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”We lay there and looked up at the night sky and she told me about stars called blue
squares and red swirls and I told her I’d never heard of them. Of course not, she said, the
really important stuff they never tell you. You have to imagine it on your own.”

-Brian Andreas-
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1
INTRODUCTION

”In visual perception a color is almost never seen as it really is - as it physically is. This
fact makes color the most relative medium in art.”

-Josef Albers-

This first chapter includes general outlines of thesis context. We first single out the role
that color images play in most aspects of our daily life. In a second part, we provide
the motivating factors as well as the main contributions of this work and the dissertation
outlines.

1.1 Color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1/ COLOR IMAGE

Our life is full of colors. Wherever we look we see colors. They are all around us in every-
day life, and yet we rarely stop to give them a second thought, because we used to live
in a colorful world. However, when they are strikingly combined with each others forming
an unaccustomed scene that may please or dismay us, colors do not stay unremarkable
anymore. We often notice the importance of colors in the dark when all colors look alike.
Color perception is widely dependent on light. In images, color is the principal element of
visual language. It is the first element which pops out at observers and being processed.
Colors are not only used to beautify our images, they have serious effects on our psy-
chic and physical behavior, and they have as well an important role in providing useful
indications for subsequent actions.

Let us imagine that images, which are the medium of visual communication, are colorless.
Would images be appreciated as much as they are colored? Would it be possible to get
the same messages through? Would images impress the viewers? Would there be
masterpiece paintings?

1



2 CHAPTER 1. INTRODUCTION

Colors in images often speed up visual search. For instance, if Paris metro map is without
colors, we would spend a few minutes to locate a specific location or to follow the path
of a rail line. The search process would be longer and tricky. When it comes to object
recognition, we recognize objects more quickly when they have the same colors as in the
real world.

In the art of painting, colors are used to express moods, metaphors and for symbolism.
If we consider two paintings of the same sea scene. The first shows light and saturated
colors and the second shows dark colors. The first one is more likely to give positive effect
and the second one creates a negative one. Thus, painters and photographers exploit
color value to communicate a particular mood.

In addition, colors have been always used to symbolize emblems, brands, psychological
state, etc. And this may be different from culture to another.

Colors can lead to a better human memory performance. A large number of studies have
been conducted to investigate the relation between color and memory performance [42].

In the marketing field, color concept is located on the boundary between art and science.
A psychophysical experiment was carried out to estimate which hues attract more human
attention [59]. According to color saliency, a ranking of twelve colors selected in the CIE
LAB color space has been done. The results showed that red is the most salient color,
followed by yellow and green. Many of the most recognizable brands in the world rely on
color as a key factor in their instant recognition.

In the industrial sector, automation is one of the main manufacturing requirements. Since
manual sorting is time and effort consuming, and misses sometimes reliability, thus, some
computer vision color image based applications have replaced Humans in many manufac-
turing processes such as fish sorting [120], date fruit sorting [9], a real-time color-based
counting system [163], etc.

In the cooking field, color plays an important role to recognize the different degrees of
doneness.

1.2/ MOTIVATIONS

Recorded color images taken in bad environments exhibit problems such as low visibility,
reduced contrast and generally bad ”quality”. For this reason, many methods known as
dehazing methods have been designed to improve the perceived image quality in order to
be used later in Computer Vision applications, which require images of high quality. Unlike
computational photography, image usability and fidelity may be promoted over preference
in computer vision. Amongst these two aspects, we consider particularly the fidelity.

One motivation of this work is related to the Open Food System (OFS), which is a re-
search project that gathers 25 public and private partners all over France. This project
aims to build an ecosystem to facilitate the preparation of meals by developing new ap-
pliances functionalities and innovative services. Indeed, taking accurate color images
of food into an oven during their cooking and either getting information on their cooking
status allow the user to follow the cooking process at distance on a connected tablet or
phone. The potential link between this thesis and this project is described in Appendix C.

The rapid increase of the number of dehazing methods as well as their varieties, require



1.3. CONTRIBUTIONS 3

some common tools that allow to evaluate and compare all of these algorithms perfor-
mance in a reliable way.

Amongst the numerous methods, which often provide no matching results, none has been
commonly accepted as the best. In general, the evaluation of dehazing methods is not
obvious and usually very limited. This is mainly due to some major shortcomings:

• The physical model of visibility degradation is completely ignored in some image
enhancement methods. And it is blindly used in some others.

• Owing to deficient complementary subjective and objective quality assessment,
there is a lack of accepted image quality metrics.

• Quality assessment of dehazing algorithms is a challenging problem since a perfect
quality image is not available as a reference.

1.3/ CONTRIBUTIONS

The aim of this research is to investigate the evaluation of dehazing methods as well as
the haze model. This can be done by defining some procedures and some suitable tools.

The evaluation of dehazing methods refers to:

• Goal 1: developing new tools to measure and monitor the evolution of colors with
the haze density, before and after processing.

• Goal 2: evaluating dehazing quality metrics as well as dehazing methods while
considering the haze-free reference image in terms of quantitative and qualitative
ways.

The evaluation of the haze model refers to:

• Goal 3: comparing the simulated hazy images formed by the haze model to the real
hazy images in terms of accurate representation of haze effects and the behavior
of dehazing against real and simulated haze. In other words, this means to show
when the haze model fails to represent the reality.

• Goal 4: marking out the limitations of the haze model when it comes to distance,
haze density and spectral characteristics.

Indeed, we have contributed, either partially or fully to the overall goals. With regard
to goal 1, we have designed an original color hazy image database of real fog includ-
ing the haze-free image and some physically measured parameters. This database
has been used to compare a number of dehazing methods that perform dehazing dif-
ferently. The description of this database submitted to a Journal for publication [49]
and benchmarked in a conference paper [48]. The images are also freely available at
http://chic.u-bourgogne.fr/.

This database has allowed us to achieve partially the goal 2 by tackling the full-reference
quality assessment issue and to understand better what a dehazed image quality means

http://chic.u-bourgogne.fr/


4 CHAPTER 1. INTRODUCTION

and the best metric to be used. The subjective and objective experiments have been
described and discussed in [45], which has been submitted to a Journal for publication.

On the other hand, concerning the goal 3, we could understand better how the simulated
fog differs from the real fog, and how this impacts dehazing as well as the accuracy of
color recovery. These points, in addition to the limitation of simulation comparing to the
real-world, were singled out in two conference papers [46, 47].

Using again our color database, we fulfilled goal 4 by marking out the threshold from
which the inversion of the haze model is no more possible. For this purpose, we have
addressed also the multispectral aspect, which it was not basically supposed to be in the
scope of this thesis (This material will be made available through a scientific communica-
tion). The validation of color database against the fog density is publicly communicated
through a conference paper [48].

1.4/ DISSERTATION OUTLINES

This dissertation is structured as a series of interlinked points from having a light signal
going through heterogeneous atmosphere until getting a processed image associated to
a quality grade. It consists of two main parts including 7 chapters. The first part includes
2 chapters, which focus on the factors that lead to visibility deterioration and the adopted
procedures to restore it. Part I closes with highlighting some incompletnesses present in
the literature that we tried to address in Part II, which includes 3 chapters. They provide
a description of the conceived hazy image databases, the haze model evaluation and the
dehazed image quality assessment. This manuscript ends with a global conclusion.

The chapters are organized as follows.

Chapter 2 provides a global description of the outdoor environments and its constituents
that hamper clear light transmission, as well as the image formation. Image acquisi-
tion in bad environment requires specific colorimetric calibration taking into account the
presence of the degradation factors. This chapter ends with the formation of visibility
degradation model, which will be considered for image recovery and evaluation.

Chapter 3 reviews the categories of dehazing methods. Since image dehazing is an
active international research domain, there is a rapidly growing number of approaches.
We only explain in this study some of them that we consider representatives of the state
of the art. Single image dehazing approaches have been mainly considered, since they
meet the needs arising from the real-world computer vision applications. At the end of
this chapter, we describe the identified gaps as an introduction to the next chapters.

Based on the formation scenario of degraded images caused by atmospheric particles,
we detail in Chapter 4 the setup of CHIC (Color Hazy Image for Comparison), an orig-
inal semi-indoor image database of different fog levels, with associated parameters that
we will show how they have been used to compare some dehazing methods, to char-
acterize the quality of dehazed images and to evaluate visibility degradation model. We
describe as well the Multispectral Hazy Image Database (MHIA) associated to a depth
map constructed with a Kinect device.

Using CHIC images, and simulated hazy images, we studied to which extent the degra-
dation model succeeds to get similar outputs as real world in both ways: hazing and de-
hazing. The inaccuracies, which are introduced through hazing and dehazing are widely
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discussed in Chapter 5. This has a twofold benefit: one is to define the maximal accuracy
a single color image dehazing methods can effectively reach. The other is to show how
this is strongly related to the Koschmieder model of visibility degradation, in terms of the
density of fog and the spectral dependence.

After obtaining a more complete understanding of the nature of haze removal and the
resulting inaccuracies, we are able to define the quality of dehazed images. In order
to see what people perceive as good quality in terms of color and sharpness fidelity, a
psychometric experiment has been carried out using images from CHIC database. Sub-
jective judgments have been compared with a set of IQA (Image Quality Assessment)
metrics, showing the evolution across scenes and haze levels. Thus, a set of guidelines
for designing an efficient index dedicated to image dehazing is provided in Chapter 6.

Finally, Chapter 7 is divided into three parts. The first one provides concluding remarks
based on the results reported here. The second one gives a few perspectives on ways
to think and to proceed to fill up the identified gaps and to improve what has been done.
And the closing paragraph, which points out the potential utility of this study.
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HAZE IN IMAGING MODEL
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2
VISION IN BAD ENVIRONMENT

”We don’t see things as they are, we see them as we are.”

-Anais Nin-

This chapter proposes a global description of the vision in bad weather. We first define
what a challenging environment is. We describe the properties of particles that constitute
our atmosphere and the related extinction phenomena, as well as the resulting visibility
degradation model.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.1/ INTRODUCTION

Different natural environments around the world experience different levels of perturba-
tion. This is simultaneously related to the physical composition of the environment and
the interaction with external elements. This leads to visibility degradation that could lead
to serious consequences. For instance, the pollution in developing countries such as
China has become a serious threat the last few years. It has been estimated that the air
pollution in China contributes to 1.2 to 2 million deaths annually and it is believed that

8
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it kills more people worldwide than AIDS, malaria, breast cancer, or tuberculosis [150].
Moreover, the pollution prevents people from their daily life activities and it blocks some
services that may have a negative impact on the international economy and trade. On
Christmas 2015, the chinese authorities canceled more than 200 flights from Beijing due
to limited visibility caused by the air pollution [85].

Generally, it is in our interest to have a clear visibility, no matter where we are. For
security reasons: in the presence of fog, the risk of road accidents increases; in a not
clear area, security cameras are not efficient. When visibility is good, even the most
boring site seems somehow magical; when visibility is poor, even the best reef or the
most spectacular sunset view seem dull. A bad visibility encumbers greatly a maritime
search or a rescue mission.

When it comes to photography, atmospheric conditions such as fog and haze, are some-
times considered as useful tools of artistic expression. However, they are deemed as
disruptive phenomena for other outdoor capturing applications, and some processing are
therefore required.

Degraded visibility occurs not only in natural environments. Other artificial environments
provide similar characteristics and cause therefore the deterioration of visibility. In a com-
plementary work of this thesis, the oven cavity and all what goes on during cooking, rep-
resented to us a bad environment that obstructs spectral measurements and the capture
of images (see Appendix C).

2.2/ BAD ENVIRONMENT

From an optical point of view, a bad environment groups a set of factors that interact with
each other leading to a bad visibility.

Bad environments and their contents can be broken into two main groups. Underwater
and atmospheric environments (Figure 2.1). Both of them are heterogeneous mediums.
They are particularly prone to visibility degradation, which is mainly caused by the obsta-
cles that break light transmission. In underwater areas, three main factors affect visibility:
suspended particulate matter, biological species and light penetration. As regards the
atmosphere, although their impacts are different (cf. section 2.3.1), the presence of haze,
fog, mist and other aerosols reduces the visibility and the clarity of the scenes.

The presence of these particles in both environments decreases the contrast and deteri-
orates the original colors. This creates therefore annoying problems for computer vision
applications. When these particles are abundant, the visibility is dramatically degraded
and it leads to serious issues of individuals’ safety. For instance, the risk of road accidents
is higher in a foggy day than in a clear day.

Various degrading scenarios can be identified. We show in Figure 2.1 the most common
and encountered ones. Underwater images (a); an outdoor image where fog covers
uniformly objects that have colors not only similar to fog (b, c); an outdoor image where
fog covers uniformly snow that is similar to fog (d); an image captured in a polluted area
(e); a satellite image degraded with a non-uniform veil of fog (f); a nighttime foggy image
with some light sources (g); an indoor smoky image (h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Images captured in bad environments. (a) underwater image; (b) foggy road
image; (c) landscape foggy image; (d) fog over snow image; (e) air pollution image; (f)
satellite image; (g) nighttime foggy image; (h) indoor smoky image.

2.3/ VISION IN THE ATMOSPHERE

Imagine that you are standing on the roof of your house, and you are gazing something
far away at the distant horizon. This scene may bring up many questions: what is the
object that we see? How much is it easy to distinguish it from its background? What color
does it have? How far it should be located to be easily perceived?

To find answers, we describe and define some concepts related to the particles form-
ing the atmosphere, their optical characteristics and the modeling of the resulting image
formation.

2.3.1/ COMPOSITION OF THE AIR

Our atmosphere is full of particles that cause the occurrence of several phenomena that
lead to visibility degradation and make the detection of scenes’ objects more difficult. We
present a quick overview of the composition of the dry clear air and the aerosols caused
by bad weather conditions or the human activities that affect the ecosystem.

The dry clear air is composed of gases, primarily nitrogen and oxygen with a small amount
of argon, carbon dioxide, and very small amounts of other gases (see Table 2.1). Air
molecules are inefficient scatterers because their sizes are smaller than the wavelengths
of visible radiation (see Table 2.2).

In addition to gases, the atmosphere contains solid and liquid particles that are sus-
pended in the air. Major components of fine aerosols are sulfate, nitrate, organic carbon,
and elemental carbon. These particles have various sources such as volcanic ashes,
foliage exudations, combustion products, and sea salt. In contrast to the air molecules,
aerosols have important radiative effects in the atmosphere. Indeed, they cause the scat-



2.3. VISION IN THE ATMOSPHERE 11

Table 2.1: The constituents of the dry air [38].

Constituent Mole percent
Nitrogen 78.084
Oxygen 20.947
Argon 0.934
Carbon dioxide 0.0350
Neon 0.001818
Helium 0.00052
Methane 0.00017
Krypton 0.000114
Hydrogen 0.000053
Nitrous oxide 0.000031
Xenon 0.0000087
Ozone trace to 0.0008
Carbon monoxide trace to 0.000025
Sulfur dioxide trace to 0.00001
Nitrogen dioxide trace to 0.000002
Ammonia trace to 0.0000003

Table 2.2: Weather conditions and associated particle types, sizes and concentrations
[115].

Weather condition Particle type Radius (µm) Concentration (cm−3)
Air Molecule 10−4 1019

Haze Aerosol 10−2 - 1 103 - 10
Fog Water droplet 1 - 10 100 - 10
Cloud Water droplet 1 - 10 300 - 10
Rain Water drop 102 - 104 10−2 - 10−5

tering of light and absorb its radiation. The severity of these phenomena is directly related
to the size of particles and to their concentrations. All of this leads subsequently to differ-
ent visual effects. The size of aerosols typically varies between 0.01 and 1 µm in radius.
Most aerosols are found in the lower troposphere, where they usually stay a few days.
They are usually carried out the atmosphere by rain and snow. During their residence
time in the atmosphere, they form the haze.

