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Christophe COLLET iCube, UMR 7357 Université de Strasbourg - CNRS
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Résumé en français

L’étude des mécanismes cérébraux représente un enjeu capital pour la compréhension de ses fonc-

tionnements et dysfonctionnements. Depuis la découverte de la présence de phénomènes électriques

dans les hémisphères cérébraux de singes et de lapins par Adolf Beck en 1875, d’énorme progrès dans

ce domaine ont été accomplis. Cependant, de nombreuses questions sur la façon dont cet impression-

ant calculateur biologique (environ 86 milliards de neurones dans le cerveau humain adulte) perçoit

le monde et interagit avec son environnement restent ouvertes. Aujourd’hui, les avancées médicales

et technologiques permettent de combiner des méthodes et des dispositifs de plus en plus évolués

pour explorer ces fonctions et ces structures à différentes échelles temporelles et spatiales. Dans

cette thèse, nous nous concentrons sur les phénomènes physiologiques à l’échelle macroscopique en

exploitant des mesures non invasives électrophysiologiques de scalp (EEG). L’objectif de ce travail

est d’estimer la localisation de sources électrophysiologique dans le cadre de potentiels évoqués par

stimulation cognitive ou dans un cadre pathologique pour la localisation de sources épileptogènes.

L’activation des processus neuronaux se traduit en termes bio-physiologiques par la transmission

de flux ioniques à travers les membranes cellulaires des neurones et des synapses. Ces échanges

d’informations à l’intérieur des circuits neuronaux produisent des signaux électriques perceptibles:

par exemple la localisation d’une augmentation de consommation d’oxygène ou la génération d’un

champ électromagnétique découle des activités neuronales sous-jacentes et de leur dynamiques. Ces

connaissances contribuent à la compréhension des mécanismes de commandes neuromotrices et cog-

nitives humaines, ou encore à la modèlisation de comportements anormaux tels que ceux observés

dans l’épilepsie ou la maladie de Parkinson. Dans ces derniers cas pathologiques, l’intérêt est aussi

d’ordre clinique, où la délimitation précise de la structure responsable de la maladie dans le volume

cérébrale est décisive pour le succès du traitement curatif, qu’il soit pharmaceutique et plus encore

s’il est chirurgical.

Les récents développements technologiques dans le domaine de la neuro-imagerie non-invasive

ont ouvert de nouvelles perspectives. Diverses méthodes d’investigation clinique peuvent être util-
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Figure 1: Le cerveau est un système intrinsèquement multi-échelle. Il peut être étudié à l’échelle du
nanomètres (des protéines) jusqu’aux mètres (le corps humain). Evidemment les dynamiques temporelles
des processus qui le constitue sont également très variables: cela peut aller de la picosecondes (pour les
interactions atomiques) aux années (la durée de la vie d’un être humain). (41)

isés allant de modalités telles que l’imagerie (TEP, IRM) à la magnétoencéphalographie (MEG) et

l’électroencéphalographie (EEG, la SEEG). Les mesures électroencéphalographiques ont le grand

avantage de prodiguer une résolution temporelle de l’ordre de la milliseconde à l’échelle de la dy-

namique des processus étudiés, tout en restant une technique non-invasive utilisée en routine clin-

ique. Cependant, la localisation des sources actives et la reconstruction de leur dynamique à partir

de ces enregistrements EEG de surface restent un défi, et ce pour plusieurs raisons. La première est

liée à leur faible résolution spatiale, offrant une vision superficielle du volume cérébral limitée à la

surface supérieure de l’enveloppe corticale. La présence de l’os du crâne amplifie davantage cette

difficulté, en atténuant fortement la propagation électrique des sources, où seules les sources les

plus énergétiques restent visibles sur les enregistrements de surface. De plus l’EEG de scalp reste
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Figure 2: Diagramme schématique d’un EEG (mesures sur la surface de cuir chevelu(EEG de scalp)).
Modifié de Einevoll G.T., BNNI2015.

une modalité particulièrement perturbée par des sources d’artefacts tels que l’electromyogramme ,

les clignements d’yeux... Pour ces raisons, nous avons restreint les objectifs de cette thèse à la re-

construction de cartes d’activation des sources corticales de surface. Cette reconstruction joue néan-

moins un rôle important pour la compréhension des processus cérébraux que ce soit sur le versant

fonctionnel ou pathologique. Cette reconstruction permet de relier l’activation de certaines zones

corticales en réponse à un stimulus cognitif donné, et donc d’étudier les co-activations des réseaux

fonctionnels sous-jacents. Il est également utile dans l’identification et la localisation des structures

cérébrales pathologiques corticales superficielles .

Pourtant, et malgré ce cadre d’étude restreint, le nombre d’électrodes d’enregistrements reste

faible au regard de la taille de l’espace des sources: l’ensemble du manteau corticale. L’imagerie

de sources cérébrales est connue pour être un problème inverse particulièrement mal posé. De

nombreuses méthodes ont été proposées pour régulariser ce problème, en intégrant des informations

et des a priori bio-physiologiques de plus en plus précis. En particulier, on peut citer la conception de

modèles de propagation toujours plus détaillés, atteignant un paroxysme avec l’utilisation de modèles

numériques basés sur des méthodes par éléments finis, tenant compte à la fois des inhomogénéités

des conductivités et du caractère non isotrope des tissus cérébraux, et ce voxel par voxel. Toutefois,

la contribution réelle de telles cathédrales numériques reste difficile à quantifier, principalement en

raison de fortes incertitudes liées à la segmentation des tissus, à l’estimation des conductivités, et à
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de nombreux paramètres non observés, non intégrés ou volontairement négligés dans le cadre de la

réduction de modéle.

A l’inverse, cette thèse commence par reconsidérer la pertinence d’une résolution du problème in-

verse lorsque peu d’informations sont disponibles à l’exception des seuls enregistrements EEG. Notre

premier objectif est ainsi des méthodes se basant sur des caractéristiques basiques mais universelles

portant sur la géométrie de la boîte cranienne humaine ainsi que sur la propagation physiologique des

sources. Ces approches apparemment simplistes sont néanmoins rapides et robustes et fournissent

des informations d’intérêt sur l’activation des régions corticales. En dépit des qualités pré-citées,

nous reconnaissons que nous ne pouvons soutenir ce parti pris lorsque des informations anatomiques

fiables sont à disposition. Il est certain que des informations plus précises sur les générateurs neu-

ronaux et leurs dynamiques spatio-temporelles peuvent être extraites de la fusion d’informations

issue des données EEG et des structures anatomiques, à condition que les a priori utilisés pour con-

traindre le problème soient en effet concordant avec l’électro-physiologie des phénomènes observés.

Si il est vrai que cet organe est un important consommateur d’énergie, il a été prouvé qu’il régule

très efficacement cette consommation, peu de structures cérébrales étant simultanément actives et

présentant des durées d’activation très courtes. Nous explorons ainsi les approches produisant des

activations parcimonieuses des aires corticales, tout en assurant la plausibilité physiologique de leurs

décours temporels en tenant compte de leur aspect hautement non-stationnaire, de leurs caractéris-

tiques temps-fréquences, ainsi que des possibles synchronisations entre sources.

Structure de la thèse, développements et résultats

Le premier chapitre du manuscrit est consacré à une brève introduction de l’anatomie du cerveau et

sur l’état des connaissances actuelles sur le fonctionnement électro-physiologique cérébral à l’échelle

des sources. Nous présentons ensuite diverses techniques d’acquisition de données d’imagerie, telles

que l’Imagerie par Résonance Magnétique (IRM), la tomodensitométrie (CT) ainsi que l’imagerie

par résonance magnétique fonctionnelle (IRMf). Nous abordons ensuite l’acquisition par magné-

toencéphalographie (MEG), qui détecte et mesure les champs magnétiques émis au prix de très

coûteux dispositifs médicaux. Puis nous décrivons la modalité électroencéphalographique (EEG),

très couramment utilisé dans le contexte médical ainsi que dans les applications de type Inter-

face Homme-Machine (IHM), du fait de la relative facilité de mise en œuvre de cette technique

d’enregistrement. Nous présentons enfin quelques applications pour lesquelles l’identification des
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structures activées sur la surface corticale est une condition préalable, motivant le sujet de cette

thèse.

Du fait de sa haute résolution temporelle à l’échelle de la milliseconde, l’EEG est une modalité

privilégiée pour analyser la dynamique des phénomènes neuronaux. Elle s’est avérée très utile pour

l’extraction de divers indicateurs pertinents associés à des activités fonctionnelles ou pathologiques.

Cependant, les questions liées à sa faible résolution spatiale et les incertitudes inhérentes au modèle

de propagation utilisé rendent particulièrement difficile la reconstruction de sources à partir de cette

modalité. Par conséquent, dans le deuxième chapitre, nous décrivons les nombreuses méthodes de

la littérature consacrée à surmonter ces limitations. Tout d’abord, nous donnons un bref aperçu

des techniques couramment utilisées pour résoudre le problème direct et construire un modèle de

propagation. Ensuite, nous présentons et discutons différentes familles de méthodes permettant

de résoudre le problème inverse. Nous commençons par décrire les méthodes basées sur le Lapla-

cien de Surface (SL), qui reposent essentiellement sur les propriétés physiques de la propagation

électromagnétique à travers la boite crânienne. Ces approches se montrent efficaces pour éliminer

les distorsions et atténuations qui constituent la principale barrière de propagation des ondes élec-

tromagnétques . Nous introduisons ensuite les méthodes d’Imagerie de Sources Électriques (ESI),

très largement étudiées et développées ces vingt dernières années. Ces méthodes sont dédiées à

l’inversion de modèles de propagation, introduisant diverses contraintes afin de régulariser ce prob-

lème mal posé. Nous accordons une attention particulière à une sous-famille de ce type de méthodes

qui visent à reconstruire la carte cortical en utilisant un nombre réduit de sources actives, se basant

sur des stratégies d’optimisation de type Matching Pursuit pour imposer des contraintes de sparsité.

Inspirés par les approches de type Laplacien de Surface, nous proposons dans le chapitre 3 une

interpolation des mesures surfaciques à l’aide de fonctions à base radiale. Ces fonctions de base sont

construites en utilisant deux approximations différentes de la géométrie de la tête - plane et sphérique

- produisant des projections physiologiquement plausibles (de type dipolaire) sur la surface corticale.

L’opérateur d’interpolation est équivalent à l’inversion de matrice de propagation de rang plein (i.e.,

le nombre de sources et d’électrodes est identique), où les poids d’interpolation obtenus représentent

les amplitudes estimées des sources. Il en résulte des cartes d’activation discrètes. En adoptant

cette méthodologie, nous mettons en avant des liens évidents entre les approches par Laplacien de

surface et les méthodes ESI classiques basées sur une contrainte de norme minimale, alors que ces

deux approches apparaissent comme deux champs de recherche bien distincts dans la littérature.

En simulation, les performances de l’estimateur proposé, que nous baptisons sous le nom d’Imagerie

Corticale Dipolaire (ICD), sont comparées à des méthodes de type SL récentes et à une méthode
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Figure 3: Les approximations géométriques de fonctions à base radiale sont utilisées pour l’interpolation
plane et sphérique

de type norme minimale s’appuyant sur un modèle de propagation par éléments finis de frontière

(BEM). Alors que l’approche d’imagerie basée sur le modèle BEM donne de meilleurs résultats lorsque

Noise-free 20dB

Method 64 128 64 128

DCMp 0,85 0,88 0,84 0,82

DCMs 0,87 0,89 0,85 0,80

DCMBEM 0,94 0,95 0,85 0,48

SSLs 0,90 0,86 0,78 0,56

SSLg 0,89 0,88 0,79 0,62

MNEBEM 0,94 0,97 0,73 0,23

Table 1: Moyenne (1000 évaluations) des performances pour de multiples patchs actifs simulés distribués
aléatoirement sur la surface corticale. La corrélation entre les cartes corticales originales et les cartes
estimées est utilisée comme critère de performance.

le rapport signal à bruit (RSB) est élevé, notre approche ICD est moins sensible au bruit et donne

des résultats satisfaisants jusqu’à un RSB égal à 3 dB. Il procure des performances similaires lorsqu’il

est comparé à des approches de type SL plus évoluées, tout en gardant une très faible complexité

algorithmique et en se basant sur des considérations anatomiques et physiologiques très simplifiées.

L’approche ICD, bien qu’aisée d’implémentation, produit des cartes d’activation de faible résolu-

tion spatiale, et ne prend pas en compte les différences d’anatomie d’un patient à un autre. Dans le
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chapitre 4, nous relâchons la contrainte de rang plein et nous plaçons des sources dipolaires candi-

dates sur toute la surface corticale, produisant ainsi un modèle distribué. Nous résolvons le problème

direct en implémentant un modèle par éléments finis de frontière (BEM). En conséquence la résolu-

Figure 4: Modèle de BEM généré à partir de l’IRM d’un patient.

tion du problème inverse devient largement sous-déterminée. Les mesures de surface doivent être

expliquées par une décomposition sur un dictionnaire d’atomes spatiaux très corrélés entre eux. En

nous appuyant sur l’hypothèse physiologique selon laquelle peu de sources corticales sont simul-

tanément actives, nous avons effectué des approches de type Matching Pursuit. Ces approches se

sont révélées être efficaces pour cette même problématique d’estimation de sources cérébrales. Alors

que généralement la décomposition est effectuée uniquement dans le domaine spatial en sélection-

nant les dipôles qui expliquent le mieux les données, nous ajoutons une régularisation temporelle en

construisant des dictionnaires combinant les domaines spatiales et temporelles. Les atomes temp-

s/fréquences sont directement extraits des données EEG. Nous avons construit deux types de dic-

tionnaires, soit en utilisant une Analyse en Composantes Principales (ACP), soit par une décompo-

sition des signaux sur une base temps échelle ondelettes. L’optimisation est effectuée en utilisant

deux algorithmes de type Matching Pursuit: l’algorithme Single Best Replacement (SBR), ainsi que

l’algorithme Source Deflated Matching Pursuit (SDMP).

Dans le cas où les atomes sont extraits par ACP, la reconstruction de sources est satisfaisante

lorsque les générateurs neuronaux simulés sont des processus stationnaires. Le principal incon-

vénient de cette méthode réside dans la charge de calcul, la taille du dictionnaire combinant les

atomes temporels et spatiaux devenant rapidement très grande avec le nombre de composantes,

monopolisant des ressources mémoires trop importantes. Le dictionnaire par ondelettes apporte lui

des performances très intéressantes dans le cas de signaux non stationnaires tout en gardant une

charge de calcul très limitée en terme de ressources algorithmiques, et ceci quel que soit le nombre
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de sources considérées. Alors que la plupart des méthodes sont très sensibles à leur conditionnement

3dB SBRw SDMPw SBRt SDMPt RMUSIC

GOF 0.86 0.46 0.57 0.56 0.81

DLE 4.87 11.17 10.25 8.22 4.92

FDP 0.01 0.19 0.30 0.34 0.05

TPR 0.95 1.00 0.72 0.85 0.96

FDR 0.01 0.45 0.13 0.13 0.03

Time 0.05 95.01 0.04 32.04 2.65

Table 2: (Space-time-frequency (wavelet coefficients) estimation using SBR compared to the popu-
lar and recent estimators. More detailed information about performance criteria is provided in the-
sis.)Fréquence spatio-temporelle (coefficients d’ondelette) évaluation utilisant SBR comparé aux

experts populaires et récents. On fournit des informations plus détaillées sur des critères de per-

formance(prestation) dans la thèse.

initial, souvent lié à une pré-estimation du nombre de sources, l’algorithme d’optimisation SBR com-

biné au dictionnaire par ondelettes montre une bonne robustesse aux erreurs de paramétrage.

Aux termes des chapitres 3 et 4, nous validons nos approches sur des données réelles fournies

et expertisées par les neurologues du Centre Hospitalier Universitaire de Nancy affiliés au projet.

Ces données EEG réelles ont été obtenues sur des patients atteint d’épilepsie pharmaco-résistantes

au cours de la phase préopératoire. Les activités épileptiques observées sont de très courtes durées,

et présentent des structures temps/fréquence bien localisées. Les localisations de sources corticales

et les activités estimées sont validées par les experts neurologues et sont validées par les résultats

post-opératoires. En effet les localisation estimées concordent avec la détermination de la zone

épileptogène obtenue par exploration intracérébrale en Stéréo-EEG.
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Figure 5: Performance(Prestation) de localisation sur signaux d’EEG passés de bande réels(vrais). Les
emplacements Évalués correspondent aux pointes épileptiques.
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Introduction

The study of the cerebral mechanisms represents a major challenge for the understanding of its func-

tional and pathological processes. Since the first discovery of electrical phenomena within rabbits

and monkeys cerebral hemispheres by Adolf Beck in 1875 (detailed in (122)), huge developments in

this field have been made. However, numerous questions on how this impressive biological machin-

ery (about 86 billion neurons in the adult human brain) perceives the world and interacts with its

environment still remain open. Nowadays medical and technological development make it possible

to combine complex methods and devices for the exploration of its structures and functions, resulting

in the analysis of the human brain at different temporal and spatial scales. In this thesis, we focus on

the physiological phenomena at the macroscopic scale by exploiting non-invasive electrophysiologi-

cal scalp electrodes. The objective is to estimate the location of evoked-potential sources in response

to a cognitive stimuli, or in a pathological context for locating epileptogenic zones.

Objectives and Approaches

The activation of neuronal processes is translated in bio-physiological terms by the transmission

of ions through neurons and synapses. These exchange of information within the brain circuitry

produce external signals, such as an augmentation of the oxygen consumption or the emission of

an electromagnetic field, from which the locations of the underlying neuronal activities as well as

their dynamics might be infer. Such identification is of first importance to understand how the brain

governs motor and cognitive human abilities, or how pathological behaviors such as those observed

in epilepsy or Parkinson’s disease are appearing. In these last pathological cases, the interest is also

of clinical order, where the precise delineation of the brain structures responsible for the disease is

decisive for the success of the curative treatment, either surgical or pharmaceutical.

Recent technological developments in the field of non-invasive neuroimaging have opened up

new path for studying the human brain functioning. Various methods of clinical investigation can be
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used, from imaging modalities (PET, MRI) to electroencephalography (EEG, SEEG) and magnetoen-

cephalography (MEG). The electroencephalographic (EEG) measurements have the great advantage

to a resolution of the order of the millisecond, at the scale of the dynamic of the studied processes,

while being a non-invasive technique often used in clinical routine. However the identification of

the activated sources from EEG recordings remains an extremely difficult task, and this for several

reasons. The first one is related to its low spatial resolution, providing a superficial vision of the

brain volume almost limited to the upper surface of the cortical mantle. The presence of the skull

further amplify this aspect, by strongly filtering the electrical propagation of the brain sources, only

the most energetic sources being visible on the recordings. For these reasons, we have restrained the

scope of this thesis to the reconstruction of cortical activation maps. Such reconstruction still plays

an important role for the comprehension of the functional or pathological brain. It allows to relate

the activation of particular cortical areas in response to a given cognitive stimuli, hence to study

the co-activations of underlying functional networks. It is also helpful in identifying and localizing

superficial pathological brain structures.

Still despite of this reduced framework, the number of recording electrodes is far less than the

size of the source space. The source reconstruction is known to be a severely ill-posed problem (11).

Numerous methods have been proposed to regularize this problem, by integrating more and more

precise bio-physiological knowledge and priors. In particular, the available computing resources

allows to design more and more detailed propagation model, based on finite elements methods,

taking account of the conductivity inhomogeneities as well as the anisotropy of the brain medium,

voxel by voxel. However, the true contribution of such complex model is difficult to quantify, mostly

due to high degree of uncertainty related to the segmentation of the brain tissues, to the estimation

of their associated conductivities, and to numerous unobserved or neglected parameters.

In the beginning of this thesis is challenged the possibility of solving the inverse problem with

poor or simplified anatomical information in addition to the EEG recordings. The first objective is to

study the performance of easily implementable methodologies, based on basic but universal features

of the human head geometry as well as minimalist assumptions about the physiological propagation

of the sources. We argue that such seemingly simplistic approaches are fast and robust while still

providing exploitable information on the cortical activations. Despite its indisputable advantages,

we acknowledge that we cannot support such partial point of view when reliable anatomical in-

formations are within reach. There is no doubt that more precise information about the individual

neural generators or their spatio-temporal dynamics can be extracted from these combined (EEG and

anatomical) data, on condition that the priors used to constrain the problem are indeed concordant
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with the electro-physiology of the brain. While it is true that this organ is a greedy energy consumer,

this organ regulates very efficiently its energy consumption, meaning that few brain structures are

simultaneously active and that these activations are of short durations. Pursuing our philosophy

of developing economical methods involving limited number of parameters, we explore approaches

producing sparse activations of the cortical map, while ensuring the physiological plausibility of their

time-courses by taking into account their highly non-stationary aspect, their specific time-frequency

characteristics, as well as the source synchronizations that may appear.

Thesis Structure

The first chapter is dedicated to a brief introduction to the brain anatomy and to the state of cur-

rent knowledge on cerebral electro-physiological functioning. We then present various brain image

acquisition techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT) as

well as functional Magnetic Resonance Imaging (fMRI). We explain the brain activity measurements

using magnetoencephalography (MEG), which detects the magnetic fields of the brain at the cost

of highly expensive medical devices. We then describe the electroencephalogram (EEG) modality,

which is commonly used in medical context as well as in brain computer interfacing (BCI). Due to the

accessibility and popularity of this modality, we focus in this thesis on the resolution of the inverse

problems from these non-invasive scalp EEG data. We finally present few applications for which the

identification of activated structure on the cortical surface is a prerequisite, motivating this thesis.

Due to its high temporal resolution at the scale of the millisecond, the EEG is a privileged modal-

ity for analyzing the fast dynamics of the neuronal phenomena. It has shown to be very useful in

extracting relevant indicators of different brain fonctional or pathological activities. However, the

questions related to its poor spatial resolution and to the uncertainties inherent to the used propa-

gation model make the sources reconstruction a particularly difficult task. Therefore, in the second

chapter we describe the numerous methodologies from the literature dedicated to overcome these

limitations. First, we give a brief overview of the current used technics to solve the so-called forward

problem and to build a propagation model, from analytical to numerical models. Then we present

and discuss different families of method for solving the inverse problem. We begin by describing

the surface Laplacian (SL) methodologies (32, 68, 100), which rely on the physics of the electro-

magnetic propagation through the skull, and is efficiently used to remove the distortion and blurring

effects caused by this poorly conducting bone. The output of the SL are cortical potentials on a com-

plete surface (interpolated) or at the discrete points underneath the scalp surface electrodes. We
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then introduce the Electrical Source Imaging (ESI) family of approaches, which has been extensively

studied in the past twenty years (11, 52, 85, 91). These methods are dedicated to the inversion

of a given propagation model, introducing various constraints to regularize this ill-posed problem.

We give particular attention to a sub-family of methods which aim at reconstructing the scalp map

based on a few number of active sources, taking benefit of Matching Pursuit optimization strategies

to impose this constraint of sparsity.

We reconsider the problem of cortical source imaging using exclusively the electrical activi-

ties provided through the EEG scalp measurements, assuming simplified geometry of human head,

named as dipolar cortical mapping (DCM). The resulting full-rank estimators are applied on the data,

which in fact resembles the interpolation-based Surface Laplacian (SL) methods which rely on the

assumption that the scalp potential map is a linear combination of smooth basis functions produced

by the underlying sources. We want to emphasize that, in a similar manner as SL approaches, our

proposed DCM is not informed with the conductivity information. The true amplitudes are not esti-

mated but rather the activation map that correlates with the true cortical potentials. In the contrary

to SL, we propose parametrized families of interpolating functions physiologically informed.

Despite that the DCM is easily implementable full-rank estimator and does not requires complex

anatomical information, thus the particularism of each patient brain anatomy is not taken into ac-

count. Therefore it provides unprecise activation maps. To overcome this, further in the thesis we

relax the full rank constraint by adopting a dipolar distributed model along with a Boundary Element

Modeling (BEM) of the head. The inversion of this model is regularized using a constraint of par-

simony, based on the physiological assumption that only a few cortical sources are simultaneously

active. Such hypothesis is particularly valid in e.g., epileptic context or in the case of cognitive tasks,

where a limited number of sources are responsible of the visible activity on the EEG electrodes. The

novelty of this thesis comes from the fact that sparse estimate takes into account both the spatial

and the temporal dimension of the data. As a result two combined spatio-temporal dictionaries are

introduced. In the first case, the temporal atoms are extracted from the data using classical principal

component analysis. For the second dictionary we exploit a wavelet decomposition of the data, being

more robust to noise and well adapted to the non-stationary nature of the electrophysiological data.

The production of the sparse solutions is carried out using two recent sparse optimization schemes

called Single Best Replacement (SBR) and Source Deflating Matching Pursuit (SDMP).

