4.3 gives the trends of two curves of T1 and 

T2 for instances with |W|=20. As illustrated in the figure, the trend of T2 curve is 

almost identical to T1 curve, but T1 increases with the number of nodes more sharply 

than T2. For example, for set 11 with |V| = 50, the ratio T1/T2 is only 1.060 times, 

while for set 24 with |V| = 170, T1 is 5.904 times as much as T2. 

Table 4.1 Computational results on the random generated instances with N = 4 

set |V| |W| T1 T2 T1/T2 

1 30 10 14.527 17.979   0.808 

2 40 10 20.463 21.899 0.934 

3 50 10 22.761 25.327 0.899 

4 60 10 29.688 27.457 1.081 

5 70 10 47.155 38.446 1.227 

      

6 40 15 31.430 23.946 1.313 

7 50 15 58.578 49.445 1.185 

8 60 15 104.721 89.514 1.170 

9 70 15 142.079 110.060 1.291 

10 80 15 159.863 119.234 1.341 

      

11 50 20 93.207 87.957 1.060 

12 60 20 158.480 120.276 1.318 
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13 70 20 212.329 177.132 1.199 

14 80 20 317.590 253.652 1.252 

15 90 20 750.118 463.054 1.620 

      

16 100 20 785.301 671.657 1.169 

17 110 20 1587.669 950.602 1.670 

18 120 20 3464.027 1820.074 1.903 

19 130 20 3188.770 2142.012 1.489 

20 140 20 9263.910 4172.901 2.220 

      

21 150 20 14159.337 7448.342 1.901 

22 160 20 10303.592 4641.092 2.220 

23 170 20 23491.573 4747.636 4.948 

24 180 20 38234.871 6475.983 5.904 

25 190 20 21964.948 6900.594 3.183 

      

26 60 25 285.351 189.817 1.503 

27 70 25 714.119 597.049 1.196 

28 80 25 748.568 579.046 1.293 

29 90 25 1498.118 964.507 1.553 

30 100 25 4518.394 2478.616 1.823 

      

31 70 30 1033.827 786.720 1.314 

32 80 30 1556.263 1082.922 1.437 

33 90 30 3214.654 1946.094 1.652 

34 100 30 10639.205 7689.428 1.384 

35 110 30 30164.856 13391.541 2.252 
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Fig. 4.3 Comparison of T1 and T2 

Table 4.2 gives the total computation times of the proposed method with different 

N. It can be seen from this table that given the number of nodes and shipments, the 



 70  

total computation time increases with the graph degree. For example, the computation 

time for set 45 is 2.269 times more than that for set 41. It is worth pointing out that 

the larger the size of the instances is, the rapider the increase is. For example, the 

computation time for set 40 with N = 9 is 1.301 times more than that of set 36 with N 

= 5, while the computation time for set 60 with N = 9 is 17.299 times as much as that 

of set 55 with N = 5. 

Table 4.2 Computational results on the random generated instances with different N 

set |V| |W| N T1 T2 T1/T2 

36 50 5 5 13.069 16.627 0.786 

37   6 15.253 18.471 0.826 

38   7 16.561 20.048 0.826 

39   8 18.600 20.655 0.901 

40   9 21.995 21.624 1.017 

       

41 60 10 5 47.444 43.728 1.085 

42   6 51.377 48.834 1.052 

43   7 55.393 48.141 1.151 

44   8 71.565 58.642 1.220 

45   9 146.428 99.238 1.476 

       

46 70 15 5 114.028 103.394 1.103 

47   6 200.269 101.326 1.976 

48   7 310.696 174.949 1.776 

49   8 350.886 222.472 1.576 

50   9 418.692 250.411 1.672 

       

51 80 20 5 360.217 346.435 1.040 

52   6 646.714 403.757 1.602 

53   7 1137.061 709.389 1.603 

54   8 1487.926 1177.199 1.264 

55   9 2853.311 1550.122 1.841 

       

56 90 25 5 2835.420 1327.554 2.149 

57   6 12828.213 7742.349 1.657 

58   7 8310.987 6472.951 1.245 

59   8 9033.214 4795.675 1.884 

60   9 50355.016 22965.672 2.193 
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4.4 Conclusions 

 In this chapter, the transformed single objective model proposed in Chapter 3 was 

solved by a cut-and-solve and cutting plane combined method. A specific property of 

the considered problem was explored to reduce the solution space of the original 

problem. Moreover, a cutting plane method was developed to tighten remaining 

problem, which could help to accelerate the process of cut-and-solve method. 

