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Abstract

This dissertation considers the application of nonsmooth optimization approach with mixed
performance index on several FDI problems.
Firstly, to overcome the drawback of classical methods, like LMI, a nonsmooth optimization
approach is proposed to solve a multiobjective fault detection problem in the worst case, where
�·�∞ is used to evaluate the maximum effects of the disturbances on the residual, while �·�−
is utilized to measure the minimum influences of the fault on the residual. An additional
constraint of fast transients of residual responses could be added into the design, which could
be solved by nonsmooth optimization approach. A framework of designing a unique observer
gain and a unique residual weighting matrix is proposed for a system with multiple models.
For the case that the exact model is unknown, a new framework of robust fault detection filter
and an unchanged threshold are proposed, which are independent on the exact model of the
system. Both designs are transformed as a min-max formulation, which could be solved by the
proposed nonsmooh optimization method.
Secondly, a method is proposed to design an integrated fault detection observer for general case
(unknown L2 bounded faults and disturbances) and specific case (some specific faults) with
specifications in frequency and time domain, where the design for general case is evaluated
with mixed specifications H−/H∞. Different from the traditional frequency design method,
lower and upper bound envelopes in time domain are proposed to adjust the transient of the
residual for the specific faults directly. Using the lower bound envelope, the first application
designs a fast fault detection observer for the specific faults with a guaranteed ability of fault
detection in the worst case. By contrast, to decrease false alarms when fault disappearing, a
constraint of an upper bound envelope is added into the design.
Thirdly, in some cases, the effects of fault are masked by the operations of controller, which
is difficult to be detected with the passive fault diagnosis method. A new framework of active
diagnosis with auxiliary signal is proposed. Different from the classical specifications used in
the literature, a criterion of peak amplitude is proposed to evaluate the worst effects from
the auxiliary signal on the system. The effects of auxiliary signal on the outputs and control
signals are considered into the design. The design method is firstly shown with a case of two
models, which could be considered as model detection. Furthermore, for the multiple models
case (model isolation), the framework is improved with a decision logic to discriminate all the
models.
The techniques developed in this dissertation are well illustrated using either academic or
practical examples (A vehicle lateral dynamics system and DC motor control system DR300)
and the results show the effectiveness of the proposed techniques.
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Résumé

Cette thèse consiste à appliquer des méthodes d’optimisation non lisse pour la résolution de dif-
férents problèmes de diagnostic impliquant des indices de performances multi-critères (fréquen-
tiels et temporels).
Dans un premier temps, afin de surmonter les inconvénients des méthodes traditionnelles basées
sur la résolution d’inégalités matricielles (LMI), une approche de l’optimisation non lisse est
proposée pour résoudre le problème de détection de défauts multi-objectif dans le pire des cas,
dans lequel la norme �·�∞ est utilisée pour évaluer les effets maximaux que produisent des
perturbations sur le résidu, alors que l’indice �·�− est utilisé pour évaluer l’influence minimale
du défaut sur le résidu. Une contrainte supplémentaire relative à la rapidité de la réponse
résiduelle est également ajoutée dans la conception et le problème d’optimisation est résolu
grâce à une approche non lisse. Avec comme objectif de concevoir un générateur de résidu
présentant un gain et une pondération de la sortie uniques, une démarche est ensuite proposée
pour le diagnostic de système à commutation multi-modèles. Dans le cas où le modèle exact
est inconnu, une construction d’un filtre robuste de détection de défaut est également étudiée.
Dans la seconde partie de la thèse, une méthode est proposée pour concevoir un observateur
intégré de détection de défauts dans le cas général (défauts et perturbations L2 borné et inconnu)
et pour un cas particulier (défaut spécifique). Dans le cas général, la synthèse est réalisée
dans les domaines temporels et fréquentiels, et la conception est réalisée en considérant des
spécifications H−/H∞ mixtes. Dans le domaine temporel, une enveloppe des bornes inférieure
et supérieure du résidu est proposée pour ajuster le transitoire du résidu en réponse à des défauts
spécifiques; l’enveloppe inférieure sert à régler la rapidité de la réponse alors que l’enveloppe
supérieure permet d’ajuster le taux de fausses alarmes.
Dans certaines situations, les effets de défauts peuvent être dissimulés par les actions du con-
trôleur, qui réduit la capacité du système de diagnostic à détecter les défauts par un moyen
dit passif. Nous proposons dans la dernière partie de la thèse d’étudier une approche active du
diagnostic, consistant à injecter des extra-signaux sur les commandes du système de manière
à révéler au mieux la présence de défauts. A la différence des spécifications traditionnelles
relevées dans la littérature, un critère d’amplitude de crête est proposé pour évaluer les effets
du signal auxiliaire sur le système. Les effets du signal auxiliaire sur les sorties et les sig-
naux de contrôle sont introduits dans la conception du signal auxiliaire et du post-filtre. Tout
d’abord, la conception est présentée dans le cas de deux modèles caractérisant respectivement
le fonctionnement normale et le fonctionnement défaillant du système. En outre, dans le cas où
plusieurs défauts peuvent cohabiter, une démarche logique proposée pour l’isolation du défaut.
Les techniques développées dans cette thèse sont bien illustrées par des exemples académiques
et les résultats obtenus montrent l’efficacité des techniques proposées.
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1. Introduction

1.1. Motivation

The research interests of this dissertation are focused on improving the effects of fault diagnosis
for dynamical system with the aid of performance indices in time and frequency domain. The
motivating objectives of this research are explained in the following lines:

Why fault detection?

With the development of more and more integrated and complex systems during the past
several decades, the critical issues of system, like, higher performance, cost efficiency, product
quality, dependability and reliability, are received much attention. In order to improve the
above objectives of system, one direct way is developing the reliability of individual component
and unit like controllers, sensors, actuators and plants. However, it is unrealistic to guarantee
that all the components work in the perfect states when the conditions or environments change.
Faults in the process arise due to loss of efficiency of actuators or sensor malfunctions, etc, which
may move the states of the process far away from the designed operating points. As a result,
the performance of process is degraded. The degradation of process will in turn affects the cost
of operation and the quality of products. In a worst case, if faults are not considered in the
early stages, the consequences will be not only a significant performance degradation, but also
serious damage of system, catastrophic disaster or even human casualties, such as in aircrafts,
nuclear systems.
Within the different objectives to deal with faults, three essential tasks in fault diagnosis (FDI)
should be considered [27, 35]:

• Fault detection: to make a decision whether there is the occurrence of faults in the process,
which lead to undesired or intolerable behaviors of whole system;

• Fault isolation: to determine the location of fault;
• Fault identification: to estimate the size, type and cause of fault.

These three tasks are comparably important, and fault detection is the basis of the other two
tasks. Without the fault detection, fault isolation and fault identification are hard to achieve
directly.

Why model based fault detection?

A traditional approach is to install an extra hardware in parallel with the process, called as
hardware redundancy. A fault will be detected if the output of process is different from the
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Chapter 1 Introduction

output of the redundancy. Although this method has the advantages of high reliability and
direct fault isolation, it has at least three problems: require additional cost, space and weight
to install the extra hardware. What’s more, the additional components increase the complexity
of system, which in turn may introduce some additional problems.
One intuitive method is replacing the hardware redundancy by an analytical model (mathe-
matical model), named as model based fault detection [110]. By contrast, an alternative idea
is to detect faults without using models (neither hardware redundancy nor analytical model),
which called as model-free fault detection [108, 110, 109]. Model free fault detection needs a
great amount of system measurements as training data to develop fault detection logic. When
the model information is not available, data driven fault detection can be effective. It has rel-
atively high computational complexity and it is suitable to be applied to large scale industrial
complex systems [29]. By contrast, model based fault detection must have a mathematical
system model to represent the plant, and the types of models could be autoregressive moving
average (ARMA) model, state space model, and transfer function. When the information of
system model is available, model based approach is generally much more accurate and faster
than model free method.
Originated in the early 70’s, a large amount of work has been done about the model based fault
diagnosis since then. The model based method is proved to efficiently detect faults with a large
number of real-time applications:

• Aircrafts: aircraft control system, navigation system, and engines;
• Nuclear power plants;
• Emission control systems;
• Chemical plants;
• Industrial robots;
• Electrical motors.

Considering technological and economic demands on the one hand, efficient fault detection and
on-line implementation capability on the other hand, model based method is a powerful tool
to solve FDI problems [35].

Why using nonsmooth optimization method?

In the recent years, specialized nonsmooth optimization techniques have been used to solve a
variety of difficult problems in controller design [8, 10, 9, 17, 7]. These techniques aim at solving
challenging control problems, which are often classified as Non-deterministic Polynomial-time
hard (NP-hard). Nonsmooth optimization method avoids using Lyapunov variables, whose
number grows quadratically with the plant state dimension. Therefore, due to the execution
time, the nonsmooth techniques are much faster than linear matrix inequalities (LMI) based
methods, especially for large scale systems. In addition, it can deal with problems where
controller structure/architecture is important.

• Plant has large size;
• Specifications are not LMI representable;
• LMI methods are conservative;
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• Etc
With the advantages of nonsmooth optimization techniques, it is interesting to apply this
technique to a number of challenging problems in fault diagnosis.

1.2. Objectives

Inspired by the motivations in the last section, this thesis is primarily concerned with the
application of nonsmooth optimization on some problems in FDI. According to the requirements
of fault detection in reality, the desirable features of a fault detection system are given below:

1. Early detection of faults;
2. High sensitivity to faults, under the influences of disturbances or model uncertainties;
3. As few chances as possible of both false alarm and missing alarm;
4. Should not take much time for on-line computation.

Based on these four features of a good fault detection system, three different objectives of this
thesis are given as follows.

Design fault detection filter with nonsmooth optimization approach

Model based FDI diagnosis systems estimate the outputs of the plant system, and compare the
estimations with the actual measurements of plant system to generate the well known residual
signal. The residuals in fault free situations are very close to zero while clearly deviates from
zero in the presence of faults. A second objective of fault diagnosis systems is the ability to
discriminate between all the possible faults, which is explained as the use of the term isolation.
However, because of the unknown inputs (process disturbances, model uncertainties and mea-
surement noises), the residual signal will not be zero even if there is no fault in the process.
Both fault detection and isolation should be robust against disturbances and model uncertain-
ties. Since full decoupling of the disturbance on residual is hard to achieve, a decision making
solution requires to maximize a performance index allowing the generation of a residual which
shows maximum sensitivity in the presence of faults with maximum robustness to disturbances.

• Revising the traditional fault detection filter design in the framework of nonsmooth op-
timization
Different criteria are used to evaluate the effects of disturbances and faults on residual.
Same as in the problem of control, criteria of H2 norm and H∞ norm are good candidates
for measuring up the disturbance rejection capability of a fault detection system. For
the sensitivity of residual to faults, H2 norm and H∞ norm are also used. Specifically,
H− index (is also called as H− norm), which describes the minimum influence of faults
on the residual signal, seems to be an appropriate performance index to describe the
sensitivity of residual to faults. With above defined criteria, fault detection problems could
be formulated as multiple objective optimization problems by maximizing the effects of
faults on residual and minimizing the sensitivity to disturbances with different evaluation
specifications, for example, H2/H2 problem, H2/H∞ problem, H∞/H∞ problem, H−/H2
problem and H−/H∞.
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Design fault detection filter in mixed time and frequency domain

To achieve a successful fault detection based on the generated residual, further efforts are needed
to extract the information of faults from the residual with disturbances: residual evaluation
and threshold setting. In the process, the evaluated residual (with evaluation function) is
compared with the threshold, then a decision on the occurrence of a fault could be got if the
evaluated residual exceeds the threshold. Threshold selection is a very important task in fault
diagnosis. If the threshold is selected too high, the residual with some kinds of faults may
not exceed the threshold, which will result into a missed detection. On the other hand, if the
threshold is selected too low, a false alarm may appear due to the effects of unknown input.
Since the threshold is used to filter the perturbations of disturbances on the decision making,
the threshold setting is dependent on the disturbances.

As shown in the desirable features of fault detection system, the fault should be detected as
soon as possible, or even predicted before fault occurs. To decrease fault detection delay, the
dynamics of residual when fault appears and threshold setting should be considered together. A
lower threshold will give a faster reaction of residual for the alarm. However, the low threshold
has a risk of false alarm. Additional, the design of low threshold may decrease the ability of
fast transients of residual.

• Design observer based fault detection filter in time and frequency domain.

Some specifications to evaluate the transients of responses in frequency domain could be
used to improve the dynamics of residual, such as eigenvalues [27, 115, 119]. However,
these kinds of performance index are not available for some cases and they cannot be
represented in time domain directly. An alternative method is considering the transients
of response in time domain directly. To guarantee the design’s abilities of fast fault
detection, high fault sensitivity and high disturbances robustness of the design, mixed
specifications in time and frequency domain should be considered simultaneously to design
the fault detection filter.

Active diagnosis

The task of fault diagnosis is difficult in hybrid systems with combined continuous and dis-
crete behaviors, because the changing mode make diagnosability hard to achieve. Including
additional sensors can improve diagnosability, whereas, this method is not always feasible. An
alternative strategy is active fault diagnosis, where the diagnosis results could be improved by
executing or blocking controllable events.

• Active diagnosis design in time and frequency domain.

In the active fault diagnosis method, an auxiliary signal should be exerted to excite the
system, which should be large enough so that the fault could be observable from the input
and output of the system. Simultaneously, the designed auxiliary signal should minimally
disturb system operation. It is interesting to propose some new performance indices in
time and frequency domain to compensate the disadvantages of traditional specifications
in the design of auxiliary signal.
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1.3. Contributions

In this section, the major contributions are summarized as follows:

1. Considering the fault detection in the “worst case”, which means that minimum influences
of faults and maximum influences of disturbances on the residual, an optimization frame-
work of H−/H∞ is formulated. The formulated optimization problem could be solved by
the nonsmooth optimization method. The criterion H∞ is used to evaluate the maximum
robustness to the disturbances, while the minimum sensitivity to faults is represented
with the specification H−. Different from the classical methods, like LMI and gradient
method, the nonsmooth optimization method shows faster calculation with the similar
suboptimal results. The criterion of eigenvalues is also added into the optimization to im-
prove the dynamics of residual. With the aid of min-max formulation, a unique observer
and residual weighting matrix are designed for a system with multiple models. Since
the parameters A, B, C and D of system in observer should be known, the switching
signal of the multiple models system should be introduced into the observer to switch
the parameters in the observer and the threshold. Then, a robust fault detection filter
is formalized to detect faults for a system with multiple models if the exact information
of models are unknown. The “robustness” of this filter means that the filter is not only
robust to the disturbances, but also robust to the model of system. A unique threshold
is proposed to work with the robust filter to detect fault for this kind of system.

2. In order to improve the transients of residual responses from faults, traditional method
always utilizes suitable frequency domain performance indices to meet the corresponding
constraints in time domain. However, this kind of method is inaccurate and indirect. To
overcome the shortages of classical methods, a direct approach to adjust the transients of
residual from some specific faults is introduced, where the specific faults could be steps,
ramps or other typical interesting signals. In this method, an envelope (a lower bound
envelope and an upper bound envelope) of residual should be given in advance, which
will constrain the upper and lower bound of residual in time domain. With the aid of
an iterative algorithm to minimize fault detection delay, a fast fault detection design
could be realized with the mixed criteria H−/H∞ for unknown faults and disturbances
in frequency domain and the specifications of lower bound envelope for specific faults in
time domain. Furthermore, the upper bound envelope is added into the optimization to
decrease false alarms when fault disappears.

3. With the aid of a framework of fault detection, a new framework of active fault diagnosis
is proposed to design auxiliary signal. For the two models discrimination case (called
model detection), a discrimination condition is introduced to distinguish these two models.
Different from the ideas in related literature [21], the worst “disturbances” of auxiliary
signal on system is explained as the peak amplitude of the responses from auxiliary signal
on the control signal and output of system. On the other hand, for the multiple models
case (also could be called as model isolation), a framework with a bank of reference models
is introduced. The generated multiple residuals can be used to discriminate the multiple
models with a typical logic.
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1.4. Outline

The outline of this thesis is displayed in the following overview.
Chapter 2: Review and algorithms - presents a review of optimization in model-based fault
detection. Typically, a great deal of attention is paid on the different performance indexes used
in literature. For multiobjective optimization formulation, two different types of multiobjec-
tive optimization are introduced: Min-max method and Lexicographic method. Finally, two
algorithms are briefly described to solve the proposed multiobjective optimization problem.
Chapter 3: H−/H∞ fault detection filter design via nonsmooth optimization approach
- The design in the worst case for single model case is revised for nonsmooth optimization
method, and a comparison between the nonsomooth optimization method and other classical
methods is given. Then, two frameworks for multiple models case are introduced. A theoretical
example is given to show that the proposed method could give a result as good as other classical
methods, while a practical example about vehicle lateral dynamics system is provided to show
the effects of the designs with two proposed frameworks.
Chapter 4: FDI observer design using time and frequency domain specifications - An
integrated design for unknown faults and specific faults is introduced. To minimize the fault
detection delay for some specific faults and decrease false alarms when the fault disappears,
specifications with lower and upper bound envelope in time domain are proposed. In addition,
the ability of fault detection for unknown faults could be evaluated with the mixed criterion
H−/H∞ in frequency domain. Finally, the usefulness of the proposed methodologies is shown
by the vehicle lateral dynamics example.
Chapter 5: Auxiliary signal design for active fault diagnosis - A new framework of active
fault diagnosis is proposed, and then, a discrimination condition is introduced to design the
auxiliary signal. Two models case (Model detection) and multiple models case (Model isolation)
are introduced respectively. Finally, a design example is given for both cases to illustrate the
theory.
Chapter 6: Conclusion and perspective - gives a summary of thesis, and provides some
recommendations for possible further research.
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2. Review and algorithm

In this chapter, a review about multiobjective optimization in model based fault detection
is given. A particular attention has been paid to the used specifications in the parity space
method and observer based method. In order to overcome the shortage of classical methods in
the multiobjective optimization for fault detection, a min-max formulation and the lexicographic
formulation are introduced. Finally, a brief description of two different algorithms is given.

2.1. Review of optimization in model based fault detection
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Figure 2.1.: Schematic description of model-based fault detection scheme

A general structure of a model-based fault detection (FD) containing two stages of residual
generation and residual evaluation is illustrated in Fig. 2.1. In the residual generation part, a
fault indicating residual is generated by the comparison between the system outputs and the
output estimations. In ideal case, the residual should only carry the information of fault:

if residual �= 0 then fault, otherwise fault-free

In order to guarantee reliable FD, the information of fault in residual generation should be kept
as “much” as possible. However, there always exist unknown disturbances and the modeling
errors, to which the residual is also sensitive. Therefore, it is necessary to extract the fault
information from the residual signals, which is done in the residual evaluation part.
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2.1.1. Parity space methods

Input

Process
(Plant)Actuators Sensors

Parity
vector

faults faults faults

Residual

Disturbances

Disturbances

Output

Non recursive form residual Generator

,u sH

Figure 2.2.: Schematic description of residual generation with parity space methods

The parity space method is one of the most applied approach to generate residual. Initiated in
[30], the parity space method could be explained with a state space model of a linear discrete
time system: 




x(k + 1) = Ax(k) + Buu(k) + Bff(k) + Bdd(k),
y(k) = Cx(k) + Duu(k) + Dff(k) + Ddd(k),

(2.1)

where u (k) ∈ Rr is the input vector, y (k) ∈ Rm is the output vector, x (k) ∈ Rn is the state
vector, f (k) ∈ Rg represents a fault vector, and d (k) ∈ Rq denotes the disturbance.

The so-called parity relation could be constructed by collecting a series of data over an observ-
able window of length s > 0:

ys (k) = Ho,sx (k − s) + Hu,sus (s) + Hf,sfs (s) + Hd,sds (s) (2.2)

with

ys (k) =





y (k − s)
y (k − s + 1)

...
y (k)




, us (k) =





u (k − s)
u (k − s + 1)

...
u (k)




, fs (k) =





f (k − s)
f (k − s + 1)

...
f (k)




,

ds (k) =





d (k − s)
d (k − s + 1)

...
d (k)




, Ho,s =





C
CA

...
CAS




, Hu,s =





D 0 · · · 0
CB D

. . . ...
... . . . . . . 0

CAs−1B · · · CB CBD




,

Hf,s =





Df 0 · · · 0
CBf Df

. . . ...
... . . . . . . 0

CAs−1Bf · · · CBf CBfDf




, Hd,s =





Dd 0 · · · 0
CBd Dd

. . . ...
... . . . . . . 0

CAs−1Bd · · · CBd CBdDd
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Hence, the residual could be

r (k) = vs (ys (k) − Hu,sus (s)) (2.3)
= vs (Hd,sds (k) + Hf,sfs (k))

where vs ∈ R(s+1)m is the residual generating vector, which also could be a matrix for multi-
dimensional residual case:

vs ∈ Ps, Ps = {vs | vsHo,s = 0} (2.4)

In the ideal case of fully decoupling from the unknown disturbances, the residual signal r (k)
should be zero for the fault-free case and non-zero for the faulty case:

vsHd,s = 0, vsHf,s �= 0 (2.5)

However, the conditions of (2.5) can only be achieved when the number of independent distur-
bances is smaller than the number of independent measurements [35]. A trade-off between the
robustness of the residual generator to the disturbance and its sensitivity to the faults should
be considered via

min
vs∈Ps

Js = min
vs∈Ps

�vsHd,s�
2
F

�vsHf,s�
2
F

(2.6)

which is one of the most often used indices [48, 37, 118, 124, 123]. This multiobjective opti-
mization problem could be solved by Generalized singular value decomposition (GSVD) [48]
or method based on matrix pencil [27]. Comparing with other introduced methods in [27], the
main advantage of GSVD and method based on matrix pencil is that the result is reliable and
easily handle the case of nearly singular when the matrix Hd,s is almost rank deficient. This
performance index of the parity space approach will converge to the optimal result of the H2
approach for observer based method when the window length s increases [124]. [122, 121, 120]
developed approaches based on wavelet transform and infinite impulse response (IIR) to achieve
both a good performance (2.6) and a low order parity vector (small a window length s). This
method is also extended to Linear Parameter varying (LPV) systems recently [107, 106].

Particularly, for the fault sensitivity, a minimum influence of the fault on the residual attracts
large attentions, which could be expressed as

Sf, − = inf
f �=0

�vsHf,sf�

�f�
(2.7)

which is not a norm. Since the parity space method implements in time domain, Sf, − could
be

Sf, − = σ (vsHf,s) (2.8)

where σ (vsHf,s) represents the minimum singular value of matrix vsHf,s.

An analytical solution is proposed in [35] for the same formulation considering different criteria
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to evaluate the matrices Hf,s and Hd,s:

min
vs∈Ps

J1 = min
vs∈Ps

�vsHd,s�1
�vsHf,s�1

(2.9)

min
vs∈Ps

J2 = min
vs∈Ps

�vsHd,s�2
�vsHf,s�2

(2.10)

min
vs∈Ps

J∞ = min
vs∈Ps

�vsHd,s�∞
�vsHf,s�∞

(2.11)

also

min
vs∈Ps

J− = min
vs∈Ps

�vsHd,s�−
�vsHf,s�2

(2.12)

where �vsHd,s�∞ is known as a worst-case measurement of the effects of disturbances on the
residual, while �vsHf,s�− is introduced as an evaluation of minimum influence of fault on the
residual. �vsHf,s�∞ means a best-case handling of the effects of fault on the residual, which
is meaningless in practice. Especially, the ratio criteria (2.12) means the worst-case from the
FDI viewpoint.

Since the three conditions (2.4) and (2.5) are difficult to meet for nonlinear systems and systems
with uncertainties, the criterion (2.6) is extended as

min
vs∈Ps

Js = min
vs∈Ps

���vs

�
Ho,s Hd,s

����
2

F

�vsHf,s�
2
F

(2.13)

in [77, 27, 48]. In this case, the residual will also be affected by the states of the system, and
the states of the system is considered as the disturbances in the design (2.13).

Most work has been done on maximizing the fault sensitivity and minimizing the disturbance
rejections simultaneously with the parity space method. However, the design of a good fault
detector needs to consider other aspects with parity space method.

When the fault is a kind of step signal, i.e.

fs (k) =





1
1
...
1





the parity space method may meet some problems to generate a suitable residual in time
domain.
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Example 2.1. The model is from [48]:

A =





0.5 −0.7 0.7 0
0 0.8 0 0

−1 0 0 0.1
0 0 0 0.4



 , B =





0 0
1 0
0 1
0 0



 , C =
�

0 0
�

C =





0
0
1
1





T

, Bf =





0
0
1
0



 , Bd =





0
0.6
0

−1



 , Df = Dd = 0

The window length s is chosen as 6. A pulse fault starts from 1s to 4s, and the disturbance is
white noise: where the threshold is selected with the methods in [123]

Time/Sec
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Residual

Residual
Threshold

Figure 2.3.: Simulation of parity space method

Jth,1 = sup
f=0,d2

���vsHd,sH
T

d,s
vT

s

��� =
�
vsHd,sH

T

d,s
vT

s

�1/2
max

d

|d (k)| (2.14)

The simulation in Fig. 2.3 shows that the residual exceeds the threshold during 1s to 1.023s,
which means that the fault could be detected in this time interval. However, this residual
decreases to be under the threshold fast, as a result, the alarm of fault detection vanishes
even the fault persists. In practice, it is difficult to detect this pulse fault with this kind of
short feasible fault detection interval. Furthermore, if the disturbance is too large, the pulse
fault is hard to be detected with this kind of residual. A better residual with pulse signal
fault should still be larger than the threshold after the wild oscillations, which can give more
time to detect the pulse fault. However, it is difficult to add this kind of residual transients
specification into the design with the classical parity space method. Thus, other framework
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with some approximate specifications about the transients of residual should be considered for
this typical case.

2.1.2. Observer based methods

Input

Process
(Plant)Actuators Sensors

Nominal
process
model

Post filter

faults faults faults

Residual

Disturbances

Disturbances

Output

Recursive form Residual Generator

0 fault alarm
0 fault free

Observer
gain

Figure 2.4.: Schematic description of residual generation with observer

Observer based method is one of the most applied model-based scheme for fault detection. The
function of the observer is to estimate the output of the system, then, a residual is generated
by comparing the outputs of the system and the output estimations. Different from the parity
space methods in Fig. 2.2, the implementations of observer based methods use a recursive form
while the parity space method represents a non-recursive form: as shown in Fig. 2.4, the outputs
of systems are also introduced into the observer to revise the output estimations.
Two kinds of observers are proposed since early 70’s: fault detection filter (FDF) and diagnostic
observer. The diagnostic observer may lead to a reduced order residual generator for on-line
implementation, while the fault detection filter needs the full order estimation.
With the framework of observer, the effects of inputs u are decoupled from the residual signal:

r = Grff + Grdd (2.15)

where Grf is the transfer function from fault to residual and Grd is the transfer function from
disturbances to residual.
The formulations of residual with observer based method in (2.15) and with parity space in
(2.3) are similar: the residual will be affected not only by the disturbances, but also by the
faults. Owing to the recursive form of the observer based method, it provides the possibility to
adjust the transients of residual, which cannot be realized by parity space method.
With the same reasons as parity space method, the perfect unknown decoupling conditions

Grd = 0, Grf �= 0 (2.16)
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are difficult to achieve. An alternative formulation is considered

min �Grd� , max �Grf�

where �· � represents a norm of the matrix. Various specifications in frequency domain are
applied to evaluate the effects of fault, model uncertainty and disturbances on the residual
from different views, i.e. in the form of norms, like H∞ and H2 [55, 56, 70, 58, 59, 71]. The
physical meaning of H2 norm is that it evaluates the amplification of a transfer matrix which
maps the inputs (which are either fixed or have a fixed power spectrum) into the outputs. By
contrast, H∞ measures the biggest amplification of a transfer matrix that maps the input with
finite energy into the output.

Definition 2.1. The H∞ norm of a transfer function G (s) over the frequency range [ω1, ω2] is
defined as

�Grd (s)�[ω1,ω2]
∞ = sup

ω∈[ω1,ω2]
σ [Grd (jω)] (2.17)

where σ represents the maximum singular value.

Particularly, with the same general definition in (2.7), H− index (in frequency domain) which
describes the smallest fault detectability of a system is received a great deal of attentions.
The H− norm is firstly introduced in [54] by using the minimum singular value of the transfer
function from faults to residual at zero frequency, i.e. ω = 0. In this case, only the singular
value at zero frequency is considered to design the observer, which will be too conservative.
Then, the H− notation is extended to nonzero singular value over finite frequency and infinite
frequency ranges by [35, 93, 28, 27, 36]. In [116, 69], the H− norm is further extended to H−
index, which contains the possible zero singular values of the transfer function from the fault
to the residual over the infinite or finite frequency range.

Definition 2.2. The H− index of a transfer function G (s) over the frequency range [ω1, ω2] is
defined as

�Grf (s)�[ω1,ω2]
− = inf

ω∈[ω1,ω2]
σ [Grf (jω)] (2.18)

where σ represents the minimum singular value.

Different from the definition of Sf, − in (2.8), �Grf (s)�− is not a scalar, but depends on the
frequency. The importance of frequency range for H− index is shown in Fig. 2.5: when the
system is proper Fig. 2.5 (a), �Grf�− �= 0 for ω ∈ [0, ∞]. The minimum singular value of
�Grf (s)� is β1 when the fault is in high frequency. However, when system is strictly proper,
the singular value of Grf (jω) is going to be 0 when the frequency ω tends to be ∞. Then,
the specification H− index is �Grf�− ≡ 0 with ω ∈ [0, ∞). Any design will obtain the same
result �Grf�− ≡ 0, which means that the specification H− index is meaningless. In this case, a
frequency range [ω1, ω2] should be added into the criterion, which could contain the information
of the interesting faults (as shown in Fig. 2.5 (b)).
When fault and disturbance are modeled as an unknown energy or power bounded signal,
H− and H∞ are reasonable performance indices to evaluate the sensitivity to the fault and
robustness to the disturbance of the residual [71, 70].
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ω

log σ (G (jω))

β2

(a)

β1

ω

log σ (G (jω))

β2

(b)

Figure 2.5.: Explanation of H− index (a. Proper case, b. Strictly proper case)

Calculation of H− index

First introduce a Lemma:

Lemma 2.1. ([112])Define the frequency range Ω by

Ω =
��

ω1
l
, ω1

h

�
, . . . , [ωn

l
, ωn

h
]
�

Given transfer functions W with

inf
ω∈Ω

σ [W (jω)] = δ �W − Grf�∞ = α (2.19)

then

σ [Grf (jω)] ≥ δ − α, ∀ω ∈ Ω (2.20)

To calculate the H− index, in general, there are two ways:
• The indirect way: the fault sensitivity criterion is translated into an optimal H∞ tracking

problem[93, 112, 51, 52] with Lemma 2.1. The key point of this method is that the
reference model (W in Lemma 2.1) should be carefully selected.

• The direct way: calculates the lowest singular value directly [24, 18, 91, 119, 116, 69, 35],
using like linear matrix inequality (LMI) or the nonsmooth optimization method.

These two different ways have different advantages respectively: if there is some prior infor-
mation about the faults, the indirect way is a better choice for the design because of the easy
selection of the reference model W . Otherwise, the direct way can give us more freedoms to
design potentially a “better” residual generator for the unknown faults case.

2.1.2.1. Mixed criterion to maximize fault sensitivity and minimize disturbance

robustness

With different specifications to evaluate the effects of fault and disturbance on the residual,
the mixed optimization problems could be separated with used specifications as H2/H2 case,
H2/H∞ case, H∞/H∞ case and H−/H∞ case.
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2.1 Review of optimization in model based fault detection

H2/H2 case

The problem is formulated as

infJ = inf�Grd�2
�Grf�2

(2.21)

which could be solved by the generalized singular value decomposition in frequency domain [40].
LMI and factorization techniques also could be applied to this mixed criterion [70, 35]. The
relationship between the parity space method and H2/H2 is introduced in [124]. The H2/H2
residual generator has a property of bandpass, which means that the filter will be only sensitive
to a fault signal near frequency ω0. In the other word, most kinds of faults are deterministic,
thus such filter is not very useful in practice [70, 35]. This characteristic of band-limited also
could be found with the parity space method when s → ∞.

H2/H∞ case

The problem is formulated as

infJ = inf�Grd�∞
�Grf�2

(2.22)

A unified optimal solution is proposed for this mixed criterion in [71, 70]. The H2/H∞ filter
is robust to the variations on Bf and Df matrices. When Df �= 0, the value of mixed criteria
(2.22) will be 0, which means that this fault detection filter is very sensitive to the sensor fault.

