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This thesis focuses on the development of an accurate and efficient method for performing Large-Eddy Simulation (LES) of turbulent flows. An LES approach based upon the Variational Multiscale (VMS) method is considered. VMS produces an a priori scale-separation of the governing equations, in a manner which makes no assumptions on the boundary conditions and mesh uniformity. In order to ensure that scale-separation in wavenumber is achieved, we have chosen to make use of the Second Generation Wavelets (SGW), a polynomial basis which exhibits optimal space-frequency localisation properties. Once scale-separation has been achieved, the action of the subgrid model is restricted to the wavenumber band closest to the cutoff. We call this approach wavelet-based VMS-LES (WAV-VMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon pressure-stabilised discontinuous Galerkin FEM (DG-FEM). The method has been assessed by performing highly under-resolved LES upon the 3D Taylor-Green Vortex test case at two different Reynolds numbers.
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Introduction

La turbulence est un phénomène physique de grande importance dans les sciences de l'ingénieur indiqué dans la section 1.1. Il est donc très utile disposer de moyens précis, fiables et efficaces pour prédire les écoulements turbulents. comme des filtres passe-haut. En construisant une méthode VMS-LES trois-échelles avec la base d'ondelettes, une séparation d'échelles bien définie peut être obtenue à la fois en énergie et en nombre d'onde. Afin d'étudier le comportement d'une telle méthode pour la LES, que nous appelons VMS-LES basée sur les ondelettes (WAV-VMS-LES en sigle anglo-saxon), il est impératif de disposer d'un solveur numérique d'ordre élevé dont les erreurs numériques de dispersion et de dissipation sont faibles. Dans ce travail, nous nous concentrons sur la discrétisation des équations de Navier-Stokes incompressible (INS en sigle anglo-saxon). Il existe une certaine diversité dans les méthodes dont certaines sont décrites dans la section 1.4. Pour construire notre solveur numérique, nous avons choisi une variante de la méthode des éléments finis appelée la méthode de Galerkin discontinue (DG-FEM en sigle anglo-saxon) stabilisée par la pression qui présente de nombreux avantages. A partir de ces deux ingrédients (approche WAV-VMS-LES et solveur DG-FEM), des simulations sous résolues du tourbillon de Taylor-Green (TGV en sigle anglo-saxon) 3D sont réalisées dans le but d'explorer l'efficacité de notre technique numérique ainsi établie.

Turbulence

Turbulent flows are a commonly occurring physical phenomenon. They are visible in everyday life in the form of chimney smoke, water running in a river, strong wind blowing etc. Due to their prevalence, they play an increasing important role in engineering and scientific applications [START_REF] Tennekes | A first course in turbulence[END_REF].

In external aero/hydro dynamics turbulent flows are ever present around air and water crafts and in the wakes which they leave behind. This influences the amount of drag experienced by the vehicles in motion and thus dictates the efficiency with which they perform. The turbulent flow around vehicles generates acoustic waves which are perceived by us as noise and influences the comfort of the passengers in civilian applications and the stealthiness of the vehicles in military applications.

In internal aerodynamics turbulent flows play a huge role within jet engines. The turbulent flow around compressor and turbine blades dictates their efficiency in inputting and extracting work from the system respectively. It influences the stall behaviour which can have detrimental to disastrous effects on the entire engine. Furthermore turbulent flows in a engine's combustor influence the fuel-air mixing and thus dictates the efficiency with which the combustion occurs. Poor combustion characteristics in addition to being wasteful of fuel, lead to harmful byproducts that impact human health.

Turbulent flows are also prevalent at very small scales, particularly in the field of human health. The excellent mixing and transport properties of turbulent flows are exploited by chemical and pharmaceutical industries for the mixing of ingredients during the synthesis of compounds and drugs to achieve a uniform composition. The flow of blood within the human heart is turbulent and dictates the design of artificial heart valves and pumps. There are numerous other applications within this realm.

Naturally given their importance engineers and scientists would like to have as accurate a description of turbulence as is possible. Herein lies a fundamental difficulty. At low velocities turbulent flows are governed by the incompressible Navier-Stokes (INS) equations, a simplified version of the compressible Navier-Stokes equations. Due to the non-linear nature of these equations, it is no surprise that we lack an analytic description for them. It would appear to a hopeless pursuit to search for such a description were it not for the fact that statistically they seem to be well behaved. Numerous experiments conducted over decades have confirmed the fact that for numerous flows, when a sufficiently large number of realizations have been performed, the velocities exhibit a unique mean value. Similarly various other statistical quantities such as the skewness and flatness also exhibit a unique value when subjected to appropriate averaging procedures [START_REF] Batchelor | The Theory of Homogeneous Isotropic Turbulence[END_REF].

Perhaps the most remarkable sign of a unifying underlying description of turbulence was highlighted by the discovery of a universal energy cascade and the Kolmogorov spectrum [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers[END_REF], which described the kinetic energy distribution in wavenumber solely in terms of the kinetic energy dissipation rate ( ) independent of the viscosity. This result could be quantified via the energy spectrum called the Kolmogorov -5 3 spectrum:

E(k) = C k ε 2 3 k -5 3 (1.1)
Where k represents the frequency and C k represents the constant of the Kolmogorov spectrum which has been experimentally estimated to be about 1.5.

The Numerical Simulation of Turbulent Flows

A variety of techniques exists for the purpose of simulating turbulent flows. Direct numerical simulation (DNS) allows for the resolution of all the scales of turbulent motion, hence providing a complete description of the turbulent flow field [START_REF] Canuto | Spectal Methods: Fundamentals in Single Domains[END_REF]. To achieve this, DNS relies upon an extremely fine mesh (mesh size on the order of the Kolmogorov scale, η k , thus capturing all the scales of motion at which convection dominates and a great majority of the scales at which viscous effects dominate. With a fine enough grid in conjunction with high-accuracy schemes with low dissipation and dispersion error, a virtually error-free solution can be obtained. While the concept of DNS is sound, it is infeasible for high Reynolds number, Re, constrained by the sheer size of the number of degrees of freedom (d.o.f.). The reason is due to the fact that η k is inversely proportional to Re as given by the relation η k L = ( 1 Re ) 3 4 . As Re increases, the mesh size required to achieve the resolution of all scales decreases, thus enlarging the number of degrees of freedom (d.o.f. = L η k ) needed i.e. d.o.f. = (Re) 9 4 in 3D. This supra-linear scaling in 3D necessitates the usage of greater computational resources and is a constraint upon the usage of DNS.

In order to avoid the high cost of DNS, it is essential to switch to different techniques. Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) are two such techniques which might allow suitable accuracy (depending upon the application) without the prohibitive computational costs. RANS, although sophisticated in its own right, is the cruder of the two techniques. As the name suggests, RANS involves Reynolds averaging of the INS equations [START_REF] Speziale | Turbulence modelling for time-dependent RANS and VLES: A review[END_REF]. This involves an ensemble averaging of flow field variables (u), which is equivalent to a temporal averaging due to ergodocity, to produce time-averaged quantities (ū) and fluctuating quantities (u ). The RANS equations describe the behaviour of the time-averaged quantities (ū) which take the place of the original unknowns, however the decomposition of the variables within the convective term introduces additional stress terms (u u ) which are also unknowns. Owing to the fact that the number of equations has remained unchanged, the number of unknowns exceeds the number of equations giving rise to the famous closure problem. Thus it is necessary to close the system of equations by modelling the fluctuating quantities contained exclusively within the so called Reynolds stress terms in the momentum equations. The RANS methodology has seen widespread success, particularly for industrial applications. However due to the nature of their formulation RANS methods are incapable of handling unsteady flows and even statistically stationary flows containing regions of separation and reattachment.

LES being superior to RANS while inferior to DNS offers a compromise [START_REF] Sagaut | Large eddy simulation for incompressible flows[END_REF]. Unlike RANS, LES traditionally involves spatial filtering (traditionally by convolution with a low-pass spatial filter) of the flow variables (u), splitting them into the resolved scales (u), and the unresolved scales (u ). Spatial filtering when applied to the Navier-Stokes equations produces the LES equations, which govern the behaviour of the resolved scales which are unknowns. However on account of the decomposition of the variables within the non-linear term, a number of subgrid stresses are produced. They describe the interactions of the resolved and unresolved scales amongst themselves and between each other. Since the subgrid stresses are unknowns and the number of equations is unchanged, a closure problem arises. Thus modelling of the subgrid stresses is necessary to close the system of equations and this gives rise to the various variants of LES. The most popular model in use today is the Smagorinsky model [START_REF] Piomelli | Large-eddy simulation: achievements and challenges[END_REF]. The principal difference in filtering (spatial as opposed to temporal) allows LES to be applicable to flows which RANS cannot handle, namely unsteady flows.

Our area of interest is the variational multiscale method (VMS) [START_REF] Berselli | Mathematics of Large Eddy Simulation of Turbulent Flows[END_REF][START_REF] Sagaut | Multiscale and multiresolution approaches in turbulence[END_REF]. Initially introduced as an approach for the derivation of stabilised finite element methods (FEM), VMS rapidly found favour among LES practitioners. In VMS, instead of convolution with a filter, the quantities of interest are subjected to a variational projection upon appropriate function spaces which correspond to different scales. Thus it is possible to carry out a scale separation of the governing equations in a manner which involves no assumptions about the boundary conditions and uniformity of the grid, the two major problems arising in conventional filter based LES. An important factor in VMS is the manner in which the scale separation is carried out. When VMS is implemented within an FEM solver an ad hoc scale separation is carried out. The local polynomial space of each element is partitioned which in turn provides VMS the scale separation required.

The framework described above has led to numerous VMS variants. One variant of VMS, three-scale VMS, which is of interest to us, performs a scale separation of the resolved scales into large-resolved scales and small-resolved scales. We can then use classical turbulent models (e.g. Smagorinsky model [START_REF] Smagorinsky | General circulation experiments with the primitive equations[END_REF]), but selectively confine its effect to the small-resolved scales. The natural interactions between the two sets of resolved scales via the non-linear terms indirectly allows the effects of the model to be felt by the large resolved scales [START_REF] Collis | Monitoring unresolved scales in multiscale turbulence modeling[END_REF]. This overall strategy is widely believed to improve the performance of the model and this will be one of the focal points of the work done within this thesis.

Wavelets, Multi-Resolution Analysis and Wavelet Transforms

The ad hoc scale separation performed by general VMS practitioners has come under criticism in recent years. The reason for this is the fact that there is no evidence to suggest that a scale separation performed with polynomial modes enables a well defined scale separation in terms of wavenumber. This is because general polynomials are poorly localised in wavenumber.

The wavelet basis however, is a family of polynomials which possesses excellent spacefrequency localization properties [START_REF] Mallat | A Wavelet tour of signal processing[END_REF]. Space-frequency localization is governed by the Weyl-Heisenberg uncertainty principle which states that the localization of a function in space and the localization of its transform in frequency, cannot simultaneously be arbitrarily small. In fact a definite lower bound exists which limits the space-frequency localization of a function. This is given by:

σ x σ k ≥ 1 4 (1.2)
Where σ x is the spatial variance and σ k is the frequency variance of a function. The wavelet basis primarily uses two sets of functions -the scaling function(φ) and the wavelets (ψ), which by virtue of their construction, achieve a space-frequency localization of minimal spread. Due to the frequency localization property, the scaling functions behave as low-pass filter, while the wavelets behave as high-pass or band-pass filters.

By modifying the spatial and frequency localizations of φ and ψ we can use them as basis functions for spaces which exhibit different space-frequency localizations. Furthermore we can use a series of nested spaces, exhibiting a variety of space-frequency localizations, to construct a structure called a multi-resolution analysis (MRA). Thus when a signal is projected upon an MRA (and the series of spaces within) it is split into its constituent frequency components while simultaneously remaining well localized in space. This process can be best understood via the Fig. 1.1. A signal with a sharp discontinuity is projected upon an arrangement of space-frequency tiles which make up an MRA. The tiles all exhibit the same area but different spatial and frequency resolutions. The sharp discontinuity affects several tiles (light grey in Fig. 1.1) spanning a range of frequencies but only tiles in the vicinity of the discontinuity are affected. Thus even after the projection upon the MRA and the extraction of frequency data (denoted by the frequency spread of the activated tiles), the signal is kept fairly well localized in physical space (denoted by the space spread of the activated tiles). This makes an MRA an ideal tool for signal analysis (via forward wavelet A variety of wavelet basis have been put forth over the years [START_REF] Mallat | A Wavelet tour of signal processing[END_REF]. The two major categories are -orthogonal and bi-orthogonal bases. Orthogonal bases are excellent for signal processing application but exhibit numerous disadvantages for numerical solvers. Firstly they can only be constructed upon regular grids and unbounded or periodic domains. Secondly they are unsymmetrical in shape. This tends to introduce chirality within numerical simulations [START_REF] De La | On the use of biorthogonal interpolating wavelets for large-eddy simulation of turbulence[END_REF] wherein left running and right running phenomenon are treated differently. Bi-orthogonal bases exhibit no such problem as they are symmetrical. Furthermore a special type of bi-orthogonal basis exists called the second generation wavelet (SGW) [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF][START_REF] Sweldens | The lifting scheme: A construction of second generation wavelets[END_REF][START_REF] Sweldens | Building your own wavelets at home[END_REF] which, in addition to its numerous advantages, can be built upon bounded domains and irregular grids. Their spatial localization makes them ideal for numerical implementation and their frequency localization gives them excellent scale-separation properties in terms of frequency. The excellent properties of wavelets have led to their widespread use in analysing turbulence [START_REF] Farge | Wavelets and Turbulence[END_REF][START_REF] Meneveau | Analysis of turbulence in the orthogonal wavelet representation[END_REF]. Based upon this experience we would also like to use the SGW for LES on turbulent flows.

We would like to explore VMS when the scale separation is performed in wavenumber as opposed to the ad hoc approach, as we believe that this might provide VMS with an improved behaviour. To achieve this we use the SGW to provide a well defined scale-separation of various wavenumbers.

The Discontinuous Galerkin Finite Element Method (DG-FEM)

LES is not a standalone technique. It is intrinsically linked to the underlying solver and it is a well known fact that a low-order method can destroy the fidelity of an otherwise, possibly successful, LES computation [START_REF] Kravchenko | On the effect of numerical errors in large eddy simulations of turbulent flows[END_REF]. This has been recognized as a major drawback of loworder methods, one of the most widely used methods today. This spurred the development of a number of high-order methods with finite volume method (FVM), finite difference method (FDM) and finite element method (FEM) type discretization. All these are mesh based methods each with their own advantages and disadvantages.

FVM are superb for unstructured meshes and complex geometries but they are difficult to extend to high orders particularly at the domain boundaries [START_REF] Anderson | Computational Fluid Mechanics and Heat Tranfer[END_REF]73]. However they exhibit a stencil which is computationally not compact, which makes efficient parallel implementation rather difficult.

FDM are computationally fast and easy to build and use [START_REF] Lele | Compact finite difference schemes with spectral like resolution[END_REF]. They allow for a rigid control on every detail of the discretization scheme, except at boundaries where the choice of the appropriate stencil is non-unique and up to the experience of the developer. While ideal for scientific studies in simple geometries they are incapable of handling complex geometries and irregular meshes. Nevertheless widespread use of finite difference codes has been crucial in the development of new LES techniques.

Finally we come to FEM or Galerkin methods [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. These are the most recent set of methods to be applied to fluid mechanics primarily because they lacked a trustworthy means of dealing with advection/ convection dominated problems. These difficulties have been overcome with the development in recent years of two major technological advancements -streamwiseupwind/Petrov-Galerkin (SUPG) [START_REF] Brooks | Streamwise upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on Incompressible Navier-Stokes equations[END_REF] and discontinuous Galerkin (DG) [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF] methods.

The FEM variant which is of interest to us is DG-FEM [START_REF] Cockburn | The development of discontinuous Galerkin methods[END_REF][START_REF] Cockburn | Discontinuous Galerkin Methods: Theory, Computation and Applications[END_REF]. DG-FEM is capable of providing a high-order of accuracy on unstructured grids for complex geometries. There is no ambiguity in the discretization even at boundaries and as such its formal order of accuracy remains unchanged throughout the domain. This allows the numerical dissipation and dispersion errors to be kept to a minimum, an important fact for long-time flow simulations. DG-FEM also possess a compact stencil which is extremely important for parallel computations when inter-process communications are sought to be kept to a minimum, making it well adapted to modern HPC architectures. DG-FEM is also extremely well suited to hp-adaptivity as it is capable of remaining conservative even on non-conforming meshes [START_REF] Bernardo | Discontinuous Galerkin methods[END_REF]. DG-FEM is today gaining popularity among fluid mechanics practitioners. Based upon current trends it appears likely that DG-FEM, in conjunction with LES techniques will play a dominant role in future high-performance, high-order calculations of high-Re turbulent flows in complex geometries.

Objective

Our primary objective is to develop an approach that will provide accurate numerical solutions to the INS equations at high-Reynolds numbers when performing highly under-resolved LES simulations.

Based upon the insights of the previous sections, we would like to investigate the three-scale VMS method using the Smagorinsky model, wherein the scale separation has been performed in wavenumber. A scale separation in wavenumber possesses a distinct physical interpretation and is an improvement over the usage of ad hoc scale separation methods which are difficult to characterise. Such a scale-separation operation can be performed by the usage of SGW basis. The SGW basis produces a scale separation into large-resolved and small-resolved scales, which occupy the low and high wavenumbers respectively. Subsequently the Smagorinsky model is applied to only the small-resolved scales. We call this approach wavelet-based VMS-LES (WAV-VMS-LES). This usage of wavelets in the context of VMS-LES is new and has not been tried before. The WAV-VMS-LES technique will be built around a high-order DG-FEM solver for the INS equations.

We choose to operate upon the INS equations since the incompressible flow regime is of significant engineering importance, as seen previously within Sec. 1.1. Thus a variety of test cases are available which we can use to validate our approach [START_REF] Berselli | Mathematics of Large Eddy Simulation of Turbulent Flows[END_REF][START_REF] Sagaut | Large eddy simulation for incompressible flows[END_REF]. Compressible solvers have often been used to solve incompressible flows to produce what is called a quasiincompressible approach [START_REF] Bassi | On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows[END_REF][START_REF] Beck | On the influence of polynomial de-aliasing on subgrid scale models[END_REF][START_REF] Carton De Wiart | Assesment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number[END_REF][START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF][START_REF] Collis | Discontinuous Galerkin methods for turbulence simulation[END_REF]. However they exhibit distinct compressibility effects which enter within the quantities of interest and hamper our ability to evaluate an LES method. Purpose designed incompressible schemes however are free from these effects and as will be seen in chapter 7 allow for a better analysis of an LES method. It is with this in mind that we set out to design and build a new incompressible solver making use of numerous advances in incompressible algorithms. We focus upon the usage of DG-FEM as our discretization strategy due to their favourable properties as outlined in Sec. 1.4. The usage of high-order incompressible DG-FEM schemes for LES simulations is quite rare ([72, 112, 151] appear to be the only studies using a comparable DG-FEM scheme) as the quasi-incompressible approach is far more popular.

Thus our overall formulation makes use of the excellent spatial localisation properties of the SGW basis, in order to construct them upon each element of the DG-FEM discretization. This ensures that the computational compactness and parallel efficiency of the formulation while simultaneously allowing for it to be extended to arbitrary domains. We believe that, using the formulation presented above, we can suitably evaluate the WAV-VMS-LES approach and by comparison against the ad hoc scale-separation we can gain valuable insight for the construction of future VMS methods.

Work Done

The work done has been split into three parts.

1. The first part involves a detailed literature survey of several topics:

• LES, VMS and VMS-LES: A detailed survey has been performed upon the various LES methods available, ranging from the classical LES to the more recent VMS-LES methods. We favour the use of three-scale VMS in conjunction with the classical Smagorinsky model for our LES method. • Wavelet theory: A detailed review on the various types of wavelet basis available has been carried out. They were surveyed for their suitability to serve as basis functions for the purpose of discretization, their scale-separation properties and their manner of construction. Finally we settle upon the choice of the second generation wavelets (SGW) to serve solely as a means of scale separation, based upon the fact that they can be cheaply built upon bounded domains. • DG-FEM: A detailed survey has been performed upon the various solver methods available for INS solving with a particular focus upon the construction of discretizations which satisfy the inf-sup condition. We finally settle upon using equal-order pressure-jump stabilized DG-FEM, as our discretization strategy.

2. The second part involves the construction, from scratch, of a 3D parallel, high-order accurate numerical solver based on DG-FEM for the INS equations. The solver uses a Q k -Q k velocity-pressure (equal-order) approximation spaces and uses pressure-jump stabilization for satisfaction of the inf-sup condition [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF]. This approach is commonly called the local DG (LDG) approach. Over-integration is employed, when required, for the non-linear terms. A 2 nd -order incremental pressure correction method has been used for velocity-pressure coupling. A 2 nd -order backward differentiation formula (BDF2) and a mixed implicit-explicit approach has been implemented as the temporal scheme (IMEX-BDF2). The entire scheme is validated upon standard 2D and 3D incompressible flow test cases.

3. The third part focuses upon wavelet-based VMS-LES (WAV-VMS-LES) which is the new approach developed for the weak formulation of the INS equations. WAV-VMS-LES is essentially a three-scale VMS approach using the SGW basis for the purpose of scale separation and a classical turbulence model (e.g. Smagorinsky model) confined to the small-resolved scales for closure. Detailed tests of the WAV-VMS-LES (implemented within the framework of the high-order DG-FEM solver) have been carried out upon the 3D Taylor-Green Vortex (3D TGV), at a variety of Reynolds numbers, upon highlyunder-resolved meshes. Similarly tests with the classical Smagorinsky model have also been performed upon the same problem for the purpose of comparison. A detailed postprocessing and analysis of the data has been performed, from which we draw conclusions about the behaviour of this model. It must be noted here that some work has previously been carried out to develop a multiscale LES technique using the SGW [START_REF] De La | A wavelet-based multiresolution approach to large-eddy simulation of turbulence[END_REF][START_REF] De La | On the use of biorthogonal interpolating wavelets for large-eddy simulation of turbulence[END_REF], however the strong form of the INS equations discretized via FDM was used.

Layout of the Remainder of the Thesis

The second chapter of the thesis is a literature survey of LES, VMS and VMS-LES techniques.

A brief glance at classical LES is followed by a more detailed survey of the VMS approach.

First we describe the origins of VMS methods in the framework of stabilized methods, which lays the stage for the VMS-LES approach, whose formulation we look at in some detail.

The third chapter of the thesis focuses upon a literature survey of the wavelet basis. A brief history is presented followed by the construction and properties of continuous, orthogonal, bi-orthogonal and finally SGW. We also describe the extension of these concepts to higher dimensions. A few tests are provided to demonstrate the scale-separation property of the wavelets in 1D.

The fourth chapter presents the formulation of the high-order, pressure-stabilised nodal DG scheme for incompressible flows developed within this work. We also describe the temporal scheme and velocity-pressure coupling scheme. Some tests are presented in 2D to validate the method and its implementation.

The fifth chapter describes the validation of the high-order, pressure-stabilised nodal DG solver on two standard INS test cases: The 2D lid driven cavity (2D LDC) at Re = 1000 and the 3D TGV at Re = 500 and Re = 1600.

The sixth chapter describes the formulation of the WAV-VMS-LES approach. The elementwise wavelet-based scale-separation operation is described and it is shown to produce a global scale-separation. The entire WAV-VMS-LES scheme for the INS equations is put forth. Also described is re-calibration of the Smagorinsky constant when it is used in the context of WAV-VMS-LES method.

The seventh chapter presents the results of tests with the WAV-VMS-LES approach, attempting to correctly capture the dynamics of high-Reynolds number 3D TGV. Two Reynolds numbers are used (Re = 3000 and Re = 10 000). Integrated quantities, like enstrophy, kinetic energy and kinetic energy dissipation obtained from the WAV-VMS-LES approach have been compared against the data from the filtered DNS, for the purpose of evaluation. For a more detailed comparison we extract the total kinetic energy spectra at time intervals of 0.2 and compare them with the spectra obtained from the filtered DNS.

Finally we terminate this thesis in chapter eight with some conclusions and perspectives. We draw some conclusions based upon our experience with the DG-FEM solver and the WAV-VMS-LES approach. We also outline the potential future course of this research.

Chapter 2 A Literature Survey of LES, VMS and VMS-LES Techniques

Ce chapitre décrit plusieurs méthodes de LES. Nous avons divisé ces méthodes en deux grandes catégories: LES classique (ou LES mono-echelle) et la LES multi-echelles.

L'approche LES classique est d'abord décrite dans la section 2.3. Celle-ci utilise un filtre spatial pour effectuer la séparation d'échelles en deux gammes: les échelles résolues et les échelles non-résolues. Les échelles résolues sont de dimension finie, tandis que les échelles non-résolues sont de dimension infinie. Les effets des échelles non-résolues sur les échelles résolues sont modélisés par un modèle de turbulence. Le modèle de turbulence le plus utilisé s'appuie sur le concept viscosité turbulente qui suppose que les effets des échelles non-résolues sont purement dissipatifs. L'un des modèles les plus populaires de ce type est celui de Smagorinsky. Il est décrit en section 2.3.1 et 2.3.2. Le comportement sur-dissipatif du modèle de Smagorinsky provient de son application de dissipation à toutes les échelles résolues. Plusieurs développements sont présentés pour surmonter ce problème, en se concentrant principalement sur l'évolution dynamique de la constante C s de Smagorinsky. Une approche alternative, qui consiste à limiter les effets de la dissipation de Smagorinsky aux plus grands nombres d'onde, s'est développée favorablement ces dernières années. Cette approche, basée sur la méthode variationnelle multi-echelles (VMS), est introduite dans la section 2.4. La VMS revient à une projection variationnelle des équations de Navier-Stokes incompressibles sur des fonctions de base de tailles différentes pour réaliser la séparation d'échelle. Une telle projection diffère significativement d'un filtrage spatial de LES classique en évitant les problèmes imposés par les conditions limites et les irrégularités du maillage.

Deux variantes principales de la VMS sont décrites: la VMS basée sur le résiduel (RB-VMS en sigle anglo-saxon) et la VMS trois-échelles. Leur application à l'équation d'advection-diffusion est décrite dans les sections 2.4.1 et 2.4.1 pour la RB-VMS et dans les sections 2.4.2 et 2.4.2 pour la VMS trois-échelles. La simplicité de l'équation considérée tend à amplifier les différences entre les deux approches. La RB-VMS produit une séparation entre gammes d'échelles résolues et non-résolues. Une expression algébrique est fournie pour les échelles non-résolues qui se base sur le résidu des échelles résolues. La VMS trois-échelles produit une séparation en trois gammes d'échelles: les grandes échelles, les petites échelles et les échelles sous-maille. En vertu de l'étendue de la gamme spectrale qui sépare les grandes échelles des petites échelles, l'effet des dernières sur les premières est négligé. Cette simplification revient à supposer que les échelles non-résolues affectent uniquement les petites échelles. L'application de la VMS aux équations de INS est ensuite examinée dans la section 2.5. L'approche RB-VMS est décrite dans les sections 2.5.1 et 2.5.1 tandis l'approche VMS troiséchelles est décrite des sections 2.5.2 à 2.5.3. Pour la méthode VMS trois-échelles, il est supposé que l'effet des échelles non-résolues sur les petites échelles est purement dissipatif. Cela permet l'utilisation d'un modèle à viscosité turbulente tel que celui de Smagorinsky. Cependant, contrairement à l'approche LES classique, l'effet dissipatif du modèle de Smagorinsky est confiné aux petites échelles.

Introduction

What LES seeks to do, is acquire an accurate picture of the the resolved field while completely sacrificing any explicit information about the unresolved field. In doing so, tremendous savings can be made in the number of degrees of freedom required to perform the simulation. However the absence of the unresolved field results in the famous closure problem, wherein there are a greater number of unknowns than equations.

In order to overcome this problem, a suitable model must be constructed which can appropriately represent the unresolved field. This model is typically what we call a subgrid-scale (SGS) model. The SGS model, by representing the effect of the unresolved field, enables the discrete system of equations representing the resolved field to be solved successfully. We very briefly review the classical or filter -based approach to LES. We first describe the process of filtering the LES equations. Subsequently we will describe the Smagorinsky model, a functional modelling approach which can be used to address the closure problem. A comprehensive reference for classical LES is [START_REF] Sagaut | Large eddy simulation for incompressible flows[END_REF]. A rather well informed review may be found in [START_REF] Piomelli | Large-eddy simulation: achievements and challenges[END_REF]. From the perspective of the mathematical behaviour of LES models [START_REF] Berselli | Mathematics of Large Eddy Simulation of Turbulent Flows[END_REF][START_REF] Guermond | Some mathematical issues concerning largeeddy simulation for turbulent flows[END_REF] are excellent references.

Next we describe the variational multiscale (VMS) method. We first talk about the usage of VMS techniques purely from the point of view of stabilised FEM methods for scalar, linear singularly-perturbed PDE's. This is not only chronologically consistent but also serves to provide a simple description of the VMS method. We describe the two dominant VMS philosophies: residual-based VMS (RB-VMS) and three-scale VMS. Next we describe the application of VMS to the INS equations. The extension from the scalar case to incompressible flows is straightforward except for complications introduced by the non-linear term. Finally we describe a form of VMS obtained by combining an SGS model, like the Smagorinsky model used in classical LES, with the three-scale VMS approach. This form of the VMS is of particular interest to us for use in unsteady flow predictions.

The Incompressible Navier-Stokes Equations

The governing equations of incompressible flows are the Incompressible Navier-Stokes (INS) equations. They consist of a set of momentum equations and a single divergence-free condition on the velocity field. They can be written in strong form as:

∂ t u -ν u + ∇ • (u ⊗ u) + ∇p = f in Ω, ∇ • u = 0 in Ω, u = g on ∂Ω g , (-pI + ν∇u) • n = h on ∂Ω h (2.1)
for all times t ∈ [0, T ], where (u, p) is the velocity vector and pressure respectively, f is the forcing term and ν is the kinematic viscosity. Ω is the domain in R d (d = 2 or 3), ∂Ω are the physical boundaries of the domain (∂Ω g is a Dirichlet boundary and ∂Ω h is a Neumann boundary). I represents a d×d identity matrix and n represents a unit normal to the boundary.

Weak or Galerkin formulation

In order to represent the problem in the weak form, we define the following spaces for the velocity and pressure denoted by {V, Q} respectively.

V = {u ∈ [H 1 (Ω)] d | u| ∂Ωg = g} Q = {p ∈ L 2 (Ω) | Ω p dx = 0} (2.2)
The function space V for the velocity strongly satisfies the Dirichlet boundary condition (essential boundary condition). The function space Q for the pressure possesses a zero mean. We also define a pair of trial functions {u, p} ∈ {V, Q} and a pair of test functions {v, q} ∈ {V, Q}.

For future simplicity we define two sets U = {u, p} and W = {v, q} which are collections of the trial and test functions respectively. In order to obtain the weak form, we take the L 2 -inner product between the INS equations and the test functions followed by integration by parts. The L 2 -inner product is defined as 

∂ t Ω v • u dx + ν Ω ∇v : ∇u dx - Ω ∇v : (u ⊗ u) dx - Ω ∇ • v p dx + Ω q ∇ • u dx = Ω v • f dx + ∂Ω h v • (ν∇u) • n ds - ∂Ωg v • (u ⊗ u) • n ds - ∂Ω h v • n p ds (2.
3)

The r.h.s of Eqn. 2.3 may be rewritten, considering the numerical value of the boundary conditions (Neumman boundary), as:

Ω v • f dx + ∂Ω h v • h ds - ∂Ωg v • (u ⊗ u) • n ds (2.4)
For future ease of exposition we denote the l.h.s. of Eqn. 2.3 as B(W, U) to obtain:

B(W, U) = (v, f) Ω + (v, h) ∂Ω h -(v, (u ⊗ u) • n) ∂Ωg (2.5)

Classical or Filter-Based LES

Spatial filtering of the INS equations is necessary to obtain the LES equations [START_REF] Ghosal | The basic equations for the large eddy simulation of turbulent flows in complex geomerty[END_REF]. A spatial filtering operation, defined as a convolution of the flow variables U = {u, p} with a filter kernel φ, is used to split the flow field into resolved U = {u, p} and unresolved U = {u , p } scales.

U = U + U (2.6)
Thus starting with the unfiltered INS equations, given in Eqn. 2.1, we perform a term by term filtering. First we consider the filtering of the incompressibility constraint:

∇ • u = 0 (2.7)
We assume commutation between the spatial differentiation and filtering to obtain:

∇ • u = 0 (2.8)
Next we focus upon the filtering of the momentum equations:

∂ t u -ν u + ∇ • (u ⊗ u) + ∇p = f (2.9)
The filtering operator commutes with the temporal derivative while we assume that it commutes with the spatial one as mentioned above, to obtain:

∂u ∂t -ν u + ∇ • (u ⊗ u) + ∇p = f (2.10)
Now the convective term may be split into its resolved and unresolved components (u = u+u ). By moving any term containing unresolved components to the right hand side we get:

∂u ∂t -ν u + ∇ • (u ⊗ u) + ∇p = f -∇ • (u ⊗ u ) -∇ • (u ⊗ u) -∇ • (u ⊗ u ) (2.11) 
We define the term (u ⊗ u ) + (u ⊗ u) as the cross stress term and denote it as C, while the term (u ⊗ u ) is called the Reynolds stress term and is denoted as R. We focus our attention on the convective term once again. Its current form involves a filtering operation applied to the product of the filtered velocities. Ideally we would like to apply filtering to the velocities themselves and not to their products. To do this we perform the expansion:

∇ • (u ⊗ u) = ∇ • (u ⊗ u) + ∇ • (u ⊗ u) -∇ • (u ⊗ u) (2.12)
By introducing the expansion in Eqn. 2.12 into Eqn. 2.11 and rearranging we obtain:

∂u ∂t -ν u + ∇ • (u ⊗ u) + ∇p = f -∇ • (u ⊗ u -u ⊗ u) -∇ • (C + R) (2.13)
This new stress term on the r.h.s (u ⊗ uu ⊗ u), consists entirely of resolved scales yet the overall effect cannot be represented within the resolved scales due to its non-linear nature. We denote the term (u ⊗ uu ⊗ u) as the Leonard stress term and denote it by L. Thus we obtain the following as the filtered momentum equations:

∂u ∂t -ν u + ∇ • (u ⊗ u) + ∇p = f -∇ • (L + C + R) (2.14)
By grouping together all the stress terms on the r.h.s into one, called the subgrid-stress tensor τ sgs , we finally obtain the equations of filter-based LES:

∂u ∂t -ν u + ∇ • (u ⊗ u) + ∇p = f -∇ • τ sgs ∇ • u = 0 (2.15)
The term τ sgs is an unknown and must be represented via a suitable SGS model.

SGS Modelling

SGS modelling may be broadly divided into two categories: functional modelling and structural modelling. We focus here only on functional modelling which seeks to model the effects of the subgrid stresses upon the resolved field. The vast majority of functional models are eddyviscosity type models. This essentially implies the following:

• It is assumed that the dispersive effects of the subgrid stresses are negligible and thus the model need only account for the dissipative effects.

Thus a typical eddy-viscosity model represents the deviatoric part of the subgrid-stress tensor τ d ij as:

τ d ij = -2ν sgs S ij (2.16)
where

τ d ij = τ sgs ij - δ ij 3 τ sgs kk and S ij = 1 2 ∂u i ∂x j + ∂u j ∂x i
is the resolved strain-rate tensor and ν sgs is the subgrid viscosity. The complementary spherical tensor,

δ ij
3 τ sgs kk , is added to the filtered static pressure, to obtain a modified pressure, P = pI + 1 3 τ sgs kk As the above equations show, the subgrid-stress tensor (τ d ij ) is scaled based upon the full-resolved-scale strain-rate tensor field. This relation implicitly assumes that the subgrid-strain-rate tensor and the resolved strain-rate tensor are in alignment. This implicit assumption on the alignment of the principal axis of the two strain-rate tensors may be a source of errors and is not accounted for. A variety of functional modelling techniques may be found in [START_REF] Sagaut | Large eddy simulation for incompressible flows[END_REF], however for brevity we discuss only the Smagorinsky model.

The Smagorinsky Model

Put forth in 1963 in the context of geo-physical fluid dynamics by Smagorinsky [START_REF] Smagorinsky | General circulation experiments with the primitive equations[END_REF], it is one of the simplest and most widespread eddy-viscosity models. To derive the Smagorinsky model, yet another assumption must be made (in addition to that described above in Sec. 2.3.1):

• It is assumed that the small scales are in equilibrium and dissipate entirely and instantaneously all the energy that they receive from the resolved-scales.

By making this assumption the eddy viscosity may be rewritten in terms of an algebraic expression given by:

τ d ij = -2ν sgs S ij ν sgs = (C s ) 2 |S ij | |S ij | = (2S ij S ij ) 1 2 (2.17)
where is the filter width and C s is called the Smagorinsky coefficient. The Smagorinsky coefficient can be calibrated by assuming isotropic turbulence and assuming that a sharp filter is used which provides a cut-off in the middle of the inertial range. The Smagorinsky constant is then worked out to obtain values between 0.15 and 0.2 [START_REF] Pope | Turbulent flows[END_REF].

The Smagorinsky model has numerous drawbacks. Firstly the model is purely dissipative. It is only capable of removing energy from the resolved scales and can never be anti-dissipative i.e. wherein it may locally input energy into the resolved scales. This anti-dissipative behaviour of the flow is called backscatter, and DNS simulations of turbulent flows have shown it to be a small but significant occurrence. Secondly the Smagorinsky model is known to be fairly over-dissipative particularly in the presence of walls and shear layers. Thus in practice the Smagorinsky constant (C s ) is normally set lower that its calibrated value, to a value of about 0.1. In the presence of walls a heuristic correction factor is incorporated, such as the van Driest damping, to correct for over-dissipation [START_REF] Piomelli | Large-eddy simulation: achievements and challenges[END_REF]. Thirdly the Smagorinsky model is incapable of being selective over which scales it applies its dissipation to. It damps all scales and it is perhaps the reason as to why the model is over-dissipative in nature. Given these drawbacks it seems surprising that this model would see such widespread use. However the Smagorinsky model is simple to code, easy to apply in physical space and is reasonable effective. Thus it serves today as a benchmark which other models are validated against. Further details on filter based LES techniques and eddy-viscosity models may be found within [START_REF] Sagaut | Large eddy simulation for incompressible flows[END_REF].

The Variational Multiscale Method (VMS)

VMS from Stabilised Methods

The VMS method was first proposed by Hughes in 1995 [START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF] in the context of studying and understanding the origins of stabilized methods. This work provided an insight into how the subgrid-scale methods could be used as an underlying description for stabilised methods, for the advection-diffusion type of problems. Thus before describing VMS we touch briefly upon a few of the stabilised methods that came before. For simplicity we describe these stabilised methods in the framework of the linear, scalar advection-diffusion equation given as:

∇ • (au) + κ∇ • ∇u = f in Ω u = g on ∂Ω g n • (-au + κ∇u) = h on ∂Ω h (2.18)
where u represents a scalar unknown, a represents the advection field, κ represents the diffusivity, Ω represents the domain interior and ∂Ω represents the domain boundaries. For simplicity we restate the problem in Eqn. 2.18, using the symbol for a general operator, as:

L(u) = f in Ω (2.19)
where:

L(u) = L adv (u) + L dif f (u) L adv = ∇ • (au) L dif f = κ∇ • ∇u (2.20)
The boundary conditions stay the same. We define a function space V = {u ∈ H 1 (Ω) | u| ∂Ωg = g} and we search for a solution u ∈ V . Thus the variational form of the problem can be obtained by testing the governing differential equation with test functions v ∈ V , to obtain:

(v, L(u)) Ω = (v, f ) Ω (2.21)
We integrate by parts to obtain the bilinear form to Eqn. 2.21:

b(v, u) = (v, f ) Ω -(v, h) ∂Ω h (2.22)
where b(•, •) represents the continuous bilinear form.

Continuous Discretization

The original approximation space V is infinite dimensional and as such is impossible to represent on a finite mesh. Thus we need a suitable discretization. A common example is the C 0 FEM discretization which we outline below. We search for a solution within a finite dimensional space,

V h = {v h , u h ∈ L 2 (Ω) | v h | ∂Ωg = 0, u h | ∂Ωg = g}.
As part of the discretization procedure we divide the domain (Ω) into a finite number of elements (T e ) such that:

Ω = N e-1 e=0 T e (2.23) 
where N e denotes the number of elements and T denotes the collection of all elements called the mesh. The inter-element boundaries are denoted by F i while the element boundaries along the domain boundaries are denoted by F b . We redefine the L 2 -inner product to be performed element-wise as 

h ∈ V h which for all v h ∈ V h satisfies b h (v h , u h ) = (v h , f ) T -(v h , h) F b h (2.24)
The discrete bilinear form b h (•, •) can be solved to obtain a satisfactory discrete solution.

The C 0 FEM described above, which is widely used, is noted for being unstable for singularly perturbed problems like the advection-diffusion in the limit of high Peclet numbers ( |a|l κ ) [START_REF] Brooks | Streamwise upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on Incompressible Navier-Stokes equations[END_REF][START_REF] Franca | Stabilized Finite Element Methods[END_REF]. To overcome this limitation a variety of stabilisation techniques were put forth which involve the addition of a stabilising terms into the original equations to obtain:

b h (v h , u h ) + (L stab v h , Γ(Lu h -f )) T = (v h , f ) T -(v h , h) F b h (2.25)
where Γ is a scalar parameter and L stab is a general stabilising operator whose specific form is described a bit later. Essentially what this stabilisation process attempts to do is to use the residual (f -Lu h ) of the discrete equation to stabilise the discrete system where needed.

