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La localisation de sites est des deisions stratégiques les plus importantes pour les entreprises dans le
contexte de la mondialisation d'aujourdhui. Les travaux existant dans la litté&ature traitant ce type de
problénes se concentrent principalement sur la déermination de lI'emplacement des sites et des flux de
produits provenant les sites localisé aux clients dans le but de minimiser le co total de construction, de
production et logistiques. Cependant, il est tré important de bien choisir simultan@nent la capacitéet la
localisation des sites parce que la taille des sites a unegrande influence sur ces cois sur le long terme. La

déermination de la location et de capacitédes sites reste encore un probléme ouvert.

Dans cette thése, nous &udions trois nouvelles variantes de problénes de localisation de sites adeux
&helons avec la séection de taille (TECFLP). Les deux premiéres parties concentrent sur les TECFLPs avec
sélection séparée de taille d’usines ou de dépdts. La troisieme partie étudie le TECFLP avec séection
simultanée des tailles d’usines et de dépdts. Pour ces problémes, trois modeéles de programmation linéaire
mixte sont proposés. Ensuite les approches basées sur la relaxation lagrangienne selon les caractéistiques de
chaque probléme sont déseloppés. Pour am@diorer les meilleures solutions proposées par les approches de
relaxation lagrangienne, une méhode de recherche tabou, une mé&hode hybride de recherche tabou et a
voisinage variable, une mé&hode hybride du recuit simuléet de la recherche tabou sont respectivement
adaptéss pour ces trois problémes. Les algorithmes développés sont testés et &valué atravers 810 instances
généés alé@toirement. Les ré&ultats numé&iques montrent que nos méhodes sont capables de fournir des

solutions de qualitéavec un temps de calcul raisonnable.

Mots-clé&: localisation de sites; choix de taille de sites; relaxation lagrangienne; recherche tabou; mé&hode

hybride de recherche tabou et avoisinage variable; mé&hode hybride du recuit simulé&et de la recherche tabou






Abstract

Abstract

Facility location is one of the most important strategic decisions for firms in globalization. Previous
works on facility location in the literature mainly focus on determining the locations of facilities and the
flows of products from facilities to customers with the goal of minimizing the sum of facility opening costs,
production and logistic costs. However, it’s very important to determine at the same time the appropriate
sizes for these facilities because they greatly affects these costs on the long term. Determining facility

location and size is always an open problem.

In this thesis, we study three new two-echelon capacitated facility location problems (TECFLP) with
facility size selection. The two first parts of the wok focus on two-echelon facility location problems with
plant and depot size selection, respectively. The third part concentrates on TECFLP considering
simultaneously plant and depot size selection. For these problems, three corresponding mixed integer
programming models are formulated and then Lagrangean relaxation approaches according to the problems’
characteristics are developed. To further improve the best solutions obtained by the Lagrangean Relaxation
approaches, a tabu search, a hybrid variable neighborhood tabu search and a hybrid simulated annealing tabu
search are adapted for the three problems respectively. The developed algorithms are tested and evaluated
through 810 randomly generated instances. Computational results show ours algorithms can provide high

quality solutions within a reasonable computation time.

Keywords: Facility location, Facility size, Lagrangean relaxation, Tabu search, Hybrid variable

neighborhood tabu search, Hybrid simulated annealing tabu search
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Notations

Notations

the set of potential plants;

J the set of potential depots;

K the set of customers;

R the set of production sizes of the plant ie | ;

S the set of possible sizes of the depot jeJ ;

Cpi the capacity of the plant iel ;

CPir the capacity of the plant i e | with the production size reR;;
cd; the capacity of the depot jeJ;

cdjs the capacity of the depot j e J with the size seS;;

dy the demand of the customer k e K ;

fpi the fixed cost of opening the plant i e I ;

foir the fixed cost of the plant i €1 with the production size reR;;

fd, the fixed cost of the depot jeJ;

fd;s the fixed cost of opening the depot j € J with the size seS;;

Pir the unit production cost of the plant i € I with the size reR;;

h;s the unit handling cost at the depot j e J with the size s€S;;

t; the unit transportation cost from the plant i e 1 to the depot jeJ;
Cik the unit assignment cost of the customer k € K to the depot jeJ;
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Abbreviations

CFLP:

CFLPSS:

TSCFLP:

TSCFLPSS:

TSUFLP:

TECFLP-PSS:

TECFLP-DSS:

TECFLP-
PDSS:

UFLP:

TS:

SA:

VNS:

HVNTS:

HSATS:

Capacitated facility location problem;

Capacitated facility location problem with single source;

Two-stage capacitated facility location problem;

Two-stage capacitated facility location problem with single source;
Two-stage uncapacitated facility location problem;

Two-echelon capacitated facility location problem with plant size selection;
Two-echelon capacitated facility location problem with depot size selection;

Two-echelon capacitated facility location problem with plant and depot size

selection;

Uncapacitated facility location problem;
Tabu search;

Simulated annealing;

Variable neighborhood search;

Hybrid variable neighborhood tabu search;

Hybrid simulated annealing tabu search;
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1. Introduction

This thesis investigates models and methods for two-echelon capacitated facility location problems with
facility size selection encountered in two-stage supply chain system. It mainly concerns optimizing location
and size of facility in two-stage supply chain system. The goal of this research is to develop models and
methods for designing two-stage supply chain network system. In this chapter, the background of the thesis

is firstly introduced. Then the contributions and organization of this thesis are presented.

1.1 Background

Most private firms and public agencies have faced the problem of locating facilities over spatial
dimensions to provide certain service functions to their distributed clients or customers. Industrial firms need
to locate a variety of facilities in the supply chain network system including manufacturing and assembly
plants, warehouse and retail outlets. Government agencies must determine locations of public service
facilities such as schools, hospitals, fire stations, ambulance bases and landfill. In every case, the operational
efficiency and system benefit depend on the choices of facility locations. A good location design could

maximize the service benefit while saving as much infrastructure investment as possible.

Deciding the best number, locations and sizes of facilities are the key issues in supply chain network
design. This decision in literatures is called “facility location problem”. Generally facility location problem
involves the determination of the number, locations and sizes of facilities, and the assignment of the
customers to the facilities or the transportation from the facilities to the customers.

The strategic decision of locating facilities is one of the most critical issues for firms and has significant
impacts on the tactical and operational costs of supply chain network over a long time horizon since the
logistics/distribution costs constitute an important part of the total expenditure of a firm. With the rapid
growth of telecommunication and transportation technologies, the competition in market is getting more and
more fierce. To survive in the war of business, firms have to invest in and focus on their own supply chain in
order to improve the customer service level without increasing of costs. To achieve this goal, one important
issue for those firms is effective designing their supply chain networks. Appropriately facility location can
potentially increase the global profit and competitiveness of firms. Hence, optimizing the supply chain
network is of fundamental importance for the firms aiming to reduce their logistics costs and maintain their

competitive advantages.

The current facility location problems in the literature mainly involves determining the best locations
for facilities. Given a set of potential locations for facilities and a set of customers, the facility location
problem is to locate facilities in such a way that the total cost for assigning customers to facilities and
satisfying the service (or demand) required by customers is minimized. The cost considered is the sum of the
fixed costs of opening facilities and the costs for assigning customers to specific facilities which depend on,
for example, the distance between them. The facility location problem can be classified into different

categories depending on the properties assumed: 1) single or multistage, 2) uncapacitated or capacitated



1. Introduction
facility, or 3) single or multiple sourcing in terms of customer-depot assignment. For more details, we refer

readers to the surveys of Klose and Drexl (2005), ReVelle et al. (2008) and Melo et al. (2009).

In the classical facility location problems, the size of a facility is assumed to be fixed, i.e., either
capacitated or uncapacitated. The facility opening cost is assumed to be a constant and the unit production or
handling cost is assumed to be the same, thus it can be merged with other linear connection cost. The
decision of the size of facility is not included in these facility location problems. However, in some practical
situations it is often necessary to consider several possible sizes for each potential facility location. Firms
need also to determine the sizes of facilities. The size of a facility can significantly affect the fixed opening
cost of the facility. As production or handling volume increases, the fixed investment for constructing the
facility increases. In addition, as production or handling volume increases, cost savings are achieved through
economies of scale. The unit production or handling cost under larger size of a facility is lower than that
under smaller sizes of the same facility. How to make a decision to optimize facility location and select

facility size simultaneously is a significant problem in supply chain network design.

Unfortunately, only limited research has been conducted on single-stage facility location problem which
considers simultaneously the location and size of facility or nonlinear variable cost. As far as we know there
is no he literatures on two-stage facility location problem which consider simultaneously the location and
size of facility or nonlinear variable cost are not found. Lee (1993) investigated a multi-products capacitated
facility location problem with facility type choice. Mazzola and Neebe (1999) dealt with the same problem
and developed a Lagrangean based heuristic. Holmberg and Ling (1997) studied a facility location problem
with facility size choice and staircase production cost. Taniguchi et al. (1999) optimized the size and location
of public logistics terminals. Wu et al. (2006) considered a capacitated facility location problem with general
non-linear setup cost. Dupont (2008) investigated a facility location problem in which the total cost for each
opened facility is a concave function of the quantity delivered by this facility. Carrizosa et al. (2012) studied

a nonlinear minsum facility location problem.

The two-stage facility location problem is one of the most commonly encountered problem in the two-
stage supply chain system design. Similar as locating facilities in the context of single-stage supply chain
network system, it is significant to select facility size when locating facilities in the context of two-stage
supply chain system since the facility size can affects the fixed facility opening cost and the unit producing
or handling cost is different under different sizes of facilities because of economies of scale. To the best of
our knowledge, although the optimizing of facility location and size have been considered simultaneously for
the single-stage supply chain network system in the literature, the facility location and size have not been
investigated simultaneously in the two-stage supply chain network system. To fill this gap, we concentrate
on the optimizing of the location and size of facilities in the context of two-stage supply chain network
system in this thesis. The aims of the thesis is optimize the location and size of plants and/or depots,
determine the product flows from the plants to the depots and the assignments of the customers to the depots
to satisfy the customers’ demands at a minimum sum of cost. This cost consists of the fixed plant and depot

opening costs, the producing costs at plants and/or handling costs at the depots, the transportation costs from

4



1. Introduction
the plants to the depots and the customer-depot assignment costs.

1.2 Contributions

In this thesis, we study three new two-echelon capacitated facility location problems (TECFLP) with
facility size selection. The first and second parts of our work focus on two-echelon capacitated facility
location problems with plant size selection and depot size selection, respectively. The third part concentrates
on the TECFLP with plant and depot size selections simultaneously. For these problems, three corresponding
mixed integer programing models (MIP) are formulated and then Lagrangean relaxation based approaches
according to the problems’ characteristics have been developed. To further improve the best upper bounds
found in the Lagrangean relaxation approaches, a tabu search (TS), a hybrid variable neighborhood tabu
search (HVNTS) and a hybrid simulated annealing tabu search (HSATS) are designed for these three
problems respectively. All algorithms are evaluated by numerous randomly generated instances.
Computational results show ours methods can provide high quality solutions with reasonable computational

time.
More specifically, the main contributions of this thesis is as follows:

A two-echelon capacitated facility location problems with plant size selection (TECFLP-PSS)
encountered in two-stage supply chain system but not been investigated in the literature is studied. For this
problem, a mixed integer linear programming model for the problem is formulated. Since the problem is NP-
hard, we focus on find near optimal solutions for it. Thus a Lagrangean relaxation approach is proposed to
achieve a lower bound and upper bound of the problem. The upper bound is later further improved by a tabu
search (TS). A total of 245 instances with different sizes and parameters are randomly generated and tested to
evaluate the performance of the proposed algorithms. The computational results demonstrate that all of the
instances can be solved in a reasonable time with the average gaps below 1.66%, even for instances that have

up to 50 potential plants with 6 possible sizes each, 200 potential depots and 400 customers.

A two-echelon capacitated facility location problems with depot size selection (TECFLP-DSS)
encountered in two-stage supply chain system is studied. For this problem, a mixed integer linear
programming model for the problem is formulated and a Lagrangean relaxation approach is proposed to
achieve a lower bound and an upper bound of the problem. A hybrid variable neighborhood tabu search
(HVNTY) is proposed to further improve the best upper bound found in the Lagrangean relaxation approach.
A total of 245 instances with different sizes and parameters are randomly generated and tested to evaluate the
performance of proposed algorithms. The computational results show that the proposed algorithms can solve
all of the instances with average gaps below 1.16% in an acceptable time, even for the instances that have up

to 50 potential plants, 100 potential depots with 6 depot sizes each and 400 customers.

A two-echelon capacitated facility location problems with plant and depot size selection (TECFLP-
PDSS) encountered in two-stage supply chain system is studied. For this problem, a mixed integer linear

programming model for the problem is formulated and a Lagrangean relaxation approach is proposed to
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1. Introduction
achieve a lower bound and an upper bound of the problem. A hybrid simulated annealing tabu search

(HSATY) is proposed to further improve the best upper bound found in the Lagrangean relaxation approach.
A total of 320 instances with different sizes and parameters are randomly generated and tested to evaluate the
performance of proposed algorithms. The computational results show that the proposed approach can solve
all of the instances all of the instances in a reasonable time with the average gaps below 1.75%, even for
instances that have up to 50 potential plants with 6 possible sizes each, 100 potential depots with 6 possible

sizes each, and 400 customers.

1.3 Organization of the thesis

The rest of this thesis is organized as follows:

In Chapter 2, a detailed literature review of single-stage facility location problem, the two-stage facility
location problem, the Lagrangean relaxation method and the basic ideas of the metaheuristic technologies

used in this thesis are given.

In Chapter 3, we focus our attention on a two-echelon capacitated facility location problem with plant
size selection (TECFLP-PSS). This problem allow us to deal with both different sizes for plants and different
production costs at different levels of production at a plant. A mixed integer linear programming model for
the problem is formulated for the TECFLP-PSS and a Lagrangean relaxation approach is proposed to find a
tight lower bound and a high quality near-optimal solution for the TECFLP-PSS. At each Lagrangian
iteration, a heuristic is developed to construct a feasible solution of the TECFLP-PSS. This heuristic includes
three stages, opening plant and selecting plant size, opening depots and determining the assignments of the
customers to the opened depots, and solving a transportation problem to determining the product flows from
the plants to the depots. After the Lagrangian relaxation approach, the best feasible solution is improved by a
tabu search algorithm. Instances are randomly generated and tested to evaluate the performance of proposed

algorithms.

In Chapter 4, we investigate a two-echelon capacitated facility location problem with depot size
selection (TECFLP-DSS). This problem allow us to deal with both different sizes for depots and different
handling costs at different levels of handling at a depot. For the TECFLP-DSS, a mixed integer linear
programming model for the problem is formulated and a Lagrangian relaxation approach based on the
problem properties is developed to find a tight lower bound and a high quality near-optimal solution for the
TECFLP-DSS. At each Lagrangean relaxation iteration, a heuristic is developed to construct a feasible
solution of the TECFLP-PSS. After the Lagrangian relaxation approach, a hybrid variable neighborhood tabu
search algorithm is designed to further improve the best feasible solution found in the Lagrangean relaxation

approach. Instances are randomly generated and tested to evaluate the performance of proposed algorithms.

In Chapter 5, we concentrate a two-echelon capacitated facility location problem with plant and depot
size selection (TECFLP-PDSS). This problem allow us to deal with both different sizes for plants and

depots, and different production costs at different levels of production at a plant and different handling costs
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1. Introduction
at different levels of handling at a depot. A mixed integer linear programming model for the problem is

formulated and a Lagrangean relaxation approach is proposed to find a tight lower bound and a high quality
near-optimal solution for the TECFLP-PDSS. At each Lagrangian iteration, a heuristic is developed to
construct a feasible solution of the TECFLP-PDSS. This heuristic includes, opening plant and selecting plant
size, opening depots and selecting depots size, determining the assignments of the customers to the opened
depots, and solving a transportation problem to determining the product flows from the plants to the depots.
After the Lagrangian relaxation approach, the best feasible solution is improved by a tabu search algorithm.

Instances are randomly generated and tested to evaluate the performance of proposed algorithms.

Finally, in Chapter 6, we conclude the thesis and give some perspectives for the future research.
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2. Literature review

This chapter provides literature reviews on facility location problems and some technologies in detail,
which will be used for solution algorithms in this thesis. Firstly, several related facility location problems,
their models and the works which have contributed to the resolution of these models are presented. Then the
principles of some technologies are introduced in detail, which will be used for solution algorithms for our

problems.

2.1 Facility location problems

As stated, the facility location problem can be classified into different categories depending on the
properties assumed, such as single or multistage, uncapacitated or capacitated facility and single or multiple
sourcing in terms of customer-depot assignment. For more details, we refer readers to the surveys of Klose
and Drexl (2005), ReVelle et al. (2008) and Melo et al. (2009). We first review the models and solution
techniques for the single-stage facility location problems and the two-stage facility location problems and

then review facility location problem with facility size selection or nonlinear variable cost.

2.1.1 Single-stage facility location problems

In the single-stage facility location problem where there are in fact two stages and two decision levels.
The first stages is the facilities or plants, where the decision to be made is the choice of which plants to open,
the second stage is the customers where the decision is which customers are assigned to the chosen subset of
plants. The overall solution to the single-stage facility location problem defines which plants are open and
the flow of demand from plants to customers. The structure of a single-stage facility location problem is

presented in Fig. 2.1, where the first stage is the plants, the second is the customers.

Plants O Customers

Fig. 2.1 The structure of a single-stage facility location problem

The single-stage facility location problems consider opening a set of facilities from a set of potential
sites and letting those open facilities satisfy the demand of customers in a single-stage supply chain network

system. The objective of the problem is to minimize the sum of the fixed cost of opening facilities and the
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shipping cost from the facilities to the customers. Many kinds of the single-stage facility location problems

have been intensively studied in the literature, such as the uncapacitated facility location problem (UFLP),
the capacitated facility location problem (CFLP) and the capacitated facility location problem with single
source constraints (CFLPSS), etc. The models and solution methods of these models are briefly reviewed in

the following.

2.1.1.1 Simple or uncapacitated facility location problem

Let | be a set of potential sites of facilities, K denotes a set of customers, fp;, Viel be the fixed opening
cost of facility i and cy, Viel , VkeK is the transportation cost between facility i and customer k. Each
customer is associated with a demand dy, vkeK . The uncapacitated facility location problem (UFLP) is to
locate facilities among a set of potential sites to serve the customers such that the total cost of the fixed cost
of locating the facilities and the transportation cost from the facilities to the customers is minimized. In the

UFLP, each facility is assumed to have no limits on its capacity.
Let us define,

Ui 1, if a facilityiel is opened; otherwise 0;

Zik the fraction of the demand dy transported from facility i to customer k.

The UFLP can be formulated as the following mixed integer programming,

minzfpi U +chik “Lik (2-1)

iel iel keK
st D2k=lVkeK (2-2)
iel
zy <u; Viel keK (2-3)
u, e{0,1}viel (2-4)

The objective (2-1) minimizes the total costs of opening the facilities and shipping the products. The
constraints (2-2) guarantee that each customer’s demand are satisfied. The constraints (2-3) make sure that
no demand is supplied by each closed facility. The constraints (2-4) and (2-5) are standard nonnegativity and

integrality constraints for decision variables.

The UFLP has been intensively studied and many solution methods have been proposed in the literature.
Kuehn and Hamburger (1963) developed the first heuristic that has two phases. The first phase is a greedy
approach, called the ADD method, that starts with all facilities closed, keeps adding (opening) the facility
resulting in the maximum decrease in the total cost, and stops if adding any more facility will no longer
reduce the total cost. The second phase is a local search method in which an open facility and a closed
facility are interchanged as long as such an interchange reduces the total cost. Another greedy heuristic is the
DROP method that starts with all facilities open, keeps dropping (closing) the facility that gives the
maximum decrease in the total cost, and stops if dropping any more facility will no longer reduce the total
cost (Cornuejols et al. 1977, Nemhauser et al. 1978). These early heuristics provided the basis for many
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sophisticated heuristics and provided an initial incumbent for many exact solution algorithms (Cornuejols et

al. 1977, Nemhauser et al. 1978). Erlenkotter (1978) developed a dual approach for the UFLP. Although this

dual approach is an exact algorithm, it can also be used as a heuristic to find good solutions. One effective

and widely used heuristic is the Lagrangian method (Beasley, 1993a) that is based on Lagrangian relaxation
and subgradient optimization. More recently, Gen et al. (1996) and Vaithyanathan et al. (1996) used artificial
neural network approaches to solve UFLP.

In addition to heuristics, there are a variety of exact algorithms for the UFLP, such as the dual approach
of Erlenkotter (1978) and the primal-dual approaches of K&kel (1989). Because the UFLP is NP-hard, exact
algorithms may not be able to solve large practical problems. The UFLP has been studied extensively and
many researchers have made great contributions in developing exact and heuristic solution methods. Krarup
and Pruzan (1983) gave excellent surveys and reviews of applications and solution methods.

2.1.1.2 Capacitated facility location problem

When each facility has a limited capacity, the UFLP becomes the capacitated facility location problem
(CFLP). In the CFLP, the volume supplied from each facility cannot exceeds its capacity and the customers

can receive their demand from two or more open plants.

Using the same definition for the decision variables of the UFLP and denoting the capacity of facility i
by cp;, Viel , the CFLP can be formulated as:

min pri Ui +chik “Zik (2-6)

iel iel keK
s.t. ;Zik -d, <cp; -u; Viel o
;Zik =l \V/ke K (2_8)
u; €{0,1}Vviel 29
0<z, <1Viel keK (2-10)

The objective (2-6) minimizes the total costs of opening the facilities and shipping the products. The
constraints (2-7) make sure that the capacities supplied by each facility is no greater than its capacity. The
constraints (2-8) guarantee that each customer’s demand are satisfied. The constraints (2-3) and (2-4) are

standard nonnegativity and integrality constraints for decision variables.

Many heuristic methods and exact algorithms have been developed to solve it in the last 50 years.
Because UFLP and CFLP are closely related, many heuristic methods developed for the UFLP are also
extended to the CFLP. As stated, Kuehn and Hamburger (1963) developed the first heuristic method for the
UFLP. This heuristic method consists of two phases. The first phase, called ADD, starts with all facilities
closed and then the facility that causes the maximum total cost reduction is opened. This phase ends when no
more facilities can be opened to reduce the total cost further. The second phase is a local search procedure in
which an open facility and a closed facility exchange their status if this exchange reduces the total cost. This

heuristic was later extended to the CFLP by Jacobsen (1983). Domschke and DrexI| (1985) proposed priority
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rules for the ADD procedure to improve its performance in cases where the facilities have distinct capacities

and/or distinct fixed operating costs. Feldman et al. (1966) proposed a different strategy for the first phase,
named DROP, that was also extended to the CFLP by Jacobsen (1983). In DROP, all facilities are initially
open and a facility is closed if closing it results in the maximum reduction in the total cost. This phase ends
when closing a facility does not result in any further reduction in the total cost.

Lagrangean relaxation has been applied to several facility location problems. Cornuejols et al. (1991)
presented an excellent theoretical analysis of all possible Lagrangean relaxations and the linear programming
relaxation for the CFLP, and showed that only relaxations yield distinct bounds. Dominance relations among
the relaxations were also discussed. Beasley (1993b) presented a unified framework of using the Lagrangean
relaxation to solve different facility location problems. In the proposed framework for the CFLP, constraints
(2-7) and (2-8) are relaxed and the solution of the relaxed problem is trivial. Barahona and Chudak (2005)
also proposed a Lagrangean relaxation method for the UFLP and the CFLP. Initially they considered the
linear programming relaxation of the CFLP and then suggested the Lagrangean relaxation relative to
constraints for solving the linear programming problem. They used the volume algorithm (Barahona and
Anbil, 2000) in order to maximize the dual objective function. The volume algorithm is an extension of the
subgradient method and aims at generating good primal solutions. The name of the method comes from a
theorem stating that a primal solution can be obtained from the volume under the faces of the piecewise

linear and concave dual objective function.

Several exact algorithms based on branch-and-bound have been proposed. The major differences among
these algorithms are in the types of relaxations, the methods of solving the relaxed problem and the strategies
to improve the lower bound. Van Roy (1986) implemented the cross decomposition method that combines
Benders decomposition and Lagrangean relaxation in order to exploit the primal and dual structures of the
CFLP. Leung and Magnanti (1989) introduced a family of facets and valid inequalities for solving the CFLP
with equal capacities. Aardal (1998a) proposed new valid inequalities and implemented two branch-and cut

algorithms that are tested on small and medium test problems from the literature.

The TS metaheuristic has been successfully applied to a variety of combinatorial optimization
problems, but not much research has been reported in using it for the CFLP. The TS heuristic procedure
proposed by Grolimund and Ganascia (1997) was applied to the CFLP and limited computational results
were reported. However, TS procedures have been developed for more complicated facility location
problems, such as those by Delmaire et al. (1999), Filho and Galv& (1998), Frana et al. (1999), and Tuzun
and Burke (1999).

2.1.1.3 Capacitated facility location problem with single source

In the CFLP, if each customer is assumed to be supplied from exactly one facility, it becomes the
capacitated facility location problem with single source (CFLPSS). In the CFLPSS, each customer must
receive their demand from one open facility, as opposed to receiving their total demand from two or more

open facilities.
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Let us define

Zik 1, if a customer keK is assigned to a facilityie| ; otherwise 0.

Using the same definition for the notations of the CFLP and the CFLPSS can be formulated as:

min Z:fpi U +chik Zy (2-11)

iel iel keK
s.t. ;Zik -dy <cp;-u; Viel (2-12)
;Zik =1 VvkeK (2-13)
u, {0,1}viel (2-14)
2, €{0,1} Viel keK (2-15)

The objective (2-11) minimizes the total costs of opening the facilities and assigning costs. The
constraints (2-12) make sure that the capacities supplied by each facility is no greater than its capacity. The
constraints (2-13) guarantee that each customer is assigned exactly to one facility. The constraints (2-14) and
(2-15) are standard nonnegativity and integrality constraints for decision variables.

The CFLPSS is known to be an NP-hard optimization problem. Different approaches to obtain upper
and lower bounds for the CFLPSS are proposed in the literature. One of the most successful approaches for
solving the CFLPSS is the so-called Lagrangian heuristics. These heuristics are based on Lagrangian
relaxation which decomposes the original problem into a set of smaller and simpler subproblems by
introducing Lagrange multipliers and by optimally solving the related Lagrangian dual problem. A feasible
solution of the original problem is constructed by some heuristic procedure based on the solution of the
Lagrangian relaxation problem. The difference between these heuristics lies in which constraints are relaxed.
Klincewicz and Luss (1986) presented an algorithm based on relaxing the facility capacity constraints (2-12).
The corresponding Lagrangian subproblems then become uncapacitated facility location problems. Pirkul
(1987), Barcelo and Casanovas (1984) and Sridharan (1993) developed algorithms based on relaxing the
customer assignment constraints (2-13). The SSCFLP is decomposed into a series of knapsack problems.
Beasley (1993) proposed a relaxation on both capacity constraints and assignment constraints and compare
the performances of various Lagrangian heuristics. He concluded that Pirkul (1987) provided the best
feasible solutions, followed by Beasley (1993), and then Klincewicz and Luss (1986). In addition, other
heuristic methods are also proposed for the CFLPSS, such as Delmaire et al. (1999)’s reactive grasp and tabu
search based heuristics, Ahuja et al. (2004)’s very large scale neighborhood search algorithm and Diaz
(2008) ’s scatter search method.

For exact algorithms, Holmberg et al. (1999) developed a Lagrangian based branch-and-bound scheme
to find an optimal solution for the CFLPSS. At each branching node, a lower bound is generated by solving
the Lagrangian dual problem while a feasible solution is constructed based on the solution of the Lagrangian
dual by using a repeated matching heuristic. D &z and Fernandez (2002) proposed another exact algorithm, a

branch-and-price algorithm for the CFLPSS. A column generation procedure for finding upper and lower
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bounds is incorporated within a Branch-and-Price framework. The bounding procedure exploits the structure

of the problem by using an iterative approach. At each iteration, a two-level optimization problem is
considered. The two levels correspond to the two decisions to be taken: first, the selection of a subset of
plants to be opened, and then the allocation of clients within the subset of open plants. The second level
subproblem is solved using column generation. The algorithm was tested with different sets of instances and
the obtained results are satisfactory. Yang et al. (2012) designed a cut-and-solve (CS) based algorithm for
the CFLPSS. The CS was proposed by Climer and Zhang (2006) for the traveling salesman problem and can
be viewed as a special case of local branching tree.