H∞/H∞ case

The problem is formulated as

infJ = inf�Grd�∞
�Grf�∞

(2.23)

which was solved by [89, 36, 40, 41, 94]. The interpretation of �Grf�∞ is the maximum effects
of fault on the residual, which means a best-case handling of the influence of fault on residual.
The optimization of (2.23) will maximize the differences between the biggest effects of fault
and disturbance on the residual. In the general case, this criterion is not interesting, due to
the fact that a large �Grf�∞ does not imply the residual is well sensitive to the fault since
the faults may occur in the other direction where �Grf�∞ is not large. However, if a bandpass
filter is added to this optimization problem, this criterion will be interesting. In this case, the
minimized cost function (2.23) makes the frequency points ωrf (Grf (jωrf ) = �Grf�∞) and ωrd

(Grd (jωrd) = �Grd�∞) be equal, which implies that the mixed specification (2.23) maximizes
the ability of fault detection when the fault and disturbance are in the same frequency.
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Chapter 2 Review and algorithm

H−/H∞ case

The problem is formulated as

infJ = inf�Grd�∞
�Grf�−

(2.24)

which is considered as an optimization in the worst case: improve the ability to detect fault
in the case of minimum influence of fault and maximum effects of disturbance on the residual.
The physical meaning of minimizing the mixed specification H−/H∞ (2.24) can be explained as
the maximizing the set of strongly detectable faults [36]: the fault only can be detected when

inf
d

�r� > Jth (2.25)

where Jth is a threshold with the definition Jth = sup
f=0

�r� and �·� is the H2 norm. Note that

inf
d

�r� = inf
d

�Grff + Grdd� = �Grff� − sup
d

�Grdd� (2.26)

As a consequence, a fault can be detected for any disturbances if

�Grff� > sup
d

�Grdd� + Jth = 2Jth (2.27)

Only the fault f , satisfying (2.27), are strongly detectable in the presence of disturbances. Since

�Grff� > �Grf�− �f� (2.28)

Then, a fault f is strongly detectable if the presence of disturbances if

�Grf�− �f� > 2Jth (2.29)

which is equivalent to

�f� >
2Jth

�Grf�−
(2.30)

Thus, the minimization of 2Jth

�Grf�−
implies the maximization of the set of strongly detectable

faults. Since the minimization of 2Jth

�Grf�−
is equivalent to (2.24), the mixed specification (2.24)

also implies the maximization of the set of strongly detectable faults [36].
A great deal of work has been done on this topic [53, 51, 52, 57, 69, 115, 93, 104, 112, 67, 91].
With the aid of LMI method, [91] calculated the H− norm and designed the fault detection
observer with the criterion of H−/H∞, whose condition is sufficient but not necessary. With the
defined index, [116, 69] developed an LMI formulation for the multiple objectives of the fault
detection observer and used the iterative linear matrix inequality (ILMI) to obtain the solutions.
Considering the same mixed H−/H∞ criterion, some numerical optimization methods such as
genetic algorithm [27] proposed to design the robust fault detection observer. Different from the
approximate values with method in [116, 69, 91, 93], [114] gives an accurate characterization of
H− index in the low frequency domain with developed generalized Kalman-Yakubovic-Popov
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2.1 Review of optimization in model based fault detection

(KYP) Lemma.
However, most discussed methods cannot guarantee that the obtained results are optimal.
One exception case is that by using the co-inner-outer factorization approach, [36, 35] give an
optimal solution for mixed H−/H∞ multiobjective optimization problem. The solution could
be obtained by solving one algebraic Riccati equation (ARE), which leads to an optimal trade-
off between fault detection rate and the false alarm rate. Then, [71, 70] proposes an optimal
result in an observer form by solving a standard algebraic Riccati equation for continuous and
discrete linear systems. In [66], the results are developed to linear continuous time-varying and
linear discrete time-varying systems.

2.1.2.2. Standard H∞ filtering with reference model

Since the specification �Grf�− is difficult to calculated for systems with uncertainties, a new
performance index is introduced to make the residual be as “similar” to a reference residual as
possible. As shown in Fig. 2.6, P is the plant to be monitored, W is the reference model, and
F is the filter to design. The estimation error is defined as e = r − rf , where r is the residual
vector.

f t

u t
d t

F

W

r t
P

e t

fr t

Figure 2.6.: Schematic description of H∞ filter

Then, the design problem could be translated as

sup
w∈L2
w �=0

�r − rf�2
�w�2

= sup
w∈L2
w �=0

�e�2
�w�2

(2.31)

where w =
�

uT fT dT

�
T

. This problem could be formulated as

min
F

�GrfF − W�∞ and min
F

�GrdF�∞ (2.32)

With different selection of the reference model W , the fault isolation could be achieved [23, 60,
34, 68, 74, 111, 125, 85]. Typically, if the reference model is set as identity matrix W = I, the
objective function (2.32) could be used to estimate or identify the faults, as in [84, 75]. Some
methods to choose this reference model are introduced in [125, 42].

2.1.3. Extra criteria for optimization

The previous part mainly discussed the specifications of fault sensitivity and disturbance ro-
bustness. But in the field of FDI, these two specifications are not enough for the design. A

17



Chapter 2 Review and algorithm

relative problem of parity space method is shown in Example Example 2.1. With the intro-
duced properties of a good fault detection system, some other specifications should be met for
fault diagnosis in practice, e.g., early fault detection.

Since the fast fault detection depends on the transients of residual, some criteria to evaluate
the transients of residual responses should be considered. Due to the characteristic of poles of
system, it is reasonable to consider the poles of designed filter as a specification. With aid of
developed KYP, [32] considered a multiobjective optimization problem for calculating the real
values of the H− and H∞ specifications in a finite frequency range with a constraint of filter
poles in a specified region. To simplify the optimization, the region of poles is approximated as
a disk region, which also decrease the feasible region to design. For linear uncertain dynamic
systems, besides the mixed criteria H−/H∞ and regional constraints on filter poles, a generalized
H2 performance index is added to evaluate the peak amplitude of the residual caused by the
energy bounded disturbances in the fault free case [51]. In [115], the main idea is to use
the pole assignment approach to translate the fault detection problem into an unconstrained
optimization problem, and then search for a desirable observer gain with the aid of a gradient-
based optimization approach for both the infinite and finite cases. But in this method, the
target poles of observer should be selected in advance, which also means that the criterion of
poles is fixed in the optimization.

In these methods, a constraint of system poles is considered to improve the transients of the
residual. However, the effects of fast transients responses on the ability of fault detection are
not systematically detailed. The threshold selection also affects the time to detect faults. For
the fast fault detection design, both transients of residual from fault and threshold selection
should be considered simultaneously. Furthermore, some typical transients of residual responses
in time domain should be formulated to decrease false alarms rate and missing alarm, e.g. the
introduced shortage of parity space method (too short interval of fault detection). In this case,
a constraint of residual in time domain could be added into the design to increase the interval
of fault detection.

2.2. Multiobjective optimization

The design of a “good” fault detection system with different requirements is a typical multiob-
jective optimization problem. Due to the fact that it is impossible to make every specification
achieve the best result, a trade-off among the different performance indexes has to be consid-
ered. Before introducing the classical methods used in the multiobjective optimization of FDI,
the basic definition of multiobjective optimization and Pareto optimality are introduced first.

2.2.1. Definition of multiobjective optimization

Definition 2.3. (Multiobjective optimization problem [72])

Minimize
x

f (x) = [f1 (x) , f2 (x) , . . . , fk (x)]T (2.33)
subject to gj (x) � 0, j = 1, 2, . . . , m

hl (x) = 0, j = 1, 2, . . . , e
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2.2 Multiobjective optimization

where the vector x ∈ Rn is a vector of decision (also called design variables) variables repre-
senting the quantities for which values are chosen in the optimization problem, k is the number
of objective function (Soft constraints of the design) fi : Rn → R (i = 1, . . . , k; k � 2), m is
the number of inequality constraints (gj: hard constraints of the design), and e is the number
of equality constraints (hl). In multi optimization, a compromise should be sought among the
different objectives. In such case, there will not be only one optimal solution, but a set of
equally feasible solutions, known as the Pareto optimal set.

The feasible set X (also called the feasible decision space or constraints set) is implicitly defined
by the reference inequality and equality constraints. The feasible objective function space Z

(also called the feasible attainable set or cost space) is defined as the set {f (x) | x ∈ X }.

Figure 2.7.: Space definition in multiple objective optimization

Definition 2.4. Pareto Optimal: A point, x∗ ∈ X , is Pareto optimal iff there does not exist
another point, x ∈ X , such that fi (x) � fi (x∗), and fi (x) < fi (x∗) for at least one function.

Definition 2.5. Weakly Pareto Optimal: A point, x∗ ∈ X , is weakly Pareto optimal iff there
does not exist another point, x ∈ X , such that fi (x) < fi (x∗).

2.2.2. Shortages of classical methods in fault detection for multiobjective

optimization

2.2.2.1. Classical methods in fault detection for multiobjective optimization

Although the unified solution given in [35, 36] is optimal for Hi/H∞ (i is either ∞ or −) case
by factorization techniques, this method could not support the optimization with extra perfor-
mance indices. It is the reason that LMI techniques are proposed to solve FDI multiobjective
optimization problem. A mixed specifications of H−/H∞, H2/H2 are proposed to solve by LMI
[35, 91, 69, 116, 85, 84, 104, 126].
Considering the same mixed H−/H∞ criterion, some numerical optimization methods such as
genetic algorithm [27, 26] are proposed to design the robust fault detection observer. Kowalczuk
et al developed genetic algorithms to solve multi optimization problem to detect faults in
the framework of observer based method [63, 61, 62]. The evolutionary algorithms could be
extended to nonlinear systems [86]. Both of them consider the problem into a H∞ formulation.
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Chapter 2 Review and algorithm

Major work about FDI multiobjective optimization has been done by LMI method, the following
part tries to analysis the LMI methods, and illustrate some weaknesses of LMI in the view of
multiobjective optimization design.

2.2.2.2. Shortages of LMI

Definition 2.6. A linear matrix inequality has the form

F (x) = F0 +
m�

i=1
xiFi > 0 (2.34)

where x ∈ Rn is the variable and the symmetric matrices Fi = F T

i
∈ Rn×n, i = 0, . . . , m

are given. The inequality symbol in (2.34) is positive-definite, i.e., uT Fu > 0 for all nonzero
u ∈ Rn. The LMI (2.34) is equivalent to a set of n polynomial equalities in x.

The LMI techniques arise in FDI and control theory can be formulated as convex optimization
problem. The convexity is a typical important characteristic in the optimization theory, and
the foundation for analytical tools used in LMI techniques [12].

The optimization with LMI constraints or semidefinite programming (SDP) needs the mathe-
matical theory for translating control criteria into LMI constraints. However, as introduced in
[95], some criteria formulated with LMI may give conservative result. In reality, some of control
and FDI engineering specifications are not convex. Therefore, many approaches are proposed
to solve the nonconvex problems with LMIs techniques, such as LMI relaxations [45, 64, 50, 65].
However, conservatism will still arise when simplifying the nonconvex specifications. Most of
the approaches are based on sufficient conditions but not necessary and sufficient conditions
[50]. In addition, some specifications are difficult to translate the criterion into formulation
of LMIs. Even the criterion could be translated into the formulation of LMIs, it is difficult
to evaluate accurately for some practical problems in control [15] and FDI problems [113, 69]
because of the conservatism inherent in LMI techniques. [12] included that it might solve some
problems in some proper way, the LMI techniques are not entirely prepared to handle truly
multiobjective control problems.

In the view of consumption of calculation , the approach LMI needs the introduction of Lya-
punov variables, which grow quadratically with the number of state variables. Consequently,
the total number of variables can be quite large and even problems of moderate size can lead
to numerical difficulties. It is the reason why LMI techniques are not appropriate for large or
even moderate scale systems.

2.2.3. Weighted min-max formulation for nonsmooth optimization

With the developed nonsmooth optimization, it is possible to solve FDI multiobjective optimiza-
tion problem better than the classical method, like LMI. The nonsmooth optimization solves
the multiobjective optimization problem with a min-max formulation, which has better char-
acteristics than the formulation of weighted-sum typically for nonconvex problem [19]. Before
introducing the algorithm, the min-max formulation is given, which formulates the objective
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functions as the maximum of the weighted criteria:

Minimize
x∈X

f∞ (x) = max (λ1f1 (x) , . . . , λkfk (x)) (2.35)

subject to gj (x) � 0, j = 1, 2, . . . , m

hl (x) = 0, l = 1, 2, . . . , e

where λi are nonnegative weights, which are meant to express the importance of the criteria.
One variation of the weighted-max objective (2.35) is to add a constant offset for each criterion
fi:

Minimize
x∈X

max (λ1 (f1 (x) − γ1) , . . . , λk (fk (x) − γk)) (2.36)

subject to gj (x) � 0, j = 1, 2, . . . , m

hl (x) = 0, l = 1, 2, . . . , e

Among the results of multi criterion optimization, the Pareto optimal ones are wise choices
for the design. Because the Pareto optimal results depend on the selection of weights λi, it
remains to choose a suitable one of these, i.e., “search” the tradeoff surface for the design. The
selection of the weights is always done interactively. The weights λi is repeatedly adjusted with
the weighted max objective (2.35), then, the resulting optimal design could be evaluated. [19]
introduces several procedures to choose the weights for the design in the views of application.
The formulation of min-max (2.35) and (2.36) are continuous but not differentiable everywhere,
which means that the objective function f∞ in (2.35) is nonsmooth. For example, Fig. 2.8
shows a typical case with k = 2: the objective function f∞ at the point of x∗ is continues
but not differentiable, which means that the min-max formulation is typically a nonsmooth
optimization problem. In this case, some approaches, which do not depend on the gradient,
should be considered. Consequently, the differentiable optimization methods (gradient descent,
Newton and quasi-Newton sequential quadratic programming problems under constraints, etc.)
are not sufficient.

f1(x)

f2(x)

f∞(x)=max{f1(x),f2(x)}

xx∗

Figure 2.8.: Max function on R: f∞ is not derivable at x∗
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2.3. Algorithm

As introduced in [13], in practice, if the (sub)gradients are available, it is better to apply the
(sub)gradients for the efficiency. However, if obtaining (sub)gradient information is difficult
(or the analytical formulation of a specification does not exist), an approximate (sub)gradients
(i.e. a derivative-free method) could be considered, even the efficiency is not high. In this
section, two algorithms are given. Since min-max formulation (2.35) is typically a nonsmooth
optimization problem, the first algorithm about nonsmooth optimization is introduced for the
case that the subgradients could be obtained. The second algorithm is genetic algorithm (GA)
, which is used when the subgradient information is hard to obtain.

2.3.1. Nonsmooth optimization

Different from the classical methods, like LMI, the nonsmooth optimization method avoids the
Lyapunov variables. Therefore, the nonsmooth optimization method works faster than LMI,
and is suitable for the large size plant. Using the information of subgradients, the nonsmooth
optimization method also works faster than the derivative-free methods (e.g. genetic algorithm).

In this part, the key ingredients of nonsmooth optimization are introduced, the reader could
refer to [11, 98, 10, 16] for the details. Here, the general procedure is introduced.

For the sake of clarity, the formulation of multiobjective optimization (2.35) could be repre-
sented as a more general form:

Minimize f (x) (2.37)
subject to g (x) ≤ 0

A progress function is proposed with an idea in [87]:

F
�
x+, x

�
= max

�
f

�
x+

�
− f (x) − µg (x)+ ; g

�
x+

�
− g (x)+

�
(2.38)

where µ > 0 with some fixed value. x represents the present iterate, x+ is a candidate for the
next iterate. It is shown in [87] that a critical point x of F (·, x) is also the critical point of
the constrained optimization problem (2.37), except the case when x is a local minimum of the
constraint violation g (x) > 0.

A first-order approximation F̂ (·, x) of F (·, x) around x could be

F̂ (x + h, x) = max



 max
(φf ,Φf)∈Υf (x)

φf − f (x) − µg (x)+ + ΦT

f
h,

max
(φg ,Φg)∈Υg(x)

φg − g (x)+ + ΦT

g
h

�

(2.39)
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where h is the displacement for the design parameter x, g (x)+ � max {0, g (x)} with

φf = φf (x, y) , φg = φg (x, y)
Φf � ∇xφf (x, y) , Φg � ∇xφg (x, y)

Υf (x) � {(φf , Φf ) : y ∈ Yf} , Υg (x) � {(φg, Φg) : y ∈ Yg}

Then a tangent program

minimize
h∈Rq

F̂ (x + h, x) + δ

2 �h�
2 (2.40)

with δ > 0 a fixed value could be obtained. As introduced in [98], the formulation (2.40) could
be transformed to

Minimize
t,h∈Rq

t + δ

2 �h�
2 (2.41)

subject to φf − f (x) − µg (x)+ + ΦT

f
h ≤ t, (φf , Φf ) ∈ Υf (x)

φg − g (x)+ + ΦT

g
h ≤ t, (φg, Φg) ∈ Υg (x)

which is standard convex quadratic program (CQP) when the eigenvalue multiplicity of all
maximum eigenvalue functions equals to 1.

Algorithm 2.1 A nonsmooth algorithm program
Step 1. Initialize. Select initial x1, a counter j = 1, δ > 0, 0 < β < 1, 0 < γ < 1;
Step 2. Stopping test. At counter j, stop if 0 ∈ ∂1F̂ (xj, xj) and return xj; Otherwise continue;
Step 3. Compute descent direction. Solve tangent programs (2.40) or (2.41)

minimize
h∈Rq

F̂ (x + h, x) + δ

2 �h�
2

The search direction hj could be obtained.
Step 4. Line search. Find ξ = βv, v ∈ N , satisfying the Armijo condition [33]

F
�
xj + ξhj, xj

�
− F

�
xj, xj

�
≤ γξF

� �
·, xj

� �
xj, hj

�
< 0

Step 5. Update. Put xj+1 = xj + ξhj, j = j + 1 and return to step 2.

2.3.2. Genetic algorithm

Genetic algorithm does not need the information of (sub)gradients of the objective function,
which is appropriate for the case when the objective function is not analytical. This algorithm
could be a good candidate when the introduced nonsmooth optimization in ([10, 99]) is not
available.

Genetic algorithm (GA) solves optimization problems based on the mechanics of natural se-
lection and genetics, which are part of a broad class of search techniques within the area of
evolutionary algorithms (EAs). The standard genetic algorithm (SGA), presented in [46], con-

23



Chapter 2 Review and algorithm

tains three genetic operators: reproduction, crossover, and mutation. Probabilistic rules are
proposed to perform the evolution, which manipulate the “genetic code”.

Replication (Selection)

The function of replication or selection part is to select the best individuals to participate in
the production of offspring. Typical selection operators for this process could be:

• Sampling with replacement or roulette wheel selection.
• Stochastic universal sampling.
• Tournament selection.

Crossover (Recombination)

After replication, the crossover part exchanges genetic information with other to produce a
single individual with the genetic features of two or more parents.

Mutation

According to some probabilistic rules, the individual’s genotypes are changed in this genetic
operation. The mutation is in the random way. In artificial genetic algorithms, an irrecoverable
loss of some potentially useful genetic material is protected against by the mutation operator.
The implement of the SGA is shown in Fig. 2.9.

Initialize
population

Evaluation

Assign Fitness

Replication

Crossover

Mutation

Stop

0gen

gen maxgen

+1gen gen

Figure 2.9.: Flowchart of the Standard Genetic Algorithm
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Some other extensions of genetic algorithm could be found in [76][49][44][12].
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3. H−/H∞ fault detection filter design via

nonsmooth optimization approach

3.1. Introduction

As introduced in the previous part, in general, there are several following problems for LMI
methods:

• Conservative solutions. Since the mixed H−/H∞ could be formulated as two LMIs, a
same additional matrix is always introduced to meet these two LMIs simultaneously. As
illustrated in [91, 112, 114], a common LMI solution result is always obtained, and some
conservatism is introduced because of the same additional matrix.

• Low efficiency. Some work has been done to relax the constraint of same additional matrix,
such as [116, 69]. Nevertheless, the iterative linear matrix inequality (ILMI) algorithm
has to be introduced to search the local solution [116, 69, 47, 112, 104]. A disadvantage
of ILMI algorithm is that the search step is not optimal, thus, the convergence rate could
not be guaranteed. In addition, some pre-defined variables always have to be introduced
into the ILMI algorithm for optimization, which sometimes are difficult to choose for the
optimal result.

• Not suitable for large scale systems. The LMI approach uses Lyapunov variables, whose
number grows quadratically with the system state size. Therefore, the LMI approach will
meet some problem for medium and large scale systems [10].

Due to the advantages of nonsmooth optimization approach, this chapter tries to revise the
mixed H−/H∞ fault detection filter design problems with proposed nonsmooth optimization
approach and design with H−/H∞ specifications for multiple models system.
In order to compare classical methods with the proposed nonsmooth optimization approach,
a formulation of classical fault detection observer with a mixed performance index H−/H∞ is
introduced in Section 3.2. The cost function in this part includes both disturbance attenuation
with H∞ norm and fault sensitivity with H− index, which is a typical nonsmooth optimization
problem. What’s more, a constraint of fast transients of residual responses from faults can be
added into the optimization. Typically, this technique is easily applied to design an observer
with a unique observer gain and residual weighting matrix for multiple models. In this design,
the observer has to work with an injection of switching signals (information about model pa-
rameters of the system) for the multiple models, because the model parameters in the observer
(A, B, C and D) are relevant to the parameters of the system. For a typical case that the
system stays in one of the multiple models, but the exact model is unknown, the framework of
observer is not appropriate for this case (observer needs the exact system parameters). Alterna-
tively, a framework of robust fault detection filter (RFDF) is formulated in Section 3.3 for this
typical case, which does not need to know the exact model. The RFDF is designed by means of
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a deconvolution approach [23, 24, 60, 100], which could also be solved by proposed nonsmooth
optimization approach. The solver with nonsmooth optimization approach is adopted to solve
the formulated problems in Section 3.4. Then in Section 3.5, a comparison between classical
methods and the nonsmooth optimization approach is given with an academic example for the
single model case. The relationship between the formulations of fault detection observer and
robust fault detection filter is detailed with the aid of this single model case. For the multiple
models case, the compromised designs with the formulations of fault detection observer and
robust fault detection filter are illustrated with a vehicle lateral dynamics switched system with
3 subsystems. Finally, a conclusion is given in Section 3.6.

Recently, solvers relying on nonsmooth optimization techniques like Hinfstruct and Systune
[10, 8, 11] are well developed. This is the first work about the application of the nonsmooth
optimization techniques in FDI problems with this tool.

3.2. Mixed H−/H∞ fault detection observer design

As introduced in previous chapter, fault detection observer is one of the mostly applied model-
based approach to detect faults. Therefore, it is reasonable to revise the traditional problem of
mixed H−/H∞ fault detection observer design with the new developed nonsmooth optimization
techniques, and compare these new techniques with classical methods. This section tries to show
the effectiveness of nonsmooth optimization techniques on the fault detection filter design:
it can be used to design H−/H∞ fault detection observer with an additional constraint of
rapidity of residual response, and works faster than classical methods. Furthermore, a more
complex problem about a trade-off design for multiple models could be also easily solved by
the nonsmooth optimization approach.

3.2.1. Residual generation

Assuming that we have N � 1 models describing different behaviors of a system, the linear
time invariant (LTI) system for multiple models with faults and disturbances is described by

Σ0





ẋ = Aix + Bi

u
u + Bi

f
f + Bi

d
d,

y = Cix + Di

u
u + Di

f
f + Di

d
d,

(3.1)

where i ∈ {1, 2, . . . , N} represents that the system is in ith operational mode, x ∈ Rnx is the sys-
tem state vector, y ∈ Rny represents the output measurement vector, f ∈ Rnf denotes the fault
vector, which can be process faults, sensor faults, or actuator faults. d ∈ Rnd is the unknown
input vector, including disturbance, modeling error, process and measurement noise or unin-
terested fault. u ∈ Rnu is the control input vector. Matrices Ai, Bi

u
, Ci, Di

u
, Bi

f
, Di

f
, Bi

d
, Di

d

are constant with appropriate dimensions. The single model case could be described by the
above model Σ0 with N = 1.

Without loss of generality, the following assumptions are used:

• (Ai, Ci) is detectable;

• f and d are L2 norm bounded.
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Figure 3.1.: Residual generator with observer

As shown in Fig. 3.1, a full-order observer in the following form [27] is used to generate residual
r for the multiple models system:

Σ1






˙̂x = Aix̂ + Bi

u
u + L(y − ŷ),

ŷ = Cix̂ + Di

u
u,

r = Q (y − ŷ) .

(3.2)

where i ∈ {1, 2, . . . , N}. x̂ ∈ Rnx and ŷ ∈ Rny are the system’s state and output estimations,
r ∈ Rnr is the corresponding residual vector, L ∈ Rnx×my is the observer gain to design, and
Q ∈ Rnr×ny is the residual weighting matrix, which could be static or dynamic as Q(s). In this
framework, the switching signal is known, which is used to switch the system parameters Ai,
Bi

u
, Ci and Di

u
in (3.2).

Connecting the observer �
1 (3.2) with the system �

0 (3.1) together as shown in Fig. 3.1, and
considering the state estimation error as e = x − x̂, the residual error dynamic equations can
be obtained:

Σ2






ė =(Ai
− LCi)e + (Bi

f
− LDi

f
)f

+ (Bi

d
− LDi

d
)d,

r = QCie + QDi

f
f + QDi

d
d

(3.3)

The corresponding residual responses from faults and disturbances are:

r =L−1
�
Q{Di

f
+ Ci(sI − Ai + LCi)−1(Bi

f
− LDi

f
)}f

�

+ L−1
�
Q{Di

d
+ Ci(sI − Ai + LCi)−1(Bi

d
− LDi

d
)}d

�

=L−1
�
Gi

rf
(L, Q)f

�
+ L−1

�
Gi

rd
(L, Q)d

�
+ Ψi (x (0))

+ Ψi (x (0)) (3.4)

where L−1 means the inverse Laplace transform, Ψi (x (0)) is the natural response of ith model
with the initial state x (0) when the switching of system and observer occurs, which depends
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Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

on the state of system. The part Ψi (x (0)) appears on residual when switching arises, and
converges to 0 after switching.

In order to detect faults under the perturbations of disturbances, the residual should be sensitive
to the faults and robust to the disturbances and uncertainties simultaneously. The following
two conditions should be satisfied if perfect decoupling is achieved:

Gi

rf
f �= 0 (3.5)

Gi

rd
d = 0 (3.6)

where Gi

rf
means the transfer function from fault to the residual, Gi

rd
represents the transfer

function from disturbance to the residual. In this case, the residual (3.4) is

r =L−1
�
Gi

rf
(L, Q)f

�
+ Ψi (x (0)) (3.7)

Because the switching signal i is known, the time when Ψi (x (0)) appears is also known. The
effects of Ψi (x (0)) on residual could be decreased by waiting for enough time after the switching.

Since the perfect decoupling conditions (3.5) and (3.6) are hard to meet in reality, a trade-off
between the maximization of the faults sensitivity and the minimization of the disturbances
sensitivity is always considered instead. Therefore, the multiobjective design of robust fault
detection observer (design the observer gain L and the residual weighting matrix Q) should
involve the following objectives:

i) The 1, ..., N residual error dynamics equations (3.3) with the observer gain L should be
stable,

ii) Minimize the effects of disturbances on residual r,

iii) Maximize the effects of faults on residual r,

iv) Faster transients of residual r.

In order to achieve early fault detection, a residual with fast transients will give more potentials
to design a fast robust fault detection observer. A specification to evaluate the rapidity of the
residual should be included. Therefore, some certain performance indexes should be proposed
to measure the above four design objectives exactly.In the worst case, if fault f is modeled as
an unknown energy or power bounded signal, � Grf �− is a reasonable specification to measure
the minimum fault sensitivity of the residual. As the problem in control design, the norm H∞ is
a widely accepted measurement and � Grd �∞ is a reasonable performance index of disturbance
rejection, if disturbance d is also modeled as an unknown energy or power bounded signal.In
order to improve the transients of residual, the spectral abscissa of Ai − LCi (α (Ai − LCi))
could be used to evaluate the rapidity of responses in frequency domain:

α
�
Ai

− LCi
�
� max

j

Re
�
λj

�
Ai

− LCi
��

(3.8)

where the symbols λ1 (Ai − LCi), . . ., λn (Ai − LCi) are the eigenvalues of Ai − LCi, and
Re (λj (Ai − LCi)) represents the real part of λj (Ai − LCi). Fast transients could be achieved
with a minimization of following specification

min α
�
Ai

− LCi
�

(3.9)
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3.2 Mixed H−/H∞ fault detection observer design

The designed observer is asymptotically stable if the spectral abscissa of matrix Ai − LCi are
negative.

Based on the definitions of H∞ norm (2.17) and H− index (2.18), the above four aspects could
be formulated as follows:

i) Ai

0 = Ai − LCi is asymptotically stable,

ii) max
L,Q

� Gi

rf
�−= max

L,Q

inf
ω∈[ω1,ω2]

σ(Gi

rf
)

= max
L,Q

inf
ω∈[ω1,ω2]

σ
�
QDi

f
+ QCi(jωI − Ai + LCi)−1(Bi

f
− LDi

f
)
�
,

iii) min
L,Q

� Gi

rd
�∞= min

L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ̄(Gi

rd
)

= min
L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ (QDi

d
+ QCi(jωI − Ai + LCi)−1(Bi

d
− LDi

d
)),

iv) min
L

ς, α (Ai − LCi) < ς, ς < 0.

[27] proposes that max
L,Q

���Gi

rf

���
−

can be calculated by the following formulation:

min
L,Q

sup
ω∈[ω1,ω2]

σ̄((Gi

rf
)−1) (3.10)

= min
L,Q

sup
ω∈[ω1,ω2]

σ̄
��

QDi

f
+ QCi(jωI − Ai + LCi)−1(Bi

f
− LDi

f
)
�−1�

with the condition that matrix Gi

rf
is invertible because of

���Gi

rf

���
−

���(Gi

rf
)−1

���
∞

= 1 (3.11)

When the system is singular or non square, which means that the inverse of Gi

rf
does not exist,

the formulation in (3.10) is no longer appropriate to calculate max
L,Q

���Gi

rf

���
−

. Then, two different
cases should be considered:

• When the system is singular, or there is only actuator faults in the model (Df = 0 in
(3.1)), the value of

���Gi

rf

���
−

is always zero for ω ∈ [0, ∞). Then, a finite frequency range
should be added into

���Gi

rf

���
−

. Lemma 2.1 could be used in this case with a appropriate
selection of the reference model.

• When the transfer function matrix Gi

rf
from fault to the residual is not square, an alter-

native approach is to calculate the Moore–Penrose pseudo inverse
�
Gi

rf

�+
:

Lemma 3.1. ([92, 104])For a given system in transfer function as G, if its Moore-

Penrose pseudo inverse system exists denoted by G+, then the calculation of max �G�−
is equivalent to calculate min �G+�∞, which also could be represented as �G�− > β if

and only if �G+�∞ < 1
β
.
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Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

3.2.2. Formulation for nonsmooth optimization

In [35, 91, 116], there are numerous formulations for the problem of H−/H∞ fault detection
observer design, and the formulation to be solved by LMI method is:

���Gi

rf
(L, Q)

���
−

> βi

���Gi

rd
(L, Q)

���
∞

< γi (3.12)
Ai

− LCi is asymptotically stable

where the βi and γi are the parameters to maximize and minimize. For the LMI approach,
another important work is to use iterative method to search the minimum γi and the maximum
βi [112, 116, 69]. As introduced in the previous part, in view of introducing the sufficient
but not necessary conditions, non-optimal search length and quadratically growing Laypunov
variables, results of ILMI are always conservative and this iterative method converges slowly.
By contrast, from the optimization point of view, a ratio formulation of (3.12) is considered

min
L,Q

�Gi

rd
(L, Q)�∞���Gi

rf
(L, Q)

���
−

, (3.13)

A − LC is asymptotically stable (3.14)

The optimization with the objective function (3.13) is a kind of semi-infinite programming
(SDP) problem, which is nonsmooth. Since the gradients of this objective function (3.13) does
not exist, it is difficult to minimize this nonsmooth objective function by classical gradient-based
methods.

Because it is impossible to achieve optimal results with the criteria of (3.13) for each model
simultaneously, Pareto optimal results should be introduced in this case:

min
L,Q

max
i=1,...,N



λi

�Gi

rd
(L, Q)�∞���Gi

rf
(L, Q)

���
−



 , (3.15)

Ai
− LCi is asymptotically stable (3.16)

where λi are appropriate non-negative weights.

The problem (3.15) is formulated as minimax optimization, which is also a typically nonsmooth
optimization design problem. With a view of LMI formulation, 2N inequalities have to be
considered [2, 3]. Too many constraints of inequalities will decrease the calculation efficiency
with LMI method. On the other hand, the minimax formulation problem (3.15) can be easily
solved by nonsmooth optimization method even with many models.

Remark 3.1. For the multiple model case, the objective function (3.15) also could be formulated
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as a weighted-sum case:

min
L,Q

N�

i=1



λi

�Gi

rd
(L, Q)�∞���Gi

rf
(L, Q)

���
−



 , (3.17)

Ai
− LCi is asymptotically stable

where λi are appropriate non-negative weights. However, if the formulated problems are not
convex, some Pareto optimal results could not be obtained with any selection of weights for
different models with the weighted-sum formulation [19]. The minimax formulation in (3.15)
has better characteristics than the weighted-sum formulation (3.17).
Remark 3.2. Since the transients of responses with spectral abscissa (3.9) near 0 are unsuitable
for FDI, the constraint of stability for multiple models (3.16) could be replaced by the spectral
abscissa of Ai − LCi (3.9) to improve the transients of residual responses. However, the corre-
sponding design region of observer gain L will be more strict than the previous one. A smaller
spectral abscissa of Ai − LCi will have a smaller design region to select the observer gain L.