Computational results showed that for the transformed single objective problems, the 

proposed method outperformed the software package CPLEX. 
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CHAPTER 5 MODEL AND METHOD FOR 

HMTLR WITH TIME-DEPENDENT RISK 

5.1 Introduction 

As mentioned in the previous chapters, hazardous material transportation has 

become an increasingly important problem worldwide and has attracted many 

researchers’ attentions in the related field. Like almost all of the hazardous material 

transportation problems, Chapters 3 and 4 have investigated the HMTLR problem 

with time-invariant risk. That is to say, the risk of a road segment in a transportation 

network is assumed to be constant, which fails to capture the dynamic nature of the 

real-life traffic environment. In real life, for example, risk on road segments may be 

time-dependent on population density subject to time-of-day variation, peak and 

off-peak periods, various weather conditions and so on. The time-dependent risk is 

one of the important features of hazardous material transportation. The 

time-dependent transportation problem is to decide the path for each shipment and its 

starting time of each arc on the path so as to minimize the transportation risk. 

Note that time-dependent hazardous material transportation problems can be 

distinguished into deterministic and stochastic settings. The dynamic characteristic of 

transportation networks is usually expressed by one or more link attributes for a road 

segment. For a deterministic time-dependent transportation problem, part or all of the 

link attributes are assumed to be variant but all of the link attributes are known. For a 

stochastic time-dependent transportation problem, the link attributes are considered as 

random variables with time-dependent distribution functions. For time-dependent 

hazardous material transportation, the main link attributes usually include travel time 

and transportation risk.  

Time-dependent hazardous material transportation problems have not been 

widely studied and only a few related publications can be found in the literature, such 

as Nozick et al. [21], Jia et al. [22], Erhan and Osman [25], Meng et al. [26] , Chang 
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et al. [27]. These works has been reviewed in Chapter 2. In this chapter, we propose a 

new problem: HMTLR with time-dependent risk, in which the transportation risk is 

considered to be deterministic and time-dependent. The considered problem will aim 

to reserve lanes both on some road segments and in some specific time periods in a 

transportation network. To the best of our knowledge, this is the first work for 

hazardous material transportation via lane reservation with time-dependent risk. 

As we know, the factors of the transportation risk generally include the hazardous 

material accident probability and the population exposure to the accidents. The 

accident probability estimation is influenced by the nature of roads, characteristics of 

the trucks, transportation environment and driver conditions [96], etc. Estimating the 

accident probability is a complicate and difficult work. For simplification, the 

probability of an accident is regarded to be time-invariant in this chapter. Population 

exposure is determined by population density and area. In real life, the population 

density along a road segment strongly depends on time and space. The population 

density in hospitals, schools, factories and so on in day time is greater than that in 

night, and the opposite happens in residential areas. In this work, the accident 

probability on reserved lanes is assumed to be known and the population exposure 

along road segments is assumed to be time-dependent. Therefore, the transportation 

risk varies with time and space. This work was motivated by the dynamic 

characteristic of risk and it is a natural extension of our previous work in Chapter 3. 

In this chapter, the HMTLR problem with time-dependent risk is formulated as a 

new multi-objective model. The objectives are to minimize the total impact on the 

normal traffic and the total transportation risk. Then, some properties of the model are 

explored to reduce the search space of solutions and a cut-and-solve based 

ε-constraint method is developed. Finally, randomly generated instances are tested to 

evaluate the proposed method. 

app:ds:residential
app:ds:area
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5.2 Problem formulation 

5.2.1 Problem description 

The network considered in this chapter is identical to that in Chapters 3 and 4. 

Compared with Chapter 3, the additional assumptions in this chapter include: 1) any 

two hazardous material shipments on the same road segment must maintain a 

minimum time interval, called safety time interval. 2) travel time on a reserved lane is 

time-invariant throughout the day; nevertheless, the risk on a road segment is 

time-dependent because the population exposure varies with time in nature. The 

population exposure on each arc (i, j) at time period [Ik , Ik+1), denoted as Eijk, depends 

on the departure time from node i. Without loss of generality, set I1 = 0 as the 

beginning time of the first period. Usually, there are only several time periods in a day 

[97]. So travel time Tij on the reserved lane is less than the length of a time period, i.e. 