The haze is mainly formed by aerosol particles, that have a larger size than air molecules
and a smaller size than water droplets. Haze produces a distinctive gray hue and it is
certain to affect visibility [132]. Haze appears in three main forms: a uniform haze, a
layered haze and plumes [1] (see Figure 2.2). Referring to Table 2.3 the daylight visual
range of the thin haze is between 4 and 10 km and between 2 and 4 km for the haze.

When aerosol’s particles and air molecules are associated with some amount of humidity,
they turn into water droplets. Water droplets have more severe action on the propagating
light than aerosol particles. The daylight visual range varies from 1 − 2 km for the thin fog
up to 50 m for the dense fog. Fog tends to produce a white hue. There are many types of
fog which differ from each other in their formation processes, including radiation fog and
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(a) (b) (c)

Figure 2.2: Hazy images with different haze types. (a) Uniform haze; (b) Layered haze;
(c) ; (d) Plumes.

Table 2.3: Atmospheric attenuation and visual range of atmospheric conditions [75].

Atmospheric condition Daylight visual range Attenuation coefficient (km−1)
Exceptionally clear >50km 0.0427
Very clear 20 - 50km 0.0713
Clear 10 - 20km 0.214
Light haze 4 - 10km 0.354
Haze 2 - 4km 0.533
Thin fog 1 - 2km 1.22
Light fog 500 - 1000m 1.42
Moderate fog 200 - 500m 7.13
Thick fog 50 - 200m 21.3
Dense fog <50m 42.6

advection fog [4] (see Figure 2.3).

The main two differences between the fog and the cloud is the concentration of water
droplets and the altitude of the formation of these two phenomena. The cloud is located
at high altitudes, rather than sitting at ground level as the fog.

Unlike all above weather conditions, the rain causes random spatial and temporal varia-
tions at the ground level.

Clouds and rain, as well as the particularities of the haze and the fog types above the
ground level are out of scope for this thesis. Our study is restricted to vision at ground
level, and to variations, which are steady over a period of time. Thus, it is assumed that,
over horizontal paths, the scattering coefficient β is constant [132].

Human activities represent the main causes of the atmospheric pollution, which does
not only affect the human health and the environment, but also the outdoor visibility.
The contaminants which are emitted from many different sources, especially, in industrial
areas, interact with the air particles to form new compounds, and degrade therefore the
quality of the air. The air pollution that reduces visibility is often called haze or smog.
Smog refers to any mixture of air pollutants and it can change the climate [135].
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(a) (b) (c)

Figure 2.3: Foggy images with different fog types. (a) Uniform fog; (b) Radiation fog; (c)
Advection fog.

2.3.2/ ATMOSPHERIC LIGHT

As light is crossing the atmosphere, it undergoes attenuation caused by solid and liquid
particles that form the air, and it is therefore redirected out of the original direction of
propagation. The attenuation (extinction) is caused primarily by scattering rather than
by absorption of the light. The interaction of light (an electromagnetic wave) with matter
can provide important information about the structure and dynamics of the material being
examined. For instance, if the scattering particles are in motion, the scattered radiation is
Doppler shifted [55].
Similarly, the structure and the size of the particle define the scattering properties and the
law describing its mechanism and effects. In this regard, two scattering categories are
evoked, Rayleigh and Mie scattering, which are detailed in the following paragraphs.

When we look for some information about Rayleigh scattering theory, we are more likely to
come across the blue color of the sky, which is the result of the scattering of the sun light
caused by the particles forming the atmosphere. Rayleigh scattering is more effective
at short wavelengths in the visible range (blue). Since short wavelengths are the most
affected, scattered light comes down to earth with predominant blue cast.

Considering an atmospheric particle of volume V, Rayleigh scattering is given by Equation
2.1:

Ir(θ) = I0
V2

λ4d2 (1 + cos2θ) (2.1)

d is the distance between the scattering particle and the observer. θ is the scattering angle
formed between the incident light I0 and the scattered light Ir. Since Rayleigh scattering
is proportional to 1

λ4 , the scattering is larger for blue light than for red light. For a given
angle of scattering the blue light will be scattered 16 times as much as the red (Figure
2.4).

Rayleigh scattering is mainly applicable to small, dielectric (non-absorbing), spherical
particles. According to the ratio describing the relation between the particle size and the
wavelength, we delimit the transition between Rayleigh scattering, which is wavelength
dependent and Mie scattering, which is non-wavelength dependent, by Ratio 2.2:

x =
2πr
λ

(2.2)

where r is the particle radius, λ is the wavelength of light.



14 CHAPTER 2. VISION IN BAD ENVIRONMENT

Figure 2.4: The intensity of the forward scattered light by a single atmospheric particle.
According to Rayleigh scattering, with the angular increase from 0◦ (red) to 90◦ (blue), the
intensity decreases.

In Figure 2.5 we see that the intensity and the form of the scattering light varies with
the size of the scattering particle. Rayleigh scattering is applied when the size of the
scattering particle is relatively small, x << 1, the light beam is equally scattered in all
directions on the forward and the backward sides, thus the intensity is distributed in all
directions. Otherwise, Mie scattering is considered. For a medium size of the particle,
x ∼ 1, the largest part of the beam is scattered in the forward direction. For a large size
of the particle when it is larger than λ, x >> 1, the entire beam is scattered forward. This
directive scattering has a high intensity.

The theory of Mie scattering [122], encompasses without particular attention to the parti-
cle size, all spherical, absorbing and non-absorbing particles. However, since its formu-
lation is somehow complicated, Rayleigh scattering is preferred when it is applicable.

Scattering particles are numerous in the atmosphere. Hence, the incident light undergoes
a multiple scattering (see Figure 2.6). A given particle is not only hit by the incident light,
but also by the light scattered by other particles.

Atmospheric light scattering varies by time of day, weather and pollution. During the
day, the amount of solar radiation reaching the earth’s surface changes greatly because
of the changing position of the sun. At midday, for example, the sun is positioned high
in the sky and the path of the sun’s rays through the earth’s atmosphere is shortened.
Consequently, less solar radiation is scattered or absorbed, and more solar radiation
reaches the surface of the Earth. During sunset and sunrise, as the path that sunlight
takes through our atmosphere increases in length, an increased amount of violet and
blue light being scattered out of the beam by the nearly infinite number of scattering
particles that occur along the way, the light that reaches an observer early or late in the
day is noticeably reddened, since longer wavelengths have a higher penetration power
and resist consequently more to scattering (Mie scattering). The effect of a red sunset
becomes more pronounced if the atmosphere contains more and more particles. This
increasing number of particles may be due to weather conditions or pollution (cf. Section
2.3.1).
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Figure 2.5: The variation of the scattering properties (intensity, type and form) with the
ratio of the particle size to the incident light wavelength. Rayleigh scattering is applied
when the size of the scattering particle is lower than λ

10 . For particles with a larger size
than the light wavelength λ, Mie scattering is applied. This figure is reproduced here from
the Figure 1 of the paper of Nayar et al. [132]

.

Figure 2.6: Atmospheric multiple scattering. This figure is reproduced here from the
presentation of the paper of Nayar et al. [132].

2.3.2.1/ ATTENUATION

The light reflected by the scene’s objects is partially attenuated before reaching the cam-
era. More the distance from the observer to object increases, the radiance emitted from
the object decreases.

The attenuation is caused by two main phenomena: scattering and absorption. The
attenuation coefficient given in Equation 2.3, is the sum of the scattering coefficient βs

and the absorption coefficient βa:
β = βs + βa (2.3)

In Figure 2.7, we consider a unit volume (scattering particle) illuminated by a spectral
irradiance E(λ) and observed at angle θ as a radiant intensity I(θ, λ), as given in Equation
2.4:

I(θ, λ) = β(θ, λ)E(λ) (2.4)

where β(θ, λ) is the angular attenuation coefficient. I(θ, λ) is the radiant intensity (flux
radiated) per unit solid angle per unit volume of the surrounding medium.

The total flux scattered in all directions is independent of θ (Equation 2.5), but it is still
dependent on wavelength, since Bouguer’s law is valid only for monochromatic light:

Φ(λ) = β(λ)E(λ)dx (2.5)
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The fractional change in irradiance at location x from the camera can be written as Equa-
tion 2.6:

dE(x)
E(x)

= −β(λ)dx (2.6)

By integrating both sides between x = 0 and x = d, we get the Equation 2.7 :

E(d, λ) = E0(λ)e−β(λ)d (2.7)

If we assume that the camera has a linear radiometric response denoted by u, the horizon
irradiance becomes linked to the horizon radiance as:

E∞(λ) = uL∞(λ) (2.8)

Thus, Equation 2.8 becomes:

E(d, λ) = uL0(λ)e−β(λ)d (2.9)

This is Bouguer’s exponential law for attenuation. Based on Allard’s law [10], L0 is re-
placed by I0

d2 , where I0 is the radiant intensity of a scene point.
Along this operation, β(λ) is assumed to be constant, since the medium is supposed to
be homogeneous; all scattered flux are assumed to be removed from the incident en-
ergy. The fraction of energy that remains is the direct transmission. Thus, Equation 2.9
becomes:

E(d, λ) = u
I0(λ)e−β(λ)

d2 (2.10)

According to Narasimhan et al. [125], I0(λ) = L∞(λ)r, where L∞(λ) denotes the horizon
radiance and r denotes the sky aperture (the cone of the sky visible from a scene point).

Thus, Equation 2.10 becomes:

E(d, λ) =
E∞(λ)re−β(λ)

d2 (2.11)

2.3.2.2/ AIRLIGHT

Airlight definition first appeared in 1924, by Koschmieder [87]. The airlight is caused by
the scattering of the environmental light by the particles suspended in the atmosphere. It
causes the atmosphere to act like a source of light. The airlight is added to the attenuated
transmitted light coming from the scene, to thereby form the hazy scene [132].

There is a contradictory relationship between the airlight-depth and the attenuation-depth:
the attenuation causes the decreasing of the light intensity of the scene radiance while the
airlight increases the light intensity and the global chromaticity turns towards the ambient
light color.

Let us consider the atmospheric particle with no defined geometrical shape shown in
Figure 2.8 with a light source placed at a finite distance x from the observer.

The light coming from the object is scattered by the atmospheric particle dv and redirected
toward the observer with an intensity (Equation 2.12):

dI(x, λ) = dvkβ(λ) = dwx2dxkβ(λ) (2.12)
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Figure 2.7: An illuminated unit volume observed at angle θ.

where x is the distance from the scattering particle to the observer, dw is the solid angle
of the cone formed by the observer and the scattering particle and k is a constant value
defined by the global illumination.

We calculate the radiance from the irradiance given by Equation 2.11:

dL(x, λ) =
dE(x, λ)

dw

=
dI(x, λ)e−β(λ)x

dwx2

= kβ(λ)e−β(λ)xdx

(2.13)

The total radiance along the path d between the object and the observer is obtained by
integrating dL(x, λ) in Equation 2.13 between x = 0 and x = d:

L(d, λ) = k(1 − e−β(λ)d) (2.14)

The radiance of the airlight for an object placed at a distance d from the observer is given
by Equation 2.15:

L(d, λ) = Lh(∞, λ)(1 − e−β(λ)d) (2.15)

where k is replaced by Lh(∞, λ), the airlight radiance at the horizon at d = ∞. This shows
that the airlight radiance increases with the distance between the object and the observer.
When d = 0, L(d, λ) equals zero and when d = ∞, the object is no more observable, thus,
L(d, λ) equals the sky radiance.

2.3.3/ HAZE AND DEHAZING: DEFINITION AND USEFULNESS

The apparent luminance of any distant object is controlled by two processes that occur
concurrently. The light emanating from the object is gradually attenuated by scattering



18 CHAPTER 2. VISION IN BAD ENVIRONMENT

Figure 2.8: An atmospheric particle placed on the line of sight between the observer and
the object with no defined geometrical shape plays the role of a light source by scattering
the light coming either from other scattering particles or from the sun.

Figure 2.9: Imaging through haze. The apparent luminance I of an object placed at
distance d is controlled by two processes that occur concurrently: the transmitted light
denoted by t, which emanates from the object and it is attenuated by scattering and
absorption along the line of sight. The airlight A, which comes from a light source (i.e.
Sun) and scattered by the haze particles toward the observer before reaching the object.
This figure is reproduced here from the Figure 1 of the paper of Schechner et al. [156].

and absorption. It is denoted by t. The airlight A coming from a light source (i.e. Sun) and
it is scattered by the haze particles toward the observer all along the line of sight [39].
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The formation of hazy images represented in Equation 2.16, can be modeled as the sum
of the scene’s radiance J(x) and the atmospheric light A∞, weighted by a transmission
factor t(x). The A∞ is the airlight scattered by an object located at infinity with respect to
the observer.

I(x) = J(x)t(x) + A∞(1 − t(x)) (2.16)

where I(x) is the image formed on the camera’s sensor. The transmission factor t(x)
depends on scene depth d (distance to the sensor) and on the scattering coefficient β
of the haze, such that t(x) = e−β.d(x) [87]. Unlike other traditional image degradations,
haze/fog has some degrading particularities (Table 2.4). It is a natural, depth-dependent
perturbation that spans non-uniformly over the whole image. The degradation and the
loss of information increases with depth, as the amount of fog between the imaged surface
and the sensor increases. Hazy and foggy images have also different prevailing colors,
which depend on the density of the scattering particles and the ambient light. The process
to recover I(x) from J(x) is known as dehazing or defogging.

Table 2.4: The characteristics of Hazy/foggy image degradation.

Hazy/foggy image degradation
Distance-dependent degradation
Fog density-dependent degradation
Chromatic degradation
Degradation leads to contrast reduction and color shift
Fog is a continuous uniform/non-uniform layer across the image
Classical enhancement algorithms are not efficient to deal with
these degradation characteristics

According to Narasimhan and Nayar [127], the haze model assumes a single scattering
and a homogeneous atmosphere. Thus, this model is not valid for depths that are more
than a few kilometers, nor for high densities of fog (cf. Section 5). Referring to section
2.3.2, the size of haze aerosols and water droplets forming the fog is larger than the
wavelength of light. Hence, the scattering coefficient does not depend on wavelength.
Thus, in a foggy weather all wavelengths are assumed to be scattered equally. Thus,
we see white or grayish fog and the haze model (Equation 2.16) does not include λ

parameter.

Although weather conditions differ in particle types, sizes, concentrations and the result-
ing veil hue and visibility (Table 2.2), the same methods are used indiscriminately for
all aerosols, since the haze model is a good approximation for a wide range of weather
conditions and for several situations.

For the sake of transparency, in this manuscript, we use indiscriminately the terms of
haze-free image, hazy image and dehazing for both haze or fog degrading visibility
layers.

A common question may be asked: how dehazing should be defined? Is it an en-
hancement or a restoration technique?

Before providing an answer, we define each of enhancement and restoration techniques.
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Enhancement techniques are essentially used in order to get a resulting image of better
quality than the degraded one, and not necessarily the same properties as an image
of the same scene, taken in the same conditions, but without any visible haze. While
restoration techniques aims at reconstructing back the original image.

While the majority of researchers working in this area define dehazing as being an en-
hancement technique, we investigated in this project the circumstances, within which a
dehazing method is considered as a restoration processing. This has been reflected,
first, through our CHIC database that provides the haze-free image (refer to Section 4),
the quality assessment that considers in a good part the similarity with this image and the
haze model evaluation.

The principal aim of any dehazing method is to improve the visual quality and fidelity of a
hazy image. When developing a new dehazing method, there is often a need to compare
the results with the state-of-the-art methods in order to evaluate their performances or to
rate them.
If we consider dehazing as an enhancing visibility procedure, it is therefore necessary to
rate the improvement level by evaluating how a given method succeeds simultaneously
to improve the hazy image visibility and to preserve the original features of the ground-
truth image like colors and structure data. Thus, a measuring methodology of the image
quality is needed. A number of image quality assessment indexes were proposed to
automatically evaluate the quality of images in agreement with human visual perception.