In both of the chapters we evaluate the performance of the approaches and we compare them

with standard methods of the literature. We also provide validation on real clinical data, provided

and expertised by the neurologists of the Centre Hospitalier Universitaire (CHU) of Nancy affiliated
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to the project. These real data are related to the recordings of an epileptic patient. Such pathology

produces synchronized brain activities of short durations, with very characteristic time-frequency

structures, bringing a challenging context for the validation of our source reconstruction methods.
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Chapter 1

Human Brain Electrophysiology

1.1 The Brain

The human body is a very complex organism controlled by the nervous system which consists of

the brain and spinal cord, together known as the central nervous system (CNS), and the peripheral

nervous system or nerves. As shown in Figure 1.1, human nervous system can be seen in different

spatial scales starting from the molecular level and ending with a multi-physical integrated system.

The whole nervous system controls every single part of the body. Although the main principles of the

nervous system are known, according to the current knowledge the system itself is still too complex

to fully understand all its underlying processes. To understand the core of such complex system

researchers focused on both the biological aspects as well as the functional aspects of the human

brain in order to relate different motor (movements) and cognitive activities with corresponding

measured electrical neural activities. It is important to notice also that, in addition to the spatial

scales, one needs to consider also a wide spread of temporal scales that varies from miliseconds for

synaptic processes to years for the whole body, when different parameters of ageing is observed.

It is observed that the neural activity of the human fetus starts within the second trimester, more

precisely between the 17th and 23rd week. From this early stage and throughout life electrical

signals generated by the brain represent not only the brain function but also the state of the whole

body (108). This observation is the basis of the motivation to apply advanced digital signal processing

methods on the electroencephalogram (EEG) signals generated by the brain and measured on the

scalp surface. The idea is to extract specific temporal and/or spatial characteristics of the underlying

neural population activity from scalp EEG, as it will be shown further in the following chapters of

the thesis. In this very first chapter we will introduce the fundamentals of anatomical aspects of
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

Figure 1.1: The brain is an intrinsically multi-scale, multi-level organ operating across spatial scales
ranging from nanometres (proteins) to metres (the human body) and temporal scales from picoseconds
(atomic interactions) to years (the lifespan of a human being). (41)

the brain and the concept of underlying neural activity. Afterwards we will show the most popular

non-invasive concept of EEG measurements. Finally we will introduce different forward modelling

techniques that are used to model conductive human head and its inner structures.
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1.2 Anatomy

1.2 Anatomy

1.2.1 Brain structure

In principle, brain is subdivided into two almost equal hemispheres (Figure 1.2)- left and right where

the hemispheres communicate with each other through a thick band of 200-250 million nerve fibers

called the corpus callosum (1): Further each hemisphere is subdivided into four lobes (Figure 1.3)

Figure 1.2: Mouse brain (NASA) VS human brain (Medexpress). One can easily notice the very different
structure between human and mouse. Due to the fact that the human brain contains much more neurons,
folded structure is forming in order to allow bigger number of neurons thus enables much higher cognitive
ability.

which are frontal, parietal, temporal and occipital, together forming the larger superior region of the

brain called cerebrum. Each of the lobe is responsible for following functions:

• frontal lobes: contains most of the dopamine-sensitive neurons in the cerebral cortex that

is associated with reward, attention, short-term memory tasks, planning, and motivation.

Dopamine-sensitive neurons tends to limit and select sensory information arriving from the

thalamus to the forebrain (79).

• parietal lobes: manage sensation, handwriting, and body position. The most of the sensory

inputs from the skin caused by touch, temperature, and pain receptors, relay through the

thalamus to the parietal lobe;
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

Figure 1.3: External view of brain with 3 main parts (cerebrum, brainstem, cerebellum) where cerebrum
can be separated in four lobes (temporal, frontal, occipital, and parietal) (39).

• temporal lobes: manage the language, memory, hearing and the visual recognition of the

objects (79, 117);

• occipital lobes: contain the brain’s visual processing system (38).

The lobes were named of the overlying skull bones and were defined long before anything significant

was known about the functional specialization of the cerebral cortex (79).

The diagram in Figure 1.3 also shows that in addition to the cerebrum cortical layer, the brain

is also composed of the cerebellum and the brainstem. The brainstem (brains stalk) is the structure

through which nerve fibres rely signals called action potentials (AP) in both directions between the

spinal cord and higher brain centres. It should be pointed out that in the middle of the brain is

located the thalamus, which is composed of two egg-shaped structures at the top and to the side

of the brainstem. The Thalamus is a rely station and important integrating centre for all sensory

input to the cortex except smell. The cerebellum, located at the top and the back of the brainstem,
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1.2 Anatomy

is associated with the control of muscle movements. More recently, the cerebellum has been shown

to play additional role in cognition (79).

1.2.2 Neocortical layer

The outer portion of the cerebrum, the cerebral cortex (called as neocortex and is developed in

all mammals), is a folded structure varying in thickness from about 2-5mm, having a total surface

area of roughly 1600 to 4000 cm2. An interesting property of the cortical neurons is that they are

strongly interconnected. According to (96), the human brain contains around 86 billion neurons

interconnected with individual networks of other neurons.

Therefore it is estimated that for an average adult there are 1014 - 1015 synapses. The average

number of neocortical neurons was estimated to be 19 billion in female brains and 23 billion in male

brains. Due to the fact that cortex contains predominance of cell bodies, it turns gray when stained by

anatomists, but remains pink when alive. For this reason cortical layer is called also the gray matter.

Under the gray matter lies the white matter, which consists of nerve fibers (axons) conducting the

information among neurons. In humans, white matter interconnections between cortical regions

are quite numerous. Each centimeter of human neocortex may contain 107 input and output fibers

interconnecting different regions of the cortex (79, 108).

1.2.3 Neuron

1.2.3.1 General structure

In Figure 1.4 is shown the diagram of typical neuron cell. The structure of a neuron cell is the

following:

• the cell body (called also as soma) contains the cellular nucleus and cytoplasm which sur-

rounds it. The soma ensures the synthesis of the components necessary to the functioning of

the neuron;

• a dendrite is the branched projection of a neuron (dendrite tree), which allows the propagation

of the related electrical signals. Dendrites act as receptors for the neuron;

• an axon is a long prolongation dedicated to the potential transmitter towards the other neu-

rons;
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

Figure 1.4: Diagram of neuron (118)

• terminal buttons (small knobs at the end of an axon) are responsible for releasing the chem-

icals called neurotransmitters into the synapses, which ensure communication between neu-

rons.

In fact each neuron cell is responsible for the transmission of the information by generating and

transmitting flux nerve impulses in the brain. In such manner neurons are "firing" and once large

group of neurons are firing together, local neocortical region becomes active. Although to measure

such activity on the scalp the local region must be strong enough to penetrate such poorly conducting

anatomical layers as skull bone. Further in this chapter we will briefly discuss such type of neurons

that are able to produce such measurable potentials.

1.2.3.2 Pyramidal neuron

Pyramidal neurons are found in most mammalian forebrain structures, including the cerebral cortex,

the hippocampus and the amygdala, but not the olfactory bulb, the striatum, the midbrain, the
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1.2 Anatomy

hindbrain or the spinal cord. Thus, they are found primarily in structures that are associated with

advanced cognitive functions, and an understanding of these neurons is necessary to elucidate the

neural bases of such sophisticated functions (116). In the neocortical layer the pyramidal neurons

are well aligned, i.e. they are structured parallel to each other and in fact are perpendicular to

the cortical surface (81). As it will be explained further, this particular spatial organization plays a

critical role in the localization approaches.

Figure 1.5: Pyramidal neurons in the cortical layer (44). Bottom-right corresponds to the slice of the
human brain. Small cortical region is zoomed in bottom-left corner. Again even smaller scale of the
cortical layer is shown in top-left figure where multiple pyramidal neurons are coloured in black, yellow,
green, red and blue colours. Finally in the top-right corner real pyramidal neurons with laminar electrode
is shown.
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

Till now we introduced the fundamental structure of the brain in different scales. In cellular

level we showed that brain consists of neurons that allows to propagate the information through the

brain. Further we will discuss the activity of neural generators which consists of large neuron groups

that are synchronized and, thus, are able to produce measurable electrical potential.

1.2.4 Anatomic imaging techniques

In vivo and for our application, the head and brain anatomy of the explored patients is usually

explored using imaging techniques such as computerized tomography (CT or scanner) and magnetic

resonance imaging (MRI).

Computerized tomography (CT) (67) is an imaging procedure that uses specialized X-ray equip-

ments that allow to obtain detailed scans (images) of areas inside the body. It is also called comput-

erized tomography and computerized axial tomography (CAT). CT may involve the use of a contrast

(imaging) agent, or "dye" that can be either injected into a vein or taken orally before the procedure.

The contrast dye highlights specific areas inside the body, resulting in clearer pictures. Iodine and

barium are two dyes commonly used in CT.

Magnetic Resonance Imaging (MRI) (37) is a technique that uses a magnetic field and pulses of

radio wave energy to investigate the anatomy and physiology of the organs and structures inside the

body. In our context, it is often used to extract the mathematical geometrical models of the patients

head and inner structures, which is later used in different optimization schemes to solve the inverse

problem. In other words the MRI is used as an auxiliary information to improve the performance of

patient dependent inverse solvers.

1.3 Bioelectrical brain physiology

Understanding of neuronal functions and neurophysiological properties of the brain together with

the mechanisms underlying the generation of signals and their recordings is vital for those who use

such recordings for detection, diagnosis, and treatment of brain disorders and the related diseases

where the human life is at stake of correct interpretation of processed data (108).

Differences of electrical potentials are caused by summed post-synaptic graded potentials from

pyramidal cells that create electrical dipoles (Figure 1.6) between soma and apical dendrites (neural

branches). Brain electrical current consists mostly of Na+, K+, Ca++, and Cl− ions that are pumped

through channels in neuron membranes in the direction governed by membrane potential (69, 126).

Only large populations of active, time synchronized and spatially aligned neurons can generate elec-
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1.3 Bioelectrical brain physiology

Figure 1.6: Equivalent circuit for a neuron. Left-an excitatory post synaptic potential, an simplified
equivalent circuit for a neuron, and a resistive network for the extracellular environment. A neuron with
an excitatory synapse at the apical dendrite. Middle-a simplified equivalent circuit is depicted. Right-the
current density and equipotential lines in the vicinity of a dipole. The current density and equipotential
lines in the vicinity of a current source and current sink is depicted. Equipotential lines are also given.
Boxes are illustrated which represent the volumes Ω. (60).

trical activity recordable on the head surface. Thus a single electrode provides estimates of synaptic

action averaged over tissue masses containing between roughly 100 million and 1 billion neurons.

In fact, the extra-cranial recordings captures the neural activity which were affected fortuitously

by the complex anatomical structures and the background activity of the brain, which in terms of

source estimation is assumed as noise. On the other hand, much more detailed local information

with the cost of spatial coverage may be obtained from intra-cranial electrodes implanted in living

brains, thereby loosing the "big picture" of brain function. Furthermore, the dynamic behaviour

of intra-cranial recordings depends fundamentally on the measurement scale, determined mostly by

electrode size. Different electrode sizes and locations can result in substantial differences in recorded

dynamic behaviour, including frequency content and coherence. In practice, intra-cranial electrical

potentials might provide different information, than the one obtained from the scalp (79).

As mentioned, for these fields to be measured at a certain distance from the sources, it is impor-

tant that the underlying neuronal currents are well organized both in space and time. According to

Lopes Da Silva (80), at the macroscopic level, the activation of a set of neurons organized in parallel

is capable of creating dipole layers. Important conditions that have to be satisfied for this to occur

are the following:
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

• neurons should be spatially organized with the dendrites aligned in parallel, forming palisades,

• synaptic activation of the neuronal population should occur simultaneously.

In the neocortex, the small volume corresponds to hypothetical cortical modules, for example mini

or macro columns with mostly parallel organized layers of principal cells and numerous interneuron

types (22). Brain regions with parallel arranged dendrites and afferents, such as cortical structures,

give rise to large amplitude extracellular potentials, whereas subcortical nuclei with a less orderly

spatial organization generate closed fields, i.e., small-amplitude field events. A fundamental property

of a neuronal network is the capacity of the neurons to work in synchrony. This depends essentially

on the way the inputs are organized and on the network inter-connectivity. Thus, groups of neurons

may work synchronously as a population due to mutual connections (80).

Equivalent dipole

As determined previously all excitation and inhibition processes on the neuronal level are pri-

marily mediated by transmembrane current flow. In fact Maxwell equations and volume conduction

theory is used in order to explain the resulting secondary current and potential distribution every-

where within and on the surface of the head. Because intracranial current flow in a macroscopic

scale is relatively slow in physical terms and because the brain is a good conductor, the quasi-static

approach can be used, i.e., current loops are closed, meaning that there is as much current flowing

out of an activated neuron as there is flowing in from the extracellular space (111). Although in the

microscopic scale the distribution of these current sources and sinks is very complex, at the macro-

scopic level, as seen for example on the distant measurements such as scalp electrodes, the situation

looks much simpler. Hence the distant field can be thus approximated as a current dipole (111).

This assumption is used in this thesis where dipolar point-type sources are used in order to explain

the underlying cortical activity.

1.4 Functional activity measurements

Different invasive and non-invasive techniques exist for measuring and detecting the neural activity

of the brain. Depending on the temporal or spatial resolution one might choose the best that suits the

application. In this thesis we focus on non-invasive techniques such as EEG which is briefly explained

further.
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1.4 Functional activity measurements

Figure 1.7: Schematic diagram of a cortical fold. Due to the columnal organization of the cortex, current
sources (+) and sinks (-) are displaced perpendicular to the cortical surface. This results in radial dipoles
for superficial cortical segments, in tangential dipoles for fissural segments and in oblique dipoles for the
banks of fissures or differently oriented fissural segments. A single radial and single tangential equivalent
dipole give a good approximation for the compound activity of all cortical segments on one side and in
vicinity of a cortical fold (right) (111).

1.4.1 Electromagnetic measurements

1.4.1.1 Surface electroencephalography

Electroencephalogram, first introduced by Berger in (15), is a technique to record neural oscillations

in time (Figure 1.8) using only scalp surface placed electrodes. Those recorded oscillations provides

a very large-scale and robust measures of neocortical dynamic function. EEG is able to measure

mostly the currents that flow during synaptic excitations of the dendrites of many synchronized

pyramidal neurons in the cerebral cortex.
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

Figure 1.8: Schematic diagram of an EEG (measurements on the scalp surface) and ECoG electrodes
(measurements directly on the cortex) (44).

EEG systems consist of a certain number of electrodes, a set of differential amplifiers (one for each

channel) followed by filters, and and a recording device, nowadays digital, with sampling frequencies

usually going from minimum 256 to 4096 or more Hz. In clinical routine, the signals are analyzed,

with rare exceptions, up to at most 100 Hz.

The EEG recording electrodes and their proper function are crucial for acquiring high quality

data. Different types of electrodes are often used in the EEG recording systems, such as:

• disposable (gel-less, and pre-gelled types);

• reusable disc electrodes (gold, silver, stainless steel, or tin);

• headbands and electrode caps;

• saline-based electrodes;

• needle electrodes.

For multichannel recordings with a large number of electrodes, electrode caps are often used. Com-

monly used scalp electrodes consist of Ag-AgC L disks, less than 3 mm in diameter, with long flexible

leads that can be plugged into an amplifier. Needle electrodes are those that have to be implanted

under the skull with minimal invasive operations. High impedance can lead to distortion, which can

even mask the actual EEG signals (108).
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1.4 Functional activity measurements

The international Federation of Societies for Electroencephalography and Clinical Neurophysiol-

ogy has recommended the conventional electrode setting called as 10-20 system for 21 electrodes

(excluding the earlobe electrodes), as depicted in Figure 1.9 (87). The 10-20 system avoids both

Figure 1.9: Conventional 10-20 EEG electrode positions for placement of 21 electrodes.

eyeball placement and considers some constant distances by using specific anatomic landmarks from

which the measurement would be made and then uses 10 or 20% of that specified distance as the

electrode interval. The odd electrodes are on the left and the even ones on the right sides of the

head. For setting a larger number of electrodes using the above conventional system, the rest of the

electrodes are placed in between the above electrodes with equidistance between them (87, 108). In

some applications such as ERP analysis and brain computer interfacing a single channel may be used.

In such applications, however, the position of the corresponding electrode has to be well determined.

In another similar setting, called the Maudsley electrode positioning system, the conventional

10-20 system has been modified to capture better the signals from epileptic foci in epileptic seizure

recordings. The only difference between this system and the 10-20 conventional system is that

the outer electrodes are slightly lowered to enable better capturing of the required signals. The

advantage of this system over the conventional one is that it provides a more extensive coverage

of the lower part of the cerebral convexity, increasing the sensitivity for the recording from basal

subtemporal structures (17).
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

In Figure 1.10 is shown the neural activity measured by individual scalp EEG sensors. In fact

each senor registers the mean activity of some local neighborhood and thus, with the resolution of

electrode sampling (number of electrodes), we obtain the approximated time-courses of the corti-

cal activity seen by the electrodes. In the context of time analysis, the term rhythm is used when
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Figure 1.10: Sub-sample of 32 EEG measurements acquired using international 10-20 system of 64
sensors. Both low pass filter and average reference removal were applied on data.

the waves are quasi-stationary with homogeneous amplitudes and frequencies. In EEG, five main

rhythms are distinguished, issued from a classification of the brain rhythms driven by pragmatic clin-

ical consideration introduced by the International Federation of Societies for Electroencephalography

and Clinical Neurophysiology in 1974. The rhythms are classified from lowest to highest frequency

as follows: delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ):

1. δ (0,5-4 Hz): associated with deep sleep and probably present in a state of weakness. The δ

frequency is very slow and generally have a great amplitude. It appears in young children of

age less than one year and in this context constitutes the dominating rhythm.
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1.4 Functional activity measurements

2. θ (4-8 Hz): appears during the sleep or the periods of time of concentration. Some work lo-

cated a theta activity, induced by tasks of mental calculation, on the central line of the frontal

lobe (89). This type of rhythm can also appear during meditation (66) and during the proce-

dures of storage operation (110). It is frequent in children up to 13 years old but the abundant

presence of a theta or asymmetrical rhythm in the conscious adult is abnormal (135).

3. α (8-13 Hz): with an amplitude between 30 and 50 µV appears mainly in the posterior areas

(behind the vertex). Its distribution is bilateral and symmetrical and has a sinusoidal mor-

phology; however, in some cases it can be presented in a form of sharp waves (108). The

appearance of α rhythm is common when eyes are closed and during the relaxation therapy,

it is thus attenuated by the increase in vigilance, with a tendency to disappear at the time of a

mental activity and by the opening of the eyes.

4. β (13-30 Hz): has a localization in the mid-sized areas of the two hemispheres in an asyn-

chronous way. Its amplitude is lower than 30 µV and is usually masked by the α rhythm. Beta

rhythms are normal for an adult and are associated with the mental activities, such as atten-

tion, problem-solving and the comprehension of the outside world. High contents of the β

rhythms can be observed in a state of panic.

5. γ (>30 Hz): refers to the frequencies beyond 30 Hz. Its small amplitude and very uncommon

presence make it hardly detectable in the surface EEG but it is accessible with intracranial

EEG measurements. It could be associated with the synchronization between various cerebral

areas implied in the same functional network and thus it might be associated with information

processing during the execution of high-level tasks (134).

1.4.1.2 Invasive electroencephalography

Other techniques exist to observe or to improve the observation of the neural activity (see Fig-

ure 1.11). The most invasive Stereoelectroencephalography (SEEG) (124) is a procedure of record-

ing electroencephalographic signals using electrodes that are surgically implanted into the brain tis-

sue. It is used in epileptic patients that do not respond to medical treatment and thus are potential

candidates to receive brain surgery in order to control seizures.

Somehow less invasive is the Electrocorticography (ECoG) (49, 63), or intracranial electroen-

cephalography (iEEG). This type of electrophysiological monitoring uses electrodes placed directly

on the exposed surface of the brain in order to record the electrical activity from the cerebral cortex,
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1. HUMAN BRAIN ELECTROPHYSIOLOGY

thus it risks less brain damages. On the other hand, this technique requires the partial removal of

the skull that covers the area of interest, which implies more aggressive surgery for the other head

tissues (scalp, bone, ...).

1.4.1.3 Magnetoencephalography

Magnetoencephalography (MEG) is a non-invasive neurophysiological technique that measures the

magnetic fields generated by neuronal activity of the brain. The spatial distributions of the magnetic

fields are analyzed to localize the sources of the activity within the brain, and the locations of the

sources are superimposed on anatomical images, such as MRI, to provide information about both

the structure and function of the brain. We will not use these measurement in our work so we will

not detail them further (see e.g., (132) for more details).

1.4.2 Functional imaging

Functional MRI or fMRI (13) is a functional neuroimaging procedure that use MRI technology in

order to measures the brain activity by detecting changes associated with blood flow. This technique

is based on the fact that cerebral blood flow and neuronal activation are both related. In addition to

fMRI and EEG, functional and physiological changes within the brain may be registered also by SEEG

or MEG. Application of fMRI is, however, very limited in comparison to EEG or MEG for a number

of important reasons:

• Time resolution of fMRI image sequences is very low (from 1 second 100 seconds).

• Many types of mental activities, brain disorders, and malfunctions of the brain cannot be reg-

istered using fMRI since their effect on the level of oxygenated blood is low.

• The accessibility to fMRI (and currently to MEG) systems is limited and costly.

• The spatial resolution of EEG, however, is limited to the number of recording electrodes (or

number of coils for MEG).

Positron emission tomography (PET) (10) and Single photon emission computed tomography

(SPECT) (21) both are nuclear medicine imaging techniques which provide metabolic and functional

information unlike CT and MRI. This technique produces a three-dimensional image of functional

processes in the body and requires the injection of positron-emitting radionuclide (tracer) into the
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Figure 1.11: Spatial and temporal resolutions of the different brain imaging techniques (PET: Positron
Emission Tomography, SPECT: Single-Photon Emission Computed Tomography, CT-scan: Computed To-
mography scan, MRI: Magnetic Resonance Imaging, fMRI: functional MRI, EEG: ElectroEncephaloGraphy,
MEG: MagnetoEncephaloGraphy, ECoG: ElectroCorticoGraphy, SEEG: Stereo-EEG) (4).

patient in order to detect pairs of gamma rays emitted indirectly by injected tracer.

A global overview of the systems listed above is given in figure 1.11. Nowadays as these tech-

nologies become more and more accessible, it is possible to provide a hybrid data recording system

together with other imaging modalities, for example, EEG + fMRI. Such combination provides a very

forms a powerful tool for the investigation of brain function as shown in (93).

1.5 Applications

1.5.1 Medicine

Both visual and automatic studies of EEG are used in the diagnosis of many cerebral electrophysiolog-

ical disorders. The durations, amplitudes, forms and frequencies are thus fundamental components

of the EEG signal (20). High temporal resolution (milliseconds) allows to observe variations in the
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EEG patterns for certain states of the subject that indicate abnormality. Sharbrough (113) divided

the nonspecific abnormalities in the EEGs into three main categories:

• widespread intermittent slow wave abnormalities, often in the delta wave range and associated

with brain dysfunction;

• bilateral persistent EEG, usually associated with impaired conscious cerebral reactions;

• focal persistent EEG usually associated with focal cerebral disturbance.

The first category, a burst-type signal, is attenuated by alerting the individual and eye opening, and

accentuated with eye closure, hyperventilation, or drowsiness. The second category, i.e. bilateral

persistent EEG phenomenon is etiologically nonspecific and the mechanisms responsible for their

generation are only partially understood. Finally as for the third category, i.e. focal persistent EEG

are abnormalities that may be in the form of distortion and disappearance of normal patterns, ap-

pearance and increase of abnormal patterns, or disappearance of all patterns. Such changes are

seldom seen at the cerebral cortex. With regards to the three categories of abnormal EEGs, their

identification and classification requires a dynamic tool for various neurological conditions and any

other available information. A precise characterization of the abnormal patterns leads to a clearer

insight into some specific pathophysiologic reactions, such as epilepsy, or specific disease processes,

such as subacute sclerosing panencephalitis (SSPE) or Creutzfeldt-Jakob disease (CJD) (75).

In addition to the previously mentioned abnormalities it is noteworthy to point out the different

fields of medicine that, according to (108), benefit from the EEG analysis:

• monitoring alertness, coma, and brain death;

• locating areas of damage following head injury, stroke, and tumour;

• testing afferent pathways (by evoked potentials);

• monitoring cognitive engagement (alpha rhythm);

• producing biofeedback situations;

• controlling anaesthesia depth (servo anaesthesia);

• investigating epilepsy and locating seizure origin;

• testing epilepsy drug effects;
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• assisting in experimental cortical excision of epileptic focus;

• monitoring the brain development;

• testing drugs for convulsive effects;

• investigating sleep disorders and physiology;

• investigating mental disorders;

1.5.2 Brain-computer interface

The simplest way to interact with a computer is by using human-computer interfaces (HCI) such

as keyboard and mouse. Nevertheless, such interaction is very difficult for users who are unable to

generate necessary muscular movements to use typical HCI devices. Therefore a possible solution is

to develop a new interface, called brain-computer interface (BCI), in order to add this new dimension

of functionality (131). In fact brain-computer interface is a method of communication based on the

neural activity generated by the brain and is independent of its normal output pathways of peripheral

nerves and muscles. Therefore the ultimate goal of BCI is to provide a new channel of output for the

brain that requires voluntary adaptive control by the user (139).