Normally, the regions for the observer gain L to stabilize the observer for different models are
different, therefore, the unique observer gain may not exist in the case of no intersection of the
feasible region for different models. This section discusses the case where the intersection of the
feasible region for different models exists, which means that there exists a unique observer gain
L, which stabilizes all the models at the same time. The objective of the proposed optimiza-
tion with (3.15) and (3.16) could be interpreted by Fig. 3.2. As introduced in [36], a smaller
�Grd�∞ / �Grf�− means a larger set of strongly detectable faults. Assuming that the points A,
B and C in Fig. 3.2 are the optimal designs with the H−/H∞ mixed criterion for Model 1, 2
and 3 respectively, which provide largest sets of strongly detectable faults for the corresponding
model. However, the design A may not give large sets of strongly detectable faults or even no
sets of strongly detectable faults (if A is out of the feasible region of corresponding models)
for the other models, like Model 2 and Model 3. The same conditions may happen for the
design B and C. The objective of the optimization in (3.15) and (3.16) is to compromise the
sets of strongly detectable faults for the three models: decrease the redundant sets of strongly
detectable faults of some models to compensate the small sets of strongly detectable faults for
other models. As shown in Fig. 3.2, the integrated design D will give compromised sets for all
three models separately.

Optimal L for 
model 1

Model 1 Model 2

Model 3

The region of L to stabilize the observer for model i
Optimal L for 

model 2

Optimal L for 
model 3

Compromised 
optimal L for 
models 1,2,3

A B

C

D

Figure 3.2.: Interpretation of the formulation (3.15) and (3.16)
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Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

Obviously, different Pareto results will be given by the proposed objective function (3.15) with
different selection of the weights λi. One practical background of the weights λi is that they
are meant to express the importance of different models: for example, a system contains three
models. In 80% process duration, the system is in the first model, and the other two models will
take up 10% duration of the process respectively. Then, the importance of the different models
could be represented by the time duration of the different models. In this case, the weights could
be set as λ1 = 0.8, λ2 = 0.1 and λ3 = 0.1. From a theoretical point of view, to search the Pareto
optimal surface for an appropriate design, some other general design procedures to choose the
initial designs and design iterations for the weights λi are recommended in [19]. The objective of
this part does not focus on the selection of the weights λi, but tries to show the effectiveness of
the nonsmooth optimization approach on the design for multiple models case with some selected
weights λi. Typically, as introduced in [19], one method for selecting the weights is to scale
every �Gi

rd
(L, Q)�∞ /

���Gi

rf
(L, Q)

���
−

by a typical or nominal value, for example, if the weights
λi are selected as the reciprocal of the best value of �Gi

rd
(L, Q)�∞ /

���Gi

rf
(L, Q)

���
−

, the objective
function in (3.15) could be interpreted as a balanced design, which considers the influences of
all the models simultaneously with the performance indexes �Gi

rd
(L, Q)�∞ /

���Gi

rf
(L, Q)

���
−

. The
following part will consider this setting for the weights λi in (3.15) to design the unique observer
gain for multiple models. The details about selection of the weights λi and the integrated design
are shown in Algorithm 3.1.
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3.2 Mixed H−/H∞ fault detection observer design

Algorithm 3.1 Procedure to design for multiple models case
Step 1. Design the observer gain Li and residual weighting matrix Qi individually (i ∈

{1, . . . , N}) with objective function (3.13) and the constraints of stabilization for all the models:

min




�Gi

rd
(Li, Qi)�∞���Gi

rf
(Li, Qi)

���
−



 (3.18)

Aj
− LiC

j is asymptotically stable, j ∈ {1, . . . , N}

Step 2. Check the spectral abscissa of Aj − LiCj (i, j ∈ {1, . . . , N}). If the minimum value of
α (Aj − LiCj) for i, j ∈ {1, . . . , N} is too small or not appropriate enough with some Li, note
p = 1. Then, a constraint of specification (3.9) should be added into the optimization (3.18) to
replace the condition of asymptotic stability to obtain a series of Li and Qi:

min




�Gi

rd
(Li, Qi)�∞���Gi

rf
(Li, Qi)

���
−



 (3.19)

α
�
Aj

− LiC
j
�

< ς, j ∈ {1, . . . , N}

where the negative parameter ς is chosen with the requirement of residual dynamics. Otherwise,
p = 0.
Step 3. Select the weights λi to be the reciprocal of the best nominal value of
�Gi

rd
(Li, Qi)� ∞/

���Gi

rf
(Li, Qi)

��� − for different models with the series of Li and Qi;
Step 4. If p = 0, optimize the criterion (3.15) under the constraints of (3.16) by using
nonsmooth optimization method. Otherwise, optimize with the transient specification (3.9):

min
L,Q

max
i=1,...,N



λi

�Gi

rd
(L, Q)�∞���Gi

rf
(L, Q)

���
−



 (3.20)

α
�
Ai

− LCi
�

< ς, i ∈ {1, . . . , N} (3.21)

Remark 3.3. Since the design region for the multiple models case is the intersection of stabil-
ity region for multiple models, the mixed criteria H−/H∞ may be cut by the bound of the
intersection region for some models. As a result, the optimal design of H−/H∞ in Step 1 for
some model is in the bound of the stability region, which means that the corresponding spec-
tral abscissa will be near zero. Therefore, in this case, the Step 2 in Algorithm 3.1 has to be
introduced. However, the constraint of transient specification (3.9) in Step 2 of Algorithm 3.1,
which is used to replace the asymptotically stability, will decrease the design region to choose
the unique observer gain L. A too small ξ will introduce conservativeness into the design. The
design in Step 1 could give an estimation to choose the parameter ς:

min
i, j∈{1,...,N}

α
�
Aj

− LiC
j
�

< ς
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3.2.3. Residual evaluation and threshold design

After residual generation, the next step is to select the evaluation function and the threshold
to detect faults based on the generated residual signal. In the steady state of residual after
switching, if the perfect decoupling conditions (3.5) and (3.6) could be achieved, the thresholds
will be zero in this case. Otherwise, thresholds should be considered to filter the effects of
the unknown inputs, like disturbances. Since it is difficult to achieve perfect decoupling in the
face of limitations of measurement information and unstructured uncertainties, robust residual
evaluation, which can achieve small false alarm rate with a guaranteed sensitivity to faults,
should be considered. One way of robust residual evaluation is adaptive threshold, which will
be used in this chapter. The problem of a fixed threshold is that a too low threshold will
increase the rate of false alarms while conservativeness will be introduced if the threshold is set
too high. Therefore, it is better to design a threshold, which depends upon the uncertainties
of the system and adapts to the system input.

Among a great deal of residual evaluation functions, the time window Root Mean Square (RMS)
is a convenient residual measure in practice [24, 23, 40, 60]:

�r�rms :=




1
T

t̂

t−T

rT (τ) r (τ) dτ





1
2

(3.22)

where T denotes the finite time window. Since it is impractical to evaluate the residual signal
over the whole time range, the windowed RMS evaluation method is proposed in practice to
detect fault as early as possible.

The RMS evaluation function is used here for the following reasons [40, 4, 35]:

1. It is widely used in practice.

2. Through the average calculation of the instantaneous value of the residual over the time
window T , the effects of disturbances are reduced.

3. The residual signal over the moving time window is smooth with the RMS evaluation.
Remark 3.4. In general, an evaluated residual with a big time window T will be more smooth
and harder to be affected by the disturbances, but introduces a big delay to detect faults. By
contrast, a small time window T results in a small delay to detect faults, but gives an evaluated
residual with more oscillations because of the disturbances. In the view of optimal design, the
evaluation part should be designed with the criteria used to generate residual simultaneously. In
some typical cases, the selection of time window T will also affect the ability of fault detection.
For example, if the frequency ω1 (which makes |Grd (jω1)| = �Grd�∞ = γd) is the same as the
frequency ω0 (which makes |Grf (jω0)| = �Grf�− = βf ), the mixed criteria (3.49) has to work
with a bandpass filter Q (s), which maximizes the difference between �Grf�− and �Grd�∞ at
the same frequency point ω1 = ω0. The residual r will be a kind of sinusoidal signal because
of the filtering by the bandpass filter Q (s). In this case, the finite time window T could be set
as T = 2π

ω0
, as a consequence, the evaluated residual �r�rms will be constant if the amplitude

of the sinusoidal signal is constant. In the view of FDI, this constant evaluated residual has
better characteristics of fault detection for sinusoidal fault signal. Since this chapter focuses on
the general case with the mixed specifications H−/H∞ (ω1 may not be equivalent to ω0), the
selection of finite time window T is out of this thesis.
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One objective of threshold selection is to reduce or avoid false alarms. Therefore, the evaluated
residual �r�rms should be under the threshold value J i

th
when the system is in ith operational

model:

J i

th
= sup

f=0
�r�rms (3.23)

In the fault free case, the residual (3.4) changes to be

r =L−1
�
Gi

rd
d

�
+ Ψi (x (0)) (3.24)

Therefore, the threshold in (3.23) depends on the part Ψi (x (0)). In order to detect fault during
the switching, the initial state x (0) should be estimated. If there is no information about initial
state x (0), the threshold with (3.23) and (3.24) cannot be exactly selected. An alternative way
is to detect fault during steady state after switching. In the steady state after switching, the
residual is

r =L−1
�
Gi

rd
d

�
(3.25)

According to the Parseval Theorem [19, 127] and RMS norm relationship [19]

�r�rms, f=0 =
���L−1

�
Gi

rd
d

����
rms

�
���Gi

rd

���
∞

�d�rms (3.26)
= γi

d
�d�rms � γi

d
· max (�d�rms)

where γi

d
is the value of �Gi

rd
(L, Q)�∞ with the optimized L and Q from the objective function

(3.15). max (�d�
rms

) is a convenient upper bound to the rms-norm with the worst disturbances
acting on the plant, which could be calculated off-line [24, 23, 60].
Considering to (3.23) and (3.26), the thresholds for multiple models could be:

J i

th
= γi

d
· max (�d�rms) (3.27)

Then, by comparing the evaluated residual �r�rms with the proposed threshold J i

th
, the fault

could be detected if fault makes the evaluated residual �r�rms exceed the threshold J i

th
. Fol-

lowing logic decision unit is considered to detect faults:




�r�rms > J i

th
Fault is detected (Alarm)

�r�rms ≤ J i

th
Fault free (No Alarm)

(3.28)

Remark 3.5. The threshold in (3.27) only estimates the possible maximum effects from the
disturbances on the residual. If the frequency of the disturbances (which achieves max (�d�rms))
is different from the frequency ω1 (which makes Gi

rd
(jω1) = �Gi

rd
�∞ = γi

d
), the parameters γi

d

and max (�d�
rms

) cannot be achieved simultaneously by any disturbance. As a consequence,
the threshold Jth will be higher than the peak value of the evaluated residual �r�rms.
Remark 3.6. As shown in (3.4), during the switching of the system and observer, the initial
state x (0) of switching is not zero. (3.1) and (3.2) use common state vector x and x̂ with
changing Ai, Bi

u
, Ci and Di

u
, which will not jump after the switching. Because the threshold

J i

th
are designed in the steady state of the residual, the natural response Ψ (x (0)) caused by
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the initial state x (0) when switching arises will affect the decision of fault detection during the
switching. Because threshold J i

th
is also dependent on the switching signal i, there will be some

false alarms in some typical cases:

t

||r||rms

Model 1 Model 2

J1
th

J2
th

t1 t2

Figure 3.3.: False alarms during the switching

Fig. 3.3 shows a switching at t1 from Model 1 to Model 2. J1
th

and J2
th

(J1
th

> J2
th

) are the
thresholds for Model 1 and Model 2 respectively. The natural response Ψ2 (x (0)) at t1 will
make the evaluated residual �r�rms be higher than the threshold J2

th
even the system is in Model

2. According to the design logic in (3.28), there will be a false alarm from t1 to t2. In order
to avoid this kind of false alarms, on the one hand, the specification (3.9) could be optimized
to improve the rapidity of convergency, on the other hand, the fault detection could be waited
for enough long time until there is no alarm after the switching. Therefore, in practice, both
aspects should be considered together to decrease false alarms rate with framework of fault
detection in Fig. 3.1.
Remark 3.7. As introduced in chapter 2, the minimization of mixed specification H−/H∞ in
(2.24) can be explained as maximizing the set of strongly detectable faults. With a fixed
energy bound disturbances, the effects of �Grd�∞ / �Grf�− will be shown on the lower bound of
strongly detectable faults. A design with smaller value of �Grd�∞ / �Grf�− has a smaller lower
bound of the strongly detectable faults, which is validated with the following example:

Example 3.1. Considering a numerical example:

A =
�

−0.9231 0.5422
−0.9442 −0.6764

�

, C =
�

0.5432 0.4595
�

Bf =
�

0.4141
−0.3287

�

, Bd =
�

0.2093
0.1224

�

Df = 0.7525, Bd = 0.0834

We have two solutions: L0 =
�

0
0

�

with φ0 = �Grd(L0)�∞
�Grf (L0)�−

= 0.1973
0.5204 = 0.3791 and L1 =

�
0.6557

−0.2478

�

with φ1 = �Grd(L1)�∞
�Grf (L1)�−

= 0.1870
0.6465 = 0.2892, where the frequency ω meeting �Grf�− =
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3.3 Robust fault detection filter design

|Grf (jω)| is at the low frequency for both solutions ω = 0.001rad/s. The bode diagrams of
two observer gains are shown in Fig. 3.4.
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Figure 3.4.: Singular values of Grd and Grf for L0 and L1

If the fault f is a sinusoidal signal, the lower bound of strongly detectable faults could be
represented by the smallest amplitude of the sinusoidal signal when the sinusoidal signal is
strongly detectable. Assuming max �d�rms = 1, then the threshold Jth for the design L0 is
0.1973 while the threshold Jth for the design L1 is 0.1870. The strongly detectable faults could
be represented as �L−1 (Grff)�rms > 2Jth. Then, we can find the smallest amplitude (AMP )
of the sinusoidal signal sin (0.001t) in the worst case, which meets �L−1 (Grff)�rms > 2Jth, for
the design with L0 is AMP0 = 0.75826 and the design with L1 is AMP1 = 0.5785. Notice that

φ1/φ0 = AMP1/AMP0

we have

AMP1 = AMP0
φ1
φ0

which means that the lowest amplitude of sinusoidal signal is proportional to the ratio of
�Grd�∞ / �Grf�−.

3.3. Robust fault detection filter design

With the formulation of fault detection observer for the multiple models case, the parameters
(except the unique observer gain L and residual weighting matrix Q) in the fault detection
observer and the thresholds have to change with the switching of models (parameter i). How-
ever, from a practical point of view, in some cases, you know that the system (3.1) is in one
of N model, but you don’t know the system is in which model exactly. In this case, it is
necessary to design a fault detection “observer” and some threshold, which could work without
model information i. This part introduces a new framework to generate residual, and then
designs a unique threshold to achieve fault detection. Both residual generation and threshold
are independent upon the model information i.
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3.3.1. Residual generation
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Figure 3.5.: Robust residual generator

With the same plant models in (3.1), a framework of robust residual generator is illustrated in
Fig. 3.5. Different from the previous case, there is no switching in the system. The system is
in one of the N dynamical models, which is unknown. Comparing with the residual generator
in Fig. 3.1, the inputs of the filter F in Fig. 3.5 are inputs u and outputs y without the model
information i. Therefore, in this case, the new framework with filter F is robust to the model
information i.
The form of robust fault detection filter is introduced in [23, 24, 60, 100]:

F :






ẋF = AF xF + BF



 y

u





z = CF xF + DF



 y

u




(3.29)

where xF ∈ RnF , AF ∈ RnF ×nF , BF ∈ RnF ×(ny+nu), CF ∈ Rny×nF , DF ∈ Rny×(ny+nu). In the
full order case [24, 23], the filter dimension (the dimension of AF ) satisfies nF = nx + nu. In
the view of transfer function for (3.29), the filter will be

F = CF (sI − AF )−1BF + DF (3.30)

The residual r is defined as

r = z − y (3.31)
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3.3 Robust fault detection filter design

The dynamic equations of residual r are:




ẋr = Ai

r
xr + Bi

r,u
u + Bi

r,f
f + Bi

r,d
d

r = Ci

r
xr + Di

r,u
u + Di

r,f
f + Di

r,d
d

(3.32)

xr =
�

x
xF

�

Ai

r
=




Ai 0

BF

�
Ci

0

�

AF



 ,

Ci

r
=

�

DF

�
Ci

0

�

− Ci CF

�
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r,u
=
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u
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�
Di

u

I

�


 , Di
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=

�
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�
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I

�

− Di
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�
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=
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f
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�
Di

f

0

�


 , Di

r,f
=

�

DF

�
Di
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0

�

− Di

f

�

Bi

r,d
=




Bi

d

BF

�
Di

d

0

�


 , Di

r,d
=

�

DF

�
Di

d

0

�

− Di

d

�

In the view of transfer matrices, residual r is given by (assuming that the initial state is zero)

r = z − y (3.33)

= CF xF + DF

�
y
u

�

−

�
Cix + Di

u
u + Di

f
f + Di

d
d

�

= L−1
�

CF (sI − AF )−1BF

�
y
u

�

+ DF

�
y
u

�

−

�
Ci(sI − Ai)−1[Bi

u
u + Bi

f
f + Bi

d
d]

+ Di

u
u + Di

f
f + Di

d
d

��

= L−1
�

[CF (sI − AF )−1BF + DF ]
�

y
u

�

−

�
Gi

yu
u + Gi

yf
f + Gi

yd
d

��

= L−1
�

F

�
Gi

yu
u + Gi

yf
f + Gi

yd
d

u

�

−

�
Gi

yu
u + Gi

yf
f + Gi

yd
d

��

= L−1
��

F

�
Gi

yf

0

�

− Gi

yf

�

f +
�

F

�
Gi

yu

I

�

− Gi

yu

�

u +
�

F

�
Gi

yd

0

�

− Gi

yd

�

d

�

= L−1
�

Gi

rf
f + Gi

ru
u + Gi

rd
d

�

(3.34)

41



Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

The transfer matrices, Gi

rf
, Gi

ru
and Gi

rd
, are defined as follows:

Gi

rf
= F

�
Gi

yf

0

�

− Gi

yf
(3.35)

Gi

ru
= F

�
Gi

yu

I

�

− Gi

yu
(3.36)

Gi

rd
= F

�
Gi

yd

0

�

− Gi

yd
(3.37)

where Gi

rf
means the transfer function from fault to the residual, Gi

rd
represents the transfer

function from disturbance to the residual and Gi

ru
is the transfer function from control input

to the residual.
Obviously, equation (3.34) shows that the dynamics of residual vector rely on faults signals, dis-
turbances and the control inputs, which also depend on the model information i ∈ {1, 2, . . . , N}.
Since the model information i is unknown, all the i ∈ {1, 2, . . . , N} model should be considered
into the design. With the aim of residual generation for fault detection, the robust fault detec-
tion filter (RFDF) design problem could be described as designing a filter F (AF , BF , CF , DF )
to make the residual r be as sensitive as possible to the faults f and simultaneous as robust
as possible to the disturbances d and control input u for all models. The functions of different
parts in (3.34) could be explained as: the part Gi

rf
means the ability of fault sensitivity, the

part Gi

ru
evaluates the performance of control input tracking on the residual, while the part

Gi

rd
represents the capability of disturbances rejection.

Remark 3.8. From the aspect of residual generation, different from the classical methods (like
observer based method and parity space method), robust fault detection filter does not decouple
the control input u from residual r, but removes the model information i from the filter F
(3.29), which gives the possibility to detect faults for the system in (3.1) even without the
model information i. When N = 1, the classical methods could decouple the effects of the
control input u from the residual r by subtracting Gi

ru
u from the residual r (3.34) in the parity

space method or by the structure of the observer in the observer based method. When N > 1,
the effects of Gi

ru
u also could be decoupled from the residual by the similar way (observer based

method or parity space method) if the model information i is known. However, without the
model information i, the part of Gi

ru
u in the residual is hard to be decoupled accurately if

Gi

ru
�= Gj

ru
with i �= j even when the control inputs u are known. Fortunately, if the control

inputs are known, the influences of the control input on results of fault detection could be
decreased by an appropriate selection of threshold.

In order to detect faults, the residual should be sensitive to the faults and at same time remain
robust to the disturbances, uncertainties and control inputs. The following three conditions
should be satisfied if perfect decoupling is achieved:

Gi

rf
f �= 0 (3.38)

Gi

rd
d = 0 (3.39)

Gi

ru
u = 0 (3.40)

Remark 3.9. Comparing with the perfect decoupling conditions of observer based formulation,
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3.3 Robust fault detection filter design

the formulation of robust fault detection needs another decoupling condition for control input
u. When N = 1, the condition (3.40) is not necessary if the control inputs u are known, because
any deviations away from the known dynamics of Gru could be used to detect fault with the
conditions (3.38) and (3.39). However, when N > 1, the dynamics of Gi

ru
will be difficult to

determine if the model information is unknown. As a result, the undefined dynamics of Gi

ru
with

the conditions (3.38) and (3.39) will decrease the fault detection rate and cause false alarm.
Hence, it is better to add the constraint (3.40) into the conditions of perfect decoupling to
decrease the influences of the undefined dynamics of Gi

ru
.

The constraints (3.38), (3.39) and (3.40) may be satisfied for one model case (N = 1) for a
filter F . However, when N > 1, it is more difficult to find a unique filter F to satisfy the above
constraints for different model at the same time. Therefore, the FDI module has to deal with
the problem without perfect disturbance decoupling.

3.3.2. Unique threshold design for RFDF

On account of the fact that it is difficult to decouple the disturbance d and control input u
from the residual r, it is necessary to definite a threshold to avoid false alarm. The objective
of RFDF is to detect fault for N models without model information i, hence, the designed
threshold should be also robust to the model information i. In other words, there is only one
threshold in the design. Owing to this objective, the following part describes the procedures to
design the unique threshold for the system with N models.

In the similar way of 3.2.3, the time window RMS (3.22) is considered to evaluate residuals
here. Different from the case in (3.24) under fault free conditions, the residual is described as

r = Gi

rd
d + Gi

ru
u (3.41)

which means that the residual in the fault free conditions are affected not only by disturbances
d, but also by the control inputs u of systems and model information i.

According to the Parseval Theorem [19], the unique threshold for the system with N > 1 models
could be:

Jth = sup
f=0

�r�rms

=
���L−1

�
Gi

ru
u + Gi

rd
d

����
rms

�
���Gi

ru

���
∞

�u�rms +
���Gi

rd

���
∞

�d�rms

� max
����Gi

ru

���
∞

�
�u�rms + max

����Gi

rd

���
∞

�
�d�rms

� max
����Gi

ru

���
∞

�
�u�rms + max

����Gi

rd

���
∞

�
max (�d�rms)

= γmax

u
�u�rms + γmax

d
max (�d�rms) (3.42)

where γmax

u
= max

i=1,...,N

{�Gi

ru
�∞} and γmax

d
= max

i=1,...,N

{�Gi

rd
�∞}. max (�d�rms) is a convenient

upper bound to the rms-norm with the worst disturbances acting on the plant, which could be
considered to be calculated off-line [24, 23, 60]. �u�rms is calculated on-line.
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3.3.3. Robust residual generation with unique filter

After the definition of the unique threshold, the following part tries to generate residual with
a unique filter F (3.29), which is also robust to the model information i.

Because of the difficulty to achieve perfect disturbance and control input decoupling, a satis-
factory performance of residual should consider the trade-off between the maximization of the
effects of faults on the residual and the maximization of the robustness to the disturbances and
control inputs. In fact, the following objectives of the robust residual are conflicting each other:

max
F

���Gi

rf

��� (3.43)

min
F

���Gi

rd

��� (3.44)

min
F

���Gi

ru

��� (3.45)

The residual generation problem is to design a filter F in the form of (3.29) with the objectives
in (3.43), (3.44) and (3.45), which is a multiobjective optimization problem.

With the application of H∞ norm and H− index in the previous part,it leads to consider the
H∞ norm for the minimization of �Gi

rd
� and �Gi

ru
�, and H− index for the maximization of���Gi

rf

���. Then, the following conflicting specifications should be considered:

max
F

���Gi

rf

���
−

(3.46)

min
F

���Gi

rd

���
∞

(3.47)

min
F

���Gi

ru

���
∞

(3.48)

Definition 3.1. When N = 1, given positive reals a, b and c, the robust fault detection filter
(RFDF) design problem using multiobjective H∞/H− optimization is to find a filter realization
F such that:

min
F

(aγd + bγu)/cγf (3.49)
�����F

�
Gyd

0

�

− Gyd

�����
∞

� γd, γd > 0
�����F

�
Gyu

I

�

− Gyu

�����
∞

� γu, γu > 0
�����F

�
Gyf

0

�

− Gyf

�����
−
� γf , γf > 0

where a, b, and c are used to weight the relative importance of the conflicting requirements in
(3.46), (3.47) and (3.48).

Definition 3.2. When N > 1, given positive reals ai, bi, ci and λi, the RFDF design problem
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3.3 Robust fault detection filter design

using multiobjective H∞/H− optimization is to find a filter realization F such that:

min
F

max
i=1,...,N

�
λi

(ai
γ

max
d + b

i
γ

max
u

ciγi
f

�
(3.50)
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where γmax

d
= max

i=1,...,N

{γi

d
} , γmax

u
= max

i=1,...,N

{γi

u
}. ai, bi, and ci are used to weight the rela-

tive importance of the conflicting requirements (disturbances rejection �Gi

rd
�∞, input tracking

�Gi

ru
�∞ and fault sensitivity

���Gi

rf

���
−

) for the ith model. Different from the previous design, the
weights λi means the probability of the ith model, which the system (3.1) is in. If there is no
prior information about this probability, an alternative way is selecting the weights λi as the
reciprocal of the best value of �Gi

rd
(L, Q)�∞ /

���Gi

rf
(L, Q)

���
−

, as introduced in the previous part.
The objective of the optimization in (3.50) with kind of weights is to reduce the redundant value
of �Gi

rd
(L, Q)�∞ /

���Gi

rf
(L, Q)

���
−

for some models to compensate the ability of fault detection
in the worst for other models. The following part will take this setting for the weights λi to
show the effectiveness of design.

Remark 3.10. As introduced in [23, 24], control input u is treated as a disturbance in the
above formulation. In some typical cases, the fault signal f is added into the control input
u (Grf = Gru) and their frequency windows may be overlapped. Then, the optimization of
objective function (3.49) when N = 1 is translated to:

a �Grd� + b �Gru�

c �Grf�
= a �Grd� + b �Grf�

c �Grf�
= a �Grd�

c �Grf�
+ b/c (3.51)

Consequently, the objective function of the optimization (3.49) is equivalent to the maximization
of the fault sensitivity (3.43) and maximization of the disturbance robustness (3.44). In such a
case, the selection of the weights b will not affect the optimization. However, when the effects
of fault sensitivity and input robustness are measured by H− index and H∞ norm as (3.46) and
(3.48) respectively:

a �Grd�∞ + b �Gru�∞
c �Grf�−

= a �Grd�∞ + b �Grf�∞
c �Grf�−

(3.52)

According to the definitions of �·�∞ (A.5) and �·�− (2.18), the frequency range is typically
important for the design. If the frequency windows of fault signal f and control input u are
overlapped in some part, some part of the frequency range Φ1 for �·�∞ and the frequency range
Φ2 for �·�− are also overlapped. Consequently, the maximization of the fault sensitivity (3.43)
and maximization of the input decoupling (3.45) are not possible to realize simultaneously. It
is the reason why [23, 24] proposes that the decoupling of input is not considered by imposing
b = 0 for this typical case.

As introduced in [23, 24], the full order filter F can give satisfying abilities to detect the faults.
Since the reduced order filter has the advantages of faster data processing and a reduction in
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Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

detection filter complexity, it is reasonable to design a reduced order filter with an equivalent
robustness for the disturbances and sensitivity for the faults to the full order filter [60]. Proce-
dures to design the reduced order RFDF Fmix when N > 1 are introduced in Algorithm 3.2.

Algorithm 3.2 Procedure to design the reduced order RFDF Fmix when N > 1
Step 1. Select the interesting frequency ranges Φ for �Grf�−, �Grd�∞ and �Gru�∞ (which
could be different) and the RFDF dimension (the dimension of AF ) satisfies nF = nx + nu, ξ1
is a small value;
Step 2. Design the robust fault detection filter F separately with the objective function (3.49)
to obtain a series of Fi with i ∈ {1, . . . , N}. Note that

ϑij = (aiγmax

d
+ biγmax

u
)

ciγi

f

represents that ϑij is obtained with the model (i) and Fj, i, j ∈ {1, . . . , N}.
Step 3. Decrease the RFDF dimension nF = nF − 1, and repeat the Step 2 to obtain a new
series of performance index ϑ1

ij
;

Step 4. If
���ϑij − ϑ1

ij

��� � ξ1 with i = j ∈ {1, . . . , N}, repeat the Step 3 to obtain a new series of
performance index ϑ2

ij
. Otherwise, ϑ3

ij
= ϑij and go to Step 6 ;

Step 5. If
���ϑij − ϑ2

ij

��� � ξ1 with i = j ∈ {1, . . . , N}, go to Step 4. Otherwise, ϑ3
ij

= ϑ1
ij

and go
to Step 6;
Step 6. Select the weights λi to be the reciprocal of ϑ3

ij
with i = j ∈ {1, . . . , N};

Step 7. Design the unique robust fault detection filter Fmix with the objective function for
(3.50) with the selected weights λi.

The point we should note here is that the above threshold Jth is also independent on the model
information i. In this case, all the processes of the fault detection with the filter F and the
threshold Jth are robust to the model information i.

3.4. Nonsmooth optimization

Recently, H∞ synthesis nonsmooth problem with structural constraints [7, 1, 43] could be
solved by the solvers based on nonsmooth optimization techniques: Hinfstruct and Systune
([10, 8, 11]). According to the formulations of the criteria introduced in the previous section,
both the mixed H−/H∞ fault detection observer and robust fault detection filter could be
designed with these solvers.

The formulations of the objective functions and constraints for the optimization should be
transformed to nonsmooth casts of the following form, which could be solved by the Systune
solver:

minimize f(x) (3.53)
subject to g(x) ≤ c, c ∈ R
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where both f and g are max-functions

f(x) := max
i=1,...,Nf

fi(x), g(x) := max
j=1,...,Ng

gj(x), (3.54)

and x gathers all the parameters to design.

In the design of fault detection observer, f (x) could be the ratio objective function (3.13) for
the single model case with Nf = 1, while for the multiple models case, (3.15) with Nf = N is the
function f (x) to minimize. The constraint of asymptotic stability (3.14) could be represented
by the hard constraint part g (x) with (3.9)< 0. When the constraint of fast response transients
is added into the optimization, the hard constraint g (x) is replaced by the (3.9)< ξ.

For the case of robust fault detection filter design, the objective function (3.49) is the soft
minimization part f (x) when N = 1, while the formulation of maximization for multiple fi (x)
has to be considered for the complex objective function (3.50) when N > 1.

3.5. Results

3.5.1. Single model case (N = 1)

The single model case is used to show the effectiveness of the proposed nonsmooth optimization
techniques and design formulation. For the fault detection observer design with single model
case, a comparison between the classical methods and nonsmooth optimization approach is
given to. Particularly, the advantages of the proposed nonsmooth optimization approach are
outlined. The robust fault detection filter design with single model case is used to illustrate
the essences of the proposed filter formulation. A comparison of fault detection capability the
between the fault detection observer and robust fault detection filter is also given.

3.5.1.1. Model to consider

A Multiple Input Multiple Output (MIMO) model in the form of (3.1) from [116] as follows is
considered:

A =





−0.1210 −0.5624 −0.2651 −0.2500
4.0000 0 0 0

0 1.0000 0 0
0 0 0.2500 0





C =
�
−1.4140 −0.4373 −0.1768 0

0 0 0 1

�

Bf =
�

1 0 0 0
0 1 1 1

�
T

Df =
�
2 0
0 2

�

Bd =





0.02 −0.02 0
0.02 0.1 0
0.02 −0.02 0
0.02 0.1 0



 Dd =
�
0 1 0
0 0 1

�
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This MIMO model is used to show the effects of fault detection observer design and robust
filter design for the single model case.

3.5.1.2. Fault detection observer design

The H−/H∞ optimal observer is designed by two classical methods and the proposed nonsmooth
optimization method to validate the effectiveness of the proposed method: (a) the inner-outer
factorization method of [36], (b) the ILMI method of [116] and (c) the proposed nonsmooth
optimization method with (3.13) and (3.14) .