One of the major successes in stabilised methods was the development of the streamlineupwind/Petrov-Galerkin (SUPG) in 1982 by Hughes et al. [START_REF] Brooks | Streamwise upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on Incompressible Navier-Stokes equations[END_REF]. In SUPG the advective part of the differential operator is present in the stabilising bilinear form (L stab = L adv ). Another famous approach to the stabilisation was the development of Galerkin-least-squares (GLS) by Hughes et al. [START_REF] Hughes | A new finite element method formulation for computational fluid dynamics VIII: The Galerkin/Least-Squares method for advectiondffusion equations[END_REF]. GLS relies upon the usage of the entire differential operator within the stabilising bilinear form (L stab = L). Similar to GLS was the unusual-stabilised-finiteelement-method (USFEM) of Franca et al. [START_REF] Franca | Stabilized finite element methods: I. Application to the advective-diffusive model[END_REF]. USFEM uses the negative adjoint of the entire differential operator within the stabilising bilinear form (L stab = -L * ).

These well known methods for stabilisation however could not have their construction explained via an underlying unified approach. Hughes' quest to find this underlying approach involved a partition of the function space via a scale-separation operation, performed a priori, into resolved and unresolved scales. This produced a similar partitioning of the governing equations into resolved and unresolved-scale equations. The terms containing the unresolved scales within the resolved-scale equations takes the form of a residual, f -Lu h , and can be seen within Eqn. 2.25. This term which contains the residual is the one which provides a stabilising effect. This stabilising effect could be seen as arising, either due to a modification of the test space or due to a modification of the bilinear form. Thus the formulation of the various stabilised methods and the principle behind them could be explained [START_REF] Hughes | Multiscale and stabilized methods[END_REF]. The construction initially proposed by Hughes [START_REF] Brooks | Streamwise upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on Incompressible Navier-Stokes equations[END_REF] is a type of VMS called residual-based VMS (RB-VMS). Since RB-VMS involves the partitioning of the function space into two sets of scales, RB-VMS is also known as two-scale VMS.

RB-VMS has seen significant development over the years. The main focus in the development of RB-VMS has been in the manner to estimate the unresolved-scale terms. Early research was focused upon steady problems [START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF][START_REF] Hughes | The variational multiscale methoda paradigm for computational mechanics[END_REF]. The next stage involved the development of RB-VMS methods for unsteady problems, by using dynamic sub-scales [START_REF] Codina | Time dependent subscales in the stabilized finite element approximation of incompressible flow problems[END_REF]. Following this RB-VMS was applied to a variety of problems such as the steady and unsteady Stokes and Oseen problems [START_REF] Codina | Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[END_REF] all the way up to the INS equations, which we leave for Sec. 2.5.

Not much focus has been given towards the manner in which the scale-separation must be performed. Codina et al. have proposed an orthogonal scale separation (OSS) approach. It provides an L 2 -orthogonal partition of the original function space and is claimed to improve RB-VMS behaviour [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF][START_REF] Codina | Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[END_REF]. Such an approach ensures a separation of energy. The disadvantage of RB-VMS is the need for estimating the unresolved scale field. This is an extremely challenging problem and is one of the principal reasons which led to the development of another variant of VMS called three-scale VMS.

In the three-scale VMS what is done is that the field is decomposed into three sets of scales: large-resolved scales u, the small-resolved scales û and the unresolved scales u . The unresolvedscale equation is dropped entirely. Thus no estimation of the unresolved scales is required. To avoid the ensuing closure problem the effect of the unresolved scales upon the resolved scales is modelled. This was what was originally formulated by Hughes et.al. in the context of LES simulations [START_REF] Hughes | Large eddy simulation of turbulent channel flows by the variational multiscale method[END_REF][START_REF] Hughes | The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[END_REF]. Three-scale VMS allows for the use of models previously developed for classical LES (Sec. 2.3) and thus it has seen greater application to the INS equations (see Sec.

2.5.2).

The next two sections, Sec. 2.4.1 and 2.4.2, elaborate upon these two major VMS variants within the framework of the scalar advection-diffusion equation. This allows us to describe the VMS formulation of the INS equations with relative ease in Sec. 2.5

Two-Scale Decomposition and Residual-Based-VMS (RB-VMS)

We perform a partition of the approximation space V into two sets, one finite dimensional, called the resolved-scale space V and the other an infinite dimensional space called the unresolved-scale space V .

V = V ⊕ V (2.26)
Consider the trial functions u ∈ V , u ∈ V and the test functions v ∈ V , v ∈ V . We substitute these functions into Eqn. 2.22 to obtain:

b(v + v , u + u ) = (v + v , f ) Ω -(v + v , h) ∂Ω h (2.27)
We group together the equations based on the test functions and we obtain a pair of equations:

The resolved-scale equation (Eqn. 2.28) and the unresolved-scale equation (Eqn. 2.29).

b(v, u) + b(v, u ) = (v, f ) Ω -(v, h) ∂Ω h (2.28) b(v , u) + b(v , u ) = (v , f ) Ω -(v , h) ∂Ω h (2.29)
Using the adjoint of the operator within the resolved-scale equation Eqn. 2.28, we may rewrite the pair of equations above as:

b(v, u) + (L * v, u ) Ω = (v, f ) Ω -(v, h) ∂Ω h (2.30) (v , Lu) Ω + (v , Lu ) Ω = (v , f ) Ω (2.31)
To see what is happening we perform the rearrangement of the terms in Eqn. 2.30 and 2.31 to obtain.

b(v, u) = (v, f ) Ω -(L * v, u ) Ω -(v, h) ∂Ω h (2.32) (v , L(u )) Ω = (v , f -L(u)) Ω (2.33)
What is immediately obvious is that the residual of the resolved scales, projected onto the unresolved scales, forces the unresolved-scale equation, as seen in Eqn. 2.32 while the residual of the unresolved scales projected onto the resolved scales drives the resolved-scale equation, as seen in Eqn. 2.33. Yet another interpretation would be that the presence of the unresolvedscale term in the resolved-scale equation serves as a means of regularising the discrete bilinear form.

It is important to emphasise that up to now the equations are exact and no approximations have been carried out. Recalling our initial objective, we are interested in the value of the u and not u . Taken alone the resolved-scale equation faces a "closure problem" wherein there is just one equation and two unknowns (u and u ). Thus knowledge of the terms containing u is essential to correctly solve for u and avoid the closure problem.

To attempt to overcome the closure problem we must try to have a suitable approximate solution to u . This can be achieved by solving the strong form of Eqn. 2.33:

L(u ) = f -L(u) (2.34)
The part of the operator L acting upon u is called the fine-scale operator. Were it possible to invert this fine-scale operator (M represents the inverse) we would obtain:

u = M (L(u) -f ) (2.35)
Now once the evaluation of u has been performed, its value can be introduced into the equation for the resolved scales (Eqn. 2.30) to obtain:

b(v, u) + (L * v, M (L(u) -f )) Ω = (v, f ) Ω -(v, h) ∂Ω h (2.36) 
A suitable discrete form of this problem may be written as:

b h (v, u) + (L * v, M (L(u) -f )) T = (v, f ) T -(v, h) F b h (2.37)
The resolved-scale equation is now "closed". It contains a single equation and just one unknown, the resolved scales u. This equation bears a strong resemblance to the stabilised equation presented in Eqn. 2.25, thus showing the clear relation between the two formulations [START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF]. The potential of this technique is quite remarkable as it provides a purely mathematical approach to the regularisation of ill-posed discrete systems. Essentially in this framework there is no "closure" problem as everything is accounted for. The major problem with RB-VMS is the estimation of the unresolved-scale term, u , which is quite difficult even for linear operators on bounded domains. A number of techniques have been developed over the years to approximate the unresolved scales. These are described in brief in the following section.

Estimating the Unresolved Scales in RB-VMS

The most ambitious approach to solving the closure problem is to eliminate the unresolved scales completely from the resolved-scale equation. If we have access to the Green's function of the operator we can perform this elimination. This approach is called the global Green's function approach [START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF][START_REF] Hughes | Variational multiscale analysis:the fine-scale Green's function, projection, optimization, localization, and stabilized methods[END_REF]. However in almost every case the analytical form of the Green's function is unknown and due to its non-local nature is difficult to estimate. Thus what can be done is to attempt to approximate the Green's function element-wise on the domain. This is done by localising the effect of the u within the element by stipulating that:

u = 0 on F i , F b (2.

38)

This technique is called the local Green's function approach. It provides considerable simplifications over the global technique and is detailed in [START_REF] Brooks | Streamwise upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on Incompressible Navier-Stokes equations[END_REF][START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF].

In yet another approach, we may attempt an element-wise solution for the unresolved scales using hierarchical basis/ bubble functions. This involves approximating u by a finite dimensional space. This approach opens up the possibility to introduce additional terms into the unresolvedscale equation, or treat the unresolved-scale equation with a bilinear form different from that of the resolved-scale equation. Furthermore the accuracy with which we would like to solve for the local u could be varied by element. In regions where the resolved-scale residual is large a greater "depth" of hierarchical basis functions could be employed to solve for u , while in other regions significantly fewer may be employed. This provides important savings in computational costs and concentrates computational power where it is needed [START_REF] Hughes | Multiscale phenomenon: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods[END_REF].

Three-Scale Decomposition and Three-Scale VMS

The difficulties associated with the estimation of the infinite-dimensional unresolved-scales u has motivated the development of the three-scale VMS approach. Here we perform the partition of the infinite-dimensional function spaces V into three sets of spaces: the finitedimensional large-resolved scales V , the finite-dimensional small-resolved scales V and the infinite-dimensional unresolved scales V [START_REF] Collis | Monitoring unresolved scales in multiscale turbulent simulations[END_REF]. Thus we have:

V = V ⊕ V ⊕ V (2.39)
We introduce this partitioning into the Eqn. 2.22 to obtain:

b(v + v + v , u + u + u ) = (v + v + v , f ) Ω -(v + v + v , h) ∂Ω h (2.40)
where v, u ∈ V , v, u ∈ V and v , u ∈ V . Grouping together the terms based upon their test functions we obtain a coupled system of three equations: the large-resolved-scale equation

b(v, u) + b(v, u) + b(v, u ) = (v, f ) Ω -(v, h) ∂Ω h (2.41)
the small-resolved-scale equation:

b( v, u) + b( v, u) + b( v, u ) = ( v, f ) Ω -( v, h) ∂Ω h (2.42)
and the unresolved-scale equation:

b(v , u) + b(v , u) + b(v , u ) = (v , f ) Ω -(v , h) ∂Ω h (2.43)
Up to this point the entire system is exact. In order to numerically represent the above set of equations we must necessarily remove the unresolved scale equation. We utilize the spectral gap hypothesis, which states that due to the separation between the large-resolved scales and the unresolved scales in terms of wavenumbers, the effect of the unresolved scales upon the large-resolved scales is negligible [START_REF] Collis | Monitoring unresolved scales in multiscale turbulence modeling[END_REF]. Thus Eqn. 2.41 is simplified to only include the resolved scales and by simple rearrangement, Eqn. 2.42 is modified to provide the final form of the three-scale VMS equations which are seen in Eqn. 2.44 and 2.45:

b(v, u) + b(v, u) = (v, f ) Ω -(v, h) ∂Ω h (2.44) b( v, u) + b( v, u) = ( v, f ) -b( v, u ) Ω -( v, h) ∂Ω h (2.45)
A suitable discretization of these equations may be then performed to obtain:

b h (v, u) + b h (v, u) = (v, f ) Ω -(v, h) F b h (2.46) b h ( v, u) + b h ( v, u) = ( v, f ) Ω -b h ( v, u ) -( v, h) F b h (2.47)
Modelling the Effect of the Unresolved Scales From Eqn. 2.46, we see that there exists a closure problem. There are three unknowns u, u, u and only two equations. Since u is an unresolved scale and is unknown, b h ( v, u ) can never be known. Instead the effect of b h ( v, u ) upon the resolved scales can be modelled. Thus we define a model and denote its bilinear form as b m h ( v, •). Replacing this within the equation for the small-resolved scales, Eqn. 2.47 we finally obtain:

b h ( v, u) + b h ( v, u) = ( v, f ) Ω -b m h ( v, •) -(v, h) ∂Ω h (2.48)
The model term is the crucial component in three-scale VMS and we note that it only operates upon the small-resolved scales. In the scalar advection-diffusion case the usage of a model term is rather rare. Thus three-scale VMS has seen limited usage in this regard. However the presence of well developed SGS models makes three-scale VMS far more attractive choice for the INS equations in regards to high-Reynolds number turbulent flows, as we shall see in the next section.

VMS for the Incompressible Navier-Stokes Equations

The first application of VMS to LES was carried out by Hughes et al. in 2000 [99]. They proposed the usage of the three-scale VMS in conjunction with the Smagorinsky model. This method was used to perform simulations of the decay of homogeneous isotropic turbulence [START_REF] Hughes | The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[END_REF].

In this study a Fourier spectral code was used. Scale separation in wavenumber space was performed. A constant coefficient Smagorinsky model introduced a dissipative effect only into the high wavenumbers as opposed to all the wavenumbers (classical LES). The results were shown to be extremely promising. A similar study, led by the same authors was done on the channel flow [START_REF] Hughes | Large eddy simulation of turbulent channel flows by the variational multiscale method[END_REF], using Fourier-Legendre type discretizations. Once again a marked improvement in results was seen with the three -scale VMS implementation of constant coefficient Smagorinsky over the classical and dynamic Smagorinsky models.

During the same period attempts were made with the RB-VMS method as well. Codina in 2001 [START_REF] Codina | A stabilized finite element method for generalized stationary incompressible flows[END_REF] presented his RB-VMS method called Algebraic Subgrid-Scale (ASGS) method for the solution of stationary INS equations. This study focused more upon the ability of ASGS to overcome the pressure oscillations when using FEM spaces which do not satisfy the inf-sup condition. Low-Reynolds number simulations were performed upon a rotating Poiseuille flow and the flow within a porous cavity and were shown to be successful. Although the focus was not upon LES, this represented one of the first applications of RB-VMS to the Navier-Stokes problem. Codina followed up this work by an application of this method to transient problems [START_REF] Codina | Stabilized finite element approximation of transient incompressible flows using orthogonal subscales[END_REF]. In addition to the usage of orthogonal sub-scales (OSS), which employs a partition into two mutually orthogonal spaces for the resolved and unresolved scales, this study used the concepts of quasi-static sub-scales and dynamic sub-scales. The focus of this work was once again on the overcoming of the pressure-oscillations when using equal-order pressure-velocity spaces. In an attempt to bring the applicability of VMS in line with numerical techniques for practical geometries Bazilevs et al. [START_REF] Bazilevs | Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows[END_REF] made use of various NURBS-based discretizations using, C 0 linear basis, C 1 quadratic basis and C 2 cubic basis. The unresolved scales were solved by a local approximate operator inversion. The test cases used were forced isotropic turbulence (Re λ = 185, ∞) and channel flow (Re τ = 395). The data obtained was compared against the DNS solutions and exhibited good accuracy across differing mesh sizes. However no comparison was made against traditional LES models. Two important inferences were drawn from this study. First, no upwind stabilisation was employed in the FEM calculation, which means that the RB-VMS provided virtually all of the stabilisation necessary, which is quite remarkable. Second, in the channel flow, no special treatment was needed for the nearwall region as is common in traditional methods. Thus the feasibility of RB-VMS for LES calculations (and wall-bounded flows) was confirmed. The channel flow test case at Re = 180 and 395 has proven popular with many authors [START_REF] Gravemeier | An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow[END_REF][START_REF] Holmen | Sensivity of the scale separation for the variational multiscale large-eddy simulation of channel flow[END_REF][START_REF] John | Variants of projection-based finite element variational multiscale methods for the simulation of turbulent flows[END_REF][START_REF] John | Simulations of the turbulent channel flow at Re τ = 180 with projection-based finite element variational multiscale methods[END_REF][START_REF] Ramakrishnan | Turbulence control simulation using the variational multiscale method[END_REF][START_REF] Sagaut | A finite-volume variational multiscale method coupled with a discrete interpolation filter for large-eddy simulation of isotropic turbulence and fully developed channel flow[END_REF][START_REF] Wasberg | Variational multiscale turbulence modelling in a high order spectral element method[END_REF] in order to demonstrate the performance of VMS over the years.

To better understand the behaviour of VMS-LES, Wang et al. [START_REF] Wang | Spectral analysis of the dissipation of the residual-based variational multiscale method[END_REF] performed an analytical analysis and a posteriori DNS study on the spectral behaviour of the dissipation of RB-VMS applied to the INS equations. They concluded that the stabilising term was primarily dissipative in nature even if it did not resemble an eddy-viscosity operator. They also concluded that while RB-VMS captures the scale-dependence of the cross-stress terms (u ⊗ u), it under-predicted the scale dependence of the Reynolds-stress terms (u ⊗ u ). However they cautioned that their study was only applicable to Fourier-based discretization strategies. In the same year Príncipe et al. [START_REF] Principe | The dissipative structure of variational multiscale methods for incompressible flows[END_REF] performed numerical studies to understand the dissipative structure of the RB-VMS variants using ASGS, OSS, quasi-static and dynamic sub-scales. Their problem of choice was the flow past a surface-mounted obstacle. They concluded that only when a true orthogonal separation of the function space (OSS) is performed, is there a "proper scale separation" (in the sense of kinetic energy), and that this was highly favourable. They also presented evidence that the RB-VMS could model backscatter but only when using the dynamic sub-scale treatment. Holmen et al. [START_REF] Holmen | Sensivity of the scale separation for the variational multiscale large-eddy simulation of channel flow[END_REF] performed numerical studies of the sensitivity of the three-scale VMS with the partition width. Their problem of choice was the channel flow. They concluded that the ratio of large to small scales should be within the range of 0.6 -0.7. Within this range the error tends to be the lowest. These early studies were generally performed with incompressible solvers on test cases with up to one direction of inhomogeneity. Next came the move towards applying VMS to practical configurations on more complex test cases and extending the approach to compressible flows. Numerous calculations were performed on various configurations. The 3D Lid Driven Cavity at Re = 3200, 7500 and 10 000 was simulated using three-scale VMS by Gravemeier et al. [START_REF] Gravemeier | Large eddy simulation of turbulent incompressible flows by a three-level finite element method[END_REF]. A similar study was performed in [START_REF] Gravemeier | An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow[END_REF]. In [START_REF] Gravemeier | Variational multiscale large eddy simulation of turbulent flow in a diffuser[END_REF], Gravemeier applied three-scale VMS with a constant coefficient Smagorinsky model to turbulent flow within a diffuser at Re = 10 000. For quasi-incompressible flows (low Mach number), the circular cylinder test case (Re D = 3900) was studied in Beck et al. [START_REF] Beck | On the influence of polynomial de-aliasing on subgrid scale models[END_REF], who used a modal DG-FEM compressible flow solver with three-scale VMS in conjunction with the Smagorinsky model. They also performed computations upon the 3D TGV (Re = 1600, 3000, 5000). Chapelier et al. [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF] used a three-scale VMS approach within the nodal DG-FEM framework to perform quasi-compressible simulations of the TGV at Re = 3000 Furthermore they tested the usage of a calibration procedure of the Smagorinsky constant based upon the proportion of polynomial modes within small and large-resolved scale partitions. VMS techniques were also extended to the mixed finite-element/ finite-volume framework on unstructured grids using a combination of variational projection (FE) and spatial averaging (FV). Studies we conducted for flows around bluff bodies in [START_REF] Moussaed | Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows[END_REF][START_REF] Ouvrarda | Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids[END_REF].

The number of studies done using various combinations of VMS techniques and discretization strategies is quite vast but the selection given above is quite representative of the modern state of the art of VMS. We now move on to the details about the VMS approach for the INS equations. For clarity of the presentation we assume homogeneous boundary conditions.

RB-VMS for the INS Equations

We perform a direct sum decomposition upon the function space {V, Q} to obtain two sets of function spaces: The resolved-scale space {V , Q} and the unresolved-scale space {V , Q }.

V = V ⊕ V , Q = Q ⊕ Q v = v ⊕ v , q = q ⊕ q u = u ⊕ u , p = p ⊕ p (2.49)
We now apply the above partitioning process into the weak form of the INS equations defined in Eqn. 2.5 to obtain:

B(W + W , U + U ) = (v + v , f) Ω (2.50)
where W = {v, q} and W = {v , q } and U = {u, p} and U = {u , p }. Thus rewriting this system by grouping appropriate test functions we get an equation for the resolved scales:

B(W, U + U ) = (v, f) Ω (2.51)
and one for the unresolved scales:

B(W , U + U ) = (v , f) Ω (2.52)
In order to simplify the above equations we split the weak form B(•, •) into a linear term B L (•, •) and a non-linear term B N L (•, •), where:

B L (W, U) = (v, ∂ t u) Ω + ν(∇v, ∇u) Ω -(∇ • v, p) Ω + (q, ∇ • u) Ω (2.53) B L (W , U) = (v , ∂ t u) Ω + ν(∇v , ∇u) Ω -(∇ • v , p) Ω + (q , ∇ • u) Ω (2.54)
(This definition extend readily to B L (W, U ) and B L (W , U )) and

B N L (W, U) = -(∇v, u ⊗ u) Ω (2.55) B N L (W , U ) = -(∇v , u ⊗ u ) Ω (2.56)
In the definition of the non-linear form above the test and trial functions must both belong to the same space either resolved or unresolved. Using the definition of B L (•, •) we can write eqns 2.51 and 2.52 as:

B L (W, U) + B L (W, U ) -(∇v, u ⊗ u) Ω = (v, f) Ω (2.57) B L (W , U) + B L (W , U ) -(∇v , u ⊗ u) Ω = (v , f) Ω (2.58)
Now we may focus upon the expansion of the non-linear term in eqns 2.57 and 2.58:

-(∇v, u ⊗ u) Ω = B N L (W, U) + C(v, u, u ) + R(v, u , u ) (2.59) -(∇v , u ⊗ u) Ω = B N L (W , U ) + C(v , u, u ) + R(v , u, u) (2.60) 
where the cross-stress terms are:

C(•, u, u ) = -(∇•, u ⊗ u ) Ω -(∇•, u ⊗ u) Ω (2.61) 
and the Reynolds-stress terms are:

R(v, u , u ) = -(∇v, u ⊗ u ) Ω R(v , u, u) = -(∇v , u ⊗ u) Ω (2.62)
The definition of the Reynolds-stress term is identical to that of B N L (•, •), except that the test and trial functions always belong to different spaces. The reason for proposing two different notations for a non-linear term is simply for clarity of the notation. Thus using these notations we may rewrite the two-scale system in eqns. 2.57 and 2.58 as:

B L (W, U) + B L (W, U ) + B N L (W, U) + C(v, u , u) + R(v, u , u ) = (v, f) Ω (2.63) B L (W , U) + B L (W , U ) + B N L (W , U ) + C(v , u , u) + R(v , u, u) = (v , f) Ω (2.64)
These are the two-scale VMS equations of the original INS equations which may then be discretized and solved by suitable means.

Estimating the Unresolved Scales

All the methods outlined within the scalar case in Sec. 2.4.1 may be extended towards determining the unresolved scales for the INS equations. The added complication here is the presence of the non-linear convective term. One of the most common methods to overcome this problem is via a local/ element-wise linearisation of the convective term when estimating the unresolved-scale field. Details of this approach may be found within [START_REF] Hughes | Multiscale and stabilized methods[END_REF]. We choose not to elaborate upon these particular methods for the sake of brevity but suitable information may be found within the references highlighted in 2.5.

Three-Scale VMS for the INS Equations

We now focus upon the three-scale VMS approach. We perform a direct sum decomposition of the function space {V, Q} into three levels: the large-resolved scale space {V , Q}, small-resolved scale space { V , Q} and the unresolved scale space {V , Q }:

V = V ⊕ V ⊕ V , Q = Q ⊕ Q ⊕ Q v = v ⊕ v ⊕ v , q = q ⊕ q ⊕ q u = u ⊕ u ⊕ u , p = p ⊕ p ⊕ p (2.65)
Applying the partitioning process to the bilinear form of the INS system of equations 2.5 we obtain:

B(W + W + W , U + U + U ) = (v + v + v , f) Ω (2.66)
By grouping the appropriate test function spaces we obtain three separate equations:

B(W, U + U + U ) = (v, f) (2.67) 
B( W, U + U + U ) = ( v, f) Ω (2.68) B(W , U + U + U ) = (v , f) Ω (2.69)
where W = {v, q}, W = { v, q}, W = {v , q }, U = {u, p}, U = { u, p} and U = {u , p }. We use the previous definition of the linear B L (•, •) and non-linear B N L (•, •) term to obtain three new sets of equations given below as:

B L (W, U + U + U ) -(∇v, u ⊗ u) = (v, f) Ω (2.70) B L ( W, U + U + U ) -(∇ v, u ⊗ u) = ( v, f) Ω (2.71) B L (W , U + U + U ) -(∇v , u ⊗ u) = (v , f) Ω (2.72)
Now we define the cross-stress terms as:

C(•, u, u) = -(∇•, u ⊗ u + u ⊗ u) Ω C(•, u, u ) = -(∇•, u ⊗ u + u ⊗ u) Ω C(•, u, u ) = -(∇•, u ⊗ u + u ⊗ u) Ω (2.73)
and the Reynolds-stress terms as:

R(•, u, u) = -(∇•, u ⊗ u) Ω R(•, u, u) = -(∇•, u ⊗ u) Ω R(•, u , u ) = -(∇•, u ⊗ u ) Ω (2.74)
Now by expanding the non-linear terms in Eqns. 2.70 to 2.72 we get for the large-resolved-scale equation:

B L (W, U) + B L (W, U) + B N L (W, U) + B N L (W, U) -(∇v, u ⊗ u) Ω -(∇v, u ⊗ u) Ω = (v, f) Ω -C(v, u, u ) -C(v, u, u ) -R(v, u , u ) -B L (W, U ) (2.75)
for the small-resolved-scale equation:

B L ( W, U) + B L ( W, U) + B N L ( W, U) + B N L ( W, U) -(∇ v, u ⊗ u) Ω -(∇ v, u ⊗ u) Ω = ( v, f) Ω -C( v, u, u ) -C( v, u, u ) -R( v, u , u ) -B L ( W, U ) (2.76) 
and for the unresolved-scale equation:

B L (W , U ) + B N L (W , U ) -(∇v , u ⊗ u ) Ω -(∇v , u ⊗ u) Ω -(∇v , u ⊗ u ) Ω -(∇v , u ⊗ u) Ω = (v , f) Ω -R(v , u, u) -R(v , u, u) -C(∇v , u, u) -B L (W , U) -B L (W , U) (2.77)
These are our system of equations for three scale VMS-LES which we wish to solve for in the best manner possible.

Reduction to Two Sets of Equations

In keeping with the spirit of the three-scale VMS outlined earlier within Sec. 2.4.2, we now make a crucial assumption:

• Due to the spectral gap hypothesis presented earlier in Sec. 2.4.2, the effect of the unresolved scales upon the large-resolved scales is negligible. Thus terms containing the unresolved scales may be dropped from the equation of large-resolved scale.

As a consequence of this assumption and the fact that we discard the infinite dimensional unresolved-scale equation we are left with two resolved-scale equations: one for the largeresolved scales

B L (W, U) + B L (W, U) + B N L (W, U) + B N L (W, U) -(∇v, u ⊗ u) Ω -(∇v, u ⊗ u) Ω = (v, f) Ω (2.78)
and one for the small-resolved scales

B L ( W, U) + B L ( W, U) + B N L ( W, U) + B N L ( W, U) -(∇ v, u ⊗ u) Ω -(∇ v, u ⊗ u) Ω = ( v, f) Ω -C( v, u, u ) -C( v, u, u ) -R( v, u , u ) -B L ( W, U ) (2.79)
where the influence of the unresolved scales is present only within the equation for the smallresolved scales Eqn. 2.79.

The Dissipative Effect of the Unresolved Scales

Closure of the small-resolved scales will require that the term containing the unresolved scales be modelled. We make the following assumption:

• The effect of the unresolved-scales upon the small-resolved scales is purely dissipative in nature [START_REF] Collis | Monitoring unresolved scales in multiscale turbulence modeling[END_REF]. As a consequence the unresolved scales present in the equation of the small-resolved scales may be modelled by means of the Smagorinsky model described earlier in Sec. 2.3.2. Thus we obtain:

-C( v, u, u ) -C( v, u, u ) -R( v, u , u ) + B L ( W, U ) = (∇ v, τ d ) Ω (2.80)
where τ d is the deviatoric part of the subgrid stress (Eqn. 2.17). However unlike the classical form of the Smagorinsky model, for which the subgrid viscosity and the resolved strain-rate tensor are computed with the entire resolved-field, the VMS-Smagorinsky offers considerable more flexibility. Thus if we redefine the stress tensor as:

τ d (a, b) = -2ν sgs (a)∇ s (b) (2.81)
where

∇ s (•) = 1 2 ∇(•) + ∇ T (•)
is the symmetric part of the gradient operator ∇(•). Then we have the following choices available for the VMS-Smagorinsky [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF][START_REF] Hughes | The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence[END_REF]:

• All-small approach:

τ d (u + u, u) = -2ν sgs (u + u)∇ s ( u)
(2.82) ν sgs (•) is computed with the entire resolved-scale field while ∇ s (•) is computed with the small-resolved scale field.

• Large-small approach:

τ d (u, u) = -2ν sgs (u)∇ s ( u) (2.83) ν sgs (•)
is computed from the large-resolved scales, while ∇ s (•) is computed from the small-resolved scales.

• Small-small approach:

τ d ( u, u) = -2ν sgs ( u)∇ s ( u)
(2.84) Both ν sgs (•) and ∇ s (•) are computed from the small-resolved scales.

• All-all approach:

τ d (u + u, u + u) = -2ν sgs (u + u)∇ s (u + u) (2.85)
both ν sgs (•) and ∇ s (•) are computed with the entire resolved-scale field. This approach is generally computationally cheaper.

Thus by replacing the unresolved scales by the model term we obtain a final "closed" system of equations from Eqn. 2.78 and Eqn. 2.79:

B L (W, U) + B L (W, U) + B N L (W, U) + B N L (W, U) -(∇v, u ⊗ u) Ω -(∇v, u ⊗ u) Ω = (v, f) Ω (2.86) B L ( W, U) + B L ( W, U) + B N L ( W, U) + B N L ( W, U) -(∇ v, u ⊗ u) Ω -(∇ v, u ⊗ u) Ω = ( v, f) Ω + (∇ v, τ d (•, •)) Ω (2.87)
The system of equations given above may now be solved for by suitable means. The details of how we propose to discretize and solve these equations are elaborated upon in chapters 4 and 6.

Chapter 3 Wavelets

Ce chapitre donne un bref aperçu de la base d'ondelettes et de la façon dont elle peut être utilisée pour une séparation d'échelles. L'utilisation des ondelettes s'est rapidement développée au cours des dernières années et une brève histoire de leur progression est fournie dans la section 3.1. Leur principal avantage réside dans leurs propriétés optimales de localisation en espace et fréquence qui les rendent très utiles pour l'analyse des signaux instationnaires. Quelques propriétés de base d'une base d'ondelettes générales sont fournies dans la section 3.1.1. Il est mis en évidence le fait que les fonctions nécessitent un certain degré de régularité afin d'agir en tant que filtre passe-bas et un certain nombre d'annulations de moments afin d'agir comme filtre passe-haut. En plus de ces caractéristiques, une fonction doit présenter une compacité spatiale pour l'efficacité de calcul.

Plusieurs fonctions présentant un tel comportement ont pu être découvertes ces dernières années. Dans la revue de la littérature proposée, les ondelettes sont divisées en deux catégories générales: les ondelettes de première génération et celles de deuxième génération (SGW en sigle anglo-saxon). Les ondelettes de première génération peuvent être orthogonales ou biorthogonales tandis que celles de seconde génération sont bi-orthogonales. La différence majeure entre les deux est le fait que les SGW ne dépendent plus du formalisme de Fourier pour leur construction en laissant la liberté de traitement de signaux sur des domaines bornés avec un échantillonnage irrégulier. Un formalisme permettant de construire des ondelettes générales est décrit brièvement. Ce formalisme, appelé analyse multi-résolution (MRA en sigle anglo-saxon), est décrit dans la section 3.2. Par ailleurs, lorsque cette analyse est complétée par son dual homologue, conduisant à l'analyse multi-résolution duale (dual MRA en sigle anglo-saxon), un cadre pour la construction de toute ondelette bi-orthogonale générale est fourni comme décrit dans la section 3.2.3.

Il est connu que la structure MRA englobe pratiquement toutes les ondelettes connues identifiées à ce jour. C'est cette structure qui aide à la construction des SGW. Dans cette optique, une nouvelle opération, appelée interpolation par sous-division, doit être introduite comme cela est détaillé dans la section 3.3.1. L'interpolation par sous-division produit la fonction d'échelle, ainsi qu'un type préliminaire d'ondelette appelé l'ondelette paresseuse (Lazy wavelet en anglais), comme décrit dans la section 3.3.1. L'ondelette paresseuse n'est pas une véritable ondelette en raison d'un mauvais comportement dans la partie basse fréquence du spectre. Afin de corriger ce problème, une opération supplémentaire, appelée procédé d'élévation (plus com-munément appelé lifting par extension du terme anglais), doit être effectuée comme expliqué dans la section 3.3.2. L'ondelette qui en résulte peut alors servir de véritable filtre passe-haut, ceci achevant sa construction. Cette élaboration utilisant l'interpolation par sous-division et le lifting est adaptée aux signaux discrets irrégulièrement échantillonnés sur des domaines bornés. Le comportement en fréquence des ondelettes SGW est décrit dans la section 3.4.1. En projetant à plusieurs reprises un signal, sur une séquence imbriquée de la fonction d'échelle et des ondelettes, nous pouvons diviser le signal en ses bandes de fréquences constitutives. Cette étape est l'étape de l'analyse. Une procédure inverse pour reconstituer le signal depuis ses composantes est appelée étape de synthèse. Les étapes d'analyse et de synthèse constituent ensemble la transformée SGW (SGWT en sigle anglo-saxon) comme décrit dans la section 3.4. La section 3.5 donne un aperçu de la base d'ondelettes en plusieurs dimensions, ce qui est important d'un point de vue pratique. Il est possible d'étendre la SGWT au cas multidimensionnel par le processus de tensorisation. Ce processus produit des espaces purs et des espaces croisés, tant pour les ondelettes que pour les fonctions d'échelle. Lorsque la tensorisation est itérée sur plusieurs niveaux de la SGWT, nous produisons un ensemble complexe d'espaces appelés décomposition standard. Ceci est décrit dans la section 3.5.3. Le comportement fréquentiel de la décomposition standard est plutôt complexe et nous reportons sa discussion au chapitre 6.

Introduction

First Generation Wavelets: Continuous and Discrete Transforms

Wavelets experienced a spectacular appearance about thirty years ago. Since then they have seen a rapid spread from pure and applied mathematics to physics and engineering applications. Perhaps the most famous use of wavelets to date is for image compression in the "jpeg" standard. The first notions of wavelets can be traced back all the way back to the 1900's with Alfred Haar who developed an orthogonal wavelet which today bears his name. However the modern history of wavelets had its origins in the late 1970's. Since then the field of wavelets has grown rapidly with wavelets of ever increasing sophistication and complexity. Below we provide a brief look at the history of the wavelets and their development over the course of time.

To understand the need for, and the development of wavelets we have to go back to 1807 when the mathematician Joseph Fourier introduced the idea that any periodic signal could be expressed as the weighted sum of basic trigonometric functions. The result was the famous Fourier series. The next 150 years saw this idea generalised to non-periodic and discrete functions culminating in the development of the fast Fourier transform (FFT) or the Cooley-Tukey algorithm as it is commonly known. Since then the Fourier transform has reigned supreme.

However Fourier transforms exhibit an inherent problem, their basis functions, the complex sinusoids, are perfectly compactly supported in frequency space, but they possess an infinite support in the time domain. To understand the implications of this we need to understand the concept of signal compression. The Fourier series uses complex sinusoids of various frequencies to approximate a signal. Now if a signal can be represented well enough by just a few complex sinusoids, we could discard the remainder and store just those which we need. This property, called data compression, provides a huge saving in the amount of data which we need to store. Now consider a signal whose frequencies change in time i.e. a non-stationary signal. Within a certain time window we would need a few frequencies to well represent the data, while in another time window we would need entirely different frequencies for the data. Thus overall no compression can be achieved. This problem is linked directly to the infinite support of the Fourier basis in time. What would be desirable is to have a basis that is better localized in time. However an arbitrary choice of such a basis will generally have an infinite support in frequency. This is unacceptable since frequency localization is highly desirable.

In light of this crippling problem, the first modification was made to the Fourier transform (FT) to develop the short-time Fourier transform (STFT) or the windowed Fourier transform (WFT). The idea behind the STFT was to segment the signal using time localized windows and then perform the Fourier transform on each segment. This type of transform was first developed by D. Gabor in 1946. Between the 1940's and the 1970's multiple types of STFT were developed. However all these transforms utilized the same window width throughout the whole signal.

Around the late 1970's, J. Morlet a geophysical engineer, proposed the usage of different window widths depending upon the frequency content of the signal. High-frequency components of the signal generally last for a shorter time span thus it made sense to use a narrow window width for them, while low-frequency components last a longer time and so needed the usage of larger window widths. To achieve this in a unified transform, Morlet used a single windowed cosine function. This function was compressed in time to obtain a higher-frequency function (as well as a narrow time window), and stretched in time to obtain a low-frequency function (as well as a broader time window). This is essentially the process of dilation. The logical next step was to translate these functions in time to investigate what happened at different times. Thus the concepts of dilation and translation of a mother function were introduced. These early wavelets were referred to as "wavelets of constant shape". The following years saw collaboration between J. Morlet and A. Grossman a theoretical physicist to develop the forward and inverse transforms and explore several applications of them.

During this period Y. Meyer, a mathematician encountered the work being done by J. Morlet and A. Grossman. He noticed their usage of redundant wavelet families, as it was the belief at the time that good time-frequency localization could only be achieved via redundant basis sets. In a quest to determine whether or not this was true, in 1985 he developed orthogonal wavelet basis functions with excellent time-frequency localization properties. The basis developed was infinitely smooth belonging to C ∞ and compact in frequency while having rapid decay in time. It serves as an unconditional basis for a wide variety of spaces. A short while later P.G. Lemarie and G. Battle developed an orthogonal wavelet basis which sacrificed smoothness (it belonged to C k ) to obtain exponential decay in time.

During this time period S. Mallat put forth what is now known as the multi-resolution analysis (MRA). This was one of the first and important steps towards the application of wavelet transforms to discrete signals. What he proposed was that any function in L 2 (R d ) could be represented as the limit of successively more detailed approximations. The loss in the detail between two successive approximations is encoded within the wavelet space. His algorithm of the MRA was initially put forth in the context of decomposing and restructuring images. However it provided an excellent framework for describing the construction of wavelets. A detailed mathematical analysis by S. Mallat and Y. Meyer went on to show how most of the previously discovered wavelets fit naturally into the framework of the MRA. The use of an MRA now became twofold. Firstly it allowed for the calculation of new types of orthogonal wavelets. Secondly it provided a framework for the construction of a discrete wavelet transform (DWT).

Starting at the finest level, and by the recursive application of discrete filter coefficients to successive levels of the MRA, the signal can be given a suitable space-frequency representation.

It was using the MRA that I. Daubechies was able to construct the first set of compactly supported orthogonal wavelets in 1988 [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. The Daubechies orthogonal wavelets have a finite regularity (C k ) but more importantly from the point of view of practical implementation, possess a finite support in time. This was a significant discovery because orthogonal basis prior to the Daubechies wavelets did not possess a compact support in time and those that did (the Haar wavelet) possessed no regularity whatsoever. Following this discovery A. Cohen, I. Daubechies and J.-C. Feauveau went on to discover in 1992 bi-orthogonal compactly supported wavelet bases [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF]. The usage of bi-orthogonal basis allowed in addition to compact support in time, for the presence of symmetry in the basis as opposed to the unsymmetrical orthogonal Daubechies wavelet. The MRA and the Daubechies wavelets ushered in the era of the discrete wavelet transform (DWT).

The wavelets described up to now are generally constructed on unbounded and periodic domains and make heavy use of Fourier machinery. Furthermore they are applicable solely to equidistant point sets. These wavelets are termed as first generation wavelets to distinguish them from their successors. A brief review of wavelet history may be found in [START_REF] Daubechies | Where do wavelets come from?-A personal point of view[END_REF] and [START_REF] Polikar | The story of wavelets[END_REF].

Second Generation Wavelets: Interpolating Subdivision and Lifting

The disadvantages enumerated above limit the applicability of the first generation wavelets to practical signals. In order to be truly universally applicable, the new generation of wavelets called second generation wavelets (SGW) must possess the following properties:

• Construction in physical space: Typically the construction of wavelets is carried out in Fourier space. However we would like to build SGW basis functions in physical space itself.

• Construction on irregular point sets: The manner of the construction must be flexible enough to accommodate unequally spaced point sets rather than being confined to equidistant point sets. This provides more flexibility for the placement of points.

• Construction on bounded domains: The wavelet transform must allow for the construction of wavelets in the presence of boundaries removing the necessity of periodicity which all wavelets constructed in Fourier space must have.

• Compact support in physical space: The wavelets must possess a compact support in physical space. This is important for the implementation of fast parallel numerical procedures [START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF][START_REF] Prosser | On the use of interpolating wavelets in the direct numerical simulation of combustion[END_REF][START_REF] Prosser | The theoretical development of wavelets in reacting flows[END_REF].