Tij < Ik+1 – Ik. The problem is to choose lanes to be reserved, select the path for each 

hazardous material shipment, and decide the travel time period for each shipment on 

each arc in its path. The objective of this problem is to seek a best trade-off for 

minimizing the total traffic impact on the normal traffic and the total transportation 

risk. 

5.2.2 Notation and formulation 

In addition to those defined in Chapter 3, the following notations are introduced 

to model the considered problem. 

Additional sets and parameters: 

 K {1, . . . , |K|}: set of time periods 

 Tint: safety time interval between any two shipments passing a same arc 

 Eijk: population exposure along arc (i, j) at time period k 

 Decision variables: 

 w

it is the arriving or leaving time of shipment w at node i. 
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1      if shipment  passes the reserved lane on arc ( , ) 

       when time  occurs at time period 

0     otherwise

w w

ijk i

w i j

t k




 



 
1      if there is a reserved lane on arc ( , )  

0     otherwise
ij

i j
y


 


 

1      if time  occurs at time period  

0     otherwise

w

w i

ik

t k



 


 

'

'

1      if < , '  

0     otherwise

w w

i i

iww

t t w w
z

 
 


 

Formulation: 

 The mathematical model for the HMTLR problem in networks with 

time-dependent risk is presented by constraints (5.3)-(5.17). 

Problem tP : 

       Minimize 
1

( , )

ij ij

i j A

f C y


   (5.1) 

       Minimize 2

( , )

w w

ij ijk ijk

w W i j A k K

f P E x
  

    (5.2) 

 Subject to 

     

:( , ) 1

1,  
w

w

K
w

o jk

j o j A k

x w W
 

    , (5.3) 

:( , ) 1

1,  
w

w

K
w

id k

i i d A k

x w W
 

    , (5.4) 

:( , ) 1 :( , ) 1

,  , \{ , }
K K

w w

ijk jik w w

j i j A k j j i A k

x x w W i V o d
   

        , (5.5) 

1

,  ( , ) , 
K

w

ijk ij

k

x y i j A w W


     , (5.6) 

1

(1 ), ( , ) , , ,
K

w w w

j i ij ijk w w

k

t t T M x i j A w W i d j o


            , (5.7) 

1

( 1), ( , ) , , ,
K

w w w

j i ij ijk w w

k

t t T M x i j A w W i d j o


            , (5.8) 
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1

1, ,
K

w

ik w

k

w W i d


     , (5.9) 

1

1 1

,  ,
K K

w w w

ik k i ik k w

k k

I t I w W i d  

 

       , (5.10) 

' '

int '

1 1

' '
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( , ) , , , , , , ' , '

K K
w w w w

i i ijk ijk iww

k k

w w w w

t t T x x M z
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' '

int '

1 1

' '

( 1) ,

( , ) , , , , , , ' , ',

K K
w w w w

i i ijk ijk iww

k k

w w w w

t t T x x Mz

i j A i o o d d w w W w w

 

    

      

 
 (5.12) 

0, ,w

it i N w W     , (5.13) 

{0,1}, ( , )ijy i j A   , (5.14) 

{0,1}, ( , ) , ,w

ijkx i j A w W k K       , (5.15) 

' {0,1}, , , ' , 'iwwz i N w w W w w      , (5.16) 

{0,1},  , ,w

ik i N w W k K        . (5.17) 

where M is a very large positive number. 

Objective (5.1) is to minimize the total impact on the normal traffic. Objective 

(5.2) is to minimize the total transportation risk. Constraint (5.3) (resp. (5.4)) means 

that for shipment w, there is one and only one path departing from the source node ow 

(resp. arriving at the destination node dw) during one and only one time period. 

Constraint (5.5) ensures the flow conservation constraint for node i in V\{ow, dw} on 

space and time. It represents that if shipment w arrives at a node i (i ow, dw) via a 

reserved lane during time period k, it must also depart from i via a reserved lane 

during time period k, or it does not visit i. Constraint (5.6) guarantees that no 

shipment would pass through arc (i, j) during any time period if no lane on the arc has 

been reserved. Constraints (5.7) and (5.8) mean that if shipment w passes through the 

reserved lane on arc (i, j), then its travel time is Tij. Constraint (5.9) means that there 

is exactly one time period k for w

it on any node i. In a feasible solution, shipment w 
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passes through arc (i, j) if and only if two conditions are satisfied: w

it >0 and 

1

1
K

w

ijk

k




 . Constraints (5.9) and (5.10) imply that arrive time w

it should be located 

within one and only one time period and on exactly one arc. Constraints (5.11) and 

(5.12) guarantee that if two or more shipments pass the same reserved lane, then the 

safety time interval between any two shipments must be satisfied. Constraints 

(5.13)-(5.17) specify the restriction on the decision variables. 