Solving the algebraic Riccati equation (ARE) in [36]

�AT Y + Y �A − Y CT P −1CY + Bd

�
I − DT

d
P −1Dd

�
BT

d
= 0

where P = DdDT

d
and �A = A−BdDT

d
P −1C, an observer gain L and a residual weighting matrix

Q could be obtained:

LDing =
�
BdDT

d
+ Y CT

�
P −1 =

�
−0.0201 0.0981 −0.0202 0.1016
−0.0001 −0.0034 0 0.0089

�
T

QDing = P −1/2 =
�
1 0
0 1

�

With the ILMI algorithm in [116], an observer gain L and a residual weighting matrix Q are
obtained:

LW ang =
�

−0.0209 0.0916 −0.0161 0.1036
−0.0045 0.0227 −0.0406 0.0520

�
T

QW ang =
�
1 0
0 1

�

In this chapter, the residual weighting matrix Q is set as a static matrix to compare the
performance of the result by proposed nonsmooth optimization method with these two classical
methods. Whereas, the residual weighting matrix Q also could be a dynamic matrix as Q (s) in
[27, 119], which will increase the freedoms to design. Through the optimization by nonsmooth
optimization method, we can get

Lnonsmooth =
�

0.0513 0.2324 0.1541 −0.0586
−0.1532 0.2302 0.7581 0.0988

�
T

Qnonsmooth =
�
−1.4814 −0.7006
−1.2189 1.0062

�

Fig. 3.6 shows the singular values plots for the three methods. The minimum singular value of
Grf for different methods is at the same frequency point.

Tab. 3.1 lists the effects of different methods with the mixed specifications �Grd�∞ / �Grf�−,
from which, the design by Ding’s method is optimal, while the designs by Wang and Nonsmooth
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Figure 3.6.: Singular values of Grf and Grd for different designs

are suboptimal solutions, which show a comparable abilities of fault sensitivity and disturbances
rejection in the view of ratio specification (3.13).

Table 3.1.: Comparison of results for different methods

Method �Grf�− �Grd�∞ �Grd�∞ / �Grf�−
Ding 0.3154 1.0000 3.1706
Wang 0.3153 1.0000 3.1716

Nonsmooth 0.9015 2.8585 3.1708

As introduced in [116], the ILMI costs more computational power than Ding’s method. A
comparison of computation time for the three methods is shown in Tab. 3.2. The proposed
nonsmooth optimization works much faster than Wang’s method, even for small scale model
(dimension of system is 4).

In order to decrease the fault detection delay, the performance index (3.9) should be considered.
A fast robust fault detection observer could be designed by proposed nonsmooth optimization
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Table 3.2.: Comparison of computation time for different methods

Method Time
Ding 0.163s
Wang 91.7s

Nonsmooth 1.3s

for the example given above:

Lfast =
�

−0.2896 0.9076 0.6822 −1.1426
0.1885 −0.6323 −0.5896 0.9882

�
T

Qfast =
�

0.4913 0.4282
−0.2321 1.5970

�

With Lfast and Qfast, the �Grf�− is 0.5521, and the �Grd�∞ is 1.7513. The corresponding ratio
of �Grd�∞ to �Grf�− is 3.1721, which means that the above solution under the constraint of
spectral abscissa (3.9) has almost the same properties of robustness to the disturbances and
sensitivity to the faults in the worst case.
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Figure 3.7.: The diagram of the eigenvalues of the different observer gains L

Fig. 3.7 shows the locations of all the eigenvalues of A − LC with the solutions of above intro-
duced methods and the designed Lfast. The eigenvalues of A − LfastC are −0.7503 ± 0.5810i
and −0.7503±0.5735i, whose smallest real part are furthest from the imaginary axis comparing
with the other observer gains L.

The calculated result shows that, Ding’s method has the advantages of fast and easy calculation
of the ratio objective function (3.13), however, it is difficult to consider the additional specifi-
cations into the design. On the other hand, the ILMI could solve multiobjective design with
the ratio criterion (3.13) and transient specification (3.9), but with low efficiency. Comparing
with ILMI and Ding’s method, the proposed nonsmooth optimization approach not only works
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faster for high efficiency calculation, but also can solve the H−/H∞ fault detection problem
with other additional constraints like eigenvalues.

3.5.1.3. Robust filter design:

This part tries to find the relationships of fault detection abilities (fault sensitivity and dis-
turbance rejection) between fault detection observer and the robust fault detection filter with
this single model. In the previous MIMO model, the parameters of inputs u (t) are not given,
but this will not affect the following analysis. Decoupling the effects of control inputs u, the
fault detection observer only considers the trade-off between fault sensitivity and disturbance
rejection. In order to compare the effects of robust fault detection and fault detection observer,
only the fault sensitivity and disturbance rejection are considered first. Thus, the weights could
be set as a = 1, b = 0, c = 1.

As proposed in [23, 24, 60], the full order (nF = 4(plant order) + 3(reference model order) = 7)
dynamic filter F (3.29) is designed with the criterion (3.49) by the nonsmooth optimization
method:

AF =





−22.3005 −1.1005 69.2127 1.0250 −0.8055 15.3692 −1.8447
11.2239 −9.7874 −37.8748 5.2057 −7.2661 −0.1119 −1.4335

−13.5252 264.3752 −10.7090 −0.0816 2.4196 18.7329 7.0969
2.4498 10.0744 3.9286 −9.2500 −3.8128 −3.1133 −6.8618
3.0651 1.8160 5.7046 −2.2092 −3.9871 10.7254 −1.7312
0.8960 2.1921 −3.8481 −3.8844 −6.3914 −9.9065 −1.7009
1.8522 −3.0990 −5.9203 3.3595 −7.7163 4.7342 −1.9170





BF =





−3.013 −4.525 3.939 0.2416 0.0178
−4.095 −3.802 11.139 1.8829 8.1373
−5.791 −5.904 0.634 3.9912 7.3635
4.593 2.769 2.127 1.2368 0.8320
5.611 6.859 0.578 53.6836 7.9155
4.542 −4.934 1.697 0.2463 1.5265

−2.133 −5.904 2.754 0.1832 1.9534





CF =
�

−2.8842 −0.4516 −2.3262 6.0438 −2.4983 −0.5313 5.1765
−2.1210 10.4952 1.1555 1.9319 2.5549 −0.9477 4.5274

�

DF =
�

−4.322 −2.876 19.908 40.988 −2.403
1.405 −0.895 −1.132 −1.662 −1.303

�

The effect of this filter for above model is:
�����F

�
Gyf

0

�

− Gyf

�����
−

/

�����F

�
Gyd

0

�

− Gyd

�����
∞

= 0.3156

As shown in the previous part, the effects of Luenberger observer (with the observer gain L
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Chapter 3 H−/H∞ fault detection filter design via nonsmooth optimization approach

and residual weighting matrix Q) in (3.2):

�Grf�− / �Grd�∞ = 0.3153

Comparing with the effects of the classical Luenberger observer with the mixed specifications
�Grf�− / �Grd�∞, the proposed structure of the robust fault detection filter gives equivalent
abilities of fault sensitivity and disturbances rejection in the view of ratio. Since the weight b is
set as 0, the effects of the control inputs on the residual are not considered in the optimization.
It is straightforward to get an idea that the introduction of control inputs rejection (b �= 0)
will decrease the ability of fault sensitivity and disturbances rejection (the ratio specification
�Grf�− / �Grd�∞) with the objective function (3.49). In other words, the structure of robust
fault detection filter sacrifices the ability of fault detection to remove the information of system
(e.g. system parameters Ai, Bi

u
, Ci and Di

u
) from filter F .

Then, reducing the order of fault detection filter (to 2) with Algorithm 3.2, we can get:

A∗
F

=
�

−5.420 −0.8797
0.4031 −0.8820

�

,

B∗
F

=
�

0.0503 −0.2247 0 0 0
0.1430 −0.0662 0 0 0

�

C∗
F

=
�

0.7210 0.6362
0.3157 0.2537

�

D∗
F

=
�

1.1095 0.1965 −0.3949 −0.3949 −0.3949
0.0892 1.0140 −0.1155 −0.1155 −0.1155

�

The value of the optimized criterion is:
�����F

�
Gyf

0

�

− Gyf

�����
−

/

�����F

�
Gyd

0

�

− Gyd

�����
∞

= 0.3154

Comparing with the full order RFDF and the classical Luenberger observer, the reduced robust
fault detection filter has the same ability to be robust to the disturbances and sensitive to the
fault for the worst case in the view of the criterion �Grd�∞ / �Grf�−.

3.5.2. Multiple models case

3.5.2.1. Models to consider

A vehicle lateral dynamics system [3, 105] is applied to design a unique robust fault detection
observer when N > 1. This system is also called one-track model. Sketched in Fig. 3.8, the
one-track model is derived with the assumption that the vehicle could only move in x axis, y
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Figure 3.8.: Kinematics of one-track vehicle lateral dynamics model

axis and yaw around z axis. The formulation of model is described by the state space form:
�

β̇
ψ̈

�

=
�

Y1
mv

Y2
mv2

Y3
Iz

Y4
Izv

� �
β
ψ̇

�

+
�

CαV
mv

lV CαV
Iz

�

δ −

�
g

v

0

�

d (3.55)

ay =
�

Y1
m

Y3
mv

� �
β
ψ̇

�

+ CαV

m
∗ δ − g ∗ d (3.56)

with Y1 = −(CαV + CαH), Y2 = lHCαH − lV CαV − mv2, Y3 = lHCαH − lV CαV and Y4 =
−(l2

V
CαV + l2

H
CαH), where β is the side slip angle, ψ denotes the yaw rate, ay is the lateral

acceleration, δ is the relative steering wheel angle, d represents road bank angle (considered
as disturbance), and v represents the speed of the vehicle. In Tab. 3.3, typical sensor data are
listed.

In this application, shown as in state space presentation (3.55) and (3.56), the working speed
v affects the operation modes of the vehicle, which is also the switching signal to switch the
parameters Ai, Bi

u
, Ci and Di

u
in the observer except the unchanged observer gain L. In the

following simulation, three subsystems are selected at the speed v = 7m/s, 14m/s and 20m/s.
In this example, a fault in steering angle δ measurement of the system is considered as the
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Variable Value Unit Explanation
g 9.80665 m/s2 gravity acceleration constant
m 1463 kg total mass
lV 1.108 m distance from CG to front axle
lH 1.42 m distance from CG to rare axle
l lV + lH m distance between front and rare axle
Iz 1805.7 kgm2 moment of inertia about the z-axis

c�
αV

103950 N/rad front axle tire cornering stiffness
cαH 108130 N/rad rare axle tire cornering stiffness
vref m/s longitudinal velocity
β rad vehicle side slip angle
r rad/s vehicle yaw rate
ay m/s2 vehicle lateral acceleration
δ∗

L
rad vehicle steering angle

Table 3.3.: Data of the vehicle lateral dynamic system

additive fault, hence we set Bf = Bu =
�

CαV
mv

lV CαV
Iz

�
T

and Df = Du = CαV
m

[2, 3, 35]:

�
A1 B1

u
B1

f
B1

d

C1 D1
u

D1
f

D1
d

�

=




−20.7 −0.46 10.1 10.1 −1.4
21.2 −27.3 63.7 63.7 0
−145 3.74 71 71 −9.8





�
A2 B2

u
B2

f
B2

d

C2 D2
u

D2
f

D2
d

�

=




−9.66 −0.88 4.73 4.73 −0.7
21.2 −12.7 63.7 63.7 0
−145 1.74 71 71 −9.8





�
A3 B3

u
B3

f
B3

d

C3 D3
u

D3
f

D3
d

�

=




−7.24 −0.93 3.55 3.55 −0.5
21.2 −9.57 63.7 63.7 0
−145 1.31 71 71 −9.8





3.5.2.2. Robust fault detection observer design

In this application, the dimension of the residual is 1, as a result, there is no effect of the residual
weighting matrix Q on the criterion �Grd�∞ / �Grf�−. Then, the robust fault detection observer
problem is to only design an observer gain L by proposed nonsmooth optimization approach.
Note that the proposed nonsmooth optimization approach could also be applied to design
observer gain L and residual weighting matrix Q together. In the design, faults over a finite
frequency range [0, 0.1rad/s] are investigated instead of the whole frequency range, while the
disturbances are on the whole frequency range [0, ∞). Therefore, a high pass filter is selected
as the weighting matrix W for the fault sensitivity �Grf�−.
Fig. 3.9 shows the feasible regions of the observer gain L to stabilize the observer for the
above three subsystems, and the relationship among these stable regions could be obtained (Ψ
represents the observer gain stable regions for the corresponding model):

Ψ(Subsystem 3) ⊆ Ψ(Subsystem 2) ⊆ Ψ(Subsystem 1)

where Ψ represents the area of observer gain L to stabilize the observer for the corresponding
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Figure 3.9.: The region of observer gain L to stabilize the three subsystems

model.
The prerequisite to design a unique observer gain L for these above three subsystems is satisfied
due to the existence of the intersection of the stable region for the three subsystems. In other
words, the designed unique observer gain L will stabilizes the observer for the three subsystems
simultaneously. Algorithm 3.1 introduces the steps that how to design the unique observer gain
L with the considering of these three subsystems simultaneously.
In order to understand the effects of the simultaneous stability constraints on the fault detection
ability criteria �Gi

rd
�∞ /

���Gi

rf

���
−

, first, design observers Li for three subsystems separately with
criterion (3.13):

L1 = [0.1065, −1.0039]T ; �G1
rd

�∞ /
���G1

rf

���
−

= 0.0220
L2 = [0.1093, 0.4311]T ; �G2

rd
�∞ /

���G2
rf

���
−

= 0.0114
L3 = [−0.0535, −1.001]T ; �G3

rd
�∞ /

���G3
rf

���
−

= 0.0181

where L1 is typically designed only for Subsystem-1, L2 is designed only for Subsystem-2 and
L3 is only designed for Subsystem-3.
According to the stable region of Subsystem-1, Subsystem-2 and Subsystem-3 in Fig. 3.9, the
obtained observer gain for Subsystem-1 L1 is in the stable region of Subsystem-1 (green part)
but not in the feasible region of Subsystem-2 or Subsystem-3, which means that the designed
L1 cannot stabilize the observer for Subsystem-2 or Subsystem-3.
Then, the stability constraint for all the models should be added into the optimization. With the
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formulation in (3.18), three stable observers Li are designed with the criterion �Grd�∞ / �Grf�−
and the stability constraint for all the models:

L∗
1 = [0.1207, 0.5298]T ; �G1

rd
�∞ /

���G1
rf

���
−

= 0.1648
L∗

2 = [0.1093, 0.4311]T ; �G2
rd

�∞ /
���G2

rf

���
−

= 0.0114
L∗

3 = [−0.0535, −1.001]T ; �G3
rd

�∞ /
���G3

rf

���
−

= 0.0181

where L∗
1 is typically designed only for Subsystem-1, L∗

2 is designed only for Subsystem-2 and
L∗

3 is only designed for Subsystem-3.

Shown in Fig. 3.9, the obtained observer gain for Subsystem-1, L∗
1 is at the boundary of the

intersection for three subsystems, which is also at the boundary of the stability region for
Subsystem-2 and Subsystem-3. Comparing the designed observer gains L1 and L∗

1, the value
of mixed criteria �G1

rd
�∞ /

���G1
rf

���
−

decreases with the adding of stability region for all the
subsystems. In other words, the value of mixed criteria �G1

rd
�∞ /

���G1
rf

���
−

will be smaller with
the introduction of stricter stability constraint. Since the spectral abscissa of Ai − L∗

1C
i for

Subsystem-2 and Subsystem-3 are near 0, the observer gain L∗
1 is not good for the design. With

the optimization in (3.19), a constraint of spectral abscissa for three subsystems is added into
the optimization (ξ is chosen as -0.45):

L∗∗
1 = [0.1139, 0.4641]T ;

���G1
rd

���
∞

/
���G1

rf

���
−

= 0.1796

L∗∗
2 = [0.1093, 0.4311]T ;

���G2
rd

���
∞

/
���G2

rf

���
−

= 0.0114

L∗∗
3 = [−0.0535, −1.001]T ;

���G3
rd

���
∞

/
���G3

rf

���
−

= 0.0181

where the obtained L∗∗
2 is exactly the same as L∗

2, and L∗∗
3 = L∗

3. As introduced in the
Algorithm 3.1, the weights λi are selected as: λ1 = 1/0.1796, λ2 = 1/0.0114, λ3 = 1/0.0181.
Then, using the formulation of the objective function (3.20) and the constraint (3.21) with
ξ = −0.45 to design a compromised observer gain Lmix:

Lmix = [0.1070, 0.4075]T

To show the relationship between the obtained observer gains, the locations of the obtained
observer gains L∗

1, L∗
2, L∗

3, L∗∗
1 and Lmix are illustrated in Fig. 3.9. The comparison on the

criterion of �Grd�∞ / �Grf�− among the different observer gains are listed in the Tab. 3.4.

Table 3.4.: Comparison for different observers

Subsystem-1 Subsystem-2 Subsystem-3
L∗∗

1 0.1796 0.0117 0.0239
L∗∗

2 0.1911 0.0114 0.0234
L∗∗

3 0.5645 0.0856 0.0181
Lmix 0.1960 0.0115 0.0196

Tab. 3.4 shows that the values of the mixed criterion �Gi

rd
�∞ /

���Gi

rf

���
−

with the observer gain L∗∗
1

and Subsystem-1, L∗∗
2 and Subsystem-2 and L∗∗

3 and Subsystem-3 are smallest, which means
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that the observer gain L∗∗
i

is the optimal design for the Subsystem-i in the worst case, but
they are not the good design for other Subsystem-j (j �= i). Evaluating the three subsystems
with selected weights λi, the integrated design, Lmix, gives the Pareto optimal solution, whose
effects are the compromise among the three subsystems with the criterion �Grd�∞ / �Grf�−.
The compromised observer gain Lmix also guarantees fast transient responses (α (Ai − LCi) <
−0.45) for all three subsystems at the same time.

As introduced in [36], a smaller �Grd�∞ / �Grf�− means more faults can be strongly de-
tectable with either fixed disturbances. It is the reason that the mixed performance index
�Grd�∞ / �Grf�− is considered to evaluate the system’s ability of fault sensitivity and distur-
bance robustness. In this application, with a fixed energy bounded disturbances, faults with
large energy in the frequency range [0, 0.1rad/s] could be detected with all the observer gains.
Therefore, it is interesting to compare the the lower bounds of the strongly detectable faults in
the frequency range [0, 0.1rad/s] for the different observer gains with a fixed energy bounded
disturbances. Given a pulse fault signal with fixed time interval, the energy of the fault could
be represented by the amplitude of pulse fault signal. A larger amplitude of pulse fault signal
when the fault could be detected means a smaller set of strongly detectable faults with the fixed
bounded energy disturbances. Then, with the fixed energy bounded disturbances, the lower
bounds of the strongly detectable faults could be represented by the smallest amplitude of the
pulse fault signal when the fault could be detected. If a pulse fault signal with an amplitude
cannot be detected, the lower bound of the strongly detectable faults is higher than this am-
plitude. Based on this idea, the smallest amplitude of pulse fault signal with different observer
gains for different subsystems could be compared to illustrate the effects of the integrated design
Lmix. Taking the pulse faults as

f =






Amp1 = 0.0435, 5 ≤ t ≤ 15
Amp2 = 0.0094, 25 ≤ t ≤ 35
Amp3 = 0.0120, 45 ≤ t ≤ 55

0, elsewhere

and the energy bounded disturbances are uniform random disturbances during 0 ≤ t ≤ 60s.
The value of max (�d�rms) in the threshold (3.27) could be calculated with the uniform random
signal before the simulation in this case.

In the simulation, there a fault in Subsystem-1, Subsystem-2 and Subsystem-3 separately before
the switching, and the switching time of the Subsystems is selected at 20s and 40s. The thresh-
olds and the time responses of the residual signals with the proposed faults and disturbances
are shown in Fig. 3.10.
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Figure 3.10.: Switching residual (L∗∗
1 , L∗∗

2 , L∗∗
3 and Lmix) without fault (left) and with pulse

faults (right)

58



3.5 Results

The thresholds are chosen with the definition in (3.27), which are the estimations of possible
maximum effects from the disturbances on the residual. For the case of L∗∗

1 with Subsystem-2,
the maximum singular value of Grd is at low frequency, and the disturbances in the simulation
are uniform random disturbances, whose high frequency part always has big amplitudes while
the amplitudes of low frequency part always are small. Analyzed in Remark 3.4, when these
two frequencies are different, the thresholds for L∗∗

1 with Subsystem-2 is higher than the biggest
value of the evaluated residual only with disturbances (20s � t � 40s for without faults case) in
Fig. 3.10. By contrast, for the cases of L∗∗

3 with Subsystem-2 and Subsystem-3, the frequency ω1
for Grd (jω1) = �Grd�∞is in frequency range of the disturbances (which achieve max (�d�rms)),
thus, the threshold Jth is just higher than the peak of the evaluated residual when without
faults.

Comparing the effects of the robust fault detection observer gains L∗∗
1 , L∗∗

2 , L∗∗
3 and Lmix, we

can find that the evaluated residual with L∗∗
1 can detect fault for Subsystem-1 and Subsystem-

2 with the corresponding thresholds, however, the fault cannot be detected for Subsystem-3.
In the view of strongly detectable faults, the lower bound of the strongly detectable faults
for L∗∗

1 with Subsystem-1 and Subsystem-2 are smaller than Amp1 and Amp2 respectively,
but with Subsystem-3 is bigger than Amp3. A similar fault detection result is shown for
the case with observer gain L∗∗

2 . For Subsystem-1, observer gain L∗∗
1 shows more space of

the amplitude for the pulse fault signal to decrease when the fault could be detected than
observer gain L∗∗

2 , while inverse results for Subsystem-2. Both faults for Subsystem-1 and
Subsystem-2 cannot be detected by observer gain L∗∗

3 . In other words, the smallest amplitude
of the strongly detectable faults for L∗∗

3 with Subsystem-1 and L∗∗
3 with Subsystem-2 are larger

than Amp1 and Amp2 respectively. The simulation shows that the designed observer gain
L∗∗

i
with Subsystem-i (i : 1, 2, 3) has the largest set of strongly detectable faults with fixed

energy bounded disturbances. Whereas, at least one lower bound of strongly detectable faults
for either observer gain of L∗∗

1 , L∗∗
2 , L∗∗

3 with three subsystems is larger than the amplitudes
(Amp1, Amp2 and Amp3) of the provided three pulse faults for Subsystem-1, Subsystem-2
and Subsystem-3. Compromising the redundancy of the strongly detectable faults set for these
three observer gains, the observer gain Lmix can detect all three faults. This also shows that all
the low bounds of strongly detectable faults for three subsystems with Lmix are smaller than the
amplitudes of the proposed pulse faults for different subsystems, but compared with the optimal
design (L∗∗

i
for Subsystem-i (i : 1, 2, 3)), the compromised design Lmix has fewer space of the

amplitude for the pulse fault signal to decrease when the fault could be detected. The meaning
of the compromised design Lmix is to utilize the large fault margins for some subsystems to
compensate the small fault margins for other subsystems. The simulation validates the principle
of this design: comparing with the observer gains L∗∗

1 , L∗∗
2 , L∗∗

3 for three subsystems, Lmix has
compromised set of strongly detectable faults.

3.5.2.3. Robust fault detection filter design

The robust fault detection filter is designed in the case that the system is in one of the N
models, which is unknown. There is no model switching in this case.

Firstly, design the RFDF optimal filter (full order filter nF = 2(plant order)+1(reference model order) =
3) for the three subsystems separately with the criterion (3.49) using nonsmooth optimization
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method, we can get:

F1 :





−4.896 −5.585 0.1527 −0.666 6.7746
2.0631 −4.699 2.1166 2.1626 1.6277
0.1858 −5.705 −4.3389 −0.309 −4.732
5.561 0.635 −5.2426 0.8808 6.1849





�
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����Gi
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���
∞

+
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���
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��
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���G1
rf

���
−

= 2.8379

F2 :





−3.948 −0.1674 −0.258 −0.043 0.9507
571.09 −5.8794 −1.016 6.198 16.337
−1.001 −0.6295 −7.828 −0.379 −1.4770
−1.645 0.0955 0.975 1.117 −6.0674





�
max
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����Gi
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���
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+
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���
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���G2
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���
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= 0.8489

F3 :





−10.28 −9.9863 4.252 −0.405 −3.559
14.182 −3.1785 −6.398 −0.808 12.174
−3.107 −5.0183 −8.118 −1.103 0.7175
3.461 0.3134 −0.793 0.877 7.7687





�
max

i=1, ,2, 3

����Gi
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���
∞

+
���Gi

ru

���
∞

��
/

���G3
rf

���
−

= 0.6585

Then, using the complex criteria (2.33) to do the optimization for the three subsystems, the
weights are selected as discussed before: λ1 = 1/2.8379, λ2 = 1/0.8489, λ3 = 1/0.6585. The
optimal unique filter is:

Fmix =





−7.50 −2.413 7.301 0.5961 −42.724
46.79 −5.043 3.878 −3.383 20.421
5.859 2.563 −604 −124.7 0.325
1.438 0.032 −0.008 0.8005 14.204





Table 3.5.: Comparison for different filters F

Subsystem-1 Subsystem-2 Subsystem-3
F1 2.8379 2.3851 2.5239
F2 3.3392 0.8489 0.8994
F3 3.8200 0.9711 0.6585

Fmix 3.4558 0.8786 0.8016

Tab. 3.5 shows that the mixed performance indexes
�

max
i=1, ,2, 3

(�Gi

rd
�∞ + �Gi

ru
�∞)

�
/

���Gi

rf

���
−

of
the filter F1 for Subsystem-1, F2 for Subsystem-2 and F3 for Subsystem-3 are smallest, which
means that they are the optimal design for the separate subsystem in the worst case, however,
these designs are not most suitable for the other subsystems. Considering three subsystems
together, the design of the mixed case, Fmix, gives the Pareto optimal solution for the three
different subsystems, whose effects are the trade-off among the three subsystems with the value
of

�
max

i=1, ,2, 3
(�Gi

rd
�∞ + �Gi

ru
�∞)

�
/

���Gi

rf

���
−

.
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3.5 Results

According to the design procedures in Algorithm 3.2, it is easy to check that nF = 1 will
decrease the ability of fault detection. Therefore, design the reduced order RFDF filters (order
=2) for the subsystems separately, we can get:

F ∗
1 :




−5.2401 0.6672 0.0231 −1.2898
−1.6470 −5.5341 0.0158 −0.6203
2.5572 1.9186 1.0061 −0.7325
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���G1
rf

���
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= 2.8377

F ∗
2 :




−10.8478 −6.6473 −0.0881 −1.6673
14.8578 0.2586 0.0532 3.0665
−0.3313 0.9508 1.0263 −1.5504
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���
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= 0.8489

F ∗
3 :




−59.1196 −38.8492 −0.4797 0.9983
78.0004 48.7694 0.5749 2.8033
0.2967 0.4156 1.0193 −1.1740





�
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rf

���
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= 0.6586

Then, select the weights as: λ1 = 1/0.1392, λ2 = 1/0.1689, λ3 = 1/0.1940 and optimize the
complex criteria (3.50) for the three subsystems by proposed nonsmooth optimization method.
We get the compromised unique filter design:

F ∗
mix

=




18.3159 −41.5642 −1.2354 −54.7168
13.4355 −25.5919 −1.4087 −11.0455
0.0242 −0.0129 0.9839 0.8856





The effects of the optimized filter F ∗
mix

on the three subsystems are:

max
i=1, ,2, 3

(�Gi

rd
�∞ + �Gi

ru
�∞)

���G1
rf

���
−

= 0.8394
5.6342 = 3.4480

max
i=1, ,2, 3

(�Gi

rd
�∞ + �Gi
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�∞)

���G3
rf

���
−

= 1.0978
6.0811 = 0.9564

max
i=1, ,2, 3

(�Gi

rd
�∞ + �Gi
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�∞)

���G3
rf

���
−

= 1.2301
5.9520 = 0.7998

From Tab. 3.5 and Tab. 3.6, comparing with the full order filter, the reduced order filter shows
the equivalent ability of robustness to the disturbances and sensitivity to the faults for the
three subsystems in the worst case.

As introduced in [36], a smaller
�

max
i=1, ,2, 3

(�Gi

rd
�∞ + �Gi

ru
�∞)

�
/

���Gi

rf

���
−

means more faults can
be strongly detectable with some fixed disturbances and control inputs. In this application,
since some big faults could be detected with fixed disturbances and control inputs by either
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Table 3.6.: Comparison for different reduced order filters

Subsystem-1 Subsystem-2 Subsystem-3
F ∗

1 2.8377 2.6061 2.6777
F ∗

2 3.3393 0.8489 0.8990
F ∗

3 3.8052 0.9674 0.6586
F ∗

mix
3.4480 0.9564 0.7998

reduced order filter, it is interesting to compare the lower bounds of the strongly detectable
faults with different filters, but same fixed disturbances and control inputs.

To illustrate the effects of the designed robust fault detection filter F ∗
mix

with the index in
Tab. 3.6 (a design with smaller value will be easier to detect faults), all the designed reduced
order filters F ∗

1 , F ∗
2 , F ∗

3 and F ∗
mix

are simulated with the discussed 3 subsystems by taking the
faults, disturbances and control inputs as in Tab. 3.7.

Faults Disturbances Control inputs
Subsystem-1 f1 = −0.3 + 0.3sin (15t) sin (100t) 4
Subsystem-2 f2 = 0.4 + 1.4sin (10t) 12sin (100t) 1
Subsystem-3 f3 = −0.1 + 0.5sin (15t) sin (15t) 1

Table 3.7.: Settings of fault, disturbance and input for simulation

In the simulation, the proposed four reduced order filters will be switched with an order of
F ∗

1 , F ∗
2 , F ∗

3 , F ∗
mix

for each subsystem, and the switching time is selected at 20s, 40s and 60s.
The fault fi arises for Subsystem-i at 5s � t � 15s, 25s � t � 35s, 45s � t � 55s, and
65s � t � 75s. The disturbances and control inputs in Tab. 3.7 are implementing during
0s � t � 80s with the corresponding subsystem. The time responses of the residual signals
and the corresponding thresholds with faults, disturbances and control inputs are shown in
Fig. 3.11.

According to (3.42), the thresholds are selected as γmax

u
�u�

rms
+ γmax

d
max (�d�rms), which are

independent on the model information i, but dependent on the used filter (F ∗
1 , F ∗

2 , F ∗
3 or F ∗

mix
).

Therefore, with estimated worst disturbance max (�d�rms), known input �u�rms and selected
reduced order filter, the corresponding threshold is also determined. As a consequence, all the
processes of fault detection are achieved without the model information i. On the one hand,
the parameters γmax

u
and γmax

u
are the maximum values of γi

u
and γi

d
. On the other hand, the

frequency ω1 of the disturbances d and the frequency ω2 of the control inputs u are different
from the frequency points which achieve σ (Grd (jω3)) = �Grd�∞ and σ (Gru (jω4)) = �Gru�∞
respectively, the threshold Jth will be higher than the peak amplitude of the evaluated residual
�r�rms when without faults, such as cases of Subsystem-2 with either of four filters.

The simulation results in Fig. 3.11 shows that for the Subsystem-1, f1 could be detected by
F ∗

1 , F ∗
2 and F ∗

mix
except F ∗

3 with the selected disturbances and control inputs. The differences
among the effects of fault detection with F ∗

1 , F ∗
2 and F ∗

mix
are the space of the amplitude for f1 to

decrease when fault could be detected. Obviously, filter F ∗
1 for Subsystem-1 has the most space,

while filters F ∗2 for this subsystem have more space than the filter F ∗
mix

for this subsystem,
which explains the effects of the values of the criteria

�
max

i=1, ,2, 3
(�Gi

rd
�∞ + �Gi

ru
�∞)

�
/

���Gi
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���
−
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Figure 3.11.: Residual (reduced order filters) with typical faults and disturbances

for Subsystem-1 with these four filters in Tab. 3.7: a smaller value of the criteria will have
more space of the amplitude for f1 to decrease when fault could be detected, which has a
better ability of fault detection. In the Subsystem-2, the filter F ∗

1 fails the detection for the
fault f2. The filter F ∗

2 has most space while filter F ∗
3 has fewer space than the filter F ∗

mix
.