• Fast, in-place transform: A fast transform must exist to and from the wavelet space. The computational complexity must be as low as possible for computational efficiency. Furthermore the transform must utilise the memory locations of the signal itself (in-place calculations) to avoid any additional consumption of resources.

A family of bi-orthogonal SGW, called interpolating wavelets, were developed by W. Sweldens in 1996 [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF]. Sweldens was inspired to use the fundamental function of the interpolating subdivision scheme [START_REF] Deslauriers | Symmetric iterative interpolation process[END_REF] as the basis for his wavelet algorithm. Unlike the first generation wavelets wherein Fourier machinery was used to determine the filter coefficients, SGW are built entirely upon an MRA in physical space. The filter coefficients are neither known nor needed (since they would change in time if irregular sampling were to be used). Instead Sweldens proposed a scheme called the lifting scheme which performs fast in-place manipulation of the signal, and which has an overall effect similar to the application of the wavelet filter to the signal. The end result was a transform of O(N) complexity which was extremely flexible in the kind of data sets it could handle. Details on the SGW may be found in references [START_REF] Sweldens | Building your own wavelets at home[END_REF] and some application of SGW may be found in [START_REF] Goedecker | Wavelets and their application for the solution of partial differential equations in physics[END_REF].

The Wavelet Basis: A Few Basic Properties

Wavelets ψ and scaling functions φ are part of a hierarchical basis function set, well suited for the represention of data signals. This set of basis functions {φ, ψ} is optimal in the sense of space-frequency localization. They are generally well localised in physical space (or time) as well as well localized in frequency. In the orthogonal setting φ and ψ will suffice and are known as the primal functions. However in the bi-orthogonal setting we also need an additional set of the dual basis functions namely the dual wavelets ψ and the dual scaling functions φ. Thus we denote this entire collection of basis functions as the wavelet basis. In general a wavelet basis must satisfy the following properties:

• The wavelets and scaling functions form a Riesz basis of L 2 (R) as well as a host of other function spaces.

Consider any basis set, not necessarily the wavelets, denoted as {ψ(x)}, and any function f (x) ∈ L 2 (R) such that f (x) may be represented by the series expansion

f (x) = j m d j m ψ j m (x)
, where d j m = ( ψ j m , f ). Then {ψ(x)} will form a Riesz basis of the function space if it satisfies the following relation:

A f (x) L p (R) ≤ j m d j m ψ j m (x) p 1/p ≤ B f (x) L p (R) (3.1)
where A, B ≥ 0 are two positive constants. The equality between A and B is achieved when the functions within the set {ψ(x)} are orthogonal.

• The wavelet and scaling function spaces must exhibit space-frequency localization. Spatial localization follows from the fact that the wavelets and scaling functions are either compactly supported (Haar, Daubechies, bi-orthogonal, SGW) or exhibit exponential decay (Gaussian, Mexican-hat etc.) in physical space. Frequency localization follows from two properties: smoothness of the dual scaling function, N (also the number of moment cancellations of the dual wavelet), and the number of moment cancellations of the primal wavelet, N (also the smoothness of the primal scaling function).

First we describe the frequency localization of the scaling functions which behave as low-pass filters. The scaling functions of order N allow for the perfect representation of a polynomial signal of degree up to N -1. Thus:

∞ -∞ x p φ(x)dx = δ p ∀ 0 ≤ p < N (3.2)
Since they act as low-pass filters they must thus possess exponential decay towards the high frequency part of the spectrum. This property follows from the degree of smoothness, N , of the dual scaling function φ. Thus the scaling functions by construction exhibit a one-sided decay in frequency space which is ideal.

We now describe the space-frequency localization of the wavelets. They are designed to serve as band-pass filters (decay in both low and high-frequency regions) or high-pass filters (decay in low-frequency region). Acquiring decay towards the low-frequencies arises from the fact that the primal wavelets (ψ) exhibit a certain number of moment cancellations, N :

∞ -∞ x p ψ(x)dx = 0 ∀ 0 ≤ p < N (3.3)
Furthermore, the number of vanishing moments, N , of the dual wavelets ψ, provides decay towards the high-frequencies:

∞ -∞ x p ψ(x)dx = 0 ∀ 0 ≤ p < N (3.4)
This type of construction of the scaling functions and wavelets ensures that the signal represented by a combination of a scaling function space and a wavelet space, exhibits a minimum of frequency overlap between the two spaces which in turn translates to a minimization in the aliasing errors [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF].

A word on notation: In the various figures on the wavelets and scaling functions we denote them by ψ : N -N or φ : N -N respectively, where N and N have been defined in the section just above.

The Continuous Wavelet Transform (CWT)

The CWT uses a family of functions ψ a b (x) generated from a single function ψ(x) by the operations of translation and dilation:

ψ a b (x) = 1 √ a ψ x -b a ∀ a, b ∈ R × R (3.5)
In the Eqn. 3.5, the parameters {a, b} can vary continuously in {R × R}, to generate all the individual wavelets of the family. In general, to qualify as a wavelet, a function must satisfy the admissibility condition given by:

C ψ = ∞ -∞ | ψ(k)| 2 |k| dk < ∞ (3.6)
Where ψ denotes a Fourier transform of ψ(x), and k denotes the frequency. This criterion governs the frequency localisation property of the wavelet. The idea behind the CWT is to project functions f (x) ∈ L 2 (R) onto these various wavelet families by using an L 2 -inner product between the wavelet and the function.

CW T a b (f ) = ∞ -∞ f (x) 1 √ a ψ x -b a dx ∀ a, b ∈ R × R (3.7)
By performing the L 2 -projection between the function and the wavelet, a single wavelet coefficient is generated. By repeating this process, we can project the signal f (x) upon the entire family of wavelets. This step of encoding the function upon the entire family of wavelets constitutes the forward wavelet transform (FWT) or analysis step. A signal feature of the same "scale" as that of the wavelet (given by a) will produce a large coefficient.

To reconstruct the signal from the wavelet coefficients we perform the inversion of the CWT:

f (x) = 1 C ψ ∞ 0 ∞ -∞ CW T a b (f )ψ x -b a da db a 2 (3.8)
This step is the inverse wavelet transform (IWT) also known as synthesis step.

The Discrete Wavelet Transform (DWT)

From the point of view of practical application the CWT is of limited use. What we need is a discrete version of the transform. To do this we define a b-adic set of points. A b-adic set of points is defined as a collection of individual sets {B i , 0 ≤ i ≤ J -1} representing different levels (J is the finest level while 0 is the coarsest). Consider the coarsest set

B 0 = {m | m ∈ Z}.
All subsequent sets can be defined by

B i = {m/b i | 0 < i ≤ J -1}.
This type of construction ensures the nestedness of the sets i.e.

B 0 ⊂ B 1 ⊂ B 2 .... ⊂ B J-1 .
Furthermore, each set possesses an associated scale parameter which is given by b i [START_REF] Deslauriers | Symmetric iterative interpolation process[END_REF].

The wavelets are constructed on a dyadic set of points (b = 2). Thus at any level j the set of points possesses a sampling rate of a = 2 -j . We can define the position at any location as x j k = k/2 j . We substitute into the definition of the continuous wavelet in Eqn. 3.5, these discrete quantities (a = 2 -j and b = k/2 j ) to obtain:

ψ j k (x) = 2 j 2 ψ(2 j x -k) (3.9)
Thus a set of wavelet families are produced {ψ j k | j, k ∈ Z}. To obtain the wavelet coefficient we use the L 2 -inner product between the wavelet and the signal.

d j k = ∞ -∞ ψ j k (x)f (x)dx (3.10)
This is the analysis step of the discrete transform. In order to reconstruct the signal we simply represent the signal via a series expansion of the wavelet coefficients to obtain:

f (x) = ∞ j=-∞ ∞ k=-∞ d j k ψ j k (x) (3.11)
This is the synthesis step of the discrete transform.

The Multi-resolution Analysis (MRA)

To provide a systematic and mathematically consistent structure for the construction of wavelets and scaling functions in a discrete setting, we need to cast them into the framework of a multiresolution analysis (MRA). To introduce the CWT and DWT described above, we made use of orthogonal wavelets for which the MRA is ideal. However when we develop bi-orthogonal wavelets we will also need a dual MRA. Thus first we describe the MRA and the primal scaling functions φ and primal wavelets ψ. For reasons of brevity, the details of the orthogonal wavelet constructed using the MRA, are left for Appendix A. Next we describe the dual MRA and the dual scaling functions φ and dual wavelets ψ. Details of the general bi-orthogonal wavelet, constructed using the MRA and dual-MRA are also left for Appendix A. Having described these preliminaries it is much easier to describe the SGW, which is a particular case of the bi-orthogonal wavelet, which we have chosen to focus upon in this work.

The MRA denoted by M, is the partitioning of the function space L 2 (R), by a sequence of nested closed subspaces V j , such that M = {V j ⊂ L 2 (R) | j ∈ J ⊂ Z} (where J is the level index set defined within point no. 5 in the list below). This sequence of subspaces, which possess different resolutions in space and frequency must satisfy the following properties.

1. Nestedness of spaces:

V -∞ ⊂ ... ⊂ V -1 ⊂ V 0 ⊂ V 1 ⊂ ... ⊂ V j-1 ⊂ V j ⊂ V j+1 ⊂ ... ⊂ V +∞ j ∈ Z (3.12)
with the resolution increasing (towards a continuum) as j → ∞.

2. Closure of L 2 (R): The completion of the union of all approximation spaces spans the space of L 2 functions.

j V j = L 2 (R) ∀ j ∈ Z (3.13)
3. The subspaces are related via a scaling law proportional to their base. For a dyadic construction the base is 2.

v(x) ∈ V j ⇐⇒ v(2x) ∈ V j+1 ∀ j ∈ Z (3.14)
4. The subspaces are translation invariant proportional to their base.

v(x) ∈ V j ⇐⇒ v(x -2 -j k) ∈ V j ∀ j, k ∈ Z (3.15)
5. For each j ∈ J, V j has a Riesz basis given by scaling functions {φ j k | k ∈ K(j)}. K(j) is the position index set such that K(j) ⊂ K(j + 1). We may consider two cases for the level index set J (a) J = N. In such a case the coarsest level exists and is V 0 . (b) J = Z. This is a bi-infinite setting in which the intersection of all the spaces is a null set.

j V j = {0}, -∞ ≤ j ≤ +∞ (3.16)
These five properties define a general multi-resolution analysis. The spaces V j are termed as scaling function spaces.

Scaling functions:

We denote φ(x) ∈ V 0 as the mother scaling function. The scaling functions at various levels can be written as translates and dilates of the mother scaling function. The properties a scaling function must satisfy are as follows:

1. The scaling functions possess non-zero integral value.

∞ -∞ φ(x)dx = 1 (3.17)
2. If φ ∈ V j and V j ⊂ V j+1 , thus there must exist a sequence h l ∈ l 2 (Z) such that the scaling function in V j can be written as a linear combination of the scaling functions in the space above it. This relation is given by:

φ(x) = √ 2 l h l φ(2x -l) (L 2 normalization) (3.18)
The Eqn. 3.18 is known as the two-scale relation. The sequence h l is called the scaling function filter and the set of these filters is denoted by

H = {h l | l ∈ Z}
Furthermore it is possible to express scaling functions at any level φ j (x) ∀ j ∈ J in terms of the mother scaling function. This relation is given by:

φ j k (x) = 2 j 2 φ(2 j x -k) ∀ j ∈ J, k ∈ K(j) (3.19)
Instead of relating all the scaling functions at various levels to the mother scaling function, we would like to relate them to other scaling functions at different levels. This relation is called the refinement relation (derived in Appendix A, Sec. A.1) and is given by:

φ j k (x) = l h l-2k φ j+1 l (x) (3.20) 

Projection Operator into Scaling Function Space

Having defined the scaling functions we may move to describe the projection operator into the scaling function space. Consider a function f (x) ∈ L 2 (R). Let P j : L 2 (R) → V j be the projection operator. The projection operation allows for a series expansion of the function in terms of the scaling functions:

P j f (x) = k∈K(j) s j k φ j k (x) (3.21)
We define the scaling function coefficient s j k as the L 2 -inner product between f (x) and φ j,k (x):

s j k = (f (x), φ j,k ) (3.22)
Now by taking L 2 -inner products of the function f (x) on both sides of the refinement relation (Eqn. 3.20) it follows that:

s j k = l h l-2k s j+1 l (3.23)
This is the refinement relation for the scaling function coefficients. This relation is rather important because once s j k at any level is known we only need h l-2k to determine the scaling function coefficients at all other levels. In doing so we avoid working with the scaling function entirely. This dependency has allowed for the usage of scaling functions whose true form may be completely unknown.

Wavelets

The wavelet space, denoted by W j , is the complement space of V j i.e it is a space which satisfies the property;

V j+1 = V j ⊕ W j (3.24)
Thus every element in V j+1 may be uniquely expressed in terms of a combination of some elements of V j and some of W j . A set of functions {ψ j m | j ∈ J, m ∈ M(j)}, where M(j) = K(j + 1)/K(j), are the basis functions of the space W j and are called wavelets. The wavelets and the spaces which they span must satisfy the following properties:

1. The space W j = {ψ j m | m ∈ M(j)} is a complementary space of V j in V j+1 i.e V j+1 = V j ⊕ W j 2. The wavelet space is complete: ∞ -∞ W j = L 2 (R) (3.25) Thus L 2 (R) = V J ⊕ ∞ j≥J W j 3. (a) if J = Z. Then the set {ψ j m / ψ j m , j ∈ J, m ∈ M(j)} is a Riesz basis for L 2 (R) (b) if J = N. Then the set {ψ j m / ψ j m , j ∈ J, m ∈ M(j)} {φ 0 k / φ 0 k , k ∈ K(0)} is a Riesz basis for L 2 (R)
As with the scaling function we can define a mother wavelet ψ(x) which may be expressed in terms of the mother scaling function φ(x) as:

ψ(x) = √ 2 l g l φ(2x -l) (3.26)
The coefficients g l are the wavelet filter coefficients. The collection of all these filter coefficients is denoted by G = {g l | l ∈ Z}. Now similar to the scaling functions we may define the wavelet at different levels ψ j k (x) in terms of the mother wavelet ψ(x):

ψ j m = 2 j 2 ψ(2 j x -m) (3.27)
Similarly, we can define a refinement relation for the wavelets:

ψ j m (x) = l g l-2m φ j+1 l (x) (3.28)
Now we define the projection operation for the wavelets. Consider a function f (x) ∈ L 2 (R).

Let Q j : L 2 (R) → W j be the projection operator into the wavelet space. It may be described via a series expansion:

Q j f (x) = m∈M(j) d j m ψ j m (x) (3.29)
where we define the wavelet coefficient d j m as the L 2 inner product between f (x) and ψ j m (x)

d j m = (f (x), ψ j m ) (3.30)
Once again taking the inner product on both sides of the refinement relation (Eqn. 3.28) with the function f (x) we obtain:

d j m = l g l-2m s j+1 l (3.31)
This is the refinement relation for the wavelet coefficients expressing them solely in terms of the scaling function coefficients.

Dual MRA: Dual Scaling Functions and Dual Wavelets

As the name indicates the dual MRA is the dual counterpart to the MRA. The dual MRA can be defined in an identical way to the MRA. We repeat these definitions, in brief, for the reason of completion.

We define the dual MRA as an increasing sequence of closed approximation spaces V j ⊂ L 2 (R) ∀ j ∈ Z, satisfying the conditions of:

1. Nestedness of spaces:

V -∞ ⊂ ... ⊂ V -1 ⊂ V 0 ⊂ V 1 ⊂ ... ⊂ V j-1 ⊂ V j ⊂ V j+1 ⊂ ... ⊂ V +∞ ∀ j ∈ Z (3.32)
The resolution of each space increases towards a continuum as j → ∞.

2. Closure of L 2 (R):

j V j = L 2 (R) ∀ j ∈ Z (3.33)
The intersection of all the spaces is a null set.

j V j = {0} ∀ j ∈ Z (3.34)
3. The spaces are related via dyadic scaling:

(a) dilation: v(x) ∈ V j ⇔ v(2x) ∈ V j+1 j, k ∈ Z (3.35) (b) translation: v(x) ∈ V j ⇔ v(x -2 -j k) ∈ V j j, k ∈ Z (3.36)
4. Every space V j possesses a Riesz basis called the dual scaling functions φ j k .

We relate the dual scaling functions at two different levels via the use of the dual scaling function filter

H = { h l | l ∈ Z} φ(x) = √ 2 l h l φ(2x -l) (3.37)
This is the two-scale relation for the dual scaling functions. We may also express the dual scaling function at any level in terms of the mother dual scaling function:

φ j k (x) = 2 j 2 φ(2 j x -k) (3.38)
Now we define the refinement relation for the dual scaling function:

φ j k (x) = l h l-2k φ j+1 l (x) (3.39)
The information lost in moving to a coarser dual scaling function space is captured by the complement space, the dual wavelet space. The dual wavelet space satisfies the following properties:

1. Causality property:

V j = V j-1 W j-1 (3.40) 2. Closure of L 2 (R): j∈Z W j = L 2 (R) (3.41)
3. Every dual wavelet space W j is equipped with a Riesz basis called the dual wavelets ψ j k . We relate the dual wavelets to a scaling function at a level above via the use of the dual wavelet filter G = { g l |l ∈ Z}

ψ j (x) = √ 2 l g l φ(2x -l) (3.42)
This is the two scale relation. We may also express the dual scaling function at any level in terms of the mother dual scaling function:

ψ j k (x) = 2 j 2 ψ(2 j x -k) (3.43)
Lastly we have the refinement relation:

ψ j k (x) = l g l-2k φ j+1 l (x) (3.44)
The MRA and the dual-MRA provide us with the framework we need to construct bi-orthogonal wavelets.

Wavelets

Finally we focus upon the definition of the projection operations within a bi-orthogonal framework. We define a projection operation onto the primal scaling function space as P j : L 2 (R) → V j via the series expansion.

P j f (x) = k∈K(j) s j k φ j k (x) (3.45)
We define a scaling function coefficient s j k as the L 2 inner product between the function f (x) and the dual scaling function ( φ j k ):

s j k = (f (x), φ j k ) (3.46)
By taking inner product of the function f (x) on either side of the equation 3.39 we obtain:

s j k = l h l-2k s j+1 l (3.47)
This is the refinement relation for the scaling function coefficients. In an exactly identical manner we define the projection operation onto the wavelet space as

Q j : L 2 (R) → W j : Q j f (x) = m∈M(j) d j m ψ j m (x) (3.48)
We define the wavelet Coefficient d j k as the L 2 inner product between f (x) and the dual wavelet φ j,k (x)x.

d j k = (f (x), ψ j,k ) (3.49) Now by taking L 2 inner products of the function f (x) on both sides of Eqn. 3.44 we obtain:

d j k = l g l-2k s j+1 l (3.50)
This is the refinement relation for the wavelet coefficients.

The Second Generation Wavelet (SGW) Basis

Second generation wavelets are bi-orthogonal wavelets built entirely in physical space, in a sequence of steps, such that the filter coefficients are never explicitly stored. In the second generation setting we are not interested in obtaining explicitly the value of the filters, as they may vary in space. This sequence of steps, when applied to a signal provides a result equivalent to the action of the filter on a signal. Unlike an explicitly defined filter these steps could be designed in such a way so as to accommodate the presence of boundaries and irregular sampled data.

The first step that we would like to have is a means to determine the scaling function. The scaling function which is used is one generated by the process of interpolating subdivision developed by Deslauriers and Dubuc [START_REF] Deslauriers | Symmetric iterative interpolation process[END_REF]. This process uses Lagrange polynomial interpolation to provides a suitable scaling function (with a sufficient degree of smoothness) at every data point, thus ensuring a decay at high-frequencies. Now we require a step to obtain the wavelets. At first it would seem that we could simply resize the scaling function and use it as a wavelet. By using a wavelet narrower than the scaling function we increase the frequency content of the wavelet and thus the higher frequencies may be captured. These type of wavelets are called lazy wavelets.

Interpolating Subdivision: Scaling Functions and Lazy Wavelets

The Interpolating Scaling Function

The first step in the construction of a interpolating scaling functions [START_REF] Donoho | Interpolating Wavelet Transforms[END_REF] is the requirement for a dyadic grid which is simply a sequence of nested grids, with each grid twice as coarse as its predecessor. Mathematically we represent the collection of nested grids as {V j , 0 ≤ j ≤ J}, where V j represents a single grid at different levels of the MRA (J is the finest level while 0 is the coarsest).

If we define a set of nodes on the coarsest grid as

V 0 = {x 0 k = k | k ∈ Z}.
Using this initial set of nodes, we may define the nodes of all the other grids:

V j = {x j k = k/2 j | k ∈ Z} (3.51)
using the property of nestedness

V 0 ⊂ V 1 ⊂ V 2 . . . V J . A consequence of this construction is that x 0 k = x 1 2k = x 2 2 2 k • • • = x J 2 J k .
In order to construct an interpolating scaling function we need to carry out iterative interpolation [START_REF] Deslauriers | Symmetric iterative interpolation process[END_REF]. Given a function f (x) ∈ L 2 (R) on grid V 0 , (f 0 (x) represents a discrete function in V 0 ), the coarsest grid, we would like to interpolate the signal to the finer grid V 1 . This is done by constructing a local symmetric Lagrange interpolant, of degree N -1 using N/2 nodes on either side, on grid V 0 , and obtaining the interpolated value at the grid points of V 1 . Those nodes shared by the two grids will possess the same function value i.e.

f 0 (x 0 k ) = f 1 (x 1 2k ) ∀ k ∈ Z.
Whereas the rest of the nodes possess an interpolated value i.e. f 1 (x 1 2k+1 ) contains interpolated values ∀ k ∈ Z. If the function to be interpolated is of order N -1, the interpolated values are exactly the function values themselves.

By iterating this type of construction it is possible to obtain the extension of the signal onto a dyadic grid of arbitrary finesse. As a consequence of this process a fundamental function (interpolating scaling function) is created which governs the properties of the iterative interpolation scheme, and is unique for the degree of the Lagrange interpolant used N -1 (order of subdivision scheme N ). The interpolating scaling function possesses the following properties:

1. Compact support: The interpolating scaling function is exactly zero beyond the interval

[-N/2 + 1, N/2 -1]
2. Interpolating: As the name implies it is interpolating i.e. φ j k (x) = δ(x -x j k ) 3. Regularity: The interpolating scaling function possesses a degree of regularity unique to its order of subdivision and the degree of the Lagrange interpolant used. Thus φ(x) ∈ C α(N ) , where α(4) < 2 and α(6) < 2.83 

φ(x) = N -1 l=-N +1 h l φ(2x -l) (3.52)
The absence of the term √ 2 is due to the adoption of the L ∞ normalisation as opposed to the L 2 normalisation used in section 3.2. Examples of interpolating scaling functions, constructed with Lagrange interpolants of degree 1 (N = 2) and 3 (N = 4) are shown in figs. 3.1a and Fig. 3.1b respectively.

The Lazy Wavelet

Having defined the interpolating scaling function we try to define a basic wavelet. Consider a function f (x) ∈ L 2 (R) represented on any grid level V j , f j (x). It is desired to acquire the function at a lower level grid V j-1 . Since V j-1 is nested within V j , the nodes common to both grids must have the same values. This is essentially a sub-sampling operation of the function, i.e. f j-1 (x j-1 k ) = f j (x j 2k ) ∀ k ∈ Z. This sub-sampled data is associated with an interpolating scaling function, φ j-1 k , on grid V j-1 . Using this sub-sampled function on grid V j-1 we can thus use iterative interpolation to predict the data on the grid V j at the points not in common between the two, namely x j 2k+1 ∀ k ∈ Z. The difference between the predicted and true values produces errors or details. The details are associated with functions called lazy wavelets ,ψ j-1 k , which exists upon a new grid W j-1 .

To understand the form of the lazy wavelet we make a simple comparison between function (f (x)) at two levels f j (x) and f j-1 (x) on the dyadic grid V j-1 and V j :

f j (x) = k s j k φ j k (x) f j-1 (x) = k s j-1 k φ j-1 k (x) + m d j-1 m ψ j-1 m (x) (3.53)
where s j k represents the scaling function coefficients on grid V j , s j-1 k and d j-1 m represents the scaling function and wavelet coefficients on grid V j-1 and W j-1 respectively. By performing such a comparison (described in detail in Appendix A, Sec. A.4) we get the following important equations:

d j-1 k = s j 2k+1 - m h 2k+1-2m s j-1 m (3.54) and ψ j-1 k (x) = φ j 2k+1 (x) (3.55) 
The first equation (Eqn. 3.54) provides a mathematical description of how the details or wavelet coefficients are generated. The second equation (Eqn. 3.55) indicates that the form of the lazy wavelets is the same as the form of the interpolating scaling functions at the odd locations of the finer grid (V j ). Hence the lazy wavelets get their name from the simplistic manner in which they borrow the form of a finer scaling function.

While the construction of the lazy wavelets is fairly simple, it possesses a serious drawback namely that it does not possess any moment cancellations (Eqn. 3.3). Thus lazy wavelets cannot provide any decay towards the low frequencies, and hence a multi-resolution analysis based on this class of wavelets suffer from severe aliasing problems. If we look at it in another way, we may say that the cause of this problem is due to the fact that the primal scaling function and dual wavelet are simply Dirac functions. As such no true frequency decay can be achieved and thus no filtering effect is felt.

Instead of discarding the Lazy wavelet completely, we can improve their properties by using a procedure called the lifting scheme, developed by Sweldens [START_REF] Sweldens | The lifting scheme: A construction of second generation wavelets[END_REF]. The lifting scheme provides the primal wavelet the desired number of moment cancellations to achieve decay towards the low frequencies, thus providing a true filtering effect [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF].

Lifted Wavelets

Lifting is the process of adding or subtracting a linear combination of interpolating scaling functions to or from the lazy wavelet in such a manner so that the resulting new wavelet possesses the desired number of moment cancellations, i.e. x p ψdx = 0, ∀ 0 ≤ p < N . We express this condition mathematically as:

ψ j-1 m = ψ j-1 m old + k c k,m φ j-1 k old (3.56)
The superscript old indicates a lazy basis function that is to be modified by the lifting procedure.

The new array of coefficients, c k,m , describes the linear combination of the scaling functions, and are called lifting coefficients. Furthermore we would like to preserve the form of the interpolating scaling functions. Based upon these two simple requirements, we can impose the following conditions upon the basis functions:

φ j-1 k = φ j-1 old k (3.57a) ψ j-1 m = l g old l-2m φ j l (3.57b) φ j-1 k = φ j-1 k old + m c k,m ψ j-1 m (3.57c) ψ j-1 m = ψ j-1 m old + k c k,m φ k j-1 (3.57d)
The conditions defined above translate into the following equivalent conditions upon the filters:

h k,l = h old k,l (3.58a) 
g m,l = g old m,l (3.58b) h k,l = h old k,l + m c k,m g m,l (3.58c) g m,l = g old m,l + k c k,m h k,l (3.58d) 
The exact relation between the conditions imposed upon the basis functions and the filters is described in detail in Appendix A, Sec. A.4. We are now concerned with the manner in which to calculate the arrays of the lifting coefficients, c k,m to enforce the moment cancellation properties. Starting with Eqn. 3.56:

ψ j-1 m = ψ j-1 m old + k c k,m φ j-1 k old (3.59)
and realising that the lazy wavelet ψ j-1 m old is nothing but the scaling function at the odd location of the finer level (Eqn. 3.55), we get:

ψ j-1 m = φ j-1 2m+1 + k c k,m φ j-1 k (3.60)
It is desired to have moment cancellations for the new wavelet ψ J-1 k on the l.h.s. of Eqn. 3.60: 

x p ψ j-1 m dx = 0 ∀ 0 ≤ p < N (3.
x p (φ j-1 2m+1 + k c k,m φ j-1 k )dx = 0 ∀ 0 ≤ p < N (3.62)
and by rearranging Eqn. 3.62 above we obtain:

x p φ j-1 2m+1 dx = - k c k,m x p φ j-1 k dx ∀ 0 ≤ p < N (3.63)
This equation may be used to generate a linear system of equations which may be solved for the lifting coefficients, c k,m . Now once c k,m has been determined we need to use it to modify ("de-alias") the scaling function coefficients. Consider Eqn. 3.57c:

φ j-1 k = φ old k j-1 + m c k,m ψ j-1 m (3.64)
Taking the inner product of the function f (x) with the equation above we obtain:

s j-1 k = s j-1 k old + m c k,m d j-1 m (3.65)
Thus the scaling function coefficients are modified and said to be lifted and the lifting procedure is complete. The form of the new lifted wavelets is shown in Fig. 3.2a and 3.2b for a Lagrange interpolating subdivision scheme of order 2 and 4 respectively and the number of moment cancellations equal to the order of subdivision i.e N = N is 2 and 4 respectively.

Multi-Level Second Generation Wavelet Transform (SGWT)

The sections above provide us with a clear means of determining the scaling function coefficients s j k and wavelet coefficients d j m . Thus by performing these steps a signal f (x) ∈ L 2 (R) can be projected upon the spaces V j and W j . Thus these steps outline the projection operators for scaling function P j and wavelet space Q j . The process of projecting a signal upon the wavelet basis is called analysis and recovering this signal is called synthesis. Analysis and synthesis are facilitated by the SGW transform (SGWT) which allows for them to be carried out with linear computational complexity. A detailed discussions of these topics may be found in Appendix A, Sec. A.6 and A.7.

The analysis and synthesis steps when applied repeatedly over a hierarchy of wavelet and scaling function spaces constitute the multi-level wavelet transform. The forward transform begins at the finest discrete level, the space V J . The function to be transformed f (x) ∈ L 2 (R) is represented on a suitably fine grid by sampling:

f (x) P J+1 f (x) = 2 J l=0 s J+1 l φ J+1 l (3.66)
A single analysis step is carried out upon the discrete signal f J+1 (x):

P J+1 f (x) = (P J + Q J )f (x) V J+1 = V J ⊕ W J [s J+1 l ] → [s J k1 |d J m1 ]
(3.67)

Three relations are contained within the equation above. The first is the mathematical representation of this operation, the second is the partition of the space and the third is the effect of the operation on the data set/ coefficients. As a result of the analysis operation, the finest space V J+1 has been decomposed into two spaces, a scaling function space and a wavelet space (V J and W J respectively), at a coarser level of resolution than the original. In fact the new set of coefficients is divided into two new sets of coefficients, each of which has half the length of the original. Setting aside the wavelet space generated, the new scaling function space is taken up and the analysis step is repeated:

P J+1 f (x) = (P J-1 + Q J-1 + Q J )f (x) V J ⊕ W J = V J-1 ⊕ W J-1 ⊕ W J [s J+1 l ] → [s J-1 k2 |d J-1 m2 |d J m1 ] (3.68)
This process can be repeated until the desired depth is achieved. After a desired number of levels m, only the coarsest scaling function space is retained along with a sequence of wavelet spaces, one generated at every step of the transform:

P J+1 f (x) = (P J-m + J i=J-m Q i )f (x) V J+1 = V J-m ⊕ W J-m ⊕ W J-m+1 .... ⊕ W J-1 ⊕ W J [s J+1 l ] → [s J-m km |d J-m mm |......|d J-1 m2 |d J m1 ]
(3.69)

A Word on Notation: In the future we denote a second generation wavelet transform as SGW T : N -N , where N is the order of the subdivision scheme and N is the number of moment cancellations given to the primal wavelet (as previously described in Sec. 3.1.1). The number of levels of the transform undertaken, m, is denoted by LEV : m.

Frequency Behaviour of Lifted Wavelets and Scaling Functions

We examine the frequency behaviour of the scaling functions and the wavelets. In Fig. 3.3a we have the 1D FFT of the wavelets and scaling functions at four different levels, m = 3, of SGW T : 2 -2. In Fig. 3.3b we have the 1D FFT of the wavelets and scaling functions at three different levels, m = 2, of SGW T : 4 -4. We see from the figures that the scaling functions, φ J-m , always occupy the lowest frequencies. The wavelet at the highest level, ψ J , always occupies the highest frequencies. The wavelets which lie at intermediate levels {ψ i | J -m ≤ i < J} act as band-pass filters and occupy different frequency bands, between the highest and lowest frequency bands.

Wavelets at the Boundaries

When constructing SGW on a bounded domain, the question of boundary wavelets always arises. While the algorithm for the construction of the wavelets and scaling functions presented in Sec. The consequence of the asymmetry in the form of the wavelets, is that the FFT of the boundary wavelets is no longer real but possesses an imaginary part. This is not a problem when constructing SGW basis upon domains with periodic boundaries since as a whole the global transform is still real. At non-periodic boundaries a phase shift will be caused by the asymmetric boundary wavelets. However we do not explore its consequences within the framework of this study.

A Demonstration of Wavelet-Based Scale Separation or Filtering in 1D

Two functions are chosen to demonstrate the scale separation properties of the wavelets by comparing the lazy wavelet transform with the lifted wavelet transform. The first case is a lowfrequency Gaussian signal given by f (x) = e -50x 2 (Fig. 3.7a) and the second is a high-frequency cosine signal given by f (x) = cos(80π)e -64x 2 (Fig. 3.7b). To understand the behaviour of the wavelet transform we perform three levels of the transform upon these signals and examine their respective projections upon the wavelet and scaling function space. 

F (k) k k c = π φ J-3 ψ J-3 ψ J-2 ψ J-1 ψ J ( 
F (k) k k c = π φ J-2 ψ J-2 ψ J-1 ψ J (b)

Results and Discussion

Low-frequency signal

The Gaussian contains almost all of its energy within the low-frequency range. This is reflected within its wavelet transform shown in Fig. 3.8 (wavelets based upon 2 nd -order subdivision) and Fig. 3.9 (wavelets based upon 4 th -order subdivision). There is virtually no difference between the lazy and lifted transforms for a given polynomial order because the high-frequency range contains no data to alias back to the low frequencies. Across the wavelets of different polynomial orders there is not much difference either.

High-frequency signal

The cosine type signal contains almost all of its energy within the high-frequency range. The wavelet transform of this signal is shown in Fig. 3.10 (wavelets based upon 2 nd -order subdivision) and Fig. 3.11 (wavelets based upon 4 th -order subdivision). The difference in the results is quite striking. While the lazy transform exhibits large coefficients within the low frequency range (there should not be any) the lifted transform exhibits coefficients which are greatly reduced in magnitude (due to removal of aliasing from high to low frequencies). Thus the lifted wavelets exhibit superior scale-separation properties than their lazy counterparts. Across polynomial orders a big reduction in the size of the low-frequency coefficients is achieved due to the fact that the SGW T : 4 -4 construction has 4 moment cancellations available to it as compared to the SGW T : 2 -2 construction which has only 2 moment cancellations available. This help better reduce the effects of aliasing.

Multi-Dimensional SGW Basis and Transform

We may now extend the SGW basis to 2D and 3D. We describe the construction of a separable wavelet basis for a 2D function space L 2 (R 2 ) and a 3D function space L 2 (R 3 ) in Sec. 3.5.1 and 3.5.2 respectively.

Wavelet Basis in 2D

We describe the tensor product wavelet basis for 2D space. The 2D wavelet space is a simple tensor product, of the 1D wavelet spaces, along the two desired directions [START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF][START_REF] Prosser | On the use of interpolating wavelets in the direct numerical simulation of combustion[END_REF]]

V xy J+1 = V x J+1 ⊗ V y J+1 (3.70)
Performing the 1D expansion of the terms on the r.h.s. of the equation above we get:

V xy J+1 = (V x J ⊕ W x J ) ⊗ (V y J ⊕ W y J ) (3.71)
Expanding the expression in the r.h.s. of Eqn. 3.71 we obtain:

V xy J+1 = (V x J ⊗ V y J ) ⊕ (V x J ⊗ W y J ) ⊕ (W x J ⊗ V y J ) ⊕ (W x J ⊗ W y J ) (3.72)
Now we split any 2D scaling function space at level J +1 into its constituent 2D scaling function and wavelet space at level J:

V xy J+1 = V xy J ⊕ W xy J (3.73)
By comparing the r.h.s of Eqn. 3.72 with the r.h.s. of equation 3.73 we get:

V xy J = V x J ⊗ V y J (3.74) V xy J
is the 2D scaling function space also called the pure scaling function space, composed of the tensor product of 1D scaling function spaces, while:

W xy J = (V x J ⊗ W y J ) ⊕ (W x J ⊗ V y J ) ⊕ (W x J ⊗ W y J ) (3.75)
W xy J represents the 2D wavelet space. This space is more complex and for simplicity we introduce the following notation:

W xy J = W α J ⊕ W β J ⊕ W γ J (3.76)
in which:

W α J = (V x J ⊗ W y J ) W β J = (W x J ⊗ V y J ) W γ J = (W x J ⊗ W y J ) (3.77)
Where W α J and W β J are collectively known as cross spaces and W γ J is known as pure wavelet spaces.

Functions of the form φ j 1 k 1 (x)φ j 2 k 2 (y) serve as the bases of the pure scaling function space. Functions of the form φ j 1 k 1 (x)ψ j 2 m 2 (y) and ψ j 1 m 1 (x)φ j 2 k 2 (y) serve as the bases of the cross spaces. Functions of the form ψ j 1 m 1 (x)ψ j 2 m 2 (y) serve as the bases of the pure wavelet space.

We define a projection operation into the pure scaling function space as P x J P y J : L 2 (R 2 ) → V xy J , and the operator

Q x J Q y J : L 2 (R 2 ) → W γ
J denoting the projection into the pure wavelet space. The projection operation into the cross spaces is denoted via

P x J Q y J : L 2 (R 2 ) → W α J and Q x J P y J : L 2 (R 2 ) → W β J .
To reduce the complexity in the notations, we denote by P xy J :

L 2 (R 2 ) → V xy J
the projection into 2D scaling function space and Q xy J : L 2 (R 2 ) → W xy J as the projection into the 2D wavelet space.

Wavelet Basis in 3D

A similar tensor product of the one-dimensional wavelet spaces along the three spatial directions leads to the following set of spaces [START_REF] Prosser | The theoretical development of wavelets in reacting flows[END_REF]:

V xyz J+1 = V xyz J ⊕ W xyz J =(V x J ⊗ V y J ⊗ V z J )⊕ (V x J ⊗ V y J ⊗ W z J ) ⊕ (V x J ⊗ W y J ⊗ V z J )⊕ (W x J ⊗ V y J ⊗ V z J ) ⊕ (W x J ⊗ W y J ⊗ V z J )⊕ (W x J ⊗ V y J ⊗ W z J ) ⊕ (V x J ⊗ W y J ⊗ W z J )⊕ (W x J ⊗ W y J ⊗ W z J ) (3.78)
Thus the tensorisation results in one 3D scaling function space V xyz J and seven individual spaces which collectively make up the 3D wavelet spaces W xyz J . The 3D wavelet space is composed of: six cross spaces and one pure wavelet space. The basis functions of the pure scaling function spaces are given by φ j 1 k 1 (x)φ j 2 k 2 (y)φ j 3 k 3 (z) and similarly for the pure wavelet spaces the basis functions are given by ψ j 1 m 1 (x)ψ j 2 m 2 (y)ψ j 3 m 3 (z). For the cross spaces they are more complex and are given by appropriate combinations of the respective 1D basis functions. Similar to the 2D case, we may define the projection operations using tensorisation. For brevity we skip past the tensor definitions and simply define

P xyz J : L 2 (R 3 ) → V xyz J as the projection onto 3D scaling function space and Q xyz J : L 2 (R 3 ) → W xyz J
as the entire projection operation onto 3D wavelet space.

Multi-Level 2D Wavelet Transform: The Standard Decomposition

We now focus upon the recursive application of the projection operators, defined in Sec. 3.5.1, to a function space in the framework of the 2D wavelet transform.

Consider the function f (x) ∈ L 2 (R 2 ). Now we consider the projection of f (x) into the scaling function space at a suitably fine level J + 1:

f (x) = P xy J+1 f (x) (3.79)
Thus we may describe the space L 2 (R 2 ) as: 

L 2 (R 2 ) V xy J+1 = V x J+1 ⊗ V y J+1 (3.80)
W x J ⊗W y J W x J ⊗ V y J V x J ⊗ W y J V x J ⊗ V y J Figure 3
.12: 2D standard decomposition: spaces generated by one level of the 2D SGWT Il existe deux problèmes principaux liés à la discrétisation des équations INS dans la réalisation du couplage de la pression-vitesse et la satisfaction de la condition inf-sup qui permet d'assurer que le système discret d'équations soit bien posé. Ces problèmes sont décrits dans la section 4.4. Plusieurs moyens d'assurer la satisfaction de la condition inf-sup sont d'abord décrits dans la section 4.4.1. Ensuite, c'est l'algorithme de Uzawa de résolution des systèmes discrets bien posés qui est détaillé dans la section 4.4.2. Cet algorithme est un moyen d'assurer le couplage pression-vitesse. Malgré leur usage assez répandu, ces techniques présentent plusieurs inconvénients. Ainsi, la satisfaction de la condition inf-sup peut s'avérer peu performante sur le plan de l'efficacité de calcul car elle repose généralement sur des grilles décalées. De même, l'algorithme Uzawa produit une équation de Poisson pour la pression (PPE) dont la matrice n'est pas assez creuse pour être inversée efficacement en calcul parallèle.

