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Résumé 

La localisation de sites est des décisions stratégiques les plus importantes pour les entreprises dans le 

contexte de la mondialisation d'aujourd'hui. Les travaux existant dans la littérature traitant ce type de 

problèmes se concentrent principalement sur la détermination de l'emplacement des sites et des flux de 

produits provenant les sites localisés aux clients dans le but de minimiser le coût total de construction, de 

production et logistiques. Cependant, il est très important de bien choisir simultanément la capacité et la 

localisation des sites parce que la taille des sites a unegrande influence sur ces coûts sur le long terme. La 

détermination de la location et de capacité des sites reste encore un problème ouvert.  

Dans cette thèse, nous étudions trois nouvelles variantes de problèmes de localisation de sites à deux 

échelons avec la sélection de taille (TECFLP). Les deux premières parties concentrent sur les TECFLPs avec 

sélection séparée de taille d’usines ou de dépôts. La troisième partie étudie le TECFLP avec sélection 

simultanée des tailles d’usines et de dépôts. Pour ces problèmes, trois modèles de programmation linéaire 

mixte sont proposés. Ensuite  les approches basées sur la relaxation lagrangienne selon les caractéristiques de 

chaque problème sont développés. Pour améliorer les meilleures solutions proposées par les approches de 

relaxation lagrangienne, une méthode de recherche tabou, une méthode hybride de recherche tabou et à 

voisinage variable, une méthode hybride du recuit simulé et de la recherche tabou sont respectivement 

adaptées pour ces trois problèmes. Les algorithmes développés sont testés et évalués à travers 810 instances 

générées aléatoirement. Les résultats numériques montrent que nos méthodes sont capables de fournir des 

solutions de qualité avec un temps de calcul raisonnable. 

 

Mots-clés: localisation de sites; choix de taille de sites; relaxation lagrangienne; recherche tabou; méthode 

hybride de recherche tabou et à voisinage variable; méthode hybride du recuit simulé et de la recherche tabou 
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Abstract 

Facility location is one of the most important strategic decisions for firms in globalization. Previous 

works on facility location in the literature mainly focus on determining the locations of facilities and the 

flows of products from facilities to customers with the goal of minimizing the sum of facility opening costs, 

production and logistic costs. However, it’s very important to determine at the same time the appropriate 

sizes for these facilities because they greatly affects these costs on the long term. Determining facility 

location and size is always an open problem. 

In this thesis, we study three new two-echelon capacitated facility location problems (TECFLP) with 

facility size selection. The two first parts of the wok focus on two-echelon facility location problems with 

plant and depot size selection, respectively. The third part concentrates on TECFLP considering 

simultaneously plant and depot size selection. For these problems, three corresponding mixed integer 

programming models are formulated and then Lagrangean relaxation approaches according to the problems’ 

characteristics are developed. To further improve the best solutions obtained by the Lagrangean Relaxation 

approaches, a tabu search, a hybrid variable neighborhood tabu search and a hybrid simulated annealing tabu 

search are adapted for the three problems respectively. The developed algorithms are tested and evaluated 

through 810 randomly generated instances. Computational results show ours algorithms can provide high 

quality solutions within a reasonable computation time.  

Keywords: Facility location, Facility size, Lagrangean relaxation, Tabu search, Hybrid variable 

neighborhood tabu search, Hybrid simulated annealing tabu search 
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Notations 

I the set of potential plants; 

J the set of potential depots; 

K the set of customers; 

Ri the set of production sizes of the plant Ii ; 

Sj  the set of possible sizes of the depot Jj ; 

cpi the capacity of the plant  Ii ; 

cpir 
the capacity of the plant Ii  with the production size iRr ; 

cdj 
the capacity of the depot Jj ; 

cdjs the capacity of the depot Jj  with the size jSs ; 

dk the demand of the customer Kk  ; 

fpi the fixed cost of opening the plant Ii ; 

fpir 
the fixed cost of the plant Ii  with the production size iRr ; 

fdj the fixed cost of the depot Jj ; 

fdjs the fixed cost of opening the depot Jj  with the size jSs ; 

pir the unit production cost of the plant Ii  with the size iRr ; 

hjs the unit handling cost at the depot Jj  with the size jSs ; 

tij the unit transportation cost from the plant Ii  to the depot Jj ; 

cjk the unit assignment cost of the customer Kk   to the depot Jj ; 
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Abbreviations 

CFLP: Capacitated facility location  problem; 

CFLPSS: Capacitated facility location  problem with single source; 

TSCFLP: Two-stage capacitated facility location problem; 

TSCFLPSS: Two-stage capacitated facility location problem with single source; 

TSUFLP: Two-stage uncapacitated facility location problem; 

TECFLP-PSS: Two-echelon capacitated facility location problem with plant size selection; 

TECFLP-DSS: Two-echelon capacitated facility location problem with depot size selection; 

TECFLP-

PDSS: 

Two-echelon capacitated facility location problem with plant and depot size 

selection; 

UFLP: Uncapacitated facility location  problem; 

TS: Tabu search; 

SA: Simulated annealing; 

VNS: Variable neighborhood search; 

HVNTS: Hybrid variable neighborhood tabu search; 

HSATS: Hybrid simulated annealing tabu search; 
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This thesis investigates models and methods for two-echelon capacitated facility location problems with 

facility size selection encountered in two-stage supply chain system. It mainly concerns optimizing location 

and size of facility in two-stage supply chain system. The goal of this research is to develop models and 

methods for designing two-stage supply chain network system. In this chapter, the background of the thesis 

is firstly introduced. Then the contributions and organization of this thesis are presented. 

1.1 Background 

Most private firms and public agencies have faced the problem of locating facilities over spatial 

dimensions to provide certain service functions to their distributed clients or customers. Industrial firms need 

to locate a variety of facilities in the supply chain network system including manufacturing and assembly 

plants, warehouse and retail outlets. Government agencies must determine locations of public service 

facilities such as schools, hospitals, fire stations, ambulance bases and landfill. In every case, the operational 

efficiency and system benefit depend on the choices of facility locations. A good location design could 

maximize the service benefit while saving as much infrastructure investment as possible. 

Deciding the best number, locations and sizes of facilities are the key issues in supply chain network 

design. This decision in literatures is called “facility location problem”. Generally facility location problem 

involves the determination of the number, locations and sizes of facilities, and the assignment of the 

customers to the facilities or the transportation from the facilities to the customers.  

The strategic decision of locating facilities is one of the most critical issues for firms and has significant 

impacts on the tactical and operational costs of supply chain network over a long time horizon since the 

logistics/distribution costs constitute an important part of the total expenditure of a firm. With the rapid 

growth of telecommunication and transportation technologies, the competition in market is getting more and 

more fierce. To survive in the war of business, firms have to invest in and focus on their own supply chain in 

order to improve the customer service level without increasing of costs. To achieve this goal, one important 

issue for those firms is effective designing their supply chain networks. Appropriately facility location can 

potentially increase the global profit and competitiveness of firms. Hence, optimizing the supply chain 

network is of fundamental importance for the firms aiming to reduce their logistics costs and maintain their 

competitive advantages.  

The current facility location problems in the literature mainly involves determining the best locations 

for facilities. Given a set of potential locations for facilities and a set of customers, the facility location 

problem is to locate facilities in such a way that the total cost for assigning customers to facilities and 

satisfying the service (or demand) required by customers is minimized. The cost considered is the sum of the 

fixed costs of opening facilities and the costs for assigning customers to specific facilities which depend on, 

for example, the distance between them. The facility location problem can be classified into different 

categories depending on the properties assumed: 1) single or multistage, 2) uncapacitated or capacitated 
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facility, or 3) single or multiple sourcing in terms of customer-depot assignment. For more details, we refer 

readers to the surveys of Klose and Drexl (2005), ReVelle et al. (2008) and Melo et al. (2009). 

In the classical facility location problems, the size of a facility is assumed to be fixed, i.e., either 

capacitated or uncapacitated. The facility opening cost is assumed to be a constant and the unit production or 

handling cost is assumed to be the same, thus it can be merged with other linear connection cost. The 

decision of the size of facility is not included in these facility location problems. However, in some practical 

situations it is often necessary to consider several possible sizes for each potential facility location. Firms 

need also to determine the sizes of facilities. The size of a facility can significantly affect the fixed opening 

cost of the facility. As production or handling volume increases, the fixed investment for constructing the 

facility increases. In addition, as production or handling volume increases, cost savings are achieved through 

economies of scale. The unit production or handling cost under larger size of a facility is lower than that 

under smaller sizes of the same facility. How to make a decision to optimize facility location and select 

facility size simultaneously is a significant problem in supply chain network design. 

Unfortunately, only limited research has been conducted on single-stage facility location problem which 

considers simultaneously the location and size of facility or nonlinear variable cost. As far as we know there 

is no he literatures on two-stage facility location problem which consider simultaneously the location and 

size of facility or nonlinear variable cost are not found. Lee (1993) investigated a multi-products capacitated 

facility location problem with facility type choice. Mazzola and Neebe (1999) dealt with the same problem 

and developed a Lagrangean based heuristic. Holmberg and Ling (1997) studied a facility location problem 

with facility size choice and staircase production cost. Taniguchi et al. (1999) optimized the size and location 

of public logistics terminals. Wu et al. (2006) considered a capacitated facility location problem with general 

non-linear setup cost. Dupont (2008) investigated a facility location problem in which the total cost for each 

opened facility is a concave function of the quantity delivered by this facility. Carrizosa et al. (2012) studied 

a nonlinear minsum facility location problem.  

The two-stage facility location problem is one of the most commonly encountered problem in the two-

stage supply chain system design. Similar as locating facilities in the context of single-stage supply chain 

network system, it is significant to select facility size when locating facilities in the context of two-stage 

supply chain system since the facility size can affects the fixed facility opening cost and the unit producing 

or handling cost is different under different sizes of facilities because of economies of scale. To the best of 

our knowledge, although the optimizing of facility location and size have been considered simultaneously for 

the single-stage supply chain network system in the literature, the facility location and size have not been 

investigated simultaneously in the two-stage supply chain network system. To fill this gap, we concentrate 

on the optimizing of the location and size of facilities in the context of two-stage supply chain network 

system in this thesis. The aims of the thesis is optimize the location and size of plants and/or depots, 

determine the product flows from the plants to the depots and the assignments of the customers to the depots 

to satisfy the customers’ demands at a minimum sum of cost. This cost consists of the fixed plant and depot 

opening costs, the producing costs at plants and/or handling costs at the depots, the transportation costs from 
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the plants to the depots and the customer-depot assignment costs.  

1.2 Contributions 

In this thesis, we study three new two-echelon capacitated facility location problems (TECFLP) with 

facility size selection. The first and second parts of our work focus on two-echelon capacitated facility 

location problems with plant size selection and depot size selection, respectively. The third part concentrates 

on the TECFLP with plant and depot size selections simultaneously. For these problems, three corresponding 

mixed integer programing models (MIP) are formulated and then Lagrangean relaxation based approaches 

according to the problems’ characteristics have been developed. To further improve the best upper bounds 

found in the Lagrangean relaxation approaches, a tabu search (TS), a hybrid variable neighborhood tabu 

search (HVNTS) and a hybrid simulated annealing tabu search (HSATS) are designed for these three 

problems respectively. All algorithms are evaluated by numerous randomly generated instances. 

Computational results show ours methods can provide high quality solutions with reasonable computational 

time.  

More specifically, the main contributions of this thesis is as follows:  

A two-echelon capacitated facility location problems with plant size selection (TECFLP-PSS) 

encountered in two-stage supply chain system but not been investigated in the literature is studied. For this 

problem, a mixed integer linear programming model for the problem is formulated. Since the problem is NP-

hard, we focus on find near optimal solutions for it. Thus a Lagrangean relaxation approach is proposed to 

achieve a lower bound and upper bound of the problem. The upper bound is later further improved by a tabu 

search (TS). A total of 245 instances with different sizes and parameters are randomly generated and tested to 

evaluate the performance of the proposed algorithms. The computational results demonstrate that all of the 

instances can be solved in a reasonable time with the average gaps below 1.66%, even for instances that have 

up to 50 potential plants with 6 possible sizes each, 200 potential depots and 400 customers.  

A two-echelon capacitated facility location problems with depot size selection (TECFLP-DSS) 

encountered in two-stage supply chain system is studied. For this problem, a mixed integer linear 

programming model for the problem is formulated and a Lagrangean relaxation approach is proposed to 

achieve a lower bound and an upper bound of the problem. A hybrid variable neighborhood tabu search 

(HVNTS) is proposed to further improve the best upper bound found in the Lagrangean relaxation approach. 

A total of 245 instances with different sizes and parameters are randomly generated and tested to evaluate the 

performance of proposed algorithms. The computational results show that the proposed algorithms can solve 

all of the instances with average gaps below 1.16% in an acceptable time, even for the instances that have up 

to 50 potential plants, 100 potential depots with 6 depot sizes each and 400 customers. 

A two-echelon capacitated facility location problems with plant and depot size selection (TECFLP-

PDSS) encountered in two-stage supply chain system is studied. For this problem, a mixed integer linear 

programming model for the problem is formulated and a Lagrangean relaxation approach is proposed to 
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achieve a lower bound and an upper bound of the problem. A hybrid simulated annealing tabu search 

(HSATS) is proposed to further improve the best upper bound found in the Lagrangean relaxation approach. 

A total of 320 instances with different sizes and parameters are randomly generated and tested to evaluate the 

performance of proposed algorithms. The computational results show that the proposed approach can solve 

all of the instances all of the instances in a reasonable time with the average gaps below 1.75%, even for 

instances that have up to 50 potential plants with 6 possible sizes each, 100 potential depots with 6 possible 

sizes each, and 400 customers.  

1.3 Organization of the thesis 

The rest of this thesis is organized as follows:  

In Chapter 2, a detailed literature review of single-stage facility location problem, the two-stage facility 

location problem, the Lagrangean relaxation method and the basic ideas of the metaheuristic technologies 

used in this thesis are given. 

In Chapter 3, we focus our attention on a two-echelon capacitated facility location problem with plant 

size selection (TECFLP-PSS). This problem allow us to deal with both different sizes for plants and different 

production costs at different levels of production at a plant. A mixed integer linear programming model for 

the problem is formulated for the TECFLP-PSS and a Lagrangean relaxation approach is proposed to find a 

tight lower bound and a high quality near-optimal solution for the TECFLP-PSS. At each Lagrangian 

iteration, a heuristic is developed to construct a feasible solution of the TECFLP-PSS. This heuristic includes 

three stages, opening plant and selecting plant size, opening depots and determining the assignments of the 

customers to the opened depots, and solving a transportation problem to determining the product flows from 

the plants to the depots. After the Lagrangian relaxation approach, the best feasible solution is improved by a 

tabu search algorithm. Instances are randomly generated and tested to evaluate the performance of proposed 

algorithms.   

In Chapter 4, we investigate a two-echelon capacitated facility location problem with depot size 

selection (TECFLP-DSS). This problem allow us to deal with both different sizes for depots and different 

handling costs at different levels of handling at a depot. For the TECFLP-DSS, a mixed integer linear 

programming model for the problem is formulated and a Lagrangian relaxation approach based on the 

problem properties is developed to find a tight lower bound and a high quality near-optimal solution for the 

TECFLP-DSS. At each Lagrangean relaxation iteration, a heuristic is developed to construct a feasible 

solution of the TECFLP-PSS. After the Lagrangian relaxation approach, a hybrid variable neighborhood tabu 

search algorithm is designed to further improve the best feasible solution found in the Lagrangean relaxation 

approach. Instances are randomly generated and tested to evaluate the performance of proposed algorithms. 

In Chapter 5, we concentrate a two-echelon capacitated facility location problem with plant and depot 

size selection (TECFLP-PDSS). This problem allow us to deal with both different sizes for plants and 

depots, and different production costs at different levels of production at a plant and different handling costs 



1. Introduction 

7 

 

at different levels of handling at a depot. A mixed integer linear programming model for the problem is 

formulated and a Lagrangean relaxation approach is proposed to find a tight lower bound and a high quality 

near-optimal solution for the TECFLP-PDSS. At each Lagrangian iteration, a heuristic is developed to 

construct a feasible solution of the TECFLP-PDSS. This heuristic includes, opening plant and selecting plant 

size, opening depots and selecting depots size, determining the assignments of the customers to the opened 

depots, and solving a transportation problem to determining the product flows from the plants to the depots. 

After the Lagrangian relaxation approach, the best feasible solution is improved by a tabu search algorithm. 

Instances are randomly generated and tested to evaluate the performance of proposed algorithms.   

Finally, in Chapter 6, we conclude the thesis and give some perspectives for the future research. 
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This chapter provides literature reviews on facility location problems and some technologies in detail, 

which will be used for solution algorithms in this thesis. Firstly, several related facility location problems, 

their models and the works which have contributed to the resolution of these models are presented. Then the 

principles of some technologies are introduced in detail, which will be used for solution algorithms for our 

problems. 

2.1 Facility location problems 

As stated, the facility location problem can be classified into different categories depending on the 

properties assumed, such as single or multistage, uncapacitated or capacitated facility and single or multiple 

sourcing in terms of customer-depot assignment. For more details, we refer readers to the surveys of Klose 

and Drexl (2005), ReVelle et al. (2008) and Melo et al. (2009). We first review the models and solution 

techniques for the single-stage facility location problems and the two-stage facility location problems and 

then review facility location problem with facility size selection or nonlinear variable cost. 

2.1.1 Single-stage facility location problems  

In the single-stage facility location problem where there are in fact two stages and two decision levels. 

The first stages is the facilities or plants, where the decision to be made is the choice of which plants to open, 

the second stage is the customers where the decision is which customers are assigned to the chosen subset of 

plants. The overall solution to the single-stage facility location problem defines which plants are open and 

the flow of demand from plants to customers. The structure of a single-stage facility location problem is 

presented in Fig. 2.1, where the first stage is the plants, the second is the customers. 

 

 

Fig. 2.1 The structure of a single-stage facility location problem 

The single-stage facility location problems consider opening a set of facilities from a set of potential 

sites and letting those open facilities satisfy the demand of customers in a single-stage supply chain network 

system. The objective of the problem is to minimize the sum of the fixed cost of opening facilities and the 

Plants Customers 
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shipping cost from the facilities to the customers. Many kinds of the single-stage facility location problems 

have been intensively studied in the literature, such as the uncapacitated facility location problem (UFLP), 

the capacitated facility location problem (CFLP) and the capacitated facility location problem with single 

source constraints (CFLPSS), etc. The models and solution methods of these models are briefly reviewed in 

the following. 

2.1.1.1 Simple or uncapacitated facility location problem 

Let I be a set of potential sites of facilities, K denotes a set of customers, fpi, Ii  be the fixed opening 

cost of facility i and cik, Ii , Kk  is the transportation cost between facility i and customer k. Each 

customer is associated with a demand dk, Kk . The uncapacitated facility location problem (UFLP) is to 

locate facilities among a set of potential sites to serve the customers such that the total cost of the fixed cost 

of locating the facilities and the transportation cost from the facilities to the customers is minimized. In the 

UFLP, each facility is assumed to have no limits on its capacity. 

Let us define, 

ui 1, if a facility Ii is opened; otherwise 0; 

zik the fraction of the demand dk transported from facility i to customer k. 

The UFLP can be formulated as the following mixed integer programming, 

 
 


Ii Kk

ikik

Ii

ii zcufpmin  (2-1) 

s.t. Kkz
Ii

ik 


 1  (2-2) 

 KkIiuz iik   ,  (2-3) 

 Iiui  1}{0,  (2-4) 

 KkIizik  ,10  (2-5) 

The objective (2-1) minimizes the total costs of opening the facilities and shipping the products. The 

constraints (2-2) guarantee that each customer’s demand are satisfied. The constraints (2-3) make sure that 

no demand is supplied by each closed facility. The constraints (2-4) and (2-5) are standard nonnegativity and 

integrality constraints for decision variables. 

The UFLP has been intensively studied and many solution methods have been proposed in the literature. 

Kuehn and Hamburger (1963) developed the first heuristic that has two phases. The first phase is a greedy 

approach, called the ADD method, that starts with all facilities closed, keeps adding (opening) the facility 

resulting in the maximum decrease in the total cost, and stops if adding any more facility will no longer 

reduce the total cost. The second phase is a local search method in which an open facility and a closed 

facility are interchanged as long as such an interchange reduces the total cost. Another greedy heuristic is the 

DROP method that starts with all facilities open, keeps dropping (closing) the facility that gives the 

maximum decrease in the total cost, and stops if dropping any more facility will no longer reduce the total 

cost (Cornuejols  et al. 1977, Nemhauser et al. 1978). These early heuristics provided the basis for many 
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sophisticated heuristics and provided an initial incumbent for many exact solution algorithms (Cornuejols  et 

al. 1977, Nemhauser et al. 1978). Erlenkotter (1978) developed a dual approach for the UFLP. Although this 

dual approach is an exact algorithm, it can also be used as a heuristic to find good solutions. One effective 

and widely used heuristic is the Lagrangian method (Beasley, 1993a) that is based on Lagrangian relaxation 

and subgradient optimization. More recently, Gen et al. (1996) and Vaithyanathan et al. (1996) used artificial 

neural network approaches to solve UFLP.  

In addition to heuristics, there are a variety of exact algorithms for the UFLP, such as the dual approach 

of Erlenkotter (1978) and the primal-dual approaches of Körkel (1989). Because the UFLP is NP-hard, exact 

algorithms may not be able to solve large practical problems. The UFLP has been studied extensively and 

many researchers have made great contributions in developing exact and heuristic solution methods. Krarup 

and Pruzan (1983) gave excellent surveys and reviews of applications and solution methods.  

2.1.1.2 Capacitated facility location problem  

When each facility has a limited capacity, the UFLP becomes the capacitated facility location problem 

(CFLP). In the CFLP, the volume supplied from each facility cannot exceeds its capacity and the customers 

can receive their demand from two or more open plants.  

Using the same definition for the decision variables of the UFLP and denoting the capacity of facility i 

by cpi, Ii , the CFLP can be formulated as: 

 
 


Ii Kk

ikik

Ii

ii zcufpmin  (2-6) 

s.t. Iiucpdz ii

Ii

kik 


  (2-7) 

 Kkz
Ii

ik 


 1  (2-8) 

 Iiui  1}{0,  (2-9) 

 KkIizik  ,10  (2-10) 

The objective (2-6) minimizes the total costs of opening the facilities and shipping the products. The 

constraints (2-7) make sure that the capacities supplied by each facility is no greater than its capacity. The 

constraints (2-8) guarantee that each customer’s demand are satisfied. The constraints (2-3) and (2-4) are 

standard nonnegativity and integrality constraints for decision variables. 

Many heuristic methods and exact algorithms have been developed to solve it in the last 50 years. 

Because UFLP and CFLP are closely related, many heuristic methods developed for the UFLP are also 

extended to the CFLP. As stated, Kuehn and Hamburger (1963) developed the first heuristic method for the 

UFLP. This heuristic method consists of two phases. The first phase, called ADD, starts with all facilities 

closed and then the facility that causes the maximum total cost reduction is opened. This phase ends when no 

more facilities can be opened to reduce the total cost further. The second phase is a local search procedure in 

which an open facility and a closed facility exchange their status if this exchange reduces the total cost. This 

heuristic was later extended to the CFLP by Jacobsen (1983). Domschke and Drexl (1985) proposed priority 
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rules for the ADD procedure to improve its performance in cases where the facilities have distinct capacities 

and/or distinct fixed operating costs. Feldman et al. (1966) proposed a different strategy for the first phase, 

named DROP, that was also extended to the CFLP by Jacobsen (1983). In DROP, all facilities are initially 

open and a facility is closed if closing it results in the maximum reduction in the total cost. This phase ends 

when closing a facility does not result in any further reduction in the total cost. 

 Lagrangean relaxation has been applied to several facility location problems. Cornuejols et al. (1991) 

presented an excellent theoretical analysis of all possible Lagrangean relaxations and the linear programming 

relaxation for the CFLP, and showed that only  relaxations yield distinct bounds. Dominance relations among 

the relaxations were also discussed. Beasley (1993b) presented a unified framework of using the Lagrangean 

relaxation to solve different facility location problems. In the proposed framework for the CFLP, constraints 

(2-7) and (2-8) are relaxed and the solution of the relaxed problem is trivial. Barahona and Chudak (2005) 

also proposed a Lagrangean relaxation method for the UFLP and the CFLP. Initially they considered the 

linear programming relaxation of the CFLP and then suggested the Lagrangean relaxation relative to 

constraints for solving the linear programming problem. They used the volume algorithm (Barahona and 

Anbil, 2000) in order to maximize the dual objective function. The volume algorithm is an extension of the 

subgradient method and aims at generating good primal solutions. The name of the method comes from a 

theorem stating that a primal solution can be obtained from the volume under the faces of the piecewise 

linear and concave dual objective function.  

Several exact algorithms based on branch-and-bound have been proposed. The major differences among 

these algorithms are in the types of relaxations, the methods of solving the relaxed problem and the strategies 

to improve the lower bound. Van Roy (1986) implemented the cross decomposition method that combines 

Benders decomposition and Lagrangean relaxation in order to exploit the primal and dual structures of the 

CFLP. Leung and Magnanti (1989) introduced a family of facets and valid inequalities for solving the CFLP 

with equal capacities. Aardal (1998a) proposed new valid inequalities and implemented two branch-and cut 

algorithms that are tested on small and medium test problems from the literature.  

The TS metaheuristic has been successfully applied to a variety of combinatorial optimization 

problems, but not much research has been reported in using it for the CFLP. The TS heuristic procedure 

proposed by Grolimund and Ganascia (1997) was applied to the CFLP and limited computational results 

were reported. However, TS procedures have been developed for more complicated facility location 

problems, such as those by Delmaire et al. (1999), Filho and Galvão (1998), França et al. (1999), and Tuzun 

and Burke (1999).  

2.1.1.3 Capacitated facility location problem with single source 

In the CFLP, if each customer is assumed to be supplied from exactly one facility, it becomes the 

capacitated facility location problem with single source (CFLPSS).  In the CFLPSS, each customer must 

receive their demand from one open facility, as opposed to receiving their total demand from two or more 

open facilities. 
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Let us define 

zik 1, if a customer Kk  is assigned to a facility Ii ; otherwise 0. 

Using the same definition for the notations of the CFLP and the CFLPSS can be formulated as: 

 
 


Ii Kk

ikik

Ii

ii zcufpmin  (2-11) 

s.t. Iiucpdz ii

Ii

kik 


  (2-12) 

 Kkz
Ii

ik 


 1  (2-13) 

 Iiui  1}{0,  (2-14) 

 KkIizik  , 1}{0,  (2-15) 

The objective (2-11) minimizes the total costs of opening the facilities and assigning costs. The 

constraints (2-12) make sure that the capacities supplied by each facility is no greater than its capacity. The 

constraints (2-13) guarantee that each customer is assigned exactly to one facility. The constraints (2-14) and 

(2-15) are standard nonnegativity and integrality constraints for decision variables. 

The CFLPSS is known to be an NP-hard optimization problem. Different approaches to obtain upper 

and lower bounds for the CFLPSS are proposed in the literature. One of the most successful approaches for 

solving the CFLPSS is the so-called Lagrangian heuristics. These heuristics are based on Lagrangian 

relaxation which decomposes the original problem into a set of smaller and simpler subproblems by 

introducing Lagrange multipliers and by optimally solving the related Lagrangian dual problem. A feasible 

solution of the original problem is constructed by some heuristic procedure based on the solution of the 

Lagrangian relaxation problem. The difference between these heuristics lies in which constraints are relaxed. 

Klincewicz and Luss (1986) presented an algorithm based on relaxing the facility capacity constraints (2-12). 

The corresponding Lagrangian subproblems then become uncapacitated facility location problems. Pirkul 

(1987), Barcelo and Casanovas (1984) and Sridharan (1993) developed algorithms based on relaxing the 

customer assignment constraints (2-13). The SSCFLP is decomposed into a series of knapsack problems. 

Beasley (1993) proposed a relaxation on both capacity constraints and assignment constraints and compare 

the performances of various Lagrangian heuristics. He concluded that Pirkul (1987) provided the best 

feasible solutions, followed by Beasley (1993), and then Klincewicz and Luss (1986). In addition, other 

heuristic methods are also proposed for the CFLPSS, such as Delmaire et al. (1999)’s reactive grasp and tabu 

search based heuristics, Ahuja et al. (2004)’s very large scale neighborhood search algorithm and Díaz 

(2008) ’s scatter search method. 

For exact algorithms, Holmberg et al. (1999) developed a Lagrangian based branch-and-bound scheme 

to find an optimal solution for the CFLPSS. At each branching node, a lower bound is generated by solving 

the Lagrangian dual problem while a feasible solution is constructed based on the solution of the Lagrangian 

dual by using a repeated matching heuristic. Díaz and Fernandez (2002) proposed another exact algorithm, a 

branch-and-price algorithm for the CFLPSS. A column generation procedure for finding upper and lower 
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bounds is incorporated within a Branch-and-Price framework. The bounding procedure exploits the structure 

of the problem by using an iterative approach. At each iteration, a two-level optimization problem is 

considered. The two levels correspond to the two decisions to be taken: first, the selection of a subset of 

plants to be opened, and then the allocation of clients within the subset of open plants. The second level 

subproblem is solved using column generation. The algorithm was tested with different sets of instances and 

the obtained results are satisfactory.  Yang et al. (2012) designed a  cut-and-solve (CS) based algorithm for 

the CFLPSS. The CS was proposed by Climer and Zhang (2006) for the traveling salesman problem and can 

be viewed as a special case of local branching tree.  

2.1.2 Two-stage facility location problem  

The two-stage facility location problems are natural extensions of the single-stage facility location 

problems. In the two-stage facility location problems there are in fact three stages, but potentially more than 

three decision levels. The first or upper-most stage is the plants, where the decision to be made is the choice 

of which subset of plants to open, the second or central stage is the distribution depots and the decision here 

is which subset of depot to open. The third stage is the customers and the decision to be made here are to 

assign customers to open depots to satisfy their service or demand requirements. The decision of the flow of 

product from the plants to the depots is also made in the two-stage facility location problem. The overall 

solution to the two-stage facility location problem defines which plants and depots are open and the flow of 

demand through the system from plants to customers via depots. The structure of a two-stage facility location 

problem is presented in Fig. 2.2, where the first or upper-most stage is the plants, the second or central stage 

is the depots and the third stage is the customers. 

.  

 

Fig. 2.2 The structure of a two-stage facility location problem 

The two-stage facility location problem is a natural extension of the single-stage facility location 

problem, which considers to locate facilities (depots and/or plants) in a two-stage supply chain network. The 

two-stage facility location problem involves locating a set of depots or both a set of plants and a set of 

depots, determining the product flows from the plants to the depots and the assignments of the customers to 

the depots to satisfy the customers’ demands under single or multiple sourcing constraints. The objective the 

Plants Depot

s 

Customers 
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two-stage facility location problem is to minimize the sum of the opening costs of the facilities, the 

transportation costs from the plants to the depots and the assignment costs of the customers to the depots. 

One of the most studied two-stage facility location problem is the two-stage capacitated facility location 

problem (TSCFLP). Other versions of the two-stage facility location problem have been studied in the 

literature, such as the two-stage uncapacitated facility location problem (TSUFLP) and the two-stage 

capacitated facility location problem with single source (TSCFLPSS).  

