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1
Introduction

In this thesis, we explore the idea of online handwritten Mathematical Expression (ME) interpretation
using Bidirectional Long Short-Term Memory (BLSTM) and Connectionist Temporal Classification (CTC)
topology, and finally build a graph-driven recognition system, bypassing the high time complexity and
manual work with the classical grammar-driven systems. Advanced recurrent neural network BLSTM with
a CTC output layer achieved great success in sequence labeling tasks, such as text and speech recognition.
However, the move from sequence recognition to mathematical expression recognition is far from being
straightforward. Unlike text or speech where only left-right (or past-future) relationship is involved, ME
has a 2 dimensional (2-D) structure consisting of relationships like subscript and superscript. To solve
this recognition problem, we propose a graph-driven system, extending the chain-structured BLSTM to a
tree structure topology allowing to handle the 2-D structure of ME, and extending CTC to local CTC to
relatively constrain the outputs.

In the first section of the this chapter, we introduce the motivation of our work from both the research
point and the practical application point. Section 1.2 provides a global view of the mathematical expression
recognition problem, covering some basic concepts and the challenges involved in it. Then in Section 1.3,
we describe the proposed solution concisely, to offer the readers an overall view of main contributions of
this work. The thesis structure will be presented in the end of the chapter.

1.1 Motivation
A visual language is defined as any form of communication that relies on two- or three-dimensional

graphics rather than simply (relatively) linear text [Kremer, 1998]. Mathematical expressions, plans and
musical notations are commonly used cases in visual languages [Marriott et al., 1998]. As an intuitive and
easily (relatively) comprehensible knowledge representation model, mathematical expression (Figure 1.1)
could help the dissemination of knowledge in some related domains and therefore is essential in scientific
documents. Currently, common ways to input mathematical expressions into electronic devices include
typesetting systems such as LATEX and mathematical editors such as the one embedded in MS-Word. But
these ways require that users could hold a large number of codes and syntactic rules, or handle the trou-
blesome manipulations with keyboards and mouses as interface. As another option, being able to input
mathematical expressions by hand with a pen tablet, as we write them on paper, is a more efficient and
direct mean to help the preparation of scientific document. Thus, there comes the problem of handwritten
mathematical expression recognition. Incidentally, the recent large developments of touch screen devices
also drive the research of this field.

15
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(a)

(b)

Figure 1.1 – Illustration of mathematical expression examples. (a) A simple and liner expression consisting
of only left-right relationship. (b) A 2-D expression where left-right, above-below, superscript relationships
are involved.

Handwritten mathematical expression recognition is an appealing topic in pattern recognition field since
it exhibits a big research challenge and underpins many practical applications. From a scientific point of
view, a large set of symbols (more than 100) needs to be recognized, and also the 2 dimensional (2-D) struc-
tures (specifically the relationships between a pair of symbols, for example superscript and subscript),
both of which increase the difficulty of this recognition problem. With regard to the application, it offers an
easy and direct way to input MEs into computers, and therefore improves productivity for scientific writers.

Research on the recognition of math notation began in the 1960’s [Anderson, 1967], and several re-
search publications are available in the following thirty years [Chang, 1970, Martin, 1971, Anderson,
1977]. Since the 90’s, with the large developments of touch screen devices, this field has started to be
active, gaining amounts of research achievement and considerable attention from the research community.
A number of surveys [Blostein and Grbavec, 1997, Chan and Yeung, 2000, Tapia and Rojas, 2007, Zanibbi
and Blostein, 2012] summarize the proposed techniques for math notation recognition. This research
domain has been boosted by the Competition on Recognition of Handwritten Mathematical Expressions
(CROHME) [Mouchère et al., 2016], which began as part of the International Conference on Document
Analysis and Recognition (ICDAR) in 2011. It provides a platform for researchers to test their methods and
compare them, and then facilitate the progress in this field. It attracts increasing participation of research
groups from all over the world. In this thesis, the provided data and evaluation tools from CROHME will
be used and results will be compared to participants.

1.2 Mathematical expression recognition
We usually divide handwritten MEs into online and offline domains. In the offline domain, data is

available as an image, while in the online domain it is a sequence of strokes, which are themselves sequences
of points recorded along the pen trajectory. Compared to the offline ME, time information is available in
online form. This thesis will be focused on online handwritten ME recognition.

For the online case, a handwritten mathematical expression could have one or more strokes and a stroke
is a sequence of points sampled from the trajectory of the writing tool between a pen-down and a pen-up at
a fixed interval of time. For example, the expression zd + z shown in Figure 1.2 is written with 5 strokes,
two strokes of which belong to the symbol ‘+‘.

Generally, ME recognition involves three tasks [Zanibbi and Blostein, 2012]:
(1) Symbol Segmentation, which consists in grouping strokes that belong to the same symbol. In Figure
1.3, we illustrate the segmentation of the expression zd + z where stroke3 and stroke4 are grouped as a



1.2. MATHEMATICAL EXPRESSION RECOGNITION 17

Figure 1.2 – Illustration of expression zd + z written with 5 strokes.

Figure 1.3 – Illustration of the symbol segmentation of expression zd + z written with 5 strokes.

symbol candidate. This task becomes very difficult in the presence of delayed strokes, which occurs when
interspersed symbols are written. For example, it could be possible in the real case that someone write first
a part of the symbol ‘+‘ (stroke3), and then the symbol ‘z‘ (stroke5), in the end complete the other part
of the symbol ‘+‘ (stroke4). Thus, in fact any combination of any number of strokes could form a symbol
candidate. It is exhausting to take into account each possible combination of strokes, especially for complex
expressions having a large number of strokes.
(2) Symbol Recognition, the task of labeling the symbol candidates to assign each of them a symbol class.
Still considering the same sample zd + z, Figure 1.4 presents the symbol recognition of it. This is as well
a difficult task because the number of classes is quite important, more than one hundred different symbols
including digits, alphabet, operators, Greek letters and some special math symbols; it exists an overlapping
between some symbol classes: (1) for instance, digit ‘0’, Greek letter ‘θ’, and character ‘O’ might look
about the same when considering different handwritten samples (inter-class variability); (2) there is a large
intra-class variability because each writer has his own writing style. Being an example of inter-class vari-
ability, the stroke5 in Figure 1.4 looks like and could be recognized as ‘z’, ‘Z’ or ‘2’. To address these
issues, it is important to design robust and efficient classifiers as well as a large training data set. Nowadays,
most of the proposed solutions are based on machine learning algorithms such as neural networks or support
vector machines.
(3) Structural Analysis, its goal is to identify spatial relations between symbols and with the help of a 2-D
language to produce a mathematical interpretation, such as a symbol relation tree which will be emphasized
in later chapter. For instance, the Superscript relationship between the first ‘z’ and ‘d’, and the Right
relationship between the first ‘z’ and ‘+’ as illustrated in Figure 1.5. Figure 1.6 provides the corresponding
symbol relation tree which is one of the possible ways to represent math expressions. Structural analysis
strongly depends on the correct understanding of relative positions among symbols. Most approaches con-
sider only local information (such as relative symbol positions and their sizes) to determine the relation
between a pair of symbols. Although some approaches have proposed the use of contextual information to
improve system performances, modeling and using such information is still challenging.

These three tasks can be solved sequentially or jointly. In the early stages of the study, most of the
proposed solutions [Chou, 1989, Koschinski et al., 1995, Winkler et al., 1995, Matsakis, 1999, Zanibbi
et al., 2002, Tapia and Rojas, 2003, Tapia, 2005, Zhang et al., 2005] are sequential ones which treat the
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Figure 1.4 – Illustration of the symbol recognition of expression zd + z written with 5 strokes.

Figure 1.5 – Illustration of the structural analysis of expression zd + z written with 5 strokes. Sup :
Superscript, R : Right.

z + z

d

R R

Sup

Figure 1.6 – Illustration of the symbol relation tree of expression zd + z. Sup : Superscript, R : Right.
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recognition problem as a two-step pipeline process, first symbol segmentation and classification, and then
structural analysis. The task of structural analysis is performed on the basis of the symbol segmentation
and classification result. The main drawback of these sequential methods is that the errors from symbol
segmentation and classification will be propagated to structural analysis. In other words, symbol recog-
nition and structural analysis are assumed as independent tasks in the sequential solutions. However, this
assumption conflicts with the real case in which these three tasks are highly interdependent by nature. For
instance, human beings recognize symbols with the help of global structure, and vice versa.

The recent proposed solutions, considering the natural relationship between the three tasks, perform the
task of segmentation at the same time build the expression structure: a set of symbol hypotheses maybe gen-
erated and a structural analysis algorithm may select the best hypotheses while building the structure. The
integrated solutions use contextual information (syntactic knowledge) to guide segmentation or recognition,
preventing from producing invalid expressions like [a + b). These approaches take into account contextual
information generally with grammar (string grammar [Yamamoto et al., 2006, Awal et al., 2014, Álvaro
et al., 2014b, 2016, MacLean and Labahn, 2013] and graph grammar [Celik and Yanikoglu, 2011, Julca-
Aguilar, 2016]) parsing techniques, producing expressions conforming to the rules of a manually defined
grammar. Either string or graph grammar parsing, each one has a high computational complexity.

In conclusion, generally the current state of the art systems are grammar-driven solutions. For these
grammar-driven solutions, it requires not only a large amount of manual work for defining grammars, but
also a high computational complexity for grammar parsing process. As an alternative approach, we propose
to explore a non grammar-driven solution for recognizing math expression. This is the main goal of this
thesis, we would like to propose new architectures for mathematical expression recognition with the idea of
taking advantage of the recent advances in recurrent neural networks.

1.3 The proposed solution
As well known, Bidirectional Long Short-term Memory (BLSTM) network with a Connectionist Tem-

poral Classification (CTC) output layer achieved great success in sequence labeling tasks, such as text and
speech recognition. This success is due to the LSTM’s ability of capturing long-term dependency in a
sequence and the effectiveness of CTC training method. Unlike the grammar-driven solutions, the new ar-
chitectures proposed in this thesis include contextual information with BLSTM instead of grammar parsing
technique. In this thesis, we will explore the idea of using the sequence-structured BLSTM with a CTC
stage to recognize 2-D handwritten mathematical expression.

Mathematical expression recognition with a single path. As a first step to try, we consider linking the
last point and the first point of a pair of strokes successive in the input time to allow the handwritten ME to
be handled with BLSTM topology. As shown in Figure 1.7, after processing, the original 5 visible strokes

Figure 1.7 – Introduction of traits "in the air"

turn out to be 9 strokes; in fact, they could be regarded as a global sequence, just as same as the regular 1-D
text. We would like to use these later added strokes to represent the relationships between pairs of stokes by
assigning them a ground truth label. The remaining work is to train a model using this global sequence with
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a BLSTM and CTC topology, and then label each stroke in the global sequence. Finally, with the sequence
of outputted labels, we explore how to build a 2-D expression. The framework is illustrated in Figure 1.8.

Figure 1.8 – Illustration of the proposal of recognizing ME expressions with a single path.

Mathematical expression recognition by merging multiple paths. Obviously, the solution of linking
only pairs of strokes successive in the input time could handle just some relatively simple expressions. For
complex expressions, some relationships could be missed such as the Right relationship between stroke1
and stroke5 in Figure 1.7. Thus, we turn to a graph structure to model the relationships between strokes
in mathematical expressions. We illustrate this new proposal in Figure 1.9. As shown, the input of the
recognition system is an handwritten expression which is a sequence of strokes; the output is the stroke
label graph which consists of the information about the label of each stroke and the relationships between
stroke pairs. As the first step, we derive an intermediate graph from the raw input considering both the
temporal and spatial information. In this graph, each node is a stroke and edges are added according to
temporal or spatial properties between strokes. We assume that strokes which are close to each other in
time and space have a high probability to be a symbol candidate. Secondly, several 1-D paths will be
selected from the graph since the classifier model we are considering is a sequence labeller. Indeed, a
classical BLSTM-RNN model is able to deal with only sequential structure data. Next, we use the BLSTM
classifier to label the selected 1-D paths. This stage consists of two steps —— the training and recognition
process. Finally, we merge these labeled paths to build a complete stroke label graph.

Mathematical expression recognition by merging multiple trees. Human beings interpret handwrit-
ten math expression considering the global contextual information. However, in the current system, even
though several paths from one expression are taken into account, each of them is considered individually.
The classical BLSTM model could access information from past and future in a long range but the infor-
mation outside the single sequence is of course not accessible to it. Thus, we would like to develop a neural
network model which could handle directly a structure not limited to a chain. With this new neural network
model, we could take into account the information in a tree instead of a single path at one time when dealing
with one expression.

We extend the chain-structured BLSTM to tree structure topology and apply this new network model for
online math expression recognition. Figure 1.10 provides a global view of the recognition system. Similar
to the framework presented in Figure 1.9, we first drive an intermediate graph from the raw input. Then,
instead of 1-D paths, we consider from the graph deriving trees which will be labeled by tree-based BLSTM
model as a next step. In the end, these labeled trees will be merged to build a stroke label graph.



1.4. THESIS STRUCTURE 21

Input

Output

an intermediate graph G merge labeled paths

select several 1-D
paths from graph G

label each path
with BLSTM

Figure 1.9 – Illustration of the proposal of recognizing ME expressions by merging multiple paths.

1.4 Thesis structure
Chapter 2 describes the previous works on ME representation and recognition. With regards to repre-

sentation, we introduce the symbol relation tree (symbol level) and the stroke label graph (stroke level).
Furthermore, as an extension, we describe the performance evaluation based on stroke label graph. For ME
recognition, we first review the entire history of this research subject, and then only focus on more recent
solutions which are used for a comparison with the new architectures proposed in this thesis.

Chapter 3 is focused on sequence labeling using recurrent neural networks, which is the foundation of
our work. First of all, we explain the concept of sequence labeling and the goal of this task shortly. Then,
the next section introduces the classical structure of recurrent neural network. The property of this network
is that it can memorize contextual information but the range of the information could be accessed is quite
limited. Subsequently, long short-term memory is presented with the aim of overcoming the disadvantage
of the classical recurrent neural network. The new architecture is provided with the ability of accessing
information over long periods of time. Finally, we introduce how to apply recurrent neural network for
the task of sequence labeling, including the existing problems and the solution to solve them, i.e. the
connectionist temporal classification technology.

In Chapter 4, we explore the idea of recognizing ME expressions with a single path. Firstly, we globally
introduce the proposal that builds stroke label graph from a sequence of labels, along with the existing
limitations in this stage. Then, the entire process of generating the sequence of labels with BLSTM and
local CTC given the input is presented in detail, including firstly feeding the inputs of BLSTM, then the
training and recognition stages. Finally, the experiments and discussion are described. One main drawback
of the strategy proposed in this chapter is that only stroke combinations in time series are used in the
representation model. Thus, some relationships are missed at the modeling stage.

In Chapter 5, we explore the idea of recognizing ME expressions by merging multiple paths, as a
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Input
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Figure 1.10 – Illustration of the proposal of recognizing ME expressions by merging multiple trees.

new model to overcome some limitations in the system of Chapter 4. The proposed solution will take
into account more possible stroke combinations in both time and space such that less relationships will be
missed at the modeling stage. We first provide an overview of graph representation related to build a graph
from raw mathematical expression. Then we globally describe the framework of mathematical expression
recognition by merging multiple paths. Next, all the steps of the recognition system are explained one by
one in detail. Finally, the experiment part and the discussion part are presented respectively. One main
limitation is that we use the classical chain-structured BLSTM to label a graph-structured input data.

In Chapter 6, we explore the idea of recognizing ME expressions by merging multiple trees, as a new
model to overcome the limitation of the system of Chapter 5. We extend the chain-structured BLSTM to
tree structure topology and apply this new network model for online math expression recognition. Firstly,
a short overview with regards to the non-chain-structured LSTM is provided. Then, we present the new
proposed neural network model named tree-based BLSTM. Next, the framework of ME recognition system
based on tree-based BLSTM is globally introduced. Hereafter, we focus on the specific techniques involved
in this system. Finally, experiments and discussion parts are covered respectively.

In Chapter 7, we conclude the main contributions of this thesis and give some thoughts about future
work.
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2
Mathematical expression representation and
recognition

This chapter introduces the previous works regarding to ME representation and ME recognition. In
the first part, we will review the different representation models on symbol and stroke level respectively.
On symbol level, symbol relation (layout) tree is the one we mainly focus on; on stroke level, we will
introduce stroke label graph which is a derivation of symbol relation tree. Note that stroke label graph is the
final output form of our recognition system. As an extension, we also describe the performance evaluation
based on stroke label graph. In the second part, we review first the history of this recognition problem, and
then put emphasize on more recent solutions which are used for a comparison with the new architectures
proposed in this thesis.

2.1 Mathematical expression representation
Structures can be depicted at three different levels: symbolic, object and primitive [Zanibbi et al., 2013].

In the case of handwritten ME, the corresponding levels are expression, symbol and stroke.
In this section, we will first introduce two representation models of math expression at the symbol

level, especially Symbol Relation Tree (SRT). From the SRT, if going down to the stroke level, a Stroke
Label Graph (SLG) could be derived, which is the current official model to represent the ground-truth of
handwritten math expressions and also for the recognition outputs in Competitions CROHME.

2.1.1 Symbol level: Symbol relation (layout) tree
It is possible to describe a ME at the symbol level using a layout-based SRT, as well as an operator tree

which is based on operator syntax. Symbol layout tree represents the placement of symbols on baselines
(writing lines), and the spatial arrangement of the baselines [Zanibbi and Blostein, 2012]. As shown in
Figure 2.1a, symbols ’(’, ’a’, ’+’, ’b’, ’)’ share a writing line while ’2’ belongs to the other writing line.
An operator tree represents the operator and relation syntax for an expression [Zanibbi and Blostein, 2012].
The operator tree for (a+ b)2 shown in Figure 2.1b represents the addition of ’a’ and ’b’, squared. We will
focus only on the model of symbol relation tree in the coming content since it is closely related to our work.

In SRT, nodes represent symbols, while labels on the edges indicate the relationships between symbols.
For example, in Figure 2.2a, the first symbol ’-’ on the base line is the root of the tree; the symbol ’a’ is
Above ’-’ and the symbol ’c’ isBelow ’-’. In Figure 2.2b, the symbol ’a’ is the root; the symbol ’+’ is on the

25



26 CHAPTER 2. MATHEMATICAL EXPRESSION REPRESENTATION AND RECOGNITION

( a + b )

2

R R R R

Sup

(a)

EXP

ADD 2

a b

Arg1 Arg2

Arg1 Arg2

(b)

Figure 2.1 – Symbol relation tree (a) and operator tree (b) of expression (a + b)2. Sup : Superscript, R :
Right, Arg : Argument.

Right of ’a’. As a matter of fact, the node inherits the spatial relationships of its ancestor. In Figure 2.2a,
node ’+’ inherits the Above relationship of its ancestor ’a’. Thus, ’+’ is also Above ’-’ as ’a’. Similarly,
’b’ is on the Right of ’a’ and Above the ’-’. Note that all the inherited relationships are ignored when we
depict the SRTs in this work. This will be also the case in the evaluation stage since knowing the original
edges is enough to ensure a proper representation.

(a) (b)

Figure 2.2 – The symbol relation tree (SRT) for (a) a+b
c

, (b) a+ b
c
. ’R’ refers to Right relationship.

101 classes of symbols have been collected in CROHME data set, including digits, alphabets, operators
and so on. Six spatial relationships are defined in the CROHME competition, they are: Right, Above,
Below, Inside (for square root), Superscript, Subscript. For the case of nth-Roots, like 3

√
x as illustrated

in Figure 2.3a, we define that the symbol ’3’ is Above the square root and ’x’ is Inside the square root.
The limits of an integral and summation are designated as Above or Superscript and Below or Subscript

depending on the actual position of the bounds. For example, in expression
n∑
i=0

ai, ’n’ is Above the ’
∑

’ and

’i’ is Below the ’
∑

’ (Figure 2.3b). When we consider another case
∑n

i=0 a
i, ’n’ is Superscript the ’

∑
’

and ’i’ is Subscript the ’
∑

’. The same strategy is held for the limits of integral. As can be seen in Figure
2.3c, the first ’x’ is Subscript the ’

∫
’ in the expression

∫
x
xdx.
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(a) (b)

(c)

Figure 2.3 – The symbol relation trees (SRT) for (a) 3
√
x, (b)

n∑
i=0

xi and (c)
∫
x
xdx. ’R’ refers to Right

relationship while ’Sup’ and ’Sub’ denote Superscript and Subscript respectively.

File formats for representing SRT

File formats for representing SRT include Presentation MathML 1 and LATEX, as shown in Figure 2.4.
Compared to LATEX, Presentation MathML contains additional tags to identify symbols types; these are
primarily for formatting [Zanibbi and Blostein, 2012]. By the way, there are several files encoding for
operator trees, including Content MathML and OpenMath [Davenport and Kohlhase, 2009, Dewar, 2000].

(a) (b)

Figure 2.4 – Math file encoding for expression (a+ b)2. (a) Presentation MathML; (b) LATEX. Adapted from
[Zanibbi and Blostein, 2012].

1. Mathematical markup language (MathML) version 3.0, https://www.w3.org/Math/.
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2.1.2 Stroke level: Stroke label graph
SRT represents math expression at the symbol level. If we go down at the stroke level, a stroke label

graph (SLG) can be derived from the SRT. In SLG, nodes represent strokes, while labels on the edges encode
either segmentation information or symbol relationships. Relationships are defined at the level of symbols,
implying that all strokes (nodes) belonging to one symbol have the same input and output edges. Consider
the simple expression 2+2 written using four strokes (two strokes for ’+’) in Figure 2.5a. The corresponding
SRT and SLG are shown in Figure 2.5b and Figure 2.5c respectively. As Figure 2.5c illustrates, nodes of
SLG are labeled with the class of the corresponding symbol to which the stroke belongs. A dashed edge

(a) (b)

(c)

Figure 2.5 – (a) 2 + 2 written with four strokes; (b) the symbol relation tree of 2 + 2; (c) the SLG of 2 + 2.
The four strokes are indicated as s1, s2, s3, s4 in writing order. ’R’ is for left-right relationship

corresponds to segmentation information; it indicates that a pair of strokes belongs to the same symbol. In
this case, the edge label is the same as the common symbol label. On the other hand, the non-dashed edges
define spatial relationships between nodes and are labeled with one of the different possible relationships
between symbols. As a consequence, all strokes belonging to the same symbol are fully connected, nodes
and edges sharing the same symbol label; when two symbols are in relation, all strokes from the source
symbol are connected to all strokes from the target symbol by edges sharing the same relationship label.

Since CROHME 2013, SLG has been used to represent mathematical expressions [Mouchère et al.,
2016]. As the official format to represent the ground-truth of handwritten math expressions and also for the
recognition outputs, it allows detailed error analysis on stroke, symbol and expression levels. In order to be
comparable to the ground truth SLG and allow error analysis on any level, our recognition system aims to
generate SLG from the input. It means that we need a label decision for each stroke and each stroke pair
used in a symbol relation.

File formats for representing SLG

The file format we are using for representing SLG is illustrated with the example 2 + 2 in Figure 2.6a.
For each node, the format is like ’N,NodeIndex,NodeLabel, Probability’ where Probability is always
1 in ground truth and depends on the classifier in system output. When it comes to edges, the format will
be ’E,FromNodeIndex, ToNodeIndex,EdgeLabel, Probability’.
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An alternative format could be like the one shown in Figure 2.6b, which contains the same informa-
tion as the previous one but with a more compact appearance. We take symbol as an individual to rep-
resent in this compact version but include the stroke level information also. For each object (or symbol),
the format is ’O,ObjectIndex,ObjectLabel, Probability, StrokeList’ in which StrokeList’ lists the in-
dexes of the strokes this symbol consists of. Similarly, the representation for relationships is formatted as
’EO,FromObjectIndex, ToObjectIndex,RelationshipLabel, Probability’.

(a) (b)

Figure 2.6 – The file formats for representing SLG considering the expression in Figure2.5a. (a) The file
format taking stroke as the basic entity. (b) The file format taking symbol as the basic entity.

2.1.3 Performance evaluation with stroke label graph
As mentioned in last section, both the ground truth and the recognition output of expression in CROHME

are represented as SLGs. Then the problem of performance evaluation of a recognition system is essentially
measuring the difference between two SLGs. This section will introduce how to compute the distance be-
tween two SLGs.

A SLG is a directed graph that can be visualized as an adjacency matrix of labels (Figure 2.7). Figure
2.7a provides the format of the adjacency matrix: the diagonal refers stroke (node) labels and other cells
interpret stroke pair (edge) labels [Zanibbi et al., 2013]. Figure 2.7b presents the adjacency matrix of labels
corresponding to the SLG in Figure 2.5c. The underscore ’_’ identifies that this edge exists and the label of
it is NoRelation, or this edge does not exist. The edge e14 with the label of R is an inherited relationship
which is not reflected in SLG as we said before. Suppose we have ’n’ strokes in one expression, the number
of cells in the adjacency matrix is n2. Among these cells, ’n’ cells represent the labels of strokes while the
other ’n(n− 1)’ cells interpret the segmentation information and relationships.

In order to analyze recognition errors in detail, Zanibbi et al. defined for SLGs a set of metrics in
[Zanibbi et al., 2013]. They are listed as follows:

• ∆C, the number of stroke labels that differ.

• ∆S, the number of segmentation errors.

• ∆R, the number of spatial relationship errors.
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(a) (b)

Figure 2.7 – Adjacency Matrices for Stroke Label Graph. (a) The adjacency matrix format: li denotes the
label of stroke si and eij is the label of the edge from stroke si to stroke sj. (b) The adjacency matrix of
labels corresponding to the SLG in Figure 2.5c.

• ∆L = ∆S + ∆R, the number of edge labels that differ.

• ∆B = ∆C + ∆L = ∆C + ∆S + ∆R, the Hamming distance between the adjacency matrices.

Suppose that the sample ’2 + 2’ was interpreted as ’2 − 12’ as shown in Figure 2.8, we now compare the
two adjacency matrices (the ground truth in Figure 2.7b and the recognition result in Figure 2.8b):

(a) (b)

Figure 2.8 – ’2 + 2’ written with four strokes was recognized as ’2 − 12’. (a) The SLG of the recognition
result; (b) the corresponding adjacency matrix. ’Sup’ denotes Superscript relationship.

• ∆C = 2, cells l2 and l3. The stroke s2 was wrongly recognized as 1 while s3 was incorrectly labeled
as −.

• ∆S = 2, cells e23 and e32. The symbol ’+’ written with 2 strokes was recognized as two isolated
symbols.

• ∆R = 1, cell e24. The Right relationship was recognized as Superscript.

• ∆L = ∆S + ∆R = 2 + 1 = 3.

• ∆B = ∆C + ∆L = ∆C + ∆S + ∆R = 2 + 2 + 1 = 5.

Zanibbi et al. defined two additional metrics at the expression level:

• ∆Bn = ∆B
n2 , the percentage of correct labels in adjacency matrix where ’n’ is the number of strokes.

∆Bn is the Hamming distance normalized by the label graph size n2.
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• ∆E, the error averaged over three types of errors: ∆C,∆S,∆L. As ∆S is part of ∆L, segmentation
errors are emphasized more than other edge errors ∆R in this metric [Zanibbi et al., 2013].