2.1.2 Two-stage facility location problem

The two-stage facility location problems are natural extensions of the single-stage facility location
problems. In the two-stage facility location problems there are in fact three stages, but potentially more than
three decision levels. The first or upper-most stage is the plants, where the decision to be made is the choice
of which subset of plants to open, the second or central stage is the distribution depots and the decision here
is which subset of depot to open. The third stage is the customers and the decision to be made here are to
assign customers to open depots to satisfy their service or demand requirements. The decision of the flow of
product from the plants to the depots is also made in the two-stage facility location problem. The overall
solution to the two-stage facility location problem defines which plants and depots are open and the flow of
demand through the system from plants to customers via depots. The structure of a two-stage facility location
problem is presented in Fig. 2.2, where the first or upper-most stage is the plants, the second or central stage
is the depots and the third stage is the customers.

Fig. 2.2 The structure of a two-stage facility location problem

The two-stage facility location problem is a natural extension of the single-stage facility location
problem, which considers to locate facilities (depots and/or plants) in a two-stage supply chain network. The
two-stage facility location problem involves locating a set of depots or both a set of plants and a set of
depots, determining the product flows from the plants to the depots and the assignments of the customers to

the depots to satisfy the customers’ demands under single or multiple sourcing constraints. The objective the

15



2. Literature review
two-stage facility location problem is to minimize the sum of the opening costs of the facilities, the

transportation costs from the plants to the depots and the assignment costs of the customers to the depots.
One of the most studied two-stage facility location problem is the two-stage capacitated facility location
problem (TSCFLP). Other versions of the two-stage facility location problem have been studied in the
literature, such as the two-stage uncapacitated facility location problem (TSUFLP) and the two-stage
capacitated facility location problem with single source (TSCFLPSS).

To formulate the TSCFLP, the notations and decision variables used are as follows:

Notations:

I the set of plants;

J the set of potential depots;

K the set of customers;

cpi the capacity of the plant i | ;
cd; the capacity of the depot jeJ ;
dy the demand of customer k e K ;
fd; the fixed cost of the depot jeJ;

ti the unit transportation cost from the plant i € | to the depot je J ;

Cik the cost of assigning customer k € K to the depot jeJ;

Decision variables:

Uj 1, if the plant iel is opened; otherwise 0.
v 1, if the depot j € J is opened; otherwise 0;
Xij the quantity of product flow from the plant i <1 to the depot jeJ;

Zik the fraction of the demand dy of a customer k € K supplied from the depot je J ;

The TSCFLP can be formulated as:

min D Ui+ Dty Xy + 2 fdp v+ D ez (2-16)

iel iel jed jed jedkeK

jed

iel keK

keK

Dz =1vkeK (2-20)
jed

D cp; -u; =D(K) (2-21)
iel

D cd;-v; =D(K) (2-22)
jed
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u; {0,1}Vviel (2-23)
v; €{0,1}Vje (2-24)
X;; >0Viel,VjeJ (2-25)
0<z; <1vjel,vkeK (2-26)

The objective (2-16) minimizes the total costs of opening the plants and depots, and assigning the
customers to the depots. The constraints (2-17) ensure that the total product flows moving out from a plant
cannot exceed the capacity. The constraints (2-18) are the flow equilibrium constraints at the depots. The
constraints (2-19) address that the demands assigned to an opened depot cannot exceed its capacity. The
constraints (2-20) guarantee that each customer is assigned to exactly one depot. The constraints (2-21) and
(2-22) are redundant, but they are very useful in tightening the linear relaxation of TSCFLP. The constraints

(2-23), (2-24), (2-25) and (2-26) are standard nonnegativity and integrality constraints for decision variables.

The TSCFLP generalizes the CFLP by considering in addition the product flows from the plants to the
depots and/or the choice of the subset of plants from a set of potential plants to open. As the CFLP is NP-
hard in strong sense, the TSCFLP is also NP-hard in strong sense. In the TSCFLP, each facility has a limited
capacity. The volume supplied from each facility cannot exceeds its capacity. If the each facility has an
unlimited capacity, the TSCFLP becomes the TSUFLP. In the TSCFLP, if each customer is assumed to be
supplied from exactly one facility, it becomes the two-stage capacitated facility location problem with single
source (TSCFLPSS).

Many researchers have studied the two-stage facility location problem in the literature. Geoffrion and
Graves (1974) investigated a multi-commodity version of the problem and solved it using Bendres’
decomposition. Hindi and Basta (1994) addressed a distribution design problem, in which customers need
not be assigned to a single depot, only product flow is considered in the model. Pirkul and Jayaraman (1998)
studied a similar problem as Hindi and Basta (1994). An efficient heuristic was proposed to obtain a good
feasible solution. Klose (1999, 2000) considered a two-stage capacitated facility problem (TSCFLP) with
single source in which the optimal depot locations, the optimal product flows and the most effective
customer-depot assignments are determined. An effective linear programming-based approach (Klose, 1999)
and a Lagrangean relax-and-cut approach (Klose, 2000) have been proposed for it. Ro and Tcha (1984)
studied an two-level uncapacitated facility location problem with side constraints in which both the plants
and warehouses are assumed as uncapacitated and the products are delivered from the plants to the customers
directly with a penalty cost or indirectly via the warehouses. They proposed a branch and bound algorithm to
solve their problem. Gao and Robinson (1992) dealt a two-echelon uncapacitated facility location problem
and proposed a dual-based solution procedure. Tragantalerngsak et al. (1997, 2000) investigated a two-
echelon capacitated facility location problem (TECFLP) with single source. Each depot (in the first echelon)
has unlimited capacity and each facility (in the second echelon) has limited capacity. Each facility can be
supplied exactly by only one depot. The locations of the depots and the facilities, the assignments of the

customers to the facilities are determined simultaneously. Six Lagrangean relaxation heuristics
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(Tragantalerngsak et al.,, 1997) and a branch-and-bound method based on Lagrangean relaxation

(Tragantalerngsak et al., 2000) have been proposed for their problem. Hinojosa et al. (2000) studied a
multiperiod two-echelon multicommodity capacitated plant location problem and designed a heuristic
algorithm based on Lagrangean relaxation. For more details, we refer readers to Aardal (1998b), Chardaire
(1999), Mar n and Pelegr i (1999) and a systematic survey of Klose and Drex| (2005).

2.1.3 Facility location problem with facility size selection or
nonlinear variable cost

Facility location problems which consider simultaneously the optimizing of the location and size of
facility or nonlinear variable cost in the context of single-stage supply chain network system are rare in the
literature. Lee (1993) investigated a multi-products CFLP with facility type choice. The costs considered in
this problem include the fixed facility opening costs, the producing costs and the transportation costs. A
cross decomposition algorithm was proposed for its solution. Mazzola and Neebe (1999) dealt with the same
problem and developed a Lagrangean-based heuristic. Holmberg and Ling (1997) studied a facility location
problem with choice of facility size and staircase production cost. Taniguchi et al. (1999) optimized the size
and location of public logistics terminals. Queuing theory and nonlinear programming techniques were used
to determine the best solution for their problem. Harkness and ReVelle (2003) addressed a facility location
problem in which unit production cost is proportional to the scale of output. Four different formulations for
the problem were proposed and tested by using a branch-and-bound algorithm. Wu et al. (2006) considered a
capacitated facility location problem with general non-linear setup cost. A Lagrangean heuristic algorithm
was developed to find near optimal solutions. Dupont (2008) investigated a facility location problem in
which the total cost for each opened facility is a concave function of the quantity delivered by this facility. A
branch and bound method based on the problem properties was proposed. Carrizosa et al. (2012) studied a
nonlinear minsum facility location problem. The objective is to minimize the total cost including the facility
opening cost that is an increasing nonlinear function of the opened facility number, and the transportation

cost. Two Lagrangean relaxation approaches were proposed to solve their problem.

2.2 Lagrangean relaxation and subgradient
optimization

Lagrangian relaxation is one of the most widely used techniques in solving combinatorial optimization
problems. A Lagrangian relaxation of a constrained optimization problem is created by removing (relaxing) a
set of constraints from the problem and placing them in the objective function weighted by penalty
parameters or Lagrangian multipliers. The aim is to obtain a Lagrangian relaxation which is easier to solve
than the original problem because some special structure in the remaining constraints can be exploited. An

optimal objective value of the Lagrangian relaxation problem for a given set of multipliers provides a lower
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bound (in the case of minimization) for the optimal solution to the original problem. The best lower bound

can be derived by choosing the multipliers to be the solution of the Lagrangian dual of the original problem.
An upper bound on the optimal solution of the original problem can be derived by using the information
obtained from the Lagrangian relaxation to construct a feasible solution to the original problem. This is
normally done by applying some heuristic. Details and applications of Lagrangian relaxation can be found in
e.g., Fisher (1981) and Geoffrion (1974). Lagrangian relaxation have been widely applied to the facility
location problems, e.g., Geoffrion and McBride (1978), Galv& and Raggi (1989) for uncapacitated facility
location problem; Beasley (1988, 1993) for capacitated facility location problem; Barcelo and Casanovas
(1984), Klincewicz and Luss (1986), Pirkul (1987), Sridharan (1993) and Beasley (1993) for single-source
capacitated facility location problem.

2.2.1 Lagrangean relaxation

In order to illustrate the concept of Lagrangean relaxation, consider the following general integer

program in matrix form:

P min cx (2-38)
st.  Ax=b (2-39)
Dx<e (2-40)
xe{0,1} (2-41)

A lower bound for the above program can be found by introducing a Lagrange multiplier vector u =
(ug, ..., Uy) for the first constraint sets to get the Lagrangean lower bound program or Lagrangean relaxation.

The Lagrangean relaxation LR(u) is given by:

LR(u) min cx — (Ax —b) (2-42)
s.t. Dx<e (2-43)
xe{0, 1} (2-44)

The Lagrangean dual problem Zp(u) is defined to be
Zp(u)  max, LR(u) (2-45)

For given Lagrangean multiplier u, it is clear that LR(u) can be easily solved to give a solution X with

a corresponding lower bound given by cXx—u(AX-b).

The aim of the Lagrangean relaxation is to obtain a Lagrangean relaxation program which is easier to
solve than the original problem because some special structure in the remaining constraints can be exploited.
The selection of a suitable relaxation is one of the important issues to be considered when forming a solution
method based on Lagrangean relaxation. Two key factors in the evaluation of a relaxation are its ease of
solution and the tightness of the bounds generated. The ease of solution depends on the methods available for
solving the Lagrangean subproblem. The possibility of generating such smaller and easier problems, as
compared to the original problem, depends on the structure of the original problem and the degree of

separability obtained by relaxing certain constraints. Generally, a relaxation which gives a tighter bound will
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use greater computation time, whereas an easily solved relaxation problem is likely to give poor bounds

(Geoffrion and McBride, 1978).

The main property of the dual problem Zp(u) is that the dual function is always concave so any local
optimal solution is also a global one (Bazaraa and Sherali, 1981). The constraints are just non-negativity
constraints on the Lagrangian multipliers (or dual variables) associated with the inequality constraints. In the
case of an integer formulation, we also have that the dual function is non-differentiable so standard ascent
methods based on gradients cannot be used for its solution. Hence we need to adopt methods that can take
the non-differentiability into account. There are a number of such methods available, e.g., subgradient
optimization, steepest ascent and improved subgradient (Camerini et al. 1975). The most commonly used is
the subgradient optimization method and it is employed in Chapter 3-5 in this thesis due to its ease of
programming.

2.2.2 Subgradient optimization

The subgradient optimization method solves a non-differentiable problem by taking a fixed step length
in the direction of a subgradient. A line search cannot be done because a subgradient direction may not
necessarily be an ascent direction. Convergence to an optimal dual solution can however be guaranteed by
imposing restrictions on the selection of step lengths. We can easily find a subgradient since it is just the
evaluation of the constraint values in the current dual solution. The details of this method can be found in
Held et al. (1974). The subgradient optimization method is given in Algorithm 2.1.

Let BLB be the best lower bound found so far on the optimal objective function, BUB be the best upper
bound found so far on the optimal objective function, | be an iteration counter, Ly.x be the maximum

iteration number, & be a small scalar and A be the step length parameter at iteration I.

Algorithm 2.1: Subgradient optimization procedure
Step 1: Initialize u, €, Lmax and 4, , where J, is a parameter in the interval (0, 1]. Set BUB := + o0, BLB :=

-, 2= jgand|:=0.

Step 2: Solve the Lagrangean relaxation problem problems LR(u) to optimality to give the solution x. Let
LB be the objective value of this solution. If LB > BLB, then set BLB := LB. If no improvement of
BLB can be detected in a fixed successive iterations, then set 1 := 1/2.

Step 3: Find a feasible solution by applying a heuristic taking into account of the Lagrangean relaxation
solution. Let UB be the objective value of the feasible solution. If UB < BUB, then set BUB := UB.

Step 4: If | > Ly and 4 <e, stop. The dual solution corresponding to the BLB is regarded as the optimal
dual solution and the solution corresponding to the BUB is regarded as the optimal primal
solution.

Step 5: Compute a subgradient as g' = (Ax'-b), compute a step size as S' = (BUB — LB) / (g')?, where LB

is the objective value of the optimal solution to LR(u'). Setu"™*=u' +S'g'.

Step 6: Set | := 1 + 1 and return to Step 2.
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2.3 Metaheuristics

Metaheuristics have been a powerful solution method to many combinatory optimization problems. In
this section, we briefly introduce the principle of the tabu search (TS), variable neighborhood search (VNS)
and simulated annealing (SA). The TS is used to improve the solution to the TECFLP-PSS in Chapter 3, the
hybridization of the VNS and TS is used to improve the solution to the TECFLP-DSS in Chapter 4 and the
hybridization of the SA and TS is used to improve the solution to the TECFLP-PDSS in Chapter 5.

2.3.1 Tabu search

Tabu search (TS), introduced by Glover (1986), is an iterative meta-heuristic that guides a local search
heuristic procedure to explore the solution space beyond local optimality. In each iteration, the TS generates
a neighborhood solution by an operation called move. The TS guides the search process from the current
solution to its best admissible solution in its neighborhood, even if this new solution is worse than the current
one. This is unlike classical descent methods in which only moves lead to improved objective function
values are permitted. The TS uses a memory mechanism that prevents the search from cycling back to
previously visited solutions. The memory mechanism that maintains the search history is called the tabu list.
The tabu list keeps either some of the moves or just their attributes, and reversing these moves is forbidden
for a given number of iterations. However, this restriction can be ignored if the attempted move leads to a
new globally optimal solution, this is called the aspiration criterion. This criterion allows for exceptions from
the tabu list, if any move leads to promising solution. The TS terminates when stopping criteria are satisfied,
for example, it stops after a fixed number of iterations or a maximum number of consecutive iterations
without any improvement to the incumbent (best known) solution. The principal steps of the TS algorithm
are shown in Fig. 2.3. For more details of TS, we refer readers to Glover (1986, 1989, 1990).

Initialize tabu list TL, generate a solution x, set x**' = x.

While stopping criteria are not met do
Find a solution x' in the neighbourhood of x applying a search strategy
If f(x') < f(x**') or X' is not tabu then

X = X', update the tabu list TL

End if
If £(x) < f(x**") then
Xt =
End if
End while

Fig. 2.3 The principal steps of the TS algorithm

The feature of the TS is that a flexible memory structure and aspiration criteria are systematically used
to guide its search. Moreover, due to the acceptance of deteriorated solutions in the search process, the TS

can ‘jump’ from local optimum to other region of the solution space so that the probability to find an global
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optimal solution is enhanced. The new solution is not randomly generated in the neighborhood of the current

solution, it is the one which is better than the best current solution, or the best admissible solution which is
not tabu. The best admissible solution is selected from the neighborhood of the current solution according to

some pre-given rules.

In Chapter 3, we use a TS algorithm based on problem properties to further improve the best upper
bound found in the Lagrangean relaxation approach for the TECFLP-PSS as this metaheuristic has so far
proved to be successful in solving a variety of hard combinatorial problems. To the best of our knowledge,
this is the first time a TS heuristic is implemented for the two-stage facility location problem.

2.3.2 Variable neighborhood search

Variable neighborhood search (VNS), introduced by Mladenovi¢ and Hansen (1997), is a generic local
search methodology, whose basic idea is to apply a systematic change of neighborhoods within a local search
algorithm. The VNS combines a descent phase, to find a local minimum, and a perturbation phase, to escape
from the corresponding local minimum. Given a set of pre-selected neighborhood structures, the VNS starts
from an initial solution, a random solution is generated in the first neighborhood of the current solution, from
which a local descent is performed. If the local optimum obtained is not better than the incumbent, then the
procedure is repeated with the next neighborhood. The search restarts from the first neighborhood when
either a solution which is better than the incumbent has been found or every neighborhood structure has been
explored or other stopping criteria are met. The principal steps of the basic VNS algorithm (BVNS) are
shown in Fig. 2.4.

The idea of the VNS is based on the following observations: 1) a local minimum with respect to one
neighborhood structure is not necessary so for another, 2) a global minimum is a local minimum with
respect to all possible neighborhood structures, 3) for many problems local minima with respect to one or
several neighborhoods are relatively close to each other. Unlike many other metaheuristics, the basic

schemes of VNS and its extensions are simple and require few, and sometimes no parameters.

A popular variant is the deterministic Variable Neighborhood Descent (VND) where the best neighbor
of the current solution is considered instead of a random one. Also, no local descent is performed with this
neighbor. Rather, it automatically becomes the new current solution if an improvement is obtained, and the
search is then restarted from the first neighborhood. Otherwise, the next neighborhood is considered. The
search stops when all neighborhood structures have been considered and no improvement is possible. At this
point, the solution is a local optimum for all neighborhood structures. For more details of VNS we refer

readers to the surveys of Hansen and Mladenovié¢ (2001).

Generate a solution x, set x**"

= X, define the neighborhood structures Ni(x), I = 1, ..., Lmna, choose a
stopping criteria, 1=1.
While | < L,s« and stopping criteria are not met do

Shaking. Generate a solution x' at random from the I"™ neighbourhood N;(x) of x.
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Local search. Apply some local search method with x' as an initial solution, denote with X" the so

obtained local optimal.
Move or not. If f(x") < f(x**") then

x=x",1=1.
else
I=1+1.
End if
End while

Fig. 2.4 The principal steps of the basic VNS algorithm

Although the VNS has so far proved to be successful in solving a variety of hard combinatorial
problems. The basic VNS sometimes meets difficulties to escape from the local optimum although it
explores solution space by applying a systematic change of neighborhoods and moves randomly from one
solution to another (shaking). On the other hand, the TS has no such difficulties since it escapes the local
optimum by using a tabu list to avoid the recently visited solutions being revisited. To make use of the
potentiality of the systematic changes of the neighborhood structures of the VNS and the efficiency of the TS
to escape from a local optimum, the hybrid of the VNS and the TS has been applied in many combinatorial
optimization problems, such as vehicle routing problem (Belhaiza et al., 2014) and location routing problem
(Escobar et al., 2014).

In Chapter 4, we proposed a hybrid variable neighborhood tabu search algorithm (HVNTS) to further
improve the best upper bound found in the Lagrangean relaxation approach for the TECFLP-DSS. In the
proposed HVNTS, we follow the framework of the VNS and use the TS as the local search within the VNS
framework. To the best of our knowledge, the combination of the VNS and TS is rare in the literature and
never been used for the solution for facility location problem. Thus it is the first time that the hybridization

of the VNS and TS heuristic is implemented for the facility location problem.

2.3.3 Simulated annealing

Simulated annealing (SA) is a stochastic method for solving combinatorial problems that was proposed
by Kirkpatrick et al. (1983). The SA methodology draws its inspiration from the annealing process in
metallurgy. SA works by emulating the physical process in which a solid is heated to a high temperature and
cooled step-by-step to allow the solid to crystallize. The SA uses a stochastic approach to guide the search.
In addition to accepting better solutions, The SA allows the search to proceed to a neighboring state even if
the move causes the value of the objective function to become worse. The SA explores the solution space in
the following way. If a move to a neighbor X' in a neighborhood ensures an improvement in the objective
value or leaves the value unchanged, then the move is always accepted. More precisely, the solution X' is
accepted as the new solution if A <0, where A = f(X') — f(x). Moves that increase the objective function (i.e.,
A > 0) are accepted according to a probability function e " > y, where T is the temperature parameter and y

is a random number between [0, 1]. The value of T varies from a relatively large number to a value close to
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zero, T is often controlled by linear equations to reduce the temperature linearly with a rate a. The principal

steps of the SA algorithm are shown in Fig. 2.5.

Generate a solution x, set X

=X, initialize the temperature T and cooling parameter a, choose a stopping
criteria.
While stopping criteria are not met do
Generate a solution x' at random from x by using a local search method.
If f(x') < f(x"") then
X=X\
else
A = f(X') — f(x).
If exp (A / T) > random [0, 1] then
X=X\
End if
End if
T=T xa
If f(x) < f(x**") then
Xt = x,
End if
End while

Fig. 2.5 The principal steps of the SA algorithm

The SA algorithm with all its advantages also has some demerits, such as it requires large number of
iterations to generate an optimal or near optimal solution. In addition, the SA has no concept of short-term
memory list of prohibited neighboring solutions as in tabu search algorithm and hence the possibility of
revisiting the solution increased. These two drawbacks posed by the SA leads to more number of iteration

and thus longer computational time to generate the global optima solution.

The stochastic characteristic of the SA avoids cycling but the rate of improvement of solution is very
slow, because it has no memory of the recently visited solutions. So it is always possible for the SA search to
return to the same solution again. However, with the help of a short-term memory, the search of the SA can
be restricted from looping back to previously visited solutions and the performance of the SA can be
enhanced significantly. Keeping the above ideas in mind, the hybridization of the SA and TS has been
applied in many combinatorial optimization problems in the literature, such as the capacitated clustering
problem (Osman and Christofides, 1994), modeling machine loading problem (Swarnkar and Tiwari, 2004)

and vehicle routing problem (Kiigiikoglu and Oztiirk, 2015).

In Chapter 5, we design a hybrid simulated annealing tabu search algorithm (HSATS) for the TECFLP-
PDSS. The HSATS takes advantages of the stochastic feature of the SA to escape from local optima and the
short term memory strategy of the TS to avoid cycling. To the best of our knowledge, the combination of the

SA and TS is also rare in the literature and never been used for the solution for facility location problem.
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Thus it is the first time that the hybridization of the SA and TS heuristic is implemented for the facility

location problem.
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3.1 Introduction

The traditional two-stage facility location problem focus on determining the locations of plants and
depots, and the flows of product from plants to customers via depots with the goal of minimizing the sum of
facility opening costs and logistic costs. In these problems, each plant has only one choice of capacity, either
uncapacitated or capacitated. The opening cost of a plant is a constant and the unit production cost is the
same for all of the plants, thus it can be merged with other linear connection costs. However, in some
practical situations firms need also to determine the sizes of plants in designing a two-stage supply chain
network. The size of plant greatly affects not only its fixed opening cost, but also the unit producing cost due
to economies of scale. How to make a trade-off between plant location and size is a significant problem in
supply chain network design. Thus we study a two-echelon capacitated facility location problem with plant
size selection (TECFLP-PSS) in this chapter. This is an extension of the TSCFLP. In this problem we
simultaneously locate plants and depots, and select sizes for the located plants, where each plants in the first
stage has several potential sizes exhibiting different capacities. Each depot in the second stage has a limited
capacity and is supplied by multiple plants. Each customer in the third stage is serviced by only one depot.
This extended model can then simultaneously determine the locations and sizes of the plants, the locations of
the depots, the product flows from the plants to the depots and the assignments of the customers to the depots

to satisfy the customers’ demands.

As it is well known the fixed opening cost of a facility depends on the size of the facility opened. It is
not realistic to expect that different size of a facility at the same site have the same fixed opening cost. In
addition, the unit production cost generally decreasing with increasing scale as fixed costs are spread out
over more units of output. Operational efficiency is also greater with increasing scale, leading to lower unit
production cost as well. Therefore, in the TECFL-PSS, the fixed opening costs are assumed to be different
for different sizes of a plant, i.e., the fixed opening cost for a larger size of a plant is more than those of the
smaller sizes of the same plant. The unit production cost for a larger size of a plant is less than those of the
smaller sizes of the same plant to model the economies of scale. The distinguishing features of the TECFLP-
PSS are: 1) there are several sizes for each potential plant that can be opened, 2) production cost is taken into
account specifically since the unit production cost for a larger size of a plant is less than those of the smaller
sizes of the same plant, thus it cannot be merged with other linear connection costs like it is done in the

traditional facility location model.

The TECFLP-PSS is an extension of the TSCFLP. As the TSCFLP is NP-hard in strong sense, the
TECFLP-PSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-PSS, we focus on
searching for good lower and upper bounds for it. For this problem, a mixed integer linear programming
model is formulated and a Lagrangean relaxation approach is proposed to achieve lower and upper bounds.
To further improved the best upper bound found by the Lagrangean relaxation approach, a tabu search (TS)

algorithm is proposed. To solve the dual problem arising in the Lagrangean relaxation approach, we make
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use of a subgradient optimization method. The Lagrangean relaxation problem can be decomposed into two

subproblems, one can be solved to optimality by inspections and another one can be decomposed further into
the classical 0-1 knapsack problem which can be exactly solved in a very reasonable time by using the
MINKNAP developed by Pisinger (1995). In order to construct feasible solution and find an upper bound,
we design a heuristic by repairing the Lagrangean relaxation solutions. The feasible solution construction
process consists of three stages: 1) open plants and select their sizes, 2) open depots and determine the
customer-depot assignments, 3) determine the product flows from the plants to the depots. In the search
process of the TS, the product flow cost changes between plants and depots incurred be reassignment of
customers are taken into account in a heuristic way. A heuristic is proposed to adjust the product flows
between plants and depots into feasible flow after reassignments of customers. After the TS, the optimal
product flows are determined by solving a transportation problem using commercial solver CPLEX.

In order to evaluate the performance of the proposed Lagrangean relaxation approach and TS, 245
instances are randomly generated and tested. To evaluate the solution quality and speed of the Lagrangean
relaxation approach and TS, 50 instances with different problem size are tested. The Lagrangean upper
bounds are compared with the Lagrangean lower bounds and the upper bounds provided by commercial MIP
solver CPLEX, and the upper bounds obtained by the TS are also compared with those of CPLEX. The
results indicate that the proposed solution method is effective for the TECFLP-PSS since the gaps between
the upper bounds and those of CPLEX are less than 1.66% on average and the CPU time required by the
Lagrangean relaxation and TS is much less than that of CPLEX. In addition, 195 instances with different
sizes and different parameters, such as the ratio of plant capacity to customer demand, the ratio of depot
capacity to customer demand and the number of plant size, are randomly generated and tested. The results of
the gaps between the Lagrangean upper and lower bounds, the upper bounds obtained by TS and Lagrangean
lower bounds are reported. The computational results demonstrate that all of the instances can be solved in a
reasonable time with small gaps, even for instances that have up to 50 potential plants with 6 possible sizes

each, 200 potential depots and 400 customers.

The rest of this chapter is organized as follows. In Section 3.2, a mixed integer programming model is
formulated for the TECFLP-PSS. In Section 3.3, a Lagrangean relaxation approach is proposed to achieve
lower and upper bounds. In Section 3.4, a tabu search algorithm is proposed to improve the best upper
bounds found by the a Lagrangean relaxation approach. In Section 3.5, we evaluate the proposed algorithms

on randomly generated instances. Conclusions are drawn in Section 3.6.

3.2 Problem formulation

Given a set of potential plants, each of which has several possible sizes exhibiting different capacities, a
set of potential capacitated depots and a set of customers with demands, the TECFLP-PSS is to optimally
determine the locations of the plants as well as their sizes, the locations of the capacitated depots, the product
flows from the plants to the depots and the customer-depot assignment under single sourcing constraints so

that all of the customers’ demands are satisfied. The objective is to minimize the sum of the fixed opening
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costs of the plants and depots, the production costs of product and the shipping costs of product from the

plants to the depots and then to the customers. The structure of the TECFLP-PSS is presented in Fig. 3.1,
where the first or upper-most stage are the plants, each plant has several sizes, the second or central stage are

the depots and the third stage are the customers.