W x J ⊗ W y J W x J ⊗ W y J-1 W x J ⊗ V y J-1 W x J-1 ⊗ W y J W x J-1 ⊗ W y J-1 W x J-1 ⊗ V y J-1 V x J-1 ⊗ W y J V x J-1 ⊗ W y J-1 V x J-1 ⊗ V y J-1
Dans la section 4.5 sont décrits les moyens par lesquels ces problèmes peuvent être surmontés. Au lieu de l'algorithme Uzawa, nous choisissons d'utiliser les méthodes de projection, décrites dans la section 4.5.1, afin d'assurer le couplage pression-vitesse dans le cas des équations INS instationnaires. Les méthodes de projection produisent une approximation de la PPE dont la matrice associée est creuse et donc inversible avec une efficacité maximale. Deux méthodes de projection sont décrites: une méthode du premier ordre (section 4.5.2) et une méthode incrémentale du second ordre (section 4.5.3).

Ensuite, nous nous concentrons sur d'autres façons de satisfaire la condition inf-sup, en particulier lors de l'utilisation de grilles colocalisées par opposition à l'arrangement décalé. Nous favorisons l'utilisation de grilles colocalisées en raison de leur efficacité de calcul. Dans une grille colocalisée, le degré de liberté de la vitesse et de la pression correspond au même emplacement physique. Un concept équivalent en FEM est l'utilisation d'espaces d'approximation de la pression et de la vitesse d'ordre égal, où les espaces d'approximation locaux de la pression et de la vitesse utilisent des polynômes de même degré (Q k -Q k ). La construction d'espaces Q k efficaces à l'aide des polynômes de Lagrange est décrit dans la section 4.6.2. L'utilisation d'espaces Q k -Q k ne satisfait toutefois pas la condition inf-sup, ceci nécessitant la mise en place d'une stratégie de discrétisation spéciale visant à restaurer cette condition.

Les différentes étapes d'une discrétisation DG-FEM sont décrites des sections 4.6.3 à 4.6.8. L'opérateur elliptique est discrétisé par la méthode de pénalité intérieure symétrique (SIP en sigle anglo-saxon) comme détaillé dans la section 4.6.4. La discrétisation du terme non-linéaire par l'utilisation de flux inter-éléments est précisée dans la section 4.6.6. Enfin, nous nous concentrons sur la discrétisation du terme de divergence et de gradient dans la section 4.6.7. Si la discrétisation du terme de divergence est complétée par un terme de stabilisation de la pression basé sur une pénalisation des sauts de pression à travers les faces de l'élément, la condition inf-sup est satisfaite. Ainsi, la discrétisation DG-FEM pour l'équation INS telle qu'elle est décrite dans la section 4.6.8 devient bien posée. Un cas test 2D de validation de cette stratégie de discrétisation est présenté dans la section 4.7.

Introduction

This chapter covers the discretization of the INS equations, which have previously been introduced in Sec. 2.2 of chapter 2. We describe a pressure-stabilised local discontinuous Galerkin (LDG) method, using discontinuous Q k -Q k approximation spaces for velocity and pressure, for discretizing the INS equations. We focus first upon the temporal discretization and then on the spatial discretization.

We first briefly describe the main difficulty in discretizing the INS equations: the pressurevelocity coupling problem. We describe various techniques available in literature to solve this problem. A very successful way to deal with this problem is via the usage of projection methods [START_REF] Guermond | An overview of projection methods for incompressible flow[END_REF]. We describe two successful methods based upon pressure-correction techniques one with a first-order temporal scheme and the other with a second-order temporal scheme. Furthermore we layout the type of local polynomial space which we would like to use. Now we focus upon the DG-FEM discretization of the INS equations. We start with the naive discretization of the weak form. We seek to improve these naive bilinear forms by the addition of several terms which ensure that properties like consistency and coercivity are satisfied. We describe the usage of the symmetric interior penalty (SIP) variant of the interior penalty (IP) DG-FEM to discretize the elliptic terms. We describe the discretization of the non-linear terms via suitable fluxes. Finally we describe the pressure-stabilisation mechanism [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF] and incorporate it into the divergence flux. Once the description of our discretization strategy is complete, a simple test case, the 2D Taylor-Green vortex (TGV), is used in order to validate the implementation. More complex test cases are presented in the chapter 5.

A Brief Survey of DG-FEM Discretizations for the INS Equations

The DG-FEM technique was introduced by Reed and Hill [START_REF] Reed | Triangular mesh methods for the Neutron transport equation[END_REF] in the framework of neutron transport problem. Since then DG-FEM has been adapted to solve a variety of problems. However our particular focus will be upon the usage of DG-FEM to the INS equations.

The linear equations for the neutron transport problem provided the starting point for discretizations using discontinuous approximation spaces. Analysis on DG-FEM was performed by LeSaint and Raviart [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF] in 1974 proving L 2 -convergence rates of O(h k ) for general triangulations and O(h k+1 ) for tensor basis elements with polynomials of degree k in one variable defined on Cartesian grids. In 1986 Johnson and Pitkaranta [START_REF] Johnson | An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF] proved a convergence rate of O(h k+ 1 2 ) on general triangulations which is the optimal in L 2 (Ω). The extension to non-linear, time-dependent, hyperbolic equations followed with the usage of Riemann solvers at the interelement boundaries [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]. The earliest examples of these discretizations employed the usage of implicit time discretizations which severely affected their computational efficiency [START_REF] Bar-Yoseph | Space-time discontinuous finite element approximations for multidimensional non-linear hyperbolic systems[END_REF][START_REF] Bar-Yoseph | An efficient L2 Galerkin finite element method for multidimensional non-linear hyperbolic systems[END_REF]. To overcome the disadvantages of the implicit scheme it was necessary to move towards an explicit scheme. The earliest explicit scheme was put forth in 1982 by Chavent and Salzano [START_REF] Chavent | A finite element method for the 1D water flooding problem with gravity[END_REF] in 1D using DG for spatial discretization and forward euler for the temporal discretization with a Gudunov flux across the boundaries. A significant breakthrough in discretizations for non-linear hyperbolic problems was produced by the usage of Runge-Kutta type schemes for the temporal discretization. This produced a type of DG called Runge-Kutta discontinuous Galerkin (RKDG) and was detailed in a set of papers [START_REF] Cockburn | Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[END_REF][START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems[END_REF][START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework[END_REF][START_REF] Cockburn | The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems[END_REF][START_REF] Cockburn | The local discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF][START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convectiondominated problems[END_REF] and analysed within [START_REF] Hu | An analysis of the discontinuous Galerkin method for wave propogation problems[END_REF]. RKDG represents the predominant method for the discretization of hyperbolic systems. We now move our focus to the elliptic equations.

The development of DG-FEM for elliptic and parabolic equations occurred almost completely independently of that of hyperbolic equations. DG-FEM methods for elliptic and parabolic equations arose in the late 1970's and early 1980's under the name of Interior-Penalty (IP) methods [3,[START_REF] Arnold | An interior penalty finite element method with discontinuous elements[END_REF][START_REF] Baker | Finite element methods for elliptic equations using nonconforming elements[END_REF][START_REF] Douglas | Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods[END_REF][START_REF] Wheeler | An elliptic collocation-finite element method with interior penalties[END_REF]. The renewed interest in DG-FEM techniques in the 1990's spurred several other works in this area [START_REF] Bassi | A high-order discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[END_REF][START_REF] Brezzi | Discontinuous Galerkin approximations for elliptic problems[END_REF][START_REF] Cockburn | The local discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF][START_REF] Oden | A discontinuous hp finite element method for diffusion problems[END_REF]. The variety of techniques available for these equations spurred the need for a unifying underlying approach. This approach was the technique of rewriting a second-order equation as a coupled system of two first-order equations. The discretization of the two first-order equations could be performed independently and thus resulted in mixed formulations [START_REF] Bassi | A high-order discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[END_REF][START_REF] Cockburn | The local discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF]. A unification of all the various techniques was put forth by Arnold et al. [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF]. By starting with the discretization of two first-order equations and carefully choosing the inter-element flux, nearly every previous method for the discretization of the second-order operator could be recovered.

Thus we are now in a position to describe the construction of discretizations of the INS system. DG discretization strategies for the INS equations are relatively recent and are an active subject of research today. One of the traditional techniques for INS discretization has always been the continuous Galerkin (CG) technique. However it faces many criticisms. It is non-conservative when using adaptation and it exhibits undesirable effects in the presence of sharp gradients or discontinuous solutions. Furthermore CG is unstable in the advection limit and relies upon conforming stabilisation techniques like SUPG, GLS and adjoint GLS. Although these methods provide stability they are known to be highly dissipative. Against this backdrop DG provides an extremely attractive alternative. It is conservative even upon adapted meshes. Its localisation property ensures that non-monotonic behaviour is highly localised. In the limit of high polynomial orders the number of degrees of freedom become very competitive versus CG [START_REF] Hughes | A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency[END_REF].

Traditionally CG discretizations for INS equations use a standard mixed approximation spaces for velocity-pressure [START_REF] Fortin | Finite element solution of the Navier-Stokes equations[END_REF] to satisfy the inf-sup condition. DG discretizations borrowed from CG which led to the construction of hp-DG wherein several mixed velocitypressure pairs exhibited superior inf-sup condition properties compared to CG [START_REF] Toselli | HP-discontinuous Galerkin approximation for the Stokes problem[END_REF]. The mixed Q k -Q k-1 velocity-pressure spaces exhibited a decay of O(k -1 ) for the inf-sup constant with polynomial order [START_REF] Schötzau | Mixed hp-DGFEM for incompressible flows[END_REF]. Furthermore the Q k -Q k-1 spaces are inf-sup stable with respect to mesh size as opposed to their conforming counterparts [START_REF] Hansbo | Discontinuous finite element methods for incompressible and nearly incompressible flows elasticity by use of Nitsche's emthod[END_REF][START_REF] Toselli | HP-discontinuous Galerkin approximation for the Stokes problem[END_REF]. Interior penalty (IP) methods which used Q k -Q k-1 velocity-pressure pairs were developed by [START_REF] Baker | Piecewise solenoidal vector fields and the Stokes problem[END_REF][START_REF] Karakashian | A discontinuous Galerkin method for the incompressible Navier-Stokes[END_REF]. They used a discontinuous approximation space for velocity and a continuous approximation space for pressure with the divergence-free condition enforced pointwise within each element. The velocity jumps across each element are penalised. Optimal error estimates for velocity and pressure of O(h k+1 ) and O(h k ) respectively were achieved. Discontinuous Q k -Q k-1 spaces were used in [START_REF] Toselli | HP-discontinuous Galerkin approximation for the Stokes problem[END_REF], where the divergence-free condition is imposed weakly and the jumps of velocity across the interface are penalised. It was found that optimal convergence rates could be achieved. Another approach is local DG (LDG) which uses equal-order approximation spaces
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with a pressure-stabilisation term to satisfy the inf-sup condition [START_REF] Cockburn | An equal-order DG method for the incompressible Navier-Stokes equations[END_REF][START_REF] Cockburn | The local discontinuous Galerkin method for the Oseen equations[END_REF][START_REF] Cockburn | Local Discontinuous galerkin methods for the Stokes system[END_REF][START_REF] Shahbazi | A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations[END_REF]. The inf-sup constant decreases with the polynomial degree at a rate of O(k -1/2 ), however it is independent of the element aspect ratio and size. Optimal approximation rates are achieved for velocity and pressure by LDG.

A major criticism of DG discretizations was that, for certain requirements, they compared unfavourably to more well established FEM methods like the mixed methods using Raviart-Thomas (RT) [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF] and Brezzi-Douglas-Marini (BDM) [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] elements and continuous Galerkin (CG) methods. DG discretizations typically use a greater number of degrees of freedom compared to CG (particularly at low polynomial orders) and they exhibit poorer accuracy as compared to mixed methods. These criticisms led to the development of hybridizable DG (HDG) methods which could achieve optimal convergence rates for all unknowns and could be implemented efficiently with fewer unknowns compared to standard DG. Very broadly speaking HDG borrows the technique of static condensation popular in conventional FEM. It reduces the linear system of equations by using a set of interface unknowns common across element boundaries and thus reduces the number of degrees of freedom. HDG was first proposed by [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems[END_REF]. Furthermore the fact that discretizations have to provide exactly divergence-free solutions to ensure local conservative, energy-stable and optimally convergent methods [START_REF] Cockburn | A locally conservative LDG method for incompressible Navier-Stokes equations[END_REF], led to the development of divergence-conforming DG-FEM. When combined with the philosophy of HDG, we have the technique of divergence-conforming HDG, which appears to be one of the best techniques available today [START_REF] Lehrenfeld | Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems[END_REF].

We have chosen to develop our solver using a pressure-stabilised LDG method which uses discontinuous Q k -Q k approximation spaces for velocity and pressure. This technique allows for the usage of equal-order nodal tensor Lagrange basis functions within each element as such a basis is widely known to be computationally efficient. In order to solve large problems in a highly parallel manner computational efficiency is very important. This was the principal reason for our choosing of this method. This will serve as our future method of choice for DNS and VMS-LES calculations.

Naive Continuous Discretization of the INS Equations

We attempt to perform a naive discretization of the continuous weak form of the INS equations given by Eqn. 2.5, restated below:

B(W, U) = Ω v • fdx + ∂Ω h v • (ν∇u) • nds - ∂Ωg v • (u ⊗ u) • nds - ∂Ω h v • npds (4.1)
where W = {v, q}, U = {u, p} and B(W, U) is the weak form of the INS operator given by:

B(W, U) = ∂ t Ω v • u dx + ν Ω ∇v : ∇u dx - Ω ∇v : (u ⊗ u) dx - Ω ∇ • v p dx + Ω q ∇ • u dx (4.2)
We start by going over the elementwise discretization of the computational domain of interest. The domain Ω is first partitioned into suitable elements Ω = j T j . The collection of these elements forms the mesh T = {T}. The boundaries of the domain are denoted as ∂Ω while element boundaries are denoted by ∂T. Let T 1 and T 2 be two adjacent elements. We define a single face as F i = ∂T 1 ∩ ∂T 2 . An interior face is also called an interface. Along the domain boundary a face is defined by F b = ∂T ∩ ∂Ω. It is called a boundary face. The set of all faces is defined by F = {F i ∪ F b }. The face has an associated length scale denoted as h F . We choose two approximation spaces

V h = {v h , u h ∈ [L 2 (Ω)] d | v h | ∂Ωg = 0, u h | ∂Ωg = g} and Q h = {q h , p h ∈ L 2 (Ω)}.
The test functions are now {v h , q h } ∈ {V h , Q h } and the trial functions are {u h , p h } ∈ {V h , Q h }. Thus we can define the problem of the discretized weak form as: We search for solutions (u h , p h ) ∈ {V h , Q h } such that for all (v h , q h ) ∈ {V h , Q h } they satisfy the discretized weak form of the INS equations:

T∈T ∂ t T v h • u h dx + ν T∈T T ∇ h v h : ∇ h u h dx + T∈T T ∇ h v h : F(u h ) dx - T∈T T ∇ h • v h p dx + T∈T T q h ∇ h • u h dx = T∈T T v h • f dx + F∈F b h F v h • (ν∇ h u h ) • n ds - F∈F b g F v • F(u h ) • n ds - F∈F b h F v h • np h ds (4.3)
In the equation above we have written the non-linear term in the form of a flux F(u h ) = u h ⊗u h . We redefine the L 2 -inner product, on the domain Ω, to be performed element-wise as (a, b) T = T∈T T ab dx and the integral along the physical boundary as (a, b)

F = F∈F b F a(b • n) ds.
This notation along with that given below:

a h (•, •) = (∇ h •, ∇ h •) T b h (•, •) = -(∇ h • •, •) T (4.4)
allows us to to restate the problem shown in Eqn. 4.3 as:

∂ t (v h , u h ) T + νa h (v h , u h ) -(∇ h v h , u h ⊗ u h ) T + b h (v h , p h ) -b h (u h , q h ) = (v h , f) T + (v h , ν∇ h u h ) F h -(v h , u h ⊗ u h ) Fg -(v h , p h ) F h (4.5)
For future ease of exposition we group together all the l.h.s. terms within a single discrete weak form B h (W h , U h ) to obtain:

B h (W h , U h ) = (v h , f ) T + (v h , ν∇ h u h ) F h -(v h , u h ⊗ u h ) Fg -(v h , p h ) F h (4.6)
Where W h = {v h , q h } and U h = {u h , p h }. Eqn. 4.6 is the discrete equivalent of Eqn. 4.1 We can represent the variables u h and p h as a series expansion of a set of basis function {h i }:

u h = n1 i=0 u i h i , p h = n2 i=0 p i h i (4.7)
If the basis functions are of maximum degree k in each variable on element T then they belong to the space denoted by Q k (T). By using the series representation of the functions we may generate an operator matrix for the some of the terms on the l.h.s. of Eqn. 4.5:

M = (h j , h i ) T ∀ 0 ≤ i, j ≤ n1 L = a h (h j , h i ) ∀ 0 ≤ i, j ≤ n1 -D = b h (h j , h i ) ∀ 0 ≤ i ≤ n1, 0 ≤ j ≤ n2 (4.8)
M is commonly known as the mass matrix, while L is commonly known as the stiffness matrix. D represents may represent the pressure operator while its transpose represents the divergence operator or vice-versa.

The Pressure-Velocity Coupling Problem

The special simplifications applied in order to generate the INS equations from the full Navier-Stokes equations give rise to a unique problem called the pressure-velocity coupling problem. This problem is extremely complex and from a mathematical perspective arises due the fact that pressure does not appear explicitly in the continuity equation. To better understand the pressure-velocity coupling problem it is sufficient to consider the same discrete system defined in Eqn. 4.5 without the convective term in the momentum equations i.e the Stokes equations. They are given below in the weak form:

∂ t (v h , u h ) + νa h (v h , u h ) + b h (v h , p h ) = (v h , f) -b h (u h , q h ) = 0 (4.9)
We convert the l.h.s. of the above equation into a matrix representation:

∂ t (v h , u h ) + νa h (v h , u h ) b h (v h , p h ) -b h (u h , q h ) 0 . (4.10) 
The matrix described above exhibits (subject to the magnitude of the viscosity) a saddle point shape (Fig. 4.1a). This shape is characterised by a lack of global minima. This means that the matrix possesses a non-zero nullspace and is hence not invertible. Clearly we need to "pull" this matrix back towards the bowl shape (Fig. 4.1b) which possesses a global minima thus making it invertible again. The bowl shape can be achieved by introducing an appropriate pressure term into the empty diagonal term. Thus the pressure-velocity coupling problem can be described in mathematical terms as the ill-posedness of the matrix system representing the discrete INS equations. As a consequence, the solutions of this discrete system are no longer unique and are polluted by spurious oscillations which lie within the nullspace of the matrix.

Techniques for Achieving a Well-Posed Discrete INS System

Certain choices of the pressure-velocity approximation space exhibit the property whereby the discrete INS matrix is well-posed. These approximation spaces skip the nullspace entirely and produce invertible discrete systems. In order for a choice of approximation spaces to exhibit 

inf {q h ∈ Q h \{0}} sup {v h ∈ V h \{0}} Ω q h ∇ h .v h dx q h L 0 (Ω) v h H 1 0 (Ω) ≥ β h (4.11)
where β h is the inf-sup constant which is positive and bounded away from 0 independent of the mesh size. Several spaces which satisfy the inf-sup condition have been proposed over the years. They typically include mixed approximation spaces such as the Taylor-Hood spaces [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. Other examples are based upon the Crouzeix-Raviart elements [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. For spectral methods a logical extension of the concept of mixed spaces is used. They use different order polynomials as the basis functions of the velocity-pressure spaces. A standard example is the usage of Q k -Q k-2 which uses a local polynomial space of degree k and k -2 as the approximation spaces (continuous across elements) for the velocity and pressure respectively [START_REF] Canuto | Spectal Methods: Fundamentals in Single Domains[END_REF][START_REF] Canuto | Spectal Methods: Evolution to Complex Geometries and Application to Fluid Dynamics[END_REF]. An example showing the location of the degrees of freedom of a nodal Q k -Q k-2 space is shown in Fig. 4.2. In FDM a staggered mesh arrangement is used wherein velocity and pressure variables are hosted upon different spatial locations. This staggered mesh arrangement, originally proposed for the marker-and-cell (MAC) algorithm [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF], is in widespread use [73]. A similar arrangement is used for FVM, with the pressure degrees of freedom as cell averaged values at the cell centres, and the velocity degrees of freedom at the cell vertices [START_REF] Hokpunna | Compact fourth-order finite volume method for numerical solutions of Navier-Stokes equations on staggered grids[END_REF][START_REF] Manhart | A zonal grid algorithm for DNS of turbulent boundary layers[END_REF]. In all these above examples the inf-sup condition is always satisfied. Discretization methods which satisfy this condition are called compatible discretizations. Having dealt with the ill-posedness of the INS matrix we move onto how we would practically solve the discrete system.

Uzawa Algorithm

The simplest technique to solve the discrete system is via the Uzawa algorithm. It provides a means of obtaining the exact solution to the above system of equations, by means of constructing a pressure-Poisson equation (PPE), the exact PPE for the system. The operator matrix representation of the steady Stokes problem is given below:

νL -D T -D 0 u p = F 0
in which L and D represent the discrete Laplacian and the discrete divergence operator respectively (Sec. 4.3) and F represents the discrete version of the forcing term. We would like to convert this matrix to upper triangular form by Guassian elimination. Thus the first row is left multiplied by (νL) -1 , followed by another left multiplication by D. It is then added to the second row to obtain:

νL -D T 0 -D(νL) -1 D T u p = F D(νL) -1 F
Thus the first step of the algorithm is to solve the exact PPE:

D(νL) -1 D T p = -D(νL) -1 F (4.12)
The pressure thus obtained is then used to solve for the velocity:

u = (νL) -1 F + (νL) -1 D T p (4.13)

Drawbacks of the Methods Described Above

Given the solutions described above it would appear that the pressure-velocity coupling problem offers no real obstacle to INS simulations. However the reality is not so straightforward. The problems with the above set of approaches are quite varied and complex. We describe first the disadvantages associated with the usage of approximation spaces satisfying the inf-sup condition, followed by the Uzawa algorithm.

The compatible discretizations like those enumerated in Sec. 4.4.1 are extremely useful, however they do exhibit several key disadvantages. Principally the fact that the pressure and the velocity degrees of freedom (d.o.f.) are placed at different physical locations. The velocity d.o.f. generally occupy the interior and the boundary, while the pressure d.o.f. lie exclusively within the interior and alternate positions with the velocity points. As such computationally costly (particularly for high-order polynomials) interpolations in 3D need to be performed between the pressure and velocity d.o.f. Furthermore, with the pressure d.o.f. at the interior, the application of appropriate boundary conditions to the pressure, when required, is rather difficult. Thus these approximation spaces are rather difficult to work with in practice.

Similarly the Uzawa algorithm faces a significant drawback. Namely the fact that it utilizes the inverse of the Laplacian operator, L -1 , within the PPE. In most discretization strategies the operator for L is generally sparse. In a DG-FEM representation L is a band-block diagonal operator. The sparse nature of L is the key property for efficient parallel computations, specifically regarding parallel matrix inversions. However L -1 is generally a non-sparse matrix. As a result, although the overall PPE operator D(νL) -1 D T is well conditioned, the parallel matrix inversion procedure is slowed down considerably due to the larger bandwidth of the resulting matrix.

Thus the main problems we face can be boiled down to: computational inefficiency of compatible pressure-velocity spaces and parallel inefficiency of the pressure-velocity coupling algorithm. We describe how to mitigate these problems in the next section.

Projection Methods and Collocated Polynomial Spaces

The problems associated with the Uzawa algorithm motivated the construction of projection methods also known as fractional-step methods or operator-splitting methods for pressurevelocity coupling. It was believed that the use of fractional step methods rendered void the need for the satisfaction of the inf-sup condition and would allow for a direct discretization of the velocity and pressure. This misunderstanding arose due to the effect of the projection methods upon the discrete system. The splitting of the equations introduces a splitting error term, proportional to the time-step. The error term occupies the vacant diagonal within the Stokes matrix (Eqn. 4.10) and thus converts the discrete saddle point problem into an equivalent problem which is well posed for a sufficiently large time-step. This "stabilising effect" of the splitting error is thus proportional to the time-step size. Thus, a sufficiently large time-step rendered unnecessary the satisfaction of the inf-sup condition. Typically as the Re increases, the time-step decreases, and thus the stabilising effect of the splitting error continues to decreases until it is no longer sufficient and the problem becomes ill-posed causing spurious modes to pollute the numerical solution.

Thus satisfaction of the inf-sup condition is absolutely necessary even in conjunction with the projection methods so that the problem is kept well-posed throughout the entire range of time step sizes [START_REF] Guermond | An overview of projection methods for incompressible flow[END_REF]. The projection methods however does provide a significant advantage over the Uzawa algorithm, as the approximate PPE used by it is sparse compared to the exact PPE of the Uzawa algorithm. We discuss these methods in detail in Sec. 4.5.1.

The above paragraph indicated the need to always satisfy the inf-sup condition. However, we know that compatible spaces are unfavourable from a computational point of view. To avoid the problems posed by the compatible spaces, it makes sense to use incompatible collocated grids. Q k -Q k velocity-pressure approximation spaces, as will be described in Sec. 4.6.2. In conjunction with Lagrange polynomials, they allow for pseudo-spectral type behaviour from the algorithms which are computationally very efficient. However since the Q k -Q k velocitypressure approximation spaces are incompatible, discretizations based upon them must invoke another stabilisation method to ensure well-posedness of the discrete system. We discuss the pressure stabilised DG-FEM version of the Q k -Q k discretization in the Sec. 4.6.8.

Projection Methods

The principle of the projection methods is to convert a coupled operator equations into sequential operator equations at the cost of introducing a splitting error proportional to the time-step. The method principally consists of three general steps. A predict step, which involves the computation of an intermediate velocity field (non divergence-free) by using the momentum equation discretized in time with or without the pressure. The second step is the solution of an approximate pressure-Poisson equation (PPE), with the divergence of the intermediate velocity field as the r.h.s., to compute the pressure. The third step is the correction step, which involves projecting the intermediate velocity field onto a divergence-free velocity space via the gradient of the pressure term. The result is a divergence-free velocity field at a new time level.

We describe two general methods based upon the principle of pressure-correction [START_REF] Guermond | An overview of projection methods for incompressible flow[END_REF]. A number of other techniques are available particularly velocity-correction methods which have seen widespread use in spectral and spectral element methods [START_REF] Ferrer | A high-order discontinuous Galerkin Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes[END_REF][START_REF] Karniadakis | High-order splitting methods for the incompressible Navier-Stokes equations[END_REF]. However for our purposes the usage of pressure-correction techniques is sufficient.

Pressure-Correction Method with Backward-Euler Temporal Scheme

Consider the unsteady Stokes equations:

∂ t u -ν u + ∇p = f ∇ • u = 0 (4.14)
We remove the pressure term and carry out backward Euler temporal discretization with the forcing term discretized explicitly and viscous term discretized implicitly.

u * -u n t -ν u * = f(t n ) (4.15)
This is the predict step. It determines the intermediate velocity field u * via the the momentum equation without the usage of the divergence-free condition. What we would like to do is to advance the intermediate velocity field u * to the next time level u n+1 while enforcing the divergence-free constraint, via the gradient of a scalar quantity Φ. To do this we need to determine the appropriate value of Φ which will allow for the projection of u * upon a divergencefree space. Thus we use an equation of the form:

u n+1 -u * t = -∇Φ (4.16)
Thus taking divergence on both sides and recalling that u n+1 must be divergence-free we obtain:

Φ = ∇ • u * t (4.17)
This is the approximate PPE which needs to be solved for Φ. Finally we carry out the correct step, in which we project the predicted velocity u * field onto the divergence-free space using the gradient of Φ to achieve a divergence-free velocity field u n+1 :

u n+1 = u * -t∇Φ (4.18)
To understand the relation between Φ and the physical pressure we substitute u * of the correct step, Eqn. 4.18, into the predict step, Eqn. 4.15, to obtain:

u n+1 + t∇Φ -u n t -ν (u n+1 + t∇Φ) = f (4.19)
Rewriting the equation above, we get:

u n+1 -u n t -ν u n+1 + ∇Φ -ν t ∇Φ = f (4.20)
This equation, given above, is equivalent to the discretized full unsteady Stokes equation (including the pressure) at time t n shown below:

u n+1 -u n t -ν u n+1 + ∇p n+1 = f (4.21)
wherein the true pressure, p n+1 , is approximated with a temporal error of O( t) by Φ as shown below:

p n+1 = Φ -ν t Φ (4.22)
Thus we have obtained first-order accuracy (due to a splitting error) from the classical pressurecorrection algorithm. The classical error estimates for this scheme are given by:

u -u n [L 2 (Ω)] d + u -u * [L 2 (Ω)] d ≤ C u,p,t t p -p n L 2 (Ω) + u -u * [H 1 (Ω)] d ≤ C u,p,t t 1/2 (4.23)
where u and p represent the exact velocity and pressure respectively at any given time and u n and p n represent the velocity and pressure obtained from the scheme and u * represents the intermediate velocity [START_REF] Guermond | An overview of projection methods for incompressible flow[END_REF].

The pressure-correction method may also be derived from the matrix form of the Stokes operator by suitable factorization. This is why projection methods were also known as approximate factorization methods. A full description of this process can be found in Appendix B, Sec. B.1.

Incremental Pressure-Correction Algorithm with Implicit-Explicit

Backward Differentiation Formula 2 (IMEX-BDF2) Temporal Scheme

It is possible to construct a splitting method which has an even smaller splitting error by involving the pressure within the prediction step. This method is called the incremental pressurecorrection method and it produces a second-order splitting error. Correspondingly the error of the temporal discretization must also match the splitting error in magnitude and become smaller. Backward-Euler with its first-order accuracy will not suffice, thus we move to a discretization scheme called backward differentiation formula (BDF) with second-order accuracy hence BDF2. The convective, pressure and forcing terms are treated explicitly (EX) while the remaining terms are treated implicitly (IM) hence the overall scheme widely goes by the name of IMEX-BDF2 [START_REF] Frank | On the stability of implicit-explicit linear multistep methods[END_REF]. We look at the algorithm below.

Consider the Stokes system 4.14. First we discretize the momentum equation, including the pressure term using BDF2 time scheme:

3u * -4u n + u n-1 2 t -ν u * = -∇p n + f(t n ) (4.24)
This step is the predict step and it involves the pressure term at the current time level while it involves the velocity at three different time levels. As a consequence the scheme is not selfstarting. The PPE may be formed by correcting the current intermediate velocity field to its divergence-free state via the gradient of a scalar, Φ:

3u n+1 -3u * 2 t = -∇Φ (4.25) 
Taking divergence on both sides we obtain and recalling that u n+1 must be divergence free we get:

Φ = 3 2 ∇ • u * t (4.26)
This approximate PPE may be solved for Φ and then a correct step remains, one for the velocity:

u n+1 = u * - 2 3 t∇Φ (4.27)
and one for the pressure :

p n+1 = p n + Φ (4.28)
The classical error estimates for this scheme are given by:

u -u n [L 2 (Ω)] d + u -u * [L 2 (Ω)] d ≤ C u,p,t t 2 p -p n L 2 (Ω) + u -u * [H 1 (Ω)] d ≤ C u,p,t t (4.29) 
where u and p represent the exact velocity and pressure respectively at any given time and u n and p n represent the velocity and pressure obtained from the scheme and u * represents the intermediate velocity [START_REF] Guermond | An overview of projection methods for incompressible flow[END_REF].

DG-FEM Discretization of the INS Equations

In this section we describe the spatial discretisation technique for the INS equations which is based upon the local discontinuous Galerkin method.

DG-FEM Terminology

We use much of the same terminology defined in Sec. 4.3 earlier in this chapter. However at the faces additional definitions are needed which we describe below. Let u be a piecewise-smooth scalar variable. Consider an interface F of two adjacent elements T 1 and T 2 . The trace of u along the interface is denoted as u| ∂T 1 and u| ∂T 2 respectively. Then u = (u| ∂T 1 -u| ∂T 2 ) represent the jump across the interface, where • is the jump operator. Furthermore { {u} } = 1 2 (u| ∂T 1 + u| ∂T 2 ) represents the average along the interface, where { {•} } represents the average operator. There exists a relation between the jump and average operators given by uv = u { {v} } + v { {u} } or 1 2 u 2 = u { {u} }. For a piecewise-smooth vector variable u we can define a jump across the interface to be u = u| ∂T 1 • n + u| ∂T 2 • n, where n is the unit normal pointing outward from the interface, while the average may be defined as

{ {u} } = 1 2 (u| ∂T 1 + u| ∂T 2 ) 4.6.2 Collocated Q k -Q k Local Lagrange Spaces
Numerical discretizations of the INS equations require a pair of discrete velocity-pressure function spaces {V h , Q h }. Equal order Q k -Q k approximations make use of an elementwise velocitypressure space of polynomials of degree at most k per variable, namely Q k (T).

We now focus on constructing the local space Q k (T). This space can be defined based upon two choices of polynomials: the Legendre polynomials with the Gauss-Legendre (GL) integration points (exact integration for polynomials up to degree 2k) or the Lagrange polynomials and their associated Gauss-Legendre-Lobatto (GLL) integration points (exact integration for polynomials upto degree 2k -1) [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. The Legendre polynomials form a modal basis, while the Lagrange polynomials form a nodal basis of the space Q k (T) [START_REF] Kopriva | Implementing Spectral Methods for Partial Differential Equations[END_REF]. From a mathematical perspective the choice of polynomial basis for the local space is completely irrelevant, however from a computational point of view there is a crucial difference. In theory the Legendre polynomials and the GL points with their superior integration capabilities would seem to be our frontrunner in the choice for constructing a basis, however practical considerations dictate otherwise. The Lagrange polynomials h i (x) exhibit a very special property, they are interpolating:

h i (x j ) = δ ij (4.30)
To understand the importance of this property, consider a series representation of a variable u(x), over an element, based upon Lagrange polynomials:

u(x) = N i=0 ûi h i (x) (4.31) 
The coefficients are given by:

ûi = T u(x)h i (x)dx (4.32)
Which is computed by numerical quadratures as:

ûi = k j=0 w j u(x j )h i (x j ) (4.33)
where w j represents the weights at the quadrature points (x j ). Replacing Eqn. 4.30 into Eqn. 4.33 and we obtain:

ûi = k j=0 w j u(x j )δ ij (4.34)
Simplifying this above expression we obtain:

ûi = w i u(x i ) (4.35)
Thus the coefficients of the Lagrange polynomials are simply the function values at the GLL space locations, multiplied by the quadrature weight. This makes for a remarkable simplification and is a typical consequence of the interpolating property of the Lagrange polynomials. However notice that in moving from equation 4.32 to 4.33 we have introduced a numerical error of O(h 2k ), since quadratures based on the GLL points are inexact for polynomials of degree 2k.

Despite the introduction of the quadrature error, this property of the Lagrange polynomials and GLL points greatly helps in simplifying the computation of the non-linear terms. A simple pointwise product of the degrees of freedom (d.o.f.) is discretely equivalent, up to a given order of accuracy, to the product of the function projected upon the d.o.f. Thus the typically time consuming non-linear term computation is greatly simplified. The interpolating property also lends itself to the fast calculation of operators. The discrete bilinear forms for all the operators are greatly simplified when calculated using discrete GLL quadratures. This technique of computing the operators is called the pseudo-spectral method (owing to its similarity to classical collocation spectral methods) or in modern terms Galerkin-numerical-integration (G-NI) (owing to its similarity to modern Galerkin FEM) [START_REF] Kopriva | Implementing Spectral Methods for Partial Differential Equations[END_REF]. The construction of these operators is fairly technical and is detailed in Appendix B, Sec. B.2 for reference. The extension of Lagrange polynomials to higher dimensional spaces, Q d k (T), is a simple matter of tensorisation.

Shown in Fig. 4.3 are the velocity-pressure GLL points for a 2D, square element. Notice how the d.o.f. are collocated, meaning no interpolations are required between the two sets. Furthermore the points represent simultaneously the function values as well as the coefficients of the Lagrange polynomials making projection and multiplication operations efficient. Furthermore the presence of the d.o.f. at the element boundaries means that the imposition of boundary conditions and computation of fluxes can be done with relative ease.

Over-Integration

The presence of integration errors leads naturally to the concept of over-integration. Overintegration is a procedure used for maintaining the consistency of the integration of the weak form of the non-linear term. The weak formulation of the non-linear terms demands the integration of terms of the form T∈T T ∇v h : (u h ⊗ u h ) dx. Given a velocity approximation space of Q d k (Ω), the non-linear term is a polynomial of degree 3k -1 along each direction. We would like to integrate this term exactly.

We know that k+1 GLL points (N GLL = k+1), are capable of exactly integrating polynomials upto degree 2k -1. Thus using 3 2 k + 1 GLL points (N ov GLL = 3 2 k + 1), we can exactly integrate polynomials of order 3k -1. Thus ideally to integrate the weak form of the non-linear term we need a little under 3 2 the number of original GLL integration points (N ov GLL = 3 2 N GLL -1 2 ). This procedure of using an increased number of quadrature points for the integration of the tri-linear term is called over-integration [START_REF] Karniadakis | Spectral/hp Element Methods for Computational Fluid Dynamics[END_REF]. The effects of this procedure upon DG-FEM and a variety of other techniques may be found within [START_REF] Spiegel | De-Aliasing through over-integration applied to the flux Reconstruction and discontinuous Galerkin methods[END_REF].

Over-integration is commonly known within the spectral methods community as one of the methods used for de-aliasing [START_REF] Canuto | Spectal Methods: Fundamentals in Single Domains[END_REF]. A such rather than looking at over-integration from the point of view of maintaining integration consistency it can be looked upon as a means of preventing energy from unresolved frequencies (beyond the cutoff frequency of the grid) from aliasing back upon the resolved frequencies. In the absence of this de-aliasing effect, starting from the frequencies closest to the cutoff, a gradually advancing band of frequencies is polluted with spurious energy from the unresolved scales. This phenomenon produces a gradually energy build up and given sufficient time will cause the simulation to experience an energy "blow-up" [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]. Thus over-integration is an important stabilisation mechanism and we demonstrate its utility when performing high order calculations in chapter 5.

Basic Discontinuous Discretization of the INS Equations

We now equip each mesh element with an appropriate local polynomial space of degree k and dimension d as Q d k (T). We can now define the following broken polynomial spaces of degree k and dimension d as:

V h (T) = {v h , u h ∈ [L 2 (Ω)] d | v h | T , u h | T ∈ [Q d k (T)] d , ∀ T ∈ T} Q h (T) = {q h , p h ∈ L 2 (Ω) | q| T , p| T ∈ Q d k (T), ∀ T ∈ T} (4.36)
Consider the weak form of the problem given in Eqn. 4.1. We rewrite the convective term as a flux such that F(u) = u ⊗ u and it has not been subjected to integration by parts. Then we perform a naive discontinuous discretization of Eqn. 4.1:

T∈T ∂ t T v h • u h dx + ν T∈T T ∇ h v h : ∇ h u h dx + T∈T T v h • ∇ h • F(u h ) dx - T∈T T ∇ h • v h p h dx + T∈T T q h ∇ h • u h dx = T∈T T v h • f dx + F∈F b h F v h • (ν∇ h u h ) • n ds - F∈F b h F v h • np h ds (4.37)
Making use of W h = {v h , q h } and U h = {u h , p h } we write the l.h.s. in terms of a weak form B 0 h (W h , U h ) to obtain:

B 0 h (W h , U h ) = T∈T T v h • f dx + F∈F b h F v h • (ν∇ h u h ) • n ds - F∈F b h F v h • np h ds (4.38)
where the l.h.s. is more concisely given by:

B 0 h (W h , U h ) = ∂ t (v h , u h ) + νa 0 h (v h , u h ) + A 0 h (v h , u h ) + b 0 h (v h , p h ) -b 0 h (u h , q h ) (4.39) 
and a 0 h (•, •) represents the preliminary discrete bilinear form of the Laplacian operator, A 0 h (•, •) represents the preliminary discrete weak form of the non-linear operator and b 0 h (•, •) represents the preliminary discrete bilinear form of the pressure and divergence-free term. The bilinear form given by the equation above is far from ideal. Thus in the sections that follow we shall modify the bilinear forms term by term to obtain consistency, coercivity and satisfaction of the inf-sup condition for the INS equations.

Discretization of the Viscous Term via Symmetric Interior Penalty (SIP)

Our starting point for the SIP discretization [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF] is the preliminary weak form a 0 h (v h , u h ) given in Eqn. 4.37:

a 0 h (v h , u h ) = T∈T T ∇ h v h : ∇ h u h dx (4.40)
and given below along with its boundary terms (for convenience we assume that ν = 1 because by definition a 0 h (v h , u h ) does not include ν):

a 0 h (v h , u h ) = T∈T ∂T v h • (∇ h u h ) • nds (4.41) a 0 h (v h , u h
) is symmetric and satisfies the coercivity property, both of which it has inherited from its continuous counterpart. However it is no longer consistent. We would like to include this into the properties of the discrete operator.