To formulate the TSCFLP, the notations and decision variables used are as follows: 

Notations: 

I the set of plants; 

J the set of potential depots; 

K the set of customers; 

cpi the capacity of the plant Ii ; 

cdj 
the capacity of the depot Jj ; 

dk the demand of customer Kk  ; 

fdj the fixed cost of the depot Jj ; 

tij the unit transportation cost from the plant Ii to the depot Jj ; 

cjk the cost of assigning customer Kk   to the depot Jj ; 

Decision variables: 

ui 1, if the plant Ii is opened; otherwise 0. 

vj 1, if the depot Jj is opened; otherwise 0; 

xij the quantity of product flow from the plant Ii  to the depot Jj ; 

zjk the fraction of the demand dk of a customer Kk   supplied from the depot Jj ; 

The TSCFLP can be formulated as: 

  
   


Jj Jj Kk

jkjkjj

Ii Jj

ijij

Ii

ii zcvfdxtufpmin  
(2-16) 

s.t. 
Iiucpx ii

Jj

ij 


 
(2-17) 

 Jjzdx
Kk

jkk

Ii

ij 


0  (2-18) 

 Jjvcdzd jj

Kk

jkk 


 (2-19) 

 
Kkz
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1  
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
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 Iiui  1}{0,  (2-23) 

 Jjv j  1}{0,  (2-24) 

 JjIixij  ,0  (2-25) 

 KkJjz jk  ,10  (2-26) 

The objective (2-16) minimizes the total costs of opening the plants and depots, and assigning the 

customers to the depots. The constraints (2-17) ensure that the total product flows moving out from a plant 

cannot exceed the capacity. The constraints (2-18) are the flow equilibrium constraints at the depots. The 

constraints (2-19) address that the demands assigned to an opened depot cannot exceed its capacity. The 

constraints (2-20) guarantee that each customer is assigned to exactly one depot. The constraints (2-21) and 

(2-22) are redundant, but they are very useful in tightening the linear relaxation of TSCFLP. The constraints 

(2-23), (2-24), (2-25) and (2-26) are standard nonnegativity and integrality constraints for decision variables. 

The TSCFLP generalizes the CFLP by considering in addition the product flows from the plants to the 

depots and/or the choice of the subset of plants from a set of potential plants to open. As the CFLP is NP-

hard in strong sense, the TSCFLP is also NP-hard in strong sense. In the TSCFLP, each facility has a limited 

capacity. The volume supplied from each facility cannot exceeds its capacity. If the each facility has an 

unlimited capacity, the TSCFLP becomes the TSUFLP. In the TSCFLP, if each customer is assumed to be 

supplied from exactly one facility, it becomes the two-stage capacitated facility location problem with single 

source (TSCFLPSS).  

Many researchers have studied the two-stage facility location problem in the literature. Geoffrion and 

Graves (1974) investigated a multi-commodity version of the problem and solved it using Bendres’ 

decomposition. Hindi and Basta (1994) addressed a distribution design problem, in which customers need 

not be assigned to a single depot, only product flow is considered in the model. Pirkul and Jayaraman (1998) 

studied a similar problem as Hindi and Basta (1994). An efficient heuristic was proposed to obtain a good 

feasible solution. Klose (1999, 2000) considered a two-stage capacitated facility problem (TSCFLP) with 

single source in which the optimal depot locations, the optimal product flows and the most effective 

customer-depot assignments are determined. An effective linear programming-based approach (Klose, 1999) 

and a Lagrangean relax-and-cut approach (Klose, 2000) have been proposed for it. Ro and Tcha (1984) 

studied an two-level uncapacitated facility location problem with side constraints in which both the plants 

and warehouses are assumed as uncapacitated and the products are delivered from the plants to the customers 

directly with a penalty cost or indirectly via the warehouses. They proposed a branch and bound algorithm to 

solve their problem. Gao and Robinson (1992) dealt a two-echelon uncapacitated facility location problem 

and proposed a dual-based solution procedure. Tragantalerngsak et al. (1997, 2000) investigated a two-

echelon capacitated facility location problem (TECFLP) with single source. Each depot (in the first echelon) 

has unlimited capacity and each facility (in the second echelon) has limited capacity. Each facility can be 

supplied exactly by only one depot. The locations of the depots and the facilities, the assignments of the 

customers to the facilities are determined simultaneously. Six Lagrangean relaxation heuristics 
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(Tragantalerngsak et al., 1997) and a branch-and-bound method based on Lagrangean relaxation 

(Tragantalerngsak et al., 2000) have been proposed for their problem. Hinojosa et al. (2000) studied a 

multiperiod two-echelon multicommodity capacitated plant location problem and designed a heuristic 

algorithm based on Lagrangean relaxation. For more details, we refer readers to Aardal (1998b), Chardaire 

(1999), Marín and Pelegrín (1999) and a systematic survey of Klose and Drexl (2005). 

2.1.3 Facility location problem with facility size selection or 

nonlinear variable cost 

Facility location problems which consider simultaneously the optimizing of the location and size of 

facility or nonlinear variable cost in the context of single-stage supply chain network system are rare in the 

literature. Lee (1993) investigated a multi-products CFLP with facility type choice. The costs considered in 

this problem include the fixed facility opening costs, the producing costs and the transportation costs. A 

cross decomposition algorithm was proposed for its solution. Mazzola and Neebe (1999) dealt with the same 

problem and developed a Lagrangean-based heuristic. Holmberg and Ling (1997) studied a facility location 

problem with choice of facility size and staircase production cost. Taniguchi et al. (1999) optimized the size 

and location of public logistics terminals. Queuing theory and nonlinear programming techniques were used 

to determine the best solution for their problem. Harkness and ReVelle (2003) addressed a facility location 

problem in which unit production cost is proportional to the scale of output. Four different formulations for 

the problem were proposed and tested by using a branch-and-bound algorithm. Wu et al. (2006) considered a 

capacitated facility location problem with general non-linear setup cost. A Lagrangean heuristic algorithm 

was developed to find near optimal solutions. Dupont (2008) investigated a facility location problem in 

which the total cost for each opened facility is a concave function of the quantity delivered by this facility. A 

branch and bound method based on the problem properties was proposed. Carrizosa et al. (2012) studied a 

nonlinear minsum facility location problem. The objective is to minimize the total cost including the facility 

opening cost that is an increasing nonlinear function of the opened facility number, and the transportation 

cost. Two Lagrangean relaxation approaches were proposed to solve their problem. 

2.2 Lagrangean relaxation and subgradient 

optimization  

Lagrangian relaxation is one of the most widely used techniques in solving combinatorial optimization 

problems. A Lagrangian relaxation of a constrained optimization problem is created by removing (relaxing) a 

set of constraints from the problem and placing them in the objective function weighted by penalty 

parameters or Lagrangian multipliers. The aim is to obtain a Lagrangian relaxation which is easier to solve 

than the original problem because some special structure in the remaining constraints can be exploited. An 

optimal objective value of the Lagrangian relaxation problem for a given set of multipliers provides a lower 
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bound (in the case of minimization) for the optimal solution to the original problem. The best lower bound 

can be derived by choosing the multipliers to be the solution of the Lagrangian dual of the original problem. 

An upper bound on the optimal solution of the original problem can be derived by using the information 

obtained from the Lagrangian relaxation to construct a feasible solution to the original problem. This is 

normally done by applying some heuristic. Details and applications of Lagrangian relaxation can be found in 

e.g., Fisher (1981) and Geoffrion (1974). Lagrangian relaxation have been widely applied to the facility 

location problems, e.g., Geoffrion and McBride (1978), Galvão and Raggi (1989) for uncapacitated facility 

location problem; Beasley (1988, 1993) for capacitated facility location problem; Barcelo and Casanovas 

(1984), Klincewicz and Luss (1986), Pirkul (1987), Sridharan (1993) and Beasley (1993) for single-source 

capacitated facility location problem. 

2.2.1 Lagrangean relaxation 

In order to illustrate the concept of Lagrangean relaxation, consider the following general integer 

program in matrix form: 

P min cx (2-38) 

s.t. Ax = b (2-39) 

 Dx ≤ e (2-40) 

 1}{0,x  (2-41) 

A lower bound for the above program can be found by introducing a Lagrange multiplier vector u = 

(u1, …, um) for the first constraint sets to get the Lagrangean lower bound program or Lagrangean relaxation. 

The Lagrangean relaxation LR(u) is given by: 

LR(u) min cx – (Ax – b) (2-42) 

s.t. Dx ≤ e (2-43) 

 1}{0,x  (2-44) 

The Lagrangean dual problem ZD(u) is defined to be 

ZD(u) maxu LR(u) (2-45) 

For given Lagrangean multiplier u, it is clear that )LR(u  can be easily solved to give a solution x  with 

a corresponding lower bound given by )( bxAuxc  .  

The aim of the Lagrangean relaxation is to obtain a Lagrangean relaxation program which is easier to 

solve than the original problem because some special structure in the remaining constraints can be exploited. 

The selection of a suitable relaxation is one of the important issues to be considered when forming a solution 

method based on Lagrangean relaxation. Two key factors in the evaluation of a relaxation are its ease of 

solution and the tightness of the bounds generated. The ease of solution depends on the methods available for 

solving the Lagrangean subproblem. The possibility of generating such smaller and easier problems, as 

compared to the original problem, depends on the structure of the original problem and the degree of 

separability obtained by relaxing certain constraints. Generally, a relaxation which gives a tighter bound will 
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use greater computation time, whereas an easily solved relaxation problem is likely to give poor bounds 

(Geoffrion and McBride, 1978). 

The main property of the dual problem ZD(u) is that the dual function is always concave so any local 

optimal solution is also a global one (Bazaraa and Sherali, 1981). The constraints are just non-negativity 

constraints on the Lagrangian multipliers (or dual variables) associated with the inequality constraints. In the 

case of an integer formulation, we also have that the dual function is non-differentiable so standard ascent 

methods based on gradients cannot be used for its solution. Hence we need to adopt methods that can take 

the non-differentiability into account. There are a number of such methods available, e.g., subgradient 

optimization, steepest ascent and improved subgradient (Camerini et al. 1975). The most commonly used is 

the subgradient optimization method and it is employed in Chapter 3-5 in this thesis due to its ease of 

programming. 

2.2.2 Subgradient optimization 

The subgradient optimization method solves a non-differentiable problem by taking a fixed step length 

in the direction of a subgradient. A line search cannot be done because a subgradient direction may not 

necessarily be an ascent direction. Convergence to an optimal dual solution can however be guaranteed by 

imposing restrictions on the selection of step lengths. We can easily find a subgradient since it is just the 

evaluation of the constraint values in the current dual solution. The details of this method can be found in 

Held et al. (1974). The subgradient optimization method is given in Algorithm 2.1. 

Let BLB be the best lower bound found so far on the optimal objective function, BUB be the best upper 

bound found so far on the optimal objective function, l be an iteration counter, LMax  be the maximum 

iteration number,  be a small scalar and λ  be the step length parameter at iteration l. 

Algorithm 2.1: Subgradient optimization procedure 

Step 1: Initialize u, ε, LMax and 0λ , where 0λ  is a parameter in the interval (0, 1]. Set BUB := + ∞, BLB := 

– ∞, λ  := 0λ  and l := 0.  

Step 2: Solve the Lagrangean relaxation problem problems LR(u) to optimality to give the solution x. Let 

LB be the objective value of this solution. If LB  >  BLB, then set BLB :=  LB. If no improvement of 

BLB can be detected in a fixed successive iterations, then set λ  := λ /2. 

Step 3: Find a feasible solution by applying a heuristic taking into account of the Lagrangean relaxation 

solution. Let UB be the objective value of the feasible solution. If UB < BUB, then set BUB := UB. 

Step 4: If l > LMax and λ  < ε, stop. The dual solution corresponding to the BLB is regarded as the optimal 

dual solution and the solution corresponding to the BUB  is regarded as the optimal primal 

solution. 

Step 5: Compute a subgradient as g
l 
 = (Ax

l
-b), compute a step size as S

l
 = λ (BUB – LB) / (g

l
)

2
, where LB 

is the objective value of the optimal solution to LR(u
l
). Set u

l+1 
= u

l 
 + S

l
 g

l
 . 

Step 6: Set l := l + 1 and return to Step 2. 
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2.3 Metaheuristics  

Metaheuristics have been a powerful solution method to many combinatory optimization problems. In 

this section, we briefly introduce the principle of the tabu search (TS), variable neighborhood search (VNS) 

and simulated annealing (SA). The TS is used to improve the solution to the TECFLP-PSS in Chapter 3, the 

hybridization of the VNS and TS is used to improve the solution to the TECFLP-DSS in Chapter 4 and the 

hybridization of the SA and TS is used to improve the solution to the TECFLP-PDSS in Chapter 5. 

2.3.1 Tabu search 

Tabu search (TS), introduced by Glover (1986), is an iterative meta-heuristic that guides a local search 

heuristic procedure to explore the solution space beyond local optimality. In each iteration, the TS generates 

a neighborhood solution by an operation called move. The TS guides the search process from the current 

solution to its best admissible solution in its neighborhood, even if this new solution is worse than the current 

one. This is unlike classical descent methods in which only moves lead to improved objective function 

values are permitted. The TS uses a memory mechanism that prevents the search from cycling back to 

previously visited solutions. The memory mechanism that maintains the search history is called the tabu list. 

The tabu list keeps either some of the moves or just their attributes, and reversing these moves is forbidden 

for a given number of iterations. However, this restriction can be ignored if the attempted move leads to a 

new globally optimal solution, this is called the aspiration criterion. This criterion allows for exceptions from 

the tabu list, if any move leads to promising solution. The TS terminates when stopping criteria are satisfied, 

for example, it stops after a fixed number of iterations or a maximum number of consecutive iterations 

without any improvement to the incumbent (best known) solution. The principal steps of the TS algorithm 

are shown in Fig. 2.3. For more details of TS, we refer readers to Glover (1986, 1989, 1990). 

Initialize tabu list TL, generate a solution x,  set x
best

 = x. 

While stopping criteria are not met do 

        Find a solution xꞌ in the neighbourhood of x applying a search strategy 

        If f(xꞌ) < f(x
best

) or xꞌ is not tabu then 

               x = xꞌ,  update the tabu list TL 

        End if 

        If f(x) < f(x
best

) then 

               x
best

 = xꞌ 

        End if 

End while 

Fig. 2.3 The principal steps of the TS algorithm 

The feature of the TS is that a flexible memory structure and aspiration criteria are systematically used 

to guide its search. Moreover, due to the acceptance of deteriorated solutions in the search process, the TS 

can ‘jump’ from local optimum to other region of the solution space so that the probability to find an global 
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optimal solution is enhanced. The new solution is not randomly generated in the neighborhood of the current 

solution, it is the one which is better than the best current solution, or the best admissible solution which is 

not tabu. The best admissible solution is selected from the neighborhood of the current solution according to 

some pre-given rules.  

In Chapter 3, we use a TS algorithm based on problem properties to further improve the best upper 

bound  found in the Lagrangean relaxation approach for the TECFLP-PSS as this metaheuristic has so far 

proved to be successful in solving a variety of hard combinatorial problems. To the best of our knowledge, 

this is the first time a TS heuristic is implemented for the two-stage facility location problem.  

2.3.2 Variable neighborhood search 

Variable neighborhood search (VNS), introduced by Mladenović and Hansen (1997), is a generic local 

search methodology, whose basic idea is to apply a systematic change of neighborhoods within a local search 

algorithm. The VNS combines a descent phase, to find a local minimum, and a perturbation phase, to escape 

from the corresponding local minimum. Given a set of pre-selected neighborhood structures, the VNS starts 

from an initial solution, a random solution is generated in the first neighborhood of the current solution, from 

which a local descent is performed. If the local optimum obtained is not better than the incumbent, then the 

procedure is repeated with the next neighborhood. The search restarts from the first neighborhood when 

either a solution which is better than the incumbent has been found or every neighborhood structure has been 

explored or other stopping criteria are met. The principal steps of the basic VNS algorithm (BVNS) are 

shown in Fig. 2.4. 

The idea of the VNS is based on the following observations: 1) a local minimum with respect to one 

neighborhood structure is not necessary so for another,  2) a global minimum is a local minimum with 

respect to all possible neighborhood structures, 3) for many problems local minima with respect to one or 

several neighborhoods are relatively close to each other. Unlike many other metaheuristics, the basic 

schemes of VNS and its extensions are simple and require few, and sometimes no parameters. 

A popular variant is the deterministic Variable Neighborhood Descent (VND) where the best neighbor 

of the current solution is considered instead of a random one. Also, no local descent is performed with this 

neighbor. Rather, it automatically becomes the new current solution if an improvement is obtained, and the 

search is then restarted from the first neighborhood. Otherwise, the next neighborhood is considered. The 

search stops when all neighborhood structures have been considered and no improvement is possible. At this 

point, the solution is a local optimum for all neighborhood structures. For more details of VNS we refer 

readers to the surveys of Hansen and Mladenović (2001). 

Generate a solution x,  set x
best

 = x, define the neighborhood structures Nl(x), l = 1, …, Lmax, choose a 

stopping criteria,  l = 1. 

While l ≤ Lmax and stopping criteria are not met do 

           Shaking. Generate a solution xꞌ at random from the l
th
 neighbourhood Nl(x) of x. 



2. Literature review 

23 

 

            Local search. Apply some local search method with xꞌ as an initial solution, denote with xꞌꞌ the so 

obtained local optimal. 

           Move or not. If f(xꞌꞌ) < f(x
best

) then 

                   x = xꞌꞌ, l = 1. 

           else 

                   l = l +1. 

           End if 

End while 

Fig. 2.4 The principal steps of the basic VNS algorithm 

Although the VNS has so far proved to be successful in solving a variety of hard combinatorial 

problems. The basic VNS sometimes meets difficulties to escape from the local optimum although it 

explores solution space by applying a systematic change of neighborhoods and moves randomly from one 

solution to another (shaking). On the other hand, the TS has no such difficulties since it escapes the local 

optimum by using a tabu list to avoid the recently visited solutions being revisited. To make use of the 

potentiality of the systematic changes of the neighborhood structures of the VNS and the efficiency of the TS 

to escape from a local optimum, the hybrid of the VNS and the TS has been applied in many combinatorial 

optimization problems, such as vehicle routing problem (Belhaiza et al., 2014) and location routing problem 

(Escobar et al., 2014).  

In Chapter 4, we proposed a hybrid variable neighborhood tabu search algorithm (HVNTS) to further 

improve the best upper bound  found in the Lagrangean relaxation approach for the TECFLP-DSS. In the 

proposed HVNTS, we follow the framework of the VNS and use the TS as the local search within the VNS 

framework. To the best of our knowledge, the combination of the VNS and TS is rare in the literature and 

never been used for the solution for facility location problem. Thus it is the first time that the hybridization 

of the VNS and TS heuristic is implemented for the facility location problem. 

2.3.3 Simulated annealing 

Simulated annealing (SA) is a stochastic method for solving combinatorial problems that was proposed 

by Kirkpatrick et al. (1983). The SA methodology draws its inspiration from the annealing process in 

metallurgy. SA works by emulating the physical process in which a solid is heated to a high temperature and 

cooled step-by-step to allow the solid to crystallize. The SA uses a stochastic approach to guide the search. 

In addition to accepting better solutions, The SA allows the search to proceed to a neighboring state even if 

the move causes the value of the objective function to become worse. The SA explores the solution space in 

the following way. If a move to a neighbor xꞌ in a neighborhood ensures an improvement in the objective 

value or leaves the value unchanged, then the move is always accepted. More precisely, the solution xꞌ is 

accepted as the new solution if ∆ ≤ 0, where ∆ = f(xꞌ) – f(x). Moves that increase the objective function (i.e., 

∆ > 0) are accepted according to a probability function e
–∆/T

 > γ, where T is the temperature parameter and γ 

is a random number between [0, 1]. The value of T varies from a relatively large number to a value close to 
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zero, T is often controlled by linear equations to reduce the temperature linearly  with a rate a. The principal 

steps of the SA algorithm are shown in Fig. 2.5. 

Generate a solution x,  set x
best

 = x, initialize the temperature T and cooling parameter a, choose a stopping 

criteria.   

While stopping criteria are not met do 

           Generate a solution xꞌ at random from x by using a local search method. 

           If f(xꞌ) < f(x
best

) then 

                     x = xꞌ. 

           else 

                    ∆ = f(xꞌ) – f(x). 

                    If exp (–∆ / T) > random [0, 1] then 

                             x = xꞌ. 

                    End if 

           End if 

           T = T × a 

           If f(x) < f(x
best

) then 

                     x
best

  = x. 

           End if 

End while 

Fig. 2.5 The principal steps of the SA algorithm 

The SA algorithm with all its advantages also has some demerits, such as it requires large number of 

iterations to generate an optimal or near optimal solution. In addition, the SA has no concept of short-term 

memory list of prohibited neighboring solutions as in tabu search algorithm and hence the possibility of 

revisiting the solution increased. These two drawbacks posed by the SA leads to more number of iteration 

and thus longer computational time to generate the global optima solution. 

The stochastic characteristic of the SA avoids cycling but the rate of improvement of solution is very 

slow, because it has no memory of the recently visited solutions. So it is always possible for the SA search to 

return to the same solution again. However, with the help of a short-term memory, the search of the SA can 

be restricted from looping back to previously visited solutions and the performance of the SA can be 

enhanced significantly. Keeping the above ideas in mind, the hybridization of the SA and TS has been 

applied in many combinatorial optimization problems in the literature, such as the capacitated clustering 

problem (Osman and Christofides, 1994), modeling machine loading problem (Swarnkar and Tiwari, 2004) 

and vehicle routing problem (Küçükoğlu and  Öztürk, 2015). 

In Chapter 5, we design a hybrid simulated annealing tabu search algorithm (HSATS) for the TECFLP-

PDSS. The HSATS takes advantages of the stochastic feature of the SA to escape from local optima and the 

short term memory strategy of the TS to avoid cycling. To the best of our knowledge, the combination of the 

SA and TS is also rare in the literature and never been used for the solution for facility location problem. 
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Thus it is the first time that the hybridization of the SA and TS heuristic is implemented for the facility 

location problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Literature review 

26 

 

 

 

  



3. Two-echelon capacitated facility location problem with plant size selection 

27 

 

 

 

 

 

 

 

 

 

Chapter 3  

Two-echelon capacitated facility location 

problem with plant size selection 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Two-echelon capacitated facility location problem with plant size selection 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



3. Two-echelon capacitated facility location problem with plant size selection 

29 

 

 

3.1 Introduction 

The traditional two-stage facility location problem focus on determining the locations of plants and 

depots, and the flows of product from plants to customers via depots with the goal of minimizing the sum of 

facility opening costs and logistic costs. In these problems, each plant has only one choice of capacity, either 

uncapacitated or capacitated. The opening cost of a plant is a constant and the unit production cost is the 

same for all of the plants, thus it can be merged with other linear connection costs. However, in some 

practical situations firms need also to determine the sizes of plants in designing a two-stage supply chain 

network. The size of plant greatly affects not only its fixed opening cost, but also the unit producing cost due 

to economies of scale. How to make a trade-off between plant location and size is a significant problem in 

supply chain network design. Thus we study a two-echelon capacitated facility location problem with plant 

size selection (TECFLP-PSS) in this chapter. This is an extension of the TSCFLP. In this problem we 

simultaneously locate plants and depots, and select sizes for the located plants, where each plants in the first 

stage has several potential sizes exhibiting different capacities. Each depot in the second stage has a limited 

capacity and is supplied by multiple plants. Each customer in the third stage is serviced by only one depot. 

This extended model can then simultaneously determine the locations and sizes of the plants, the locations of 

the depots, the product flows from the plants to the depots and the assignments of the customers to the depots 

to satisfy the customers’ demands.  

As it is well known the fixed opening cost of a facility depends on the size of the facility opened. It is 

not realistic to expect that different size of a facility at the same site have the same fixed opening cost. In 

addition, the unit production cost generally decreasing with increasing scale as fixed costs are spread out 

over more units of output. Operational efficiency is also greater with increasing scale, leading to lower unit 

production cost as well. Therefore, in the TECFL-PSS, the fixed opening costs are assumed to be different 

for different sizes of a plant, i.e., the fixed opening cost for a larger size of a plant is more than those of the 

smaller sizes of the same plant. The unit production cost for a larger size of a plant is less than those of the 

smaller sizes of the same plant to model the economies of scale. The distinguishing features of the TECFLP-

PSS are: 1) there are several sizes for each potential plant that can be opened, 2) production cost is taken into 

account specifically since the unit production cost for a larger size of a plant is less than those of the smaller 

sizes of the same plant, thus it cannot be merged with other linear connection costs like it is done in the 

traditional facility location model. 

The TECFLP-PSS is an extension of the TSCFLP. As the TSCFLP is NP-hard in strong sense, the 

TECFLP-PSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-PSS, we focus on 

searching for good lower and upper bounds for it. For this problem, a mixed integer linear programming 

model is formulated and a Lagrangean relaxation approach is proposed to achieve lower and upper bounds. 

To further improved the best upper bound found by the Lagrangean relaxation approach, a tabu search (TS) 

algorithm is proposed. To solve the dual problem arising in the Lagrangean relaxation approach, we make 
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use of a subgradient optimization method. The Lagrangean relaxation problem can be decomposed into two 

subproblems, one can be solved to optimality by inspections and another one can be decomposed further into 

the classical 0-1 knapsack problem which can be exactly solved in a very reasonable time by using the 

MINKNAP developed by Pisinger (1995). In order to construct feasible solution and find an upper bound, 

we design a heuristic by repairing the Lagrangean relaxation solutions. The feasible solution construction 

process consists of three stages: 1) open plants and select their sizes, 2) open depots and determine the 

customer-depot assignments, 3) determine the product flows from the plants to the depots. In the search 

process of the TS, the product  flow cost changes between plants and depots incurred be reassignment of 

customers are taken into account in a heuristic way. A heuristic is proposed to adjust the product flows 

between plants and depots into feasible flow after reassignments of customers. After the TS, the optimal 

product flows are determined by solving a transportation problem using commercial solver CPLEX. 

In order to evaluate the performance of the proposed Lagrangean relaxation approach and TS, 245 

instances are randomly generated and tested. To evaluate the solution quality and speed of the Lagrangean 

relaxation approach and TS, 50 instances with different problem size are tested. The Lagrangean upper 

bounds are compared with the Lagrangean lower bounds and the upper bounds provided by commercial MIP 

solver CPLEX, and the upper bounds obtained by the TS are also compared with those of CPLEX. The 

results indicate that the proposed solution method is effective for the TECFLP-PSS since the gaps between 

the upper bounds and those of CPLEX are less than 1.66% on average and the CPU time required by the 

Lagrangean relaxation and TS is much less than that of CPLEX. In addition, 195 instances with different 

sizes and different parameters, such as the ratio of plant capacity to customer demand, the ratio of depot 

capacity to customer demand and the number of plant size, are randomly generated and tested. The results of 

the gaps between the Lagrangean upper and lower bounds, the upper bounds obtained by TS and Lagrangean 

lower bounds are reported. The computational results demonstrate that all of the instances can be solved in a 

reasonable time with small gaps, even for instances that have up to 50 potential plants with 6 possible sizes 

each, 200 potential depots and 400 customers.  

The rest of this chapter is organized as follows. In Section 3.2, a mixed integer programming model is 

formulated for the TECFLP-PSS. In Section 3.3, a Lagrangean relaxation approach is proposed to achieve 

lower and upper bounds. In Section 3.4, a tabu search algorithm is proposed to improve the best upper 

bounds found by the a Lagrangean relaxation approach. In Section 3.5, we evaluate the proposed algorithms 

on randomly generated instances. Conclusions are drawn in Section 3.6.  

3.2 Problem formulation 

Given a set of potential plants, each of which has several possible sizes exhibiting different capacities, a 

set of potential capacitated depots and a set of customers with demands, the TECFLP-PSS is to optimally 

determine the locations of the plants as well as their sizes, the locations of the capacitated depots, the product 

flows from the plants to the depots and the customer-depot assignment under single sourcing constraints so 

that all of the customers’ demands are satisfied. The objective is to minimize the sum of the fixed opening 
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costs of the plants and depots, the production costs of product and the shipping costs of product from the 

plants to the depots and then to the customers. The structure of the TECFLP-PSS is presented in Fig. 3.1, 

where the first or upper-most stage are the plants, each plant has several sizes, the second or central stage are 

the depots and the third stage are the customers. 

 

Fig. 3.1 The structure of the TECFLP-PSS 

 

Fig 3.2. An example of the cost function of a plant 

In the TECFLP-PSS, each size of a plant associates with a capacity cp, a fixed opening cost fp and a 

unit production cost p. The fixed opening cost for a larger size of a plant is larger than those of the smaller 

sizes of the same plant. To model the economies of scale, the unit production cost p for a larger size of a 

plant is smaller than those of the smaller sizes of the same plant. An example of the cost function including 

the fixed opening cost and the production cost of a plant is illustrated in Fig. 3.2. 

To formulate the TECFLP-PSS, the notations and decision variables used are as follows: 

Notations: 

I the set of potential plants; 

J the set of potential depots; 

Plants Depot

s 
Customers 

Capacity 

p
3
 

p
2
 

p
1
 

 "size 3" 

  

 "size 2" 

  

 "size 1" 
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 cp
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1
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K the set of customers; 

Ri the set of production sizes of the plant Ii ; 

cpir 
the capacity of the plant Ii  with the production size iRr ; 

cdj 
the capacity of the depot Jj ; 

dk the demand of customer Kk  ; 

fpir 
the fixed cost of the plant Ii  with the production size iRr ; 

fdj the fixed cost of the depot Jj ; 

pir the unit production cost of the plant Ii  with the size iRr ; 

tij the unit transportation cost from the plant Ii to the depot Jj ; 

cjk the cost of assigning customer Kk   to the depot Jj ; 

Decision variables: 

uir 1, if the plant Ii  with the production size iRr  is opened; otherwise 0; 

vj 1, if the depot Jj is opened; otherwise 0; 

xirj the quantity of product flow from the plant Ii  with the size iRr  to the depot Jj ; 

zjk 1, if a customer Kk   is assigned to the depot Jj ; 

The TECFLP-PSS can be formulated as: 

P:  
     


Jj Jj Kk

jkjkjj

Ii Rr Jj

irjijir

Ii Rr

irir zcvfdxtpufp

ii

)(min  
(3-1) 

s.t. iirir

Jj

irj RrIiucpx 


,  
(3-2) 

 
Iiu

iRr

ir 


1  
(3-3) 

 
Jjzdx

Kk

jkk

Ii Rr

irj

i


 

0  
(3-4) 

 Jjvcdzd jj

Kk

jkk 


 (3-5) 

 
Kkz

Jj

jk 


1  
(3-6) 

 



Kk

k

Jj

jj dvcd  
(3-7) 

 iir RrIiu  ,1}{0,  (3-8) 

 Jjv j  1}{0,  (3-9) 

 JjRrIix iirj  ,,0  (3-10) 

 KkJjz jk  ,1}{0,  (3-11) 

The objective (3-1) minimizes the total costs of opening the plants and depots, producing and shipping 

the products. The constraints (3-2) ensure that the total product flows moving out from a plant cannot exceed 
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the capacity of its opened size. The constraints (3-3) state that only one size of an opened plant can selected 

to open. The constraints (3-4) are the flow equilibrium constraints at the depots. The constraints (3-5) 

address that the demands assigned to an opened depot cannot exceed its capacity. The constraints (3-6) 

guarantee that each customer is assigned to exactly one depot. The constraint (3-7) is a redundant constraint, 

which specifies that the demands of all customers can be satisfied by open plants. We add it to the 

formulation in order to improve the Lagrangean lower bounds. The constraints (3-8), (3-9), (3-10) and (3-11) 

are standard nonnegativity and integrality constraints for decision variables. 

As a generalization of the TSCFLP, the TECFLP-PSS is NP-hard in strong sense. Thus we focus on 

searching for lower and upper bounds for it, especially for those large-sized instances in a reasonable time. A 

Lagrangean relaxation approach and a tabu search in the following to find sub-optimal solutions. 