2.3.4/ VISIBILITY AND VISUAL RANGE

Meteorological visibility is defined as the greatest distance at which a black object of ad-
equate dimensions (located on the ground) can be seen and recognized when observed
against the horizon sky during daylight or could be seen and recognized during the night
if the general illumination was raised to the normal daylight level [118].

The visual range of a specific target under given meteorological conditions is defined as
that distance from the observer at which the specific target could just be detected by
the human eye (Equation 2.17). That means that the apparent brightness contrast of the
target against the background, has decreased to the contrast threshold of the human eye.
The maximal distance one can see through the air is the meteorological range defined by
Middleton [119]:

D =
−ln(0.02)

β
(2.17)

where β is the scattering coefficient. At λ = 555nm, the sensitivity of the human eye has
its maximal value. D depends on the threshold contrast, which represents the minimal
brightness contrast from which a person can see. It is commonly assumed to be equal
to 0.02 although it varies from individual to another. Visual range varies enormously from
several meters in a dense fog to several hundred kilometers in a clear air [143].

The visibility in the atmosphere is degraded through the scattering and the absorption
of light by the particles and gases. Both of these phenomena reduce the amount of the
transmitted light along its path, from the object located at some distance to the camera.
Many factors impact visibility degradation such as the particles size, the particles con-
centration, the object physical characteristics, the characteristics of the observer or the
camera, the ambient illuminant and the distance from the object to the camera.
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A change in contrast with viewing distance occurs for dark and bright objects. In case of
dark objects, under the action of the airlight, the dark objects appear lighter with distance.
With bright objects, light is lost from the line of sight with increasing distance. In both
cases, the contrast between the object and the background decreases. The light reaching
the target is close to the light intensity of the background. When the eye is no longer able
to discern the object from its background, we say that the object is beyond the limit of
visibility.

The reduction of the contrast is due to the scattering and the absorption of light caused by
the atmospheric particles along the viewing distance. The decreasing of the light intensity
emanating from object is represented as follows:

dI = −βIdx (2.18)

The intensity dI is proportional to the initial intensity I, which is reduced when the attenu-
ation coefficient β increases with the infinitesimal distance step dx.

By integrating over the path, Equation 2.18 becomes:

I = I0e−βx (2.19)

The relation between the apparent contrast C at a distance x and the actual contrast C0
can be expressed in a similar manner in Equation 2.20:

C = C0e−βx (2.20)

2.3.5/ BEYOND THE VISIBLE RANGE

In looking at visibility as being a complex psycho-physical phenomenon, this gives rise
to the question of whether we would see farther with other imaging techniques in the
same foggy and rainy conditions. For instance, we may ask how much we would push
the limitations of the visible range by navigating toward the infrared range and how this
would change with atmospheric conditions.

Like visible light, infrared radiation fades out due to scattering and absorption caused by
aerosols and water droplets. The bigger the droplets’ size is and the higher their con-
centration is, the more the infrared signal is lost. However, visible and infrared signals
have distinct characteristics that make infrared more useful in only some situations (see
Equation 2.11, where attenuation depends on the wavelength). In other words, the trans-
mission characteristics alone of both bands do not determine the detection ranges, but
there is a need to consider also the physical properties of the atmosphere. Both of them
determine whether we can take advantage or not of this discrimination.

Infrared range encompasses a large number of wavelengths, beginning at the top end of
the visible range (red) and extending up to the microwave portion of the electromagnetic
spectrum. Thus, the infrared range is from 750nm to 1mm. Infrared spectrum can be
broken down into five wavelength ranges: Near-infrared (NIR) is from 0.75 to 1.4µm; Short-
Wavelength infrared (SWIR) is from 1.4 to 3µm; Mid-Wavelength infrared (MWIR) is from
3 to 8µm; Long-Wavelength infrared (LWIR) is from 8 to 15µm; Far-infrared (FIR) is from
15µm to 1mm [6].

In his report prepared for the United States Air Force, Chen [29] describes attenuation
caused by haze, fog, clouds and rain through visible, infrared and radio (λ > 1 mm) fre-
quencies. This report is considered as a handbook that provides a quick estimate of the
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effects that different weather conditions induce on the sensors. It helps to examine im-
plications of the development of precision-guided munitions. We only consider the haze
and the fog (clouds and fog have similar properties (Table 2.2) except that clouds do not
contact the ground and do not therefore trouble ground-level vision applications). Rain is
out of scope in this thesis.

Because of the smallness of the haze particles (Table 2.2), the transmission through haze
keeps on increasing with the wavelength from 350 nm to 10 µm. Haze is almost invisible
for higher wavelengths. Thus, infrared sensors improve markedly the visibility in hazy
weather.

However, this is not the same for the fog. Since fog has a higher concentration and bigger
particles’ size (Table 2.2), besides scattering it causes absorption at infrared wavelength
because of its humid nature. Thus, a severe extinction is caused by fog. The severity
level depends strongly on the fog characteristics. Referring to [134], considering the
four different fog types shown in Table 2.3 (thin fog, light fog, moderate fog and thick
fog), the exploitation of the infrared ranges is not always better comparing to the visual
band. Considering the thin fog, the wavebands MWIR and LWIR are 2.5 and almost 4
times better than visible, respectively. For the light fog, LWIR is also 4 times better than
visible, while MWIR does not show any performance improvement. In the atmospheric
conditions, moderate fog and thick fog, neither MWIR nor LWIR improve the imaging
performance. These fog categories are opaque to visible and infrared. This is due to the
atmosphere, which represents a limiting factor.

2.4/ CONCLUSION

In this chapter we have first defined from an optical and physical point of view what a hazy
environment is. Visibility degrading environments are various. The optical effects gener-
ated by each of them is differently modeled according to the nature of present particles.
They also have different impacts on the global quality of the perceived image.

Special attention has been given to outdoor images taken in bad weather. A global de-
scription of the particles contained in the atmosphere and the interaction they have with
light. Visibility is considered as being a complex psycho-physical phenomenon. From
one side, the deterioration of visibility is basically caused by bad atmospheric conditions
and the type of degrading layer. The interpretation of this degradation is not a constant
function. It depends on the vision system characteristics, as well as the properties of the
target object, such as its size and the temperature difference of the target and background
when we deal with infrared signal [19]. This is why it is important to specify a frame of
reference when we want to interpret hazing or dehazing behavior.

Since the perceived apparent luminance of a hazy scene is controlled by two factors, the
direct transmission and the airlight, we are exposed to two main inaccuracies: if A∞ is
not accurately estimated, the recovered colors are shifted from their original values. If t is
wrongly calculated, the haze is not effectively removed. These inaccuracies are differently
handled by dehazing approaches. In the next chapters we will mark the boundaries
between the haze model validation and the dehazing approaches accuracy.
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DEHAZING

”Vision is the art of seeing what is invisible to others.”

-Jonathan Swift-

In this chapter we first review dehazing methods that have been proposed over the last
several years. We break them down into separate categories. We focus on those that
have been widely adopted and often used to evaluate the performance of new methods
through comparison. We shed the light on single color image dehazing. The last part of
this chapter is dedicated to identify some literature gaps that we show how we proceeded
to address in part II.
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3.1/ INTRODUCTION

A number of developments in computer vision are there to enhance the visibility of outdoor
images by reducing the undesirable effects due to scattering and absorption caused by
the atmospheric particles. This could be a pre-step of other applications, which assume
that input is exactly the scene radiance. Otherwise, these algorithms would generate
inaccurate results.

Dehazing is needed for human activities and in many algorithms like recognition, track-
ing and remote sensing [105, 176] and sometimes in computational photography [147].
Applications that are of interest in this scope: fully autonomous vehicles typically use
computer vision for land or air navigation, monitored driving [54, 168, 133], outdoor secu-
rity systems [141], or remote surveillance systems [14]. In bad visibility environments (cf.
Section 2.2), such applications no longer function efficiently. An extra layer of processing
should be added.

Image dehazing is a transdisciplinary challenge, as it requires knowledge from different
fields: meteorology to model the haze, optical physics to understand how light is affected
by this haze and computer vision as well as image and signal processing to recover
the parameters of the scene. Researchers have been always searching for an optimal
method to get rid of degradation by light scattering along aerosols. Many methods have
been proposed and compared to each other. Although today we have a varied collection
of approaches, they are limited and they do not meet efficient recovery requirements.

Throughout dehazing process, many modifications are introduced, affecting the image
features. These modifications might lead to have a better or a worse rendering to the
whole image, while knowing that image features are affected differently. The rendering
level depends directly on the method hypothesis and the distortions introduced by the
viewing and capture conditions.

3.2/ DEHAZING METHODS: STATE OF THE ART

3.2.1/ OVERVIEW

The main objective of haze/fog removal, defogging or dehazing is to recover the atten-
uated light of the scene (i.e. scene radiance). This problem is mathematically ill-posed
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since the number of unknown parameters is bigger than the number of equations. This
explains the great attention given to this research domain and the variety of approaches,
which are reflected by a dramatically increasing in the number of publications over the
past few years (see Figure 3.1).

Figure 3.1: Number of publications describing new dehazing approaches over 13 years.
This figure has modified from Figure 1 of the paper of Liu et al. [103].

As shown in Figure 3.2, dehazing methods can be classified into two main categories:

1. Single image methods: these methods can be whether physics-based and image
enhancement methods (cf. Section 3.2.2). This category has had a lot of success
and popularity. It represents a very active domain of research, since approaches
do not require user interaction nor additional information (the vast majority of re-
cently proposed dehazing methods belong to this category). Considering a single
degraded image, these color-based methods provide results as good as other cat-
egories’ results. They are used for a variety of applications ranging from simple
visualization to e.g. monitored driving [54], outdoor security systems [141], or re-
mote surveillance systems [14].

2. Multiple image methods: unlike single image methods, these methods suffer from
additional cost. Some of them cannot be performed without user interaction. More-
over, special equipment are usually required, such as polarizers [158], [157], [162].
Different images may be used, such as images taken for the same scene under dif-
ferent weather conditions [127], [127] or images of different types (RGB and NIR).
Thus, they are less prone to be used into real time applications. Sometimes, be-
sides the degraded image, additional information are required, such as the scene
depth map [86]. These methods, like multiple image methods, have not raised yet
a lot of interest.

3.2.2/ SINGLE IMAGE DEHAZING

Much work has been carried out on single image dehazing. However, further research
is still needed to overcome existing shortcomings. Some of them have been widely ad-
dressed in this thesis (cf. Chapters 4 and 5).
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Figure 3.2: The family of dehazing methods.

Single image dehazing approaches can be divided into two groups: physics-based and
image enhancement methods. Methods in the first group are based on the inversion of
the visibility degradation model (Equation 2.16). The challenge is to evaluate the model
parameters, and for that, prior assumptions and constraints have to be taken. The key
point is then to find the most suitable hypothesis which leads to the best parameter esti-
mates. Such methods are known by image restoration methods.
Methods in the latter category do not consider the physical causes of image degradation
caused by weather conditions, but rely on observers preferences that are known to im-
prove the image quality. In particular, contrast enhancement is the major general concept.
They include image enhancing techniques such as the applying of bilateral and guided
filter [17], [172], [71] for image smoothing or the histogram equalization for contrast ad-
justment, etc. They suffer from less effectiveness on maintaining color fidelity. Since they
aim to improve the quality of images, no matter if the features of images are accurately
recovered or not, they are called image enhancement methods.

3.2.2.1/ PHYSICS MODEL BASED METHODS

Although physics model based methods have been judged as good in handling original
information fidelity [193], they suffer from some practical limitations. Since they are based
on the haze model (Equation 2.16), they fail as soon as it is physically invalid. When the
airlight is not uniformly applied on the whole image, the constant-airlight assumption will
be violated. If the haze is not uniformly distributed on the image, the single scattering
coefficient hypothesis will be no more true. If the transmission is not the same for R,
G and B channels, a color distortion is generated. They usually fail in the dense haze
condition, or in particular zones where the scene objects are similar to the atmospheric
light and no shadow casts on them.

As we pointed out that the number of dehazing methods is increasing very fast, it would
be nearly impossible and tedious to describe all of them in this manuscript. We will only
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detail representatives of each of the dominant methods and assumptions, which we used
in the quality evaluation section 6.2.

Dark Channel Prior In 2009, the Dark Channel Prior (DCP) was first introduced by
He et al. [70]. It was inspired from an earlier haze removal method known as dark
object subtraction technique [28]. Based on the observations provided in the paper, the
intensity of one of the channels in a typical color image pixel is low and tends to be zero
(5000 outdoor and daytime images have been chosen from flickr.com, they cut out the
sky region, they calculated the dark channel prior: 75 % of the pixels in the dark channel
have zero values, and the intensity of 90 % of the pixels is below 25). This technique
has been used to remove spatially homogeneous haze. This is done by subtracting a
constant value corresponding to the darkest object in the scene.

Using DCP, dehazing is done through five steps (Figure 3.3). Step 1: dark channel con-
struction, Step 2: atmospheric light estimation, Step 3: transmission estimation, Step 4:
transmission refinement, Step 5: scene radiance recovery.

Step 1. Dark channel restoration It relies on the assumption that, for a given pixel in
a color image of a natural scene, one channel (red, green or blue) is usually very dark,
except for the sky. The airlight tends to brighten these dark pixels, and therefore it is
estimated from the darkest pixels in the scene. This observation is inspired from [28],
and it is known as dark channel prior. For a hazy image J(x), the dark channel Jdark(x) is
given by Equation 3.1:

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))) (3.1)

Jc is a color channel of J and Ω(x) is a local patch centered at x.
In [72], dark channels are computed using a patch size 15×15. Few hints are provided
to define the patch size: larger size increases the probability that a patch contains dark
pixels. Thus, dark channel could be accurately estimated. However, with a large patch,
the assumption that the transmission is constant in a patch becomes less appropriate and
the halo artifacts near depth edges become stronger. According to Lee et. al [91], with a
minimum possible patch size, we avoid the heterogeneous textures and the selection of
a patch containing parts of two objects with different distances to the camera.

Step 2. Atmospheric light estimation The brightest pixels in the hazy image are
considered to be the most haze-opaque, if and only if, the weather is overcast and the
sunlight denoted by S is ignored and only the atmospheric light A∞ is considered:

if it is the case then
J(x) = R(x)A∞ where image intensity without hazy is 0 ≤ R ≤ 1
I(x) = R(x)A∞t(x) + (1 − t(x))A∞ ≤ A∞

else
J(x) = R(x)(S + A∞)
I(x) = R(x)S t(x) + R(x)A∞t(x) + (1 − t(x))A∞ ≥ A∞

Thus, the brightest pixel can be brighter than the atmospheric light.
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Figure 3.3: Flowchart of DCP showing its main steps.

To resolve this problem, the dark channel is used: we pick the top 0.1% brightest pixels in
the dark channel. Then, among these pixels, the pixels with highest intensity in the input
image I are selected as the atmospheric light.

Step 3. Transmission estimation After estimating atmospheric light, transmission is
estimated as follows:

t(x) = 1 − ω min
y∈Ω(x)

(min
c

(
Ic(y)
Ac
∞

)) (3.2)

where ω is the amount of haze kept in the image to avoid unnatural scenes (ω = 0.95).

Step 4. Transmission refinement In order to refine the transmission map, soft matting
Laplacian is applied to smooth artifacts along edges. However, it increases dramatically
the computational time. For more details on the soft matting, readers may refer to Ap-
pendix A.

Step 5. Scene radiance recovery Referring to Equation 2.16, we can deduce:

J(x) = (
I(x) − A∞

max(t(x), t0)
) + A∞ (3.3)

t0 = 0.1. It avoids to obtain a dim enhanced image.

DCP, like any other dehazing method, has also some drawbacks. Some of them have
been addressed in the following-up DCP-based methods explained later in this section:

• DCP fails to estimate the transmission when the objects are inherently similar to the
atmospheric light and not covered by shadows. It fails to restore the image with a
large sky area or a large white area, as well.