The neural activity used in BCI can be recorded using invasive (ECoG) or noninvasive (EEG,

MEG, fMRI) techniques. In the simplest noninvasive case one might be interested not in high spatial

resolution scalp recordings but rather in recordings of a few electrodes that are located over a specific

region where underneath local neocortical area corresponds to some specific functions (3, 9, 19, 102,

138).

Most of BCI systems require reliable muscular control such as neck, head, eyes, or other facial

muscles. When only neural activity is required, BCI utilizes neural activity generated voluntarily by

the user. Interfaces based on involuntary neural activity such as epileptic seizure, utilize many of the

same components and principles as BCI, but are not included in this field. BCI systems, therefore, are

especially useful for severely disabled, or locked-in, individuals with no reliable muscular control to

interact with their surroundings. As detailed in Figure 1.12, the interaction with the device using BCI

is enabled through a variety of intermediary functional components, control signals, and feedback

loops. Intermediary functional components perform specific functions for converting intent into

action. By definition, this means that the user and the device are also integral parts of a BCI system.

Interaction is also made possible through feedback loops that serve to inform each component in the

system of the state of one or more components (131).
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Figure 1.12: Functional components and feedback loops in a brain-computer interface. The users brain
activity is measured by the electrodes and then amplified. The feature extractor transforms raw signals
into relevant feature vectors which are classified into logical controls by the feature translator. The control
interface converts the logical controls into semantic controls that are passed onto the device controller.
Finally the device controller changes the semantic controls into physical device-specific commands that
are executed by the device. The BCI system, therefore, can convert the user’s intent into device action (83,
131).

1.6 Objectives of the thesis

Qualitative analysis of EEG signals gives an insight of underlying neocortical activity. Although the

task is not simple due to the noise, smearing effect of skull and, as modelling is involved, model

errors. Depending on application one might be interested in different statistical, spatial and temporal

signal properties. In the medical context, main interests include time-frequency analysis as well as

localization of the neural generators. This requires solving an inverse problem, which often in organic

systems are ill-posed due to the uncertainty, noise, lack of spatial measurement resolution (only few

measurements are available) and model errors.

In this matter the first objective of the thesis is to propose methods with low computational cost
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and assuming simple models, thus without detailed anatomical information. On the other hand,

we exclude completely blind methods such as blind source separation (BSS), that do not guarantee

plausible source estimation neither in terms of time courses (the neural generators might be syn-

chronized) nor in terms of mixing model, i.e., resulting cortical or scalp potenrial map estimation

(which is in reality smooth and dipolar). The proposed method should thus provide smooth estima-

tion of the source scalp projections based on simple anatomical assumptions (priors) like electrode

3D locations. We will naturally come close to surface laplacians, which can be seen as methods to

estimate the activity of the cortical generators (sources) situated below the measuring electrodes.

The previous framework considers a fixed number of sources (very small comparing to the mul-

tiple possible locations on the cortical surface), with fixed positions. In the second part of our work

we relaxed these constraints (given number of sources at fixed positions), while still aiming to obtain

a small number of generators explaining the measurements and thus the scalp maps. In this context,

sparse approximations of the signal are very popular for under-determined problems (i.e., when the

number of possible sources is much higher that the number of sensors) where infinite number of

solutions exist. Indeed, in some situations (e.g., epilepsy) the sparse nature of both temporal and

spatial neural activity must be taken into account. Therefore the second objective of the thesis is to

impose spatial and temporal sparsity.

In order to achieve the objectives of the thesis one must investigate the available methods and

approaches that deal with such problems. In fact, dozens of methods are available to solve under-

determined inverse problem where no unique solution exists. Therefore the second chapter of this

thesis is dedicated to the state of the art where we show different families of Electrical Source Imaging

(ESI) techniques.

Further in the third chapter we tackle the first objective listed above and we propose a new family

of methods called dipolar cortical mapping (DCM), aiming to find a balance between ESI methods

based on anatomical models and methods without strong anatomical priors, such as surface Lapla-

cians. Like some recent anatomy based spline interpolation surface Laplacians (32), our proposed

method uses easily available anatomical information. We go one step further, by using this modality

to parametrize a physiologically informed family of interpolating functions. The cortical potential

then is estimated under each electrode by inverting a full rank model.

In the fourth chapter, we propose a novel approach for cortical source imaging, based on a an

original space-time-frequency dictionary extracted from the data using wavelet techniques and a re-

cent dictionary-based optimisation scheme called Single Best Replacement. This method adopts a
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forward-backward strategy and is able to reconsider spurious decisions made in the previous iter-

ations. The main contribution of this chapter resides in the construction of the dictionary, which

is made of spatio-temporal atoms built from the fusion of a realistic BEM head model with time-

frequency atoms learned from the data using a wavelet denoising approach.
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Chapter 2

Brain Source Imaging

In the previous chapter we have introduced the anatomical aspects of neural generators and their

modeling as equivalent dipoles. Those generators produce measurable potentials which can be

recorded using EEG set-up. The aim of this work is to investigate and propose methods for explaining

the EEG measurements using as less as possible anatomical information and/or generators.

In the first part of the chapter, we will focus on the general problem of the estimation of the un-

derlying generators from the EEG recordings. The classical approach passes trough a first important

aspect, which is the resolution (more or less precise) of the forward problem. This forward model

yields a lead-field matrix explaining the projection of a given set of (dipolar point) sources on the

electrodes. We discuss the common methodologies for the construction of such lead-fields, from sim-

ple analytical models to more elaborated numerical models based on a discretized patient-dependent

model of the head.

We then consider a first family of approaches estimating the dura-potential (cortical potential

distribution map) from EEG measurements with weak or absent priors on the mixing model, i.e., in-

dependently of the resolution of any forward problem. Such methods, known as Surface Laplacians

(SL) (see section 2.2), are based on second order derivatives of measured surface potential and

depend only on the considered surface geometry. SL acts as a high-pass spatial filter and elimi-

nates much of the volume conduction distortion, improving the spatial resolution and yielding a

reference-independent estimate of cortical potentials (25, 79). We will discuss briefly the advan-

tages and drawbacks of both discrete and continuous (based on interpolation), local and global,

Laplacian estimates.

A second family of approaches deals with the inversion of a given forward model. As said previ-

ously, we aim to explain the measurements using as less variable as possible. When a forward model
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is given, this comes to choosing a small number of generators (i.e., a small number of source positions

and/or orientations). The equivalent dipole fitting procedure belongs to this class, where only one to

few dipoles are assumed to be active. Such approach requires strong assumptions about the number

of underlying dipoles, and is based on non-linear optimization techniques that are highly sensitive

to model uncertainties and initialization issues. An alternative approach consists in Electrical Source

Imaging (ESI) methods, based on distributed source model, where a great number of (fixed-oriented)

dipole candidates are covering the whole source space. Such inverse problem is severely ill-posed,

the size of the source space being far higher than the number of data channels. We provide a brief

overview of the most popular approaches to regularize this problem, before emphasizing on scanning

and Matching Pursuit approaches for obtaining sparse solutions.

2.1 Forward modelling of the head medium

The human head is organized in layers, the principal ones we will consider being the scalp, the skull,

the Cerebrospinal Fluid (CSF), and finally the brain itself composed of the white and the gray matters.

The CSF is often ignored and a further simplification is too consider the brain as an homogeneous

medium with no distinction between white and gray matters, leading to the over-simplified model

of Figure 2.1. Depending on the available anatomical information, different geometries as well as

Figure 2.1: The three principal layers of the brain including their approximate resistivities and thick-
nesses (Ω = ohm) (108)
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conductivities can be assumed, starting from Infinite Homogeneous Medium (IHM) up to realistic

high resolutions Boundary or Finite Element Models (BEM or FEM), requiring MRI and CT data

segmentation. Given one of these models, a so-called forward model can be built. Such model takes

the form of a lead-field matrix A where each column corresponds to the electrical potential generated

by a unit dipole placed at a given location, generally in the gray matter. In this section we give details

on the computation of A under various hypothesis.

2.1.1 Infinite Homogeneous Medium (IHM)

The simplest model considers the electro-magnetic propagation in an unbounded medium having an

homogeneous conductivity σin f . It is commonly accepted that the frequencies observed on the scalp

do not exceed 100Hz. For such low frequencies, the quasi-static approximation can be assumed, and

the time derivatives in Maxwell’s equations can be neglected. Under such hypothesis, the potential

measured at any location rb due to a primary current density field Jp can be expressed as follows (109,

120):

V(r) =
1

4πσin f

∫

"3

Jp(r
′) · r− r′

||r− r′||3
dr′ (2.1)

where V vanishes with the distance. If Jp is reduced to a single dipole at location r0 with momentum

q (see Figure 2.2), the potential at r due to this dipole writes:

V(r) =
1

4πσin f

q ·
r− r0

||r− r0||3
(2.2)

Such model is straightforward to implement with extremely low computational cost. It provides

a rough approximations when no anatomical information is available, but is obviously over-simplistic

with regards to the anatomical complexity of the head and to its inhomogeneities.

2.1.2 Spherical head models

A first attempt to have a more realistic head approximation was made by Frank in (42), followed later

by more efficient computation (e.g., (142)), where a single sphere model for two monopole sources

was proposed. Single sphere model can be viewed as an extension of infinite homogeneous model

by adding a boundary interface S modeling the presence of the principal inhomogneities, namely

the skull. The inner medium is assumed to be homogeneous while the outer space is assumed to be

non-conducting.
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Figure 2.2: Dipole with momentum q at location r0
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Figure 2.3: Diagram of single sphere model in order to describe the potential at point r. Dipole is located
at r0 with moment q. R corresponds to the radius of spherical volume Ω with external boundary S.
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where K =
||r||2
R2 . See Figure 2.3 for other variable notations.

If more accurate conductivity information as well as the approximate thickness of skull is avail-

able, multi-sphere model, introduced by Rush and Driscoll in (107), can be used. Between the layers,

each medium is assumed homogeneous with a given conductivity (121).
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Well used and fast approach proposed by Berg in (14) use three concentric spheres where re-

sulting source dipole is approximated as a sum of three individual dipoles of different depths inside

one sphere. Although one might increase the number of spheres and use more complicated com-

putation of potentials. As an example we show an N-sphere model (see Figure 2.4). Munch (31)

demonstrated that, using series of Legendre polynomials, it was possible to compute the potential

for arbitrary points inside the outermost sphere. Let n0 and nr be the unit vectors corresponding

R1

R2

RN−1

RN

q r0 r

α

σ1

σ2

σN−1

σN

Figure 2.4: Diagram representing the concentric N-layered sphere model (multisphere) with radii
R1 . . . RN . The model consists of a measurement point r within a first sphere (e.g., the approximation
of the brain boundary) with a dipole at position r0 and its momentum q.

respectively to the dipole r0 and the observation point (electrode) r, with α the angle made by these

two vectors. The internal potentials for any position r within the inner medium can be computed as:

V (r) =
1

4π
q · {n0 (S1 − cosαS0) + nrS0} (2.4)

with

S0 =
1
||r0| |

∞
∑

j=1

(2 j + 1)Rj(r0, r)P
′

j(cosα) (2.5)

and

S1 =

∞
∑

j=1

(2 j + 1)R
′

j(r0, r)Pj(cosα) (2.6)

where Pj and P
′

j denote respectively the Legendre polynomial and its derivative. R(.) is a function

of dipole and electrode positions in the N -sphere head model with different conductivities σ.
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2.1.3 Realistic head models

2.1.3.1 Boundary Element Model (BEM)

As for the N-spheres models, boundary element model (BEM) assumes homogeneous medium be-

tween two layers, the main difference being that the geometry is no more assumed spherical but

is now extracted from imaging modalities, MRI for anatomical tissues and CT for bone structures

(Figure 2.5).

Figure 2.5: Realistic surfaces of inner skull (left), outer skull (middle) and skin (right) used to compute
the BEM forward model.

The resolution of such forward problem is numerical. Geselowitz (47) derived a solution in in-

tegral form for the realistic piecewise conductor model Ω (Ω =
⋃

Ω j , j = 1, . . . , N) with N interfaces

(Sj , j = 1, . . . , N):

σ(r)V (r) = Vinf (r) +

N
∑

j=1

σ j −σ j+1

4π

∫

Sj

Vj(r
′)

r′ − r

||r′ − r| |3
· n(r′)dSj (2.7)

where Vinf is the potential in an infinite homogeneous medium with σin f = 1 and Vj is the potential

on jth surface. Here, r is every point in Ω but not on any Sj . However, 2.7 cannot be solved because

the term on the right implies the integration of the surface potential. But when r approaches a point

on a surface Sk, equation 2.7 can be modified as (109):

σk +σk+1

2
Vk(r) = Vinf (r) +

N
∑

j=1

σ j −σ j+1

4π

∫

Sj

Vj(r
′)

r′ − r

||r′ − r| |3
· n(r′)dSj (2.8)
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where Vk(r) is the potential at r ∈ Sk. Calculating Vk(r) for each k, we combine 2.8 and 2.7 to

get V (r) for r ∈ Ω. Unfortunately, for realistic models, 2.8 and thus 2.7 cannot be solved directly

(because of the surface integration) and some approximation (discretization) of the surface function

needs to be provided for a numerical solution of V . See for example (70) for further details about

solving forward problems in the context of EEG.

A widely used method to compute the forward model (lead-field matrix) is the Isolate Problem

Approach (IPA) (also called Isolated Skull Approach), proposed by Hamalainen and Sarvas in (62)

for 3-layer models. A generalized version of the N-layer model was shown in (84) and tested in (45).

2.1.3.2 Finite Element Model (FEM)

Finite Element Method (FEM) is considered to be the most advanced method for the calculation of the

forward problem. Compared to BEM, FEM discretizes the head volume Ω in elementary (volumic)

elements (usually at the scale of the voxel) and assigns a conductivity for each of them. In this

way, FEM is able to handle realistic geometries including inhomogeneous and anisotropic tissue

properties (30, 59, 64). For detailed explanation please see (132) and (70). Such models are difficult

Figure 2.6: Segmented realistic anatomical tissues used to compute the FEM forward model. Image
taken from (University of Münster web page). Each color represents different anatomycal tissue with its
particular conductivity.

to construct and come with a huge computational burden. As shown in chapter 5 of (70) and in

(132), the modeling error between both BEM and FEM is small already when inner anatomical

structures in BEM are approximated with one layer, at least when using current approximations
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for the FEM parameters (constant scalars conductivities by layer). The error becomes negligible

when more layers are introduced, while the computation burden is much lower for the BEM, which

highlights its advantage over FEM.

2.2 Surface Laplacians

2.2.1 Principle

Despite the high temporal resolution in milliseconds of EEG recordings, such signals are very difficult

to analyze due to several drawbacks or shortcomings. First drawback is related to the distance

between sources and sensors, thus the source mixing phenomenon, mainly due to the smearing

effect of the skull (its poor conductivity). Second, the quality of EEG depends on the spatial sampling

(number of electrodes). Too low number of electrodes may lead to an under-sampling of the scalp

surface, and some high spatial frequencies might be missed in the source space. Last (third) but not

the least important drawback is that EEG recordings strongly depends on the distortion of reference

electrode (40).

Estimation using Surface Laplacians (SL) yields following advantages: they aim to eliminate the

mixing due to the smearing effect of the skull acting as a sharpening or a high-pass filter. In addition

they eliminate the effect of reference electrode. It is noteworthy that SL are able to achieve previously

listed advantages without any information about conductivities, thus without forward modeling. The

disadvantage is that it only estimates cortical surface sources, but on the other hand these cortical

potentials are the main contributors to scalp EEG as they are close enough to be detectable by the

surface electrodes. Indeed, it is the distance between the cortical generators and the corresponding

surface electrode which determines the depth and "visibility" of the active sources (48, 71, 79, 94).

An example of Surface Laplacian is illustrated Figure 2.7.

The main idea behind Surface Laplacians is simple. The well known Ohm’s law shows a relation

between the current density and the applied electric field E (which is the spatial gradient of the

potential V ):

J= σE= −σ∇V (2.9)

withσ the electrical conductivity (being a clue that SL assumes homogeneous and isotropic medium).

In the EEG context, several hypothesis are made when adopting the previous relation. First, it

is assumed that, in the brain regions with dense source activities, as it is the case in the cortical

layer, the direction of the current depends on the cortical geometry determining the source moment

(orientation). As the cortical surface is very close to the inner skull surface, the potentials of sources
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Figure 2.7: Interpolated scalp recordings (left) and estimated cortical potentials (right) (48). Colors
represent the potential values (red - positive, blue - negative). Cortical potentials forms sharp sources
(red) and sinks (blue) that are greatly blurred due to the smearing effect of the skull. Besides this is the
main objective of the SL - to remove the distortion of the skull and estimate the durapotentials.

oriented normal to the skull propagates through the skull into the scalp and spreads tangentially

near the scalp boundary due to the air isolation. This leads to idea that different surface regions of

the skull behave as skull "sources" and "sinks" as the result of physiological source activities within

the brain (79).

Thus, when viewed as a two-dimensional function of space in the local tangent plane to the scalp

surface, the scalp current density is seen to diverge from a point. Standard considerations in vector

calculus shows that, when applied to a vector function of space, the divergence operator equals zero

at most locations, but different from zero at locations where the function is spreading radially in

the tangent plane (6, 46). Those "sources" and "sinks" for scalp current on two dimensional scalp

surface S can be determined by evaluating the change in current density JS starting from equation

(2.9). The divergence of current density along the scalp is then equivalent to the surface Laplacian

∇2
S of the scalp potential VS:

∇S · JS =∇S ·σS∇SVS = σS∇2
SVS (2.10)

where σS is the conductivity of the scalp. Note that the gradient operator ∇S is the derivative along

the scalp surface S, expressed in the surface coordinates of 2-dimensional surface, that assumes the
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Figure 2.8: Schematic view of cortical dipole layer sources and volume-conducted currents. Scalp
"source" is the scalp region into which current is injected by brain current sources and a scalp "sink"
as corresponding scalp region where current is flowing back into the skull (79).

local geometry of the scalp.

As explained in (24), the divergence can be also interpreted as a local measure of the difference

between how much field (technically, its flux) gets into an infinitesimal volume surrounding the

point where the divergence is computed and how much of this field gets out; if the divergence is

zero, the same amount of field that gets into the infinitesimal volume also gets out. If the divergence

is negative, the amount of field getting in is more than getting out (sink); and if the divergence is

positive, more field gets out than comes into the infinitesimal volume (source).

Surface Laplacians (SL) act as a spatial filter. It increases the topographical specificity and filters

out spatially broad features (shared among electrodes). It highlights local spatial features that are

present in the data but may be difficult to observe when summed with large-amplitude low-spatial

bandpass filter. Further we will discuss two different estimates. First type of SL estimates (local and

discrete) deal with the raw EEG recordings (operates only with potential values at the position of the

electrodes) and the resulting cortical potential is estimated under each electrode. Such estimate is

very easy to implement but is dependent on the distances between electrodes and suffers from border

effects. Second, more elaborated techniques, global and continuous, are based on a continuous scalp

potential map derived from surface interpolation of the electrode potentials. The interpolation can
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Figure 2.9: Conceptual overview of the motivations for and consequences of the surface Laplacian applied
to EEG data (29). On the left is illustrated volume conduction where electrical fields spread tangentially
at the boundary between the skull and the scalp. Middle, shows how low-spatial-frequency components
in scalp EEG(top) are filtered out in the surface Laplacian (bottom). In the panel on the right using power
plots is illustrated the ability of SL to work as a bandpass filter.

be done using either spherical, thin-plate or different splines assuming planar, spherical or realistic

geometry. Moreover, these techniques deal better with border electrodes.

2.2.2 Local SL estimates

In the simplest case where 2-D planar surface with spatial coordinates {x , y} for any points r is

considered, Hjorth in (68) defined the surface Laplacian operator as:

Lr =∇2
r (Vr) =

∂ 2Vr

∂ x2
+
∂ 2Vr

∂ y2
(2.11)

In his paper Hjorth showed that the magnitude and the sign of radial current can be determined by

means of the Laplace operator as:

Ir = −
1
ξ
∇2

r (Vr) (2.12)

where ξ is a constant having the dimension of resistance and being related to the conductivity of

the actual medium. The negative sign indicates that the current is assumed to be directed outwards

from the interior of the volume. The current may also be represented as a voltage, having a direction

to the surface and acting over a resistance of value I .

Vsource = Irξ= −
1

∂ 2

∂ x2
+
∂ 2

∂ y2

2

Vr (2.13)

Assuming equal distances between scalp electrodes (uniformly distributed along scalp surface

projected on plane) in both directions and assigning unity to these distances, the operator simplifies
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VrV1

V4

V2

V3

Figure 2.10: Hjorth Laplacian montage. Four neighbouring electrodes located in equal distances from
the center electrode.

as the sum of the second order differences in both directions:

Vsource = −(d2
x + d2

y)Vr (2.14)

Practically, defining the potential V0 as the potential at center electrode, and V1, V2, V3 and V4 the

surrounding potentials on the surface (see Figure 2.10), these derivatives can be determined as

d2
x (Vr) = (V1 − V0)− (V3 − V0) and d2

y(Vr) = (V2 − V0)− (V4 − V0). The final result yields

Vsource = (V0 − V1)− (V0 − V3) + (V0 − V2)− (V0 − V4) (2.15)

This SL estimate was first proposed in (68) and later exploited in (46, 125). Hjorth montage

is simple nearest-neighbour Laplacian method that estimates directly the SL at selected sites using

only the sampled electrical potential values of V , i.e., the potential values at electrodes.

In addition to Hjorth Laplacian estimate, as proposed in (127), calculation of the average gradient

for all electrode sites results in a more spatially confined distribution of activity, as it produces the

measured spread in potential over the scalp due to lateral current flow. Let Vj , j = 1, · · · , n be

the potential of the n neighbouring electrodes and dj the distance between the j-th neighbouring

electrode and the electrode on which the Laplacian is estimated, the SL is computed on a planar

scalp model by:

∇2V ≈ V0 −

∑n
j=1

1
dj

Vj
∑n

j=1
1
dj

(2.16)

where V is the potential at the centre electrode. Babiloni in (8) propose to use n = 10 in order to

take into account 10 neighbouring electrodes.

It is noteworthy that somehow parallel developments were done in neural micro-scale measure-

ments (i.e., for estimating current sources and sinks at the neurone scale, see e.g., (88, 101)). In this
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setup, measurements are often done by linearly disposed micro-electrodes, and the so-called current

source density (CSD) analysis aims to give access to the current sinks and sources in the extracellu-

lar space. These sources and sinks in fact are the local generators of the field potentials, as well as

of the action potentials (88). At this microscopic scale, the profiles of field potentials are obtained

by measurements at discrete equidistant locations and the current sources (CSD estimates) are sim-

ply computed as the second spatial derivative calculated according to a finite difference equation

perfectly similar to (2.15), but applied along the electrode axis. It is also interesting to note that

more recent developments (77, 78, 101) propose an alternative approach to discrete CSD (strictly

equivalent to the surface laplacian applied to the linear case at a microscopic scale), which consists

in inverting a forward problem, usually assuming simple forward modeling (infinite homogeneous

medium, although more complicated source models). In this thesis we will not focus on the micro-

scopic scale, but we somehow explore the two perspectives described here (laplacian and inverse

modeling) in parallel at the macroscopic EEG scale (see chapter 3).

The advantage of local (discrete) SL estimate is its ease of implementation and fast computation.

However, this montage do not take into account the complex head geometry. Also, the border effects

should be considered, as the border electrode sites lack the neighbourhood information needed for

solving the discrete laplacian. The loss of information also increases proportionally with the spatial

sampling (7).

In order allow the construction of more precise SL, one might use interpolated surfaces. Further

in this chapter we will derive them for spherical geometry, where the expression for the surface

Laplacian can be written as derivatives in the corresponding system coordinate(76). In the same

manner the surface Laplacian can also be computed for the arbitrary surface geometry, for instance a

realistic scalp geometry derived from MRI images as shown in (7, 32) by making use of local surface

normals and electrode positions.

2.2.3 Global SL estimate

Nowadays, as high resolution EEG (HR EEG) allows the construction of continuous surface. In such

context one might use spline interpolation function to interpolate both surface and potentials, provid-

ing the method for global estimate. Such methods depend on two main factors (125): the geometry

and the interpolating function. Global SL estimate can be evaluated in two main steps: the first one

interpolates the recorded scalp potential values V using some spline/radial basis functions in order to

obtain a continuous function V (r) for all the points on the head surface, while the second one applies

a Laplacian operator similar to the one in (2.11), but adapted to the considered geometry. Classical

49



2. BRAIN SOURCE IMAGING

interpolation solutions vary from spherical splines to thin-plate RBFs, while derivation assumes a

given geometry of the head model: spherical (8, 100), ellipsoidal (76) or realistic (7, 32).