3.3 Lagrangean relaxation approach for the 

TECFLP-PSS 

Due to the NP-hardness of the TECFLP-PSS, we focus on searching for lower and upper bounds for it 

in a reasonable time. The Lagrangean relaxation approach is one of the most effective approaches for 

achieving lower and upper bounds for mixed integer linear programming problems, which relaxes hard 

constraints into the objective function by introducing Lagrangean multipliers. This approach has been widely 

applied for various facility location problems, e.g., Geoffrion and McBride (1978) for the CFLP, Klincewicz 

and Luss (1986) for the SSCFLP, Klose (2000) for the TSCFLP and Tragantalerngsak et al. (1997) for a two-

echelon, single-source, capacitated facility location problem. Due to the effectiveness of the Lagrangean 

relaxation approach, it is used here to achieve lower and upper bounds of the TECFLP-PSS. The Lagrangean 

relaxation approach is presented as follows.  

3.3.1 Lagrangean relaxation model of the TECFLP-PSS 

The selection of a suitable relaxation is very important for generating good lower and upper bounds. For 

the TECFLP-PSS, the constraints (3-4) and (3-6) or (3-2) and (3-6) can be relaxed to generate two different 

Lagrangean relaxation problems. In our implementation, the constraints (3-2) and (3-6) are relaxed by 

introducing the non-negative multipliers irα ( iRrIi  , ) and the multipliers kβ ( Kk ) since it can generate 

better lower and upper bounds than relaxing the constraints (3-4) and (3-6) based on our preliminary 

experiments. Relaxing the constraints (3-2) and (3-6) with the non-negative multipliers irα ( iRrIi  , ) and 

kβ ( Kk ) respectively, the Lagrangean relaxation problem ) ,( βαLR  is therefore 
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  s.t. (3-3)-(3-5) and (3-7)-( 3-11).  

The ) ,( βαLR  can be divided into two independent subproblems )(1 LR  and ),(2 LR . 

The first subproblem )(1 LR  is 

 
 


Ii Rr

iririr

i

uαfpLR )(min)(1   
(3-13) 

  s.t. (3-3) and (3-8),  

which can be solved exactly in |)||(| iRIO   by setting a maximum of one uir to 1, with the smallest negative 

irirfp   value for each Ii . 

The second subproblem ),(2 LR  is 
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 (3-14) 

  s.t. (3-4), (3-5), (3-7)  and (3-9)-( 3-11).  

In the ),(2 LR , the variables  xirj and zjk are connected only by the constraints (3-4). It can be 

observed that there always exists an optimal solution of the ),(2 LR  where a depot j is only supplied by its 

‘cheapest source’. For any Ii , iRr , Jj , set 

xirj = 





  




                                                                  . 0,

),(min arg ,,  ,
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/cpαtprizd mnmnmjmnRnIm
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jkk i
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The ),(2 LR can be reduced to  

 
 


Jj Kk

jkkkjkjk

Jj

jj
' zβdwdcvfdLR )(min),(2   

(3-15) 

 s.t. (3-5), (3-7), (3-9) and (3-11),  

where wj = )(min  , iririjirRrIi /cpαtp
i

 .  

For each j, let '
jfd  be the optimal objective value of the problem  

 j

Kk

jkkkjkjk fdzβdwdc 


)(min  (3-16) 

s.t. j

Kk

jkk cdzd 


 (3-17) 

 Kkz jk  1}{0,  (3-18) 

This problem is a 0-1 knapsack problems, which can be exactly solved in a very reasonable time by 

using the MINKNAP developed by Pisinger (1995). 

Then the ),( '
2LR  can be reformulated as: 
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 



Jj

j
'
j

'
2 vfdLR min),(   

(3-19) 

 s.t.(3-5), (3-7) and (3-9),   

which can be transformed into a classical 0-1 knapsack problem. Let yj = 1 – vj,  Jj , the transformed 

problem is presented in the following.  

 



Jj
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j
'
jknap fdyfdP max  

(3-20) 
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 Jjy j  1}{0,  (3-22) 

where '
jfd  is viewed as the profit of the item Jj , cdj as the weight of item Jj , and 




Kk

k

Jj

j dcd  as the 

capacity of the knapsack. We simply set yj = 0 where '
jfd  ≤ 0, because the profit of those items are non-

positive. This problem can also be solved exactly by using the MINKNAP developed by Pisinger (1995).  

Let ),( βαLB  be the sum of the objective value of the solution of )(1 LR , ),(2 'LR  and 
Kk

k . 

Obviously, ),( βαLB  is a lower bound of the TECFLP-PSS for given Lagrangean multipliers ),( β . 

3.3.2 Subgradient optimization for the TECFLP-PSS 

To obtain the best Lagrangean lower bound of the TECFLP-PSS, a subgradient optimization method is 

adopted to approximately solve the corresponding Lagrangean dual problem. 

 D : ),( max
 0,




LR


 (3-23) 

The subgradient optimization is an iterative process that repeatedly solves the Lagrangean relaxation 

problem and then updates the Lagrange multipliers for the next iteration by using the current subgradient 

information. 

Let ( lû , lx̂ , lv̂ , 
lẑ ) be the optimal solution of ),( llLR   at iteration l. Let l

irir
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l
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l
k zη ˆ1 , Kk , the Lagrangean multipliers for the iteration l+1 are updated by 
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where ))()(()),(( 22 
 
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 is the step size at iteration l, BUB is the best upper 

bound of the TECFLP-PSS found in the previous l – 1, ),( ll βαLB is the lower bound of the TECFLP-PSS  

(see subchapter 3.3.1) at iteration l, λ  is a parameter in the interval ]2,0( , which is halved if the best lower 



3. Two-echelon capacitated facility location problem with plant size selection 

36 

 

bound hasn’t been improved for a given number Nlag of consecutive iterations.  

Let BLB be the best lower bound found in previous l – 1 iterations, LLag be the maximum number of 

iterations and Lagε  be a positive small scalar. Then the subgradient optimization procedure for the TECFLP-

PSS is described in detail in Algorithm 3.1. 

Algorithm 3.1: Subgradient optimization procedure for the TECFLP-PSS 

Step 1: Initialize Nlag, LLag, Lagε  and 0λ , where 0λ  is a parameter in the interval (0, 2]. Set BUB := + ∞, 

BLB := – ∞, 0
irα : = 0, Ii , iRr , 0

kβ  := 0, Kk , λ  := 0λ  and l := 1. 

Step 2: Solve the subproblems )(1
lαLR  and ),(2

ll βαLR  to optimality. Let LB = ),( ll βαLB . If LB  >  

BLB, then set BLB :=  LB. If no improvement of BLB can be detected in Nlag successive iterations, 

then set λ  := λ /2.  

Step 3: Construct a feasible solution of TECFLP-PSS based on the current Lagrangean relaxation solution 

(Chapter 3.3.3). Let UB be the objective value of this solution. If UB < BUB, then set BUB := UB. 

Step 4: If l > LLag and λ  < Lagε , stop. The dual solution corresponding to the BLB is regarded as the 

optimal dual solution and the solution corresponding to the BUB  is regarded as the optimal primal 

solution. 

Step 5: Update l
irα  for Ii , iRr  and l

kβ  for Kk   according to the formula (3-24) and (3-25) 

respectively.  

Step 6: Set l := l + 1 and return to Step 2. 

Note that as the iterations move on, the value of parameter λ  becomes smaller and smaller until the 

lower bound ),( ll βαLB  becomes stable, and no further improvement of BLB can be achieved. To escape 

this ‘dilemma’, we restart the subgradient optimization procedure by means of initializing the BUB and the 

BLB with the best values obtained in the previous subgradient process. Also, the Lagrangean multipliers are 

initialized to the multipliers that lead to the BLB. Starting from a relatively good initial point and resetting 

parameter λ , we hope that the subgradient process can increase the probability of obtaining better lower and 

upper bounds.  

3.3.3 Feasible solution construction 

At each iteration of the subgradient optimization process, i.e., at iteration l , we repair the Lagrangean 

relaxation solution to obtain a feasible solution of the TECFLP-PSS. The feasible solution construction 

process can be divided into the following three stages: 1) open plants and select their sizes, 2) open depots 

and determine the customer-depot assignments, 3) determine the product flows from the plants to the depots. 

1) Open plants and select their sizes 

We first open the plants i  with size r , where },1, | ),{(),( i
l
ir RrIiuriri  ˆ  and denote these opened 

plants as I . If the sum of capacities of the opened plants can cover all of the customers’ demands, the 
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locations of the plants and their sizes are determined. Otherwise, we consider to open more plants and select 

their sizes, or we select larger sizes for the currently opened plants.  

Defined l
irFP  = l

ir
l
irfp  , Ii , iRr  as the evaluation cost of opening a plant at site i with size s in 

)(1
lLR  . Let l

irFPΔ  and l
irCPΔ  be the variations of cost and capacity, respectively, if plant status is changed. 

l
irFPΔ  is calculated as l

ri
l

ir FPFP  , if plant i is opened with size r , l
irFP  otherwise. l

irCPΔ  is calculated as 

riir cpcp   if plant i is opened with size r , ircp  otherwise. For an opened plant, we only consider the sizes 

that are greater than the currently chosen sizes. The main idea of the proposed construction method is to 

iteratively open a new plant or to change the size of an opened plant until all of the customers’ demands are 

covered. At each iteration, we open a plant i and choose a size r with the smallest value of l
irFPΔ / l

irCPΔ . For 

a previously opened plant, if its size is changed we only preserve the latest size (as only size of a plat can be 

selected). The detailed procedure for opening plants and selecting sizes is summarised in Algorithm 3.2.  

Algorithm 3.2: Opening plants and selecting sizes 

Step 1: Open all of the plants i with the size r if iru  = 1 in the Lagrangean relaxation solution and denote 

these plants as I . 

Step 2: If the total capacity of the opened plants is equal to or greater than the total customers’ demands, 

return the opened plants and their sizes, stop.  

Step 3: If the total capacity of the opened plants is less than the total customers’ demands, repeat Steps 

3.1-3.2 until all of the customers’ demands are covered. 

Step 3.1: For each potential plant and possible size, compute the l
irFPΔ  and l

irCPΔ . 

Step 3.2: Open the plant i and select the size r for this plant if it has the smallest l
ir

l
ir CP/FP ΔΔ  value and 

add it into I . Preserve the size r for the plant i if it has been previously opened.  

2)  Open depots and determine the customer-depot assignments  

The Lagrangean relaxation solution may be infeasible for the original problem. To open depots and 

determine the customer-depot assignments, we repair the Lagrangean relaxation solution to a feasible 

solution so that each customer is assigned to exactly one depot.  

First, we open all of the depots where l
jv̂  = 1 in the Lagrangean relaxation solution and denote these 

depots as J , that is J  = 1}{  l
jv|Jj ˆ .  

Based on the customer-depot assignments in the Lagrangean relaxation solution, we partition the set K 

of customers into three mutually disjointed subsets:  

K0 = 0}:{  
Jj

l
jkzKk ˆ  

K1 = 1}:{  
Jj

l
jkzKk ˆ  and  
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K2 = 1}:{  
Jj

l
jkzKk ˆ , 

such that 210 KKK UU  = K.  

Second, we assign the customers of K1 to the depot j where l
jkẑ  = 1. The customers of K2 are assigned 

to the depot j where l
jkẑ  = 1 and jkc  is the smallest.  

Third, we assign the customers of K0 to depots one by one based on a regret value. Define jk  as the 

evaluation cost of assigning customer k to a depot j, which is equal to cjk if depot j is currently opened, and 

otherwise

 

cjk + jkj /cddfd  . This definition takes the fixed opening cost of the depot into account. The regret 

value of a customer k is defined as the difference between the second smallest and the smallest jk  values 

among all of the depots whose residual capacities are greater than dk. If a customer k has only one candidate 

depot, then we give a high regret value to that customer. At each step, the customer with the largest regret 

value is assigned to the depot where jk  value is the smallest. A depot j that is not currently in J  will be 

opened and added to J  if a customer is assigned to it.  

Finally, we close those depots to which no customer is assigned and delete them from the set J .  

The procedure for opening depots and determining the assignments of the customers is shown in 

Algorithm 3.3. 

Algorithm 3.3: Opening depots and determining the customer-depot assignments 

Step 1: Add depots j with solution 
l
jv̂  = 1 to set J . 

Step 2: Assign the customers in set K1 to the depot j where l
jkẑ  = 1. Assign the customers in set K2 to the 

depot j where l
jkẑ  = 1 and jkc  is the smallest. 

Step 3: If some customers are not assigned, repeat Steps 3.1 to 3.3 until all of the unassigned customers are 

assigned, or we find an unassigned customer can not be assigned to any depot with sufficient 

residual capacity. 

Step 3.1: Compute the costs jk  and regret values for all of the unassigned customers. 

Step 3.2: Choose the unassigned customer with the maximum regret value. 

Step 3.3: Assign the chosen customer to the depot with the smallest jk . If a customer is assigned to a 

depot that is not in set J , add this depot to the set J . 

Step 4: Close the depots to which no customers assigned and delete these depots from set J . 

3)  Determine the product flows from the plants to the depots 

If plants with enough capacity have been opened by using Algorithm 3.2 and if feasible customer-depot 

assignments have been obtained by Algorithm 3.3, then the product flow from the plants to the depots can be 

determined by solving a transportation problem. In this transportation problem, the opened plants and depots 
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are viewed as the source nodes and the destination nodes respectively, the plants capacities and the 

customers’ demands assigned to the depots are viewed as the supply capacities and destination demands 

respectively. After solving the transportation problem, we close all of the opened plants whose products are 

not flowing to any depot.  

3.4 Tabu search for the TECFLP-PSS 

Tabu search (TS), introduced by Glover (1986), is a local search based metaheuristic. The TS explores 

the solution space by moving from the current solution to another in its neighborhoods. A candidate solution 

is accepted even if this solution deteriorates the function value, according to an aggressive admission 

criterion to avoid getting trapped in local optima. To prevent the possibility of cycling, a tabu list is 

introduced to forbid moves from recently visited solutions for several iterations. However, forbidden moves 

can be overridden by some aspiration criteria. Finally, the TS terminates when stopping criteria are met. The 

TS has been widely applied in various combinatorial optimization problems, such as job shop scheduling 

(Hertz and Widmer, 1996), assignment problem (Díaz and Fernández, 2001) and vehicle routing problem 

(Gendreau and Hertz, 1994), etc. Thus the TS is adopted here to further improve the best upper bound found 

by the Lagrangean heuristic. The details of the implementation of the TS are described in the following 

subsection. 

3.4.1 Move and neighborhood definitions 

In the implementation of the TS, we first fix the locations of the plants, their sizes and the locations of 

the depots as the input feasible solution. We only consider changes of customer-depot assignments. Two 

kinds of moves are used: shift reassigns one customer from one depot to another, and swap interchanges the 

assignments of two customers that are currently assigned to two different depots. Let )(shiftN  and )(swapN  

denote the neighbourhood of solution ξ , which contains the set of feasible solutions that can be attained 

from ξ  by performing either a shift or a swap move, respectively.  

3.4.2 Evaluation of moves  

Define a evaluation value (EV) as the cost variations incurred by a move. The EV includes the variation 

of the fixed opening cost of depot EVd, the assignment cost EVa and the flow cost EVf, i.e., EV = EVd + EVa + 

EVf. The EVd and EVa can be directly obtained by calculating the differences of the cost before and after the 

move is performed. The EVf can also be determined by solving a transportation problem. However, as the 

number of trial solutions of )(shiftN  and )(swapN  may be |)||(| KJO   and )|||(| 2KJO  , it is very time 

consuming to solve a transportation problem to obtain the EVf for each trial solution. To reduce the 

computation effort, we prefer to estimate the EVf heuristically. Note that the EVf is 0 if two customers with 

the same quantities of demand are swapped. 
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We observe that performing a shift or a swap move will lead to a decrease of aggregated demand at one 

depot and an increase of the same quantity at another depot. Let d be the absolute value of variation in 

demand, j'  and 'j'  be the index of the depot whose aggregated demand is decreased and increased after 

performing a move respectively. To make the solution feasible, we need to remove d units of flows flowing 

out from plants to the depot j'  and add d units of flow flowing out from plants to the depot 'j'  to satisfy the 

flow conversation constraints (3-4). In order to remove d units of demand from the depot j'  as optimal as 

possible, we first sort the plants with irj'x  > 0 in a non-increasing order according to their ij'ir tp  values, and 

initialize the residual demand as dr := d. Then, in the same order, we remove },min{ rdxμ irj'  units of flow 

from each plant by setting irj'x  := irj'x  – μ  and dr := dr – μ . This procedure is repeated until d units of flows 

flowing to the depot j'  have been removed. 

In a similar way, to add d units of flows to the depot 'j'  as optimal as possible, we first sort the plants 

with iru  = 1 and 



Jj

irjir xcp  > 0 in a non-decreasing order according to their 'ij'ir tp   values, and initialize 

da: = d as the demands that need to be added. Then, in the same order, we add },min{ adxcpμ
Jj

irjir 


  units 

of flow each plant to depot 'j'  by setting 'irj'x  := μx 'irj'   and da := da – μ . This procedure is repeated until d 

units of flow have been added to the depot 'j' . 

The EVf is computed as the variations of the flow cost after and before the removing and adding 

procedure. The computation of EVf is summarized in Algorithm 3.4. 

Algorithm 3.4: Computation of EVf 

Step 1: Set dr := d and EVf  = 0.  

Step 1.1: Sort the plants Ii  with irj'x  > 0 in non-increasing order according to their ij'ir tp   values.  

Step 1.2: In this same order, while dr > 0, delete μ  = },min{ rirj' dx  quantity of flow from plant i to depot 

j'  by setting irj'x  := irj'x  – μ . Set EVf := EVf  – μtp ij'ir  )( , dr := dr – μ . 

Step 2: Set da  := d.  

Step 2.1: Sort the plants Ii  with uir = 1 in non-decreasing order according to their pir + 'ij't .  

Step 2.2: In this same order, while da > 0, add },min{ aJj irjir dxcpμ  
  quantity of flows from plant i to 

depot 'j'  by setting 'irj'x  := 'irj'x + μ . Set EVf := EVf + μtp 'ij'ir  )( , da := da  – μ . 

3.4.3 Search strategy 

In the implementation of the TS, the best accept strategy is adopted. That is, at each iteration of the TS, 

the value EV of all of the possible shift and swap moves that will not lead to infeasible assignments with 

respect to depot capacity in the neighbourhood of the current solution is calculate calculated first. Then, the 
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best admissible move (with the smallest EV) is performed. The product flows from the plants to the depots 

are then adjusted according to the computation of the EVf. A |J||K|   tabu list (TL) is employed to avoid 

looping back to previous visited solutions in the search process. The element ) ,( jk  of the TL records the last 

iteration number that it will be forbidden to assign customer k to depot j. If a customer k is reassigned to a 

depot j at iteration l, the value of element ) ,( jk  is reset to l + t, which means any solution with the customer 

k assigned to the depot j will be forbidden for the next t iterations. We adopt a random dynamic tenure which 

uses a tenure range defined by parameters Tmin and Tmax. The tabu tenure t is selected randomly within this 

range, following a uniform distribution. The aspiration criterion used in the TS is based on the EV and the 

current solution quality. Let UB be the objective value of the current solution and  BUB be the objective 

value of the best solution found so far. If UB plus EV of the move is less than BUB, it is selected and 

performed in spite that it leads to tabu customer-depot assignments. Otherwise it is accepted only when it 

does not lead to tabu customer-depot assignments. The TS procedure is terminated if the maximum number 

iteration is reached or the best upper bound found so far is not improved in a successive number of iterations. 

After the TS, the product flows from the plants to the depots are optimally determined by solving the 

corresponding transportation problem.  

3.5 Computational results 

The proposed Lagrangean relaxation approach and the TS were coded in C++. Numerical experiments 

were carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU Q8200 and 2 G RAM 

under Microsoft Windows 7 operating system. In section 3.5.1, we describe the way to create random 

instances. In section 3.5.2, 50 instances are tested to evaluate the solution quality of the Lagrangean 

relaxation and the TS. In addition, 195 instances with different problem parameters, e.g., the ratio of plant 

capacity to customer demand, the ratio of depot capacity to customer demand and the number of plant size, 

are tested to show the speed and the quality of the proposed Lagrangean relaxation approach and the TS.  

3.5.1 Test instances 

No instances are publicly available for the TECFLP-PSS since it is a new problem. Thus the instances 

of the TECFLP-PSS are randomly generated in our test. Based on the instance generation of the CFLP 

(Cornuejols et al., 1991) and the TSCFLP (Klose, 2000), the instances are generated in the following way. 

The coordinates of the potential plants, depots and customers are randomly selected from a unit square. The 

unit transportation costs are 10 times the Euclidean distance between the locations. Let U[a, b] denote a 

uniform distribution in interval [a, b]. The demand dk of customer Kk   is generated from U[5, 35]. 

Assuming that cpip ≤ cpiq  if p ≤ q, we first generate the capacity |R|i i
cp  for each plant from U[10, 160] and 

then scale the capacities using the ratio rcpd =  Ii |R|i i
cp / Kk kd . For each r < |R| i , cpir is set to  |R|i i

cpr / 

|R| i , where   is a parameter randomly selected from U[0.9, 1.1]. Similarly, the capacity cdj for Jj  is 
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generated from U[10, 160] and scaled by using ratio rcdd =  Jj jcd /  Kk kd . To embody the plants’ 

economies of scale, the cost of production per unit for a smaller size is assumed to be larger than that for a 

bigger size of the same plant. For each plant Ii , we first generate the unit production cost pi1 from U[5, 7]. 

Then, for any r > 1, the pir is obtained by multiplying the production cost pi(r-1) by a random parameter 

selected from U[0.9, 0.95]. The fixed opening costs for each size of a plant or a depot is obtained by 

multiplying its capacity by a parameter selected from U[20, 25].  

3.5.2 Results 

In our implementation of the subgradient procedure, the parameters are set as follows: LLag = 5000, Lagε  

= 10
-4

, NLag = 40 and 0λ  = 1.5. For the TS, the parameters Tmin and Tmax are set to 10 and 15 respectively. The 

loop of the TS is terminated if the maximum number 2000 iterations is reached, or if the BUB has not been 

improved in the previous 200 successive iterations. The CPLEX version 12.5 with default setting is used as 

the MIP solver to evaluate the proposed algorithms. 

Let UBLag be the BUB found by the Lagrangean relaxation approach, UBTS be the BUB found by the TS, 

UBC1 be the BUB found by CPLEX without time limitation, UBC2 be the BUB found by CPLEX within time 

limit of TLagTS and LBLag be the BLB found by the Lagrangean relaxation approach. The computational results 

are shown in Tables 3.1-3.4. For each problem set, five instances are generated. To simplify the presentation, 

the column headings are as follows: 

|K||J||I|   the number of the plants, the depots and the customers respectively  

GLag the gaps between UBLag and LBLag, i.e., (UBLag – LBLag) / LBLag ×100 

GTS the gaps between UBTS and LBLag, i.e., (UBTS – LBLag) / LBLag ×100 

GTSC1 the gaps between UBTS and UBC1, i.e., (UBTS – UBC1) / UBC1 ×100 

GTSC2 the gaps between UBTS and UBC2, i.e., (UBTS – UBC2) / UBC2 ×100 

TLag the CPU time used by the Lagrangean relaxation approach 

TLagTS the CPU time used by the Lagrangean relaxation approach and the TS 

TC1 the CPU time of CPLEX without time limitation 

RT the ratio of the time TC1 to the time TLagTS 

Avg. the average value of gaps or computational times for each instance set 

Max. the maximum value of gaps or computational times for each instance set 

In order to evaluate the solution quality of the proposed Lagrangean relaxation approach and the TS, we 

have compared the results of the Lagrangean relaxation approach and the TS with those of the following two 

versions of CPLEX (c1 and c2). For the CPLEX c1, no time limit is imposed. That is the CPLEX c1 

terminates itself if an optimal solution is found or an “Out of memory” error occurs. For CPLEX c2, a time 

limit of TLagTS is imposed.  

The computational results are reported in Table 3.1. For the instances tested in Table 3.1, we set rcpd = 

2.0, rcdd = 2.0 and |R| i  = 3. The experimental results show that CPLEX can find an optimal solution only for 
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the instances of set 1, and the programme meets an ‘out of memory’ error for the other sets. The average 

gaps between the Lagrangean upper bound and lower bound range from 0.96% to 1.82% and the maximum 

gap is 2.55%. It is clear that the Lagrangean relaxation approach provide both a well upper bounds and a 

good lower bounds for the TECFLP-PSS. The gaps between the TS upper bound and the Lagrangean lower 

bound range from 0.78% to 1.66% and the maximum gap is 2.04%, which indicate that the TS also performs 

well. The average gaps between the TS upper bounds and those of the CPLEX c1 range from -0.35% to 

0.67%. This gap decreases as the problem size increases and the TS upper bounds is better than those of the 

CPLEX c1 for the large size problem, e.g., the gaps between the TS upper bounds and those of the CPLEX 

c1 for the set 9 and set 10 are -0.06% and -0.35% respectively. In terms of computational time, the CPLEX 

c1 takes much more CPU time, or about 180 times more than that required by the Lagrangean relaxation 

approach and the TS. 

The average gaps between the TS upper bounds and those of the CPLEX c2 range from -1.09% to -

0.31%, which means the TS upper bounds are much better than those of the CPLEX c2 for all the instances, 

and thus the Lagrangean relaxation approach with the TS is much more effective than CPLEX. 

Table 3.1: Computational results and comparisons of the TS bounds with those of CPLEX  

|K||J||I|   GLag (%) GTS (%) GTSC1 (%) GTSC2 (%) TLagTS (s) TC1 (s) 

GLag Avg. GTS Avg. GTSC1 Avg. GTSC2 Avg. TLagTS Avg. TC1 Avg. 

5×20×40 

1.62  

 

1.82 

1.61  

 

1.66 

0.85  

 

0.53 

0.01  

 

-0.31 

6.7  

 

6.7 

186.0  

 

257.3 

1.98 1.91 0.40 -0.01 8.3 457.0 

2.55 2.04 0.41 -0.43 7.1 164.6 

1.14 1.07 0.33 -0.60 5.2 250.8 

1.79 1.68 0.66 -0.50 5.8 228.2 

             

10×40×80 

1.63  

 

1.74 

1.39  

 

1.46 

0.36  

 

0.67 

-0.42  

 

-0.74 

13.3  

 

13.4 

12287.3  

 

16924.0 

1.75 1.48 0.59 -0.97 14.2 17331.8 

1.92 1.53 1.06 0.63 12.7 23412.4 

2.00 1.72 1.08 -1.53 14.0 14643.9 

1.42 1.17 0.28 -1.43 12.7 16944.7 

             

15×60×120 

2.01  

 

1.57 

1.75  

 

1.34 

0.76  

 

0.49 

-0.57  

 

-1.09 

26.3  

 

28.8 

5067.0  

 

6509.0 

1.11 0.99 0.19 -0.91 23.9 7686.6 

1.53 1.32 0.63 -1.53 27.1 10129.1 

1.77 1.54 0.51 -0.91 34.6 4554.9 

1.41 1.08 0.35 -1.55 32.2 5107.3 

             

20×80×160 

1.25  

 

1.40 

1.12  

 

1.23 

0.45  

 

0.51 

-1.46  

 

-0.88 

51.6  

 

51.8 

5938.5  

 

6019.6 

1.37 1.19 0.41 -0.36 56.4 6241.6 

1.39 1.10 0.50 -0.97 44.4 5906.9 

1.32 1.14 0.35 -0.47 58.1 5878.5 

1.67 1.61 0.81 -1.15 48.5 6132.3 

             

25×100×200 

0.90  

 

1.31 

0.71  

 

1.05 

0.05  

 

0.44 

-2.32  

 

-0.94 

117.4  

 

120.0 

5396.5  

 

6744.0 

1.68 1.42 0.91 -0.04 117.3 7233.1 

1.62 1.11 0.31 -0.26 112.7 5852.6 

1.05 0.93 0.36 -1.72 145.2 7627.9 

1.29 1.08 0.57 -0.35 107.5 7609.8 

             

 

30×120×240 

1.06  

 

1.30 

1.01  

 

1.13 

0.27  

 

0.34 

-0.80  

 

-0.68 

265.0  

 

231.7 

9762.3  

 

8224.5 

1.30 1.21 0.54 -0.87 234.1 9580.4 

0.92 0.77 0.08 -0.31 207.7 6692.4 

1.64 1.48 0.60 -0.03 225.5 8192.2 
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1.56 1.18 0.21 -1.41 226.0 6895.0 

             

35×140×280 

1.53  

 

1.17 

1.29  

 

0.98 

0.59  

 

0.28 

-0.28  

 

-0.80 

330.8  

 

337.9 

11229.9  

 

10460.5 

1.35 1.16 0.31 -1.28 343.4 10510.9 

0.90 0.72 0.07 -1.52 300.1 9250.9 

0.93 0.84 0.15 -0.51 349.2 10675.7 

1.14 0.88 0.25 -0.41 365.9 10635.1 

             

40×160×320 

1.04  

 

1.15 

0.78  

 

0.83 

0.04  

 

0.03 

-0.72  

 

-0.69 

433.7  

 

482.2 

12063.3  

 

11598.9 

1.13 0.87 0.05 -1.01 524.4 10928.4 

1.32 0.80 -0.15 -0.56 496.6 9849.8 

1.28 1.15 0.29 -0.65 466.9 11590.2 

0.97 0.58 -0.09 -0.53 489.7 13562.7 

             

45×180×360 

1.12  

 

0.96 

0.87  

 

0.78 

0.00  

 

-0.06 

-0.44  

 

-0.84 

815.2  

 

685.1 

10769.2  

 

12588.8 

0.93 0.75 -0.16 -1.03 643.2 14848.6 

0.89 0.76 -0.09 -1.04 671.4 14236.4 

1.01 0.80 -0.03 -0.55 661.6 10822.5 

0.84 0.70 -0.04 -1.14 633.9 12267.5 

             

50×200×400 

1.13  

 

1.06 

0.86  

 

0.83 

-0.37  

 

-0.35 

-0.52  

 

-0.52 

898.0  

 

952.9 

6082.6  

 

6493.0 

0.97 0.82 -0.31 -0.66 938.1 7204.5 

0.89 0.81 -0.40 -0.57 924.2 6478.8 

1.13 0.88 -0.22 -0.34 1061.1 6303.2 

1.18 0.80 -0.43 -0.52 943.1 6395.9 

             

Average 1.35  1.13  0.29  -0.75      

The performances of the proposed algorithm for the instances with different plant capacities and 

problem sizes are reported in Table 3.2. The parameters rcdd and |R| i  are set to 2.0 and 3, respectively, in 

Table 3.2. We observed that the average gaps between the Lagrangean upper bounds and lower bounds range 

from 0.95% to 1.58% and the maximum gap is 1.89%, the average gaps between the TS upper bounds and 

the Lagrangean lower bounds range from 0.72% to 1.31% and the maximum gap is 1.67%, which indicate 

that the Lagrangean relaxation approach and the TS perform well and they are effective for problems with 

different ratio rcpd. It can also be seen from Table 2, both the average gaps between the Lagrangean upper 

bounds and lower bounds, and the average gaps between the TS upper bounds and the Lagrangean lower 

bounds increase for the same sized problem as the ratio rcpd increases, e.g., for the 50×200×400 instances, the 

average gaps between the Lagrangean upper bounds and lower bounds are 0.95%, 1.08%, 1.22% and 1.52% 

for rcpd = 1.5, 2.0, 2.5 and 3.0 respectively, and the average gaps between the TS upper bounds and the 

Lagrangean lower bounds are 0.72%, 0.83%, 0.97% and 1.22% for rcpd = 1.5, 2.0, 2.5 and 3.0 respectively. It 

can be concluded that the Lagrangean relaxation approach and the TS are more effective for smaller ratio rcpd 

than for larger ratio rcpd and which can be also seen from the computational time of the Lagrangean 

relaxation approach and the TS. As seen from Table 2, for the 50×200×400 instances, the average CPU time 

are 889.6, 937.2, 1184.9 and 1562.3 for rcpd = 1.5, 2.0, 2.5 and 3.0 respectively. For instances of the same 

size, the average duality gap of the Lagrangean approach is somewhat proportional to the ratio rcpd. This 

proportionality arises because the larger the value rcpd, the smaller the number of plants that will be opened in 

the solution. Once ‘wrong’ plants are selected, the duality gap may be huge.  