5.3 Solution algorithm 

In this section, an improved cut-and-solve based ε-constraint method is developed 

for solving the multi-objective model. The principle of ε-constraint method has been 

presented in Chapter 3. In this chapter, we present only the transformed single 

objective problem and an improved cut-and-solve method, in which a new technique 

of generating piercing cuts according to the characteristic of the considered problem is 

developed. 

5.3.1 Transformed single objective model 

 Similarly, objective function f1 is chosen as the main objective function. With the 

ε-constraint method presented in Chapter 3, the multi-objective model tP  can be 

transformed into a single objective model 0 2( )tP  , which is presented as follows: 

    Problem 0 2( )tP  : 

                   Minimize 
1

( , )

ij ij

i j A

f C y


         (5.1) 

Subject to  

                    Constraints (5.3) - (5.17)  

              2

( , )

,w w

ij ijk ijk

w W i j A k K

P E  
  

                        (5.18) 

Complexity analysis: Problem 0 2( )tP   is NP-hard. 

Proof: If only one time period is considered and its length is large enough, the 

proposed time-dependent problem will be reduced to a time-invariant one. Moreover, 
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if the shipments all start from the same origin and the safety time interval, Tint, is 

small enough and the upper limit of the second objective function is large enough, 

then the single objective problem 0

tP  can be reduced to a Steiner tree problem [88], 

which is a famous NP-hard problem. Therefore, the single objective MIP problem is 

also NP-hard. 

 For solving problem 0 2( )tP  , it is necessary to determine the range of ε2. Once 

the range of ε2 is determined, then a series of ε2 can be fixed. Please see Chapter 3 for 

how to determine the range of ε2. 

5.3.2 Cut-and-solve method 

In this section, an improved cut-and-solve method is proposed to solve problem 

0 2( )tP  . The improved CS method has two characteristics compared with that 

presented in Chapter 4. The first one is a partial integral relaxation strategy, which is 

applied to get a “good” LBs. The second one is a new technique of generating piercing 

cut, which is proposed to accelerate the CS method.  

5.3.2.1 Pre-processing 

Before using the cut-and-solve method, properties of the model are analyzed in 

order to reduce the search space. If the values of some variables can be fixed in 

advance, the search space may be reduced so as to speed up the CS process. 

As defined in Section 5.2, w

ik =1 means that the arriving time of shipment w at 

node i occurs at time period k and otherwise w

ik =0. The following property holds. 

Property 1. If 
w

ijk =1, then ( 1) 1w w

jk j k    , ( , ) , , ,wi j A i d k K w W     . 

Proof. Note that if 
w

ijk =1, then w

ik =1. It implies that 1[ , )w

i k kt I I  . That is, 

1

w

k i kI t I   . For arc (i, j), it can be deduced that 1

w w

k ij j i ij k ijI T t t T I T      . 

Note that Tij < Ik+1–Ik. Thus 1 2

w

k k ij j k ij kI I T t I T I        holds, which implies 

two cases. In one case, 1

w

k k ij j kI I T t I     , and in the other case, 



 79  

1 1 2

w

k j k ij kI t I T I      . This is to say, either 1[ , )w

j k kt I I   or 1 2[ , )w

j k kt I I  . It 

follows that ( 1) 1w w

jk j k    .        

From Property 1, constraint (5.19) will be added to problem 0 2( )tP   to obtain 

problem 1

tP . 