2.2.3.1 Spherical head model

Perrin in (100) shows SL estimate using spherical splines on spherical surface. In order to project

electrodes from the general head onto a sphere, Perrin uses the properties of the 10-20 system by

placing the electrodes using the inter-distance electrodes given by this particular set-up.

If r is a point over the scalp model surface, ri the i-th electrode coordinates on which the potential

vi ∈ V is recorded, and N the total number of electrodes, the computation of the spherical spline

which interpolates Vi at the coordinate ri writes:

V (r) = c0 +

N
∑

i=1

ci g(cos(r, ri)) (2.17)

where the ci is the solution of
4

(GC+ Tc0) = V

TtC= 0
(2.18)

with c0 to be defined with:

Tt = [1, 1, · · · , 1]

Ct = [c1, c2, · · · , cn]

Vt = [V1, V2, · · · , vn]

(2.19)

The t apex here indicates matrix transposition. The G array has its (i, j) element defined as

gi j = g[cos(ri , r j)] (2.20)

with cos(ri , r j) as the cosine between the electrode positions ri and r j . The g(.) function is defined

as follows:

g(x) =
1

4π

∞
∑

n=1

2n+ 1
nm(n+ 1)m

Pn(x) (2.21)

where Pn(x) are the usual Legendre polynomials, and m the spline order (equal to 4 in the original

paper (100)).

Finally, to estimate the current density, the classical property showing that the 2-dimensional

spherical Laplacian of the Legendre polynomials is a multiple of the same Legendre polynomial turns

out to be very useful:

(Pn = −(2n+ 1)Pn (2.22)
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Then, the expression of the current density at a point r, noted C(r), is proportional to minus the

2-dimensional spherical Laplacian of the potential:

C(r) =

n
∑

i=1

cih(cos(r, ri)) (2.23)

where the interpolating function h(.) is obtained with by injecting equation (2.22) into (2.21):

h(x) = − 1
4π

∞
∑

n=1

(2n+ 1)2

nm(n+ 1)m
Pn(x) (2.24)

More elaborated SL estimates were proposed, for example considering an elliptical geometry for

the head (76). This development can be considered as a transition between spherical and realistic

SL, with numerical geometry derived from imaging modalities. We will focus next directly on the

realistic geometry laplacians, such as proposed by (7, 32).

2.2.3.2 Realistic head model

The realistic Laplacian method developed in (7, 8) is based on the tensorial formulation of the SL on a

generic 3-D surface Ω at 3-D points rx ,y,z . In a very similar manner as for all global methods, the first

step is an interpolation that must be computed for the chosen geometry. As usual, spline functions

are used to interpolate the potential values V (r) at any point of the head surface frome the measured

values at the electrode positions Vi = V (ri). Babiloni in (7) showed that such SL estimate is subject

dependent due to the uniqueness of each person head geometry. Later, some improvements were

made by He in (65). A new realistic geometry spline Laplacian estimation technique is developed for

high-resolution EEG imaging and tested using both a 3-concentric-sphere head model and a realistic

head model.

Such formulation allows the calculation of the SL of the potential using a non-orthogonal curvi-

linear coordinate system on generic surface Ω. Thus x = u, y = v and z = f (u, v) is a curvilinear

coordinate system on Ω, and f (u, v) a function whose second order partial derivatives exist and are

continuous. Then if f (u, v) is a mathematical model of the scalp surface, the SL of the interpolated

potential function V (u, v) on this model is defined by:

∇2V (u, v) =
1
)

g

5

∂

∂ u
(
)

g)

5

g11 ∂ V

∂ u
+ g12 ∂ V

∂ v

6

∂

∂ v
(
)

g)

5

g21 ∂ V

∂ u
+ g22 ∂ V

∂ v

66

(2.25)
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where

g = 1+
5

∂ f

∂ u

62

+

5

∂ f

∂ v

62

g11 =
1+
7

∂ f
∂ u

82

g

g12 = g21 =
− ∂ f
∂ u
∂ f
∂ v

g

g22 =
1+
7

∂ f
∂ v

82

g

(2.26)

where the continuous potential function V (u, v) is computed with Duchon’s 3D splines, also known

as thin plate splines (34).

SSL Based on realistic geometry: a numerical approach

Deng in his recent paper (32) proposes a new SL estimation method for realistic scalp geometry

which is based on two main steps. First, continuous potential distribution function V (r) is computed

from the discrete measurements (EEG electrodes) using a 3-D polyharmonic spline interpolation

scheme which, in fact, is the same principle used for spherical spline Laplacian (79). In the second

step, the SL operator ∇2
S is constructed from the Laplace operator ∇2 defined on the underlying

surface, which takes the form of the trace of the function’s Hessian:

∇2V = t r[H(V )] = t r[∇∇V ] (2.27)

The operator is restricted to the surface tangent plane by removing the surface normal component

from the gradient of the function V (r). At every estimation position r on the surface, the surface

normal projection nT n is removed, the remaining quantity (I−nT n) thus gives the projection onto the

tangent plane at r. On most surfaces, the quantity (I − nT n) is also the function of r and its gradient

reflects the impact of local geometry on the estimation of SL. Also to simplify the visualization and

source analysis Deng in (32) defines SL to be the negative of the resulting operator:

∇2
SV = −t r[∇(I − nT n)∇V ] = −t r(∇∇V ) + t r[∇(nT n)∇V ] (2.28)

The second term on the right-hand side may be further expanded as:

t r[∇(nT n)∇V ] = n(∇∇V )nT + n[t r(∇n)]∇V + (∇V )T (∇n)nT (2.29)

52



2.3 Electrical Source Imaging (ESI)

These three expanded terms capture different degrees of variation of local geometry. The first

term uses only the information of the surface normals n. The second term involves the trace of the

curvature tensor ∇n, whereas the last term requires the computation of Jacobian matrix of surface

normals. If only the diagonal elements of Jacobian matrix are left and all others are set to 0, the

operator reduces to a planar approximation of the surface. On surfaces given by a triangular mesh,

the unit surface normal n and its Jacobian ∇n must be computed by means of discrete differential

geometry (for details see (32)). Such SL estimate is indeed interesting for smooth discrete surfaces

(triangulated meshes) and, as this method utilize realistic geometry, is strictly patient dependent.

The biggest advantage of this SL estimate is that there is no need to construct a parametric surface,

which is a very complicated task.

Till now we briefly discussed a very general family of source imaging modalities that depends

only on the geometry of the interpolated surface and estimates the sources under assumption that

they are radially oriented to the skull surface. Further we will discuss source imaging techniques

that are based on realistic forward models, where some spatial assumptions about sources as well

as anatomical structures are made. The use of such models will bring enhanced spatial precision to

the inverse problem, in order to localize those neural generators that produce the measured scalp

potentials. In the last sections, we will then focus on "economy size" methods, i.e., those which favor

a reduced number of active sources.

2.3 Electrical Source Imaging (ESI)

If anatomical information is available, one might construct patient-dependent anatomical models

and use ESI methods for the inversion. For the most general models, the dipole orientations are

let free and the estimation of both amplitudes and orientations is required. However, since primary

sources are widely believed to be restricted to the gray matter, it is possible to significantly reduce the

source space to the cortical area from the segmentation of the MR image of the subject. Moreover,

the sources are widely believed to be orthogonal to the cortical mantle, thus fixing the orientations

of the dipoles and yielding a linear problem where only the amplitudes have to be estimated.

Considering a fixed orientation, one can assume a standard linear forward model where scalp

recordings V can be expressed as a linear combination of dipole amplitudes S and propagation coef-

ficients or gains A such that:

V= AS+ ε (2.30)
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where A (N ×M , N + M) is known as lead-field or gain matrix, and ε denotes the spatio-temporal

noise that arises from neural background activity or external artifacts. The number of possible source

locations M is much bigger than the number of electrodes N , yielding an underdetermined mixing

system that does not have a unique solution. The propagation coefficients embedded in matrix A

depend on the geometry of the head (distances and angles between the cortical surface mesh points,

i.e., sources, and electrodes placed on the scalp) and on the electrical properties of the head tissues

(skull, skin, ...).

In the following, we will first revise some classical approaches for solving the inverse problem,

i.e., estimate S from eq. (2.30). Since the solution space is far wider than that of the measurements,

the problem is ill-posed and constraints need to be imposed to reduce the solution space. The liter-

ature for EEG source imaging is very abundant which in fact induced the development huge variety

of methods in the last two decades.

We continue with a particular family of methods constraining the sparsity of the solution, i.e., look-

ing for a minimum number of sources explaining the measurements V (subsection 2.3.1). First we

discuss scanning approaches (subsection 2.3.2), known to yield sparser solutions, and we start with

the sparsest possible approach, namely the equivalent dipole fitting (subsection 2.3.3). In the fol-

lowing (section 2.3.4), we present an intermediate class of so-called dictionary based methods, the

most famous being the matching pursuit (subsection 2.3.4.2). It is this latter type of algorithms that

we use and develop in the fourth chapter of this thesis.

2.3.1 Distributed source models

The distributed source model consists in placing dipole candidates on each vertex of a predefined

volumetric grid, restricted or not to the gray matter and having, in most of the cases, fixed orien-

tations orthogonal to the cortical surface. The localization of activated brain sources implies the

inversion of high-dimensional inverse problem with an infinite number of solutions.

2.3.1.1 Classical MNE

In the absence of noise, a general solution is given by pseudo-inverting A in equation (2.30):

Ŝ= A+V (2.31)

where A+ =WT WAT (AWT WAT )−1 is a pseudo-inverse of A. There are an infinity of exact solutions

parametrized by the weighting matrix W, and dozens of source estimation methods with different

definition of W can be found in the literature. The simplest solution, yet adapted for superficial
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sources such as the cortical ones, is to simply consider the minimum norm solution obtained by

taking W as the identity matrix: A+ = AT (AAT )−1.

Without weighting the lead-field matrix but in the presence of noise, Stenroos in (119) evaluates

the performance of L2-norm (MN) estimator (43, 61) which is a standard way to obtain a unique

solution:

TMN E = AT (AAT +λC)−1 (2.32)

where C is the covariance matrix of the channel noise ε in (2.30). λ is the regularization parameter

that sets the balance between reproduction of measured data and suppression of noise (53, 58, 104).

If the covariance is not known, one might simplify the equation (2.33) by assuming CN = I.

The Weighted Minimum Norm algorithm takes into account the noise and compensates for the

tendency of MNEs to favour weak and surface sources, through the introduction of a particular

weighting matrix W:

TW MN =WT WAT (AWT WAT +λC)−1 (2.33)

W can take different forms by integrating various priors, the simplest one being based on the norm

of the columns of A.

2.3.1.2 LORETA

A particular version of the WMN algorithm is called as Low resolution brain electromagnetic tomog-

raphy (LORETA) (98) which is based on the assumption that the activities of neighboring neuronal

sources are correlated and synchronized. The estimation matrix is computed as follows:

TLORETA =WT LT LWAT (AWT LT LWAT )−1 (2.34)

The Laplacian operator is implemented in matrix L, favoring smooth spatial distribution of the source

amplitudes. Thus the 3D inverse solution corresponds to the "smoothest" current density capable of

explaining the measured data. In this manner, LORETA generally provides rather blurred (or "over-

smoothed") solutions. Different flavours of LORETA were proposed since (98) (sLORETA, eLORETA),

with in principle better localization performances (97).

2.3.1.3 FOCUSS

Much sparser results are provided by FOCal Undeterminded System Solution (FOCUSS), which is

a recursive linear estimation procedure, based on a weighted pseudo-inverse solution (52). The

weights at each step are derived from the solution of the previous iterative step. Starting from some
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initial estimate, the algorithm converges to a source distribution in which the number of parameters

required to describe the source currents does not exceed the number of measurements. The algo-

rithm is initialized using a classical weighted MNE pseudo-inverse, using any first initial guess for W

(commonly the identity matrix). W is then iteratively re-estimated at each step from the covariance

matrix of the current estimate Ŝ, until a given criteria e.g., a given number of iterations or the con-

vergence of Ŝ. FOCUSS provides solutions that represent compact but somewhat arbitrarily shaped

areas of activation in the head. This approach does indeed produce sparse sources, but can be highly

unstable with noisy data.

2.3.2 Scanning approaches

Scanning approaches do not try to estimate source activations simultaneously in all possible loca-

tions, but they rather scan the solution space and choose the sources that explain best the data. As

such, the ill-conditioned pseudo-inversion due to a number of measurements much smaller that the

number of possible sources is avoided. Moreover, they can even benefit from further reduction of

the source space by some preprocessing, as it will be explained.

2.3.2.1 Pre-processing: Source-space estimation

In order to enforce sparsity, several inversion methods rely on the estimation of the source space

(i.e., the minimal number of orthogonal signals necessary to reconstruct S) which is a common

problem appearing in noisy linear mixture models. Principal Component Analysis (PCA) is often

used to solve this problem: indeed, the first principal components of V (corresponding to the greatest

eigenvalues of the covariance matrix of V) constitute a basis of the signal space and capture the

essential structure of the data, allowing the reconstruction of a denoised approximate version of V.

The size of the signal space can be evaluated using simple empirical threshold. For example,

we can decide that the number of most significant components (corresponding eigenvalues) from

the PCA decomposition corresponds to the number of eigenvalues whose cumulative power (2.35)

reaches a given percentage (e.g., 95%) of the data power (2.36).

Pc(p) =

∑p
i=1 li

∑N
j=1 l j

(2.35)

where l1 > l2 > lp are eigenvalues.

k = arg Pc > 0.95 (2.36)
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The advantage is that this threshold does not have any priors on the source type and spatial/tem-

poral characteristics. Although the drawback of such approach is that the noise level is fixed as the

remaining portion of the signal variance, resulting in a wrong estimation of the number of sources.

For those methods whose performance highly depends on the correct estimation of the source/noise

space this step might be very harmful.

A more elaborated source space estimation is the classical MDL (minimum description length)

rule (see for example of classical MDL (28, 106, 137)):

M DL(k) = − log





∏p

i=k+1 l
1

p−k

i

1
p−k

∑p

i=k+1 li





p−k
N

+
1
2

k(2p− k) log N (2.37)

where l1 > l2 · · · > lp are eigenvalues. The number of signals is determined as a value of k ∈
{0,1, · · · , p − 1} for which the MDL is minimized. MDL is very accurate and stable if the noise can

indeed be modelled as white and Gaussian.

2.3.2.2 Beamforming

Beamformer originated from radar and sonar signal processing but later was adapted in a wide range

of fields starting from astronomy to biomedical signal processing. The basis of this method is to apply

spatial filterings of the data in order to keep only the signals of interest and discard those originated

elsewhere (11, 86, 133).

Let rq be the location of the dipole that beamformer is monitoring. Assume, as previously, that

the orientations of the dipoles are known1. The output of the beamformer is the amplitude of the

source situated at rq:

sq(t) =wT
q V

where the spatial filter w is designed to pass with unitary gain the source of interest sq and to zero

sources situated at different locations (and assumed in principle decorrelated with the source of inter-

est) (11). A popular version of beamformer is the Linearly constrained minimum variance (LCMV).

The zeroing of the other sources is achieved by simply minimizing the output power of the beam-

former subject to a unity gain constraint at the desired location rq, thus:

min
wT

E[s2] subject to wT A(rq) = 1 (2.38)

1If the orientations of the dipole is not known, one must construct three spatial filters for each of the Cartesian axis
{Θx ,Θy ,Θz}.
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where A(rq) is the column of the lead-field matrix corresponding to the scanned location. Solving

(2.38) using method of Lagrange multipliers yields following solution:

w= [A(rq)
T C−1

V A(rq)]A(rq)
T C−1

V . (2.39)

where CV is the covariance matrix of the measurements E[VVT ].

Applying this filter to each of the snapshot vectors V(t), t = 1, · · · , T in the data matrix V, an

estimate of dipole moment for source rq is produced. In the same manner, using equation (2.38),

such estimates can be computed for all dipole locations rq.

Although in the context of brain source imaging the performance of LCVM is limited due to the

synchronized nature of neural generators. Correlations between sources will result in partial signal

cancellation.

2.3.2.3 MUSIC and RAP-MUSIC

The Multiple Signal Classification (MUSIC) is undoubtedly the most popular parametric scanning

method. It was initially developed for array signal processing (112), and later adapted for the

EEG/MEG source localization (92).

The basis of MUSIC is to scan a single dipole through a grid confined to a three-dimensional (3-D)

head or source volume. At each vertex (grid point), the forward model for a dipole at this location

is projected on a signal subspace estimated from the E/MEG data. MUSIC starts with covariance

estimate of the data thus the scatter matrix CV = VVT . The rank k is computed in order to estimate

the number of sources (techniques as described in subsection 2.3.2.1 can be used), thus to extract

the signal space VS . Further using forward model A, MUSIC scans for the best location by computing

the subspace correlations:

{c1, c2, · · · , cM}= sub corr{A,VS} (2.40)

where VS are the source subspace. ci , i = 1, · · · , M corresponds to the subspace correlation values

(using the subspace correlation sub corr as described in (90)) where the maximum value corresponds

to the selected source location (90, 92). MUSIC is based on the assumptions that the data are

produced by a set of linearly independent dipolar sources and that the data are corrupted by additive

spatially white noise. If two dipoles are synchronized, the initial estimates of the source dimension

might be degraded, impacting significantly the results.

A popular extension of MUSIC, The RAP-MUSIC (91) algorithm, overcomes the synchronized-

sources problem by recursively building a gain matrix AH from the already identified source columns.
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After projecting both the source space and the initial gain matrix into the orthogonal complement of

AH , these two residuals are confronted using the usual MUSIC sub-correlation metric, and the next

sources is identified (91).

2.3.3 Equivalent Current Dipole

The sparsest possible solution was one of the first attempts to solve the source localization problem

in EEG. Scherg in (111) highlights that it is not possible to derive from the scalp potential the ac-

tivity of each single neuron, or even to separate the activities of different cortical layers. Instead

one might expect to separate the activity of some distinct brain areas, leading to decomposed scalp

measurement with limited number of sources. This follows the assumption that the brain activity is

both focal and sparse. This assumption is at the core of Equivalent Current Dipole (ECD) methods

and are known to provide accurate localization in situations of highly focal activations, for example

during somatosensory stimulation or epileptic discharges (73, 86).

ECD fits a small given number of dipoles N (usually one or two) on the measurements. For each

dipole i, its position ri = {x , y, z}, orientation Θi = {αi ,βi}, and strength si are to be estimated. The

equation 2.30 can be rewritten as:

V= A({ri ,Θi})ST + ε (2.41)

where ε denotes spatio-temporal noise matrix. The goal is to estimate the set {ri ,Θi} and the time-

varying amplitudes S= {s1 · · · sN} that best describe the data. The common way to solve this fitting

problem is to minimize the square distance between the data and the dipole projections:

JLS({ri ,Θi},S) = ||V− A({ri ,Θi})ST ||2F (2.42)

The estimation of the position of the dipole makes this optimization problem non linear, and can be

solved iteratively using constrained gradient descent or constrained optimization techniques.

The main drawbacks of this approach is that it needs a strong prior on the number of sources,

while the complexity of the problem grows exponentially with this number. Another sensitive issue

is the initialization of the algorithm, where multi-start procedure are often applied while not guar-

antying the algorithm to converge to the global minima. This approach remains popular when one

to two strong sources have to be estimated (e.g., for localizing focal epileptic sources (73)), but is

not relevant when more sources have to be estimated.
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2.3.4 Dictionary based sparse approximation

2.3.4.1 Background

Sparse signal decomposition of Vt requires finding a limited number of elements from the dictionary

A (i.e., a limited number of columns of the lead-field matrix and thus a limited number of locations)

such that their weighted sum best describes the observation data Vt . The popularity of sparse ap-

proximation algorithms relies on their ability to provide efficient sparse approximations of a signal

for severely under-determined problems (114).

In spatial domain, sparse signal approximation of some arbitrary chosen data vector Vt (one time

instance of multichannel data) can be formulated as the minimization of the penalized least-square

cost function:

min
St

J(St ,λ) = ||Vt −ASt ||22 +λ||St ||0 (2.43)

where the l0 pseudo-norm of the weight column vector St , defined as the number of its non-zero

entries, is lower than a given number k+ M . In fact by this equation we are trying to find a sparse

representation of the data (parametrized by the sparsity i.e., penalty parameter λ) meaning that

only a few sources are active at a time. The l0 norm is a natural measure of sparsity but it leads

to NP-complete optimization problem. This means that all possible combinations of the dictionary

elements should be considered and yields computationally expensive exhaustive search algorithms.

Due to the complexity of l0 optimization, some researchers tend to relax the l0 constraint in

order to solve optimization problem under lp norm with p ≤ 1 as for example showed in (56).

When minimization of l1 norm is chosen, least absolute shrinkage and selection operator (LASSO)

can be used to minimize the residual sum of squares, subject to the sum of the absolute value of

the coefficients being less than a (given) constant. Because of the nature of this constraint, it tends

to be stable and produce some coefficients that are exactly 0. Therefore LASSO give interpretable

models like subset selection as shown and explained in (128). On the other hand, a constraint

under l1 does not guarantee the sparsity as it is in l0 case. This is an essential aspect especially for

sparse localization problems where few as possible sources should explain the data and correspond

with some error to the true location of activated cortical region. This is an extremely difficult task

especially when dictionary elements are highly correlated as it is for the case of lead-field matrix.

2.3.4.2 Matching Pursuit

Greedy iterative approach such as Matching Pursuit (MP) provide the easiest way to find an approx-

imate solution of the original l0 pseudo-norm problem by finding g dictionary elements and their
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corresponding weighting coefficients, i.e., non zero elements of St in (2.43). The approximation of

the observation Vt found by MP can be written as the following linear expansion (35, 36, 50):

Vt =

m−1
∑

i=1

〈RiVt ,ai〉ai + RmVt (2.44)

with ai the i-th column of the lead-field matrix A. RiVt denotes the i th-order residual of Vt , and

〈RiVt ,ai〉 denotes the inner product determining the weight of the i th atom (in our case - dipole).

The MP algorithm is an iterative greedy algorithm that selects at each step the column of A which

shares the highest correlation with the current residuals rm = RmVt . This column is then added into

the set of selected columns Q, called support. The principle is summed up in the Algorithm 1.

Algorithm 1 Matching Pursuit

1: procedure MP(A,Vt)

2: Initialize the residual r0 = Vt and initialize the support Q = /. Iteration counter m= 1;

3: Find the most correlated dictionary atom a with index qn by maximizing following expression:

bn =max
q
|aT

q rm−1| with bn the weight of the most correlated atom. Update support Q =Q∪{qn};
4: Update residual rm = rm−1 − bnaqn

. Increase counter m= m+ 1;

5: If stopping condition is reached, stop MP. Else, go to line 3.

6: end procedure

Matching pursuit suffers from the drawback that a particular atom can be picked multiple times.

Although MP provides extremely flexible signal representation since the choice of the dictionary is

not limited.

2.3.4.3 Orthogonal Matching Pursuit (OMP)

OMP (23, 99, 130) is a popular extension of MP, where at each step all the already extracted weights

bm = {bn} are re-estimated by re-projecting the measurements on the linear subspace spanned by

the current support Q. The residual is then updated by extracting this projection to the original data

Vt . Compared with other alternative methods, a major advantage of the OMP is its simplicity and

fast implementation. Note that the residuals after each step in the OMP algorithm are orthogonal to

all the selected columns of a, so no column is selected twice and the set of selected columns grows

at each step. The general structure of the OMP algorithm is given in the Algorithm 2.

This algorithm is a stepwise forward selection algorithm and is easy to implement. A key com-

ponent of OMP is the stopping rule which depends on the noise structure. In the noiseless case, the
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Algorithm 2 Orthogonal Matching Pursuit

1: procedure OMP(A,Vt)

2: Initialize the residual r0 = Vt and initialize the support (set of selected variable) Q = /.
Iteration counter m= 1;

3: Find the most correlating dictionary item a with index qn: argmax
q
|aT

q rm−1|. Update support

Q =Q ∪ {qn}. Update the current weights bm = A+QVt .;

4: Find the most correlating dictionary item a with index qn: argmax
q
|aT

q rm−1|. Update support

Q =Q ∪ {qn}. Update the current weights bm = A+QVt .;

5: Let Pm = AQ(A
T
QAQ)

−1AT
Q denote the projection onto the linear space spanned by the elements

of AQ. Update residual rm = (I − Pm)Vt ;

6: If stopping condition is achieved, stop the OMP. If not, go to line 3.

7: end procedure

natural stopping rule is when signal Vt is reconstructed perfectly, thus residual rm = 0 (23, 129, 130).

In other case one might estimate the signal and noise power and stop the OMP when only noise is

present in residual.

2.3.4.4 Orthogonal Least Squares

A more effective and also more computationally expensive method is Orthogonal Least Squares

(OLS). In each iteration step, a least squares problem is solved instead of simple product calculation

as it is in the standard MP case. Basically, the orthogonal algorithm was developed as an approach to

combine parameter estimation and model structure detections. The principal idea of the algorithm

is to decouple the candidate terms by introducing an orthogonal transform so that selected terms

will not be affected when a new term is introduced. For most system representations, the orthogonal

decomposition approach of the regressor matrix avoids possible ill-conditioning and presents more

accurate results. The forward OLS algorithm is based on classical Gram-Schmidt method (141).