∆E =

∆C
n

+
√

∆S
n(n−1)

+
√

∆L
n(n−1)

3
(2.1)

We still consider the sample shown in Figure 2.8b, thus:

• ∆Bn = ∆B
n2 = 5

42
= 5

16
= 0.3125

•

∆E =

∆C
n

+
√

∆S
n(n−1)

+
√

∆L
n(n−1)

3
=

2
4

+
√

2
4(4−1)

+
√

3
4(4−1)

3
= 0.4694 (2.2)

Given the representation form of SLG and the defined metrics, ’precision’ and ’recall’ rates at any level
(stroke, symbol and expression) could be computed [Zanibbi et al., 2013], which are current indexes for
accessing the performance of the systems in CROHME. ’recall’ and ’precision’ rates are commonly used
to evaluate results in machine learning experiments [Powers, 2011]. In different research fields like infor-
mation retrieval and classification tasks, different terminology are used to define ’recall’ and ’precision’.
However, the basic theory behind remains the same. In the context of this work, we use the case of seg-
mentation results to explain ’recall’ and ’precision’ rates. To well define them, several related terms are
given first as shown in Tabel 2.1. ’segmented’ and ’not segmented’ refer to the prediction of classifier while

Table 2.1 – Illustration of the terminology related to recall and precision.
relevant non relevant

segmented true positive (tp) false positive (fp)
not segmented false negative (fn) true negative (tn)

’relevant’ and ’non relevant’ refer to the ground truth. ’recall’ is defined as

recall =
tp

tp+ fn
(2.3)

and ’precision’ is defined as

precision =
tp

tp+ fp
(2.4)

In Figure 2.8, ’2+2’ written with four strokes was recognized as ’2−12’. Obviously in this case, tp is equal
to 2 since two ’2’ symbols were segmented and they exist in the ground truth. fp is equal to 2 also because
’-’ and ’1’ were segmented but they are not the ground truth. fn is equal to 1 as ’+’ was not segmented but
it is the ground truth. Thus, ’recall’ is 2

2+1
and ’precision’ is 2

2+2
. A larger ’recall’ than ’precision’ means

the symbols are over segmented in our context.

2.2 Mathematical expression recognition

In this section, we first review the entire history of this research subject, and then only focus on more
recent solutions which are provided as a comparison to the new architectures proposed in this thesis.
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2.2.1 Overall review

Research on the recognition of math notation began in the 1960’s [Anderson, 1967], and several research
publications are available in the following thirty years [Chang, 1970, Martin, 1971, Anderson, 1977]. Since
the 90’s, with the large developments of touch screen devices, this field has started to be active, gaining
amounts of research achievement and considerable attention from the research community. A number of
surveys [Blostein and Grbavec, 1997, Chan and Yeung, 2000, Tapia and Rojas, 2007, Zanibbi and Blostein,
2012, Mouchère et al., 2016] summarize the proposed techniques for math notation recognition.

As described already in Section 1.2, ME recognition involves three interdependent tasks [Zanibbi and
Blostein, 2012]: (1) Symbol segmentation, which consists in grouping strokes that belong to the same
symbol; (2) symbol recognition, the task of labeling the symbol to assign each of them a symbol class; (3)
structural analysis, its goal is to identify spatial relations between symbols and with the help of a grammar
to produce a mathematical interpretation. These three tasks can be solved sequentially or jointly.

Sequential solutions. In the early stages of the study, most of the proposed solutions [Chou, 1989,
Koschinski et al., 1995, Winkler et al., 1995, Lehmberg et al., 1996, Matsakis, 1999, Zanibbi et al., 2002,
Tapia and Rojas, 2003, Toyozumi et al., 2004, Tapia, 2005, Zhang et al., 2005, Yu et al., 2007] are se-
quential ones which treat the recognition problem as a two-step pipeline process, first symbol segmentation
and classification, and then structural analysis. The task of structural analysis is performed on the basis
of the symbol segmentation and classification result. Considerable works are done dedicated to each step.
For segmentation, the proposed methods include Minimum Spanning Tree (MST) based method [Matsakis,
1999], Bayesian framework [Yu et al., 2007], graph-based method [Lehmberg et al., 1996, Toyozumi et al.,
2004] and so on. The symbol classifiers used consist of Nearest Neighbor, Hidden Markov Model, Multi-
layer Perceptron, Support Vector Machine, Recurrent neural networks and so on. For spatial relationship
classification, the proposed features include symbol bounding box [Anderson, 1967], relative size and po-
sition [Aly et al., 2009], and so on. The main drawback of these sequential methods is that the errors from
symbol segmentation and classification will be propagated to structural analysis. In other words, symbol
recognition and structural analysis are assumed as independent tasks in the sequential solutions. However,
this assumption conflicts with the real case in which these three tasks are highly interdependent by nature.
For instance, human beings recognize symbols with the help of structure, and vice versa.

Integrated solutions. Considering the natural relationship between the three tasks, researchers mainly
focus on integrated solutions recently, which performs the task of segmentation at the same time build the
expression structure: a set of symbol hypotheses maybe generated and a structural analysis algorithm may
select the best hypotheses while building the structure. The integrated solutions use contextual information
(syntactic knowledge) to guide segmentation or recognition, preventing from producing invalid expressions
like [a + b). These approaches take into account contextual information generally with grammar (string
grammar [Yamamoto et al., 2006, Awal et al., 2014, Álvaro et al., 2014b, 2016, MacLean and Labahn,
2013] and graph grammar [Celik and Yanikoglu, 2011, Julca-Aguilar, 2016]) parsing techniques, producing
expressions conforming to the rules of a manually defined grammar. String grammar parsing, along with
graph grammar parsing, has a high time complexity in fact. In the next section we will analysis deeper these
approaches. Instead of using grammar parsing technique, the new architectures proposed in this thesis
include contextual information with bidirectional long short-term memory which can access the content
from both the future and the past in an unlimited range.

End-to-end neural network based solutions. Inspired by recent advances in image caption generation,
some end-to-end deep learning based systems were proposed for ME recognition [Deng et al., 2016, Zhang
et al., 2017]. These systems were developed from the attention-based encoder-decoder model which is now
widely used for machine translation. They decompile an image directly into presentational markup such
as LATEX. However, considering we are given trace information in the online case, despite the final LATEX
string, it is necessary to decide a label for each stroke. This information is not available now in end-to-end
systems.
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2.2.2 The recent integrated solutions

In [Yamamoto et al., 2006], a framework based on stroke-based stochastic context-free grammar is
proposed for on-line handwritten mathematical expression recognition. They model handwritten mathe-
matical expressions with a stochastic context-free grammar and formulate the recognition problem as a
search problem of the most likely mathematical expression candidate, which can be solved using the Cock
Younger Kasami (CYK) algorithm. With regard to the handwritten expression grammar, the authors define
production rules for structural relation between symbols and also for a composition of two sets of strokes
to form a symbol. Figure 2.9 illustrates the process of searching the most likely expression candidate with

Figure 2.9 – Example of a search for most likely expression candidate using the CYK algorithm. Extracted
from [Yamamoto et al., 2006].

the CYK algorithm on an example of xy + 2. The algorithm which fill the CYK table from bottom to up is
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as following:

• For each input stroke i, corresponding to cell Matrix(i, i) shown in Figure 2.9, the probability of
each stroke label candidate is computed. This calculation is the same as the likelihood calculation
in isolated character recognition. In this example, the 2 best candidates for the first stroke of the
presented example are ’)’ with the probability of 0.2 and the first stroke of x (denoted as x1 here)
with the probability of 0.1.

• In cellMatrix(i, i+1), the candidates for strokes i and i+1 are listed. As shown in cellMatrix(1, 2)
of the same example, the candidate x with the likelihood of 0.005 is generated with the production
rule < x→ x1x2, SameSymbol >. The structure likelihood computed using the bounding boxes is
0.5 here. Then the product of stroke and structure likelihoods is 0.1× 0.1× 0.5 = 0.005.

• Similarly, in cell Matrix(i, i + k), the candidates for strokes from i to i + k are listed with the
corresponding likelihoods.

• Finally, the most likely EXP candidate in cell Matrix(1, n) is the recognition result.

In this work, they assume that symbols are composed only of consecutive (in time) strokes. In fact, this
assumption does not work with the cases when the delayed strokes take place.

In [Awal et al., 2014], the recognition system handles mathematical expression recognition as a simul-
taneous optimization of expression segmentation, symbol recognition, and 2D structure recognition under
the restriction of a mathematical expression grammar. The proposed approach is a global strategy allow-
ing learning mathematical symbols and spatial relations directly from complete expressions. The general
architecture of the system in illustrated in Figure 2.10. First, a symbol hypothesis generator based on 2-D

Figure 2.10 – The system architecture proposed in [Awal et al., 2014]. Extracted from [Awal et al., 2014].

dynamic programming algorithm provides a number of segmentation hypotheses. It allows grouping strokes
which are not consecutive in time. Then they consider a symbol classifier with a reject capacity in order
to deal with the invalid hypotheses proposed by the previous hypothesis generator. The structural costs
are computed with Gaussian models which are learned from a training data set. The spatial information
used are baseline position (y) and x-height (h) of one symbol or sub-expression hypothesis. The language
model is defined by a combination of two 1-D grammars (horizontal and vertical). The production rules are
applied successively until reaching elementary symbols, and then a bottom-up parse (CYK) is applied to
construct the relational tree of the expression. Finally, the decision maker selects the set of hypotheses that
minimizes the global cost function.
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A fuzzy Relational Context-Free Grammar (r-CFG) and an associated top-down parsing algorithm are
proposed in [MacLean and Labahn, 2013]. Fuzzy r-CFGs explicitly model the recognition process as
a fuzzy relation between concrete inputs and abstract expressions. The production rules defined in this
grammar have the form of: A0

r⇒ A1A2 · · ·Ak, where A0 belongs to non-terminals and A1, · · · , Ak belong
to terminals. r denotes a relation between the elementsA1, · · · , Ak. They use five binary spatial relations:↗
,→,↘, ↓,�. The arrows indicate a general writing direction, while� denotes containment (as in notations
like
√
x, for instance). Figure 2.11 presents a simple example of this grammar. The parsing algorithm used

Figure 2.11 – A simple example of Fuzzy r-CFG. Extracted from [MacLean and Labahn, 2013].

in this work is a tabular variant of Unger’s method for CFG parsing [Unger, 1968]. This process is divided
into two steps: forest construction, in which a shared parse forest is created from the start non-terminal
to the leafs that represents all recognizable parses of the input, and tree extraction, in which individual
parse trees are extracted from the forest in decreasing order of membership grade. Figure 2.12 show an
handwritten expression and a shared parse forest of it representing some possible interpretations.

In [Álvaro et al., 2016], they define the statistical framework of a model based on Two-Dimensional
Probabilistic Context-Free Grammars (2D-PCFGs) and its associated parsing algorithm. The authors also
regard the problem of mathematical expression recognition as obtaining the most likely parse tree given a
sequence of strokes. To achieve this goal, two probabilities are required, symbol likelihood and structural
probability. Due to the fact that only strokes that are close together will form a mathematical symbol, a
symbol likelihood model is proposed based on spatial and geometric information. Two concepts (visibility
and closeness) describing the geometric and spatial relations between strokes are used in this work to
characterize a set of possible segmentation hypotheses. Next, a BLSTM-RNN are used to calculate the
probability that a certain segmentation hypothesis represents a math symbol. BLSTM possesses the ability
to access context information over long periods of time from both past and future and is one of the state of
the art models. With regard to the structural probability, both the probabilities of the rules of the grammar
and a spatial relationship model which provides the probability p(r|BC) that two sub-problems B and C
are arranged according to spatial relationship r are required. In order to train a statistical classifier, given
two regions B and C, they define nine geometric features based on their bounding boxes (Figure 2.13).
Then these nine features are rewrote as the feature vector h(B,C) representing a spatial relationship. Next,
a GMM is trained with the labeled feature vector such that the probability of the spatial relationship model
can be computed as the posterior probability provided by the GMM for class r. Finally, they define a
CYK-based algorithm for 2D-PCFGs in the statistical framework.

Unlike the former described solutions which are based on string grammar, in [Julca-Aguilar, 2016], the
authors model the recognition problem as a graph parsing problem. A graph grammar model for mathe-
matical expressions and a graph parsing technique that integrates symbol and structure level information
are proposed in this work. The recognition process is illustrated in Figure 2.14. Two main components
are involved in this process: (1) hypotheses graph generator and (2) graph parser. The hypotheses graph
generator builds a graph that defines the search space of the parsing algorithm and the graph parser does the
parsing itself. In the hypotheses graph, vertices represent symbol hypotheses and edges represent relations
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(a)

(b)

Figure 2.12 – (a) An input handwritten expression; (b) a shared parse forest of (a) considering the grammar
depicted in Figure 2.11. Extracted from [MacLean and Labahn, 2013]
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Figure 2.13 – Geometric features for classifying the spatial relationship between regionsB andC. Extracted
from [Álvaro et al., 2016]

between symbols. The labels associated to symbols and relations indicate their most likely interpretations.
Of course, these labels are the outputs of symbol classifier and relation classifier. The graph parser uses the
hypotheses graph and the graph grammar to generate first a parse forest consisting of several parse trees,
each one representing an interpretation of the input strokes as a mathematical expression, and then extracts
a best tree among the forest as the final recognition result. In the proposed graph grammar, production rules
have the form of A → B, defining the replacement of a graph by another graph. With regard to the pars-
ing technique, they propose an algorithm based on the Unger’s algorithm which is used for parsing strings
[Unger, 1968]. The algorithm presented in this work is a top-down approach, starting from the top vertex
(root) to the bottom vertices.

2.2.3 End-to-end neural network based solutions

In [Deng et al., 2016], the proposed model WYGIWYS (what you get is what you see) is an extension
of the attention-based encoder-decoder model. The structure of WYGIWYS is shown in Figure 2.15. As
can be seen, given an input image, a Convolutional Neural Network (CNN) is applied first to extract image
features. Then, for each row in the feature map, they use an Recurrent Neural Network (RNN) encoder to
re-encodes it expecting to catch the sequential information. Next, the encoded features are decoded by an
RNN decoder with a visual attention mechanism to generate the final outputs. In parallel to the work of
[Deng et al., 2016], [Zhang et al., 2017] also use the attention based encoder-decoder framework to translate
MEs into LATEX notations. Compared to the recent integrated solutions, the end-to-end neural network
based solutions require no large amount of manual work for defining grammars or a high computational
complexity for grammar parsing process, and achieve the state of the art recognition results. However,
considering we are given trace information in the online case, despite the final LATEX string, it is necessary
to decide a label for each stroke. This alignment is not available now in end-to-end systems.

2.2.4 Discussion

In this section, we first introduce the development of mathematical expression recognition in general,
and then put emphasis on the more recent proposed solutions. Instead of analyzing the advantages and
disadvantages of the existing approaches consisting of variable grammars and their associated parsing tech-
niques, the aim of this section is to provide a comparison to the new architectures proposed in this thesis. In
spite of considerable different methods related to the three sub-tasks (symbol segmentation, symbol recog-
nition and structural analysis), and variable grammars and parsing techniques, the key idea behind these
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Figure 2.14 – Achitecture of the recognition system proposed in [Julca-Aguilar, 2016]. Extracted from
[Julca-Aguilar, 2016]
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Figure 2.15 – Network architecture of WYGIWYS. Extracted from [Deng et al., 2016]
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integrated techniques is relying on explicit grammar rules to solve the ambiguity in symbol recognition and
relation recognition. In other words, the existing solutions take into account contextual or global informa-
tion generally with the help of a grammar. However, using either string or graph grammar, a large amount
of manual work is needed for defining grammars and a high computational complexity for grammar parsing
process.

BLSTM neural network is able to model the dependency in a sequence over indefinite time gaps, over-
coming the short-term memory of classical recurrent neural networks. Due to this ability, BLSTM achieved
great success in sequence labeling tasks, such as text and speech recognition. Instead of using grammar
parsing technique, the new architectures proposed in this thesis will include contextual information with
bidirectional long short-term memory. In [Álvaro et al., 2016], it has been used an elementary function to
recognize symbols or to control segmentation, which is itself included in an overall complex system. The
goal of our work is to develop a new architecture where a recurrent neural network is the backbone of the
solution.

In next chapter, we will introduce how the advanced neural network take the contextual information into
consideration for the problem of sequence labeling.



3
Sequence labeling with recurrent neural
networks

This chapter will be focused on sequence labeling using recurrent neural networks, which is the founda-
tion of our work. Firstly, the concept of sequence labeling will be introduced in Section 3.1. We explain the
goal of this task. Next, Section 3.2 introduces the classical structure of recurrent neural network. The prop-
erty of this network is that it can memorize contextual information but the range of the information which
could be accessed is quite limited. Subsequently, in Section 3.3 long short-term memory is presented. This
architecture is provided with the ability of accessing information over long periods of time. Finally, we
introduce how to apply recurrent neural network for the task of sequence labeling, including the existing
problems and the solutions to solve them, i.e. the connectionist temporal classification technique.

In this chapter, considerable amount of variables and formulas are involved in order to clearly describe
the content, likewise to extend easily the algorithms in later chapters. We use here the same notations as
in [Graves et al., 2012]. In fact, this chapter is a short version of Alex Graves’ book «Supervised sequence
labeling with recurrent neural networks». We use the same figures and similar outline to introduce this
entire framework. Since the architecture of BLSTM and CTC is the backbone of our solution, thus we take
a whole chapter to elaborate this topology to help to understand our work.

3.1 Sequence labeling
In machine learning, the term ’sequence labeling’ encompasses all tasks where sequences of data are

transcribed with sequences of discrete labels [Graves et al., 2012]. Well known examples include hand-
writing and speech recognition (Figure 3.1), gesture recognition and protein secondary structure. In this
thesis, we only consider supervised sequence labeling cases in which the ground-truth is provided during
the training process.

The goal of sequence labeling is to transcribe sequences of input data into sequences of labels, each
label coming from a fixed alphabet. For example looking at the top row of Figure 3.1, we would like to
assign the sequence "FOREIGN MINISTER" of which each label is from English alphabet, to the input
signal on the left side. Suppose that X denotes a input sequence and l is the corresponding ground truth,
being a sequence of labels, the set of training examples could be referred as Tra = {(X, l)}. The task is to
use Tra to train a sequence labeling algorithm to label each input sequence in a test data set, as accurately
as possible. In fact when people try to recognize a handwriting or speech signal, we focus on not only local
input signal, but also a global, contextual information to help the transcription process. Thus, we hope the
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Figure 3.1 – Illustration of sequence labeling task with the examples of handwriting (top) and speech (bot-
tom) recognition. Input signals is shown on the left side while the ground truth is on the right. Extracted
from [Graves et al., 2012].

sequence labeling algorithm could have the ability also to take advantage of contextual information.

3.2 Recurrent neural networks
Artificial Neural Networks (ANNs) are computing systems inspired by the biological neural networks

[Jain et al., 1996]. It is hoped that such systems could possess the ability to learn to do tasks by con-
sidering some given examples. An ANN is a network of small units, joined to each other by weighted
connections. Whether connections form cycles or not, usually we can divide ANNs into two classes: ANNs
without cycles are referred to as Feed-forward Neural Networks (FNNs); ANNs with cycles, are referred
to as feedback, recurrent neural networks (RNNs). The cyclical connections could model the dependency
between past and future, therefore RNNs possess the ability to memorize while FNNs do not have memory
capability.

In this section, we will focus on recurrent networks with cyclical connections. Thanks to RNN’s memory
capability, it is suitable for sequence labeling task where the contextual information plays a key role. Many
varieties of RNN were proposed, such as Elman networks, Jordan networks, time delay neural networks and
echo state networks [Graves et al., 2012]. We introduce here a simple RNN architecture containing only a
single, self connected hidden layer (Figure 3.3).

3.2.1 Topology

In order to better understand the mechanism of RNNs, we first provide a short introduction to Multilayer
Perceptron (MLP) [Rumelhart et al., 1985, Werbos, 1988, Bishop, 1995] which is the most widely used
form of FNNs. As illustrated in Figure 3.2, a MLP has an input layer, one or more hidden layers and an
output layer. The S-shaped curves in the hidden and output layers indicate the application of ’sigmoidal’
nonlinear activation functions. The number of units in the input layer is equal to the length of feature vector.
Both the number of units in the output layer and the choice of output activation function depend on the task
the network is applied to. When dealing with binary classification tasks, the standard configuration is a
single unit with a logistic sigmoid activation. For classification problems with K > 2 classes, usually we
have K output units with the soft-max function. Since there is no connection from past to future or future
to past, MLP depends only on the current input to compute the output and therefore is not suitable for
sequence labeling.

Unlike the feed forward network architecture, in a neural network with cyclical connections presented
in Figure 3.3, the connections from the hidden layer to itself (red) could model the dependency between
past and future. However, the dependencies between different time-steps can not be seen clearly in this
figure. Thus, we unfold the network along the input sequence to visualize them in Figure 3.4. Different
with Figure 3.2 and 3.3 where each node is a single unit, here each node represents a layer of network units
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Figure 3.2 – A multilayer perceptron.

Figure 3.3 – A recurrent neural network. The recurrent connections are highlighted with red color.

Figure 3.4 – An unfolded recurrent network.
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at a single time-step. The input at each time step is a vector of features; the output at each time step is a
vector of probabilities regarding to different classes. With the connections weighted by ’w1’ from the input
layer to hidden layer, the current input flows to the current hidden layer; with the connections weighted by
’w2’ from the hidden layer to itself, the information flows from the the hidden layer at t − 1 to the hidden
layer at t; with the connections weighted by ’w3’ from the hidden layer to the output layer, the activation
flows from the hidden layer to the output layer. Note that ’w1’, ’w2’ and ’w3’ represent vectors of weights
instead of single weight values, and they are reused for each time-step.

3.2.2 Forward pass
The input data flow from the input layer to hidden layer; the output activation of the hidden layer at

t− 1 flows to the hidden layer at t; the hidden layer sums up the information from two sources; finally the
summed and processed information flows to the output layer. This process is referred to as the forward
pass of RNN. Suppose that an RNN has I input units, H hidden units, and K output units, let wij denote
the weight of the connection from unit i to unit j, atj and btj represent the network input activation to unit
j and the output activation of unit j at time t respectively. Specifically, we use use xti to denote the input i
value at time t. Considering an input sequence X of length T , the network input activation to the hidden
units could be computed like:

ath =
I∑
i=1

wihx
t
i +

H∑
h′=1

wh′hb
t−1
h′ (3.1)

In this equation, we can see clearly that the activation arriving at the hidden layer comes from two sources:
(1) the current input layer through the ’w1’ connections; (2) the hidden layer of previous time step through
the ’w2’ connections. The size of ’w1’ and ’w2’ are respectively size(w1) = I × H + 1(bias) and
size(w2) = H ×H . Then, the activation function θh is applied:

bth = θh(a
t
h) (3.2)

We calculate ath and therefore bth from t = 1 to T . This is a recursive process where a initial configuration
is required of course. In this thesis, the initial value b0

h′ is always set to 0. Now, we consider propagating
the hidden layer output activation bth to the output layer. The activation arriving at the output units can be
calculated as following:

atk =
H∑
h=1

whkb
t
h (3.3)

The size of ’w3’ is size(w3) = H × K. Then applying the activation function θk, we get the output
activation btk of the output layer unit k at time t. We use a a special name ytk to represent it:

ytk = θk(a
t
k) (3.4)

We introduce the definition of the loss function in Section 3.4.

3.2.3 Backward pass
With the loss function, we could compute the distance between the network outputs and the ground

truths. The aim of backward pass is to minimize the distance to train an effective neural network. The
widely used solution is gradient descent of which the idea is to first calculate the derivative of the loss func-
tion with respect to each weight and then adjust the weights in the direction of negative slope to minimize
the loss function [Graves et al., 2012].

To compute the derivative of the loss function with respect to each weight in the network, the common
technique used is known as Back Propagation (BP) [Rumelhart et al., 1985, Williams and Zipser, 1995,
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Werbos, 1988]. As there are recurrent connections in RNNs, researchers designed the special algorithms
to calculate weight derivatives efficiently for RNNs, two well known methods being Real Time Recurrent
Learning (RTRL) [Robinson and Fallside, 1987] and Back Propagation Through Time (BPTT) [Williams
and Zipser, 1995] [Werbos, 1990]. Like Alex Graves, we introduce BPTT only as it is both conceptually
simpler and more efficient in computation time.

We define

δtj =
∂L

∂atj
(3.5)

Thus the partial derivatives of the loss function L with respect to the inputs of the output units atk is

δtk =
∂L

∂atk
=

K∑
k′=1

∂L

∂ytk′

∂ytk′

∂atk
(3.6)

Afterwards, the error will be back propagated to the hidden layer. Note that the loss function depends on
the activation of the hidden layer not only through its influence on the output layer, but also through its
influence on the hidden layer at the next time-step. Thus,

δth =
∂L

∂ath
=
∂L

∂bth

∂bth
∂ath

=
∂bth
∂ath

(
K∑
k=1

∂L

∂atk

∂atk
∂bth

+
H∑
h′=1

∂L

∂at+1
h′

∂at+1
h′

∂bth
) (3.7)

δth = θ′ha
t
h

( K∑
k=1

δtkwhk +
H∑
h′=1

δt+1
h′ whh′

)
(3.8)

δth terms can be calculated recursively from T to 1. Of course this requires the initial value δT+1
h to be set.

As there is no error coming from beyond the end of the sequence, δT+1
h = 0 ∀h. Finally, noticing that the

same weights are reused at every time-step, we sum over the whole sequence to get the derivatives with
respect to the network weights

∂L

∂wij
=

T∑
t=1

∂L

∂atj

∂atj
∂wij

=
T∑
t=1

δtjb
t
i (3.9)

The last step is to adjust the weights based on the derivatives we have computed above. It is an easy
procedure and we do not discuss it here.

3.2.4 Bidirectional networks

The RNNs we have discussed only possess the ability to access the information from past, not the future.
In fact, future information is important to sequence labeling task as well as the past context. For example
when we see the left bracket ’(’ in the handwritten expression 2(a+b), it seems easy to answer ’1’, ’l’ or ’(’
if only focusing on the signal on the left side of ’(’. But if we consider the signal on the right side also, the
answer is straightforward, being ’(’ of course. An elegant solution to access context from both directions is
Bidirectional Recurrent Neural Networks (BRNNs) (BRNNs) [Schuster and Paliwal, 1997, Schuster, 1999,
Baldi et al., 1999].

Figure 3.5 shows an unfolded bidirectional network. As we can see, there are 2 separate recurrent hidden
layers, forward and backward, each of them process the input sequence from one direction. No information
flows between the forward and backward hidden layers and these two layers are both connected to the same
output layer. With the bidirectional structure, we could use the complete past and future context to help
recognizing each point in the input sequence.
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Figure 3.5 – An unfolded bidirectional network. Extracted from [Graves et al., 2012].

3.3 Long short-term memory (LSTM)

In Section 3.2, we discussed RNNs which have the ability to access contextual information from one
direction and BRNNs which have the ability to visit bidirectional contextual information. Due to their
memory capability, lots of applications are available in sequence labeling tasks. However, there is a problem
that the range of context that can be in practice accessed is quite limited. The influence of a given input on
the hidden layer, and therefore on the network output, either decays or blows up exponentially as it cycles
around the network’s recurrent connections [Graves et al., 2012]. This effect is often referred to in the
literature as the vanishing gradient problem [Hochreiter et al., 2001, Bengio et al., 1994]. To address this
problem, many methods were proposed such as simulated annealing and discrete error propagation [Bengio
et al., 1994], explicitly introduced time delays [Lang et al., 1990, Lin et al., 1996, Giles et al.] or time
constants [Mozer, 1992], and hierarchical sequence compression [Schmidhuber, 1992]. In this section, we
will focus on Long Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997].