Problem 1

tP : 

               Minimize 
1

( , )

ij ij

i j A

f C y


                     (5.1) 

Subject to  

                      Constraints (5.3) - (5.18),  

  ( 1 ) , ( , ) , , .w w w

i k i k i j ki j A k K w W               (5.19) 

5.3.2.2 Definition of piercing cut, remaining problem and sparse problem 

 The principle of the cut-and-solve method has been described in Chapter 2. An 

important factor which influences the efficiency of the cut-and-solve method is that 

tight LBs should be generated at each iteration. For an integer programming model, 

LB is usually obtained by solving a linear relaxation problem of RP. Our preliminary 

simulation experiments showed that the linear relaxation of RP commonly provided 

very “bad” LBs. To obtain an improved LB, the partial integral relaxation strategy is 

applied to RP, in which only 
w

ijk  and w

ik  are relaxed as continuous variables while 

the integrality of yij and 'iwwz  is maintained. The partial integral relaxation strategy is 

based on the following observations:  

1) The variables related to the paths of shipments are 
w

ijk and yij. Note that 

1w

ijk  means that shipment w passes through the reserved lane on arc (i, j) during 

time period k and otherwise, 0w

ijk  . If 
w

ijk  are not relaxed, the results of our 

preliminary simulation experiment show that most of them take the values of zero, 

which means that very few reserved lanes are passed by the shipments at any time 

period. The LBr obtained in this case is usually very “bad”. Therefore, 
w

ijk  should be 
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relaxed to obtain more subpaths. Similar observation can be also found for w

ik . 

2) Another important decision variable yij means whether there is a reserved lane 

on arc (i, j). Constraint (5.6) implies that only when the lane is reserved for hazardous 

material transportation, the shipment can pass the road segment; and reserving one 

lane or not may result in completely different paths of shipments. Our preliminary 

simulation experiments show if yij are relaxed as the same as 
w

ijk , a considerable 

number of yij take the values greater than zero. It means that there may exist a 

reserved lane on the corresponding arc. However, the experiments also show if yij are 

not relaxed, a better LBr can be obtained. Therefore, yij are considered as integer 

variables in this chapter. Similar observation can be also found for 'iwwz . 

 Another key issue for the cut-and-solve method is to find an appropriate piercing 

cut that separates the current remaining problem into a new sparse problem and a new 

remaining problem. If the solution space of SP is too small, the optimal solution is not 

“good” enough to update the upper bound; if the solution space of SP is too large, it 

will take too much time to obtain an optimal solution. Climer and Zhang introduced a 

general procedure for generating piercing cuts based on reduced cost from an optimal 

solution of linear relaxed problem [85]. In their work, PCr was defined as a set 

including the decision variables with large reduced cost. But the general procedure is 

not appropriate to MIP because it has been shown by our preliminary experimental 

results that the lower bound of the proposed problem obtained by the linearly relaxed 

RP is not good enough and the reduced costs of decision variables are often missing. 

Reference [79] proposed a new piercing cut technique for MIP using the number of 

“critical links”. Since the value of 
1

K
w

ijk

k




  may be fractional in an optimal solution of 

the relaxed RP, (
w

it ,
w

ijk , ijy , 'iwwz ), there may be multiple paths for some shipments. 

The link with the greatest value of 
1

K
w

ijk

k




  is called “critical link”. For more details 

of the piercing cut based on “critical link”, please see [79]. The considered problem in 
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this chapter is different from that in [79]. The piercing cut in [79] cannot be used 

directly for our problem. A new piercing cut based on “critical link” is proposed as 

follows. 

 Let Lr represent the set of shipments which have multiple paths in the fractional 

solution and vi  represent the first node where multi-path appears for shipment v. 

Define ar as the set of the most potential arcs for all shipments in Lr, which implies 

that the arcs in ar are very likely to be selected in the final optimal solution of P1. That 

is, 

* * * *

( , )
1

{( , ) | ( , ) arg max , }
v v

v v

K
v

i j kr r
i j A

k

a i j i j v L




   ,          (5.20) 

where ( , )v vi j  refers to the arc with the largest value among all the arcs outgoing 

from node vi .   

 The piercing cut is a combination of some decision variables in a certain set, 

called Ur. In this chapter, Ur refers to the set of these decision variables 
v v

v

i j k , where 

v is a shipment which has multiple paths in the fractional solution and ( vi , vj ) is the 

most potential arcs for shipment v. Set Ur is defined as follows: 

            { | ( , ) }
v v

v

r i j k v v rU i j a  ,                      (5.21) 

 The piercing cut (PCr) is defined as follows:           

       
1

1
v v

v
i j k rv v

K
v

i j k r

k U

h



 

   ,         (5.22) 

where hr is a given integer in [1, rL ].  