Fig. 3.1 The structure of the TECFLP-PSS
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Fig 3.2. An example of the cost function of a plant

In the TECFLP-PSS, each size of a plant associates with a capacity cp, a fixed opening cost fp and a
unit production cost p. The fixed opening cost for a larger size of a plant is larger than those of the smaller
sizes of the same plant. To model the economies of scale, the unit production cost p for a larger size of a
plant is smaller than those of the smaller sizes of the same plant. An example of the cost function including

the fixed opening cost and the production cost of a plant is illustrated in Fig. 3.2.
To formulate the TECFLP-PSS, the notations and decision variables used are as follows:

Notations:
I the set of potential plants;

J the set of potential depots;
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the set of customers;

R the set of production sizes of the plant il ;

Cpir the capacity of the plant i1 with the production size reR;;

cd; the capacity of the depot jeJ ;

d, the demand of customer k e K ;

four the fixed cost of the plant i € | with the production size reR;;

fd, the fixed cost of the depot je J;

Pir the unit production cost of the plant i e I with the size reR;;

i the unit transportation cost from the plant i e | to the depot jeJ ;

Cik the cost of assigning customer k € K to the depot jeJ;

Decision variables:

Uir 1, if the plant i e | with the production size reR; is opened; otherwise 0;

v 1, if the depot j € J is opened; otherwise 0;

Xirj the quantity of product flow from the plant i e | with the size reR; to the depot jeJ;
Zi 1, if a customer k € K is assigned to the depot jeJ ;

The TECFLP-PSS can be formulated as:

p: min szplr Uiy +ZZZ(pir +tij )'Xirj +Z fdJ 'VJ' +chjk 'ZJ'k (3'1)

iel reR iel reR; jel jed jeJkeK
jed
u; <1viel )

rEZR:i ir (3 3)
iel reR; keK

keK

szk =1vkeK (3-6)
jed

jed keK

u;, €{0,1}Viel,VreR, (3-8)
v; €{0,1}VjeJ (3-9)
Xirj ZOVI€| ,VI’ERi,VjEJ (3'10)
2y €{0,1}vjeJ, vkeK (3-11)

The objective (3-1) minimizes the total costs of opening the plants and depots, producing and shipping

the products. The constraints (3-2) ensure that the total product flows moving out from a plant cannot exceed
32



3. Two-echelon capacitated facility location problem with plant size selection
the capacity of its opened size. The constraints (3-3) state that only one size of an opened plant can selected

to open. The constraints (3-4) are the flow equilibrium constraints at the depots. The constraints (3-5)
address that the demands assigned to an opened depot cannot exceed its capacity. The constraints (3-6)
guarantee that each customer is assigned to exactly one depot. The constraint (3-7) is a redundant constraint,
which specifies that the demands of all customers can be satisfied by open plants. We add it to the
formulation in order to improve the Lagrangean lower bounds. The constraints (3-8), (3-9), (3-10) and (3-11)
are standard nonnegativity and integrality constraints for decision variables.

As a generalization of the TSCFLP, the TECFLP-PSS is NP-hard in strong sense. Thus we focus on
searching for lower and upper bounds for it, especially for those large-sized instances in a reasonable time. A
Lagrangean relaxation approach and a tabu search in the following to find sub-optimal solutions.

3.3 Lagrangean relaxation approach for the
TECFLP-PSS

Due to the NP-hardness of the TECFLP-PSS, we focus on searching for lower and upper bounds for it
in a reasonable time. The Lagrangean relaxation approach is one of the most effective approaches for
achieving lower and upper bounds for mixed integer linear programming problems, which relaxes hard
constraints into the objective function by introducing Lagrangean multipliers. This approach has been widely
applied for various facility location problems, e.g., Geoffrion and McBride (1978) for the CFLP, Klincewicz
and Luss (1986) for the SSCFLP, Klose (2000) for the TSCFLP and Tragantalerngsak et al. (1997) for a two-
echelon, single-source, capacitated facility location problem. Due to the effectiveness of the Lagrangean
relaxation approach, it is used here to achieve lower and upper bounds of the TECFLP-PSS. The Lagrangean

relaxation approach is presented as follows.

3.3.1 Lagrangean relaxation model of the TECFLP-PSS

The selection of a suitable relaxation is very important for generating good lower and upper bounds. For
the TECFLP-PSS, the constraints (3-4) and (3-6) or (3-2) and (3-6) can be relaxed to generate two different
Lagrangean relaxation problems. In our implementation, the constraints (3-2) and (3-6) are relaxed by
introducing the non-negative multipliers «;, (iel,reR;) and the multipliers g, (keK) since it can generate
better lower and upper bounds than relaxing the constraints (3-4) and (3-6) based on our preliminary

experiments. Relaxing the constraints (3-2) and (3-6) with the non-negative multipliers «; (iel,reR;) and

B (keK) respectively, the Lagrangean relaxation problem LR(a, ) is therefore

LR(a, £)=min ZZ( fpir _air)'uir+zlgk +ZZZ( Pir i+ 10Dy )-Xiyg

iel reR; keK iel reR; jel (3 12)
jed jed keK
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s.t. (3-3)-(3-5) and (3-7)-( 3-11).

The LR(a, B) can be divided into two independent subproblems LR, (a) and LR, («, ).

The first subproblem LR, () is

LR, (@)=min > >"(fpy,—a;. U, (3-13)

iel reR;
s.t. (3-3) and (3-8),
which can be solved exactly in O(|1]-|R;|) by setting a maximum of one u; to 1, with the smallest negative

fp, —c, value foreach iel.

The second subproblem LR, («, p) is

LR, (a, B)=min D" "> (py, +t; +ay, [epy, )X+ D _ v,

iel reR; jed jed

+ZZ(Cjk A =B )2

jeJkeK

s.t. (3-4), (3-5), (3-7) and (3-9)-( 3-11).

(3-14)

In the LR, (, B), the variables X;; and z; are connected only by the constraints (3-4). It can be
observed that there always exists an optimal solution of the LR, (a, ) where a depot j is only supplied by its

‘cheapest source’. Forany iel, reR;, jeJ, set

de “Zij Ai, ri=arg min met, ner, (Pmn g +0mn /CPmn )
Xirj =\ kek
0, otherwise.

The LR, (¢, ) can be reduced to
jed jeJkeK

s.t. (3-5), (3-7), (3-9) and (3-11),

where w; = min i (. (P + +a4. /05 ) -

For each j, let fd'j be the optimal objective value of the problem

keK
st kde Zy<cd; (3-17)
eK
2; {0,1}vkeK (3-18)

This problem is a 0-1 knapsack problems, which can be exactly solved in a very reasonable time by
using the MINKNAP developed by Pisinger (1995).

Then the LR, (@, ) can be reformulated as:
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LR, (@, 8)=min > fdj v, (3-19)

jed

5.t.(3-5), (3-7) and (3-9),

which can be transformed into a classical 0-1 knapsack problem. Let y; = 1 —vj, V jeJ, the transformed

problem is presented in the following.

Puap =Max > fd} -y =D fd; (3-20)
jed jed
jed jed keK
y;€{0,1}vjed (3-22)

where fd'j is viewed as the profit of the item jeJ, cd; as the weight of item jeJ , and chj—de as the
jed keK

capacity of the knapsack. We simply set y; = 0 where fd'j < 0, because the profit of those items are non-

positive. This problem can also be solved exactly by using the MINKNAP developed by Pisinger (1995).

Let LB(a,f) be the sum of the objective value of the solution of LR,(«), LR,(a, ) and Zﬂk .
keK

Obviously, LB(a,p) is a lower bound of the TECFLP-PSS for given Lagrangean multipliers («, B) .

3.3.2 Subgradient optimization for the TECFLP-PSS

To obtain the best Lagrangean lower bound of the TECFLP-PSS, a subgradient optimization method is

adopted to approximately solve the corresponding Lagrangean dual problem.

D: max LR(@, ) (3-23)

The subgradient optimization is an iterative process that repeatedly solves the Lagrangean relaxation
problem and then updates the Lagrange multipliers for the next iteration by using the current subgradient
information.

Let (G', %', ¢', 2') be the optimal solution of LR(a', B') at iteration I. Let yj, =>_&i;—cp;, Gy, Viel ,

jed

reR, and 7, =1-) 2}, VkeK, the Lagrangean multipliers for the iteration I+1 are updated by
jed

oyt =max{a, +0" -7, 0} (3-24)
o =Be+0" (3-25)
where 6'=1-(BUB-LB(a', 8"))/ O D (r)*+D_(m)?) is the step size at iteration |, BUB is the best upper

iel reR; keK

bound of the TECFLP-PSS found in the previous | — 1, LB(a', #')is the lower bound of the TECFLP-PSS

(see subchapter 3.3.1) at iteration I, 1 is a parameter in the interval (0, 2], which is halved if the best lower
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bound hasn’t been improved for a given number N, Of consecutive iterations.

Let BLB be the best lower bound found in previous | — 1 iterations, L,y be the maximum number of
iterations and ¢ ,, be a positive small scalar. Then the subgradient optimization procedure for the TECFLP-

PSS is described in detail in Algorithm 3.1.

Algorithm 3.1: Subgradient optimization procedure for the TECFLP-PSS
Step 1: Initialize Ny, Liag, € Lag and Z,, where /1, is a parameter in the interval (0, 2]. Set BUB := + oo,

BLB:=-o, af : =0, Viel ,reR;, 0 =0, vkeK, 4 := j, and | := 1,
Step 2: Solve the subproblems LR (') and LR,(a', ') to optimality. Let LB = LB(«',4'). If LB >

BLB, then set BLB := LB. If no improvement of BLB can be detected in Ny, successive iterations,
thenset 1 := 1/2.

Step 3: Construct a feasible solution of TECFLP-PSS based on the current Lagrangean relaxation solution
(Chapter 3.3.3). Let UB be the objective value of this solution. If UB < BUB, then set BUB := UB.

Step 4: If | > Lisg and 4 < g4, stop. The dual solution corresponding to the BLB is regarded as the
optimal dual solution and the solution corresponding to the BUB is regarded as the optimal primal
solution.

Step 5: Update ai'r for Vviel , reR, and ﬁi'( for Yk € K according to the formula (3-24) and (3-25)

respectively.
Step 6: Set | := | + 1 and return to Step 2.

Note that as the iterations move on, the value of parameter 4 becomes smaller and smaller until the

lower bound LB(a', ') becomes stable, and no further improvement of BLB can be achieved. To escape

this ‘dilemma’, we restart the subgradient optimization procedure by means of initializing the BUB and the
BLB with the best values obtained in the previous subgradient process. Also, the Lagrangean multipliers are
initialized to the multipliers that lead to the BLB. Starting from a relatively good initial point and resetting
parameter ., we hope that the subgradient process can increase the probability of obtaining better lower and

upper bounds.

3.3.3 Feasible solution construction

At each iteration of the subgradient optimization process, i.e., at iteration | , we repair the Lagrangean
relaxation solution to obtain a feasible solution of the TECFLP-PSS. The feasible solution construction
process can be divided into the following three stages: 1) open plants and select their sizes, 2) open depots

and determine the customer-depot assignments, 3) determine the product flows from the plants to the depots.
1) Open plants and select their sizes

We first open the plants i with size 7, where (i',F)e{(i,r)llii'r =1,Viel,reR;} and denote these opened

plants as I . If the sum of capacities of the opened plants can cover all of the customers’ demands, the
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locations of the plants and their sizes are determined. Otherwise, we consider to open more plants and select

their sizes, or we select larger sizes for the currently opened plants.

Defined FP, = fp} —a},, iel, reR as the evaluation cost of opening a plant at site i with size s in
LRl(a'). Let AFPi'r and ACPi'r be the variations of cost and capacity, respectively, if plant status is changed.

AFP! is calculated as FR!—FP!, if plant i is opened with size F, FP! otherwise. ACP! is calculated as
cp,—cp;e if plant i is opened with size 1, cp, otherwise. For an opened plant, we only consider the sizes

that are greater than the currently chosen sizes. The main idea of the proposed construction method is to

iteratively open a new plant or to change the size of an opened plant until all of the customers’ demands are
covered. At each iteration, we open a plant i and choose a size r with the smallest value of AFP)/ACP; . For

a previously opened plant, if its size is changed we only preserve the latest size (as only size of a plat can be
selected). The detailed procedure for opening plants and selecting sizes is summarised in Algorithm 3.2.

Algorithm 3.2: Opening plants and selecting sizes
Step 1: Open all of the plants i with the size r if u;, = | in the Lagrangean relaxation solution and denote

these plants as I .

Step 2: If the total capacity of the opened plants is equal to or greater than the total customers’ demands,
return the opened plants and their sizes, stop.

Step 3: If the total capacity of the opened plants is less than the total customers’ demands, repeat Steps

3.1-3.2 until all of the customers’ demands are covered.
Step 3.1: For each potential plant and possible size, compute the AFPi'r and ACPi'r.
Step 3.2: Open the plant i and select the size r for this plant if it has the smallest AFP}/ACP; value and

add it into 1. Preserve the size r for the plant i if it has been previously opened.

2) Open depots and determine the customer-depot assignments

The Lagrangean relaxation solution may be infeasible for the original problem. To open depots and
determine the customer-depot assignments, we repair the Lagrangean relaxation solution to a feasible

solution so that each customer is assigned to exactly one depot.
First, we open all of the depots where \7'j = 1 in the Lagrangean relaxation solution and denote these
depots as J , thatis J = {jeJ|Vj=1}.

Based on the customer-depot assignments in the Lagrangean relaxation solution, we partition the set K

of customers into three mutually disjointed subsets:

Ko = {keK:) 7}, =0}

jed

K, = {keK:Zi'jkzl} and

jed
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Ky = {keK:) 7} >1},

jed

such that K, UK, UK, =K.

Second, we assign the customers of K; to the depot j where 2'jk = 1. The customers of K, are assigned

to the depot j where 2}, =1 and c;, is the smallest.

Third, we assign the customers of K, to depots one by one based on a regret value. Define ¢, as the
evaluation cost of assigning customer £ to a depot j, which is equal to cj if depot j is currently opened, and
otherwise ¢ + fd;-d,/cd; . This definition takes the fixed opening cost of the depot into account. The regret
value of a customer k is defined as the difference between the second smallest and the smallest ¢;, values

among all of the depots whose residual capacities are greater than d,. If a customer k has only one candidate

depot, then we give a high regret value to that customer. At each step, the customer with the largest regret

value is assigned to the depot where @, value is the smallest. A depot j that is not currently in J will be

opened and added to J if a customer is assigned to it.

Finally, we close those depots to which no customer is assigned and delete them from the set J .

The procedure for opening depots and determining the assignments of the customers is shown in
Algorithm 3.3.

Algorithm 3.3: Opening depots and determining the customer-depot assignments
Step 1: Add depots j with solution \7'J- =1toset J .

Step 2: Assign the customers in set K; to the depot j where 2'jk = 1. Assign the customers in set K, to the

depot j where 2}, =1and cj, is the smallest.

Step 3: If some customers are not assigned, repeat Steps 3.1 to 3.3 until all of the unassigned customers are
assigned, or we find an unassigned customer can not be assigned to any depot with sufficient
residual capacity.

Step 3.1: Compute the costs ¢y, and regret values for all of the unassigned customers.

Step 3.2: Choose the unassigned customer with the maximum regret value.

Step 3.3: Assign the chosen customer to the depot with the smallest ¢y, . If a customer is assigned to a

depot that is not in set J , add this depot to the set J .

Step 4: Close the depots to which no customers assigned and delete these depots from set J .

3) Determine the product flows from the plants to the depots

If plants with enough capacity have been opened by using Algorithm 3.2 and if feasible customer-depot
assignments have been obtained by Algorithm 3.3, then the product flow from the plants to the depots can be

determined by solving a transportation problem. In this transportation problem, the opened plants and depots

38



3. Two-echelon capacitated facility location problem with plant size selection
are viewed as the source nodes and the destination nodes respectively, the plants capacities and the

customers’ demands assigned to the depots are viewed as the supply capacities and destination demands
respectively. After solving the transportation problem, we close all of the opened plants whose products are

not flowing to any depot.

3.4 Tabu search for the TECFLP-PSS

Tabu search (TS), introduced by Glover (1986), is a local search based metaheuristic. The TS explores
the solution space by moving from the current solution to another in its neighborhoods. A candidate solution
is accepted even if this solution deteriorates the function value, according to an aggressive admission
criterion to avoid getting trapped in local optima. To prevent the possibility of cycling, a tabu list is
introduced to forbid moves from recently visited solutions for several iterations. However, forbidden moves
can be overridden by some aspiration criteria. Finally, the TS terminates when stopping criteria are met. The
TS has been widely applied in various combinatorial optimization problems, such as job shop scheduling
(Hertz and Widmer, 1996), assignment problem (D 8z and Fern&ndez, 2001) and vehicle routing problem
(Gendreau and Hertz, 1994), etc. Thus the TS is adopted here to further improve the best upper bound found
by the Lagrangean heuristic. The details of the implementation of the TS are described in the following

subsection.

3.4.1 Move and neighborhood definitions

In the implementation of the TS, we first fix the locations of the plants, their sizes and the locations of
the depots as the input feasible solution. We only consider changes of customer-depot assignments. Two

kinds of moves are used: shift reassigns one customer from one depot to another, and swap interchanges the

assignments of two customers that are currently assigned to two different depots. Let Ny, (&) and Ng,,p (&)

denote the neighbourhood of solution &, which contains the set of feasible solutions that can be attained

from & by performing either a shift or a swap move, respectively.

3.4.2 Evaluation of moves

Define a evaluation value (EV) as the cost variations incurred by a move. The EV includes the variation
of the fixed opening cost of depot EVy, the assignment cost EV, and the flow cost EVy4, i.e., EV = EVy4 + EV, +
EV:. The EV4 and EV, can be directly obtained by calculating the differences of the cost before and after the

move is performed. The EV; can also be determined by solving a transportation problem. However, as the
number of trial solutions of Ny (&) and Ng,, (&) may be O(J|-|K ) and O(J |-| K|?), it is very time

consuming to solve a transportation problem to obtain the EV; for each trial solution. To reduce the
computation effort, we prefer to estimate the EV; heuristically. Note that the EVs is O if two customers with

the same quantities of demand are swapped.
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We observe that performing a shift or a swap move will lead to a decrease of aggregated demand at one

depot and an increase of the same quantity at another depot. Let d be the absolute value of variation in

demand, j' and j" be the index of the depot whose aggregated demand is decreased and increased after

performing a move respectively. To make the solution feasible, we need to remove d units of flows flowing

out from plants to the depot j' and add d units of flow flowing out from plants to the depot j* to satisfy the

flow conversation constraints (3-4). In order to remove d units of demand from the depot j' as optimal as

possible, we first sort the plants with x;; > 0 in a non-increasing order according to their p; +t;; values, and
initialize the residual demand as d, := d. Then, in the same order, we remove uzmin{xirj. ,d.} units of flow

from each plant by setting X;; = X — x and d, :=d,— . This procedure is repeated until d units of flows

flowing to the depot j' have been removed.

In a similar way, to add d units of flows to the depot j" as optimal as possible, we first sort the plants

with u;, =1 and cp;, —inrj > 0 in a non-decreasing order according to their p; +t;. values, and initialize
jed

da: = d as the demands that need to be added. Then, in the same order, we add g=min{cp;, —in,j ,d,} units
jed

of flow each plant to depot j" by setting X = X;;» +x and d, := da — x. This procedure is repeated until d
units of flow have been added to the depot j".

The EV¢ is computed as the variations of the flow cost after and before the removing and adding
procedure. The computation of EV; is summarized in Algorithm 3.4.

Algorithm 3.4: Computation of EV¢
Step 1: Set d, :=d and EV; =0.

Step 1.1: Sort the plants i e | with X;; >0 in non-increasing order according to their p; +t; values.

Step 1.2: In this same order, while d, > 0, delete x = min{x;;,d, } quantity of flow from plant i to depot
J' by setting X := X — . SetEVe:= EVy — (py +tyj ) 4, 0= — g1

Step 2: Setd, :=d.

Step 2.1: Sort the plants i e | with u;; = 1 in non-decreasing order according to their p;. + t. .

Step 2.2: In this same order, while d, > 0, add x=min{ cpir—z d.} quantity of flows from plant i to

el Xirj»

depot j" by setting Xig 1= Xy + . St EVy 1= EVe+ (pj +tj ) pt, o= da — 0.

3.4.3 Search strategy

In the implementation of the TS, the best accept strategy is adopted. That is, at each iteration of the TS,
the value EV of all of the possible shift and swap moves that will not lead to infeasible assignments with

respect to depot capacity in the neighbourhood of the current solution is calculate calculated first. Then, the
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best admissible move (with the smallest EV) is performed. The product flows from the plants to the depots

are then adjusted according to the computation of the EVy. A |K|-]J| tabu list (TL) is employed to avoid
looping back to previous visited solutions in the search process. The element (k, j) of the TL records the last

iteration number that it will be forbidden to assign customer k to depot j. If a customer k is reassigned to a

depot j at iteration I, the value of element (k, j) is reset to | + t, which means any solution with the customer

k assigned to the depot j will be forbidden for the next t iterations. We adopt a random dynamic tenure which
uses a tenure range defined by parameters T, and T The tabu tenure t is selected randomly within this
range, following a uniform distribution. The aspiration criterion used in the TS is based on the EV and the
current solution quality. Let UB be the objective value of the current solution and BUB be the objective
value of the best solution found so far. If UB plus EV of the move is less than BUB, it is selected and
performed in spite that it leads to tabu customer-depot assignments. Otherwise it is accepted only when it
does not lead to tabu customer-depot assignments. The TS procedure is terminated if the maximum number
iteration is reached or the best upper bound found so far is not improved in a successive number of iterations.
After the TS, the product flows from the plants to the depots are optimally determined by solving the
corresponding transportation problem.

3.5 Computational results

The proposed Lagrangean relaxation approach and the TS were coded in C++. Numerical experiments
were carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU Q8200 and 2 G RAM
under Microsoft Windows 7 operating system. In section 3.5.1, we describe the way to create random
instances. In section 3.5.2, 50 instances are tested to evaluate the solution quality of the Lagrangean
relaxation and the TS. In addition, 195 instances with different problem parameters, e.g., the ratio of plant
capacity to customer demand, the ratio of depot capacity to customer demand and the number of plant size,

are tested to show the speed and the quality of the proposed Lagrangean relaxation approach and the TS.

3.5.1 Test instances

No instances are publicly available for the TECFLP-PSS since it is a new problem. Thus the instances
of the TECFLP-PSS are randomly generated in our test. Based on the instance generation of the CFLP
(Cornuejols et al., 1991) and the TSCFLP (Klose, 2000), the instances are generated in the following way.
The coordinates of the potential plants, depots and customers are randomly selected from a unit square. The
unit transportation costs are 10 times the Euclidean distance between the locations. Let U[a, b] denote a

uniform distribution in interval [a, b]. The demand d¢ of customer k € K is generated from U[5, 35].

Assuming that cpip < cpiq if p < g, we first generate the capacity cpyg, for each plant from U[10, 160] and
then scale the capacities using the ratio re,g = Zie.CpilRil /Z i - For each r < Ry, cpir is set to rcpyg o/

ke

|R;|, where o is a parameter randomly selected from U[0.9, 1.1]. Similarly, the capacity cd; for jeJ is
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generated from U[10, 160] and scaled by using ratio reyq = Zjejcd il Zkede . To embody the plants’

economies of scale, the cost of production per unit for a smaller size is assumed to be larger than that for a
bigger size of the same plant. For each plant i e | , we first generate the unit production cost p;; from U[5, 7].
Then, for any r > 1, the p; is obtained by multiplying the production cost pi,.;y by a random parameter
selected from U[0.9, 0.95]. The fixed opening costs for each size of a plant or a depot is obtained by

multiplying its capacity by a parameter selected from U[20, 25].

3.5.2 Results

In our implementation of the subgradient procedure, the parameters are set as follows: L .4 = 5000, €|Lag

=10, Ny =40and 4, = 1.5. For the TS, the parameters Ty, and Ty are set to 10 and 15 respectively. The

loop of the TS is terminated if the maximum number 2000 iterations is reached, or if the BUB has not been
improved in the previous 200 successive iterations. The CPLEX version 12.5 with default setting is used as

the MIP solver to evaluate the proposed algorithms.

Let UB,,4 be the BUB found by the Lagrangean relaxation approach, UBs be the BUB found by the TS,
UBc; be the BUB found by CPLEX without time limitation, UB¢, be the BUB found by CPLEX within time
limit of Tyagrs and LBy, be the BLB found by the Lagrangean relaxation approach. The computational results
are shown in Tables 3.1-3.4. For each problem set, five instances are generated. To simplify the presentation,
the column headings are as follows:

[11x]3]x]K| the number of the plants, the depots and the customers respectively

Glag the gaps between UBy,g and LB 4, i.€., (UBrag— LBiag) / LBsg >100

Grs the gaps between UBts and LBy, i.€., (UBts — LBiag) / LB 4y ><100
Grscs the gaps between UB+s and UBc;, i.e., (UBts — UB¢;y) / UB¢; <100

Grsca the gaps between UB+s and UBcy, i.e., (UBts — UBc,) / UB¢; <100

Tiag the CPU time used by the Lagrangean relaxation approach

TLagrs the CPU time used by the Lagrangean relaxation approach and the TS
Ter the CPU time of CPLEX without time limitation

Ry the ratio of the time T¢; to the time Tiagrs

Avg. the average value of gaps or computational times for each instance set
Max. the maximum value of gaps or computational times for each instance set

In order to evaluate the solution quality of the proposed Lagrangean relaxation approach and the TS, we
have compared the results of the Lagrangean relaxation approach and the TS with those of the following two
versions of CPLEX (c1 and c2). For the CPLEX c1, no time limit is imposed. That is the CPLEX cl
terminates itself if an optimal solution is found or an “Out of memory” error occurs. For CPLEX c2, a time

limit of Ty.qrs IS imposed.

The computational results are reported in Table 3.1. For the instances tested in Table 3.1, we set rgg =

2.0, regg = 2.0 and |R;| = 3. The experimental results show that CPLEX can find an optimal solution only for
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the instances of set 1, and the programme meets an ‘out of memory’ error for the other sets. The average

gaps between the Lagrangean upper bound and lower bound range from 0.96% to 1.82% and the maximum
gap is 2.55%. It is clear that the Lagrangean relaxation approach provide both a well upper bounds and a
good lower bounds for the TECFLP-PSS. The gaps between the TS upper bound and the Lagrangean lower
bound range from 0.78% to 1.66% and the maximum gap is 2.04%, which indicate that the TS also performs
well. The average gaps between the TS upper bounds and those of the CPLEX c1 range from -0.35% to
0.67%. This gap decreases as the problem size increases and the TS upper bounds is better than those of the
CPLEX c1 for the large size problem, e.g., the gaps between the TS upper bounds and those of the CPLEX
cl for the set 9 and set 10 are -0.06% and -0.35% respectively. In terms of computational time, the CPLEX
cl takes much more CPU time, or about 180 times more than that required by the Lagrangean relaxation
approach and the TS.

The average gaps between the TS upper bounds and those of the CPLEX c2 range from -1.09% to -
0.31%, which means the TS upper bounds are much better than those of the CPLEX c2 for all the instances,
and thus the Lagrangean relaxation approach with the TS is much more effective than CPLEX.