For the Subsystem-3, filter F ∗
3 has more space than filter F ∗

mix
while the fault f3 could not be

detected by the filters F ∗
1 and F ∗

2 . The simulation also shows that the filter F ∗
i

with Subsystem-i
(i : 1, 2, 3) always has the largest space of the amplitude for fault signal to decrease with
proposed fixed disturbances and control inputs. However, at least one of the proposed faults
cannot be detected for the corresponding subsystem with filter F ∗

i
. Although the compromised

design F ∗
mix

does not have the best ability of fault detection for either subsystem with the
corresponding fault, all the proposed faults can be detected for the corresponding subsystem
by the filter F ∗

mix
. The meaning of the compromised design F ∗

mix
is to use the best ability of

fault detection for some subsystems to compensate the worst ability of fault detection for other
subsystems. The simulation in Fig. 3.11 validates the principle of the design F ∗

mix
.
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3.6. Conclusion

This chapter has introduced the application of nonsmooth optimization techniques on the FDI
problems. Typically, the worst case is considered, where �·�− index is used to measure the fault
sensitivity, and �·�∞ is used to describe robustness to disturbances. Different from the method
of LMI, the proposed nonsmooth optimization approach with Systune in matlab optimizes
the performance index H−/H∞ directly and the algorithm has a good convergence to find an
optimal solution. To improve the fast transients of the residual when fault appears, a constraint
of eigenvalues could be added. In the first framework of the design for multiple models case,
a full order observer is applied to generate the residual. The problem of generating residual is
transformed to be an optimization problem with a constraint of simultaneously stabilizing the
observers for different models. A unique observer gain L and residual weighting matrix Q for
multiple models with a Pareto optimal value of �·�∞ / �·�− for different models could be found
by proposed nonsmooth optimization approach. However, the model switching signal should be
introduced to switch the parameters A, B, C and D in the observer when the model switches.
For the typical case that the system stays in one of the multiple models, and the corresponding
model is unknown, a new framework with deconvolution approach is proposed to design RFDF,
which should be constant and robust to the models information i. The design is formalized
as a constrained optimization problem. An unchanged compromised threshold is proposed to
compare with the residual to detect fault. Both RFDF filter and threshold are constant, and do
not depend on the operational mode of the system. Finally, an academic example and a vehicle
lateral dynamics switched system with 3 subsystems are illustrated to prove the effectiveness
of the proposed design method.
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4. FDI observer design using time and

frequency domain specifications

4.1. Introduction

As discussed in the previous section, early fault detection is an important factor of a FDI
system. The eigenvalues could be chosen to improve the rapidity of residual responses, which
provides potentials to decrease fault detection delay. In [115], pole assignment approach is
utilized to transform the fault detection problem into an unconstrained optimization problem,
which could be solved by a gradient based optimization method. With the aid of LMI method,
constraints on pole location are also added into the mixed H−/H∞ design in [2, 32, 51]. In
Chapter 3, eigenvalues (poles) were used to improve the transients of residual. The locations of
system poles have typical effects on the transients of system (G represents a transfer function):

• Minimum decay rate: α (G (jω)) < −ς

• Minimum damping ratio: Re (G (jω)) < −ξ |G (jω)|
• Pole magnitude (also called as natural frequency): |G (jω)| < ωmax

Increasing the minimum decay rate value ς results in faster transients. Increasing the minimum
damping ratio value ξ results in better damped transients, while decreasing the pole magnitude
value ωmax prevents fast dynamics. For a low order system, poles could be used to improve
the transients of responses. However, for a high order system, this criterion may not make any
sense.
For a single input single output (SISO) system, a stable high order transfer function could be
decomposed into a sum of some different stable low order transfer functions:

G (s) =
n

Σ
i=1

ai (s)
bi (s) = η +

m

Σ
i=1

Kiωi

τ 1
i
s + ωi

+
n

Σ
i=m+1

(τ 2
i
s + 1) Kiω2

i

(τ 3
i
s2 + 2ξiωis + ω2

i
) (4.1)

where the parameters τ 1
i
, τ 2

i
, τ 3

i
, ξi and ωi are the parameters of gi, η is a constant value, and

the parameter Ki is the steady state gain of gi. The real part of the eigenvalues of G could be
represented as λi (λi < 0 when G is stable). We assume that

max
i=1,...,n

(λi) = λj, j ∈ {1, . . . , n}

In general, the eigenvalues, which have the maximum real part λj, determine the major transient
behaviors of responses. However, if the steady state gain Ki of gi (i �= j) is much bigger than
the steady state gain Kj of gj, the dynamics of the responses will mainly depend on gi. In
other words, the eigenvalues, which have the maximum real part λj, cannot be used to evaluate
the transients of responses. Therefore, in order to adjust the transients of responses with
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the specification of poles, both poles and the corresponding steady state gain Ki should be
considered simultaneously. As a result, only optimizing the locations of poles is not enough to
improve the transients of responses.
Example 4.1. Considering a 4 order system with two transfer functions:

T1 = 1
s4 + 4.244s3 + 92.25s2 + 186.1s + 98.41

T2 = 1
s4 + 3.074s3 + 87.31s2 + 175.2s + 313.5

The poles of T1 are −1.0616±9.2458i and −1.0604±0.1084i, while the poles of T2 are −0.4840±

9.0104i and −1.0530 ± 1.6558i. As shown in Fig. 4.1, the spectral abscissa of T1 is -1.0604, by
contrast, the spectral abscissa of T2 is -0.4840. According to the effects of spectral abscissa
(3.8), the responses of T1 should have faster transients than the responses of T2.
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Figure 4.1.: Poles of T1 and T2

However, as shown by the simulation of the step responses of T1 and T2 in Fig. 4.2(a), the
dynamics (rise time, settling time) of responses with T2 are better than the responses with T1,
which is contrary to the previous analysis. This phenomenon is caused by neglecting the effects
of the steady state gain Ki on the transients of responses in (4.1).
Applying the partial fraction decomposition to T2:

T2 = T 1
2 + T 2

2

T 1
2 = −0.0002s − 0.01271

s2 + 0.968s + 81.42 , T 2
2 = 0.0002s + 0.01279

s2 + 2.106s + 3.85

where the poles of T 1
2 are −0.4840 ± 9.0104i and the poles of T 2

2 are −1.0530 ± 1.6558i. Since
the steady state gain of T 1

2 is much smaller than the steady state gain of T 2
2 , the responses of

the T2 mainly depend on T 2
2 . As a result, the transients of the responses T2 should be evaluated

by the spectral abscissa of T 2
2 , even the eigenvalues of T 1

2 is much nearer the imaginary axis.
Simulation in Fig. 4.2(b) validates the analysis. Therefore, for this example, the effects of
spectral abscissa is unavailable to evaluate the transients of responses in time domain.
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To evaluate the transients of response, an alternative way is to design residual in time domain
directly. In this chapter, we investigate the design of the residual in time and frequency domain
simultaneously. Section 4.2 presents the framework of residual generation with a full-order
observer firstly. Then, with the objectives of a “good” fault detection system, the mixed
criterion H−/H∞ is used to evaluate the ability of fault detection in the worst case for unknown
faults, while a specification in time domain is used to improve the transients of the residual
for some specific faults. For the specific faults case, an analysis between the different design
objectives and the specifications in time and frequency domain is given. In Section 4.3, an
integrated design with worst case for unknown faults and fast fault detection for specific faults
is introduced. With the aid of an iterative algorithm to minimize the fault detection delay, a
design with least fault detection delay for step fault is achieved with an tolerable degradation
of the ability of fault detection in the worst case. Furthermore, a constraint of decreasing
false alarms when step fault disappears is added into the design, which could be realized with
criteria in time and frequency domain. The effectiveness of design is validated with a numerical
example in Section 4.4. Finally, Section 4.5 gives a conclusion.

4.2. Problem formulation

4.2.1. Residual generation

The linear time invariant (LTI) system with faults and disturbances is described by

Σ0





ẋ = Ax + Buu + Bff + Bdd,

y = Cx + Duu + Dff + Ddd,
(4.2)

where x ∈ Rnx is the system state vector, y ∈ Rny represents the output measurement vector,
f ∈ Rnf denotes the fault vector, which can be the sensor faults, process faults, or actuator
faults. d ∈ Rnd is the unknown input vector, including disturbance, modeling error, process
and measurement noise or uninterested fault. u ∈ Rnu is the control input vector. Matrices
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A, Bu, C, Du, Bf , Df , Bd, Dd are constant with appropriate dimensions. Without loss of
generality, the following assumptions are used:

• (A, C) is detectable.

• f and d are L2 norm bounded.

For residual generation, a full-order observer in the following form [27] is used:

Σ1






˙̂x = Ax̂ + Buu + L(y − ŷ),
ŷ = Cx̂ + Duu,

r = Q[y − ŷ].
(4.3)

where x̂ ∈ Rnx and ŷ ∈ Rny are the system’s state and output estimations, r ∈ Rnr is the
residual vector, L ∈ Rnx×ny is the observer gain to design, and Q ∈ Rnr×ny is the residual
weighting matrix, which could be static or dynamic as a Q(s).

Connecting the observer �
1 in (4.3) with the system �

0 in (4.2) together, and considering the
state estimation error e = x − x̂, we get the residual error dynamic equations:

Σ2





ė =(A − LC)e + (Bf − LDf )f + (Bd − LDd)d,

r = QCe + QDff + QDdd.
(4.4)

The corresponding residual response from faults and disturbances in frequency domain is:

r =Q{Df + C(sI − A + LC)−1(Bf − LDf )}f

+ Q{Dd + C(sI − A + LC)−1(Bd − LDd)}d

=Grf (L, Q)f + Grd(L, Q)d
(4.5)

Obviously, the dynamics of residuals depend not only on the effects of disturbances, but also
on the effects of faults. Therefore, the multiobjective design of fault detection observer (design
the observer gain L and the residual weighting matrix Q) contains the following objectives for
unknown faults and disturbances:

i) The residual error dynamics equations (4.4) with the observer gain L should be stable,

ii) Maximize the effects of faults on the residual,

iii) Minimize the effects of disturbances on the residual,

iv) Detect the fault as fast as possible.

The i), ii) and iii) objectives were analyzed in the previous chapter. This chapter tries to
propose some performance indexes to decrease fault detection delay (early fault detection) for
objective iv).

Obviously, the rapidity to detect fault is an important criterion to design the observer. The
time to detect fault depends not only on the transients of residual, but also on the selection
of threshold. A lower threshold will give a faster fault detection at a risk of introducing false
alarms. By contrast, a higher threshold will miss some faults and increase the fault detection
delay. Thus, the objective iv) should be achieved with the condition of zero false alarms. An
adaptive threshold was introduced in (3.26), which depends upon the nature of the system
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Figure 4.3.: Shape-constraints of the residual r

uncertainties and disturbances. The settings of threshold in this chapter are same as in (3.26):

Jth = �r�rms, f=0 = �Grdd�rms � �Grd�∞ �d�rms (4.6)
= γd �d�rms � γd · max (�d�rms)

where max (�d�rms) is the upper bound with the worst disturbances acting on the plant, which
can be calculated off-line. Therefore, in view of design, the threshold only depends on �Grd�∞.
An assumption with max (�d�rms) = 1 does not introduce any conservativeness, then, the
threshold is Jth = �Grd�∞. In the discussion of the following part, the threshold means the
value of �Grd�∞

In the view of the dynamics of the generated residual, as discussed before, the specification of
pole is not enough to improve the fast transients of residual. In traditional frequency design
method for time invariant systems, the criteria in time domain such as overshoot, rise or settling
time cannot be addressed directly. An alternative way is to add the time domain constraints
on the residuals r for some specific reference inputs such as impulses, steps or other inputs,
and then the observer should be designed to let the residuals r follow up the given behaviors.
Therefore, the time responses of the residual r from a specific fault signal f with the observer
gain L and residual weighting matrix Q must satisfy the envelope constraints

ri, min � ri (L, Q, t) � ri, max, (4.7)
i ∈ I := {1, . . . , nr}

The transient behaviors of the residual could be designed with the requirements of fast fault
detection. In this chapter, a step fault signal is considered to show the effectiveness of the
design, then the constraints in time domain (4.7) could be illustrated with Fig. 4.3.
Owing to the criterion in time domain (4.7), the objective iv) is translated to achieve fast fault
detection for the selected fixed fault, which is considered as the specific case. In the case of
unknown faults (L2 bounded), as introduced in chapter 3, the worst case (the case of minimum
influence of fault and maximum effects of disturbance on the residual) is more interesting to
represent the specifications i), ii) and iii), which is considered as the general case here. This
chapter tries to combine the designs of specific case and general case together, which will show
good sensitivity to unknown faults and robustness to unknown disturbances with the ability of
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Chapter 4 FDI observer design using time and frequency domain specifications

fast fault detection for some fixed faults.
Remark 4.1. Due to the fact that fault is detected only when �r�rms > Jth and the time to
detect faults is affected by the transients of evaluated residual �r�rms, it is straightforward to
adjust the evaluated residual �r�rms with the envelopes �ri, min�rms and �ri, max�rms directly.
As the optimization in time domain needs the calculation of response every time when the
design parameters change, the computation complexity is increased due to the calculation of
the evaluated residual �r�rms. In fact, when the fault is a step fault signal, the transients of the
evaluated residual �r�rms could be approximated by the transients of the residual r directly:
a residual r with good transients means the corresponding evaluated residual �r�rms also has
good transients. With this setting, the calculation of the RMS norm �·�rms could be avoided.
The envelopes with ri, min and ri, max could be used to adjust the transients of residual directly
in the implements of simulation.
Remark 4.2. The influence of the finite time window T on the evaluated residual is detailed
in chapter 3. The finite time window T for the residual evaluation in (3.22) will also affect
the time to detect fault: as shown in Fig. 4.4, a smaller finite time window T will have faster
transients while a larger T will cause worse transients. However, the small finite time window
T will cause more effects of disturbances on the evaluated residual, which disturbs the fault
detection. This chapter tries to design fast fault detection observer with a fixed time window
T .
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Figure 4.4.: The effects of finite time window T (3.22) on the transients of residual r

4.2.2. Quantitative analysis for the criteria in time and frequency domain

To evaluate the effects of fast fault detection, the time tdetect when the observer begins to detect
fault could be defined as

{tdetect | �r (tdetect)�rms � Jth, �r (tdetect − ξ)�rms < Jth} (4.8)

where ξ is a tiny positive value. As shown in the red box �1 of Fig. 4.5 and Fig. 4.6, the fault
appears at tappear, which is detected at tdetec. Therefore, the delay to detect fault can be defined
as t1

delay
= tdetec − tappear. In the view of residual generation, a residual with faster transients

70



4.2 Problem formulation

0

Figure 4.5.: Residual r with pulse fault (Bounded by ri, max and ri, min)

0

Figure 4.6.: Evaluated residual �r�rmswith pulse fault

can decrease the delay t1
delay

to detect fault. Then, as shown in the red box �1 of Fig. 4.5, the
rapidity of the residual r could be adjusted with the aid of the lower bound envelope ri, min in
(4.7) (a smaller t1 will give a residual with faster transients). Thus, the fault detection delay
t1
delay

can be reduced by selecting a suitable lower bound envelope ri, min.

When the fault disappears, it is also interesting for the observer to detect that there is no fault.
The time tdisdetec, when the observer detects that fault disappears, is defined as:

{tdisdetec | �r (tdisdetec)�rms � Jth, �r (tdisdetec − ξ)�rms > Jth} (4.9)

As shown in the blue boxes �2 of Fig. 4.5 and Fig. 4.6, the delay to find that the fault disappears
can be defined as t2

delay
= tdisdetec − tdisappear. On one hand, the delay t2

delay
also depends on the

transients of residual. On the other hand, through the evaluation with the time window RMS
in (3.22), the negative residual in the blue box �2 of Fig. 4.5 will be positive, as the evaluated
residual in the blue box �2 of Fig. 4.6. Without suitable design, the oscillations of evaluated
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Chapter 4 FDI observer design using time and frequency domain specifications

residual in the blue box �2 of Fig. 4.6 may exceed the threshold Jth, which will cause false alarm
even the fault disappears, and also increase the delay t2

delay
.

Remark 4.3. In order to achieve fast fault detection without false alarm when fault disappears,
both intervals t1

delay
and t2

delay
should be considered. As a consequence, minimizing t1

delay
and

t2
delay

becomes an important criterion to design the observer. In fact, for pulse fault signal, the
dynamics of residual when fault appears (in the red box �1 of Fig. 4.5) and disappears (in the
blue box �2 of Fig. 4.5) are upside down. As a result, the transients of the evaluated residual
before the oscillations (dynamics in the blue box �2 of Fig. 4.6) are similar to the transients of
the evaluated residual (dynamics of residual in the red box �1 of Fig. 4.6), which mainly depend
on the transients of residual when fault arises (dynamics in the red box�1 of Fig. 4.5). Thus,
the trends of t1

delay
and t2

delay
are similar when the oscillations in the blue box �2 of Fig. 4.6 are

lower than the threshold Jth. In this case, these two criteria t1
delay

and t2
delay

can be considered
as one criterion.

One critical problem is how to set the upper and lower bound envelopes (ri, max and ri, min)
to generate a satisfying residual for fast fault detection. From a practical point of view, the
residual should be designed to detect the fault faster without any false alarms when the fault
disappears. Therefore, under these objectives, it is straight-forward to propose specifications
like rise time, peak time, settling time, overshoot, damping, threshold. The connections among
the different criteria and different objectives are illustrated in Fig. 4.7 with following notes.

Threshold r dG

False
alarm Overshoot

Design threshold thJ

Fast fault
detection Rise time

Design fast fault detection

Fault detection without false alarm

Figure 4.7.: Relationships among different criteria and different design objective

• The factors to affect fast fault detection
The main point of the fast fault detection design is to minimize the fault detection delay
t1
delay

. As shown in the red box �1 of Fig. 4.6, in the view of threshold design, a fast
fault detection can be achieved by decreasing the threshold Jth. Then, with the definition
of threshold in (3.22), the fault detection delay t1

delay
could be reduced by minimizing

�Grd�∞. On the other hand, a residual with short rise time when fault appears also gives
potentials to detect fault faster. With the aid of the time domain specifications in (4.7),
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4.2 Problem formulation

the lower bound envelope ri, min could be used to adjust the transients of residual with a
small rise time.

• The factors to cause false alarm when fault disappears
As introduced in the previous part, the false alarm when fault disappears is mainly caused
by the evaluation for the negative part of residual in the blue box �2 of Fig. 4.5. Although
a high threshold can filter the oscillations when the fault disappears, the fault detection
delay t1

delay
is also increased. A better solution is improving the transients of residual

to decrease this kind of false alarm. In the view of residual generation, for a step fault
signal, the oscillations when fault disappears are mainly caused by the overshoot of resid-
ual: a residual with big overshoot always causes big oscillations when fault disappears.
Therefore, in order to decrease the false alarm when fault disappears, the overshoot of
residual should be restricted, which could be realized by choosing a suitable upper bound
envelope ri, max.

• The relationship between fast fault detection and false alarm when fault disappears
A fast fault detection needs a residual with a small rise time, which may bring a high
overshoot for the responses of residual. However, this kind of high overshoot will increase
the false alarm when fault disappears. Therefore, in the integrated design with both
objectives, a small rise time with small overshoot will give a good result, which could
be achieved by introducing the upper and lower bound envelopes (ri, max and ri, min )
simultaneously.

Remark 4.4. As explained in Remark 4.3, if the oscillations are limited, the transients of eval-
uated residual when fault disappears in Fig. 4.6 are similar to the transients of the residual in
Fig. 4.5, whose rapidity is similar to the rapidity of the residual when fault arises. Then, the
used lower bound envelope ri, min also guarantees a fast transients of the residual when fault
disappears to decrease the delay t2

delay
.

4.2.3. Settings of the envelopes for two different cases

There are a bit differences of the settings of the envelopes ri, min and ri, max between the system
with Df = 0 and system with Df �= 0.

• Df = 0
When Df = 0 in (4.2), only the actuator faults are considered. The corresponding transfer
function from the fault to the residual Grf will be strictly proper. Considering that if the fault is
kind of step signal, the initial value of the corresponding residual responses from the fault f will
be zero. In this case, as introduced before, an upper bound envelope ri, max is used to eliminate
the overshoot of the residual, while the lower bound envelope ri, min is employed to improve
the fast transients of residual. When the transients of the residual from the fault f is chosen,
the fault detection time only depends on disturbances. A fault with smaller disturbances will
be detected faster, but the fault detection delay t1

delay
will never be 0.

• Df �= 0
Different from the case of Df = 0, when Df �= 0 in (4.2), the transfer function Grf is biproper,
which will result in a nonzero initial responses of the residual r when the fault f arises. The
corresponding value is dependent on the parameters Df of system. On account of the fact that
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Chapter 4 FDI observer design using time and frequency domain specifications

the nonzero initial value of response can achieve a zero fault detection delay with some small
energy bounded disturbances, the nonzero initial value of response should be utilized as much
as possible, which could be realized by setting a constraint of lower bound envelope ri, min at
t = 0. Without suitable design, the residual with a nonzero initial value may go down very
fast after achieving the peak. As a result, the time interval of evaluated residual higher than
the threshold may be too small to detect fault, which could be avoided by setting a flat ri, min

(t1 � t � t2) to obtain enough interval (t2 − t1) to detect faults.

4.3. Integrated fast fault detection observer design for

general and specific cases

This section introduces the integrated design for general and specific cases, where the design for
general case is measured by mixed specifications H−/H∞ in frequency domain. For the specific
case, two design problems to achieve an ideal fault detection for specific fault are introduced in
the previous section: fast fault detection when fault arises and low false alarm rate when fault
disappears. The latter design is much stricter than the former design since the upper bound
envelope ri, max is added into the former design to restrict the overshoot of residual. In the
following section, these two different designs are introduced respectively.

4.3.1. Design for fast fault detection

In this case, with the lower bound envelope ri, min in time domain, only the constraint of small
rise time is considered to achieve fast fault detection for step fault. For the general case, the
worst case with �Grf�− and �Grd�∞ is considered for the design.
According to the previous analysis, it is straightforward to obtain the following formulation for
integrated design:
i) A − LC is asymptotically stable;
ii) max

L,Q

� Grf �−= max
L,Q

inf
ω∈[ω1,ω2]

σ(Grf )

= max
L,Q

inf
ω∈[ω1,ω2]

σ (QDf + QC(sI − A + LC)−1(Bf − LDf ))

iii) min
L,Q

� Grd �∞= min
L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ̄(Grd)

= min
L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ (QDd + QC(sI − A + LC)−1(Bd − LDd)))−1

iv) ri, min (t) � ri (L, Q, t) t ≤ t ≤ t where t and t are the starting and ending time points
of the simulation in time domain.

Note again that the i), ii) and iii) objectives are proposed for the design of unknown faults and
disturbances (general case). The constraint iv) is used to improve the transients of residual for
fast fault detection. In the view of fast fault detection for specific fault, the specification iii)
should be minimized to decrease the fault detection delay t1

delay
. In the design, the specification

in time domain is formulated as a constraint, because the lower bound envelope ri, min is always
fixed in the optimization. Formulating the specifications ii) and iii) as a ratio, the optimization
problem could be obtained as:
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A − LC is asymptotically stable (4.10)

minimize
L, Q

�Grd(L, Q)�∞
�Grf (L, Q)�−

(4.11)

ri, min (t) � ri (L, Q, t) t ≤ t ≤ t (4.12)

For the fast fault detection, the main objective is to minimize the fault detection delay t1
delay

by
the design. Because the formulation in (4.7) does not minimize the fault detection delay t1

delay

in the direct way, an algorithm to optimize the fault detection delay t1
delay

is proposed for the
step fault with the formulation in (4.7) first. Then, the minimization of fault detection delay
t1
delay

is added into the optimization (4.7) to achieve an integrated design for general case and
specific case simultaneously.

4.3.1.1. An iterative method to minimize the fault detection delay t1
delay

with lower

bound envelope ri, min

As introduced before, the fault detection delay t1
delay

is affected by the threshold selection
(�Grd�∞) and the transients of residual. Fixing the residual with same transients, fast fault
detection can be achieved by minimizing �Grd�∞. By contrast, with a same threshold (same
�Grd�∞), a residual with better transients could detect fault faster. However, a smaller �Grd�∞
always results in a residual with unsatisfying transients, while better transients of residual
always increase �Grd�∞. A better design of either specification always causes a worse char-
acteristic of the other specification, as a consequence, both cases cannot decrease the fault
detection delay t1

delay
effectively. Therefore, a design of fast fault detection should consider the

minimization of �Grd�∞ and the improvement of the transients of residual simultaneously.

Due to the fact that the minimization of �Grd�∞ and improvement of the transients of residual
affect the minimization of fault detection delay t1

delay
simultaneously, it is reasonable to fix one of

the two factors and then optimize the other factor. Based on this idea, if we fix the specification
�Grd�∞ as �Grd�∞ = 1 (with the aid of the residual weighting matrix Q, this equation does
not introduce any conservativeness into the design), the threshold could be Jth = 1 with the
proposed assumption.

As shown in Fig. 4.8, the threshold is fixed as 1, same as the amplitude of the lower bound
envelope ri, min. Note that ri, min

�
t, t1

ref

�
means that the lower bound envelope ri, min starts

at t1
ref

, and t1
ref

> t2
ref

> t3
ref

. First, with the lower bound envelope ri, min

�
t, t1

ref

�
, we find a

solution that the corresponding residual r1 satisfies the constraint, which means that this design
can detect fault at t1

ref
with proposed threshold. Then, the lower bound envelope ri, min

�
t, t1

ref

�

is replaced by ri, min

�
t, t2

ref

�
. If a solution could be found that the corresponding residual r2

meets the new constraint, the new solution is a better design: the design could detect fault at
t2
ref

, earlier than the previous design. Then reduce the starting time of the low bound envelope
to be t3

ref
, and look for a solution to meet the lower bound envelope ri, min

�
t, t3

ref

�
. With this

logic, the minimum fault detection delay could be found until the residual could not meet the
new low bound envelope ri, min with a smaller starting time. Then, an algorithm to minimize
the fault detection delay t1

delay
could be obtained in Algorithm 4.1.
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Figure 4.8.: Explanation of the minimization of fault detection delay t1
delay

Algorithm 4.1 Minimization of fault detection delay t1
delay

Step 1. Initialization: set a big step length λ, and choose a small positive value µ;
Step 2. Formulate the initial lower bound envelope ri, min: select L0 = 0 and Q0 to satisfy
�Grd (L0, Q0)�∞ = 1. The amplitude of the lower bound envelope ri, min is set to be lower
than the steady value of the step response with L0 and Q0, which is also set as the threshold
Jth. Note the time when the step response exceeds the threshold at the first time as δ, which
determines the starting time of the lower bound envelope as ri, min (t, δ);
Step 3. Formulate the new lower bound envelope ri, min: update the lower bound envelope
ri, min (t, δ) with δ = δ − λ and same amplitude;
Step 4. Search the solution: try to look for if there is a solution (L and Q) satisfying the
following constraints:

ri, min (t, δ) � ri (L, Q, t) t ≤ t ≤ t

�Grd (L, Q)�∞ = 1

If the solution exists, go to Step 2. Otherwise, check whether λ > µ, if yes, set λ = λ/2 and go
to Step 2, otherwise exit.

4.3.1.2. Integrated design for general and specific cases

Generally, there are finite optimal solutions for the general case with (4.11), and there may be
only one global optimal solution in some cases. As a result, the ability of fast fault detection
for specific fault with the corresponding design is also determined. This ability is always not
good, because the specifications for the specific fault are not considered in the design. In order
to design general and specific cases together, a trade-off between the ability of fault detection
in the worst case and the rapidity of fault detection for specific fault should be considered. A
direct way to solve this multiobjective optimization problem is combing these two specifications
as one objective function for minimization. The specification for general case is in frequency do-
main while the criterion for specific case is in time domain. Therefore, the combined objective
function contains the specifications in frequency and time domain simultaneously. Unfortu-
nately, the minimization of this kind of objection function is difficult to solve. Alternatively,
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J

(L0, Q0) (L,Q)

J0

(1 + ξ1)J0

ψ

Figure 4.9.: Interpretation of integrated design

it is interesting to know how is the best design for the specific case with a tolerable degra-
dation of the ability of fault detection for the general case, which could be explained with
Fig. 4.9: assuming that the minimum value J0 of �Grd�∞ / �Grf�− is achieved with L0 and Q0.
The integrated design extends the unique optimal design (L0 and Q0) for the minimization
of �Grd�∞ / �Grf�− to a design region for L and Q with a tolerable degradation of the mixed
specification �Grd�∞ / �Grf�−, as shown in the red part ψ in Fig. 4.9. The tolerable degradation
can be represented by a parameter ξ1 = J1−J0

J0
, where J1 is the biggest tolerable value of the

criterion �Grd�∞ / �Grf�−. Then, the design problem is translated to find the solution with
fastest fault detection for the specific fault when the design parameters L and Q belong to the
design region ψ.

Remark 4.5. According to the definition of ξ1, we have

ξ1 = J1 − J0
J0

= J1
J0

− 1 (4.13)

which also means that

J1 = J0 (1 + ξ1) (4.14)

As introduced in Example 3.1

AMP1
AMP0

= J1
J0

(4.15)

where AMP0 and AMP1 represents the lowest amplitudes of sinusoidal signal fault (the fre-
quency ωi of the sinusoidal signal meets �Grf (Li, Qi)�− = Grf (jωi, Li, Qi), i = 1, 2) when the
sinusoidal fault is strongly detectable with L1, Q1 and L2, Q2 respectively.

Then, the equation (4.13) could be

ξ1 = J1
J0

− 1 = AMP1
AMP0

− 1 (4.16)
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which results in

AMP1 = AMP0 (1 + ξ1) (4.17)

Therefore, the physical meaning of (4.14) could be explained with (4.17): the degradations of
J means the decrease of the set of strongly detectable faults.

With the aid of the iterative algorithm in Algorithm 4.1, the integrated design for general and
specific cases could be realized with Algorithm 4.2.

Algorithm 4.2 Integrated fast fault detection observer design
Step 1. Select the interesting frequency ranges Φ for �Grf�− and �Grd�∞ (which could be
different), ξ1 and µ are small positive values, and λ is the adjusted step to change δ;
Step 2. Optimize for the unknown faults and disturbances (general case)

minimize
L, Q

�Grd(L, Q)�∞
�Grf (L, Q)�−

(4.18)

A − LC is asymptotically stable

and obtain the corresponding observer gain L0, residual weighing matrix Q0 and the minimized
value J0 = �Grd(L0, Q0)�∞

�Grf (L0, Q0)�−
. Then, choose a scalar v to make Q0 = vQ0, which satisfies

�Grd (L0, Q0)�∞ = 1. The amplitude of the lower bound envelope ri, min is set to be under
the steady value of the step response with L0 and Q0, which is also set as the threshold Jth.
Set the time when the step response exceeds the threshold as δ, which determines the starting
point of the lower bound envelope as ri, min (t, δ);
Step 3. Set δ = δ − λ, and add the constraints in time domain for the optimization:

minimize
L, Q

�Grd(L, Q)�∞
�Grf (L, Q)�−

(4.19)

ri, min (t, δ) � |ri (L, Q, t)| t ≤ t ≤ t

�Grd (L, Q)�∞ = 1
A − LC is asymptotically stable

Obtain a minimized value J1 = �Grd(L1, Q1)�∞
�Grf (L1, Q1)�−

with designed L1 and Q1;

Step 4. If J1−J0
J0

� ξ1, go to Step 3; Otherwise, check whether λ > µ, if yes, set λ = λ/2 and
go to Step 3, otherwise exit.

4.3.2. Design for fast detection and low false alarm rate

In this case, both the constraints of rise time with the lower bound envelope ri, min and overshoot
with the upper bound envelope ri, max are used to detect step fault fast with a low false alarm
rate. As in the previous design, the worst case with �Grf�− and �Grd�∞ is considered for the
design of general case.
According to the analysis of fast fault detection and low false alarm rate, the following formu-
lation can be proposed:
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i) A − LC is asymptotically stable;

ii) max
L,Q

� Grf �−= max
L,Q

inf
ω∈[ω1,ω2]

σ(Grf )

= max
L,Q

inf
ω∈[ω1,ω2]

σ (QDf + QC(sI − A + LC)−1(Bf − LDf ))

iii) min
L,Q

� Grd �∞= min
L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ̄(Grd)

= min
L,Q

sup
ω�∈[ω�

1,ω
�
2]
σ (QDd + QC(sI − A + LC)−1(Bd − LDd)))−1

iv) ri, min (t) � ri (L, Q, t) � ri, max (t), t ≤ t ≤ t where t and t are the starting and ending
time of the simulation in time domain.

The same ratio formulation of the specifications ii) and iii) is adopted to the multiobjective
optimization for the general case:

minimize
L, Q

�Grd(L, Q)�∞
�Grf (L, Q)�−

(4.20)




ri, min (t) � ri (L, Q, t)
ri (L, Q, t) � ri, max (t)

, t ≤ t ≤ t

A − LC is asymptotically stable

4.4. Results

4.4.1. Model for simulation

To illustrate the effectiveness of the proposed integrated design methodology, the same example
(vehicle lateral dynamic system) introduced in the previous chapter is considered here. In this
example, the reference velocity is v = 7m/s, and the additive fault in above system is a fault
in steering angle (input) measurement with Bf = Bδ and Df = Dδ. Thus, the corresponding
Bu and Du are the same as Bf and Df respectively:

�
A Bf Bd

C Df Dd

�

=




−20.7 −0.46 10.1 −1.4
21.2 −27.3 63.7 0
−144 3.74 71 −9.8





All the discussed specifications in (4.19) and (4.20) could be formulated in the solver Sdo-
tool. Especially, with selected lower bound envelope ri, min or upper bound envelope ri, max,
the specifications in time domain could be formulated as a hard constraint, while the mixed
specifications �Grd�∞ / �Grf�− could be formulated with a custom objective module.