Consistency

To determine the term needed to recover consistency we substitute a continuous function u ∈ C ∞ within a 0 h (v h , u h ), defined in Eqn. 4.40, and perform integration by parts to obtain:

a 0 h (v h , u) = - T∈T T v h • ( h u)dx + T∈T ∂T (∇ h u • n) • v h ds (4.42)
The solution on each element boundary possesses a unique value which is independent of its neighbour. In order to couple the various elements together the interface term on the r.h.s. can be reformulated as a sum over the mesh faces (F), by making use of the average and jump operators, to get:

a 0 h (v h , u) = - T∈T T v h • ( h u)dx+ F∈F F { {∇ h u • n} } • v h ds + F∈F i F ∇ h u • n • { {v h } }ds (4.43)
Now the jump of the gradient of u will always be zero since the gradients on opposite faces cancel out each other exactly. However the average of the gradient is non-zero. Thus we obtain from Eqn. 4.43:

a 0 h (v h , u) = - T∈T T v h • ( h u)dx + F∈F F { {∇ h u • n} } • v h ds (4.44)
The interface average term (which does not vanish) needs to be removed to avoid a loss in consistency. Thus subtracting it out we obtain the consistent bilinear form:

a 1 h (v h , u h ) = a 0 h (v h , u h ) - F∈F F { {∇ h u h • n} } • v h ds (4.45)
The operator a 1 h (v h , u h ) while consistent is no longer symmetric, thus to recover this property we need to add a symmetry term.

Symmetry

a 2 h (v h , u h ) = a 1 h (v h , u h ) - F∈F F { {∇ h v h • n} } • u h ds (4.46) a 2 h (v h , u h
) is consistent and symmetric but in order to ensure that it is coercive we need to add another term called the penalty term.

Penalty

The check for coercivity is fairly straightforward. We replace v h by u h within a 2 h (v h , u h ) to obtain;

a 2 h (u h , u h ) = a 0 h (u h , u h ) -2 F∈F F { {∇ h u h • n} } • u h ds (4.47)
or:

a 2 h (u h , u h ) = ∇ h u h 2 L 2 -2 F∈F F { {(∇ h u h ) • n} } • u h ds (4.48)
While the first term on the r.h.s. represents an inner product (and is this always positive for all u h = 0), the second term does not and therefore lacks a sign a priori. Thus in order to ensure coercivity, we need to add a symmetric penalty term which will dominate the non-coercive terms, to obtain:

a sip h (v h , u h ) = a 2 h (v h , u h ) + F∈F η h F F v h • u h ds (4.49)
where η is a user defined penalty parameter which governs the strength of the penalty term relative to the other terms. Thus writing out the SIP bilinear form in its entirety we get the SIP discretization of the l.h.s of Eqn. 4.41:

a sip h (v h , u h ) = T∈T T ∇ h v h : ∇ h u h dx - F∈F F { {∇ h u h • n} } • v h ds - F∈F F { {∇ h v h • n} } • u h ds + F∈F η h F F v h • u h ds (4.50) 

Boundary Conditions

The non-homogeneous Dirichlet boundary conditions, g is enforced in a weak manner on the r.h.s. of Eqn. 4.41, providing:

a sip h (v h , u h ) = F∈F b h F v h • (∇ h u h ) • nds - F∈F b g F (∇ h v h • n) • gds + F∈F b g η h F F v h • gds (4.51)

Error Estimates

The classical error estimate of the SIP method (for a scalar variable), for convergence in the L 2 -norm is given by:

u h -u L 2 (Ω) ≤ C u h k+1 (4.52)
where u h is the discrete solution, u ∈ H k+1 (Ω) is the exact solution, h is the characteristic size of the element, k is the degree of the polynomial used for the construction of the approximation space and C u = C u H k+1 with C being a positive constant, independent of h [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF].

Convergence Test: Laplace Equation

In order to analyse the convergence of the SIP method we use the 2D scalar Laplace equation and a scalar test case whose analytical solution exists and is given by:

u(x, y) = 2(1 + y) (3 + x) 2 + (1 + y) 2 Ω = [-1, 2] × [-1, 3] (4.53)
The singular point which is located at (-3,-1) is excluded and the resulting function belongs to C ∞ (Ω).

A word on notation:

1. In figure 4.4 the name 'nP k' refers to a DG-FEM discretization using 'n' elements per direction 'd', and the usage of Lagrange polynomials, of degree 'k' per direction, as the basis functions of the local approximation space i.e. Q d k (T). We consider the first plot shown in Fig. 4.4. Along the x-axis is the penalty parameter η, while along the y-axis lies the L 2 -error normalised by the minimum error e min . These curves are plotted for polynomial of degrees k = 2, 4 and 8 on a sequence of grids. What is clear is that the error behaviour is dependent upon the penalty parameter. At low values of the penalty parameter the error behaviour is non-monotonic, however as the penalty parameter is increased the error exhibits a monotonic convergence towards an asymptotic minimum value. Beyond a certain critical value the variation of the penalty parameter affects the error only marginally. The correct choice of the penalty parameter which is solely dependent upon the polynomial order and the nature of the element, is unavailable via analytical means although some estimates are available in literature [START_REF] Shahbazi | An explicit expression for the penalty parameter[END_REF]. The only requirement is to ensure that the penalty parameter is sufficiently large to cross the critical value. Thus for the application herein and in future we choose the penalty parameter based on experience. For the purposes of the next test we choose the penalty parameter to be η = 1000. The choice of penalty parameter should not be too high as experience has shown that it tends to rapidly increase the condition numbers of the discrete system. Fig. 4.5 displays the decay of the error with h-refinement for basis functions of various degrees. Starting with a coarse grid consisting of a single element, progressively finer grids are generated by quadrupling the number of elements. The Laplace equation is solved on each grid and the errors are recorded. The slope of the error obtained matches quite well the theoretical rate given within Eqn. 4.52, and is O(h k+1 ). 

Discretization of the Non-linear Term via Usage of Fluxes

We start with the form of problem in Eqn. 4.37 whose convective term is given by:

A 0 (v h , u h ) = T∈T T v h • ∇ h • F(u h )dx (4.54)
We perform integration by parts to obtain:

A 0 (v h , u h ) = - T∈T T ∇ h v h : F(u h )dx + T∈T ∂T (F(u h ) • n) • v h ds (4.55)
The terms at the element boundaries may be rewritten by using the average and jump operators, to obtain:

A 0 (v h , u h ) = - T∈T T ∇ h v h : F(u h )dx + F∈F i F { {F(u h ) • n} } • v h ds + F ∈F b g F (F(u h ) • n) • v h ds (4.56) 
We replace the interface and boundary terms by a numerical flux denoted by F N (u h ) and thus we obtain the bilinear form A nl (v h , u h ) given as:

A nl (v h , u h ) = - T∈T T ∇ h v h : F(u h )dx + F∈F i ∂T F N (u h ) • v h ds + F∈F b g ∂T F N (u h ) • v h ds (4.57)
Due to the discontinuous nature of the approximation space, at the interface between two elements T 1 and T 2 or across the physical boundary, u h is not single-valued. At the interface, u h may take the value u h | ∂T 1 or u h | ∂T 2 , while along the physical boundary u h may take the value u h | ∂T or g (the Dirichlet boundary condition). The numerical flux computes a unique flux values based upon the non-unique value of u h . We make use of the following compact notation:

u - h = u h | ∂T 1 in F ∈ F i u h | ∂T in F ∈ F b g u + h = u h | ∂T 2 in F ∈ F i g in F ∈ F b g
in order to define the simplest numerical flux, which is the central flux given as:

F C (u h ) = F(u - h ) • n + F(u + h ) • n 2 (4.58)
We can modify the central flux term into an upwind flux term by the addition of an upwind contribution:

F U (u h ) = F(u - h ) • n + F(u + h ) • n 2 + η u 2 (u --u + ) (4.59)
This type of flux is called a Rusanov or generalised Lax-Friedrichs numerical flux when the term η u is defined as:

η u = sup u h ( ∂F(u h ) ∂u h • n (4.60)
To minimise the numerical dissipation and computational effort, the definition of η u is modified, to compute the supremum based upon only the two values across the interface:

η u = sup [u - h ,u + h ] ( ∂F(u h ) ∂u h • n (4.61)
When this modification is applied F U (u h ) is called the Local-Lax-Friedrichs (LLF) numerical flux. In practice the condition in Eqn. 4.61 is often replaced by:

η u = sup [u -,u + ] (F(u - h ) • n -(F(u + h ) • n u - h -u + h if u - h = u + h η u = F(u + h ) • n if u - h = u + h (4.62)
This type of flux is called the Roe numerical flux [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF].

Discretization of Pressure and Divergence Terms

The discretization of the pressure term and the divergence term are intrinsically linked with one another. They are also linked with the stabilisation mechanism required to satisfy the inf-sup condition [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF]. We define the discrete bilinear form for the pressure term b grad h

(v h , p h ) = T∈T T v h •∇ h p h dx.
Integrating element-wise and grouping together terms along the interface and boundary we obtain:

b grad h (v h , p h ) = - T∈T T ∇ h • v h p h dx + F∈F F v h • n{ {p h } } ds (4.63)
In a similar manner we can obtain the bilinear form of the divergence term b div h (u h , q h ) = -T∈T T q h ∇ h • u h dx which is expanded below:

b div h (u h , q h ) = T∈T T u h • ∇ h q h dx - F∈F i F { {u h } } • n q h ds (4.64)
We may rewrite the two equations above by using interfacial fluxes. For Eqn. 4.63 we obtain:

b grad h (v h , p h ) = - T∈T T ∇ h • v h p h dx + F∈F F v h • n F grad ds (4.65)
where:

F grad = { {p h } } on F ∈ F i p h on F ∈ F b
and for Eqn. 4.64 we obtain:

b div h (u h , q h ) = T∈T T u h • ∇ h q h dx - F∈F i F F div q h ds (4.66)
where:

F div = { {u h } } • n on F ∈ F i 0 on F ∈ F b
The discretization presented above is incomplete as the stabilisation mechanism for the inf-sup condition is closely linked with the divergence operator and has not been included. We do this in the next section.

Pressure-Stabilised DG-FEM Discretization of INS Equations

Based on the results of Sec. 4.6.4 to 4.6.7 we rewrite the preliminary DG-FEM bilinear form, B 0 h (W h , U h ) in Eqn. 4.39 as:

B 0 (W h , U h ) = ∂ t (v h , u h ) + νa sip h (v h , u h ) + A nl h (v h , u h ) + b grad h (v h , p h ) -b div h (u h , q h ) (4.67)
This discrete system does not satisfy the inf-sup condition. The loss in the well-posedness of the discrete system is directly linked to the discretization of the pressure and divergence terms with the discrete bilinear form b h (•, •). Numerous works [START_REF] Cockburn | An equal-order DG method for the incompressible Navier-Stokes equations[END_REF][START_REF] Cockburn | The local discontinuous Galerkin method for the Oseen equations[END_REF][START_REF] Cockburn | Local Discontinuous Galerkin methods for the Stokes System[END_REF][START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF] have shown that for a discontinuous velocity-pressure space, it is possible to recover well-posedness of the discrete bilinear form by the addition of the following semi-norm:

|q h | Q h = F∈F i ν -1 h F q h 2 L 2 (F) 1 2 (4.68)
This semi-norm takes into account the jumps of functions q h ∈ Q h across the interfaces. Thus, due to the inclusion of this semi-norm we have the estimate:

sup {v h ∈ V h \{0}} Ω q h ∇ h .v h dx v h V h + |q h | Q h ≥ β h q h Q h (4.69)
where β h is the inf-sup constant. Thus the inf-sup condition is satisfied as the bilinear form can then be kept positive and bounded away from zero independent of the mesh. The resulting stabilising bilinear form that must be included into the discretization can be determined from the semi-norm to be:

S h (q h , p h ) = F∈F i h F ν F q h p h ds (4.70)
This is the pressure-stabilisation term that is added to Eqn. 4.67 to obtain a discrete system that is well posed:

B(W h , U h ) = ∂ t (v h , u h ) + a sip h (v h , u h )+A nl h (v h , u h ) + b grad h (v h , p h ) -b div h (u h , q h ) + S h (q h , p h ) (4.71)
If we recall our discussion in Sec. 4.4, we may rewrite the Stokes operator of Eqn. 4.71 in the form of a matrix:

∂ t (v h , u h ) + νa sip h (v h , u h ) b grad h (v h , p h ) -b div h (u h , q h ) S h (q h , p h )
The pressure-stabilisation term occupies the previously empty diagonal space (Sec. 4.4) and in doing so ensures that the null-space of the matrix is zero. To simplify the construction of the discrete system we can club the pressure-stabilisation term with the divergence operator presented in Eqn. 4.66. To do this we redefine b div h (u h , q h ) for the divergence term as:

-b div h (u h , q h ) = Ω q h ∇ h • u h dx = - T∈T T u h • ∇ h q h dx + F∈F i F F div q h ds (4.72)
where:

F div = { {u h } }.n + h F ν p h on F ∈ F i 0 on F ∈ F b
This new definition of the fluxes includes the pressure jumps that represents the pressurestabilisation term. Thus we have our final discrete system which represents the pressurestabilised DG-FEM bilinear form of the INS equations:

B(W h , U h ) = ∂ t (v h , u h ) + νa sip h (v h , u h ) + A nl h (v h , u h ) + b grad h (v h , p h ) -b div h (u h , q h ) (4.73)

Error Estimates

The classical error estimate for the velocity in the L 2 -norm is given by:

u h -u [L 2 (Ω)] d ≤ C u,p h k+1 (4.74)
and for the pressure we have the estimate:

p h -p L 2 (Ω) ≤ C u,p h k (4.75)
where

(u h , p h ) is the discrete solution, (u, p) ∈ ([H k+1 (Ω)] d , H k (Ω))
is the exact solution, h is the characteristic size of the element, k is the degree of the polynomial used for the construction of the approximation space,

C u,p = C u [H k+1 (Ω)] d + p H k (Ω)
and C is a constant independent of h. Both error estimates are optimal. Based upon the convergence rate for the velocity error we denote a simulation using polynomials of degree k, as a (k + 1) th -order scheme.

The overall approach described within this chapter and the Appendix B represents our scheme for performing high-fidelity DNS and LES computations to be seen in all subsequent chapters and details may be found within [START_REF] Cockburn | The local discontinuous Galerkin method for the Oseen equations[END_REF][START_REF] Cockburn | Local Discontinuous Galerkin methods for the Stokes System[END_REF][START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF][START_REF] Shahbazi | An explicit expression for the penalty parameter[END_REF][START_REF] Shahbazi | A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations[END_REF]. For now we deal with a minor 2D test case to demonstrate the performance of this approach. 

Convergence Test: 2D TGV

The 2D TGV is a widely used test case for the testing of incompressible schemes owing to the fact that its analytical solution is known. It is an unsteady test case whose exact solution exhibits an exponential damping in time, the rate of which is governed by the magnitude of the kinematic viscosity. The objective of this test case is to validate the order of convergence of the spatial DG-FEM discretization (described earlier in Sec. 4.6.8) and the temporal discretization (described earlier in Sec. 4.5.1) for the full INS system of equations.

Exact Solution, Initial Conditions and Quantities of Interest

A bi-periodic square domain Ω = [0, 1] 2 has the following exact solution for velocity and pressure profiles which vary in space and time given by: u(x, y, t) = sin(2πx) cos(2πy)e -8π 2 νt v(x, y, t) = -cos(2πx) sin(2πy)e -8π 2 νt p(x, y, t) = 1 4 (cos(4πx) + cos(4πy))e -16π 2 νt (4.76)

The exact solution at t = 0 is used as the initial condition. The velocity and pressure field serve as our quantities of interest. The kinematic viscosity is set to ν = 10 -3 which results in a Re = 1000.

Computational Grids, Boundary Conditions and Time-Step

For the purpose of this test the domain is discretized by uniform quadrilateral elements.

Results and Discussions

A Word on Notation: In the figures and discussion that follow, the name 'P k' implies the usage of Lagrange polynomials, of degree 'k' per direction 'd', as the basis functions of the local approximation space for velocity and pressure i.e.

Q d k (T) -Q d k (T)
Temporal Convergence

First we attempt to examine the behaviour of the projection methods used for the pressurevelocity coupling. We have implemented both projection methods detailed in Sec. 4.5.1. The domain is partitioned into 16 Cartesian elements per direction. Each element uses a Q 8 -Q 8 polynomial approximation space and thus the spatial scheme is ninth-order accurate. The spatial discretization is made deliberately fine to avoid the spatial errors from interfering with the temporal errors. Starting with a time-step size of 0.1, we generate successively finer timesteps by halving the previous time-step. The solution is then evolved up to the same final time of 1 at which the errors are computed. The velocity and pressure field at time t = 1 is shown in Fig. 4.6 for clarity. 

( u h -u [L 2 (Ω)] d
) and the pressure error ( p h -p L 2 (Ω) ) respectively. We see that the standard pressure-correction method exhibits first-order convergence, O( t), for both variables, in keeping with the error estimates presented in Eqn. 4.23. The incremental pressure-correction method exhibits second-order convergence, O( t 2 ), for both variables, in keeping with the error estimates presented in Eqn. 4.29. A comparison of the numerical errors with the error estimates in Eqns. 4.23 and 4.29 shows that the numerical rate of convergence of the pressure is superior to that indicated within the estimate while that of the velocity is the same as that given within the estimate.

Spatial Convergence

Now we analyse the spatial convergence of our method for this test case. The temporal scheme used is the incremental pressure-correction scheme and the time-step chosen is 10 -4 . The small time-step in conjunction with the second-order projection method yields a temporal error which is far lower than the spatial error. Starting with a single element, we generate progressively finer grids by quadrupling the number of elements. The solution is evolved up to the final time of 1.0 at which the error is computed.

The behaviour of the velocity and pressure errors are displayed within Figs. 4.9 and 4.10 respectively. On examining the h-convergence of the method we see that the velocity exhibits a convergence rate of O(h k+1 ) which is in keeping with the error estimates presented in Eqn. 4.74. Similarly the pressure exhibits a convergence rate of O(h k ) as stated by the error estimate in Eqn. 4.75. It is interesting to note that on a given grid the velocity error is always lower than the pressure error, with the difference between the two becoming quite large as the polynomial order is increased.

Conclusion

We have tested the individual blocks as well as the entire solver method, and we have found them to perform satisfactorily. To recap the DG-FEM solver which we use is based upon pressurestabilised DG-FEM, using a tensorised, nodal Lagrange basis for constructing an element-wise, equal-order, collocated, non-conforming velocity-pressure space. Pressure-velocity coupling is best achieved via the second-order incremental-pressure correction scheme and temporal discretization is performed via second-order accurate IMEX-BDF2 scheme. Nous nous concentrons d'abord sur le cas test LDC 2D à Re = 1000. Nous explorons ce cas test à travers une variété de maillages et d'ordres de précision dans les schémas. La discrétisation est seulement basée sur des flux centrés sans sur-intégration. Nos résultats sont décrits dans la section 5.2.3. Afin de comparer la simulation DG-FEM à une DNS de référence, nous utilisons trois quantités : la vitesse-u de la ligne médiane verticale, la vitesse-v de la ligne médiane horizontale, et la vorticité-z de la paroi mobile. Par comparaison avec les données DNS de référence, plusieurs observations sont présentées. L'accord des données à partir de simulations utilisant les schémas d'ordre élevé est supérieur à celui obtenus à partir de schémas d'ordre bas pour un nombre de degrés de liberté égal. Pour les vitesses u et v, la résolution est excellente pour toutes les simulations sauf pour celle utilisant le schéma d'ordre le plus bas (ordre 3) sur la grille la plus grossière (24 3 degrés de liberté). Cependant, la situation est assez différente concernant la vorticité près de la paroi mobile, en particulier à sa jonction avec la paroi fixe de la cavité la vorticité tend vers l'infinité. Seul le schéma d'ordre le plus élevé (ordre 9) est capable d'approcher la valeur de référence. Ces résultats renforcent l'intérêt de l'utilisation de schémas d'ordre élevé en simulation numérique.

Ensuite, nous examinons le cas test TGV 3D à Re = 500 et Re = 1600 au sein de la section 5.3.4. Il s'agit d'un cas test instationnaire dans un cube unitaire avec des conditions limites périodiques. Ce cas test correspond à une transition laminaire/turbulence complète dans l'écoulement. En dépit de la simplicité de la géométrie et des conditions limites, le comportement de l'écoulement est assez complexe et sa prédiction est un défi. Les quantités d'intérêt considérées sont l'enstrophie , l'énergie cinétique E k et le taux de dissipation de l'énergie cinétique ε. Ces quantités sont comparées à une DNS de référence. Comme déjà mentionné, deux nombres de Reynolds sont considérés avec Re = 500 et Re = 1600. Le TGV 3D à Re = 500 est utilisé pour évaluer la convergence h (voir le détail dans le tableau 5.2) et la convergence p (voir le détail dans les tableaux 5.3 et 5.4) de la méthode basée sur des flux centrés sans sur-intégration. La convergence en h est bien vérifiée pour des schémas d'ordre 5 avec un fonctionnement satisfaisant de la méthode numérique. La convergence en p l'est également pour deux ensembles de maillage, l'un pour lequel le nombre d'éléments est gardé fixe et l'autre pour lequel c'est le nombre de degrés de liberté fixe qui est maintenu constant. Pour cette deuxième famille de tests également, le fonctionnement des schémas numériques est satisfaisant. Le TGV 3D à Re = 1600 étant un peu plus exigeant, seule convergence en h est évaluée à partir de schémas d'ordres 5 et 9. L'utilisation de flux décentrés est alors introduit en complément à leurs homologues centrés de même que la technique de sur-intégration en raison des effets de repliement (aliasing en anglais) qui deviennent important pour des nombres de Reynolds élevés. Le détail des simulations est fourni dans les tableaux 5.5 et 5.6. Le raffinement du maillage pratiqué montre que les quantités d'intérêts convergent vers celles de la DNS de référence. Il est observé que la technique de sur-intégration est cruciale pour maintenir la stabilité en énergie de la méthode. Il est également remarqué que par comparaison avec les flux centrés, les flux décentrés permettent d'obtenir pour les quantités d'intérêt des courbes plus lisses et plus proches de leurs valeurs de référence obtenues par DNS. La différence entre flux centrés et décentrés s'avère plus prononcée pour des schémas d'ordre bas et des grilles grossières.

Introduction

In this chapter we test the DG-FEM method, outlined in chapter 4, on two, more complex INS problems: the lid driven cavity (LDC) problem in 2D, and the Taylor-Green Vortex (TGV) in 3D.

The LDC problem offers increased complexity as compared to the problems considered previously due to the presence of stationary and moving wall (no-slip) boundary conditions. Furthermore the presence of corner singularities at the junction between the moving and stationary walls is rather challenging as they are known to introduce spurious oscillations into the solutions [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF]. The common procedure to overcome this problem is by regularising the moving wall velocity [START_REF] Botella | Benchmark spectral results on the lid-driven cavity flow[END_REF]. This is done by ensuring that at the junction, the moving wall velocity is allowed to decline to zero rapidly while remaining sufficiently smooth. The pressure-stabilised DG-FEM method described in chapter 4 is believed to be better suited to handle rapid changes (and discontinuities either in the domain or along the boundary) thanks to the use of a nonconforming approximation space [START_REF] Ern | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF]. Thus, for this test problem we prefer not to use the regularised boundary conditions to check whether or not the DG-FEM discretization can handle this problem. We consider a Re = 1000, based upon the cavity width and the moving wall velocity. Suitable reference data is available due to calculations performed in [START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] In regards to the 3D TGV test case, this configuration describes a freely transitioning flow in a periodic box. The DNS resolution of the problem requires the usage of a large number of d.o.f. particularly at high Re, necessitating the usage of parallel calculations to obtain such a solution in a reasonable amount of time. The 3D TGV test case is used to evaluate the parallel implementation of the code. In particular we aim at evaluating our implementation of a parallel conjugate gradient solver for solving linear systems generated by the momentum equation (Helmholtz operator) and the divergence-free condition (Poisson operator). The conjugate gradient solver has not been preconditioned and despite this, it performs well as will be seen later. Also tested are the choice of flux functions (central and upwind) and overintegration factors which are important to maintain stability for long-time marginally resolved simulations of turbulent flows. The 3D TGV test case is undertaken at two Reynolds numbers: Re = 500 and Re = 1600. The 3D TGV test case has been widely studied in both the quasiincompressible [START_REF] Beck | On the influence of polynomial de-aliasing on subgrid scale models[END_REF][START_REF] Bull | Simulation of the compressible Taylor-Green vortex using highorder flux reconstruction schemes[END_REF][START_REF] Chapelier | Evaluation of a highorder discontinuous Galerkin method for the DNS of turbulent flows[END_REF] and fully incompressible frameworks [START_REF] Brachet | Direct simulation of three-dimensional turbulence in the Taylor-Green vortex[END_REF] and thus reference data are widely available.

2D Lid Driven Cavity

The 2D LDC test case is a benchmark test case for incompressible flow solvers. A square domain with no-slip wall boundary conditions along the side and bottom boundaries and fluid within is driven by a moving top wall, producing a flow whose structures increase in complexity as the Re is increased.

At low values of Re the flow is steady. However, beyond a critical value of Re (Re c = 10 255) a Hopf bifurcation occurs and the flow field is unsteady [START_REF] Fortin | Localisation of Hopf bifurcation in fluid flow problems[END_REF]. In our validation study, the appropriate Re chosen is sufficiently low to ensure that the flow remains steady.

While no exact solutions are available for the LDC problem, a variety of DNS calculations have been performed upon this configuration at Re = 1000 [START_REF] Botella | Benchmark spectral results on the lid-driven cavity flow[END_REF][START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] and as such the primary and derived variables are available for comparison. For our DNS reference (denoted by REF in the figures) we use the solution provided by [START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF], which has been computed with 2 nd -order finite-difference scheme with multi-grid relaxation on a grid composed of 128 2 d.o.f. At the steady state the horizontal and vertical centerline velocities and the moving wall vorticity from the DG-FEM are extracted and compared with the reference data.

Initial Condition, Boundary Conditions and Quantities of Interest

A square domain defined by Ω = [0, 1] 2 has the following initial and boundary conditions for the velocity and pressure.

u(x, 0) = 0 in Ω u(x, y = 1, t) = 1 u(x = 0, y, t) = u(x = 1, y, t) = u(x, y = 0, t) = 0
We are interested in the u-velocity component along the vertical centerline, the v-velocity component along the horizontal centerline and the z-vorticity (ω z ) along the moving wall for comparison against REF . The pressure residual has also been monitored to ensure that a true steady state has been reached.

Computational Grids and Solver Details

The details of the various simulations performed on this test case are summarized in table 5.1.

The Re chosen for this test is 1000. A uniform time-step of 10 -3 was chosen for all the grids based upon a CFL number of 0.33. The flux type chosen was central and no over-integration was performed as the Re is too low for the effects of aliasing to be dominant.

A Word on Notation: In the figures and tables that follow, the name 'nP kc' refers to a DG-FEM simulation which employs a grid with 'n' elements along each direction 'd'. 'P k' indicates the usage of Lagrange polynomials of degree 'k' per direction 'd', as the polynomial basis of the local approximation space for velocity and pressure i.e.

Q d k (T) -Q d k (T).
Finally 'c' refers to the usage of a central flux and 'u' will refer to the usage of an upwind flux.

Results and Discussion

The comparison between the various quantities of interest with the reference data is shown in the corresponding figures: vertical midplane u-velocity component in Fig. 5.2a, horizontal midplane v-velocity component in Fig. 5.2b and moving wall vorticity (ω z ) in Fig. 5.2c. The pressure residual is also shown in Fig. 5.2d and it shows that these simulations have reached their steady state. The results exhibit a behaviour which is as expected. We consider the centreline velocity graphs (Fig. 5.2a and Fig. 5.2b). There is very little to distinguish between the various graphs. Except for the simulations at the lowest resolution ( 20 2 d.o.f.) using 3 rd -order and 5 th -order schemes (8P 2c and 4P 4c), the curves produced by all the other simulations fall upon the reference for velocity. This clearly demonstrates the high accuracy achieved by DG-FEM, within the smooth region of the domain and near the corners, for the primary variables.

However, the behaviour is rather different when we look at the z-vorticity at the moving wall (Fig. 5.2c). It is quite hard for the numerical method to represent this quantity, particularly at the corners, where its value goes to ∞. Only the calculations using the 9 th -order scheme upon the finest resolution ( 70 2 d.o.f.), which is simulation 8P 8c, is capable of resolving it correctly. The reason for this poor behaviour is easy to understand. The corners are the locations of the discontinuities in the boundary condition (boundary changes from moving wall abruptly to the stationary wall). As such, due to the discontinuous boundary condition, the exact solution is no longer smooth and exhibits discontinuities. In the presence of these discontinuities the convergence of the numerical scheme is rather poor (being limited by the regularity of the exact solution).

However it is of interest to note that the curves of z-vorticity of the simulation described above (8P 8c) exhibits the presence of "wiggles" in the right corner (absent in the velocity curves). This may be a consequence of the post-processing routine used to compute the vorticity. The post-processing routine computes the vorticity using the original discontinuous velocity data and thus the smoothness of the computed vorticity cannot be ensured. This discrepancy can be witnessed visually within the next test case as well in Fig. 5.7. In chapter 7 we will address this issue by a suitable post-processing technique.

In summary, our conclusions are quite favourable. The simulations with the lowest polynomial orders (3 rd -order schemes) exhibit the least accuracy for a given number of d.o.f. The p-convergence of the method is clearly seen, as the accuracy of the prediction dramatically improves with increasing polynomial order while retaining nearly the same number of d.o.f. (seen in Fig. 5.2c when moving from the 3 rd -order simulation, 16P 2c to the 5 th -order simulation, 8P 4c and finally to the 9 th -order simulation, 4P 8c). It is also plain to see the h-convergence, with increasing the number of d.o.f. for a given polynomial order.

3D Taylor-Green Vortex

The 3D TGV is a widely used test case in the evaluation of numerical methods for simulating turbulence. It is a geometrically simple test case in which several complex phenomenon, present in virtually all transitional and fully turbulent flows, can be witnessed. Starting from an analytical initial condition over a tri-periodic cubic domain, the solution is time-advanced until a specific final time. The flow gradually transitions from laminar to turbulent exhibiting an enstrophy peak. Following this phase the turbulence undergoes a free decay. The test case involves acquiring and comparing several quantities of interest, namely the enstrophy, the kinetic energy and the energy dissipation rate which are then compared to reference DNS data (denoted as REF within all figures). The reference data was obtained from the [START_REF] Chapelier | Développment et Évaluation de la Méthode de Galerkin Discontinue pour la Simulation des Grandes Échelles des Écoulements Turbulents[END_REF] which made use of a spectral code with 512 3 d.o.f.

Initial Condition, Boundary Conditions and Quantities of Interest

A tri-periodic cubic domain Ω = [-π, π] 3 is initialised with the following velocity field:

u(x, t = 0) = sin(x) cos(y) cos(z) v(x, t = 0) = -cos(x) sin(y) cos(z) w(x, t = 0) = 0 (5.1)
We are interested in monitoring the behaviour of the mean enstrophy ( ), the mean kinetic energy (E k ) and the mean kinetic energy dissipation rate (ε). The formulae for which are given below as:

= 1 Ω Ω ω : ω 2 ∂Ω (5.
2)

E k = 1 Ω Ω u • u 2 ∂Ω (5.3) ε = - dE k dt (5.4)
where the vorticity ω = ∇ × u. The fact that the exact velocity field is exactly divergence-free allows for the relation between the enstrophy and the kinetic energy dissipation namely

ε = 2ν (5.5)
For reasons of brevity, in future we refer to kinetic energy as k.e. and the kinetic energy dissipation as k.e. dissipation.

Physical Considerations

The principal feature of the TGV is the fact that the initial conditions are wholly anisotropic but as the solution evolves the flow structures gradually move to an isotropic state. The initial state and the early time period of the simulation are dominated by large-scale low-wavenumber features. As time marches on, the large-scales undergo a breakdown into smaller-scale features.

The enstrophy which is dominated by the high-wavenumber components grows rapidly while the kinetic energy which is constantly being eroded by viscous dissipation undergoes a monotonic decay. The enstrophy hits a peak value at a particular time, beyond which the enstrophy begins to undergo a general decay. The turbulence is now in its freely decaying state and in time will be entirely damped out via viscous effects. 

Computational Grids and Solver Details

The computational domain is discretized by means of hexahedral elements to produce a uniform mesh. The boundary conditions used are fully periodic on a box spanning [-π, π] 3 . The timestep used for all the simulations was t = 2 × 10 -3 based upon a CFL number of 0.33. We use two Reynolds numbers: one low Re = 500 (simulation details in tables 5.2 to 5.4) and one moderate Re = 1600 (simulation details in tables 5.5 and 5.6). The principal difference between the two sets of simulations is that for Re = 500 a central flux with no over-integration has been used while for Re = 1600 we utilise both central and upwind fluxes and over-integration with distinct visible effects. The usage of over-integration is crucial at Re = 1600. In the absence of over-integration it is not possible to achieve stable simulations, irrespective of the flux type employed.

Results and Discussion

Low-Reynolds Number Re = 500

This is the first test case in which we attempt to demonstrate the performance of the method on the full 3D INS equations. There are several interesting questions to be asked. We would like to check the convergence properties of the method. We would like to show that the usage of higher polynomial orders provide an improvement in the prediction while reducing the number of d.o.f. in use.

We first focus upon the h-convergence. A 5 th -order scheme is chosen and a sequence of grids, each successively finer than the former, are generated. Due to the low value of the Re involved no over-integration is required. The convective term employs the use of a central flux. Details about these simulations are provided in table 5.2. The behaviour of the enstrophy, k.e and k.e. dissipation are shown in Figs. 5.3a to 5.3c. It is immediately apparent that the quantities of interest do exhibit convergence towards the reference DNS with h-refinement. As expected the prediction by the low-resolution simulation 8P 4c with 40 3 d.o.f. is the worst, with all predicted values far from the DNS reference. The k.e. behaviour exhibits a crossover at around t = 10 from an under-prediction of the k.e. in the interval [0, 10] to a subsequent over-prediction. The medium-resolution simulation 12P 4c with 60 3 d.o.f., performs fairly well, exhibiting an underprediction of the k.e. over the entire time range [0, 12], while its prediction of the enstrophy and k.e. dissipation is good. The high-resolution simulation 16P 4c using 80 3 d.o.f., exhibits a near perfect matching with the reference curves on all the quantities of interest. Next we focus upon the p-convergence. We attempt this for three different values of the polynomial degree: k = 2, 4 and 8. We carry out this study in two different manners. First we keep the number of elements fixed at N e = 12 while increasing the polynomial order. The details of these simulations are provided in table 5.3. Second, we keep the number of d.o.f fixed at around 60 3 , while gradually increasing the polynomial order. The details of these simulations are summarised in the table 5.4. First we describe the results of p-convergence keeping the number of elements constant. For this set of simulations, the enstrophy (Fig. 5.4a), k.e. (Fig. 5.4c) and k.e. dissipation (Fig. 5.4e) are shown. The low-resolution simulation 12P 2c, using a 3 rd -order scheme and 36 3 d.o.f., provides the poorest results. The medium-resolution simulation 12P 4c, using a 5 th -order scheme and 60 3 d.o.f., exhibits a dramatic improvement and captures well the shape of the reference DNS curves but does not match them. Finally the finest-resolution 12P 8c using a 9 th -order scheme and 108 3 d.o.f., exhibits perfect matching with the DNS. Although the number of elements has been kept the same, the number of d.o.f. has increased throughout with the increasing polynomial order. Thus next we keep fixed the number of d.o.f. while increasing solely the polynomial order.

We now focus upon p-convergence, keeping the number of d.o.f. constant ( 60 3 ). For this set of simulations, the enstrophy (Fig. 5.4b), k.e. (Fig. 5.4d) and k.e. dissipation (Fig. 5.4f) are shown. The low-order simulation 20P 2c, using a 3 rd -order scheme, exhibits a poor performance. The medium-order simulation 12P 4c, using a 5 th -order scheme, performs better but does not match the reference DNS. However the high-order simulation 7P 8c, using a 9 thorder scheme, exhibits excellent behaviour and is nearly upon the DNS reference. The accuracy in the prediction achieved by this simulation using 63 3 d.o.f. can only be matched by a 4 th -order simulation using 80 3 d.o.f. (16P 4c in Figs. 5.3a to 5.3c). Thus in this test case doubling the polynomial order has reduced the number of degrees of freedom by a third for the same level of accuracy. This clearly shows that higher p leads to a saving in the number of degrees of freedom. We now move on to the 3D TGV at Re = 1600. By increasing the Re the convective effects dominate over a greater range of wavenumbers and the dissipative effects are confined to a smaller wavenumber range. As a result the small scales now possess significant energy and any inability to resolve these scales on the grid (grid under-resolution) will lead to them being aliased onto the large scales. This aliasing phenomenon is characterised by the presence of 2h-waves, which can be seen in a visual inspection of the solution and the presence of an energy pileup around the cutoff wavenumber in the energy spectra. If allowed to persist this energy pileup eventually produces a self-reinforcing behaviour which causes the simulation to exhibit an energy "blow up"-the energy becoming unbounded in finite time and causing the simulation to fail.

To avoid this problem we perform over-integration, in order to integrate the convective term exactly. We chose an over-integration ratio of 1.5, i.e. we use 1.5 times the number of integration points to integrate the convective terms. Our usage of a factor of 1.5 may be seen as too orthodox and computationally very expensive, however since the major computational cost in this simulation is due to the PPE solve (nearly 80%), the overhead in computational cost introduced by over-integration is barely noticed. Furthermore to study the effect of the nature of the convective numerical fluxes upon the simulation, we use both central and upwind fluxes. As will be seen later the quality of the solution is rather dependent upon the type of flux used.

We focus upon the h-convergence of the method. The polynomial orders are kept fixed and a sequence of finer grids is used to judge the convergence behaviour. We attempt to keep the number of degrees of freedom used as close as possible to 64 3 , 128 3 and 256 3 in the domain [-π, π] 3 using polynomials of degree k = 4 and k = 8. The details for the grids and solver are provided in table 5.5 (central flux) and 5.6 (upwind flux). The quantities of interest for simulations using the central flux are shown in Figs. 5.5a, 5.5c and 5.5e, while for for the upwind flux they are shown in Figs. 5.5b, 5.5d and 5.5f. These figures show the evolution of the enstrophy (Figs. 5.5a and 5.5b), the k.e. (Figs. 5.5c and 5.5d) and the k.e. dissipation (Figs. 5.5e and 5.5f) with time. As expected, the quantities of interest exhibit a convergence towards the reference solution with h-refinement. It can also be oberved that the higher polynomial orders exhibit superior accuracy than the lower polynomial orders on equivalent grid resolutions. Furthermore the usage of the upwind fluxes produces results which We first discuss the simulations using the lower-order scheme (5 th -order) upon the lowresolution mesh ( 64 3 d.o.f) using central and upwind fluxes. These are simulations 12P 4c and 12P 4u respectively. These simulations are both the poorest in terms of accuracy. They greatly under-predict the k.e. while greatly over-predicting the k.e. dissipation. This is expected behaviour. However as can be seen there is no crossover point in the k.e. prediction (Fig. 5.5c (central flux) and Fig. 5.5d (upwind flux)) from an under-prediction to an overprediction. A noticeable difference between the two simulations is how the usage of the upwind flux has greatly smoothed out the curves for the enstrophy and k.e. dissipation (seen in Fig. 5.5b and 5.5f respectively) versus the simulations with the central flux (seen in Figs. 5.5a and 5.5e, respectively). This may be explained by the fact that the enstrophy behaviour is dominated by the small scales. The central flux on the convective terms exhibits no damping in the small-scale region and as such their effect shows up in the enstrophy curve. The usage of an upwind flux modulates the spectral response of the convective term in such a way so as to induce a dissipation in the small-scale region. which results in the enstrophy exhibiting a smoother evolution. This observation holds true at all grids and polynomial order combinations.

The next set of simulations pertains to the usage of the higher-order scheme (9 th -order) upon the low-resolution mesh described above ( 64 3 d.o.f.) using central and upwind fluxes. They are simulations 7P 8c and 7P 8u respectively. It can be seen that the improvement achieved in all the quantities of interest is quite drastic (Figs. 5.5a, 5.5c and 5.5e for the central flux and Figs. 5.5b, 5.5d and 5.5f for the upwind flux). The gains obtained by doubling the polynomial order are far greater at coarse resolutions, far from mesh convergence than at higher resolutions, where mesh convergence has nearly been achieved.

The next set of simulations pertain to the medium-resolution mesh ( 128 3 d.o.f.) using central and upwind fluxes. They are 24P 4c, 24P 4u for the lower-order scheme and 14P 8c, 14P 8u for the higher-order scheme with their respective fluxes. We see here that these simulations provide superior prediction in every way compared to the low-resolution case. What is of importance to note is the occurrence of the spurious "second peak" which develops just after the true peak in the curves of the enstrophy and the k.e. dissipation. We can see that this second peak is quite pronounced in the simulations using the central flux (seen in Figs. 5.5a and 5.5e), while the usage of the upwind flux greatly damps out this peak and restores the appropriate shape to the curves (seen in Figs. 5.5b and 5.5f). This observation holds true for the simulations at finer grid resolutions as well.

The final set of curves are for the high-resolution mesh ( 256 3 d.o.f.) using 5 th -order and 9 th -order schemes with either central and upwind fluxes. They correspond to 48P 4c, 48P 4u for the low-order scheme and 28P 8c, 28P 8u for the high-order scheme with their respective fluxes. These simulations exhibit very good agreement with the reference curves. The simulation 28P 8u provides the best results though, and the k.e. dissipation is captured nearly exactly, particularly at the peak value (seen in Fig. 5.5f). The velocity field obtained from the simulation using the central flux and the lower-order scheme, 48P 4c, has been extracted at various times. This velocity field has been used to compute the Q-criterion, the iso-surfaces of which are displayed within Fig. 5.7. The Q-criterion is a means of vortex detection and the figure shows the development of the flow from its early laminar phase (t = 0.2), through its mid-phase (t = 4) and peak (t = 8) and finally at its fully developed state (t = 11.8). The post-processing reveals spurious high-wavenumber modes and is a consequence of computing the Q-criterion with the original discontinuous velocity field. In chapter 7 we put forth a post-processing technique to ameliorate this condition.