Table 3.1: Computational results and comparisons of the TS bounds with those of CPLEX

x| 3 1%[K] GLag (%) Grs (%) Grsc1 (%) Grscz (%) Tiagrs (8) Tca(s)
GLa_q AVg Grs AVg Grsct AVg Grseo AVg TLaqTS AVg Tc1 AVg
1.62 1.61 0.85 0.01 6.7 186.0
1.98 191 0.40 -0.01 8.3 457.0

5>20>40 255 1.82 204 1.66 041 0.53 -043 -031 7.1 6.7 164.6 257.3
1.14 1.07 0.33 -0.60 5.2 250.8
1.79 1.68 0.66 -0.50 5.8 228.2
1.63 1.39 0.36 -0.42 13.3 12287.3
1.75 1.48 0.59 -0.97 14.2 17331.8
10>40>80 1.92 1.74 153 146 1.06 0.67 0.63 -0.74 127 13.4 234124 16924.0

2.00 1.72 1.08 -1.53 14.0 14643.9
1.42 1.17 0.28 -1.43 12.7 16944.7
2.01 1.75 0.76 -0.57 26.3 5067.0
1.11 0.99 0.19 -0.91 23.9 7686.6

1560120 1.53 1.57 132 1.34  0.63 049 -153 -1.09 27.1 28.8 10129.1  6509.0
1.77 1.54 0.51 -0.91 34.6 4554.9
1.41 1.08 0.35 -1.55 32.2 5107.3
1.25 1.12 0.45 -1.46 51.6 5938.5
1.37 1.19 0.41 -0.36 56.4 6241.6

20>80><160 1.39 140 1.10 1.23  0.50 0.51 -097 -0.88 444 51.8 5906.9 6019.6
1.32 1.14 0.35 -0.47 58.1 5878.5
1.67 1.61 0.81 -1.15 48.5 6132.3
0.90 0.71 0.05 -2.32 117.4 5396.5
1.68 1.42 0.91 -0.04 117.3 7233.1

25100200 1.62 1.31 111 1.05 0.31 044 -026 -094 1127 120.0 5852.6 6744.0
1.05 0.93 0.36 -1.72 145.2 7627.9
1.29 1.08 0.57 -0.35 107.5 7609.8
1.06 1.01 0.27 -0.80 265.0 9762.3
1.30 1.21 0.54 -0.87 234.1 9580.4

30x120>240 0.92 1.30 0.77 1.13  0.08 0.34 -031 -0.68 207.7 231.7 66924 8224.5

1.64 1.48 0.60 -0.03 225.5 8192.2
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1.56 1.18 0.21 -1.41 226.0 6895.0

1.53 1.29 0.59 -0.28 330.8 11229.9

1.35 1.16 0.31 -1.28 343.4 10510.9
35x140>280 0.90 1.17 0.72 0.98 0.07 028 -152 -0.80 300.1 3379 9250.9 10460.5

0.93 0.84 0.15 -0.51 349.2 10675.7

1.14 0.88 0.25 -0.41 365.9 10635.1

1.04 0.78 0.04 -0.72 433.7 12063.3

1.13 0.87 0.05 -1.01 524.4 10928.4
40x160>320 1.32 1.15 0.80 0.83 -015 0.03 -056 -0.69 496.6 4822 9849.8 11598.9

1.28 1.15 0.29 -0.65 466.9 11590.2

0.97 0.58 -0.09 -0.53 489.7 13562.7

1.12 0.87 0.00 -0.44 815.2 10769.2

0.93 0.75 -0.16 -1.03 643.2 14848.6
45x180>360 0.89 0.96 0.76 0.78 -0.09 -0.06 -1.04 -0.84 6714 685.1 14236.4 12588.8

1.01 0.80 -0.03 -0.55 661.6 10822.5

0.84 0.70 -0.04 -1.14 633.9 12267.5

1.13 0.86 -0.37 -0.52 898.0 6082.6

0.97 0.82 -0.31 -0.66 938.1 7204.5
50>200>400 0.89 1.06 0.81 0.83 -040 -0.35 -057 -0.52 9242 9529 6478.8 6493.0

1.13 0.88 -0.22 -0.34 1061.1 6303.2

1.18 0.80 -0.43 -0.52 943.1 6395.9
Average 1.35 1.13 0.29 -0.75

The performances of the proposed algorithm for the instances with different plant capacities and

problem sizes are reported in Table 3.2. The parameters reyq and |R;| are set to 2.0 and 3, respectively, in

Table 3.2. We observed that the average gaps between the Lagrangean upper bounds and lower bounds range
from 0.95% to 1.58% and the maximum gap is 1.89%, the average gaps between the TS upper bounds and
the Lagrangean lower bounds range from 0.72% to 1.31% and the maximum gap is 1.67%, which indicate
that the Lagrangean relaxation approach and the TS perform well and they are effective for problems with
different ratio re,q. It can also be seen from Table 2, both the average gaps between the Lagrangean upper
bounds and lower bounds, and the average gaps between the TS upper bounds and the Lagrangean lower
bounds increase for the same sized problem as the ratio r,q increases, e.g., for the 50>200>400 instances, the
average gaps between the Lagrangean upper bounds and lower bounds are 0.95%, 1.08%, 1.22% and 1.52%
for repe = 1.5, 2.0, 2.5 and 3.0 respectively, and the average gaps between the TS upper bounds and the
Lagrangean lower bounds are 0.72%, 0.83%, 0.97% and 1.22% for r,q = 1.5, 2.0, 2.5 and 3.0 respectively. It
can be concluded that the Lagrangean relaxation approach and the TS are more effective for smaller ratio reyq
than for larger ratio re and which can be also seen from the computational time of the Lagrangean
relaxation approach and the TS. As seen from Table 2, for the 50>200>400 instances, the average CPU time
are 889.6, 937.2, 1184.9 and 1562.3 for rg,g = 1.5, 2.0, 2.5 and 3.0 respectively. For instances of the same
size, the average duality gap of the Lagrangean approach is somewhat proportional to the ratio rey. This
proportionality arises because the larger the value r,q, the smaller the number of plants that will be opened in
the solution. Once ‘wrong’ plants are selected, the duality gap may be huge.
Table 3.2: Computational results on the instances with different ratio reyg

[T]x]I]x]K] lepd GLaq (%) GTS (%) TLaq (S) TTS (S) TLaqTS (S)
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GLg Avg. Grg Avg Tiag Avg. Trs Avg.  Tiagrs Avg.

1.38 0.84 105.0 19.7 124.6

1.43 1.09 83.9 175 101.4
25%100%200 15 1.86 148 167 1.14 915 92.3 21.0 204 1125 112.7

1.31 1.12 83.2 10.3 935

1.40 1.00 98.1 33.6 131.7

1.05 0.79 95.9 8.7 104.7

1.49 1.06 88.8 18.6 107.4
25%100%200 2.0 1.29 126 101 1.00 98.0 959 6.2 114 104.2 107.3

0.84 0.69 94.8 12.5 107.2

1.64 1.43 102.0 11.2 113.2

1.41 1.13 160.1 18.6 154.8

1.61 1.45 154.1 8.2 162.2
25100200 2.5 1.89 154 123 1.19 117.6 143.6 6.8 112 1244 154.8

1.44 1.18 168.6 6.5 175.1

1.33 0.94 117.8 16.0 133.8

1.42 1.24 210.4 3.6 214.0

1.83 1.46 200.0 44.8 2447
25100200 3.0 1.45 1.58 103 124 2128 200.8 13.9 23.6 226.7 224.5

1.43 1.08 173.4 12.4 185.8

1.75 1.41 207.6 43.5 251.1

1.20 1.02 300.7 37.7 338.4

0.73 0.52 248.9 21.8 270.7
35x140=280 15 1.68 1.04 130 0.79 242.1 256.7 51.2 369 293.2 293.6

0.89 0.59 238.2 39.8 278.0

0.67 0.54 253.6 33.9 287.4

1.10 0.94 324.4 32.7 357.1

1.21 1.01 3134 57.5 371.0
35x140=280 2.0 1.45 1.19 093 0.92 252.7 2729 48.0 41.7 300.7 314.6

1.07 0.82 243.7 44.8 288.5

1.11 0.89 230.0 25.6 255.7

1.27 1.02 406.8 38.1 4449

1.43 1.13 335.3 25.1 360.4
35x140>280 2.5 1.63 147 151 124 311.9 3729 519 352 363.8 408.1

1.44 1.25 380.8 29.1 409.9

1.59 1.29 429.9 31.7 461.6

1.69 1.52 519.8 29.8 549.5

1.73 1.56 516.6 32.7 549.3
35x140>280 3.0 1.53 1.56 125 1.31 5133 490.5 255 31.7 538.8 522.2

1.37 1.22 453.3 48.2 501.4

1.46 1.00 449.8 22.3 472.0

1.11 0.90 715.3 305.6 1020.9

0.94 0.59 685.0 267.1 952.1
50>200>400 15 0.77 095 054 0.72 737.0 707.2 100.3 1824 837.3 889.6

0.92 0.79 705.7 142.9 848.6

1.00 0.79 693.0 96.1 789.1

1.07 0.67 724.6 121.0 845.6

1.25 1.03 860.2 187.0 1047.2
50>200>400 2.0 1.01 1.08 0.77 083 706.0 790.9 165.8 1463 871.7 937.3

0.98 0.82 834.5 128.5 963.1
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1.07 0.86 829.4 129.4 958.8

1.27 0.98 997.6 119.7 1117.3

1.28 1.14 1002.3 173.8 1176.1
50200400 2.5 1.30 1.22 1.01 097 10088 10643 950 117.6 1103.8 11819

1.20 0.79 1278.2 921 1370.2

1.05 0.92 1034.6 107.6 1142.1

1.70 1.40 1367.1 101.3 1468.4

1.25 0.93 1319.8 149.3 1469.0
50200400 3.0 1.53 1.52 123 122 16456 14385 97.8 123.8 17434 15623

1.55 1.35 1519.0 173.1 1692.0

1.55 1.20 1341.3 97.6 1438.9
Average 1.32 1.05

The performances of the proposed Lagrangean relaxation approach and the TS on instances with

different ratio req are reported in Table 3.3. For all the instances given in Table 3.3, re = 1.5 and |r;| = 3.

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.96% to 1.38% and
the maximum gap is 1.74%, the gaps between the TS upper bounds and the Lagrangean lower bounds range
between 0.76% and 1.07% on average and the maximum gap is 1.40%, which indicate that the Lagrangean
relaxation approach and the TS perform well and they are effective for problems with different ratio rqy. In
addition, both the average gaps between the Lagrangean upper bounds and lower bounds, and the average
gaps between the TS upper bounds and the Lagrangean lower bounds for the instances of the same size
decrease as the ratio ryy increases, e.g., for the 50>200>400 instances, the average gaps between the
Lagrangean upper bounds and lower bounds are 1.37%, 1.18%, 1.07% and 0.96% for r4 = 1.5, 2.0, 2.5 and
3.0 respectively, and the average gaps between the TS upper bounds and the Lagrangean lower bounds are
1.01%, 0.85%, 0.84% and 0.76% for r.q = 1.5, 2.0, 2.5 and 3.0 respectively. It is clear that the Lagrangean
relaxation approach and the TS are more effective for larger ratio r.qy than for smaller ratio r.qq and which
can also be seen from the computational time of the Lagrangean relaxation approach and the TS. As seen
from Table 3.3, for the 50>200>400 instances, the average CPU time is 1197.5, 1002.3, 957.5 and 885.1 for
reag = 1.5, 2.0, 2.5 and 3.0 respectively.

Table 3.3: Computational results on the instances with different ratio req

| | le J |><| K I lcdd GLaq (%) GTS (%) TLaq (S) TTS (S) TLaqTS (S)

Grag  Avg. Grs Avg. Tiag Avg. Trs Avg.  Tiagrs Avg.

1.35 0.77 140.3 145 154.7

1.47 1.14 114.0 14.8 128.8
25x100<200 15 1.09 1.38 0.71 1.02 119.0 125.4 15.1 11.8 134.2 137.1

1.74 1.40 123.4 9.3 132.8

1.23 1.06 130.1 5.2 135.3

1.61 1.33 92.7 6.4 99.2

1.17 1.02 93.1 3.9 97.0
25%100%200 2.0 1.15 1.26 0.90 1.01 129.3 106.6 7.8 6.9 137.1 113.5

1.24 0.99 106.6 1.7 114.2

1.14 0.82 111.5 8.6 120.1

1.19 0.90 89.4 9.5 98.9

1.59 1.34 95.2 14.8 109.9
25x100200 25 1.20 1.28 0.95 1.07 97.0 95.7 43.6 19.0 140.6 114.7

46



3. Two-echelon capacitated facility location problem with plant size selection

1.00 0.89 107.4 7.6 1151

1.43 1.28 89.3 19.7 109.0

1.22 0.92 99.1 15.2 114.2

1.44 1.01 97.9 23.8 121.7
25%100>200 3.0 0.64 122 051 095 887 919 181 19.3 106.8 111.2

1.48 1.30 72.7 27.1 99.7

1.34 1.03 101.1 12.4 1135

0.96 0.73 343.2 28.5 371.7

1.10 0.88 369.5 26.6 396.1
35x140>280 15 1.03 1.08 0.68 0.79 304.2 328.7 198 27.1 324.0 355.9

1.49 1.10 280.5 37.5 318.0

0.80 0.56 346.2 23.2 369.5

1.35 1.09 261.4 88.1 349.6

1.45 1.08 236.8 45.8 282.6
35x140>280 2.0 0.65 1.15 057 091 2685 260.5 29.0 584 297.5 318.9

1.26 0.95 280.8 47.0 327.8

1.04 0.87 255.1 81.9 337.0

1.28 1.15 257.9 51.8 309.8

0.95 0.82 263.4 66.9 330.3
35x140><280 25 1.24 1.19 0.94 1.01 2534 265.0 234 43.6 276.8 308.6

1.22 1.08 291.0 48.6 339.6

1.27 1.05 259.5 27.1 286.7

1.21 1.09 255.0 56.5 3114

0.87 0.76 223.6 81.7 305.3
35x140>=280 30 130 1.18 085 090 258.1 2537 438 54.8 301.9 308.5

1.34 0.93 284.6 48.0 332.6

1.18 0.87 247.1 44.1 291.2

1.25 0.84 1230.7 133.3 1364.0

1.55 1.18 1073.6 159.6 1233.2
50200400 15 1.34 1.37 1.04 1.01  996.8 1051.0 1289 146.5 11257 11975

1.49 1.03 993.0 153.3 1146.3

1.22 0.97 961.2 157.4 1118.5

1.19 0.77 723.1 133.5 856.6

1.01 0.90 746.9 98.5 845.4
50>200>=400 20 130 1.18 098 0.85 8145 8275 3598 1748 11742 1002.3

1.19 0.74 1045.9 101.3 1147.2

1.21 0.88 807.0 181.2 988.2

1.14 0.95 830.4 92.7 923.1

1.05 0.85 830.5 147.7 978.2
50>200>400 2.5 0.98 1.07 070 084 8189 8137 57.7 143.8 876.6 957.5

1.14 0.96 829.3 224.4 1053.7

1.02 0.73 759.6 196.4 956.0

1.08 0.81 779.0 83.5 862.5

1.07 0.69 770.8 158.2 929.0
50>200»=400 3.0 071 096 065 0.76 709.8 7515 1224 133.6 832.2 885.1

0.89 0.81 743.1 157.0 900.1

1.06 0.86 754.8 147.0 901.8
Average 1.19 0.93

Table 3.4 provide an analysis of the performances of the proposed Lagrangean relaxation approach and
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the TS on instances with different numbers of plant size. For all of the instances given in Table 3.4, rg,q = 2.0

and reyq = 2.0. The Lagrangean relaxation approach and the TS perform well in that the average gaps between
the Lagrangean upper bounds and lower bounds range from 1.04 % to 1.42% and the maximum gap is
1.71%, the average gaps between the TS upper bounds and the Lagrangean lower bounds range between
0.77% and 1.16% and the maximum gap is 1.37%. In addition, the number of the plant size does not have a
significant influences on the solution quality, e.g., for the 50>200>400 instances, the average gaps between
the TS upper bounds and the Lagrangean lower bounds are 0.82%, 0.84%, 0.86%, 0.85% and 0.77% for |R;|

=2, 3,4, 5 and 6 respectively. However, the computational time of the Lagrangean relaxation approach and
the TS increases regularly as the number of plant size increases, e.g., for the 50>200>400 instances, the
average CPU time is 814.5, 1006.7, 1066.1, 1195.9 and 1268.3 seconds for |R;|= 2, 3, 4, 5 and 6
respectively.

Table 3.4: Computational results on the instances with different numbers of plant size

[1]x]3|x|K] |R| | GLaq (%) GTS (%) TLaq (S) TTS (S) TLaqTS (S)

Glag  Avg.  Grs  Avg. Tiag Avg. Trs  Avg.  Tiagrs  Avg.

1.39 1.11 89.7 9.3 99.0

1.50 1.24 83.7 12.6 96.3
25x100>200 2 1.08 1.33  0.75 1.06 99.8 89.3 8.5 8.7 108.3 97.9

1.24 0.99 734 7.2 80.6

1.45 1.18 99.7 5.9 105.6

1.43 1.08 98.3 8.2 106.5

1.02 0.73 91.7 12.9 104.6
25%100>200 3 1.09 1.27 0.90 1.03 126.5 101.3 8.9 10.2 1355 111.5

1.25 1.12 96.6 7.8 104.4

1.58 1.34 93.3 13.2 106.5

1.48 1.23 99.4 22.6 122.0

171 1.37 119.8 104 130.2
25%100>200 4 0.92 140 081 1.13  116.7 1159 5.2 11.2 1219 129.7

1.50 1.13 108.3 8.7 117.0

1.40 1.10 135.2 22.1 157.3

1.32 1.16 125.1 10.1 135.2

1.04 0.90 97.0 5.2 102.1
25%100>200 5 168 142 128 1.16 1225 119.0 126 10.0 1350 129.0

1.61 1.22 129.1 8.2 137.3

1.47 1.25 121.6 13.9 135.5

0.90 0.64 123.3 6.5 129.8

1.28 0.87 167.0 54 172.4
25100200 6 155 128 137 1.00 143.6 146.5 11.2 9.0 1547 155.5

1.12 0.85 132.4 11.3 143.6

1.54 1.29 166.2 10.6 176.8

1.39 1.09 242.7 92.9 335.6

1.36 1.17 292.2 39.9 3321
35x140>280 2 1.38 1.37 107 1.06 233.8 238.7 38.6 49.1 2724 287.9

1.61 1.22 200.6 37.5 238.1

1.13 0.76 224.3 36.8 261.1

0.96 0.85 314.2 52.5 366.7

1.33 0.98 303.0 454 348.4
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35140280 3 1.65 1.27 121 097 287.7 288.1 82.0 447  369.8 332.8

1.46 1.15 289.7 25.5 315.3

0.94 0.65 245.7 17.9 263.7

1.05 0.87 304.1 31.8 335.9

1.32 1.08 282.6 47.5 330.1
35140280 4 1.30 1.12 093 090 321.2 327.8 285 437 349.7 371.5

1.03 0.91 329.9 81.2 411.1

0.92 0.74 401.4 29.5 430.9

0.88 0.66 407.9 21.5 429.4

1.40 1.13 355.2 68.7 423.8
35140280 5 1.39 122 121 097 3446 332.8 653 442 409.9 377.0

1.08 0.97 265.0 33.8 298.8

1.33 0.88 291.4 31.9 323.3

1.08 0.90 394.0 90.5 484.5

1.44 1.11 353.5 49.0 402.5
35%140>280 6 111 120 090 097 406.7 377.7 465 512 453.2 428.9

1.08 0.76 365.3 42.8 408.1

1.30 1.16 369.1 27.2 396.3

1.12 0.88 648.4 74.6 723.0

0.72 0.64 722.1 73.1 795.2
50>200>400 2 1.22 1.08 085 082 7017 684.1 1100 1304 8116 814.4

1.23 1.09 690.8 163.5 854.3

1.13 0.65 657.4 230.7 888.0

1.30 0.92 906.2 173.8 1080.0

1.16 0.79 841.7 109.6 951.2
50>200>400 3 1.15 1.13 089 0.84 8980 8646 1317 142.1 1029.7 1006.7

1.02 0.85 795.3 161.1 956.4

1.03 0.76 881.7 134.6 1016.3

0.91 0.71 923.7 182.8 1106.5

1.29 1.02 913.7 123.5 1037.2
50>200>400 4 1.08 1.09 080 086 10498 9339 103.8 1322 1153.6 1066.2

0.85 0.68 851.1 156.6 1007.7

1.32 1.10 931.4 94.6 1025.9

1.13 0.96 1168.2 153.9 1322.2

0.98 0.82 1189.0 92.6 1281.7
50>200>400 5 1.07 1.08 0.78 0.85 999.5 10609 200.1 135.0 1199.6 11959

1.10 0.88 978.1 124.7 1102.9

111 0.80 969.7 103.6 1073.3

1.03 0.66 1227.3 127.9 1355.2

0.84 0.68 1301.9 69.8 1371.7
50>200>400 6 1.09 1.04 088 0.77 11124 11584 825 1099 11949 1268.3

1.09 0.81 1093.2 112.9 1206.2

1.15 0.82 1057.3 156.1 1213.4
Average 1.22 0.96

3.6 Conclusions

The decision of facility location and size is one of the most important strategy decisions for firms in

today’s competitive environment. Appropriate facility location and size can save operational cost on a long
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time horizon. In the traditional two-stage facility location problem, the capacity of a facility is assumed to be
fixed, either uncapacitated or capacitated. However, there is often a need to consider several size of a facility
in the real world. To deal with this situation, we study the TECFLP-PSS in which each plant has several sizes
exhibiting different capacities. A mixed integer programming model is formulated. This extended model can
then simultaneously determine the locations and sizes of the plants, the locations of the depots, the product
flows from the plants to the depots and the assignments of the customers to the depots to satisfy the
customers’ demands. To solve the problem, a Lagrangean relaxation approach and a TS are proposed. First
the Lagrangean relaxation approach is used to find good lower and upper bounds, and then the TS is applied
to improve the BUB found in the Lagrangean relaxation approach. A total of 245 instances are randomly
generated and tested. The computational results demonstrate that all of the instances can be solved in a
reasonable time with the average gaps below 1.66%, even for instances that have up to 50 potential plants
with 6 possible sizes each, 200 potential depots and 400 customers. Moreover, the performance of the
proposed algorithms on the instances with different characteristics, such as the ratios of plant capacity to
customer demand, the ratios of depot capacity to customer demand and the number of depot size, are
analyzed and the results show that the proposed algorithms are effective for the instances with different

parameters.

The Lagrangean relaxation approach and TS perform well for the TECFLP-PSS. However, some new
ideas on solving the problems could be investigated, such as adding valid inequalities to accelerate the
solution process, designing improvement strategies for the Lagrangean relaxation approach or TS. Moreover,

Lagrangean core heuristic could be designed to find a better upper bound of the TECFLP-PSS.
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Chapter 4

Two-echelon capacitated facility location

problem with depot size selection
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4.1 Introduction

The classical two-stage facility location problem focus on determining the locations of plants and
depots, and the flows of product through the system from plants to customers with the goal of minimizing the
sum of facilities opening costs and shipping costs. The capacity of the depots are either uncapacitated or
capacitated, i.e., each depot has only one choice of capacity. The opening cost of a depot is a constant and
the unit handling cost is the same for all of the depots, thus it can be merged with other linear connection
costs. However, in practice, there is often a need for considering several possible sizes for each depot. To
deal with this situation, in this chapter, we study a two-echelon capacitated facility location problem with
depot size selection (TECFLP-DSS). In this problem we simultaneously locate plants and depots, and select
sizes for the located depots, where each plants in the first stage is capacitated. Each depot in the second stage
has several potential sizes exhibiting different capacities and is supplied by multiple plants. Each customer in
the third stage is serviced by only one depot. This problem will not allow us to deal with different depot
sizes, but also with different handling costs at different levels of handling at a depot. The objective of this
problem is to determine simultaneously the locations the plants, the locations and sizes of the depots, the
product flows from the plants to the depots and the assignments of the customers to the depots to satisfy the

customers’ demands.

As stated in Chapter 3, the fixed opening cost of a facility depends on the size of the facility opened. It
is not realistic to expect that different size of a facility at the same site have the same fixed opening cost.
Therefore, in the TECFL-DSS, the fixed opening costs are assumed to be different for different sizes of a
depot, i.e., the fixed opening cost for a larger size of a depot is larger than those of the smaller sizes of the
same depot. Also, to model economies of scale, the unit handling cost for a larger size of a depot is smaller
than those of the smaller sizes of the same depot. The distinguishing features of the TECFLP-DSS are as
follows: 1) there are several sizes for each potential depots that can be opened, 2) handling cost is taken into
account specifically since the unit handling cost for a larger size of a depot is smaller than those of the
smaller sizes of the same depot, thus it cannot be merged with other linear connection costs like it is done in

the classical facility location model.

The TECFLP-DSS is also an extension of the TSCFLP and NP-hard in strong sense. Due to the NP-
hardness of the TECFLP-DSS, we concentrate on finding suboptimal solutions for it in a reasonable time.
For this problem, we first present a mixed integer programming model and then design a Lagrangean
relaxation approach to achieve good lower and upper bounds. At last, a hybrid variable neighborhood tabu
search algorithm (HVNTYS) is designed to further improve the best upper bound found by the Lagrangean
relaxation approach. To solve the dual problem arising in the Lagrangean relaxation approach, we make use a
subgradient optimization method. The Lagrangean relaxation problem can be decomposed into two
subproblems, one can be transformed into a 0-1 knapsack problem and another one can be decomposed

further into the classical 0-1 knapsack problem. The 0-1 knapsack problems are exactly solved in a very
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reasonable time by using the MINKNAP developed by Pisinger (1995). In order to construct feasible

solution and find an upper bound, we design a heuristic by repairing the Lagrangean relaxation solutions.
The HVNTS focus on improving the customer-depot assignments. If better customer-depot assignments are
found, the optimal product flows are determined by solving a transportation problem using commercial
solver CPLEX.

We test 245 randomly generated instances to evaluate the proposed Lagrangean relaxation approach and
HVNTS. First 50 instances with different problem size are tested to show the general performance of the
Lagrangean relaxation approach and HVNTS. The Lagrangean upper bounds are compared with the
Lagrangean lower bounds and the upper bounds provided by commercial MIP solver CPLEX, and the upper
bounds obtained by the HSATS are also compared with those of CPLEX. The results show that the
Lagrangean relaxation approach and HSATS are effective for the TECFLP-DSS since the gaps between the
upper bounds and those of the CPLEX are less than 1.16% on average and the CPU time required by the
Lagrangean relaxation and HVNTS is much less than that of the CPLEX. Moreover, to evaluate the
robustness of the Lagrangean relaxation approach and HVNTS, 195 instances with different size and
different parameters, such as the ratio of plant capacity to customer demand, the ratio of depot capacity to
customer demand and the number of depot size are randomly generated. The computational results show that
the proposed algorithms performance well for all of the instances and can solve all of the instances in an
acceptable time, even for the instances that have up to 50 potential plants, 100 potential depots with 6 depot

sizes each and 400 customers .

The rest of this chapter is organized as follows. In Section 4.2, a mixed integer programming model is
developed for the TECFLP-DSS. In Section 4.3, a Lagrangean relaxation approach is proposed to achieve
good lower and upper bounds. In Section 4.4, a HVNTS is proposed to improve the best upper bounds found
by the Lagrangean relaxation approach. In Section 4.5, we evaluate the proposed algorithms on randomly

generated instances. Conclusions are drawn in Section 4.6.

4.2 Problem formulation

Given a set of potential plants, a set of potential depots, each depot has several possible sizes exhibiting
different capacities, and a set of customers with demands. The TECFLP-DSS is to optimally determine the
locations of the capacitated plants, the locations and sizes of the depots, the product flows from the plants to
the depots and the assignments of the customers to the depots to satisfy the customers’ demands. The
objective is to minimize the sum of the fixed opening costs of the plants and the depots, the handling costs at
the depots, the transportation costs from the plants to the customers and the assignment costs of the
customers to the depots. The structure of the TECFLP-DSS is presented in Fig. 4.1, where the first or upper-
most stage is the plants, the second or central stage is the depots, each depot has several sizes exhibiting

different capacities, and the third stage is the customers.
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Fig. 4.1 The structure of the TECFLP-DSS

In the TECFLP-DSS, each size of a depot associates with a capacity cd, a fixed opening cost fd and a
unit handling cost 4. The fixed opening cost for a larger size of a depot is larger than those of the smaller
sizes of the same depot. The unit handling cost h for a larger size of a plant is assumed to be smaller than
those of the smaller sizes of the same depot to model the economies of scale. An example of the cost

function including the fixed opening cost and the handling cost of a depot is illustrated in Fig. 4.2.

Cost A igize 3"
]
S B |
"size 2"
| |
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1 ! !
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cd, ¢d;  Capacity

Fig 4.2. An example of the cost function of a depot
The notations and decision variables used to formulate the TECFLP-DSS are as follows:

Notations:

I the set of potential plants;

J the set of potential depots;
K the set of customers;
Si the set of possible sizes of the depot jeJ ;

cpi the capacity of the plant iel ;
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cdjs the capacity of the depot j e J with the size se Sj X

dy the demand of the customer k e K ;

fpi the fixed cost of opening the plant ie | ;

fds,  the fixed cost of opening the depot jeJ with the size s€S;;
his the unit handling cost at the depot j e J with the size s€S;;

i the unit transportation cost from the plant i e | to the depot jeJ;

Cik the unit assignment cost of the customer k e K to the depot jeJ;

Decision variables:

U 1, if the plant i e I is opened; O, otherwise;

Vis 1, if the depot jeJ withthesize se S; is opened; 0, otherwise;

Xijs the quantity of product flow from the opened plant ie | to the opened depot jeJ with the size
seS;;

Zjsk 1, if the customer k e K is assigned to the depot j e J with the size seS;;

The TECFLP-DSS can be formulated as follows:

p. mianpi~Ui+zzztij'Xijs-f-zzfdjs'VjS+ZZZ(hjs+Cjk)'dk'stk (4-1)

iel iel jel se§; jeJ se§; jeJ seSjkeK
jed se§;
iel keK
dezjsk SCdjSVJSvJEJ’SESJ (4_4)
keK
ZVJ-S <1Vjel (4-5)
seS;
jed ses§;
DoPi Ui 2 > dy (4-7)
iel keK
u, e{0,1}viel (4-8)
Vjse{O,l}VjeJ,SeSj (4-9)
XijSZOViel,jeJ,SeSj (4-10)
Zjx €{0,1}VjeJ,seS; keK (4-11)

The objective (4-1) minimizes the sum of the fixed costs of opening the plants and depots, the
transportation cost from the plants to the depots, the handling cost at the depots and the assignment cost of
the customers to depots. The constraints (4-2) ensure that the total product flows moving out of an opened
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plant cannot exceed its capacity and is zero if it is not opened. The constraints (4-3) are the flow equilibrium

constraints at the depots. The constraints (4-4) make sure that the customers’ demands assigned to an opened
depot cannot exceed the capacity of its opened size and no customers are assigned to a closed depots. The
constraints (4-5) ensure that only one size can be opened for each depot. The constraints (4-6) guarantee that
each customer is assigned to exactly one opened depot. The constraint (4-7) is a redundant constraint. It
means that the total capacity of the opened plants must be no less than the total demands of all of the
customers. We add it to the TECFLP-DSS formulation to improve the Lagrangean lower bounds. The
constraints (4-8), (4-9), (4-10) and (4-11) are standard nonnegativity and integrality constraints for decision

variables.