3.3.1 Topology

We replace the summation unit in the hidden layer of a standard RNN with memory block (Figure 3.6),
generating an LSTM network. There are three gates (input gate, forget gate and output gate) and one or
more cells in a memory block. Figure 3.6 shows a LSTM memory block with one cell. We list below the
activation arriving at three gates at time t:

Input gate: the current input, the activation of hidden layer at time t− 1, the cell state at time t− 1
Forget gate: the current input, the activation of hidden layer at time t− 1, the cell state at time t− 1
Output gate: the current input, the activation of hidden layer at time t− 1, the current cell state

The connections shown by dashed lines from the cell to three gates are named as ’peephole’ connections
which are the only weighted connections inside the memory block. Just because of the three ’peephole’s,
the cell state is accessible to the three gates. These three gates sum up the information from inside and
outside the block with different weights and then apply gate activation function ’f’, usually the logistic
sigmoid. Thus, the gate activation are between 0 (gate closed) and 1 (gate open). We present below how
these three gates control the cell via multiplications (small black circles):

Input gate: the input gate multiplies the input of the cell. The input gate activation decides how much
information the cell could receive from the current input layer, 0 representing no information and 1 repre-
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Figure 3.6 – LSTM memory block with one cell. Extracted from [Graves et al., 2012].

senting all the information.
Forget gate: the forget gate multiplies the cell’s previous state. The forget gate activation decides how
much context should the cell memorize from its previous state, 0 representing forgetting all and 1 repre-
senting memorizing all.
Output gate: the output gate multiplies the output of the cell. It controls to which extent the cell will output
its state, 0 representing nothing and 1 representing all.

The cell input and output activation functions (’g’ and ’h’) are usually tanh or logistic sigmoid, though
in some cases ’h’ is the identity function [Graves et al., 2012]. Output gate controls to which extent the cell
will output its state, and it is the only outputs from the block to the rest of the network.

As we discussed, the three control gates could allow the cell to receive, memorize and output information
selectively, thereby easing the vanishing gradient problem. For example the cell could memorize totally the
input at first point as long as the forget gates are open and the input gates are closed at the following time
steps.

3.3.2 Forward pass

As in [Graves et al., 2012], we only present the equations for a single memory block since it is just a
repeated calculation for multiple blocks. Let wij denote the weight of the connection from unit i to unit
j, atj and btj represent the network input activation to unit j and the output activation of unit j at time t
respectively. Specifically, we use use xti to denote the input i value at time t. Considering a recurrent
network with I input units, K output units and H hidden units, the subscripts ς , φ, ω represent the input,
forget and output gate and the subscript c represents one of the C cells. Thus, the connections from the
input layer to the three gates are weighted by wiς , wiφ, wiω respectively; the recurrent connections to the
three gates are weighted by whς , whφ, whω; the peep-hole weights from cell c to the input, forget, output
gates can be denoted as wcς , wcφ, wcω. stc is the state of cell c at time t. We use f to denote the activation
function of the gates, and g and h to denote respectively the cell input and output activation functions. btc is
the only output from the block to the rest of the network. As with the standard RNN, the forward pass is a
recursive calculation by starting at t = 1. All the related initial values are set to 0.
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Equations are given below:

Input gates

atς =
I∑
i=1

wiςx
t
i +

H∑
h=1

whςb
t−1
h +

C∑
c=1

wcςs
t−1
c (3.10)

btς = f(atς) (3.11)

Forget gates

atφ =
I∑
i=1

wiφx
t
i +

H∑
h=1

whφb
t−1
h +

C∑
c=1

wcφs
t−1
c (3.12)

btφ = f(atφ) (3.13)

Cells

atc =
I∑
i=1

wicx
t
i +

H∑
h=1

whcb
t−1
h (3.14)

stc = btφs
t−1
c + btςg(atc) (3.15)

Output gates

atω =
I∑
i=1

wiωx
t
i +

H∑
h=1

whωb
t−1
h +

C∑
c=1

wcωs
t
c (3.16)

btω = f(atω) (3.17)

Cell Outputs

btc = btωh(stc) (3.18)

3.3.3 Backward pass
As can be seen in Figure 3.6, a memory block has 4 interfaces receiving inputs from outside the block,

3 gates and one cell. Considering the hidden layer, the total number of input interfaces is defined as G. For
the memory block consisting only one cell, G is equal to 4H . We recall Equation 3.5

δtj =
∂L

∂atj
(3.19)

Furthermore, define

εtc =
∂L

∂btc
εts =

∂L

∂stc
(3.20)

Cell Outputs

εtc =
K∑
k=1

wckδ
t
k +

G∑
g=1

wcgδ
t+1
g (3.21)

As btc is propagated to the output layer and the hidden layer of next time step in the forward pass, when
computing εtc, it is natural to receive the derivatives from both the output layer and the next hidden layer. G
is introduced for the convenience of representation.
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Output gates

δtw = f ′(atw)
C∑
c=1

h(stc)ε
t
c (3.22)

States
εts = btwh

′(stc)ε
t
c + bt+1

φ εt+1
s + wcςδ

t+1
ς + wcφδ

t+1
φ + wcωδ

t
ω (3.23)

Cells
δtc = btςg

′(atc)ε
t
s (3.24)

Forget gates

δtφ = f ′(atφ)
C∑
c=1

st−1
c εts (3.25)

Input gates

δtς = f ′(atς)
C∑
c=1

g(atc)ε
t
s (3.26)

3.3.4 Variants
There exists many variants of the basic LSTM architecture. Globally, they can be divided into chain-

structured LSTM and non-chain-structured LSTM.

Bidirectional LSTM

Replacing the hidden layer units in BRNN with LSTM memory blocks generates Bidirectional LSTM
[Graves and Schmidhuber, 2005]. LSTM network processes the input sequence from past to future while
Bidirectional LSTM, consisting of 2 separated LSTM layers, models the sequence from two opposite di-
rections (past to future and future to past) in parallel. Both of 2 LSTM layers are connected to the same
output layer. With this setup, complete long-term past and future context is available at each time step for
the output layer.

Deep BLSTM

DBLSTM [Graves et al., 2013] can be created by stacking multiple BLSTM layers on top of each other
in order to get higher level representation of the input data. As illustrated in Figure 3.7, the outputs of 2
opposite hidden layer at one level are concatenated and used as the input to the next level.

Non-chain-structured LSTM

A limitation of the network topology described thus far is that they only allow for sequential information
propagation (as shown in Figure 3.8a) since the cell contains a single recurrent connection (modulated by
a single forget gate) to its own previous value. Recently, research on LSTM has been beyond sequential
structure. The one-dimensional LSTM was extended to n dimensions by using n recurrent connections (one
for each of the cell’s previous states along every dimension) with n forget gates. It is named Multidimen-
sional LSTM (MDLSTM) dedicated to the graph structure of an n-dimensional grid such as images [Graves
et al., 2012]. In [Tai et al., 2015], the basic LSTM architecture was extend to tree structures, the Child-sum
Tree-LSTM and the N-ary Tree-LSTM, allowing for richer network topology (Figure 3.8b) where each
unit is able to incorporate information from multiple child units. In parallel to the work in [Tai et al.,
2015], [Zhu et al., 2015] explores the similar idea. The DAG-structured LSTM was proposed for semantic
compositionality [Zhu et al., 2016].
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Figure 3.7 – A deep bidirectional LSTM network with two hidden levels.

(a)

(b)

Figure 3.8 – (a) A chain-structured LSTM network; (b) A tree-structured LSTM network with arbitrary
branching factor. Extracted from [Tai et al., 2015].
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In later chapter, we will extend the chain-structured BLSTM to tree-based BLSTM which is similar to
the above mentioned work, and apply this new network model for online math expression recognition.

3.4 Connectionist temporal classification (CTC)
RNNs’ memory capability greatly meet the sequence labeling tasks where the context is quite important.

To apply this recurrent network into sequence labeling, at least a loss function should be defined for the
training process. In the typical frame wise training method, we need to know the ground truth label for
each time step to compute the errors which means pre-segmented training data is required. The network
is trained to make correct label prediction at each point. However, either the pre-segmentation or making
label prediction at each point, both are large burdens to users or networks.

The technique of CTC was proposed to solve these two points. It is specifically designed for sequence
labeling problems where the alignment between the inputs and the target labels is unknown. By introducing
an additional ’blank’ class, CTC allows the network to make label predictions at some points instead of
each point in the input sequence, so long as the overall sequence of character labels is correct. We introduce
CTC briefly here; for a more detailed description, refer to A. Graves’ book [Graves et al., 2012].

3.4.1 From outputs to labelings

CTC consists of a soft max output layer with one more unit (blank) than there are labels in alphabet.
Suppose the alphabet is A (|A| = N ), the new extended alphabet is A′ which is equal to A ∪ [blank]. Let
ytk denote the probability of outputting the k label of A′ at the t time step given the input sequence X of
length T , where k is from 1 to N + 1 and t is from 1 to T . Let A′T denote the set of sequences over A′ with
length T and any sequence π ∈ A′T is referred to as a path. Then, assuming the output probabilities at each
time-step to be independent of those at other time-steps, the probability of outputting a sequence π would
be:

p(π|X) =
T∏
t=1

ytπt (3.27)

The next step is from π to get the real possible labeling of X . A many-to-one function F : A′T → A≤T is
defined from the set of paths onto the set of possible labeling of X to do this task. Specifically, first remove
the repeated labels and then the blanks (–) from the paths. For example considering an input sequence of
length 11, two possible paths could be cc−−aaa− tt−, c−−− aa−−ttt. The mapping function works
like: F (cc − −aaa − tt−) = F (c − − − aa − −ttt) = cat. Since the paths are mutually exclusive, the
probability of a labeling sequence l ∈ A≤T can be calculated by summing the probabilities of all the paths
mapped onto it by F :

p(l|X) =
∑

π∈F−1(l)

p(π|X) (3.28)

3.4.2 Forward-backward algorithm

In section 3.4.1, we defined the probability p(l|X) as the sum of the probabilities of all the paths mapped
onto l. The calculation seems to be problematic because the number of paths grows exponentially with the
length of the input sequence. Fortunately it can be solved with a dynamic-programming algorithm similar
to the forward-backward algorithm for Hidden Markov Model (HMM) [Bourlard and Morgan, 2012].

Consider a modified label sequence l′ with blanks added to the beginning and the end of l, and inserted
between every pair of consecutive labels. Suppose that the length of l is U , apparently the length of l′

is U ′ = 2U + 1. For a labeling l, let the forward variable α(t, u) denote the summed probability of all
length t paths that are mapped by F onto the length u/2 prefix of l, and let the set V (t, u) be equal to
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{π ∈ A′t : F (π) = l1:u/2, πt = l′u}, where u is from 1 to U ′ and u/2 is rounded down to an integer value.
Thus:

α(t, u) =
∑

π∈V (t,u)

t∏
i=1

yiπi (3.29)

All the possible paths mapped onto l start with either a blank (–) or the first label (l1) of l, so we have the
formulas below:

α(1, 1) = y1
− (3.30)

α(1, 2) = y1
l1

(3.31)

α(1, u) = 0,∀u > 2 (3.32)

In fact, the forward variables at time t can be calculated recursively from those at time t− 1.

α(t, u) = ytl′u

u∑
i=f(u)

α(t− 1, i),∀t > 1 (3.33)

where

f(u) =

{
u− 1 if l′u = blank or l′u−2 = l′u
u− 2 otherwise

(3.34)

Note that
α(t, u) = 0,∀u < U ′ − 2(T − t)− 1 (3.35)

Given the above formulation, the probability of l can be expressed as the sum of the forward variables with
and without the final blank at time T .

p(l|X) = α(T, U ′) + α(T, U ′ − 1) (3.36)

Figure 3.9 illustrates the CTC forward algorithm.

Figure 3.9 – Illustration of CTC forward algorithm. Blanks are represented with black circles and labels are
white circles. Arrows indicate allowed transitions. Adapted from [Graves et al., 2012].

Similarly, we define the backward variable β(t, u) as the summed probabilities of all paths starting at
t + 1 that complete l when appended to any path contributing to α(t, u). Let W (t, u) = {π ∈ A′T−t :
F (π̂ + π) = l,∀π̂ ∈ V (t, u)} denote the set of all paths starting at t + 1 that complete l when appended to
any path contributing to α(t, u). Thus:
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β(t, u) =
∑

π∈W (t,u)

T−t∏
i=1

yt+iπi
(3.37)

The formulas below are used for the initialization and recursive computation of β(t, u):

β(T, U ′) = 1 (3.38)

β(T, U ′ − 1) = 1 (3.39)

β(T, u) = 0,∀u < U ′ − 1 (3.40)

β(t, u) =

g(u)∑
i=u

β(t+ 1, i)yt+1
l′i

(3.41)

where

g(u) =

{
u+ 1 if l′u = blank or l′u+2 = l′u
u+ 2 otherwise

(3.42)

Note that
β(t, u) = 0,∀u > 2t (3.43)

If we reverse the direction of the arrows in Figure 3.9, it comes to be an illustration of the CTC backward
algorithm.

3.4.3 Loss function
The CTC loss function L(S) is defined as the negative log probability of correctly labeling all the

training examples in some training set S. Suppose that z is the ground truth labeling of the input sequence
X , then:

L(S) = − ln
∏

(X,z)∈S

p(z|X) = −
∑

(X,z)∈S

ln p(z|X) (3.44)

BLSTM networks can be trained to minimize the differentiable loss function L(S) using any gradient-based
optimization algorithm. The basic idea is to find the derivative of the loss function with respect to each of
the network weights, then adjust the weights in the direction of the negative gradient.

The loss function for any training sample is defined as:

L(X, z) = − ln p(z|X) (3.45)

and therefore

L(S) =
∑

(X,z)∈S

L(X, z) (3.46)

The derivative of the loss function with respect to each network weight can be represented as:

∂L(S)

∂w
=

∑
(X,z)∈S

∂L(X, z)

∂w
(3.47)

The forward-backward algorithm introduced in Section 3.4.2 can be used to compute L(X, z) and the
gradient of it. We only provide the final formula in this thesis and the process of derivation can be found in
[Graves et al., 2012].

L(X, z) = − ln

|z′|∑
u=1

α(t, u)β(t, u) (3.48)
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To find the gradient, the first step is to differentiate L(X, z) with respect to the network outputs ytk:

∂L(X, z)

∂ytk
= − 1

p(z|X)ytk

∑
u∈B(z,k)

α(t, u)β(t, u) (3.49)

where B(z, k) = {u : z′u = k} is the set of positions where label k occurs in z′. Then we continue to
backpropagate the loss through the output layer:

∂L(X, z)

∂atk
= ytk −

1

p(z|X)

∑
u∈B(z,k)

α(t, u)β(t, u) (3.50)

and finally through the entire network during training.

3.4.4 Decoding
We discuss above how to train a RNN with CTC technique, and the next step is to label some unknown

input sequence X in the test set with the trained model by choosing the most probable labeling l∗ :

l∗ = arg max
l
p(l|X) (3.51)

The task of labeling unknown sequences is denoted as decoding, being a terminology coming from hidden
Markov models (HMMs). In this section, we will introduce in brief several approximate methods that
perform well in practice. Likewise, we refer the interested readers to [Graves et al., 2012] for the detailed
description. We also design new decoding methods which are suitable to the tasks of this thesis in later
chapters.

Best path decoding

Best path decoding is based on the assumption that the most probable path corresponds to the most
probable labeling

l∗ ≈ F (π∗) (3.52)

where π∗ = arg maxπp(π|X). It is simple to find π∗, just concatenating the most active outputs at each
time-step. However best path decoding could lead to errors in some cases when a label is weakly predicted
for several successive time-steps. Figure 3.10 illustrates one of the failed cases. In this simple case where
there are just two time steps, the most probable path found with best path decoding is ’−−’ with the
probability of 0.42 = 0.7 ∗ 0.6, and therefore the final labeling is ’blank’. In fact, the summed probabilities
of the paths corresponding to the labeling of ’A’ is 0.58, greater than 0.42.

Prefix search decoding

Prefix search decoding is a best-first search through the tree of labelings, where the children of a given
labeling are those that share it as a prefix. At each step the search extends the labeling whose children
have the largest cumulative probability. As can be seen in Figure 3.11, there exist in this tree 2 types of
nodes, end node (’e’) and extending node. An extending node extends the prefix at its parent node and
the number above it is the total probability of all labelings beginning with that prefix. An end node denotes
that the labeling ends at its parent and the number above it is the probability of the single labeling ending at
its parent. At each iteration, we explore the extending of the most probable remaining prefix. Search ends
when a single labeling is more probable than any remaining prefix.

Prefix search decoding could find the most probable labeling with enough time. However the fact that
the number of prefixes it must expand grows exponentially with the input sequence length, affects largely
the feasibility of its application.
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Figure 3.10 – Mistake incurred by best path decoding. Extracted from [Graves et al., 2012].

Figure 3.11 – Prefix search decoding on the alphabet {X, Y}. Extracted from [Graves et al., 2012].
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Constrained decoding

Constrained decoding refers to the situation where we constrain the output labelings according to some
predefined grammar. For example, in word recognition, the final transcriptions are usually required to form
sequences of dictionary words. Here, we only consider single word decoding, which means all word-to-
word transitions are forbidden.

With regard to single word recognition, if the number of words in the target sequence is fixed, one of
the possible methods could be as following: considering an input sequence X , for each word wd in the
dictionary, we firstly calculate the sum of the probabilities p(wd|X) of all the paths π which can be mapped
into wd using the forward-backward algorithm described in Section 3.4.2; then, assign X with the word
holding the maximum probability.
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4
Mathematical expression recognition with
single path

As well known, BLSTM network with a CTC output layer achieved great success in sequence labeling
tasks, such as text and speeches recognition. This success is due to the LSTM’s ability of capturing long-
term dependency in a sequence and the effectiveness of CTC training method. In this chapter, we will
explore the idea of using the sequence-structured BLSTM with a CTC stage to recognize 2-D handwritten
mathematical expression (Figure 4.1). CTC allows the network to make label predictions at any point in the

Figure 4.1 – Illustration of the proposal that uses BLSTM to interpret 2-D handwritten ME.

input sequence, so long as the overall sequence of labels is correct. It is not well suited for our cases in which
a relatively precise alignment between the input and output is required. Thus, a local CTC methodology is
proposed aiming to constrain the outputs to emit at least once or several times the same non-blank label in
a given stroke.

This chapter will be organized as follows: Section 4.1 globally introduce the proposal that builds stroke
label graph from a sequence of labels, along with the existing limitations in this stage. Then, the entire
process of generating the sequence of labels with BLSTM and local CTC given the input is orderly presented

59
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in detail, including firstly feeding the inputs of BLSTM, then the training and recognition stages. The
experiments and discussion are introduced in Section 4.3 and Section 4.4 respectively.

4.1 From single path to stroke label graph
This section will be focused on introducing the idea of building SLG from a single path. First, a

classification of the degree of complexity of math expressions will be given to help understanding the
different difficulties and the cases that could or could not be solved by the proposed approach.

4.1.1 Complexity of expressions
Expressions could be divided into two groups: (1) linear (1-D) expressions which consist of only Right

relationships such as 2+2, a+b; (2) 2-D expressions of which relationships are not onlyRight relationships
such as P eo,

√
36, a+b

c+d
. There are totally 9817 expressions (8834 for training and 983 for test) in CROHME

2014 data set. Among them, the amount of linear expressions is 2874, accounting for around 30% propor-
tion. Furthermore, we define chain-SRT expressions as certain expressions of which the symbol relation
trees are essentially a chain structure. Chain-SRT expressions contain all the linear expressions and a part
of 2-D expressions such as P eo,

√
36. Figure 4.2 illustrates the classifications of expressions.

Figure 4.2 – Illustration of the complexity of math expressions.

4.1.2 The proposed idea
Currently in CROHME, SLG is the official format to represent the ground-truth of handwritten math

expressions and also for the recognition outputs. The recognition system proposed in this thesis is aiming
to output the SLG directly for each input expression. As a strict expression, we use ’correct SLG’ to denote
the SLG which equals to the ground truth, and ’valid SLG’ to represent the graph where double-direction
edge corresponds to segmentation information and all strokes (nodes) belonging to one symbol have the
same input and output edges. In this section, we explain how to build a valid SLG from a sequence of
strokes. An input handwritten mathematical expression consists of one or more strokes. The sequence of
strokes in an expression can be described as S = (s1, ..., sn). For i < j, we assume si has been entered
before sj .
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A path (different from the notation within the CTC part) in SLG can be defined as Φi = (n0, n1, n2, ..., ne),
where n0 is the starting node and ne is the end node. The set of nodes of Φi is n(Φi) = {n0, n1, n2, ..., ne}
and the set of edges of Φi is e(Φi) = {n0 → n1, n1 → n2, ..., ne−1 → ne}, where ni → ni+1 denotes
the edge from ni to ni+1. In fact, the sequence of strokes described as S = (s1, ..., sn) is exactly the path
following stroke writing order (called time path, Φt) in SLG. Still taking ’2 + 2’ as example, the time
path is presented with red color in Figure 4.3a. If all nodes and edges from Φt are well classified during
the recognition process, we could obtain a chain-SLG as the Fig 4.3b. We propose to get a complete (i.e.
valid) SLG from Φt by adding the edges which can be deduced from the labeled path to obtain a coherent
SLG as depicted on Figure 4.3c. The process can be seen as: (1) complete the segmentation edges between

(a) (b)

(c)

Figure 4.3 – (a) The time path (red) in SLG; (b) the SLG obtained by using the time path; (c) the post-
processed SLG of ’2 + 2’, added edges are depicted as bold.

any pair of strokes of the multi-stroke symbol; (2) add the same input and output relation edges edge for
each stroke of the multi-stroke symbol. The time path is used since it is the most intuitive and it is easily
available. However, it does not always allow a complete construction of the correct (ground truth) SLG.
Different examples are given below to illustrate this point.

Considering both the nodes and edges, we rewrite the time path Φt shown in Figure 4.3b as the format of
(s1, s1 → s2, s2, s2 → s3, s3, s3 → s4, s4) labeled as (2, R,+,+,+, R, 2). This sequence alternates the
node labels {2,+,+, 2} and the edge labels {R,+, R}. Given the labeled sequence (2, R,+,+,+, R, 2),
the information that s2 and s3 belong to the same symbol + can be derived. With the rule that double-
direction edge represents segmentation information, the edge from s3 to s2 will be added automatically.
According to the rule that all strokes in a symbol have the same input and output edges, the edges from s1
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to s3 and from s2 to s4 will be added automatically. The added edges are shown in bold in Figure 4.3c. In
this case a correct SLG is built from Φt.

Our proposal of building SLG from the time path works well on chain-SRT expressions as long as
each symbol is written successively and the symbols in such kind of expressions are entered following the
order from the root to the leaf in SRT. Successful cases include linear expressions as 2 + 2 mentioned
previously and a part of 2-D expressions such as P eo shown in Figure 4.4a. The sequence of strokes and
edges is (P, P, P, Superscript, e, R, o). All the spatial relationships are covered in it and naturally a correct
SLG can be generated. Usually users enter the expression P eo following the order of P, e, o. Yet the input
order of e, o, P could be also possible. For this case, the corresponding sequence of strokes and edges is
(e, R, o, _, P, P, P ). Since there is no edge from o to P in SLG, we use _ to represent it. Apparently, it
is not possible to build a complete and correct SLG with this sequence of labels where the Superscript
relationship from P to e is missing. As a conclusion, for a chain-SRT expression written with specific
order, a correct SLG could be built using the time path.

(a) (b)

(c) (d)

Figure 4.4 – (a) P eo written with four strokes; (b) the SRT of P eo; (c) r2h written with three strokes; (d) the
SRT of r2h, the red edge cannot be generated by the time sequence of strokes

For those 2-D expressions of which the SRTs are beyond of the chain structure, the proposal presents
unbreakable limitations. Figure 4.4c presents a failed case. According to time order, 2 and h are neighbors
but there is no edge between them as can be seen on Figure 4.4d. In the best case the system can output
a sequence of stroke and edge labels (r, Superscript, 2, _, h). The Right relationship existing between r
and h drawn with red color in Figure 4.4d is missing in the previous sequence. It is not possible to build
the correct SLG with (r, Superscript, 2, _, h). If we change the writing order, first r, h and then 2, the time
sequence will be (r, Right, h, _, 2). Yet, we still can not build a correct SLG with Superscript relationship
missing. Being aware of this limitation, the 1-D time sequence of strokes is used to train the BLSTM and
the outputted sequence of labels during recognition will be used to generate a valid SLG graph.

4.2 Detailed Implementation
An online mathematical expression is a sequence of strokes described as S = (s1, ..., sn). In this

section, we present the process to generate the above-mentioned 1-D sequence of labels from S with the
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BLSTM and local CTC model. CTC layer only outputs the final sequence of labels while the alignment
between the inputs and the labels is unknown. BLSTM with CTC model may emit the labels before, after
or during the segments (strokes). Furthermore, it tends to glue together successive labels that frequently
co-occur [Graves et al., 2012]. However, the label of each stroke is required to build SLG, which means
the alignment information between a sequence of strokes and a sequence of labels should be provided.
Thus, we propose local CTC here, constraining the network to emit the label during the segment (stroke),
not before or after. First part is to feed the inputs of the BLSTM with S. Then, we focus on the network
training process—local CTC methodology. Lastly, the recognition strategies adopted in this chapter will be
explained in detail.

4.2.1 BLSTM Inputs
To feed the inputs of the BLSTM, it is important to scan the points belonging to the strokes themselves

(on-paper points) as well as the points separating one stroke from the next one (in-air points). We expect
that the visible strokes will be labeled with corresponding symbol labels and that the non-visible strokes
connecting two visible strokes will be assigned with one of the possible edge labels (could be relationship
label, symbol label or ’_’). Thus, besides re-sampling points from visible strokes, we also re-sample points
from the straight line which links two visible strokes, as can be seen in Figure 4.5. In the rest of this thesis,

Figure 4.5 – The illustration of on-paper points (blue) and in-air points (red) in time path, a1 + a2 written
with 6 strokes.

strokeD and strokeU are used to indicate a re-sampled pen-down stroke and a re-sampled pen-up stroke
for convenience.

Given each expression, we first re-sampled points both from visible strokes and invisible strokes which
connects two successive visible strokes in the time order. 1-D unlabeled sequence can be described as
{strokeD1, strokeU2, strokeD3, strokeU4, ..., strokeDK}withK being the number of re-sampled strokes.
Note that if s is the number of visible strokes in this path, K = 2∗s−1. Each stroke (strokeD or strokeU )
consists of one or more points. At a time-step, the input provided to the BLSTM is the feature vector ex-
tracted from one point. Without CTC output layer, the ground-truth of every point is required for BLSTM
training process. With CTC layer, only the target labels of the whole sequence is needed, the pre-segmented
training data is not required. In this chapter, a local CTC technology is proposed and the ground-truth of
each stroke is required. The label of strokeDi should be assigned with the label of the corresponding node
in SLG; the label of strokeUi should be assigned with the label of the corresponding edge in SLG. If no
corresponding edge exists, the label NoRelation will be defined as ’_’.

4.2.2 Features
A stroke is a sequence of points sampled from the trajectory of a writing tool between a pen-down and

a pen-up at a fixed interval of time. Then an additional re-sampling is performed with a fixed spatial step
to get rid of the writing speed. The number of re-sampling points depends on the size of expression. For
each expression, we re-sample with 10 × (length/avrdiagonal) points. Here, length refers to the length
of all the strokes in the path (including the gap between successive strokes) and avrdiagonal refers to the
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average diagonal of the bounding boxes of all the strokes in an expression. Since the features used in this
work are independent of scale, the operation of re-scaling can be omitted.

Subsequently, we compute five local features per point, which are quite close to the state of art [Álvaro
et al., 2013, Awal et al., 2014]. For every point pi(x, y) we obtained 5 features (see Figure 4.6a):

[sin θi, cos θi, sinφi, cosφi, P enUDi]

with:

• sin θi, cos θi are the sine and cosine directors of the tangent of the stroke at point pi(x, y);

• φi = ∆θi, defines the change of direction at point pi(x, y);

• PenUDi refers to the state of pen-down or pen-up.

(a) (b)

Figure 4.6 – The illustration of (a) θi, φi and (b) ψi used in feature description. The points related to feature
computation at pi are depicted in red.

Even though BLSTM can access contextual information from past and future in a long range, it is still
interesting to see if a better performance is reachable when contextual features are added in the recognition
task. Thus, we extract two contextual features for each point (see Figure 4.6b):

[sinψi, cosψi]

with:

• sinψi, cosψi are the sine and cosine directors of the vector from the point pi(x, y) to its closest
pen-down point which is not in the current stroke. For the single-stroke expressions, sinψi = 0,
cosψi = 0.