These simulations help lay the groundwork for our future turbulence calculations on the 3D TGV at higher Reynolds numbers, as they prove that the method is stable, convergent and accurate on this configuration. Furthermore the transitional nature of the test case has allowed us to place a certain measure of confidence in the temporal and spatial discretization algorithm and allows us to proceed to more challenging simulations.

Conclusions

In conclusion we see that the DG-FEM performs quite well for the LDC and 3D TGV test cases at their respective Reynolds numbers. The properties of stability, consistency and convergence (both h-and p-) have been witnessed throughout all the simulations.

The LDC case has shown the excellent convergence behaviour within the smooth part of the solution while it is rather poor in the presence of discontinuities. The simulations using the low polynomial orders P 2, are the least accurate, however accuracy increases dramatically for simulations using high orders, namely P 4 and P 8, for the same number of degrees of freedom (p-convergence). Similarly grid refinement exhibits convergence towards the unique solution for a given polynomial order (h-convergence). We also note that the agreement of the derived quantities (vorticity) with the reference is generally poorer than the agreement of the primal quantities (velocity) with the reference, however this is to be expected.

The 3D TGV was primarily used to test the parallel implementation of the code and its behaviour upon a fully turbulent flow. Two Reynolds numbers were selected: Re = 500 and Re = 1600. At Re = 500 (low Reynolds number) the usage of the central flux was retained and no over-integration was performed. The code remains stable, consistent and convergent allowing us to match the reference with 5 th -order simulation 16P 4c using 80 3 d.o.f. and 9 thorder simulation 7P 8c using 63 3 d.o.f.. At Re = 1600 (moderate Reynolds number) the usage of over-integration was crucial for the stability of the code. Two flux types were investigated: the central and upwind flux. With either flux setting the code is stable, consistent and convergent with the reference extremely close to being matched by 9 th -order simulation 28P 8u using the finest grid (256 3 ). What is particularly noticeable is that the usage of an upwind flux in the convective term is seen to be quite beneficial. This has also been noticed within simulations by other authors [START_REF] Moura | On the eddy-resolving capabilities of high-order discontinuous Galerkin approaches to implicit LES/ under-resolved DNS of Euler turbulence[END_REF]. In general the curves of the integrated quantities are found to be smoother and match the reference curves better, particularly near the peak, using upwind fluxes rather than central fluxes. This effect is more pronounced for the lower order P 4 simulations rather than the higher order P 8 simulations as can be seen in the close up of the k.e. dissipation curves shown in Figs. 5.6a and 5.6b, where the upwind flux appears to play an important role in suppressing the spurious "second peak". We retain the usage of the upwind fluxes in future as well for our LES computations. This is in keeping with what is noticed by several other authors [START_REF] Beck | On the influence of polynomial de-aliasing on subgrid scale models[END_REF][START_REF] Moura | On the eddy-resolving capabilities of high-order discontinuous Galerkin approaches to implicit LES/ under-resolved DNS of Euler turbulence[END_REF]. Wavelet-Based VMS-LES Dans ce chapitre, nous nous concentrons sur le développement de l'approche VMS-LES basée sur les ondelettes (WAV-VMS-LES). La composante principale de cette approche est l'opération de séparation d'échelles multi-dimensionnelle basée sur les ondelettes dont l'exploration se fait dans ce chapitre. Une démarche d'étalonnage de la constante de Smagorinsky, C s , est également présenté pour le cas où le modèle Smagorinsky est utilisé dans un contexte multi-échelles.

La SGWT multi-dimensionnelle, introduite dans le chapitre 3, s'appuie sur une tensorisation de la transformée 1D. Dans ce chapitre précédent, il a été vu que la tensorisation du SGWT multi-niveaux 1D produisait une structure appelée décomposition standard. Nous revisitons ces éléments dans la section 6.2. Les propriétés de séparation d'échelles de la SGWT multidimensionnelle n'ont pas été abordées dans le chapitre 3 et nous nous concentrons donc sur ce sujet dans le présent chapitre.

La complexité de la structure du tenseur SGWT multi-dimensionnelle rend difficile la détermination explicite de l'ensemble des espaces qui représente respectivement les nombres d'ondes bas et élevés. Afin de surmonter ce problème, il est stipulé dans la section 6.2.2 que les espaces de fonction d'échelle pure représentent les nombres d'onde bas tandis que les espaces combinés restants représentent les nombres d'onde élevés. Une représentation schématique de ce principe est fourni aux figures 6.1a et 6.1b. Ensuite, la question de la localisation de la transformée par éléments est abordée. La localisation est une propriété très importante pour développer des méthodes numériques efficaces. En localisant le SGWT par élément, des espaces locaux sont produits. Les espaces globaux sont alors simplement la somme des espaces locaux. Dans ce cadre, l'espace de fonction d'échelle pure globale généré par la somme de tous les espaces de fonction d'échelle pure locale représente les nombres d'onde bas, tandis que la somme des espaces locaux restants représente les nombres d'onde élevés. Ces concepts sont détaillés dans la section 6.3.

Pour déterminer les propriétés de séparation d'échelle de cette construction, un test est d'abord effectué en section 6.3. Le test consiste en un signal contenant à la fois des sinusoides à petit et grand nombres d'onde. En utilisant une SGWT par élément en conjonction avec l'opération de filtrage passe-haut et passe-bas, il est montré comment peut être effectuée une séparation d'échelles de ce signal mixte en ses composantes individuelles à petits et grands nombres d'onde. La fonction de transfert de l'opération de filtrage passe-haut et passe-bas associée est présentée aux figures 6.6 et 6.7. Ces fonctions de transfert révèlent que, contrairement à la transformée 1D présentée dans la section 3.4.1, les propriétés de la transformée SGWT multidimensionnelle sont moins bien définies en nombre d'onde. A partir d'une définition aboutie de l'opération de séparation d'échelle par éléments, son application aux INS est présentée dans la section 6.3.2.

Enfin, la question du réétalonnage de la constante de Smagorinsky lorsque le modèle est utilisé dans l'approche WAV-VMS-LES est examiné dans la section 6.4. La valeur initiale de la constante est basée sur le fait que la dissipation du modèle est appliquée à tous les nombres d'onde. Cependant, dans l'approche WAV-VMS-LES, puisque la dissipation du modèle est sélectivement confinée à une bande de grands nombres d'onde, la constante de Smagorinsky doit être réajustée en conséquence. Nous avons obtenu une relation pour la constante de Smagorinsky multi-échelles en fonction de la valeur de la constante Smagorinsky mono-échelle et du paramètre r qui est le rapport entre les nombres d'onde de coupure supérieurs et inférieurs associés à l'opération de filtrage passe-haut. La relation montre que lorsque la bande spectrale à l'intérieur de laquelle le modèle Smagorinsky est appliqué diminue, la constante de Smagorinsky multi-échelles augmente.

Introduction

In this chapter we will focus upon the formulation of the wavelet-based VMS-LES (WAV-VMS-LES) technique. In chapter 3 we had described the various properties of the SGW basis, the manner of construction and the nature of the transforms in 1D, 2D and 3D. As outlined previously in chapter 2, VMS-LES is dependent upon a scale-separation operation. WAV-VMS-LES uses the SGW basis for the purpose of scale separation. Thus in this chapter, we start by exploring the scale-separation properties of the multi-dimensional SGW basis. We focus particularly, upon the scale-separation property when the SGW transform (SGWT) is performed element-wise and examine its global effects in wavenumber space.

Following this we are in a position to describe the three-scale WAV-VMS-LES procedure, applied to a DG-FEM type discretization as described in chapter 4. Due to problems pertaining to accuracy when using SGW for the purpose of discretization (which are highlighted in this chapter), we choose the Lagrange basis described in chapter 4 for the purpose of discretization and use the SGW basis and transform solely for the scale-separation operation involved in the VMS procedure. The tensor structure of the Lagrange and SGW basis makes the extension to higher dimensions straightforward.

Finally, we describe the overall three-scale WAV-VMS-LES procedure when applied to the full INS equations. We focus upon the issue of the calibration of the Smagorinsky model in the WAV-VMS-LES framework. The classical Smagorinsky constant (C s ) is calibrated based upon the fact that the model dissipation acts upon all scales. From here on we refer to this as the mono-level Smagorinsky approach. With WAV-VMS-LES we must re-calibrate the model due to the fact that the model dissipation is confined to a distinct range of scales given by the scale-separation operation. The procedure for calibration is outlined and the new formula for C s is obtained solely in terms of the parameter r, which is ratio of the upper to lower cut-off wavenumber of the scale-separation operator.

Scale Separation Using the SGWT

We have seen in chapter 3 the properties of the SGW basis and its associated transform with regards to scale separation. We revisit those ideas here and clearly outline how a scale separation operation is to be defined in multi-dimensions.

Scale Separation in 1D

We first recall scale separation in 1D by using the SGW basis and SGWT described in chapter 3. For convenience we recall the major equations involved. A single level of the 1D SGWT acting upon the function space V J+1 produces (Eqn. 3.67 from chapter 3):

V J+1 = V J ⊕ W J (6.1)
V J is the scaling function space and W J is the wavelet space. In this case we stipulate that V J is the large-scale space which spans the low wavenumbers and W J is the small-scale space which We obtain the large-scale space (light grey in figure 6.1a):

W x J ⊗W y J W x J ⊗ V y J V x J ⊗ W y J V x J ⊗ V y J (a) One level of 2D SGWT W x J ⊗ W y J W x J ⊗ W y J-1 W x J ⊗ V y J-1 W x J-1 ⊗ W y J W x J-1 ⊗ W y J-1 W x J-1 ⊗ V y J-1 V x J-1 ⊗ W y J V x J-1 ⊗ W y J-1 V x J-1 ⊗ V y J-1 (b) Two levels of 2D SGWT
V xy J = (V x J ⊗ V y J ) (6.7) 
We denote P xy J (P xyz J in 3D) as the projection operator onto this space.

P xy J : L 2 (R) → V xy J (6.8) 
Similarly we obtain the small-scale space (dark grey in figure 6.1a):

W xy J = (V x J ⊗ W y J ) ⊕ (W x J ⊗ V y J ) ⊕ (W x J ⊗ W y J ) (6.9) 
and denote

Q xy J (Q xyz J in 3D
) as the projection operator onto it as:

Q xy J : L 2 (R) → W xy J (6.10)

Two Levels of the 2D SGWT

We obtain the large-scale space as (light grey in figure 6.1b):

V xy J-1 = (V x J-1 ⊗ V y J-1 ) (6.11) 
and denote P xy J-1 (P xyz J-1 in 3D) as the projection operator onto this space:

P xy J : L 2 (R) → V xy J-1 (6.12) 
define scaling function and wavelet spaces local to each element. V j (T), V xy j (T) and V xyz j (T) are the scaling function spaces on each element in 1d, 2d and 3d respectively while W j (T), W xy j (T) and W xyz j (T) are the wavelet spaces on each element in 1d, 2d and 3d respectively. Thus we may redefine the projection operators to be:

P j :L 2 (Ω) → V j (T) Q j :L 2 (Ω) → W j (T) P xy j :L 2 (Ω) → V xy j (T) Q xy j :L 2 (Ω) → W xy j (T) P xyz j :L 2 (Ω) → V xyz j (T) Q xyz j :L 2 (Ω) → W xyz j (T) (6.19)
where T represents a mesh element of the DG-FEM discretization. By summing up all these local spaces over all the elements we can obtain the global scaling function space: V j , V xy j and V xyz j in 1d, 2d and 3d respectively and the global wavelet space: W j , W xy j and W xyz j in 1d, 2d and 3d respectively.

V j = T∈T V j (T) W j = T∈T W j (T) V xy j = T∈T V xy j (T) W xy j = T∈T W xy j (T) V xyz j = T∈T V xyz j (T) W xyz j = T∈T W xyz j (T) (6.20) 
Thus starting with an initial set of element-wise spaces we have defined a new set of global spaces. The scale-separation concepts defined within Sec. 6.2.2 are applied here to the global scaling function and wavelet spaces. The process of localisation of the SGWT will have some consequences and thus we would like to understand the properties of a global scale-separation produced with element-wise transforms. However before we focus upon the scale-separation properties, we address a minor issue regarding:

• The degree of the wavelet basis function which may be constructed upon any given element: On any given element (with an associated number of d.o.f.) the highest degree SGW polynomial that may be constructed will always have a degree inferior to that of the highest degree Lagrange polynomial that can be constructed. This has implications for the usage of SGW as basis functions for numerical discretizations.

For brevity we talk about this issues in the context of 1D before reverting back to our discussion on the actual focus of our section: the element-wise scale-separation operation.

Degree of Wavelet Functions that can be Built Upon an Element

The construction of the SGW upon each element of the discretized domain introduces difficulties pertaining to the order of the subdivision scheme which may be used for the construction of the SGW.

Consider a single element containing 2N -1 nodal d.o.f. in one direction, which we call nodes from here on for brevity. The construction of a single scaling function or wavelet using a subdivision scheme of order N requires all 2N -1 nodes. This was outlined in section 3.3.1 and pertains to the stencil of the Lagrange interpolant used in the subdivision process. Thus with a single level of the SGWT, these 2N -1 nodes may be used to construct N scaling functions

L V 0 W 0 W 1 W 2 W 3 total nodes 1 2 1 3 2 2 1 2 5 3 2 1 2 4 9 4 2 1 2 4 8 17 
Table 6.1: Nodes per scaling function (V 0 ) and wavelet (W 0 , W 1 , ...) space with 2 nd -order subdivision scheme (N = 2) for different levels of the transform (L) Table 6.2: Nodes per scaling function (V 0 ) and wavelet (W 0 , W 1 , ...) space with with 4 th -order subdivision scheme (N = 4) for different levels of the transform (L)

L V 0 W 0 W 1 W 2 W 3 total
and N -1 wavelets. A second level of the SGWT is impossible since the N scaling function points are insufficient for any further constructions. Thus only a single level of the SGWT is possible.

However if an element contains 2(2N -1) -1 = 4N -3 nodes available, we have a bit more flexibility pertaining to the number of levels which we can achieve. One level of the transform generates 2N -1 scaling functions and 2N -2 wavelets with subdivision scheme of order N . In the next level of the transform, acting upon the scaling function points (2N -1 in number), it is possible to generate N scaling functions and N -1 wavelets using a subdivision scheme of order N . Thus two levels of the SGWT are possible.

Thus in general, for a subdivision scheme of order N and a SGWT with L number of levels, an element requires 2 L (N -1) + 1 nodes. Given alongside in tables 6.1 and 6.2, are the number of nodes required at each level of the SGWT for a few standard partitions which use this rule. These tables and the description given in the paragraphs above highlight the unsuitability of using SGW as basis functions for numerical discretizations. On an element containing 2N -1 nodes it is possible to build Lagrange, Legendre, Chebyshev etc. basis functions of degree 2N -2. However at best we can only construct wavelet basis functions (using subdivision of order N ) of degree < N . Thus by construction a wavelet basis will always be of degree half that of the best possible polynomial that could be constructed. This inherent sub-optimality of the SGW wavelet basis makes it extremely uncompetitive for element-based numerical discretization.

Global Scale-Separation Behaviour of Element-Wise SGWT

We now return to the primary focus of this section, the element-wise scale-separation operation using the SGWT. We demonstrate and explore the global filtering properties of the SGWT in its element-wise framework. Consider a signal f (x) ∈ L 2 (R). The discrete representation of this signal f J+1 (x) can be done by a multi-level SGWT, with m levels, performed element-wise over all the elements of the mesh (T):

f J+1 (x) = T∈T P J-m + J i=J-m Q i f (x) (6.21)
This in turn can be written as a series expansion of scaling functions and wavelets.:

f J+1 (x) = T∈T k∈K(J-m) s J-m k φ J-m k + J i=J-m m∈M(i) d i m ψ i m (6.22)
where s j k and d l m represent the scaling function and wavelet coefficients respectively and K(•) and M(•) represent the scaling function and wavelet index sets. We can perform low-pass filtering by retaining the scaling function space:

T∈T (P J-m f (x)) = T∈T k∈K(J-m) s J-m k φ J-m k (6.23)
We can perform high-pass filtering by retaining the wavelet spaces:

T∈T J i=J-m Q i f (x) = T∈T J i=J-m m∈M(i) d i m ψ i m (6.24)
The extension to higher dimensions for a general function, f (x) ∈ L 2 (R d ) is straightforward. Low-pass filtering must retain the large-scale space:

T∈T P xy J-m f (x) d = 2 and T∈T P xyz J-m f (x) d = 3 (6.25)
Consequently high-pass filtering must retain the small-scale space:

T∈T J i=J-m Q xy i f (x) d = 2 and T∈T J i=J-m Q xyz i f (x) d = 3 (6.26)
From an implementation point of view a major difference in the element-wise SGWT, occurs at the element boundaries. Due to the asymmetry of the scaling functions and the wavelets, preserving the moment cancellation properties in the presence of the boundaries is numerically difficult to enforce. The test for the scale separation operation involves the use of a 2D signal, given by f (x, y) = sin(2πx)sin(2πy) + sin(40πx)sin(40πy). This signal is represented on a discrete grid with 136 degrees of freedom per direction, using 8 elements with 17 d.o.f. per direction. We show how the element-wise SGW filtering is capable of separating out the large-scales from the small-scales.

To do this we perform the SGWT element-wise, upon the discrete representation of the signal using wavelets with N = Ñ = 8 and 1 level of the transform. We perform low-pass filtering by retaining the pure scaling function space and we perform high-pass filtering by retaining the cross spaces and pure wavelet spaces, per element. The filtered signal is reconstructed via the inverse SGWT. The 2D FFT behaviours of all three signals are plotted within the Fig. 6.2. The initial signal is displayed in Fig. 6.3, the low-pass filtered signal is displayed in Fig. 6.4 and the high-pass filtered signal is displayed in Fig. 6.5. Figure 6.2 shows the 2D FFT of the combined (shown in black) and filtered signals. The two frequency peaks are clearly visible at k=2 and k=40. We first attempt to carry out the low-pass filtering. First we perform the SGWT splitting the signal into the large-scale and small-scale coefficients. We then set all the small-scale coefficients to zero. We then perform the inverse SGWT. The 2D FFT of the reconstructed signal, shown in Fig. 6.2 (shown in green), indicates that the major component within the low-pass filtered signal is the large-scale component of the original signal. In addition a few small-scale features are slightly excited. This has been verified to correspond to errors occurring at the element boundaries due to interpolations and one sided stencils. What has been demonstrated via this test case is that performing element-wise low-pass or high-pass filtering produces a global low-pass or high-pass filtering operation. However it must be noted that the quality of the test has been further enhanced by the fact that the large-scale mode sin(2πx)sin(2πy) lies entirely within the pure-scaling function space while the small-scale mode sin(40πx)sin(40πy) lies entirely within the pure-wavelet space. A mode such as sin(2πx)sin(40πy) would lie within the cross space and the 2D FFT would not exhibit such a clean separation. Thus we have see how global filtering may be performed via using the wavelets in an element-wise framework.

Global Transfer Functions of Element-Wise Scale Separation Operation via SGWT

To truly determine the behaviour of the overall scale-separation operation we need to study the transfer functions G(k) of the filtering operations. We start with a domain Ω = [0, 1] 2 . This domain is discretized into a varying number of elements depending upon the type of wavelet to be constructed. We provide a Dirac impulse all along the left boundary of the domain The 2D FFT of this Dirac impulse is a constant of value 1, independent of the frequency. Thus all the frequency modes are excited with constant amplitude.

We perform element-wise SGWT based scale separation of this Dirac signal. We do this by performing a low-pass filtering of this signal using the element-wise SGWT. Subsequently we perform a high-pass filtering using the element-wise SGWT. We compare the 2D FFT obtained before and after the element-wise filtering operation with that of the FFT of the dirac signal to obtain the transfer function of the global low-pass:

T∈T P xy J-m f (x) and global high-pass filtering operation:

T∈T J i=J-m Q xy i f (x) .
For a SGWT using N = Ñ = 2 we have used an element with 9 d.o.f. per direction. From the table 6.1 we see that we can perform at most 3 levels of the wavelet transform in each direction. Similarly for a SGWT using N = Ñ = 4 we have used an element with 17 d.o.f. per direction. By consulting table 6.2 we see that at most we may perform 2 levels of the wavelet transform in each direction. For both these elements, at each level of the transform, one unique transfer function corresponding to global low-pass and global high-pass filtering is produced. The transfer functions for the low-and high-pass filtering operations based upon the SGWT using N = Ñ = 2 are shown in figure 6.6 while those for the low-and high-pass filtering operations based upon the SGWT using N = Ñ = 4 are shown in figure 6.7.

G(k) k k c = π T (P J ) T (P J-1 ) T (P J-2 ) T (Q J ) T (Q J-1 + Q J ) T (Q J-2 + Q J-1 + Q J )
G(k) k k c = π T (P J ) T (P J-1 ) T (Q J ) T (Q J-1 + Q J )
We see that unlike in the 1D scale-separation case, in higher dimensions although a significant scale separation is present, there is considerable overlap between the large-and small scales. The high-pass filter does not completely skip past the low wavenumbers. The reason may be due to the fact that the cross space is a tensor product of the large-scale and small-scales, thus the 2D FFT of the small-scales will contain some information about the large-scales. Surprisingly we find that the low-pass filter does not skip past the high wavenumbers entirely either although it experiences a strong decay. We attribute this failure to the numerical imperfections at the element boundaries and the high-wavenumber modes which they produce. Another point of interest is that the filtering behaviour appears to be better for the 2 nd -order SGWT as opposed to the 4 th -order SGWT. The reason is unknown but may be related to the difficulty in numerically ensuring moment cancellations, up to a given order of accuracy, particularly near the element boundaries, at high orders of the subdivision scheme. On the basis of these results we focus our attention upon the SGWT using N = Ñ = 2 when we attempt WAV-VMS-LES in chapter 7.

The Wavelet-Based Three-Scale VMS-LES Approach

Thus we are now in a position to formally lay out the WAV-VMS-LES procedure. This procedure is built upon the approach laid out in Sec. 2.5.2. We would like to use the Smagorinsky model in order to model the contribution of the unresolved scales on the resolved scales as was presented within Secs. 2.5.3 and 2.5.4. Thus we restate the equations that govern three-scale VMS-LES with a Smagorinsky model at the level of the small-resolved scale. They are: an equation for the large-resolved scales (Sec. 2.5.4 Eqn. 2.86):

B L (W, U) + B L (W, U) + B N L (W, U) + B N L (W, U) -(∇v, u ⊗ u) Ω -(∇v, u ⊗ u) Ω = (v, f) Ω (6.27)
and an equation for the small-resolved scales (Sec. 2.5.4 Eqn. 2.87):

B L ( W, U) + B L ( W, U) + B N L ( W, U) + B N L ( W, U) -(∇ v, u ⊗ u) Ω -(∇ v, u ⊗ u) Ω = ( v, f) Ω + (∇ v, τ d (•, •)) Ω (6.28)
Combining both these equations we get a single equation in which the Smagorinsky model term is applied selectively to the small-resolved scales:

B L (W + W, U + U) + B N L (W + W, U + U) = (v + v, f) Ω + (∇ v, τ d (•, •)) Ω (6.29)
At this point we make a choice about the nature of the subgrid term. We choose the all-all approach, described in Sec. 2.5.4 for the Smagorinsky model term:

τ d (u + u, u + u) = -2ν sgs (u + u)∇ s (u + u) (6.30)
Introducing the Smagorinsky model term into Eqn. 6.29 we obtain:

B L (W + W, U + U) + B N L (W + W, U + U) = (v + v, f) Ω -(∇ v, 2ν sgs (u + u)∇ s (u + u)
) Ω (6.31) Equation 6.31 has not been discretized. The procedure for discretization has previously been described in chapter 4. Based upon the discretization principles put forth in chapter 4 we have the discrete system of equations: The equation given above represents the final discrete system for the three-scale VMS-LES approach using an all-all Smagorinsky model approach. In the next section we focus upon using the high-pass filtering property of the element-wise SGWT, described in Sec. 6.3.1, in order to restrict the effect of the Smagorinsky model to the small-resolved scale band.

B L h (W h , U h ) + B N L h (W h , U h ) = (v h , f) T -(∇ h v, 2ν sgs (u h )∇ s h u h ) T (6.

Using Element-Wise SGWT for the Computation of the All-All Smagorinsky Term

We would like to compute the term (∇ h v, 2ν sgs (u h )∇ s h u h ) T . To do this we perform the following sequence of operations:

1. First we compute the model term over the whole range of resolved scales using the Lagrange basis:

(∇ h v h , 2ν sgs (u h )∇ s h u h ) (6.33)
2. Apply the multi-dimensional, element-wise SGWT scale-separation operation up to the desired number of levels, m, upon the model term by performing the forward SGWT. The model term is now in wavelet space:

(P xyz J-m + Q xyz J-m ...Q xyz J-1 + Q xyz J )(∇ h v h , 2ν sgs (u h )∇ s h u h ) (6.34)
3. Perform high-pass filtering by setting to zero all those coefficients which lie within the 3D scaling function space. Thus retain only the 3D wavelet space: where τ d ij is the deviatoric part of the subgrid-stress tensor, ν sgs is the subgrid viscosity, C s is the Smagorinsky constant and S ij represents the strain-rate tensor computed from the entire resolved-scale velocity field. The Smagorinsky dissipation can now be determined to be:

(Q xyz J-m ...Q xyz J-1 + Q xyz J )(∇ h v h , 2ν sgs (u h )∇ s h u h ) (6.35) 0 0.2 0.4 0.6 0.8 1 G(k) k k c = k c2 k c1 G mono (k) G vms (k)
ε smag = -τ d ij S ij (6.41)
Consider the sharp cutoff filter. We denote the Fourier transform of the sharp cutoff filter as G mono (k) (shown in figure 6.8) which is defined as:

G mono (k) = 1 ∀ 0 ≤ k ≤ k c 0 ∀ k c < k < ∞
Where k c is the grid cutoff wavenumber. We can represent the ensemble average • of S 2 ij to be written as:

S 2 ij = ∞ 0 k 2 G 2 mono (k)E(k)dk (6.42)
Using the Kolmogorov spectrum (Eqn. 6.39) within the above equation, we get:

S 2 ij = ∞ 0 k 2 G 2 mono (k)C k ε 2 3 k -5 3 dk (6.43)
We can write the ensemble average of the subgrid dissipation using equation 6.41 as:

ε smag = -τ d ij S ij (6.44)
Using the expression for the value of τ d ij given in 6.40, we obtain:

ε smag = 2 3 2 (C s ) 2 S 3 ij (6.45)
Now we substitute this expression for the dissipation into equation 6.43 to obtain:

S 2 ij = ∞ 0 k 2 G 2 mono (k)C k 2 3 2 (C s ) 2 S 3 ij 2 3 k -5 3 dk (6.46)
In order to solve for C s we perform a re-arrangement to obtain:

C s = C k ∞ 0 k 1 3 G 2 mono (k)dk -3 4 4 3 4 S 2 ij 3 2 S 3 ij (6.47)
In order to simplify the above expression we first assume commutativity between the ensemble average and power operations to get S 2 ij 3 2 = S 3 ij . Simplifying we get:

C s = C k ∞ 0 k 1 3 G 2 mono (k)dk -3 4 2 3 4 (6.48)
Now we may use the expression for the sharp-cutoff filter G mono (k), to obtain:

C s = C k kc 0 k 1 3 dk -3 4 2 3 4 (6.49) 
and by integrating, we obtain:

C s = C k 3 4 k 4 3 c -3 4 2 3 4
(6.50)

Now using the value of C k we can simplify all the numerical quantities to obtain:

C s = 0.5443 1 k c (6.51) or C s = 0.5443 k c (6.52)
To simplify the above equations further we require a relation between k c and . In traditional (mono-level) LES using explicit filtering, is used to denote the filter width (in physical space), however in LES using implicit filtering, usually denotes the mesh spacing. For simplicity we use the implicit LES definition of . Thus, from this fact, we know that k c = π . Using this to eliminate the length-scale entirely in the equation 6.51 and 6.52 we obtain:

C s = 0.1732 (6.53)
The commonly accepted value for the Smagorinsky constant is 0.18, while recommended values may fall anywhere in a range between 0.1 to 0.2, depending upon the type of flow. In the context of DG-FEM, the definition of is complicated by the presence of two parameters: element size h and polynomial order p. The most common definition of is either h [START_REF] Van Der Bos | Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence[END_REF][START_REF] Wasberg | Variational multiscale turbulence modelling in a high order spectral element method[END_REF], h/p [START_REF] Munts | A modal-based multiscale method for large-eddy simulation[END_REF] or h/(p + 1) [START_REF] Marek | Large eddy simulation of incompressible free round jet with discontinuous Galerkin method[END_REF]. We prefer to define = h/(p + 1), as it defines the mesh size, of an equidistant mesh, for polynomials of degree p. Other means of defining exist and a good survey of this topic can be found within [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF]. From these basics we may move on, to acquiring the Smagorinsky constant for the WAV-VMS-LES type approach.

Re-Calibration for a High-Pass Filter: WAV-VMS-LES

In order to re-calibrate C s for a high-pass filter, we use a procedure similar to that in the previous section. However a major difference occurs in the final expression, due to the redefinition of the filter. Hughes et. al. [START_REF] Hughes | Large eddy simulation and the variational multiscale methods[END_REF] discussed the re-calibration of the product term C s based upon high-pass filtering using a sharp-cutoff filter. Their calibration is valid only when a clear global scale-separation in wavenumber is present. One of the recent works on the re-calibration, for three-scale VMS in the framework of DG-FEM, is by Chapelier et. al. [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF] who use a scale separation procedure based upon the Legendre basis functions. They first employ an empirical procedure, based upon computing the transfer functions of the underlying hp-discretization, to deduce a preliminary value for C s . Subsequently they modify this value based upon the fraction of large to small scales to obtain very similar expressions to those described in [START_REF] Hughes | Large eddy simulation and the variational multiscale methods[END_REF].

We will employ a re-calibration procedure similar to that discussed by [START_REF] Hughes | Large eddy simulation and the variational multiscale methods[END_REF]. Since the elementwise SGWT produce a global scale-separation in terms of wavenumber, this approach is perfectly valid. However in order to simplify the re-calibration procedure we neglect the true form of the SGW in Fourier space and instead choose to approximate it simply by sharp-cutoff filters. The reason for doing so is purely to ensure simplicity of the final expression. Furthermore at this preliminary stage of our work, only a simple scaling relation between the Smagorinsky constant and the nature of the scale-separation is required. In the future the true form of the element-wise SGW filter may be introduced to refine the expression, but for now a simple scaling relation will suffice.

Due to the similarities with the procedure above, instead of going through the entire procedure again we pick up from equation 6.48 with a VMS type filter:

C s = C k ∞ 0 k 1 3 G 2 vms (k)dk -3 4 2 3 4 (6.54)
This filter for the WAV-VMS-LES is defined by the expression:

G vms (k) =    0 ∀ 0 ≤ k ≤ k c1 1 ∀ k c1 < k ≤ k c2 0 ∀ k c2 < k < ∞
where k c1 represents the lower cutoff wavenumber while k c2 represents the upper (grid) cutoff wavenumber. The shape of this filter is shown within 6.8. Using the definition of G vms (k) in the above equation we obtain:

C s = C k k c2 k c1 k 1 3 dk -3 4 2 3 4 (6.55)
Performing the integration we get: Defining a ratio between the upper and lower cutoff wavenumbers r = k c2 k c1 , we may perform the following simplification:

C s = C k 3 4 k 4 3 c2 -k 4 
C s = 0.5443 k c2 1 - 1 r 4 3 -3 4 (6.58)
Now as was done previously we have k c2 = π/ , to obtain:

C s = 0.1732 1 - 1 r 4 3 -3 4 (6.59)
Since r is always greater than 1 the constant defined above is always positive. Furthermore we see from the equation above, that the mono-level Smagorinsky constant undergoes a scaling depending upon the width of the high-pass filter. This behaviour is exhibited in figure 6.9. As r → ∞, the lower cutoff wavenumber k c1 → 0. This implies that G vms (k) → G mono (k). The result is that C s for the WAV-VMS-LES tends towards that of the classical (mono-level) value of C s . For all other values of r (0 < k c1 ≤ k c2 ), the VMS value of C s is greater than that of the mono-level Smagorinsky value and C s → ∞ as r → 0. Divers problèmes importants de post-traitement pour l'évaluation des résultats sont d'abord abordés des sections 7.2.1 à 7.2.3. La section 7.2.1 décrit la DNS filtrée, DNS f , qui servira de référence dans les comparaisons entre LES. Les quantités provenant de DNS f telles que l'enstrophie, l'énergie cinétique et la dissipation d'énergie cinétique sont les principales quantités considérées pour ces comparaisons. Dans la section 7.2.2 sont dérivées des conditions à satisfaire pour la dissipation d'énergie cinétique par une LES de bonne qualité. Nous cherchons à comparer la dissipation totale des LES avec celle de la DNS f comme indiqué dans l'équation 7.9. Nous cherchons ensuite à comparer la dissipation visqueuse des LES à celle de la DNS f comme indiqué dans l'équation 7.10. Enfin, nous comparons la dissipation efficace des LES (somme de la dissipation de la méthode numérique et de la dissipation du modèle) et la dissipation sous-maille de la DNS f comme indiqué dans l'équation 7.11.

Nos tests à Re = 3000 sont divisés en deux parties avec dans la section 7.4.1 le modèle de Smagorinsky mono-échelle et dans la section 7.4.2 l'approche WAV-VMS-LES. Nous avons vu que le modèle de Smagorinsky mono-échelle avec C s = 0.1 est mal adapté à la simulation sous résolue pour le TGV 3D. En général, les courbes des quantités d'intérêt sont déplacées vers la gauche par référence à celles issues de la DNS f . Un comportement similaire est obtenu pour les schémas d'ordre 5 et 9. Lorsque l'approche WAV-VMS-LES est utilisée, on constate une nette amélioration dans la prédiction des quantités d'intérêt. Les courbes sont déplacées vers la droite en se rapprochant de celles issues de la DNS f . De plus, en passant du schéma d'ordre 5 à celui d'ordre 9, les quantités d'intérêt des LES se rapprochent de leurs valeurs de référence provenant de la DNS f , en particulier la dissipation visqueuse de l'énergie cinétique et la dissipation efficace de l'énergie cinétique sous-maille.

Enfin, nous décrivons nos tests à Re = 10 000 qui révèlent des tendances similaires. Ces tests sont divisés en deux parties avec dans la section 7.5.1 le modèle de Smagorinsky monoéchelle et dans la section 7.5.2 une focalisation sur l'approche WAV-VMS-LES. Le détail des différentes simulations est fourni dans le tableau 7.2. Le modèle de Smagorinsky mono-échelle s'avère mal adapté au type de LES réalisé. La modification de la constante de Smagorinsky, C S , n'est pas un moyen efficace d'améliorer la qualité des simulations. L'approche WAV-VMS-LES fonctionne mieux mais les résultats ne sont pas assez concluants. Le comportement de la viscosité sous-maille s'avère différent de celui observé dans les tests à Re = 3000. Par ailleurs, la différence entre WAV-VMS-LES et ILES reste marginale pour des raisons détaillées dans la section 7.5.2. Cependant, l'examen de l'évolution des spectres d'énergie cinétique turbulente au cours de la simulation, présentée dans la section 7.5.3, montre clairement que la méthode WAV-VMS-LES est meilleure que le modèle de Smagorinsky mono-échelle ou l'approche ILES. Dans les grandes échelles, les spectres d'énergie obtenu par WAV-VMS-LES sont plus proches de ceux de la DNS f par comparaison avec la ILES ou le modèle de Smagorinsky mono-échelle. Il s'agit d'un résultat encourageant à renforcer par de nouvelles investigations à venir.

Introduction

In this chapter we perform studies using the WAV-VMS-LES approach outlined within the chapter 6, on an INS test case at two Reynolds numbers. The test case which we have chosen is the 3D TGV which, in keeping with the philosophy of LES, will be simulated upon highly under-resolved meshes.

As was mentioned in chapter 5, the 3D TGV test case describes a freely transitioning flow in a tri-periodic cubic domain. Despite the simple geometry and boundary conditions of this test case, its dynamic behaviour is extremely challenging to predict at low mesh resolutions. In general, multi-scale methods are supposed to offer an improved prediction over conventional LES techniques, for a variety of unsteady flow cases, at low mesh resolutions. For the 3D TGV this claim is supported by numerous studies [START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective filtering Strategy for large-eddy simulations[END_REF][START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF][START_REF] Colomés | Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows[END_REF][START_REF] Diosady | Design of a variational multiscale method for turbulent compressible flows[END_REF][START_REF] Hickel | Implicit Turbulence Modeling for Large-Eddy Simulation PhD Thesis[END_REF][START_REF] Wasberg | Variational multiscale turbulence modelling in a high order spectral element method[END_REF]. The purpose of this chapter is to assess WAV-VMS-LES and compare it with conventional LES. Furthermore we are interested in understanding the source of the improvements. We question whether the improvements occur exclusively due to the fact that the spectral behaviour of the dissipation has been modified or whether it is due to the fact that the magnitude of the dissipation has been altered via filtering.

To achieve this, we will consider the 3D TGV test case at two Reynolds numbers: Re = 3000 and Re = 10 000, for which accurate DNS data exists [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. The lower Reynolds number case (Re = 3000) has been widely studied by several authors [START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective filtering Strategy for large-eddy simulations[END_REF][START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF][START_REF] Colomés | Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows[END_REF][START_REF] Diosady | Design of a variational multiscale method for turbulent compressible flows[END_REF][START_REF] Hickel | Implicit Turbulence Modeling for Large-Eddy Simulation PhD Thesis[END_REF][START_REF] Wasberg | Variational multiscale turbulence modelling in a high order spectral element method[END_REF], and thus makes an attractive first test, despite the fact that its inertial range is fairly narrow. The higher Reynolds number test case Re = 10 000, by comparison is less commonly used as an LES test [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. However it provides a more accurate assessment of the proposed approach since its inertial range is large enough to contain the cutoff frequency of the LES calculations.

We test the conventional LES and WAV-VMS-LES methods. We explore the use of different partitions and values of the Smagorinsky constant. The principal quantities which we use for the purpose of evaluation are the enstrophy , the kinetic energy E k and the kinetic energy dissipation ε. We also use the turbulent kinetic energy (TKE) spectra E(k) as a means of observing the spectral evolution of the flow in time.

Method for the Evaluation of the Results

The Filtered DNS

Since LES is being performed with under-resolved grids, we evaluate the quantities of interest obtained via LES by comparing them against those obtained from the projected DNS. The projected DNS computes its quantities of interest using only those scales which lie within the resolved scales of the LES. Hence we employ a projection operator, π les , which projects the primal variables of the DNS upon the DG-FEM approximation space. We denote this projected DNS as DNS f . The projected values of the primal variables may thus be used in order to compute the derived values which will then serve as reference for the LES TGV simulations.

For clarity we enumerate the derived variables below. Thus we have for the enstrophy:

= 1 Ω Ω ω : ω 2 ∂Ω ω =    ω DN S = ∇ × u f or DN S ω DN S f = ∇ × π les u f or DN S f ω LES = ∇ × u h f or LES (7.1)
for the kinetic energy:

E k = 1 Ω Ω v • v 2 ∂Ω v =    u DN S = u f or E DN S k u DN S f = π les u f or E DN S f k u LES = u h f or E LES k (7.2)
and for the kinetic energy dissipation:

ε = - dE k dt E k =    E DN S k f or ε DN S E DN S f k f or ε DN S f E LES k f or ε LES (7.3)
The projection operation must project the C ∞ , DNS solution upon the DG-FEM approximation space. However for simplicity, instead of projecting upon the DG-FEM space, we instead project upon a C ∞ , continuous space containing the same number of d.o.f as the DG-FEM space. This can be easily achieved in Fourier based codes via the usage of a sharp-cutoff filter. While there is certainly an error between the required DG-FEM and available C ∞ space for the projection, it must be recalled that the usage of the Lagrange nodal space for DG-FEM implies that the projection operation is simply a subsampling operation of the C ∞ DNS solution as shown in Sec. 4.6.2. Thus the projection of the C ∞ DNS solution upon the DG-FEM space would also be continuous. Due to usage of filtering in the Fourier space we refer to our reference as the filtered DNS.

A Note on Kinetic Energy Dissipation

For a DNS calculation all the dissipation is due to the resolved-scale viscous effects:

ε DN S = ε DN S visc (7.4)
where we have an equivalence between viscous kinetic energy dissipation and enstrophy, namely ε DN S visc = 2ν DN S . When we perform an a posteriori scale separation of the DNS into resolved and unresolved scales via the projection operator π les , we see that the dissipation of the resolved scales, ε DN S f , is a combination of the resolved-scale viscous dissipation, ε DN S f visc , and the dissipative effect of the unresolved scales upon the resolved scales, ε DN S f sgs :

ε DN S f = ε DN S f visc + ε DN S f sgs (7.5)
where ε DN S f visc = 2ν DN S f . We now look at a similar decomposition of the kinetic energy dissipation for LES.

For an LES calculation we have the following general relationship:

ε LES = ε LES visc + ε LES disc + ε LES div + ε LES sgs (7.6)
where ε LES visc is the viscous dissipation, ε LES disc is the the dissipation introduced by the discretization scheme, ε LES div = T T T p LES ∇.u LES dx is the dissipation introduced due to non-satisfaction of the divergence-free criterion and finally ε LES sgs is the dissipation due to the subgrid model term. We assume that ε LES sgs scales with h in keeping with the discussion presented in Sec. 6.4.1 and 6.4.2. In this work we assume equivalence between the viscous dissipation and the enstrophy i.e. ε LES visc = 2ν LES , although this relation may not be exact.