When applied on sparse signal representation, the general structure of OLS is the same as that

of OMP. The difference is that at each iteration, OLS solves a large number of least-square problems

(M−k, where k is the size of the current active set), while OMP only performs the M−k inner prod-

ucts between the current residual and each of the remaining candidate columns an. The OLS proce-

dure involves two steps, the first involves finding the most correlated atom from the dictionary, and

the second involves a dictionary decorrelation step where the atoms that were not selected are decor-

related from previously chosen atoms (27, 114). One of the simplest version of OLS (Algorithm 3) is
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shown by Blumensath and Kaur (18, 72) where at each step the chosen atom is the one minimizing

the most the residual norm. Such algorithm is very easy to implement but the computational burden

is significantly increased for large dictionaries.

Algorithm 3 Orthogonal Least Squares

1: procedure OLS1(A,Vt)

2: Counter m= 1, residual r0 = Vt , reconstructed data ŷ0 = 0, dictionary index set Q0 = /
3: qmin = arg min

q,Qq
m=Qm−1∪q

||Vt −AQ
q
m
A+

Q
q
m
Vt ||

4: Qm =Qm−1 ∪ qmin

5: ŷm = AQi
A+Qi

Vt

6: rm = Vt − ŷm

7: If stopping condition is achieved, stop the OMP. If not, go to line 3.

8: end procedure

Another version of OLS has been developed by Gowreesunker (55). As done in the classical MP

algorithms, the atom chosen at each step is the one maximizing its inner product with the residual.

The current dictionary is then projected in the orthogonal space with respect to this atom, thus

its contribution is suppressed from the updated dictionary. Faster implementation can be reached

based on QR factorization (27) or modified Gram-Schmidt procedure (51). Nevertheless, for highly

correlated dictionaries OLS together with OMP does not guarantee to find an optimal solution (114).

2.3.4.5 Forward-Backward extensions

An improved way to solve the equation (2.43) is to use forward-backward greedy algorithms. The

advantage of these approaches is their ability to eliminate the errors made in previous iterations. An

example of such approach appears in (143), where a forward-backward OMP extension is proposed

to identify basis functions with non-zero coefficients and reconstruct the target function from noisy

observations. However, this approach is efficient only if the basis functions are nearly or completely

orthogonal, whereas in our case the data are noisy and dictionary elements may be highly correlated.

Further in this chapter we explain two other forward-backward optimization schemes which

proved to be very robust and accurate for correlated dictionary elements and noisy measurements.

Sparse approximation using SDMP

A rather specific algorithm was developed for EEG applications, as in our case. The Source Defla-

tion Matching Pursuit (SDMP) algorithm, as presented in (140), is based on the observation that
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estimating the contribution of a given source is much easier when the contributions of all the other

sources have been eliminated. The method start by initializing a set of eligible source positions using

a classical MP or OMP algorithm. From this initialization, each of the selected source positions p in

Q are iteratively reconsidered, and possibly taken out from Q if another source position within the

set of unselected elements yields a higher decrease of the residual. This is done by suppressing from

both the data and the lead-field the contributions of the atom in Q, at the exception of the current

re-evaluated position p. An overview of the SDMP is given as the Algorithm 4, where we define the

matrix projector and its orthogonal version as:

PA = A[AT A]−1AT (2.45)

P⊥A = I− PA (2.46)

Algorithm 4 SDMP

1: procedure SDMP(A,Vt ,Qinit)

2: Initialize Q =Qinit . Let Ns be the cardinality of Qinit .

3: for p = 1 to Ns do

4: AQ\p = [aQ1
· · ·aQp−1

aQp+1
· · ·aQNs

]

5: a
\p
Q,n = P⊥AQ\p

an

6: V\p = P⊥AQ\p
V

7: qQ\p = argmax
qn

||P
a
\p
Q,n

V\p||2F , for n ∈ {1, · · · , M}\Q

8: Q = {q1, · · · , qp−1, qQ\p, qp+1, · · · , qNs
}

9: end for

10: If stopping condition is achieved, stop the SDMP. If not, go to line 3.

11: end procedure

Wu et al. (140) propose a further refinement of the algorithm by reconsidering the orientation

of the dipoles during the optimization procedure. It consists in replacing the selection of the source

index (line 6 of the Algorithm 4) by the maximization of a MUSIC criterion. This version is called

the SDMUSIC (Source Deflated MUSIC) algorithm. In this thesis we only consider fixed orientation

of the dipoles orthogonal to the cortical surface, and we do not face this dipole orientation/moment

estimation problem.

Approximation using SBR

A more classical forward-backward scheme was recently proposed by (114). The Single Best Re-

placement (SBR) algorithm is able to deal with correlated dictionary elements and is rather robust
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to noise. SBR is an Ordinary Least Squares (OLS) forward-backward extension based on succes-

sive updates of the sparse signal support (dictionary element indices) by one element: at each step,

the support Q is updated either by inserting a new element or removing an existing element. The

forward-backward rule shown in equation (2.47) ensures that only the best columns of A weighted

by St are chosen.

Q • i =

>

Q ∪ {i} if i /∈Q

Q \ {i} otherwise
(2.47)

This leads to the construction of an active set AQ, where Q contains the selected column indexes (ac-

tive source locations). Basically SBR is designed to solve discrete NP-complete problem and, in fact,

is a deterministic descent algorithm that minimizes J from (2.43) with a fixed parameter λ. At each

step, the support Q is updated (insert "∪" a new element with index i inside the support or remove

"\" an existing support element) (114, 115). The forward-backward rule shown in equation (2.47)

ensures that only the best columns of A weighted by St are chosen.

l ∈ arg min
i∈{1,...,n}

JQ•i(St ,λ) (2.48)

Then if JQ•l(λ) < JQ(λ), the subset Q is updated with the new element Q = Q • l. Finally the SBR

stops when no replacement decreases the cost function or some predefined stopping condition is

met, e.g. the residual is significantly small or the maximum size of subset is reached. If λ > 0, SBR

stops after a finite number of iterations. The summary of SBR in pseudo-code format is provided in

Algorithm 5. For more detailed information see (114) and (115).

Algorithm 5 Single Best Replacement

1: procedure SBR(A,Vt ,λ,Qinit)

2: Initialize Q =Qinit

3: STOP = FALSE

4: do

5: Compute l from equation (2.48) using equation (2.47)

6: if JQ•i < JQ then

7: Q =Q • i

8: else

9: STOP = TRUE

10: end if

11: while STOP ∼= TRUE

12: end procedure
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2.4 Conclusions

We have seen that when no or few anatomical information are available, an image of the cortex can

still be obtain by applying SL methods. SL eliminates much of the volume conduction distortion

and yields to a reference-independent estimate of cortical potentials, and thus can be interpreted

as a general form of brain imaging modality. We explore similar cortical source estimator in the

Chapter 3, and we emphasize how such interpolation scheme can be linked to basic MNE solution.

To improve the estimation and extract more valuable information from the EEG data, one might

consider more elaborated head model such as BEM or FEM and use regularized optimization schemes

to solve the inverse problem. Different inverse solvers exists that are able to find some compromise

using given head model and measured data by performing data fitting on the some chosen subspace

of dipoles. The sparsity constraint is of great interest due to spatially and temporally sparse nature

of the cortical activity, such approach will be further explored in the Chapter 4 based on the forward-

backward MP schemes presented in this chapter.
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Chapter 3

Dipolar Cortical Mapping

Most of the recent developments for brain source localization have been focused on the inversion of

sophisticated forward model, requiring numerous and precise information (e.g., segmented imaging

modalities, medium conductivities, etc., ), and yielding more and more complex methodologies as

well as computational cost. The motivation of this chapter is to reconsider the problem of cortical

source imaging (a restricted but less controversial source localization problem) using as less informa-

tion as possible in addition to the electrical activities provided through the EEG scalp measurements.

Our developments have been focused on methods that rely on basic but realistic geometrical and

physiological considerations.

Such philosophy inevitably makes reference to the origin of the discipline and to the Hjorth’s

Laplacian montage, providing rough estimates of the underlying scalp activities and relying only

on physical properties of the electrical current propagation through the skull. This methodology

is at the root of a large family of interpolation-based Surface Laplacian (SL) methods, rooted on

the assumption that the scalp map is made of a linear mixing of smooth basis functions produced

by the underlying sources. Another way of estimating such potentials are provided by the classical

model of dipolar sources linearly projected on the scalp map using a lead-field matrix (projection

coefficients or gain computed by a forward model). Such Electrical Source Imaging (ESI) approaches

based on regularized minimum-norm estimates has also proven to provide reliable estimates of the

cortical activity. While both of these families of approach constitute two well separated pieces of

an abundant bibliography on this subject (7, 11, 25, 32, 54, 86), they share high similarities not

yet clearly pointed out by the current literature. In this chapter, we propose basic cortical imaging

methodologies inspired by both of these two families, and we take this opportunity to emphasize the

strong links between them.
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3.1 Dipolar interpolating functions and DCM

The aim of this chapter is to propose a family of methods able to estimate the cortical sources while

integrating as less as possible plausible physiological constraints. The basic idea is to reconstruct the

scalp EEG measurements as a sum of spatially smooth functions. In this sense, our method is close

to the family of Surface Laplacian (SL) methods. Unlike SL, we do not propose to choose, somehow

arbitrarily, an interpolating function of the potentials recorded on the scalp surface and to derive it

twice, but rather to choose a physiologically founded approximation of the interpolation. In other

words, we want to write the potentials on the surface as a sum:

v(r) =

M
∑

k=1

skh(r,θ ) (3.1)

where v(r) is the potential at position r, h(r,θ ) is the interpolating function depending on some

parameters θ , and sk are the weights.

First assumption we make about the underlaying brain sources that produce the potentials mea-

sured using EEG. They are assumed to be dipolar, placed on the cortical surface, orthogonal to the

skull surface. This assumption allows us to use a particular family of functions describing the po-

tentials on the head surface, having different parameters. Because of the restrictions stated above

(orthogonality to the skull, placement on the cortical mantel), the remaining degrees of freedom

(an thus parameters of the interpolating functions) are their positions on the cortex and their ampli-

tudes. In the following, we derive two approximations of the head geometry, yielding two different

parametrized functions describing the projection of the dipoles on the scalp.

A very important aspect of interpolation problem is the number of the terms M in the interpo-

lation sum (3.1) called also as a spatial resolution. In this chapter, we assume, as for SL, that M is

equal to the number of electrodes. With such methodology in mind, we discuss the analogy with SL

solutions and ESI approaches, emphasizing the links between these two well-known but apparently

disconnected methodologies.

3.1.1 The dipolar projection

Let’s sk be the amplitude of a dipole k, placed in the superficial cortical layer and normal to the

surface of the skull. Following basic electromagnetic propagation rule in an homogeneous medium,

we assume that the potential generated by this dipole decreases with the squared of the distance,

and is proportional to the cosine of the angle formed by the dipole orientation and the dipole to

measuring point direction.
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Let’s consider an electrode ej on the head surface, as illustrated on Figure 3.1. The potential

generated by the dipole k of amplitude sk on the electrode ej then writes:

djk

sk

e j

α jk

Figure 3.1: Geometrical approximation of the dipole-electrodes configuration. The potential recorded
at electrode ej is produced by dipole with index k and its corresponding amplitude sk.

vjk =
sk cosα jk

Cdjk
2

(3.2)

where α jk is the angle between the direction of the dipole k and the direction from the origin of the

dipole to the electrode ej , and djk the distance between the position of the dipole k and the electrode

j. C corresponds to some proportionality constant linked to the electromagnetic conductivity of the

head volume. In this chapter, we will focus on the estimation of the cortical map morphology and

ignore the amplitude information, thus we will simply discard the influence of C by setting C = 1.

Once correct tissue conductivity information is estimated, one might tune C to provide an estimation

of the amplitudes.

Considering two simple approximations of the scalp surface geometry, planar and spherical, we

derive from 3.2 two different radial basis functions (RBFs) that we use to interpolate the measure-

ments. In this way we impose the scalp map to be reconstructed as the sum of smooth and dipolar

projections, thus calling it a Dipolar Cortical Mapping (DCM) of the scalp.

3.1.2 Planar approximation

The simplest geometrical approximation is the planar case, proposed in (74). The scalp surface is

assumed to be a plane from the point of view of the dipole k, and the cortical surface is assumed to

be parallel to this plan. Thus both planes are parallel to each other and orthogonal to the direction

of the dipole (see Figure 3.2). In this model we assume the presence of an electrode ek on the scalp

surface above the dipole, with dkk the depth of the dipole. The potential on this electrode due to the
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dipole k then writes:

vkk =
sk

d2
kk

(3.3)

Given an electrode ej on this planar scalp surface, within distance x jk from the electrode ek, the

ei e j

sk

djk
dkk

ek

α jk

x jk

Figure 3.2: Planar geometrical representation of scalp electrical potential distribution (dashed line).
Both + and − denotes the positive and negative electrical potential.

equation 3.2 reads:

v(x jk) = sk

dkk

(x2
jk
+ d2

kk
)

3
2

= sk

1
d2

kk

5

x2
jk

d2
kk

+ 1
6 3

2

(3.4)

In other words, the potential v(x) for given depth of the dipole dkk and its amplitude sk, at any point

on the plane can be expressed using only the euclidean distance x from this point to the electrode

ek:

v(x) = skhp(x)

hp(x) =

1
d2

kk

&

x2

d2
kk

+ 1
' 3

2

hp(.) is a RBF parametrized by the depth of the dipole dkk. Several shapes of this function are

given Figure 3.4, with various depth parameters. Those distribution functions are smooth, peaky

when the dipole is close to the head surface and more flat when it is deeper.
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ei

ek

e j

djk

sk

α jk

x jkβ jkdkk

Figure 3.3: Spherical geometrical representation of scalp electrical potential distribution (dashed line).
Both + and - denotes the positive and negative electrical potential.

3.1.3 Spherical approximation

A more elaborated approximation of the head surface is to model the head as a sphere, thus placing

the electrodes on a spherical surface as it can be seen in Figure 3.3. The underlying cortical surface

is also assumed to be a concentric sphere with smaller radius, and the dipole k is still pointing to

the electrode ek, perpendicularly to the scalp surface. The distribution function is computed by the

same rule as in equation (3.2), now taking into account this spherical geometry. From simple

trigonometric law, we can identify the following relations in the triangle formed by ek, ej and the

dipole position:

d2
jk = d2

kk + x2
jk − 2dkk x jk cos(β jk) (3.5)

x2
jk = d2

kk + d2
jk − 2dkkdjk cos(α jk) (3.6)

with β jk the angle between x jk and dkk. Identifying the isosceles triangle formed by ek, ej and

the center of the sphere, it comes that cos(β jk) =
x jk

2r . Thus using equation (3.6), the distance djk

can be expressed as a function of the depth of the dipole dkk, the inter-electrode distance x jk, and

the radius of the sphere r:

djk =

√

√

d2
kk
+ x2

jk
(1−

dkk

r
)

From this expression and the second trigonometric rule above (equation (3.6)), we get the fol-

lowing expression for cos(α jk):
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cos(α jk) =
2rdkk − x2

jk

2r
A

d2
kk
+ x2

jk
(1− dkk

r )

Using these two last expressions within equation (3.2) yields to the spherical DCMS function,

parametrized by the depth of the dipole and the radius of the sphere:

v(x jk) = sk

2rdkk − x2
jk

2r(d2
kk
+ x2

jk
(1− dkk

r ))
3
2

(3.7)

As for the planar approximation, we can express the potential due to the dipole k at any point on

the surface given its distance x with the electrode ek, using following radial basis function (RBF):

hs(x) =
2rdkk − x2

2r(d2
kk
+ x2(1− dkk

r ))
3
2

parametrized by the depth of the dipole and the radius of the sphere.

As shown in Figure 3.4, each approximation gives a different potential distribution function and,

thus, a different surface pattern. hs appears to provide more dipolar distribution which is assumed

to be more realistic and thus better performances are expected with regard to the planar approxima-

tion. As can be observed on Figure 3.4, the potential distribution differs with the depth of the dipole.

In fact, as closer the dipoles are placed to the cortical surface, as smaller impact on the neighbour-

ing electrode sites. Deeper placed dipoles shows more flat distribution, and therefore affects more

electrodes. As shown by the residual error between both RBFs (Figure 3.4c), the difference between

both potential distributions increases with the depth of the dipole.

3.1.4 Multiple dipoles case

Up to now, we have dealt with the potentials generated by a unique dipole of amplitude sk below the

sensor k. Assuming that in the same manner as SL, we aim to estimate the cortical activity below

each scalp electrode, therefore we must consider one dipole per electrode.

Let M be the number of dipoles and electrodes. Under the same hypothesis on the depth and the

orientation, the potential at a given electrode ej will write as the sum of the potentials generated by

the k = 1..M dipoles, which writes as a sum of weighted basis functions h(x):

vj =

M
∑

k=1

v(x jk) =

M
∑

k=1

h(x jk)sk (3.8)
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Figure 3.4: Potential variation on the scalp as a function of the distance x to the electrode pointed ek

by the dipole k and for four different dipole depths dkk computed using planar (a) and spherical (b)

approximations. Finally residual errors (c) are given for each depth.
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Figure 3.5: Placement of dipoles with respect to the sensor locations. All dipoles are below the sensors
at a given depth, and radial to the surface.
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When considering all electrodes, (3.8) can be written in matrix form as:

v= Hs (3.9)

where v is the measured EEG data, the column k of the matrix H contains the projection coefficients

of the dipole k as evaluated by the RBF corresponding to a planar (hp(.)) or spherical (hs(.)) approx-

imation of the head geometry, and the vector s contains the weights of these different interpolating

functions, proportional to the amplitudes of the dipoles we want to estimate. Estimating the cortical

potentials corresponds then to the weights vector s estimation and is obtained by simple full-rank

matrix inversion:

ŝ= H−1v (3.10)

Such inversion provides an interpolation of the scalp map using parametrized shapes reflecting the

projection of each of the M considered dipoles on the electrodes. The weight attributed to each

dipolar function corresponds to the relative amplitude of the corresponding dipole. On might finally

interpolate over these estimated relative amplitudes to provide an activation map of the cortical

surface. Further in next section we will describe the equivalence between our estimate, Surface

Laplacians and Electric Source Imaging (ESI).

3.1.5 Analogy with SL and ESI

Although relying on purely geometrical considerations, we can identify noteworthy parallels between

our DCM approach and classic methods for cortical mapping (section 2.3).

The analogy to surface Laplacians can first be visualized by comparing the transform matrix H−1

applied to the measured potentials v with the simple Hjorth (see section 2.2.2) discrete Laplacian

montage from the measured EEG (see Figure 3.6). Indeed, as in the case of the Hjorth’s Laplacian,

the elements of inverted matrix H−1 correspond to the weights given to the electrodes. In the basic

Laplacian the weights are unitary on the diagonal, −1/4 on the neighbouring electrodes and 0 else-

where. For the DCM the weights vary on the diagonal, because of the depth dkk of the dipole, and

on the off-diagonal with respect to the distance between the electrodes.

Furthermore, both of the RBFs hp(x) and hs(x) define families of parametrized basis functions,

similar to the RBFs used in the surface Laplacian approaches. In particular, it is interesting to notice

that the planar approximation (3.4) of the DCM corresponds to the second order derivative on a

plane of a multi-quadric spline defined in equation (3.11).

φ(r) =

√

√

1+
r2

σ2
(3.11)
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3.1 Dipolar interpolating functions and DCM

(a) Hjorth Laplacian (b) DCMP

Figure 3.6: The transform matrices corresponing to the Hjorth’s Laplacian (left) and DCM planar
case(right)

the second order derivative of this function follows as:

φ(r)′′ =
σ

(σ2 + r2)
3
2

(3.12)

One might notice the equivalence between both equation (3.12) and (3.4). The difference between

both approaches resides in the way the interpolation are operated. In the case of the SL approaches,

the scalp map is first interpolated by an RBF (e.g., this of equation 3.11). The second derivative of

this interpolated scalp map is taken as an estimate of the cortical map, thus being a weighted sum of

the second derivative of the considered RBF (given by equation 3.12 in our example). In the DCM

case, the scalp map is directly interpolated by the RBF to produce point estimates of the underlying

cortical dipolar activations.

On the other hand, one can also notice that the general (3.2) rule correspond to an infinite homo-

geneous and isotropic propagation medium, for which the conductivity information was discarded

(fixing C = 1), as we are only interested in the morphology of the cortical map. Indeed, consid-

ering C = 4πσ, with σ the estimated conductivity, we get the equation for the electro-magnetic

propagation of a dipole in an infinite homogeneous environment (equation 2.2). Within this frame,

our initial interpolation problem using smooth physiologically founded functions has turned into a

full-rank inversion of a infinite homogeneous forward model (3.10).

It is noteworthy that replacing Laplacian estimations of the current sources with inverse models

was already proposed for brain source estimation, but only at a microscopic scale. Indeed, classical

current source density methods (CSD) (88) were the microelectrode linear equivalent of Hjorth

Laplacian montages on the scalp surface, and they were developed into so-called inverse CSD since
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3. DIPOLAR CORTICAL MAPPING

2006 (78, 101). The approach presented in this chapter follows the same path, except for source

modeling (a point dipole source in our case, a surface monopole in iCSD).

Also it should be highlighted that if cortical source activity can be estimated by full-rank inversion

of a matrix constructed from physiologically founded RBF, one might even choose more realistic RBFs,

derived directly from imaging based head-modeling (BEM or FEM in sections 2.1.3.1 and 2.1.3.2).

Although the analytical expressions for the corresponding DCMBEM or DCMFEM cannot be given as

in (3.4) or (3.7), the H matrix can still be constructed numerically and thus the interpolation can be

obtained.

3.2 Simulation and results

The aim of this section is to compare the performances of the proposed DCM methods with both

surface Laplacians and ESI minimum norm inverse solutions using realistic head model.

3.2.1 Simulation set-up

A three layer Boundary Element Model (BEM) of the head was extracted from anatomical MRI using

Brainstorm (123), yielding a mesh where each layer consists of 1922 points. The electrodes were

simulated as a BioSemi sensor cap of either 64 or 128 electrodes. This is done in order to achieve

good scalp potential interpolation that depend on the electrode spatial distribution on the scalp.

In fact the electrodes should be spaced and placed as uniform and dense as possible to avoid any

interpolation errors.

For source generation, we assumed randomly placed patches of synchronized dipoles placed

5mm below the inner skull layer (approximated as a cortical surface), which roughly corresponds

to the upper half of the brain mesh (1309 dipoles to avoid border effects), oriented radially to the

cortical surface and having random but synchronized amplitudes. Those dipoles produce potentials

on the cortical surface and are simulated as follows. One or three random locations 5mm below

the inner skull surface are chosen. These locations corresponds to the center of the patch. Then

for each patch its size or neighbourhood is chosen varying randomly between 20 and 120 mesh

points, corresponding roughly to 2.5 to 20cm2. Finally randomly generated (positive or negative)

and synchronized amplitudes are assigned to each patch thus potentials v on the electrodes, as well

as the simulated cortical map (potentials on the inner skull that are used as a ground truth) were

generated by the forward solution through Helsinki BEM library (120). One might argue to use

simple dipoles located in different depths in order to produce smooth patches on the cortical surface
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3.2 Simulation and results

but our proposed set-up allows the patches to overlap and thus form spatially complex active regions.

In this way we ensure additional difficulty for smooth interpolation functions used for SL and DCM.

We considered both the case of one active patch per time instant and the most complex case of 3

multiple simultaneous activations. We consider a so-called free noise case with SNR of 100dB, and

we also considered two noise levels perturbing the electrodes v by adding white Gaussian noise with

signal to noise ratios (SNR) of 20dB and 10dB.

To estimate the surface Laplacians we use SSL MATLAB toolbox, which provides two estimates:

a spherical approximation based on New Orleans Spline Laplacians (79) and a realistic case taken

from (32) and explained in the Chapter 2 of this thesis (see section 2.2.3.2).

DCM were carried out using either the planar (3.4) or the spherical (3.7) RBF. For the spherical

case, we fitted the sphere using FieldTrip (95) toolbox. Depths dkk (i.e., distances between cortex

and scalp) and, when necessary, angles α jk were extracted from the MRI. We also extract the inner

skull surface, which is assumed to be the cortical layer. We have also computed a DCMBEM using the

known BEM model (which can be seen as the best possible geometrical approximation).

ESI minimum norm estimates (MNE) were obtained by pseudo-inverting a realistic BEM model

giving the gain matrix between the cortical surface and the electrodes (P × M , with P = 1309 and

M = 64 or 128.

The performance of the methods are evaluated using the correlation ρ(ŝ,s) between the estimated

cortical activities using DCM, SL and ESI ŝ and the computed (true) cortical activity s. We provide

two type of comparison, a discrete one where the correlation is computed only considering the values

obtained at the position of the underlying dipoles, and a continuous one where the DCMs discrete

cortical maps are interpolated using cubic splines to provide a continuous image of the cortical acti-

vations.