Table 3.2: Computational results on the instances with different ratio rcpd 

|K||J||I|   rcpd GLag (%) GTS (%) TLag (s) TTS (s) TLagTS (s) 
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GLag Avg. GTS Avg

. 

TLag Avg. TTS Avg. TLagTS Avg. 

25×100×200 

 

 

1.5 

1.38 

1.48 

0.84  

 

1.14 

105.0  

 

92.3 

19.7  

 

20.4 

124.6  

 

112.7 

1.43 1.09 83.9 17.5 101.4 

1.86 1.67 91.5 21.0 112.5 

1.31 1.12 83.2 10.3 93.5 

1.40 1.00 98.1 33.6 131.7 

            

25×100×200 

 

 

2.0 

1.05 

1.26 

0.79  

 

1.00 

95.9  

 

95.9 

8.7  

 

11.4 

104.7  

 

107.3 

1.49 1.06 88.8 18.6 107.4 

1.29 1.01 98.0 6.2 104.2 

0.84 0.69 94.8 12.5 107.2 

1.64 1.43 102.0 11.2 113.2 

            

25×100×200 

 

 

2.5 

1.41 

1.54 

1.13  

 

1.19 

160.1  

 

143.6 

18.6  

 

11.2 

154.8  

 

154.8 

1.61 1.45 154.1 8.2 162.2 

1.89 1.23 117.6 6.8 124.4 

1.44 1.18 168.6 6.5 175.1 

1.33 0.94 117.8 16.0 133.8 

            

25×100×200 

 

 

3.0 

1.42 

1.58 

1.24  

 

1.24 

210.4  

 

200.8 

3.6  

 

23.6 

214.0  

 

224.5 

1.83 1.46 200.0 44.8 244.7 

1.45 1.03 212.8 13.9 226.7 

1.43 1.08 173.4 12.4 185.8 

1.75 1.41 207.6 43.5 251.1 

            

35×140×280 

 

 

1.5 

1.20 

1.04 

1.02  

 

0.79 

300.7  

 

256.7 

37.7  

 

36.9 

338.4  

 

293.6 

0.73 0.52 248.9 21.8 270.7 

1.68 1.30 242.1 51.2 293.2 

0.89 0.59 238.2 39.8 278.0 

0.67 0.54 253.6 33.9 287.4 

            

35×140×280 

 

 

2.0 

1.10 

1.19 

0.94  

 

0.92 

324.4  

 

272.9 

32.7  

 

41.7 

357.1  

 

314.6 

1.21 1.01 313.4 57.5 371.0 

1.45 0.93 252.7 48.0 300.7 

1.07 0.82 243.7 44.8 288.5 

1.11 0.89 230.0 25.6 255.7 

            

35×140×280 

 

 

2.5 

1.27 

1.47 

1.02  

 

1.24 

406.8  

 

372.9 

38.1  

 

35.2 

444.9  

 

408.1 

1.43 1.13 335.3 25.1 360.4 

1.63 1.51 311.9 51.9 363.8 

1.44 1.25 380.8 29.1 409.9 

1.59 1.29 429.9 31.7 461.6 

            

35×140×280 

 

 

3.0 

1.69 

1.56 

1.52  

 

1.31 

519.8  

 

490.5 

29.8  

 

31.7 

549.5  

 

522.2 

1.73 1.56 516.6 32.7 549.3 

1.53 1.25 513.3 25.5 538.8 

1.37 1.22 453.3 48.2 501.4 

1.46 1.00 449.8 22.3 472.0 

            

50×200×400 

 

 

1.5 

1.11 

0.95 

0.90  

 

0.72 

715.3  

 

707.2 

305.6  

 

182.4 

1020.9  

 

889.6 

0.94 0.59 685.0 267.1 952.1 

0.77 0.54 737.0 100.3 837.3 

0.92 0.79 705.7 142.9 848.6 

1.00 0.79 693.0 96.1 789.1 

            

 

50×200×400 

 

 

2.0 

1.07 

 

1.08 

0.67  

 

0.83 

724.6  

 

790.9 

121.0  

 

146.3 

845.6  

 

937.3 

1.25 1.03 860.2 187.0 1047.2 

1.01 0.77 706.0 165.8 871.7 

0.98 0.82 834.5 128.5 963.1 
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1.07 0.86 829.4 129.4 958.8 

            

50×200×400 

 

 

2.5 

1.27 

1.22 

0.98  

 

0.97 

997.6  

 

1064.3 

119.7  

 

117.6 

1117.3  

 

1181.9 

1.28 1.14 1002.3 173.8 1176.1 

1.30 1.01 1008.8 95.0 1103.8 

1.20 0.79 1278.2 92.1 1370.2 

1.05 0.92 1034.6 107.6 1142.1 

            

50×200×400 

 

 

3.0 

1.70 

1.52 

1.40  

 

1.22 

1367.1  

 

1438.5 

101.3  

 

123.8 

1468.4  

 

1562.3 

1.25 0.93 1319.8 149.3 1469.0 

1.53 1.23 1645.6 97.8 1743.4 

1.55 1.35 1519.0 173.1 1692.0 

1.55 1.20 1341.3 97.6 1438.9 

            

Average  1.32  1.05        

The performances of the proposed Lagrangean relaxation approach and the TS on instances with 

different ratio rcdd are reported in Table 3.3. For all the instances given in Table 3.3, rcpd = 1.5 and |R| i
 = 3. 

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.96% to 1.38% and 

the maximum gap is 1.74%, the gaps between the TS upper bounds and the Lagrangean lower bounds range 

between 0.76% and 1.07% on average and the maximum gap is 1.40%, which indicate that the Lagrangean 

relaxation approach and the TS perform well and they are effective for problems with different ratio rcdd. In 

addition, both the average gaps between the Lagrangean upper bounds and lower bounds, and the average 

gaps between the TS upper bounds and the Lagrangean lower bounds for the instances of the same size 

decrease as the ratio rcdd increases, e.g., for the 50×200×400 instances, the average gaps between the 

Lagrangean upper bounds and lower bounds are 1.37%, 1.18%, 1.07% and 0.96% for rcdd = 1.5, 2.0, 2.5 and 

3.0 respectively, and the average gaps between the TS upper bounds and the Lagrangean lower bounds are 

1.01%, 0.85%, 0.84% and 0.76% for rcdd = 1.5, 2.0, 2.5 and 3.0 respectively. It is clear that the Lagrangean 

relaxation approach and the TS are more effective for larger ratio rcdd than for smaller ratio rcdd and which 

can also be seen from the computational time of the Lagrangean relaxation approach and the TS. As seen 

from Table 3.3, for the 50×200×400 instances, the average CPU time is 1197.5, 1002.3, 957.5 and 885.1 for 

rcdd = 1.5, 2.0, 2.5 and 3.0 respectively.   

Table 3.3: Computational results on the instances with different ratio rcdd 

|K||J||I|   rcdd GLag (%) GTS (%) TLag (s) TTS (s) TLagTS (s) 

GLag Avg. GTS Avg. TLag Avg. TTS Avg. TLagTS Avg. 

25×100×200 

 

 

1.5 

1.35 

1.38 

0.77  

 

1.02 

140.3  

 

125.4 

14.5  

 

11.8 

154.7  

 

137.1 

1.47 1.14 114.0 14.8 128.8 

1.09 0.71 119.0 15.1 134.2 

1.74 1.40 123.4 9.3 132.8 

1.23 1.06 130.1 5.2 135.3 

            

25×100×200 

 

 

2.0 

1.61 

1.26 

1.33  

 

1.01 

92.7  

 

106.6 

6.4  

 

6.9 

99.2  

 

113.5 

1.17 1.02 93.1 3.9 97.0 

1.15 0.90 129.3 7.8 137.1 

1.24 0.99 106.6 7.7 114.2 

1.14 0.82 111.5 8.6 120.1 

            

 

 

25×100×200 

 

 

2.5 

1.19  

 

1.28 

0.90  

 

1.07 

89.4  

 

95.7 

9.5  

 

19.0 

98.9  

 

114.7 

1.59 1.34 95.2 14.8 109.9 

1.20 0.95 97.0 43.6 140.6 
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1.00 0.89 107.4 7.6 115.1 

1.43 1.28 89.3 19.7 109.0 

            

25×100×200 

 

 

3.0 

1.22 

1.22 

0.92  

 

0.95 

99.1  

 

91.9 

15.2  

 

19.3 

114.2  

 

111.2 

1.44 1.01 97.9 23.8 121.7 

0.64 0.51 88.7 18.1 106.8 

1.48 1.30 72.7 27.1 99.7 

1.34 1.03 101.1 12.4 113.5 

            

35×140×280 

 

 

1.5 

0.96 

1.08 

0.73  

 

0.79 

343.2  

 

328.7 

28.5  

 

27.1 

371.7  

 

355.9 

1.10 0.88 369.5 26.6 396.1 

1.03 0.68 304.2 19.8 324.0 

1.49 1.10 280.5 37.5 318.0 

0.80 0.56 346.2 23.2 369.5 

            

35×140×280 

 

 

2.0 

1.35 

1.15 

1.09  

 

0.91 

261.4  

 

260.5 

88.1  

 

58.4 

349.6  

 

318.9 

1.45 1.08 236.8 45.8 282.6 

0.65 0.57 268.5 29.0 297.5 

1.26 0.95 280.8 47.0 327.8 

1.04 0.87 255.1 81.9 337.0 

            

35×140×280 

 

 

2.5 

1.28 

1.19 

1.15  

 

1.01 

257.9  

 

265.0 

51.8  

 

43.6 

309.8  

 

308.6 

0.95 0.82 263.4 66.9 330.3 

1.24 0.94 253.4 23.4 276.8 

1.22 1.08 291.0 48.6 339.6 

1.27 1.05 259.5 27.1 286.7 

            

35×140×280 

 

 

3.0 

1.21 

1.18 

1.09  

 

0.90 

255.0  

 

253.7 

56.5  

 

54.8 

311.4  

 

308.5 

0.87 0.76 223.6 81.7 305.3 

1.30 0.85 258.1 43.8 301.9 

1.34 0.93 284.6 48.0 332.6 

1.18 0.87 247.1 44.1 291.2 

            

50×200×400 

 

 

1.5 

1.25 

 1.37 

0.84  

 

1.01 

1230.7  

 

1051.0 

133.3  

 

146.5 

1364.0  

 

1197.5 

1.55 1.18 1073.6 159.6 1233.2 

1.34 1.04 996.8 128.9 1125.7 

1.49 1.03 993.0 153.3 1146.3 

1.22 0.97 961.2 157.4 1118.5 

            

50×200×400 

 

 

2.0 

1.19 

1.18 

0.77  

 

0.85 

723.1  

 

827.5 

133.5  

 

174.8 

856.6  

 

1002.3 

1.01 0.90 746.9 98.5 845.4 

1.30 0.98 814.5 359.8 1174.2 

1.19 0.74 1045.9 101.3 1147.2 

1.21 0.88 807.0 181.2 988.2 

            

50×200×400 

 

 

2.5 

1.14 

1.07 

0.95  

 

0.84 

830.4  

 

813.7 

92.7  

 

143.8 

923.1  

 

957.5 

1.05 0.85 830.5 147.7 978.2 

0.98 0.70 818.9 57.7 876.6 

1.14 0.96 829.3 224.4 1053.7 

1.02 0.73 759.6 196.4 956.0 

            

50×200×400 

 

 

3.0 

1.08 

0.96 

0.81  

 

0.76 

779.0  

 

751.5 

83.5  

 

133.6 

862.5  

 

885.1 

1.07 0.69 770.8 158.2 929.0 

0.71 0.65 709.8 122.4 832.2 

0.89 0.81 743.1 157.0 900.1 

1.06 0.86 754.8 147.0 901.8 

            
Average  1.19  0.93        

Table 3.4 provide an analysis of the performances of the proposed Lagrangean relaxation approach and 
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the TS on instances with different numbers of plant size. For all of the instances given in Table 3.4, rcpd = 2.0 

and rcdd = 2.0. The Lagrangean relaxation approach and the TS perform well in that the average gaps between 

the Lagrangean upper bounds and lower bounds range from 1.04 % to 1.42% and the maximum gap is 

1.71%, the average gaps between the TS upper bounds and the Lagrangean lower bounds range between 

0.77% and 1.16% and the maximum gap is 1.37%. In addition, the number of the plant size does not have a 

significant influences on the solution quality, e.g., for the 50×200×400 instances, the average gaps between 

the TS upper bounds and the Lagrangean lower bounds are 0.82%, 0.84%, 0.86%, 0.85% and 0.77% for |R| i

= 2, 3, 4, 5 and 6 respectively. However, the computational time of the Lagrangean relaxation approach and 

the TS increases regularly as the number of plant size increases, e.g., for the 50×200×400 instances, the 

average CPU time is 814.5, 1006.7, 1066.1, 1195.9 and 1268.3 seconds for |R| i = 2, 3, 4, 5 and 6 

respectively. 

Table 3.4: Computational results on the instances with different numbers of plant size 

|K||J||I|   |R| i  GLag (%) GTS (%) TLag (s) TTS (s) TLagTS (s) 

GLag Avg. GTS Avg. TLag Avg. TTS Avg. TLagTS Avg. 

25×100×200 

 

 

2 

1.39 

1.33 

1.11  

 

1.06 

89.7  

 

89.3 

9.3  

 

8.7 

99.0  

 

97.9 

1.50 1.24 83.7 12.6 96.3 

1.08 0.75 99.8 8.5 108.3 

1.24 0.99 73.4 7.2 80.6 

1.45 1.18 99.7 5.9 105.6 

            

25×100×200 

 

 

3 

1.43 

1.27 

1.08  

 

1.03 

98.3  

 

101.3 

8.2  

 

10.2 

106.5  

 

111.5 

1.02 0.73 91.7 12.9 104.6 

1.09 0.90 126.5 8.9 135.5 

1.25 1.12 96.6 7.8 104.4 

1.58 1.34 93.3 13.2 106.5 

            

25×100×200 

 

 

4 

1.48 

 1.40 

1.23  

 

1.13 

99.4  

 

115.9 

22.6  

 

11.2 

122.0  

 

129.7 

1.71 1.37 119.8 10.4 130.2 

0.92 0.81 116.7 5.2 121.9 

1.50 1.13 108.3 8.7 117.0 

1.40 1.10 135.2 22.1 157.3 

            

25×100×200 

 

 

5 

1.32 

1.42 

1.16  

 

1.16 

125.1  

 

119.0 

10.1  

 

10.0 

135.2  

 

129.0 

1.04 0.90 97.0 5.2 102.1 

1.68 1.28 122.5 12.6 135.0 

1.61 1.22 129.1 8.2 137.3 

1.47 1.25 121.6 13.9 135.5 

            

25×100×200 

 

 

6 

0.90 

1.28 

0.64  

 

1.00 

123.3  

 

146.5 

6.5  

 

9.0 

129.8  

 

155.5 

1.28 0.87 167.0 5.4 172.4 

1.55 1.37 143.6 11.2 154.7 

1.12 0.85 132.4 11.3 143.6 

1.54 1.29 166.2 10.6 176.8 

            

35×140×280 

 

 

2 

1.39 

1.37 

1.09  

 

1.06 

242.7  

 

238.7 

92.9  

 

49.1 

335.6  

 

287.9 

1.36 1.17 292.2 39.9 332.1 

1.38 1.07 233.8 38.6 272.4 

1.61 1.22 200.6 37.5 238.1 

1.13 0.76 224.3 36.8 261.1 

            

 

 

 

 

0.96  

 

0.85  

 

314.2  

 

52.5  

 

366.7  

 1.33 0.98 303.0 45.4 348.4 
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35×140×280 3 1.65 1.27 1.21 0.97 287.7 288.1 82.0 44.7 369.8 332.8 

1.46 1.15 289.7 25.5 315.3 

0.94 0.65 245.7 17.9 263.7 

            

35×140×280 

 

 

4 

1.05 

1.12 

0.87  

 

0.90 

304.1  

 

327.8 

31.8  

 

43.7 

335.9  

 

371.5 

1.32 1.08 282.6 47.5 330.1 

1.30 0.93 321.2 28.5 349.7 

1.03 0.91 329.9 81.2 411.1 

0.92 0.74 401.4 29.5 430.9 

            

35×140×280 

 

 

5 

0.88 

1.22 

0.66  

 

0.97 

407.9  

 

332.8 

21.5  

 

44.2 

429.4  

 

377.0 

1.40 1.13 355.2 68.7 423.8 

1.39 1.21 344.6 65.3 409.9 

1.08 0.97 265.0 33.8 298.8 

1.33 0.88 291.4 31.9 323.3 

            

35×140×280 

 

 

6 

1.08 

1.20 

0.90  

 

0.97 

394.0  

 

377.7 

90.5  

 

51.2 

484.5  

 

428.9 

1.44 1.11 353.5 49.0 402.5 

1.11 0.90 406.7 46.5 453.2 

1.08 0.76 365.3 42.8 408.1 

1.30 1.16 369.1 27.2 396.3 

            

50×200×400 

 

 

2 

1.12 

1.08 

0.88  

 

0.82 

648.4  

 

684.1 

74.6  

 

130.4 

723.0  

 

814.4 

0.72 0.64 722.1 73.1 795.2 

1.22 0.85 701.7 110.0 811.6 

1.23 1.09 690.8 163.5 854.3 

1.13 0.65 657.4 230.7 888.0 

            

50×200×400 

 

 

3 

1.30 

1.13 

0.92  

 

0.84 

906.2  

 

864.6 

173.8  

 

142.1 

1080.0  

 

1006.7 

1.16 0.79 841.7 109.6 951.2 

1.15 0.89 898.0 131.7 1029.7 

1.02 0.85 795.3 161.1 956.4 

1.03 0.76 881.7 134.6 1016.3 

            

50×200×400 

 

 

4 

0.91  

 

1.09 

0.71  

 

0.86 

923.7  

 

933.9 

182.8  

 

132.2 

1106.5  

 

1066.2 

1.29 1.02 913.7 123.5 1037.2 

1.08 0.80 1049.8 103.8 1153.6 

0.85 0.68 851.1 156.6 1007.7 

1.32 1.10 931.4 94.6 1025.9 

            

50×200×400 

 

 

5 

1.13  

 

1.08 

0.96  

 

0.85 

1168.2  

 

1060.9 

153.9  

 

135.0 

1322.2  

 

1195.9 

0.98 0.82 1189.0 92.6 1281.7 

1.07 0.78 999.5 200.1 1199.6 

1.10 0.88 978.1 124.7 1102.9 

1.11 0.80 969.7 103.6 1073.3 

            

50×200×400 

 

 

6 

1.03  

 

1.04 

0.66  

 

0.77 

1227.3  

 

1158.4 

127.9  

 

109.9 

1355.2  

 

1268.3 

0.84 0.68 1301.9 69.8 1371.7 

1.09 0.88 1112.4 82.5 1194.9 

1.09 0.81 1093.2 112.9 1206.2 

1.15 0.82 1057.3 156.1 1213.4 

            

Average  1.22  0.96        

3.6 Conclusions 

The decision of facility location and size is one of the most important strategy decisions for firms in 

today’s competitive environment. Appropriate facility location and size can save operational cost on a long 
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time horizon. In the traditional two-stage facility location problem, the capacity of a facility is assumed to be 

fixed, either uncapacitated or capacitated. However, there is often a need to consider several size of a facility 

in the real world. To deal with this situation, we study the TECFLP-PSS in which each plant has several sizes 

exhibiting different capacities. A mixed integer programming model is formulated. This extended model can 

then simultaneously determine the locations and sizes of the plants, the locations of the depots, the product 

flows from the plants to the depots and the assignments of the customers to the depots to satisfy the 

customers’ demands. To solve the problem, a Lagrangean relaxation approach and a TS are proposed. First 

the Lagrangean relaxation approach is used to find good lower and upper bounds, and then the TS is applied 

to improve the BUB found in the Lagrangean relaxation approach. A total of 245 instances are randomly 

generated and tested. The computational results demonstrate that all of the instances can be solved in a 

reasonable time with the average gaps below 1.66%, even for instances that have up to 50 potential plants 

with 6 possible sizes each, 200 potential depots and 400 customers. Moreover, the performance of the 

proposed algorithms on the instances with different characteristics, such as the ratios of plant capacity to 

customer demand, the ratios of depot capacity to customer demand and the number of depot size, are 

analyzed and the results show that the proposed algorithms are effective for the instances with different 

parameters. 

The Lagrangean relaxation approach and TS perform well for the TECFLP-PSS. However, some new 

ideas on solving the problems could be investigated, such as adding valid inequalities to accelerate the 

solution process, designing improvement strategies for the Lagrangean relaxation approach or TS. Moreover, 

Lagrangean core heuristic could be designed to find a better upper bound of the TECFLP-PSS. 
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4.1 Introduction 

The classical two-stage facility location problem focus on determining the locations of plants and 

depots, and the flows of product through the system from plants to customers with the goal of minimizing the 

sum of facilities opening costs and shipping costs. The capacity of the depots are either uncapacitated or 

capacitated, i.e., each depot has only one choice of capacity. The opening cost of a depot is a constant and 

the unit handling cost is the same for all of the depots, thus it can be merged with other linear connection 

costs. However, in practice, there is often a need for considering several possible sizes for each depot. To 

deal with this situation, in this chapter, we study a two-echelon capacitated facility location problem with 

depot size selection (TECFLP-DSS). In this problem we simultaneously locate plants and depots, and select 

sizes for the located depots, where each plants in the first stage is capacitated. Each depot in the second stage 

has several potential sizes exhibiting different capacities and is supplied by multiple plants. Each customer in 

the third stage is serviced by only one depot. This problem will not allow us to deal with different depot 

sizes, but also with different handling costs at different levels of handling at a depot. The objective of this 

problem is to determine simultaneously the locations the plants, the locations and sizes of the depots, the 

product flows from the plants to the depots and the assignments of the customers to the depots to satisfy the 

customers’ demands. 

As stated in Chapter 3, the fixed opening cost of a facility depends on the size of the facility opened. It 

is not realistic to expect that different size of a facility at the same site have the same fixed opening cost. 

Therefore, in the TECFL-DSS, the fixed opening costs are assumed to be different for different sizes of a 

depot, i.e., the fixed opening cost for a larger size of a depot is larger than those of the smaller sizes of the 

same depot. Also, to model economies of scale, the unit handling cost for a larger size of a depot is smaller 

than those of the smaller sizes of the same depot. The distinguishing features of the TECFLP-DSS are as 

follows: 1) there are several sizes for each potential depots that can be opened, 2) handling cost is taken into 

account specifically since the unit handling cost for a larger size of a depot is smaller than those of the 

smaller sizes of the same depot, thus it cannot be merged with other linear connection costs like it is done in 

the classical facility location model. 

The TECFLP-DSS is also an extension of the TSCFLP and NP-hard in strong sense. Due to the NP-

hardness of the TECFLP-DSS, we concentrate on finding suboptimal solutions for it in a reasonable time. 

For this problem, we first present a mixed integer programming model and then design a Lagrangean 

relaxation approach to achieve good lower and upper bounds. At last, a hybrid variable neighborhood tabu 

search algorithm (HVNTS) is designed to further improve the best upper bound found by the Lagrangean 

relaxation approach. To solve the dual problem arising in the Lagrangean relaxation approach, we make use a 

subgradient optimization method. The Lagrangean relaxation problem can be decomposed into two 

subproblems, one can be transformed into a 0-1 knapsack problem and another one can be decomposed 

further into the classical 0-1 knapsack problem. The 0-1 knapsack problems are exactly solved in a very 
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reasonable time by using the MINKNAP developed by Pisinger (1995). In order to construct feasible 

solution and find an upper bound, we design a heuristic by repairing the Lagrangean relaxation solutions. 

The HVNTS focus on improving the customer-depot assignments. If better customer-depot assignments are 

found, the optimal product flows are determined by solving a transportation problem using commercial 

solver CPLEX. 

We test 245 randomly generated instances to evaluate the proposed Lagrangean relaxation approach and 

HVNTS. First 50 instances with different problem size are tested to show the general performance of the 

Lagrangean relaxation approach and HVNTS. The Lagrangean upper bounds are compared with the 

Lagrangean lower bounds and the upper bounds provided by commercial MIP solver CPLEX, and the upper 

bounds obtained by the HSATS are also compared with those of CPLEX. The results show that the 

Lagrangean relaxation approach and HSATS are effective for the TECFLP-DSS since the gaps between the 

upper bounds and those of the CPLEX are less than 1.16% on average and the CPU time required by the 

Lagrangean relaxation and HVNTS is much less than that of the CPLEX. Moreover, to evaluate the 

robustness of the Lagrangean relaxation approach and HVNTS, 195 instances with different size and 

different parameters, such as the ratio of plant capacity to customer demand, the ratio of depot capacity to 

customer demand and the number of depot size are randomly generated. The computational results show that 

the proposed algorithms performance well for all of the instances and can solve all of the instances in an 

acceptable time, even for the instances that have up to 50 potential plants, 100 potential depots with 6 depot 

sizes each and 400 customers . 

The rest of this chapter is organized as follows. In Section 4.2, a mixed integer programming model is 

developed for the TECFLP-DSS. In Section 4.3, a Lagrangean relaxation approach is proposed to achieve 

good lower and upper bounds. In Section 4.4, a HVNTS is proposed to improve the best upper bounds found 

by the Lagrangean relaxation approach. In Section 4.5, we evaluate the proposed algorithms on randomly 

generated instances. Conclusions are drawn in Section 4.6.  

4.2 Problem formulation 

Given a set of potential plants, a set of potential depots, each depot has several possible sizes exhibiting 

different capacities, and a set of customers with demands. The TECFLP-DSS is to optimally determine the 

locations of the capacitated plants, the locations and sizes of the depots, the product flows from the plants to 

the depots and the assignments of the customers to the depots to satisfy the customers’ demands. The 

objective is to minimize the sum of the fixed opening costs of the plants and the depots, the handling costs at 

the depots, the transportation costs from the plants to the customers and the assignment costs of the 

customers to the depots. The structure of the TECFLP-DSS is presented in Fig. 4.1, where the first or upper-

most stage is the plants, the second or central stage is the depots, each depot has several sizes exhibiting 

different capacities, and the third stage is the customers. 
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Fig. 4.1 The structure of the TECFLP-DSS 

In the TECFLP-DSS, each size of a depot associates with a capacity cd, a fixed opening cost fd and a 

unit handling cost h. The fixed opening cost for a larger size of a depot is larger than those of the smaller 

sizes of the same depot. The unit handling cost h for a larger size of a plant is assumed to be smaller than 

those of the smaller sizes of the same depot to model the economies of scale. An example of the cost 

function including the fixed opening cost and the handling cost of a depot is illustrated in Fig. 4.2. 

 

Fig 4.2. An example of the cost function of a depot 

The notations and decision variables used to formulate the TECFLP-DSS are as follows: 

Notations: 

I the set of potential plants; 

J the set of potential depots; 

K the set of customers; 

Sj  the set of possible sizes of the depot Jj ; 

cpi the capacity of the plant  Ii ; 
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cdjs the capacity of the depot Jj  with the size jSs ; 

dk the demand of the customer Kk  ; 

fpi the fixed cost of opening the plant Ii ; 

fdjs the fixed cost of opening the depot Jj  with the size jSs ; 

hjs the unit handling cost at the depot Jj  with the size jSs ; 

tij the unit transportation cost from the plant Ii  to the depot Jj ; 

cjk the unit assignment cost of the customer Kk   to the depot Jj ; 

Decision variables: 

ui 1, if the plant Ii  is opened; 0, otherwise; 

vjs 1, if the depot Jj  with the size jSs  is opened; 0, otherwise; 

xijs the quantity of product flow from the opened plant Ii  to the opened depot Jj  with the size 

jSs ; 

zjsk 1, if the customer Kk  is assigned to the depot Jj  with the size jSs ; 

The TECFLP-DSS can be formulated as follows: 

P:  
     


Jj Jj Ss Kk

jskkjkjs

Ss

jsjs

Ii Jj Ss

ijsij

Ii

ii

jjj

zdchvfdxtufp )(min  
(4-1) 

s.t. 
Iiucpx ii

Jj Ss

ijs

j


 

 
(4-2) 

 j

Kk

jskk

Ii

ijs SsJjzdx 


 ,0  (4-3) 

 jjsjs

Kk

jskk SsJjvcdzd 


 ,  (4-4) 

 
Jjv

jSs

js 


1  
(4-5) 

 
Kkz

Jj Ss

jsk

j


 

1  (4-6) 

 



Kk

k

Ii

ii ducp  (4-7) 

 Iiui  1}{0,  (4-8) 

 jjs SsJjv   ,1}{0,  (4-9) 

 jijs SsJjIix  ,,0  (4-10) 

 KkSsJjz jjsk  ,,1}{0,  (4-11) 

The objective (4-1) minimizes the sum of the fixed costs of opening the plants and depots, the 

transportation cost from the plants to the depots, the handling cost at the depots and the assignment cost of 

the customers to depots. The constraints (4-2) ensure that the total product flows moving out of an opened 
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plant cannot exceed its capacity and is zero if it is not opened. The constraints (4-3) are the flow equilibrium 

constraints at the depots. The constraints (4-4) make sure that the customers’ demands assigned to an opened 

depot cannot exceed the capacity of its opened size and no customers are assigned to a closed depots. The 

constraints (4-5) ensure that only one size can be opened for each depot. The constraints (4-6) guarantee that 

each customer is assigned to exactly one opened depot. The constraint (4-7) is a redundant constraint. It 

means that the total capacity of the opened plants must be no less than the total demands of all of the 

customers. We add it to the TECFLP-DSS formulation to improve the Lagrangean lower bounds. The 

constraints (4-8), (4-9), (4-10) and (4-11) are standard nonnegativity and integrality constraints for decision 

variables. 

The TECFLP-DSS is a generalization of the TSCFLP. As the TSCFLP is NP-hard in strong sense, so 

the TECFLP-DSS is also NP-hard in strong sense. To solve the TECFLP-DSS, especially for large-sized 

instances, we propose a Lagrangean relaxation approach and a HVNTS to find near-optimal solutions. 

4.3 Lagrangean relaxation approach for the 

TECFLP-DSS 

Due to the NP-hardness of the TECFLP-DSS, to solve the problem especially for those large-sized 

instances, we focus on finding effective lower and upper bounds for it in a reasonable time. The principle of 

Lagrangean relaxation approach is to relax hard constraints with Lagrangean multipliers into the objective 

function. The Lagrangean relaxation approach is one of the most effective approaches for achieving the 

lower and upper bounds for mixed integer linear programming problems. The Lagrangean relaxation 

approach has been widely applied to solve facility location problems, e.g., Geoffrion and McBride (1978) for 

the CFLP, Klincewicz and Luss (1986) for the SSCFLP, Klose (2000) for the TSCFLP, Tragantalerngsak et 

al. (1997) for a two-echelon, single-source, capacitated facility location problem. 

Due to the effectiveness of the Lagrangean relaxation approach, we use it here to find effective lower 

and upper bounds to the TECFLP-DSS. The Lagrangean relaxation approach for the TECFLP-DSS is thus 

presented as follows.  

4.3.1 Lagrangean relaxation model of the TECFLP-DSS 

Similar as the TECFLP-PSS, two different Lagrangean relaxation problems can be generated by 

relaxing the constraints (4-2) and (4-6) or (4-3) and (4-6). Based on our experiments, relaxing the constraints 

(4-2) and (4-6) can generate better lower and upper bounds for the TECFLP-DSS than relaxing the 

constraints (4-3) and (4-6). Thus the constraints (4-2) and (4-6) are relaxed with the non-negative multipliers 

iα ( Ii ) and the multipliers kβ ( Kk ) respectively in our implementation. The Lagrangean relaxation 

problem ) ,( βαLR  is as follows: 
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
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   

  
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x/cpαtufpβαLR
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)()(min),( 

 (4-12) 

  s.t.  (4-3)-( 4-5) and (4-7)-( 4-11).  