The TECFLP-DSS is a generalization of the TSCFLP. As the TSCFLP is NP-hard in strong sense, so
the TECFLP-DSS is also NP-hard in strong sense. To solve the TECFLP-DSS, especially for large-sized
instances, we propose a Lagrangean relaxation approach and a HVNTS to find near-optimal solutions.

4.3 Lagrangean relaxation approach for the
TECFLP-DSS

Due to the NP-hardness of the TECFLP-DSS, to solve the problem especially for those large-sized
instances, we focus on finding effective lower and upper bounds for it in a reasonable time. The principle of
Lagrangean relaxation approach is to relax hard constraints with Lagrangean multipliers into the objective
function. The Lagrangean relaxation approach is one of the most effective approaches for achieving the
lower and upper bounds for mixed integer linear programming problems. The Lagrangean relaxation
approach has been widely applied to solve facility location problems, e.g., Geoffrion and McBride (1978) for
the CFLP, Klincewicz and Luss (1986) for the SSCFLP, Klose (2000) for the TSCFLP, Tragantalerngsak et

al. (1997) for a two-echelon, single-source, capacitated facility location problem.

Due to the effectiveness of the Lagrangean relaxation approach, we use it here to find effective lower
and upper bounds to the TECFLP-DSS. The Lagrangean relaxation approach for the TECFLP-DSS is thus

presented as follows.

4.3.1 Lagrangean relaxation model of the TECFLP-DSS

Similar as the TECFLP-PSS, two different Lagrangean relaxation problems can be generated by
relaxing the constraints (4-2) and (4-6) or (4-3) and (4-6). Based on our experiments, relaxing the constraints
(4-2) and (4-6) can generate better lower and upper bounds for the TECFLP-DSS than relaxing the
constraints (4-3) and (4-6). Thus the constraints (4-2) and (4-6) are relaxed with the non-negative multipliers

a; (iel) and the multipliers B, (keK ) respectively in our implementation. The Lagrangean relaxation

problem LR(a, B) is as follows:
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LR(a, B) = min Z( fp —a) -y, +ZZ Z(tij +a;1ep;) - Xijs

iel iel jedseS;
S v+ S A b —B) 2+ D B (#12)
jed seS; jed SESjkeK keK
s.t. (4-3)-(4-5) and (4-7)-( 4-11).
The LR(a, £) can be divided into two independent subproblems LR () and LR, («, ) .
The first subproblem LR, () is
LR, (o) = max > (er; - fp;)-u, (4-13)

iel

s.t. (4-7) and (4-8),

which can be transformed into a classical 0-1 knapsack problem. Let y; = 1 — u;, Viel, the transformed

problem is presented in the following.

Pnap =Max Y _(fpy —at)-y; + > (e — fpy) (4-14)
iel iel
St Py < op— D dy (4-15)
iel iel keK
y; €{0,1}Viel (4-16)

where fp, —a; is viewed as the profit of the item i< I, cp; as the weight of item i<, and > cp, — > d,

iel keK

as the capacity of the knapsack. We simply set y; = 0 where fp, —o; <0, because the profit of those items are

non-positive. This problem can be solved exactly by using the MINKNAP developed by Pisinger (1995).

The second subproblem LR, («, B) is

LR, (a, B)=min D " (ty +a;/cp;)-Xys + D D fdjs v,

iel jeJ se§; jeJ se§; (4 17)
+ZZZ(hjs i +Cj -y —Bi) 2w
jed seS;keK

st. (4-3)-( 4-5) and (4-9)-( 4-11).

We observe that the variables xj;; and zjy are connected only by the constraints (4-3). Thus there always

exists an optimal solution of the LR, («, B) in which a depot j with size s is only supplied by the ‘cheapest

source’. For anyiel, jeJ, se§;, set

de “Zjsk Jd=argmin ., (tmj +anICpy),
Xijs = | keK

0, otherwise

Let wis = min . (ty,; +op/CPy), then LR, (e, 8) can be reduced to

LR, (o, B)=min D" fd o v+ D" (g die +Wis -ty +C Ay =By )2 ¢

jedses; jedseSjkeK (4-18)
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s.t. (4-4), (4-5), (4-9) and (4-11),

The LR, (e, p) can be further decomposed into |J[-|S; | independent 0-1 knapsack problems, which

can also be solved to optimality by using the MINKNAP developed by Pisinger (1995). Then LR, («, ) is

solved by setting a maximum of one vjs to 1, with the smallest negative knapsack objective value for each
jeld.

Let LB(a,p) be the sum of the objective value of the solution of LR,(«), LR,(«, ) and Zﬂk .
keK

Obviously, LB(a,p) is a lower bound of the TECFLP-DSS for given Lagrangean multipliers («, ) .

4.3.2 Subgradient optimization for the TECFLP-DSS

To obtain the best Lagrangean lower bound of the TECFLP-DSS, a subgradient optimization method is

adopted to approximately solve the following Lagrangean dual problem.
D:
max, LR(a, ) (4-19)
The subgradient optimization is an iterative procedure, which solves the Lagrangean relaxation problem

and then updates the Lagrange multipliers for the next iteration according to the current subgradient
information.

Let BUB and BLB be the best upper bound and the best lower bound of the TECFLP-DSS found so far

A

in the previous | — 1 subgradient iterations and (G', &', V', 2') be the optimal solution of LR(c', 8') at

iteration I. Let y =) > i —cp; -G , Viel and 7, =1-) 7', VkeK, the Lagrangean multipliers for the
jedseS; jed

next iteration I+1 are updated as:

1+1
ai+

=max{a +6'-y/,0} (4-20)

=By 0" (4-21)

where 0'=1-(BUB-LB(a', "))/ (O (7)2+ > (m)?) is the step size at iteration I. LB(a', 8') is the lower

iel keK

bound of the TECFLP-DSS (see subchapter 4.3.1) at iteration |. 1 is a parameter in the interval (0, 2], which

is halved if the BLB found so far has not been improved for a given number N .4 0f consecutive iterations.

Let L oy be the maximum number of iterations and ¢ ,, be a positive small scalar, the subgradient

optimization procedure for the TECFLP-DSS is shown in detail in Algorithm 4.1.

Algorithm 4.1: Subgradient optimization procedure for the TECFLP-DSS
Step 1: Initialize ¢ .4, Lisgand 4,, where J, is a parameter in the interval (0, 2]. Set BUB := + oo, BLB :=

—ow, A= Ay, o =0, Viel , 0 :=0, VkeK and | := 1.

Step 2: Solve the subproblems LR (a') and LR,(a', #') to optimality. Let LB = LR(a', #'). If LB > BLB,
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then set BLB := LB. If no improvement of BLB can be detected in Ny,4 successive iterations, then
set A == 1/2.

Step 3: Construct a feasible solution of the TECFLP-DSS based on the current Lagrangean lower bound
solution (Chapter 4.3.3) and let UB be the objective value of this feasible solution. If UB < BUB,
then set BUB := UB.

Step 4: If | > Loy and 4 < g4, Stop. The dual solution corresponding to the BLB is regarded as the

optimal dual solution and the solution corresponding to the BUB is regarded as the optimal primal

solution.

Step 5: Update ail for Yiel and ﬂi'( for vk e K according to the formula (4-20) and (4-21) respectively.
Step 6: Set | := | + 1 and return to Step 2.

4.3.3 Feasible solution construction

Feasible solutions are used to calculate the step size in the subgradient optimization procedure. A
feasible solution of the TECFLP-DSS can be constructed by repairing the Lagrangean relaxation solutions at

each iteration of the procedure, i.e., at iteration | . Let ¢y = hjs + Cjx be the cost of assigning customer 4 to a
depot j with size s. Define a regret value of an unassigned customer k as the difference between the second

smallest and the smallest ¢y Vvalues, among all of the opened depots whose residual capacities are no less

than d, . Partition the set of the customers K into three subsets:

Ko = {keK:ZZlesk:O},

jed seS;

Ky = {keK:) > 2}y =1} and

jed seS;

K= {keK:> > 25 >1},

jedses;

such that K, UK, UK, =K . The procedure for constructing a feasible solution is shown in Algorithm 4.2.

Algorithm 4.2: Constructing feasible solution

Step 1: Open all of the plants i if 4! = 1.
Step 2: Open all of the depots j with s if \7',-5 = 1. If the total capacity of the opened depots is not enough to

satisfy the customers’ demands, stop.

Step 3: Assign the customers ke K; to the corresponding opened depot j .

Step 4: Assign the customers ke K; to the opened depot j with the smallest cost ¢, .

Step 5: Repeat Step 5.1-Step 5.2 until all the customers of K, are assigned or a customer is failed to
assigned to any depot.

Step 5.1: For all of the unassigned customer, find their lowest and second lowest ¢y among those opened
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depots with sufficient residual capacity and compute their regret values. If no depot has the

sufficient residual capacity has been find for a customer, stop.

Step 5.2: Choose the customer with the maximum regret value and assign it to the depot j with size s

where ¢y value is lowest.

Step 6: Close the depots that have no customer assigned to them.
Step 7: Solve the corresponding transportation problem to determine the product flows from plants to
depots

Step 8: Close all of the plants whose products are not flowing out to any depot.

Note that the sum of capacities of these opened plants is enough to satisfy the customers’ demands since

we have the constraint (4-7), Z:cpi 0! dek in the LR, («). If the total capacities of the opened depots is
iel keK

not enough to satisfy the customers’ demands or if no depot has sufficient residual capacity for a customer,
no feasible solution is constructed in the iteration 1. If plants with enough capacity have been opened and if
feasible customer-depot assignments have been obtained, then the product flow from the plants to the depots
can be determined by solving a transportation problem. In this transportation problem, the opened plants and
depots are viewed as the source nodes and the destination nodes respectively, the plants capacities and the
customers’ demands assigned to the depots are viewed as the supply capacities and destination demands
respectively. To save the fixed opening cost, the plants from which without product flowing out and the
depots to which no customers are assigned are closed at the end.

4.4 Hybrid variable neighborhood tabu search
algorithm for the TECFLP-DSS

Variable Neighborhood Search (VNS), introduced by Mladenovi¢ and Hansen (1997), is a generic local
search methodology, whose basic idea is to apply a systematic change of neighborhoods within a local search
algorithm. The basic VNS framework consists of three steps: shaking, local search and move or not. The
VNS has since been successfully applied in a variety of combinatorial optimization problems, such as the arc
routing problem (Hertz and Mittaz, 2001), the linear ordering problem (Garcia et al., 2006), the minimum

spanning tree problem (Naji-Azimi et al., 2010) and the p-median problem (Ili¢ et al., 2010), etc.

As stated in chapter 3, the TS is a local search based metaheuristic. The TS explores the solution space
by moving from the current solution to another in its neighborhoods. A candidate solution is accepted even if
this solution deteriorates the function value, according to an aggressive admission criterion to avoid getting
trapped in local optima. To prevent the possibility of cycling, a tabu list is introduced to forbid moves from
recently visited solutions for several iterations. However, forbidden moves can be overridden by some
aspiration criteria. Finally, the TS terminates when stopping criteria are met. The TS has been widely applied
in various combinatorial optimization problems, such as job shop scheduling (Hertz and Widmer, 1996),

assignment problem (Diaz and Fernandez, 2001) and vehicle routing problem (Gendreau and Hertz, 1994),
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etc.

The basic VNS sometimes meets difficulties to escape from the local optimum although it explores
solution space by applying a systematic change of neighborhoods and moves at random from one solution to
another (shaking). On the other hand, the TS has no such difficulties since it escapes the local optimum by
using a tabu list to avoid the recently visited solutions to be revisited. To make use of the potentiality of the
systematic changes of the neighborhood structures of the VNS and the efficiency of the TS to move out from
a local optimum, the hybrid of the VNS and the TS has been applied in many combinatorial optimization
problems in the literature, such as the scheduling problem (Liao and Cheng, 2007), the vehicle routing
problem (Belhaiza et al., 2014) and the location routing problem (Escobar et al., 2014).

In this chapter, we proposed a hybrid variable neighborhood tabu search algorithm (HVNTS) to
improve the best solution found in the Lagrangean relaxation approach.

4.4.1 Moves and neighborhoods definitions

In the implementation of the HVNTS, moves are only based on the customer-depot assignment. Note
that a solution ¢ of the TECFLP-DSS consists of u, X, v and z. Define ¢ = (v, z) be the v and z. Two kinds

of moves are used: shift that reassigns one customer from one depot to another, swap that interchanges the

assignments of two customers that are currently assigned to two different depots. Accordingly, the

neighborhoods N (¢) and N, (&) are defined as the set of feasible solutions that can be attained from

the solution ¢ by performing a shift move and a swap move, respectively.

4.4.2 Tabu list

A tabu list (TL) is used in the implementation of the HVNTS to prevent the recently visited solutions
from being revisited. The element (k, j) of the TL records the last iteration number that it will be forbidden to
assign the customer k to the depot j. If a customer k assigned to a depot j is reassigned to other depots, the
assignment of the customer k to the depot j will be forbidden in the next t iteration. The parameter t is

randomly selected from [Tumin, Tmax]-

4.4.3 The steps of the HVYNTS

Define F(¢) as the objective function of & and f(¢) as the objective function of ¢ . In the
implementation of the HVNTS, we focused on improving ¢ . If a better ¢ is found, the flows x are
determined by solving a transportation problem to obtain a new solution. In this transportation problem, the
opened plants and depots are viewed as the source nodes and the destination nodes respectively, the plants

capacities and the customer demands assigned to the depots are seen as the supply capacities and destination

demands respectively.

The HVNTS follows the framework of the basic VNS and uses TS as the local search algorithm within
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the VNS. Defined the neighborhood structures N, (), | := 1, ..., Lmax as the solutions that can be obtained

by reassigning I customers of the solution ¢ . Set the incumbent solution &* as the best solution ¢ found in

the Lagrangean relaxation approach and | := 1, the HVYNTS improves this incumbent solution until all of the
neighborhood structures of the incumbent solution are completely explored. More specifically, the
improvement of the incumbent solution is done in a loop. This loop includes a shaking phase, a TS phase and
a move-or-not phase. The steps of the HVNTS are described in detail in algorithm 4.3.

Algorithm 4.3: Steps of the HVNTS
Step 1: (Initialize) define the neighborhood structures N, (<), | := 1, ..., Lmax, initialize the incumbent

solution &* as the best solution ¢ found in the Lagrangean relaxation approach, set I := 1.

Step 2: (Shaking phase) while | < Ly, let £ be the v and z of the incumbent solution &* , randomly
reassign | customers of the ¢ subject to depot capacity constraints to generate a new " .

Step 3: (TS phase) apply the TS to improve the ' generated in step 2 to obtain a new &' .

Step 4: (Move-or-not phase) if f({'") > (), set | := 1 + 1. If f({"") < f(£), solve the corresponding
transportation problem composed of u and " to determine the new flows x' from the plants to
the depots and thus to obtain a new solution ¢’ composed of u, x' and ¢" . If F(¢&') < F(¢*),

update the incumbent solution &* with &’ and set | := 1, otherwise set | :=1+ 1.

At the beginning of each shaking phase, the ¢ is set as the v and z of the incumbent solution &* . Then
the shaking phase randomly reassign | customers of the £ to generate a random ¢*, which enables us to

explore neighborhoods farther away from the incumbent solution. Note, in the shaking phase, the TL is also
used to avoid looping back in the search process of the TS. If a customer k assigned to a depot j is reassigned
to other depots, the value of element (k, j) is set to t, which means that assigning the customer k the depot j
will be forbidden for the first t iterations in the TS phase.

The TS phase improves the randomly generated solution £* to find a local optimal solution "' . The TS
starts with the solution ¢* and terminates if a maximum number M.y Of iterations is reached or the " is
not improved in a successive number Ny Of iterations. In the search process of the TS, the best accept
strategy is applied. At each iteration m, the save cost (SC) of all of the shift and swap moves that will not
lead to infeasible assignment with respect to depot capacity in the neighborhood of the ¢" is computed first.
Then the best admissible move (with the smallest SC) is performed. If a customer k assigned to a depot j is
reassigned to other depots at iteration m, the value of element (k, j) of the TL is set to m + t, which means
that assigning the customer k the depot j will be forbidden for the next t iterations. The aspiration is based on
the SC, f(£") and (") . If the value SC of a move plus f(¢") is less than ("), it performed in spite that it

leads to tabu customer-depot assignment. Otherwise it is accepted only when it does not lead to tabu

customer-depot assignment.
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4.5 Computational results

The proposed Lagrangean relaxation approach and the HVNTS are coded in C++. The numerical
experiments are carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU Q8200 and 2
G RAM under a Microsoft Windows 7 operating system. In section 5.1, we describe the way to generate
random instances. In section 5.2, 245 instances with different problem parameters, such as the ratios of plant
capacity to customer demand, the ratios of depot capacity to customer demand and the number of plant size,
are tested to evaluate the solution quality and speed of the Lagrangean relaxation approach and the HVNTS.

4.5.1 Test instances

Based on the instance generation of the CFLP (Cornugjols et al., 1991) and the TSCFLP (Klose, 1999),
the instances are generated in the following way. The coordinates of potential plants, potential depots and
customers are randomly selected from a unit square. The unit transportation costs are 10 times the Euclidean

distance between the locations. Let U[a, b] denote a uniform distribution in interval [a, b]. The demand d, of

customer k € K is generated from U[5, 35]. The capacity cp; for ie| is generated from U[10, 160] and

scaled by using the ratio reg = Z:ielcpi /ZkEde . Let cdj, <cdjq if p <q, we first generate cd iis| for each
depot jeJ from U[10, 160] and then scale the capacities using the ratio req :ZjeJCdjlsjl /Zkede . For

each s < [S;], cds is set to s-cd”SjI -0 1|S;|, where o is a parameter randomly selected from U[0.9, 1.1]. To

reflect the depots’ economies of scale, the unit handling cost for a smaller depot is assumed to be larger than
that for a bigger depot at the same depot. For each depot jeJ, we first generate the unit handling cost h;,
from U[5, 7]. Then, for any s > 1, hjs is obtained by multiplying the handling cost hjs.1 by a random
parameter selected from U[0.9, 0.95]. The fixed opening costs for a plant or each size of a depot is obtained

by multiplying its capacity by a parameter selected from U[20, 25].

4.5.2 Results

In our implementation of the subgradient optimization procedure, the parameters are set as follows: L, 44
= 3000, & 4 = 10 Nisg = 40 and 4, = 1.5. For the HVNTS, the parameters Tmin and Tpax are set to 20 and
25 respectively, the Ly is Set t0 3, My is set to 2000, Niax is set to 200. The CPLEX version 12.5 with

default setting is used as the MIP solver.

Let UB_ 4y be the BUB found by the Lagrangean relaxation approach, UBy be the BUB found by the
HVNTS, UBc; be the BUB found by CPLEX without time limitation, UBc, be the BUB found by CPLEX
within time limit T ,gq and LB,y be the BLB found by the Lagrangean relaxation approach. The
computational results are shown in Tables 4.1-4.4. For each instance set, five instances are generated. To

simplify the presentation, the column headings are as follows:
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[11x]3]x|K| the number of the plants, the depots and the customers respectively

Glag the gaps between UBy,q and LB 4, i.€., (UBag — LBiag) / LBy ><100

Gy the gaps between UBy and LBy, i.€., (UBy — LBy4g) / LBLag ><100

e the gaps between UBy and UBcy, i.e., (UBy — UBcy) / UB¢; <100

Gres the gaps between UBy and UBcy, i.e., (UBy — UBcy) / UB¢, <100

TLag the CPU time used by the Lagrangean relaxation approach

T Lagh the CPU time used by the Lagrangean relaxation approach and the HVNTS
Ter the CPU time of CPLEX without time limitation

Avg. the average value of gaps or computational times for each instance set
Max. the maximum value of gaps or computational times for each instance set

In table 4.1, in order to evaluate the solution quality of the proposed Lagrangean relaxation approach
and the HVNTS, we compare the results of the Lagrangean relaxation approach and the HVYNTS with those
of the following two versions of CPLEX (cl and c2). For the CPLEX c1, no time limit is imposed. That is

the CPLEX c1 terminates itself if an optimal solution is found or an “Out of memory” error occurs. For the

CPLEX c2, the time limit T ., is imposed. For the instances tested in Table 4.1, repq = 2.0, regq = 2.0 and

IS;| = 3. The experimental results show that CPLEX can find an optimal solution only for the instances of

the set 1 and meets an “out of memory” error for the instances of the other sets.

It can be seen from the Table 4.1, the average gaps between the Lagrangean upper bound and lower
bound range from 0.64% to 1.69% and the maximum gap is 2.14%. The gaps between the HVNTS upper
bound and the Lagrangean lower bound range from 0.42% to 1.18% and the maximum gap is 1.60%. It is
clear that the Lagrangean relaxation approach provide both a well upper bounds and a good lower bounds for
the TECFLP-DSS and the HVNTS also performs well. Comparing with the CPLEX c1, the average gaps
between the HVNTS upper bounds and the upper bounds found by the CPLEX c1 range from -0.63% to
0.41%. The gaps decrease as problem size increases and the HVNTS can provide better upper bounds than
the CPLEX cl for the large-sized instances, e.g., the gaps between the HVYNTS upper bounds and upper
bounds found by the CPLEX c1 for set 10 is -0.63%. In terms of computation time, the CPLEX c1 takes
much more time than the Lagrangean relaxation approach and the HVNTS. The Lagrangean relaxation
approach and the HVNTS only take several to hundreds of seconds of CPU time while the CPLEX c1 takes
thousands of seconds. When compared with the CPLEX c2, the Lagrangean relaxation approach and the
HVNTS is much more effective than the CPLEX c2 in that the average gaps between the HVNTS upper
bounds and those of the CPLEX c2 range from -1.85% to -0.48%, the HVNTS upper bounds are much better
than the CPLEX upper bounds for all of the instances.

Table 4.1: Computational results and comparisons of the HVYNTS bounds with those of CPLEX

%9 1%IK] Glag (%) Gh (%) G (%) Ghicz (%) Tiagh (5) Tci ()
GLag AVg Gy AVg GHCl AVg GHC2 AVg TLagH AVg Tcr AVg
1.32 0.56 0.12 -0.34 4.3 194
1.28 1.13 0.52 -1.56 3.8 33.8
5x10>40 2.07 1.69 1.70 1.16 0.70 0.40 0.67 -049 5.1 4.1 17.3 30.1
1.64 1.18 0.29 -0.91 3.7 47.3
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2.14 1.26 0.35 -0.35 3.7 32.8

1.56 1.16 0.38 -1.19 11.7 323219

1.16 1.00 0.35 -0.91 11.0 10448.2
10=20>80 1.61 141 1.16 1.05 0.30 030 -123 -093 99 11.4  30039.0 20832.1

1.30 0.99 0.42 -0.93 144 18335.1

1.41 0.93 0.03 -0.40 10.3 13016.3

1.46 1.03 0.30 -1.24 24.8 6688.6

1.02 0.77 0.18 -1.73 26.2 5065.8
15>30=120 1.27 1.15  0.97 091 0.00 0.10 -1.23 -1.53 26.7 25.0  2869.6 4590.2

1.06 0.94 0.01 -2.25 21.3 5425.5

0.96 0.85 0.03 -1.21 26.2 2901.6

1.10 0.74 0.16 -0.78 50.0 5573.0

1.03 0.65 0.13 -0.57 43.3 5966.7
20>40%<160 1.16 1.02 0.90 0.76  0.05 0.06 -1.06 -1.38 40.0 41.8 49243 4801.1

0.88 0.72 -0.05 -1.21 35.9 3973.9

0.91 0.80 0.00 -3.28 39.7 3567.7

0.95 0.68 0.01 -1.80 65.6 4435.1

0.90 0.56 -0.12 -1.15 921 4682.3
25>60>200 0.66 093 0.54 0.65 0.02 0.00 -198 -1.30 733 82.7 45173 4617.8

1.04 0.66 0.13 -0.63 94.5 4956.4

1.09 0.80 -0.03 -0.94 88.1 4497.9

0.99 0.71 0.08 -0.90 1129 6551.8

0.84 0.57 0.02 -1.38 128.1 6713.7
30>60>240 0.75 0.86 0.50 0.55 -0.03 -0.03 -202 -1.77 1177 116.9 74227 6318.3

0.95 0.57 -0.04 -2.42 124.4 5307.6

0.76 0.38 -0.18 -2.12 101.2 5595.6

0.81 0.44 -0.12 -1.97 152.3 8026.6

0.65 0.34 -0.07 -1.29 140.8 8838.1
35x%70>280 0.87 0.83 045 045 -011 -0.08 -3.09 -1.81 1654 1674 7349.9 7743.5

0.94 0.51 -0.06 -2.03 187.9 8495.6

0.90 0.53 -0.02 -0.65 190.5 6007.5

0.63 0.47 -0.03 -2.22 179.3 9971.1

0.73 0.43 -0.10 -1.55 228.4 11402.9
40>80>320 0.84 0.76  0.50 045 -010 -0.13 -197 -1.50 2319 250.2 9344.1 9601.5

0.79 0.37 -0.19 -0.86 346.3 9875.6

0.80 0.48 -0.23 -0.88 265.1 7414.0

0.69 0.52 -0.38 -0.93 384.7 9503.9

0.66 0.30 -0.55 -0.81 343.8 5789.3
45>90>360 0.75 0.70 0.41 045 -063 -0.57 -083 -0.86 2959 340.6 5954.8 6625.8

0.70 0.53 -0.62 -0.64 335.9 6213.5

0.71 0.47 -0.68 -1.12 342.9 5667.5

0.66 0.42 -0.87 -1.73 307.3 5924.0

0.59 0.33 -0.59 -0.92 338.3 5245.3
50x100><400 0.60 0.64 0.33 038 -056 -0.67 -125 -1.29 460.0 373.5 5896.4 6135.8

0.65 0.38 -0.66 -1.45 401.8 6711.2

0.70 0.44 -0.64 -1.10 360.2 6902.1
Average 1.00 0.68 -0.06 -1.29

In table 4.2, we report the performances of the Lagrangean relaxation approach and the HVNTS on
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instances with different ratio rcyq. For all the instances given in Table 2, rgq = 2.0 and |Sj| = 3. The average

gaps between the Lagrangean upper bounds and lower bounds range from 0.59% to 1.11% and the maximum
gap is 1.28%, the average gaps between the HVYNTS upper bounds and the Lagrangean lower bounds range
from 0.37% to 0.90% and the maximum gap is 0.97%, which indicate that the Lagrangean relaxation
approach and the HVNTS perform well and they are effective for the instances with different ratio repg. In
addition, both the average gaps between the Lagrangean upper bounds and lower bounds and the average
gaps between the TS upper bounds and the Lagrangean lower bounds increase for the instances of the same
size as the ratio ryy increases, e.g., for the 50x<100>400 instances, the average gaps between the Lagrangean
upper bounds and lower bounds are 0.59%, 0.63%, 0.64% and 0.71% for rgg = 1.5, 2.0, 2.5 and 3.0
respectively, and the average gaps between the HVNTS upper bounds and the Lagrangean lower bounds are
0.37%, 0.44%, 0.48% and 53% for re = 1.5, 2.0, 2.5 and 3.0 respectively. It can be concluded that the

Lagrangean relaxation approach and the HVNTS are more effective for smaller ratio re,q than for larger ratio

lepd-
Table 4.2: Computational results on the instances with different plant capacities
[1]x]3 x| K] Fepd Grag (%) G (%) Tiag (9) Th(s) Tiagn (S)
Glag  Avg. G Avg. Tiag Avg. Th Avg. T Avg.
0.82 0.44 424 30.3 72.6
0.97 0.65 59.8 40.7 100.5
2550200 15 076 086 0.43 0.58 64.7 58.7 25.0 32.3 89.7 91.0
0.90 0.69 574 374 94.8
0.88 0.70 69.3 28.1 97.4
1.15 0.66 42.8 17.9 60.8
0.93 0.61 473 17.0 64.3
2550200 2.0 1.01 093 0.59 0.55 51.7 51.9 37.6 21.4 89.3 73.3
0.71 043 59.5 10.3 69.8
0.84 0.47 58.2 244 82.6
1.15 0.80 63.6 26.2 89.8
0.94 0.80 61.3 21.3 82.6
2.5 1.21  1.01 0.80 0.71 48.3 58.3 13.5 21.1 61.8 79.4
25>60>200 0.82 0.66 55.8 23.0 78.8
0.91 0.50 62.5 21.6 84.1
1.22 0.88 61.1 22.5 83.6
0.92 0.73 59.5 18.8 78.2
25>50>200 3.0 0.99 1.11 0.81 0.84 60.3 57.0 10.9 16.4 71.2 73.4
1.28 0.89 50.0 15.0 65.0
1.16 0.91 54.3 14.9 69.2
0.76 0.45 128.0 333 161.3
0.89 0.60 110.2 36.7 147.0
3570280 1.5 0.71 074 042 0.43 113.5 113.3 46.2 437 159.7 156.9
0.73 0.34 1154 57.9 173.3
0.62 0.37 99.1 44.0 143.2
0.64 0.40 112.7 342 150.8
0.69 0.44 118.6 45.6 164.2
35%70>280 2.0 0.82 0.79 0.58 0.53 91.5 272.9 64.4 46.1 155.9 158.8
0.88 0.57 120.1 41.5 161.5
0.93 0.64 116.8 45.0 161.8
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35%70>280

35x70>280

50><100>400

50>100>400

50>100>400

50>100>400

Average

2.5

3.0

1.5

2.0

2.5

3.0

0.95
0.78
1.07
0.98
0.82

1.14
0.70
1.05
0.87
0.91

0.62
0.60
0.51
0.56
0.64

0.63
0.76
0.60
0.60
0.56

0.51
0.61
0.58
0.66
0.85

0.64
0.64
0.85
0.76
0.69

0.82

0.92

0.93

0.59

0.63

0.64

0.71

0.66
0.52
0.64
0.68
0.51

0.68
0.44
0.48
0.56
0.72

0.34
0.29
0.35
0.28
0.32

0.40
0.55
0.35
0.29
0.26

0.34
0.46
0.37
0.36
0.51

0.41
0.39
0.62
0.42
0.53

0.53

0.60

0.58

0.32

0.37

0.41

0.47

121.9
113.8
113.6
111.0
116.1

104.2
132.9
98.5

104.7
119.2

331.8
280.7
348.5
348.5
310.5

294.2
311.1
305.2
297.1
283.8

318.7
344.9
305.1
288.2
3223

277.0
304.3
307.3
3233
243.6

115.3

111.9

324.0

298.3

315.8

291.1

30.5
50.5
54.1
35.0
76.8

65.7
34.2
71.3
35.1
39.9

52.9

118.5
74.9

158.9
210.2

124.3
74.3
73.0
83.9
117.8

94.2
113.1
96.3
99.5
127.4

149.4
39.1
146.7
167.1
82.3

49.4

49.2

123.1

94.7

106.1

116.9

152.4
164.3
167.6
145.9
192.9

169.9
167.1
169.8
139.8
159.1

384.7
399.2
423.4
507.4
520.7

418.5
385.5
378.2
381.0
401.6

412.9
458.0
401.4
387.7
449.7

426.4
343.4
454.0
490.4
325.9

164.6

161.1

447.1

392.9

4219

408.0

The performances of the Lagrangean relaxation approach and the HVNTS on the instances with

different ratio rq are reported in Table 4.3. For all the instances given in Table 4.3, re,q = 2.0 and |Sj| =3.