The position of the dipoles on the cortical layer are set using a closest neighbour criterion (small-

est euclidean distance from sensor ei to cortical mesh points). This can be done due to the chosen

head model, all layers (scalp, outer and inner skull) being smooth and convex type volumes which

guarantee to find a closest mesh point on the inner skull surface approximately under the corre-

sponding scalp electrode.

3.2.2 Results

The results presented here were obtained after averaging 1000 simulations performed using the set-

up described above. In other words, 1000 random BEM generated cortical maps were compared

with the estimated maps obtained either by SL, DCM or MNE.
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Table (3.1) presents the results for the unique active region and for multiple simultaneous activa-

tions for noise-free measurements and for 2 noise levels (20dB and 10dB). All methods in noise free

Table 3.1: One active patch. Correlation percentage ρ between the forward computed cortical map
and the different estimations, with 64 / 128 scalp electrodes whereas gray values under 64s / 128s
corresponds to the correlation percentage between the forward computed scalp map and the different
estimations. DISCRETE stands for the estimated potentials under the electrode sites. CONTINUOUS

indicates that the discrete results were interpolated using spline interpolation as explained in (76). In all
cases BEMmne is estimated on the complete inner skull surface without interpolation.

Noise-free 20dB 10dB

DISCRETE 64 64s 128 128s 64 64s 128 128s 64 64s 128 128s

DCMp 0,84 0,97 0,87 0,96 0,82 0,95 0,77 0,86 0,70 0,81 0,49 0,54

DCMs 0,87 0,98 0,88 0,95 0,84 0,95 0,75 0,81 0,71 0,80 0,44 0,47

SSLs 0,93 0,69 0,86 0,63 0,74 0,55 0,48 0,36 0,38 0,29 0,19 0,14

SSLg 0,90 0,72 0,88 0,70 0,75 0,60 0,55 0,44 0,41 0,33 0,23 0,18

DCMBEM 0,96 0,83 0,96 0,76 0,83 0,71 0,41 0,33 0,48 0,42 0,14 0,11

CONTINUOUS 64 64s 128 128s 64 64s 128 128s 64 64s 128 128s

DCMp 0,84 0,98 0,88 0,96 0,83 0,96 0,80 0,88 0,73 0,84 0,54 0,59

DCMs 0,86 0,98 0,89 0,95 0,84 0,96 0,78 0,84 0,73 0,83 0,48 0,52

SSLs 0,91 0,71 0,88 0,67 0,76 0,60 0,54 0,42 0,43 0,34 0,22 0,18

SSLg 0,90 0,75 0,89 0,72 0,77 0,65 0,60 0,50 0,46 0,38 0,26 0,22

DCMBEM 0,94 0,84 0,96 0,77 0,84 0,75 0,47 0,39 0,53 0,47 0,17 0,14

BEMMN E 0,94 0,23 0,97 0,22 0,72 0,18 0,23 0,05 0,34 0,09 0,08 0,02

case perform rather good with a strong advantage for BEM, as it was expected for such elaborated

(informed) model. One might notice that the interpolated DCMBEM proves to be a strong equivalent

for standard BEMMN E for noise-free case and outperforms when noise is present.

Both SSLsph and SSLgeo perform well for high SNR with an advantage of SSLgeo for decreased

SNR. Our DCMs proves to be competitive to standard SL when number of electrodes is rather small

and outperforms for high resolution EEG set-up. In addition to the current simulation where dipoles

were placed 5mm deep, we simulated also using depth of 2mm. We observed that all DCMs are sen-

sitive to the depth of the equivalent dipoles where the results shows that superficial dipoles approx-

imates less the true cortical potentials which is related to the simulated patch size spatial sampling

78



3.2 Simulation and results

(number of equivalent dipoles).

Another interesting observation is related to the correlation of estimation and simulated scalp

map. It is easy to see that all DCMs shares high correlations with scalp potentials. This leads to

the conclusion that indeed the estimations are not far from the originally measured data especially

DCMp and DCMs.

Further the results in Table 3.2 of 3 active patches are shown. In the same way as in Table 3.1,

the results in Table 3.2 shows that all methods perform badly for noisy signals and high-density

measurements, with at most 75% correlation for linearly interpolated DCM using 64 electrodes.

Indeed, as the cut-off frequency of the surface Laplacian (high-pass) filters increases with the spatial

Table 3.2: Three active patches. Correlation percentage ρ between the forward computed cortical map
and the different estimations, with 64 / 128 scalp electrodes whereas gray values under 64s / 128s
corresponds to the correlation percentage between the forward computed scalp map and the different
estimations. DISCRETE stands for the estimated potentials under the electrode sites. CONTINUOUS

indicates that the discrete results were interpolated using spline interpolation as explained in (76). In all
cases BEMmne is estimated on the complete inner skull surface without interpolation.

Noise-free 20dB 10dB

DISCRETE 64 64s 128 128s 64 64s 128 128s 64 64s 128 128s

DCMp 0,85 0,97 0,87 0,96 0,83 0,95 0,79 0,87 0,73 0,83 0,51 0,56

DCMs 0,87 0,98 0,88 0,96 0,85 0,96 0,77 0,84 0,73 0,82 0,45 0,49

SSLs 0,91 0,70 0,83 0,64 0,75 0,58 0,49 0,38 0,39 0,30 0,19 0,15

SSLg 0,90 0,73 0,87 0,71 0,77 0,63 0,57 0,47 0,43 0,35 0,24 0,20

DCMBEM 0,95 0,84 0,96 0,78 0,84 0,74 0,41 0,34 0,49 0,43 0,14 0,12

CONTINUOUS 64 64s 128 128s 64 64s 128 128s 64 64s 128 128s

DCMp 0,85 0,97 0,88 0,96 0,84 0,96 0,82 0,89 0,75 0,86 0,56 0,61

DCMs 0,87 0,98 0,89 0,96 0,85 0,96 0,80 0,86 0,76 0,85 0,50 0,55

SSLs 0,90 0,72 0,86 0,68 0,78 0,63 0,56 0,45 0,45 0,36 0,23 0,19

SSLg 0,89 0,76 0,88 0,74 0,79 0,68 0,62 0,53 0,48 0,41 0,27 0,24

DCMBEM 0,94 0,85 0,95 0,79 0,85 0,77 0,48 0,40 0,55 0,49 0,17 0,14

BEMMN E 0,94 0,24 0,97 0,23 0,73 0,19 0,23 0,06 0,35 0,09 0,08 0,02

density of the electrodes, the high density montages are more affected by noise. On the other hand,

when the noise is absent, the estimations of DCM are competing with standard surface Laplacians
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(besides the performance of SSL highly depends on the initialization step) when the electrode density

is high. Finally, another general observation is that the number of active regions has a relatively low

influence on the results.

Comparing the methods, one can notice that DCMS performs slightly better than DCMP in no-

noise or low-noise cases which accords with our hypothesis that geometrical approximation indeed

has an impact on estimation quality. Finally, as expected, the fully informed BEM performs better

when noise is weak but the performance for increased noise levels the influence of the approximated

geometry decreases.

An example of different estimations obtained from 128 electrodes in the no-noise situation is

given figure 3.7. The cortical maps were interpolated for visualization purposes.

(a) Scalp potential (b) Cortical potential

(c) DCMp (d) DCMs (e) BEMDC M

(f) BEMmne (g) SSLs (h) SSLg

Figure 3.7: Forward computed cortical (a) and scalp (b) maps and the obtained cortical activation esti-
mations (c,d,e,f,g) using 128 EEG sensors interpolated using 3D spherical splines (76).
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(a) Scalp potential (b) Cortical potential

(c) DCMp (d) DCMs (e) BEMDC M

(f) BEMmne (g) SSLs (h) SSLg

Figure 3.8: Forward computed cortical (a) and scalp (b) maps and the obtained cortical activation esti-
mations (c,d,e,f,g) using 128 EEG sensors interpolated using 3D spherical splines (76).

The computational time for different cortical source imaging methods are presented in Table 3.3.

One might notice that our approximations are beneficial from both initialization and computational

time point of view when comparing to other methods. Initialization for DCMp and DCMs means

the computation of a propagation matrix, given a geometrical approximation and the positions of

the sensors. The initialization of SSLgeo is much more arduous due to the manual surface mesh

Table 3.3: Computational time for different cortical source imaging techniques.

Time DCMs SSL MNE

Initialization 0.03s manualy 3min+0.38s

Estimation <0.01 0.47s <0.01
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and electrode position alignment, as well as the head model creation it requires (for more detailed

information see (32)). Once this is done, algorithm is fast and yield very nicely made visualization

of the SL estimate. The generation of the BEM forward model is much more computationally de-

manding, up to about 3 minutes in our experiments. The cortical source imaging then reduces to

the computation of a pseudo-inverse of the obtained propagation matrix.

3.3 Validation using real data

3.3.1 Data description

We deal with the EEG recording sessions of an epileptic patient, provided by the department of Neu-

rology at the Nancy CHU. The patient was 22 years old at the recording time and was suffering

from pharmacological resistant epilepsy. Several recording sessions were performed using a high

resolution EEG (EEG-HR) of 64 electrodes, following the 10-10 classical scheme of placement. Sam-

pling frequency was at 1024 Hz and a classical 50Hz notch filter was applied to eliminate a common

electro-magnetic external artefact strongly corrupting the recordings.

The patient was explored during several days and several seizures and numerous interictal phe-

nomena were recorded. The origin of the epileptic phenomena was investigated using different

preprocessing (filtering) and source localization methods (from equivalent dipoles ECD to MUSIC

and distributed approaches such as LORETA) and through clinical examination. Further, the patient

was explored using intracerebral electrodes (SEEG) and the diagnosis was confirmed. After surgery,

the crisis disappeared.

In order to illustrate the different methods developed in this thesis, we have chosen here a partic-

ular interictal window with a duration of 6 seconds, in which neurologists marked several epileptic

spikes by inspecting both the F3 and FC3 channels, on which the epileptic spikes are the most visi-

ble, suggesting that this focal activity lies within the upper left region. To estimate the cortical areas

responsible for these spikes, we manually pick 10 time instances, identified as either being a max-

imum of a spike or showing a low energy activity between spikes: at 3.74s (spike), 3.77s (spike),

4.18s (spike), 4.23s (spike), 4.42s (low activity, inter-spikes), 4.59s (spike), 4.63s (spike), 4.82s

(low activity), 5.03s (spike) and 5.07 (spike) (see Figure 3.9).

3.3.2 Results

In all cases we use both DCM and SSL estimates, thus 5 methods in total. For DCM, we also inter-

polate the results using 3D splines (76) to provide interpretable visual rendering. For visualisation
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purpose we scale the potential values between -1 and 1.

From the results Figure 3.10 we observed that the performance for all methods is visually compa-

rable, although our DCM seems to be smoother, especially its planar version, as it was observed also

in the simulation part. Cortical activations in figure 3.10 are rather difficult to interpret. It seems

that a localized source is present in the front left part of the head (location that corresponds to the

actual location of the epileptic spikes according to the neurologists, other localization methods, see

also next chapter, and surgery outcome), as the red spot appears more or less clearly for time instants

located on the peaks of the epileptic spike (columns 2, 3, 4, 6, 7, 9, 10). The rest of the map might

be quite different from one method to another. Especially for SSL with multiple sources and sinks

which complicate the interpretation. This might be the direct result of the spatial derivative, which

could yield a too strong high-pass character to the SSL.

To deal with such complex multichannel recordings, one might apply a band pass filter to cancel

low and high oscillations that are not related to the epileptic activity. Indeed, following the pre-

processing steps applied for source localization in clinical routine, we applied a FIR band-pass filter

between 8 and 48Hz. As it can be seen, the epileptic phenomena appear much clearer after this

preprocessing (Figure 3.11).

The resulting cortical maps are shown in Figure 3.12. Band-pass filtered data shows much less

spatial activity except those strong sources and sinks. As time goes one might notice the spatial

evolution and correlation between the scalp maps. In the beginning one big active sink is present in

the front-left part of the cortex. Further strong activated source can be easily seen in the front-left

part of the cortex, except in the fifth and the eighth maps, corresponding to inter-spikes samples. No

significant difference is observed between the estimations, except the smoothness, greater for DCM

planar.

3.4 Conclusion

The goal of this chapter is to propose cortical potential estimation methods based on simple geomet-

rical assumptions with low computational cost. As a result we propose here a family of informed

cortical map estimators (Dipolar Cortical Mapping, DCM) related both to surface Laplacians (SL) and

to ESI minimum norm estimates (MNE). The DCM is based on a family of parametrized physiologi-

cally plausible radial basis functions that can be seen, depending on the considered approximation,

either as an SL technique or an approximate MNE solution. In other words, we show a formal con-

nection between the MNE, the DCM and the SL estimations of the cortical activity.
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Besides, some of simpler proposed DCM use easily available information even in the absence

of imaging modalities, unlike the recently proposed SSL (and the MNE techniques). Our proposed

DCM shows good performance even for simple approximations of the head geometry, such as planar

or spherical and remains reliable when multiple cortical areas are simultaneously active.

Depending on the point of view, an advantage or a drawback of the proposed DCM is that it can

be easily parametrized by varying the depth of the equivalent dipoles and therefore changing the

smoothness of interpolation functions. This can be done by the user while analysing the data, but

it could be in principle guided by the anatomy, i.e., by the distance between the actual cortex and

the scalp surface. Indeed, when placed closer to the cortical surface, the estimated amplitudes are

less influenced by the non local electrodes. On the contrary, deeper placed dipoles take more into

account the electrical potential distribution on larger neighbouring electrode sites.

Finally, it is noteworthy that, besides the reduced computational burden, the DCM estimates are

much less prone to numerical errors. Indeed, during the simulations, the SSL methods showed an

increased sensitivity to the quality of the mesh (faces and vertices must be uniformly distributed and

it should be smooth in order to avoid computational errors, and the electrodes must be placed on

the faces).

Future development directions could exploit better the anatomical information. The brain geom-

etry in this chapter was approximated as inner skull surface which is very smooth and homogeneous

comparing to the real cortical surface. Thus the next logical step would be to use different and more

complex brain geometries. Our DCM estimate should also be evaluated for different skull thick-

ness in order to analyse the performance of the smearing effect of the skull. Also, the performance

of presented methods should be tested in more realistic noise cases using multiple random noise

dipoles.

Another interesting perspective is to relax the constraints imposed on the positions of the equiv-

alent cortical dipoles used by the DCM (i.e., below each EEG electrode) and thus allow sparser solu-

tions due to the fact that there may be not as many activated cortical areas as the electrodes. This

research direction is explored further in this thesis.

From an applicative point of view, visualised cortical maps estimates using both DCM and SSL

show very similar performance allowing to conclude that interpolation using physiological plausible

functions yield similar results.
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Figure 3.9: Chosen data window. The signals of interest are situated between 3.2s and 5.2s. Ten time
instants for which the cortical maps were estimated are marked with vertical red lines (see details in the
text).
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(a) SCALP

(b) SCALP projected on cortex

(c) DCMpln

(d) DCMsph

(e) DCMBEM

(f) SSLsph

(g) SSLgeo

Figure 3.10: Surface Laplacian estimates of several time instances applied on notch-filtered data. For all
images nose points up, left side to the left ear, right side to the right ear.
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Figure 3.11: Filtered data, same window and marks as in figure 3.9.
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3. DIPOLAR CORTICAL MAPPING

(a) SCALP

(b) SCALP projected on cortex

(c) DCMpln

(d) DCMsph

(e) DCMBEM

(f) SSLsph

(g) SSLgeo

Figure 3.12: Surface Laplacian estimates of several time instances applied on band-pass filtered data.
For all images nose points up.
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Chapter 4

Sparse spatio-temporal EEG

decomposition

The Laplacian-derived approaches developed in chapter 3 propose a full rank estimate, providing

a severe under-sampling of the cortical surface. To relax this constraint, further in this thesis we

adopt a dipolar distributed model. A large number of dipole source candidates are placed in every

point of the cortical mesh, with orthogonal orientation to the cortical layer. Pursuing the initial

objective of estimating the underlying source configuration by fitting plausible spatial pattern on the

measurements, the resulting inversion can be seen as a dictionary-based method where the dictionary

atoms consist in the columns of a given forward model.

As mentioned in section 2.3, this family of models yield severely over-determined inverse prob-

lem, and a regularization strategy must be applied. We will here adopt a constraint of sparsity, fol-

lowing the assumption that only a few cortical sources are simultaneously active. Such hypothesis is

particularly valid in e.g. epileptic context or in the case of cognitive tasks, where a limited number

of strong sources are responsible of the visible activity on the EEG electrodes. We will consider the

Single Best Replacement (SBR) and Source Deflated Matching Pursuit (SDMP) families of methods,

producing efficient methods and avoiding the drawbacks of classical matching pursuit approaches,

as stated in the section 2.3.4.5.

Considering a dense distribution of the dipoles on the cortical layer, the columns of the forward

matrix share high correlations, a context where MP-based methods like the SBR approach are of

particular interest to select the best set of atoms among a large number of solutions. However the

inherent uncertainty of the data due to the noise and to the forward problem approximations make

the problem particularly complex. To enforce the regularization as well as the sparsity of the solution,

89



4. SPARSE SPATIO-TEMPORAL EEG DECOMPOSITION

we take benefit of the temporal dimension of the data, and we propose two combined spatio-temporal

dictionaries similarly as shown in (103), where the temporal atoms are extracted from the data. First

dictionary is constructed using the temporal atoms based on a principal component analysis. The

second and more elaborated dictionary exploit a time-frequency decomposition of the data based on

wavelets, such analysis being more robust to noise and well adapted to the non-stationary nature of

the electrophysiologic data.

4.1 Space-Time dictionary

The Principal Component Analysis (PCA) is a popular technique for multivariate data denoising, data

dimension reduction and significant temporal structure extraction. In this chapter, we would like to

use PCA for extracting the essential structure of the signal and separate it from the the noise. If the

sources are not synchronized, the scalp activity should be explained by at most K dipolar sources,

with K the dimension of the source space. Each of these dipolar sources is given the temporal

activity of one of the principal components. We will rely on the matching pursuit approach to select

the best position for these dipoles based on the atoms of the spatial dictionary and to provide a

sparse scalp map. The temporal structure given by the PCA is expected to impose the temporal

stationarity of the sources on large portion of the analyzed windows, and to avoid flickering effect

of the cortical map as observed when the decomposition is based on a spatial dictionary (lead-field)

only. As opposite to MUSIC-like approach, synchronized sources can be retrieved by affecting the

same PCA component(s) to several positions.

The main difficulty reside in the estimation of the number of significant features in the signal

(i.e., the size of the source space). Depending on the nature of the noise, the estimation of the

source space dimension is not straightforward. Under independent white Gaussian noise assumption,

one might use MDL (Minimum Description Length) to extract the K most significant eigen-vectors

forming the source space.

The PCA decomposition classically begins by a computation of the covariance C of the surface

potentials V:

C= E[(V− E[V])(V− E[V])T ] (4.1)

where E[.] denotes the empirical expectation. We then apply the eigen decomposition of the co-

variance matrix C = UΣU−1, with Σ the diagonal matrix of eigenvalues and U the corresponding

eigenvectors. The K selected principal components, selected from e.g., a MDL analysis, form a PCA
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temporal dictionary Dpca:

Dpca = {U1, U2, · · · , UK} (4.2)

With such dictionary the measured potentials can be explained up to the estimated noise level, which

directly depends of K (N−K) being the size of the noise space, with N the number of electrodes. This

dictionary is simple and fast to compute. It is noteworthy to point out that for this kind of dictionary

the number of sources must be estimated correctly. When overestimated, the dictionary atoms will

contain noise amplitudes which will disturb the reconstruction and localization performance.

We now combine the PCA time-frequency dictionary DPCA with the spatial dictionary (i.e., the

lead-field matrix A). Let this space-time-frequency dictionary be H = {hi j}, where each element hi j

of size N × T (T being the number of time samples) is a rank one matrix obtained by:

hi j = aid j (4.3)

where ai is the element of lead-field matrix A, dj a j−th principal component. For implementation

reasons, we store each dictionary element hi j as a vector with dimensions (N T ) × 1. The whole

spatio-temporal dictionary H is with dimensions (N T ) × K , with K the number of estimated PCA

components, and the decomposition is done on the reshaped data V∗ of dimensions (N T )× 1.

4.2 Space-Time-frequency dictionary

The PCA components does not take into account the non-stationary nature of brain sources. However

the dynamics of the sources are most of the time transient and are known to lie within particular time-

frequency subspaces. It is in particular the case when studying the dynamic of epileptic seizures (57)

or of steady-state evoked potential (136). To address the more general case of non-stationary sources,

we therefore propose to construct our dictionary in the wavelet domain, more precisely by using

orthogonal real wavelets. The advantage of such approach is the small temporal support of the

wavelet coefficients and they can be used individually to efficiently capture specific time-frequency

characteristics of the sources, while preserving smoothness. Moreover, the compression ability of

the wavelets leads to sparse time-frequency representations of the signal of interest and thus to less

computationally expensive solutions. Fast algorithms are available for both wavelet decomposition

and reconstruction.

In the following, we assume that every signal of length T is decomposed up to the depth J (the

number of detail scales) and thus that on every scale j we have T/2 j wavelet coefficients. To gen-

erate sparse wavelet dictionary Dw, we apply wavelet coefficient threshold as a denoising procedure
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directly to the noisy data. Although one might argue that proper multichannel de-noising require

both PCA and wavelet thresholding steps (2), we want to highlight that even if in our simulations we

use correlated signals, the results were similar for both cases with and without using PCA de-noising.

This approach applies only on our particular set-up which is explained further in section 4.4.

A lot of thresholding techniques exist in the literature (see for example (5) for a review). We

tested only the classical solutions proposed by Donoho and Johnstone (33) (universal and SURE

thresholding), as well as a combination of them, suggested under the name of hysteresis thresholding

in (105), and slightly modified here, as explained further.

By its construction (aiming to preserve as much signal as possible even if some noise remains

present), the SURE threshold is rather low and preserves a lot of coefficients, increasing thus the

size of the wavelet dictionary. On the other hand, the universal threshold aims to eliminate the

estimated noise completely and keeps only the strong coefficients with big amplitudes. It yields a

very sparse temporal approximation, in principle less accurate than the SURE threshold but almost

noise-free (for details see (5) and (33)).

Hysteresis threshold aims to exploit the advantages of both: it preserves all the coefficients se-

lected by the universal threshold and adds all the SURE-selected coefficients that are connected,

in the time-frequency plane, with one of the universal coefficients. Taking into account that each

universal coefficient is also preserved by SURE threshold, this technique simply consists in labeling

the connected components in a 2-dimensional binary image. At first we label each isolated coeffi-

cient or isolated connected group of coefficients in time-frequency scale. Once binary images of both

universal and SURE thresholds are labeled, one can detect the hysteresis coefficients by a simple sub-

traction, where each individual labeled coefficient group from universal threshold is being subtracted

from the SURE labeled coefficients. Those groups of coefficient in the SURE labeled image impacted

by the subtraction are preserved as Hysteresis coefficients (see coefficients in Fig. 4.1). Let vi
w be

the vector of "clean" wavelet coefficients after applying wavelet threshold to the noisy data channel

vi . Each non-null coefficient represents the time-frequency support of a wavelet coding a signifi-

cant feature of the analysed signal vi , and we can construct a binary mask corresponding to these

supports (see Fig. 4.1). A logical OR among all masks (obtained for all channels) yields a complete

mask, where the non-null elements designate all the necessary wavelets for the approximate noise

free reconstruction of the complete measurements matrix V. Each individual coefficient corresponds

in fact to a time-frequency dictionary element w
j
pj

, which is a wavelet on scale (frequency band)

j at time-shift pj . The complete time-frequency dictionary is then the family of selected wavelets

Dw = {w
j
pj
}, with scales j ∈ {1, · · · , J} and time shifts pj ∈ {1, · · · , T/2 j}.
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4.2 Space-Time-frequency dictionary

(a) SURE (b) Universal

(c) Hysteresis

Figure 4.1: Binary image of coefficients obtained using SURE, universal and hysteresis wavelet threshold.
In all images horizontal axis - time, vertical - scale (frequency band).

Finally, the wavelet dictionary Dw need to be combined with the corresponding columns of the

lead-field. Let this space-time-frequency element dictionary be H = {hip j j}, where each element

hip j j of dimension N × T j (T j being the support size of the wavelets at scale j) is a rank one matrix

obtained by:

hip j j = aiw
j
pj

(4.4)

In the EEG application addressed in this work, H can be seen as a set of time-varying scalp-maps

shifted in time and frequency. In the following, we will simplify the notation by dropping the sub-

script pj
j , j will denote a given time shift in a given wavelet scale.
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4. SPARSE SPATIO-TEMPORAL EEG DECOMPOSITION

4.3 Spatio-Temporal Matching Pursuit

Regardless of the dictionary, multichannel observation data V can be approximated as a weighted

sum of the spatio-temporal atoms:

V̂=
∑

i

∑

j

bi jhi j (4.5)

where bi j denotes the scalar amplitude whereas hi j is a rank one matrix that implies the temporal

characteristic di from temporal dictionary D for individual point dipole lead-field column a j . The

minimization problem for Matching Pursuit (in our work we refer to SBR and SDMP) thus is formu-

lated as follows:

minb {4 (b,λ) = ||V− V̂||22 +λ||b||0} (4.6)

with the term λ||b||0 balancing the number of nonzero weighting elements in b (i.e., selected rank

one matrices hi j), regularizing the sparsity simultaneously in space and time-frequency.