The ) ,( βαLR  can be divided into two independent subproblems )(1 LR  and ),(2 LR  .  

The first subproblem )(1 LR  is 

 



Ii

iii ufpαLR )(max)(1   (4-13) 

  s.t.  (4-7) and (4-8),  

which can be transformed into a classical 0-1 knapsack problem. Let yi = 1 – ui,  Ii , the transformed 

problem is presented in the following.  

 



Ii

ii

Ii

iiiknap fpyfpP )()(max   (4-14) 

  s.t.  



Kk

k

Ii

i

Ii

ii dcpycp  (4-15) 

 Iiyi  1}{0,  (4-16) 

where iifp   is viewed as the profit of the item Ii , cpi as the weight of item Ii , and 



Kk

k

Ii

i dcp  

as the capacity of the knapsack. We simply set yi = 0 where 0 ii αfp , because the profit of those items are 

non-positive. This problem can be solved exactly by using the MINKNAP developed by Pisinger (1995).  

The second subproblem ),(2 LR  is 

 




  

   
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Ii Jj Ss
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zβdcdh

vfdx/cpαtβαLR
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)(min),(2

 (4-17) 

  s.t.  (4-3)-( 4-5) and (4-9)-( 4-11).  

We observe that the variables xijs and zjsk are connected only by the constraints (4-3). Thus there always 

exists an optimal solution of the ),(2 LR  in which a depot j with size s is only supplied by the ‘cheapest 

source’. For any Ii , Jj , jSs , set 

xijs = 





  




                                         . 0,

),(min arg,

otherwise

/cpαtizd mmmjIm

Kk

jskk
 

 Let wjs = )(min mmmjIm /cpαt  , then ),(2 βαLR  can be reduced to 

 
   
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(4-18) 
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 s.t. (4-4), (4-5), (4-9) and (4-11),  

The ),(2 LR  can be further decomposed into |S||J| j  independent 0-1 knapsack problems, which 

can also be solved to optimality by using the MINKNAP developed by Pisinger (1995). Then ),(2 LR  is 

solved by setting a maximum of one vjs to 1, with the smallest negative knapsack objective value for each 

Jj . 

Let ),( βαLB  be the sum of the objective value of the solution of )(1 LR , ),(2 LR  and 
Kk

k . 

Obviously, ),( βαLB  is a lower bound of the TECFLP-DSS for given Lagrangean multipliers ),( β . 

4.3.2 Subgradient optimization for the TECFLP-DSS 

To obtain the best Lagrangean lower bound of the TECFLP-DSS, a subgradient optimization method is 

adopted to approximately solve the following Lagrangean dual problem. 

 D : ),( max
 0,




LR


 (4-19) 

The subgradient optimization is an iterative procedure, which solves the Lagrangean relaxation problem 

and then updates the Lagrange multipliers for the next iteration according to the current subgradient 

information.  

Let BUB and BLB be the best upper bound and the best lower bound of the TECFLP-DSS found so far 

in the previous l – 1  subgradient iterations and ( lû , lx̂ , lv̂ , 
lẑ ) be the optimal solution of ),( llLR   at 

iteration l. Let 
 


Jj Ss

l
ii

l
ijs

l
i

j

ucpxγ ˆˆ , Ii  and 



Jj

l
jk

l
k zη ˆ1 , Kk , the Lagrangean multipliers for the 

next iteration l+1 are updated as: 

 0} ,max{1 l
i

ll
i

l
i θαα   (4-20) 

 l
k

ll
k

l
k ηθββ 1  (4-21) 

where ))()(()),(( 22 



Kk

l
k

Ii

l
i

lll ηγ/βαLBBUBλθ  is the step size at iteration l. ),( ll βαLB is the lower 

bound of the TECFLP-DSS (see subchapter 4.3.1) at iteration l. λ  is a parameter in the interval ]2,0( , which 

is halved if the BLB found so far has not been improved for a given number NLag of consecutive iterations.  

Let LLag be the maximum number of iterations and Lagε  be a positive small scalar, the subgradient 

optimization procedure for the TECFLP-DSS is shown in detail in Algorithm 4.1. 

Algorithm 4.1: Subgradient optimization procedure for the TECFLP-DSS 

Step 1: Initialize Lagε , LLag and 0λ , where 0λ  is a parameter in the interval (0, 2]. Set BUB := + ∞, BLB := 

– ∞, λ  := 0 , 0
iα := 0, Ii , 0

kβ  := 0, Kk  and l := 1. 

Step 2: Solve the subproblems )(1
lαLR  and ),(2

ll βαLR  to optimality. Let LB = ),( ll βαLR . If LB > BLB, 
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then set BLB := LB. If no improvement of BLB can be detected in NLag successive iterations, then 

set λ  := λ /2. 

Step 3: Construct a feasible solution of the TECFLP-DSS based on the current Lagrangean lower bound 

solution (Chapter 4.3.3) and let UB be the objective value of this feasible solution. If UB <  BUB, 

then set BUB := UB. 

Step 4: If l > LLag and λ  < Lagε , stop. The dual solution corresponding to the BLB is regarded as the 

optimal dual solution and the solution corresponding to the BUB  is regarded as the optimal primal 

solution. 

Step 5: Update l
iα  for Ii  and l

kβ  for Kk   according to the formula (4-20) and (4-21) respectively. 

Step 6: Set l := l + 1 and return to Step 2. 

4.3.3 Feasible solution construction 

Feasible solutions are used to calculate the step size in the subgradient optimization procedure. A 

feasible solution of the TECFLP-DSS can be constructed by repairing the Lagrangean relaxation solutions at 

each iteration of the procedure, i.e., at iteration l . Let jsk  = hjs + cjk be the cost of assigning customer k to a 

depot j with size s. Define a regret value of an unassigned customer k as the difference between the second 

smallest and the smallest jsk  values, among all of the opened depots whose residual capacities are no less 

than kd . Partition the set of the customers K into three subsets:  

K0 = 0}:{  
 Jj Ss

l
jsk

j

zKk
 

, 

K1 = 1}:{  
 Jj Ss

l
jsk

j

zKk ˆ  and  

K2 = 1}:{  
 Jj Ss

l
jsk

j

zKk ˆ ,  

such that KKKK 210 UU . The procedure for constructing a feasible solution is shown in Algorithm 4.2.  

Algorithm 4.2: Constructing feasible solution 

Step 1: Open all of the plants i if l
iû  = 1. 

Step 2: Open all of the depots j with s if l
jsv̂  = 1. If the total capacity of the opened depots is not enough to 

satisfy the customers’ demands, stop. 

Step 3: Assign the customers k K1 to the corresponding opened depot j . 

Step 4: Assign the customers k K2 to the opened depot j with the smallest cost jsk .  

Step 5: Repeat Step 5.1-Step 5.2 until all the customers of K0 are assigned or a customer is failed to 

assigned to any depot. 

Step 5.1: For all of the unassigned customer, find their lowest and second lowest jsk  among those opened 
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depots with sufficient residual capacity and compute their regret values. If no depot has the 

sufficient residual capacity has been find for a customer, stop.  

Step 5.2: Choose the customer with the maximum regret value and assign it to the depot j with size s 

where jsk  value is lowest. 

Step 6: Close the depots that have no customer assigned to them. 

Step 7: Solve the corresponding transportation problem to determine the product flows from plants to 

depots 

Step 8: Close all of the plants whose products are not flowing out to any depot.  

Note that the sum of capacities of these opened plants is enough to satisfy the customers’ demands since 

we have the constraint (4-7), 



Kk

k

Ii

l
ii ducp ˆ in the )(1 LR . If the total capacities of the opened depots is 

not enough to satisfy the customers’ demands or if no depot has sufficient residual capacity for a customer, 

no feasible solution is constructed in the iteration l. If plants with enough capacity have been opened and if 

feasible customer-depot assignments have been obtained, then the product flow from the plants to the depots 

can be determined by solving a transportation problem. In this transportation problem, the opened plants and 

depots are viewed as the source nodes and the destination nodes respectively, the plants capacities and the 

customers’ demands assigned to the depots are viewed as the supply capacities and destination demands 

respectively. To save the fixed opening cost, the plants from which without product flowing out and the 

depots to which no customers are assigned are closed at the end. 

4.4 Hybrid variable neighborhood tabu search 

algorithm for the TECFLP-DSS 

Variable Neighborhood Search (VNS), introduced by Mladenović and Hansen (1997), is a generic local 

search methodology, whose basic idea is to apply a systematic change of neighborhoods within a local search 

algorithm. The basic VNS framework consists of three steps: shaking, local search and move or not. The 

VNS has since been successfully applied in a variety of combinatorial optimization problems, such as the arc 

routing problem (Hertz and Mittaz, 2001), the linear ordering problem (Garcia et al., 2006), the minimum 

spanning tree problem (Naji-Azimi et al., 2010) and the p-median problem (Ilić et al., 2010), etc. 

As stated in chapter 3, the TS is a local search based metaheuristic. The TS explores the solution space 

by moving from the current solution to another in its neighborhoods. A candidate solution is accepted even if 

this solution deteriorates the function value, according to an aggressive admission criterion to avoid getting 

trapped in local optima. To prevent the possibility of cycling, a tabu list is introduced to forbid moves from 

recently visited solutions for several iterations. However, forbidden moves can be overridden by some 

aspiration criteria. Finally, the TS terminates when stopping criteria are met. The TS has been widely applied 

in various combinatorial optimization problems, such as job shop scheduling (Hertz and Widmer, 1996), 

assignment problem (Díaz and Fernández, 2001) and vehicle routing problem (Gendreau and Hertz, 1994), 
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etc. 

The basic VNS sometimes meets difficulties to escape from the local optimum although it explores 

solution space by applying a systematic change of neighborhoods and moves at random from one solution to 

another (shaking). On the other hand, the TS has no such difficulties since it escapes the local optimum by 

using a tabu list to avoid the recently visited solutions to be revisited. To make use of the potentiality of the 

systematic changes of the neighborhood structures of the VNS and the efficiency of the TS to move out from 

a local optimum, the hybrid of the VNS and the TS has been applied in many combinatorial optimization 

problems in the literature, such as the scheduling problem (Liao and Cheng, 2007), the vehicle routing 

problem (Belhaiza et al., 2014) and the location routing problem (Escobar et al., 2014).  

In this chapter, we proposed a hybrid variable neighborhood tabu search algorithm (HVNTS) to 

improve the best solution found in the Lagrangean relaxation approach.  

4.4.1 Moves and neighborhoods definitions 

In the implementation of the HVNTS, moves are only based on the customer-depot assignment. Note 

that a solution ξ  of the TECFLP-DSS consists of u, x, v and z. Define   = (v, z) be the v and z. Two kinds 

of moves are used: shift that reassigns one customer from one depot to another, swap that interchanges the 

assignments of two customers that are currently assigned to two different depots. Accordingly, the 

neighborhoods )(shiftN  and )(swapN  are defined as the set of feasible solutions that can be attained from 

the solution   by performing a shift move and a swap move, respectively.  

4.4.2 Tabu list 

A tabu list (TL) is used in the implementation of the HVNTS to prevent the recently visited solutions 

from being revisited. The element (k, j) of the TL records the last iteration number that it will be forbidden to 

assign the customer k to the depot j. If a customer k assigned to a depot j is reassigned to other depots, the 

assignment of the customer k to the depot j will be forbidden in the next t iteration. The parameter t is 

randomly selected from [Tmin, Tmax].   

4.4.3 The steps of the HVNTS 

Define )F(ξ  as the objective function of ξ  and )f( as the objective function of  . In the 

implementation of the HVNTS, we focused on improving  . If a better  is found, the flows x are 

determined by solving a transportation problem to obtain a new solution. In this transportation problem, the 

opened plants and depots are viewed as the source nodes and the destination nodes respectively, the plants 

capacities and the customer demands assigned to the depots are seen as the supply capacities and destination 

demands respectively.  

The HVNTS follows the framework of the basic VNS and uses TS as the local search algorithm within 
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the VNS. Defined the neighborhood structures )(lN , l := 1, …, Lmax, as the solutions that can be obtained 

by reassigning l customers of the solution  . Set the incumbent solution *ξ  as the best solution ξ  found in 

the Lagrangean relaxation approach and l := 1, the HVNTS improves this incumbent solution until all of the 

neighborhood structures of the incumbent solution are completely explored. More specifically, the 

improvement of the incumbent solution is done in a loop. This loop includes a shaking phase, a TS phase and 

a move-or-not phase. The steps of the HVNTS are described in detail in algorithm 4.3. 

Algorithm 4.3: Steps of the HVNTS 

Step 1: (Initialize) define the neighborhood structures )(lN , l := 1, …, Lmax,, initialize the incumbent 

solution *ξ  as the best solution ξ  found in the Lagrangean relaxation approach, set l := 1.  

Step 2: (Shaking phase) while l < Lmax, let   be the v and z of the incumbent solution *ξ , randomly 

reassign l customers of the   subject to depot capacity constraints to generate a new ' . 

Step 3: (TS phase) apply the TS to improve the '  generated in step 2 to obtain a new '' .  

Step 4: (Move-or-not phase) if )f( ''  > )f( , set l := l + 1. If )f( ''  < )f( , solve the corresponding 

transportation problem composed of u and ''  to determine the new flows x'  from the plants to 

the depots and thus to obtain a new solution ξ'  composed of u, x'  and '' . If )F(ξ'  < )F(ξ* , 

update the incumbent solution *ξ  with ξ'  and set l := 1, otherwise set l := l + 1. 

At the beginning of each shaking phase, the   is set as the v and z of the incumbent solution *ξ . Then 

the shaking phase randomly reassign l customers of the   to generate a random ' , which enables us to 

explore neighborhoods farther away from the incumbent solution. Note, in the shaking phase, the TL is also 

used to avoid looping back in the search process of the TS. If a customer k assigned to a depot j is reassigned 

to other depots, the value of element (k, j) is set to t, which means that assigning the customer k the depot j 

will be forbidden for the first t iterations in the TS phase.  

The TS phase improves the randomly generated solution '  to find a local optimal solution '' . The TS 

starts with the solution '  and terminates if a maximum number Mmax of iterations is reached or the ''  is 

not improved in a successive number Nmax of iterations. In the search process of the TS, the best accept 

strategy is applied. At each iteration m, the save cost (SC) of all of the shift and swap moves that will not 

lead to infeasible assignment with respect to depot capacity in the neighborhood of the '  is computed first. 

Then the best admissible move (with the smallest SC) is performed. If a customer k assigned to a depot j is 

reassigned to other depots at iteration m, the value of element (k, j) of the TL is set to m + t, which means 

that assigning the customer k the depot j will be forbidden for the next t iterations. The aspiration is based on 

the SC, )f( '  and )f( '' . If the value SC of a move plus )f( '  is less than )f( '' , it performed in spite that it 

leads to tabu customer-depot assignment. Otherwise it is accepted only when it does not lead to tabu 

customer-depot assignment.  
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4.5 Computational results 

The proposed Lagrangean relaxation approach and the HVNTS are coded in C++. The numerical 

experiments are carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU Q8200 and 2 

G RAM under a Microsoft Windows 7 operating system. In section 5.1, we describe the way to generate 

random instances. In section 5.2, 245 instances with different problem parameters, such as the ratios of plant 

capacity to customer demand, the ratios of depot capacity to customer demand and the number of plant size, 

are tested to evaluate the solution quality and speed of the Lagrangean relaxation approach and the HVNTS.  

4.5.1 Test instances 

Based on the instance generation of the CFLP (Cornuejols et al., 1991) and the TSCFLP (Klose, 1999), 

the instances are generated in the following way. The coordinates of potential plants, potential depots and 

customers are randomly selected from a unit square. The unit transportation costs are 10 times the Euclidean 

distance between the locations. Let U[a, b] denote a uniform distribution in interval [a, b]. The demand kd  of 

customer Kk   is generated from U[5, 35]. The capacity icp  for Ii  is generated from U[10, 160] and 

scaled by using the ratio rcpd =  Ii icp / Kk kd . Let cdjp ≤ cdjq if p ≤ q, we first generate |S|j j
cd  for each 

depot Jj  from U[10, 160] and then scale the capacities using the ratio rcdd = Jj |S|j j
cd / Kk kd . For 

each s < |S| j , cdjs is set to  |S|j j
cds / |S| j , where   is a parameter randomly selected from U[0.9, 1.1]. To 

reflect the depots’ economies of scale, the unit handling cost for a smaller depot is assumed to be larger than 

that for a bigger depot at the same depot. For each depot Jj , we first generate the unit handling cost hj1 

from U[5, 7]. Then, for any s > 1, hjs is obtained by multiplying the handling cost hj(s-1) by a random 

parameter selected from U[0.9, 0.95]. The fixed opening costs for a plant or each size of a depot is obtained 

by multiplying its capacity by a parameter selected from U[20, 25].  

4.5.2 Results 

In our implementation of the subgradient optimization procedure, the parameters are set as follows: LLag 

= 3000, Lagε  = 10
-4

, NLag = 40 and 0λ  = 1.5. For the HVNTS, the parameters Tmin and Tmax are set to 20 and 

25 respectively, the Lmax is set to 3, Mmax is set to 2000, Nmax is set to 200. The CPLEX version 12.5 with 

default setting is used as the MIP solver. 

Let UBLag be the BUB found by the Lagrangean relaxation approach, UBH be the BUB found by the 

HVNTS, UBC1 be the BUB found by CPLEX without time limitation, UBC2 be the BUB found by CPLEX 

within time limit TLagH and LBLag be the BLB found by the Lagrangean relaxation approach. The 

computational results are shown in Tables 4.1-4.4. For each instance set, five instances are generated. To 

simplify the presentation, the column headings are as follows: 
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|K||J||I|   the number of the plants, the depots and the customers respectively 

GLag the gaps between UBLag and LBLag, i.e., (UBLag – LBLag) / LBLag ×100 

GH the gaps between UBH and LBLag, i.e., (UBH – LBLag) / LBLag ×100 

GHC1 the gaps between UBH and UBC1, i.e., (UBH – UBC1) / UBC1 ×100 

GHC2 the gaps between UBH and UBC2, i.e., (UBH – UBC2) / UBC2 ×100 

TLag the CPU time used by the Lagrangean relaxation approach 

TLagH the CPU time used by the Lagrangean relaxation approach and the HVNTS 

TC1 the CPU time of CPLEX without time limitation 

Avg. the average value of gaps or computational times for each instance set 

Max. the maximum value of gaps or computational times for each instance set 

In table 4.1, in order to evaluate the solution quality of the proposed Lagrangean relaxation approach 

and the HVNTS, we compare the results of the Lagrangean relaxation approach and the HVNTS with those 

of the following two versions of CPLEX (c1 and c2). For the CPLEX c1, no time limit is imposed. That is 

the CPLEX c1 terminates itself if an optimal solution is found or an “Out of memory” error occurs. For the 

CPLEX c2, the time limit LagHT  is imposed. For the instances tested in Table 4.1, rcpd = 2.0,  rcdd = 2.0 and 

|S| j  = 3. The experimental results show that CPLEX can find an optimal solution only for the instances of 

the set 1 and meets an “out of memory” error for the instances of the other sets.  

It can be seen from the Table 4.1, the average gaps between the Lagrangean upper bound and lower 

bound range from 0.64% to 1.69% and the maximum gap is 2.14%. The gaps between the HVNTS upper 

bound and the Lagrangean lower bound range from 0.42% to 1.18% and the maximum gap is 1.60%. It is 

clear that the Lagrangean relaxation approach provide both a well upper bounds and a good lower bounds for 

the TECFLP-DSS and the HVNTS also performs well. Comparing with the CPLEX c1, the average gaps 

between the HVNTS upper bounds and the upper bounds found by the CPLEX c1 range from -0.63% to 

0.41%. The gaps decrease as problem size increases and the HVNTS can provide better upper bounds than 

the CPLEX c1 for the large-sized instances, e.g., the gaps between the HVNTS upper bounds and upper 

bounds found by the CPLEX c1 for set 10 is -0.63%. In terms of computation time, the CPLEX c1 takes 

much more time than the Lagrangean relaxation approach and the HVNTS. The Lagrangean relaxation 

approach and the HVNTS only take several to hundreds of seconds of CPU time while the CPLEX  c1 takes 

thousands of seconds. When compared with the CPLEX c2, the Lagrangean relaxation approach and the 

HVNTS is much more effective than the CPLEX c2 in that the average gaps between the HVNTS upper 

bounds and those of the CPLEX c2 range from -1.85% to -0.48%, the HVNTS upper bounds are much better 

than the CPLEX upper bounds for all of the instances. 

Table 4.1: Computational results and comparisons of the HVNTS bounds with those of CPLEX  

|K||J||I|   GLag (%) GH (%) GHC1 (%) GHC2 (%) TLagH (s) TC1 (s) 

GLag Avg. GH Avg. GHC1 Avg. GHC2 Avg. TLagH Avg. TC1 Avg. 

 

5×10×40 

1.32  
 

1.69 

0.56  
 

1.16 

0.12  
 

0.40 

-0.34  
 

-0.49 

4.3  
 

4.1 

19.4  
 

30.1 

1.28 1.13 0.52 -1.56 3.8 33.8 

2.07 1.70 0.70 0.67 5.1 17.3 

1.64 1.18 0.29 -0.91 3.7 47.3 
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2.14 1.26 0.35 -0.35 3.7 32.8 

             

10×20×80 

1.56  

 

1.41 

1.16  

 

1.05 

0.38  

 

0.30 

-1.19  

 

-0.93 

11.7  

 

11.4 

32321.9  

 

20832.1 

1.16 1.00 0.35 -0.91 11.0 10448.2 

1.61 1.16 0.30 -1.23 9.9 30039.0 

1.30 0.99 0.42 -0.93 14.4 18335.1 

1.41 0.93 0.03 -0.40 10.3 13016.3 

             

15×30×120 

1.46  

 

1.15 

1.03  

 

0.91 

0.30  

 

0.10 

-1.24  

 

-1.53 

24.8  

 

25.0 

6688.6  

 

4590.2 

1.02 0.77 0.18 -1.73 26.2 5065.8 

1.27 0.97 0.00 -1.23 26.7 2869.6 

1.06 0.94 0.01 -2.25 21.3 5425.5 

0.96 0.85 0.03 -1.21 26.2 2901.6 

             

20×40×160 

1.10  

 

1.02 

0.74  

 

0.76 

0.16  

 

0.06 

-0.78  

 

-1.38 

50.0  

 

41.8 

5573.0  

 

4801.1 

1.03 0.65 0.13 -0.57 43.3 5966.7 

1.16 0.90 0.05 -1.06 40.0 4924.3 

0.88 0.72 -0.05 -1.21 35.9 3973.9 

0.91 0.80 0.00 -3.28 39.7 3567.7 

             

25×50×200 

0.95  

 

0.93 

0.68  

 

0.65 

0.01  

 

0.00 

-1.80  

 

-1.30 

65.6  

 

82.7 

4435.1  

 

4617.8 

0.90 0.56 -0.12 -1.15 92.1 4682.3 

0.66 0.54 0.02 -1.98 73.3 4517.3 

1.04 0.66 0.13 -0.63 94.5 4956.4 

1.09 0.80 -0.03 -0.94 88.1 4497.9 

             

30×60×240 

0.99  

 

0.86 

0.71  

 

0.55 

0.08  

 

-0.03 

-0.90  

 

-1.77 

112.9  

 

116.9 

6551.8  

 

6318.3 

0.84 0.57 0.02 -1.38 128.1 6713.7 

0.75 0.50 -0.03 -2.02 117.7 7422.7 

0.95 0.57 -0.04 -2.42 124.4 5307.6 

0.76 0.38 -0.18 -2.12 101.2 5595.6 

             

35×70×280 

0.81  

 

0.83 

0.44  

 

0.45 

-0.12  

 

-0.08 

-1.97  

 

-1.81 

152.3  

 

167.4 

8026.6  

 

7743.5 

0.65 0.34 -0.07 -1.29 140.8 8838.1 

0.87 0.45 -0.11 -3.09 165.4 7349.9 

0.94 0.51 -0.06 -2.03 187.9 8495.6 

0.90 0.53 -0.02 -0.65 190.5 6007.5 

             

40×80×320 

0.63  

 

0.76 

0.47  

 

0.45 

-0.03  

 

-0.13 

-2.22  

 

-1.50 

179.3  

 

250.2 

9971.1  

 

9601.5 

0.73 0.43 -0.10 -1.55 228.4 11402.9 

0.84 0.50 -0.10 -1.97 231.9 9344.1 

0.79 0.37 -0.19 -0.86 346.3 9875.6 

0.80 0.48 -0.23 -0.88 265.1 7414.0 

             

45×90×360 

0.69  

 

0.70 

0.52  

 

0.45 

-0.38  

 

-0.57 

-0.93  

 

-0.86 

384.7  

 

340.6 

9503.9  

 

6625.8 

0.66 0.30 -0.55 -0.81 343.8 5789.3 

0.75 0.41 -0.63 -0.83 295.9 5954.8 

0.70 0.53 -0.62 -0.64 335.9 6213.5 

0.71 0.47 -0.68 -1.12 342.9 5667.5 

             

50×100×400 

0.66  

 

0.64 

0.42  

 

0.38 

-0.87  

 

-0.67 

-1.73  

 

-1.29 

307.3  

 

373.5 

5924.0  

 

6135.8 

0.59 0.33 -0.59 -0.92 338.3 5245.3 

0.60 0.33 -0.56 -1.25 460.0 5896.4 

0.65 0.38 -0.66 -1.45 401.8 6711.2 

0.70 0.44 -0.64 -1.10 360.2 6902.1 

             

Average 1.00  0.68  -0.06  -1.29      

In table 4.2, we report the performances of the Lagrangean relaxation approach and the HVNTS on 
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instances with different ratio rcpd. For all the instances given in Table 2, rcdd = 2.0 and |S| j  = 3. The average 

gaps between the Lagrangean upper bounds and lower bounds range from 0.59% to 1.11% and the maximum 

gap is 1.28%, the average gaps between the HVNTS upper bounds and the Lagrangean lower bounds range 

from 0.37% to 0.90% and the maximum gap is 0.97%, which indicate that the Lagrangean relaxation 

approach and the HVNTS perform well and they are effective for the instances with different ratio rcpd. In 

addition, both the average gaps between the Lagrangean upper bounds and lower bounds and the average 

gaps between the TS upper bounds and the Lagrangean lower bounds increase for the instances of the same 

size as the ratio rcpd increases, e.g., for the 50×100×400 instances, the average gaps between the Lagrangean 

upper bounds and lower bounds are 0.59%, 0.63%, 0.64% and 0.71% for rcpd = 1.5, 2.0, 2.5 and 3.0 

respectively, and the average gaps between the HVNTS upper bounds and the Lagrangean lower bounds are 

0.37%, 0.44%, 0.48% and 53% for rcpd = 1.5, 2.0, 2.5 and 3.0 respectively. It can be concluded that the 

Lagrangean relaxation approach and the HVNTS are more effective for smaller ratio rcpd than for larger ratio 

rcpd.   

Table 4.2: Computational results on the instances with different plant capacities  

|K||J||I|   rcpd GLag (%) GH (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

25×50×200 

 

 

1.5 

0.82 

0.86 

0.44  

 

0.58 

42.4  

 

58.7 

30.3  

 

32.3 

72.6  

 

91.0 

0.97 0.65 59.8 40.7 100.5 

0.76 0.43 64.7 25.0 89.7 

0.90 0.69 57.4 37.4 94.8 

0.88 0.70 69.3 28.1 97.4 

            

25×50×200 

 

 

2.0 

1.15 

0.93 

0.66  

 

0.55 

42.8  

 

51.9 

17.9  

 

21.4 

60.8  

 

 73.3 

0.93 0.61 47.3 17.0 64.3 

1.01 0.59 51.7 37.6 89.3 

0.71 0.43 59.5 10.3 69.8 

0.84 0.47 58.2 24.4 82.6 

            

 

25×50×200 

 

 

2.5 

1.15 

1.01 

0.80  

 

0.71 

63.6  

 

58.3 

26.2  

 

21.1 

89.8  

 

79.4 

0.94 0.80 61.3 21.3 82.6 

1.21 0.80 48.3 13.5 61.8 

0.82 0.66 55.8 23.0 78.8 

0.91 0.50 62.5 21.6 84.1 

            

25×50×200 

 

 

3.0 

1.22 

1.11 

0.88  

 

0.84 

61.1  

 

57.0 

22.5  

 

16.4 

83.6  

 

73.4 

0.92 0.73 59.5 18.8 78.2 

0.99 0.81 60.3 10.9 71.2 

1.28 0.89 50.0 15.0 65.0 

1.16 0.91 54.3 14.9 69.2 

            

35×70×280 

 

 

1.5 

0.76 

0.74 

0.45  

 

0.43 

128.0  

 

113.3 

33.3  

 

43.7 

161.3  

 

156.9 

0.89 0.60 110.2 36.7 147.0 

0.71 0.42 113.5 46.2 159.7 

0.73 0.34 115.4 57.9 173.3 

0.62 0.37 99.1 44.0 143.2 

            

35×70×280 

 

 

2.0 

0.64 

0.79 

0.40  

 

0.53 

112.7  

 

272.9 

34.2  

 

46.1 

150.8  

 

158.8 

0.69 0.44 118.6 45.6 164.2 

0.82 0.58 91.5 64.4 155.9 

0.88 0.57 120.1 41.5 161.5 

0.93 0.64 116.8 45.0 161.8 
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35×70×280 

 

 

2.5 

0.95 

0.92 

0.66  

 

0.60 

121.9  

 

115.3 

30.5  

 

49.4 

152.4  

 

164.6 

0.78 0.52 113.8 50.5 164.3 

1.07 0.64 113.6 54.1 167.6 

0.98 0.68 111.0 35.0 145.9 

0.82 0.51 116.1 76.8 192.9 

            

35×70×280 

 

 

3.0 

1.14 

0.93 

0.68  

 

0.58 

104.2  

 

111.9 

65.7  

 

49.2 

169.9  

 

161.1 

0.70 0.44 132.9 34.2 167.1 

1.05 0.48 98.5 71.3 169.8 

0.87 0.56 104.7 35.1 139.8 

0.91 0.72 119.2 39.9 159.1 

            

50×100×400 

 

 

1.5 

0.62 

0.59 

0.34  

 

0.32 

331.8  

 

324.0 

52.9  

 

123.1 

384.7  

 

447.1 

0.60 0.29 280.7 118.5 399.2 

0.51 0.35 348.5 74.9 423.4 

0.56 0.28 348.5 158.9 507.4 

0.64 0.32 310.5 210.2 520.7 

            

50×100×400 

 

 

2.0 

0.63 

0.63 

0.40  

 

0.37 

294.2  

 

298.3 

124.3  

 

94.7 

418.5  

 

392.9 

0.76 0.55 311.1 74.3 385.5 

0.60 0.35 305.2 73.0 378.2 

0.60 0.29 297.1 83.9 381.0 

0.56 0.26 283.8 117.8 401.6 

            

50×100×400 

 

 

2.5 

0.51 

0.64 

0.34  

 

0.41 

318.7  

 

315.8 

94.2  

 

106.1 

412.9  

 

421.9 

0.61 0.46 344.9 113.1 458.0 

0.58 0.37 305.1 96.3 401.4 

0.66 0.36 288.2 99.5 387.7 

0.85 0.51 322.3 127.4 449.7 

            

50×100×400 

 

 

3.0 

0.64 

0.71 

0.41  

 

0.47 

277.0  

 

291.1 

149.4  

 

116.9 

426.4  

 

408.0 

0.64 0.39 304.3 39.1 343.4 

0.85 0.62 307.3 146.7 454.0 

0.76 0.42 323.3 167.1 490.4 

0.69 0.53 243.6 82.3 325.9 

            

Average  0.82  0.53        

The performances of the Lagrangean relaxation approach and the HVNTS on the instances with 

different ratio rcdd are reported in Table 4.3. For all the instances given in Table 4.3, rcpd = 2.0 and |S| j  = 3. 