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.63% to 1.00% and
the maximum gap is 1.23%, the gaps between the HVYNTS upper bounds and the Lagrangean lower bounds
range from 0.43% to 0.72% on average and the maximum gap is 0.91%. It is clear that the Lagrangean
relaxation approach and the HVNTS perform well and they are effective for the instances with different ratio
reae- It can be seen from Table 4.3 that the ratio r.yq does not have a significant influences on the solution
quality and solution time, e.g., for the 50><100>400 instances, the average gaps between the Lagrangean
upper bounds and lower bounds are 0.63%, 0.67%, 0.68% and 0.67% for r,q = 1.5, 2.0, 2.5 and 3.0
respectively, the average gaps between the HVNTS upper bounds and the Lagrangean lower bounds are
0.43%, 0.45%, 0.45% and 0.49% for rq = 1.5, 2.0, 2.5 and 3.0 respectively, and the average CPU time is
761.9, 810.3, 658.5 and 774.0 seconds for regq = 1.5, 2.0, 2.5 and 3.0 respectively.

Table 4.3: Computational results on the instances with different depot capacities

ML

ledd

Giag (%)

Grs (%)

Tiag(S)

Th(s)

TiagH ()

G Lag

Avg.

Grs

Avg

Tiag

Avg.

Th

Avg.

TLaqH

Avg.
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25>50>200

25>50>200

25>50>200

25>50>200

35x70>280

35x70>280

35x70>280

35x70>280

50100400

50>100>400

1.5

2.0

2.5

3.0

1.5

2.0

2.5

3.0

15

2.0

0.62
0.93
1.16
0.85
1.01

1.11
0.84
0.88
0.79
0.83

1.02
0.99
1.02
1.23
0.73

0.63
1.21
0.74
0.65
1.19

0.87
0.94
0.82
0.81
0.71

0.90
0.69
1.00
0.62
1.05

0.81
0.95
0.67
0.78
0.86

0.89
0.92
0.89
0.73
0.60

0.59
0.71
0.60
0.69
0.57

0.71
0.61
0.71
0.70
0.61

0.92

0.89

1.00

0.89

0.83

0.85

0.81

0.80

0.63

0.67

0.35
0.47
0.63
0.74
0.73

0.76
0.46
0.49
0.59
0.65

0.48
0.66
0.76
0.77
0.45

0.40
0.89
0.45
0.47
0.63

0.53
0.54
0.55
0.50
0.43

0.53
0.44
0.74
0.40
0.67

0.49
0.55
0.41
0.50
0.56

0.70
0.56
0.65
0.43
0.43

0.33
0.42
0.35
0.44
0.25

0.40
0.43
0.45
0.42
0.34

0.58

0.59

0.62

0.57

0.51

0.56

0.50

0.56

0.36

0.41

46.1
72.5
59.6
58.1
50.3

50.9
49.7
53.1
50.5
49.5

46.6
56.4
60.3
51.3
65.7

46.7
54.3
59.6
50.7
49.0

107.3
118.5
104.8
122.6
139.5

1144
107.0
104.2
105.3
99.0

95.7
107.9
116.4
97.4
118.0

105.8
118.0
100.9
111.2
110.0

246.9
256.1
333.6
256.1
330.1

255.8
280.3
291.4
318.7
293.2

69

573

50.8

56.1

52.0

118.6

106.0

107.1

109.2

284.6

287.9

16.5
13.1
20.9
9.2

24.1

27.8
13.6
10.2
16.2
18.5

13.9
24.0
14.2
25.0
12.4

15.2
29.0
15.7
12.8
155

27.0
37.7
40.5
66.2
45.8

92.3
41.9
69.1
43.2
445

23.6
34.0
40.2
49.5
39.2

82.5
39.8
26.8
46.6
41.6

168.0
143.6
121.8
146.6
109.6

229.0
184.1
61.1
209.9
74.9

16.8

17.3

17.9

17.6

43.4

58.2

373

47.5

137.9

151.8

62.6
85.7
80.4
67.3
74.3

78.7
63.4
63.3
66.8
68.0

60.6
80.5
745
76.3
78.1

61.9
83.3
75.4
63.4
64.5

134.3
156.2
145.3
188.8
185.4

206.6
148.9
173.4
148.5
1435

119.3
141.8
156.6
146.9
157.2

188.3
157.8
127.7
157.7
151.6

414.9
399.7
4554
402.7
439.7

484.8
464.4
352.5
528.6
368.1

74.1

68.0

74.0

69.7

162.0

164.2

144.4

156.6

422.5

439.7
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0.73 0.46 252.3 143.4 402.0

0.77 0.46 298.8 91.2 390.1
50x100>=400 25 0.72 0.68 040 042 280.6 284.8 129.7 1172 410.3 1181.9

0.52 0.30 317.6 129.9 4475

0.65 0.45 274.5 91.9 366.4

0.74 0.47 265.9 136.4 402.3

0.70 0.42 255.6 227.9 483.5
50x100>=400 3.0 0.67 0.67 041 045 297.8 2652 80.0 140.2 377.8 405.3

0.58 0.43 276.0 143.3 419.3

0.66 0.49 230.6 113.2 343.7
Average 0.80 0.51

In Table 4.4, we provide an analysis of the performances of the proposed Lagrangean relaxation
approach and the HVNTS on the instances with different numbers of depot size. For all the instances given
in Table 4.4, repq = 2.0 and reqq = 2.0. The Lagrangean relaxation approach and the HVNTS are effective in
that the average gaps between the Lagrangean upper bounds and lower bounds range from 0.56% to 0.97%
and the maximum gap is 1.15%, the average gaps between the HVYNTS upper bounds and the Lagrangean
lower bounds range from 0.41% to 0.73% and the maximum gap is 0.93%. The number of the depot size
does not have a significant influences on the solution quality, e.g., for the 50<100>400 instances, the average
gaps between the HVYNTS upper bounds and the Lagrangean lower bounds are 0.47%, 0.46%, 0.47%, 0.41%

and 0.43% for |s;| = 2, 3, 4, 5 and 6 respectively. However, the computational time of the Lagrangean

relaxation approach and the HVNTS increases regularly as the number of the depot size increases, e.g., for
the 50>100>400 instances, the average CPU time is 623.5, 670.7, 737.9, 946.9 and 1040.6 seconds for |s;| =

2, 3, 4,5 and 6 respectively.

Table 4.4: Computational results on the instances with different numbers of depot size

[1]x] 3] K] |Sj | GLag (%) Gu (%) TLag (S) T (S) TLagH (S)

Glag  Avg. G Avg. Tiag Avg. Th Avg. TiagH Avg.

0.92 0.59 324 10.8 43.2

0.99 0.60 36.3 10.8 47.1
25>60>200 2 1.15 0.97 0.58 0.62 329 33.9 24.9 18.7 57.8 52.6

0.76 0.45 32.9 17.8 50.6

1.05 0.91 35.1 29.3 64.5

0.98 0.73 52.7 20.1 72.8

0.59 0.45 53.7 13.1 66.8
25>60>200 3 0.95 0.94 0.70 0.63 58.8 548 125 159 713 70.7

1.09 0.60 50.8 11.2 61.9

1.11 0.65 57.9 22.7 80.6

0.73 0.35 66.5 12.3 78.7

0.99 0.57 73.2 19.9 93.1
2560200 4 0.78 0.86 0.46 0.51 70.3 71.6  16.3 18.5 86.6 90.1

0.72 0.53 68.1 17.7 85.9

1.06 0.65 79.9 26.1 106.0

0.82 0.41 80.7 12.3 93.1

1.09 0.57 102.5 14.3 116.7

25>50>200 5 0.78 0.87 055 0.53 1074 98.8 195 19.0 126.9 117.8
1.03 0.76 107.5 33.7 141.2
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25>50>200

35x70>280

35x70>280

35x70>280

35x70>280

35x70>280

50>100>400

50>100>400

50100400

50100400

0.62

0.90
0.82
6 0.83
0.91
0.94

0.73
0.76
2 0.89
0.63
0.95

0.78
0.62
3 1.05
0.75
0.96

0.82
0.76
4 1.00
0.75
0.75

0.80
0.93
5 0.80
0.71
0.88

0.95
0.91
6 0.99
0.53
0.91

0.64
0.46
2 0.67
0.77
0.76

0.73
0.70
3 0.73
0.43
0.47

0.75
0.59
4 0.55
0.67
0.58

0.72
0.52
5 0.66
0.64

0.88

0.79

0.83

0.82

0.82

0.86

0.66

0.61

0.63

0.61

0.35

0.55
0.46
0.53
0.44
0.52

0.55
0.47
0.62
0.42
0.65

0.56
0.35
0.77
0.43
0.62

0.41
0.63
0.60
0.52
0.58

0.52
0.67
0.55
0.51
0.64

0.64
0.52
0.63
0.37
0.47

0.32
0.23
0.45
0.43
0.54

0.42
0.47
0.42
0.35
0.23

0.46
0.35
0.39
0.47
0.38

0.35
0.28
0.38
0.41

0.50

0.54

0.55

0.55

0.58

0.53

0.40

0.38

0.41

0.34
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95.9

81.8

111.3
121.1
118.7
105.4

944
82.0
84.0
91.2
83.3

118.0
117.3
114.2
96.8

1115

122.6
154.0
176.6
162.4
180.5

179.7
238.1
254.9
211.2
192.1

257.9
260.2
284.8
274.7
318.8

173.4
212.9
195.6
206.5
191.0

286.5
287.5
270.1
323.5
242.9

393.9
353.5
369.3
349.6
351.9

477.3
468.6
510.1
435.0

107.7

87.0

111.6

159.2

215.2

279.3

195.9

282.1

363.6

480.4

15.1

20.3
19.6
17.2
27.5
13.1

46.6
67.4
111.2
34.3
22.9

51.2
56.5
63.1
49.4
41.8

48.2
25.6
50.5
58.1
34.4

421
45.7
49.7
36.4
47.0

70.0
45.9
69.7
43.3
54.4

779
84.6
161.8
204.1
116.2

109.4
129.6
116.0
65.5
81.7

165.3
47.5
43.2
56.7
147.6

200.0
91.9

125.3
189.3

19.5

56.5

524

43.3

44.2

56.7

128.9

100.4

92.1

136.5

111.0

102.1
130.9
138.3
146.2
1185

141.0
149.4
195.1
125.4
106.2

169.1
173.8
177.3
146.2
153.3

170.7
179.6
227.1
220.5
214.9

221.8
283.8
304.6
247.6
239.0

327.9
306.2
354.5
318.0
373.3

251.3
297.5
357.4
410.6
307.2

395.8
417.1
386.1
389.1
324.6

559.2
401.0
412.6
406.3
499.5

677.3
560.6
635.4
624.3

127.2

143.4

163.9

202.6

2594

336.0

324.8

382.5

455.7

616.9
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0.50 0.30 510.8 76.2 587.0
0.64 0.34 491.0 74.5 565.5
0.68 0.36 496.5 128.1 624.6
50><100>400 6 0.64 0.66 0.32 0.36 630.8 558.1 1759 1104 806.8 668.5
0.75 0.45 665.3 89.5 754.8
0.58 0.35 506.8 84.1 590.9
Average 0.79 0.50

4.6 Conclusions

In this chapter, we concentrate on the TECFLP-DSS where each depot has several size exhibiting
different capacities. The unit handling cost for a larger size of a depot is assumed to be smaller than those of
the smaller sizes of the same depot to model the economies of scale. This problem allow us to deal with both
different sizes for depots and different handling costs at different levels of handling at a depot. A mixed
integer programming model is formulated. This extended model can then simultaneously determine the
locations and sizes of the plants, the locations of the depots, the product flows from the plants to the depots
and the assignments of the customers to the depots to satisfy the customers’ demands. The TECFLP-DSS is
NP-hard in strong sense. A Lagrangean relaxation approach and a HVNTS are proposed for its resolution.
First the Lagrangean relaxation approach is used to find good lower and upper bounds, and then the HVNTS
is designed to improve the best upper bound found in the Lagrangean relaxation approach. The numerical
experiments on 245 randomly generated instances indicate that the proposed Lagrangean relaxation approach
and the HVNTS can provide high quality lower bounds and upper bounds to the TECFLP-DSS. The average
gaps are not greater than 1.16%, with 1.70% at a maximum. In addition, instances with different parameters,
such as the ratios of plant capacity to customer demand, the ratios of depot capacity to customer demand and
the number of depot size, are tested to evaluate the robustness of the Lagrangean relaxation approach and the
HVNTS. The computational results indicate that the proposed Lagrangean relaxation approach and HVYNTS
are effective for the instances with different parameters and can solve the instances that have up to 50

potential plants, 100 depots with 6 possible sizes each and 400 customers in a reasonable time.

The Lagrangean relaxation approach and HVNTS work very well and can provide good lower and
upper bounds for our problem. However, some new ideas on solving the problems could be investigated,
such as adding valid inequalities to accelerate the solution process, designing improvement strategies for the
Lagrangean relaxation approach or the HVYNTS. Another direction is to design a cut-and-solve (Zhang et al.
2006) based Lagrangean relaxation approach for the TECFLP-DSS.
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5.1 Introduction

In this chapter, we study a two-echelon capacitated facility location problem with plant and depot size
selection (TECFLP-PDSS), in which the sizes of the plants and depots are considered simultaneously. The
TECFLP-PDSS is also an extension of the TSCFLP. In this problem, we simultaneously locate plants and
depots, and select sizes for the located plants and depots, where each plants in the first stage has several
potential sizes exhibiting different capacities. Each depot in the second stage has a several potential sizes
exhibiting different capacities and is supplied by multiple plants. Each customer in the third stage is serviced
by only one depot. This extended model will not allow us to deal with different sizes for plants and depots,
but also with different production cost at different levels of production at a plant and handling costs at
different levels of handling at a depot. The objective of this problem is to determine simultaneously the
locations and sizes of the plants, the locations and sizes of the depots, the product flows from the plants to

the depots and the assignments of the customers to the depots to satisfy the customers’ demands.

As in the TECFLP-PSS and TECFLP-DSS, the fixed opening cost for a larger size of a plant is larger
than those of the smaller sizes of the same plant and the fixed opening cost for a larger size of a depot is
larger than those of the smaller sizes of the same depot. The unit production cost for a larger size of a plant is
smaller than those of the smaller sizes of the same plant and the unit handling cost for a larger size of a depot
is smaller than those of the smaller sizes of the same depot to model the economies of scale. The
distinguishing features of the TECFLP-PDSS are: 1) there are several sizes for both potential plants and
depots that can be opened, 2) both production cost at a plant and handling cost at depot is taken into account
specifically since these costs cannot be merged with other linear connection costs like they are done in the

traditional facility location model.

The TECFLP-PDSS can be seen as an extension of the TECFLP-PSS or TECFLP-DSS and is NP-hard
in strong sense. Thus we concentrate on finding good lower and upper bounds for it. For this problem, we
present a mixed integer programming model and a Lagrangean relaxation approach to achieve efficient lower
and upper bounds. A hybrid simulated annealing tabu search algorithm (HSATS) is designed to further
improve the best upper bound found by the Lagrangean relaxation approach. To solve the dual problem
arising in the Lagrangean relaxation approach, a subgradient optimization method is used. The Lagrangean
relaxation problem can be decomposed into two subproblems, one can be solved to optimality by inspections
and another one can be decomposed further into the classical 0-1 knapsack problem which can be exactly
solved in a very reasonable time by using the MINKNAP developed by Pisinger (1995). We construct
feasible solution and find an upper bound by repairing the Lagrangean relaxation solutions. The feasible
solution construction process consists of three stages: 1) open plants and select their sizes, 2) open depots,
select their sizes and determine the customer-depot assignments, 3) determine the product flows from the
plants to the depots. The HSATS focus on improving the customer-depot assignments. After the HSATS, the

optimal product flows are determined by solving a transportation problem using commercial solver CPLEX.

To evaluate the general performance of the Lagrangean relaxation approach and HSATS, 50 instances
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with different problem size are tested. The results of the gaps between the Lagrangean upper bounds and

lower bounds, the upper bounds obtained by the HSATS and Lagrangean lower bounds, the upper bounds
obtained by the HSATS and those provided by commercial MIP solver CPLEX are reported. The results
demonstrate that the Lagrangean relaxation approach and HSATS are effective for the TECFLP-PDSS since
the gaps between the upper bounds and those of the CPLEX are less than 1.75% on average and the CPU
time required by the Lagrangean relaxation and HSATS is much less than that of the CPLEX. In addition,
270 instances with different sizes and different parameters, such as the ratio of plant capacity to customer
demand, the ratio of depot capacity to customer demand and the number of plant size, are randomly
generated and tested to evaluate the robustness of the Lagrangean relaxation approach and HSATS. The
computational results show that the Lagrangean relaxation approach and HSATS perform well. All of the
instances can be solved in a reasonable time with small gaps, even for instances that have up to 50 potential

plants with 6 possible sizes each, 100 potential depots with 6 possible sizes each, and 400 customers.

The rest of this chapter is organized as follows. In Section 5.2, the mixed integer programming model is
developed for the TECFLP-PDSS. In Section 5.3, the Lagrangean relaxation approach is proposed to achieve
lower and upper bounds. In Section 5.4, the HSATS is proposed to improve the best upper bounds found in
the Lagrangean relaxation approach. In Section 5.5, we evaluate the proposed algorithms on randomly

generated instances. Conclusions are drawn in Section 5.6.

5.2 Problem formulation

Given a set of potential plants, a set of potential depots, each plant and depot has several possible sizes
exhibiting different capacities, and a set of customers with demands, the aim of the TECFLP-PDSS is to
select a set of plants and a set of depots to open, select a size for each opened plant and depot, determine the
product flows from the plants to the depots and assign the customers to the opened depots to serve the
customers at a minimum total cost. This cost includes the fixed opening costs of the facilities, the producing
costs at the plants, the handling costs at the depots, the transportation costs from the plants to the depots and
the assignment costs of the customers. The structure of the TECFLP-PDSS is presented in Fig. 5.1, where the
first or upper-most stage is the plants, each plant has several sizes, the second or central stage is the depots,

each depot has several sizes, and the third stage is the customers.

In the TECFLP-PDSS, each size of a plant associates with a capacity cp, a fixed opening cost fp and a
unit production cost p. The fixed opening cost for a larger size of a plant is larger than those of the smaller
sizes of the same plant. The unit production cost p for a larger size of a plant is smaller than those of the
smaller sizes of the same plant. An example of the cost function including the fixed opening cost and the
production cost of a plant is illustrated in Fig. 3.2. in Chapter 3. Each size of a depot associates with a
capacity cd, a fixed opening cost fd and a unit handling cost /. The fixed opening cost for a larger size of a
depot is larger than those of the smaller sizes of the same depot. The unit handling cost h for a larger size of a
depot is smaller than those of the smaller sizes of the same depot. An example of the cost function including

the fixed opening cost and the handling cost of a depot is illustrated in Fig. 4.2 in Chapter 4.
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Fig. 5.1 The structure of the TECFLP-PDSS

To formulate the TECFLP-PDSS, the notations and decision variables used are as follows:

Notations:
I the set of the potential plants;

J the set of the potential depots;

K the set of the customers;

Ri the set of the sizes of aplant ie | ;
S the set of the sizes of a depot jeJ ;

-

cpir  the capacity of the plant i e I with size reR;;
cd,  the capacity of the depot jeJ withsize seS;;

dy the demand of the customer k € K ;

fpir the fixed cost of the plant i e | with size reR;;

fd;s the fixed cost of the depot jeJ with size seS;;

Pir the unit producing cost of the plant i e I with size reR;;
his the unit handling cost of the depot j e J with size seS;;

ti the unit transportation cost from the plant i | to the depot jeJ ;

Cik the unit cost of assigning the customer k e K to the depot jeJ;

Decision variables:

Uir 1, if the plant i e | with size reR,; is opened; O, otherwise;
Vis 1, if the depot j e J with size seS; is opened; 0, otherwise;
Xirjs the quantity of product flow from the plant i e I with size reR; to the depot jeJ with size seS;;

Zjsk 1, if the customer k € K is assigned to the depot jeJ with size seS;;

The TECFLP-PDSS can be formulated as follows:
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min Zz 1:pir “Ujy +ZZZZ( Pir +tij )'Xirjs

p iel reR, iel reR; jeJseS; (5 1)
jeJses; jeJseSjkeK
S,t, ZZXIUS SCp”'UIr Vi€|,rER| (5_2)
jeJ se§;
u, <lviel
2 (53)
szirjs—de-stk :OVjE\J, SESJ (5_4)
iel reR; keK
keK
v, <1Vjeld )
Z ‘ (5-6)
jed se§;
u;, €{0,1}Viel,reR (5-8)
Vi €{0,1}Vjed, ses; (5-9)
Xi”-SZOVieI,reRi,jeJ,SeSj (5-10)
Zj e{O,l}VjeJ,SeSj,keK (5-11)

The objective (5-1) minimizes the total costs of opening the plants (the first term), producing the
products at the plants and transporting the products from the plants to the depots (the second term), opening
the depots (the third term), handling the products at the depots and assigning the customers to the depots (the
forth term). The constraints (5-2) ensure that the total product flows moving out of a plant cannot exceed the
capacity of its opened size and are zero if a plant is closed. The constraints (5-3) state that a maximum of one
size of a plant can be chosen. The constraints (5-4) are the flow equilibrium constraints at the depots. The
constraints (5-5) make sure that the customers’ demands assigned to a depot cannot exceed the capacity of its
opened size and no customers are assigned to the close depots. The constraints (5-6) state that a maximum of
one size of a depot can be chosen. The constraints (5-7) guarantee that each customer is assigned to exactly
one depot. The constraints (5-8), (5-9), (5-10) and (5-11) are standard nonnegativity and integrality

constraints.

5.3 Lagrangean relaxation approach for the
TECFLP-PDSS

As stated in chapter 3 and 4, the Lagrangean relaxation approach is one of the most effective

approaches to achieve lower bounds to mixed integer linear programming problems, which relaxes hard
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constraints into the objective function by introducing Lagrangean multipliers. The Lagrangean relaxation

approach has been widely applied to solve facility location problems, e.g., Geoffrion and McBride (1978) for
the CFLP, Klincewicz and Luss (1986) for the CFLPSS and Tragantalerngsak et al. (1997) for the two-
echelon, single-source, capacitated facility location problem, etc. Due to the effectiveness of the Lagrangean
relaxation approach, thus we use it to obtain good lower and upper bounds of the TECFLP-PDSS.

5.3.1 Lagrangean relaxation model of the TECFLP-PDSS

Similar as the TECFLP-PSS and TECFLP-DSS, various Lagrangean relaxations can be obtained by
relaxing different constraints of the TECFLP-PDSS, such as relaxing the constraints (5-4) and (5-7), (5-2)
and (5-7) or (5-4) and (5-5). The selection of a suitable relaxation is very important for generating good
lower and upper bounds. Based on our preliminary experiments, the constraints (5-2) and (5-7) are relaxed
by introducing the non-negative multipliers «; (iel,reR, ) and the multipliers g, (keK ) in our
implementation of the lagrangean relaxation approach, since it can generate better lower and upper bounds
than relaxing the constraints (5-4) and (5-7) or (5-4) and (5-5). The Lagrangean relaxation problem,

LR(a, p), is therefore as follows:

LR(a, f)=min ZZ( fpi —atic )i +ZZZ Z( Pir +1ij + 03, /P )-Xirjs

iel reR; iel reR; jed seS;
(5-12)
+ZZ fdjsvis +ZZZ(hjs'dk_Cjk A=) s +Z:8k
jedseS; jed seSjkeK keK

s.t. (3)-(6) and (5-8)-( 5-11).
The LR(a, ) can be divided into the following two independent subproblems.
The first subproblem, LR, (), is

LR (e)=min ZZ( Py =i )-Uir (5-13)

iel reR;
s.t. (5-3) and (5-8),
which can be solved exactly in O(|1]-|R;|) by setting a maximum of one u; to 1 with the smallest negative
fp, —a;, value foreach iel.

The second subproblem, LR, (a,p), is

LR, (a, #)=min ZZZ Z( Pir +Lij + 0, /P )-Xirjs

iel reR; jed seS; (5_14)
+zz fdjsvis +ZZ Z(hjs A —Cji-dy =B ) Z sk
jed seS; jed seSjkeK

s.t. (5-4)-( 5-6) and (5-9)-( 5-11).
In this subproblem, the variables X;;; and z;, are connected only by the constraints (5-4). There

always exists an optimal solution of LR, («, ) where a depot j with a size s is only supplied by its ‘cheapest

source’. Foranyiel, jeJ, seS;, set
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zdk 'stk ’ if {Iv r}:argmin mel,neR,, (pmn +tmj +0m /Cpmn ).
Xirjs = 9§ kek
0, otherwise

Then

jeJ se§; jeJ seSjkeK

s.t. (5-5), (5-6), (5-9) and (5-11),

where Wis = min . ncr (Pmnttmj+0ma/CPmn) - This problem can be further decomposed into [J}|S;]
independent 0-1 knapsack problems, which can be solved to optimality by using the MINKNAP developed

by Pisinger (1995). Then LR,(«, B) is solved by setting a maximum of one v;, to 1 with the smallest

negative knapsack objective value for each jeJ

Let LB(a, f) be the sum of the objective value of the solution of LR,(«) and LR,(«, B) , and Z,b’k :
keK

Obviously, LB(a,p) is a lower bound of the TECFLP-PDSS for giving Lagrangean multipliers («, f) .

5.3.2 Subgradient optimization for the TECFLP-PDSS

To solve the Lagrangean relaxation LR(a, f), a subgradient optimization procedure is adopted to
approximately solve the corresponding Lagrangean dual problem.
D:
max LR(a, 5) (5-16)
The subgradient optimization procedure is an iterative process, which solves the Lagrangean relaxation

problem and then updates the Lagrange multipliers for the next iteration by using the current subgradient

information. The process is terminated if one of the stopping criteria is met.