Note that the proposed features are size-independent and position-independent characteristics, therefore
we omit the normalization process in this thesis. Later in different experiments,we will use the 5 shape
descriptor alone or the 7 features together depending on the objective of each experiment.

4.2.3 Training process — local connectionist temporal classification
Frame-wise training of RNNs requires separate training targets for every segment or timestep in the

input sequence. Even though presegmented training data is available, it is known that BLSTM and CTC
stage have better performance when a ’blank’ label is introduced during training [Bluche et al., 2015], so
that better decision can be made only at some point in the input sequence. Of course doing so, precise
segmentation of the input sequence is not possible. As the label of each stroke is required to build a SLG,
we should make decisions on stroke (strokeD or strokeU ) level instead of sequence level (as classical
CTC) or point level during the recognition process. Thus, a correspondingly stroke level training method



4.2. DETAILED IMPLEMENTATION 65

Figure 4.7 – The possible sequences of point labels in one stroke.

allowing the usage of blank label under the constraint of labeling each stroke should be developed. That is
why local CTC is proposed here.

For each stroke, label sequences should follow the state diagram given in Figure 4.7. For example,
suppose character c is written with one stroke and 3 points are re-sampled from the stroke. The possible
labels of these points can be ccc, cc−, c−−, −− c, −cc and −c− (’−’ denotes ’blank’). More generally,
the number of possible label sequences is n∗ (n+ 1)/2 (n is the number of points), which is actually 6 with
the proposed example.

In Section 3.4, CTC technology proposed by Graves is introduced. We modify the CTC algorithm with
a local strategy to let it output the relatively precise alignment between the input sequence and the output
sequence of labels. In this way, it could be applied for the training stage in our proposed system. Given the
input sequence X of length T consisting of U strokes, l is used to denote the ground truth, i.e. the sequence
of labels. As one stroke belongs to at most one symbol or one relationship, the length of l is U . l′ represents
the label sequence with blanks added to the beginning and the end of l, and inserted between every pair of
consecutive labels. Apparently, the length of l′ is U ′ = 2U + 1. The forward variable α(t, u) denotes the
summed probability of all length t paths that are mapped by F onto the length u/2 prefix of l, where u is
from 1 to U ′ and t is from 1 to T . Given the above notations, the probability of l can be expressed as the
sum of the forward variables with and without the final blank at time T .

p(l|X) = α(T, U ′) + α(T, U ′ − 1) (4.1)

In our case, α(t, u) can be computed recursively as following:

α(1, 1) = y1
− (4.2)

α(1, 2) = y1
l1

(4.3)

α(1, u) = 0,∀u > 2 (4.4)

α(t, u) = ytl′u

u∑
i=flocal(u)

α(t− 1, i) (4.5)

where

flocal(u) =

{
u− 1 if l′u = blank
u− 2 otherwise

(4.6)

In the original Eqn. 3.34, the value u − 1 was also assigned when l′u−2 = l′u, enabling the transition from
α(t − 1, u − 2) to α(t, u). This is the case when there are two repeated successive symbols in the final
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labeling. With regard to the corresponding paths, there exists at least one blank between these two symbols.
Otherwise, only one of these two symbols can be obtained in the final labeling. In our case, as one label
will be selected for each stroke, the above-mentioned limitation can be ignored. Suppose that the input at
time t belongs to ith stroke (i from 1 to U ), then we have

α(t, u) = 0,∀u/u < (2 ∗ i− 1), u > (2 ∗ i+ 1) (4.7)

which means the only possible arrival positions for time t are l′2∗i−1, l′2∗i, l
′
2∗i+1. Figure 4.8 demonstrates the

local CTC forward-backward algorithm using the example ’2a’ which is written with 2 visible strokes. The

Figure 4.8 – Local CTC forward-backward algorithm. Black circles represent labels and white circles
represent blanks. Arrows signify allowed transitions. Forward variables are updated in the direction of the
arrows, and backward variables are updated in the reverse direction.

corresponding label sequences l and l′ of it are ’2Ra’ and ’-2-R-a-’ respectively (R is forRight relationship).
We re-sampled 4 points for pen-down stroke ’2’, 5 points for pen-up stroke ’R’ and 4 points for pen-down
stroke ’a’. From this figure, we can see each part located on one stroke is exactly the CTC forward-backward
algorithm. That is why the output layer adopted in this paper is called local CTC.

Similarly, the backward variable β(t, u) denotes the summed probabilities of all paths starting at t + 1
that complete l when appended to any path contributing to α(t, u). The formulas for the initialization and
recursion of the backward variable in local CTC are as follows:

β(T, U ′) = 1 (4.8)

β(T, U ′ − 1) = 1 (4.9)

β(T, u) = 0,∀u < U ′ − 1 (4.10)

β(t, u) =

glocal(u)∑
i=u

β(t+ 1, i)yt+1
l′i

(4.11)
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where

glocal(u) =

{
u+ 1 if l′u = blank
u+ 2 otherwise

(4.12)

Suppose that the input at time t belongs to ith stroke (i from 1 to U ), then:

β(t, u) = 0,∀u/u < (2 ∗ i− 1), u > (2 ∗ i+ 1) (4.13)

With the local CTC forward-backward algorithm, the α(t, u) and β(t, u) are available for each time
step t and each allowed positions u of time step t. Then the errors are backpropagated to the output layer
(Equation 3.49), the hidden layer (Equation 3.50), finally to the entire network. The weights in the network
are adjusted with the expectation to enabling the network output the corresponding label for each stroke.

As can be seen in Figure 4.8, each part located on one stroke is exactly the CTC forward-backward
algorithm. In this chapter, a sequence consisting U strokes is regarded and processed as a entirety. In fact,
each stroke i could be coped with separately. To be specific, with regard to each stroke i we have αi(t, u),
βi(t, u) and p(li|Xi) associated to it. The initialization of αi(t, u) and βi(t, u) is the same as described
previously. With this treatment, p(l|X) can be expressed as:

p(l|X) =
U∏
i=1

p(li|Xi) (4.14)

Either way, the result is the same. We will reintroduce this point in Chapter 6 where the separate processing
method is taken.

4.2.4 Recognition Strategies
Once the network is trained, we would ideally label some unknown input sequence X by choosing the

most probable labeling I∗:
I∗ = argmax

l
p(l|X) (4.15)

Since local CTC is already adopted in the training process in this work, naturally recognition should be
performed at stroke (strokeD and strokeU ) level. As explained in Section 4.1 to build the Label Graph,
we need to assign one single label to each stroke. At that stage, for each point or time step, the network
outputs the probabilities of this point belonging to different classes. Hence, a pooling strategy is required to
go from the point level to the stroke level. We propose two kinds of decoding methods: maximum decoding
and local CTC decoding, both based on stroke level.

Maximum decoding With the same method taken in [Graves et al., 2012] for isolated handwritten digits
recognition using a multidimensional RNN with LSTM hidden layers, we first calculate the cumulative
probabilities over the entire stroke. For stroke i, let oi = {pict}, where pict is the probability of outputting the
cth label at the tth point. Suppose that we have N classes of labels (including blank), then c is from 1 to N ;
|si| points are re-sampled for stroke i, then t is from 1 to |si|. Thus, the cumulative probability of outputting
the cth label for stroke i can be computed as

P i
c =

|si|∑
t=1

pict (4.16)

Then we choose for stroke i the label with the highest P i
c (excluding blank).

Local CTC decoding With the output oi, we choose the most probable label for the stroke i:

l∗i = argmax
li

p(li|oi) (4.17)
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In this work, each stroke outputs only one label which means we have N − 1 possibilities of label of stroke.
blank is excluded because it can not be a candidate label for stroke. With the already known N − 1 labels,
p(li|oi) can be calculated using the algorithm depicted in Section 4.2.3. Specifically, based on the Eqn. 6.17
we can write Eqn. 4.18,

p(li|oi) = α(|si|, 3) + α(|si|, 2) (4.18)

with T = |si| and U ′ = 3 (l′ is (blank, label, blank)). For each stroke, we compute the probabilities
corresponding to N − 1 labels and then select the one with the largest value. In mathematical expression
recognition task, more than 100 different labels are included. If Eqn. 4.18 is computed more that 100 times
for every stroke, undoubtedly it would be a time-consuming task. A simplified strategy is adopted here.
We sort the P i

c from Eqn. 4.16 using maximum decoding and keep the top 10 probable labels (excluding
blank). From these 10 candidates, we choose the one which has the highest p(li|oi). In this way, Eqn. 4.18
is computed only 10 times for each stroke, greatly reducing the computation time.

Furthermore, we add two constraints when choosing label for stroke: (1) the label of strokeD should be
one of the symbol labels, excluding the relationship labels, like strokes 1, 3, 5, 7, 9, 11 in Figure 4.9. (2) the
label of strokeUi is divided into 2 cases, if the labels of strokeDi−1 and strokeDi+1 are different, it should
be one of the six relationships (strokes 2, 8, 10) or ’_’ (stroke 4); otherwise, it should be relationships, ’_’ or
the label of strokeDi−1 (strokeDi+1). Taking stroke 6 shown in Figure 4.9 for example, if ’+’ is assigned
to it means that the corresponding pair of nodes (strokes 5 and 7) belongs to the same symbol while ’_’ or
relationship refers to 2 nodes belonging to 2 symbols. Note that to satisfy these constraints on edges labels,
the labels of pen-down strokes are chosen first and then pen-up strokes.

After recognition, post-processing (adding edges) should be done in order to build the SLG. The way to
proceed has been already introduced in Section 4.1.

Figure 4.9 – Illustration for the decision of the label of strokes. As stroke 5 and 7 have the same label, the
label of stroke 6 could be ’+’, ’_’ or one of the six relationships. All the other strokes are provided with the
ground truth labels in this example.

4.3 Experiments
We extend the RNNLIB library 1 by introducing the local CTC training technique, and use the extended

library to train several BLSTM models. Both frame-wise training and local CTC training are adopted in
our experiments. For each training process, the network having the best classification error (frame-wise) or

1. Graves A. RNNLIB: A recurrent neural network library for sequence learning problems.
http://sourceforge.net/projects/rnnl/.



4.3. EXPERIMENTS 69

CTC error (local CTC) on validation data set is saved. Then, we test this network on the test data set. The
maximum decoding (Eqn. 4.16) is used for frame-wise training network. With regard to local CTC, either
the maximum decoding or local CTC decoding (Eqn. 4.18) can be used.

With the Label Graph Evaluation library (LgEval) [Mouchère et al., 2014], the recognition results can
be evaluated on symbol level and on expression level. We introduce several evaluation criteria: symbol
segmentation (‘Segments’), refers to a symbol that is correctly segmented whatever the label; symbol seg-
mentation and recognition (‘Seg+Class’), refers to a symbol that is segmented and classified correctly;
spatial relationship classification (‘Tree Rels.’), a correct spatial relationship between two symbols requires
that both symbols are correctly segmented and with the right relationship label.

For all experiments the network architecture and configuration are as follows:

• The input layer size: 5 or 7 (when considering the 2 additionnal context features)

• The output layer size: the number of class (up to 109)

• The hidden layers: 2 layers, the forward and backward, each contains 100 single-cell LSTM memory
blocks

• The weights: initialized uniformly in [-0.1, 0.1]

• The momentum: 0.9

This configuration has obtained good results in both handwritten text recognition [Graves et al., 2009]
and handwritten math symbol classification [Álvaro et al., 2013, 2014a].

4.3.1 Data sets
Being aware of the limitations of our proposal related to the structures of expressions, we would like to

see the performance of the current system on expressions of different complexities. Thus, three data sets
are considered in this chapter.

Data set 1. We select the expressions which do not include 2-D spatial relation, only left-right relation
from CROHME 2014 training and test data. 2609 expressions are available for training, about one third of
the full training set and 265 expressions for testing. In this case, there are 91 classes of symbols. Next,
we split the training set into a new training set and validation set, 90% for training and 10% for validation.
The output layer size is 94 (91 symbol classes + Right + NoRelation + blank). In left-right expressions,
NoRelation will be used each time when a delayed stroke breaks the left-right time order.

Data set 2. The depth of expressions in this data set is limited to 1, which imposes that two sub-
expressions having a spatial relationship (Above, Below, Inside, Superscript, Subscript) should be left-
right expressions. It adds to the previous linear expressions some more complex MEs. 5820 expressions are
selected for training from CROHME 2014 training set; 674 expressions for test from CROHME 2014 test
set. Also, we divide 5820 expressions into the new training set and validation set, 90% for training and 10%
for validation. The output layer size is 102 (94 symbol classes + 6 relationships + NoRelation + blank).

Data set 3. The complete data set from CROHME 2014, 8834 expressions for training and 983 expres-
sions for test. Also, we divide 8834 expressions for training (90%) and validation (10%). The output layer
size is 109 (101 symbol classes + 6 relationships + NoRelation + blank).

The blank label is only used for local CTC training. Figure 4.10 show some handwritten math expres-
sion samples extracted from CROHME 2014 data set.

4.3.2 Experiment 1: theoretical evaluation
As discussed in Section 4.1, there exist obvious limitations in the proposed solution of this chapter.

These limitations could be divided into two types: (1) to chain-SRT expressions, if users could not write a
multi-stroke symbol successively or could not follow a specific order to enter symbols, it will not be possible
to build a correct SLG; (2) to those expressions of which the SRTs are beyond of the chain structure,
regardless of the writing order, the proposed solution will miss some relationships. In this experiment,
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(a)

(b)

(c)

Figure 4.10 – Real examples from CROHME 2014 data set. (a) sample from Data set 1; (b) sample from
Data set 2; (c) sample from Data set 3.
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laying the classifier aside temporarily, we would like to evaluate the limitations of the proposal itself. Thus,
to carry out this theoretical evaluation, we take the ground truth labels of the nodes and edges in the time
path only of each expression. Table 4.1 and Table 4.2 present the evaluation results on CROHME 2014 test
set at the symbol and expression level respectively using the above-mentioned strategy.

We can see from Table 4.1, the recall (‘Rec.’) and precision (‘Prec.’) rates of the symbol segmentation
on all these 3 data sets are almost 100% which implies that users generally write a multi-stroke symbol
successively. The recall rate of the relationship recognition is decreasing from Data set 1 to 3 while the
precision rate remains almost 100%. With the growing complexity of expressions, increasing relationships
are missed due to the limitations. About 5% relationships are missed in Data set 1 because of only the
problem of writing order. With regards to the approximate 25% relationships omitted in Data set 3, it is
owing to the writing order and the conflicts between the chain representation method and the tree structure
of expression, especially the latter one.

In Table 4.2, the evaluation results at the expression level are available. 86.79% of Data set 1 which
contains only 1-D expressions could be recognized correctly with the proposal at most. For the complete
CROHME 2014 test set, only 34.11% expressions can be interpreted correctly in the best case.

Table 4.1 – The symbol level evaluation results on CROHME 2014 test set (provided the ground truth labels
on the time path).

Data set Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

1 99.73 99.46 99.73 99.46 95.78 99.40
2 99.75 99.49 99.73 99.48 80.33 99.39
3 99.73 99.45 99.72 99.44 75.54 99.27

Table 4.2 – The expression level evaluation results on CROHME 2014 test set (provided the ground truth
labels on the time path).

Data set correct (%) <= 1 error <= 2 errors <= 3 errors
1 86.79 87.55 91.32 93.96
2 44.21 51.63 61.87 68.69
3 34.11 40.94 50.51 58.25

4.3.3 Experiment 2
In this experiment, we evaluate the proposed solution with BLSTM classifier on data sets of different

complexity. Local CTC training and local CTC decoding methods are used inside the recognition system.
Only 5 local features are extracted at each point for training. Each system is trained only once.

The evaluation results on symbol level for the 3 data sets are provided in Table 4.3 including recall
(‘Rec.’) and precision (‘Prec.’) rates for ‘Segments’, ‘Seg+Class’, ‘Tree Rels.’. As can be seen, the results
in ‘Segments’ and ‘Seg+Class’ are increasing while the training data set is growing. The recall for ‘Tree
Rels.’ is decreasing among the three data sets. It is understandable since the number of missed relationships
grows with the complexity of expressions knowing the limitation of our method. The precision for ‘Tree
Rels.’ fluctuates as the data set is expanding. The results of Data set 3 are comparable to the results of
CROHME 2014 because the same training and testing data sets are used. The second part of Table 4.3
gives the symbol level evaluation results of the participant systems in CROHME 2014 sorted by recall
of correct symbol segmentation. The best ‘Rec.’ of ‘Segments’ and ‘Seg+Class’ reported in CROHME
2014 are 98.42% and 93.91% respectively. Ours are 93.26% and 84.40%, both ranked 3 out of 8 systems
(7 participants in CROHME 2014 + our system). Our solution presents competitive results on symbol
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recognition task and segmentation task even though the symbols with delayed strokes are missed. However,
our proposal, at that stage, shows limited performances at the relationship level, with ‘Rec.’ = 61.85%,
‘Prec.’ = 75.06%. This is mainly because approximate 25% relationships are missed in the time sequence.
If we consider only the relationships covered by the time sequence which accounts for 75.54%, the recall
rate will be 61.85%/75.54% = 81.88%, close to the second ranked system in the competition. Thus, one of
the main works of next chapters would be focused on proposing a solution to catch the omitted approximate
25% relationships at the modeling stage.

Table 4.3 – The symbol level evaluation results on CROHME 2014 test set, including the experiment results
in this work and CROHME 2014 participant results.

Data set, features Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

1, 5 90.11 80.75 78.91 70.71 79.87 73.66
2, 5 91.88 84.47 82.42 75.77 64.75 71.96
3, 5 93.26 86.86 84.40 78.61 61.85 75.06

system CROHME 2014 participant results
III 98.42 98.13 93.91 93.63 94.26 94.01
I 93.31 90.72 86.59 84.18 84.23 81.96

VII 89.43 86.13 76.53 73.71 71.77 71.65
V 88.23 84.20 78.45 74.87 61.38 72.70
IV 85.52 86.09 76.64 77.15 70.78 71.51
VI 83.05 85.36 69.72 71.66 66.83 74.81
II 76.63 80.28 66.97 70.16 60.31 63.74

Table 4.4 shows the recognition rates at the global expression level with no error, and with at most one

Table 4.4 – The expression level evaluation results on CROHME 2014 test set, including the experiment
results in this work and CROHME 2014 participant results.

Data set, features correct (%) <= 1 error <= 2 errors <= 3 errors
1, 5 25.28 40.75 49.06 52.08
2, 5 12.76 25.07 31.16 36.20
3, 5 12.63 21.28 27.70 31.98

system CROHME 2014 participant results
III 62.68 72.31 75.15 76.88
I 37.22 44.22 47.26 50.20

VII 26.06 33.87 38.54 39.96
VI 25.66 33.16 35.90 37.32
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
II 15.01 22.31 26.57 27.69

to three errors in the labels of SLG. This metric is very strict. For example one label error can happen only
on one stroke symbol or in the relationship between two one-stroke symbols; a labeling error on a 2-stroke
symbol leads to 4 errors (2 nodes labels and 2 edges labels). As can be seen, the expression recognition
rates are decreasing as the data sets are getting more and more complex from Data set 1 to 3. On Data
set 1 of only linear expressions, the ME recognition rate is 25.28%. The recognition rate with no error on
CROHME 2014 test set is 12.63%. The best one and worst one reported by CROHME 2014 are 62.68%
and 15.01%. When looking at the recognition rate having less than three errors, four participants ranked
between 27% and 37%, while our result is 31.98%.
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We present a correctly recognized sample and an incorrectly recognized sample in Figure 4.11 and
Figure 4.12 respectively. The expression a ≥ b (Figure 4.11) is a 1-D expression and therefore the time

(a)

(b)

Figure 4.11 – (a) a ≥ b written with four strokes; (b) the built SLG of a ≥ b according to the recognition
result, all labels are correct.

(a)

(b)

(c)

Figure 4.12 – (a) 44− 4
4

written with six strokes; (b) the ground-truth SLG; (c) the rebuilt SLG according to
the recognition result. Three edge errors occurred: the Right relation between stroke 2 and 4 was missed
because there is no edge from stroke 2 to 4 in the time path; the edge from stroke 4 to 3 was missed for the
same reason; the edge from stroke 2 to 3 was wrongly recognized and it should be labeled as NoRelation.

path could cover all the relationships in this expression. It was correctly recognized by our system in this
chapter. Considering the other sample 44− 4

4
of which the SRT is a tree structure (Figure 4.12), the Right

relationship from the minus symbol to fraction bar was omitted in the modeling stage, likewise the Above
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relationship from the fraction bar to the numerator 4. In addition, the relation from the minus symbol to the
numerator 4 was wrongly recognized as Right and it should be labeled as NoRelation.

4.3.4 Experiment 3
In this experiment, we would like to know if different training and decoding methods and the contextual

features will improve or not the performance of our recognition system. We use different training methods
and different features to train the recognition system, and take two kinds of strategy at the recognition stage.
All the systems in this part are trained and evaluated on Data set 3. Since the weights inside the network are
initialized randomly, each system is trained four times with the aim to compute mean evaluation values and
standard deviations, and therefore obtain convincing conclusions and have an idea of the system stability.

As shown in Table 4.5, with the first 2 networks, we can conclude that local CTC training can improve

Table 4.5 – The symbol level evaluation results (mean values) on CROHME 2014 test set with different
training and decoding methods, features.

Feat. Train Decode Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

5 frame-wise maximum 92.71 85.88 83.76 77.59 59.84 73.71
5 local CTC maximum 93.21 86.73 84.11 78.26 61.75 74.51
5 local CTC local CTC 93.2 86.71 84.11 78.25 61.71 74.67
7 local CTC maximum 93 86.43 84 78.06 61.73 74.06

the system performance globally compared to frame-wise training. Furthermore, the proposed local CTC
training method is able to accelerate the convergence process and therefore reduce the training time sig-
nificantly. Comparing the results from the second and third systems, the conclusion is straightforward that
local CTC decoding does not help the recognition process but cost more computation. Maximum decoding
is a better choice in this work. In the fourth system, we test the effect of contextual features on BLSTM
networks. The results stay at the same level with system trained with only local features. In addition, to
have a look at the stability of our recognition system, we provide in Table 4.6 the standard derivations of the
symbol level evaluation results on CROHME 2014 test set with local CTC training and maximum decoding
methods, 5 local features. As shown, the standard derivations are quite low, indicating that our system has
a high stability.

Table 4.6 – The standard derivations of the symbol level evaluation results on CROHME 2014 test set with
local CTC training and maximum decoding method, 5 local features.

Feat. Train Decode Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

5 local CTC maximum 0.12 0.26 0.26 0.32 0.29 0.83

Consequently, in the coming chapters we will use local CTC training method instead of frame-wise
training, maximum decoding instead of local CTC decoding, 5 local features instead of 7 features for all
the experiments aimed at making an effective and efficient system.

4.4 Discussion
The capability of BLSTM networks to process graphical two-dimensional languages such as handwrit-

ten mathematical expressions is explored in this chapter as a first try. Using online math expressions, which
are available as a temporal sequence of strokes, we produce a labeling at the stroke level using a BLSTM
network with a local CTC output layer. Then we propose to build a two-dimensional (2-D) expression from
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this sequence of labels. Our solution presents competitive results with CROHME 2014 data set on symbol
recognition task and segmentation task. Proposing a global solution to perform at one time segmentation,
recognition and interpretation, with no dedicated stages, is a major advantage of the proposed solution. To
some extent, at the present time, it fails on the relationship recognition task. This is primarily due to an
intrinsic limitation, since currently, a single path following the time sequence of strokes in SLG is used to
build the expression. In fact, some important relationships are omitted at the modeling stage.

We only considered stroke combinations in time series in the work of this chapter. For the coming
chapter, the proposed solution will take into account more possible stroke combinations in both time and
space such that less relationships will be missed at the modeling stage. A sequential model could not include
temporal and spacial information at the same time. To overcome this limitation, we propose to build a graph
from the time sequence of strokes to model more accurately the relationships between strokes.





5
Mathematical expression recognition by
merging multiple paths

In Chapter 4, we confirmed the fact of that there exists unbreakable limitations if using a single 1-D path
to model expressions. This conclusion was verified from both theoretical and experimental point of view.
The sequence of strokes arranged with time order was used in those experiments as an example of 1-D paths
since it is the most intuitive and readily available. Due to the unbreakable limitations, in this chapter, we
turn to a graph structure to model the relationships between strokes in mathematical expressions. Further,
using the sequence classifier BLSTM to label the graph structure is another research focus.

This chapter will be organized as follows: Section 5.1 provides an overview of graph representation
related to build a graph from raw mathematical expression. Then we globally describe the framework of
mathematical expression recognition by merging multiple paths in Section 5.2. Next, all the steps of the
recognition system are explained one by one in detail. Finally, the experiment part and the discussion part
are presented in Section 5.4 and Section 5.5 respectively.

5.1 Overview of graph representation
Each mathematical expression consists of a sequence of strokes. Relations between two strokes could

be divided into 3 types: belong to the same symbol (segmentation), one of the 6 spatial relationships, no
relation. It is possible to describe a ME at the stroke level using a SLG of which nodes represent strokes,
while the edges encode either segmentation information or one of the spatial relationships. If there is no
relation between two strokes, of course no corresponding edge would be found between two strokes in
SLG.

All the above discussion supposes the knowledge of the ground truth. In fact, given a handwritten
expression, our work is to find the ground truth. Thus the first step is to derive an intermediate graph from
the raw information. Specifically, it involves finding pairs of strokes between which there exist relations
(represented as edges). In [Hu, 2016], they call this stage as graph representation. We could find out all
the ground truth edges (100% recall) by adding an edge between any pair of strokes in the derived graph.
However, this exhaustive approach brings at the same time the problem of low precision. For an expression
with N strokes, if we consider all the possibilities, there would be N(N − 1) edges in the derived graph.
Compared to the ground truth SLG, many edges do not exist. Suppose that all symbols in this expression
are single-stroke symbol, there are only N − 1 ground truth edge, and the precision is 1

N
. Apparently this

exhaustive solution with a 100% recall and an around 1
N

precision is unbearable in practice because even

77
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through later classifier could recognize these invalid edges to some extent it is still a big burden. Thus,
better graph models should be explored. In this section, we introduce several models used in other literature
provided as a basis of the proposed model in this thesis.

Time Series (TS) is widely used as a model for the task of math symbol segmentation and recognition
in previous works [Hu and Zanibbi, 2013, Koschinski et al., 1995, Kosmala and Rigoll, 1998, Yu et al.,
2007, Smithies et al., 1999, Winkler and Lang, 1997a,b]. In this model, strokes are represented as nodes,
and between two successive strokes in the input order there is an edge (undirected) connecting them. We
also considered this model but a directed version in Chapter 4 where it is called time path. Time Series is a
good model for symbol segmentation and recognition since people usually writes symbols with no delayed
stroke. However, it is not strong enough to capture the global structure of math expression, which has been
clarified very well in last chapter.

Unlike Time Series which is a chain structure in fact, K Nearest Neighbor (KNN) is a graph model in
the true sense. In KNN graph, for each stroke, we first search for its K closest strokes. Then each undirected
edge between this stroke and each of its K closest neighbors will be added into the graph. Thus, each node
has at least K edges connected to it. In other words, the number of the edges connected to each node is
relatively fixed in fact. However, it is not well suitable for math expression where nodes are connected to a
variable number of edges.

In [Matsakis, 1999], Minimum spanning tree (MST) is used as the graph model. A spanning tree is
a connected undirected graph, which a set of edges connect all of the nodes of the graph with no cycles.
To define a minimum spanning tree, the graph edges also need to be assigned with a weight, in which case
an MST is a spanning tree that has the minimum accumulative edge weight of the graph [Matsakis, 1999].
Minimum spanning trees can be efficiently computed using the algorithms of Kruskal and Prim [Cormen,
2009]. In [Matsakis, 1999], each stroke is represented as a node and the edge between the two strokes is
assigned with a weight which is the distance of two strokes. Figure 5.1a presents an example of MST.