 Accordingly, the additional constraint associated with SPr can be written as 

follows: 

          
1

v v
v
i j k rv v

K
v

i j k r

k U

h



 

  .                (5.23)

 As mentioned above, RPr and SPr are generated by adding constraints (5.22) and 

(5.23) to CPr, respectively. That is, 
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RPr:   

                Minimize 
1

( , )

ij ij

i j A

f C y


            (5.1) 

Subject to  

              Constraints (5.3)-(5.19), (5.22) 

and 
1

1, 1,..., 1.
v v

v
i j k lv v

K
v

i j k l

k U

h l r



 

             (5.24) 

SPr:  

      Minimize 
1

( , )

ij ij

i j A

f C y


         (5.1) 

Subject to  

             Constraints (5.3)-(5.19), (5.23) and (5.24). 

 It is worth pointing out that when r = 1, the original problem 1

tP  is considered as 

CP1. Hence, constraint (5.24) should be removed for RP1 and SP1. 

 The process of the improved cut-and-solve method is illustrated in Fig. 5.1. 

5.4 Computational results 

To evaluate the efficiency of the proposed method, 155 instances (31 sets × 5 

instances) were randomly generated. The proposed algorithm was coded in C. The 

computational experiments were carried out on an HP PC with a 3.10-GHz Intel Core 

processor and 4-GB RAM under Windows 7 environment. The CPLEX MIP solver 

(version 12.5) under default settings was used to solve problem 1

tP . It was run until 

problem 1

tP  was solved to optimality. 

The transportation network G (V, A) in this work was generated according to the 

random network topology generator proposed by Waxman [95]. The 

origin-destination pairs were randomly selected from the set of nodes. Parameter K 

was set from 1 to 5 because in real life the number of time periods was not very large 

[97]. Let 
w

ij  be the accident probability of hazardous material w on the general 

lane(s) of arc (i, j). Note that 
w

ij >
w

ijP . Our preliminary experimental results showed 
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Fig. 5.1 Flow chart of the cut-and-solve method for the transformed single objective problem 

Relax 
1

tP  with partial integrality strategy and solve the 
relaxed problem 

Yes 

No 

Set r:= r +1. Define CPr as RPr-1 

Define set Ur and PCr, and then obtain SPr and RPr 

Set UBmin:= UBr 

Solve SPr 

UBr < UBmin 

Yes 

Relax RPr with partial integrality strategy, solve the 
relaxed problem and obtain a lower bound LBr for RPr 

UBmin ≤ LBr 

Obtain the global optimal value UBmin of 
1

tP  

Yes 

No 

No 

Set r:=0 , UBmin=+∞, CP1= 1

tP  

The solution is optimal 
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that the values of the input parameters 
w

ij , 
w

ijP , Tij, ij, Eijk, Tint, and Mij, had little 

effect on the performance of the proposed algorithm for a considerable number of 

instances and they were generated according to the following ways. The data of 

parameters were set in the similar way in Chapter 3: ij = d(i, j) and Tij =ij* U(0.6, 

0.9), where U was a uniform distribution; w

ij = d(i, j) *U(8, 20); w

ijP = w

ij * U(0.6, 

0.9), whose unit was 10-7; Eijk was generated by U(10, 80), whose unit was 104; Tint= 

10; Mij was generated by U(2, 5). The number of iterations of ε-constraint method, S, 

was set to 20.  

Table 5.1 summarizes the computational results on the randomly generated 

instances with N =3, |W|=5 and |K| = 3. The total computation time for an instance 

represents its total running time for obtaining 21 solutions in the ε-constraint method. 

Columns T1 and T2 represent the average computation time (in CPU seconds) of five 

instances for each set in which problem P1 is solved by the optimization software 

package CPLEX and the CS based method, respectively. It can be observed from 

Table 5.1 that the proposed CS based method is more efficient than CPLEX and both 

the total computation times moderately increase with the number of nodes. It is worth 

pointing out that the trends of two curves of T1 and T2 are almost the same. But T2 

increases with the number of nodes more slightly than T1 in Fig. 5.2. For example, for 

set 1 with |V| = 20, T1 is only 1.261 times as much as T2, whereas for set 9 with |V| = 

100, the ratio T1/T2 is 2.223 times.   