The choice of an optimal sparsity parameter λ is a difficult task. As this parameter is used for

selecting the significant atoms explaining the signal of interest (source projections) but not the noise

components, it should be of the order of the noise energy 5n (144). A more detailed analysis of the

influence of this parameter is given in the results section.

In case of SDMP the number of sources Ns is assumed to be known or estimated and thus writes:

min||V−
∑

i

Ns∑

j

bi jhi j ||22 (4.7)

The residual is minimized considering the given fixed number of locations for each individual wavelet

support. Similarly as the estimation of the parameter λ in the case of the SBR algorithm, the estima-

tion of the number of sources is difficult. Both issues are actually connected because they both rely

on a source/noise subspace analysis and they will be analyzed in the Results section.

Further we will briefly discuss the practical aspects of implementing such space-time and space-

time-frequency dictionaries using the forward-backward matching pursuit extensions (SBR and SDMP)

described in section 2.3.4.5.

4.3.1 Practical guidelines using Dpca

In stationary case where the Dpca is assumed the dictionary H is computed as follows:

H= {hi j} (4.8)
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4.3 Spatio-Temporal Matching Pursuit

As explained previously in equation (4.3), spatio-temporal atom is computed as follows: hi j =

Dpca,iA j , where A stands for the lead-field matrix and Dpca,i is the i-th element of the temporal

dictionary. In fact such approach does not seem to be effective because the size of the space-time

dictionary H changes a lot for small changes in Dw or A. In fact, depending on the estimated principal

components K , the size of H is (N × T )× (K ×M). Thus slight changes in K cause huge increase/de-

crease in H and, thus, in memory consumption. This leads to a methodology that is very demanding

of the computer working memory. Nevertheless if the number of sources is small, this approach is

very easy to implement and use.

Decomposition is done over all data length thus assumes temporal stationarity. Therefore in

real application one might choose a particular time window of recordings and process them inde-

pendently. The only requirement is for the computation of PCA. One must consider enough data

samples in order to compute the covariance matrix of the data required for the PCA.

The general structure of our proposed Spatio-Temporal SBR (ST_SBR) decomposition procedure

is given in Algorithm 7.

Algorithm 6 Spatio-Temporal SBR, PCA version

1: procedure ST_SBR()

2: Give or estimate K: number of biggest principal components

3: Compute λ: Equation (4.14).

4: Construct Dpca: 4.2.

5: Compute H: Equation (4.3).

6: Decompose data: Solve equation (4.6) using SBR.

7: end procedure

4.3.2 Practical guidelines using Dw

In the case of PCA dictionary we decomposed all data at once and thus had to invert the H at each

iteration. Here each row contains only N points and we invert only the lead-field matrix A. One

might take into account that wavelet de-noising can be seen as a signal compression technique and

most of the columns of the resulting Vw thus are with zero values. This significantly speeds up the

estimation process as only the most significant columns of Vw are reconstructed. Also the sources are

allowed to be temporally non-stationary. At first we transform and threshold the noisy recordings

V into the wavelet domain using one of the wavelet thresholds (Universal, Hysteresis or Rigorous)

and obtain new de-noised version Vw. The main difference is that the de-noised scalp potentials in
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4. SPARSE SPATIO-TEMPORAL EEG DECOMPOSITION

wavelet domain Vw actually preserves all coefficients of our dictionary Dw and thus, according to the

used threshold, contains all important temporal characteristics we might be interested in. In fact,

practical application requires fitting the lead-field columns on the columns of Vw and thus reconstruct

the locations for given coefficients at a certain time-frequency band.

The general structure of our proposed Spatio-Temporal SBR (ST_SBR) decomposition procedure

is shown in Algorithm 7. One might see 4 fundamental steps are required for data reconstruction.

Algorithm 7 Spatio-Temporal SBR, wavelet version

1: procedure ST_SBR()

2: Estimate noise energy 5n to compute λ: Equation (4.14)

3: Construct Dw: Wavelet threshold (section 4.2).

4: Compute H: Equation (4.4).

5: Decompose data: Solve equation (4.6) using SBR.

6: end procedure

A very similar but slightly different structure of the Spatio-Temporal SDMP algorithm is given in

Algorithm 8. The difference being only the fact that exact number of sources Ns must be known.

Algorithm 8 Spatio-Temporal SDMP

1: procedure ST_SDMP()

2: Give or estimate Ns

3: Construct Dw: Wavelet threshold (section 4.2).

4: Compute H: Equation (4.4).

5: Decompose data: Estimate Ns sources (4.7) using SDMP.

6: end procedure

4.4 Simulations and results

The aim of this work is to evaluate the performance of cortical source localization and data recon-

struction in the context of non-stationary sources, by use of the proposed spatio-temporal dictionary.

4.4.1 Forward model

In this work we use a realistic three layer (Colin27) head model extracted from BRAINSTORM (123)

with the skull conductivity assumed as 1/20 of the skin and brain conductivity. We start by simulating

a quasi-continuous brain surface using dense discrete layer of 1200 dipoles placed 5mm under the
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inner skull surface. The dipoles have fixed orientation normal to the inner skull layer. For realistic

simulations, we randomly choose a subset of 8 or 16 dipoles to be active among the 1200 positions.

The potentials at 128 simulated BIOSEMI scalp sensors are computed using a isolated skull approach

BEM forward model from the Helsinki toolbox (120).

To motivate the choice of the matching pursuit strategies (SDMP and SBR), we point out that the

atoms forming our spatial dictionary (lead-field matrix) A are highly correlated. We have computed

the mean correlation values for each of the cortical layer point lead-field with those of its 5 nearest

neighbours (600 points taken as an approximation of the inner skull surface and 4000 points taken

for an approximation of real cortical surface extracted from the patients MRI). These correlation

values are given on Figure 4.2, scaled between 0.5 and 1. One might notice high correlation values

Figure 4.2: Mean of 5 lead-fields neighbor columns correlations. Innerskull (left) and cortical surface
(right). Correlation values scaled between 0.5 and 1.

in a lot of regions, which means that the biggest part of the space-time dictionary atoms also will be

highly correlated and thus is the main motivation to choose forward-backward optimization schemes.

Further in this thesis we consider both dictionaries: simplified cortical surface using inner skull

for simulations and true geometry for validation on the patients data.

4.4.2 Data simulation

To simulate the temporal activity of the sources we assign to the selected dipoles the time-courses

of real physiological intracranial recordings measured close to the real epileptic source. Namely, we
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choose 2 seconds (512 points using 256Hz sampling frequency) of 8 or 16 SEEG signals to simulate

the activated dipoles. Non-stationarity is obtained by considering that each of these dipoles is ac-

tive during only one epoch within these 2 seconds, with two simultaneous active sources per epoch,

i.e., 4 (respectively 8) epochs of 500ms (respectively 250ms) for the 8 (respectively 16) dipoles case.

Physiological background activity was simulated by adding to the simulated EEG recordings spatially

coloured Gaussian noise (random covariance matrix), with two signal to noise ratios (SNR) of 10dB

and 3dB. We provide mean results over 100 simulations for each of the simulated configurations.

Figure 4.4 shows an example of such non-stationary set-up for the 8 sources configuration. As a
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Figure 4.3: The time evolution of the eplipetic crisis measured using SEEG electrodes close to the source.
Several seconds in 4 channels are shown.

forward model we further use a realistic three layer (Colin27) head model extracted from BRAIN-

STORM (123) which is based on a real MRI with the diameter of the spherical model. Potentials at

128 simulated BIOSEMI scalp sensors are computed using a BEM forward model from the Helsinki

toolbox (120). Two realistic SNR ratios (10dB and 3dB) were tested, adding white Gaussian noise

on the recordings. We provide mean results over 100 simulations for each of the simulated configu-

rations.

Fig.4.4 shows and example of such non-stationary set-up for the 8 sources configuration.
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Figure 4.4: An example of the time evolution simulating 8 non-stationary sources over 4 epochs, 2
sources active per epoch. As time goes different locations are active, yielding distinct scalp maps.

The active regions were simulated with equal powers, in order to be able to define the signal-

to-noise (SNR) between the active sources and noise scalp projections. The locations (as well as the

time courses) of the active sources were randomly chosen, meaning that the SNR slightly varies from

a trial to another. The SNR values provided in the tables were obtained by averaging over 100 trials.

Assuming that a numeric solution for the source localization problem (i.e. the possible dipole
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locations) is necessarily discrete, we generate the spatial dictionary A and compute our solutions on

much sparser grid of only 677 dipoles at the same depth (5mm). In other words, as the forward

problem is a sampling of the solution space, the found solution will always be an approximation of

the true source configuration. Therefore, we assume that a good localization is within an error of

15mm distance from the simulated dipoles (this values corresponds to the mean distance between

two neighbouring vertices in the inverse problem), or within the sphere with 30mm diameter centred

on the localized dipole position.

4.4.3 Performance measure

In the following, we will consider as a True Positive (TP) an estimated dipole located within 15mm

from a simulated dipole. All estimated components that are farther than 15mm are False Positives

(FP).

We are interested in both data reconstruction quality and localization accuracy. A Goodness-of-fit

(GOF) is used to measure the quality of scalp potential reconstruction:

GOF= 1−
||Vclean − V̂||2

||Vclean||2
(4.9)

where Vclean corresponds to the noise-free source projection on the scalp, whereas V̂ stands for

the reconstructed scalp potentials. We also compute GOFs replacing in (4.9) V̂ by VT P , that is the

reconstruction of the scalp potentials using only TP dipoles. This is done in order to evaluate if the

resulting TP indeed explain the original data. The GOF is far from a sufficient statistic to evaluate

the accuracy of the source reconstruction. Indeed the problem is under-determined and several

configuration of sources might lead to the same scalp map. We thus propose additional criteria

assessing the quality of the results.

The Distance Localization Error (DLE), as proposed in (12), gives an estimate of the localization

accuracy taking into account both the missed simulated sources (TN) as well as the introduction of

spurious sources (FP):

DLE=
1

2Q

∑

k∈I

minl∈ Î ||rk − rl ||+
1

2Q̂

∑

l∈ Î

mink∈I ||rk − rl || (4.10)

Here, the I and Î denote the original and estimated sets of dipole index with Q and Q̂ being the simu-

lated and estimated number of dipoles. rk denotes the position of the k-th simulated source while rl

denotes the position of the l-th estimated dipole. This DLE equally penalize too sparse solutions with

missed sources (first member of the criterion), as well as less sparse solutions introducing spurious
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dipoles far from the true sources (second member of the criterion), and this even when the whole set

of true sources are indeed localized. This statistic must be read along with the rate of false discovery

(FDR):

FDR=
FP

(TP+ FP)
(4.11)

where the number of false positives FP is divided by the total number of estimated source locations,

and with the rate of true positives (TPR):

TPR=
TP

(TP+ FN)
(4.12)

where the number of true positives TP is divided by the total number of simulated sources.

To measure the impact of estimated FP on overall performance, we use the relative power of the

projected FP on the scalp map with respect to the power of the full estimated scalp map, computed

as:

FDP =
PFP

(PFP + PTP)
(4.13)

where PTP and PFP are respectively true positive and false positive projection powers. This helps in

measuring the relative strength of FP values with regards to the TP source power.

We emphasize that none of the proposed metric taken individually are sufficient to evaluate the

quality of the localization, e.g., a low DLE might not be significant if the number of sources is over-

estimated and/or if the contribution of the false positives to the estimated scalp map (FDP) is high.

The localization methods will be evaluated considering these criteria altogether.

4.4.4 Results

To evaluate the advantage of using our proposed ST and STF dictionaries, we compare with the re-

sults when using a spatial dictionary made of columns of the lead-field. SBRw and SDMPw denote

the STF versions trying to explain the data on each individual wavelet support. SBRpca stand for

ST dictionary constructed using leadfield columns and PCA components extracted from the data.

Finally SBRt and SDMPt stand for those fitting the lead-field atoms on the full 2 seconds temporal

windows. We also provide comparisons with two standard methods of the literature: RAP-MUSIC

and FOCUSS where the same lead-field with fixed orientations is considered.

Choice of the parameters

As mentioned earlier, the two evaluated sparse algorithms have user chosen parameters, and a first

brief statistical analysis was made in order to asses their robustness to variations in these parameters.
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The sensitivity of the SBR method to the sparsity parameter λ is analyzed by varying it between 1%

and 10% of the noise energy 5n, i.e., choosing a multiplicative factor αn in the range [0.01 0.1] such

as:

λ = αn5n (4.14)

For the different SDMP versions, the key parameter is the number of desired sources Ns. As for

λ, we tested different values of Ns around its true value, used in simulation.

The situation with SBRpca is different as multiple parameters must be chosen. First parameter is

required for the choice of the PCA components as explained in 4.1. The second parameter stands for

the choice of sparsity and is briefly explained further in this chapter.

Choice of the STF dictionary

Different dictionaries using Universal, Hysteresis and SURE thresholds were tested using different λ

values. We simulate 16 linearly independent sources and add spatially colored white Gaussian noise

to the electrodes thus SNR is 10dB and 3dB. In Table 4.1 can be seen that indeed the performance

of Hysteresis, Universal and SURE dictionaries is very similar. In fact the performance of Hysteresis

dictionary is somewhat in between the classical threshold therefore proving to be a strong equiva-

lent between both SURE and Universal. Overall performance varies only slightly. In fact Universal

Table 4.1: Comparison of performance using Universal, Hysteresis and Rigrsure thresholds. Bold values
marks the highest performance for both 10dB (blue) and 3dB (black) SNR configurations.

λ = 0.025
SBRw U

10dB

SBRw U

3dB

SBRw H

10dB

SBRw H

3dB

SBRw R

10dB

SBRw R

3dB

GOF 0.96 0.83 0.96 0.84 0.95 0.85

DLE 4.29 5.58 4.30 5.57 4.38 4.88

FDP 0.01 0.02 0.01 0.02 0.01 0.02

TP 1.00 0.92 1.00 0.90 1.00 0.96

FDR 0.01 0.02 0.01 0.01 0.01 0.02

Time 0.12 0.06 0.11 0.05 0.18 0.07

threshold yield less coefficients thus degraded data reconstruction quality but as we are interested

here in estimated locations, we re-estimate scalp potentials using the estimated locations. There-

fore the GOF values presented in the tables is computed using simulated clean scalp potentials and

re-estimated ones using estimated locations. Also when compared with SURE, both Universal and

Hysteresis are smaller, thus faster.
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Despite the small difference in performance, further in this thesis we will use our proposed Hys-

teresis dictionary.

Parameter sensitivity

As shown figure 4.5, SBRw proves to be highly robust to the choice of λ (using equation (4.14)), with

no significant variations of both DLE and FDP criteria with the variation of αn. SBRt shows a similar

behavior with λ in terms of DLE, but the FDP is higher for low λ and it is consistently outperformed

by SBRw, proving the advantage of using our wavelet-based dictionary with this MP approach. When

it comes to SDMPt , an under-estimation of the number of sources highly degrades the performance in

terms of localization accuracy (DLE), while an over-estimation penalizes the spurious source power

(FDP). Once again one can see that for highly non-stationary sources (16 sources over 4 epochs),

SBRw constantly provides better localization accuracies while keeping low the relative power of the

false detections. The SDMPw performances are not presented here, because they are systematically

much lower than those of the other three approaches, as it will be explained in the next subsection.

We also tested different λpca values and achieved very similar performance when αpca was chosen

between [0.03 − 0.06]. Smaller λpca degrades DLE (increases the number of estimated sources),

increases FDP and FDR. Bigger λpca also degrades DLE as less sources are estimated but FDP and

FDR is smaller. In tested range the results were optimal thus leading to the conclusion that also

estimation using PCA dictionary is not very sensitive to the parametrization when correct number of

soruces is estimated, but much more sensitive than using wavelets.

This analysis shows that main drawback when considering MP type methods such as RAP-MUSIC (91)

and SDMP (140) methods is that they require the number of sources as an input. Usually this pa-

rameter is deduced from a source/noise subspace analysis based on the Akaike Information Criterion

or on the Minimum Description Length criterion (106). In case of critically low SNR, synchronized

sources or correlated noise, the size of the source space can be either over or under-estimated, thus

considerably decreasing the performance of such methods. We want to emphasize that from our

simulations it seems that SBR is much less sensitive to the choice of its λ parameter, especially when

working in the wavelet domain. Indeed, by focusing on the main time-frequency components of the

sources, SBRw can easily distinguish between activities of interest and background noise.

Dictionary evaluation

In this section, we evaluate the performances of the different algorithms/dictionaries under their

most favorable parameter choice (see previous subsection). More precisely, SDMPt is informed with
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(a) DLE - 8 sources in 4 epochs
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(b) DLE - 16 sources in 8 epochs
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(c) FDP - 8 sources in 4 epochs
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(d) FDP - 16 sources in 8 epochs

Figure 4.5: Sensitivity of SBRw, SBRt and SDMPt to parameter initialization, respectively to αn fixing
the λ parameter (upper axis, for SBR versions) and to the number of sources (bottom axis, for SDMP).

the total number of sources while SDMPw is informed with the true number of active sources per

epoch. SBRw is applied with λw = 0.025n. For SBRt , we have chosen a value of λ = 0.055n, which

is a compromise among the λ values yielding the best results on an extended number of source and

noise configurations. Besides it should be highlighted that the RAP-MUSIC is informed correctly with

the true number of sources, while FOCUSS is given the true noise standard deviation.

The metrics for the two configurations are given in tables 4.3 and 4.2. Analysing the perfor-
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mance per algorithm (SBR and SDMP respectively), the benefit of using such space-time-frequency

dictionary is clearly visible for the SBR approach, where the results using the SBRw version are

consistently better. The conclusions are however the opposite for the SDMP algorithm. The bad

performance of SDMPw is due to the inherent strategy of this approach, which is forced to find a

given number of sources for each wavelet support. Some sources can have negligible amplitudes

for some support even in their respective active epoch, the informed number of sources being then

over-estimated. More detailed analysis of the results show that SDMP indeed yields a high number of

spurious sources (high FDR values), having a strong contribution on the estimated scalp map (high

FDP values). Comparing the algorithms, the better performance of SDMPt over SBRt (already em-

phasized in (140)) can be explained by the post-processing step in the SDMP strategy, where each

source position is iteratively refined. The strengths of each dictionary are revealed when used with

the appropriate MP approach. In the following, we will then be comparing the STF dictionary and

the spatial dictionary through the comparison of SBRw with SDMPt .

Table 4.2: 8 sources in 4 epochs. αnw = 0.01, αpca = 0.03 and αnt = 0.05.

TF DOMAIN TIME DOMAIN

10dB SBRw SDMPw SBRt SBRPCA SDMPt FOCUSS RMUSIC

GOF 0.97 0.89 0.92 0.95 0.97 0.96 0.94

DLE 4.23 11.99 6.05 6.48 3.59 6.88 6.42

FDP 0.02 0.13 0.23 0.14 0.01 0.04 0.03

TPR 1.00 1.00 0.99 0.99 0.99 0.97 0.92

FDR 0.01 0.38 0.14 0.27 0.01 0.06 0.07

Time 0.10 67.77 0.03 18.57 13.77 0.85 0.73

3dB SBRw SDMPw SBRt SBRPCA SDMPt FOCUSS RMUSIC

GOF 0.90 0.86 0.72 0.84 0.78 0.75 0.88

DLE 5.95 11.87 7.58 8.22 7.04 14.77 6.63

FDP 0.01 0.15 0.27 0.16 0.16 0.16 0.05

TPR 0.92 1.00 0.95 0.91 0.88 0.62 0.91

FDR 0.01 0.41 0.17 0.22 0.09 0.22 0.08

Time 0.03 81.47 0.03 18.41 13.63 0.75 0.73

As stated before, ST dictionary using PCA is highly sensitive to the estimation of source space.

When underestimated, not all source information will be captured in the dictionary. In the contrary,
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overestimation leads to the noise components and thus, yield spurious noise dipoles at localization.

This problem is not present for wavelet dictionary where wavelet threshold somewhat automatically

estimates the noise power, thus estimating the source and noise space is not a prerequisite for this

approach.

In general when compared to other methods (see Table 4.2), SBRPCA proves to be competitive

to others. Although increased DLE indicates spurious sources that, in fact, are with relatively high

amplitudes as FDP shows. It is also noteworthy that such dictionary has huge data size (several

≈5.41Gb for 128 sensors, 645 dipoles, 8 sources and 512 time samples) therefore computation time

is significantly increased.

In case of highly non-stationary data with high number of sources, i.e., 16 sources on 8 epochs, the

data size of spatio-temporal dictionary Hpca used for SBRPCA grows exponentially with the number

of sources. In our experience, we observed that using such simulation set-up, SBRPCA is very time

and memory consuming. As can be seen in Table 4.2, the results using Hpca are similar to others, but

with relatively high FDR. By taking into account the computational drawback of the PCA dictionary,

we will not further provide results using these temporal atoms.

As it can be seen in Table 4.3, SBRw approach outperforms SDMPt . This is especially the case

when the SNR is low (3dB). Because of the thresholding, the wavelet dictionary favors the most sig-

nificant temporal elements and help in distinguishing between source and noise space. SBRw yields

TDR values very close to 1, meaning that all the sources are indeed retrieved, while the FDR and the

FDP values remain of the order of 0.01. Under ideal parametrization (correct Ns) SDMPt becomes

more efficient than SBRw as the number of sources is reduced and their stationarity increases, as

well as when the SNR increases. For 8 sources over 4 epochs with a SNR of 10dB, both methods are

competing with a noticeable advantage for SDMPt when looking to the DLE. This trend is further

confirmed over all the simulated configurations with less sources and epochs (i.e., with more sta-

tionary and less sources, not shown here). Still, one must recall that SDMPt performances depend

on the right choice of the Ns parameter.

From an implementation point of view, the computation burden for each method show that SDMP

is the most consuming method, being between 100 to 1000 times slower than SBR depending on the

configurations and the dictionary used. SBRw proves to be very robust and fast, allowing to estimate

the cortical map for 2 seconds of data within about 100ms.

The standard methods proposed in the literature based on minimum norm estimate such as

FOCUSS, proves to be less accurate when facing highly non-stationary data especially for low SNR.
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This algorithm further in this thesis will no longer be used. RAP-MUSIC however shows strong

robustness over all the configurations.

Table 4.3: 16 sources in 8 epochs. αnw = 0.01, αnt is 0.05.

TF DOMAIN TIME DOMAIN

10dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC

GOF 0.96 0.92 0.91 0.92 0.94 0.95

DLE 4.37 8.70 6.49 5.62 7.89 4.49

FDP 0.01 0.19 0.27 0.17 0.06 0.01

TPR 1.00 1.00 0.97 0.95 0.93 0.97

FDR 0.01 0.23 0.09 0.05 0.09 0.02

Time 0.19 31.25 0.05 26.03 0.80 2.39

3dB SBRw SDMPw SBRt SDMPt FOCUSS RMUSIC

GOF 0.86 0.46 0.57 0.56 0.65 0.81

DLE 4.87 11.17 10.25 8.22 19.13 4.92

FDP 0.01 0.19 0.30 0.34 0.25 0.05

TPR 0.95 1.00 0.72 0.85 0.46 0.96

FDR 0.01 0.45 0.13 0.13 0.35 0.03

Time 0.05 95.01 0.04 32.04 0.76 2.65

4.4.5 Discussion

We compare our algorithms using realistic simulation setup with three well-known inverse problem

algorithms, namely RAP-MUSIC, FOCUSS and recently proposed SDMP. Among classical approaches,

RAP-MUSIC (91) provides the best accuracies, while FOCUSS needs longer time windows to provide

accurate performances. As emphasized in (140), SDMP applied with a spatial dictionary is efficient

when the sources are rather stationary, and if the expected number of sources is known. However it

fails in decomposing the data on the proposed STF dictionary, as it requires the number of sources as

an input. Sufficiently large time windows with significant activations of these sources is then needed,

which is not the case when considering short time supports. Our approach is competitive with all for

all noise noise levels, but we outperform others when the number of sources is rather big and SNR is

low. Besides the sparse approximation using spatio-temporal dictionaries proved to be very fast for
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large data and highly robust to the choice of the parameters.

This contributes to the idea that no universal localization method can cover the full spectrum of

applications. Our proposed STF dictionary combined with the SBR strategy might be favored when

trying to localize highly transient phenomena like epileptic spikes or cognitive evoked potential. The

next section aims to evaluate the performances of the proposed methods on real data, issued from

EEG recordings of an epileptic patient.