(a) (b)

Figure 5.1 – Examples of graph models. (a) An example of minimum spanning tree at stroke level. Extracted
from [Matsakis, 1999]. (b) An example of Delaunay-triangulation-based graph at symbol level. Extracted
from [Hirata and Honda, 2011].

A Delaunay Triangulation (DT) for a set P of points in a plane is a triangulation DT (P ) such that no
point in P is inside the circumcircle of any triangle in DT (P ) [de Berg et al.]. [Hirata and Honda, 2011]
uses a graph model based on Delaunay triangulation. They assume that symbols are correctly segmented,
thus, instead of stroke, each symbol is taken as a node. Figure 5.1b presents an example of Delaunay-
triangulation-based graph applied on math expressions.

In [Hu, 2016], Line Of Sight (LOS) graph is considered since they find that, for a given stroke, it
usually can see the strokes which have a relation with it in the symbol relation tree. The center of each
stroke is taken as an eye, there would be an directed edge from the current stroke to each stroke it can see.
A sample is available in Figure 5.2. [Muñoz, 2015] use an undirected graph of which each stroke is a node
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and edges only connect strokes that are visible and close as a segmentation model. They also consider the
visibility between strokes.

Figure 5.2 – An example of line of sight graph for a math expression. Extracted from [Hu, 2016].

Hu carried out considerable experiments to choose the appropriate graph model in [Hu, 2016]. To better
stress the characteristics of variable graph models, several related definitions are provided before going to
the details. A stroke is a sequence of points which can be represented as a Bounding Box (BB) (Figure 5.3a)
or a Convex Hull (CH) (Figure 5.3b). A subset P of the plane is called convex if and only if for any pair of

(a) (b)

Figure 5.3 – Stroke representation. (a) The bounding box. (b) The convex hull.

points p1, p2 ∈ P the line segment p1p2 is completely contained in P . The convex hull CH(P ) of a set P
is the smallest convex set that contains P [de Berg et al.]. Three different euclidean distances are proposed
to compute the distance between two strokes: (1) the distance between averaged centers. Averaged Center
(AC) of a stroke is defined by the average of the x-coordinates and the average of the y-coordinates of all
points belonging to this stroke. (2) the distance between Bounding Box Center (BBC) of a pair of strokes.
(3) the distance between their closest points. Closest Point Pair (CPP) of two strokes refers to the pair of
points having the minimal distance, where two points are from two strokes. The experiment results from
[Hu, 2016] reveal that both MST and TS models achieve a high precision rate (around 90% on CROHME
2014 test set, AC distance is used for MST) but a relatively low recall (around 87% on CROHME 2014
test set). For KNN graph, the larger K is, the higher the recall is and the lower the precision is. When
K = 6, the recall reach 99.4% and the precision is 28.3% (CROHME 2014 test set, CPP distance is used).
The recall and the precision of DT graph are 97.3% and 39.1% respectively (CROHME 2014 test set, AC
distance is used). In LOS graph model, the bounding box center is taken as eye of a stroke. Each stroke
si has an Unblocked Angle Range (UAR) which is initialized as [0, 2π]. For any other stroke sj , the Block
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Angle Range (BAR) of the convex hull is calculated. If the Visibility Angle Range (VAR) = overlap of BAR
and UAR is nonzero, si could see sj . Then UAR is updated with UAR - VAR. The model called LOS CH
symmetric (CH: the convex hull is used to compute the block angle range of each stroke; symmetric: for a
edge from si to sj , there would be the reverse edge from sj to si) has a recall 99.9% of and a precision of
29.7% (CROHME 2014 test set, CPP distance is used). In fact, each graph model has its strong points and
also limitations. Hu choose LOS CH symmetric as the graph representation in his work as a high recall and
a reasonable precision is required.

Based on the previous works and our own work in Chapter 4, we develop a new graph representation
model which is a directed graph built using both the temporal and spatial information of strokes.

5.2 The framework
In this section, we introduce the global framework (Figure 5.4) of the proposed solution of this chapter

to provide the readers an intuitive look at the detailed implementation is proposed next. As depicted in
Figure 5.4, the input to the recognition system is an handwritten expression which is a sequence of strokes;
the output is the stroke label graph which consists of the information about the label of each stroke and the
relationships between stroke pairs. As the first step, we derive an intermediate graph from the raw input

Input

Output

an intermedi-
ate graph G merge labeled paths

select several 1-D
paths from graph G

label each path
with BLSTM

Figure 5.4 – Illustration of the proposal that uses BLSTM to interpret 2-D handwritten ME.

considering both the temporal and spatial information. In this graph, each node is a stroke and edges are
added according to temporal or spatial properties. The derived graph is expected to have a high recall and a
reasonable precision compared to the ground truth SLG. The remaining work is to label each node and each
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edge of the graph. To this end, several 1-D paths will be selected from the graph since the classifier model
we are considering is a sequence labeler. The classical BLSTM-RNN model are able to deal with only
sequential structure data. Next, we use the BLSTM classifier to label the selected 1-D paths. This stage
consists of two steps, being the training and recognition process. Finally, we merge these labeled paths to
build a complete stroke label graph with a strategy of setting different weights for them.

5.3 Detailed implementation

As explained in last section, the input data is available as a sequence of strokes S = (s0, ..., sn−1)
(for i < j, we assume si has been entered before sj) from which we would like to obtain the final SLG
graph describing unambiguously the ME. In this part, we will introduce the recognition system step by step
following the order within the framework.

5.3.1 Derivation of an intermediate graph G

In a first step, we will derive an intermediate graph G, where each node is a stroke and edges are added
according to temporal or spatial properties. Based on the previous works on graph reprensentation that we
reviewed in Section 5.1, we develop a new directed graph representation model. Some definitions regarding
to the spatial relationships between strokes will be provided first.

Definition 5.1. The distance between two strokes si and sj can be defined as the Euclidean distance between
their closest points.

dist(si, sj) = min
p∈si,q∈sj

√
(xp − xq)2 + (yp − yq)2 (5.1)

It is the CPP distance mentioned in Section 5.1 as a matter of fact.

Definition 5.2. A stroke si is considered visible from stroke sj if the bounding box of the straight line
between their closest points does not cross the bounding box of any other stroke sk.

For example in Figure 5.5, s1 and s3 can see each other because the bounding box of the straignt line
between their closest points does not cross the bounding box of stroke s2 and s4. In [Muñoz, 2015] the
visibility is defined by the straight line between their closest points does not cross any other stroke. We
simplify it through replacing the stroke with its bounding box to reduce computation.

Figure 5.5 – Illustration of visibility between a pair of strokes. s1 and s3 are visible to each other.

Definition 5.3. For each stroke si, we define 5 regions (R1, R2, R3, R4, R5 shown in Figure 5.6). The
center of the bounding box is taken as the reference point.
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R1

R2
R3

R4
R5

(0,0)

Figure 5.6 – Five directions for a stroke si. Point (0, 0) is the center of bounding box of si. The angle of
each region is π

4
.

As illustrated in Figure 5.6, point (0, 0) is the center of the bounding box of stroke si. The angle of each
region is π

4
. If the center of bounding box of sj is in one of these five regions, for exampleR1 region, we can

say sj is in the R1 direction of si. The purpose of defining these 5 regions is to look for the Above, Below,
Sup, Sub and Right relationships between strokes in these 5 preferred directions, but not to recognize
them.

Definition 5.4. Let G be a directed graph in which each node corresponds to a stroke and edges are added
according to the following criteria in succession.

We defined for each stroke si ( i from 0 to n− 2):

• the set of crossing strokes Scro(i) = {scro1, scro2, ...} from {si+1, ..., sn−1}.

• the set of closest stroke Sclo(i) = {sclo} from {si+1, ..., sn−1} − Scro(i).

For stroke si ( i from 0 to n− 1):

• the set Svis(i) of the visible closest strokes in each of the five directions respectively from S -
{si}

⋃
Scro(i)

⋃
Sclo(i). Here, the closeness of two strokes is decided by the distance between the

centers of their bounding boxes, differently from Definition 5.1.
Edges from si to the Scro(i)

⋃
Sclo(i)

⋃
Svis(i) will be added to G. Finally, we check if the edge from si

to si+1 (i from 0 to n − 2) exists in G. If not, then add this edge to G to ensure that the path covering the
sequence of strokes in the time order is included in G.

An example is presented in Figure 5.7. Mathematical expression d
dx
ax is written with 8 strokes (Figure

5.7a). From the sequence of 8 strokes, the graph shown in Figure 5.7b is generated with the above mentioned
method. Comparing the built graph with the ground truth (Figure 5.7c), we can see the difference in Figure
5.7d. All the ground truth edges are included in the generated graph except edges (blue ones in Figure 5.7d)
from strokes 4 to 3 and from strokes 7 to 6. This flaw can be overcome as long as strokes 3 and 4 and the
edge from strokes 3 to 4 are correctly recognized. Because if strokes 3 and 4 are recognized as belonging
to the same symbol, the edge from strokes 4 to 3 can be completed automatically, as well as the edge from
strokes 7 to 6. In addition, Figure 5.7d indicates the unnecessary edges (red edges) when matching the built
graph to the ground truth. It is expected that the graph built could include the ground truth edges as many
as possible, simultaneously contains the unnecessary edges as few as possible.

5.3.2 Graph evaluation
Hu evaluates the graph representation model by comparing the edges of the graph with ground truth

edges at the stroke level[Hu, 2016]. The recall and precision rates are considered. In this section, we take a
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Figure 5.7 – (a) d
dx
ax is written with 8 strokes; (b) the SLG built from raw input using the proposed method;

(c) the SLG from ground truth; (d) illustration of the difference between the built graph and the ground
truth graph, red edges denote the unnecessary edges and blue edges refer to the missed ones compared to
the ground truth.
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similar but more directive method, the same solution as introduced in Section 4.3.2. Specifically, provided
the ground truth labels of the nodes and edges in the graph, we would like to see evaluation results at symbol
and expression levels.

We reintroduce the evaluation criteria here as a kind reminder to readers: symbol segmentation (‘Seg-
ments’), refers to a symbol that is correctly segmented whatever the label; symbol segmentation and recog-
nition (‘Seg+Class’), refers to a symbol that is segmented and classified correctly; spatial relationship clas-
sification (‘Tree Rels.’), a correct spatial relationship between two symbols requires that both symbols are
correctly segmented and with the right relationship label.

Table 5.1 and Table 5.2 present the evaluation results of the graph construction on CROHME 2014
test set (provided the ground truth labels) at the symbol and expression level respectively. We re-show the
evaluate results, already given in Tables 4.1 and 4.2, of time graph as a reference to the new graph. Due to
the delayed strokes, time graph miss a small part of segmentation edges. Thus around 0.27% symbols are
wrongly segmented. The new graph achieves 100% recall rate and 99.99% precision rate on segmentation
task (0.01% error is resulted from a small error in data set, not the model itself). These figures evidence
that the new model could handle the case of delayed strokes. With regards to relationship recognition task,
time graph model misses about 25% relationships. The new graph catches 93.48% relationships. Compared
to time graph, there is a great improvement in relationship representation. However, owing to the missed
6.52% relationships, only 67.65% expressions are correctly recognized as presented in Table 5.2. These
values will be upper bounds for the recognition system based on this graph model.

Table 5.1 – The symbol level evaluation results on CROHME 2014 test set (provided the ground truth labels
of the nodes and edges of the built graph).

Model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

time graph 99.73 99.45 99.72 99.44 75.54 99.27
new graph 100.00 99.99 99.99 99.98 93.48 99.95

Table 5.2 – The expression level evaluation results on CROHME 2014 test set (provided the ground truth
labels of the nodes and edges of the built graph).

Model correct (%) <= 1 error <= 2 errors <= 3 errors
time graph 34.11 40.94 50.51 58.25
new graph 67.65 76.70 85.76 90.74

5.3.3 Select paths from G

The final aim of our work is to build the SLG of 2-D expression. The proposed solution is carried out
with merging several 1-D paths from G. These paths are expected to cover all the nodes and as many as the
edges of the ground truth SLG (at least the edges of the ground truth SRT). With the correctly recognized
node and edge labels, we have the possibility to build a correct 2-D expression. Obviously, a single 1D path
is not able to cover all these nodes and edges, except in some simple expressions. We have explained this
point in detail in Chapter 4. This section will explain how we generate several paths from the graph, enough
different to cover the SRT, and then how to merge the different decisions in a final graph.

A path in G can be defined as Φi = (n0, n1, n2, ..., ne), where n0 is the starting node and ne is the end
node. The node set of Φi is n(Φi) = {n0, n1, n2, ..., ne} and the edge set of Φi is e(Φi) = {n0 → n1, n1 →
n2, ..., ne−1 → ne}.

Two types of paths are selected in this chapter: time path and random path. time path starts from the
first input stroke and ends with the last input stroke following the time order. For example, in Figure 5.7d,
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the time path is (0, 1, 2, 3, 4, 5, 6, 7). Then, we consider several additional random paths. To ensure a good
coverage of the graph we guide the random selection choosing the less visited nodes and edges (give higher
priority to less visited ones). The algorithm of selecting random path is as follows:

(1) Initialize Tn = 0, Te = 0. Tn records the number of times that node n has been chosen as starting
node, Te records the number of times of that edge e has been used in chosen paths;

(2) Update Tn = Tn + 1 , Te = Te + 1 of all the nodes and edges in time path;

(3) Randomly choose one node N from the nodes having the minimum Tn, update TN = TN + 1;

(4) Find all the edges connected to N , randomly choose one from the edges having the minimum Te,
denoted as E, update TE = TE + 1; if no edge found, finish.

(5) Reset N as the to node of E, go back to step 4.

One random path could be like (1, 5, 6, 7).

5.3.4 Training process
Each path, time or random, is handled independently during the training process as a training sample.

In Chapter 4, we introduced the technique related to training a time path, such as how to feed BLSTM
inputs (Section 4.2.1), extracting features(Section 4.2.2) and local CTC training method (Section 4.2.3); the
same training process is kept for random paths in this chapter.

Totally, we have 3 types of BLSTM classifiers trained with respectively only time path, only random
paths and time + random paths. More related contents could be found in the experimental section of this
chapter.

5.3.5 Recognition
Since we use local CTC technique in the training process in this work, naturally the recognition stage

should be performed on stroke (strokeD and strokeU ) level. As explained previously, to build the SLG,
we also need to assign one single label to each stroke. Considering these two causes, a pooling strategy is
required to go from the point level to the stroke level since for each point or time step, the network outputs
the probabilities of this point belonging to different classes. We proposed two kinds of decoding methods
based on stroke level (maximum decoding, local CTC decoding) and tested the effects of them in Chapter
4. According to the evaluation results, maximum decoding is a better choice for its low computation and
same level effectiveness as local CTC decoding.

With the Equation 4.16, we can compute P s
c , the cumulative probability of outputting the cth label for

stroke s. Then we sort the normalized P s
c and only keep the top n probable labels (excluding blank) with

the accumulative probability ≥ 0.8. Note that n is maximum 3 even though the accumulative probability of
top 3 labels is not up to 0.8.

5.3.6 Merge paths
Each stroke belongs to at least one path, but possibly to several paths. Hence, several recognition results

can be available for a single stroke. At this stage, we propose to compute the probability Ps(l) to assign the
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label l to the stroke s by summing all path Φi with the formula:

Ps(l) =

∑
Φi
WΦi
∗ P (Φi,s)

l 1A(s)1label(Φi,s)(l)∑
Φi
WΦi

1A(s)
(5.2)

A = n(Φi) ∪ e(Φi) (5.3)

1M(m) =

{
1 if m ∈M
0 otherwise

(5.4)

WΦi
is the weight set for path Φi and label(Φi, s) is the set of candidate labels for stroke s from path Φi,

1 ≤ |label(s,Φi)| ≤ 3. If stroke s exists in path Φi, but l /∈ label(s,Φi), in this case, P (Φi,s)
l is 0. The

classifier answers that there is no possibility to output label l for stroke s from path Φi. We still add WΦi

into the normalized factor of Ps(l). If stroke s does not exist in path Φi, the classifier’s answer to stroke
s is unknown. And we should not take into account this path Φi. Thus, WΦi

will not be added into the
normalized factor of Ps(l). After normalization, the label with the maximum probability is selected for
each stroke.

As shown in Figure 5.8, we consider merging 3 paths Φ1,Φ2,Φ3. Stroke s only belongs to path Φ1,Φ2.
In path Φ1, the candidate labels for stroke s are a, b, c while in path Φ2, the candidate labels are b, c, d. The

Figure 5.8 – Illustration of the strategy for merge.

probability of assigning a to stroke s is computed as:

Ps(a) =
WΦ1 ∗ PΦ1,s

a +WΦ2 ∗ 0 +WΦ3 ∗ 0

WΦ1 +WΦ2 +WΦ3 ∗ 0
(5.5)

Stroke s is not covered by path Φ3, thus WΦ3 will not be added into the normalized factor. The probability
of outputting label a for stroke s in path Φ2 is 0. Furthermore, the probability of assigning b to stroke s is
computed as:

Ps(b) =
WΦ1 ∗ P

Φ1,s
b +WΦ2 ∗ P

Φ2,s
b +WΦ3 ∗ 0

WΦ1 +WΦ2 +WΦ3 ∗ 0
(5.6)

In conclusion, we combine the recognition results from different paths (while in Chapter 4, only one path
is used), and then select for each node or edge the most probable label. Afterwards, an additional process
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will be carried out in order to build a valid LG, i.e. adding edges, in the same way as what have done
in Chapter 4. We first look for the segments (symbols) using connected component analysis: a connected
component where nodes and edges have the same label is a symbol. With regards to the relationship
between two symbols, we choose the label having the maximum accumulative probability among the edges
between two symbols. Then, according to the rule that all strokes in a symbol have the same input and
output edges and that double-direction edges represent the segments, some missing edges can be completed
automatically.

5.4 Experiments
In the CROHME 2014 data set, there are 8834 expressions for training and 982 expressions for test.

Likewise, we divide 8834 expressions for training (90%) and validation (10%); use CROHME 2014 test set
for test. Based on the RNNLIB library 1, the recognition system is developed by merging multiple paths.
For each training process, the network having the best CTC error on validation data set is saved. Then, we
evaluate this network on the test data set. The Label Graph Evaluation library (LgEval) [Mouchère et al.,
2014] is used to analyze the recognition output. The specific configuration for network architecture is the
same as the one we set in Section 4.3. This configuration has obtained good results in both handwritten text
recognition [Graves et al., 2009] and handwritten math symbol classification [Álvaro et al., 2013, 2014a].

The size of the input layer is 5 (5 local features, as same as Chapter 4) while the output layer size in
this experiment is 109 (101 symbol classes + 6 relationships + NoRelation + blank). For each expression,
we extract the time path and 6 (or 10) random paths. Totally, 3 types of classifiers are trained: the first
one with only time path (denoted as CLST , actually it is the same classifier as in Chapter 4); the second
BLSTM network is trained with only 6 random paths (denoted as CLSR6, for 10 random paths we use
CLSR10 ); and the third classifier uses time + 6 random paths (denoted as CLST+R6). We train these 3
types of classifiers to see the effect of different training content on recognition result, also the impact of
the number of paths. We use these 4 different classifiers (CLST , CLSR6, CLSR10, CLST+R6) to label the
different types of paths extracted from the test set as presented in Table 5.3 (exp.1, uses CLST to label
time path; exp.2, uses CLST to label both time path and random paths; exp.3, uses CLST to label time
path and CLSR to label random paths; exp.4, uses CLST+R6 to label both time path and random paths;
exp.5, use CLST to label time path and CLSR10 to label random paths;). In exp.1, only the labeled time
path is used to build a 2-D expression, actually it is the same case carried out in Chapter 4. For exp.(2 3 4),
time path and 6 random paths are merged to construct a final graph. time path and 10 random paths are
contained in exp.5. The weight of time path is set to 0.4 and each random path is 0.1 2.

Table 5.3 – Illustration of the used classifiers in the different experiments depending of the type of path.
exp. Path Type

Time Random
1 CLST
2 CLST CLST
3 CLST CLSR6

4 CLST+R6 CLST+R6

5 CLST CLSR10

The evaluation results at symbol level are provided in Table 5.4 including recall (‘Rec.’) and precision
(‘Prec.’) rates for symbol segmentation (‘Segments’), symbol segmentation and recognition (‘Seg+Class’),

1. Graves A. RNNLIB: A recurrent neural network library for sequence learning problems.
http://sourceforge.net/projects/rnnl/.

2. The weights are manually optimized. We tested several different weight assignments, and then choose the best one among
them.
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spatial relationship classification (‘Tree Rels.’). A correct spatial relationship between two symbols requires
that both symbols are correctly segmented and with the right relationship label. As presented, the results
for ‘Segments’ and ‘Seg+Class’ do not show a big difference among exp.(1 2 3 4). It can be explained by
the fact that time path is enough to give good results and random paths contributes little. With regard to
‘Tree Rels.’, ‘Rec.’ of exp.(2 3 4) is improved compared to exp.1 because random paths catch some ground
truth edges which are missed in time path; but ‘Prec.’ rate declines which means that random paths also
cover some edges which are not in ground truth LG. Unfortunately, these extra edges are not labeled as
NoRelation. Among (1 2 3 4) experiments, exp.3 outperforms others for all the items. Thus, it is a better
strategy to use CLST for labeling time path and use CLSR for random path. Our results are comparable
to the results of CROHME 2014 because the same training and testing data sets are used. The second part
of Table 5.4 gives the symbol level evaluation results of the participants in CROHME 2014 sorting by the
recall rate for correct symbol segmentation. The best ‘Rec.’ of ‘Segments’ and ‘Seg+Class’ reported by
CROHME 2014 are 98.42% and 93.91% respectively. Ours are 92.77% and 85.17%, both ranked 3 out
of 8 systems (7 participants in CROHME 2014 ). Our solution presents competitive results on symbol
recognition task and segmentation task.

Table 5.5 shows the recognition rates at the global expression level with no error, and with at most one
to three errors in the labels of LG. The recognition rate with no error on CROHME 2014 test set is 13.02%
in exp.3. The best one and worst one reported by CROHME 2014 are 62.68% and 15.01%. With regard to
the recognition rate with ≤ 3 errors, 4 participants are between 27% and 37% and our result is 35.71%.

Table 5.4 – The symbol level evaluation results on CROHME 2014 test set, including the experiment results
in this work and CROHME 2014 participant results.

exp. Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

1 92.30 85.15 83.70 77.22 58.40 74.27
2 92.32 85.28 84.37 77.94 67.79 58.34
3 92.77 85.99 85.17 78.95 67.79 67.33
4 91.51 83.48 82.96 75.67 66.95 62.06
5 92.97 86.35 85.73 79.63 72.00 64.01

system CROHME 2014 participant results
III 98.42 98.13 93.91 93.63 94.26 94.01
I 93.31 90.72 86.59 84.18 84.23 81.96

VII 89.43 86.13 76.53 73.71 71.77 71.65
V 88.23 84.20 78.45 74.87 61.38 72.70
IV 85.52 86.09 76.64 77.15 70.78 71.51
VI 83.05 85.36 69.72 71.66 66.83 74.81
II 76.63 80.28 66.97 70.16 60.31 63.74

Among (1 2 3 4) experiments, exp.3 outperforms others for all the items. Compared to exp.1 where
only time path is considered, we see an increase on recall rate of ‘Tree Rels.’ but meanwhile a decrease on
precision rate of ‘Tree Rels.’ in exp.3. As only 6 random paths is used in it, we would like to see if more
random paths could bring any changes. We carry out another experiment, exp.5, where 10 random paths
is used to train classifier CLSR. The evaluation results on symbol level and expression level are provided
respectively in Table 5.4 and Table 5.5. As shown, when we consider more random paths, the recall rate
of ‘Tree Rels.’ keeps on increasing but precision rate of ‘Tree Rels.’ is decreasing. Thus, at the expression
level, the recognition rate remains the same level as the experiment with 6 random paths.

To illustrate these results, we reconsider the 2 test samples (a ≥ b and 44 − 4
4
) recognized with the

system of exp.3. In last chapter where we just use the single time path, a ≥ b was correctly recognized
and for 44− 4

4
, the Right relationship from the minus symbol to fraction bar was omitted in the modeling
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Table 5.5 – The expression level evaluation results on CROHME 2014 test set, including the experiment
results in this work and CROHME 2014 participant results

exp. correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
1 11.80 19.33 26.55 31.43
2 8.55 16.89 23.40 29.91
3 13.02 22.48 30.21 35.71
4 11.19 19.13 26.04 31.13
5 13.02 21.77 30.82 36.52

system CROHME 2014 participant results
III 62.68 72.31 75.15 76.88
I 37.22 44.22 47.26 50.20

VII 26.06 33.87 38.54 39.96
VI 25.66 33.16 35.90 37.32
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
II 15.01 22.31 26.57 27.69

stage, likewise the Above relationship from the fraction bar to the numerator 4. In addition, the relation
from the minus symbol to the numerator 4 was wrongly recognized as Right and it should be labeled as
NoRelation.

In this chapter, a ≥ b is recognized correctly also (Figure 5.9). We present the the derived graph in
Figure 5.9b. Then from the graph, we extract the time path and 6 random paths. In this example, all
the nodes and edges of Figure 5.9b are included in the extracted 7 paths. After merging the results of 7
paths with the Equation 5.2, we can get the labeled graph illustrated as Figure 5.9c. The edge from stroke
0 to 1 is wrongly labeled as Sup. Next, we carry out the post process stage. The segments (symbols) are
decided using connected component analysis: 3 symbols (a,≥, b) in this expression. With regards to the
relationship between a and ≥, we have 2 candidates Sup with the probability 0.604 and Right with the
probability 0.986. With the strategy of choosing the label having the maximum accumulative probability,
the relationship between a and ≥ is Right then. After post process, we construct a correct SLG provided
in Figure 5.9d.

The recognition result for 44− 4
4

is presented in Figure 5.10. From the handwritten expression (Figure
5.10a), we could derive a graph presented in (Figure 5.10b). Then, we extract paths from the graph, and
label them, finally merge the labeled paths to built a labeled graph. Figure 5.10c provides the built SLG
from which we can see several extraneous edges appear owing to multiple paths and in this sample they are
all recognized correctly as NoRelation. We remove these NoRelation edges to have a intuitive judgment
on the recognition result (Figure 5.10d).As can be seen, the Right relationship from the minus symbol to
fraction bar is missed. This error comes from the graph representation stage where we find no edge from
stroke 2 to 4. Both stroke 3 and 4 are located in R1 region of stroke 2, but stroke 3 is closer to stroke 2 than
stroke 4. Thus, we miss the edge from stroke 2 to 4 at the graph representation stage, and naturally miss the
Right relationship from the minus symbol to fraction bar in the built SLG. This error can be overcome by
searching for a better graph model or some post process strategies regarding to the connected SLG.

As discussed above, our solution presents competitive results on symbol recognition task and segmen-
tation task, but not on relationship detection and recognition task. Compared to the work of Chapter 4, the
solution in this chapter presents improvements on recall rate of ‘Tree Rels.’ but at the same time decreases
on precision rate of ‘Tree Rels.’ Thus, at the expression level, the recognition rate remains the same level
as the solution with single path. One of the intrinsic causes is that even though several paths from one
expression is considered in this system, the BLSTM model processes each path separately which means
the model only could access the contextual information in one path during training and recognition stages.
Obviously it conflicts with the real case that human beings recognize the raw input using the entire contex-
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Figure 5.9 – (a) a ≥ b written with four strokes; (b) the derived graph from the raw input; (c) the labeled
graph (provided the label and the related probability) with merging 7 paths; (d) the built SLG after post
process, all labels are correct.