 Table 5.2 summarizes the computational results on the randomly generated 

instances with N =3, |W|=10 and |K| = 3. It can be observed from Table 5.2 that the 

computation times of CPLEX and the proposed method drastically increase with the 

number of nodes, but the latter increases more slightly than the former. Take sets 10 

and 11 for example, given the number of shipments and time periods, the computation 

times T1, T2 for set 11 are 6.636 and 4.440 times as much as those for set 10, 

respectively. From Tables 5.1 and 5.2, it can be also found that the CS based method 

is more efficient for the sets with |W|=10 than for the sets with |W| =5. For example, 

given the number of nodes and time periods, T1/T2 for set 3 is only 1.476, while it 
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increases to 3.573 for set 12.  

When the number of nodes increases to 60 in Table 5.2, CPLEX cannot find 21 

optimal solutions of 0 2( )tP   within 36000s, but the proposed method can do it well 

for sets with up to 80 nodes. Set a threshold of the computation time for each problem 

0 2( )tP   to 36000s/21. When the threshold is reached and a problem is not solved to 

optimality, CPLEX is terminated. For sets 14-16, although CPLEX fails to find all 

optimal solutions, it can provide lower bounds and upper bounds of 0 2( )tP  (s) which 

were not solved to optimality when CPLEX is terminated. The gap between the lower 

and upper bound is denoted as (upper bound – lower bound)/upper bound and it 

implies the extent of optimality. GAP in Table 5.2 denotes the average gap for 

problems 0 2( )tP  (s) that were not solved to optimality. The average gap of sets 14-16 

are 5.309%, 3.217% and 3.949%. The gaps are relatively small, which means that the 

obtained solutions might be relatively close to optimality for sets 14-16. The gap of 

set 14 is bigger than those of sets 15-16, which is because of one of the instances with 

complex structure. In Table 5.2, given that |W|=10, the computation time for set 16 is 

nearly up to 36000s so that this set can be considered as one of the largest-scale 

problems which can be solved in reasonable time. 

Table 5.1 Computational results with N=3, |W|=5 and |K|= 3 

set |V| T1 T2 T1 / T2 

1 20 42.492 33.689 1.261 

2 30 159.133 101.038 1.575 

3 40 229.150 155.282 1.476 

4 50 328.191 174.990 1.875 

5 60 319.409 200.318 1.593 

6 70 865.940 252.524 3.429 

7 80 1375.141 465.900 2.956 

8 90 2089.713 830.784 2.515 

9 100 2353.960 1058.735 2.223 

 

 



 86  

 

Fig.5.2 Comparison of T1 and T2 

 

 

 

Table 5.2 Computational results with N=3, |W|=10 and |K| = 3 

set |V| T1 T2 T1 / T2 GAP 

10 20 529.566 385.258 1.375 0 

11 30 3514.437 1710.633 2.055 0 

12 40 11489.591 3215.313 3.573 0 

13 50 28094.791 6698.321 4.194 0 

14 60 >36000.000 5703.657 — 5.309% 

15 70 >36000.000 7568.321 — 3.217% 

16 80 >36000.000 35434.740 — 3.949% 

 

Table 5.3 shows the total computation times of the proposed method with N=4, 

|W|=5 and different |K|. It can be seen from Table 5.3 that for a given number of V, 

the computation time increases quickly with the value of K. For example, the 

computation times for 100 nodes with |K| = 3 (set 30) and |K| = 5 (set 31) are 11.329 

and 24.237 times more than that with |K| = 1 (set 29), respectively. As shown in Table 

5.1 and Table 5.3, the computation time also increases with the average degree of 

network. When |K| = 3, given the number of nodes and shipments, the computation 

time with N = 4 is more than that with N = 3. For example, the computation time for 

set 24 is 2.645 times as much as that for set 5. 

Table 5.3 Computational results with N=4, |W|=5 and |K|=1-5 

set |V| |K| T1 T2 T1/T2 

17 
20 

1 26.923 23.804 1.131 

18 3 63.177 41.690 1.515 
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19 5 160.727 141.198 1.138 

20 

40 

1 45.259 31.647 1.430 

21 3 202.990 165.206 1.229 

22 5 311.470 251.380 1.239 

23 

60 

1 53.883 37.412 1.440 

24 3 625.306 529.896 1.180 

25 5 1289.057 1141.264 1.129 

26 

80 

1 83.724 51.417 1.628 

27 3 2920.514 831.624 3.512 

28 5 4002.699 1575.911 2.540 

29 

100 

1 149.272 101.348 1.473 

30 3 3885.786 1148.121 3.384 

31 5 9610.322 2456.343 3.912 

5.5 Conclusions 

This chapter investigated the HMTLR problem with time-dependent risk, in 

which the transportation risk varied with time throughout the day. A new 

multi-objective mixed integer programming model was first presented for this 

problem. A pre-processing property of the considered problem was explored to reduce 

the solution space. Then an improved cut-and-solve method was developed for the 

transformed single objective problems, in which partial integral relaxation strategy 

and new piercing cut generation technique were proposed. Computational results 

showed that the proposed method outperformed the software package CPLEX. 
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CHAPTER 6 CONCLUSIONS AND 