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.63% to 1.00% and 

the maximum gap is 1.23%, the gaps between the HVNTS upper bounds and the Lagrangean lower bounds 

range from 0.43% to 0.72% on average and the maximum gap is 0.91%. It is clear that the Lagrangean 

relaxation approach and the HVNTS perform well and they are effective for the instances with different ratio 

rcdd. It can be seen from Table 4.3 that the ratio rcdd does not have a significant influences on the solution 

quality and solution time, e.g., for the 50×100×400 instances, the average gaps between the Lagrangean 

upper bounds and lower bounds are 0.63%, 0.67%, 0.68% and 0.67% for rcdd = 1.5, 2.0, 2.5 and 3.0 

respectively, the average gaps between the HVNTS upper bounds and the Lagrangean lower bounds are 

0.43%, 0.45%, 0.45% and 0.49% for rcdd = 1.5, 2.0, 2.5 and 3.0 respectively, and the average CPU time is 

761.9, 810.3, 658.5 and 774.0 seconds for rcdd = 1.5, 2.0, 2.5 and 3.0 respectively.   

Table 4.3: Computational results on the instances with different depot capacities 

|K||J||I|   rcdd GLag (%) GTS (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GTS Avg TLag Avg. TH Avg. TLagH Avg. 
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. 

25×50×200 

 

 

1.5 

0.62 

0.92 

0.35  

 

0.58 

46.1  

 

57.3 

16.5  

 

16.8 

62.6  

 

74.1 

0.93 0.47 72.5 13.1 85.7 

1.16 0.63 59.6 20.9 80.4 

0.85 0.74 58.1 9.2 67.3 

1.01 0.73 50.3 24.1 74.3 

            

25×50×200 

 

 

2.0 

1.11 

0.89 

0.76  

 

0.59 

50.9  

 

50.8 

27.8  

 

17.3 

78.7  

 

68.0 

0.84 0.46 49.7 13.6 63.4 

0.88 0.49 53.1 10.2 63.3 

0.79 0.59 50.5 16.2 66.8 

0.83 0.65 49.5 18.5 68.0 

            

25×50×200 

 

 

2.5 

1.02 

1.00 

0.48  

 

0.62 

46.6  

 

56.1 

13.9  

 

17.9 

60.6  

 

74.0 

0.99 0.66 56.4 24.0 80.5 

1.02 0.76 60.3 14.2 74.5 

1.23 0.77 51.3 25.0 76.3 

0.73 0.45 65.7 12.4 78.1 

            

25×50×200 

 

 

3.0 

0.63 

0.89 

0.40  

 

0.57 

46.7  

 

52.0 

15.2  

 

17.6 

61.9  

 

69.7 

1.21 0.89 54.3 29.0 83.3 

0.74 0.45 59.6 15.7 75.4 

0.65 0.47 50.7 12.8 63.4 

1.19 0.63 49.0 15.5 64.5 

            

35×70×280 

 

 

1.5 

0.87 

0.83 

0.53  

 

0.51 

107.3  

 

118.6 

27.0  

 

43.4 

134.3  

 

162.0 

0.94 0.54 118.5 37.7 156.2 

0.82 0.55 104.8 40.5 145.3 

0.81 0.50 122.6 66.2 188.8 

0.71 0.43 139.5 45.8 185.4 

            

 35×70×280 

 

 

2.0 

0.90 

 0.85 

0.53  

 

0.56 

114.4  

 

106.0 

92.3  

 

58.2 

206.6  

 

164.2 

0.69 0.44 107.0 41.9 148.9 

1.00 0.74 104.2 69.1 173.4 

0.62 0.40 105.3 43.2 148.5 

1.05 0.67 99.0 44.5 143.5 

            

35×70×280 

 

 

2.5 

0.81 

0.81 

0.49  

 

0.50 

95.7  

 

107.1 

23.6  

 

37.3 

119.3  

 

144.4 

0.95 0.55 107.9 34.0 141.8 

0.67 0.41 116.4 40.2 156.6 

0.78 0.50 97.4 49.5 146.9 

0.86 0.56 118.0 39.2 157.2 

            

35×70×280 

 

 

3.0 

0.89 

0.80 

0.70  

 

0.56 

105.8  

 

109.2 

82.5  

 

47.5 

188.3  

 

156.6 

0.92 0.56 118.0 39.8 157.8 

0.89 0.65 100.9 26.8 127.7 

0.73 0.43 111.2 46.6 157.7 

0.60 0.43 110.0 41.6 151.6 

            

50×100×400 

 

 

1.5 

0.59 

0.63 

0.33  

 

0.36 

246.9  

 

284.6 

168.0  

 

137.9 

414.9  

 

422.5 

0.71 0.42 256.1 143.6 399.7 

0.60 0.35 333.6 121.8 455.4 

0.69 0.44 256.1 146.6 402.7 

0.57 0.25 330.1 109.6 439.7 

            

50×100×400 

 

 

2.0 

0.71 

0.67 

0.40  

 

0.41 

255.8  

 

287.9 

229.0  

 

151.8 

484.8  

 

439.7 

0.61 0.43 280.3 184.1 464.4 

0.71 0.45 291.4 61.1 352.5 

0.70 0.42 318.7 209.9 528.6 

0.61 0.34 293.2 74.9 368.1 
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50×100×400 

 

 

2.5 

0.73 

0.68 

0.46  

 

0.42 

252.3  

 

284.8 

143.4  

 

117.2 

402.0  

 

1181.9 

0.77 0.46 298.8 91.2 390.1 

0.72 0.40 280.6 129.7 410.3 

0.52 0.30 317.6 129.9 447.5 

0.65 0.45 274.5 91.9 366.4 

            

50×100×400 

 

 

3.0 

0.74 

 0.67 

0.47  

 

0.45 

265.9  

 

265.2 

136.4  

 

140.2 

402.3  

 

405.3 

0.70 0.42 255.6 227.9 483.5 

0.67 0.41 297.8 80.0 377.8 

0.58 0.43 276.0 143.3 419.3 

0.66 0.49 230.6 113.2 343.7 

            

Average  0.80  0.51        

In Table 4.4, we provide an analysis of the performances of the proposed Lagrangean relaxation 

approach and the HVNTS on the instances with different numbers of depot size. For all the instances given 

in Table 4.4, rcpd = 2.0 and rcdd = 2.0. The Lagrangean relaxation approach and the HVNTS are effective in 

that the average gaps between the Lagrangean upper bounds and lower bounds range from 0.56% to 0.97% 

and the maximum gap is 1.15%, the average gaps between the HVNTS upper bounds and the Lagrangean 

lower bounds range from 0.41% to 0.73% and the maximum gap is 0.93%. The number of the depot size 

does not have a significant influences on the solution quality, e.g., for the 50×100×400 instances, the average 

gaps between the HVNTS upper bounds and the Lagrangean lower bounds are 0.47%, 0.46%, 0.47%, 0.41% 

and 0.43% for |S| j
 = 2, 3, 4, 5 and 6 respectively. However, the computational time of the Lagrangean 

relaxation approach and the HVNTS increases regularly as the number of the depot size increases, e.g., for 

the 50×100×400 instances, the average CPU time is 623.5, 670.7, 737.9, 946.9 and 1040.6 seconds for |S| j
 = 

2, 3, 4, 5 and 6 respectively. 

Table 4.4: Computational results on the instances with different numbers of depot size 

 

|K||J||I|   |S| j
 GLag (%) GH (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

25×50×200 

 

 

2 

0.92 

0.97 

0.59  

 

0.62 

32.4  

 

33.9 

10.8  

 

18.7 

43.2  

 

52.6 

0.99 0.60 36.3 10.8 47.1 

1.15 0.58 32.9 24.9 57.8 

0.76 0.45 32.9 17.8 50.6 

1.05 0.91 35.1 29.3 64.5 

            

25×50×200 

 

 

3 

0.98 

0.94 

0.73  

 

0.63 

52.7  

 

54.8 

20.1  

 

15.9 

72.8  

 

70.7 

0.59 0.45 53.7 13.1 66.8 

0.95 0.70 58.8 12.5 71.3 

1.09 0.60 50.8 11.2 61.9 

1.11 0.65 57.9 22.7 80.6 

            

25×50×200 

 

 

4 

0.73 

0.86 

0.35  

 

0.51 

66.5  

 

71.6 

12.3  

 

18.5 

78.7  

 

90.1 

0.99 0.57 73.2 19.9 93.1 

0.78 0.46 70.3 16.3 86.6 

0.72 0.53 68.1 17.7 85.9 

1.06 0.65 79.9 26.1 106.0 

            

 

25×50×200 

 

 

5 

0.82 

 

0.87 

0.41  

 

0.53 

80.7  

 

98.8 

12.3  

 

19.0 

93.1  

 

117.8 

1.09 0.57 102.5 14.3 116.7 

0.78 0.55 107.4 19.5 126.9 

1.03 0.76 107.5 33.7 141.2 
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0.62 0.35 95.9 15.1 111.0 

            

 25×50×200 

 

 

6 

0.90 

0.88 

0.55  

 

0.50 

81.8  

 

107.7 

20.3  

 

19.5 

102.1  

 

127.2 

0.82 0.46 111.3 19.6 130.9 

0.83 0.53 121.1 17.2 138.3 

0.91 0.44 118.7 27.5 146.2 

0.94 0.52 105.4 13.1 118.5 

            

35×70×280 

 

 

2 

0.73 

 0.79 

0.55  

 

0.54 

94.4  

 

87.0 

46.6  

 

56.5 

141.0  

 

143.4 

0.76 0.47 82.0 67.4 149.4 

0.89 0.62 84.0 111.2 195.1 

0.63 0.42 91.2 34.3 125.4 

0.95 0.65 83.3 22.9 106.2 

            

35×70×280 

 

 

3 

0.78 

0.83 

0.56  

 

0.55 

118.0  

 

111.6 

51.2  

 

52.4 

169.1  

 

163.9 

0.62 0.35 117.3 56.5 173.8 

1.05 0.77 114.2 63.1 177.3 

0.75 0.43 96.8 49.4 146.2 

0.96 0.62 111.5 41.8 153.3 

            

35×70×280 

 

 

4 

0.82 

0.82 

0.41  

 

0.55 

122.6  

 

159.2 

48.2  

 

43.3 

170.7  

 

202.6 

0.76 0.63 154.0 25.6 179.6 

1.00 0.60 176.6 50.5 227.1 

0.75 0.52 162.4 58.1 220.5 

0.75 0.58 180.5 34.4 214.9 

            

35×70×280 

 

 

5 

0.80 

0.82 

0.52  

 

0.58 

179.7  

 

215.2 

42.1  

 

44.2 

221.8  

 

259.4 

0.93 0.67 238.1 45.7 283.8 

0.80 0.55 254.9 49.7 304.6 

0.71 0.51 211.2 36.4 247.6 

0.88 0.64 192.1 47.0 239.0 

            

35×70×280 

 

 

6 

0.95 

0.86 

0.64  

 

0.53 

257.9  

 

279.3 

70.0  

 

56.7 

327.9  

 

336.0 

0.91 0.52 260.2 45.9 306.2 

0.99 0.63 284.8 69.7 354.5 

0.53 0.37 274.7 43.3 318.0 

0.91 0.47 318.8 54.4 373.3 

            

50×100×400 

 

 

2 

0.64 

 0.66 

0.32  

 

0.40 

173.4  

 

195.9 

77.9  

 

128.9 

251.3  

 

324.8 

0.46 0.23 212.9 84.6 297.5 

0.67 0.45 195.6 161.8 357.4 

0.77 0.43 206.5 204.1 410.6 

0.76 0.54 191.0 116.2 307.2 

            

50×100×400 

 

 

3 

0.73 

0.61 

0.42  

 

0.38 

286.5  

 

282.1 

109.4  

 

100.4 

395.8  

 

382.5 

0.70 0.47 287.5 129.6 417.1 

0.73 0.42 270.1 116.0 386.1 

0.43 0.35 323.5 65.5 389.1 

0.47 0.23 242.9 81.7 324.6 

            

50×100×400 

 

 

4 

0.75  

 

0.63 

0.46  

 

0.41 

393.9  

 

363.6 

165.3  

 

92.1 

559.2  

 

455.7 

0.59 0.35 353.5 47.5 401.0 

0.55 0.39 369.3 43.2 412.6 

0.67 0.47 349.6 56.7 406.3 

0.58 0.38 351.9 147.6 499.5 

            

 

50×100×400 

 
 

5 

0.72  
 

0.61 

0.35  
 

0.34 

477.3  
 

480.4 

200.0  
 

136.5 

677.3  
 

616.9 

0.52 0.28 468.6 91.9 560.6 

0.66 0.38 510.1 125.3 635.4 

0.64 0.41 435.0 189.3 624.3 
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0.50 0.30 510.8 76.2 587.0 

            

50×100×400 

 

 

6 

0.64  

 

0.66 

0.34  

 

0.36 

491.0  

 

558.1 

74.5  

 

110.4 

565.5  

 

668.5 

0.68 0.36 496.5 128.1 624.6 

0.64 0.32 630.8 175.9 806.8 

0.75 0.45 665.3 89.5 754.8 

0.58 0.35 506.8 84.1 590.9 

            

Average  0.79  0.50        

4.6 Conclusions 

In this chapter, we concentrate on the TECFLP-DSS where each depot has several size exhibiting 

different capacities. The unit handling cost for a larger size of a depot is assumed to be smaller than those of 

the smaller sizes of the same depot to model the economies of scale. This problem allow us to deal with both 

different sizes for depots and different handling costs at different levels of handling at a depot. A mixed 

integer programming model is formulated. This extended model can then simultaneously determine the 

locations and sizes of the plants, the locations of the depots, the product flows from the plants to the depots 

and the assignments of the customers to the depots to satisfy the customers’ demands. The TECFLP-DSS is 

NP-hard in strong sense. A Lagrangean relaxation approach and a HVNTS are proposed for its resolution. 

First the Lagrangean relaxation approach is used to find good lower and upper bounds, and then the HVNTS 

is designed to improve the best upper bound found in the Lagrangean relaxation approach. The numerical 

experiments on 245 randomly generated instances indicate that the proposed Lagrangean relaxation approach 

and the HVNTS can provide high quality lower bounds and upper bounds to the TECFLP-DSS. The average 

gaps are not greater than 1.16%, with 1.70% at a maximum. In addition, instances with different parameters, 

such as the ratios of plant capacity to customer demand, the ratios of depot capacity to customer demand and 

the number of depot size, are tested to evaluate the robustness of the Lagrangean relaxation approach and the 

HVNTS. The computational results indicate that the proposed Lagrangean relaxation approach and HVNTS 

are effective for the instances with different parameters and can solve the instances that have up to 50 

potential plants, 100 depots with 6 possible sizes each and 400 customers in a reasonable time.  

The Lagrangean relaxation approach and HVNTS work very well and can provide good lower and 

upper bounds for our problem. However, some new ideas on solving the problems could be investigated, 

such as adding valid inequalities to accelerate the solution process, designing improvement strategies for the 

Lagrangean relaxation approach or the HVNTS. Another direction is to design a cut-and-solve (Zhang et al. 

2006) based Lagrangean relaxation approach for the TECFLP-DSS. 

 

 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

73 

 

 

 

 

 

 

 

 

 

 

Chapter 5  

Two-echelon capacitated facility location 

problem with plant and depot size 

selection 

 

 

 

 

 

 

 

 

 

 

 

 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

75 

 

5.1 Introduction 

In this chapter, we study a two-echelon capacitated facility location problem with plant and depot size 

selection (TECFLP-PDSS), in which the sizes of the plants and depots are considered simultaneously. The 

TECFLP-PDSS is also an extension of the TSCFLP. In this problem, we simultaneously locate plants and 

depots, and select sizes for the located plants and depots, where each plants in the first stage has several 

potential sizes exhibiting different capacities. Each depot in the second stage has a several potential sizes 

exhibiting different capacities and is supplied by multiple plants. Each customer in the third stage is serviced 

by only one depot. This extended model will not allow us to deal with different sizes for plants and depots, 

but also with different production cost at different levels of production at a plant and handling costs at 

different levels of handling at a depot. The objective of this problem is to determine simultaneously the 

locations and sizes of the plants, the locations and sizes of the depots, the product flows from the plants to 

the depots and the assignments of the customers to the depots to satisfy the customers’ demands.  

As in the TECFLP-PSS and TECFLP-DSS, the fixed opening cost for a larger size of a plant is larger 

than those of the smaller sizes of the same plant and the fixed opening cost for a larger size of a depot is 

larger than those of the smaller sizes of the same depot. The unit production cost for a larger size of a plant is 

smaller than those of the smaller sizes of the same plant and the unit handling cost for a larger size of a depot 

is smaller than those of the smaller sizes of the same depot to model the economies of scale. The 

distinguishing features of the TECFLP-PDSS are: 1) there are several sizes for both potential plants and 

depots that can be opened, 2) both production cost at a plant and handling cost at depot is taken into account 

specifically since these costs cannot be merged with other linear connection costs like they are done in the 

traditional facility location model. 

The TECFLP-PDSS can be seen as an extension of the TECFLP-PSS or TECFLP-DSS and is NP-hard 

in strong sense. Thus we concentrate on finding good lower and upper bounds for it. For this problem, we 

present a mixed integer programming model and a Lagrangean relaxation approach to achieve efficient lower 

and upper bounds. A hybrid simulated annealing tabu search algorithm (HSATS) is designed to further 

improve the best upper bound found by the Lagrangean relaxation approach. To solve the dual problem 

arising in the Lagrangean relaxation approach, a subgradient optimization method is used. The Lagrangean 

relaxation problem can be decomposed into two subproblems, one can be solved to optimality by inspections 

and another one can be decomposed further into the classical 0-1 knapsack problem which can be exactly 

solved in a very reasonable time by using the MINKNAP developed by Pisinger (1995). We construct 

feasible solution and find an upper bound by repairing the Lagrangean relaxation solutions. The feasible 

solution construction process consists of three stages: 1) open plants and select their sizes, 2) open depots, 

select their sizes and determine the customer-depot assignments, 3) determine the product flows from the 

plants to the depots. The HSATS focus on improving the customer-depot assignments. After the HSATS, the 

optimal product flows are determined by solving a transportation problem using commercial solver CPLEX. 

To evaluate the general performance of the Lagrangean relaxation approach and HSATS, 50 instances 
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with different problem size are tested. The results of the gaps between the Lagrangean upper bounds and 

lower bounds, the upper bounds obtained by the HSATS and Lagrangean lower bounds,  the upper bounds 

obtained by the HSATS and those provided by commercial MIP solver CPLEX are reported. The results 

demonstrate that the Lagrangean relaxation approach and HSATS are effective for the TECFLP-PDSS since 

the gaps between the upper bounds and those of the CPLEX are less than 1.75% on average and the CPU 

time required by the Lagrangean relaxation and HSATS is much less than that of the CPLEX. In addition, 

270 instances with different sizes and different parameters, such as the ratio of plant capacity to customer 

demand, the ratio of depot capacity to customer demand and the number of plant size, are randomly 

generated and tested to evaluate the robustness of the Lagrangean relaxation approach and HSATS. The 

computational results show that the Lagrangean relaxation approach and HSATS perform well. All of the 

instances can be solved in a reasonable time with small gaps, even for instances that have up to 50 potential 

plants with 6 possible sizes each, 100 potential depots with 6 possible sizes each, and 400 customers.  

The rest of this chapter is organized as follows. In Section 5.2, the mixed integer programming model is 

developed for the TECFLP-PDSS. In Section 5.3, the Lagrangean relaxation approach is proposed to achieve 

lower and upper bounds. In Section 5.4, the HSATS is proposed to improve the best upper bounds found in 

the Lagrangean relaxation approach. In Section 5.5, we evaluate the proposed algorithms on randomly 

generated instances. Conclusions are drawn in Section 5.6.  

5.2 Problem formulation 

Given a set of potential plants, a set of potential depots, each plant and depot has several possible sizes 

exhibiting different capacities, and a set of customers with demands, the aim of the TECFLP-PDSS is to 

select a set of plants and a set of depots to open, select a size for each opened plant and depot, determine the 

product flows from the plants to the depots and assign the customers to the opened depots to serve the 

customers at a minimum total cost. This cost includes the fixed opening costs of the facilities, the producing 

costs at the plants, the handling costs at the depots, the transportation costs from the plants to the depots and 

the assignment costs of the customers. The structure of the TECFLP-PDSS is presented in Fig. 5.1, where the 

first or upper-most stage is the plants, each plant has several sizes, the second or central stage is the depots, 

each depot has several sizes,  and the third stage is the customers. 

In the TECFLP-PDSS, each size of a plant associates with a capacity cp, a fixed opening cost fp and a 

unit production cost p. The fixed opening cost for a larger size of a plant is larger than those of the smaller 

sizes of the same plant. The unit production cost p for a larger size of a plant is smaller than those of the 

smaller sizes of the same plant. An example of the cost function including the fixed opening cost and the 

production cost of a plant is illustrated in Fig. 3.2. in Chapter 3. Each size of a depot associates with a 

capacity cd, a fixed opening cost fd and a unit handling cost h. The fixed opening cost for a larger size of a 

depot is larger than those of the smaller sizes of the same depot. The unit handling cost h for a larger size of a 

depot is smaller than those of the smaller sizes of the same depot. An example of the cost function including 

the fixed opening cost and the handling cost of a depot is illustrated in Fig. 4.2 in Chapter 4. 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

77 

 

 

 

Fig. 5.1 The structure of the TECFLP-PDSS 

To formulate the TECFLP-PDSS, the notations and decision variables used are as follows: 

Notations: 

I the set of the potential plants; 

J the set of the potential depots; 

K the set of the customers; 

Ri the set of the sizes of a plant Ii ; 

Sj the set of the sizes of a depot Jj ; 

cpir the capacity of the plant Ii  with size iRr ; 

cdjs  the capacity of the depot Jj  with size jSs ; 

dk  the demand of the customer Kk  ; 

fpir  the fixed cost of the plant Ii  with size iRr ; 

fdjs  the fixed cost of the depot Jj  with size jSs ; 

pir  the unit producing cost of the plant Ii  with size iRr ; 

hjs  the unit handling cost of the depot Jj  with size jSs ; 

tij the unit transportation cost from the plant Ii  to the depot Jj ; 

cjk the unit cost of assigning the customer Kk   to the depot Jj ; 

Decision variables: 

uir 1, if the plant Ii  with size iRr  is opened; 0, otherwise; 

vjs  1, if the depot Jj  with size jSs  is opened; 0, otherwise; 

xirjs the quantity of product flow from the plant Ii  with size iRr  to the depot Jj  with size jSs ; 

zjsk 1, if the customer Kk   is assigned to the depot Jj  with size jSs ; 

The TECFLP-PDSS can be formulated as follows: 

Plants Depot

s 

Customer

s 
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The objective (5-1) minimizes the total costs of opening the plants (the first term), producing the 

products at the plants and transporting the products from the plants to the depots (the second term), opening 

the depots (the third term), handling the products at the depots and assigning the customers to the depots (the 

forth term). The constraints (5-2) ensure that the total product flows moving out of a plant cannot exceed the 

capacity of its opened size and are zero if a plant is closed. The constraints (5-3) state that a maximum of one 

size of a plant can be chosen. The constraints (5-4) are the flow equilibrium constraints at the depots. The 

constraints (5-5) make sure that the customers’ demands assigned to a depot cannot exceed the capacity of its 

opened size and no customers are assigned to the close depots. The constraints (5-6) state that a maximum of 

one size of a depot can be chosen. The constraints (5-7) guarantee that each customer is assigned to exactly 

one depot. The constraints (5-8), (5-9), (5-10) and (5-11) are standard nonnegativity and integrality 

constraints. 

5.3 Lagrangean relaxation approach for the 

TECFLP-PDSS 

As stated in chapter 3 and 4, the Lagrangean relaxation approach is one of the most effective 

approaches to achieve lower bounds to mixed integer linear programming problems, which relaxes hard 
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constraints into the objective function by introducing Lagrangean multipliers. The Lagrangean relaxation 

approach has been widely applied to solve facility location problems, e.g., Geoffrion and McBride (1978) for 

the CFLP, Klincewicz and Luss (1986) for the CFLPSS and Tragantalerngsak et al. (1997) for the two-

echelon, single-source, capacitated facility location problem, etc. Due to the effectiveness of the Lagrangean 

relaxation approach,  thus we use it to obtain good lower and upper bounds of the TECFLP-PDSS.  

5.3.1 Lagrangean relaxation model of the TECFLP-PDSS 

Similar as the TECFLP-PSS and TECFLP-DSS, various Lagrangean relaxations can be obtained by 

relaxing different constraints of the TECFLP-PDSS, such as relaxing the constraints (5-4) and (5-7), (5-2) 

and (5-7) or (5-4) and (5-5). The selection of a suitable relaxation is very important for generating good 

lower and upper bounds. Based on our preliminary experiments, the constraints (5-2) and (5-7) are relaxed 

by introducing the non-negative multipliers irα ( iRrIi  , ) and the multipliers kβ ( Kk ) in our 

implementation of the lagrangean relaxation approach, since it can generate better lower and upper bounds 

than relaxing the constraints (5-4) and (5-7) or (5-4) and (5-5). The Lagrangean relaxation problem, 

) ,( βαLR , is therefore as follows: 
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  s.t.  (3)-(6) and (5-8)-( 5-11).  

The ) ,( βαLR  can be divided into the following two independent subproblems.   

The first subproblem, )(1 LR , is 

 
 


Ii Rr

iririr

i

ufpαLR )(min)(1   
(5-13) 

  s.t.  (5-3) and (5-8),  

which can be solved exactly in |)||(| iRIO   by setting a maximum of one iru  to 1 with the smallest negative 

irirfp   value for each Ii . 

 The second subproblem, ),(2 LR , is 
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  s.t.  (5-4)-( 5-6) and (5-9)-( 5-11).  

In this subproblem, the variables irjsx  and jrkz  are connected only by the constraints (5-4). There 

always exists an optimal solution of ),(2 LR  where a depot j with a size s is only supplied by its ‘cheapest 

source’. For any Ii , Jj , jSs , set 
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 s.t. (5-5), (5-6), (5-9) and (5-11),  

where jsw = )(min , mnmnmjmnRnIm /cpαtp
m

 . This problem can be further decomposed into |S||J| j  

independent 0-1 knapsack problems, which can be solved to optimality by using the MINKNAP developed 

by Pisinger (1995). Then ),(2 LR  is solved by setting a maximum of one jsv  to 1 with the smallest 

negative knapsack objective value for each Jj  

Let ),( βαLB  be the sum of the objective value of the solution of )(1 LR  and ),(2 LR  , and 
Kk

k . 

Obviously, ),( βαLB  is a lower bound of the TECFLP-PDSS for giving Lagrangean multipliers ),( β . 

5.3.2 Subgradient optimization for the TECFLP-PDSS 

To solve the Lagrangean relaxation ) ,( βαLR , a subgradient optimization procedure is adopted to 

approximately solve the corresponding Lagrangean dual problem. 

 D : ),( max
 0,


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LR


 (5-16) 

The subgradient optimization procedure is an iterative process, which solves the Lagrangean relaxation 

problem and then updates the Lagrange multipliers for the next iteration by using the current subgradient 

information. The process is terminated if one of the stopping criteria is met. 

Let ( lû , lx̂ , lv̂ , 
lẑ ) be the optimal solution of ),( llLR   at iteration l. Denoting l
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, the multipliers for the next iteration l + 1 are 

updated by 
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 is the step size at iteration l, BUB is the best upper 

bound of the TECFLP-PDSS found in the previous l-1 iterations. ),( ll βαLB is the lower bound of the 

TECFLP-PDSS at iteration l. λ  is a parameter in the interval ]2,0( , which is halved if the best lower bound 

hasn’t been improved for a given number NLag of consecutive iterations.  

Let BLB be the best lower bound found in previous l-1 iterations, LLag be the maximum number of 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

81 

 

iterations and Lagε  be a positive small scalar. Then the subgradient optimization procedure is described in 

detail in Algorithm 5.1. 

Algorithm 5.1: Subgradient optimization procedure for the TECFLP-PDSS 

Step 1: Initialize Lagε , LLag and 0λ , where 0λ  is a parameter in the interval (0, 2]. Set BUB := + ∞, BLB := 

– ∞, 0
irα  := 0, Ii , iRr , 0

kβ  := 0, Kk , λ  := 0λ  and l := 1. 

Step 2: Solve the subproblems )(1
lαLR  and ),(2

ll βαLR  to optimality. Let LB = ),( ll βαLB . If LB > BLB, 

then set BLB := LB. If no improvement of BLB is detected in NLag successive iterations, then set 

λ := λ /2. 

Step 3: Construct a feasible solution of the TECFLP-PDSS based on the Lagrangean relaxation solution 

(Section 5.3.3). Let UB be the objective value of this solution. If UB < BUB, then set BUB := UB. 

Step 4: If l > LLag and λ  < Lagε , stop. The dual solution corresponding to the BLB is regarded as the 

optimal dual solution and the solution corresponding to the BUB  is regarded as the optimal primal 

solution. 

Step 5: Update l
irα  for Ii , iRr  and l

kβ  for Kk   according to the formulas (5-17) and (5-18) 

respectively. 

Step 6: Set l := l+1 and return to Step 2. 

We observe that as the iterations move on, the value of parameter λ  becomes smaller and smaller until 

the lower bound ),( ll βαLB  becomes stable, and no further improvement of BLB can be achieved. To escape 

this ‘dilemma’, we restart the subgradient optimization procedure by initializing the BUB and BLB with the 

best values obtained in the previous subgradient procedure and initializing the Lagrangean multipliers with 

the multipliers that lead to the BLB. Starting from a relatively good initial point and resetting parameter λ , 

we hope that the subgradient optimization procedure can increase the probability of obtaining a better lower 

bound.  

5.3.3 Feasible solution construction 

Feasible solutions are used in the subgradient optimization procedure to calculate the step size and to 

get the final solution when the subgradient optimization procedure terminates. A feasible solution of the 

TECFLP-PDSS is constructed by repairing the Lagrangean relaxation solution at each iteration of the 

subgradient optimization procedure, i.e., at iteration l. The task of constructing a feasible solution is divided 

into three stages: 1) open plants and select their sizes, 2) open depots and select their sizes, and determine the 

customer-depot assignments, 3) determine the product flows from the plants to the depots.  

1) Open plants and select their sizes 

We first open the plants i  with the size r , where },1,|),{(),( i
l
ir RrIiuriri  ˆ  and denote these 

opened plants as I . If the sum of the capacities of the opened plants can cover all of the customers’ 
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demands, the locations and sizes of the plants are determined. Otherwise, we consider to open more plants 

and select their sizes, and add these plants into I , or we select larger sizes for the currently opened plants.  

Define l
ir

l
ir

l
ir fpFP  , Ii , iRr  

as the evaluation cost of opening a plant i with size r at iteration l. 

Let l
irFPΔ  and l

irCPΔ  
be the variations of the evaluation cost and capacity respectively. l

irFPΔ  is calculated as 

l
ri

l
ir FPFP  , if plant i is opened with size r , l

irFP  otherwise. l
irCPΔ  is calculated as riir cpcp   if plant i is 

opened with size r , ircp  otherwise. Note we only consider plant sizes that are greater than the currently 

selected size for an opened plant. The main idea of the proposed construction procedure is to iteratively open 

a new plant or to change the size of an opened plant until all of the customers’ demands are covered. At each 

iteration, we open a plant i and select its size r with the smallest value of l
ir

l
ir CP/FP ΔΔ . For a previously 

opened plant, if its size is changed we only preserve the latest one. The detailed procedure for opening  

plants and selecting their sizes is summarized in Algorithm 5.2.  