5.4. EXPERIMENTS 91

(a)

s0 s1 s2 s4

s3

s5

(b)

(c)

(d)

Figure 5.10 – (a) 44− 4
4

written with six strokes; (b) the derived graph; (c) the built SLG by merging several
paths; (d) the built SLG with NoRelation edges removed.
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tual information. In the coming chapter, we will search for a model which could take into account more
contextual knowledge at one time instead of just the content limited in one single path.

5.5 Discussion
We recognize 2-D handwritten mathematical expressions by merging multiple 1-D labeled paths in

this chapter. Given an expression, we propose an algorithm to generate an intermediate graph using both
temporal and spatial information between strokes. Next from the derived graph, different types of paths are
selected and later labeled with the strong sequence labeler—BLSTM. Finally, we merge these labeled paths
to build a 2-D math expression. The proposal presents competitive results on symbol recognition task and
segmentation task, promising results on relationship recognition task. Compared to the work of Chapter
4, the solution in this chapter presents improvements on recall rate of ‘Tree Rels.’ but at the same time
decreases on precision rate of ‘Tree Rels.’ Thus, at the expression level, the recognition rate remains the
same level as the solution with single path.

Currently, even though several paths from one expression is considered in this system, in essential the
BLSTM model deals with each path isolatedly. The classical BLSTM model could access information from
past and future in a long range but the information outside the single sequence is of course not accessible to
it. In fact, it conflicts with the real case that human beings recognize the raw input using the entire contextual
information. As shown in our experiments, it is laborious to solve a 2-D problem with a chain-structured
model. Thus, we would like to develop a tree-structured neural network model which could handle directly
the structure not limited to a chain. With the new neural network model, we could take into account more
contextual information in a tree instead of a single 1D path.



6
Mathematical expression recognition by
merging multiple trees

In Chapter 5, we concluded that it is hard to use the classical chain-structured BLSTM to solve the
problem of recognizing mathematical expression which is a tree structure. In this chapter, we extend the
chain-structured BLSTM to tree structure topology and apply this new network model for online math
expression recognition.

Firstly, we provide a short overview with regards to the Non-chain-structured LSTM. Then, we propose
in Section 6.2 a new neural network model named tree-based BLSTM which seems to be appropriate for
this recognition problem. Section 6.3 globally introduces the framework of mathematical expression recog-
nition system based on tree-based BLSTM. Hereafter, we focus on the specific techniques involved in this
system in Section 6.4. Finally, experiments and discussion parts are covered in Section 6.5 and Section 6.7
respectively.

6.1 Overview: Non-chain-structured LSTM
A limitation of the classical LSTM network topology is that they only allow for sequential information

propagation (as shown in Figure 6.1a) since the cell contains a single recurrent connection (modulated by
a single forget gate) to its own previous value. Recently, research on LSTM has been beyond sequential
structure. The one-dimensional LSTM was extended to n dimensions by using n recurrent connections (one
for each of the cell’s previous states along every dimension) with n forget gates such that the new model
could take into account the context from n sources. It is named Multidimensional LSTM (MDLSTM)
dedicated to the graph structure of an n-dimensional grid such as images [Graves et al., 2012]. MDLSTM
model exhibits great performances on offline handwriting recognition tasks where the input is an image
[Graves and Schmidhuber, 2009, Messina and Louradour, 2015, Bluche et al., 2016, Maalej and Kherallah,
2016, Maalej et al., 2016].

In [Tai et al., 2015], the basic LSTM architecture was extend to tree structures for improving semantic
representations. Two extensions, the Child-sum Tree-LSTM and the N-ary Tree-LSTM, were proposed
to allow for richer network topology where each unit is able to incorporate information from multiple
child units (Figure 6.1b). Since the Child-sum Tree-LSTM unit conditions its components on the sum of
child hidden states, it is well-suited for trees with high branching factor or whose children are unordered.
The N-ary Tree-LSTM can be used on tree structures where the branching factor is at most N and where
children are ordered. In parallel to the work in [Tai et al., 2015], [Zhu et al., 2015] explored the similar idea

93



94CHAPTER 6. MATHEMATICAL EXPRESSION RECOGNITION BY MERGING MULTIPLE TREES

(a)

(b)

Figure 6.1 – (a) A chain-structured LSTM network; (b) A tree-structured LSTM network with arbitrary
branching factor. Extracted from [Tai et al., 2015].

and proposed S-LSTM model which provides a principled way of considering long-distance interaction
over hierarchies, e.g., language or image parse structures. Furthermore, the DAG-structured LSTM was
proposed for semantic compositionality in [Zhu et al., 2016], possessing the ability to incorporate external
semantics including non-compositional or holistically learned semantics.

6.2 The proposed Tree-based BLSTM
This section will be focused on Tree-based BLSTM. Different with the tree structures depicted in [Tai

et al., 2015, Zhu et al., 2015], we devote it to the kind of structures presented in Figure 6.2 where most nodes
have only one next node. In fact, this kind of structure could be regarded as several chains with shared or
overlapped segments. Traditional BLSTM process a sequence both from left to right and from right to left
in order to access information coming from two directions. In our case, the tree will be processed from root
to leaves and from leaves to root in order to visit all the surround context.

Mul-next

root

leaf

leaf

leaf

leaf

Figure 6.2 – A tree based structure for chains (from root to leaves).

From root to leaves. There are 2 special nodes (red) having more than one next node in Figure 6.2.
We name them Mul-next node. The hidden states of Mul-next node will be propagated to its next nodes
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equally. The forward propagation of a Mul-next node is the same as for a chain LSTM node; with regard
to the error propagation, the errors coming from all the next nodes will be summed up and propagated to
Mul-next node.

Mul-previous

root

leaf

leaf

leaf

leaf

Figure 6.3 – A tree based structure for chains (from leaves to root).

From leaves to root. Suppose all the arrows in Figure 6.2 are reversed, we have the new structure which
is actually beyond a tree in Figure 6.3. The 2 red nodes are still special cases because they have more than
one previous node. We call them Mul-previous nodes. The information from all the previous nodes will be
summed up and propagated to the Mul-previous node; the error propagation is processed like for a typical
LSTM node.

We give the specific formulas below regarding to the forward propagation of Mul-previous node and
the error back-propagation of Mul-next node. The same notations as in Chapter 3 and [Graves et al., 2012]
are used here. The network input to unit i at node n is denoted ani and the activation of unit i at node n is
bni . wij is the weight of the connection from unit i to unit j. Considering a network with I input units, K
output units and H hidden units, let the subscripts ς , φ, ω referring to the input, forget and output gate. The
subscript c refers to one of the C cells. Thus, the peep-hole weights from cell c to the input, forget, output
gates can be denoted as wcς , wcφ, wcω. snc is the state of cell c at node n. f is the activation function of the
gates, and g and h are respectively the cell input and output activation functions. L is the loss function used
for training.

We only give the equations for a single memory block. For multiple blocks the calculations are simply
repeated for each block. Let Pr(n) denote the set of previous nodes of node n and Ne(n) denote the set of
next nodes. We highlight the different parts with box compared to the classical LSTM formulas which have
been recalled in Chapter 3.

The forward propagation of Mul-previous node

Input gates

anς =
I∑
i=1

wiςx
n
i +

H∑
h=1

whς

|Pr(n)|∑
p=1

bph +
C∑
c=1

wcς

|Pr(n)|∑
p=1

spc (6.1)

bnς = f(anς ) (6.2)

Forget gates

anφ =

I∑
i=1

wiφx
n
i +

H∑
h=1

whφ

|Pr(n)|∑
p=1

bph +

C∑
c=1

wcφ

|Pr(n)|∑
p=1

spc (6.3)

bnφ = f(anφ) (6.4)
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Cells

anc =
I∑
i=1

wicx
n
i +

H∑
h=1

whc

|Pr(n)|∑
p=1

bph (6.5)

snc = bnφ

|Pr(n)|∑
p=1

spc + bnς g(a
n
c ) (6.6)

Output gates

anω =
I∑
i=1

wiωx
n
i +

H∑
h=1

whω

|Pr(n)|∑
p=1

bph +
C∑
c=1

wcωs
n
c (6.7)

bnω = f(anω) (6.8)

Cell Outputs
bnc = bnωh(s

n
c ) (6.9)

The error back-propagation of Mul-next node

We define
εnc =

∂L

∂bnc
εns =

∂L

∂snc
δni =

∂L

∂ani
(6.10)

Then

εnc =
K∑
k=1

wckδ
n
k +

G∑
g=1

wcg

|Ne(n)|∑
e

δeg (6.11)

Output gates

δnw = f ′(anw)
C∑
c=1

h(snc )ε
n
c (6.12)

States

εns = bnwh
′(snc )ε

n
c +

|Ne(n)|∑
e=1

beφ

|Ne(n)|∑
e=1

εes

+wcς

|Ne(n)|∑
e=1

δeς + wcφ

|Ne(n)|∑
e=1

δeφ + wcωδ
n
ω

(6.13)

Cells
δnc = bnς g

′(anc )ε
n
s (6.14)

Forget gates

δnφ = f ′(anφ)

C∑
c=1

|Pr(n)|∑
p=1

spcε
n
s (6.15)

Input gates

δnς = f ′(anς )

C∑
c=1

g(anc )ε
n
s (6.16)
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6.3 The framework
We would apply the proposed tree-based BLSTM model for online mathematical expression recogni-

tion. This section provides a general view of the recognition system (Figure 6.4). Similar to the framework
proposed in Chapter 5, we first drive an intermediate graph from the raw input. Then, instead of 1-D paths,
we consider from the graph deriving trees which will be labeled by tree-based BLSTM model as a next
step. In the end, these labeled trees will be merged to build a stroke label graph.

Input

Output

an intermedi-
ate graph G merge labeled trees

derive trees
from graph G

label trees with
tree-based BLSTM

Figure 6.4 – Illustration of the proposal that uses BLSTM to interpret 2-D handwritten ME.

6.4 Tree-based BLSTM for online mathematical expression recogni-
tion

In this section, each step illustrated in Figure 6.4 will be elaborated in the text. The input data is available
as a sequence of strokes S from which we would like to obtain the final LG graph describing unambiguously
the ME. Let S = (s0, ..., sn−1), where we assume si has been written before sj for i < j.

6.4.1 Derivation of an intermediate graph G
In a first step, we will derive an intermediate graph G where each node is a stroke and edges are

added according to temporal or spatial relationships between strokes. In fact, we already introduced a
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graph representation model and evaluated it in Chapter 5. The evaluation results showed that around 6.5%
relationships are missed compared to the ground truth graph. In this Section, we are aiming to improve the
graph model to reduce the quantity of missed relationships. Similarly, we provide several definitions related
to the graph building first.

Definition 6.1. A stroke si is considered visible from stroke sj if the straight line between between their
closest points does not cross any other stroke sk.

For example, s1 and s3 can see each other because the straignt line between their closest points does not
cross stroke s2 or s4 as shown in Figure 6.5. This definition is the same as the one used in [Muñoz, 2015].
Compared to Definition 5.2 where we replaced the stroke with its bounding box to reduce computation, the
current one is more accurate.

Figure 6.5 – Illustration of visibility between a pair of strokes. s1 and s3 are visible to each other.

Definition 6.2. For each stroke si, we define 5 regions (R1, R2, R3, R4, R5 shown in Figure 6.6) of it. The
center of the bounding box of stroke si is taken as the reference point (0, 0).

R1

R2
R3

R4
R5

(0,0)

Figure 6.6 – Five regions for a stroke si. Point (0, 0) is the center of bounding box of si. The angle range
of R1 region is [−π

8
, π

8
]; R2 : [π

8
, 3∗π

8
]; R3 : [3∗π

8
, 7∗π

8
]; R4 : [−7∗π

8
,−3∗π

8
]; R5 : [−3∗π

8
,−π

8
].

The purpose of defining these 5 regions is to look for the Right, Supscript, Above, Below and
Subscript relationships between strokes. If the center of bounding box of sj is located in one of five
regions of stroke si, for example R1 region, we say sj is in the R1 direction of si. In Definition 5.3, the
angle of each region is π

4
. Here, a wider searching range is defined for both R3 and R4 regions. That

is because in some expressions like a+b+c
d+e+f

, a larger searching range means more possibilities to catch the
Above relationship from ’−’ to ’a’ and the Below relationship from ’−’ to ’d’.

Definition 6.3. Let G be a directed graph in which each node corresponds to a stroke and edges are added
according to the following criteria in succession.

We defined for each stroke si (i from 0 to n-2):
• the set of crossing future strokes Scro(i) = {scro1, scro2, ...} from {si+1, ..., sn−1}.

For stroke si (i from 0 to n-1):
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• the set Svis(i) of the visible leftmost (considering the center of bounding box only) strokes in five
directions respectively.

Edges from si to the Scro(i)
⋃
Svis(i)will be added to G. Then, we check if the edge from si to si+1 (

i from 0 to n-2) exists in G. If not, this edge is added to G to ensure that the path covering the sequence
of strokes in the time order is included in G. Each edge is tagged depending on the specific criterion we
used to find it before. Consequently, we have at most 7 types of edges (Crossing,R1, R2, R3, R4, R5 and
Time) in the graph. For those edges from si to the Scro(i) ∩ Svis(i), the type Crossing is assigned.

Figure 6.7 illustrates the process of deriving graph from raw input step by step using the example of
f
a

= b
f

. First according to 10 strokes in the raw input (Figure 6.7a), we create 10 nodes, one for each stroke
(Figure 6.7b); for each stroke, look for its crossing stroke or strokes and add the corresponding edges

(a)

s0 s1

s2

s3

s4

s5

s6

s7

s8 s9
(b)

s0 s1

s2

s3

s4

s5

s6

s7

s8 s9

C

C

(c)

Figure 6.7 – (a) f
a

= b
f

is written with 10 strokes; (b) create nodes; (c) add Crossing edges. C : Crossing.



100CHAPTER 6. MATHEMATICAL EXPRESSION RECOGNITION BY MERGING MULTIPLE TREES

s0 s1

s2

s3

s4

s5

s6

s7

s8 s9

C

C

R1
R4

R1R3

R5

R2
R1R3

R1

R2
R5

R1R4

R2

R3 R1

R4

R2

R4 R3

R4

R3R3

(d)

s0 s1

s2

s3

s4

s5

s6

s7

s8 s9

C

C

R1
R4

R1R3

R5

R2
R1R3

R1

R2
R5

R1R4

R2

R3 R1

R4

R2

R4 R3

R4

R3R3

T T

T

(e)

Figure 6.7 – (d) add R1, R2, R3, R4, R5 edges; (e) add Time edges. C : Crossing, T : Time.
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labeled with Crossing between nodes (Figure 6.7c); proceeding to next step, for each stroke, look for its
the visible rightmost strokes in five directions respectively and add the corresponding edges labeled as one
of R1, R2, R3, R4, R5 between nodes if the edges do not exist in the graph (Figure 6.7d); finally, check if
the edge from si to si+1 ( i from 0 to n − 2) exists in G and if not, add this edge to G labeled as Time to
ensure that the path covering the sequence of strokes in the time order is included in G (Figure 6.7e).

6.4.2 Graph evaluation
With the same method adopted in Section 6.4.2 and 4.3.2, we evaluate the new proposed graph rep-

resentation model. Specifically, provided the ground truth labels of the nodes and edges in the graph, we
would like to see evaluation results at symbol and expression levels. We reintroduce the evaluation criteria
repeatably here as a kind reminder to readers: symbol segmentation (‘Segments’), refers to a symbol that
is correctly segmented whatever the label; symbol segmentation and recognition (‘Seg+Class’), refers to a
symbol that is segmented and classified correctly; spatial relationship classification (‘Tree Rels.’), a correct
spatial relationship between two symbols requires that both symbols are correctly segmented and with the
right relationship label.

Table 6.1 and Table 6.2 present the evaluation results on CROHME 2014 test set (provided the ground
truth labels) at the symbol and expression level respectively. We re-show the evaluate results of time graph
and the proposed graph in Chapter 5 as a reference to the new graph. Compared to the graph model proposed
in Chapter 5, the new graph model stays at the same level with regards to the recall rate and precision rate
on symbol segmentation and recognition task. When it comes to relationship classification task, the new
graph presents a small improvement, about 0.5%. The new graph catch 93.99% relationships. Owing to the
missed 6.00% relationships, around 30% expressions are not correctly recognized as presented in Table 6.2.

Table 6.1 – The symbol level evaluation results on CROHME 2014 test set (provided the ground truth
labels).

Model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

time graph 99.73 99.45 99.72 99.44 75.54 99.27
graph (Chapter 5) 100.00 99.99 99.99 99.98 93.48 99.95

new graph 99.97 99.93 99.96 99.92 93.99 99.86

Table 6.2 – The expression level evaluation results on CROHME 2014 test set (provided the ground truth
labels).

Model correct (%) <= 1 error <= 2 errors <= 3 errors
time graph 34.11 40.94 50.51 58.25

graph (Chapter 5) 67.65 76.70 85.76 90.74
new graph 69.89 77.21 85.96 90.54

6.4.3 Derivation of trees from G

Heretofore, we derive a graph from the raw input considering the the temporal and spatial information.
Figure 6.8 illustrates the ME f

a
= b

f
written with 10 strokes and the derived graph G. We would like to

label nodes and edges of G correctly in order to build a SLG finally. The solution proposed in this chapter
is to derive trees from G, then recognize the trees using the tree-based BLSTM model.

There exists different strategies to derive trees from G. In any of the cases, a start node should be
selected first. We take the leftmost (considering the leftmost point in a stroke) stroke as the starter. For the
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(a)

s0 s1

s2

s3

s4

s5

s6

s7

s8 s9

C

C

R1
R4

R1R3

R5

R2
R1R3

R1

R2
R5

R1R4

R2

R3 R1

R4

R2

R4 R3

R4

R3R3

T T

T

(b)

Figure 6.8 – (a) f
a

= b
f

is written with 10 strokes; (b) the derived graph G, the red part is one of the possible
trees with s2 as the root. C : Crossing, T : Time.

example illustrated in Figure 6.8a, stroke s2 is the starter. From the starting node, we traverse the graph
with the Depth-First Search algorithm. Each node should be visited only once. When there are more than
one edge outputting from one node, the visiting order will follow (Crossing,R1, R3, R4, R2, R5, T ime).
With this strategy, a tree is derived to which we give the name Tree-Left-R1 which is dedicated to catch
R1 relationship. If the visiting order follow (Crossing,R2, R1, R3, R4, R5, T ime), another tree named
Tree-Left-R2 would be derived to focus more on R2 relationship. Likewise, tree Tree-Left-R3, Tree-Left-
R4, Tree-Left-R5 are derived respectively to emphasize R3, R4, R5 relationships. The Crossing edge
is always on the top of list, and it is because we assume that a pair of crossing strokes belong to a single
symbol. In Figure 6.8b, Tree-Left-R1 is depicted in red with the root in s2. Note that in this case, all
the nodes are accessible from the start node s2. However, as G is a directed graph, some nodes are not
reachable from one starter in some cases. Therefore, we consider deriving trees from different starters.

Besides the leftmost stroke, it is interesting to derive trees from the first input stroke s0 since sometimes
users start writing an expression from its root. Note that in some cases, the leftmost stroke and stroke
s0 could be the same one. We replace the left-most stroke with stroke s0 and keep the same strategy to
derive the trees. These new trees are named as Tree-0-R1, Tree-0-R2, Tree-0-R3, Tree-0-R4, Tree-0-R5
respectively.

Finally, if s0 is taken as the starting point and time order is considered first, a special tree is obtained
which we call Tree-Time. Tree-Time is proposed with the aim of having a good cover of segmentation edges
since users usually write a multi-stroke symbol continuously. As a matter of fact, it is a chain structure.
Tree-Time is defined by s0 → s1 → s2 → s3 . . . → s9 for the expression in Figure 6.8. Table 6.3 offers
an clear look at different types of the derived trees from the graph.
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Table 6.3 – The different types of the derived trees.
Type Root Traverse algorithm Visiting order

Tree-Left-R1 the leftmost stroke Depth-First Search (Crossing,R1, R3, R4, R2, R5, T ime)
Tree-Left-R2 the leftmost stroke Depth-First Search (Crossing,R2, R1, R3, R4, R5, T ime)
Tree-Left-R3 the leftmost stroke Depth-First Search (Crossing,R3, R1, R4, R2, R5, T ime)
Tree-Left-R4 the leftmost stroke Depth-First Search (Crossing,R4, R1, R3, R2, R5, T ime)
Tree-Left-R5 the leftmost stroke Depth-First Search (Crossing,R5, R1, R3, R4, R2, T ime)

Tree-0-R1 s0 Depth-First Search (Crossing,R1, R3, R4, R2, R5, T ime)
Tree-0-R2 s0 Depth-First Search (Crossing,R2, R1, R3, R4, R5, T ime)
Tree-0-R3 s0 Depth-First Search (Crossing,R3, R1, R4, R2, R5, T ime)
Tree-0-R4 s0 Depth-First Search (Crossing,R4, R1, R3, R2, R5, T ime)
Tree-0-R5 s0 Depth-First Search (Crossing,R5, R1, R3, R4, R2, T ime)
Tree-Time s0 Depth-First Search only the time order

6.4.4 Feed the inputs of the Tree-based BLSTM
In section 6.4.3, we derived trees from the intermediate graph. Nodes of the tree represent visible strokes

and edges denote the relationships between pairs of strokes. We would like to label each node and edge
correctly with the Tree-based BLSTM model, aiming to build a complete SLG finally. To realize this, the
first step is to feed the derived tree into the Tree-based BLSTM model.

The solution is to go from the previous trees defined at the stroke level down to a tree at the point
level, points being the raw information that are recorded along the pen trajectory in the online signal.
To be free of the interference of the different writing speed, an additional re-sampling process should be
carried out with a fixed spatial step. In the considered trees, nodes, which represent strokes, are re-sampled
with a fixed spatial step, and the same holds for edges by considering the straight lines in the air between
the last point and the first point of a pair of strokes that are connected in the tree. This is illustrated in
Figure 6.9, where the re-sampled points are displayed inside the nodes (on-paper points for node) and

Figure 6.9 – A re-sampled tree. The small arrows between points provide the directions of information
flows. With regard to the sequence of points inside one node or edge, most of small arrows are omitted.

above the edges (in-air points for edge). Since this tree will be processed by the BLSTM network, we need
for the training stage to assign it a corresponding ground-truth. We derive it from the SLG by using the
corresponding symbol label of the strokes (nodes) for the on-paper points and the corresponding symbol or
relationship label for the in-air points (edges) when this edge exists in the SLG. When an edge of the tree
does not exist in the SLG, the label NoRelation noted ’_’ will be used. In this way, an edge in the graph
which was originally denoted with a C, Ri (i = 1...5) or T relation will be assigned with one of the 7
labels: (Right, Above,Below, Inside, Superscript, Subscript, _) or a symbol label when the two strokes
are belonging to the same symbol. Totally, for the ground truth, we have 108 classes(101 symbol classes +
6 relationships + NoRelation).
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The number of re-sampling points depends on the size of expression. For each node or edge, we re-
sample with 10 × l/d points. Here, l refers to the length of a visible stroke or a straight line connecting
2 strokes and d refers to the average diagonal of the bounding boxes of all the strokes in an expression.
Subsequently, for every point p(x, y) we compute 5 features [sinθ, cosθ, sinφ, cosφ, PenUD] which are
already described in Section 4.2.2.

6.4.5 Training process
Figure 6.10 illustrates a tree-based BLSTM network with one hidden level. To provide a clear view, we

only draw the full network on a short sequence (red) instead of a whole tree. Globally, the data structure

Figure 6.10 – A tree-based BLSTM network with one hidden level. We only draw the full connection on
one short sequence (red) for a clear view.

we are dealing with is a tree; locally, it consists of several short sequences. For example, the tree presented
in Figure 6.10 has 6 short sequences one of which is highlighted with red color. The system processes each
node or edge (which is a short sequence in fact) separately but following the order with which the correct
propagation of activation or errors could be ensured.

The training process of a short sequence (the red one in Figure 6.10 for example) is similar to the
classical BLSTM model except that some outside information should be taken into account. In the classical
BLSTM case, the incoming activation or error of a short sequence is initialized as 0.

Forward pass. Here, when proceeding with the forward pass from the input layer to the output layer, for
the hidden layer (from root to leaves), we need to consider the coming information from the root direction
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and for the hidden layer (from leaves to root), we need to consider the coming information from the leaves
direction. Obviously, no matter which kind of order for processing sequence we are following, it is not
possible to have the information from both directions in one run. Thus another stage which we call pre-
computation is required. The pre-computation stage has two runs: (1) From the input layer to the hidden
layer (from root to leaves), we process the short sequence consisting of the root point first and then the next
sequences (Figure 6.11a). In this run, each sequence in the tree stores the activation from the root direction.
(2) From the input layer to the hidden layer (from leaves to root), we process the short sequences consisting
of the leaf point first and then the next sequences (Figure 6.11b). In this run, each sequence in the tree sums
and stores the activation from the leaf direction. After pre-computation stage, the information from both
directions are available to each sequence thus the forward pass from input to output is straightforward.

Error propagation. The backward pass of tree-based BLSTM network has 2 parallel propagation
paths: (1) one is from the output layer to hidden layer (from root to leaves), then to the input layer; (2) the
other one is from the output layer to hidden layer (from leaves to root), then to the input layer. As these 2
paths of propagation are independent, no pre-stage is needed here. For propagation (1), we process the short
sequences consisting of the leaf point first and then the next sequences. For propagation (2), we process
the short sequence consisting of the root point first and then the next sequences. Note that when there are
several hidden levels in the network, a pre-stage is required also for error propagation.

Loss function. It is known that BLSTM and CTC stage have better performance when a "blank" label
is introduced during the training [Bluche et al., 2015], so that decision can be made only at some point in
the input sequence. One of the characteristics of CTC is that it does not provide the alignment between
the input and output, just the overall sequence of labels. As we need to assign each stroke a label to build
a SLG, a relatively precise alignment between the input and output is preferred. A local CTC algorithm
was proposed in Chapter 4 aiming to limit the label into the corresponding stroke at the same time take the
advantage of "blank" label, and furthermore it was verified by experiments to outperform the frame wise
training method. We succeeded in realizing local CTC for a global sequence labeling task in Chapter 4. In
this chapter, we will use local CTC training method in a tree labeling task. With regards to local CTC, the
theory behind two types of tasks remain the same actually. The difference between them is: in Chapter 4, a
global sequence consisting of several strokes is a entity being processed; here, we treat each short sequence
(stroke) as a processing unit.

Inside each short sequence, or we can say each node or edge, a local CTC loss function is easy to be
computed from the output probabilities related to this short sequence. The total CTC loss function of a
tree is defined as the sum of all local CTC loss functions regarding to all the short sequences in this tree.
Since each short sequence has one label, the possible labels of the points in one short sequence are shown
in Figure 6.12. The equations provided in Section 4.2.3 are for a global sequence of one or more strokes. In
the remaining part of this section, the equations we present are related to a short sequence (a single stroke).

Given the tree input represented as X consisting of N short sequences, each short sequence could be
denoted as Xi, i = 1, ..., N with the ground truth label li and the length Ti. l′i represents the label sequence
with blanks added to the beginning and the end of li, i.e. l′i = (blank, li, blank) of length 3. The forward
variable αi(t, u) denotes the summed probability of all length t paths that are mapped by F onto the length
u/2 prefix of li, where u is from 1 to 3 and t is from 1 to Ti. Given the above notations, the probability of li
can be expressed as the sum of the forward variables with and without the final blank at point Ti.

p(li|Xi) = αi(Ti, 3) + αi(Ti, 2) (6.17)

αi(t, u) can be computed recursively as following:

αi(1, 1) = y1
blank (6.18)

αi(1, 2) = y1
li

(6.19)

αi(1, 3) = 0 (6.20)
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(a)

(b)

Figure 6.11 – Illustration for the pre-computation stage of tree-based BLSTM. (a) From the input layer to
the hidden layer (from root to leaves), (b) from the input layer to the hidden layer (from leaves to root).