PERSPECTIVES 

This thesis investigated hazardous material transportation problems via lane 

reservation in networks with time-invariant and time-dependent risk for designing 

time-and-safety guaranteed routes for each hazardous material shipment by optimally 

selecting lanes to be reserved from the existing transportation network. The objectives 

are to minimize the total traffic impact due to lane reservation and the total 

transportation risk. 

Firstly, a hazardous material transportation problem with lane reservation strategy 

in networks with time-invariant risk was investigated. A multi-objective integer linear 

programming model for the proposed problem was formulated. The ε-constraint 

method was used to transform the multi-objective problem into the single objective 

ones. The complexity of these single objective problems was proved to be NP-hard 

and optimization software package CPLEX was applied to obtain Pareto optimal 

solutions. A fuzzy-logic-based approach was also exploited to help DMs select a 

preferred solution from Pareto optimal solutions. Computational results on an instance 

based on a real network topology and randomly generated instances showed that the 

ε-constraint method could efficiently solve the considered multi-objective 

optimization problem within a reasonable time and find efficient Pareto optimal 

solutions. Computational results also demonstrated that the lane reservation strategy 

could greatly reduce the transportation risk. 

Secondly, a new resolution method, called a cut-and-solve and cutting plane 

combined method, was developed to solve the transformed single objective problem 

in Chapter 3. A pre-processing property was also explored to reduce the solution 

space. Cutting plane method for finding valid inequalities was developed to accelerate 

the convergence of cut-and-solve method. Computational results on randomly 

generated instances demonstrated that the proposed algorithm was more efficient 

since it took about an average of 66.45% computation time of CPLEX for different 
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sized problems.  

Finally, hazardous material transportation via lane reservation in networks with 

time-dependent risk was investigated, in which population exposure along road 

segments was assumed to be time-dependent. A multi-objective mixed integer linear 

programming model was formulated. A pre-processing property was also explored to 

reduce the solution space. Then an improved cut-and-solve based ε-constraint method 

was proposed. The improved cut-and-solve method, different from that in Chapter 4, 

adopted a new technique of generating piercing cuts and a partial integral relaxation 

strategy was proposed for this method. Computational results showed that the 

proposed algorithm could find Pareto optimal solutions faster than CLPEX for the 

transformed single objective problems. It could be seen that the proposed algorithm 

took about an average of 43.23% computation time of CPLEX for problems with 

different sizes. 

Future works may be conducted from several aspects: 

(1) Firstly, the transportation risk and the negative impact due to lane reservation 

are assumed as known parameters in this thesis. Note that risk is defined as the 

product of the accident probability and population exposure. Assessing the probability 

of each hazardous material release may need many historical data and some 

techniques such as using logical diagram-based approach; determining population 

exposure depends on not only the nature of hazardous materials but also the 

geometrical shapes of the impact area. Additionally, the negative impact on normal 

traffic is a complicated issue related to traffic flow, the size and type of vehicles in the 

transportation networks, etc. Generally speaking, when performing the assessment of 

transportation risk and impact, some hypotheses are usually introduced. If such 

hypotheses are removed, finding resolution methods becomes more challenging. 

(2) Another future work may be to expand the mathematical model. For example, 

hazardous material vehicles are allowed to stop during their trip so as to avoid peak 

risk periods on some road segments. 

(3) The ε-constraint method used in this thesis can only obtain the weak Pareto 

optimal solutions. Thus, one of the future research directions is to improve 
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ε-constraint method so as to seek for all the strict Pareto optimal solutions. 

(4) Although the cut-and-solve based ε-constraint method is able to optimally 

solve the considered problems within a reasonable time, there is still a heavy 

computational burden on large size problems. Studying properties of the model may 

help to reduce the search space. Exploiting efficient piercing cuts is another way to 

improve the efficiency of the cut-and-solve method. Additionally, it is necessary to 

develop efficient heuristic algorithms based on the characteristics of the considered 

problems. 
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