• Since DCP is a physics-based method, it fails when the haze model (Equation 2.16)
is physically not valid.

• DCP fails to recover the image under non-homogeneous haze.
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• The soft matting used for transmission map refinement is time consuming. Thus, it
is not suitable for real time applications.

• The color distortion phenomenon will occur when the transmission is not accurately
estimated and it is different among three color channels.

• Like any other color-based dehazing methods, DCP fails when the fog is dense.

DCP derivatives Later on, various derivative versions of DCP have been released.
Some of them proposed an improvement in one or more steps [91]. Some others were
adjusted to be used in other applications. We list some derivative methods according to
the step in which the change was occurred.

Step 1 Most DCP-based dehazing methods calculate the dark channel by simply using
a local patch with a fixed size to basically reduce the calculation time. Some of the DCP-
based following up methods consider a patch with a different size from 15×15, which was
basically used. The patch size can be more adapted based on the image content (cf.
Section 3.2.2.1). Some of them used a patch size of 11×11 to reduce time complexity
[106]. In [31], authors considered that serious over-saturation effects occur in the recov-
ered scene radiance when a small patch size is used in the original hazy image featuring
localized light. This leads to a failure in the identification of the atmospheric light source.
Larger size can resolve this problem, but it leads to halo effects and block artifacts, espe-
cially along edges (see Figure 3.4). Therefore, two patch sizes of 3×3 and 45×45, which
are experimentally identified, have been used in a hybrid process of DCP.

Apart from the size of the patch, unlike the majority of DCP-based methods, Zhang et al.
[197] replaced the minimum operator by the median operator:

Jdark(x) = median
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))) (3.4)

This replacement leads to a less blurry dark channel on one side and to a higher compu-
tational time on the other.

(a) (b) (c) (d) (e)

Figure 3.4: (a) Hazy image. (b) Dark channel obtained by Equation 3.2 (3 × 3). (c) Dark
channel obtained by Equation 3.4 (3 × 3). (d) Dark channel obtained by Equation 3.2 (15
× 15). (e) Dark channel obtained by Equation 3.4 (15 × 15). This figure is reproduced
here from Figure 6 of the paper of Lee et al. [91].

Step 2 The majority of DCP-based dehazing methods estimate the atmospheric light as
it is described in the original method [74, 100, 184, 166, 188, 153, 79, 197]. In [182], A is
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the highest intensity value among the 0.2% instead of the 0.1% of the brightest pixels of
the dark channel.

There are others, who assumed that A is the highest dark channel intensity value and it
should be calculated as follows:

A = I(argmaxx(Idark(x))) (3.5)

In later works, researchers assumed that this estimation is inaccurate, especially when
the scene contains many bright pixels. Thus, a third form has been released [79] to
exclude the bright pixels from the estimation of A by calculating the local entropy:

E(x) =

N∑
i=0

(px(i) × log2(px(i))) (3.6)

where px(i) is the probability of a pixel value i in a local patch centered at x. N is the
maximum pixel value. The local entropy value is high for regions with sharp variations
and it is low for regions with smooth variations. Thus, A is the lowest local entropy value,
since the variations over an opaque layer of fog are smooth.

Step 3 Two equations have been mostly used to calculate the transmission map. The
first one was mainly used by the original DCP (Equation 3.2). And it was later used in
many following-up methods described in [74], [100], [166], [182], [188], [153], [105], [106],
[99], [197] and [191].

Xu et al. [184] have addressed the under-estimation problem of the transmission map. To
resolve this, they added a positive value ρ ∈ [0.08, 0.25] to the transmission map:

t(x) = 1 − min
y∈Ω(x)

(min
c

(
Ic(y)
Ac )) + ρ (3.7)

Indeed, the addition of ρ in Equation 3.7 or ω in Equation 3.2 resolves partly the prob-
lem. According to [91], where RMSE (Root Mean Square Error) values were calculated
between the ground-truth and the estimated transmission map using 66 synthetic images
from FRIDA database, ω should be around 0.9 and ρ around 0.12.

Step 4 Inaccurate estimation of the transmission map may lead to some distortions such
as block artifacts. The patch-based dark channel calculation, leads to a blurry transmis-
sion map. This is mainly due to the assumption that t is a constant value in a local patch.
This is not always true, especially when the patch contains a sharp edge. This wrong
assumption leads to clear edge artifacts. In order to get a refined map, many methods
have been used. The reader may refer to the Appendix A for more information about the
transmission refinement algorithms.

Some dehazing methods have used gaussian filter to smooth the map [188, 153, 105].
Some others [184, 191] have used instead the bilateral filter [172], which is very similar to
Gaussian convolution, but pixels are treated based on nearby location and similar values.
It is a smoothing filter with edge-preserving [191, 184]. The guided filter can perform
edge-preserving like bilateral filter, but it has a better action near edges [71]. Since the
application of the soft matting [93], which has been used in the original DCP method
[70, 72] was extremely slow, the authors of this method replaced it by the guided filter to
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speed up the transmission refinement map. For this reason, the soft matting has never
been used later in any other dehazing method. Contrariwise, the guided filter has been
used later in other methods [100, 153, 99].

The main difference point between these refinement algorithms, that unlike the Gaussian
and the Bilateral filters, the soft matting, the Cross-bilateral filter and the Guided filter
consider the color hazy image and not only the gray image of the transmission map. This
helps to remove the erroneous textures based on the real colors and to keep a similar
sharpness to the original color hazy image. For more information about the transmission
refinement algorithms, the reader may refer to Appendix A.

All of these enhancing algorithms have been applied directly on the transmission map.
However, other algorithms apply a pre-processing enhancing algorithm to the hazy image
in order to prevent the transmission map from blur and erroneous textures. In [95], a
morphological filtering process is applied on the grayscale hazy image in order to reduce
the block artifacts in the transmission map.
In [200], the edge-guided interpolated filter is applied on the hazy image, which is used
as a guidance image in the guided interpolated filter applied on the transmission map, in
order to sharpen the fine details in the final dehazed image such as edges.
In other works, a focus has been placed on the amelioration of the transmission estimation
in such a way to overcome the refinement step. Fang et al. [50] presented a windowed
adaptive method to estimate the transmission. Within the local patch, for each pixel, the
intensity difference between it and the other pixels is calculated. The pixels which have
the minimal distances are retained as having the same transmission value.

Step 5 After the estimation of A and t, the clear image is usually recovered using Equa-
tion 3.3. t0 is introduced in the denominator to avoid zero values and to maintain a natural
image with some amount of haze. The majority of the following up DCP-based methods
use the same equation. However, in their paper that considers sandstorm images, Huang
et al. [74], the atmospheric light is no more achromatic, thus, at the final step of dehazing,
a color correction is needed. The clear image J is calculated as follows for each pixel x:

Jc(x) =
Ic(x) − (Ac − dc)

max(t(x), t0)
+ (Ac − dc) (3.8)

where c denotes the color channels R, G and B. dc denotes the difference between the
average values of the red and c channels of the image I.

Applications using DCP and its derivatives Besides the outdoor applications used in
bad atmospheric conditions, DCP is used and adapted in a wider range of applications.
For instance, there are common features and mechanisms within the underwater and
outdoor environments. Underwater images, like images captured in bad weather, have a
weak quality, which is caused by the scattering and the absorption of light by the particles
suspended in water, with significant size and density. All of these mechanisms reduce
the overall image quality and turn underwater photography into a challenging task [15].
These images usually suffer from poor visibility, low contrast, blur, non uniform lighting
and color distortions.

Scattering and absorption, which are assumed to be wavelength-independent in a foggy
day, they are not in underwater environment [40].
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How did DCP gain this popularity? Despite its drawbacks, there are few reasons lying
behind its success over its contemporary methods.

• It is based on a simple, logical, robust and real assumption derived from a statistical
characteristic of outdoor natural images.

• It does not introduce any pre-processing adjustment to dehazing. Parameters are
estimated from the original values.

• From the marketing side, unlike its contemporary methods, especially Fattal and Tan
approaches, He et al. succeeded to attract the interest of researchers by providing
the whole code of their algorithms.

During the same period, two single dehazing approaches have been released: Fattal and
Tan approaches [52], [165].

Fattal’s approach In his work [52], Fattal decomposed the unknown radiance image
J as a pixelwise product of surface albedo coefficients R and shading factor l, that he
assumed to be locally uncorrelated. Then, he broke R into two components. One parallel
to the airlight and a residual vector which is orthogonal to it.

Based on the above assumption, the atmospheric light A∞ is estimated using the Indepen-
dent Component Analysis (ICA) algorithm [76]. Likewise, the transmission t is calculated
using ICA and the Gauss-Markov random field model [140].

Like DCP, Fattal’s approach is based on a statistical assumption. So, it greatly depends
on the input image. Moreover, its seems to be not effective at dense fog.

Tan’s approach Tan et al. [165] proposed a method based on two basic observations.
The clear-day images have more contrast than images in bad weather. Second, airlight
with the variation depends mainly on the distance of objects to the viewer, tends to change
smoothly in small local areas.

After applying the white balance operation to transform the input image into white color,
the atmospheric light is estimated as the highest intensity of the image. The atmospheric
light, like the many other methods, is estimated by the highest intensity of the input image.
Afterwards, the airlight is modeled using the Markov Random Field (MRF) by maximizing
the local contrast of the image. The main purpose of this algorithm is not to recover the
original color or reflectance of the images, but to enhance the visibility of scenes in bad
weather with some degree of accuracy on the scene colors.

The main drawback of this method is the over-saturation of images’ pixels. Thus, dehazed
images seem unnatural (see Figure 3.5). Moreover, some halo artifacts caused by the
patch-based operations, especially on depth discontinuities, may also appear on the final
result.

Fast visibility restoration Considering the intensity of the airlight at location x in the
scene as: V(x) = Is(1 − e−kd(x)), the hazy image is represented by an alternative equation
of the Equation 2.16 [167]:

I(x) = R(x)(1 −
V(x)

Is
) + V(x) (3.9)
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(a) (b) (c)

Figure 3.5: (a) Hazy image. (b) Tan’s result. (c) DCP’s result. Images are borrowed from
the Figure 8 of the paper of He et al. [70].

where I(x) is the observed image intensity; R(x) is the image intensity without haze; Is

is the intensity of the atmospheric light; V(x) is the atmospheric veil, which is calculated
instead of the depth map.

Considering the haze model, the processing consists of the following steps:

1. Estimation of the atmospheric light: it is done by applying a local white balance
prior to dehazing. Thus, atmospheric light is set to (1, 1, 1). A local white balance
performs better when the light color changes along the image.

2. Inference of the atmospheric veil: Atmospheric veil is subject to the constraint:
0 ≤ V(x) ≤ W(x), where W(x) = min(I(x)) is the whiteness image. In his paper
[165], Tan considered that restoration is an ill-posed problem and the solution can
be obtained by maximizing the contrast of the image while assuming that the depth-
map must be smooth except along edges with large depth jumps. Here, the same
problem is reformulated as maximizing V(x) and assuming that V(x) is smooth most
of the time. V(x) is optimized as follows:

argmax
V

∫
(x)

V(x) − λΦ(‖ ∇V(x) ‖2) (3.10)

λ controls the smoothness of the solution, Φ is an increasing concave function al-
lowing large jumps. Indeed, when the atmospheric veil V(x) does not show clearly
the edges, an incorrect halo appears when complete smoothness is enforced. This
implies that the local average of W(x) must be performed using a smoothing algo-
rithm which preserves large jumps along edges. Thus, bilateral filter or fast median
filter could be applied:

1. The local average of filter of W is computed as: A(x) = mediansv(W(x)) where sv

is the size of the filter window.
2. Then, to take into account that areas with contrasted texture are probably not

hazy, the local std of W(x) is subtracted from A(x). Again, to be robust to
outliers, this std must be estimated in a robust way by applying the median
filter on |W(x) − A(x)|:

B(x) = A(x) − mediansv(|W − A|)(x) (3.11)

3. The last step consists on multiplying B(x) by p ∈]0, 1[ to control the strength
of the visibility restoration. The values of pB(x) do not necessarily respect the
constraints on V and thus are thresholded: V(x) = max(min(pB(x),W(x)), 0).
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In order to preserve edges as well as corners with obtuse angles, an original filter
named Median of Median Along Lines is introduced [167].

3. Estimation of the radiance: Based on the Equation 3.9, when V is calculated,
image radiance is deduced as follows:

R(x) =
I(x) − V(x)

1 − V(x)
Is

(3.12)

4. Post processing enhancement The recovered radiance usually suffers from com-
pression artifacts and noise, which is amplified through inversion process (see Sec-
tion 3.2.5) and it has as well a higher dynamic than the original hazy image.

In order to soften the noise and artifacts issue, a local smoothing is applied to
the image. For better comparison between the input and the output image and
between the output images of different algorithms, it is important to always apply
tone mapping.

Fusion strategy The fusion strategy denotes here the fusion of several images derived
from the same hazy image. The fusion technique (FUSION) introduced by [13, 11] con-
sists in combining white balancing and contrast enhancement via a linear transformation.
The two images are then weighted by multiplying three weight maps: luminance, chro-
matic and saliency weight maps. The image is then smoothed by Laplacian and Gaussian
pyramid to reduce artifacts introduced due to the weight maps. According to Sahu [152],
the fusion based image dehazing leads to better results than any other techniques. This
method considers visual informations: saliency and specifically color and chromatic effect
of airlight. Such method is not suitable for inhomogeneous fog, since it does not consider
depth information.

3.2.2.2/ IMAGE ENHANCEMENT METHODS

Image enhancement methods consider mostly the subjective judgment of humans. They
mainly aim to improve the image contrast by local histogram equalization and to adjust
the colors of the image in order to make an image look better with vivid colors.

Dehazing using CLAHE Xu et al. [187] presented a CLAHE-based method to re-
store fog degraded color images. Unlike the ordinary histogram equalization, in CLAHE
method (Contrast Limited Adaptive Histogram Equalization) [142], we determine a maxi-
mum value to clip the histogram and redistribute the clipped pixels equally to each gray-
level. This prevents as well the over-amplification of noise through image restoration.

In this method, RGB image is first converted into HIS color space, to handle lightness
separately from hue and saturation. The reason of conversion is that, the HSI represents
color similarly to how the human eye senses colors. Second, the intensity component
of the image is processed by CLAHE. Hue and saturation are unchanged. Finally the
processed image is converted back to RGB.
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Variational approach Galdran et al. [56] assumed that the physical model is too sim-
ple to be able to model the real situation, and it fails to handle the change of the size
of atmospheric particles and the non-uniformity of the illuminant as the brightness of the
atmosphere is spatially variant. They proposed, a variational framework (VAR) for image
dehazing that deals with spatially-variant features. It performs contrast enhancement on
hazy regions of the image throughout an iterative procedure allowing to control the de-
gree of restoration of the visibility in the scene, while considering white patch assumption
adapted to haze-free images, thus respecting the colors of the haze-free image. In a
further work [57], an additional energy term was added to control the degree of saturation
of the processed image. This term avoids obtaining over-saturated results. This method
is selected as an iterative enhancement representative.

This method is not dedicated to image dehazing, it can be applied on any other image
for contrast enhancing purpose. This is due to the fact that the contrast is enhanced no
matter how it has been degraded. While contrast improvement through dehazing consists
in estimating the scene transmission which is depth-dependent. Once physical character-
istics of the hazy scene formation is respected, dehazing process would maintain better
original features.

3.2.3/ MULTIPLE IMAGES DEHAZING

More than a single image imply the use of a special equipment, such as polarizers are
required, or some scenes taken under different weather conditions, or maybe various
image types. In this section, methods dealing with two input images are presented: first,
a method that considers images taken under different weather conditions. Second, a
method that uses the dissimilarity between RGB and infrared images, which may be
acquired by a single sensor [170], [88]. Third, a method that manipulates images with
different polarizing angles [158], [162], [156]. Perhaps these methods are not suitable
for many applications since they require a considerable effort and cost in terms of user
interaction, time and complexity. In light of this, methods of this category cannot be
used in applications requiring autonomous control. Thus, little work exists in this domain,
since in addition to what is mentioned before, they do not provide more enhanced results
comparing to single image dehazing methods.