In practical LES simulations, it is virtually impossible to achieve a zero discretization error and consequently the term ε LES disc is generally non-zero. Furthermore under certain circumstances a zero value of ε LES disc is undesirable. Implicit LES (ILES), a technique which does not make use of a separate subgrid model term i.e. ε LES sgs = 0, relies entirely upon ε LES disc to provide the dissipation needed to regularise the discrete resolved-scale equations. In light of these facts we decide to lump the dissipation due to the discretization along with the dissipation due to the subgrid model to obtain a single effective subgrid dissipation, ε LES ef f = ε LES disc + ε LES sgs . This effective subgrid dissipation in addition to being easier to evaluate, is physically meaningful since it represents the sum total of the dissipation being artificially introduced to close the resolved-scale equations. As a consequence we obtain a new relation:

ε LES = ε LES visc + ε LES div + ε LES ef f (7.7)
Typically as the mesh resolution h → 0, then ε LES ef f , ε LES div → 0 and we recover the DNS relation given by Eqn. 7.4. Ideally for an LES we would like to enforce the value of ε LES div to zero. We then obtain the equation:

ε LES = ε LES visc + ε LES ef f (7.8)
By comparing Eqn. 7.5 and 7.8 we obtain the following conditions: An equality between the total LES dissipation and resolved-scale DNS dissipation:

ε LES = ε DN S f (7.9)
An equality between the viscous dissipation of the LES and the filtered DNS:

ε LES visc = ε DN S f visc (7.10)
And finally an equality between the effective subgrid model dissipation of the LES and dissipation due to subgrid effects upon the resolved scales of the filtered DNS:

ε LES ef f = ε DN S f sgs (7.11)
Since the term ε LES ef f cannot be computed explicitly within the LES simulation, we make use of the relation:

ε LES ef f = ε LES -ε LES visc -ε LES div (7.12)
When using incompressible flow solvers the value of ε LES div is extremely small compared to the remaining dissipation terms and thus we can use:

ε LES ef f ε LES -ε LES visc (7.13)
as an approximation of the effective subgrid dissipation. These relations given above represent a set of target conditions that are desirable from a good LES simulation. Very broadly speaking, Eqn. 7.9 represents the quality of the overall LES scheme, Eqn. 7.10 represents how well the discretization space represents the resolved scales and 7.11 represents the quality of the subgrid model. Thus during the evaluation of the results we will make use of Eqns. 7.9, 7.10 and 7.11 to determine the quality of our LES simulations.

Computation of the Turbulent Kinetic Energy Spectra E(k)

An additional difficulty arises during the computation of the TKE spectra, using the DG-FEM velocity field. The Lagrange approximation space is designed in such a way that at the element boundaries two degrees of freedom (one on either side of the boundary) are present. Thus every variable possesses two distinct values at the element boundary. Clearly this non-uniqueness cannot be tolerated by the FFT. The jump behaviour at the element boundaries produces an excitation of spurious modes in the FFT which span all the frequencies (conspicuous in Fig. 6.2). As such we require a new approach to post-process the data. The ideal way would be to project the velocity field from the DG basis upon a fully conformal, divergence-free basis. However this approach could not be implemented due to time constraints. Instead we use the following approach. Consider a Lagrange element with k + 1 d.o.f. per element, and N e elements per domain, for a total of (k + 1) × N e d.o.f. in the domain. For the calculation of the FFT, we first interpolate the velocity field on an element-by-element basis, from the d.o.f. onto an equidistant set of interior points, k in number, for a total of k × N e points in the domain. Now the velocity field at these interior points is no longer divergence free. By using a Fourier representation of the non-divergence free velocity field (u * h ) at all the interior points in the whole domain, we are able to remove the component which is not divergence free

( k • u * h ): u h = u * h -( k • u * h ) k (7.14)
where k is a unit vector defined by k = k/ k 2 x + k 2 y + k 2 z . The FFT for the TKE is then computed using this divergence-free field (u h ) and as can be seen from later results this approach works rather well. However notice that the number of d.o.f. have been reduced from (k+1)×N e to k × N e. Thus essentially by sacrificing one d.o.f. at every element boundary we have minimised the occurrence of any spurious modes within the FFT of the TKE. With these post-processing issues clearly put forth we move on to the test cases.

Traditional LES and WAV-VMS-LES of 3D TGV

In this set of simulations we are looking to compare the mono-level Smagorinsky with the WAV-VMS-LES method for two different Re. In recent years a number of authors have studied this test case, at a variety of Reynolds numbers. Chapelier et. al. [START_REF] Chapelier | Développment et Évaluation de la Méthode de Galerkin Discontinue pour la Simulation des Grandes Échelles des Écoulements Turbulents[END_REF][START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF] have used a threescale VMS with a compressible modal DG-FEM code upon this test case, at Re = 3000, and have examined the effects of the VMS partition and calibration of the constant on the LES solution. Hickel [START_REF] Hickel | Implicit Turbulence Modeling for Large-Eddy Simulation PhD Thesis[END_REF] has studied the usage of a variety of models particularly the adaptive local deconvolution method (ALDM) on the 3D TGV ranging from Re = 100 to Re = 3000, with a compressible finite volume code. Aubard et. al. [START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective filtering Strategy for large-eddy simulations[END_REF] make use of high-order finite difference schemes to study various multi-scale methods in the incompressible framework. They particularly note the effect of the spatial discretization upon the quality of the multiscale solutions. Colomés et. al. [START_REF] Colomés | Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows[END_REF] use a mixed FEM discretization to perform RB-VMS upon the 3D TGV. Lamballais et. al. [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF] perform a wide ranging study at various values of Re using the spectral vanishing viscosity (SVV) method. Based upon the existing literature, we propose to study the 3D TGV at two Reynolds numbers Re = 3000 and Re = 10 000.

Details for all simulations at Re = 3000 are provided in table 7.1, while details for all simulations performed at Re = 10 000 are provided in 7.2. The Re = 3000 case is our first test case. From the point of view of the assumptions upon which LES is based on, this Reynolds number is rather low. The TKE spectra at time t = 14.0 is shown in Fig. 7.1, and as can be seen, the inertial range is quite narrow. Thus it is unlikely that an LES cutoff frequency will fall within the inertial range. The Re = 10 000, which is our second test case is a better test case since the inertial range is quite broad, seen in figure 7.1, and thus the LES frequency cutoff will lie within it. To the best of our knowledge, it is only quite recently that LES studies are being performed upon the TGV at such high Reynolds numbers [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. As yet no studies have been performed using VMS-LES and DG-FEM upon the TGV at Re = 10 000.

For all the simulations undertaken, an upwind flux is used for the convective term and overintegration is performed using a factor of 1.5 extra integration points. We also clearly define our order ILES indicates that the usage of the mono-level Smagorinsky model strongly affects the ability of the discretization scheme to capture the small-resolved scales. This in turn affects the prediction of the viscous kinetic energy dissipation, as seen in Fig. 7.2d. Furthermore, for the kinetic energy and the total kinetic energy dissipation, the curves of the mono-level Smagorinsky simulations appear to be strongly shifted to the left of the ILES and the filtered DNS as seen in Figs. 7.2b and 7.2c. The curves of the kinetic energy show that while the rate of the kinetic energy decay is quite similar between the mono-level Smagorinsky simulation and filtered DNS, for the former, the kinetic energy decay begins much earlier. Similarly, for the total kinetic energy dissipation, the dissipation peak for the mono-level Smagorinsky simulation occurs at around t 7.9 while for the filtered DNS the peak occurs at around t 8.9.

The behaviour described above is commonly observed in LES calculations using the Smagorinsky model of the 3D TGV [START_REF] Beck | On the influence of polynomial de-aliasing on subgrid scale models[END_REF][START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF] and its cause is well explained in [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF] in the context of their work. When simulating highly under-resolved flows, the natural viscosity of the system is under-represented. In the initial-phase (t = [0, 3]) of the TGV evolution this is not a problem, as the scales are predominantly large in nature, which are well represented by the grid and numerical method. The problems begin to arise in the mid-phase (t = [3, 8]). As the breakdown of the scales occurs and ever smaller scales are produced, the grid and numerical method are insufficient to represent them. As such there will be a energy pile-up at the highest wavenumbers in the vicinity of the cutoff wavenumber (k c ). The viscous operator, which is responsible for the dissipative effects, dominates at the high wavenumbers. The presence of a spurious amount of energy in the high wavenumbers is acted upon by the viscous operator which over-contributes to the dissipation. The consequence is that the mid-phase is dominated by excessive energy damping as can be seen by the over-prediction of kinetic energy dissipation in the curves of both mono-level Smagorinsky simulations, as can be seen within Fig. 7.2c. Thus the peak is reached earlier, and since the dissipation is spread out over the entire mid-phase, is consequently weaker than the filtered DNS peak. Towards the terminal-phase (t = [START_REF] Baker | Finite element methods for elliptic equations using nonconforming elements[END_REF][START_REF] Bar-Yoseph | An efficient L2 Galerkin finite element method for multidimensional non-linear hyperbolic systems[END_REF]) of evolution the dynamics are completely lost and consequently no corrective action of the model can rectify this behaviour. The curves for the effective subgrid model dissipation of the monolevel Smagorinsky simulations, shown in Fig. 7.2e highlight this behaviour. The mono-level Smagorinsky simulations input their effective subgrid dissipation far earlier and with far greater magnitude than the required subgrid dissipation predicted by the filtered DNS.

Thus what is required to fix this problem is for the turbulence model prevent the build up of spurious energy at the high wavenumbers. This could possibly be achieved by inputting a majority of the subgrid dissipation at the high wavenumbers in and around the cutoff. Thus paradoxically, a greater dissipative effect from the turbulence model at the small scales, will actually minimise the cumulative dissipation in the mid-range, postpone the dissipation peak for later, and allow the true magnitude of the peak to be achieved. The key point here, is that we theorise that in order to suppress the small-scales, the damping provided by the model must be concentrated at the small-scale level. It is this logic which appears to support a case for WAV-VMS-LES. At this point we may also point in the direction of the P4-ILES to support this fact. The P4-ILES is also quite dissipative as can be seen from the enstrophy curves in 7.2a. However it does behave consistently better than the mono-level Smagorinsky simulations as we have pointed out above. Thus it is unsurprising that the principal dissipative mechanism for the ILES is the upwind flux scheme, which is known to concentrate its dissipative effect at the high wavenumbers. 7.3f. These graphs contain the curves for the WAV-VMS-LES simulations using the 5 th -order scheme with either one and two levels of the 2 nd -order wavelet transform: simulations P4-W2L1 and P4-W2L2 respectively. They also contain the curves of the simulations using the 9 th -order scheme with either one or two levels of the 2 nd -order wavelet transform: simulations P8-W2L1 and P8-W2L2 respectively. To provide context to the WAV-VMS-LES approach, the figures also contain the curves of a 5 th -order mono-level Smagorinsky simulation, P4-SMAG, and the 5 th -order ILES simulation, P4-ILES.

For all the quantities of interest, shown in the Figs. 7.3a to 7.3f, there is a marked contrast between the mono-level Smagorinsky and the WAV-VMS-LES simulations. For the enstrophy, shown in Fig. 7.3a, the curves for all WAV-VMS-LES approaches exhibit a higher enstrophy level than the mono-level Smagorinsky simulations using schemes of the same order. A good example is the 9 th -order simulation using WAV-VMS-LES with one level of the wavelet transform, simulation P8-W2L1, which exhibits a better enstrophy prediction than the 5 thorder ILES, P4-ILES as seen in Fig. 7.3a, while the 9 th -order simulation using the mono-level Smagorinsky model, simulation P8-SMAG, exhibits a significantly poorer enstrophy prediction than the same 5 th -order ILES, P4-ILES, as seen in Fig. 7.2a. This shows how the usage of the WAV-VMS-LES restores the ability to capture the small-resolved scales which is lost in using the mono-level Smagorinsky approach.

The kinetic energy curves and total kinetic energy dissipation curves, shown within Figs. 7.3b and 7.3c respectively, for the WAV-VMS-LES approach exhibit a distinct rightward shift, towards the filtered DNS, compared to the mono-level Smagorinsky. For the kinetic energy the 5 th -order and 9 th -order WAV-VMS-LES simulations using one level of the wavelet transform are the nearest to the filtered DNS, DNS f . Furthermore, in general, the total kinetic energy dissipation peak is significantly higher for the WAV-VMS-LES approaches compared to the mono-level Smagorinksy approach as seen in Fig. 7.3c. In fact for all the WAV-VMS-LES simulations, the total kinetic energy dissipation peak is nearly at the same position as that of the filtered DNS.

The most significant difference between the WAV-VMS-LES approach and the mono-level Smagorinsky approach can be witnessed in the curves of the L ∞ -norm of the Smagorinsky eddy viscosity, shown in Fig. 7.3f. While the Smagorinsky eddy viscosity of the mono-level Smagorinsky approach exhibits a mild rise as the time advances, the Smagorinsky eddy viscosity behaviour of the WAV-VMS-LES approach is quite different. Centered at around t 4 there is a large peak in the Smagorinsky viscosity. The peak Smagorinsky eddy viscosity for WAV-VMS-LES is nearly double or triple the magnitude of that of the mono-level Smagorinsky approach. This peak may be a response by the model to the spurious energy build up at the high wavenumbers. In our discussion pertaining to the poor performance of the mono-level Smagorinsky, we indicated that the build up in this small-scale energy was to blame for its early and over-dissipative nature. Thus we may suggest here that this peak in the Smagorinsky eddy viscosity in WAV-VMS-LES prevents the build up of energy close to the cutoff, thus ameliorating the over-dissipative behaviour by the subgrid model. In fact by observing the effective subgrid dissipation in Fig. 7.3e, we see that for the WAV-VMS-LES simulations the effective subgrid dissipation is in much better agreement with the data from the filtered DNS, DNS f , as compared to simulations using the mono-level Smagorinsky approach. The 9 thorder WAV-VMS-LES simulation using one level of the wavelet transform matches the subgrid dissipation from the filtered DNS the best.

A major computational drawback of this Smagorinsky viscosity peak in WAV-VMS-LES, is that its large magnitude (far greater than the natural viscosity) imposes a strong constraint upon the permissible time-step size. It is the reason for our choice of time-step t = 2.5×10 -4 . This limitation will be an important factor in our investigations at Re = 10 000.

Finally based upon this evaluation we conclude that the best performing simulations are the 5 th -order and 9 th -order WAV-VMS-LES simulations using one level of the wavelet transform, simulations P4-W2L1 and P8-W2L1 respectively. For both these simulations, utilizing one level of the wavelet transform confines the effects of the Smagorinsky model as close as possible to the cutoff. We will try to use the parameters of these simulations for our study at the Re = 10 000 case.

Results and Discussion: High Reynolds Number Re = 10 000

This test case introduces its own set of problems, most notably from the point of view of the computational cost. The DNS simulation requires about 2048 3 d.o.f. A typical LES calculation makes use of about 256 3 d.o.f. maintaining a LES to DNS ratio of about 1 : 8 [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. Unfortunately the time step restriction imposed by the WAV-VMS-LES Smagorinsky viscosity peak (as seen previously in section 7.4.2) makes simulations at this grid resolution rather infeasible within the current implementation of the code. Thus the LES grid chosen has just 80 3 degrees of freedom. This makes the d.o.f. ratio of LES to DNS to be around 1 : 25. The level of under-resolution is far higher than is commonly accepted and results in the cutoff lying quite early within the inertial range rather than towards its end as is preferred.

Having defined the number of d.o.f. we now focus upon the various other parameters involved in the simulation. These are given in table 7.2. The time step chosen for the simulation is kept deliberately low at t = 2 × 10 -4 to avoid violating the CFL imposed by the WAV-VMS-LES Smagorinsky viscosity. The main problem here is that the magnitude of the WAV-VMS-LES Smagorinsky viscosity cannot be known a priori and thus the choice of the time-step must be quite conservative.

The Re = 3000 case showed that those simulations which performed the best concentrated their dissipation close to the cutoff, i.e. they make use of one level of the wavelet transform. Thus drawing from this knowledge we would like to focus our efforts on new simulations using the parameters of simulations P4-W2L1 and P8-W2L1 from the Re = 3000 case (see table 7.1). However due to the fact that the time-step restriction is more stringent for P 8 simulations as compared to P 4 simulations, we were forced to concentrate solely upon P 4 simulations. C s simply exaggerates the undesirable effects. This is visible in the curves of the the kinetic energy and kinetic energy dissipation seen in Figs. 7.4b and 7.4c respectively, where the curves of P4-SMAG-C3, with C s = 0.18, are even further left of P4-SMAG-C2, with baseline value of C s = 0.1. Furthermore the behaviour of the subgrid dissipation for this simulation, shown in Fig. 7.4d is incorrect. Decreasing C s thus seems the logical choice. Looking at the total kinetic energy dissipation, shown in Fig. 7.4c, of simulation P4-SMAG-C1, using C s = 0.05, we see that the curve shifts rightwards and closer to the ILES and the filtered DNS. However the peak level of the dissipation is still far lower than the filtered DNS. A similar trend is noticed in the subgrid dissipation in Fig. 7.4d.

Finally we look at the behaviour of the ILES simulation. The ILES is in much better agreement with both the filtered DNS value of the kinetic energy, Fig. 7.4b, the kinetic energy dissipation, Fig. 7.4c and the prediction of the subgrid dissipation, Fig. 7.4d. Although the ILES is the better performing simulation it must be pointed out that the ILES exhibits considerable dissipative effects. From the enstrophy curves in Fig. 7.4a we can see that there is a considerable lack of resolution of the small scales indicating that the ILES is a bit too dissipative at this grid resolution.

Based upon these results we can draw some limited conclusions when using 5 th -order schemes at Re = 10 000 on a highly under-resolved grid. We can conclude that a simulation with no turbulence model at all, the ILES, appears to be superior to one with the traditional Smagorinsky model. It appears as if tuning the value of the Smagorinsky constant is not of much help. Thus it is logical to assume that the problem does not lie in the magnitude of the subgrid dissipation introduced by the Smagorinsky model, but rather by the distribution of the subgrid dissipation in frequency. In the next section we examine whether using WAV-VMS-LES, which modulates the behaviour of the dissipation in wavenumber, is an interesting alternative. We must also point out that this conclusion may not be universally applicable as it is highly likely that at high Reynolds number ( 10 6 ), the ILES type approaches are known to provide insufficient amount of dissipation.

WAV-VMS-LES: P4 Simulations

We now turn our attention to the WAV-VMS-LES for this test case. The quantities of interest are shown in Figs. 7.5a to 7.5e. The L ∞ norm of the Smagorinsky viscosity has also been included in Fig. 7.5a. These figures contain the curves of the WAV-VMS-LES approach with two different values of the Smagorinsky constant, C s , namely P4-W2L1-C1 and P4-W2L1-C2. The former simulation uses our baseline value of C s = 0.1, while the latter uses a value of C s = 0.14 based upon the calibration Eqn. 7.15. To provide some perspective the curves of the no-model simulation with the 5 th -order scheme, ILES, and one mono-level Smagorinsky, P4-SMAG-C2, using the baseline value of C s = 0.1, are also included.

We first focus upon a comparison between the uncalibrated and calibrated versions of the WAV-VMS-LES, P4-W2L1-C1 and P4-W2L1-C2 respectively. There is a pronounced difference between the two curves. The simulation using the calibrated value of C s , P4-W2L1-C2, exhibits a much better performance overall compared to P4-W2L1-C1, the simulation which does not use the calibration. The difference is apparent in all the curves. In Fig. 7.5a, the location of the enstrophy peak of the uncalibrated simulation, P4-W2L1-C1, is incorrect as compared to the one which uses the calibration, P4-W2L1-C2. In the curves of kinetic energy dissipation, Fig. 7.5c, the uncalibrated simulation, P4-W2L1-C1, does not come near the dissipation peak of the filtered DNS, DNS f , in sharp contrast to calibrated simulation P4-W2L1-C2. Similarly by looking at the subgrid dissipation in Fig. 7.5d we see that the calibrated simulation, P4-W2L1-C2, produces a subgrid dissipation very close to that produced by the filtered DNS, DNS f , however this behaviour is not reproduced by the uncalibrated simulation, P4-W2L1-C1. Next we seek to compare the calibrated WAV-VMS-LES simulation P4-W2L1-C2 with the mono-level Smagorinsky simulation using C s = 0.1, P4-SMAG-C2. We see that they exhibit quite different behaviours. The kinetic energy curves shown in Fig. 7.5b of mono-level Smagorinsky simulation, P4-SMAG-C2, is shifted significantly to the left of the calibrated WAV-VMS-LES simulation, P4-W2L1-C2, and thus farther from the filtered DNS, DNS f . Similarly from the curves for the kinetic energy dissipation shown in Fig. 7.5c, we see that the monolevel Smagorinsky simulation using the baseline value of C s = 0.1, P4-SMAG-C2, exhibits a significantly lower peak value than that of the calibrated WAV-VMS-LES simulation, P4-W2L1-C2. This behaviour is repeated in the curves for the effective subgrid dissipation seen in Fig. 7.5d where the mono-level Smagorinsky simulation gives an incorrect prediction of the effective subgrid dissipation behaviour.

Finally we turn our attention to the difference between the ILES and the calibrated WAV-VMS-LES simulation, P4-W2L1-C2. The behaviour of both simulations is actually quite similar, with the calibrated WAV-VMS-LES simulation being marginally better. In the enstrophy curves in Fig. 7.5a the ILES is a bit closer to the filtered DNS as compared to the calibrated WAV-VMS-LES simulation. This is because the ILES lacks a true subgrid model and thus its ability to capture the resolved scales, particularly the small-resolved scales is the best. This is in contrast to the WAV-VMS-LES approach wherein the model term tends to damp the small-resolved scales The reason presented above also explains why the behaviour of the two simulations for kinetic energy, a quantity dominated by the large-scales or low wavenumbers, is virtually identical, as seen in Fig. 7.5b. Furthermore the behaviour of the ILES and calibrated WAV-VMS-LES simulations for the kinetic energy dissipation, and effective subgrid dissipation as seen in Fig. 7.5c and 7.5d respectively, are quite similar, with the calibrated WAV-VMS-LES being slightly better, in both the magnitude and shape of the curves.

In general, the differences between the ILES and WAV-VMS-LES simulations are marginal at best, for all the derived quantities. Furthermore when we look at the curves of the Smagorinsky viscosity for the WAV-VMS-LES simulations, as seen in Fig. 7.5f, we fail to see the presence of the strong viscosity peak which was extremely pronounced in the Re = 3000 case. A possible explanation for this behaviour, at this Reynolds number, is perhaps that the model dissipation for the WAV-VMS-LES simulation, P4-W2L1-C2, is nearly comparable with that of the numerical dissipation of the discretisation scheme and thus gives a behaviour similar to the ILES. Also, in this case, the cutoff has occurred very early within the inertial range, and thus the grid may not be an ideal one for LES type calculations. Thus keeping these factors in mind, it is highly likely that either a higher polynomial order for the discretisation or a finer grid using 256 3 d.o.f. is required.

Finally we proceed towards our final evaluation step: a comparison of the total kinetic energy spectra among the various methods at various times. The 1D TKE spectra of six different simulations, at all the integer values of time between [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Bar-Yoseph | An efficient L2 Galerkin finite element method for multidimensional non-linear hyperbolic systems[END_REF], are compared in Fig. 7.7 and Fig. 7.8. The simulations displayed include the three monolevel Smagorinsky simulations using different values of C s , namely simulations P4-SMAG-C1 (C s = 0.05), P4-SMAG-C2 (C s = 0.10) and P4-SMAG-C3 (C s = 0.18). Also included are the WAV-VMS-LES simulation using the calibrated value of C s = 0.14, P4-W4L1-C2, and the implicit LES based on 5 th -order schemes, ILES. For reference we use the spectra of the filtered DNS, DNS f . The cutoff wavenumber, k c = 32, is based upon the fact that we have 64 d.o.f. per direction. The grid cutoff has been performed within the inertial range, as the slope of the filtered DNS, DNS f , is parallel to the theoretical -5/3 slope. As mentioned before the cutoff has been performed relatively early since the preferred cutoff should be at k c = 128. Since the cutoff wavenumber is at k c = 32, we stipulate that wavenumbers 1 ≤ k ≤ 16 represent the large-resolved scales, while 16 < k ≤ 32 represent the small-resolved scales.

We see that at all times, the small-resolved scales are the most heavily damped for the monolevel Smagorinsky simulation using an arbitrarily high value of C s , P4-SMAG-C3 (C s = 0.18). The damping is less pronounced for simulation P4-SMAG-C2 (C s = 0.10) and then lower still for P4-SMAG-C1 (C s = 0.05). The least damping of the small-scales is seen in the ILES curve. All of the damping in the ILES simulation is due to the discretization. The damping behaviour of the WAV-VMS-LES lies somewhere in between that of the mono-level Smagorinsky and the ILES and we elaborate upon this in the next paragraph.

In order to highlight the behaviour of the WAV-VMS-LES simulation, P4-W2L1-C2, we have chosen the spectra at t = 10. This spectra is shown in Fig. 7.6. As can be seen from the figure, in the small-resolved scale region, the WAV-VMS-LES simulation, P4-W2L1-C2, exhibits a behaviour very similar to that of the least dissipative of the mono-level Smagorinsky simulations, P4-SMAG-C1. There is a clear damping of the small-resolved scales beyond that seen by the ILES. However within the large-resolved scale region it experiences a departure from the mono-level Smagorinsky. The large-resolved scales of the WAV-VMS-LES simulation appears to be the closest to the spectra of the filtered DNS, while the spectra of all the other simulations, including the ILES, fail to match the spectra of the DNS f . This behaviour of matching the spectra within the large-resolved scales by the WAV-VMS-LES simulation is seen at all the times examined and is quite a positive sign, and implies that there might be a distinct merit in performing the scale-separation with respect to the wavenumber. Chapter 8

Conclusions and Perspectives

Nous terminons cette thèse avec plusieurs conclusions sur l'utilisation de l'approche WAV-VMS-LES en conjonction avec un solveur DG-FEM stabilisé par la pression. Par ailleurs, nous indiquons plusieurs directions vers lesquelles de travaux futurs pourraient s'orienter.

Nous avons évalué l'approche DG-FEM stabilisé par la pression, décrite dans le chapitre 4. Cette méthode numérique permet l'utilisation de polynômes de degrés arbitrairement élevés et donc offrant de faibles erreurs de dissipation et dispersion. Nous avons mis en place une approche nodale en utilisant les polynômes de Lagrange. Cette approche est efficace sur le plan du calcul, car elle permet une construction rapide des opérateurs. Les avantages des polynômes nodaux sur le plan de l'efficacité de calcul sont préservés pour la discrétisation des équations INS seulement si les degrés de liberté de la vitesse et de la pression sont colocalisés. En conséquence, nous avons choisi l'utilisation d'espaces d'approximation de la vitesse et la pression d'ordre égal. Une terme de stabilisation basée sur la pression est ajouté afin de satisfaire la condition inf-sup. Bien que cette approche DG-FEM est précise, comme cela est montré dans le chapitre 5, elle tend à devenir inefficace sur le plan du calcul en raison du conditionnement élevé des matrices de discrétisation comme on peut le voir sur la figure 8.1. Nos études montrent également que la technique de sur-intégration était cruciale pour maintenir la stabilité en énergie en particulier à haut nombres de Reynolds comme cela est montré dans le chapitre 5. Par ailleurs, les solutions ont tendance à mieux se comporter avec un flux décentré. Des travaux restent à mener pour améliorer l'efficacité de la méthode, en particulier dans l'étape de résolution de l'équation de Poisson vérifiée par la pression (PPE). Ceci pourrait être réalisé en utilisant des espaces d'approximation de la vitesse à divergence nulle H 0 [H(div; Ω)] [START_REF] Deriaz | Direct numerical simulation of turbulence using divergence-free wavelets[END_REF][START_REF] Ern | Theory and Practice of Finite Elements[END_REF][START_REF] Lehrenfeld | Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems[END_REF]. En complément, la technique appelée DG hybridée (HDG en sigle anglo-saxon) pourrait offrir une meilleure efficacité de calcul [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems[END_REF]. Les méthodes classiques de la DG possèdent deux ensembles des degrés de liberté à l'interface des éléments contrairement à la méthode de Galerkin continue (CG en sigle anglo-saxon) qui n'en possèdent qu'un. Ceci rend la méthode DG plutôt inefficace par rapport à méthode CG. HDG fournit un moyen de coupler efficacement les éléments discontinus, ce qui permet d'économiser les coûts de calcul. Enfin, il faut souligner que les méthodes DG doivent être utilisées en conjonction avec les algorithmes d'adaptation hp, d'autant plus que la méthode est toujours conservative, même sur des mailles non conformes, une propriété hautement souhaitable. Nous avons très brièvement démontré l'utilisation d'un indicateur d'erreur basé sur les ondelettes en conjonction avec DG-FEM, sur une équation elliptique dans ce chapitre. Une telle approche pourrait être étendue aux équations INS à l'avenir.

Nous avons évalué l'approche WAV-VMS-LES, décrite dans le chapitre 6, sur la configuration TGV 3D à Re = 3000 et Re = 10 000 dans le chapitre 7. Une grille sous-résolue avec 80 3 degrés de liberté a été utilisée. A Re = 3000, nous avons utilisé des schémas d'ordres 5 et 9, alors qu'à Re = 10 000, seul le schéma d'ordre 5 a été mis en oeuvre. L'approche WAV-VMS-LES garantit que l'effet du modèle de turbulence est confiné aux petites échelles. L'examen des résultats permet de voir que cette approche offre des avantages. L'approche WAV-VMS-LES est notamment moins dissipative que l'approche Smagorinsky mono-echelle. Une conséquence est l'amélioration de la prédiction des quantités intégrées telles l'enstrophie, l'énergie cinétique et la dissipation d'énergie cinétique. Cependant, nous avons remarqué que l'approche WAV-VMS-LES et l'approche ILES ont tendance à produire des résultats très similaires sur ce cas test. La raison est peut-être liée à l'insuffisance de résolution des maillages utilisés dans les tests. Il serait intéressant de refaire ces cas test avec un maillage plus fin, avec de préférence 256 3 degrés de liberté [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. En outre, il conviendrait de mettre l'accent sur un cas à nombre de Reynolds élevé comme Re = 20 000 [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. Certaines études pourraient également être réalisées à l'avenir sur le comportement de l'opérateur de séparation d'échelle lorsque des éléments courbes sont utilisés. Enfin, nous devons souligner que la manière dont la séparation d'échelle est effectuée doit respecter la vraie nature de la physique du problème. À cet égard, l'utilisation des ondelettes pour la séparation d'échelle présente un avantage significatif car cette opération est bien définie en nombre d'onde et peut donc être adaptée pour imiter le comportement spectral de la vraie solution.

Introduction

In the previous chapters we have successfully demonstrated the usage of WAV-VMS-LES in conjunction with a pressure-stabilised DG-FEM technique for solving the INS equations. Based upon our experiences we would like to draw a few conclusions and outline some possible directions for future work. We divide the conclusions and perspectives into two sections each. The first focuses upon the DG-FEM discretization technique and its validation and covers topics contained within chapters 4 and 5. The second focuses upon SGW, VMS-LES and WAV-VMS-LES and covers the topics contained within chapters 2, 3, 6 and 7.

Conclusions

DG-FEM

We have constructed and tested an incompressible flow solver based upon pressure-stabilised DG-FEM, using equal-order collocated Lagrange polynomials as the basis functions for the velocity-pressure approximation spaces. Its development was described in detail in chapter 4 and its validation upon standard test cases was performed within chapter 5.

Modal DG-FEM methods are generally constructed using the Legendre polynomials. These are modal basis functions which make use of the GL quadrature points. As we have pointed out within chapter 4, the usage of such an approach may have significant drawbacks particularly from the point of view of computational speed. Thus in our construction, we have instead made use of the Lagrange polynomials with the GLL quadrature points. The discrete Dirac property exhibited by this approach has enabled fast operator construction as described within Appendix C. Sec. B.1. Furthermore the presence of GLL points along the element boundaries has ensured that no interpolations need to be performed, from the element interior to the element face, and thus makes the treatment of complex interface and boundary terms simple.

The nodal element framework described above is numerically efficient and we have tried to retain these benefits while performing the discretization of the INS equations. Thus, not only do the velocity and pressure spaces use nodal Lagrange basis functions and GLL quadrature points, but the GLL points for all the variables are collocated. This collocated or equal-order approach negates the need for costly interpolations between pressure and velocity d.o.f. Our initial intention was to exploit this structure to produce a fast algorithm. In order to facilitate this, a pressure-stabilisation term was introduced to ensure that these collocated velocitypressure spaces satisfy the inf-sup condition. We have validated this pressure-stabilised DG-FEM method on the LDC at Re = 1000 in chapter 5, where it was seen to properly handle the discontinuous boundary conditions. It also produced accurate results within the smooth domain interior. Furthermore our tests upon the 3D TGV at Re = 500 and 1600, within chapter 5, have demonstrated the accuracy of the method, particularly at very high polynomial degrees.

However our experience with these test cases exposed a computational limitation with this approach, particularly as the number of d.o.f. is increased. This limitation arises from the fact that in general the condition numbers of matrices generated by the DG type methods are The effect of penalty parameter η on the condition number of the SIP discretization of the elliptic operator always larger than the corresponding matrices of the CG method. Furthermore the condition numbers of the elliptic operator, discretized by the SIP method (chapter 4 Sec. 4.6.4), is strongly dependent upon and grows extremely rapidly with the penalty parameter (η) as seen in Fig. 8.1. This has a significant effect upon implicit algorithms, particularly the PPE solve step which is prohibitively costly for fine meshes.

Our tests upon the 3D TGV configuration at Re = 1600, in chapter 5, revealed that overintegration was absolutely essential to maintain the energy-stability of the method. Overintegration, which was discussed in chapter 4, is one of the de-aliasing procedures available today, the other being polynomial filtering [START_REF] Hesthaven | Filtering in Legendre spectral methods[END_REF]. For nodal Lagrange basis functions, overintegration is far easier to implement than polynomial filtering. Finally, we have seen in chapter 5, that the usage of an upwind flux provides an improved prediction, of all the integrated quantities, as compared to a central flux. While not essential to the stability of the simulation, results produced by the upwind flux were smoother, closer to the reference and exhibited physically consistent behaviour particularly at low mesh resolutions where the simulation was highly under-resolved.

WAV-VMS-LES

Turbulence is a multi-scale phenomenon. VMS-LES is a method which allows for the multi-scale splitting of the governing equations by a variational projection. This allows for the treatment of the equations at different scales, in a manner consistent with the physical nature of that set of scales. We have explored the usage of three-scale VMS-LES which uses an eddy-viscosity model to introduce dissipation at the level of the small-resolved scales in order to provide closure. The three-scale VMS-LES method was outlined in chapter 2 and it served as the base upon which we built the WAV-VMS-LES method described in chapter 6.

The WAV-VMS-LES technique which we have put forth makes use of the SGW functions, described in chapter 3 in order to perform the scale-separation. Traditional VMS-LES techniques perform the scale-separation using the underlying modal polynomial basis of the FEM method (e.g the Legendre basis). Our chief issue with this approach is that the scale separation is not well characterised in wavenumber. With the SGW basis a well defined scale separation in wavenumber is achieved. We have shown, in chapter 6, that the separation in wavenumber provided by the SGW, is not sharp and that there is considerable overlap between large-resolved and small-resolved scales. The usefulness of this overall approach is that the scale-separation operation is completely independent of the discretization and thus basis functions optimal for their respective tasks (SGW for scale separation and Lagrange for discretization) can be made use of. WAV-VMS-LES was tested upon the 3D TGV test case in chapter 7 and has provided us with some insights into its behaviour.

Our tests in chapter 7 were performed using a grid with 80 3 d.o.f. at two Reynolds numbers: Re = 3000 and Re = 10 000. For the test case at Re = 3000 we have made use of 5 th -order and 9 th -order schemes, while for the test case at Re = 10 000 we have made use of only 5 thorder schemes. Our tests have revealed that there is a significant improvement in the results produced by the WAV-VMS-LES over the classical (mono-level) LES approach as seen in the 3D TGV test case at both Re = 3000 and 10 000. There is a distinct improvement in the resolving power of the overall scheme when switching from the classical LES to the WAV-VMS-LES. This is manifested by the improvement in the resolution of quantities dominated by the small scales, such as enstrophy, irrespective of the underlying polynomial degree used for the discretization. Furthermore the typically over-dissipative nature of classical LES is not seen in the WAV-VMS-LES approach. Thanks to this behaviour, the quantities of interest such as kinetic energy and kinetic energy dissipation are well predicted. Furthermore we have seen that increasing the polynomial degree produces a distinct improvement in the prediction of the quantities of interest. For the Re = 3000 test case, we clearly see that when we move from a 5 th to a 9 th -order scheme, the total and subgrid dissipation move closer towards the filtered DNS reference curves.

During the course of the tests we have noticed that the differences between the ILES and the WAV-VMS-LES simulations are marginal. Both the methods exhibit rather similar behaviours. This fact is not surprising given that both the upwind flux (the dominant dissipative mechanism in the ILES) and the WAV-VMS-LES exert their maximum influence at the high wavenumbers. However, it is highly probable that the ILES techniques will tend to become less effective at high Reynolds numbers, particularly when using high polynomial orders and when using under-resolved meshes. In light of this, it would appear to be sensible to defer judgement on the relative merits of WAV-VMS-LES and ILES until higher Reynolds number tests have been completed.

Having stated these conclusions, we would like to point out that the Reynolds numbers at which the tests in chapter 7 were conducted at, range from low to moderate (Re = 3000 -10 000), as high Reynolds number tests are currently out of our reach owing mainly due to the computational limitations of our code. For the Re = 3000 test case the inertial range is relatively narrow and thus the hypothesis of the cutoff lying within the inertial range is unlikely to be satisfied. Thus neither the WAV-VMS-LES nor the ILES simulations are truly representative. Similarly, in order to reduce computational cost which would be incurred, all calculations on the Re = 10 000 test case were performed using 80 3 d.o.f and 5 th -order schemes rather than the more appropriate 256 3 d.o.f. [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF] and 9 th -order schemes. The coarse grid causes the cutoff frequency to lie too early within the inertial range while the discretization scheme is overly dissipative. Thus the results presented in the paragraph above must be treated with care bearing in mind these limitations.

Perspectives

DG-FEM

While the DG-FEM technique has numerous advantages, it also does possess a few drawbacks. One of them is the fact that at the interfaces, two sets of d.o.f. are present, unlike the CG approach where only a single set is present. This non-unique variable definition at the boundary produces post-processing issues (as we have faced within chapters 5 and 7) and the more serious problem of being computationally wasteful. The newer technique of hybridized DG (HDG) addresses these issues and should be explored as a viable technique for constructing future INS solvers [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems[END_REF]. HDG involves enforcing the governing equations on an element-by-element basis producing numerous local problems which may be efficiently coupled together to form the global problem. This approach thus reduces the number of d.o.f. required and makes the implementation of such an algorithm computationally efficient.

With regards to the approach which we have developed, a major drawback is the need to solve the PPE. The solution of the PPE is the most computationally expensive step in the projection method and the high condition number of operators based upon discontinuous spaces exacerbates the problem. Thus it is important to devise techniques to precondition DG operators. Recent advances are being made in this area with the usage of wavelet-based preconditioners [START_REF] Brix | Multilevel preconditioning of discontinuous-Galerkin spectral element methods, Part I: Geometrically conforming meshes[END_REF]. However such an approach as yet cannot be extended to non-conformal elements. Another way to overcome this difficulty is to eliminate the PPE altogether by making use of divergence-free approximation spaces H 0 [H(div; Ω)] [START_REF] Deriaz | Direct numerical simulation of turbulence using divergence-free wavelets[END_REF][START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. A locally divergence-free space which is discontinuous across elements may thus provide an excellent approach [START_REF] Lehrenfeld | Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems[END_REF]. The loss in computational speed in moving away from the Lagrange basis and the collocated spaces will be offset by the gains in computational speed in not having to solve the PPE. This overall approach if hybridized to develop an HDG type method would in fact be more stable, efficient and accurate [START_REF] Lehrenfeld | Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems[END_REF].

In order to make the most of the DG-FEM methods, it is essential to implement appropriate hp-adaptation techniques. A distinct advantage of DG-FEM is its ability to remain fully conservative on hp-adapted grids. A major limitation in the widespread use of this feature is the lack of reliable error-estimation techniques for turbulent flows, a prime candidate for the use of hp-adaptivity. A review of error-estimation techniques may be found within [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF]. In light of this fact we have conducted some tests to determine whether or not the SGW may act as suitable error-indicators. It is a well known fact that the rate of decay of the coefficients of a polynomial series expansion of a function is directly linked with the regularity of the function. This fact serves as the basis for using SGW as a refinement indicator. The MRA of a function gives us information regarding the regularity of the function. A local loss in regularity indicates the need for hp-refinement. Thus we first define a threshold parameter after which we subject the discrete solution to a SGWT element-wise. In those regions where the discrete solution is smooth, the wavelet coefficients are predominantly zero. A proliferation of wavelet coefficients exceeding the threshold, in any region of the discrete solution, indicates the presence of structures that contributes to the high frequencies in a spectral analysis and thus to the numerical errors. To resolve these regions better, hp-refinement is performed locally. It should be noted that this refinement indicator is completely blind to sudden jumps across the interfaces which is fortuitous as DG-FEM by its very nature produces a discontinuous solution across elements.