Figure 6.12 – The possible labels of points in one short sequence.
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αi(t, u) = yt(l′i)u

u∑
j=u−1

αi(t− 1, j) (6.21)

Note that
αi(Ti, 1) = 0 (6.22)

αi(t, 0) = 0,∀t (6.23)

Figure 6.13 demonstrates the local CTC forward-backward algorithm limited in one stroke.

Figure 6.13 – CTC forward-backward algorithm in one stroke Xi. Black circle represents label liand white
circle represents blank. Arrows signify allowed transitions. Forward variables are updated in the direction
of the arrows, and backward variables are updated in the reverse direction. This figure is a local part (limited
in one stroke) of Figure 4.8.

Similarly, the backward variable βi(t, u) denotes the summed probabilities of all paths starting at t + 1
that complete li when appended to any path contributing to αi(t, u). The formulas for the initialization and
recursion of the backward variable are as follows:

βi(Ti, 3) = 1 (6.24)

βi(Ti, 2) = 1 (6.25)

βi(Ti, 1) = 0 (6.26)

βi(t, u) =
u+1∑
j=u

βi(t+ 1, j)yt+1
(l′i)j

(6.27)

Note that
βi(1, 3) = 0 (6.28)

βi(t, 4) = 0,∀t (6.29)
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With the local CTC forward-backward algorithm, we can compute the αi(t, u) and βi(t, u) for each
point t and each allowed positions u at point t. The CTC loss function L(Xi, li) is defined as the negative
log probability of correctly labeling the short sequence Xi:

L(Xi, li) = − ln p(li|Xi) (6.30)

According to the Equation 3.48, we can rewrite L(Xi, li) as:

L(Xi, li) = − ln
3∑

u=1

αi(t, u)βi(t, u) (6.31)

Then the errors will be back propagated to the output layer (Equation 3.49), the hidden layer (Equation
3.50), finally to the entire network. The weights in the network will be updated after each entire tree
structure is processed.

The CTC loss function of a entire tree structure is defined as the sum of the errors with regards to all the
short sequences in this tree:

L(X, l) =
N∑
i=1

L(Xi, li) (6.32)

This formula is used for evaluating the performance of the network, and therefore could be as the metric to
decide the training process stops or not.

6.4.6 Recognition process
As mentioned, the system treats each node or edge as a short sequence. A simple decoding method

is adopted here as in previous chapter. We choose for each node or edge the label which has the highest
cumulative probability over the short sequence. Suppose that pij is the probability of outputting the i label
at the j point. The probability of outputting the i label can be computed as Pi =

∑s
j=1 pij , where s is

the number of points in a short sequence. The label with the highest probability is assigned to this short
sequence.

6.4.7 Post process
Several trees regarding to one expression will be merged to build a SLG after labeling. Besides the

merging strategy, in this section we consider several structural constraints which are not used when build-
ing the SLG in previous chapter. Generally, 5 steps are included in post process:
(1) Merge trees. Each node or edge belongs at least to one tree, but possibly to several trees. Hence, several
recognition results can be available for a single node or edge. We take an intuitive and simple way to deal
with the problem of multiple results, choosing the one with the highest probability.
(2) Symbol segmentation. We look for the symbols using connected component analysis: a connected
component where nodes and edges have the same label is a symbol.
(3) Relationships. We solve two possible kinds of conflicts in this step. (a) Perhaps between two symbols,
there exists edges in both directions. Then, in each direction, we choose the label having the maximum prob-
ability. If the labels in two directions are both one of (Right, Above,Below, Inside, Superscript, Subscript)
as illustrated in Figure 6.14a, we also choose the one having the larger probability. (b) Another type of con-
flict could be the case illustrated in Figure 6.14b where one symbol has two (or more) input relationships
(one of 6 relationships). When observing the structure of SRTs, we can easily find that there is at most
one input relationship for each node (symbol) in SRT. Therefore, when one symbol has two (or more) input
relationships, we choose for it the one having the maximum probability.
(4) Make connected SRT. As SRT should be a connected tree (this is a structural constraint, not a language
specific constraint), there exist one root node and one or multiple leaf nodes inside each SRT. Each node has
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(a) (b)

Figure 6.14 – Possible relationship conflicts existing in merging results.

only one input edge, except the root node. After performing the first three steps, we still have the probability
to output a SRT consisting several root nodes, in other words, being a forest instead of a tree. To address
this type of error, we take a hard decision but quite simple: for each root r (except the one inputted earliest),
add a Right edge to r from the leaf being the one nearest to r considering input time. We choose Right
since it appears most in math expressions based on the statistics.
(5) Add edges. According to the rule that all strokes in a symbol have the same input and output edges and
that double-direction edges represent the segments, some missing edges can be completed automatically.

6.5 Experiments
Data sets. The complete data set from CROHME 2014 is used, 8834 expressions for training and 983

expressions for test. We extract randomly 10% of the 8834 expressions of the training set as a validation
set. To get more recent comparison with the state of the art, we have also use the last CROHME 2016 data
set to evaluate the best configuration. The training data set remains the same as CROHME 2014. 1147
expressions are included in CROHME 2016 test data set.

Setup. We constructed the tree-based BLSTM recognition system with the RNNLIB library 1. As
described in Section 3.3.4, DBLSTM [Graves et al., 2013] can be created by stacking multiple BLSTM
layers on top of each other in order to get higher level representation of the input data. Several types of
configurations are included in this chapter: Networks (i), (ii), (iii) and (iv). The first one consists of one
bidirectional hidden level (two opposite LSTM layers of 100 cells). This configuration has obtained good
results in both handwritten text recognition [Graves et al., 2009] and handwritten math symbol classification
[Álvaro et al., 2013, 2014a]. Network (ii) is a deep structure with two bidirectional hidden levels, each
containing two opposite LSTM layers of 100 cells. Network (iii) and Network (iv) have 3 bidirectional
hidden levels and 4 respectively. The setup about the input layer and output layer remains the same. The size
of the input layer is 5 (5 features); the size of the output layer is 109 (101 symbol classes + 6 relationships
+ NoRelation + blank).

Evaluation. With the Label Graph Evaluation library (LgEval) [Mouchère et al., 2014], the recognition
results can be evaluated on symbol level and on expression level. We introduce several evaluation crite-
ria: symbol segmentation (‘Segments’), refers to a symbol that is correctly segmented whatever the label is;
symbol segmentation and recognition (‘Seg+Class’), refers to a symbol that is segmented and classified cor-
rectly; spatial relationship classification (‘Tree Rels.’), a correct spatial relationship between two symbols
requires that both symbols are correctly segmented and with the correct relationship label.

6.5.1 Experiment 1
In this experiment, we would like to see the effects of the depth of the network on the recognition

results. Then according to the results, we choose the proper network configurations for the task. For each
expression, only Tree-Time is derived to train the classifier.

1. Graves A. RNNLIB: A recurrent neural network library for sequence learning problems.
http://sourceforge.net/projects/rnnl/.
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The evaluation results on symbol level and global expression level are presented in Table 6.4 and 6.5
respectively. From the tables, we can conclude that as the network turns to be deeper, the recognition

Table 6.4 – The symbol level evaluation results on CROHME 2014 test set with Tree-Time only.
Network, model Segments (%) Seg + Class (%) Tree Rels. (%)

Rec. Prec. Rec. Prec. Rec. Prec.
i, Tree-Time 92.93 84.82 84.12 76.78 60.70 76.19
ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18
iii, Tree-Time 95.43 91.13 88.26 84.28 65.45 83.57
iv, Tree-Time 95.57 91.21 87.81 83.80 65.98 82.85

Table 6.5 – The expression level evaluation results on CROHME 2014 test set with Tree-Time only.
Network, model correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors

i, Tree-Time 12.41 20.24 26.14 30.93
ii, Tree-Time 16.09 25.46 32.28 37.27
iii, Tree-Time 16.80 25.56 32.89 38.09
iv, Tree-Time 16.19 25.97 33.20 38.09

rate first increases and then stays at a relatively stable level. There is a large increase from Network (i) to
Network (ii), a slight increase from Network (ii) to Network (iii) and no improvement from Network (iii)
to Network (iv). These results show that 3 bidirectional hidden levels in the network is a proper option for
the task in this thesis. A network with depth larger than 3 brings no improvement but higher computational
complexity. Thus, for the coming experiments we will not take into account Network (iv) any more.

6.5.2 Experiment 2
In this section, we carry out the experiments by merging several trees. As a first try, we derive only

3 trees , Tree-Time, Tree-Left-R1 and Tree-0-R1 for each expression to train classifiers separately. With
regards to each tree, we consider 3 network configurations, being Network (i), Network (ii), Network (iii).
Thus, we have 9 classifiers totally in this section. After training, we use these 9 classifiers to label the rele-
vant trees and finally merge them to build a valid SLG. We merge the 3 trees labeled by the corresponding 3
classifiers which have the same network configuration to obtain the systems (i, Merge3 ), (ii, Merge3 ), (iii,
Merge3 ). Then we merge the 3 trees labeled by all these 9 classifiers to obtain the system Merge9.

The evaluation results on symbol level and global expression level are presented in Table 6.6 and 6.7
respectively. We give both the individual tree recognition results and the merging results in each table.

Tree-Time covers all the strokes of the input expression but can miss some relational edges between strokes;
Tree-Left-R1 and Tree-0-R1 could catch some additional edges which are not covered by Tree-Time. The
experiment results also verified this tendency. Compared to (iii, Tree-Time), the symbol segmentation and
classification results of (iii, Merge3 ) stay at almost the same level while the recall rate of relationship classi-
fication is greatly improved (about 12%). The different recognition results of network (ii) are systematically
increased when compared to (i) as the deep structure could get higher level representations of the input data.
The performance of network (iii) is moderately improved when compared to (ii), just as same as the case in
Experiment 1. When we consider merging all these 9 classifiers, we also get a slight improvement as shown
by Merge 9.

We compare the result of Merge 9 to the systems in CROHME 2014. With regard to the symbol
classification and recognition rates, our system performs better than the second-ranked system in CROHME
2014. For relationship classification rate, our system reaches the level between the second-ranked and the
third-ranked systems in CROHME 2014. The global expression recognition rate is 29.91%, ranking third in
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Table 6.6 – The symbol level evaluation results on CROHME 2014 test set with 3 trees, along with
CROHME 2014 participant results.

Network, model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

i, Tree-Time 92.93 84.82 84.12 76.78 60.70 76.19
i, Tree-Left-R1 84.82 72.49 72.80 62.21 44.34 57.78

i, Tree-0-R1 85.31 72.88 74.17 63.37 42.92 60.08
i, Merge3 93.53 87.20 86.10 80.28 71.16 66.13

ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18
ii, Tree-Left-R1 86.71 75.64 76.85 67.03 48.14 61.91

ii, Tree-0-R1 87.52 76.66 77.00 67.45 48.14 63.04
ii, Merge3 95.01 90.05 88.38 83.76 76.20 72.28

iii, Tree-Time 95.43 91.13 88.26 84.28 65.45 83.57
iii, Tree-Left-R1 88.03 78.13 78.56 69.72 50.31 65.87

iii, Tree-0-R1 87.41 77.02 77.63 68.40 48.23 64.28
iii, Merge3 95.25 90.70 88.90 84.65 77.33 73.72

Merge 9 95.52 91.31 89.55 85.60 78.08 74.64
system CROHME 2014 participant results

III 98.42 98.13 93.91 93.63 94.26 94.01
I 93.31 90.72 86.59 84.18 84.23 81.96

VII 89.43 86.13 76.53 73.71 71.77 71.65
V 88.23 84.20 78.45 74.87 61.38 72.70
IV 85.52 86.09 76.64 77.15 70.78 71.51
VI 83.05 85.36 69.72 71.66 66.83 74.81
II 76.63 80.28 66.97 70.16 60.31 63.74
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Table 6.7 – The expression level evaluation results on CROHME 2014 test set with 3 trees, along with
CROHME 2014 participant results.

Network, model correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
i, Tree-Time 12.41 20.24 26.14 30.93

i, Tree-Left-R1 5.9 10.58 15.99 19.94
i, Tree-0-R1 5.39 10.47 16.28 20.14
i, Merge3 19.94 27.57 33.88 39.37

ii, Tree-Time 16.09 25.46 32.28 37.27
ii, Tree-Left-R1 6.82 13.33 20.14 23.19

ii, Tree-0-R1 6.41 13.02 18.41 23.40
ii, Merge3 25.94 36.72 42.32 46.59

iii, Tree-Time 16.80 25.56 32.89 38.09
iii, Tree-Left-R1 8.55 15.26 20.96 24.52

iii, Tree-0-R1 7.93 13.63 19.63 25.43
iii, Merge3 29.30 39.06 43.64 48.02

Merge 9 29.91 39.94 44.96 50.15
system CROHME 2014 participant results

III 62.68 72.31 75.15 76.88
I 37.22 44.22 47.26 50.20

VII 26.06 33.87 38.54 39.96
VI 25.66 33.16 35.90 37.32
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
II 15.01 22.31 26.57 27.69
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all the participated systems. When we compute the recognition rate with ≤ 3 errors, our result is 50.15%,
very close to the second-ranked system (50.20%).

The top ranked system is from My Script company and they use a much larger training data set which
is not available to the public. Furthermore, as we know, all the top 4 systems in the CROHME 2014 com-
petition are grammar driven solutions which need a large amount of manual work and a high computational
complexity. There is no grammar considered in our system.

To have more uptodate comparisons, we also evaluate the system of Merge 9 on CROHME 2016 test
data set. As can be seen in Table 6.8, compared to other participated systems in CROHME 2016, our system
is still competitive on symbol segmentation and classification task. For relationship recognition task, there
is room for improvement. The results at expression level is presented in Table 6.9. The global expression
recognition rate is 27.03%.

Table 6.8 – The symbol level evaluation results on CROHME 2016 test set with the system of Merge 9,
along with CROHME 2016 participant results.

System Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

Merge 9 95.64 91.44 89.84 85.90 77.23 74.08
CROHME 2016 participant results

MyScript 98.89 98.95 95.47 95.53 95.11 95.11
Wiris 96.49 97.09 90.75 91.31 90.17 90.79
Tokyo 91.62 93.25 86.05 87.58 82.11 83.64

São Paulo 92.91 95.01 86.31 88.26 81.48 84.16
Nantes 94.45 89.29 87.19 82.42 73.20 68.72

Table 6.9 – The expression level evaluation results on CROHME 2016 test set with the system of Merge 9,
along with CROHME 2016 participant results.

System correct (%) ≤ 1 error ≤ 2 errors
Merge 9 27.03 35.48 42.46

CROHME 2016 participant results
MyScript 67.65 75.59 79.86

Wiris 49.61 60.42 64.69
Tokyo 43.94 50.91 53.70

São Paulo 33.39 43.50 49.17
Nantes 13.34 21.02 28.33

6.5.3 Experiment 3
In Experiment 2, we consider merging 3 trees to build a SLG describing an math expression. Compared

to the results of symbol segmentation and recognition, the relationship classification results are not partic-
ularly prominent. We thought one of the possible reasons could be that only 3 trees can not well cover the
graph G, in other words, some edges in the graph G are not used in the already derived 3 trees. Thus, in this
experiment, we will test all the 11 trees illustrated in Table 6.3 to see if more trees could improve the results
of relationship classification task. Taking into consideration that we see a small increase in recognition
results, but a much increase in time complexity from Network (ii) to Network (iii) in previous experiments,
we use Network (ii) as a cost-effective choice to train 11 different classifiers in this section.

The evaluation results on symbol level and global expression level are presented in Table 6.10 and 6.11
respectively. In each table, we provide in detail the individual tree recognition results and the merging
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Table 6.10 – The symbol level evaluation results on CROHME 2014 test set with 11 trees.
Network, model Segments (%) Seg + Class (%) Tree Rels. (%)

Rec. Prec. Rec. Prec. Rec. Prec.
ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18

ii, Tree-Left-R1 86.71 75.64 76.85 67.03 48.14 61.91
ii, Tree-0-R1 87.52 76.66 77.00 67.45 48.14 63.04

ii, Tree-Left-R2 87.09 76.43 75.87 66.59 46.85 60.94
ii, Tree-0-R2 88.71 78.80 76.93 68.33 48.48 65.54

ii, Tree-Left-R3 86.49 75.54 75.11 65.60 45.19 59.76
ii, Tree-0-R3 86.97 75.85 75.68 66.01 45.31 59.69

ii, Tree-Left-R4 87.61 77.36 77.93 68.81 49.51 64.91
ii, Tree-0-R4 88.88 78.95 78.93 70.11 49.00 65.98

ii, Tree-Left-R5 87.47 77.09 77.5 68.31 47.82 63.94
ii, Tree-0-R5 88.53 78.66 79.09 70.28 48.27 65.22
ii, Merge3 95.01 90.05 88.38 83.76 76.20 72.28
ii, Merge11 94.53 89.33 87.97 83.13 77.15 72.85

Table 6.11 – The expression level evaluation results on CROHME 2014 test set with 11 trees.
Network, model correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors

ii, Tree-Time 16.09 25.46 32.28 37.27
ii, Tree-Left-R1 6.82 13.33 20.14 23.19

ii, Tree-0-R1 6.41 13.02 18.41 23.40
ii, Tree-Left-R2 8.04 13.22 17.19 21.16

ii, Tree-0-R2 7.12 14.04 18.31 24.72
ii, Tree-Left-R3 6.71 11.50 16.38 21.16

ii, Tree-0-R3 6.21 13.02 16.99 21.26
ii, Tree-Left-R4 8.55 15.06 19.43 23.19

ii, Tree-0-R4 8.95 14.55 20.55 26.04
ii, Tree-Left-R5 8.04 14.55 20.35 24.31

ii, Tree-0-R5 8.65 15.26 20.24 24.62
ii, Merge3 25.94 36.72 42.32 46.59
ii, Merge11 25.94 37.23 42.32 45.68
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results ( Merge3 and Merge11 ). As can be seen, all trees have the similar recognition results except Tree-
Time. And more trees do bring some effects on relationship classification task. Compared to (ii, Merge3 ),
the results of relationship classification are slightly improved around 1% while symbol segmentation and
recognition results are slightly reduced around 0.5%. Finally, at expression level, we see no significant
changes as shown in Table 6.11.

6.6 Error analysis
In this section, we make a deep error analysis of the recognition result of (Merge 9 ) to better understand

the system and to explore the directions for improving recognition rate in future. The Label Graph Evalua-
tion library (LgEval) [Mouchère et al., 2014] evaluate the recognition system by comparing the output SLG
of each expression with its ground truth SLG. Thus, node label confusion matrix and edge label confusion
matrix are available to us with the library. Based on the two confusion matrices, we analyze the errors
specifically below.

Node label In table 6.12, we list the types of SLG node label error which has a high frequency on
CROHME 2014 test set recognized by (Merge 9 ) system. The first column gives the outputted node labels
by the classifier; the second column provide the ground truth node labels; the last column records the
corresponding no. of occurrences. As can be seen from the table, the most frequent error (x → X , 46)
belongs to the type of the lowercase-uppercase error. Moreover, (p → P , 24), (c → C, 16), (X → x, 16)
and (y → Y , 14) also belong to the same type of lowercase-uppercase error. Another type of error which
happens quite often in our experiment is the similar-look error, such as (x→ ×, 26), (× → x, 10), (z → 2,
10), (q → 9, 10) and so on. Theoretically, two main types of node label error, being the lowercase-uppercase
error and the similar-look error, could be eased when more training data is introduced. Thus, one of future
work could be trying to collect new data as much as possible.

Table 6.12 – Illustration of node (SLG) label errors of (Merge 9 ) on CROHME 2014 test set. We only list
the cases that occur ≥ 10 times.

output label ground truth label no. of occurrences
x X 46
x × 26
p P 24
, 1 19
c C 16
y Y 14
+ t 14
. . . . 13
X x 16
a x 14
1 | 11
- 1 10
× x 10
z 2 10
q 9 10

Edge label Table 6.13 provides the edge (SLG) label errors of CROHME 2014 test set using (Merge
9 ). As can be seen, a large amount of errors come from the last row which represents the missing edges.
1858 edges with label Right are missed in our system, along with 929 segmentation edges. In addition, we
can see the errors of high frequency in the sixth row which represents that five relationship (exclude Right)
edges or segmentation edges or NoRelation (_) edges are mis-classified as Right edges. Among them,
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1600 NoRelation (_) edges are recognized as Right. The post process step of Make connected SRT is
one of the reasons since we take a hard decision (add Right edges) in this step. Another possible reason is
that, as Right relationship is the most frequent relation in math expressions, maybe the classifiers answer
too often this frequent class.

Now we will explore deeper the problem of the missing edges which appear in the last row of the Table
6.13. In fact, there exist three sources which result in the missing edges: (1) the edges are missed during the

Table 6.13 – Illustration of edge (SLG) label errors of (Merge 9 ) on CROHME 2014 test set. The first
column represents the output labels; the first row offers the ground truth labels; other cells in this table
provide the corresponding no. of occurrences. ’*’ represents segmentation edges, grouping two nodes into
a symbol. The label of segmentation edge is a symbol (For convenient representation, we do not give the
specific symbol types, but a overall label ’*’.).

* Above Below Inside Right Sub Sup _
* 208 0 0 17 1 1 29

Above 8 1 21 10
Below 2 1 1 114 7
Inside 5 1 1 9
Right 344 65 22 40 152 112 1600
Sub 4 6 3 44 1 7
Sup 1 3 35 3 31

_ 929 300 80 109 1858 189 235

graph representation stage. We evaluated the graph model in Section 6.4.2 where around 6% relationships
were missed. One of the future works could be searching for a better graph representation model to catch
the 6% relationships. (2) Some edges in the derived graph are recognized by the system as NoRelation
(_), which actually have a ground truth label of one of 6 relationship or symbol (segmentation edge). (3)
When deriving multiple trees from the graph G, they do not well cover the graph completely. We have tried
to ease the source 3 by deriving more trees, for example 11 trees in Experiment 3. However, the idea of
using more trees did not work well in fact. Thus, a better strategy for deriving trees from the graph will be
explored in future works.

We reconsider the 2 test samples (a ≥ b and 44− 4
4
) from CROHME 2014 test set recognized by system

(Merge9 ). We provide the handwritten input, the derived graph from the raw input, the derived trees from
the graph, along with the built SLG for each test sample (Figure 6.15 and Figure 6.16). These 2 samples
were recognized correctly by system (Merge9 ). As shown, several extra edges appear owing to multiple
trees and they were all recognized correctly as NoRelation. We remove these NoRelation edges to have
a intuitive judgment on the recognition result (Figure 6.15f and 6.16f).

In addition, we present a failed case in Figure 6.17. Just like the previous samples, we illustrate the
handwritten input of 9

9+
√

9
, the derived graph from the raw input, the derived trees from the graph, as well

as the final SLG built. As can be seen, the structure of this expression was correctly recognized, only one
error being the first symbol ’9’ of the denominator was recognized as ’→’. This error belongs to the type
of the similar-look error we have explained in error analysis section. Enlarging the training data set could
be a solution to solve it. Also, it could be eased by introducing language model since 9

→+
√

9
is not a valid

expression from the point of language model.

6.7 Discussion
In this chapter, we extended the classical BLSTM to tree-based BLSTM and applied the new network

model for recognizing online mathematical expressions. The new model has a tree topology, and possesses
the ability to model directly the dependency among the tree-structured data. The proposed tree-based
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Figure 6.15 – (a) a ≥ b written with four strokes; (b) the derived graph; (b) Tree-Time; (c)Tree-Left-R1 (In
this case, Tree-0-R1 is the same as Tree-Left-R1 ); (e) the built SLG of a ≥ b after merging several trees
and performing other post process steps, all labels are correct; (f) the built SLG with NoRelation edges
removed.
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Figure 6.16 – (a) 44− 4
4

written with six strokes; (b) the derived graph; (b) Tree-Time; (c)Tree-Left-R1 (In
this case, Tree-0-R1 is the same as Tree-Left-R1 );
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(e)

(f)

Figure 6.16 – (b)the built SLG after merging several trees and performing other post process steps; (c) the
built SLG with NoRelation edges removed.

BLSTM system, requiring no high time complexity or manual work involved in the classical grammar-
driven systems, achieves competitive results in online mathematical expression recognition domain. An-
other major difference with the traditional approaches is that there is no explicit segmentation, recognition
and layout extraction steps but a unique trainable system that produces directly a SLG describing a math-
ematical expression. With regard to the symbol segmentation and classification, the proposed system per-
forms better than the second-ranked system in CROHME 2014 (the top ranked system used a much larger
training data set which is not available to the public). For relationship recognition, we achieve better results
than the third-ranked system. When considering the expression recognition rate with ≤ 3 errors, our result
is 50.15%, close to the second-ranked system (50.20%).

In future, several directions could be explored to extend the current work. (1) As we analyzed in Section
6.6, we could put efforts into collecting more training data to ease the lowercase-uppercase error and the
similar-look error. (2) The current graph model misses still around 6% relationships on CROHME 2014
test set. Now, only one rule is used to define the visibility between a pair of strokes. In future, we will try
to set several rules for defining the visibility between strokes. As long as a pair of strokes meet any one
among these several rules, we decide that they could see each other. (3) A better strategy for deriving trees
from the graph should be explored to get a better coverage of the graph. (4) As we cover more and more
edges, the precision rate will decrease relevantly as presented in the previous experiments. Thus, one future
direction could be developing a better training protocol to enforce the training of the class NoRelation.
Then, a stronger post process step should be considered to improve the recognition rate.
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Figure 6.17 – (a) 9
9+
√

9
written with 7 strokes; (b) the derived graph; (b) Tree-Time;
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Figure 6.17 – (d)Tree-Left-R1 ; (e)Tree-0-R1 ; (f)the built SLG after merging several trees and performing
other post process steps; (g) the built SLG with NoRelation edges removed. There is a node label error:
the stroke 2 with the ground truth label ’9’ was wrongly classified as ’→’.





7
Conclusion and future works

In this chapter, we first summarize the works of the thesis and list the main contributions made during
the research process. Then, based on the current method and experiments results, we will propose several
possible directions for future work.

7.1 Conclusion
We study the problem of online mathematical expression recognition in this thesis. Generally, ME

recognition involves three tasks: symbol segmentation, symbol recognition and structural analysis [Zanibbi
and Blostein, 2012]. The state of the art solutions, considering the natural relationship between the three
tasks, perform these 3 tasks at the same time by using grammar parsing techniques. Commonly, a complete
grammar for math expressions consists of hundreds of production rules. These rules need to be designed
manually and carefully for different data sets. Furthermore, the time complexity for grammar-driven pars-
ing is usually exponential if no constraints are set to control it. Thus, to bypass the high time complexity
and manual work of the classical grammar-driven systems, we proposed a new architecture for online math-
ematical expression recognition in this thesis. The backbone of our system is the framework of BLSTM
recurrent networks with a CTC output layer, which achieved great success in sequence labeling task such as
text and speech recognition thanks to the ability of learning long-term dependency and the efficient training
algorithm.