Contrast restoration from two or more weather conditions Narasimhan et al. stud-
ied widely the dehazing from various images taken under different weather conditions
[125, 127, 128]. For this purpose, they created as well a database of real images of
different conditions of the same outdoor scenes [130] (see Section 4.3.1).

Considering the mechanisms of atmospheric scattering, the attenuation and the airlight
(cf. Section 2.3.2), Nayar and Narasimhan presented a color model called dichromatic
model, which represents the color of a scene point C as the vector sum of the color of the
direct transmission Â and the airlight color B̂:

C = pÂ + qB̂

=
E∞re−βd

d2 Â + E∞(1 − e−βd)B̂
(3.13)

This linear relation between C, Â and B̂ leads to plot these points on the same dichromatic
plane of the color space RGB. Since the units of Â and B̂ of a given scene point do
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not change between different weather conditions, Ci and C j taken under the weather
conditions i and j can be plotted as in Figure 3.6.

Figure 3.6: The estimated color coordinates of the same scene point taken under two
different weather conditions i and j are plot on the same plane in the RGB color space.
These coordinates differ from each other by the magnitudes of Â and B̂. This figure has
been modified from Figure 1 of the paper of Narasimhan et al. [128].

Considering two points of the same scene P1 and P2, the color of each one of them lies
on its own plane. These planes share the same airlight color with different magnitudes.
Thus, the airlight color vector B̂ represents their intersection (see Figure 3.7).

Based on this chromatic framework and these assumptions, through a geometrical way,
for every point in the scene we compute the brightness in both weather conditions from
non-sky regions only, and we deduce therefore the structure of the whole scene.

Dehazing using near infrared Near-infrared light has stronger penetration capability
than visible light due to its long wavelength. So, this light is less scattered by particles in
the air. The advantage of deep penetration of NIR makes it possible to unveil the details,
which could be completely lost in the visible band. The dissimilarity between RGB and
NIR can be exploited to estimate the airlight color. A key step in such a scene recovery is
subtraction of the airlight.

The hybrid VIS-NIR dehazing method proposed in [53], consists of two main steps:

• Airlight color is estimated by the dissimilarity between RGB and NIR:

– Considering that t(x) depends on the scene depth d and the density of haze β;
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Figure 3.7: The estimated color coordinates of two points P1 and P2 of the same scene
are plot on two different planes in the RGB color space.

– J depends on the illumination of the scene and the surface reflectance.

– Thus, it can be assumed that J and t are not correlated within a local patch.
The idea proposed here consists in finding a local patch with pixels having
large similarities, followed by searching an airlight color that leads to the small-
est correlation between t and J.
Thus, two criteria should be fulfilled:

∗ C1: pixels within the patch should have intermediate level of haze, so that
both J and A contribute to the observed intensity values I in the equation.

∗ C2: pixels within the patch should have similar properties such as surface
reflectance.

– A haze map is generated first to find pixels that satisfy C1 and then adopt
RGB-NIR relationship to meet C2.

∗ Haze increases the intensity value over all R, G, and B channels and this
reduces the image contrast. The smallest intensity value over the three
color channels infers the density of the haze.

∗ In order to refine the density of the haze, the difference between NIR and
RGB is calculated.

H = min{ min
K∈{R,G,B}

(IK),D},D = N{
∣∣∣IB − INIR

∣∣∣} (3.14)

∗ In order to meet the criterion which consists of having a patch that contains
an intermediate level of haze. Therefore, the image histogram of H is
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generated, and the first valley h of the histogram is used as a reference to
select a coarse patch region Ωc. Pixels within Ωc should have similar haze
density, and the similarity is defined by γ:

Ωc = x : |H(x) − h| ≤ γ (3.15)

Within these patches, a searching process is made for an airlight color A
that leads to the smallest correlation between J and t.

A = arg min
∀(x)∈Ω

C(J, t)2 (3.16)

C: Pearson’s correlation coefficient

• Enforcing the NIR gradient constraint through an optimization framework:

– The initial transmission map is defined as follows:

ti = 1 − min
k∈{R,G,B}

(
Ik

A
) (3.17)

– The initial haze-free image:

Ji =
I − A

max(t, ε)
+ A; ε = 0.1; (3.18)

Based on the Baye’s theorem, the optimal solution for J and t is found by
solving the following optimization problem:

(J, t) = argmin
∣∣∣∣∣∣tJ + (1 − t)A − IRGB

∣∣∣∣∣∣2
+λ1ω

∣∣∣5J − 5INIR
∣∣∣α

+λ2 |5J|β + λ3 ||5t||2
(3.19)

By solving the optimization problem stated in Equation 3.19 using Iteratively
Reweighted Least Squares (IRLS) with initialized J0 and t0 derived from Equa-
tion 3.17 and Equation 3.18, the haze-free image J and the transmission map
t simultaneously recovered.

Dehazing using polarizing Here, we find another way to enhance a dehazed image
issued from two images differently polarized. Polarization angles are: θ1 = 0◦ and θ2 =
90◦. One of the causes of light polarization is the scattering. Scattered airlight intensity is
divided into two components: A⊥ and A‖ that are parallel and perpendicular to the plane
of incidence, which is defined by the camera, the scattering particle and the sun. The
degree of polarization is defined as follows:

P ≡
A⊥ − A‖

A
(3.20)

where the airlight A is formed as:
A = A⊥ + A‖ (3.21)

Only when the light source is normal to the viewing direction, the airlight is totally polarized
(P = 1). In other words, the airlight is totally perpendicular to the plane of incidence. It
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can be eliminated if the image is captured through a polarizing filter oriented parallel to
this plane. The polarization decreases as the direction of illumination deviates from 90◦.
So, the degree of polarization decreases by depolarization. Since that, the scattering of
the directly transmitted t light does not change the polarization state of the incident light.
The polarization of the direct transmission is insignificant.
P does not depend on the distance, since polarization degree does not change along the
line of sight.

Image Formation The intensity which hits the sensor without polarizer is defined as:

Itotal = t + A; (3.22)

When a polarizer is mounted, the captured intensity changes with the polarizer orientation
angle θ:

I = Imaxcos2(θ) (3.23)

As stated above, an intensity variation is only due to the airlight:

I⊥ =
t
2

+ A⊥ (3.24)

I‖ =
t
2

+ A‖ (3.25)

The best state is to have I‖, because the captured intensity is the closest to the direct
transmission. Thus, in order to recover t, we have to compare two images taken with two
different polarizer’s orientations, and then we remove the airlight. Comparison process
starts by removing the airlight. In order to do so, we estimate P:

when the scene’s depth d → ∞ ⇒ Itotal → A∞: P = I⊥−I‖
I⊥+I‖ ⇒ P =

A⊥∞−A‖∞
A⊥∞+A‖∞

. A∞ is the highest
intensity value of the image. It is usually estimated by measuring a patch of the sky at the
horizon.

Once the parameters A∞ and P are estimated, the remaining parameters are calculated
as follows:
Airlight A:

A =
I⊥ − I‖

P
(3.26)

Transmission t:
t = Itotal − A (3.27)

Attenuation factor:
e−βd = 1 −

A
A∞

(3.28)

And finally, the scene radiance:

J =
t

e−βz (3.29)

Although we are mainly concerned with the single RGB image dehazing, this does not
mean that these methods are useless. In this study there is a preference for methods,
which require all minimal data of the same nature. Otherwise, the comparison is no more
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fair. A method that estimates parameters based on assumptions is not equal to a method
that handle provided parameters.

Dehazing being an image processing mostly needed for real time applications, it does not
tolerate a long processing time. The aforementioned methods, in their current forms, they
can serve the research interests in seeking potential development paths. They serve also
to point out the efficiency of an acquired parameter, that initiates the researches to find a
way to estimate it automatically.

3.2.4/ DEPTH MAP DEHAZING

An accurate dehazing logically requires precise weather and depth information. For their
part, Srinivasa et al. [128] assumed that a good dehazing could be performed without pre-
cise depth information. One argument was that, within small depth ranges, using a cam-
era with limited dynamic range does not capture subtle effects created by bad weather.
Thus, they proposed a single image dehazing based on depth approximation provided by
the user, who selects a minimum distance (good color region) and a maximum distance
(airligh color). The distances in between are calculated trough interpolation. This method
is not suitable for images with depth discontinuities such as urban scenes. Since planar
surfaces in such scenes are assumed to have similar brightness, using urban scenes
from WILD database (refer to Section 4.3.1), planes of depth are derived from satellite
orthophotos.

Later on, Kopf et al. [86] assume that a simple user interaction aiming to align a photo-
graph with a georeferenced digital terrain and urban models such as Google Earth and
Microsoft’s Visual Earth feeds the haze model by useful data such as depth and texture
information. Once the depth is known, haze can be removed accurately.

Although this strategy achieves dehazing with competitive results with no additional equip-
ment, it is not automatic and it needs the estimation of some parameters.

3.2.5/ HAZE AND NOISE REMOVAL

Hazy and dehazed images usually contain some noise. This is mainly due to the envi-
ronment (extrinsic noise) and the sensor (intrinsic noise) and it is remarkably amplified by
dehazing (Equation 3.31). Accordingly, since the exponential attenuation comes quickly
down to zero, the noise is greatly amplified for high fog densities and long distances
[86, 48].

While the majority of dehazing methods ignored the noise and its effects, some re-
searchers have addressed simultaneously haze and noise issues. Let us explain the
importance of such enhancement approaches.

A hazy image containing an amount of noise that comes from the environment and the
sensor is modeled as follows:

I(x) = J(x)t(x) + A∞(1 − t(x)) + n(x) (3.30)

where n(x) denotes zero-mean Gaussian noise having variance σ2.

The estimation of the scene radiance, by simply inverting Equation 3.30 gives the follow-
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ing equation:

Ĵ(x) = A∞ +
I(x) − A∞

t(x)
−

n(x)
t(x)

(3.31)

where t(x) ∈ [0, 1]. In the best case, for an image without haze, t(x) = 1, the noise remains
the same after dehazing if it is not removed before. When the t(x) has a lower value, the
noise is amplified. It dramatically increases in very hazy regions or for very far objects,
where t(x) is close to zero.

There are two main approaches to deal with haze and noise. The first one is to dehaze
and to denoise in a step by step manner (denoising followed by dehazing and vice versa).
The second one is to dehaze and denoise at the same time.

According to Equation 3.31, when denoising is performed after dehazing, the noise is no
more uniform through the image, since it is exponentially amplified with the fog density.
Thus, a standard space-invariant denoising method is not efficient. In an outdoor image,
it might over-smooth the objects near to the camera, which have a low noise and smooth
insufficiently the distant objects, which are very noisy. To avoid this problem, Kaftory et al.
[81] presented a variational denoising method based on a regularization operator, which
is distance dependent. Comparing to the Non-Local Means filter [26], the variational
approach achieves the denoising of the variant noise with more accuracy.

Matlin and Milanfar [113] proposed two dehazing algorithms associated to denoising in
two ways. In the first one, to avoid the amplification of noise generated as a result of
Equation 3.31, the denoising is first applied to the hazy image using the color image
denoising method BM3D [36] (refer to Section 6.3.6) to lower the noise factor n(x) in
the hazy image (Equation 3.30). Any other linear denoising method can be applied,
since the noise in hazy images is spatially no variant, unlike the dehazed images when
the noise is exponentially amplified with the fog level. The DCP is then applied. This
method produces an improved dehazed image against dehazing without denoising, if and
only if the variance of noise is accurately known and used as a parameter for denoising.
In practical cases, it is highly likely that the variance is not exactly estimated, thus this
approach does not bring any particular benefit for outdoor and real-world applications,
where the original haze-free image is not available.
In the second one, dehazing and denoising are performed simultaneously through an
iterative process using non-parametric regression method, which is tuned by the Mean
Squared Error (MSE) results. This approach overcomes the first one when the noise is
not known, thanks to the iterative process.

Based on the conclusions of the previous works and the fact that when denoising is
applied prior to dehazing, this may cause a loss of information on image fine details, Nan
et al. [124] proposed a simultaneous dehazing and denoising processing based on a
bayesian iterative approach tied to statistical prior, by considering that the signal and the
noise are uncorrelated. It is tied also to objective assumptions by considering that the
distribution of the chromaticity gradient histograms of the hazy and the haze-free images
are the same, and according to the green sensitivity in the human visual system, the
transmission is accurately estimated from the green wavelength. A factor is defined to
ensure through an iterative way the balance between the amount of removed noise and
the edge information in the transmission map.

The variational dehazing method presented in [56] does not deal with the noise and it is
a general contrast enhancement method, which can be applied for dehazing and other
enhancement purposes. Unlike this method, Fang et al. [50] dealt simultaneously with
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haze and noise through a variational approach consisting of two steps. The estimation of
the transmission t is done using windows adaptive method that only considers patches
with no large differences in intensities, since the presence of an edge within the local
patch makes the constant assumption of t no more correct. The estimated transmission is
then converted into a depth map. The energy functional includes dehazing and denoising,
simultaneously. The minimization of this function is based on the assumption that the
radiance and the depth are piecewise constant.

3.2.6/ NIGHTTIME HAZE REMOVAL AND MULTIPLE LIGHT COLORS

Nighttime dehazing is important for the same applications as daytime dehazing (cf. Sec-
tion 3.1) when they are used over night. The dehazing methods that have been proposed
to deal with the daytime hazy images are not efficient for nighttime hazy images. This is
due to the large dissimilarities between them (see Table 3.1).

When there is no haze, clear nighttime images comparing to daylight images, they suffer
from low overall contrast, low overall brightness, desaturation, loss of acuity, visible noise
and ”blue shift” airlight color [171].

Therefore, the nighttime dehazing is more challenging than the daytime dehazing.

Table 3.1: Nighttime vs daytime hazy images

Nighttime hazy image Daytime hazy image
Artificial light source Natural light source
Non-uniform illumination from A uniform illumination usually
the artificial light sources covers the image
Blow effect No blow effect
Low overall brightness High overall brightness
Low contrast Low contrast
Chromatic atmospheric light Achromatic atmospheric light

A few dehazing methods dealing with nighttime images have been proposed. In this
scenario, DCP finds again a place. Pei et al. [139] proposed a nighttime dehazing method
based on the refined DCP. This means that, the original image is first transferred into a
grayish one by applying the color transfer method [148]. This transformation has been
done to fulfill the hypothesis of the DCP, which is then applied with the guided filter to the
transferred image. After this operation, the contrast of the processed image still seems
dim and unclear. Therefore, the Bilateral Filter in Local Contrast Correction (BFLCC)
[159] is applied as a post-processing to improve the overall dehazed image quality.

A little later, Zhang et al. [194] have proposed another method based on a new imaging
model for nighttime haze condition, that takes into account in addition to the haze effects,
the non-uniform light and the color feature of artificial light source. And they assumed
that the color transfer applied to the input image in [139], changes in a remarkable way
the original colors and it provides unrealistic dehazed images.

The nighttime haze condition is modeled as Equation 3.32:

Ic
i = Litc

i Rc
i ti + Litc

i (1 − ti) (3.32)
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where Ic
i is the captured hazy image, c denotes one of the channels R, G and B, ti and Rc

i
are the transmission and the reflectance at location i. Li and tc

i are scalars that represent
the intensity and the quantity accounts for the color characteristic of the incident light at
location i, respectively.

Three main steps are performed in this method. The first one is the light compensation,
which aims at removing the color casts and obtaining an image with adjusted illumination.
The second one is the color correction that is done by removing the color characteristics
of the incident light. The third one is the dehazing process through the DCP method, how-
ever the atmospheric light is estimated as being a local variable and it is not achromatic
as in daytime dehazing. This is mainly due to the colors caused by the active sources of
light.