We have demonstrated h-adaptive DG-FEM using the SGW functions as an error-indicator, upon the re-entrant corner configuration, a scalar elliptic test case with Dirichlet boundary conditions [START_REF] Nochetto | Theory of Adaptive Finite Element Methods: An Introduction[END_REF]. The test case, whose geometry is seen in Fig. 8.3, possesses an exact solution given by: u(r, θ) = r 2/3 sin(2θ/3) -r 2 /4 (8.1)

where r represents the radius and θ represents the angle in the range of [-π/2, π]. The exact solution also seen in Fig. 8.3, belongs to H s (Ω) where s < 5/3 and thus experiences a loss of regularity at the corner. This elliptic problem is solved by the SIP DG-FEM discretization whose convergence rate is given in Eqn. 4.52. When uniform refinement is carried out, the convergence rate of the discrete solution to the exact solution is always of the order of O(h 4/3 ), being limited by the regularity of the exact solution. Thus the theoretical rate of O(h k+1 ), as given by the error-estimate in Eqn. 4.52, can never be achieved irrespective of the degree of the polynomial, k, used for the discretization. This can be seen from the dashed lines in Fig. 8.3, where 5 th -order and 9 th -order schemes exhibit the same convergence rate of O(h 4/3 ), instead of O(h 5 ) and O(h 9 ) respectively. When we perform h-adaptivity based upon the SGW errorindicator, we observe that the optimal convergence rates of O(h 5 ) and O(h 9 ) are recovered for the 5 th -order and 9 th -order schemes respectively (as seen by the solid lines in Fig 8 .3). This simple test case serves to illustrate the potential of SGW for performing adaptivity in an element-wise setting and constitutes an interesting prospect for future research.

At this point it should be pointed out that there is a large body of work pertaining to the usage of wavelets for constructing adaptive algorithms for turbulent flows as seen in [START_REF] Schneider | Wavelet methods in computational fluid dynamics[END_REF], however none of the approaches described therein focus upon DG-FEM techniques. A more recent approach, similar to that described in the earlier paragraph, has been developed within [START_REF] Iacono | A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows[END_REF] for compressible flows thus lending credibility to such an approach. 
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 11 Figure 1.1: Space-frequency representation of a step function projected upon an MRA

  (a, b) Ω = Ω ab dx for scalar arguments a, b and as (a, b) Ω = Ω a • b dx for vector arguments a, b. The boundary integral is defined as (a, b) ∂Ω = Ω ab • n ds. Using these definitions the weak statement of the problem is written as follows: we search for solutions {u, p} ∈ {V, Q} such that for all {v, q} ∈ {V, Q} it satisfies the weak form of the INS equations:

  (a, b) T = T∈T T ab dx for scalar arguments a, b and as (a, b) T = T∈T T a•b dx for vector arguments a, b. The integral along the domain boundary is redefined as (a, b) F = F∈F b F a(b • n) ds. We also define a new bilinear form, by replacing the continuous bilinear form b(•, •) by the discrete bilinear form b h (•, •). Thus we may restate the new discrete problem. We are searching for a discrete solution u

  Figure 3.1: Interpolating scaling functions
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 2 Figure 3.2: Lifted wavelets

  3.3 has remained unchanged, at the boundary the form of the wavelets and scaling functions have undergone a change. The change in the shape of the wavelets and the scaling functions at the boundaries is due to the asymmetry in the stencil (one-sidedness) of the Lagrange interpolant as it approaches the boundary. The boundary scaling functions and wavelet for N = N = 2 are shown in Fig. 3.4, while the boundary scaling function and wavelet at the point nearest to the boundary for construction of N = N = 4 is shown in Fig. 3.5. Similarly for the next closest point to the boundary, for construction with N = N = 4, the boundary scaling function and wavelet is shown in Fig. 3.6.

  a) 2 nd -order Lagrange interpolating subdivision ( N = N = 2)

Figure 3 . 4 :Figure 3 . 5 :: 4 -e

 34354 Figure 3.3: Fourier Transform of wavelets ψ and scaling functions φ at various levels
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 23843923104311 Figure 3.8: Low frequency signal subjected to 2 nd -order SGWT: Lazy transform (left) and Lifted transform (right)
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 3134 Figure 3.13: 2D standard decomposition: spaces generated by two levels of the 2D SGWT
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 41 Figure 4.1: Geometrical representation of matrix systems

Figure 4 . 2 :

 42 Figure 4.2: Q 6 -Q 4 local space, quadrature nodes: velocity nodes (at intersection of black lines) and pressure nodes (at intersection of red lines)

Figure 4 .

 4 Figure 4.3: Q 6 -Q 6 local space, quadrature nodes: velocity d.o.f. (at intersection of black lines) and pressure d.o.f. (at intersection of red lines)

2 .

 2 Similarly in figure 4.5 we use the name 'P k' to refer to a DG-FEM discretization using Lagrange polynomials, of degree 'k' per direction, as the basis functions of the local approximation space i.e. Q d k (T). Results and Discussions: Two figures are shown alongside which examine the behaviour of the error ( u h -u L 2 (Ω) ). The first figure, Fig. 4.4, depicts the behaviour of the error with the penalty parameter, while the second figure, Fig. 4.5, depicts the decay of the error with the polynomial order.
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 4445 Figure 4.4: Behaviour of the error with penalty parameter η
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 46 Figure 4.6: 2D TGV at Re = 1000: velocity and pressure field at t = 1.0

Figures 4 .

 4 Figures 4.7 and 4.8 show the behaviour of the velocity error ( u h -u [L 2 (Ω)] d ) and the pressure error ( p h -p L 2 (Ω) ) respectively. We see that the standard pressure-correction method exhibits first-order convergence, O( t), for both variables, in keeping with the error estimates presented in Eqn. 4.23. The incremental pressure-correction method exhibits second-order convergence, O( t 2 ), for both variables, in keeping with the error estimates presented in Eqn. 4.29. A comparison of the numerical errors with the error estimates in Eqns. 4.23 and 4.29 shows that the numerical rate of convergence of the pressure is superior to that indicated within the estimate while that of the velocity is the same as that given within the estimate.
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 47 Figure 4.7: 2D TGV at Re=1000: Temporal convergence of velocity
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 488498410 Figure 4.8: 2D TGV at Re=1000: Temporal convergence of pressure
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 52 Figure 5.2: LDC at Re = 1000
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 5 Figure 5.3: 3D TGV at Re = 500, h-convergence: Same polynomial degree.
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 56 Figure 5.6: 3D TGV at Re = 1600: central vs. upwind flux
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 57 Figure 5.7: Iso-surfaces of the Q-criterion coloured by kinetic energy at different times

Figure 6 . 1 :

 61 Figure 6.1: Large-scale (light grey) and small-scale (dark grey) spaces

Figure 6 . 2 :

 62 Figure 6.2: FFT of signal, f (x, y) = sin(2πx)sin(2πy) + sin(40πx)sin(40πy), before and after scale-separation with element-wise wavelet transform
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 63 Figure 6.3: Prior to filtering Figure 6.4: Low pass filtered Figure 6.5: High pass filtered
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 662 Figure 6.6: Transfer function of 2D SGWT using N = Ñ = 2
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 67 Figure 6.7: Transfer function of 2D SGWT using N = Ñ = 4

  32) where B L h (•, •) and B N L h (•, •) represent the discrete linear and non-linear operators of the INS equations. W h = W + W and U h = U + U represent the discrete or entire resolved-scale test and trial spaces respectively and similarly v h = v + v represents the discrete or entire resolved-scale velocity test space.
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 68 Figure 6.8: Idealised filter behaviour for mono-level Smagorinsky and WAV-VMS-LES
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 69 Figure 6.9: Behaviour of C s with r
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 71 Figure 7.1: Total kinetic energy spectra at t = 14.0

Figure 7 .

 7 Figure 7.3: 3D TGV at Re = 3000: WAV-VMS-LES
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 74 Figure 7.4: 3D TGV at Re = 10 000: mono-level Smagorinsky
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 7576 Figure 7.5: 3D TGV at Re = 10 000: WAV-VMS-LES
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 77 Figure 7.7: 3D TGV at Re = 10 000: TKE spectra for integer time values between [1, 8] 154
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 78 Figure 7.8: 3D TGV at Re = 10 000: TKE spectra for integer time values between[START_REF] Baker | Finite element methods for elliptic equations using nonconforming elements[END_REF][START_REF] Bar-Yoseph | An efficient L2 Galerkin finite element method for multidimensional non-linear hyperbolic systems[END_REF] 
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 81 Figure 8.1: The effect of penalty parameter η on the condition number of the SIP discretization of the elliptic operator
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 828 Figure 8.2: Re-entrant corner: Increasing adaptive local h-refinement from left to right in vicinity of discontinuity

Table 5 .

 5 2: Simulation details of 3D TGV Re = 500: h-convergence, same polynomial order

	Name	order	d.o.f./ elem. No. elems.	d.o.f.
		(k + 1)		(N e) d	(N e × (k + 1)) d
	8P 4c	5	5 3	8 3	40 3
	12P 4c	5	5 3	12 3	60 3
	16P 4c	5	5 3	16 3	80 3

Table 5 .

 5 3: Simulation details of 3D TGV Re = 500: p-convergence, same number of elements

	Name	order	d.o.f./ elem. No. elems.	d.o.f.
		(k + 1)		(N e) d	(N e × (k + 1)) d
	12P 2c	3	3 3	12 3	36 3
	12P 4c	5	5 3	12 3	60 3
	12P 8c	9	9 3	12 3	108 3
	Name	order	d.o.f./ elem. No. elems.	d.o.f.
		(k + 1)		(N e) d	(N e × (k + 1)) d
	20P 2c	3	3 3	20 3	60 3
	12P 4c	5	5 3	12 3	60 3
	7P 8c	9	9 3	7 3	63 3

Table 5 .

 5 

4: Simulation details of 3D TGV Re = 500: p-convergence, same number of d.o.f.

Table 5 .

 5 5: Simulation details of 3D TGV at Re = 1600: Central flux Moderate-Reynolds Number Re = 1600
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Figure 5.4: 3D TGV at Re = 500, p-convergence: same number of elements (left) vs. same number of d.o.f. (right)

Table 5 .

 5 6: Simulation details of 3D TGV at Re = 1600: Upwind flux are far smoother and generally in better agreement with the reference DNS than those produced by the central fluxes. The reason for this behaviour is explained later.
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Figure 5.5: 3D TGV at Re = 1600, h-convergence: Central flux (left) vs. upwind flux (right)

  Dans ce chapitre, le fonctionnement de l'approche WAV-VMS-LES décrite dans le chapitre 6 est étudié pour le cas test TGV 3D à deux nombres de Reynolds: Re = 3000 et Re = 10 000. Ce cas test, conformément à la philosophie de la LES, sera simulé sur des maillages fortement sous résolus. Comme mentionné dans le chapitre 5, le cas test TGV 3D décrit un écoulement de transition libre dans un domaine cubique tri-périodique. En dépit de la simplicité géométrique et des conditions limites élémentaires, la prédiction de la dynamique pour ce cas test constitue un défi pour un maillage à basse résolution. De façon générale, les méthodes multi-échelles sont censées offrir une prédiction améliorée par rapport aux techniques de LES classiques, ceci pour divers cas d'écoulement instationnaires. Pour le TGV 3D, cette amélioration est bien montrée dans de nombreuses études[START_REF] Aubard | Comparison of subgrid-scale viscosity models and selective filtering Strategy for large-eddy simulations[END_REF][START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF][START_REF] Colomés | Mixed finite element methods with convection stabilization for the large eddy simulation of incompressible turbulent flows[END_REF][START_REF] Diosady | Design of a variational multiscale method for turbulent compressible flows[END_REF][START_REF] Hickel | Implicit Turbulence Modeling for Large-Eddy Simulation PhD Thesis[END_REF][START_REF] Wasberg | Variational multiscale turbulence modelling in a high order spectral element method[END_REF]. Le but de ce chapitre est d'évaluer l'approche WAV-VMS-LES et de la comparer à la LES classique ainsi qu'à une approche sans modèle (ILES). Dans ces comparaisons, nous cherchons à comprendre l'origine des améliorations. Il s'agit notamment de se demander si les améliorations proviennent exclusivement de la modification du comportement spectral de la dissipation ou s'il est plutôt dû au changement du niveau global de dissipation par filtrage.

	Chapter 7
	Validation of Wavelet-Based Three-Scale
	VMS-LES

  SimulationsWe now examine the behaviour of the WAV-VMS-LES approach on this test case. The quantities of interest are shown in Figs.[START_REF] Babuska | The finite element method with Lagrange multipliers[END_REF].3a to 7.3e. An additional graph showing the L ∞ -norm of the Smagorinsky eddy viscosity is shown in figure
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∞ -norm of Smagorinsky eddy-viscosity Figure 7.2: 3D TGV at Re = 3000: mono-level Smagorinsky and ILES 7.4.2 WAV-VMS-LES: P 4 and P 8

Powered by TCPDF (www.tcpdf.org)

Acknowledgements

One level of the 2D SGWT

Now we consider one level of the 2D SGWT thus decomposing V xy J+1 into its 2D scaling function and wavelet spaces. We do this by replacing the operator P x J+1 by (P x J + Q x J ) and P y J+1 by (P y J + Q y J ) in Eqn. 3.79 to obtain:

The effects upon the 2D scaling function space is given as:

Thus we obtain the familiar set of spaces given in equation 3. [START_REF] Ferrer | A high-order discontinuous Galerkin Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes[END_REF]. As before we see that one level of the transform has produced one pure scaling function space, two cross spaces and one pure wavelet space at the level J.

Two levels of the 2D SGWT

We now move to the level J -1. This represents two levels of the 2D SGWT. We achieve this by replacing operator P x J by (P x J-1 + Q x J-1 ) and P y J by (P y J-1 + Q y J-1 ) in Eqn. 3.81. Thus we obtain: P x J+1 P y J+1 f (x) = P x J-1 P y J-1

In terms of the spaces produced we have:

A single pure scaling function space is obtained. This is the space (V x J-1 ⊗ V y J-1 ). At each level of the transform a pure wavelet space is produced (two in this case): for the level J it is W x J ⊗ W y J and for the level J -1 it is W x J-1 ⊗ W y J-1 . All the remaining spaces produced are called cross spaces (six in this case). This construction procedure is known as the standard decomposition [START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF]. In a standard decomposition a variety of spaces are produced which describe the interactions between different levels of wavelet and scaling function spaces. The spaces produced via the standard decomposition are shown graphically in Fig. 3.12 for one level and Fig. 3.13 for two level. It is interesting to note that the pure spaces are always located along the anti-diagonal, as seen in the figures.

To avoid further complexity we terminate this section at two levels of the 2D SGW decomposition, however an extension to a greater number of levels and greater number of dimensions is straightforward via the usage of tensorisation. Further details on this topic are provided in chapter 6 in the context of SGW-based VMS-LES. spans the high wavenumbers. A total of two levels of the 1D SGWT acting upon the function space V J+1 produce (Eqn. 3.68 from chapter 3):

In this case we stipulate that V J-1 is the large-scale space which spans the low wavenumbers and (W J-1 ⊕ W J ) is the small-scale space which spans the high wavenumbers. Our ability to stipulate which space is the large-scale space and which is a small-scale space is aided by the well characterised behaviour in wavenumber of the 1D SGW basis (Sec. 3.4.1 in chapter 3). Thus we see that in one dimension the scale separation operation is straightforward.

Scale Separation in Higher Dimensions

Similar to the 1D case we may use the multi-dimensional SGW basis and SGWT (Sec. 3.5 in chapter 3) for the purpose of scale separation in higher dimensions. For future ease of exposition, we briefly recall the wavelet decomposition, in 2D only. A single level of the 2D SGWT acting upon the tensor product space

which on expanding leads to:

while two levels of the 2D SGWT produces:

which on expanding leads to:

Spaces of the form {(V x j ⊗ V y j )| j ∈ Z} are called the pure scaling function spaces and are denoted as V xy j , spaces of the form {(W x j ⊗ W y j )| j ∈ Z} are called pure wavelet spaces while all the other spaces are called cross spaces. The number and nature of the cross spaces depend upon the level of the transform and the number of dimensions. The cross spaces possess a mix of information, between the pure scaling function and pure wavelet space. They represent interactions between scaling functions and wavelets at all levels i.e. {(W x i ⊗V y j ), (V x i ⊗ W y j )| i, j ∈ Z}, as well as interactions of wavelets among themselves at different levels i.e.

Due to the diversity of spaces available it is difficult to clearly say which space represents the large-scales and which represents the small-scales. To overcome this difficulty we stipulate that the large-scales are contained solely within the pure scaling function space, while the small-scales are contained within the sum of the cross spaces and the pure wavelet spaces. In spite of the fact that this definition is purely arbitrary, we will use this demarcation in our future analysis of the scale separation operation. In Sec. 6.3 we characterise the behaviour of these spaces with wavenumber and find that such a classification is quite accurate. Thus to summarise consider a partition of the 2D function space (V x J+1 ⊗ V y J+1 ) using the 2D SGWT:

Similarly we obtain the small-scale space as (dark grey in figure 6.1b):

as the projection operator into these spaces with:

where:

and:

We note that as the number of levels of the 2D SGW transform are increased, the large-scale partition occupies a decreasing portion of the original function space while the small-scale partition occupies an increasing portion of the original function space (V x J+1 ⊗ V y J+1 ) as can be seen in moving from Fig. 6.1a to 6.1b.

Thus consider a general function, f (x) ∈ L 2 (R d ). The discrete representation of this signal is denoted as f J+1 (x) and can be represented by a multi-level SGWT, with m levels in 2D as:

and in 3D as:

These equations above are the 2D and 3D analogue to those given within Sec. 3.4.

Scale-Separation with Element-Wise Transform

The scale-separation procedure described above pertains to the wavelet and scaling functions acting upon the entire domain. From a computational point of view this approach is undesirable as it is inherently non-compact. We have chosen as our numerical scheme a DG-FEM discretization. Due to its usage of an element-wise discretization of the computational domain, it is inherently compact. In order to preserve the compactness property when using the SGW in conjunction with the DG-FEM scheme, we need to perform the SGWT element-wise. Thus we 4. Bring the model back to physical space by performing the inverse SGWT:

36) Although back in physical space, the model is missing its low-wavenumber content. For brevity we denote the above operation as:

Thus the final equation for WAV-VMS-LES to be solved is:

The model term is always treated explicitly in the time advancement scheme and its incorporation into the existing DG-FEM algorithm is quite straightforward. Having now defined the new framework for the Smagorinksy model, we look at the calibration of the model within this new framework and see what changes need to be made.

Re-calibration of the Smagorinsky Constant

The construction shown above for WAV-VMS-LES involves the usage of a 3D SGWT to perform a high-pass filtering operation on the Smagorinsky model term. As a consequence the distribution of the model dissipation in wavenumber has been altered. Under these circumstances it makes sense to re-calibrate the constant of the Smagorinsky model as suggested in [START_REF] Chapelier | Development of a multiscale LES model in the context of a modal discontinuous Galerkin method[END_REF]. The Smagorinsky constant C s is traditionally derived for homogeneous isotropic turbulence by enforcing the condition that at the cutoff wavenumber, the model dissipates the turbulent kinetic energy entirely and instantaneously. This method of calibration of the constant is called the Lilly approach [START_REF] Pope | Turbulent flows[END_REF]. For a classical (mono-level) LES using a sharp-cutoff filter it is possible to derive the value of the Smagorinsky constant C s using simple relations based upon the assumptions above (as shown in section 6.4.1). By modifying the relations, particularly those of the filter, we can re-derive the value of C s for WAV-VMS-LES (as shown in section 6.4.2).

Calibration for a sharp-cutoff filter: Classical (Mono-Level) LES

We restate the Kolmogorov spectrum, previously given in 1.1, as:

Where k represents the wavenumber, E(k) is the kinetic energy density, ε is the kinetic energy dissipation per unit time and C k represents the constant of the Kolmogorov spectrum (with a value of 1.5). Consider the Smagorinsky model introduced in equation 2.17, which we restate here as:

choice for the Smagorinsky constant C s . The value of C s = 0.1 has been chosen as the baseline value as opposed to the more traditional value of C s = 0.18. The reason is twofold. Firstly the value of C s = 0.18 has been found to be far too dissipative to provide meaningful simulations thus many practitioners have switched to lower values. Secondly we would like to compare our results to those contained within [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF] and thus we would like to keep our parameters comparable to theirs. As a consequence of this the calibration equation for the WAV-VMS-LES value of C s given in equation 6.59 is redefined as:

The reference data which is the filtered DNS, DNS f , has been computed with Incompact3d [START_REF] Laizet | Incompact3d: A powerful tool to tackle turbulence problems with up to O(10 5 ) computational cores[END_REF], an incompressible flow solver based upon 6 th -order accurate compact finite difference schemes and Fourier spectral techniques.

A Word on Notation: In the tables and figures that follow, the names 'Pk-SMAG-C1', 'Pk-WnLm-C2' and 'Pk-ILES' are often used. They denote DG-FEM simulations wherein 'Pk' refers to the usage of Lagrange polynomials of degree 'k' per direction 'd' as the basis functions of the local approximation space for velocity and pressure. The name 'SMAG' refers to the classical or mono-level Smagorinsky simulation, while the name 'WnLm' is used it refers to a WAV-VMS-LES simulation, where 'Wn' implies a wavelet constructed via n th -order subdivision scheme with n moment cancellations i.e N = Ñ = n and 'Lm' implies that 'm' levels of the wavelet transform are performed prior to scale separation. The notation 'ILES' refers to an implicit LES simulation. Finally 'C1, C2, ...' refers to the usage of various values of the Smagorinsky constant 'C s '.

Results and Discussion: Low Reynolds Number Re = 3000

To start we need an appropriate LES grid which is sufficiently coarse relative to the DNS which requires around 864 3 d.o.f. In literature the most common grid used, at this Re is one with 64 3 d.o.f. Thus the d.o.f. ratio of LES to DNS is about 1 : 13.5. To achieve this ratio, after the post-processing scheme described in section 7.2.3, we choose a grid with 80 3 d.o.f. using 16 elements and P 4 polynomials per element and a grid with 72 3 d.o.f. using 8 elements and P 8 polynomials per element.

The time step chosen for the simulation is rather small with t = 2.5 × 10 -4 . We shall explain the reason for choosing such a small time-step a bit later alongside the results. All the WAV-VMS-LES simulations make use of an uncalibrated value of C s . Details of all the simulations are presented within table 7.1.

Traditional LES: P 4 and P 8 Simulations

We focus first upon the behaviour of the mono-level Smagorinsky approach, in conjunction with 5 th -order and 9 th -order schemes, namely the P4-SMAG and the P8-SMAG simulations respectively. In addition an ILES, based upon 5 th -order schemes is also performed, denoted by P4-ILES. The data from the filtered DNS, DNS f , is used as the reference. The behaviour of the quantities of interest of these simulations are displayed in Figs. 7.2a to 7.2e. An additional quantity, the L ∞ -norm of the Smagorinsky eddy viscosity is also shown in figure 7.2f.

We first compare the LES simulations with each other. In general, the behaviour of the 5 th -order and 9 th -order mono-level Smagorinsky simulations are quite similar to one another. By increasing the scheme order from 5 to 9, we see that all the quantities of interest have moved closer to the filtered DNS, DNS f , thus exhibiting p-convergence. The curves of the kinetic energy and the kinetic energy dissipation of both simulations, shown in Figs. [START_REF] Babuska | The finite element method with Lagrange multipliers[END_REF].2b and 7.2c respectively, appear to be quite similar to one another over the entire time range, since these quantities are mostly dominated by the large-resolved scales which are well resolved. Any departure between the two, occurs around and beyond the LES peak time, t 7.9. We can also see a comparison of the L ∞ -norm of the Smagorinsky eddy-viscosity of the 5 th -order and 9 th -order mono-level Smagorinsky simulations within Fig. 7.2f. Once again we see that their behaviour is quite similar to each other with small variations in the magnitude between them. There is, however, quite a large difference between the enstrophy curves of the two as seen in figure 7.2a. This difference is due to the fact that the enstrophy prediction is dominated by the small-resolved scales. Since the 9 th -order scheme is more capable of resolving the high wavenumbers compared to the 5 th -order scheme, the simulation P8-SMAG, using the former scheme, exhibits a better enstrophy prediction than the simulation P4-SMAG, using the latter scheme.

We now look at the general differences between the mono-level Smagorinsky simulations and the filtered DNS. In general, we observe a large difference between both the mono-level Smagorinsky simulations and the filtered DNS, for all the quantities of interest. In fact the 5 thorder ILES calculation, P4-ILES, is closer to the filtered DNS for all the quantities of interest as can be seen in Figs. [START_REF] Babuska | The finite element method with Lagrange multipliers[END_REF].2a to 7.2e. The enstrophy of the mono-level Smagorinsky simulations is generally far lower than that of the ILES and filtered DNS as seen in Fig. 7.2a. This poor enstrophy resolution by the 9 th -order mono-level-Smagorinsky simulation compared to the 5 th - For the Re = 10 000 case, the 5 th -order, mono-level Smagorinsky simulations, P4-SMAG-C2 and P4-W2L1-C1 make use of our baseline value of C s = 0.1. The simulations P4-SMAG-C1 and P4-SMAG-C3 use C s values that are arbitrarily low (0.05) and high (0.18) respectively. The 5 th -order WAV-VMS-LES simulation P4-W2L1-C2 uses a calibrated value of C s = 0.14 based upon equation 7.15, computed with r = 2.

Traditional LES: P4 Simulations

We first focus upon the mono-level Smagorinsky LES. The quantities of interest are shown in Figs. [START_REF] Babuska | The finite element method with Lagrange multipliers[END_REF].4a to Fig. 7.4e. Furthermore the L ∞ -norm of the Smagorinsky viscosity is displayed in Fig. 7.4f. A new addition here is Fig. 7.4e which shows how small the value of ε div is compared to the other sources of kinetic energy dissipation. These figures contain curves describing the behaviour of the mono-level Smagorinsky approach with three different values of the constant, namely simulations P4-SMAG-C1, P4-SMAG-C2 and P4-SMAG-C3. The figures also contain the curve for the no-model approach given by ILES.

In general, the behaviour of the mono-level Smagorinsky LES at this Re is identical to its behaviour at Re = 3000. The enstrophy is under-predicted compared to the filtered DNS as seen in Fig. 7.4a and the curves for kinetic energy and kinetic energy dissipation are shifted to the left of DNS f as seen in Figs. [START_REF] Babuska | The finite element method with Lagrange multipliers[END_REF].4b and 7.4c respectively. Not only does the kinetic energy dissipation peak occurs earlier, but it is weaker than that of the filtered DNS peak. The explanation for these trends, given previously in Sec. 7.4.1, holds true at the current Reynolds number. We are interested in verifying if the poor performance of the mono-level Smagorinsky LES is due to the magnitude of the dissipation introduced. The magnitude may be decreased or increased by altering the value of the Smagorinsky constant, C s . We try three different values of the constant. The simulation P4-SMAG-C2 contains our baseline value of C s = 0.1, P4-SMAG-C1 uses a lower value of C s = 0.05 and finally P4-SMAG-C3 uses a higher value of C s = 0.18.

What is obvious from the curves of the quantities of interest is that altering the value of C s is not an effective means of improving the behaviour of the Smagorinsky model. Increasing

WAV-VMS-LES

Finally we talk briefly about the prospects of the WAV-VMS-LES technique. The WAV-VMS-LES formulation is a useful method and should be actively explored in future. Its ability to invoke separate basis for scale-separation and discretization allows for scale-separation to be performed in a physically meaningful way. Furthermore, other FEM techniques, particularly those which make use of exotic elements like the RT, BDM elements etc. [START_REF] Ern | Theory and Practice of Finite Elements[END_REF], may not possess readily available polynomial basis functions as part of their discretization to perform an ad hoc scale separation. In such a scenario the usage of SGW to perform the scale-separation would be a reasonable choice.

The 3D TGV test case, which we have made use of, is an ideal test for LES methods due to its transitional nature. However our study using the WAV-VMS-LES upon the 3D TGV is incomplete and must be expanded by considering a broader range of grid resolutions and polynomial orders. We would like to conduct the test at Re = 10 000 using a grid with 256 3 d.o.f., which will allow the cutoff to lie towards the end of the inertial range, and using 9 thorder schemes which will allow for minimising dissipative effects due to the discretization. Furthermore in order to draw more general results it is imperative to focus upon high Reynolds numbers like Re = 20 000 [START_REF] Dairay | Numerical dissipation vs. subgrid-scale modelling for large eddy simulation[END_REF]. A good set of tests could be carried out upon the 3D TGV using 256 3 d.o.f. with 9 th -order schemes at this Reynolds number.

Furthermore in order to extend WAV-VMS-LES to more complex geometries, the characterization of the element-wise SGW scale-separation operator upon arbitrarily shaped elements must be performed. The subsequent application of the WAV-VMS-LES to more challenging test cases will provide greater insights into the merits and demerits of this approach. Examples of such test cases include the channel flow which possesses a non-uniform mesh and periodic hill and circular cylinder test cases which possesses curved boundaries and must use a high-order elemental representation of the boundaries. These are two challenging examples of turbulent flow test cases which could be studied in the next phase of this study.

We make one final point regarding the effect of the scale-separation operation upon the dissipation of the subgrid model. While WAV-VMS-LES does help to redistribute the dissipation of the subgrid model in wavenumber, it is important that this redistribution respects the true physics of the problem. Recent a priori tests on the 3D TGV [START_REF] Lamballais | Implicit/Explicit spectral viscosity and large-scale SGS effects[END_REF] have shown that although the dominant transfers between subgrid and resolved scales occur around the cutoff (transfers between small-resolved scales and subgrid scales), there are more distant triadic interactions (transfers between large-resolved and subgrid scales) which occur not only during transition but also for fully developed turbulence. Thus it is essential that the nature of the inter-scale interactions be known a priori and the WAV-VMS-LES scale-separation operators be designed accordingly.

A.1 Refinement Relation for Scaling Functions

The refinement relation between the scaling functions may be derived by the process of change of variables. First we relate scaling functions in φ j k (x) V j to the mother scaling function in φ(x) V 0 using eqn. 3.19:

where y = 2 j x -k. Now using the two scale relation on φ(y) (eqn. 3.18):

substituting the value of y in the equation above we get:

Now since 2k and l are both Z, we perform a small rearrangement we obtain:

Now we once again use the equation 3.19 to rewrite the RHS to obtain:

This relation above is called the refinement relation.

A.2 Orthogonal Wavelets and Scaling Function Spaces

The framework described by the MRA (Sec. 3.2) is suitable to construct a wavelet type whose basis functions are orthogonal. The orthonormal wavelets are created from the multiresolution analysis by enforcing an orthogonality condition between scaling functions and wavelets. The resulting heirarchy of scaling function spaces:

Possess an orthogonal complement which is the wavelet space W j . Thus the overall relation between the two spaces are:

The orthogonality conditions on the spaces may be transfered upon their respective basis functions to obtain:

which in terms of filter coefficients becomes:

Thus with these relations a variety of filter coefficients corresponding to orthogonal wavelets may be determined.

A.3 Bi-Orthogonal Wavelets and Scaling Function Spaces:

Bi-orthogonal wavelet bases are created by using the MRA (Sec. 3.2) and dual MRA (Sec. 3.2.3) constructs. Thus instead of a single space of orthogonal functions which serve as a basis, two space which are bi-orthogonal to each other are used. Thus we have a paired hierarchy of primal and dual scaling function spaces,

which satisfy the following properties:

These bi-orthogonality relations may be transferred upon the basis functions:

and upon the filter coefficients:

Thus with these relations a variety of filter coefficients corresponding to bi-orthogonal wavelets may be computed.

A.4 Lazy Wavelets

In this section we attempt to determine the form of the lazy wavelets. In order to do so, we consider a signal at two levels f j (x) and f j-1 (x) on the dyadic grid:

is the original signal rewritten in terms of its even and odd components on grid B j , while f j-1 (x) is the signal represented in terms of scaling functions and wavelets on the grid B j-1 .

We known the form of the scaling functions which we would like to use however the form of the wavelets remains unknown. Now f j (x) = f j-1 (x). Thus equating the two we get:

We know the refinement relationship for a bi-orthogonal scaling function is φ l-1 k = l h l-2k φ j l . We substitute this on the RHS of equation A.15 to get:

The index l has the size of the number of of points in set B j . We may rewrite the terms with index l by using an even-odd decomposition of the size of the number of points in set B j-1 . When l = 2k then h 0 = 1 (h 0 is the filter coefficient occupying the 0 position in the filter array) which corresponds to simple downsampling. This leaves the condition l = 2k + 1. To avoid confusion in the notation l is replaced by m for odd values. Thus we rewrite A.16 as:

Now we know that by construction:

This leaves eqn. A.17 as:

Grouping the terms based upon φ j 2k+1 we obtain:

Thus we obtain the relations:

A.5 Lifted Wavelets

We have the following conditions upon the filters:

Where h old , g old , h old , g old are the old filters obtained for the Lazy wavelets. Now we see what effect these conditions upon the filters will have upon the basis functions. First consider the refinement relation for the scaling function (eqn. 3.20):

Replacing the new value for the filter h l-2k we get:

This is nothing but: [START_REF] Brix | Multilevel preconditioning of discontinuous-Galerkin spectral element methods, Part I: Geometrically conforming meshes[END_REF]) Thus we see that the form of the primal scaling function is unchanged. Now we consider the refinement relation for the wavelets (eqn. 3.28):

Substituting the relation for the new filters into the above equation:

Now using the refinement relations for the scaling functions (eqn. 3.20):

We known that this is equivalent to:

Thus as we see above the form of the lifted wavelet is changed via the addition of a linear combination of scaling functions to it.

In a similar manner we can see that the form of the dual wavelet (eqn. 3.39):

which is just:

Now although the filter coefficient has remained unchanged, since the primal wavelet ψ J-1 m has undergone a change in its form 2.30 thus the dual wavelet has also undergone a similar change.

While for the dual scaling function we obtain (eqn. 3.44):

After replacing for the new filter coefficients:

which may be simplified to:

Thus we see that the form of the dual scaling function is changed.

A.6 The Fast Wavelet Transform Step:

We now describe the Fast Wavelet Transform. This transform has all the properties which we stipulated in the introduction. It is fast, allows for in-place calulations and can be performed on bounded domains with irregular point sets. The entire transform is split into three easy to remember steps: split, predict and update.

Split

Consider the original signal of length 2 J , containing coeffients

The split step as the name implies divides this signal into two sets: one set of even-indexed samples

This can be summed up as:

The even indexed set represents the new values of the Lazy scaling function coefficients. While the odd indexed set is used to produce the Lazy wavelet coefficients in the next step. All the basis functions: φ, ψ and φ, ψ are Dirac delta functions.

Predict

Now in this step we use the values of even-indexed set S old J-1 and the Lagrange interpolant to predict the value of the odd indexed set D old J-1 . The difference between the predicted value and the true value at the odd-index location given the new value of the wavelet coefficients, which are stored in the set

The individual coefficients of the set can be described by the equation below:

where N is the order of the subdivision scheme used. Thus we see that the wavelets encode the differences between the predicted and original values at the odd-indexed points. By increasing N the prediction is improved and the differences is minimised, thus decreasing the magnitude of the wavelet coefficient. If the magnitude of the wavelet coefficient becomes smaller than a user defined threshold, it can be dropped entirely and no data needs to be stored at that point. Performing this operation allows for the data stored to be decreased in size, thus providing signal compression.

Update

This is the last step in the procedure. In this step we use the even indexed set S old k J-1 and the wavelet set D J-1 to correct every scaling function coefficient in S old k J-1 . The modified scaling function coefficients are stored within a new set

The modification of the coefficients is performed via the lifting filters computed within the lifting step. The modification to the individual coefficients can be described below via the equations:

Here N represents the number of moment cancellations of the primal wavelet. This procedure modifies the old set of scaling function coefficients with a linear combination of the wavelet coefficients in such a manner so as to remove all the aliasing errors produced as a result of the downsampling of the scaling function coefficients.

A.7 The Wavelet Transform in Brief

A.7.1 Analysis

Thus in order to project a function into wavelet and scaling function space we may perform the following steps collectively known as the analysis step:

• Initial Projection: First project f (x) upon the finest scaling function space.

Due to the interpolating nature of the scaling functions

• Predict:

• Update:

A.7.2 Synthesis

The inverse operation of analysis is synthesis. The steps above are repeated but in the reverse order and with the operations reversed

• Undo Update:

• Undo Predict:

• Undo Split:

• Inverse Projection:

A.8 Computational Complexity

The computational complexity of the unlifted forward wavelet transform may be derived in the following manner. At any level i, there are 2 i scaling functions and 2 i wavelet coefficients. A subsampling operation needs to be carried out to define the next space of scaling function, this requires '2 i ' operations. The computation of a single unlifted wavelet coefficient requires '2N + 1' operations when using an interpolating procedure of order 'N '. Thus for all wavelet coefficients at that level, 2 i (2N + 1) operations are required. In total at any level 2 i (2N + 2) operations are required. Thus as the transforms proceeds to coarser space the, operations are repeated albeit fewer in number due to a decrease in 'i'. Summing up over a finite number of levels, from the finest level 'J' (original signal length 2 J = N) to an arbitrary coarse level 'J -m':

This is equal to:

After summing up the convergent geometric series:

Thus we see that although the computational cost increases overall with an increase in the number of levels m, the operation count is ∝ 2 J or O(N). This is linear computational complexity and is extremely favourable for computer implementations.

For the lifted wavelet transform the only difference is that after subsampling a lifting step is required (we assume here the most computationally expensive case wherin N = N ). Thus for every one of the 2 i unlifted wavelet coefficients, '2N + 1' operations are required to convert it to the lifted wavelet coefficient with 'N ' number of moment cancellations for the dual wavelet. If we include this summation into the estimation above we simply obtain

Thus we see that when the lifting procedrue is included the computation cost is doubled however the computational complexity stays linear i.e. ∝ 2 J or O(N)

Appendix B

B.1 Pressure Correction Method via Approximate Factorisation

The pressure correction method may also be derived from the discrete matrix form of the Stokes operator, by which it may be viewed as a approximate factorisation technique. Consider the unsteady Stokes equations in the discrete matrix form after temporal discretisation via Backward Euler scheme.

We have the following identity:

Neglecting the O( t) terms we can write the approximate matrix as.

It is possible to perform the exact LU factorisation of the above matrix in the following manner

Thus we can solve this system by first solving the linear system given by the first matrix:

The first row represents the predict step, the second row represents the approximate PPE. Following this we solve the linear system given by the second matrix:

Subsequently the first row of this matrix represents the correct step.

B.2 Lagrange polynomials

Form of function:

The lagrange polynomials can be written in a more compact form. If f N (x) is a polynomial of order N + 1 then the lagrange interpolant of this polynomial is given by

B.3 Operators based upon Lagrange polynomails

B.3.1 Collocation type:

Consider the Lagrange interpolating polynomial on its particular grid. The interpolant of the function can be defined as shown below.

We want the first derivative at the spatial location x j :

For 0 < j < N , this can be written in matrix form as:

The matrix D

C representing the first derivative operator is given as follows:

A similar procedure is employed for higher order operators. For the second derivative at x j :

This can be written in matrix form as:

The matrix D

C representing the second derivative operator is given as follows:

An important point to note is that this second derivative operator matrix is not symmetric.

B.3.2 Galerkin-Numerical-Integration (G-NI) or Pseudospectral type:

Consider the Lagrange interpolant:

We show a weak galerkin type discretisation below. Integration by parts has been performed. The test functions (v(x)) are the same as the trial functions u(x). They are both the Lagrange polynomials:

Now we approximate the integrals via numerical quadratures, specifically the Gauss-Legendre-Lobatto (GLL) quadrature rules.

Now we know that the Lagrange polynomial exhibits a special property on the GLL grid:

Substituting this property in the equation above we get.

This can be written in matrix form as:

The matrix D

G representing the first derivative operator is given as follows:

G can be obtained from the collocation matrix via the following relation. D

Where W is a diagonal weighting matrix. Thus the Galerkin style operators are simply obtained from the collocation operator which is much faster than explicit numerical quadratures.

We now consider the second derivative operator. We show a weak Galerkin type discretisation below. Integration by parts has been performed. The test functions (v(x)) are the same as the trial functions u(x). They are both the Lagrange polynomials: Now we approximate the integrals via numerical quadratures, specifically the Gauss-Legendre-Lobatto (GLL) quadrature rules.

This can be written in matrix form as: 

G can be obtained from the collocation matrix via the following relation. The matrix thus generated is symmetric and it can be generated simply from the first derivative collocation discretisations which once again is computationally cheaper than the costly explicit numerical quadratures.

Wavelet-based multiscale simulation of incompressible flows

This thesis focuses on the development of an accurate and efficient method for performing Large-Eddy Simulation (LES) of turbulent flows. An LES approach based upon the Variational Multiscale (VMS) method is considered. VMS produces an a priori scale-separation of the governing equations, in a manner which makes no assumptions on the boundary conditions and mesh uniformity.

In order to ensure that scale-separation in wavenumber is achieved, we have chosen to make use of the Second Generation Wavelets (SGW), a polynomial basis which exhibits optimal space-frequency localisation properties. Once scale-separation has been achieved, the action of the subgrid model is restricted to the wavenumber band closest to the cuto. We call this approach wavelet-based VMS-LES (WAV-VMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon pressure-stabilised discontinuous Galerkin FEM (DG-FEM).

The method has been assessed by performing highly under-resolved LES upon the 3D Taylor-Green Vortex test case at two different Reynolds numbers. 
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