Algorithm 5.2: Opening plants  and selecting their sizes 

Step 1: Open all of the plants i with the size r if  uir = 1 in the Lagrangean relaxation solution, and denote 

these plants as set I . 

Step 2: If the total capacities of the opened plants is equal to or greater than the total quantity of the 

customers’ demands, return the opened plants and their sizes, stop.  

Step 3: If the total capacities of the opened plants is less than the total quantity of the customers’ demands, 

repeat Steps 5.3.1-5.3.2 until all of the customers’ demands are covered. 

Step 3.1: Compute l
irFPΔ  and l

irCPΔ  for each potential plant and possible size. 

Step 3.2: Open the plant i and select the size r if it has the smallest l
ir

l
ir CP/FP ΔΔ  value and add it into I . 

Preserve the size r for the plant i if it has been previously opened.  

2) Open depots and select their sizes, and determine the customer-depot assignments 

To open depots and select their sizes, and determine the assignments of the customers to these opened 

depots, we repair the Lagrangean relaxation solution until all of the customers are assigned exactly to one 

depot. Based on the customer-depot assignments in the Lagrangean relaxation solution, we partition the set K 

of the customers into three mutually disjointed subsets:  

K0 = 0}:{  
 Jj Ss

l
jsk

j

zKk ˆ , 

K1 = 1}:{  
 Jj Ss

l
jsk

j

zKk ˆ  and  

K2 = 1}:{  
 Jj Ss

l
jsk

j

zKk ˆ ,  

such that 210 KKK UU  = K. Let jsk  = jkjs ch   be the cost of assigning a customer k to a depot j with a size 

s. 
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First, we open the depot j with the size s if 1l
jsû , Jj , jSs  and denote the set of these opened 

depots as J . Second, the customers of the subset K1 are assigned to the depot j with size s where l
jskẑ = 1. 

Third, the customers of the subset K2 are assigned to the depot j with size s where  jsk  is the smallest 

among all of the depots with l
jskẑ  = 1. Fourth, the customers belong to the set K0 are assigned to the depots 

one by one based on a regret value. This regret value of a customer k is defined as the difference between the 

second smallest and the smallest jsk  values among all of the opened depots whose residual capacities are 

greater than kd . If a customer has only one opened candidate depot, then it is given a very high regret value. 

At each time, the customer with the largest regret value is assigned to the depot j with size s where jsk  is 

the smallest. Finally, the opened depots to which no customer has been assigned are closed to save opening 

cost.  

The procedure of opening depots and choosing their sizes, and determining the assignments of the 

customers is shown in Algorithm 5.3. 

Algorithm 5.3: Opening depots and choosing their sizes, and determining the customer-depot assignments 

Step 1: Open all of the depots j with s if l
jsv̂  = 1 and denote these opened depots as J . 

Step 2: Assign the customers in the subset K1 to the opened depot j with size s where l
jskẑ  = 1.  

Step 3: Assign the customers in the subset K2 to the depot j with size s where jsk  is the smallest and l
jskẑ  

= 1. 

Step 4: Compute the regret values for all of the unassigned customers. Choose the customer with the 

maximum regret value. Assign the chosen customer to the depot with the smallest jsk value, 

among those depots with sufficient residual capacities. Repeat this Step until all of the customers 

are assigned or an unassigned customer is failed to be assigned to the opened depots with sufficient 

residual capacities. 

Step 5: Close the depots to which no customer has been assigned and delete them from the set J .  

3)  Determine the product flows from the plants to the depots 

If a set of plants I  with sufficient capacities to satisfy all of the customers’ demands are opened by 

Algorithm 5.2, a set of depots J  are opened and feasible assignments of all of the customers to these opened 

depots are determined by Algorithm 5.3, the product flows from the plants to the depots are determined by 

solving a transportation problem between the plants and the depots. In this transportation problem, the 

opened plants and depots are viewed as the source nodes and the destination nodes respectively, the plants 

capacities and the customers’ demands assigned to the depots are viewed as the supply capacities and 

destination demands respectively. After solving the transportation problem to optimality, we close the 

opened plants whose products are not flowing out to any depot and the depots to which no customers are 

assigned to save opening cost.  
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5.4 Hybrid simulated annealing tabu search 

algorithm for the TECFLP-PDSS 

As stated in chapter 3, the TS is a local search based metaheuristic. The TS uses short term memory of 

recently visited solutions known as tabu list to escape from local optima, but tabu list has a deterministic 

nature and thus cannot avoid cycling. On the other hand, the simulated annealing (SA), introduced by 

Kirkpatrick et al. (1983), is an iterative local search metaheuristics. The SA uses a probability function to 

escape local optima. The stochastic characteristic of the SA avoids cycling but the rate of improvement of 

solution is very slow, because it has no memory of the recently visited solutions. So it is always possible for 

the SA search to return to the same solution again. However, with the help of a short-term memory, the 

search of the SA can be restricted from looping back to previously visited solutions and the performance of 

the SA can be enhanced significantly. Keeping the above ideas in mind, the hybridization of the SA and TS 

has been applied in many combinatorial optimization problems in the literature, such as the capacitated 

clustering problem (Osman and Christofides, 1994), modeling machine loading problem (Swarnkar and 

Tiwari, 2004) and vehicle routing problem (Küçükoğlu and  Öztürk, 2015) etc. To further improve the best 

solution of the TECFLP-PDSS found in the Lagrangean relaxation approach, we design a hybrid simulated 

annealing tabu search (HSATS) for the TECFLP-PDSS. The HSATS takes advantages of the stochastic 

feature of the SA to escape from local optima and the short term memory strategy of the TS to avoid cycling. 

The proposed HSATS is described in detail in the following.  

5.4.1 Move and neighborhood definitions 

Similar as the TECFLP-DSS, a solution ξ  of the TECFLP-PDSS consists of u, x, v and z. Define   = 

(v, z) be the set of v and z. In the implementation of the HSATS, we fix the locations of the plants and their 

sizes as the input feasible solution. Moves are only based on the customer-depot assignments, that is, moves 

only change  . Two kinds of moves are used: shift that reassigns one customer from one depot to another, 

swap that interchanges the assignments of two customers that are currently assigned to two different depots. 

Accordingly, the neighborhoods )(shiftN  and )(swapN  are defined as the set of solutions   that can be 

attained from   by performing a shift move and a swap move respectively.  

5.4.2 Tabu list 

A tabu list (TL) is used in the implementation of the HSATS to prevent the recently visited solutions 

from being revisited. The element (k, j) of the TL records the last iteration number that it will be forbidden to 

assign the customer k to the depot j. If a customer k assigned to a depot j is reassigned to other depots, the 

assignment of the customer k to the depot j will be forbidden in the next t iteration. The parameter t is 

randomly selected from [Tmin, Tmax].   
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5.4.3 Annealing strategy 

The annealing schedule determines the value of the transition probability used in the selection criterion 

and thus plays an important role in the HSATS. In the implementation of the HSATS, an initial temperature 

T0 is given and a constant annealing rate   is used. The temperature Ti+1 at iteration i+1 (i  = 0, 1, …) is 

calculated as Ti+1 = Ti ∙  . Two kinds of thermal equilibrium iteration numbers, Mt and Nt, are used at each 

temperature. Mt denote the total iteration number and Nt denote the transition iteration number. Both Mt and 

Nt are selected in terms of problem characteristics, i.e., Mt is set as |K|ρ 1  and Nt  is set as |K|ρ 2 , where 1ρ  

and 2ρ  are positive integer numbers and |K|  is the number of the customers. If the temperature is reduced 

successively Lt iterations without improvement, we increase the current temperature by multiplying it by a 

parameter η , which is larger than one, expecting to escape from the current local minimum.  

5.4.4 The steps of the HSATS 

Define )(ξF  as the objective function of ξ  and )(ζf  as the objective function of  . In the 

implementation of the HSATS, we first improve  , if a better  is found, then the flows x are determined 

by solving the corresponding transportation problem from the plants to the depots to obtain a new solution 

ξ' .  

The HSATS starts from a high initial temperature T0 and terminates until the temperature T has reached 

the final temperature t . The search process consists of a loop of local searches, a step for determining the 

flows x and a step for dropping temperature. Each of the local search starts from the best solution *  found 

so far and performs Mt iterations or Nt transition iterations at each temperature. After the local search, if a 

better local solution '  is found, x is determined by solving the corresponding transportation problem and 

the incumbent solution *ξ  is updated if a better solution ξ'  is found. Finally, the current temperature is 

reduced by multiplying it by μ .  

The steps of the HSATS are illustrated in algorithm 5.4, where lt is the successive iteration number of 

dropping the temperature without improvement, mt and nt are the total iteration and transition iteration 

numbers at each temperature respectively.  

Algorithm 5.4: Steps of the HSATS 

Step 1: Set the incumbent solution *ξ  as the best solution ξ  found in the Lagrangean relaxation approach 

and * as the solution of v and z in the solution *ξ , initialize T0, Lt, μ , η , tε ,  Mt  and Nt by 

setting 1ρ  and 2ρ , set lt := 0 and T := T0. 

Step 2: While tε  > T, initialize the tabu list TL. If lt equals to Lt , set T := ηT   and lt :=0. Set the current 

solution ζ  := *ζ , set the local solution ζ'  := *ζ , mt := 0 and nt := 0, repeat Steps 2.1-2.3. 

Step 2.1: While mt < Mt  and nt < Nt , randomly choose a shift or swap move subject to depot capacity 
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constraints, compute the cost variations Δ  of the move and set mt := mt +1. If )(ζf  + Δ< )(ζ'f , or 

if Δ  < 0 and the move does not violate the tabu condition, or if σ  < Δ/Te and the move does not 

violate the tabu condition, where σ  is random parameter selected uniformly from (0, 1), renew the 

current solution   by performing the chosen move, update the TL and set nt :=  nt +1. If )(ζf  < 

)(ζ'f , set ζ'  := ζ . 

Step 2.2: If )(ζ'f  > )(ζ*f , set lt := lt +1, otherwise solve the corresponding transportation problem 

composed of u and '  to determine the new flows x'  and thus to obtain a new solution ξ'  consist 

of u, x'  and ' . If )(ξ'F < )(ξ*F , set *ξ := ξ' ,  *ζ := ζ'  and lt := 0, otherwise set lt := lt + 1. 

Step 2.3: Set T := T . 

Note that at each temperature, the HSATS starts from the best solution *  found so far and each 

element (k, j) of the TL is set to – 1. The cost variations Δ  incurred by performing a move consists of the 

variations in the assignment cost and the variations in the depot opening cost. A move is accepted 

immediately if it satisfies the aspiration condition, i.e., the sum of its Δ  and )(ζf  is less than )(ζ'f . A 

move does not satisfy the aspiration condition is accepted only if it does not violates the tabu condition and 

Δ  is negative or σ  < Δ/Te , where σ  is random parameter selected uniformly from (0, 1). The tabu 

condition is based on the transition iteration nt. When a move is performed and a transition occurs, assuming 

that a customer k assigned to a depot j is reassigned to other depot in this move, the element (k, j)  of the TL 

is reset to nt + t, which means assigning the customer k to the depot j will be forbidden in the next t transition 

iteration. 

5.5. Computational results 

In this study, the proposed Lagrangean relaxation approach and the HSATS are coded in C++. The 

Numerical experiments are carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU 

Q8200 and 2 G RAM under a Microsoft Windows 7 operating system. No instances of the TECFLP-PDSS 

are publicly available since it is a new problem. Thus in section 5.1, we describe the way to generate random 

instances. In section 5.2, 50 instances are tested to evaluate the solution quality of the Lagrangean relaxation 

approach and the HSATS, and the results are compared with those of CPLEX. In addition, 270 instances 

with different problem parameters, such as the ratios of plant capacity to customer demand, the ratios of 

depot capacity to customer demand, the numbers of plant size and the numbers of depot size, are tested to 

show the solution quality and speed of the proposed Lagrangean relaxation approach and the HSATS.  

5.5.1 Test instances 

Based on the instance generation of the CFLP (Cornuejols et al., 1991) and the TSCFLP (Klose, 1999), 

the instances are generated in the following way. The coordinates of potential plants, potential depots and 

customers are randomly selected from a unit square. The unit transportation costs are 10 times the Euclidean 
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distance between the locations. Let U[a, b] denote a uniform distribution in interval [a, b]. The demand dk of 

customer Kk   is generated from U[5, 35]. Assuming that cpip ≤ cpiq if p ≤ q, we first generate |R|i i
cp  for 

each plant Ii  from U[10, 160] and then scale the capacities using the ratio rcpd =   Kk kIi |R|i dcp
i
/ . For 

each |R|r i , cpir is set to |R|/cpr i|R|i i
 , where   is a parameter randomly selected from U[0.9, 1.1]. As for 

the capacity cdjs for each depot Jj , similarly, we first generate |S|j j
cd  from U[10, 160] and then scale the 

capacities using the ratio rcdd =   Kk kJj |S|j dcd
j
/ . For each |S|s j , cdjs is set to |S|/cds j|S|j j

 . To reflect 

the plants’ and depots’ economies of scale, the unit producing cost for a smaller size of a plant is assumed to 

be larger than that for a bigger size of the same plant and the handling cost for a smaller size of a depot is 

assumed to be larger than that for a bigger size of the same depot. For each plant Ii  and depot Jj , we 

first generate the unit producing cost  pi1 and unit handling cost hj1 from U[5, 7] respectively. Then, for any r 

> 1 and s > 1, pir and hjs are obtained by multiplying the producing cost pi(r–1) and handling cost hj(s–1) by a 

random parameter selected from U[0.9, 0.95] respectively. The fixed opening costs for each size of a plant or 

depot is obtained by multiplying its capacity by a parameter uniformly selected from U[20, 25].  

5.5.2  Results 

In our implementation of the subgradient optimization procedure, the parameters are set as follows: LLag 

= 3000, Lagε = 10
-4

, NLag = 40 and 0λ  = 1.5. For the HSATS, parameters Tmin and Tmax are set to 15 and 20 

respectively, T0 is set to 200, μ  is set to 0.98,  Lt is set to 20, 1ρ  is set to 100, i.e., Mt = 100∙ ||K , 2ρ  is set to 

2, i.e., Nt = 2∙ ||K , η  is set to 1.1, tε  is set to 0.01. The CPLEX version 12.5 with default setting is used as 

the MIP solver.  

Let UBLag be the BUB found by the Lagrangean relaxation approach, UBH be the BUB found by the 

HSATS, UBC be the BUB found by CPLEX and LBLag be the BLB found by the Lagrangean relaxation 

approach. The computational results are shown in Tables 5.1-5.5. For each problem set, five instances are 

generated and tested.  

To simplify the presentation of computational results, the column headings to be used are explained as 

follows: 

|K||J||I|   the number of the plants, the depots and the customers respectively 

GLag the relative gap between UBLag and LBLag, i.e., (UBLag – LBLag) / LBLag ×100 

GH the relative gap between UBH and LBLag, i.e., (UBH – LBLag) / LBLag ×100 

GHC the deviation of UBH from UBC, i.e., (UBH – UBC) / UBC ×100 

TLag the CPU time used by the Lagrangean relaxation approach 

TH the CPU time used by the HSATS 

TLagH the CPU time used by the Lagrangean relaxation approach and the HSATS 

TC the CPU time of CPLEX 
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Avg. the  average value of gaps or CPU times for each instance set 

Max. the  maximum value of gaps or CPU times for each instance set 

In Table 5.1, we compare the results of the Lagrangean relaxation approach and the HSATS using 

CPLEX in order to evaluate the performances of the Lagrangean relaxation approach and the HSATS. For 

the instances tested in Table 5.1, rcpd = 2.0, rcdd = 2.0, |R| i  = 3 and |S| j  = 3. The experimental results show 

that CPLEX can find an optimal solution only for the instances of the set 1, and it meets an “out of memory” 

error for the instances of the other sets. In the implementation, no time limit is imposed on CPLEX, it 

terminates itself when an optimal solution is found or when the ‘out of memory’ error occurs.  

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.74% to 2.00%, 

and the maximum gap is 2.42%. The average gaps between the HSATS upper bounds and the Lagrangean 

lower bounds range from 0.51% to 1.75%, and the maximum gap is 2.35%. It is clear that the Lagrangean 

relaxation approach provides both well upper bounds and good lower bounds for the TECFLP-PDSS and the 

HSATS also performs well. When comparing with CPLEX, the average gaps between the HSATS upper 

bounds and those of the CPLEX range from -0.45% to 0.70%. These gaps decrease as the problem size 

increases. The HSATS can provide better solutions than CPLEX for the larger problems, e.g., the gaps 

between the HSATS upper bound and those of the CPLEX for the instances of set 10 is -0.45 %. In terms of 

the computational time, CPLEX takes much more CPU time than the Lagrangean relaxation approach and 

the HSATS. The Lagrangean relaxation approach and the HSATS only take several to hundreds of seconds 

of CPU time while the CPLEX  takes thousands of seconds. Thus the Lagrangean relaxation approach and 

the HSATS is much more effective than the CPLEX for solving the TECFLP-PDSS. 

Table 5.1: Computational results and comparisons of the HSATS bounds with those of  CPLEX  

|K||J||I|   GLag (%) GH (%) GHC (%) TLagH (s) TC (s) 

GLag Avg. GH Avg. GHC Avg. TLagH Avg. TC Avg. 

 5×10×40 

2.13  

 

2.00 

2.09  

 

1.75 

0.42  

 

0.58 

19.8  

 

17.0 

9474.0  

 

1980.8 

1.76 1.69 0.74 12.7 41.6 

2.25 1.26 0.58 12.9 48.2 

1.41 1.36 0.21 21.9 58.5 

2.42 2.35 0.95 17.7 281.8 

           

 10×20×80 

1.42  

 

1.74 

0.87  

 

1.38 

0.15  

 

0.40 

39.5  

 

40.7 

23164.5  

 

12312.4 

2.02 1.86 0.81 36.9 12306.5 

1.68 1.36 0.82 40.2 11357.0 

1.23 0.86 0.24 33.6 5258.5 

2.34 1.92 -0.01 53.7 9475.3 

           

 15×30×120 

1.62  

 

1.62 

1.06  

 

1.29 

0.32  

 

0.70 

88.1  

 

71.9 

8263.2  

 

6998.2 

2.06 1.84 1.28 73.0 7120.3 

1.70 1.53 1.01 70.2 6589.5 

1.21 0.79 0.32 63.5 4849.8 

1.53 1.22 0.57 64.6 8168.2 

           

20×40×160 

1.29  

 

1.37 

0.85  

 

1.00 

0.28  

 

0.40 

128.7  

 

119.8 

6416.5  

 

5052.7 

1.29 0.84 0.21 118.3 5719.6 

1.38 1.12 0.42 118.3 4496.3 
1.18 0.82 0.20 129.5 5075.1 

1.72 1.40 0.90 104.3 3556.0 
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 25×50×200 

0.98  

 

1.17 

0.65  

 

0.85 

-0.04  

 

0.31 

178.1  

 

196.0 

4874.0  

 

5429.6 

1.02 0.62 0.13 233.3 5913.4 

1.09 0.74 0.22 204.5 5188.1 

1.46 1.32 0.71 191.7 5775.6 

1.32 0.92 0.52 172.5 5397.1 

           

30×60×240 

1.17  

 

0.99 

0.78  

 

0.62 

0.43  

 

0.16 

262.2  

 

278.8 

9509.8  

 

7819.4 

1.07 0.63 0.27 336.4 7613.8 

1.07 0.50 0.01 251.3 7551.9 

0.69 0.34 -0.18 245.4 6234.1 

0.96 0.84 0.28 298.8 8187.7 

           

35×70×280 

0.79  

 

0.88 

0.56  

 

0.64 

0.23  

 

0.23 

444.0  

 

437.4 

8072.8  

 

8141.6 

0.87 0.43 0.09 435.2 6942.3 

1.01 0.88 0.41 433.4 8406.1 

0.80 0.60 0.25 418.6 8241.9 

0.96 0.74 0.17 455.8 9044.7 

           

40×80×320 

0.68  

 

0.81 

0.45  

 

0.57 

-0.11  

 

-0.24 

582.5  

 

623.7 

6454.5  

 

6017.8 

0.91 0.54 -0.24 677.0 5648.2 

0.72 0.57 -0.25 569.5 6405.7 

0.75 0.59 -0.50 692.5 5810.5 

0.98 0.71 -0.13 597.2 5770.2 

           

45×90×360 

0.74  

 

0.78 

0.43  

 

0.52 

-0.53  

 

-0.31 

964.0  

 

905.3 

5456.9  

 

7000.9 

0.63 0.40 -0.40 771.3 7598.2 

0.84 0.54 -0.09 903.6 7723.9 

0.80 0.62 -0.26 952.3 7249.0 

0.87 0.60 -0.27 935.1 6976.5 

           

50×100×400 

0.84  

 

0.74 

0.56  

 

0.51 

-0.49  

 

-0.45 

1250.9  

 

1314.8 

5515.3  

 

5651.6 

0.67 0.47 -0.43 1276.0 5886.4 

0.77 0.42 -0.45 1537.9 5418.8 

0.73 0.62 -0.44 1160.3 5809.1 

0.70 0.49 -0.42 1349.1 5628.5 

           

Average 1.21  0.91  0.18      

In Table 5.2, we report the performances of the Lagrangean relaxation approach and the HSATS for the 

instances with different plant capacities and problem sizes. For all of the instances tested in Table 5.2, rcdd = 

2.0, |R| i  = 3 and ||S j  = 3. The average gaps between the Lagrangean upper bounds and lower bounds range 

from 0.62% to 1.40% and the maximum gap is 1.68%, the average gaps between the HSATS upper bounds 

and the Lagrangean lower bounds range from 0.37% to 1.03% and the maximum gap is 1.30%, which 

indicate that the Lagrangean relaxation approach and the HSATS perform well and they are effective for the 

instances with different plant capacities. In addition, both the average gaps between the Lagrangean upper 

bounds and lower bounds, and the average gaps between the HSATS upper bounds and the Lagrangean 

lower bounds increase as rcpd increases for the instances of the same size, e.g., for the 50×100×400 instances, 

the average gaps between the Lagrangean upper bounds and lower bounds are 0.62%, 0.72%, 0.82% and 

0.95% for rcpd = 1.5, 2.0, 2.5 and 3.0 respectively, and the average gaps between the HSATS upper bounds 

and the Lagrangean lower bounds are 0.37%, 0.51%, 0.54% and 0.63% for rcpd = 1.5, 2.0, 2.5 and 3.0 

respectively. Moreover, the CPU time used by the Lagrangean relaxation approach and the HSATS increases 

as rcpd increases for the instances of the same size, e.g., for the 50×100×400 instances, the CPU time used by 



5. Two-echelon capacitated facility location problem with plant and depot size selection 

90 

 

the Lagrangean relaxation approach and the HSATS is 961.1, 1028.8, 1273.5 and 1587.6 seconds for rcpd = 

1.5, 2.0, 2.5 and 3.0 respectively. It can be concluded that the Lagrangean relaxation approach and the 

HSATS are more effective for smaller rcpd than for larger rcpd.   

Table 5.2: Computational results for the instances with different plant capacities 

|K||J||I|   rcpd GLag (%) GH (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

25×50×200 

 

 

1.5 

0.95 

 1.12 

0.73  

 

0.74 

129.5  

 

124.8 

37.7  

 

57.0 

167.3  

 

181.8 

1.29 0.75 109.8 59.0 168.8 

1.14 0.70 136.6 61.9 198.5 

1.28 0.93 124.8 73.3 198.0 

0.92 0.61 123.3 53.0 176.3 

            

25×50×200 

 

 

2.0 

1.08 

1.13 

0.75  

 

0.78 

123.8  

 

136.2 

64.5  

 

60.2 

188.3  

 

196.5 

0.87 0.58 147.1 62.4 209.5 

1.24 0.54 127.6 43.5 171.1 

1.59 1.30 146.6 74.8 221.5 

0.86 0.74 136.0 56.0 191.9 

            

25×50×200 

 

 

2.5 

1.52 

1.40 

1.06  

 

1.03 

152.6  

 

159.3 

89.3  

 

54.3 

241.9  

 

213.6 

1.47 1.17 165.8 49.0 214.8 

1.17 0.75 152.2 42.5 194.6 

1.54 1.21 144.6 40.8 185.4 

1.30 0.98 181.4 50.1 231.5 

            

25×50×200 

 

 

3.0 

1.24 

1.36 

0.97  

 

0.91 

179.5  

 

186.8 

51.0  

 

51.8 

230.6  

 

238.6 

1.05 0.99 231.4 52.3 283.7 

1.19 0.94 169.9 38.7 208.6 

1.65 0.65 175.4 45.7 221.0 

1.68 1.00 177.8 71.5 249.2 

            

35×70×280 

 

 

1.5 

1.11 

0.88 

0.71  

 

0.62 

248.7  

 

281.4 

98.4  

 

86.3 

347.0  

 

367.8 

0.75 0.41 300.3 109.8 410.1 

0.70 0.46 288.4 77.6 366.1 

0.99 0.80 301.2 67.6 368.8 

0.85 0.71 268.6 78.3 346.8 

            

35×70×280 

 

 

2.0 

1.04 

0.97 

0.50  

 

0.66 

328.3  

 

325.2 

109.7  

 

87.7 

438.0  

 

412.9 

0.99 0.79 291.3 87.8 379.2 

0.72 0.56 315.8 66.3 382.1 

1.09 0.84 356.5 81.8 438.3 

1.02 0.59 334.2 92.7 426.9 

            

35×70×280 

 

 

2.5 

0.89 

1.00 

0.66  

 

0.68 

367.6  

 

387.7 

74.1  

 

78.3 

441.7  

 

466.0 

1.12 0.83 358.7 83.1 441.8 

1.13 0.68 445.2 92.2 537.3 

0.96 0.70 379.2 76.5 455.7 

0.88 0.55 388.0 65.5 453.4 

            

35×70×280 

 

 

3.0 

1.60 

1.17 

1.10  

 

0.86 

492.5  

 

503.5 

58.4  

 

82.0 

550.9  

 

585.5 

0.98 0.65 613.2 105.2 718.4 

1.02 0.73 494.1 54.3 548.5 

0.87 0.70 482.0 78.9 560.9 

1.37 1.11 435.8 113.3 549.1 

            

 

50×100×400 

 

 

1.5 

0.51 

  

0.62 

0.31  

 

0.37 

818.2  

 

805.3 

147.1  

 

155.8 

965.3  

 

961.1 

0.75 0.48 832.0 156.2 988.1 

0.65 0.34 761.2 163.4 924.5 

0.57 0.38 739.4 90.8 830.2 
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0.60 0.32 875.6 221.7 1097.3 

            

50×100×400 

 

 

2.0 

0.79 

0.72 

0.53  

 

0.51 

921.8  

 

880.2 

203.0  

 

148.6 

1124.8  

 

1028.8 

0.87 0.68 871.5 134.6 1006.1 

0.83 0.52 851.3 161.7 1013.0 

0.54 0.38 852.8 103.3 956.1 

0.54 0.44 903.8 140.3 1044.2 

            

50×100×400 

 

 

2.5 

1.12 

0.82 

0.79  

 

0.54 

1181.9  

 

1124.7 

159.2  

 

148.9 

1341.0  

 

1273.5 

0.55 0.33 1144.3 136.6 1280.8 

0.84 0.63 1038.8 158.7 1197.5 

0.88 0.50 1146.8 153.9 1300.6 

0.72 0.44 1111.7 136.0 1247.7 

            

50×100×400 

 

 

3.0 

0.73 

0.95 

0.48  

 

0.64 

1401.7  

 

1441.1 

174.9  

 

146.5 

1576.6  

 

1587.6 

1.11 0.62 1501.3 144.7 1646.0 

1.12 0.76 1386.1 118.4 1504.5 

0.89 0.76 1403.8 145.3 1549.1 

0.88 0.57 1512.5 149.1 1661.6 

            

Average  1.01  0.69        

The performances of the Lagrangean relaxation approach and the HSATS for the instances with 

different depot capacities and problem sizes are reported in Table 5.3. For all of the instances tested in Table 

5.3, rcpd = 2.0, |R| i  = 3 and |S| j  = 3. The average gaps between the Lagrangean upper bounds and lower 

bounds range from 0.76% to 1.22% and the maximum gap is 1.47%, the gaps between the HSATS upper 

bounds and the Lagrangean lower bounds range from 0.48% to 0.86% on average and the maximum gap is 

1.20%. It is clear that the Lagrangean relaxation approach and the HSATS perform well and they are 

effective for the instances with different ratio rcdd. It can be seen from Table 5.3 that the ratio rcdd does not 

have a significant influences on the solution quality and computational time, e.g., for the 50×100×400 

instances, the average gaps between the Lagrangean upper bounds and lower bounds are 0.76%, 0.83%, 

0.77% and 0.81% for rcdd = 1.5, 2.0, 2.5 and 3.0 respectively, the average gaps between the HVNTS upper 

bounds and the Lagrangean lower bounds are 0.48%, 0.54%, 0.54% and 0.55% for rcdd = 1.5, 2.0, 2.5 and 3.0 

respectively, and the average CPU time is 1157.2, 1033.0, 1044.7 and 882.6 seconds for rcdd = 1.5, 2.0, 2.5 

and 3.0 respectively.   