Recently, Li et al. [97] proposed a new nighttime dehazing method based on a new
model to override the previous one presented in [194] by considering the glow of active
light sources and their light colors:

I(x) = J(x)t(x) + A(x)(1 − t(x)) + Aa(x) ∗ K (3.33)

In addition to the parameters that form the daytime hazy image model (Equation 3.33),
the glow effect is modeled by a convolution between the active light sources Aa and the
atmospheric point spread function K [129].

Considering this model, the glow image is first separated from the nighttime hazy image
before being dehazed. The separation is based on the smoothness property of the glow
layer, which decreases smoothly away from the active light. While the hazy image layer
is less smooth [96]. The DCP is then applied to the hazy image with a simple adjustment,
by estimating locally the atmospheric light as being the brightest intensity of each local
patch in the image.

3.2.7/ VIDEO HAZE REMOVAL

As we have seen earlier in this dissertation, a good number of image dehazing algo-
rithms have been proposed. In real-world applications, two inseparable constraints are
imposed: the good performance and the real-time of visibility enhancement. Video can be
defined as a group of frames (images). Thus, dehazing should be applied consecutively
on frames, which are combined later to form back the dehazed video. The time of this
process depends directly on the frame size. Therefore, for video dehazing, in addition to
the inaccuracies of image dehazing methods, the reduction of the process time remains
an outstanding issue.

In contrast with image dehazing algorithms, only a few algorithms are proposed to deal
with video visibility enhancement. However, such algorithms are more heavily utilized in
daily activities. Most of video dehazing algorithms were proposed for video monitoring
systems with a still background.

Let us have a look at what has been proposed for video dehazing. According to Xu et
al. [185], video dehazing algorithms can be grouped into three categories: frame-based,
fusion-based and universal component-based video dehazing. In the first one, dehazing
is performed separately on each frame of the video. In the second one, for each frame,
we merge the background and foreground images, which are separately enhanced. The
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third one is characterized by the estimation of a universal component that can be used
for all frames dehazing.

Frame-based video dehazing As an example of this category, Archa and Abdul [16]
applied consecutively the FUSION algorithm explained above to each of the video frame.
Such implementations are usually time consuming, especially when the video duration
is long. They neglect both content and context interaction between adjacent frames that
may lead to perceived discontinuities between the recovered data such as the color and
the brightness of successive frames.

Fusion-based video dehazing Since the separation of the background and the fore-
ground is done on each frame and they are singly dehazed, we come to the same prob-
lems evoked in the first category. In this category both physics-based and image en-
hancement methods have been used.

Referring to [186, 146], a separation of the background and the foreground is first done
through the moving objects detection. CLAHE algorithm is applied to both of them and
they are merged back to form the dehazed frame. CLAHE, which is based on histogram
equalization, is fast, but it suffers from some inefficiencies (refer to Section 3.2.2.2).

In their turn, considering the haze model, John and Wilscy [80] estimated the global light-
ness once for the background image as well as the local lightness parameters of each
foreground image. They are both used for contrast enhancement. The global enhance-
ment is done through a wavelet fusion method before merging back the image parts.

Yoon et al. [190] considered also the haze model by estimating the transmission map
through the multiphase level set formulated from the intensity channel and the atmo-
spheric light as the pixel of the highest intensity value in the HSV color space. In order
to overcome the issues generated by the separate processing of the consecutive frames,
without considering the temporal correlation between them, they applied a color correc-
tion through the adjacent frames.

Universal component-based video dehazing Since the consideration of the correla-
tion between the properties of the consecutive frames such as color and brightness, is
of great importance, a global component of the video sequence is estimated. This re-
duces the long computation issues. However, when the estimated transmission from the
background is used as universal component, this may induce edge degradation and halo
artifacts when there is a large difference with the background [185].

From the background image, Xie et al. [183] estimated the atmospheric light using DCP.
The map transmission is estimated through a process of multiscale retinex (MSR), refined
by a bilateral filter and denoised by total variation denoising filter. The final dehazed video
is obtained after inverting the haze model.

3.2.8/ DETECTION AND CLASSIFICATION OF HAZY IMAGES

When we look at an image, we automatically recognize if it is hazy or not. We usually ap-
ply dehazing on these images to make them clearer. And we do not do so with haze-free
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images, since we consider it of good quality. But, when it comes to real-world applica-
tions, there is a need to know if the captured image is covered by haze or not. Since
the application of dehazing on clear images produces some adverse effects. It may pro-
duce an image of worse quality than the original clear one. It is likely to lost the original
raw data acquired from the vision system. Dehazing is a time consuming process. Its
application delays the following-up processing.

Few algorithms have been proposed whether to detect the hazy areas in a clear image,
or to detect the presence of haze all over the image and to classify it later as hazy image.

3.2.8.1/ DETECTION OF HAZY AREAS IN IMAGES

Ancuti et al. [12] were the first to introduce an algorithm that allows the identification of
hazy regions. It is based on the dissimilarity between the original hazy image and the
semi-inverse hazy image, which is, for each channel, calculated as given in Equation
3.34:

Ic
si(x) = max

x∈I
[Ic(x), 1 − Ic(x)] (3.34)

where c denotes one of the channels R, G and B. I is the original image and 1 − I is its
inverse image. This detection is based on the observations related to the image char-
acteristics. The intensity values of pixels in sky and hazy regions are higher than those
in haze-free and non-sky regions. Thus, in the inverse-image the hazy images keep the
same appearance with enhanced contrast, while the clear regions appear as the inverse
of the original image.

Therefore, after the renormalization of the inverse-image, the hazy regions are detected
in the hue channel of CIE L∗c∗h∗ color space. The clear pixels are those which have a
large dissimilarity between the semi-inverse image and the original hazy image.

Although, this algorithm showed an acceptable precision on a large number of images, it
fails to judge if the detected area was a hazy region, a white area or a sky region.

Another category of hazy area detection is based on the meteorological visibility dis-
tance. It is a measure defined by the International Commission on Illumination (CIE) as
the distance beyond which a black object of an appropriate dimension is perceived with
a contrast of less than 5% [33]. Hautière et al. proposed a daytime foggy area detection
method used for on-board visual systems [69], [67]. Gallen et al. [58] addressed this
issue that occurs overnight in two ways. The first is done by the detection of the back-
scattered light from the headlamps is toward the driver, when the vehicle is alone on the
road and no other external light sources exist. Here, the detection is performed through
the calculation of a correlation score between the captured image and the reference im-
age that could be real or synthetic, sharing similar position, field of view and resolution.
As soon as other light sources appear in the image, because of the low dynamic range
of the camera the back-scattered light is no more detectable. Thus, the second way is
done by the detection of halos around the sources of light within the vehicle’s surrounding
environment. Based on the intensity evolution of a halo, the light sources are detected,
segmented and selected according to the halos directions and the distance between ad-
jacent sources.
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3.2.8.2/ CLASSIFICATION OF HAZY IMAGES

In order to determine whether an image is hazy or not and the level of haze present in it,
we need to extract some effective features, which are widely different between clear and
hazy images. An adequate classifier should be trained on these features using a large
set of images different in context and content.

Which features are the most efficient for a reliable classification?
Let us try to define what an efficient feature for hazy image recognition is. A good feature
is able to judge efficiently the image category with a minimum doubt, whether it was single
or associated to another feature. This feature should be extracted fastly to not delay the
prospective post-processing.

This feature could be a quality metric for dehazing evaluation. However, the quality of
dehazed images still need more investigation to be clearly defined and the quality indexes
seem weak to provide an accurate judgment for various haze conditions (see Section
6.2).

Some previous works have used various characteristics that are supposed to recognize
the hazy images. Yu et al. [192] extracted three main features by defining a threshold
separating hazy and clear images. The threshold of these features was calculated from a
large set of images. The image visibility measured by the number of visual edges, which
is higher in clear images than hazy images. The global intensity of dark channel [70],
which is higher in hazy images than clear images. The global image contrast, which is
calculated through the variance over the patches of the image.
A number of hazy images and clear images have been used as training and test samples
using Support Vector Machine (SVM). The classification showed a high accuracy.

In [198], the supervised learning model SVM has been also used for hazy image clas-
sification. Based on the fact that HSI represents more accurately the human perception
than RGB, the variance over the image that denotes the contrast is analyzed through its
three channels. Another feature considers the dichromatic atmospheric scattering model
[132, 126] by calculating the angular deviation of the intensity of a pixel between the hazy
image and the clear image of the same scene. This condition is usually not fulfilled, since
the haze-free image is often not available.

Instead of considering local features such as lane markings, traffic signs and back lights
of vehicles to detect the presence of fog on road images of on-board cameras, Pavlić et
al. [137] considered global features deduced from the power spectrum of Fourier trans-
form, which varies in shape between hazy and haze-free images, due to the contrast
attenuation and blurring increasing caused by the haze.

3.3/ GAPS IN THE LITERATURE

3.3.1/ BACKGROUND

Dehazing methods are numerous. They handle haze removal in different manners, pro-
viding then no matching results (see Figure 3.8). If we consider a set of dehazed images
of the same hazy image processed by different methods, we may come across a lot of
questions concerning the method that provides the result of the highest quality. We may
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wonder about the definition of the quality. If this means the best matching with the clear
image. If this true, there is a need to have this image, which is not available in real
situations.

Once we are able to deal with these points for a given fog density, we should seek this
for other fog densities. Considering the simulated hazy images, which seem as a simple
solution to overcome the aforementioned points, there is a need to see to which extent
do we really achieve a good simulation of the real situation by creating synthetic hazy
images using the visibility degradation model.

3.3.2/ COLOR FIDELITY

Today, many application domains require to maintain color fidelity, where a real color
represents a fundamental property of objects as mentioned by Helmholtz: ”Colors have
their greatest significance for us in so far as they are properties of bodies and can be
used as marks of identification of bodies.” [73].

Considering Figure 3.9, several questions come to mind. Dehazing enhances scene
visibility by increasing contrast and saturating pixels. Does dehazing only saturate colors
without affecting hue? How far color fidelity is maintained when haze increases? If the
color is critically modified, how such shift could be quantified and adjusted, especially
when original clear image is not available?

To deal with the color recovery, we selected the popular DCP approach and applied it in
order to calculate the elements we need to calculate: airlight, transmission and image
radiance. A colorimetric comparison study is conducted between the original clear image
and the enhanced image.

According to Mie scattering, which is non-wavelength dependent, all light wavelengths
are identically scattered. Unlike underwater degradation, where colors fade proportionally
throughout distance [155]. Therefore, haze model is not dependent on wavelength. It is
only dependent on the distance between object and camera, and the amount of haze
covering the scene. This means also, that there is no shift in hue of the original color of a
scene point when it is covered by haze. Therefore, we try to address this topic from the
perceptual side. The perceptual hue could be differently interpreted even if the hue does
not physically change when a scattering layer is applied.

According to [108], besides luminance contrast reduction, haze displaces chromaticities
towards the white point. Consequently, it reduces the purity and the colorfulness of the
scene. Because of chromatic adaptation, this effect is independent of the color of haze.
It depends on the amount and depth of the haze. The reduction fraction of luminance
contrast is approximately the same of purity reduction.

3.3.3/ EVALUATION OF THE COLOR SHIFT

3.3.3.1/ COLOR SPACES

It is widely important to choose the adequate color space for a given processing and
the suitable model to represent correspondent colors. Although the majority of dehazing
methods use RGB color space, maybe the performance of dehazing will be better when
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(a) (b) (c)

(d) (e)

Figure 3.8: A hazy scene taken from CHIC database processed by five different dehazing
methods: (a) CLAHE; (b) DCP; (c) FAST; (d) FUSION; (e) VAR. Dehazed colors are
differently perceived across images.

using another color space. In this work, we use CIE XYZ to embed haze into image via
convergence model (cf. Section 3.3.3.3). CIE LUV is used to evaluate saturation evolution
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Figure 3.9: The color recovery of a hazy image treated by Tan’s dehazing method. These
images have been borrowed and modified from the Figure 10 of the paper of Tan [165].

with dehazing process, and IPT color space to assess hue shift.

CIE XYZ is a metrological color space and CIE LAB is a color appearance space dedi-
cated to the evaluation of small color differences. Similarly, CIE LUV is conceived for the
same goal, but embeds an analytical expression of color saturation, which is very conve-
nient here. This is due to the fact that while CIE LAB performs the chromatic adaptation
by dividing by the illuminant, CIE LUV rather performs a subtraction of the illuminant.
Both of these spaces have the major limit of curved constant hue lines, thus they are not
suitable for the part of our analysis which considers hue. Therefore, we used the IPT
color space for this aspect.

Many papers reported that dehazing methods suffer from a common weakness: color
fidelity deficiency [193, 62]. But this deficiency has never been clearly defined. This
ambiguity pushes us to split up color components in order to precise how and how much
each one is affected.

The perceptually uniformed color space CIELUV clearly defines saturation [114]. This
helps to point out through Equation 3.35 how far saturation is affected with dehazing
algorithms:

su,v = 13[(u
′

− u
′

n)2 + (v
′

− v
′

n)2]1/2 (3.35)

u
′

and v
′

are the chrominance coordinates. u
′

n and v
′

n are the coordinates of the white
point. The white point is the airlight color components. In synthetic image, airlight is the
haze veil embed via convergence equation, and in real image it is the atmospheric light
estimated by Dark Channel Prior (pixels with highest intensity of the hazed image among
the top 0.1% brightest pixels in the dark channel).

The IPT space was designed to be a simple approximation of color appearance specifi-
cally designed for image processing and gamut mapping [43]. It is designed with fixing
the hue nonlinearity of CIE LAB. It consists on a linear transformations, along with some
non linear processing. The second linear transformation goes from non linear cone sensi-
tivities to an opponent color representation. Unlike other color spaces, such as CIE XYZ,
IPT is characterized by having a very well aligned axis for constant hue. It has a simple
formulation and a hue-angle component with good prediction of constant perceived hue.
I, P and T coordinates represent the lightness dimension, the red-green dimension and
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Figure 3.10: Hazy input image and dehazed output image obtained by DCP. In order to
investigate the influence of dehazing with depth on both saturation and hue, we select
pixels at red and green points, which are supposed to have the same initial color, located
at different depths and covered by a uniform haze veil. These images have been borrowed
and modified from the Figure 7 of the paper of Tan [72].

the yellow-blue dimension, respectively. Using a converting 3 × 3 matrix, when I, P and
T are computed from LMS, which is a color space representing the sensitivities of the
human eye cones at long, medium and short wavelengths. The hue angle can than be
computed through Equation 3.36 by inverting the tangent of the ratio of T to P:

hIPT = tan−1(
T
P

) (3.36)

3.3.3.2/ REAL HAZY IMAGES

In Figure 3.10, we consider a real hazy image and its correspondent dehazed image
obtained by the dehazing method DCP ( intentionally selected since it is a physical-based
method (see Section 3.2.2.1), saturation and hue are evaluated on a real image, where
unlike synthetic image, transmission light emanating from far objects undergoes a severe
attenuation. We chose two points, red and green, which are supposed to have the same
initial color, located at different depths and covered by a uniform haze veil.

According to Figure 3.11 that shows the quantitative variation at both locations in terms
of saturation and hue through dehazing process, there is a noticeable difference, which
is higher for saturation.

Considering the saturation rate, dehazing is more efficient at scene’s points, which are
near to the camera and covered therefore by less haze. This is shown by the saturation
value at the red point after dehazing, which is significantly higher than the correspondent
value at the green point. Moreover, the difference between the saturation values before
and after dehazing is greater at the red point. This reflects a good efficiency in the color
recovery for near objects and light haze as well.

When it comes to the hue evolution through dehazing, considering the difference rate at
both points, dehazing maintains the hue information at red point better than at the green
one. Although, there is a difference in both components, the dehazing acts much more
on the saturation than the hue.