All the thresholds in the simulation are based on (4.6), where max (�d�
rms

) could be estimated
with the worst disturbances acting on the plant before the simulation.
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4.4.2. Simulation of observer design with fast fault detection for general

and specific cases

Two designs are given to show the effectiveness of design: one is the optimal design for the
worst case (unknown faults and disturbances), and the other design considers an additional
constraint of fast fault detection in time domain for step fault.

1. As introduced before, the objective function to optimize for the worst case could be

minimize
L,Q

�Grd�∞
�Grf�−

(4.21)

subject to A − LC is asymptotically stable

where both frequency ranges for �Grd�∞ and �Grf�− are from 0 to infinity for this ex-
ample.

2. Design for general and specific cases simultaneously with the algorithm in Algorithm 4.2

minimize
L, Q

�Grd(L, Q)�∞
�Grf (L, Q)�−

(4.22)

ri, min (t, δ) � ri (L, Q, t) t ≤ t ≤ t

�Grd (L, Q)�∞ = 1
A − LC is asymptotically stable

4.4.2.1. Simulation

As introduced in the previous chapter, since the residual weighting matrix Q is a scalar, there
will be no effects of the residual weighting matrix Q on the criteria H−/H∞. However, the
residual weighting matrix Q will affect the transients of the residual from the step signal
fault. In order to compare fault detection delay for different observer, Q is designed to meet
�Grd (L, Q)�∞ = 1. In this case, the threshold for both cases will be the same if the distur-
bances d are the same.
With the optimization in (4.21), we get

L1 = [0.1381, 0.1003]T ; Q1 = [0.1020]
�Grd�∞ / �Grf�− = 0.1392

Considering the constraint of fast fault detection with lower bound envelope ri, min, a fast fault
detection observer could be obtained:

Lfast = [0.1394, −0.0933]T ; Qfast = [0.1020]
�Grd�∞ / �Grf�− = 0.1397

According to the values of the criterion �Grd�∞ / �Grf�− with the different designed observers,
the effects of the integrated fault detection observer Lfast and Qfast on the proposed criteria
�Grd�∞ / �Grf�− is a little worse than the effects with the optimal design L1 and Q1 for general
case. In other words, compared with the specific design L1 and Q1, the designed fast fault
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Figure 4.10.: Residual without disturbances (same threshold if disturbances are same)

detection observer Lfast and Qfast gives nearly equivalent ability of robustness to disturbances
and sensitivity to faults in the worst case.

In order to show the transients of residual from the step fault signal with different observers,
the system is simulated without disturbances. With disturbances d = 0, Fig. 4.10 shows the
transients of the residual responses with step fault signal due to two different observers. Re-
member that each Q achieves �Grd (L, Q)�∞ = 1, which also means that these two designs
will have the same thresholds if the disturbances d are the same. Based on this condition, the
rapidity of fault detection could be compared for these two observers. Since Df �= 0 in this
example, the initial value of residual is not zero, which means that there will be a very small
delay to detect fault if disturbance is small. When Jth < 20, the residual responses with Lfast

and Qfast is always faster than the design L1 and Q1. With the same threshold Jth < 20, the
design Lfast and Qfast can detect the step fault faster. When 45>Jth > 20, the design L1 and
Q1 cannot detect any step fault any more, which means that the fault detection delay t1

delay

in this case is ∞. But the step fault could be detected by the design Lfast and Qfast under
the same conditions. Therefore, the design Lfast and Qfast has better characteristics of fault
detection for the step fault than the design L1 and Q1 : more sensitivity and faster transients.
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Figure 4.11.: Evaluated residual with L1 and Q1
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Figure 4.12.: Evaluated residual with Lfast and Qfast

The biggest difference of the fault detection delay t1
delay

for two observers arises when Jth = 20
(faults could be detected by both observers), but in this case the step fault may be not detected
by the L1 and Q1 under the effects of the disturbances d, which means that the fault detection
delay t1

delay
is sensitive to the transients of disturbances. With Gaussian white noise, it is

interesting to do a Monte Carlo simulation to check a statistical fault detection delay. With
the amplitude of pulse fault be 0.01, Gaussian white noise with mean µ = 0 and variance σ2 = 1,
time window for RMS in (3.22) T = 0.1s, 1500 Monte Carlo simulations show that the average
fault detection delay t1

delay
for Lfast and Qfast is 0.753s while the average fault detection delay

t1
delay

for L1 and Q1 is 1.429s. The ratio of the average fault detection delay t1
delay

between L1,
Q1 and Lfast, Qfast is 1.429/0.753 = 1.897, which means that the fast fault detection design
always can detect the step fault nearly 2 times faster than the design L1 and Q1. One of the
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4.4 Results

Monte Carlo simulation is shown in Fig. 4.11 and Fig. 4.12. The step fault starts at 2s, and the
fault is detected by Lfast and Qfast at 2.34s while the fault is detected by L1, Q1 at 3.07s.

4.4.3. Simulation of observer design with fast fault detection and low

false alarm rate for general and typical cases

In order to show the effects of the observer design with fast fault detection and low false alarm
rate, the design of worst case in (4.21) is also used. The evaluation frequency range Φ = [ω1, ω2]
for the fault sensitivity �·�− is specified, which is not full frequency range.
Different from the observer design only with fast fault detection, a constraint of the upper
bound envelope ri, max is added into the optimization design (4.11) as (4.20).

4.4.3.1. Simulation

The frequency range Φ = [ω1, ω2] is set as [0.01rad/s, 1rad/s] for fault sensitivity criterion
H−. With the H−/H∞ frequency design method (4.21) , we can get

L2 = [0.1574, 0.3753]T ; �Grd�∞ / �Grf�− = 0.0329

In order to do the comparison with the design in time and frequency domain (4.20), the value
of Q2 is set as 0.002 to restrict the steady value of residual response of step fault signal to be 1.
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Figure 4.13.: Simulation with L2 and Q2

In the simulation, the fault signal is simulated as a pulse of unit amplitude that occurs from 2 to
6 seconds and is zero elsewhere. The disturbances considered in the example is a triangle wave
with period T = 1 from 0 to 2. As shown in Fig. 4.13, with the aid of the initial value of the
residual response from fault (Df �= 0), the designed observer L2 and Q2 can detect fault very
fast (t1

delay
is very small) when the disturbances are small. However, when the fault disappears

at 6s, the evaluated residual from 6s to 8.3s is still bigger than the threshold Jth, which means
that there are false alarms when fault disappears.
In order to improve the transients of the residual for the step fault, the second observer will
consider the effects of short rise time and overshoot and simultaneously minimize the complex
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criterion �Grd�∞ / �Grf�− as (4.20). The settings of the upper and lower bound envelopes in
time domain are shown in Fig. 4.14. The generated signal could only stay the blank space
between the upper and lower bound envelopes.

Figure 4.14.: Settings of upper and lower bound envelopes

Through the optimization, we obtain

L3 = [0.1035, −0.5626]T ,

Q3 = 0.0086,

�Grd�∞ / �Grf�− = 0.0870

where the residual weighting matrix Q3 is designed to make the steady value of the residual
response from step fault be 1.
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Figure 4.15.: Simulation with L3 and Q3

The effects of the design are shown in Fig. 4.15. The dynamics of the residual with L3 and
Q3 when the fault appears and fault disappears are much better than the design L2 and Q2
while the ability of fault detection in the worst case with L3 and Q3 is worse than the design
with L2 and Q2. The good transients of the residual for step signal fault will decrease the

84



4.5 Conclusion

ability of fault detection in the worst case. In practice, similar to the design in fast fault
detection, a tolerable degradation of the mixed specification �Grd�∞ / �Grf�− should be chosen
first ( �Grd(L,Q)�∞

�Grf (L,Q)�−
< η, and η is a value to express the tolerable degradation of the mixed

specification �Grd�∞ / �Grf�−), then, the ability of fast fault detection with low false alarm
rate could be optimized under the proposed constraint.

4.5. Conclusion

In this chapter, a method has been proposed to design an integrated fault detection observer
for general case (unknown L2 bounded faults and disturbances) and specific case (some specific
fixed fault) with performance indexes in frequency and time domain, where the design for
general case is evaluated with mixed specifications H−/H∞ in frequency domain. With a lower
bound envelope ri, min, the first application of the specification in time domain is to adjust
the transients of residual for a specific fault. Considering the effects of threshold selection and
transients of residual on the fault detection delay t1

delay
, an algorithm is given with an iterative

formulation to minimize the fault detection delay t1
delay

. Based on this iterative algorithm, an
integrated design for general case and specific case is given. Furthermore, in order to reduce
the false alarm when fault disappears, the overshoot of residual response is restricted into the
design with an upper bound envelope ri, max. The numerical simulation validates the proposed
design methods.
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5. Auxiliary signal design for active fault

diagnosis

5.1. Introduction

There are two main approaches to achieve fault detection and isolation. One of them is the
passive approach, where the detector observes the inputs and outputs of the system, and then
tries to make a decision whether a fault has occurred. The inputs could be from the controller,
or from the reference inputs to the system. A large amount of work on passive approach has
been done in the field of fault detection and isolation [117, 14, 25, 35]. The major disadvantage
of passive approach is that the faults could be masked by the operation [22], especially for the
controlled systems. The controller is designed to keep the system working at some equilibrium
points after faults occur. In other words, the abnormal behaviors of the system will be masked
by the effects of the controller. Additionally, some kinds of faults may be hidden under certain
operating states and could be found only under some specific conditions. Comparing with the
passive approach, the active approach generates a series of auxiliary signals, which are used to
excite the system as the inputs signal, to decide whether the system is in the nominal model or
faulty model. In this way, the detection of faulty model with the active approach will be faster
than the passive approach. The perturbations from the auxiliary signal on the system should
be as small as possible.
Some work about active fault diagnosis has been done recently. With an assumption of energy
bounded noise, [22, 83] introduced a framework to design the auxiliary signal with the aid
of a quadratic optimization approach. A great deal of work has been done to improve the
application of this framework: a direct approach for nonlinear system [5] and linear system
with model uncertainty [6], a recursive approach for linear discrete time system [38] and a
quadratic optimization approach for closed-loop systems [39] are introduced. With the aid of
the quadratic optimization, the energy norm H2 is used to evaluate the effects of auxiliary signal
on the system. For parametric faults, [79, 81, 78, 80, 82] proposed another framework of active
fault diagnosis based on the YJBK parameterization and the dual YJBK parameterization of
an all stabilizing feedback controller, and it could connect with fault tolerant control (FTC). In
this framework, a fault signature matrix is generated to reflect the fault directly, which can be
activated by injecting a sinusoidal auxiliary signal. A stochastic case is improved in [88]. In this
typical formulation, the perturbations of the auxiliary signal on the system do not need to be
considered since the fault signature matrix is separated from the system. In the application with
this method, it needs to translate the system into the proposed formulation. Using the predicted
information, [97] proposed a new unified formulation of the active fault detection and control
problem for discrete-time stochastic systems with a closed loop strategy. The relationship
between active fault detection and optimal control is given with a stochastic framework. For
linear discrete time hybrid systems, [102] introduced an algorithm to generate appropriate
test signals based on reach set computation for faulty and normal systems. However, the
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optimization in the design may be infeasible when the polytope of the tolerable performance
region is used to approximate the tolerable area. In [103], model predictive approach was applied
on the active fault diagnosis of hybrid systems. The objective is to find an auxiliary signal with
a shortest sequence, and the effects of auxiliary signal on the system is not considered. In
order to achieve active fault diagnosis under the pointwise bounded disturbances, [96] designed
auxiliary signal based on zonotope. Using the feedback of the closed-loop, [90] introduced
two closed-loop approaches to reduce the length (the time duration) and the cost (in the view
of norm) of the auxiliary signal. With the aid of the set-valued estimation of the states by
set-membership approaches, a method to generate optimal auxiliary signals with a finite time
horizon was introduced in [101]. Since the stochastic approach aims to maximize the probability
of a correct diagnosis at a certain time, while the deterministic approach aims to guarantee
diagnosis within at a certain time, [73] introduced a hybrid stochastic-deterministic approach
to design the auxiliary signal. The proposed method guarantees diagnosis at a given time.
Same as in ([22]), the energy norm H2 is used to measure the effects of auxiliary signal on
the system in [96, 90, 101, 73]. Considering to the maximum detection performance, minimum
system performance degradation and minimum targeted detection time, [20] chose an optimal
frequency for the single frequency periodic signals and optimal gain for an estimator. The
proposed framework cannot be applied on MIMO system directly.
A disadvantage of active fault diagnosis is that the injection of auxiliary signal will disturb the
system. The casued perturbations by auxiliary signal may result in a performance degradation
of the system, if the auxiliary signal is not well designed. Hence, the influences of designed
auxiliary signal on the system should be as small as possible. The introduced methods in
[83, 90, 96] always proposed the energy norm H2 (A.2 or A.4) to evaluate the effects of the
auxiliary signal on the output of the system y:

min �yv
�2 (5.1)

and the injected signal v should be also as “small” as possible:

min �v�2 (5.2)

where yv represents the response from the auxiliary signal v to the output of the system y.
A constraint of the auxiliary signal v with pointwise bound for safety or other considerations
could be solved by a direct optimization formulation [6, 5]:

Lmin � v � Lmax (5.3)

where Lmin and Lmax are the lower and the upper bound of the auxiliary signal in time domain
respectively.
However, from a practical point of view, we want to know how are the maximum perturbations
on the system caused by the auxiliary signal. In other words, the “worst” effects of the injected
signal on the system should be considered, which could be represented by the peak amplitude
of the response from the auxiliary signal. In the view of the evaluation function, the energy
norm H2 measures the average effects of the auxiliary signal. The H2 value of a signal is not
affected by the transient. As a result, even if H2 norm of a signal is small, the signal may have
large peaks, which are not too frequent and do not contain too much energy [19]. In this case,
a small H2 value of signal fails to guarantee a small peak amplitude of the signal. Therefore,
the objectives (5.1) and (5.2) fail to evaluate the worst effects of the auxiliary signal on the
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residual. A criterion to evaluate the worst effects of auxiliary signal on the system should be
considered. Furthermore, in the traditional methods, the perturbations of auxiliary signal on
the system are represented by the changes on the output y, and the energy of auxiliary signal
v is designed to be as small as possible. It is interesting to consider the effects of the auxiliary
signal v on the control signal of the plant models. This chapter presents a method of auxiliary
signal design for active fault diagnosis in the presence of unknown disturbances. In Section
5.2, the problem of auxiliary signal design is formulated with a new framework based on fault
detection theory. Then, with the new active fault diagnosis framework, the discrimination for
two models case (also could be called as model detection) is illustrated in Section 5.3. A model
discrimination condition in the worst case is given to formulate the auxiliary signal for successful
model discrimination. A peak norm, �·�peak, is introduced to evaluate the worst effects of the
designed auxiliary signal on the system. Different from the classical methods, the influence of
auxiliary signal on the control signal is also considered. In order to restrict the transients of
the auxiliary signal, a constraint of decay rate is also introduced. Section 5.4 extends the two
models discrimination case to the multiple models discrimination case (more than two models
to distinguish, called as model isolation) with a discrimination logic. At last, both two models
discrimination case and multiple models discrimination case are simulated with a DC motor
control system DR300 to illustrate the effectiveness of the proposed design methods.

5.2. Problem formulation

A LTI system includes m true system models and N − m models of various faults:

Pi :




ẋ = Aix + Bi

u
u + Bi

d
d + Bi

v
v

y = Cix + Di

u
u + Di

d
d + Di

v
v

(5.4)

for i ∈ {0, . . . , N − 1}. Pi with i ∈ {0, . . . , m − 1} represent the m nominal system models,
and Pi with i ∈ {m, . . . , N − 1} mean the N − m faulty models. xi ∈ Rnx is the state vector,
y ∈ Rny is the output, v ∈ Rnv is the auxiliary signal, u ∈ Rnu is the control input, and d ∈ Rnd

represents noises, perturbations and unmeasured inputs. Ai, Bi

d
, Bi

u
, Ci, Di

d
, Di

u
are known

constant matrices of appropriate dimensions. Particularly, if the auxiliary signal v is injected
into the input u directly, matrices Bi

v
and Di

v
are the same as Bi

u
and Di

u
respectively.

Without loss of generality, disturbance d is assumed to be L2 norm bounded.

5.2.1. Framework to discriminate models

Different from the logic in [83], a framework of fault detection [25, 35] is proposed to discriminate
the models, which is shown in Fig. 5.1. The auxiliary signal v is generated by an auxiliary signal
generator. A reference model is used to estimate the output of the system, and the estimated
output ŷ is compared with the output of the system y to generate a typical signal r, which is
used to indicate whether the system stays at the nominal or faulty model. In the ideal case, this
signal r should be zero when the system is in the nominal model, while it should be nonzero
when the system in the faulty model. Due to the fact that this kind of special signal has the
similar characteristics of the residual in the field of fault detection and isolation, the signal r is
also called as residual in this chapter.
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Figure 5.1.: Framework with series of auxiliary signals to discriminate models

In the LTI system, the designed auxiliary signal should be continuous. Then, the auxiliary
signal v in Fig. 5.1 can be generated by filtering a reference signal δ with a filter Q:

Q =
�

Aq Bq

Cq Dq

�

=




ẋq = Aqxq + Bqδ

v = Cqxq + Dqδ
(5.5)

where Aq ∈ Rnq×nq , Bq ∈ Rnq×1, Cq ∈ Rnv×nq and Dq ∈ Rnv×1. Among them, nq depends on
the order of selected Q. Signal δ is the selected reference signal, which could be impulse signal,
step signal, etc.

Residual r could be improved with a well designed post filter F , which could have similar
formulation as the filter Q in (5.5):

F =
�

AF BF

CF DF

�

=




ẋF = AF xF + BF (y − ŷ)
r = CF xF + DF (y − ŷ)

(5.6)

Then, the residual r is generated as:

r = F (y − ŷ) (5.7)

The residual r could be unique when the reference model is either an unchanged reference
model or a series of switching reference models, and it also can be a bank of residuals when a
bank of reference models are used for the “reference model” in Fig. 5.1.

In order to show the effects of controller on active fault diagnosis, the framework in Fig. 5.1
can be extended with an addition of controller. The new framework is shown in Fig. 5.2. In the
new framework, the auxiliary signal v is introduced into the system as a kind of perturbations
on the output from controller u, and the control signal for the plant system in the closed loop
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Figure 5.2.: Framework with series of auxiliary signals to discriminate models

will be uc = u + v. In this case, Bi

u
= Bi

v
and Di

u
= Di

v
. Then, the models in (5.4) change to be

Pi :




ẋ = Aix + Bi

u
(u + v) + Bi

d
d

y = Cix + Di

u
(u + v) + Di

d
d

(5.8)

Owing to the shortages of the H2 norm to evaluate the effects of auxiliary signal on the system,
the worst effects of the auxiliary signal v on the control signal uc and output y are evaluated
with the peak amplitude criterion, �·�

peak
(A.3), in this chapter. Then, the following objectives

should be considered:

min �uv

c
�peak , min �yv

�peak

where uv

c
represents the response signal from the auxiliary signal v to the control signal uc.

Since the auxiliary signal design for two models (N = 2) case is a typical case of the active
fault diagnosis for multiple models (N � 3) case, the following part starts with the auxiliary
signal design for two models case, and then extends to the auxiliary signal design for multiple
models case.

5.3. Active fault diagnosis for two models (Model detection)

For two models case, from a FDI point of view, faulty model and nominal model should be
distinguished. Assuming that the system is in the nominal model at the beginning, the objective
of design is to find whether a switching from nominal model to faulty model arises or not. In
the following part, the active fault diagnosis focuses on this switching.

91



Chapter 5 Auxiliary signal design for active fault diagnosis

5.3.1. Residual generation with auxiliary signal
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Figure 5.3.: Active fault diagnosis of two models with auxiliary signal

For the two models case, there is only one nominal model P0 and one faulty model P1. As
shown in Fig. 5.3, the system could be either in nominal model P0 or in faulty model P1. The
ideal nominal model without the part of the disturbances (P0 with d = 0) is selected as the
unique reference model:

Gref :





˙̂x = A0x̂ + B0
u

(u + v)
ŷ = C0x̂ + D0

u
(u + v)

(5.9)

The framework in Fig. 5.3 could be applied for MIMO system and SISO system. For the
simplicity of expression, the SISO case is used to express the methodology of active fault
diagnosis with this new framework. Note G0 and G1 as the transfer functions from control
signal uc to output y when system is in nominal model P0 and faulty model P1 separately. In
this case, transfer function G0 will be the same as transfer function Gref . Gc represents the
transfer function of controller.
Therefore, the formulation of the residual could be (since the reference model is fixed, an
assumption with zero initial state x̂ (0) of the reference model in (5.9) does not introduce any
conservativeness):

• If system is in nominal model P = P0 (The system is in P0 at the beginning, and assume
that the initial state x (0) = 0 when the system starts to work):

r = L−1 (F (y − ŷ)) (5.10)
= L−1

�
FG0

yd
d

�
= r0

where

G0
yd

= C0 (sI − A0)−1 B0
d

+ D0
d

(5.11)
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• If the system switches to faulty model P = P1:

r = L−1 (F (y − ŷ)) (5.12)

= L−1



F
�

GcG1
1 + GcG1

−
GcG0

1 + GcG0

�
yref + F

�
G1

1 + GcG1
−

G0
1 + GcG0

�
v

+ FG1
yd

d



 + Ψ1 (x (t))

= r1

where

G1
yd

= C1 (sI − A1)−1 B1
d

+ D1
d

(5.13)

and v = Qδ, Ψ1 (x (t)) is the natural response caused by the switching from nominal
model to faulty model with the initial state x (t) when switching occurs.

The differences between r0 and r1 should be used to separate the nominal model and faulty
model by designing the auxiliary signal generator Q and the post filter F . As shown in equations
(5.10) and (5.12), residual r0 is only affected by disturbances d. By contrast, residual r1 is
affected by four parts: reference input part yref , auxiliary signal part v, the disturbances part
d and initial state part x (0) during the switching.

• The effects of the reference input part yref : for the controlled systems, the controller Gc

is designed to keep the system working at some equilibrium points when the behavior of
system changes. In other words, the controller is designed to decrease the differences when
the system switches to the faulty model from the nominal model. As shown in Fig. 5.3, the
output of the system y will be equal to the reference input yref because of the feedback.
In this way, the switching (or fault) is hidden if the controller is well designed. It is
possible to use the transients of the part F

�
GcG1

1+GcG1
−

GcG0
1+GcG0

�
yref to find whether there

is a switching in the system. However, the changes of the part F
�

GcG1
1+GcG1

−
GcG0

1+GcG0

�
yref

may be covered by the unknown disturbances. Furthermore, reference input yref always
changes with the objective of control, and it cannot be changed with the objective of
model discrimination in the active way.

• The effects of the disturbances part d: in some cases, the differences between G0
yd

and
G1

yd
could be used to discriminate two models with some kinds of typical disturbances.

However, this kind of discrimination is not reliable because of the unknown characteristics
of the disturbances, which will be detailed in the next part.

• The effects of auxiliary signal part v: signal v is generated by the reference signal δ and
the filter Q in (5.5). With a suitable design of filters F and Q, residual r1 could be
separated from residual r0.

• The effects of transients caused by switching (Ψ1 (x (0))): Since the common state vector x
in (5.4) is used for nominal model and faulty model, the state vector x will not jump during
the switching but changes smoothly. For the reason that the transients of Ψ1 (x (0)) affect
r1 (5.12) but do not affect r0, this part could be used to separate r1 from r0. However,
this discrimination is also unreliable, which will be detailed in the next part.

In order to discriminate nominal model P0 and faulty model P1 with the difference between r1

93



Chapter 5 Auxiliary signal design for active fault diagnosis

(5.12) and r0 (5.10), a method to distinguish between r1 and r0 should be provided. With the
aid of the function of the threshold in fault detection field, a suitable selected threshold could
be used to distinguish r1 and r0.

5.3.2. Logic to separate r1 from r0 with a threshold

Due to fact that r0 is only affected by the disturbances, an estimation of the maximum effects
of disturbances on the nominal model P0 could be an appropriate candidate to determine the
threshold:

Jth = sup
d

���r0
���

rms
(5.14)

where the discussed time window RMS (3.22) is used to evaluate the residual r.
According to the RMS norm relationship [19], we have

���r0
���

rms
=

���L−1
�
FG0

yd
d

����
rms

(5.15)

�
���FG0

yd

���
∞

�d�rms

�
���FG0

yd

���
∞

·max (�d�rms)

As a consequence, a threshold can be obtained

Jth =
���FG0

yd

���
∞

·max (�d�rms) (5.16)

which is dependent on the dynamics of G0
yd

and the design of the post filter F .
Then, a discrimination conclusion can be obtained with the following discrimination logic:





�r�rms > Jth Faulty model
�r�rms < Jth Nominal model

(5.17)

5.3.3. Model discrimination without auxiliary signal

Without auxiliary signal, the residual will be affected by the transients Ψ1 (x (0)) caused by
the switching, reference inputs yref and the disturbances d. Since the characteristics of these
three factors are different, the possibilities of model discrimination with these three factors are
analyzed respectively.

• Model discrimination only with disturbances part
In this case, with the discrimination logic (5.17) and threshold (5.16), the discrimination
depends on

���r1
���

rms
=

���L−1
�
FG1

yd
d

����
rms

> Jth �
���r0

���
rms

=
���L−1

�
FG0

yd
d

����
rms

(5.18)

Therefore, it is possible to discriminate two models when the part FG1
yd

d in r1 is big
enough to make the evaluated residual �r1�rms exceed the threshold Jth by suitably choos-
ing the filter F . However, this kind of design cannot guarantee a successful model dis-
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crimination in all cases. For example, let us consider two models of a system having the
same characteristics of the bode diagram in high frequency range, but different charac-
teristics in low frequency range. If low frequency disturbances attack the system, the
effects of G1

yd
d in r1 will be different from G0

yd
d in r0, then it may permit to separate the

faulty model from the nominal model even there is no auxiliary signal. However, if the
disturbances are in the high frequency, the effects of G0

yd
d in r0 and G1

yd
d in r1 will be

the same. As a result, the discrimination fails. In this case, the model discrimination
depends on the knowledge of the disturbances; however, the disturbances are always un-
known in reality. Therefore, the discrimination only with disturbances needs to wait for
some typical disturbances to achieve model discrimination.

• Model discrimination with disturbances and reference input parts

With the addition of reference input part, the discrimination is more complex. The faulty
model P1 could be separated from the nominal model P0 only when

���r1
���

rms
=

����L
−1

�
F

�
GcG1

1 + GcG1
−

GcG0
1 + GcG0

�
yref + FG1

yd
d

�����
rms

> Jth (5.19)

where the discrimination depends on the dynamics of disturbances d and effects of the
reference input yref on r1.

If F
�

GcG1
1+GcG1

−
GcG0

1+GcG0

�
yref satisfies

����L
−1

�
F

�
GcG1

1 + GcG1
−

GcG0
1 + GcG0

�
yref

�����
rms

>
���L−1

�
FG1

yd
d

����
rms

+ Jth (5.20)

we have
����L

−1
�

F
�

GcG1
1 + GcG1

−
GcG0

1 + GcG0

�
yref + FG1

yd
d

�����
rms

�
����L

−1
�

F
�

GcG1
1 + GcG1

−
GcG0

1 + GcG0

�
yref

�����
rms

−

���L−1
�
FG1

yd
d

����
rms

> Jth

which means that a reference input yref meeting (5.20) can discriminate nominal model
and faulty model with any disturbances. This discrimination depends on the reference
input yref , which is chosen with the requirements of control.

Furthermore, if the part F
�

GcG1
1+GcG1

−
GcG0

1+GcG0

�
yref is small, the disturbances part is more

important for the residual. The transients of F
�

GcG1
1+GcG1

−
GcG0

1+GcG0

�
yref may increase or

decrease the effects of disturbances on r1 because of the unknown characteristics of distur-
bances. That’s the reason that the disturbances, which meet the discrimination condition
in (5.18), may not discriminate models during the transients of F

�
GcG1

1+GcG1
−

GcG0
1+GcG0

�
yref .

As a consequence, the discrimination is unreliable, which depends on reference input yref

and dynamics of unknown disturbances d.

• The effects of switching on model discrimination
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With the addition of Ψ1 (x (0)), model discrimination can be achieved when
���r1

���
rms

=
����L

−1
�

F
�

GcG1
1 + GcG1

−
GcG0

1 + GcG0

�
yref + FG1

yd
d

�
+ Ψ1 (x (0))

����
rms

> Jth

(5.21)

The part of Ψ1 (x (0)) directly implies that a switching from nominal model P0 to faulty
model P1 occurs. However, the effects of Ψ1 (x (0)) on the residual r1 may be covered by
disturbances and the responses caused by the reference input yref part. Furthermore, the
part Ψ1 (x (0)) depends on the states of system when switching arises. Therefore, this
discrimination is also unreliable.

All the discussed discrimination cases cannot guarantee a successful model discrimination, which
depend on the unknown disturbances d, the selected reference input yref and the initial state
when switching arises. Since the model discrimination without auxiliary signal is unreliable
and even unavailable for some cases, it is necessary to generate an auxiliary signal to achieve
model discrimination.
Since transients Ψ1 (x (0)) during the switching is beneficial to model discrimination, the effects
of Ψ1 (x (0)) on the residual r1 should be utilized in the design of auxiliary signal v. However,
if there is no information about initial state x (0) when switching occurs, the transients of the
residual during the switching are difficult to use. An alternative way is to achieve active fault
diagnosis with auxiliary signal v during the steady state after switching. A shortage of this
setting is that this kind of auxiliary signal may not achieve an successful model discrimination
during the switching. In this case, a series of auxiliary signals with a fixed period could be
injected into the system, then the faulty model could be distinguished until an alarm arises.
This chapter considers to design the auxiliary signal v in the steady state of residual. In
following part, the transient part Ψ1 (x (0)) in (5.12) will not be considered in the design of
auxiliary signal.
Remark 5.1. In the determination of results with the discrimination logic in (5.17), the alarm
does not need to be caused by the auxiliary signal. For the two models case, any alarm implies
that the system switches from the nominal model to the faulty model. By contrast, for the
multiple models case (N > 2), not every alarm means that a switching arises, which will be
explained in the multiple models part.im
Remark 5.2. In the previous analysis, disturbances d are assumed to be unknown. However, in
most cases, disturbances d are not completely unknown. If there is some prior information on
disturbances d, this kind of prior information should be contained into the system to design the
auxiliary signal. The disturbances with prior information can be formulated by filtering a white
noise with a filter. A new system could be obtained by combining the original system and the
filter together. Then, the design of the original system with prior information of disturbances
is equivalent to the design of the new formulated system with white noise.

5.3.4. Model discrimination with auxiliary signal

Since the transients of reference input yref affect the residual r1, this part should be considered
into the design of auxiliary signal. If yref is known, the reference input yref could be combined
into the design of auxiliary signal v with following remark directly.
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5.3 Active fault diagnosis for two models (Model detection)

Remark 5.3. According to the residual r1 (5.12) in the steady state after switching (Ψ1 (x (0)) =
0), we have

r1 = L−1 (F (y − ŷ))

= L−1
�

F
�

G1
1 + GcG1

−
G0

1 + GcG0

�
(Gcyref + v) + FG1

yd
d

�
+ Ψ1 (x (0))

= L−1
�

F
�

G1
1 + GcG1

−
G0

1 + GcG0

�
v� + FG1

yd
d

�
+ Ψ1 (x (0))

We can design v� first to achieve model discrimination. Then, the auxiliary signal can be
obtained by v = v� − Gcyref . Therefore, the design of v is equivalent to the design of v�. For
the simplicity of expression, in the design of auxiliary signal in the following part, the reference
input yref part in (5.12) is omitted.
Due to the existence of FG0

yd
d, the faulty model is discriminated only if the evaluated residual

surpasses the threshold Jth when the system is in the faulty model. In the case of “without any
knowledge on the disturbances”, the designed auxiliary signal should guarantee the following
inequality in the worst case of FG1

yd
d:

inf
d

���r1
���

rms
> Jth (5.22)

Note that

inf
d

���r1
���

rms
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d

����L
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−
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�����
rms

(5.23)
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d

����
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As a result, the faulty model could be detected for any possible disturbances d if
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�����
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where

Jth = sup
d

���r0
���
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= sup

d

���L−1
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����
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(5.25)

Then we can get
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(5.26)

+ sup
d

���L−1
�
FG1

yd
d

����
rms

(5.27)

With the definition of the threshold in (5.16):

sup
d

���L−1
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d

����
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�
���FG1
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���
∞

max (�d�rms) (5.28)
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�
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����
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�
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���
∞

max (�d�rms) (5.29)
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Therefore, equation (5.26) could be met when
����L
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�
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�����
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+
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���
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�
max (�d�rms) (5.30)

Introducing one quantity ϕdetec to evaluate the sufficient condition for model discrimination, an
auxiliary signal is strong detectable in the presence of disturbances if

ϕdetec =
sup

d

���FG0
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d
���

rms
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���
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(5.31)
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v
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< 1

If ϕdetec � 1, designed auxiliary signal can be used to discriminate models in the presence of
disturbances, however, the design will fail to discriminate models in the worst case.