Let (G', %', ¢', 2') be the optimal solution of LR(c', ') at iteration I. Denoting y, =

D Xigs—Cpye Ui Viel,reR; and n = 1= >z}, vkeK , the multipliers for the next iteration | + 1 are
jelses; jedseS;

updated by
on " =mex{eq, +6' 73, 0} (5-17)
=B +0" (5-18)
where 6' = 1-(BUB-LB(a', "))/ (O D ()% + D _(nk)?) is the step size at iteration |, BUB is the best upper

iel reR; keK

bound of the TECFLP-PDSS found in the previous I-1 iterations. LB(a',4') is the lower bound of the
TECFLP-PDSS at iteration I. A is a parameter in the interval (0, 2], which is halved if the best lower bound
hasn’t been improved for a given number N4 of consecutive iterations.

Let BLB be the best lower bound found in previous I-1 iterations, L .4 be the maximum number of
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iterations and ¢ ,, be a positive small scalar. Then the subgradient optimization procedure is described in

detail in Algorithm 5.1.

Algorithm 5.1: Subgradient optimization procedure for the TECFLP-PDSS
Step 1: Initialize €Lags Liag and 4, , where J, is a parameter in the interval (0, 2]. Set BUB := + oo, BLB :=

—w, a) =0, Viel, reR;, 0 =0, VkeK, 1 := J, and |:=1.

Step 2: Solve the subproblems LR,(a') and LR,(a', ') to optimality. Let LB = LB(a', '). If LB > BLB,

then set BLB := LB. If no improvement of BLB is detected in N, successive iterations, then set
A= 202,

Step 3: Construct a feasible solution of the TECFLP-PDSS based on the Lagrangean relaxation solution
(Section 5.3.3). Let UB be the objective value of this solution. If UB < BUB, then set BUB := UB.

Step 4: If | > Loy and 4 < g4, Stop. The dual solution corresponding to the BLB is regarded as the

optimal dual solution and the solution corresponding to the BUB is regarded as the optimal primal
solution.

Step 5: Update oci'r for viel , reR, and ,Bﬂ( for vk e K according to the formulas (5-17) and (5-18)

respectively.
Step 6: Set | := |+1 and return to Step 2.

We observe that as the iterations move on, the value of parameter 1 becomes smaller and smaller until

the lower bound LB(a', ') becomes stable, and no further improvement of BLB can be achieved. To escape
this ‘dilemma’, we restart the subgradient optimization procedure by initializing the BUB and BLB with the
best values obtained in the previous subgradient procedure and initializing the Lagrangean multipliers with
the multipliers that lead to the BLB. Starting from a relatively good initial point and resetting parameter 1,
we hope that the subgradient optimization procedure can increase the probability of obtaining a better lower

bound.

5.3.3 Feasible solution construction

Feasible solutions are used in the subgradient optimization procedure to calculate the step size and to
get the final solution when the subgradient optimization procedure terminates. A feasible solution of the
TECFLP-PDSS is constructed by repairing the Lagrangean relaxation solution at each iteration of the
subgradient optimization procedure, i.e., at iteration I. The task of constructing a feasible solution is divided
into three stages: 1) open plants and select their sizes, 2) open depots and select their sizes, and determine the

customer-depot assignments, 3) determine the product flows from the plants to the depots.

1) Open plants and select their sizes

We first open the plants i with the size 7, where (i_,F)e{(i,r)|L]i'r =1,Viel,reR;} and denote these

opened plants as | . If the sum of the capacities of the opened plants can cover all of the customers’
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demands, the locations and sizes of the plants are determined. Otherwise, we consider to open more plants

and select their sizes, and add these plants into I, or we select larger sizes for the currently opened plants.

Define FR!=fp\.—a; , iel, reR as the evaluation cost of opening a plant i with size r at iteration I.
Let AFP! and ACP)} be the variations of the evaluation cost and capacity respectively. AFP} is calculated as
FPL—FPL, if plant i is opened with size F, FP, otherwise. ACP, is calculated as cp, —cp, if plant i is
opened with size 1, cp;, otherwise. Note we only consider plant sizes that are greater than the currently

selected size for an opened plant. The main idea of the proposed construction procedure is to iteratively open

a new plant or to change the size of an opened plant until all of the customers’ demands are covered. At each
iteration, we open a plant i and select its size r with the smallest value of AFR}/ACP!. For a previously

opened plant, if its size is changed we only preserve the latest one. The detailed procedure for opening
plants and selecting their sizes is summarized in Algorithm 5.2.

Algorithm 5.2: Opening plants and selecting their sizes
Step 1: Open all of the plants i with the size r if u; =1 in the Lagrangean relaxation solution, and denote

these plants as set | .

Step 2: If the total capacities of the opened plants is equal to or greater than the total quantity of the
customers’ demands, return the opened plants and their sizes, stop.

Step 3: If the total capacities of the opened plants is less than the total quantity of the customers’ demands,

repeat Steps 5.3.1-5.3.2 until all of the customers’ demands are covered.

Step 3.1: Compute AFP! and ACP! for each potential plant and possible size.

Step 3.2: Open the plant i and select the size r if it has the smallest AFP;/ACP} value and add it into i .

Preserve the size r for the plant i if it has been previously opened.

2) Open depots and select their sizes, and determine the customer-depot assignments

To open depots and select their sizes, and determine the assignments of the customers to these opened
depots, we repair the Lagrangean relaxation solution until all of the customers are assigned exactly to one
depot. Based on the customer-depot assignments in the Lagrangean relaxation solution, we partition the set K

of the customers into three mutually disjointed subsets:

Ko = {keK:) > 254 =0},

jeJseS§;

Ky = {keK:)> > 2}, =1} and

jelses;

K= {keK:) D 2% >13,

jedses;

such that K, UK, UK, = K. Let ¢y = h;s+Cj be the cost of assigning a customer k to a depot j with a size

S.
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First, we open the depot j with the size s if G'J-S =1, VjeJ, seS; and denote the set of these opened

depots as J . Second, the customers of the subset K; are assigned to the depot j with size s where 2 i

« =1
Third, the customers of the subset K, are assigned to the depot j with size s where ¢y is the smallest

among all of the depots with Ziy = 1. Fourth, the customers belong to the set K, are assigned to the depots

one by one based on a regret value. This regret value of a customer k is defined as the difference between the

second smallest and the smallest ¢y values among all of the opened depots whose residual capacities are
greater than d, . If a customer has only one opened candidate depot, then it is given a very high regret value.
At each time, the customer with the largest regret value is assigned to the depot j with size s where ¢y is

the smallest. Finally, the opened depots to which no customer has been assigned are closed to save opening
cost.

The procedure of opening depots and choosing their sizes, and determining the assignments of the
customers is shown in Algorithm 5.3.

Algorithm 5.3: Opening depots and choosing their sizes, and determining the customer-depot assignments

Step 1: Open all of the depots j with s if \7',-5 = 1 and denote these opened depots as J .

Step 2: Assign the customers in the subset K; to the opened depot j with size s where 2;5k =1

Step 3: Assign the customers in the subset K; to the depot j with size s where ¢;q is the smallest and 2'jsk
=1.
Step 4: Compute the regret values for all of the unassigned customers. Choose the customer with the

maximum regret value. Assign the chosen customer to the depot with the smallest ¢y value,

among those depots with sufficient residual capacities. Repeat this Step until all of the customers
are assigned or an unassigned customer is failed to be assigned to the opened depots with sufficient
residual capacities.

Step 5: Close the depots to which no customer has been assigned and delete them from the set J .

3) Determine the product flows from the plants to the depots

If a set of plants | with sufficient capacities to satisfy all of the customers’ demands are opened by
Algorithm 5.2, a set of depots J are opened and feasible assignments of all of the customers to these opened
depots are determined by Algorithm 5.3, the product flows from the plants to the depots are determined by
solving a transportation problem between the plants and the depots. In this transportation problem, the
opened plants and depots are viewed as the source nodes and the destination nodes respectively, the plants
capacities and the customers’ demands assigned to the depots are viewed as the supply capacities and
destination demands respectively. After solving the transportation problem to optimality, we close the
opened plants whose products are not flowing out to any depot and the depots to which no customers are

assigned to save opening cost.
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5.4 Hybrid simulated annealing tabu search
algorithm for the TECFLP-PDSS

As stated in chapter 3, the TS is a local search based metaheuristic. The TS uses short term memory of
recently visited solutions known as tabu list to escape from local optima, but tabu list has a deterministic
nature and thus cannot avoid cycling. On the other hand, the simulated annealing (SA), introduced by
Kirkpatrick et al. (1983), is an iterative local search metaheuristics. The SA uses a probability function to
escape local optima. The stochastic characteristic of the SA avoids cycling but the rate of improvement of
solution is very slow, because it has no memory of the recently visited solutions. So it is always possible for
the SA search to return to the same solution again. However, with the help of a short-term memory, the
search of the SA can be restricted from looping back to previously visited solutions and the performance of
the SA can be enhanced significantly. Keeping the above ideas in mind, the hybridization of the SA and TS
has been applied in many combinatorial optimization problems in the literature, such as the capacitated
clustering problem (Osman and Christofides, 1994), modeling machine loading problem (Swarnkar and
Tiwari, 2004) and vehicle routing problem (Kiigiikoglu and Oztirk, 2015) etc. To further improve the best
solution of the TECFLP-PDSS found in the Lagrangean relaxation approach, we design a hybrid simulated
annealing tabu search (HSATS) for the TECFLP-PDSS. The HSATS takes advantages of the stochastic
feature of the SA to escape from local optima and the short term memory strategy of the TS to avoid cycling.

The proposed HSATS is described in detail in the following.

5.4.1 Move and neighborhood definitions

Similar as the TECFLP-DSS, a solution & of the TECFLP-PDSS consists of u, x, v and z. Define £ =
(v, 2) be the set of v and z. In the implementation of the HSATS, we fix the locations of the plants and their
sizes as the input feasible solution. Moves are only based on the customer-depot assignments, that is, moves
only change ¢ . Two kinds of moves are used: shift that reassigns one customer from one depot to another,
swap that interchanges the assignments of two customers that are currently assigned to two different depots.

Accordingly, the neighborhoods N;q(¢) and Ng,,,(&) are defined as the set of solutions ¢ that can be

attained from ¢ by performing a shift move and a swap move respectively.

5.4.2 Tabu list

A tabu list (TL) is used in the implementation of the HSATS to prevent the recently visited solutions
from being revisited. The element (k, j) of the TL records the last iteration number that it will be forbidden to
assign the customer k to the depot j. If a customer k assigned to a depot j is reassigned to other depots, the
assignment of the customer k to the depot j will be forbidden in the next t iteration. The parameter t is

randomly selected from [Tmin, Tmax]-
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5.4.3 Annealing strategy

The annealing schedule determines the value of the transition probability used in the selection criterion
and thus plays an important role in the HSATS. In the implementation of the HSATS, an initial temperature

To is given and a constant annealing rate x is used. The temperature T, at iteration i+1 (i =0, 1, ...) is
calculated as Ti+; = T;- «. Two kinds of thermal equilibrium iteration numbers, M, and N, are used at each
temperature. M; denote the total iteration number and N; denote the transition iteration number. Both M, and
N; are selected in terms of problem characteristics, i.e., M is set as p,-|K| and N; is setas p,-|K|, where p,
and p, are positive integer numbers and |K| is the number of the customers. If the temperature is reduced

successively L, iterations without improvement, we increase the current temperature by multiplying it by a

parameter #, which is larger than one, expecting to escape from the current local minimum.

5.4.4 The steps of the HSATS

Define F(¢) as the objective function of & and f({) as the objective function of ¢ . In the
implementation of the HSATS, we first improve ¢, if a better ¢ is found, then the flows x are determined
by solving the corresponding transportation problem from the plants to the depots to obtain a new solution
&'

The HSATS starts from a high initial temperature Toand terminates until the temperature T has reached
the final temperature ¢,. The search process consists of a loop of local searches, a step for determining the
flows x and a step for dropping temperature. Each of the local search starts from the best solution £* found
so far and performs M iterations or N; transition iterations at each temperature. After the local search, if a
better local solution ¢£" is found, x is determined by solving the corresponding transportation problem and
the incumbent solution &* is updated if a better solution & is found. Finally, the current temperature is

reduced by multiplying it by .

The steps of the HSATS are illustrated in algorithm 5.4, where I;is the successive iteration number of
dropping the temperature without improvement, m, and n, are the total iteration and transition iteration
numbers at each temperature respectively.

Algorithm 5.4: Steps of the HSATS
Step 1: Set the incumbent solution ¢* as the best solution ¢ found in the Lagrangean relaxation approach

and ¢* as the solution of v and z in the solution &*, initialize To, L, «, 7, &, M; and N; by
setting p, and p,,setl;:=0and T :=T,.

Step 2: While ¢, > T, initialize the tabu list TL. If I; equals to L; , set T :=T-» and I :=0. Set the current
solution ¢ := {*, set the local solution " := {*, my:=0and n:= 0, repeat Steps 2.1-2.3.

Step 2.1: While m¢ < M; and n; < N;, randomly choose a shift or swap move subject to depot capacity
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constraints, compute the cost variations 4 of the move and set m;:=m+1. If f({) + A< f({), or

if 4 <0 and the move does not violate the tabu condition, or if & < e™#7 and the move does not
violate the tabu condition, where ¢ is random parameter selected uniformly from (0, 1), renew the

current solution ¢ by performing the chosen move, update the TL and set n, := ng +1. If f({) <
f(),set =¢.
Step 2.2: If f(¢) > f({*), set I, := I, +1, otherwise solve the corresponding transportation problem
composed of u and ¢ to determine the new flows x' and thus to obtain a new solution &’ consist
ofu, x' and ¢ . If F(&)<F(&*), set &*:=¢", *:=¢ and |, :=0, otherwise set I, := I, + 1.
Step2.3: SetT:=T-u.

Note that at each temperature, the HSATS starts from the best solution £* found so far and each

element (k, j) of the TL is set to — 1. The cost variations 4 incurred by performing a move consists of the
variations in the assignment cost and the variations in the depot opening cost. A move is accepted

immediately if it satisfies the aspiration condition, i.e., the sum of its 4 and f({) is less than (). A
move does not satisfy the aspiration condition is accepted only if it does not violates the tabu condition and

A is negative or ¢ < 7 | where ¢ is random parameter selected uniformly from (0, 1). The tabu
condition is based on the transition iteration n.. When a move is performed and a transition occurs, assuming
that a customer k assigned to a depot j is reassigned to other depot in this move, the element (k, j) of the TL
is reset to n, + t, which means assigning the customer k to the depot j will be forbidden in the next t transition

iteration.

5.5. Computational results

In this study, the proposed Lagrangean relaxation approach and the HSATS are coded in C++. The
Numerical experiments are carried out on a personal computer with Intel® Core™ 2 2.33 GHz Quad CPU
Q8200 and 2 G RAM under a Microsoft Windows 7 operating system. No instances of the TECFLP-PDSS
are publicly available since it is a new problem. Thus in section 5.1, we describe the way to generate random
instances. In section 5.2, 50 instances are tested to evaluate the solution quality of the Lagrangean relaxation
approach and the HSATS, and the results are compared with those of CPLEX. In addition, 270 instances
with different problem parameters, such as the ratios of plant capacity to customer demand, the ratios of
depot capacity to customer demand, the numbers of plant size and the numbers of depot size, are tested to

show the solution quality and speed of the proposed Lagrangean relaxation approach and the HSATS.

5.5.1 Test instances

Based on the instance generation of the CFLP (Cornuejols et al., 1991) and the TSCFLP (Klose, 1999),
the instances are generated in the following way. The coordinates of potential plants, potential depots and

customers are randomly selected from a unit square. The unit transportation costs are 10 times the Euclidean
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distance between the locations. Let U[a, b] denote a uniform distribution in interval [a, b]. The demand dy of

customer k € K is generated from U[5, 35]. Assuming that cpi, < cpiq if p < g, we first generate cpjg for
each plant i1 from U[10, 160] and then scale the capacities using the ratio repe = cpy/D_,  di - For

each r<R;|, cpi is set to r-cpys-of |R;|, where o is a parameter randomly selected from U[0.9, 1.1]. As for

the capacity cd;s for each depot jeJ, similarly, we first generate cd iis| from U[10, 160] and then scale the
capacities using the ratio rey = ZjeJCdjlsj|/Zkngk . For each s<|S;], cd; is set to s-cd”Sj'-o/lSjl. To reflect

the plants’ and depots’ economies of scale, the unit producing cost for a smaller size of a plant is assumed to
be larger than that for a bigger size of the same plant and the handling cost for a smaller size of a depot is
assumed to be larger than that for a bigger size of the same depot. For each plant il and depot jeJ, we
first generate the unit producing cost p;; and unit handling cost h;; from U[5, 7] respectively. Then, for any r
>1and s > 1, pi and h;s are obtained by multiplying the producing cost pj,1) and handling cost hjs.1) by a
random parameter selected from U[0.9, 0.95] respectively. The fixed opening costs for each size of a plant or

depot is obtained by multiplying its capacity by a parameter uniformly selected from U[20, 25].

5.5.2 Results

In our implementation of the subgradient optimization procedure, the parameters are set as follows: L 44
= 3000, & 4= 10, Niag = 40 and 7, = 1.5. For the HSATS, parameters Ty, and Ty are set to 15 and 20

respectively, Ty is set to 200, x is setto 0.98, L, issetto 20, p, is set to 100, i.e., M; = 100-|K|, p, is set to
2,i.e, Ny =2-|K|,  issetto 1.1, ¢ is set to 0.01. The CPLEX version 12.5 with default setting is used as
the MIP solver.

Let UB,,, be the BUB found by the Lagrangean relaxation approach, UBy be the BUB found by the
HSATS, UB¢ be the BUB found by CPLEX and LB, be the BLB found by the Lagrangean relaxation

approach. The computational results are shown in Tables 5.1-5.5. For each problem set, five instances are

generated and tested.

To simplify the presentation of computational results, the column headings to be used are explained as
follows:

[1]x]J|x|K| the number of the plants, the depots and the customers respectively

GLag the relative gap between UB|,q and LB 4, i.€., (UBrag — LBiag) / LB4 X100
Gy the relative gap between UBy and LBy, 1.€., (UBy — LBy4g) / LBiag ><100
Gre the deviation of UBy from UBg, i.e., (UBy — UB¢) / UBc <100

Tiag the CPU time used by the Lagrangean relaxation approach

Th the CPU time used by the HSATS

TLagh the CPU time used by the Lagrangean relaxation approach and the HSATS
Te the CPU time of CPLEX
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Avg. the average value of gaps or CPU times for each instance set

Max. the maximum value of gaps or CPU times for each instance set

In Table 5.1, we compare the results of the Lagrangean relaxation approach and the HSATS using

CPLEX in order to evaluate the performances of the Lagrangean relaxation approach and the HSATS. For

the instances tested in Table 5.1, req = 2.0, regq = 2.0, [R;] = 3 and |SJ-| = 3. The experimental results show

that CPLEX can find an optimal solution only for the instances of the set 1, and it meets an “out of memory”
error for the instances of the other sets. In the implementation, no time limit is imposed on CPLEX, it

terminates itself when an optimal solution is found or when the ‘out of memory”’ error occurs.

The average gaps between the Lagrangean upper bounds and lower bounds range from 0.74% to 2.00%,
and the maximum gap is 2.42%. The average gaps between the HSATS upper bounds and the Lagrangean
lower bounds range from 0.51% to 1.75%, and the maximum gap is 2.35%. It is clear that the Lagrangean
relaxation approach provides both well upper bounds and good lower bounds for the TECFLP-PDSS and the
HSATS also performs well. When comparing with CPLEX, the average gaps between the HSATS upper
bounds and those of the CPLEX range from -0.45% to 0.70%. These gaps decrease as the problem size
increases. The HSATS can provide better solutions than CPLEX for the larger problems, e.g., the gaps
between the HSATS upper bound and those of the CPLEX for the instances of set 10 is -0.45 %. In terms of
the computational time, CPLEX takes much more CPU time than the Lagrangean relaxation approach and
the HSATS. The Lagrangean relaxation approach and the HSATS only take several to hundreds of seconds
of CPU time while the CPLEX takes thousands of seconds. Thus the Lagrangean relaxation approach and
the HSATS is much more effective than the CPLEX for solving the TECFLP-PDSS.

Table 5.1: Computational results and comparisons of the HSATS bounds with those of CPLEX

[1]x]3[x]|K]| Glag (%) Gu (%) G (%) TiagH (s) Tc(s)
Glag  Avg. Gy Avg. Gy Avg. Tiagn Avg. Tc Avg.
2.13 2.09 0.42 19.8 9474.0
1.76 1.69 0.74 12.7 41.6
5x10>40 225 200 1.26 1.75 0.58 0.58 12.9 17.0 48.2 1980.8
1.41 1.36 0.21 21.9 58.5
2.42 2.35 0.95 17.7 281.8
1.42 0.87 0.15 39.5 23164.5
2.02 1.86 0.81 36.9 12306.5
10>20>80 1.68 1.74 1.36 1.38 0.82 0.40 40.2 40.7 11357.0 12312.4
1.23 0.86 0.24 33.6 5258.5
2.34 1.92 -0.01 53.7 9475.3
1.62 1.06 0.32 88.1 8263.2
2.06 1.84 1.28 73.0 7120.3
15530120 1.70 1.62 153 1.29 1.01 0.70 70.2 71.9  6589.5 6998.2
1.21 0.79 0.32 63.5 4849.8
1.53 1.22 0.57 64.6 8168.2
1.29 0.85 0.28 128.7 6416.5
1.29 0.84 0.21 118.3 5719.6
20>40x<160 1.38 1.37 1.12 1.00 0.42 0.40 1183 119.8  4496.3 5052.7
1.18 0.82 0.20 129.5 5075.1
1.72 1.40 0.90 104.3 3556.0
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0.98 0.65 -0.04 178.1 4874.0

1.02 0.62 0.13 233.3 5913.4
2550200 1.09 1.17 0.74 0.85 0.22 0.31 204.5 196.0 5188.1 5429.6

1.46 1.32 0.71 191.7 5775.6

1.32 0.92 0.52 1725 5397.1

1.17 0.78 0.43 262.2 9509.8

1.07 0.63 0.27 336.4 7613.8
30>60>240 1.07 0.99 0.50 0.62 0.01 0.16 251.3 278.8 7551.9 7819.4

0.69 0.34 -0.18 245.4 6234.1

0.96 0.84 0.28 298.8 8187.7

0.79 0.56 0.23 444.0 8072.8

0.87 0.43 0.09 435.2 6942.3
35%70>280 1.01 0.88 0.88 0.64 041 0.23 4334 437.4 8406.1 8141.6

0.80 0.60 0.25 418.6 8241.9

0.96 0.74 0.17 455.8 9044.7

0.68 0.45 -0.11 582.5 6454.5

0.91 0.54 -0.24 677.0 5648.2
40>80>320 0.72 0.81 057 0.57 -025 -0.24 569.5 623.7 6405.7 6017.8

0.75 0.59 -0.50 692.5 5810.5

0.98 0.71 -0.13 597.2 5770.2

0.74 0.43 -0.53 964.0 5456.9

0.63 0.40 -0.40 771.3 7598.2
45>90>360  0.84 0.78 0.54 0.52 -0.09 -0.31 903.6 905.3 77239 7000.9

0.80 0.62 -0.26 952.3 7249.0

0.87 0.60 -0.27 935.1 6976.5

0.84 0.56 -0.49 1250.9 5515.3

0.67 0.47 -0.43 1276.0 5886.4
50x<100>=400 0.77 0.74 0.42 051 -045 -045 15379 1314.8 541838 5651.6

0.73 0.62 -0.44 1160.3 5809.1

0.70 0.49 -0.42 1349.1 5628.5
Average 1.21 0.91 0.18

In Table 5.2, we report the performances of the Lagrangean relaxation approach and the HSATS for the

instances with different plant capacities and problem sizes. For all of the instances tested in Table 5.2, regq =

2.0, |[R;| = 3 and [S;| = 3. The average gaps between the Lagrangean upper bounds and lower bounds range

from 0.62% to 1.40% and the maximum gap is 1.68%, the average gaps between the HSATS upper bounds
and the Lagrangean lower bounds range from 0.37% to 1.03% and the maximum gap is 1.30%, which
indicate that the Lagrangean relaxation approach and the HSATS perform well and they are effective for the
instances with different plant capacities. In addition, both the average gaps between the Lagrangean upper
bounds and lower bounds, and the average gaps between the HSATS upper bounds and the Lagrangean
lower bounds increase as reyq increases for the instances of the same size, e.g., for the 50><100>400 instances,
the average gaps between the Lagrangean upper bounds and lower bounds are 0.62%, 0.72%, 0.82% and
0.95% for re,q = 1.5, 2.0, 2.5 and 3.0 respectively, and the average gaps between the HSATS upper bounds
and the Lagrangean lower bounds are 0.37%, 0.51%, 0.54% and 0.63% for re,g = 1.5, 2.0, 2.5 and 3.0
respectively. Moreover, the CPU time used by the Lagrangean relaxation approach and the HSATS increases

as rgpq increases for the instances of the same size, e.g., for the 50><100>400 instances, the CPU time used by
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the Lagrangean relaxation approach and the HSATS is 961.1, 1028.8, 1273.5 and 1587.6 seconds for reyy =
1.5, 2.0, 2.5 and 3.0 respectively. It can be concluded that the Lagrangean relaxation approach and the
HSATS are more effective for smaller r,q than for larger reyg.

Table 5.2: Computational results for the instances with different plant capacities

[1]x]3|x|K] Fepd Gag (%) G (%) Tiag (9) Th(s) Tiagh (S)

G Lag AVg . G H AVg . TLaq AVg . Th AVg . TLaqH AVg .

0.95 0.73 129.5 37.7 167.3

1.29 0.75 109.8 59.0 168.8
25>60>=200 15 114 1.12 070 0.74 136.6 124.8 61.9 57.0 198.5 181.8

1.28 0.93 124.8 73.3 198.0

0.92 0.61 123.3 53.0 176.3

1.08 0.75 123.8 64.5 188.3

0.87 0.58 147.1 62.4 209.5
25>60>=00 20 124 1.13 054 0.78 1276 136.2 435 60.2 1711 196.5

1.59 1.30 146.6 74.8 2215

0.86 0.74 136.0 56.0 191.9

1.52 1.06 152.6 89.3 241.9

1.47 1.17 165.8 49.0 214.8
25>60>200 25 1.17 1.40 0.75 1.03 152.2 1593 425 543 1946 213.6

1.54 1.21 144.6 40.8 185.4

1.30 0.98 181.4 50.1 2315

1.24 0.97 179.5 51.0 230.6

1.05 0.99 231.4 52.3 283.7
25>60>200 3.0 1.19 136 094 091 169.9 186.8 38.7 51.8 208.6 238.6

1.65 0.65 175.4 45.7 221.0

1.68 1.00 177.8 71.5 249.2

1.11 0.71 248.7 98.4 347.0

0.75 0.41 300.3 109.8 410.1
35%70>=280 15 0.70 088 046 0.62 2884 2814 77.6 86.3 366.1 367.8

0.99 0.80 301.2 67.6 368.8

0.85 0.71 268.6 78.3 346.8

1.04 0.50 328.3 109.7 438.0

0.99 0.79 291.3 87.8 379.2
35%70>=280 2.0 0.72 097 056  0.66 315.8 325.2  66.3 87.7 3821 412.9

1.09 0.84 356.5 81.8 438.3

1.02 0.59 334.2 92.7 426.9

0.89 0.66 367.6 74.1 441.7

1.12 0.83 358.7 83.1 441.8
35%70>=280 25 1.13 1.00 0.68 0.68 445.2 387.7 922 78.3 537.3 466.0

0.96 0.70 379.2 76.5 455.7

0.88 0.55 388.0 65.5 453.4

1.60 1.10 492.5 58.4 550.9

0.98 0.65 613.2 105.2 718.4
35%70>280 3.0 1.02 1.17 073 086 494.1 503.5 543 82.0 5485 585.5

0.87 0.70 482.0 78.9 560.9

1.37 111 435.8 113.3 549.1

0.51 0.31 818.2 147.1 965.3

0.75 0.48 832.0 156.2 988.1
50x100»=400 15 065 062 034 037 7612 805.3 163.4 1558 9245 961.1

0.57 0.38 739.4 90.8 830.2
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0.60 0.32 875.6 221.7 1097.3

0.79 0.53 921.8 203.0 1124.8

0.87 0.68 871.5 134.6 1006.1
50x100><400 2.0 0.83 072 052 051 8513 880.2 161.7 148.6 1013.0 1028.8

0.54 0.38 852.8 103.3 956.1

0.54 0.44 903.8 140.3 1044.2

1.12 0.79 1181.9 159.2 1341.0

0.55 0.33 1144.3 136.6 1280.8
50x100>=400 25 0.84 0.82 0.63 054 1038.8 11247 158.7 1489 11975 12735

0.88 0.50 1146.8 153.9 1300.6

0.72 0.44 1111.7 136.0 1247.7

0.73 0.48 1401.7 174.9 1576.6

1.11 0.62 1501.3 144.7 1646.0
50x100>=400 3.0 112 095 076 0.64 1386.1 1441.1 1184 146.5 15045 1587.6

0.89 0.76 1403.8 145.3 1549.1

0.88 0.57 1512.5 149.1 1661.6
Average 1.01 0.69

The performances of the Lagrangean relaxation approach and the HSATS for the instances with
different depot capacities and problem sizes are reported in Table 5.3. For all of the instances tested in Table

5.3, repa= 2.0, |R;| = 3 and |S;| = 3. The average gaps between the Lagrangean upper bounds and lower

bounds range from 0.76% to 1.22% and the maximum gap is 1.47%, the gaps between the HSATS upper
bounds and the Lagrangean lower bounds range from 0.48% to 0.86% on average and the maximum gap is
1.20%. It is clear that the Lagrangean relaxation approach and the HSATS perform well and they are
effective for the instances with different ratio rq. It can be seen from Table 5.3 that the ratio r.yy does not
have a significant influences on the solution quality and computational time, e.g., for the 50x<100>400
instances, the average gaps between the Lagrangean upper bounds and lower bounds are 0.76%, 0.83%,
0.77% and 0.81% for ryye = 1.5, 2.0, 2.5 and 3.0 respectively, the average gaps between the HVNTS upper
bounds and the Lagrangean lower bounds are 0.48%, 0.54%, 0.54% and 0.55% for req = 1.5, 2.0, 2.5 and 3.0
respectively, and the average CPU time is 1157.2, 1033.0, 1044.7 and 882.6 seconds for req = 1.5, 2.0, 2.5
and 3.0 respectively.