Globally, DCP enhance the saturation and maintain the hue information at near objects,
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(a) (b)

Figure 3.11: (a) Saturation difference and (b) IPT angle difference at red and green dots
in hazy and dehazed images. When dehazing is applied, both points are saturated. The
green point, which is covered with much haze is less saturated. The difference of hue
angle at the green point is larger. This reflects the failure of dehazing to provide accurate
recovery of colors hue at far objects and high haze density as well.

which are covered by less haze, better than at far objects, which are basically covered by
more haze.

3.3.3.3/ COLOR TRANSPARENCY MODEL

When a colored object is viewed simultaneously partly directly and partly through a trans-
parent filter but still perceived as the same surface, we talk about color transparency.
Translation and convergence in a linear trichromatic color space are supposed to lead to
transparency perception. Humans are naturally able to separate chromatic properties of
the transparent filter and the seen surface. Referring to [116], with overlapping surfaces,
three conditions are needed to perceive transparency: the uniformity of the transparent
filter, the continuity of its boundaries and an adequate stratification.

The effects created by the haze in the images depend on the scene depth and the haze
density. The attenuation rate of the transmitted light increases exponentially when the
scene depth and/or the haze intensity increases (t(x) = e−β.d(x)). However, convergence
model handles transparent filter without depth dimension.

According to [41], translation and convergence in CIE xy lead to the perception of trans-
parency. It has been revealed that in presence of fog, color constancy can be modelled
by convergence model while taking into consideration shift in color and contrast. This was
confirmed with asymmetric matching task described in [64].
Fog is simulated with convergence model as follows:

b = (1 − α)a + α f (3.37)

where a = (XaYaZa) represents the tristimulus values of a surface, a convergence ap-
plication leads to new tristimulus values b = (XbYbZb). f = (X f Y f Z f ) is the target of
convergence. α represents the amount of fog covering the surface: no fog when α = 0
and opaque fog when (α = 1).

Fog differs from a transparent filter because chromatic effects of fog increase with depth,
as the amount of fog intervening between surface and viewer increases. Unlike the trans-
parent filter, fog imposes a chromatic shift on underlying surfaces that depends strongly
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on the depth of a surface behind the filter. Referring to Hagedorn et. al [64], observers
discount two aspects of the chromatic properties of fog: reduction in contrast and shift
in the colors of lights from surfaces. Convergence model allows us to recover this shift.
How does haze model meet this consideration?. As we mentioned above, α includes
simultaneously the haze intensity and the scene depth.

3.3.3.4/ SIMULATION

According to the convergence model, the simulation consists on embedding haze in CIE
XYZ image. We applied the same model to RGB image in order to perform a cross
validation with two different space basis. As it is shown in Figure 3.12, the original haze-
free image is initiated as RGB and XYZ images. Haze was by R, G and B coordinates
and the equivalent X, Y and Z were then calculated. It was added to both images through
the convergence model. DCP is then applied to RGBH

RGB and to XYZH
RGB hazy images,

which are converted from RGBH. It is applied also to XYZH
XYZ and to RGBH

XYZ, which are
converted from XYZH.

Figure 3.12: Flowchart of the synthetic formation of analyzed images

Four enhanced images are obtained for different values of α. Three values were assigned
to α: 0.5, 0.7 and 0.9. These values (X f Y f Z f ) = (0.8 0.8 0.8) were randomly assigned to
haze layer along this simulation to represent a transparent gray veil. Although the same
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process may be used for a chromatic veil.

Figure 3.13: Original and hazy images

Resulting images (Figure 3.14) were converted to IPT images to evaluate hue changes
by calculating the angle between the hue of the patch before and after dehazing, and to
CIE LUV for saturation estimation.

Comparison was done between corrected images derived from the same original image
type ((RGBD

XYZ and XYZD
XYZ), (RGBD

RGB and XYZD
RGB)), and between the correspondent

images derived from RGB and XYZ ((RGBD
XYZ and RGBD

RGB), (XYZD
XYZ and XYZD

RGB)).
Curves that are shown in Figures 3.15 and 3.17, are resulting from hazy image where α

= 0.5. The impact of haze intensity on saturation is shown in Figure 3.16.

We used the Macbeth Color Checker [114] to simulate a flat object with no distance di-
mension to the camera. A synthetic fog image is composed of Macbeth Color Checker
image and haze layer introduced by f in Equation 3.37 (see Figure 3.13). Haze layer
thickness is modified with the parameter α. Distance and fog intensity are implicitly corre-
lated: when fog intensity rises, it gives the same effect as if distance increases. Saturation
and hue evolution are calculated for each patch within three different values of α. When
α increases, it brings the apparent color toward veil color, such as far objects, which are
almost indistinguishable from haze.
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(a)

(b) (c)

(d) (e)

Figure 3.14: Original RGB image and corrected images. (b): RGBD
XYZ α = 0.5, (c):

RGBD
XYZ α = 0.7, (d):RGBD

XYZ α = 0.9, (e): RGBD
RGB α = 0.9.
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(a) (b)

(c) (d)

Figure 3.15: Saturation evolution curves of the patches recovered from hazy image when
α = 0.5 in comparison with original clear images and other rectified images (normalized
images).

Figure 3.16: Saturation evolution with α (RGBD
XYZ image)
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(a)

(b)

(c)

Figure 3.17: Hue evolution curves of the patches recovered from hazy image when
α = 0.5 in comparison with original clear images and other rectified images (normalized
images).

Dehazing generally saturates pixels, whether it was applied to XYZH
RGB or RGBH

XYZ. How-
ever, excluding black patch, achromatic patches (S, T, U, V, W) are desaturated when
original image is XYZ and they are slightly saturated when original image is RGB (Figure
3.15).
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When RGB and XYZ are dehazed, if the original image is XYZ, RGBD
XYZ will be more

saturated (Figure 3.15(a)). On the other side, if the original image is RGB, XYZH
RGB will be

more saturated (Figure 3.15 (b)).
When the amount of haze increases, dehazing algorithms fail to retrieve accurately the
original information. This reflects a lesser capability to radically get rid of the veil and to
consequently saturate objects color. Referring to Figure 3.16, when α increases, satura-
tion values decrease with a non proportional manner.

Unlike saturation, recovered hue of RGBD
XYZ and RGBD

RGB fit the recovered hues of XYZD
XYZ

and XYZD
RGB, respectively (see Figure 3.17 (a) and (b)). Thus, regardless color space,

hue is identically recovered. But, they do not fit the hue of original color, especially when
original image is XYZ. In this case, the correspondent achromatic and blue/yellow hues
(patches H, M and P) before and after dehazing are not placed on a constant hue line.
However, when original image is RGB, hue difference is important only on achromatic
colors, except white (see Figure 3.17(b)).

3.3.3.5/ DISCUSSION

Haze model tends to enhance significantly the saturation of colors and to maintain color
hue unchanged. This is clearly reflected through the dissimilarities between the dehazing
at high haze densities and/or relatively far objects and at low haze densities and/or near
objects.

Although the hue seems to be robust to change for chromatic colors, especially at not
very high haze density, it shows a noticeable shift for achromatic patches (S, T, U, V, W
and X) that have basically a close perceptual appearance to the haze layer (Figure 3.17).
This is further explained in the section 5.2.2.

According to Figure 3.17, the opposite values of hue angles at H, M and P patches cor-
responding to blue/yellow hue do not necessarily denote no matching hues. Referring to
[43], the blue region adjoins the origin in IPT. In this small area, it is highly probable that
two different angle values point toward the same hue.

The cross validation analysis done through the handling of two types of images, shows a
consistent behavior of dehazing in terms of hue and saturation evolution.

3.3.4/ QUALITY EVALUATION

With the continuous increasing in the number of dehazing methods (Figure 3.1), it be-
comes pivotal to compare their performance, since they do not provide matching results
for the same hazy image (see Figure 6.1). This will help to find new advancement direc-
tions.

The subjective evaluation of images processed by dehazing has been not much ad-
dressed. Generally, when a research aspect is overlooked, this may mean whether it
does not represent an attractive research topic over a specific period of time, or there are
missing prerequisites.

Regarding the first prospect, the emphasis was initially on the development of good de-
hazing methods by migrating from the multiple image dehazing methods, which they got
a particular attention at the beginning of the 2000’s [125, 156], toward the single image
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dehazing methods that are more suitable to the real-time applications. Afterwards, espe-
cially from 2009 onwards, after the release of the most popular DCP dehazing method,
which presented a pivotal point in this domain, the number of methods has undergone
a rapid expansion (Figure 3.1). A strong competition took place to provide a method,
which is based on a global robust assumption and provides a good perceived quality of
the dehazed images with a minimal processing time. During that time, researchers did
not give much attention to the features that define the quality of dehazed images nor to
mathematical quality indices.

On the other hand, with regard to the prerequisites of subjective and objective quality
assessment, evaluations are typically carried out in a qualitative way [199], [167], [164],
and only a few recent studies have considered subjective experiments [107], [104], [30],
[65]. However, the lack of a haze-free image in the assessment of dehazing quality is a
considerable problem.

Because of the absence of the original haze-free image that would be considered as ref-
erence, objective quality evaluation has been always considered as a challenging task.
Full-reference metrics that evaluate the similarity between the original haze-free and the
dehazed images cannot be employed. Moreover, since emphasis is given to the fidelity
criterion of dehazed features, this requires a comprehensive subjective study in the pres-
ence of the haze-free image. This gives later the possibility to quantitatively evaluate the
performance of dehazing methods.

3.4/ CONCLUSION

We reviewed in this chapter the various dehazing approaches that have been proposed.
Two main families have been identified for the single image case. The first one consid-
ers the haze model and besides the hazy image, some of these methods reduce the
ill-posedness of the problem through strong assumptions to estimate unknown parame-
ters. Some others use multiple data besides the hazy images. These approaches have
been proposed or adapted for particular outdoor or indoor scenarios used in daytime or
nighttime applications. The second one overlooks the physical model. Considering the
human visual system, this methods’ category aims at enhancing the quality of the hazy
image no matter if the recovered image meets accurately the original one.

In this chapter we rather focused on the single image dehazing, which has been exten-
sively investigated during the last few years, since it is performed automatically without
any user interaction. The DCP hypothesis is the cornerstone of this category. It has been
widely included in many dehazing methods and inspired a lot the conception of methods
for other target application domains.

Color image dehazing methods are numerous and varied. However, they all suffer from
some limitations when it comes to the efficient dehazing at high haze densities, and the
accurate recovery of original features that would have been without haze. For a given
hazy scene, different methods provide no matching results. In order to deal with these
two issues, we present in the next chapters the developed tools responding to the above
stated requirements, and the way in which they have been employed.
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4
HAZY IMAGE DATABASES

”In nature, light creates the colour. In the picture, colour creates the light.”

-Hans Hofmann-

There is no easy way to have a haze-free image taken under the same conditions as
hazy images. The availability of this image helps to investigate all aspects of dehazing
methods’ design and assessment. For these reasons, we have created two hazy image
databases, Color Hazy Image for Comparison (CHIC) and Multispectral Hazy Image for
Assessment (MHIA). In this chapter, we describe the databases setup and material, and
single out their originality.
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4.1/ INTRODUCTION

The evaluation of the haze model and dehazing algorithms is a major challenge for en-
suring the quality of processed images. The perceived color shift between original and
recovered colors represents a crucial element in such evaluation. There is a need to iden-
tify the cause of this effect: the amount of haze as physical limiting factor or the spectral
dependence of the haze effects. In this context, the lack of adequate tools makes this
more complex. In a satisfactory database, besides some data, the haze-free reference
image should be present in order to characterize the reasons and the extent of the color
change.

Thus, two image databases have been proposed. Color Hazy Image for Comparison
(CHIC), which is a color image database and Multispectral Hazy Image for Assessment
(MHIA), which contains visible and near infrared discontinuous and narrow spectral im-
ages of hazy scenes. These databases share some characteristics such as the shoot-
ing environment, the haze-free image and different fog densities. Even if the number
of scenes is limited, the several levels of fog and parameters make them valuable. All of
these features make them original and favored over other existing hazy image databases.

CHIC database is basically conceived for image quality assessment in subjective and
objective ways considering mainly the fidelity aspect of image quality. This database
permits potential critics on the robustness of the model against haze density. On the
other hand, MHIA is designed for fine analysis of fog parameters evolution over visible
and near infrared bands.

4.2/ REQUIRED TOOLS

The evaluation of haze model and dehazing algorithms is a major challenge for ensuring
the image quality of the processed image. In this context, the lack of haze-free reference
image make the evaluation even more difficult. A number of requirements are needed to
overcome these issues:

• Real hazy images: regarding the color shift introduced above, two possibilities sug-
gest themselves: either the estimated haze model parameters A∞ and t do not fit
the real values or the haze model fails to represent the real situation. Thus, there is
a need to collect real and not synthetic hazy images to deal with this issue.

• Clear image: in real-world dehazing applications, it is difficult, if not impossible to
have the haze-free image. The presence of this image helps to deal with dehazed
image quality that has been addressed in a limited manner. It helps as well to judge
dehazing methods and to see to which extent they preserve original features.

• Different levels of fog: in outdoor environment, the fog level and the fog distribution
are never predicted or controlled. Thus, the monitoring of the evolution of both ele-
ments mentioned earlier, image quality and dehazing methods performance across
different fog densities are never ensured.
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4.3/ COLOR HAZY IMAGES

4.3.1/ EXISTING DATABASES

A collection of single outdoor images taken in bad weather without any other considera-
tion are widely used to evaluate visibility enhancement algorithms and for various meth-
ods comparative studies. The lack of common conditions of acquisition such as illuminant,
viewing geometry and weather conditions may lead to wrong conclusions. Thus, we seek
an original database representing a common tool to test the effectiveness and the defi-
ciency of dehazing methods. It may allow developers and researchers, furthermore, to
test their algorithms and to improve them to fit as close as possible the clear image by
reducing undesirable effects.

There were many trials to experimentally evaluate the performance of methods aiming to
improve the visibility and the contrast of unclear outdoor images, by creating some typical
image databases.

For instance, FRIDA (Foggy Road Image DAtabase) [169], [77] and FRIDA2 [168], [77]
that represent evaluation databases for visibility and contrast restoration algorithms.
These databases comprise a number of synthetic images of urban road scenes and di-
verse road scenes, respectively. The view point is close to the one of the vehicles driver.
The software SiVICT M [61] was used to build physically-based road environments and to
generate a moving vehicle with a physically-driven model of its movement, and to embed
virtual sensors. Images are produced from a realistic complex urban model and a vir-
tual camera inboard a simulated vehicle moving on a road path. To each image without
fog, four foggy images and a depth map are associated. The depth map is required to
be able to add fog consistently in the images. Different kinds of fog are added on each
of the four associated images: uniform fog, heterogeneous fog, cloudy fog, and cloudy
heterogeneous fog. These four types of fog were inserted by applying the Koschmieder’s
law [87] by weighting differently the attenuation coefficient and/or the atmospheric light
with respect to the pixel position. Despite the different aspects that are addressed in this
database, simulated images fail to represent accurately the natural phenomena effects. It
also suggests a single type of images which have the same scene composition, the same
fog distribution and similar background and foreground colors.

WILD (Weather and Illumination Database) [130], [131] is an outdoor urban scene
database, acquired every hour over 5 months (January 2002 to June 2002). These im-
ages are taken under different weather and illumination conditions. Atmospheric condi-
tions, scene distances and temporal data are also associated to images. Such database
with uncontrolled illumination and regulated haze/fog densities remains far to evaluate
correctly dehazing processes. This database suffers from the redundancy of images with
the same conditions and from the drastic illumination change between scenes.

In addition to these databases, developers tend to use images which have usually a small
size and an exponential haze density variation from the camera position until it gets the
highest value at the back of the scene. Thereby, they can evaluate methods in a short
time and with minimal resources [5], [8].
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4.3.2/ CHIC

To overcome the previous limitations, we designed a setup allowing to acquire scenes
with haze. We include in this section the description details of how the experiment was
set up and run, the list of materials’ properties and scenes arrangement.