Remark 5.4. In order to discriminate models for all possible disturbances, the quantity ϕdetec

should be smaller than 1 for any possible disturbances d. Since the part max (�d�rms) can be
estimated with the worst disturbances acting on the plant off-line, the model discrimination
condition (5.31) could be transformed to
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where v� = v/max (�d�rms). Once an auxiliary signal v� is found in the design, the auxiliary
signal used in practice could be v = v�max (�d (t)�) when the estimation of max (�d�rms) is
obtained.

5.3.5. Some practical aspects in optimization

After introducing the model discrimination condition of auxiliary signal, this part gives some
notes about the operations in practice to design auxiliary signal with above discussed frame-
work: the selection of reference signal, calculation of �uv

c
�

peak
and �yv�

peak
in time domain, and

a constraint to restrict the transients of auxiliary signal.
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5.3.5.1. Selection of reference signal δ (t) for application

In order to decrease the conservativeness of design, it is necessary to select a reference signal
such that arbitrary signal could be generated with the filter Q in (5.5). On the other hand, this
reference signal should be easy to obtain. The impulse signal has the characteristic that all the
frequency spectrum is flat, which provides equivalent weights for the design at any frequency.
With a suitable selection of filter Q for the impulse signal, the produced auxiliary signal could
be any signal in theory.
The impulse signal, also known as Dirac impulse, is defined by

δ (t − t0) =




∞ t = t0

0 t �= t0
(5.33)

where t0 represents the time when the impulse signal occurs.
However, from the practical point of view, it is impossible to find such an ideal impulse signal.
An alternative method is to approximate the impulse signal as

h∆ (t − t0) =




1/∆ if t0 < t < t0 + ∆
0 otherwise

(5.34)

which could be

H∆ (s) = L−1 (h∆ (t))

In the view of application, periodic auxiliary signal, which contains a series of auxiliary signal
with a fixed period, is more useful in the monitoring of system. This could be realized with a
series of approximated impulse signal h∆:

σ (t) =




1/∆ if kT1 < t < kT1 + ∆
0 otherwise

(5.35)

where k ∈ {0, 1 . . .} and T1 is the period of auxiliary signal injection.

5.3.5.2. Calculation of other specifications

According to Fig. 5.3, the response signal from auxiliary signal to the control signal uc can be
represented as

uv

c
=

� 1
1 + GcGi

Q
�

H∆

and the response signal from auxiliary signal to the output of the system y are

yv =
�

Gi

1 + GcGi

Q
�

H∆

As introduced in the previous part, the constraint of “disturbing the system as little as possible”
could be transformed to minimize the criteria �uv

c
�peak and �yv�peak simultaneously. Since both
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specifications have to be minimized, a combined formulation for two criteria could be considered:

min
Q

�
�u

v

c�peak + α �y
v
�peak

�
(5.36)

Because the norm �·�peak is evaluated in time domain directly, the interval (t ≤ t ≤ t) of
simulation to estimate �·�peak should be chosen in advance, which can not be infinite in practice.
This implement to evaluate �·�peak may introduce a problem that the peak of signal is small
during the simulation interval (t ≤ t ≤ t), but it is unstable in the infinite time range. In order
to overcome this shortage, a constraint of stability for the approximated signal h∆ should be
added. Since the approximated signal h∆ consists of two opposite step signals, the stability for
the approximated signal h∆ can be achieved by adding a bound to the peak value of the step
responses:

����L
−1

�1
s

Gi

1 + GcGi

Q
�����

peak
� ξ (5.37)

where ξ is a constant value.

Using the periodic impulse signals σ (t) in (5.35), the period T1 of σ (t) should be carefully
selected. A big period T1 will delay the time to detect faulty model when the switching from
nominal model to faulty model arises. By contrast, a small period T1 will cause a problem when
the convergence rate of the output responses y from auxiliary signal is not high: if the output
responses of the present auxiliary signal do not decay to be zero yet, the output responses of
a new auxiliary signal will be added into the rest of output responses of the present auxiliary
signal . In this case, the output responses caused by auxiliary signals will accumulate, and they
become bigger when more auxiliary signals are injected into the system, which means that the
perturbations on the system caused by auxiliary signals will also be more. This phenomenon
will cause performance degradation of the system, or even damage the system. Therefore, a
constraint of convergence rate on the output responses of auxiliary signal should be added into
the design:

max(real(eig( Gi

1 + GcGi

Q))) � ς (5.38)

where ς is a negative value, which is selected to meet the requirements of the rapidity of auxiliary
signal. The period T1 in (5.38) should bigger than the settling time of output responses caused
by the designed auxiliary signal with (5.38).

5.3.6. Optimization problem with all proposed constraints

Then, we have following required specifications to design a strongly detectable auxiliary signal
for model discrimination:

1. Minimizing the worst effects of designed auxiliary signal on the control signal uc and the

output y:

min
Q

�

max
i=0,1

�����L
−1

�
1

1 + GcGi

QH∆

�����
peak

�

+ max
i=0,1

�����L
−1

�
Gi

1 + GcGi

Q

�����
peak

��

(5.39)
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2. Discrimination condition of auxiliary signal:
����FG0
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���
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+
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���
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QH∆

����
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< 1 (5.40)

3. Stability of the responses on the output y for the approximated signal h∆:
����L

−1
�1

s

Gi

1 + GcGi

Q
�����

peak
� ξi (5.41)

4. Constraints of fast decay transients of the designed auxiliary signal:

max(real(eig( Gi

1 + GcGi

Q))) � ς (5.42)

5. Stability of the filter F :

F should be stable (5.43)

From the optimization point of view, the peak norm �·�peak is calculated in time domain, and
the (sub)gradients of this specification is difficult to obtain. As introduced in chapter 2, it is
more suitable to solve this kind of specification by some derivative-free methods, such as genetic
algorithm. In the optimization with genetic algorithm, the peak norm in (5.39) and (5.41) could
be estimated with the command “lsim” in matlab. In practice, it is not necessary to guarantee
an alarm in all duration of injection of auxiliary signal. An alarm caused by the some part
of the residual response caused by auxiliary signal is enough. Therefore, the discrimination
condition (5.40) could be changed to

����FG0
yd

���
∞

+
���FG1

yd

���
∞

�

max
t

����L−1
�
F

�
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1+GcG1
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�
QH∆

����
rms

� < 1 (5.44)

where the calculation of the time window RMS (3.22) should be also in time domain. All the
above objective functions and constraints can be formulated as the form in genetic algorithm,
and the needed filters Q and F could be obtained to achieve two models discrimination.

However, for the multiple models case, there will be N > 2 models to discriminate. In this
case, only one reference model is not enough anymore, because the decision logic (3.28) only
can separate two models. Therefore, a bank of reference model should be considered, which will
introduce more than one threshold. Different from the two models case, too many combinations
of thresholds and reference models for the multiple models case increase the difficulty to achieve
model discrimination. In the following part, a decision logic to achieve model discrimination
for multiple models case is introduced.
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5.4. Active fault diagnosis for multiple models (Model

isolation)

For the multiple models case Pi (i:0, . . . , N − 1, N > 2) , there are a number of variations:

1. One nominal model P0 and N − 1 faulty models Pi (i:1, . . . , N − 1, N > 2);

2. m nominal models Pi (i:0, . . . , m − 1, N > m � 2) and N − m faulty models Pi

(i:m, . . . , N − 1, N > 2).

In the view of FDI, it is important to detect the switching from nominal model to faulty model.
In the first case, there is only one nominal model and N − 1 faulty models. With the same
framework for two models case in Fig. 5.3, the nominal model P0 without the disturbances part
(d = 0) is considered as the reference model. Assuming that the system is in the nominal model
P0 at the beginning, any alarm caused by any factor (disturbances part, reference inputs part,
the natural response caused by switching or the auxiliary signal part) implies that the system
moves to one of the faulty models from the nominal model. From this aspect, the first case is
a typical extension of the discussed two models case. Therefore, this case is also in the field of
model detection.

Different from the first case, there is more than one nominal model in the second case. The
alarms caused by the switchings among the nominal models should be separated from the
alarms caused by the switching from nominal models to faulty models. In order to determine
whether the system is in one of the m nominal models or the N − m faulty models, all the
m nominal models should be distinguished. It is the reason why the active fault diagnosis for
multiple models is also called as model isolation.

Typically, if there are N −1 nominal models and one faulty model, it is necessary to distinguish
all the models. Thus, the following part introduces a method for the most ordinary case:
discriminate all the N models.
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5.4.1. Active fault diagnosis with a bank of reference models
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Figure 5.4.: Active fault diagnosis for multiple models with a bank of reference models Gj

ref

In the multiple models case, as shown in (5.4), there are i plant models (i:0, . . . , N − 1, N > 2)
to discriminate, which are noted as Pi (i:0, . . . , N − 1). For the simplicity of expression, the
multiple models case also illustrates the design with an SISO system. Note Gi as the transfer
function from input uc to output y when system is in Pi. In order to discriminate all the N
models, a bank of reference models is used to generate a bank of residuals, as shown in Fig. 5.4.
Similar to the two models case, all the plant models Pi without the part of disturbances are
considered as the bank of reference models Gj

ref
(j:0, . . . , N − 1):

Gj

ref
:






˙̂xj = Ajx̂j + Bj

u
(ûj + v)

ŷj = Cjx̂j + Dj

u
(ûj + v)

(5.45)

where the transfer function Gj

ref
will be the same as the transfer function Gi if i = j.

In this framework, N residuals rj (j:0, . . . , N − 1) are generated (assuming that the switching
can occur among all the models):
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• If j = i :

rj = L−1 (F (y − ŷj)) (5.46)
= L−1

�
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yd
d
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+ Ψi (x (0)) = ri

i

where

Gi

yd
= Ci (sI − Ai)−1 Bi

d
+ Di

d
(5.47)

and Ψi (x (0)) is the natural response of Gi with the initial state x (0) when the system
switches to Pi.

• If j �= i:

rj = L−1
(F (y − ŷj)) (5.48)
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where

Gi = Ci (sI − Ai)−1 Bi

u
+ Di

u
(5.49)

and Ψi (x (0)) is the natural response of Gi with the initial state x (0) when the system
switches to Pi.

Similar to the analysis in the part of two models case, without any information of disturbances,
the discrimination only with disturbances is unreliable. Reference input yref is generated with
the aim of control, which cannot be used to discriminate the models in the active way. The
transients of the part F

�
GcGi

1+GcGi
−

GcG
j
ref

1+GcG
j
ref

�
yref provide a possibility to discriminate models;

however, the discrimination is also unreliable. The natural response caused by switching also
could be used to distinguish models. Nonetheless, this discrimination only could be used during
the switching, and it depends on the states of system when switching arises.
A better alternative way to distinguish models under the effects of disturbances is by introducing
an auxiliary signal. Then, the objective is changed to design auxiliary signal generator Q and
post filter F . Since there is no information about the initial state x (0) of switching, auxiliary
signal is also designed for the steady state case.
As introduced in Remark 5.3, a design with v� in (5.48) is equivalent to the design of auxiliary
signal v if the reference inputs are known. The part of the reference input yref in (5.48) is also
omitted in the following part.
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An important issue of this framework is to obtain the alarms from N residuals when the
auxiliary signal is injected into the system, and make a decision that the system is in which
model according to these alarms. As the discrimination for two models, the first step is to set
thresholds J i

th
such that





�r�rms > J i

th
Alarm

�r�rms � J i

th
No Alarm

(5.50)

Similarly, without the consideration of natural response caused by the switching, because the
residual is only affected by the disturbances when i = j (5.46), the thresholds could be selected
as the estimation of maximum �ri

i
�rms:

���ri

i

���
rms

=
���L−1

�
FGi

yd
d

����
rms

(5.51)

�
���FGi

yd

���
∞

�d�rms

�
���FGi

yd

���
∞

·max (�d�rms)

As a consequence, thresholds J i

th
could be:

J i

th
=

���FGi

yd

���
∞

·max (�d�rms) (5.52)

Different from two models discrimination case, an alarm in (5.50) for multiple models case
does not mean a switching arises. Without auxiliary signal, there may be some alarms in some
residual rj caused by any factors of disturbances or reference input, even when there is no model
switching. For example, the system is in the nominal model P0. Without model switching and
auxiliary signal, the residuals rj (j �= 0) are:

rj = L−1



F



 GcG0
1 + GcG0

−
GcG

j

ref

1 + GcG
j

ref



 yref + FGi

yd
d





and the corresponding �rj�rms may be higher than the threshold in (5.52). Therefore, it is
necessary to find a discrimination logic about the alarms in (5.50) for different residual rj and
different thresholds J i

th
(i, j : 0, . . . , N -1) to achieve a successful discrimination for the multiple

models case. In the next section, a logic to make decision and the corresponding requirements
of auxiliary signal design are introduced.

5.4.2. Logic to discriminate multiple models with unique F and unique Q

For simplicity of the expression, we consider N = 3 to illustrate the logic of multiple models
discrimination with unique F and unique Q. As introduced in the previous part, G0

ref
= G0,

G1
ref

= G1 and G2
ref

= G2. We note that (Pi, rj) means the residual rj when system is in model
Pi (5.8).

As shown in (5.46), residual rj is only affected by the disturbances if i = j when the system
is in steady state. With the definition of threshold J i

th
in (5.52) and the alarm logic in (5.50),
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threshold J i

th
is the estimated upper bound of the effects of the disturbances on residual ri

i
:

���ri

i

���
rms

=
���L−1 (F (y − ŷ))

���
rms

� J i

th

Therefore, there will be no alarm with thresholds J0
th

, J1
th

and J2
th

for r0, r1 and r2 respectively.
Then, the following table could be obtained:

rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th

r1






J0
th

J1
th

J2
th






J0
th

◦ J1
th

J2
th






J0
th

J1
th

J2
th

r2






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






J0
th

J1
th

◦ J2
th

Table 5.1.: Logic to discriminate

where × means that there is an alarm with the corresponding selected threshold J i

th
, red ×

implies the required alarm with threshold J i

th
caused by the auxiliary signal, and ◦ represents

that there is no alarm with threshold J i

th
. The same definitions of the symbols × and ◦ are

used in the following part.

There are some relationships between the selected thresholds J0
th

, J1
th

and J2
th

. For convenience,
we assume that J0

th
� J1

th
� J2

th
. If J0

th
� J1

th
, a similar table like Tab. 5.1 can be obtained by

exchanging the places of P0 and P1, r0 and r1, J0
th

and J1
th

simultaneously. Tab. 5.1 shows that
there is no alarm for (P1, r1) with threshold J1

th
, then, we can obtain following equation with

the residual in (5.46):
���r1

1

���
rms

= �F (y − ŷ)�rms � J1
th
� J0

th
(5.53)

which means that there is also no alarm for (P1, r1) with threshold J0
th

. With the similar
derivations for (P2, r2) with J0

th
and J1

th
, Tab. 5.1 could be extended to:
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rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th

r1






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

J2
th






J0
th

J1
th

J2
th

r2






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

◦ J2
th

Table 5.2.: logic to discriminate

In order to guarantee a reliable model discrimination, a concept of Hamming distance is in-
troduced into the design, which is widely used in the field of communications. In information
theory, the Hamming distance means the minimum number substitutions required to change
one string into the other string. Hamming distance in this chapter means the number of the
different alarms with same residual ri (i : 0, 1, 2) and threshold J j

th
( j : 0, 1, 2) between Pk

and Pl (k �= l, k, l : 0, 1, 2). With the aim to discriminate models with enough Hamming
distances (� 2), the existed information in Tab. 5.2 should be fully utilized. For the model P0
with residuals r0, r1 and r2, because

���r0
0

���
rms

=
���L−1 (F (y − ŷ))

���
rms

� J0
th

(5.54)

and J0
th

� J1
th

� J2
th

, the alarms for (P0, r0) with thresholds J1
th

and J2
th

are not guaranteed.
It only can be sure that there is no alarm for (P0, r0) with threshold J0

th
. In order to separate

model P0 from P1 and P2 with the auxiliary signal, this unique information should be utilized
to design the auxiliary signal. Therefore, there should be an alarm for (P1, r0) and (P2, r0) with
threshold J0

th
if auxiliary signal is injected into the system.

rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






× J0
th

J1
th

J2
th






× J0
th

J1
th

J2
th

r1






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

J2
th






J0
th

J1
th

J2
th

r2






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

◦ J2
th

Table 5.3.: logic to discriminate

Due to the fact that there is an alarm for (P1, r0) with threshold J0
th

and J0
th
� J1

th
� J2

th
, the
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following relationship could be obtained
���r1

0

���
rms

=
���L−1 (F (y − ŷ))

���
rms

> J0
th
� J1

th
� J2

th
(5.55)

which means that there will also be alarms for the case (P1, r0) with thresholds J1
th

and J2
th

.
Same conclusions could be gotten for (P2, r0) with thresholds J1

th
and J2

th
.

rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






× J0
th

× J1
th

× J2
th






× J0
th

× J1
th

× J2
th

r1






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

J2
th






J0
th

J1
th

J2
th

r2






J0
th

J1
th

J2
th






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

◦ J2
th

Table 5.4.: logic to discriminate

Since the designed auxiliary signal should guarantee that there is an alarm for (P1, r0) with
threshold J0

th
, we have

inf
d

���r1
0

���
rms

> J0
th

(5.56)

Note that the following equation could be obtained with the theory in the part of discrimination
in the worst case (Gi represents the transfer function in (5.49)):

inf
d

���r1
0

���
rms

= inf
d

�����L
−1

�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v + FG1
yd

d

������
rms

(5.57)

�
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG1

yd
d

����
rms

The condition (5.56) could be met if
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG1

yd
d

����
rms

> J0
th

(5.58)

Therefore
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

> sup
d

���L−1
�
FG1

yd
d

����
rms

+ J0
th

(5.59)

= J1
th

+ J0
th

= J1
th

+ sup
d

���L−1
�
FG0

yd
d

����
rms
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Then (5.58) will be
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG0

yd
d

����
rms

> J1
th

(5.60)

Because of G0
ref

= G0, G1
ref

= G1 and non-negativity of the RMS norm in (3.22),
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

=
�����L

−1
�

F

�
G0

ref

1 + GcG0
ref

−
G1

1 + GcG1

�

v

������
rms

(5.61)

=
�����L

−1
�

F

�
G0

1 + GcG0
−

G1
ref

1 + GcG1
ref

�

v

������
rms

With the condition in (5.60), we have
�����L

−1
�

F

�
G0

1 + GcG0
−

G1
ref

1 + GcG1
ref

�

v

������
rms

− sup
d

���L−1
�
FG0

yd
d

����
rms

> J1
th

(5.62)

Because

inf
d

���r1
0

���
rms

= inf
d

�����L
−1

�

F

�
G0

1 + GcG0
−

G1
ref

1 + GcG1
ref

�

v + FG0
yd

d

������
rms

(5.63)

�
�����L

−1
�

F

�
G0

1 + GcG0
−

G1
ref

1 + GcG1
ref

�

v

������
rms

− sup
d

���L−1
�
FG0

yd
d

����
rms

Then

inf
d

���r0
1

���
rms

> J1
th

(5.64)

which means that there is an alarm for (P0, r1) with threshold J1
th

. With the same rule, an
alarm for (P2, r0) with threshold J0

th
implies an alarm for (P0, r2) with threshold J2

th
. Because

there is an alarm for (P0, r1) with threshold J1
th

and J1
th
� J2

th
, there will be an alarm for (P0, r1)

with threshold J2
th

. Then, we have Tab. 5.5:

Until now, from Tab. 5.5 with 3 residuals (r0, r1 and r2), we can find that the Hamming
distance to separate model P0 from P1 and P2 is 2. In order to separate models P1 from P2
with 2 Hamming distances, there should be at least 2 alarms for (P1, r2) with thresholds J0

th
,

J1
th

, J2
th

and (P2, r1) with thresholds J0
th

and J1
th

. Due to the fact that J0
th
� J1

th
� J2

th
, alarms

for (P1, r2) with thresholds J0
th

and J1
th

are more conservative than with threshold J2
th

, and
an alarm for (P2, r1) with threshold J0

th
is more conservative than with threshold J1

th
. It is

interesting to find that an alarm for (P1, r2) with threshold J2
th

is equivalent to an alarm for
(P2, r1) with threshold J1

th
. Therefore, with least conservativeness, the auxiliary signal design

should guarantee that there will be an alarm for the case (P2, r1) with thresholds J1
th

, which also
results in an alarm for the case (P1, r2) with threshold J2

th
. Consequently, we get the following

table:
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rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






× J0
th

× J1
th

× J2
th






× J0
th

× J1
th

× J2
th

r1






J0
th

× J1
th

× J2
th






◦ J0
th

◦ J1
th

J2
th






J0
th

J1
th

J2
th

r2






J0
th

J1
th

× J2
th






J0
th

J1
th

J2
th






◦ J0
th

◦ J1
th

◦ J2
th

Table 5.5.: logic to discriminate

rj\Pi P0 P1 P2

r0






◦ J0
th

J1
th

J2
th






× J0
th

× J1
th

× J2
th






× J0
th

× J1
th

× J2
th

r1






J0
th

× J1
th

× J2
th






◦ J0
th

◦ J1
th

J2
th






J0
th

× J1
th

× J2
th

r2






J0
th

J1
th

× J2
th






J0
th

J1
th

× J2
th






◦ J0
th

◦ J1
th

◦ J2
th

Table 5.6.: logic to discriminate

After the unknown alarm cases are cleared from Tab. 5.6, the decision logic of multiple models
discrimination is shown in Tab. 5.7.

rj\Pi P0 P1 P2
r0 ◦ J0

th
× J0

th
× J0

th

r1 × J1
th

◦ J1
th

× J1
th

r2 × J2
th

× J2
th

◦ J2
th

Table 5.7.: Decision logic for 3 models discrimination

Remark 5.5. Without auxiliary signal, models can be discriminated only if alarms caused by
any factors of disturbances, reference inputs and natural response caused by switching meet the
decision logic in Tab. 5.7 for multiple models case. Comparing with the models discrimination
condition for two models case, the discriminination conditon for multiple models case without
auxiliary signal is much stricter. In other words, comparing with the two models case, the
auxiliary signal is more important for the models discrimination in the multiple models case.
Remark 5.6. The decision logic in Tab. 5.7 is also appropriate for the case when it is not
necessary to discriminate all the models. For example, it might be desirable to separate model
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0 from models 1 and 2, but it does not need to distinguish models 1 and 2. Then, the auxiliary
signal does not need to achieve all the alarms in Tab. 5.7, but just guarantees the alarms for
(P1, r0) and (P2, r0) with threshold J0

th
. The corresponding designed auxiliary signal will not

be as conservative as the design with requirements of all the alarms in Tab. 5.7.

Remark 5.7. Since the natural response caused by switching affects the residual rj in (5.46) and
(5.48), the switching will disturb the decision logic in Tab. 5.7 if the auxiliary signal is injected
into the system when switching occurs. In this case, a series of auxiliary signals with a fixed
period could be injected into the system, then models can be discriminated with one of the
auxiliary signals when the natural response caused by switching converges to steady state.

From Tab. 5.7 with 3 residuals (r0, r1 and r2) and three thresholds, the Hamming distance for
either pair among P0, P1 and P2 is 2 . Then, the key of model discrimination with 2 Hamming
distance is to guarantee that there will be alarms for (P1, r0) with threshold J0

th
, (P2, r0) with

threshold J0
th

and (P2, r1) with threshold J1
th

by designing the auxiliary signal generator Q and
the post filter F . Then, the following inequalities should be satisfied for the three models
discrimination:

inf
d

���r1
0

���
rms

> J0
th

(5.65)

inf
d

���r2
0

���
rms

> J0
th

(5.66)

inf
d

���r2
1

���
rms

> J1
th

(5.67)

Note that

inf
d

���r1
0

���
rms

= inf
d

�����L
−1

�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v + FG1
yd

d

������
rms

(5.68)

�
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG1

yd
d

����
rms

inf
d

���r2
0

���
rms

= inf
d

�����L
−1

�

F

�
G2

1 + GcG2
−

G0
ref

1 + GcG0
ref

�

v + FG2
yd

d

������
rms

(5.69)

�
�����L

−1
�

F

�
G2

1 + GcG2
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG2

yd
d

����
rms

inf
d

���r2
1

���
rms

= inf
d

�����L
−1

�

F

�
G2

1 + GcG2
−

G1
ref

1 + GcG1
ref

�

v + FG2
yd

d

������
rms

(5.70)

�
�����L

−1
�

F

�
G2

1 + GcG2
−

G1
ref

1 + GcG1
ref

�

v

������
rms

− sup
d

���L−1
�
FG2

yd
d

����
rms

The conditions in (5.65), (5.66) and (5.67) are satisfied when
�����L

−1
�

F

�
G1

1 + GcG1
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG1

yd
d

����
rms

> J0
th

(5.71)
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�����L
−1

�

F

�
G2

1 + GcG2
−

G0
ref

1 + GcG0
ref

�

v

������
rms

− sup
d

���L−1
�
FG2

yd
d

����
rms

> J0
th

(5.72)

�����L
−1

�

F

�
G2

1 + GcG2
−

G1
ref

1 + GcG1
ref

�

v

������
rms

− sup
d

���L−1
�
FG2

yd
d

����
rms

> J1
th

(5.73)

Due to Gi = Gi

ref
where i = 0, 1, 2, then we can simplify above three conditions:

�����L
−1

�

F

�
G1

1 + GcG1
−

G
0
ref

1 + GcG
0
ref

�

v

������
rms

=

����L
−1

�
F

�
G1

1 + GcG1
−

G0
1 + GcG0

�
v

�����
rms

(5.74)

� sup
d

���L−1
�
FG

1
ydd

����
rms

+ J
0
th

= sup
d

���L−1
�
FG

1
ydd

����
rms

+ sup
d

���L−1
�
FG

0
ydd

����
rms

�����L
−1

�

F

�
G2

1 + GcG2
−

G
0
ref

1 + GcG
0
ref

�

v

������
rms

=

����L
−1

�
F

�
G2

1 + GcG2
−

G0
1 + GcG0

�
v

�����
rms

(5.75)

� sup
d

���L−1
�
FG

2
ydd

����
rms

+ J
0
th

= sup
d

���L−1
�
FG

2
ydd

����
rms

+ sup
d

���L−1
�
FG

0
ydd

����
rms

�����L
−1

�

F

�
G2

1 + GcG2
−

G
1
ref

1 + GcG
1
ref

�

v

������
rms

=

����L
−1

�
F

�
G2

1 + GcG2
−

G1
1 + GcG1

�
v

�����
rms

(5.76)

� sup
d

���L−1
�
FG

2
ydd

����
rms

+ J
1
th

= sup
d

���L−1
�
FG

2
ydd

����
rms

+ sup
d

���L−1
�
FG

1
ydd

����
rms

Then, the following model discrimination conditions should be met to design the auxiliary
signal:

ϕ10
detec =

sup
d

���L−1
�
FG1

yd
d

����
rms

+ sup
d

���L−1
�
FG0

yd
d

����
rms���L−1

�
F

�
G1

1+GcG1
−

G0
1+GcG0

�
v

����
rms

(5.77)

�
����FG1

yd

���
∞

+
���FG0

yd

���
∞

�
max (�d�rms)���L−1

�
F

�
G1

1+GcG1
−

G0
1+GcG0

�
v

����
rms

< 1
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ϕ20
detec =

sup
d

���L−1
�
FG2

yd
d

����
rms

+ sup
d

���L−1
�
FG0

yd
d

����
rms���L−1

�
F

�
G2

1+GcG2
−

G0
1+GcG0

�
v

����
rms

(5.78)

�
����FG2

yd

���
∞

+
���FG0

yd

���
∞

�
max (�d�rms)���L−1

�
F

�
G2

1+GcG2
−

G0
1+GcG0

�
v

����
rms

< 1

ϕ21
detec =

sup
d

���L−1
�
FG2

yd
d

����
rms

+ sup
d

���L−1
�
FG1

yd
d

����
rms���L−1

�
F

�
G2

1+GcG2
−

G1
1+GcG1

�
v

����
rms

(5.79)

�
����FG2

yd
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�
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�
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1+GcG2
−
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1+GcG1

�
v

����
rms

< 1

where the quantities of ϕ10
detec, ϕ20

detec and ϕ21
detec show the ability of the auxiliary signal to

discriminate the models P0, P1 and P2. In the case of 3 models, there are 3 model discrimination
conditions to meet.

When there are N models to distinguish, with the Remark 5.4, we have

ϕij

detec =

����FGi

yd

���
∞

+
���FGj

yd

���
∞

�

���L−1
�
F

�
Gj

1+GcGj
−

Gi
1+GcGi

�
v

����
rms

< 1 (5.80)

where j ∈ {0, 1, . . . , N − 1} and i : {j + 1, . . . , j + N − 1} , N � 2. Thus, (N2 − N) /2 model
discrimination conditions should be met to design the auxiliary signal for N multiple models
case.

In the optimization design for the multiple models case with unique F and unique Q, the model
discrimination condition (5.44) in Section. 5.3.6 should be replaced by

ϕij

detec =

����FGi

yd

���
∞

+
���FGj

yd

���
∞

�

max
t

����L−1
�
F

�
Gj

1+GcGj
−

Gi
1+GcGi

�
QH∆

����
rms

� < 1 (5.81)

where j ∈ {0, 1, . . . , N − 1} and i : {j + 1, . . . , j + N − 1} , N � 2.

In the two models case, (5.38) is added into the optimization to restrict the convergence rate of
output responses caused by auxiliary signals. By contrast, the constraint (5.38) is not enough
for the multiple models case anymore. The constraint (5.38) only considers the effects of the
transients of output responses caused by auxiliary signals, but does not deal with the effects of
the transients of residual responses from auxiliary signals to residual r. If the period T1 of the
periodic impulse signals σ (t) is too small, the residual responses in residual ri

j
(i �= j) caused

by auxiliary signals will accumulate. The evaluated residual
���ri

j

���
rms

will increase when more
auxiliary signals are applied, and an alarm will be caused in residual ri

j
when the accumulated

evaluated residual exceeds the threshold even there is no injection of auxiliary signal during
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the period. This phenomenon does not cause any problem for the two models case, because
accumulated residual only appears in residual r1 when system is in faulty model. However,
this kind of alarm will disturb the decision logic in Tab. 5.7. For example, assume that there
are three models P0 , P1 and P3. The system stays at model P0 for some time, then switches
to P1. The periodic auxiliary signals (5.35) are injected into this system when the system is
in P0. According to the definition of residuals in (5.46) and (5.48) and the effects of designed
auxiliary signal, there will be alarms in r1 and r2 but not in r0. Since the period T1 is too
small, the residual responses in r1 and r2 caused by the periodic auxiliary signals accumulate
to be very big. When the system switches to P1, there will be alarms in r0 and r2 when the new
auxiliary signal attacks the system. However, the residual responses in r1 are still big because
of the accumulation with the periodic auxiliary signals when the system is in p0, which may
cause an alarm in r1. As a consequence, there will be three alarms in the three residuals r0,
r1 and r2 respectively, which is not any case in Tab. 5.7. The correct result appears when the
residual r1 decays until the alarm in r1 disappears. This kind of phenomenon will delay the
model discrimination, and may cause wrong conclusion in some cases. Therefore, a constraint
of convergence rate on the residual responses caused by auxiliary signal should be added into
the design:

max(real(eig(F Gi

1 + GcGi

Q))) � ς (5.82)

where ς is a negative value, which is selected to meet the requirements of the rapidity of auxiliary
signal. The period T1 in (5.35) should be bigger than the settling time of residual responses
caused by the designed auxiliary signal with (5.82). In the optimization for the multiple models
case, the constraints (5.38) should be replaced by (5.82).

5.5. Results

This section applies the proposed active fault diagnosis methods on a DC motor control system
DR 300. Both two models case and multiple models case are given to illustrate the effectiveness
of the design.

5.5.1. Speed control of a DC motor

DC (Direct Current) motor converts electrical energy into mechanical energy. The model of
DC motor control system DR300 from [35] is considered for the application.

5.5.1.1. Model of DC motor

As shown in Fig. 5.5, the DC motor contains a mechanical part and an electrical part. Define
that the loop current IA and the armature frequency (rotation frequency) Ω as state variables,
the terminal voltage UA as input and the (unknown) load ML as disturbances. The state space
description of model could be

�
İA

Ω̇

�

=
�

−
RA
LA

−
CΦ
LA

KM
J

0

� �
IA

Ω

�

+
� 1

LA

0

�

UA +
�

0
−

1
J

�

ML (5.83)
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LM
0DFKLQH

AR AL
AI

AU E

Figure 5.5.: Diagram of a DC motor

where the parameters are given in Tab. 5.8.

Parameters Symbol Value Unit
Total Inertia J 80.45 · 10−6 kg · m2

Voltage constant CΦ 6.27 · 10−3 V/Rpm
Motor constant KM 0.06 Nm/A

Armature Inductance LA 0.003 H
Resistance RA 3.13 Ohm

Tacho output voltage KT 5 · 10−3 V/Rpm
Tacho filter time constant TT 5 ms

Table 5.8.: Parameters of DC motor DR300

With the equation in (5.83), the structure diagram of motor with load is given in Fig. 5.6.