Mathematical expression recognition with a single path. Since BLSTM network with a CTC output
layer is capable of processing sequence-structured data, as a first step to try, we proposed a trivial strategy
where a BLSTM directly labelled the sequence of pen-down and pen-up strokes respecting the time order.
These later added strokes (pen-up strokes) are used to represent the relationships between pairs of visible
strokes by assigning them a ground truth label. In order to assign each stroke (visible or later added) a label
in the recognition process, we extended the CTC training technique to local CTC, constraining the output
labels into the corresponding strokes and at the same time benefiting from introducing an addition ’blank’
class. At last, we built the 2-D expression from the outputted sequence of labels. The main contributions in
this first proposal consist of: (1) We propose a new method to represent the relationship of a pair of visible
strokes by linking the last point and the first point of them. With this method, a global sequence is generated
and could be coped with BLSTM and CTC topology. (2) We extend the CTC training technique to local
CTC. The new training technique proposed could improve the system performance globally compared to
frame-wise training, as well constrain the output relatively. The limitation of this simple proposal is that
it takes into account only a pair of visible strokes successive in the input time, and therefore miss some

123



124 CHAPTER 7. CONCLUSION AND FUTURE WORKS

relationships for 2-D mathematical expressions.
Mathematical expression recognition by merging multiple paths. In the above-mentioned simple

proposal, we considered only the pairs of strokes which are successive in the time order. Obviously, a
sequence-structured model is not able to cover all the relationships in 2-D expressions. Thus, we turned
to a graph structure to model the relationships between strokes in mathematical expressions. Globally, the
input of the recognition system is an handwritten expression which is a sequence of strokes; the output is
the stroke label graph which consists of the information about the label of each stroke and the relationships
between stroke pairs. Firstly, we derived an intermediate graph from the raw input using both the temporal
and spatial information between strokes. In this intermediate graph, each node represents a stroke and
edges are added according to temporal or spatial properties between strokes, which represent the relations
of stroke pairs. Secondly, several 1-D paths were selected from the graph since the classifier model used is
a 1-D sequence labeler. Next, we used the BLSTM classifier to label the selected 1-D paths. Finally, we
merged these labeled paths to build a complete stroke label graph. Compared to the proposal with a single
path, the solution by merging multiple paths presented improvements on recall rate of ‘Tree Rels.’ but at
the same time decreases the precision rate of ‘Tree Rels.’ Thus, at the expression level, the recognition rate
remained the same level as the solution with single path.

One main contribution of this proposal is that multiple paths are used to represent a 2-D expression.
However, even though several paths from one expression were considered in this system, the BLSTM model
dealt with each path separately in essential. The classical BLSTM model could access information from
past and future in a long range but the information outside the single sequence is of course not accessible
to it. In fact, it is not the real case where human beings recognize the raw input using the entire contextual
information.

Mathematical expression recognition by merging multiple trees. As explained above, human beings
interpret handwritten math expression by considering the global contextual information. In the system by
merging multiple paths, each path was processed separately implying that only contextual information in the
path could be visited. Thus, we developed a neural network model which could handle directly a structure
not limited to a chain. We extended the chain-structured BLSTM to tree structure topology and applied
this new network model for online math expression recognition. With this new neural network model, we
could take into account the information in a tree instead of a single path at one time when dealing with
one expression. Similar to the framework of the solution by merging multiple paths, we first derived an
intermediate graph from the raw input. Then, instead of 1-D paths, we considered from the graph deriving
trees which would be labeled by tree-based BLSTM model as a next step. In the end, these labeled trees
were merged to build a stroke label graph. Compared to the proposal by merging multiple paths, the new
recognition system was globally improved which was verified by experiments. One main contribution of
this part is that we extend the chain-structured BLSTM to tree-based BLSTM, and provide the new topology
with the ability of modeling dependency in a tree.

We list the main contributions here:

• One major difference with the traditional approaches is that there is no explicit segmentation, recogni-
tion and layout extraction steps but a unique trainable system that produces directly a SLG describing
a mathematical expression.

• We propose a new method to represent the relationship of a pair of visible strokes by linking the last
point and the first point of them.

• We extend the CTC training technique to local CTC. The new training technique proposed could
improve the system performance globally compared to frame-wise training, as well constrain the
output relatively.

• We extend the chain-structured BLSTM to tree-based BLSTM, and provide the new topology with
the ability of modeling dependency in a tree.

• The proposed system, without using any grammar, achieves competitive results in online math ex-
pression recognition domain.
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7.2 Future works
Based on the current method and error analysis, we summarize here several possible directions for future

work.

• Some work should be done with regards to improve the existing method, like improving the graph
model, proposing a better strategy for deriving trees and developing a stronger post process stage.

• Some efforts could be put into introducing language model into the graph. For example, as known
an n-gram model is widely used in 1-D language processing like text and speech, how to take into
account the statistical properties of n-grams in math expression recognition task is an interesting
direction to explore for us. Actually a master project have been proposed already in this direction.

• Another interesting work could be to extend BLSTM model to a DAG structure which will better
cover the derived graph and therefore be able to handle more contextual information compared to
the tree structure BLSTM. So we could leave the stage of deriving trees aside.

• The current recognition system achieves competitive results without using any grammar knowledge.
In future, we could apply graph grammar to improve the current recognition rate.

• In this thesis, we extend the chain-structured BLSTM to a tree topology to let it model the depen-
dency directly in a tree structure. Furthermore, we extend the CTC training technique to local CTC
to constrain the output position relatively at the same time improve the system training efficiency
compared to frame-wise training. These proposed algorithm are generic ones and we will apply
them into other research fields in future.





8
Résumé étendu en français

8.1 Introduction

Dans les travaux de cette thèse, nous proposons d’utiliser un réseau BLSTM couplé à une architecture
CTC pour l’interprétation directe des expressions mathématiques manuscrites à partir d’un graphe de traits,
en évitant la mise en œuvre des approches beaucoup plus couteuses basées grammaire.

La reconnaissance d’expressions mathématiques (EM) est un sujet d’intérêt en reconnaissance de formes.
Il présente des défis scientifiques importants et correspond à des applications très intéressantes. Le nombre
de symboles à considérer (plus de 100) et la nature bidimensionnelle (2-D) du langage justifient la difficulté
du problème. D’un point de vue applicatif, la saisie manuelle directe des expressions mathématiques est
un gage de productivité pour la réalisation de documents scientifiques. Ce domaine se subdivise en deux
catégories, l’une pour les écrits hors-ligne, l’autre pour l’écriture dite en-ligne. Dans le premier cas, les
données se présentent sous la forme d’une image tandis que le second cas, il s’agit de données dynamiques
correspondant à la trajectoire du stylo échantillonnées dans le temps. Cette thèse traite de la reconnaissance
des EM manuscrites en-lignes.

On distingue trois tâches dans la reconnaissance des EM [Zanibbi and Blostein, 2012]: (1) la segmen-
tation en symboles, consistant en un regroupement des traits qui appartiennent au même symbole ; (2) la
reconnaissance des symboles, consistant à attribuer une étiquette de symbole à chacun des groupements ; (3)
l’analyse structurelle, dont l’objectif est d’identifier les relations spatiales entre les symboles en s’appuyant
sur une grammaire pour produire une interprétation acceptable. Ces trois tâches peuvent être traitées soit
séquentiellement soit de façon concurrente.

Les premiers travaux dans ce domaine [Chou, 1989, Koschinski et al., 1995, Winkler et al., 1995, Mat-
sakis, 1999, Zanibbi et al., 2002, Tapia and Rojas, 2003, Tapia, 2005, Zhang et al., 2005] reposaient sur
une approche séquentielle réalisant d’abord la segmentation, puis la reconnaissance et enfin l’analyse struc-
turelle.

Les travaux plus récents combinent ces trois tâches en produisant plusieurs alternatives concurrentes ce
qui permet de choisir une solution qui optimise un critère global pour aboutir à la meilleure interprétation
globale. Ces solutions utilisent de l’information contextuelle, notamment des connaissances syntaxiques,
pour guider les processus de segmentation et de reconnaissance, en empêchant de produire des solutions
potentiellement invalides comme par exemple, [a + b). L’information contextuelle est généralement mod-
élisée par une grammaire qui peut se limiter à produire des chaines (string grammar[Yamamoto et al., 2006,
Awal et al., 2014, Álvaro et al., 2014b, 2016, MacLean and Labahn, 2013]) voir des graphes [Celik and
Yanikoglu, 2011, Julca-Aguilar, 2016]. Dans les deux cas, la complexité calculatoire est très élevée.
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Finalement, on constate que les solutions actuelles sont quasi-systématiquement pilotées par une gram-
maire. Cela impose à la fois une tâche laborieuse pour construire ladite grammaire et un coût calculatoire
élevé pour produire l’étape d’analyse. En contraste à ces approches, la solution que nous explorons se
dispense de grammaire. C’est le parti pris de cette thèse, nous proposons de nouvelles architectures pour
produire directement une interprétation des expressions mathématiques en tirant avantage des récents pro-
grès dans les architectures des réseaux récurrents.

8.2 Etat de l’art

8.2.1 Représentation des EM
Les figures composées de structures peuvent être décrites à trois niveaux différents : au niveau symbol-

ique, au niveau objet et au niveau primitive [Zanibbi et al., 2013]. Dans le cas des EM, ces trois niveaux
correspondent à l’expression globale, aux symboles qui la composent et aux traits élémentaires.

L’arbre des relations entre symboles (SRT).Il est possible de décrire une EM à l’aide d’un SRT
définissant les relations spatiales entre les symboles. Dans un SRT, les nœuds représentent les symboles
alors que les arcs définissent les relations spatiales entre les symboles. Par exemple, Figure 8.1a, le symbole

(a) (b)

Figure 8.1 – L’arbre des relations entre symboles (SRT) pour (a) a+b
c

et (b) a + b
c
,‘R’définit une relation à

droite.

‘-‘ situé sur la ligne de base constitue la racine de l’arbre tandis que le symbole ‘a’ est situé au dessus et le
symbole ‘c’ en dessous. Par contre, dans la Figure 8.1b,le symbole ‘a’ est la racine et le symbole ‘+’ est à
sa droite.

Le graphe des étiquettes (LG). En descendant au niveau trait, il est possible de dériver du SRT un
graphe de traits étiqueté (LG). Dans un LG, les nœuds représentent les traits tandis que les étiquettes sur les
arcs encodent soit des informations de segmentation, soit des relations spatiales. Considérons l’expression
simple « 2+2 » écrite en quatre traits dont deux traits pour le symbole ‘+’ dont le tracé est présenté Figure
8.2a et le LG 8.2b. Comme on peut le voir, les nœuds du SLG sont étiquetés avec l’étiquette du symbole
auxquels ils appartiennent. Un arc en pointillés porte une information de segmentation, cela indique que
la paire de traits associés appartient au même symbole. Dans ce cas, l’arc porte l’étiquette du symbole.
Sinon, un arc en trait plein définit une relation spatiale entre les symboles associés. Plus précisément, tous
les traits d’un symbole sont connectés à tous les traits du symbole avec lequel une relation spatiale existe.
Les relations spatiales possibles ont été définies par la compétition CROHME [Mouchère et al., 2016], elles
sont au nombre de six : Droite, Au-dessus, En-dessous, A l’intérieur (cas des racines), Exposant et Indice.

8.2.2 Réseaux Long Short-Term Memory
Réseaux récurrents (RNNs). Les RNNs peuvent accéder à de l’information contextuelle et sont prédis-

posés à la tâche d’étiquetage des séquences [Graves et al., 2012]. Dans la Figure 8.3, un réseau récurrent
monodirectionnel est représenté en mode déplié. Chaque nœud à un instant donné représente une couche
du réseau. La sortie du réseau au temps ti dépend non seulement de l’entrée au temps ti mais aussi de l’état
au temps ti−1. Les mêmes poids (w1, w2, w3) sont partagés à chaque pas temporel.
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(a) (b)

Figure 8.2 – (a) « 2 + 2 » écrit en quatre traits ; (b) le graphe SLG de « 2 + 2 ». Les quatre traits sont
repérés s1, s2, s3 et s4, respectant l’ordre chronologique. (ver.) et (hor.) ont été ajoutés pour distinguer le
trait horizontal et vertical du ‘+’. ‘R’ représente la relation Droite.

Figure 8.3 – Un réseau récurrent monodirectionnel déplié.

LSTM. Les architectures classiques de type RNN présentent l’inconvénient de souffrir d’un oubli ex-
ponentiel, limitant l’utilisation d’un contexte réduit [Hochreiter et al., 2001]. Les réseaux de type Long
short-term memory LSTM [Hochreiter and Schmidhuber, 1997] sont capable de circonvenir à ce problème
en utilisant un bloc mémoire capable de préserver l’état courant aussi longtemps que nécessaire. Un réseau
LSTM est similaire à un réseau RNN, exception faite des unités de sommation des couches cachées qui
sont remplacées par des blocs mémoires. Chaque bloc contient plusieurs cellules récurrentes dotées de trois
unités de contrôle : les portes d’entrée, de sortie et d’oubli. Ces portes agissent par le biais de facteur
multiplicatif pour interdire ou autoriser la prise en compte de l’information se propageant.

BLSTM. Les réseaux LSTM traitent la séquence d’entrée de façon directionnelle du passé vers le futur.
De façon complémentaire, les Bidirectional LSTM [Graves and Schmidhuber, 2005],sont composés de 2
couches séparées de type LSTM, chacune travaillant en sens inverse de l’autre (passé vers futur et futur vers
présent). Les deux couches LSTM sont complètement connectées à la même couche de sortie. De cette
façon, les contextes court terme et long terme dans chaque direction sont disponibles pour chaque instant
de la couche de sortie.

BLSTM profonds. Les DBLSTM [Graves et al., 2013] peuvent être construits en empilant plusieurs
BLSTM l’un sur l’autre. Les sorties des 2 couches opposées sont concaténées et utilisées en tant qu’entrée
pour un nouveau niveau.

BLSTM à structure non linéaire. Les structures précédentes ne sont capables que de traiter des don-
nées en séquences. Les Multidimensional LSTM [Graves et al., 2012] quant à eux peuvent traiter des
informations depuis n directions en introduisant n portes d’oubli dans chaque cellules mémoire. De plus,
les travaux de [Tai et al., 2015], ont étendu ces réseaux pour traiter des structures d’arbres, les topologies
Child-sum Tree-LSTM et N-ary Tree-LSTM permettent d’incorporer dans une unité des informations en
provenance de cellules filles multiples. Des approches similaires sont proposées dans [Zhu et al., 2015].



130 CHAPTER 8. RÉSUMÉ ÉTENDU EN FRANÇAIS

Enfin, une architecture LSTM pour graphe acyclique a été proposée pour de la composition sémantique
[Zhu et al., 2016].

8.2.3 La couche CTC : Connectionist temporal classification
L’utilisation des réseaux récurrents (RNN) trouve tout son intérêt pour les tâches d’étiquetage de séquences

où le contexte joue un rôle important. L’entrainement de ces réseaux nécessite la définition d’une fonction
de coût qui repose classiquement sur la connaissance des étiquettes désirées (vérité terrain) pour chaque
instant des sorties. Cela impose de disposer d’une base d’apprentissage dont chacune des séquences soit
complétement étiquetée au niveau de tous les points constituant la trame du signal. Cela représente un
travail très fastidieux pour assigner ainsi une étiquette à chacun de ces points.

L’usage d’une couche CTC permet de contourner cette difficulté. Il suffit de connaitre la séquence
d’étiquettes d’un point de vue global, sans qu’un alignement complet avec le signal d’entrée ne soit néces-
saire. Grace à l’utilisation d’une étiquette additionnelle « blank », le CTC autorise le réseau à ne fournir
des décisions qu’en quelques instants bien spécifiques, tout en permettant une reconstruction complète de
la séquence.

8.3 Reconnaissance par un unique chemin
La solution consistant à reconnaitre une EM en se basant sur un chemin unique se résume en la Figure

8.4. On prend en compte le fait qu’une EM est disponible sous la forme d’une séquence de traits, eux-

Figure 8.4 – Illustration de la méthode basée sur un seul chemin.

mêmes constitués d’une séquence de points délimitée par un poser et un lever de stylo. Le BLSTM, utilisé
en tant qu’étiqueteur de séquences va être capable d’assigner une étiquette à chaque point du tracé. Il reste
à pouvoir, à partir de cette séquence d’étiquettes, produire une expression 2D représentant l’expression
mathématique.

De manière plus précise, nous enrichissons la séquence initiale qui ne contient initialement que des
points réels (strokeD) issus de l’échantillonnage du tracé avec des points virtuels (strokeU) reliant un lever
de stylo au poser de stylo suivant. Ainsi que le montre la Figure 8.5, nous passons de 5 traits visibles
initialement à une séquence de 9 traits qui seront traités comme étant une séquence globale, comme lorsque
l’on traite un texte monodimensionnel. Ces traits intermédiaires rajoutés vont être le support pour encoder
les informations représentant les relations spatiales entre les traits. Ensuite chaque tracé est ré-échantillonné
à pas spatial constant pour être indépendant de la vitesse d’écriture et normalisé vis-à-vis de la taille de
l’expression. Nous proposons l’utilisation d’une technique de CTC locale qui impose d’obtenir l’étiquette



8.4. RECONNAISSANCE D’EM PAR FUSION DE CHEMINS MULTIPLES 131

Figure 8.5 – Introduction des traits « en l’air ».

associée à un trait sur l’un des points de ce trait, limitant ainsi la flexibilité de l’étiquette « blank » à
l’intérieur dudit trait. Ceci va permettre de reconstruire le graphe SLG en ayant une et une seule étiquette
par nœud et par arc.

8.4 Reconnaissance d’EM par fusion de chemins multiples
En utilisant un unique chemin pour parcourir tous les traits d’une expression mathématique, il est pos-

sible de manquer des relations spatiales du fait de l’absence d’arc entre les nœuds associés à cette relation.
Par exemple, à la Figure 8.5, la relation spatiale Droite (R) entre les traits 1 et 5 est nécessairement manquée
car il n’existe pas d’arc dans le chemin temporel entre les deux nœuds représentatifs de ces traits. Pour pal-
lier ce problème, nous proposons d’abord de construire un graphe modélisant la disposition des traits, puis
de dériver plusieurs chemins issus de ce graphe et de fusionner les résultats issus de ces différents chemins.
Ce principe est illustré sur la 8.6. Ainsi qu’il est montré, les données d’entrée sont la séquence de traits

Input

Output

an intermediate graph G merge labeled paths

select several 1-D
paths from graph G

label each path
with BLSTM

Figure 8.6 – Reconnaissance par fusion de chemins.

constituant l’EM tandis que le résultat est fourni sous la forme d’un SLG définissant le label de chaque trait
et les relations spatiales entre les paires de traits.
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Cette solution consiste d’abord à construire un graphe à partir des données d’entrée en utilisant à la fois
les proximités temporelle et spatiale. Dans ce graphe, chaque trait est représenté par un nœud et les arcs
sont rajoutés en fonction de propriétés spatio-temporelles des traits. Nous faisons l’hypothèse que des traits
qui sont soit spatialement, soit temporellement proches, peuvent appartenir au même symbole ou peuvent
partager une relation spatiale. A partir de ce graphe, plusieurs chemins vont être extraits et vont constituer
des séquences qui vont chacune être traitées par l’étiqueteur de séquence qu’est le BLSTM. Ensuite, une
étape de fusion combine ces résultats indépendants et construit un unique SLG.

Cette façon de procéder présente l’avantage de traiter plusieurs chemins, augmentant ainsi les chances
de retrouver des relations utiles. Toutefois, chaque chemin est traité individuellement et indépendamment
des autres. Ainsi le contexte qui est pris en compte se limite au seul chemin courant, sans pouvoir intégrer
des informations présentes sur les autres chemins. Cela constitue une limitation par rapport à l’analyse
visuelle humaine.

8.5 Reconnaissance d’EM par fusion d’arbres
Comme nous l’avons évoqué précédemment, nous utilisons globalement tout le contexte pour recon-

naitre une expression mathématique manuscrite. Cette façon de procéder nécessite d’élargir le point de vue
consistant à simplement fusionner des parcours sur des chemins individuels. Pour atteindre cet objectif, une
nouvelle structure de réseau est proposée. Elle permet de traiter des données qui ne se limitent pas à des
chaines. Ces réseaux de type BLSTM permet de traiter des arbres et sont donc utilisables pour reconnaitre
des EM. L’avantage de ce nouveau type de structure est de prendre en compte une information plus riche
ne se limitant pas à un seul chemin où chaque nœud possède un seul successeur mais de traiter des arbres
pour représenter une expression.

La Figure 8.7 illustre la méthode globale basée sur une fusion du traitement de plusieurs arbres. Selon

Input

Output

an intermediate graph G merge labeled trees

derive trees
from graph G

label trees with
tree-based BLSTM

Figure 8.7 – Reconnaissance par fusion d’arbres.

le même démarche que pour la fusion de plusieurs chemins, nous commençons d’abord par construire un
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graphe dérivé des traits du tracé. Ensuite, au lieu d’extraire des chemins 1-D, nous parcourons le graphe
pour en extraire des arbres. Ceux-ci pourront individuellement être traités par le « tree-based BLSTM »
proposé ci-dessus. Un tel système beaucoup plus simple dans son architecture et sans nécessité la définition
d’une grammaire dédiée obtient des résultats très compétitifs sur le problème de la reconnaissance des
expressions mathématiques.

L’évaluation des performances d’un tel système au niveau du taux de reconnaissance des symboles et du
taux au niveau expressions globales est donnée dans les Tableaux 8.1 et 8.2. En ce qui concerne le niveau
symbole, les résultats de segmentation et de reconnaissance de ce système sont meilleurs que le système
classé second dans la compétition CROHME 2014 (par ailleurs, le système classé premier utilise une base
d’apprentissage de très grande taille non disponible publiquement). Pour ce qui est des relations spatiales,
ce système se situe à la troisième place. Enfin, au niveau global des expressions, en tolérant 3 erreurs, nous
obtenons au taux de 50.15%, très proche du système classé second avec 50.20%.

Table 8.1 – Les résultats au niveau symbole sur la base de test de CROHME 2014, comparant ces travaux
et les participants à la compétition.

system Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

our system 95.52 91.31 89.55 85.60 78.08 74.64
III 98.42 98.13 93.91 93.63 94.26 94.01
I 93.31 90.72 86.59 84.18 84.23 81.96

VII 89.43 86.13 76.53 73.71 71.77 71.65
V 88.23 84.20 78.45 74.87 61.38 72.70
IV 85.52 86.09 76.64 77.15 70.78 71.51
VI 83.05 85.36 69.72 71.66 66.83 74.81
II 76.63 80.28 66.97 70.16 60.31 63.74

Table 8.2 – Les résultats au niveau expression sur la base de test CROHME 2014, comparant ces travaux
et les participants à la compétition.

system correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
our system 29.91 39.94 44.96 50.15

III 62.68 72.31 75.15 76.88
I 37.22 44.22 47.26 50.20

VII 26.06 33.87 38.54 39.96
VI 25.66 33.16 35.90 37.32
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
II 15.01 22.31 26.57 27.69
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Ting ZHANG
Nouvelles architectures pour la reconnaissance des expressions
mathématiques manuscrites

New Architectures for Handwritten Mathematical Expressions Recognition

Résumé
Véritable challenge scientifique, la reconnaissance
d’expressions mathématiques manuscrites est un
champ très attractif de la reconnaissance des formes
débouchant sur des applications pratiques innovantes.
En effet, le grand nombre de symboles (plus de 100)
utilisés ainsi que la structure en 2 dimensions des
expressions augmentent la difficulté de leur
reconnaissance. Dans cette thèse, nous nous
intéressons à la reconnaissance des expressions
mathématiques manuscrites en-ligne en utilisant de
façon innovante les réseaux de neurones récurrents
profonds BLSTM avec CTC pour construire un
système d’analyse basé sur la construction de
graphes. Nous avons donc étendu la structure linéaire
des BLSTM à des structures d’arbres (Tree-Based
BLSTM) permettant de couvrir les 2 dimensions du
langage. Nous avons aussi proposé d’ajouter des
contraintes de localisation dans la couche CTC pour
adapter les décisions du réseau à l’échelle des traits
de l’écriture, permettant une modélisation et une
évaluation robustes. Le système proposé construit un
graphe à partir des traits du tracé à reconnaître et de
leurs relations spatiales. Plusieurs arbres sont dérivés
de ce graphe puis étiquetés par notre Tree-Based
BLSTM. Les arbres obtenus sont ensuite fusionnés
pour construire un SLG (graphe étiqueté de traits)
modélisant une expression 2D. Une différence
majeure par rapport aux systèmes traditionnels est
l’absence des étapes explicites de segmentation et
reconnaissance des symboles isolés puis d’analyse
de leurs relations spatiales, notre approche produit
directement un graphe SLG. Notre système sans
grammaire obtient des résultats comparables aux
systèmes spécialisés de l’état de l’art.

Abstract
As an appealing topic in pattern recognition,
handwritten mathematical expression recognition
exhibits a big research challenge and underpins many
practical applications. Both a large set of symbols
(more than 100) and 2-D structures increase the
difficulty of this recognition problem. In this thesis, we
focus on online handwritten mathematical expression
recognition using BLSTM and CTC topology, and
finally build a graph-driven recognition system,
bypassing the high time complexity and manual work
in the classical grammar-driven systems. To allow the
2-D structured language to be handled by the
sequence classifier, we extend the chain-structured
BLSTM to an original Tree-based BLSTM, which could
label a tree structured data. The CTC layer is adapted
with local constraints, to align the outputs and at the
same time benefit from introducing the additional
’blank’ class. The proposed system addresses the
recognition task as a graph building problem. The
input expression is a sequence of strokes, and then an
intermediate graph is derived considering temporal
and spatial relations among strokes. Next, several
trees are derived from the graph and labeled with
Tree-based BLSTM. The last step is to merge these
labeled trees to build an admissible stroke label graph
(SLG) modeling 2-D formulas uniquely. One major
difference with the traditional approaches is that there
is no explicit segmentation, recognition and layout
extraction steps but a unique trainable system that
produces directly a SLG describing a mathematical
expression. The proposed system, without any
grammar, achieves competitive results in online math
expression recognition domain.

Mots clés
Reconnaissance d’expressions mathématiques,
Réseaux de neurones récurrents, BLSTM,
Écriture en ligne.

Key Words
Mathematical expression recognition, recurrent
neural networks, BLSTM, online handwriting.

L’UNIVERSITÉ NANTES ANGERS LE MANS


	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Mathematical expression recognition
	The proposed solution
	Thesis structure

	I State of the art
	Mathematical expression representation and recognition
	Mathematical expression representation
	Symbol level: Symbol relation (layout) tree 
	Stroke level: Stroke label graph
	Performance evaluation with stroke label graph

	Mathematical expression recognition
	Overall review
	The recent integrated solutions
	End-to-end neural network based solutions
	Discussion


	Sequence labeling with recurrent neural networks
	Sequence labeling
	Recurrent neural networks
	Topology
	Forward pass
	Backward pass
	Bidirectional networks

	Long short-term memory (LSTM)
	Topology
	Forward pass
	Backward pass
	Variants

	Connectionist temporal classification (CTC)
	From outputs to labelings
	Forward-backward algorithm
	Loss function
	Decoding



	II Contributions
	Mathematical expression recognition with single path
	From single path to stroke label graph
	Complexity of expressions
	The proposed idea

	Detailed Implementation
	BLSTM Inputs
	Features
	Training process — local connectionist temporal classification
	Recognition Strategies

	Experiments
	Data sets
	Experiment 1: theoretical evaluation
	Experiment 2
	Experiment 3

	Discussion

	Mathematical expression recognition by merging multiple paths
	Overview of graph representation
	The framework 
	Detailed implementation
	Derivation of an intermediate graph G
	Graph evaluation
	Select paths from G
	Training process
	Recognition
	Merge paths

	Experiments
	Discussion

	Mathematical expression recognition by merging multiple trees
	Overview: Non-chain-structured LSTM
	The proposed Tree-based BLSTM
	The framework 
	Tree-based BLSTM for online mathematical expression recognition
	Derivation of an intermediate graph G
	Graph evaluation
	Derivation of trees from G
	Feed the inputs of the Tree-based BLSTM
	Training process
	Recognition process
	Post process

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Error analysis
	Discussion

	Conclusion and future works
	Conclusion
	Future works

	Résumé étendu en français
	Introduction
	Etat de l’art
	Représentation des EM
	Réseaux Long Short-Term Memory
	La couche CTC : Connectionist temporal classification

	Reconnaissance par un unique chemin
	Reconnaissance d’EM par fusion de chemins multiples
	Reconnaissance d’EM par fusion d’arbres

	Bibliography
	Publications