Table 5.3: Computational results for the instances with different depot capacities 

|K||J||I|   rcdd GLag (%) GH (s) TLag (s) TH s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

25×50×200 

 

 

1.5 

1.19 

1.16 

0.80  

 

0.85 

141.1  

 

137.6 

49.5  

 

54.1 

190.6  

 

191.7 

1.14 0.89 137.6 43.2 180.8 

1.11 0.71 127.7 53.7 181.4 

0.96 0.81 137.3 67.6 204.8 

1.42 1.06 144.3 56.7 201.0 

            

25×50×200 

 

 

2.0 

1.42 

1.22 

1.20  

 

0.81 

123.6  

 

131.8 

39.0  

 

44.2 

162.6  

 

176.0 

1.28 0.70 146.4 59.3 205.7 

1.47 0.78 120.5 33.6 154.1 

0.73 0.38 126.0 49.0 175.0 

1.21 0.97 142.4 40.2 182.5 

            

 

 

 

 

1.41  

 

1.19  

 

117.7  

 

34.8  

 

152.4  

 1.39 0.77 128.7 47.1 175.7 
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25×50×200 2.5 0.99 1.16 0.92 0.86 148.0 128.3 37.3 41.8 185.3 170.1 

1.14 0.72 133.2 46.1 179.3 

0.88 0.69 113.9 43.9 157.8 

            

25×50×200 

 

 

3.0 

1.22 

1.08 

1.09  

 

0.75 

151.7  

 

122.5 

30.7  

 

41.9 

182.4  

 

164.4 

0.69 0.55 109.6 39.5 149.0 

1.30 0.77 121.6 53.3 174.9 

1.05 0.40 114.7 43.8 158.5 

1.14 0.94 114.8 42.4 157.2 

            

35×70×280 

 

 

1.5 

1.10 

0.89 

0.83  

 

0.60 

306.2  

 

342.4 

133.9  

 

122.2 

440.1  

 

464.6 

0.87 0.54 355.5 123.3 478.7 

0.97 0.73 371.8 75.3 447.1 

0.70 0.47 344.1 155.1 499.2 

0.79 0.44 334.7 123.3 458.0 

            

35×70×280 

 

 

2.0 

0.95 

 0.94 

0.72  

 

0.68 

347.6  

 

348.6 

110.0  

 

80.6 

457.6  

 

429.2 

0.89 0.67 314.4 57.7 372.1 

0.95 0.76 337.3 78.3 415.7 

1.03 0.61 397.9 97.5 495.4 

0.87 0.66 345.9 59.3 405.2 

            

35×70×280 

 

 

2.5 

1.26 

1.02 

0.74  

 

0.66 

348.7  

 

323.2 

92.3  

 

73.1 

441.0  

 

396.3 

0.92 0.57 345.9 61.1 407.0 

1.02 0.76 330.0 63.6 393.6 

0.74 0.50 293.5 71.6 365.1 

1.15 0.75 298.0 77.0 375.0 

            

35×70×280 

 

 

3.0 

0.83 

0.98 

0.51  

 

0.67 

269.5  

 

330.2 

84.7  

 

67.3 

354.2  

 

397.5 

1.12 0.70 298.3 89.5 387.7 

0.87 0.79 387.4 53.5 440.9 

0.88 0.60 281.5 53.1 334.6 

1.18 0.75 414.4 55.8 470.2 

            

50×100×400 

 

 

1.5 

0.94 

0.76 

0.67  

 

0.48 

1011.0  

 

975.0 

143.5  

 

182.2 

1154.6  

 

1157.2 

0.88 0.48 913.6 160.0 1073.6 

0.64 0.45 1049.1 215.7 1264.8 

0.50 0.29 924.5 163.0 1087.5 

0.85 0.50 976.9 228.6 1205.5 

            

50×100×400 

 

 

2.0 

0.88 

0.83 

0.54  

 

0.54 

939.8  

 

907.9 

143.3  

 

125.1 

1083.1  

 

1033.0 

0.79 0.59 918.8 93.0 1011.8 

0.68 0.50 897.9 121.8 1019.7 

0.80 0.53 929.4 90.7 1020.0 

1.01 0.57 853.8 176.7 1030.5 

            

50×100×400 

 

 

2.5 

0.57 

0.77 

0.48  

 

0.54 

770.1  

 

947.4 

82.2  

 

97.3 

852.3  

 

1044.7 

1.01 0.80 1033.4 98.2 1131.6 

0.74 0.46 1104.3 94.3 1198.6 

0.72 0.41 952.6 107.8 1060.5 

0.80 0.56 876.5 103.8 980.3 

            

50×100×400 

 

 

3.0 

0.75 

0.81 

0.40  

 

0.55 

887.3  

 

777.4 

126.7  

 

105.2 

1014.0  

 

882.6 

0.91 0.70 776.0 93.0 869.1 

0.87 0.68 828.6 79.7 908.3 

0.70 0.52 619.8 127.8 747.6 

0.79 0.46 775.3 98.6 873.9 
            

Average  0.97  0.67        
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In Table 5.4, we provide an analysis of the performances of the Lagrangean relaxation approach and the 

HSATS for the instances with different numbers of plant size and problem sizes. For all of the instances 

tested in Table 5.4, rcpd  = 2.0, rcdd = 2.0 and |S| j
 = 3. The Lagrangean relaxation approach and the HSATS 

perform well in that the average gaps between the Lagrangean upper bounds and lower bounds range from 

0.74% to 1.30% and the maximum gap is 1.54%, the average gaps between the HSATS upper bounds and 

the Lagrangean lower bounds range from 0.49% to 0.89% and the maximum gap is 1.19%. The number of 

plant size does not have a significant influence on the solution quality, e.g., for the 50×100×400 instances, 

the average gaps between the HSATS upper bounds and the Lagrangean lower bounds are 0.55%, 0.49%, 

0.49%, 0.52% and 0.49% for |R| i  = 2, 3, 4, 5 and 6 respectively. However, the computational time used by 

the Lagrangean relaxation approach and the HSATS increases regularly as the number of the plant size 

increases, e.g., for the 50×100×400 instances, the average CPU time is 982.9, 1072.1, 1194.9, 1377.0 and 

1474.1 seconds for |R| i  = 2, 3, 4, 5 and 6 respectively. It is more difficult to solve the instances with more 

plant sizes than with less plant sizes for the Lagrangean relaxation approach and the HSATS. 

Table 5.4: Computational results for the instances with different numbers of plant size 

|K||J||I|   |R| i  GLag (%) GH (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

25×50×200 

 

 

2 

1.26 

1.30 

0.60  

 

0.89 

109.0  

 

108.2 

37.0  

 

44.7 

146.0  

 

152.9 

1.35 1.17 112.4 42.4 154.8 

1.32 1.07 110.5 54.3 164.9 

1.54 0.89 101.4 49.0 150.4 

1.00 0.73 107.6 40.6 148.3 

            

25×50×200 

 

 

3 

1.44 

1.18 

1.19  

 

0.88 

129.5  

 

144.1 

49.6  

 

51.4 

179.1  

 

195.5 

0.84 0.59 143.9 50.1 194.0 

1.07 0.66 137.1 59.9 197.0 

1.13 0.86 154.1 45.4 199.5 

1.42 1.09 155.8 52.2 207.9 

            

25×50×200 

 

 

4 

0.95 

1.17 

0.71  

 

0.81 

119.6  

 

157.4 

42.4  

 

59.1 

162.1  

 

216.5 

1.16 0.85 164.1 42.1 206.2 

1.40 0.94 163.8 112.4 276.1 

1.02 0.63 158.7 62.6 221.3 

1.31 0.94 180.8 36.1 216.9 

            

25×50×200 

 

 

5 

1.04 

0.96 

0.62  

 

0.68 

166.8  

 

180.1 

37.9  

 

46.6 

204.7  

 

226.8 

1.09 0.84 164.1 59.6 223.7 

0.95 0.71 189.4 48.6 238.0 

0.81 0.61 190.4 45.9 236.3 

0.93 0.61 189.9 41.2 231.2 

            

25×50×200 

 

 

6 

1.26 

1.20 

1.02  

 

0.92 

215.8  

 

204.6 

42.9  

 

41.6 

258.7  

 

246.3 

1.20 0.91 206.8 39.0 245.7 

0.88 0.77 210.7 41.7 252.3 

1.23 0.85 218.3 44.4 262.7 

1.42 1.04 171.7 40.3 212.0 

            

35×70×280 

 

 

2 

0.92 

0.93 

0.61  

 

0.66 

251.0  

 

273.8 

110.0  

 

82.2 

361.0  

 

356.0 

0.94 0.79 280.1 85.8 365.9 

0.90 0.67 318.9 58.9 377.8 

1.20 0.80 268.8 45.8 314.5 

0.70 0.42 250.2 110.8 361.1 
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35×70×280 

 

 

3 

0.78 

0.89 

0.58  

 

0.58 

367.3  

 

349.7 

54.5  

 

87.1 

421.7  

 

436.8 

0.81 0.57 328.0 84.0 412.0 

0.89 0.56 362.1 110.2 472.2 

1.03 0.49 334.5 114.7 449.2 

0.94 0.71 356.6 72.2 428.8 

            

35×70×280 

 

 

4 

0.67 

0.91 

0.54  

 

0.59 

389.8  

 

382.8 

57.3  

 

75.8 

447.1  

 

458.6 

0.94 0.51 378.2 84.5 462.7 

1.13 0.64 369.9 96.0 465.9 

1.06 0.72 397.7 69.8 467.5 

0.73 0.53 378.3 71.6 449.9 

            

35×70×280 

 

 

5 

0.70 

0.88 

0.57  

 

0.60 

407.0  

 

437.8 

55.5  

 

87.9 

462.5  

 

525.7 

0.99 0.78 411.1 81.7 492.8 

1.11 0.83 456.1 87.4 543.5 

0.71 0.40 459.0 115.6 574.5 

0.87 0.43 456.0 99.1 555.1 

            

35×70×280 

 

 

6 

0.69 

0.93 

0.38  

 

0.69 

486.8  

 

498.2 

79.6  

 

77.0 

566.4  

 

575.2 

0.88 0.74 481.6 75.2 556.8 

1.10 0.90 475.1 91.7 566.8 

0.94 0.63 462.9 65.5 528.3 

1.04 0.79 584.5 73.2 657.7 

            

50×100×400 

 

 

2 

0.80 

0.78 

0.54  

 

0.55 

790.2  

 

832.1 

171.6  

 

150.8 

961.8  

 

982.9 

0.84 0.57 888.9 172.1 1061.0 

0.82 0.65 899.3 118.8 1018.1 

0.65 0.38 744.5 150.1 894.6 

0.83 0.62 837.7 141.2 978.9 

            

50×100×400 

 

 

3 

0.70 

0.75 

0.49  

 

0.49 

979.9  

 

898.7 

96.1  

 

173.4 

1076.0  

 

1072.0 

0.75 0.49 908.1 202.4 1110.4 

0.60 0.39 873.8 153.7 1027.5 

0.85 0.55 877.9 179.6 1057.5 

0.82 0.52 853.7 235.1 1088.8 

            

50×100×400 

 

 

4 

0.88  

 

0.78 

0.47  

 

0.49 

1078.5  

 

1030.2 

95.9  

 

164.7 

1174.4  

 

1194.8 

0.79 0.53 972.4 169.8 1142.2 

0.68 0.47 1103.2 156.6 1259.7 

0.76 0.50 993.0 233.2 1226.2 

0.82 0.49 1003.7 168.0 1171.7 

            

50×100×400 

 

 

5 

0.66  

 

0.74 

0.43  

 

0.52 

1210.6  

 

1191.0 

188.8  

 

186.0 

1399.4  

 

1377.0 

0.71 0.61 1171.6 154.9 1326.5 

0.85 0.62 1216.0 253.3 1469.3 

0.68 0.42 1195.0 157.3 1352.2 

0.80 0.53 1161.9 175.7 1337.6 

            

50×100×400 

 

 

6 

0.54  

 

0.75 

0.30  

 

0.49 

1247.6  

 

1296.4 

155.9  

 

177.7 

1403.5  

 

1474.1 

0.89 0.59 1305.3 301.6 1606.9 

0.62 0.42 1314.9 148.5 1463.5 

0.88 0.52 1256.7 169.5 1426.2 

0.83 0.61 1357.2 113.0 1470.2 

            

Average  0.94  0.66        

The performances of the Lagrangean relaxation approach and the HSATS for the instances with 

different numbers of depot size and problem sizes are reported in Table 5.5. For all of the instances tested in 
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Table 5.5, rcpd = 2.0, rcdd = 2.0 and |S| j  = 3. The Lagrangean relaxation approach and the HSATS provide 

good results in that the average gaps between the Lagrangean upper bounds and lower bounds range from 

0.72% to 1.23% and the maximum gap is 1.78%, the average gaps between the HSATS upper bounds and 

the Lagrangean lower bounds range from 0.49% to 0.94% and the maximum gap is 1.28%. Similar as the 

number of the plant size, the number of depot size does not have a significant influences on the solution 

quality, e.g., for the 50×100×400 instances, the average gaps between the HVNTS upper bounds and the 

Lagrangean lower bounds are 0.49%, 0.50%, 0.49%, 0.57% and 0.49% for |S| j  = 2, 3, 4, 5 and 6 

respectively. But the computational  time used by the Lagrangean relaxation approach and the HSATS 

increases regularly when the number of depot size increases, e.g., for the 50×100×400 instances, the average 

CPU time is 850.6, 996.5, 1295.2, 1337.8 and 1674.9 seconds for |S| j  = 2, 3, 4, 5 and 6 respectively. It is 

also more difficult to solve the instances with more depot size than with less depot size for the Lagrangean 

relaxation approach and the HSATS. 

Table 5.5: Computational results for the instances with different numbers of depot size 

 

|K||J||I|   |S| j  GLag (%) GH (%) TLag (s) TH (s) TLagH (s) 

GLag Avg. GH Avg. TLag Avg. TH Avg. TLagH Avg. 

 25×50×200 

 

 

2 

1.13 

1.21 

0.70  

 

0.94 

103.4   

 

103.0 

29.7  

 

39.7 

133.1  

 

142.8 

0.85 0.65 109.9 46.1 156.0 

1.43 1.09 96.4 40.2 136.6 

1.09 1.00 110.7 31.5 142.2 

1.52 1.28 94.7 51.2 145.9 

            

25×50×200 

 

 

3 

1.17 

1.10 

0.99  

 

0.72 

143.6  

 

128.3 

39.1  

 

59.4 

182.7  

 

187.7 

1.24 0.86 140.4 57.8 198.2 

1.10 0.62 121.7 74.1 195.9 

0.94 0.46 123.7 77.2 200.9 

1.03 0.70 112.3 48.6 161.0 

            

 25×50×200 

 

 

4 

0.95 

1.23 

0.76  

 

0.82 

157.7  

 

164.4 

38.0  

 

50.2 

195.7  

 

214.6 

0.89 0.60 140.5 46.9 187.3 

1.78 1.19 175.6 81.4 257.0 

1.36 0.72 160.1 38.1 198.2 

1.15 0.82 188.3 46.8 235.1 

            

 25×50×200 

 

 

5 

1.01 

1.23 

0.82  

 

0.85 

221.3  

 

192.0 

49.0  

 

90.8 

270.3  

 

282.8 

1.36 0.72 187.9 54.5 242.3 

1.41 1.07 180.3 111.9 292.1 

1.07 0.74 193.0 193.5 386.5 

1.29 0.91 177.5 45.4 223.0 

            

25×50×200 

 

 

6 

1.27 

1.07 

1.02  

 

0.73 

264.7  

 

253.6 

45.8  

 

46.2 

310.5  

 

299.7 

1.01 0.83 216.5 44.4 260.9 

1.10 0.69 314.7 47.4 362.1 

0.96 0.46 212.8 36.7 249.5 

1.03 0.65 259.2 56.6 315.8 

            

35×70×280 

 

 

2 

0.72 

0.89 

0.46  

 

0.58 

228.5  

 

248.6 

91.6  

 

74.1 

320.1  

 

322.7 

0.82 0.51 261.0 53.8 314.8 

1.05 0.83 266.5 72.1 338.6 

0.89 0.49 229.9 69.0 298.9 

0.97 0.59 257.2 83.9 341.0 
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35×70×280 

 

 

3 

0.76 

0.94 

0.59  

 

0.65 

395.1  

 

345.5 

92.9  

 

93.6 

488.0  

 

439.0 

0.98 0.64 331.9 68.1 400.0 

1.10 0.64 327.6 102.4 430.0 

0.88 0.67 351.9 115.8 467.7 

0.96 0.70 320.8 88.8 409.6 

            

35×70×280 

 

 

4 

0.94 

0.88 

0.57  

 

0.59 

439.0  

 

421.2 

88.4  

 

71.9 

527.4  

 

493.2 

1.03 0.87 418.9 58.5 477.4 

0.87 0.39 397.8 91.3 489.1 

0.81 0.70 393.5 52.2 445.8 

0.77 0.43 456.9 69.3 526.2 

            

35×70×280 

 

 

5 

0.77 

0.83 

0.54  

 

0.63 

486.0  

 

509.1 

74.7  

 

77.2 

560.7  

 

586.3 

0.64 0.50 502.3 63.5 565.7 

0.65 0.48 507.1 75.3 582.4 

0.92 0.77 519.3 78.0 597.3 

1.19 0.83 530.9 94.4 625.4 

            

35×70×280 

 

 

6 

0.96 

0.86 

0.79  

 

0.61 

641.6  

 

631.6 

60.2  

 

77.3 

701.8  

 

709.0 

0.69 0.52 617.1 69.5 686.6 

0.65 0.42 599.3 77.4 676.7 

1.04 0.75 626.1 83.8 709.8 

0.97 0.59 674.0 95.8 769.8 

            

 50×100×400 

 

 

2 

0.96 

0.76 

0.54  

 

0.49 

888.9  

 

712.6 

133.0  

 

138.0 

1021.9  

 

850.6 

0.79 0.50 630.9 145.6 776.5 

0.60 0.52 689.1 148.8 837.9 

0.74 0.39 673.3 143.0 816.3 

0.69 0.53 681.0 119.4 800.4 

            

50×100×400 

 

 

3 

0.73 

0.73 

0.45  

 

0.50 

855.0  

 

872.8 

119.6  

 

123.7 

974.6  

 

996.5 

0.68 0.57 845.8 112.8 958.6 

0.91 0.56 844.7 90.0 934.7 

0.65 0.47 861.7 160.4 1022.1 

0.69 0.44 956.6 135.8 1092.4 

            

50×100×400 

 

 

4 

0.79  

 

0.72 

0.50  

 

0.49 

1092.5  

 

1143.0 

169.3  

 

152.2 

1261.8  

 

1295.2 

0.72 0.52 1133.9 136.8 1270.7 

0.66 0.42 1194.7 172.7 1367.4 

0.70 0.54 1154.0 146.2 1300.2 

0.70 0.46 1139.8 136.0 1275.8 

            

 50×100×400 

 

 

5 

0.87  

 

0.80 

0.67  

 

0.57 

1286.2  

 

1222.1 

118.3  

 

115.7 

1404.5  

 

1337.8 

0.71 0.52 1195.9 82.8 1278.7 

0.81 0.63 1218.3 95.0 1313.3 

0.93 0.58 1233.8 137.5 1371.3 

0.67 0.46 1176.2 144.9 1321.1 

            

50×100×400 

 

 

6 

0.87  

 

0.76 

0.56  

 

0.50 

1590.3  

 

1509.0 

141.3  

 

165.9 

1731.6  

 

1674.8 

0.56 0.36 1553.5 205.6 1759.1 

0.68 0.37 1504.8 164.6 1669.5 

0.86 0.57 1578.8 175.4 1754.2 

0.84 0.66 1317.5 142.3 1459.8 

            

Average  0.93  0.65        
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5.6 Conclusions 

In this chapter, we deal with the TECFLP-PDSS where each of both plants and depots has several size 

exhibiting different capacities. The production cost for a larger size of a plant is assumed to be smaller than 

those of the smaller sizes of the same plant and the unit handling cost for a larger size of a depot is assumed 

to be smaller than those of the smaller sizes of the same depot to model the economies of scale. This problem 

allow us to deal with both different sizes for plants and depots, and different production costs at different 

levels of production at a plant and different handling costs at different levels of handling at a depot. We 

present a mixed integer programming model for this problem. This model can then simultaneously determine 

the locations and sizes of the plants, the locations and sizes of the depots, the product flows from the plants 

to the depots and the assignments of the customers to the depots to satisfy the customers’ demands. The 

TECFLP-PDSS is NP-hard in strong sense. A Lagrangean relaxation approach and a HSATS are proposed 

for its resolution. First the Lagrangean relaxation approach is used to achieve good lower and upper bounds, 

and then the HSATS is designed to improve the best upper bound found in the Lagrangean relaxation 

approach. The numerical experiments on 320 randomly generated instances indicate that the proposed 

Lagrangean relaxation approach and the HSATS can provide high quality lower bounds and upper bounds to 

the TECFLP-PDSS. The average gaps are not greater than 1.75%. In addition, instances with different 

parameters, such as the ratios of plant capacity to customer demand, the ratios of depot capacity to customer 

demand, the number of the plant size and the number of depot size, are tested to evaluate the robustness of 

the Lagrangean relaxation approach and the HSATS. The computational results indicate that the proposed 

Lagrangean relaxation approach and HSATS are effective for the instances with different parameters and can 

solve the instances that have up to 50 potential plants with 6 possible sizes each, 100 potential depots with 6 

possible sizes each and 400 customers in a reasonable time.  

This Lagrangean relaxation approach and HSATS perform very well and can provide good lower and 

upper bounds for our problem. However, some new ideas on solving the problems could be investigated, 

such as discovering optimality properties by exploring the problem structure. In addition, new features could 

be added to the problems so that the problems could be more attractive to academia or in practice. 
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The classical two-stage facility location problem focus on determining the locations of plants and 

depots, and the flows of product from plants to customers via depots with the goal of minimizing the sum of 

facility opening costs and logistic costs. In these problems, each facility has only one choice of capacity, 

either uncapacitated or capacitated. The opening cost of a facility is a constant and the unit production or 

handling cost is the same for all of the plants or depots, thus it can be merged with other linear connection 

costs. However, in real world there is often need to determine the locations and sizes of facilities in 

designing a two-stage supply chain network. The size of a facility greatly affects not only its fixed opening 

cost, but also the unit production or handling cost due to economies of scale. How to make a trade-off 

between facility location and size is a significant problem in supply chain network design. To deal with this 

situation, after a systemic review of various facility location models and solution methods used to solve these 

facility location problems, we studies three types of two-echelon capacitated facility location problem with 

facility size selection: a two-echelon capacitated facility location problem with plant size selection 

(TECFLP-PSS), a two-echelon capacitated facility location problem with depot size selection (TECFLP-DSS) 

and a two-echelon capacitated facility location problem with plant and depot size selection (TECFLP-PDSS) 

in this thesis. In Chapter 1, we consider the TECFLP-PSS in which each plant has several sizes exhibiting 

different capacities. In Chapter 2, we investigate the TECFLP-DSS in which each depot has several sizes 

exhibiting different capacities. In Chapter 3, we concentrate on the TECFLP-PDSS in which each of both 

plants and depots has several sizes.  

These problems extend the previous studied two-stage facility location problems to simultaneously 

optimizing location and size of facility in a two-stage supply chain network system. How to make a trade-off 

between the location and size is a key issue in designing supply chain network. This study investigates this 

problem in the context of two-stage supply chain network system and could help the firms to make a 

scientific decision in designing two-stage supply chain network system. Thus this research has great 

significance both in theory and in real-life application. Three mixed integer programming models are 

formulated and three Lagrangean relaxation approaches are developed to find good lower and upper bound 

for these three problems respectively. A tabu search (TS), a hybrid variable neighborhood tabu search 

algorithm (HVNTS) and hybrid simulated annealing tabu search algorithm (HSATS) are designed to further 

improve the best upper bounds found in the Lagrangean relaxation approaches.  

Firstly, we focus our attention on a two-echelon capacitated facility location problem with plant size 

selection (TECFLP-PSS). This problem allow us to deal with both different sizes for plants and different 

production costs at different levels of production at a plant. Given a set of potential plants, each of which has 

several possible sizes exhibiting different capacities, a set of potential capacitated depots and a set of 

customers with demands, the TECFLP-PSS is to optimally determine the locations of the plants as well as 

their sizes, the locations of the capacitated depots, the product flows from the plants to the depots and the 

customer-depot assignment under single sourcing constraints so that all of the customers’ demands are 

satisfied. The objective is to minimize the sum of the fixed opening costs of the plants and depots, the 

production costs of product and the shipping costs of product from the plants to the depots and then to the 
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customers. The TECFLP-PSS generalizes the TSCFLP to determine the locations and sizes of the plants, the 

locations of the depots, the product flows from the plants to the depots and the assignments of the customers 

to the depots to satisfy the customers’ demands. As the TSCFLP is NP-hard in strong sense, the TECFLP-

PSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-PSS, we focus on finding good 

lower and upper bounds for it, especially for the large-sized instances. For this problem, a mixed integer 

programming model is formulated and a Lagrangean relaxation approach is proposed to achieve lower and 

upper bounds. To further improved the best upper bound found by the Lagrangean relaxation approach, a 

tabu search algorithm (TS) is proposed. A total of 245 instances are randomly generated and tested. The 

computational results demonstrate that all of the instances can be solved in a reasonable time with the 

average gaps below 1.66%, even for instances that have up to 50 potential plants with 6 possible sizes each, 

200 potential depots and 400 customers. Moreover, the performance of the proposed algorithms on the 

instances with different characteristics, such as the ratios of plant capacity to customer demand, the ratios of 

depot capacity to customer demand and the number of depot size, are analyzed and the results show that the 

proposed algorithms are effective for the instances with different parameters. 

Secondly, we investigate a two-echelon capacitated facility location problem with depot size selection 

(TECFLP-DSS). This problem allow us to deal with both different sizes for depots and different handling 

costs at different levels of handling at a depot. Given a set of potential plants, a set of potential depots, each 

depot has several possible sizes exhibiting different capacities, and a set of customers with demands. The 

TECFLP-DSS is to optimally determine the locations of the capacitated plants, the locations and sizes of the 

depots, the product flows from the plants to the depots and the assignments of the customers to the depots to 

satisfy the customers’ demands. The objective is to minimize the sum of the fixed opening costs of the plants 

and the depots, the handling costs at the depots, the transportation costs from the plants to the customers and 

the assignment costs of the customers to the depots. The TECFLP-DSS also generalizes the TSCFLP to 

determine the locations of the capacitated plants, the locations and sizes of the depots, the product flows 

from the plants to the depots and the assignments of the customers to the depots to satisfy the customers’ 

demands. The TECFLP-DSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-DSS, 

we focus on searching for good lower and upper bounds for it, especially for the large-sized instances. For 

this problem, a mixed integer programming model is developed and a Lagrangean relaxation approach is 

proposed to achieve good lower and upper bounds. A hybrid variable neighborhood tabu search algorithm 

(HVNTS) is designed to further improve the best upper bound found by the Lagrangean relaxation approach. 

The numerical experiments on 245 randomly generated instances indicate that the proposed Lagrangean 

relaxation approach and the HVNTS can provide high quality lower bounds and upper bounds to the 

TECFLP-DSS. The average gaps are not greater than 1.16%, with 1.70% at a maximum. In addition, 

instances with different parameters, such as the ratios of plant capacity to customer demand, the ratios of 

depot capacity to customer demand and the number of depot size, are tested to evaluate the solution quality 

and speed of the Lagrangean relaxation approach and the HVNTS. The computational results indicate that 

the proposed Lagrangean relaxation approach and the HVNTS are effective for the instances with different 

parameters and can solve the instances that have up to 50 potential plants, 100 depots with 6 possible sizes 
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each and 400 customers in a reasonable time. 

Thirdly, we concentrate a two-echelon capacitated facility location problem with plant and depot size 

selection (TECFLP-PDSS). This problem allow us to deal with both different sizes for plants and depots, and 

different production costs at different levels of production at a plant and different handling costs at different 

levels of handling at a depot. Given a set of potential plants, a set of potential depots, each plant and depot 

has several possible sizes exhibiting different capacities, and a set of customers with demands, the aim of the 

TECFLP-PDSS is to select a set of plants and a set of depots to open, select a size for each opened plant and 

depot, determine the product flows from the plants to the depots and assign the customers to the opened 

depots to serve the customers at a minimum total cost. This cost includes the fixed opening costs of the 

facilities, the producing costs at the plants, the handling costs at the depots, the transportation costs from the 

plants to the depots and the assignment costs of the customers. Like the TECFLP-PSS and TECFLP-DSS, 

The TECFLP-PDSS also generalizes the TSCFLP to determine the locations and sizes of the plants, the 

locations and sizes of the depots, the product flows from the plants to the depots and the assignments of the 

customers to the depots to satisfy the customers’ demands. The TECFLP-PDSS is NP-hard in strong sense. 

Due to the NP-hardness of the TECFLP-PDSS, we also concentrate on achieving good lower and upper 

bounds for it, especially for the large-sized instances. For this problem, a mixed integer programming model 

is formulated and a Lagrangean relaxation approach is proposed to achieve efficient lower and upper bounds 

for it. A hybrid simulated annealing tabu search algorithm (HSATS) is designed to further improve the best 

upper bound found by the Lagrangean relaxation approach.  A total of 320 instances are randomly generated 

and tested. The computational results demonstrate that all of the instances can be solved in a reasonable time 

with the average gaps below 1.75 %, even for instances that have up to 50 potential plants with 6 possible 

sizes each, 100 potential depots with 6 possible sizes each, and 400 customers. In addition, the performance 

of the proposed algorithms on the instances with different characteristics, such as the ratios of plant capacity 

to customer demand, the ratios of depot capacity to customer demand, the number of the plant size and the 

number of depot size, are analyzed and the results show that the proposed algorithms are effective for the 

instances with different parameters. 

There is still much work to be done in future research. In the thesis, we investigate three two-echelon 

capacitated facility location problem with plant or depot size selection, or both plant and depot size selection. 

Three mixed integer programming models are formulated for these problems respectively. Lagrangean 

relaxation approaches are developed for each of the three problems. To further improve the best upper 

bounds found in the Lagrangean relaxation approaches, a tabu search, a hybrid variable neighborhood tabu 

search algorithm and a hybrid simulated annealing tabu search algorithm are designed respectively. This 

algorithms work very well and can provide good lower and upper bounds for our problem. However, some 

new ideas on solving the problems could be investigated, such as discovering optimality properties by 

exploring the problem structure, adding valid inequalities to accelerate the solution process, designing 

improvement strategies for the Lagrangean relaxation approach or the TS, HVNTS and HSATS etc. In 

addition, new features could be added to the problems so that the problems could be more attractive to 

academia or in practice. 
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Titre: Modèles et algorithmes pour les problèmes de localisation de sites à deux échelons avec la 

sélection de taille  
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Résumé: La localisation de sites est des 

décisions stratégiques les plus importantes pour 

les entreprises dans le contexte de la 

mondialisation d'aujourd'hui. Les travaux 

existant dans la littérature traitant ce type de 

problèmes se concentrent principalement sur la 

détermination de l'emplacement des sites et des 

flux de produits provenant les sites localisés aux 

clients dans le but de minimiser le coût total de 

construction, de production et logistiques. 

Cependant, il est très important de bien choisir 

simultanément la capacité et la localisation des 

sites parce que la taille des sites a unegrande 

influence sur ces coûts sur le long terme. La 

détermination de la location et de capacité des 

sites reste encore un problème ouvert.  

Dans cette thèse, nous étudions trois 

nouvelles variantes de problèmes de location de 

sites à deux échelons avec la sélection de taille 

(TECFLP). Les deux premières parties 

concentrent sur les TECFLPs avec sélection sé- 

 

 

 

 

 

parée de taille d’usines ou de dépôts. La 

Troisième partie étudie le TECFLP avec 

sélection simultanée des tailles d’usines et de 

dépôts. Pour ces problèmes, trois modèles de 

programmation linéaire mixte sont proposés. 

Ensuite  les approches basées sur la relaxation 

lagrangienne selon les caractéristiques de 

chaque problème sont développés. Pour 

améliorer les meilleures solutions proposées par 

les approches de relaxation lagrangienne, une 

méthode de recherche tabou, une méthode 

hybride de recherche tabou et à voisinage 

variable, une méthode hybride du recuit simulé 

et de la recherche tabou sont respectivement 

adaptées pour ces trois problèmes. Les 

algorithmes développés sont testés et évalués à 

travers 810 instances générées aléatoirement. 

Les résultats numériques montrent que nos 

méthodes sont capables de fournir des solutions 

de qualité avec un temps de calcul raisonnable. 
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Title: Models and algorithms for two-echelon capacitated facility location problem with facility size 

selection 

Keywords: Facility location, Facility size, Lagrangean relaxation, Tabu search, Hybrid variable 
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Abstract : Facility location is one of the 

most important strategic decisions for firms in 

globalization. Previous works on facility 

location in the literature mainly focus on 

determining the locations of facilities and the 

flows of products from facilities to customers 

with the goal of minimizing the sum of facility 

opening costs, production and logistic costs. 

However, it’s very important to determine at 

the same time the appropriate sizes for these 

facilities because they greatly affects these 

costs on the long term. Determining facility 

location and size is always an open problem. 

In this thesis, we study three new two-

echelon capacitated facility location problems 

(TECFLP) with facility size selection. The two 

first parts of the wok focus on two-echelon 

facility location problems with plant and depot  

 

 

 

 

 

 

 

 

 

size selection, respectively. The third part 

concentrates on TECFLP considering simultae-

ously plant and depot size selection. For these 

problems, three corresponding mixed integer 

programming models are formulated and then 

Lagrangean relaxation approaches according to 

the problems’ characteristics are developed. To 

further improve the best solutions obtained by 

the Lagrangean Relaxation approaches, a tabu 

search, a hybrid variable neighborhood tabu 

search and a hybrid simulated annealing tabu 

search are adapted for the three problems 

respectively. The developed algorithms are 

tested and evaluated through 810 randomly 

generated instances. Computational results 

show ours algorithms can provide high quality 

solutions within a reasonable computation time.  

 

 