Table 5.3: Computational results for the instances with different depot capacities

[1]x] 3] K] Icdd GLaq (%) GH (S) TLaq (S) TH S) TLaqH (S)
Gilag  Avg. Gy Avg. Tiag Avg. Tw Avg. TiLagh Avg.
1.19 0.80 141.1 49.5 190.6
1.14 0.89 137.6 43.2 180.8
25550200 15 111 1.16 0.71 0.85 127.7 137.6 53.7 541 1814 191.7
0.96 0.81 137.3 67.6 204.8
1.42 1.06 144.3 56.7 201.0
1.42 1.20 123.6 39.0 162.6
1.28 0.70 146.4 59.3 205.7
25>50>200 20 147 1.22 0.78 0.81 1205 131.8 33.6 442 1541 176.0
0.73 0.38 126.0 49.0 175.0
1.21 0.97 142.4 40.2 182.5
141 1.19 117.7 34.8 152.4
1.39 0.77 128.7 47.1 175.7
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25>50>200

25>50>200

35x70>280

35x70>280

35x70>280

35x70>280

50>100>400

50>100>400

50>100>400

50100400

Average

2.5

3.0

1.5

2.0

2.5

3.0

15

2.0

2.5

3.0

0.99
1.14
0.88

1.22
0.69
1.30
1.05
1.14

1.10
0.87
0.97
0.70
0.79

0.95
0.89
0.95
1.03
0.87

1.26
0.92
1.02
0.74
1.15

0.83
1.12
0.87
0.88
1.18

0.94
0.88
0.64
0.50
0.85

0.88
0.79
0.68
0.80
1.01

0.57
1.01
0.74
0.72
0.80

0.75
0.91
0.87
0.70
0.79

0.97

1.16

1.08

0.89

0.94

1.02

0.98

0.76

0.83

0.77

0.81

0.92
0.72
0.69

1.09
0.55
0.77
0.40
0.94

0.83
0.54
0.73
0.47
0.44

0.72
0.67
0.76
0.61
0.66

0.74
0.57
0.76
0.50
0.75

0.51
0.70
0.79
0.60
0.75

0.67
0.48
0.45
0.29
0.50

0.54
0.59
0.50
0.53
0.57

0.48
0.80
0.46
0.41
0.56

0.40
0.70
0.68
0.52
0.46

0.67

0.86

0.75

0.60

0.68

0.66

0.67

0.48

0.54

0.54

0.55

148.0
133.2
113.9

151.7
109.6
121.6
114.7
114.8

306.2
355.5
371.8
344.1
334.7

347.6
314.4
337.3
397.9
345.9

348.7
345.9
330.0
293.5
298.0

269.5
298.3
387.4
281.5
414.4

1011.0
913.6
1049.1
924.5
976.9

939.8
918.8
897.9
929.4
853.8

770.1
1033.4
1104.3
952.6
876.5

887.3
776.0
828.6
619.8
775.3

128.3

122.5

342.4

348.6

323.2

330.2

975.0

907.9

947.4

777.4

37.3
46.1
43.9

30.7
39.5
53.3
43.8
42.4

133.9
123.3
75.3

155.1
123.3

110.0
57.7
78.3
97.5
59.3

92.3
61.1
63.6
71.6
77.0

84.7
89.5
53.5
53.1
55.8

143.5
160.0
215.7
163.0
228.6

143.3
93.0
121.8
90.7
176.7

82.2
98.2
94.3
107.8
103.8

126.7
93.0
79.7
127.8
98.6

41.8

41.9

122.2

80.6

73.1

67.3

182.2

125.1

97.3

105.2

185.3
179.3
157.8

182.4
149.0
174.9
158.5
157.2

440.1
478.7
447.1
499.2
458.0

457.6
372.1
415.7
495.4
405.2

441.0
407.0
393.6
365.1
375.0

354.2
387.7
440.9
334.6
470.2

1154.6
1073.6
1264.8
1087.5
1205.5

1083.1
1011.8
1019.7
1020.0
1030.5

852.3
11316
1198.6
1060.5
980.3

1014.0
869.1
908.3
747.6
873.9

170.1

164.4

464.6

429.2

396.3

397.5

1157.2

1033.0

1044.7

882.6
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In Table 5.4, we provide an analysis of the performances of the Lagrangean relaxation approach and the

HSATS for the instances with different numbers of plant size and problem sizes. For all of the instances

tested in Table 5.4, repq = 2.0, regq = 2.0 and IS;| = 3. The Lagrangean relaxation approach and the HSATS

perform well in that the average gaps between the Lagrangean upper bounds and lower bounds range from
0.74% to 1.30% and the maximum gap is 1.54%, the average gaps between the HSATS upper bounds and
the Lagrangean lower bounds range from 0.49% to 0.89% and the maximum gap is 1.19%. The number of
plant size does not have a significant influence on the solution quality, e.g., for the 50><100>400 instances,
the average gaps between the HSATS upper bounds and the Lagrangean lower bounds are 0.55%, 0.49%,
0.49%, 0.52% and 0.49% for |R;| = 2, 3, 4, 5 and 6 respectively. However, the computational time used by

the Lagrangean relaxation approach and the HSATS increases regularly as the number of the plant size
increases, e.g., for the 50<100>400 instances, the average CPU time is 982.9, 1072.1, 1194.9, 1377.0 and
1474.1 seconds for |R;| = 2, 3, 4, 5 and 6 respectively. It is more difficult to solve the instances with more
plant sizes than with less plant sizes for the Lagrangean relaxation approach and the HSATS.

Table 5.4: Computational results for the instances with different numbers of plant size

[1]x]3]x|K] |Ri | GLaq (%) Gh (%) TLaq (S) Ty (S) TLaqH (5)
Glag  Avg. Gy Avg. Tlag Avg. Tw Avg. TLagH Avg.
1.26 0.60 109.0 37.0 146.0
1.35 1.17 112.4 42.4 154.8
25550200 2 1.32 1.30 1.07 0.89 1105 108.2 54.3 447 164.9 152.9
1.54 0.89 1014 49.0 150.4
1.00 0.73 107.6 40.6 148.3
1.44 1.19 129.5 49.6 179.1
0.84 0.59 143.9 50.1 194.0
25550200 3 1.07 1.18 0.66 0.88 137.1 144.1 59.9 514 197.0 195.5
1.13 0.86 154.1 45.4 199.5
1.42 1.09 155.8 52.2 207.9
0.95 0.71 119.6 42.4 162.1
1.16 0.85 164.1 42.1 206.2
25550200 4 1.40 1.17 0.94 0.81 163.8 1574 1124 59.1 276.1 216.5
1.02 0.63 158.7 62.6 221.3
131 0.94 180.8 36.1 216.9
1.04 0.62 166.8 37.9 204.7
1.09 0.84 164.1 59.6 223.7
25>50>200 5 095 096 0.71 0.68 189.4 180.1 48.6 46.6 238.0 226.8
0.81 0.61 190.4 45.9 236.3
0.93 0.61 189.9 41.2 231.2
1.26 1.02 215.8 42.9 258.7
1.20 0.91 206.8 39.0 245.7
25550200 6 0.88 1.20 0.77 0.92 210.7 204.6 417 41.6 252.3 246.3
1.23 0.85 218.3 44.4 262.7
1.42 1.04 171.7 40.3 212.0
0.92 0.61 251.0 110.0 361.0
0.94 0.79 280.1 85.8 365.9
35%70>280 2 0.90 0.93 0.67 0.66 318.9 273.8 589 822 377.8 356.0
1.20 0.80 268.8 45.8 3145
0.70 0.42 250.2 110.8 361.1
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0.78 0.58 367.3 54.5 421.7

0.81 0.57 328.0 84.0 412.0
35%70>280 3 0.89 0.89 056 058 362.1 349.7 110.2 87.1 4722 436.8

1.03 0.49 334.5 114.7 449.2

0.94 0.71 356.6 72.2 428.8

0.67 0.54 389.8 57.3 447.1

0.94 0.51 378.2 84.5 462.7
35%70>280 4 1.13 091 064 059 369.9 382.8 96.0 75.8 465.9 458.6

1.06 0.72 397.7 69.8 467.5

0.73 0.53 378.3 71.6 449.9

0.70 0.57 407.0 55.5 462.5

0.99 0.78 411.1 81.7 492.8
35x%70>280 5 111 088 0.83 0.60 456.1 4378 874 87.9 5435 525.7

0.71 0.40 459.0 115.6 574.5

0.87 0.43 456.0 99.1 555.1

0.69 0.38 486.8 79.6 566.4

0.88 0.74 481.6 75.2 556.8
35x%70>280 6 110 093 090 0.69 4751 4982 917 77.0 566.8 575.2

0.94 0.63 462.9 65.5 528.3

1.04 0.79 584.5 73.2 657.7

0.80 0.54 790.2 171.6 961.8

0.84 0.57 888.9 172.1 1061.0
50%<100>400 2 082 0.78 0.65 055 8993 8321 118.8 150.8 10181 9829

0.65 0.38 744.5 150.1 894.6

0.83 0.62 837.7 141.2 978.9

0.70 0.49 979.9 96.1 1076.0

0.75 0.49 908.1 202.4 1110.4
50%<100>400 3 060 075 039 049 8738 898.7 153.7 1734 10275 1072.0

0.85 0.55 877.9 179.6 1057.5

0.82 0.52 853.7 235.1 1088.8

0.88 0.47 1078.5 95.9 1174.4

0.79 0.53 972.4 169.8 11422
50x100><400 4 0.68 078 047 049 11032 1030.2 156.6 164.7 1259.7 11948

0.76 0.50 993.0 233.2 1226.2

0.82 0.49 1003.7 168.0 1171.7

0.66 0.43 1210.6 188.8 1399.4

0.71 0.61 1171.6 154.9 1326.5
50>100>400 5 0.85 074 062 052 1216.0 1191.0 253.3 186.0 14693 1377.0

0.68 0.42 1195.0 157.3 1352.2

0.80 0.53 1161.9 175.7 1337.6

0.54 0.30 1247.6 155.9 1403.5

0.89 0.59 1305.3 301.6 1606.9
50x100><400 6 0.62 075 042 049 13149 12964 1485 1777 14635 1474.1

0.88 0.52 1256.7 169.5 1426.2

0.83 0.61 1357.2 113.0 1470.2
Average 0.94 0.66

The performances of the Lagrangean relaxation approach and the HSATS for the instances with

different numbers of depot size and problem sizes are reported in Table 5.5. For all of the instances tested in
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Table 5.5, repq = 2.0, regg = 2.0 and |S;| = 3. The Lagrangean relaxation approach and the HSATS provide

good results in that the average gaps between the Lagrangean upper bounds and lower bounds range from
0.72% to 1.23% and the maximum gap is 1.78%, the average gaps between the HSATS upper bounds and
the Lagrangean lower bounds range from 0.49% to 0.94% and the maximum gap is 1.28%. Similar as the
number of the plant size, the number of depot size does not have a significant influences on the solution

guality, e.g., for the 50><100>400 instances, the average gaps between the HVYNTS upper bounds and the
Lagrangean lower bounds are 0.49%, 0.50%, 0.49%, 0.57% and 0.49% for |S;| = 2, 3, 4, 5 and 6

respectively. But the computational time used by the Lagrangean relaxation approach and the HSATS
increases regularly when the number of depot size increases, e.g., for the 50x<100>400 instances, the average

CPU time is 850.6, 996.5, 1295.2, 1337.8 and 1674.9 seconds for |SJ-| =2, 3, 4, 5 and 6 respectively. It is
also more difficult to solve the instances with more depot size than with less depot size for the Lagrangean

relaxation approach and the HSATS.

Table 5.5: Computational results for the instances with different numbers of depot size

[1[x] 3 [x|K] |Sj I GLaq (%) GH (%) TLaq (S) TH (S) TLaqH (S)
Glag Avg. Gy Avg. Tlag Avg. Tw Avg. TLagH Avg.
1.13 0.70 103.4 29.7 133.1
0.85 0.65 109.9 46.1 156.0
25>50>200 2 1.43 1.21 1.09 094 964 103.0 40.2 39.7 136.6 142.8
1.09 1.00 110.7 315 142.2
1.52 1.28 94.7 51.2 145.9
1.17 0.99 143.6 39.1 182.7
1.24 0.86 140.4 57.8 198.2
25>50>200 3 1.10 1.10 062 0.72 1217 1283 741 594 1959 187.7
0.94 0.46 123.7 77.2 200.9
1.03 0.70 112.3 48.6 161.0
0.95 0.76 157.7 38.0 195.7
0.89 0.60 140.5 46.9 187.3
25>50>200 4 1.78 123 119 0.82 1756 1644 814 50.2 257.0 214.6
1.36 0.72 160.1 38.1 198.2
1.15 0.82 188.3 46.8 235.1
1.01 0.82 221.3 49.0 270.3
1.36 0.72 187.9 54.5 242.3
25>50>200 5 141 123 107 0.85 180.3 192.0 1119 90.8 2921 282.8
1.07 0.74 193.0 193.5 386.5
1.29 0.91 177.5 45.4 223.0
1.27 1.02 264.7 45.8 310.5
1.01 0.83 216.5 44.4 260.9
25>50>200 6 1.10 1.07 069 073 3147 253.6 474 46.2 362.1 299.7
0.96 0.46 212.8 36.7 249.5
1.03 0.65 259.2 56.6 315.8
0.72 0.46 228.5 91.6 320.1
0.82 0.51 261.0 53.8 314.8
35%70>280 2 1.05 0.89 083 058 266.5 2486 721 74.1 338.6 322.7
0.89 0.49 229.9 69.0 298.9
0.97 0.59 257.2 83.9 341.0
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35x70>280

35x70>280

35>70>280

35x70>280

50>100>400

50>100>400

50>100>400

50>100>400

50100400

Average

0.76
0.98
1.10
0.88
0.96

0.94
1.03
0.87
0.81
0.77

0.77
0.64
0.65
0.92
1.19

0.96
0.69
0.65
1.04
0.97

0.96
0.79
0.60
0.74
0.69

0.73
0.68
0.91
0.65
0.69

0.79
0.72
0.66
0.70
0.70

0.87
0.71
0.81
0.93
0.67

0.87
0.56
0.68
0.86
0.84

0.93

0.94

0.88

0.83

0.86

0.76

0.73

0.72

0.80

0.76

0.59
0.64
0.64
0.67
0.70

0.57
0.87
0.39
0.70
0.43

0.54
0.50
0.48
0.77
0.83

0.79
0.52
0.42
0.75
0.59

0.54
0.50
0.52
0.39
0.53

0.45
0.57
0.56
0.47
0.44

0.50
0.52
0.42
0.54
0.46

0.67
0.52
0.63
0.58
0.46

0.56
0.36
0.37
0.57
0.66

0.65

0.65

0.59

0.63

0.61

0.49

0.50

0.49

0.57

0.50

395.1
331.9
327.6
351.9
320.8

439.0
418.9
397.8
393.5
456.9

486.0
502.3
507.1
519.3
530.9

641.6
617.1
599.3
626.1
674.0

888.9
630.9
689.1
673.3
681.0

855.0
845.8
844.7
861.7
956.6

1092.5
1133.9
1194.7
1154.0
1139.8

1286.2
1195.9
1218.3
1233.8
1176.2

1590.3
1553.5
1504.8
1578.8
1317.5

345.5

421.2

509.1

631.6

712.6

872.8

1143.0

1222.1

1509.0

92.9
68.1
102.4
115.8
88.8

88.4
58.5
91.3
52.2
69.3

74.7
63.5
75.3
78.0
94.4

60.2
69.5
77.4
83.8
95.8

133.0
145.6
148.8
143.0
1194

119.6
112.8
90.0

160.4
135.8

169.3
136.8
172.7
146.2
136.0

118.3
82.8
95.0
137.5
144.9

141.3
205.6
164.6
1754
142.3

93.6

71.9

77.2

77.3

138.0

123.7

152.2

115.7

165.9

488.0
400.0
430.0
467.7
409.6

527.4
477.4
489.1
445.8
526.2

560.7
565.7
582.4
597.3
625.4

701.8
686.6
676.7
709.8
769.8

1021.9
776.5
837.9
816.3
800.4

974.6
958.6
934.7
1022.1
1092.4

1261.8
1270.7
1367.4
1300.2
1275.8

1404.5
1278.7
1313.3
1371.3
1321.1

1731.6
1759.1
1669.5
1754.2
1459.8

439.0

493.2

586.3

709.0

850.6

996.5

1295.2

1337.8

1674.8
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5.6 Conclusions

In this chapter, we deal with the TECFLP-PDSS where each of both plants and depots has several size
exhibiting different capacities. The production cost for a larger size of a plant is assumed to be smaller than
those of the smaller sizes of the same plant and the unit handling cost for a larger size of a depot is assumed
to be smaller than those of the smaller sizes of the same depot to model the economies of scale. This problem
allow us to deal with both different sizes for plants and depots, and different production costs at different
levels of production at a plant and different handling costs at different levels of handling at a depot. We
present a mixed integer programming model for this problem. This model can then simultaneously determine
the locations and sizes of the plants, the locations and sizes of the depots, the product flows from the plants
to the depots and the assignments of the customers to the depots to satisfy the customers’ demands. The
TECFLP-PDSS is NP-hard in strong sense. A Lagrangean relaxation approach and a HSATS are proposed
for its resolution. First the Lagrangean relaxation approach is used to achieve good lower and upper bounds,
and then the HSATS is designed to improve the best upper bound found in the Lagrangean relaxation
approach. The numerical experiments on 320 randomly generated instances indicate that the proposed
Lagrangean relaxation approach and the HSATS can provide high quality lower bounds and upper bounds to
the TECFLP-PDSS. The average gaps are not greater than 1.75%. In addition, instances with different
parameters, such as the ratios of plant capacity to customer demand, the ratios of depot capacity to customer
demand, the number of the plant size and the number of depot size, are tested to evaluate the robustness of
the Lagrangean relaxation approach and the HSATS. The computational results indicate that the proposed
Lagrangean relaxation approach and HSATS are effective for the instances with different parameters and can
solve the instances that have up to 50 potential plants with 6 possible sizes each, 100 potential depots with 6

possible sizes each and 400 customers in a reasonable time.

This Lagrangean relaxation approach and HSATS perform very well and can provide good lower and
upper bounds for our problem. However, some new ideas on solving the problems could be investigated,
such as discovering optimality properties by exploring the problem structure. In addition, new features could

be added to the problems so that the problems could be more attractive to academia or in practice.
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The classical two-stage facility location problem focus on determining the locations of plants and
depots, and the flows of product from plants to customers via depots with the goal of minimizing the sum of
facility opening costs and logistic costs. In these problems, each facility has only one choice of capacity,
either uncapacitated or capacitated. The opening cost of a facility is a constant and the unit production or
handling cost is the same for all of the plants or depots, thus it can be merged with other linear connection
costs. However, in real world there is often need to determine the locations and sizes of facilities in
designing a two-stage supply chain network. The size of a facility greatly affects not only its fixed opening
cost, but also the unit production or handling cost due to economies of scale. How to make a trade-off
between facility location and size is a significant problem in supply chain network design. To deal with this
situation, after a systemic review of various facility location models and solution methods used to solve these
facility location problems, we studies three types of two-echelon capacitated facility location problem with
facility size selection: a two-echelon capacitated facility location problem with plant size selection
(TECFLP-PSS), a two-echelon capacitated facility location problem with depot size selection (TECFLP-DSS)
and a two-echelon capacitated facility location problem with plant and depot size selection (TECFLP-PDSS)
in this thesis. In Chapter 1, we consider the TECFLP-PSS in which each plant has several sizes exhibiting
different capacities. In Chapter 2, we investigate the TECFLP-DSS in which each depot has several sizes
exhibiting different capacities. In Chapter 3, we concentrate on the TECFLP-PDSS in which each of both
plants and depots has several sizes.

These problems extend the previous studied two-stage facility location problems to simultaneously
optimizing location and size of facility in a two-stage supply chain network system. How to make a trade-off
between the location and size is a key issue in designing supply chain network. This study investigates this
problem in the context of two-stage supply chain network system and could help the firms to make a
scientific decision in designing two-stage supply chain network system. Thus this research has great
significance both in theory and in real-life application. Three mixed integer programming models are
formulated and three Lagrangean relaxation approaches are developed to find good lower and upper bound
for these three problems respectively. A tabu search (TS), a hybrid variable neighborhood tabu search
algorithm (HVNTS) and hybrid simulated annealing tabu search algorithm (HSATS) are designed to further

improve the best upper bounds found in the Lagrangean relaxation approaches.

Firstly, we focus our attention on a two-echelon capacitated facility location problem with plant size
selection (TECFLP-PSS). This problem allow us to deal with both different sizes for plants and different
production costs at different levels of production at a plant. Given a set of potential plants, each of which has
several possible sizes exhibiting different capacities, a set of potential capacitated depots and a set of
customers with demands, the TECFLP-PSS is to optimally determine the locations of the plants as well as
their sizes, the locations of the capacitated depots, the product flows from the plants to the depots and the
customer-depot assignment under single sourcing constraints so that all of the customers’ demands are
satisfied. The objective is to minimize the sum of the fixed opening costs of the plants and depots, the

production costs of product and the shipping costs of product from the plants to the depots and then to the
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customers. The TECFLP-PSS generalizes the TSCFLP to determine the locations and sizes of the plants, the

locations of the depots, the product flows from the plants to the depots and the assignments of the customers
to the depots to satisfy the customers’ demands. As the TSCFLP is NP-hard in strong sense, the TECFLP-
PSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-PSS, we focus on finding good
lower and upper bounds for it, especially for the large-sized instances. For this problem, a mixed integer
programming model is formulated and a Lagrangean relaxation approach is proposed to achieve lower and
upper bounds. To further improved the best upper bound found by the Lagrangean relaxation approach, a
tabu search algorithm (TS) is proposed. A total of 245 instances are randomly generated and tested. The
computational results demonstrate that all of the instances can be solved in a reasonable time with the
average gaps below 1.66%, even for instances that have up to 50 potential plants with 6 possible sizes each,
200 potential depots and 400 customers. Moreover, the performance of the proposed algorithms on the
instances with different characteristics, such as the ratios of plant capacity to customer demand, the ratios of
depot capacity to customer demand and the number of depot size, are analyzed and the results show that the

proposed algorithms are effective for the instances with different parameters.

Secondly, we investigate a two-echelon capacitated facility location problem with depot size selection
(TECFLP-DSS). This problem allow us to deal with both different sizes for depots and different handling
costs at different levels of handling at a depot. Given a set of potential plants, a set of potential depots, each
depot has several possible sizes exhibiting different capacities, and a set of customers with demands. The
TECFLP-DSS is to optimally determine the locations of the capacitated plants, the locations and sizes of the
depots, the product flows from the plants to the depots and the assignments of the customers to the depots to
satisfy the customers’ demands. The objective is to minimize the sum of the fixed opening costs of the plants
and the depots, the handling costs at the depots, the transportation costs from the plants to the customers and
the assignment costs of the customers to the depots. The TECFLP-DSS also generalizes the TSCFLP to
determine the locations of the capacitated plants, the locations and sizes of the depots, the product flows
from the plants to the depots and the assignments of the customers to the depots to satisfy the customers’
demands. The TECFLP-DSS is also NP-hard in strong sense. Due to the NP-hardness of the TECFLP-DSS,
we focus on searching for good lower and upper bounds for it, especially for the large-sized instances. For
this problem, a mixed integer programming model is developed and a Lagrangean relaxation approach is
proposed to achieve good lower and upper bounds. A hybrid variable neighborhood tabu search algorithm
(HVNTS) is designed to further improve the best upper bound found by the Lagrangean relaxation approach.
The numerical experiments on 245 randomly generated instances indicate that the proposed Lagrangean
relaxation approach and the HVNTS can provide high quality lower bounds and upper bounds to the
TECFLP-DSS. The average gaps are not greater than 1.16%, with 1.70% at a maximum. In addition,
instances with different parameters, such as the ratios of plant capacity to customer demand, the ratios of
depot capacity to customer demand and the number of depot size, are tested to evaluate the solution quality
and speed of the Lagrangean relaxation approach and the HVYNTS. The computational results indicate that
the proposed Lagrangean relaxation approach and the HVNTS are effective for the instances with different

parameters and can solve the instances that have up to 50 potential plants, 100 depots with 6 possible sizes
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each and 400 customers in a reasonable time.

Thirdly, we concentrate a two-echelon capacitated facility location problem with plant and depot size
selection (TECFLP-PDSS). This problem allow us to deal with both different sizes for plants and depots, and
different production costs at different levels of production at a plant and different handling costs at different
levels of handling at a depot. Given a set of potential plants, a set of potential depots, each plant and depot
has several possible sizes exhibiting different capacities, and a set of customers with demands, the aim of the
TECFLP-PDSS is to select a set of plants and a set of depots to open, select a size for each opened plant and
depot, determine the product flows from the plants to the depots and assign the customers to the opened
depots to serve the customers at a minimum total cost. This cost includes the fixed opening costs of the
facilities, the producing costs at the plants, the handling costs at the depots, the transportation costs from the
plants to the depots and the assignment costs of the customers. Like the TECFLP-PSS and TECFLP-DSS,
The TECFLP-PDSS also generalizes the TSCFLP to determine the locations and sizes of the plants, the
locations and sizes of the depots, the product flows from the plants to the depots and the assignments of the
customers to the depots to satisfy the customers’ demands. The TECFLP-PDSS is NP-hard in strong sense.
Due to the NP-hardness of the TECFLP-PDSS, we also concentrate on achieving good lower and upper
bounds for it, especially for the large-sized instances. For this problem, a mixed integer programming model
is formulated and a Lagrangean relaxation approach is proposed to achieve efficient lower and upper bounds
for it. A hybrid simulated annealing tabu search algorithm (HSATS) is designed to further improve the best
upper bound found by the Lagrangean relaxation approach. A total of 320 instances are randomly generated
and tested. The computational results demonstrate that all of the instances can be solved in a reasonable time
with the average gaps below 1.75 %, even for instances that have up to 50 potential plants with 6 possible
sizes each, 100 potential depots with 6 possible sizes each, and 400 customers. In addition, the performance
of the proposed algorithms on the instances with different characteristics, such as the ratios of plant capacity
to customer demand, the ratios of depot capacity to customer demand, the number of the plant size and the
number of depot size, are analyzed and the results show that the proposed algorithms are effective for the

instances with different parameters.

There is still much work to be done in future research. In the thesis, we investigate three two-echelon
capacitated facility location problem with plant or depot size selection, or both plant and depot size selection.
Three mixed integer programming models are formulated for these problems respectively. Lagrangean
relaxation approaches are developed for each of the three problems. To further improve the best upper
bounds found in the Lagrangean relaxation approaches, a tabu search, a hybrid variable neighborhood tabu
search algorithm and a hybrid simulated annealing tabu search algorithm are designed respectively. This
algorithms work very well and can provide good lower and upper bounds for our problem. However, some
new ideas on solving the problems could be investigated, such as discovering optimality properties by
exploring the problem structure, adding valid inequalities to accelerate the solution process, designing
improvement strategies for the Lagrangean relaxation approach or the TS, HVNTS and HSATS etc. In
addition, new features could be added to the problems so that the problems could be more attractive to

academia or in practice.
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