1

1
A

A

R
T s

AI

C

MK
M

LM

1
J

E

AU

Figure 5.6.: Block diagram of the DC motor with load

5.5.1.2. Models of DC motor cascade control system

For the purpose of speed control, a speed control loop and a current control loop are contained
in the cascade control scheme. In the framework of cascade control, the DC motor together
with the current control loop (IA) is considered as the plant, which will be controlled by a PI
speed controller (CΩ controller). The framework of cascade current control is shown in Fig. 5.7.
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Figure 5.7.: Cascade current control

The transfer functions of the plant (DC motor with the current control loop) are:

Ω
Iref

= KMCIA

JLAs2 + (CIAKW J + JRA) s + KMCφ
Ω

ML

= RA + RATAs + CIAKW

JRATAs2 + (RAJ + CIAKW J) s + CΦKM

Then, closed loop model can be achieved by

y = Gyuu + Gydd

Gyu = Ωmeas

Ωref

= KMCIAKT CΩ
KMCIAKT CΩ + (1 + TT s) (JLAs2 + (CIAKW J + JRA) s + KMCΦ)

Gyd = Ωmeas

ML

= 1

KM

−CIA
CΩ−CΦ 1+KT s

KT
RA+RATAs+CIA

KW
−

1+KT s

KT
Js

with y = Ωmeas as output, the control input singal u = Ωref and d = ML as disturbance.

The designed auxiliary signal could be injected into the system in the form of extra inputs Ωref ,
which can also be injected into the system at the output of CΩ controller Iref . Both of the
designs are equivalent. In order to match the design framework in Fig. 5.2, Ωref is considered
as the reference input yref , and auxiliary signal is injected into the system at Iref . Then, the
closed loop system could be modified as

y = Gyuu + Gydd

Gyu = Ωmeas

Ωref

= KMCIAKT

KMCIAKT CΩ + (1 + TT s) (JLAs2 + (CIAKwJ + JRA) s + KMCΦ)

Gyd = Ωmeas

ML

= 1

KM

−CIA
CΩ−CΦ 1+KT s

KT
RA+RATAs+CIA

KW
−

1+KT s

KT
Js

with y = Ωmeas as output, the input u = Iref (the output of the speed controller CΩ) and
d = ML as disturbance.

According to the transfer functions given in [35], the approximated transfer functions are given
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(IA controller is a P controller) with

KW = 0.2611, CIA = 214.7

The PI speed controller (Ω controller, signed as CΩ) is set to be

CΩ = 1.61 + 1.225s

s

Three different models are obtained by changing the value of total inertia J :
• Model 0: J0 = 80.45 · 10−6kg · m2.
• Model 1: J1 = 10−5kg · m2.
• Model 2: J2 = 10−6kg · m2.

5.5.2. Two models case (Model detection)

In two models case, Model 0 with J0 is considered the nominal model, while Model 2 with J2
is considered the faulty model.
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Figure 5.8.: Bode diagram of transfer function G0
yd

and G2
yd

.

Fig. 5.8 shows that, if the disturbances contain some high frequency parts (ω � 10 rad/s), the
effects of disturbances on the output y for nominal model and faulty model are different. Then,
it is possible to discriminate these two models using the high frequency part of the disturbances.
However, Fig. 5.8 also shows that for the low frequency disturbances (ω < 10 rad/s), the effects
of these disturbances on the output y for the nominal case and the faulty case are the same. In
other words, the low frequency disturbances cannot be used to discriminate the two models.
In order to validate the analysis, a kind of normalized low frequency disturbances (ω < 10rad/s)
is generated in Fig. 5.9.
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Figure 5.9.: Normalized low frequency disturbances (ω < 10 rad/s)

Without the auxiliary signal, Fig. 5.10 shows the effects of low frequency disturbances (ω <
10 rad/s) with yref = 1. The system will switch from the nominal model to the faulty model
at 20s.
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Figure 5.10.: Fail to detect the faulty model only using disturbances (system switches at 20s)

In this case, as shown in Fig. 5.10 (right), only with low frequency disturbances, it is impossible
to discriminate these two models. Therefore, it is reasonable to design an auxiliary signal to
distinguish models:

min
Q

�

max
i=0,1

�

Peak

�����L
−1

�
1

1 + GcGi

QH∆

�����
peak

��

+ max
i=0,1

�
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�����L
−1

�
Gi

1 + GcGi

Q

�����
peak

���
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under the constraints of
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����L
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�1
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1 + GcG1

Q
�����

peak
� ξ1 = 3

max(real(eig(F ))) < 0

where the constraint �F�∞ � 1 is used to normalize the parameter in F .

For this Multiple Input Single Output (MISO) example, the state space settings for Q in (5.5)
and F in (5.6) could be transformed to be the transfer function expressions. In order to decrease
the abrupt changes when the proposed auxiliary signal attacks the system, the filters Q and F
are set as:

Q (s) = a1s + a2
s2 + a3s + a4

F (s) = b1s2 + b2s + b3
s2 + b4s + b5

where a1, a2, a3, a4, b1, b2, b3, b4 and b5 are the parameters to design.

The initial points are Q (s) = s+1
s2+s+1 and F (s) = s

2+s+1
s2+s+1 . Through the optimization with

genetic algorithm, we get

Q∗ (s) = −174.2s − 201.7
s2 + 1.4s + 410.3

F ∗ (s) = 0.4885s2 + 17.5531s + 236.7766
s2 + 17.56s + 458

The characteristics of the designed filers Q∗ and F ∗ are shown in Fig. 5.11 (left). Since
max (�d�rms) = 0.0253 in the simulation, the auxiliary signal is generated with amplitue of
reference signal be 0.0253. Then, the reference signal and the auxiliary signal (the signal gener-
ated by the auxiliary signal generator Q∗) used in the simulation are shown in Fig. 5.11 (right)
with the parameter � = 0.2s for the reference signal.
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Figure 5.11.: Bode diagram of filters F ∗ and Q∗, and the designed auxiliary signal

In the setting of simulation, the system will switch from the nominal model to the faulty model
at 50s, and the designed auxiliary signal will attack the system at 3s, 13s, 23s, 33s, 43s, 53s,
63s, 73s, 83s, 93s respectively. The disturbances in the simulation are kinds of low frequency
noises (ω < 10 rad/s), which have the similar effects on the nominal and faulty models, as
shown in Fig. 5.10. Fig. 5.12 (right) shows that comparing with the effects of disturbances on
the control signal uc, the effects of auxiliary signal on the control signal uc are acceptable.
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Figure 5.12.: Auxiliary signal, and the control signal uc

As discussed in the previous part for the effects of the auxiliary signal on the outputs, the
peak value of the responses from the auxiliary signal is used to evaluate the worst effects
of the auxiliary signal on the outputs y. Fig. 5.13 shows that comparing with the effects of
disturbances on the system outputs y, the effects of designed auxiliary signal on the system
outputs y are not obvious.
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Figure 5.13.: The effects of auxiliary signal on the reference output ŷ and system output y

With finite time window T = 0.2s, the evaluated residual �r�rms is shown in Fig. 5.14. When
the system is in nominal model, there is no alarm. By contrast, alarms are geterated at 53s,
63s, 73s, 83s and 93s when auxilairy signals are injected into the system, which means that the
faulty model is detected when the auxiliary signal attacks the system.
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Figure 5.14.: Residual and threshold

5.5.3. Multiple models case (Model isolation)

For the multiple models case, all of the three models (Model 0, Model 1 and Model 2) are
considered in the following part.
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yd
(5.47) and Gi (5.49) with different Ji (i : 1, 2, 3)

Fig. 5.15 (left) shows the bode diagrams of different Gi

yd
with different Ji. As the similar analysis

in the example of two models case, these three models show the same dynamics with low
frequency disturbances (ω < 5rad/s), while the effects of disturbances (5 < ω < 100rad/s) on
the models P1 and P2 are the same. If the disturbances work on the low frequency (ω < 5rad/s),
it is impossible to discriminate these three models by the disturbances. The disturbances
(5 < ω < 100rad/s) could be used to separate the model P0 from the models P1 and P2, but
could not be used to discriminate the models P1 and P2. By contrast, the active fault diagnosis
with some suitable auxiliary signals could distinguish all three models directly.
The prior information of disturbances is not used for the design in two models case. If some
information of disturbances is known, they should be included into the model, as introduced
in Remark 5.2. In this example, it is difficult to discriminate models only by the low frequency
disturbances (ω < 5rad/s). In the design, the frequency range of the disturbances will affect
the settings of the threshold (5.16) and the model discrimination condition (5.81). Therefore,
the prior information of the disturbances should also be included into the optimization for the
model discrimination condition in (5.81).
Therefore, the objective function of disturbances rejection

min
F

���FGi

yd

���
∞

+
���FGj

yd

���
∞

(5.84)

could be transformed to

min
F,ω∈[ω1,ω2]

���FGi

yd

���
∞

+
���FGj

yd

���
∞

(5.85)

where the frequency range could be set as ω ∈ (0, 5] in this example.
The settings of the filters Q and F are the same as in the example of two models case:

Q (s) = a1s + a2
s2 + a3s + a4

F (s) = b1s2 + b2s + b3
s2 + b4s + b5
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where a1, a2, a3, a4, b1, b2, b3, b4 and b5 are the parameters to design.

The initial points settings are Q (s) = s+1
s2+s+1 and F (s) = s

2+s+1
s2+s+1 . After the optimization with

genetic algorithms for the introduced specifications for the multiple models case, we get

Qprior (s) = 424.5s + 449
s2 + 3631s + 7830

Fprior (s) = 0.2778s2 + 0.0555s + 4.0
s2 + 16.63s + 3613

Then, the auxiliary signal generator and post filter considered in practice are

Qprior (s) = 424.5s + 449
s2 + 3631s + 7830max (�d�rms)

Fprior (s) = 0.2778s2 + 0.0555s + 4.0
s2 + 16.63s + 3613

where max (�d�rms) could be evaluated off-line. In this example, max (�d�rms) = 0.9838.
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Figure 5.16.: Bode diagram of Fprior and Qprior

The bode diagram in Fig. 5.16 shows that the filter F is a high-pass filter. Since the threshold
J i

th
depends on

���FGi

yd

���
∞

with the frequency range ω ∈ (0, 5rad/s], the designed high-pass filter
F will give smaller thresholds J i

th
. As shown in Fig. 5.15 (right), the bode diagrams of different

Gi with different Ji are similar in low frequency but different in high frequency. The high-pass
filter F will also increase the high frequency part of auxiliary signal on the residual. It is reason
why the filter F is a high-pass filter.

The alarms from Fig. 5.17 is collected as a form in Tab. 5.9. The conditions of the alarms
in Tab. 5.9 are the same as in Tab. 5.7, which means that filters Fprior and Qprior realize the
objective of the design. System models Pi could be discriminated by the proposed auxiliary
signal and post filter.
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Figure 5.17.: Evaluated residual with Fprior and Qprior for different reference models and plant
models

rj\Pi P0 P1 P2
r0 ◦ J0

th
× J0

th
× J0

th

r1 × J1
th

◦ J1
th

× J1
th

r2 × J2
th

× J2
th

◦ J2
th

Table 5.9.: Reformulated logic table with improved threshold

Fig. 5.18 shows the effects of the post filter without the auxiliary signal for these three models
(P0, P1 and P2). In this case, it is rather difficult to discriminate the system models Pi only by
disturbances.

The effects of the designed auxiliary signal on the system with different combinations of ref-
erence models Gj

ref
and models Pi are shown in Fig. 5.19 and Fig. 5.20. Comparing with the

effects of disturbances, the effects of the auxiliary signal on the system are small (small �uv

c
�

peak

and small �yv�
peak

), which implies that the design can discriminate the models Pi only with
small perturbations.
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Figure 5.18.: Evaluated residual with Fprior and Qprior for different referent models and plant
models without auxiliary signal
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Figure 5.19.: Effects of the auxiliary signal on the control signal uc and ûc for Pi and Gj
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Chapter 5 Auxiliary signal design for active fault diagnosis

5.6. Conclusions

In this chapter, a new framework of auxiliary signal design for active fault diagnosis has been
presented. An auxiliary signal generator Q and a post filter F are designed to discriminate
models with reference models. Different from the previous work in the literature, the following
specifications are used to measure the perturbations of the auxiliary signal on the system:

• The peak amplitude of the response from the auxiliary signal to the control signal of the
system;

• The peak amplitude of the response from the auxiliary signal to the outputs of the system
y.

A model discrimination condition in the worst case is also given to evaluate the effectiveness of
the designed auxiliary signal. According to the requirements of model discrimination for two
models case, a multiobjective optimization problem is formulated, which could be solved by
genetic algorithm. Furthermore, in order to achieve model discrimination for multiple models
case, a bank of reference models are introduced to generate a bank of residuals. An decision
logic is also given to discriminate the multiple models. The effectiveness of the designs for
two models case and multiple models case are proven by simulations with a DC motor control
system DR300.
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6. Conclusion and perspective

This chapter summarizes the results obtained in the previous chapters, and presents some
remarks based on these results. Some future directions for further developments are highlighted
next.

6.1. Conclusions

Prior work has documented the effectiveness of different performance indices with different
approaches in improving the ability of fault detection, either passive or active fault detection
approach. To meet different requirements of a “good” fault detection, different performance
indices in time and frequency domain were added into the design, which could be solved by
nonsmooth optimization methods. The main work in this dissertation could be concluded with
following three aspects:

H−/H∞ filter design

Owing to the development of nonsmooth optimization method, the criteria in the worst case
H−/H∞ are solved by the proposed method. To improve the transients of residual, a constraint
of eigenvalue is added into the optimization. The attractive advantages of this method are
that the nonsmooth optimization method works faster and could provide a less conservative
result than the classical methods. Due to the advantages of nonsmooth optimization method,
the nonsmooth optimization method provides an alternative method to design a H−/H∞ fault
detection filter with some other complex specifications. For a system with multiple models, two
different frameworks are proposed to design the H−/H∞ fault detection filter:

• A unique observer gain and a unique residual weighting matrix are designed for the system
with multiple models. A complex multiobjective functions are formulated to contain the
trade-off among different models.

• If the exact information of model is unknown, a new framework of deconvolution filter is
introduced. The generation of residual does not depend on the model of system, but is
affected by the inputs of system. A new complex multiobjective functions are proposed
to optimize. Furthermore, a unique threshold is introduced to work with the robust fault
detection filter.

Both formulated problems are solved by nonsmooth optimization approach.

H−/H∞ filter design with mixed time and frequency specifications

In order to achieve fast fault detection for some specific faults, a specification in time domain
is introduced, which is difficult to be represented by LMI. Comparing with the classical per-
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Chapter 6 Conclusion and perspective

formance index, the specification in time domain adjusts the response in time domain directly
with a lower bound envelope and an upper bound envelope, which shows better characteristics
than the indirect method. Based on different functions of these two envelopes, two different
designs in mixed time and frequency domain are given:

• In order to achieve faster fault detection for step fault and better ability of fault detection
in the worst case, an iterative algorithm is introduced to minimize fault detection delay
for step fault under a constraint of good ability of fault detection in the worst case. The
minimization of fault detection delay is achieved with the lower bound envelope and the
ability of fault detection in the worst is measured by the mixed specification H−/H∞.

• Furthermore, with the aim of detecting step signal fault faster when fault appears with
lower false alarm rate when fault disappears, an upper bound envelope is added into
the design to restrict the overshoot of residual responses. The mixed criteria H−/H∞ in
frequency domain is also considered to improve the ability of fault detection in the worst
case. A compromise between these two characteristics is given in the design.

Active fault diagnosis (Model detection and model isolation)

The third objective is to design an auxiliary signal to detect faults, which are difficult to detect
in the passive way. The faults are not the additive formulation in system, but change the
parameters of the system. In this case, an auxiliary signal is designed to discriminate all the
models. One shortage of the active fault diagnosis is that the auxiliary signal will affect the
characteristics of the system, therefore, the influence of auxiliary signal on the system should
be as small as possible. With the benefits of the introduced theory of fault detection in the
previous part, a new framework of active fault diagnosis is given in Chapter 5. An application
to the DC motor control system DR300 shows the effectiveness of the proposed design method.
From the discussion presented in the previous chapter, the following conclusions can be drawn:

• The active fault diagnosis (model detection for 2 models case and model isolation for
multiple models case) can be achieved with the proposed new framework of auxiliary
signal design, which has a simple design procedure and requires little on-line computation,

• A peak amplitude specification of response is used to replace the H2 norm of the response
to evaluate the worst effects of auxiliary signal on the system,

• In the closed loop case, the effects of auxiliary signal on the control signal is considered,
• With a bank of reference models and a decision making logic, multiple models can be

discriminated.

6.2. Perspectives

The results obtained in this dissertation are summarized in the previous section. The proposed
techniques and applications with different specifications to improve the performance of fault
detection were briefly described. Besides on the results above, several possible future research
directions could be:

1. Chapter 3 proposed H−/H∞ filter design by nonsmooth optimization. For the case when
Grf is invertible, (3.10) is used to calculate the value of H−. Although Morre-Penrose
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6.2 Perspectives

pseudo inverse could be used to extend the application of the proposed method, a direct
analysis should be given on the criterion H−: calculate the Clarke subdifferental of H−.
Then, the proposed nonsmooth optimization could be used to solve all the problems about
H−/H∞ filter design for LTI system.

2. Notice that in Chapter 4, a specification in time domain was proposed to improve the
transients of residual response, where the lower bound envelope was used to specify the
transients of response and the threshold is defined with the specification (3.26) in fre-
quency domain. In the second part of Chapter 4, the upper bound envelope was used to
decrease the overshoot of response. Another possible application of the upper bound en-
velope may specify the maximum effects of disturbances on the residual. In this case, the
threshold could be defined with the maximum effects of disturbances on residual directly.
Then, all the optimization could be realized in the time domain.

3. Chapter 5 designed a “least perturbations” auxiliary signal to discriminate multiple mod-
els for SISO LTI systems. One direct extension could be formulating the framework of
active fault diagnosis into MIMO case. Since a bank of reference models are used in
multiple models case, an idea is to design a unique reference model Gref such that the
implements of model discrimination will be easier and more convenient.

r t

y t

ŷ t

Nominal
Models

Faulty
Models

d t

Controller

Controller

refy t
v t

Series of
reference
signal

u t cu t

Q

FGref

Reference
Model

Figure 6.1.: Active diagnosis for multi models with designing referenced model Gref

One typical application of designing reference model is that there are n faulty models P i

N

(0 � i � n − 1) and m nominal models P j

F
(0 � j � m − 1), and the user might only

care that the system is in nominal models or faulty models but not the exact model P i

N

or P j

F
.
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P 0
N Pn−1

N P 0
F Pm−1

F

Nominal models Faulty models

Gref , Q, F

Jth

Figure 6.2.: Typical case

In this case, it is necessary to discriminate n (assume n < m) faulty models P i

N
to obtain

the conclusions with a bank of reference models. By contrast, with a designable reference
model, a decision, whether the system is in nominal model or faulty model, could be made
with one residual.

4. In the above work, the effects of the finite time window T for RMS evaluation function
in (3.22) on the design are not investigated systematically. The selection of finite time
window T should be also contained into the design, which may provide additional freedom
to improve the obtained results.
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A. Appendix: Signal norms and system

norms

A.1. Signal norms

A.1.1. Peak (L∞ norm)

Generally speaking, one simple and direct interpretation of “the signal is small” is that the
signal is bounded by a small value all the time, and the corresponding value is the maximum
or peak absolute value (which is also called as the least upper bound of absolute value). The
definition of peak or L∞ norm of the signal u (t) is

• Scalar case

�u�∞ = sup
t�0

|u (t)|

• Vector case

�u�∞ = max
1�i�n

�ui�∞ = sup
t�0

max
1�i�n

|ui (t)|

The peak of a signal is dependent on the biggest values the signal takes on. Therefore, this
norm is always used to describe an unknown signal, but some bound on the peak. This kind
of description is also called an unknown but bounded model of a signal.

In [19], a variation of peak is proposed to evaluate the peak for the steady state case:

�u�
ss∞ = lim sup

t→∞
|u (t)| = lim

T →∞
sup
t�T

|u (t)|

As discussed in [35], the peak amplitude of a vector valued residual is used to compare with
the given threshold in FDI study. Then, the peak is improved as the peak norm:

• Scalar case

�u�
peak

= �u�∞

• Vector case

�u�
peak

= sup
t

�
uT (t) u (t)

�1/2
(A.1)
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A.1.2. L1: Resource consumption

• Scalar case

�u�1 =
∞̂

0

|u (t)| dt

• Vector case

�u�1 =
∞̂

0

n�

i=1
|ui (t)| dt =

n�

i=1
�ui�1

The L1 norm could be considered as a measurement of a total resource consumption. It is a
kind of criterion for transient signals, which decay to zero as time progresses.

A.1.3. L2: Square root total energy

• Scalar case

�u�2 =





∞̂

0

u (t)2 dt





1/2

• Vector case

�u�2 =





∞̂

0

uT (t) u (t) dt





1/2

or

�u�2 =
� ∞�

i=1
uT (i) u (i)

�1/2

This norm is usually used to evaluated the finite energy of the signal. While
∞�

i=1
uT (i) u (i)

represents the instantaneous power, �u�
2
2 means the total energy.

According to Parseval’s theorem, the computation of a signal with L1 norm could be carried
out in the frequency domain:

�u�2 =




1

2π

∞̂

0

uT (−jω) u (jω) dω





1/2

(A.2)
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A.1 Signal norms

for the continuous-time signal and

�u�2 =




1

2π

πˆ
−π

uT
�
e−jθ

�
u

�
ejθ

�
dθ





1/2

for the discrete-time signal.

A.1.4. Root mean square (RMS)

Comparing with L2 norm, the average size of a signal, named as root mean square (RMS) value,
is more important in practice:

• Scalar case

�u�
rms

=



 lim
T →∞

1
T

T̂

0

u (t)2 dt





1/2

• Vector case

�u�
rms

=



 lim
T →∞

1
T

T̂

0

u (t)T u (t) dt





1/2

which are widely used in many areas of engineering.

While the L2 norm measures the total energy for a signal, the RMS norm can be thought of as
measuring its average power. Even a signal with large peaks, whose RMS norm may be small.
Thus, �u�∞ is more affected than �u�

rms
by the large but infrequent values of the signal.

Remark A.1. From a practical point of view, it is impossible to evaluate the signal over the
whole time or frequency domain in reality, a window could be introduced. Then, the previous
criterion could be:

�u�
peak

= sup
t∈τ

|u (t)| (A.3)

�u�∞,τ
= sup

t∈τ

max
1�i�n

|ui (t)|

�u�1,τ
=

t2ˆ
t1

n�

i=1
|ui (t)| dt

�u�2,τ
=





t2ˆ
t1

uT (t) u (t) dt





1/2

(A.4)

�u�2,ϕ
=




1

2π

ω2ˆ
ω1

uT (−jω) u (jω) dω





1/2
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where τ = (t1, t2) and ϕ = (ω1, ω2) represent the interesting time and frequency domain
windows.

A.2. System norms

In this section, the performance index to evaluate the size of a system with input u, output y,
and transfer matrix G, are introduced.

Consider LTI systems y (p) = G (p) u (p), which are causal and stable. A causal system means
G (t) = 0 for t < 0 with G (t) as impulse response. Causality requires that G (p) is proper:

lim
p→∞

G (p) < ∞

A system is strictly proper if

lim
p→∞

G (p) = 0

A.2.1. H2 norm

If G (s) ∈ L2, the L2 norm of G is defined as

�G�2 =




1

2π

∞̂

−∞

trace {G∗ (jω) G (jω)} dω





1/2

= �g�2

=





∞̂

−∞

trace {g∗ (t) g (t)} dt





1/2

H2 norm is widely used in the control theory. One application of H2 norm is to design the
optimal Kalman filter.

A.2.2. H∞ norm

If G (s) ∈ RL∞, the L∞ norm of G is defined as

�G�∞ = sup
ω∈[0,∞]

σ {G (jω)} (A.5)

which also could be interpreted from the mathematical viewpoint:

sup
u �=0

�y�2
�u�2

= sup
u �=0

�Gu�2
�u�2

= sup
ω∈[0,∞]

σ {G (jω)}
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A.2 System norms

which means that the H∞ norm is the amplification of a transfer function matrix G that maps
the inputs signal u with finite energy into the output signal. In the view of FDI, the H∞ norm
means the biggest effects of the inputs on the outputs.
It is also interesting to note that if �u�rms is bounded even �u�2 is not bounded, there is a
relationship:

sup
u �=0

�y�rms
�u�rms

= sup
ω∈[0,∞]

σ {G (jω)} = �G�∞

the proof could be seen in[19].

A.2.3. Generalized H2 norm

�G�
g

= sup
u �=0

�y�
peak

�u�2

which is used to evaluate the effects of the bounded energy input on the power changer in the
output.
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calculate the subdifferential

[10, 7] apply the nonsmooth programming techniques for controller design. A series of im-
provement has been done by Apkarian and his team. Several solvers in matlab, like Systune,
Hinfstruct and Looptune are proposed with the nonsmooth programming techniques. Because
of the comparability between the control and FDI, the nonsmooth programming techniques
could be used to solve some FDI problems with the aid of nice characteristics of these tech-
niques.
The following notions are discussed in [31], which also could be considered in [16, 98].
B (x,r) represents an open sphere with the center x ∈ Rn and the radius r > 0:

B (x, r) � {y ∈ T n : �y − x� < r} (B.1)

Definition B.1. Let Y be a subset of X. A function f : Y → R is said to satisfy a Lipschitz
condition (on Y ) provided that, for some nonnegative scalar K, one has

|f (y) − f (y�) � K �y − y�
�| (B.2)

for all points y, y� in Y ; this is also referred to as a Lipschitz condition of rank K. The function
f is Lipschitz (of rank K) near x if, for some ε > 0, f satisfies a Lipschitz condition on the set
B (x, ε).

A function of a real variable, having Lipschitz condition near a point need not to be differentiable
there, nor need it admit directional derivatives.

Definition B.2. The directional derivative of the function f : Rn → R at x ∈ Rn in the
direction d ∈ Rn if

lim
t→0
t>0

f (x + td) − f (x)
t

exits and is finite, denoted as f � (x, d).

If f is differentiable at x, it contains the directional derivatives in all the directions d, and we
have f � (x, d) = f � (x) (d) = ∇f (x)T . The inverse is not true except the directional derivatives
are continues.

Definition B.3. A function σ : Rn �→ R is sublinear if it satisfies

1. Subadditivity:

σ (x + y) ≤ σ (x) + σ (y) for all x, y ∈ Rn
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2. Positive homogeneity:

σ (tx) ≤ tσ (x) for all x ∈ Rnand t > 0

Theorem B.1. If σ : Rn �→ R is sublinear, then the set

Sσ � {s ∈ Rn : �s, x� ≤ σ (x) for all x ∈ Rn
}

is not empty, compact and convex. It has the relation

σ (x) = sup {�s, x� : s ∈ Sσ}

Vice versa.

Convex analysis

With the definition of convex, all the convex function f : Rn �→ R is local Lipschitz at all the
points Rn.

Theorem B.2. Let f : Rn �→ R be a convex function. The classical directional derivative

f � (x, d) exists in every direction d ∈ Rn and it satisfies

f � (x, d) = inf
t>0

f (x + td) − f (x)
t

for all points x ∈ Rn.

Then, the definition of subdifferential could be got with directional derivative:

Theorem B.3. The subdifferential of a convex function f : Rn �→ R at x ∈ Rn is the set

∂cf (x) of vectors s ∈ Rn such that

∂cf (x) = {s ∈ Rn : �s, d� ≤ f � (x, d) for all d ∈ Rn
}

each vector s ∈ ∂cf (x) is called a subgradient of f at x.

There is a relationship between the subdifferential and the directional derivative:

f � (x, d) = max {�s, d� : s ∈ ∂cf (x)}

When the function f : Rn �→ R is convex and differential at x, ∂cf (x) will be ∇f (x).

Nonconvex analysis

For the locally Lipschitz continuous functions, may be the classical directional derivatives do
not exist. The definition of generalized directional derivative is introduced:
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Definition B.4. f : Rn �→ R is a locally Lipschitz continuous function at x ∈ Rn. The
generalized directional derivative of f at x in the direction d ∈ Rn is defined by

f ◦ (x, d) = lim sup
y→x

t↓0

f (x + td) − f (x)
t

The generalized directional derivative always exists for locally Lipshcitz continuous functions,
and it is sublinear. Then, the subdifferential for nonconvex locally Lipschitz continuous func-
tions with the directional derivative replaced by the generalized directional derivative.

Definition B.5. f : Rn �→ R is a locally Lipschitz continuous function at x ∈ Rn. Then the
subdifferential of f at x is the set ∂f (x) of vectors s ∈ Rn such that

∂f (x) = {s ∈ Rn
|f ◦ (x, d) ≥ �s, d� for all d ∈ Rn

}

Each vector s ∈ ∂f (x) is called a subgradient of f at x.
Some properties of the subdifferential both in convex and nonconvex cases are summarized:

• The subdifferential ∂cf (x) for a convex function f is a nonempty, convex, and compact
set such that ∂cf (x) ∈ B (0, L);

• The subdifferential ∂f (x) for a a locally Lipschitz continuous function f is a nonempty,
convex, and compact set such that ∂f (x) ∈ B (0, L), where L > 0 is Lipschitz constant
of f at x. Moreover, f ◦ (x, d) = max {�s, d� : s ∈ ∂f (x)} for all d ∈ Rn;

• The subdifferential for locally Lipschitz continuous functions is a generalization of the
subdifferential for convex functions: If f : Rn �→ R is a convex function, then f

� (x, d) =
f ◦ (x, d) for all d ∈ Rn and ∂cf (x) = ∂f (x).

• The subdifferential for locally Lipschitz continuous functions is a generalization of the
classical derivative: If f : Rn �→ R is both locally Lipschitz continuous and differentiable
at x ∈ Rn, then ∇f (x) ∈ ∂f (x). If, in addition, f : Rn �→ R is continuously differentiable
at x ∈ Rn, then ∂f (x) = {∇f (x)}.
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Résumé

Cette thèse consiste à utiliser des méthodes d’optimisation non lisse à des fins de diagnostic de défauts.

Dans un premier temps, afin de surmonter les inconvénients des méthodes classiques, une approche

fondée sur l’optimisation non lisse est présentée. Elle permet de résoudre le problème de détection

de défauts dans le pire des cas. La rapidité de la réponse résiduelle peut y être intégrée en tant que

contrainte. Le diagnostic des systèmes à commutation est ensuite considéré via un générateur de

résidus. Dans le cas d’un modèle connu avec certitude, un filtre de détection de défauts robuste aux

perturbations est enfin construit.

Dans la seconde partie de la thèse, une méthode est proposée afin de concevoir un observateur per-

mettant de détecter des défauts dans un cas général (défaut L2 borné et inconnu) et dans un cas

particulier (défaut spécifique). La synthèse est réalisée en considérant les domaines temporels et

fréquentiels. Dans le domaine temporel, l’enveloppe inférieure est utilisée afin de régler la rapidité de

la réponse alors que l’enveloppe supérieure permet de régler le taux de fausses alarmes.

Une approche active de diagnostic est finalement présentée. Elle consiste à injecter des extra-signaux

sur les commandes du système de manière à révéler au mieux la présence de défauts. Les effets

des extra-signaux sur les entrées/sorties sont pris en compte tant lors de leur génération que dans

la synthèse d’un post-filtre. Deux modèles sont tout d’abord considérés permettant de considérer

un fonctionnement normal et anormal du système. Dans le cas de plusieurs défauts, une méthode

permettant de les localiser est enfin proposée.

Mots clé: Diagnostic de défauts, Optimisation non lisse, Optimisation multi-objectif, Domaine tem-

porel, Domaine fréquentiel.

Abstract

This thesis considers the application of nonsmooth optimization approach on several FDI problems.

Firstly, to overcome the drawback of classical methods, a nonsmooth optimization approach is proposed

to solve a multiobjective fault detection problem in the worst case. An additional constraint of fast

transients of residual responses could be added into the design, which could be solved by nonsmooth

optimization approach. A framework of designing a unique observer gain and residual weighting matrix

is proposed for a system with multiple models. When the exact model is unknown, a new framework

of robust fault detection filter and an unchanged threshold are proposed.

Secondly, a method is proposed to design an integrated fault detection observer for general case

(unknown L2 bounded faults and disturbances) and specific case (some specific faults) in frequency

and time domain. The lower bound envelope is used to design a fast fault detection observer for the

specific faults with a guaranteed ability of fault detection in the worst. By contrast, to decrease false

alarms when fault disappearing, a constraint of an upper bound envelope is added into the design.

Thirdly, a new framework of active diagnosis with auxiliary signal is proposed. A criterion of peak

amplitude is proposed to evaluate the worst effects from the auxiliary signal on the system. The effects

of auxiliary signal on the outputs and control signals are considered in the design. The design is firstly

shown with a case of two models, which is then extended to multiple models case.

Keywords: Fault diagnosis, Nonsmooth optimization, Multi-objective optimization, Frequency do-

main, Time domain.
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