4.5 Real data validation

4.5.1 Set-up

We will now perform the localization on the same data that those exploited in the chapter 3.3, with

the same pre-processing steps (i.e., 50Hz notch-filtered or band-passed). For the comfort of the

reader, we give again the 64 channel time-courses of these real data within a selected 6 seconds

window, for the notched (Figure 4.6) as well as the band-passed data (Figure 4.7). This window

contains the same epileptic activity as those analyzed in the last chapter. In particular, we will focus

on a sub-window of length 1.5 seconds (from 3.7 to 5.2s), containing interesting spiking activities as

visually selected by the neurologists (especially within the channels PO3 to FC5 as outlined by the

blue square in the figure). We apply SBRw, SBRt , SDMPt as well as RAP-MUSIC on this data window.

In the same way as done in the chapter 3.3, we extract the surface meshes from the MRI and

place 64 electrodes on the scalp surface, following the standard 10-20 system used for recording the

data. Then each extracted surface is visually validated by aligning it on the corresponding segmented

MRI structure (see Figure 4.8). We use cortical surface discretized in around ∼4000 points, and we

define the dipole position just below the center point of the mesh triangle (for BEM computation

reasons). In the same way as done in the simulations, we assume that the orientation of each dipole

is fixed and normal to the cortical surface (mesh triangle). The computation of the BEM forward

model based on three surfaces is carried out in the same manner as in the simulation section, by use

of the isolated skull approach implemented in the Helsinki toolbox (120). The skull conductivity

was classically assumed as 1/20 of the skin and brain conductivity.

4.5.2 Results

As pointed out in the methodological part, all of the algorithms need to be initialized or parametrized.

For the SBR algorithm, the regularization parameter λ has to be given. As done in the simulation
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Figure 4.6: Notch-filtered data window of 6 seconds and chosen (square from 3.7s-5.2s) sub-window of
2 seconds representing the area of interest.
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part, we compute the noise energy from the wavelet denoised data, such that:

5 = ||Vw||F − ||Vdenw||F

, where ||Vw||F is the Frobenius norm of measured data in wavelet domain and ||Vdenw||F the Frobe-

nius norm of denoised data using Universal wavelet threshold. As already discussed in this chapter,

λ can be set as a fraction αn of this noise energy estimates. We perform several trials by varying

αn in the range 0.05 to 0.01, as done on the simulated data. Finally, we assume the following αn

values, yielding the best visual results, i.e., limiting the number of estimated sources due to noise

components while still identifying the strong ones: 0.010 for band-pass(8-48Hz) filtered data and

0.015 for notch-filtered data.

In order to inform both SDMP and RAP-MUSIC, the size of the source space must be estimated.

This is a particularly arduous task when facing such real noisy data, and on which classic routine

like the MDL procedure tend to over-estimates the number of significant components. Therefore

the number of candidate sources still remains as a user parameter. Although one might choose the

number of sources a priori by adopting an empirical rule, choosing those biggest eigenvalues that

explain at least 95% (2.35, 2.36) of the EEG data(Figures 4.6,4.7). The estimated size of the source

space is 8 for the notch-filtered data and 9 for the band-passed version. From medical priors, the

number of underlying sources we are looking for goes from one to two, one active epileptic source

in the left hemisphere and possibly one in the right hemisphere. With such informed size, these

allegedly most significant sources will indeed be scanned by the SDMP and RAP-MUSIC procedures,

while limiting the number of estimated noisy components. We do not restrict further the number of

components in order to let these algorithms reveal other possible source locations.

In this chapter, the localization results are given as red points super-imposed on a representation

of the cortical surface shown in Figure 4.9. On the right hand of the same figure, we also provide

the positions of the scalp electrodes as labels super-imposed on the mesh of the head. In particular,

it roughly provides the position of the electrodes F3 and FC3 under which, according to the analysis

done by the experts, the main epileptic activities to be localized are supposed to lie.

Each method is applied on the full 1.5 seconds data window, and we extract the localization

results of each methods within 6 contiguous sub-windows of 0.25s, for the notched (Figure 4.10)

as well as the band-passed data (Figure 4.11). The results are displayed for each methods using the

same normalized color scale for all the sub-windows. Stronger dipoles are bigger in size and are red

while the weaker dipoles are smaller and tend to be white. In the upper part of each figure of results

are given time-courses of the channels as super-imposed black curves, temporally scaled with the

110



4.5 Real data validation

different localization pictures, bringing an overall vision of the temporal activities that have been

localized window by window.

Results shows that pre-processing step (applied notch or band-pass filter) yields different results.

We first consider the raw data where only the notch filter is applied (Figure 4.10). For all the 4

tested methods, the results are consistent and yield localizations mostly in the left hemisphere in the

expected upper left area under electrodes F3 and FC3 corresponding to the left part of the frontal

lobe. We remind that SBRt , SDMPt as well as RAP-MUSIC have to estimate a time-course for each

source for the full data length of 1.5s, whereas the SBRw works on local wavelet time support and

is more adapted to handle non-stationary events. This is here nicely illustrated by (i) the vanishing

of all activities in the 5th window (1 to 1.25s) where the time-courses indeed do not contain strong

activities, and also by (ii) the apparition of a strong sources in the upper left of the right hemisphere

within the second, third and last windows, while SBRt and SDMPt also localize a source of hardly

noticeable amplitude within these windows, and RAP-MUSIC totally miss it. it is noteworthy that the

neurologists have indeed identified the apparition of slow and highly transient epileptic activities in

channels FC4 and F4 within these time windows (see 4.6). According to their expertise, it is very

likely that this identification indicate a location directly or indirectly connected with the source of

the left hemisphere.

Taking benefit of the priors given by the medical expertise, we consider to band-pass the data and

to carry out the localizations in the frequency bands of interest between 8 and 48Hz, as explained

in the chapter 3. The results are shown in Figure 4.11. The SBR optimization based on the STF dic-

tionary brings very sparse results, and is very consistent from a window to another, confirming the

robustness of the approach. The estimated locations are still consistent with the positions validated

by the neurologists, but with enhanced degree of spatial sparsity. In addition, the 2nd and 5th win-

dows remain both silent, as indeed no evident spiking activity can be observed in the corresponding

temporal activities. It emphasizes the ability of the method to separate the significant physiological

activities from noisy components.

The results produced by the three other methods are very similar, also identifying the presence

of a source in the suspected region. However, all these methods seem to produce spurious activation

in the lower part of the brain. These localizations cannot be validated by the experts, and might be

produced due to the presence of noise/artifact components.

On the other hand, these results highlights the performance limitation of the SBRw approach

(space-time-frequency dictionary based on wavelet coefficients). On these band-passed data, a
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strong spiking activity in the window 1.25-1.5s is revealed by the localization procedure, this ac-

tivity being indeed clearly visible on the data time-courses. This source has been missed by the

SBRw method when applied on the notched data (see Figure 4.10). After analyzing the algorithm

outcomes, we conclude that particularly this spiking activity has been suppresed by the presence of

the strong sources localized in the right hemisphere within this particular sub-window (and later

eliminated by the band-pass filtering). In fact, SBRw localizes the most energetic signals allowed by

the STF dictionary. This means that indeed smaller sources (with less energy) but more important

can be missed. To avoid such drawback one might analize the signals and keep those atoms corre-

sponding for the sources of interest. Inversely, the other methods bring an under-estimation of this

right hemisphere activity while still localizing the left one. We have then to be very careful when

recommending one or the other method, each having their advantages and drawbacks. No universal

approach exist yet, and cross-checking the output given by several algorithms seems still the best

way to provide a reliable source localization estimate.

4.5.3 Discussion

As for the simulated case, we evaluate different optimization strategies for choosing the relevant

atoms from the dictionary against classical approaches such as RAP-MUSIC. The performance of

FOCUSS is not discussed here because the simulation results were significantly worse that the others

and we tend to compare the matching pursuit type methods.

The main difference with respect to the simulation is the presence of strong background activity,

i.e., sources not relevant to the epilepsy. These sources with relatively high signal energy are not

eliminated by wavelet denoising so supplementary preprocessing steps are needed like band pass

filtering. Using this preprocessing, the results obtained on the real epileptic EEG data confirm that

the SBRw approach preserves its properties (sparsity and correct localization), as the expected posi-

tion of the epileptic sources are indeed consistently identified. The produced localizations are very

sparse spatially as well as temporally with some estimated time windows remaining silent when no

significant source is active.

On the other hand, the increased sparsity comes with a price when applied on the raw data.

In particular, the SBRw method clearly identifies a strong source in the opposite hemisphere (with

respect to the band-passed filtered data), that was missed or underestimated by the other algorithms,

while missing the spike in the correct location. According to medical expertise, the generator in the

right hemisphere is not an artefact, but a real secondary epileptic source (for this patient, the epileptic

activity was initiated in the left hemisphere but spread rapidly to the opposite one). This illustrates

112



4.6 Conclusion

the difficulties in real situations, when one must either compare several localization methods or to

vary the user parameters (λ in the SBR case) in order to obtain a valid solution.

4.6 Conclusion

It is clear that no universal and completely autonomous approach has been proposed to date for

solving the EEG inverse problem, so the panel of available methods in the literature is extremely

large and one can chose a particular method likely to provide the best performance for a given

application. The main contribution of this chapter is a formulation of this problem within a sparse

optimization framework and using a data-driven space-time-frequency dictionary, where the atoms

are constructed using a realistic lead-field model for the space component and a thresholded wavelet

decomposition for the time-frequency one. We evaluate different optimization strategies for choosing

the relevant atoms from the dictionary against classical approaches such as RAP-MUSIC and FOCUSS.

In particular, among these optimization strategies, SBRw proves to be very efficient in decomposing

the data on such atoms, with limited computational cost, high robustness to noise and to user chosen

parameters, while providing enhanced localization results when the non-stationarity of the sources

increases. These advantages can be explained by the details of this algorithm: while most of the

algorithms estimate the source time-courses over the whole data window, this approach analyse the

data wavelet support by wavelet support, and is able to focus on transient activities that might be

underestimated by the other methods. The denoising implicitly carried out by the wavelet atom

extraction prevents the algorithm to produce spurious sources due to noisy components.

We also shed light on a sensitive aspect shared by all algorithms, that is their parametrization.

Indeed, some algorithms, e.g., SDMP or RAP-MUSIC, require the estimation of the size of the source

space (i.e., roughly the number of independent underlying source components). If theoretical criteria

exists for producing such estimates, they seem to be unfortunately based on too simplistic assump-

tion (e.g., noise modelling as white and Gaussian), and do not provide relevant results from our

experiments. Methods based on mixed norm regularization does not require such information, but

still need to fix a trading parameter between adequation to the data and respect of the regulariza-

tion criteria (although the SBRw approach seems to be less sensitive to variations of this parameter).

From our experiments on real data, these parametrization issues still remains unresolved, and are

for now left as user parameters.

Several future research directions can be imagined. First, one of the drawbacks of the used meth-

ods is the fact that the orientations of candidate dipoles are fixed and that their locations are limited

113



4. SPARSE SPATIO-TEMPORAL EEG DECOMPOSITION

to the cortex. The model can be extended to allow free orientation and deep brain sources. In this

case, other optimization scheme must be chosen based on a block sparsity estimation, i.e., methods

that are able to choose the best atom from the dictionary and estimate the orientation. It also is inter-

esting to notice (see figure 4.2) that the degree of correlation between dictionary atoms (lead-field

columns) is not spatially homogeneous. Indeed, for inner skull surfaces where the cortical layer has

a small curvature and thus the neighbouring dipoles have the same or very close orientations, the

correlation are high. On the the other hand, in the areas of high cortical curvature one might notice

significantly lower correlation values whereas high correlation is still present at the gyral crowns.

A possible way to avoid such highly correlated atoms is to adaptively modify the mesh and allow

coarser grid in places where the correlation is high. In practice, this would boil down to a reduced

spatial dictionary corresponding to a subsampled lead-field matrix.

Using a space-time-frequency dictionary might also open other interesting perspectives, as us-

ing other techniques (instead of simple band pass-filtering followed by wavelet denoising) for se-

lecting physiologically relevant atoms (for example, selecting the atoms based on some adapted

thresholds tuned according to a priori user knowledge, such as the frequency content for epileptic

high-frequency activities (82)).
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Figure 4.7: Band-pass filtered data window of 6 seconds and chosen (square from 3.7s-5.2s) sub-window
of 2 seconds representing the area of interest.
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Figure 4.8: Aligned cortical surface mesh in the MRI. Screenshot from BRAINSTORM toolbox (123).

Figure 4.9: Cortical surface with following directions: Left,Right, Nose.
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Figure 4.10: Estimated spatial activity of notch-filtered data splitted in equal windows of 0.25 seconds
each. Amplitudes represents normalized dipole power. For visualization purposes color values are scaled
between 0 and 1.
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Figure 4.11: Estimated spatial activity of band-pass filtered data splitted in equal windows of 0.25 sec-
onds each. Amplitudes represents normalized dipole power. For visualization purposes color values are
scaled between 0 and 1.
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Conclusion and Perspectives

Summary and Main Contributions

Functional specialization of different cortical areas is now a well established field of knowledge.

Nevertheless, most cerebral functions are distributed over several areas organized in networks and,

on the other hand, some areas might participate in several networks. This complex organization

appears both in normal and pathological brain functioning. The production of dynamic activation

maps of the cortex from non-invasive measurements, i.e., localize the network nodes and detect the

dynamics of their activations, is still an active topic of research. This thesis deals with the estimation

of cortical sources from two main perspectives. First one being the development of cortical imaging

methods based on the EEG measurements and on simple geometric hypothesis alone (chapter 3),

the second one exploring dictionary-based methods using realistic anatomical models and sparse

Matching Pursuit algorithms (chapter 4).

One of the first cortical imaging method is the Hjorth Laplacian montage (68), which provides a

discrete image of the underlying sources from the second spatial derivatives of the surface potential.

This principle has been extended to the estimation of continuous activation maps, where an interpo-

lation of the discrete measurements on the head surface is carried out before its derivation (8, 32).

Inspired by such interpolation scheme, we interpolate the surface measurements using Radial Basis

Functions modelling the projection of the cortical sources on the scalp. These basis functions are

built using two different geometrical approximations of the head - planar and spherical - producing

physiologically plausible (dipolar) patterns on the scalp surface. Considering a full-rank propaga-

tion matrix (i.e, equal number of sources and electrodes), the interpolation weights represent the

estimated strength of the sources, producing discrete scalp maps. Using this methodology, we put

forward obvious links between the surface laplacians (SL) and the most usual electrical source imag-

ing (ESI) methods based on Minimum Norm Estimation, which often appear as two disconnected

fields of research in the literature. The resulting estimator is called Dipolar Cortical Mapping (DCM)
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and is compared to recent SL methods and to a basic minimum norm estimate on simulated signals.

While an full rank ESI approach based on an accurate BEM model gives better results for high SNR

configuration, our DCM approach is less sensitive to the additive noise and yields satisfactory results

up to a 10dB SNR ratio. It competes with more complex SL approach while keeping very low the

algorithmic complexity, and requiring very few and easily available anatomical information.

If in chapter 3 we estimate sources having fixed positions beneath the electrodes (and thus the

same number of sources and electrodes), in chapter 4, we relax these fixed location constraints (and

thus the full-rank hypothesis) and dipole candidates are placed all over the cortical surface. Unlike

the DCM, an under-determined inverse problem is now to be solved, as now all possible positions

on the cortex need to be considered. This approach implies that we must use a complete lead-field

matrix, computed through a forward modelling approach. On the other hand, unlike in classical min-

imum norm ESI, our aim is still to explain the measured signals (scalp map) with a reduced number

of sources, in principle much smaller than the number of electrodes. Following the physiological

assumption that few cortical sources are simultaneously activated, we take benefit of the matching

pursuit framework for the production of sparse solutions. Such approaches aim to explain the mea-

sured data as a decomposition on a highly correlated dictionary constructed from the columns of the

lead-field matrix and they have proved to be efficient for EEG source imaging (56, 72, 140). While

the decomposition is usually carried out in the spatial domain by selecting the dipole projections

which best fit the data, we enforce the regularization by using space-time/frequency (STF) dictio-

naries. We use two types of dictionaries extracting the temporal characteristics directly from the

data, either using PCA decomposition or wavelets. Using the PCA components, the algorithms are

able to identify stationary neural generators. The main drawback is of computational order, being

far too memory demanding when the number of sources increases. The wavelet dictionary brings

high performance for non-stationary data regardless of the number of sources. While most of the

methods are very sensitive to their initial conditioning, which is often related to a pre-estimation of

the number of sources, the SBR optimization scheme combined with the proposed STF dictionary

is robust to its parametrization. We have illustrated the applicative potential of the method by con-

sidering the data of an epileptic patient, estimating the localization of spike generators with very

local spatial and temporal nature. The results are concordant with the expertise of neurologists and

further validated by the surgical outcome.
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4.6 Conclusion

Discussion and perspectives

One of the key aspects when it comes to source localization is the head modeling at the basis of

the construction of the forward model. Numerous works in the past ten years tend to establish more

and more sophisticated models thanks to the growing available computational power. However such

modelling involves sensitive pre-requisites, as the estimation of conductivity parameters and precise

segmentation of the head tissues, such procedure being prone to uncertainties and approximations.

As pointed out by recent publications (16, 26), these efforts might not be relevant when quantifying

the localization precision. Such conclusion might also be drawn from the results of this thesis, where

rough planar and spherical approximations of the head used in the DCM approach are shown to com-

pete with BEM MNE method and sophisticated SL approaches, with drastically reduced computation

cost. The question which naturally arises is where to put the cursor when it comes to the construc-

tion of a forward model. Similarly to the reduction of the temporal dictionary provided in this thesis,

we might think of a reduction of the spatial dictionary by adapting the size of the lead-field to the

expected localization precision, this precision being irreducible and dependent of the uncertainties

inherent to the forward model, and to the imprecision of the data due to the presence of noise.

Applied on such electro-physiological brain measurements, the localization of activities lying

within particular time-frequency bands is of particular interest. In this thesis we have illustrated its

ability to provide accurate localization of epileptic generators, such activities showing well defined

time-frequency characteristics. Using alternative learning techniques for selecting physiologically

relevant atoms, it is possible to further adapt the method to a given application. One might think of

cognitive applications, where the localization of the generators of evoked-potential is required for

the identification of the brain structures responsible for a given cognitive task (136). These evoked

activities being highly reproducible, constructing a temporal dictionary formed by atoms learned on

such data brings a promising way to built a dedicated and robust localization tool.

Finally, the sparse philosophy we adopt all along this work has been developed on purpose for

treating a key neuroscientific question not tackled within the framework of this thesis: the identi-

fication of functional or pathological brain networks at local or large scale, in which distant brain

structures cooperate and who are widely believed to be at the root of the normal or abnormal brain

mechanisms. By summing up the recorded measurements using few point sources, each standing for

the mean activation of the brain structure they are lying in, we greatly simplify the analysis of these

underlying networks, where each identified point source can be considered as a node of a graph of
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connected structures. We profoundly believe that the study of the source relationships in the recon-

structed source space using Source Imaging methods is at the basis of a better understanding of the

human brain machinery (85).
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Résumé

L’imagerie de sources corticales joue un rôle important pour la compréhension des méca-

nismes fonctionnels et pathologiques du cerveau. Elle permet de relier l’activation de certaines

zones corticales en réponse à un stimulus cognitif donné, et ainsi d’étudier les co-activations des

réseaux fonctionnels sous-jacents. Parmi les modalités d’acquisition à disposition, les mesures

électroencéphalographiques (EEG) ont le grand avantage de fournir une résolution temporelle

de l’ordre de la millisecondes à l’échelle des processus étudiés, tout en demeurent une technique

non-invasive exploitée en routine clinique. Cependant l’identification des sources activées à par-

tir d’enregistrements EEG reste une tâche extrêmement difficile en raison de la faible résolution

spatiale de cette modalité, de l’effet de filtrage important de l’os crânien et des erreurs inhérentes

au modèle de propagation à inverser. Dans cette thèse, différentes approches pour l’estimation

de l’activité corticale de surface à partir de l’EEG ont été explorées. Les méthodes d’imagerie cor-

ticales les plus simples se basent uniquement sur des caractéristiques géométriques de la tête.

La charge de calcul est très réduite et les modèles utilisés sont simples à mettre en oeuvre. En

revanche, de tels approches n’apportent pas d’informations précises sur les générateurs neuro-

naux ainsi que sur leurs propriétés spatio-temporelles. Des techniques plus élaborées peuvent

alors être employées pour construire un modèle de propagation réaliste, et ainsi reconstruire plus

précisément les sources par inversion. En revanche, le problème d’inversion de ce modèle est

sévèrement mal posé, et des contraintes doivent être imposées pour réduire l’espace des solu-

tions. Nous avons d’abord repris le problème de l’imagerie de sources corticales en se basant

uniquement sur les activités électriques fournis par les mesures EEG de surface. Les méthodes

développées reposent sur des considérations simplifiées mais universelles sur la géométrie de la

tête ainsi que sur les caractéristiques de propagation physiologiques des sources. Les opérateurs à

appliquer aux données sont des matrices de plein rang, semblable aux méhodes par Laplacien de

surface (SL), et sont basées sur l’hypothèse que les données de surface sont faites d’un mélange

linéaire de fonctions de base radiale produites par les sources sous-jacentes. Dans la deuxième

partie de la thèse, nous levons la contrainte de rang plein en adoptant des modèles de dipoles

distribués. Pour ce faire, une régularisation de type parcimonie est développée en s’appuyant

sur l’hypothèse physiologique que seules quelques sources corticales sont actives simultanément,

une hypothèse bien adaptée au contexte de sources épileptiques ou encore dans le cas de tâches

cognitives. Cette contrainte est imposée à la fois dans les dimensions spatiale et temporelle des

mesures. Deux dictionnaires d’atomes spatio-temporelles sont proposés, l’un construit par ana-

lyse en composantes principales des données, le second exploitant une décomposition sur une

base d’ondelettes, plus robuste au bruit et bien adapté à la nature non-stationnaire des données

électrophysiologiques. L’ensemble des méthodes proposées ont été testées sur des données si-

mulées et comparées à des approches classiques de la littérature. Les performances obtenus sont

satisfaisantes et montrent une bonne robustesse dans des conditions de rapport signal à bruit dif-

ficiles. Nous avons également validé nos approches sur des données réelles épileptiques fournies

et expertisées par les neurologues du Centre Hospitalier Universitaire de Nancy affiliés au projet.

Les localisations estimées concordent avec la détermination de la zone épileptogène obtenue par

exploration intracérébrale en Stéréo-EEG.

Mots-clés: EEG, Problème inverse, Imagerie de sources corticales, Solutions Parcimonieuses



Abstract

Cortical source imaging plays an important role for the comprehension of the functional

or pathological brain. It allows to relate the activation of particular cortical areas in response to

a given cognitive stimuli, hence to study the co-activations of underlying functional networks.

It is also helpful in identifying the location of pathological activities. Various methods of clin-

ical investigation can be used, from imaging modalities (PET, MRI) to electroencephalography

(EEG, SEEG, MEG). The electroencephalographic (EEG) measurements have the great advantage

to yield very high temporal resolution in milliseconds while being a non-invasive technique often

used in primary clinical investigation. However the identification of the activated sources from

EEG recordings remains an extremely difficult task due to the low spatial resolution this modality

provides, to the smearing effect of the skull, to propagation model errors, as well as spatial (lo-

cation and size) and temporal (synchronization) properties of the sources. In this thesis, different

path to the estimation of cortical activities based on the EEG have been explored. Simplest cor-

tical imaging methods requires only the assumptions of the geometrical properties of the head.

Second order derivation of the interpolated scalp recordings removes smearing effect of the skull

and yields an approximate estimation of the dura potentials. Despite small computational burden

and simplified models such estimation do not provide accurate information about the individual

neural generators nor their spatio-temporal properties. To overcome this, more elaborated mod-

els are used to construct realistic forward model and, thus, localize the sources by inverting it.

In addition to the difficulty of forward model construction, inversion step requires regularization

and/or sparsity constrains. Although dozens of methods already exists in the literature, only few

are designed for the non-stationary nature of the unknown number of the sources. We reconsider

the problem of cortical source imaging using as less information as possible in addition to the

electrical activities provided through the EEG scalp measurements. We have avoided statistical

assumptions due to the poor amount of physiological considerations they are able to integrate,

and we have rather focused on methods that rely on basic geometrical and physiological con-

siderations. Resulting full rank estimator is at the root of a large family of interpolation-based

Surface Laplacian (SL) methods, based on the assumption that the scalp map is made of a linear

mixing of smooth basis functions produced by the underlying sources. In the second part of the

thesis, we relax the full rank constraint by adopting a dipolar distributed model and we follow

the assumption that only a few cortical sources are simultaneously active. Such hypothesis is par-

ticularly valid in e.g., epileptic context or in the case of cognitive tasks, where a limited number

of sources are responsible of the visible activity on the EEG electrodes. To enforce the regular-

ization as well as the sparsity of the solution, we take benefit of the temporal dimension of the

data, and propose two combined data-driven spatio-temporal dictionaries. At first the temporal

atoms are learned based on a principal component analysis. Finally we exploit a time-frequency

decomposition of the data based on wavelets, being more robust to noise and well adapted to the

non-stationary nature of the electrophysiologic data.

Keywords: EEG, Inverse problem , Cortical Source Imaging, Sparse solutions
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