4.3.2.1/ MATERIAL AND SETUP

Several equipments were used in order to provide a full package of data that enables us
to estimate haze model parameters, including depth, and to reconstruct images.

1. Color Camera Nikon D7100 [3]: this camera was used to get RGB images of the
scenes when the fog density changes. As the white balance option cannot be
disabled, ”cloudy” option was selected. ISO sensitivity is remained tuned to the
automatically chosen value 100. The autofocus was disabled. Two image for-
mats are recorded: NEF (RAW) and fine-quality (Recorded JPEG images are com-
pressed at a compression ratio of roughly 1:4) JPEG image, whose dimensions
are 6000×4000. During the shoot session of each scene, the camera has been
maintained at the same position with the same selected options. As the capture
conditions such as the camera field of view, the illumination, the objects colors.
Thus, the only variable element during time is the density of the fog layer. This
allows us to follow the haze model parameters evolution according to it.

2. Spectro-radiometer Konica Minolta CS-2000 [2]: this spectro-radiometer was used
to measure the transmission through fog on the white patch placed at the back of
the scene for each fog density. It was calibrated focusing on the same patch without
fog. The selected measuring angle was 1◦. The 2◦ standard observer and the
measurement illuminant D65 were chosen.

3. Fog machine: we used the FOGBURST 1500 with the flow rate 566m3/min and a
spraying distance of 12m, which emits a dense vapor that appears similar to fog. A
large amount of fog is initially emitted until it is evenly distributed in the room and
forms an opaque layer. Fog is then progressively evacuated by opening the window.
Thereby, images of different levels of fog are captured.

This machine like most machines on the market, operates by evaporation. The
vaporization of therein water-based liquid mixed with glycol, is done by heating.
The difference is in the quality of the desired smoke. Fog is diffuse and not very
dense. The smoke is more dense and less diffuse. The particles of the ejected fog
are water droplets whose radius is close to the radius size of the atmospheric fog
(1 − 10µm). For more information about the properties of the emitted fog, the reader
may refer to section 5.2.1.1.

4. Macbeth Color Checker (MCC): a number of MCCs was distributed in the scene in
such a way as to cover different sides and distances to the camera. It is a color
calibration target. The known values of the spectral reflectances of the 24 patches
allow us to follow color visibility variation depending on distance and fog density
parameters. Since patches are painted with matte colors, MCC can be captured
with any orientation and line of sight [114].
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Scenes were set up in a closed rectangular room, which is large enough to simulate the
effect of the distance and the fog density on the objects radiance (length = 6.35m, width
= 6.29m, height = 3.20m, diagonal = 8.93m) with a large window (length = 5, 54m, height
= 1.5m) that allows a large amount of outdoor light to get in, in a sunny day. The photo
session of each scene lasted 20 minutes. This experiment was set up on February 2015,
from 1:00 to 4:00 p.m. when sunlight was not directly coming in through the window
(Figure 4.3). Thus, a uniform indirect light getting in, it is less prone to fast changes.
Many MCCs are placed in the scene with different distances to the camera. The farthest
one serves to estimate the atmospheric light. It is good to have the same shape and
colors at different distances and different angles of view. This can be useful to follow up
the color alteration when haze covers a scene, and how far it can be preserved when the
haze model formula is simply reversed without considering any given hypothesis. For this
reason, the scenes components present various colored surfaces types (reflective and
glossy surfaces, rough surfaces, etc.). In these two scenes, the camera stayed fixed over
the shoot session of each scene. The illuminant and the distance to the camera are not
the same in both scenes.

4.3.2.2/ SCENES

CHIC (Color Hazy Images for Comparison) is composed of static and dynamic scenes.
In static scenes, the camera position remains fixed and only fog density changes. In
contrast, distance lying between an outdoor scene captured through the window of a
foggy room changes, while the fog density stays constant.

Figure 4.1: The light reaching the camera is the sum of the light coming from the object
and attenuated by the scattering and the light coming from outside and scattered by
fog particles towards the camera. The airlight component scattered by the fog particles
depends on the wavelength.

Static scenes
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(a) (b)

Figure 4.2: Scene A (a) and Scene B (b). The distances of different MCCs to the camera
are shown. The resolution of the image is 6000×4000.

1. Scene A: The shoot session of this scene was performed around 2:00 p.m. This
scene shows a typical indoor view (see Figures 4.1 and 4.2 (a)). We put on the table
that is placed in the middle, a number of items with different characteristics such as
shapes, colors, positions, surface types (glossy or rough surfaces) and textures.
The wall behind the scene is half white and the top half with the white lines and the
black holes represent distinctive elements to study algorithms handling near edges.

2. Scene B: The shoot session of scene B was done two hours later. During this
time the temperature of the illuminant significantly changes. The distance from the
camera to the farthest scene point is smaller than in Scene A. It contains bigger
geometric shapes. The fog densities which are randomly chosen are characterized
by the transmittance spectrum of each fog level (see Figure 4.2 (b)).

In Table 4.1, the relative transmittance of fog is calculated in Equation 4.1 with respect to
airlight at a given distance over the black patch of original hazy images, as follows:

t = 1 −
S levelx − S airlight

S haze− f ree − S airlight
(4.1)

where S levelx, S airlight and S haze− f ree are the spectral values of green in images of different
fog levels, of the airlight image of our database where the scene is completely covered
by fog and the haze-free image. The relative transmittance is deduced from the green
channel since the human visual system has the maximum sensitivity in the response to
the green wavelength and the intensity of the scattered light (figure 2.4).

Table 4.1: Relative transmittance t of fog in original hazy images of scene A and scene
B. Level 1: highest fog density. Level 9: lowest fog density.

t Level
1

Level
2

Level
3

Level
4

Level
5

Level
6

Level
7

Level
8

Level
9

Scene A 100% 92% 91% 90% 84% 75% 71% 52% 28%
Scene B 100% 97% 91% 89% 74% 64% 55% 30% 15%

Comparing to outdoor scenes, the light source is located at infinity and the particles
forming the synthetic fog are water particles fall in the same range of particles’ size of
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atmospheric conditions of thick and dense fog (see Figures 5.1 and 5.2), therefore the
same scattering law is applied. Since the room where the shoot session was running is
not an open place, the airlight color seems to be close to dark gray. According to Figure
5.3, the calculated values of A and t are almost the same over channels at all fog levels.
All of these facts prove that, the outside conditions are almost fulfilled in our database.
Moreover, having an indoor scene with a natural illuminant, we use the appellation semi-
indoor images.

Particular phenomena Unlike the scene B, wherein the transmittance spectrum is less
than 100 (in the absence of fog calibration) over wavelengths, in scene A the transmit-
tance remarkably exceeds the calibration value (100) especially in short wavelengths
within the visible spectrum (Figures 4.4 and 4.5). This is due to the influence of nearby
particles from the light source can have on the beam. The light coming through the win-
dow (airlight) initially strikes the fog particles that reflect and redirect to the sensor before
reaching the imaged object (Figure 4.1). Since longer wavelengths have a higher pene-
tration capacity, we have an excess in small wavelengths.

What makes this phenomenon arise? The position of the window (a local light source)
relative to the scene has indeed two main effects. The first one is related to the distance
from the window to the fog and the second is related to the position of the window relative
to the camera.

• The outdoor natural fog is spread over a large area, thus, the light coming from
the Sun, travels a long distance through the fog, through which all wavelengths of
visible light are scattered.

However, the distance traveled by the light through the fog is very small. Along this
limited distance, the daylight having higher energy in short wavelengths, which are
scattered in a pronounced manner comparing to longer wavelengths.

• The scattered light does not come to the camera from different directions as is the
case outdoor. The camera being placed on the window side as it is shown in Figure
4.1, this boosts the capture of the first scattered beams before being attenuated
through further multiple scatterings.

This phenomena is not accentuated in scene B because the light intensity is lower than
in scene A and the camera have been moved away from the window toward the scene
(Figures 4.7, 4.8 and 4.9).

Dynamic scenes In an approximately uniform smoke-filled closed room, we took pho-
tos of an outdoor landscape while moving toward the window separating hazy indoor and
clear outdoor mediums. Nine levels of fog densities are considered by moving steps,
each of 70cm. The image level 1 is 5.6m from the window and the image level 9 is taken
when this distance is 0 (Figure 4.3). Both hazy and haze-free images that are taken at
the same distance, are available. Despite uncommon settings, the transmission of these
images varies exponentially with distance. Although two different mediums constitute the
scene, the model outlines are maintained since the fog is here an actual veil of known
thickness. Each medium has its own properties such as illuminant, objects nature and
their arrangement, and depths. The camera stayed in place over shoot session of each
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scene. However, the illuminant is not the same for both scenes, nor the distance to the
camera and the density of fog for the correspondent levels (Table 4.1).

Unlike the static scenes, no particular measures were done on these images. Since these
images provide a different scenario of haze and the haze model is violated, it would be of
great use to see how a classic dehazing method would handle not classic situations.

Figure 4.3: Dynamic scene. The left column shows images with haze, with distances
between the window and the camera: 0, 3.5, and 5.6m. The right column shows the
free-haze images of the same distances.

Originality and usefulness CHIC database owes its originality to the haze-free image
that is available under the same lighting conditions with the hazy ones, to the different
levels of fog and to the parameters set including local scene depth, distance from the
camera of known objects such as Macbeth color checkers, their radiance, and the fog
properties (see Section 5.2.1.1). After all, CHIC provides not simulated but real fog on real
scenes. Thus, a real interaction takes place between light and fog particles. All of these
characteristics make our database original comparing to the existing image databases
(Table 4.2).

All of these features give the possibility to do some investigations:

• Evaluate and compare dehazing methods regarding the haze-free image. This can
be done in two ways. In a subjective way, by comparing visually the the haze-free
and the processed images. In an objective way, by using full-reference image qual-
ity metrics regarding the haze-free image (cf. Section 6.2).
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Table 4.2: Requirements fulfilled by the hazy image databases: FRIDA, WILD and CHIC.

Requirements FRIDA WILD CHIC
Real hazy images × X X
Clear image X × X
Different levels of fog X × X
Haze model evaluation × × X
Pixel by pixel comparison X × X

The majority of recently proposed methods, are usually evaluated by comparing
their dehazed images to other methods’ results, where the haze-free image is not
available. This is not a reliable manner, since the visual comparison is not straight-
forward (see Section 6.3). On the other hand, so far, there are no reliable indices
for dehazed images quality judgments.

• Evaluate the accuracy of the Koschmieder hazy image formation model through a
good number of fog levels (cf. Section 5.2).

However, we have a number of criticisms to make at some points. Despite the fact that
the several fog levels of each scene make it valuable, this database needs to be updated
by the integration of more scenes with various natural contents. A special care was taken
to make acquisitions in a clear day and to make all shoots of the same scene within a
short time in order to maintain a stable natural light. For more accuracy, it is good to
quantify the amount of outdoor lighting using a light meter.

4.4/ MULTISPECTRAL HAZY IMAGES

Multispectral images are produced by sensors of different sensitivities, that measure the
reflected energy within specific bands through the electromagnetic spectrum. The num-
ber of bands does not generally exceed 20. In hyperspectral images, this number be-
comes greater and the bands become narrower. Multispectral and hyperspectral images
are indeed with better spectral resolution than color images. Since they contain more
spectral information, they have greater potential to conduct studies on the spectral prop-
erties influence on haze and dehazing.

The earlier multispectral sensors appeared in the early 1970s. They were dedicated
mainly to remote sensing and spatial fields [173]. Today, applications of multispectral
imaging in the close field are varied. This is mainly due to recent technological advances
in image sensors and spectral filtering. We may cite medicine and biology [92], military
field [23], molecular imaging [110], cosmetics industry [84], underwater imaging, quality
control of industrial products and food [145, 181], as well as the studies made on the art
works and printing [34, 98].

Dehazing, which deals with images acquired with uncommon color camera has not been
as widely addressed as the color-based dehazing. Typically, methods employed in ground
applications such as driving assistance and surveillance, are applied to the visible range.
This may due to the lack of outdoor multispectral images, the cost of required equipment
and their complex usage.
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Recently, there has been a noteworthy orientation towards the integration of advanced
data such as multispectral data and the migration from visible to NIR-based dehazing
[154], [53], [170]. As a first step, there is a tendency to extend color-based methods
through considering non-visible or more than 3 channels.

The multispectral dehazing methods were mainly developed to deal with the degraded
images taken from the space. Such images are usually multispectral and they suffer from
visibility degradation. The number of these methods is still very limited.

In [176], DCP was again considered and it was extended to be applied to satellite images.
The two main keys of extension consider the validity of Step 1 and Step 2 in section
3.2.2.1. Considering Step 1, DCP is valid for all image’s spectral ranges. Thus, DCP is
calculated through all image’s channels. When it comes to atmospheric light calculation in
Step 2, it is not correct anymore to consider it as being spatially invariant, since satellite
images cover a large area with different types of aerosols. Thus, in order to deal with
these non-uniformities, an atmospheric light distribution curved surface is proposed and
the atmospheric light is locally estimated through patches, where it is assumed to be
constant within a given patch.

Allmen et al. [175] modeled the hazy image by defining the surface reflectance of the ob-
jects in the scene and the scattering in the atmosphere. Using these model’s parameters,
the hazy image is calculated. These parameters are fitted to reproduce the measured im-
age. They used their algorithm to handle images taken with Multi-angle Imaging Spectro-
Radiometer (MISR) Instrument [37]. This instrument consists of nine cameras that obtain
images at three visible and near-infrared wavelengths. Each of them has a different view
direction. This helps to study the reflected sunlight through the angular variation, as well
as the induced physical characteristics.

In all of this, there is a lack of multispectral hazy images that provide similar characteristics
than CHIC database that allow to calculate haze model parameters and to assess it.
It allows also to see if the spectral resolution had a particular influence on dehazing
methods and to follow the behavior of haze/fog across wavelengths.

4.4.1/ MHIA

In order to overcome the previously mentioned issues, we have constructed a new mul-
tispectral hazy image database. MHIA (Multispectral Hazy Image for Assessment) is an
image database that comprises multispectral hazy images of n levels of fog of 2 scenes
M1 and M2 (n = 13 for M1 and n = 10 for M2). In addition to n multispectral hazy im-
ages, we provide as in CHIC, the haze-free reference image. The construction procedure
of MHIA is similar to the one of CHIC with some adjustments and the use of additional
materials.

We describe below the additional materials that were not used for CHIC construction, the
steps of the acquisition process, the scenes and the preprocessing stage of images.

4.4.1.1/ MATERIAL AND SETUP

Some materials, which were used for CHIC construction, were used also for MHIA, such
as Spectro-radiometer Konica Minolta CS-2000, fog machine and MCCs.
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Multispectral camera The multispectral data was obtained using the Photon focus
MV1-D1280I-120-CL camera based on e2v EV76C661 CMOS image sensor with 1280 ×
1024 pixel resolution [7].

A single filter cannot cover different wavelength ranges. Some characteristics such as
glass, coating and polarizing material, are specific to the wavelength range. In order
to acquire data in visible and Near-infrared (NIR) ranges, two models of VariSpec Liq-
uid Crystal tunable filters (LCTF) have been used: VIS, visible-wavelength filters with a
wavelength range going from 400 to 720 nm. NIR, near-infrared wavelength filter with a
wavelength range going from 730 to 1100 nm (see Figure 4.12).

At each step of 10 nm from 400 to 720 nm in the VIS range and from 730 to 1100 nm in
the NIR range (Figure 4.10), we captured a picture with a single integration time of 530
ms, which allows a sufficient light to limit the noise without producing saturated pixels over
channels. This reduces as well the complexity of the preprocessing spectral calibration
step (cf. Section 4.4.1.3).

(a) (b)

Figure 4.10: (a)Visible band, (b)NIR wavelength band.

Why the preference for a LCTF against other spectral cameras in such acquisition?
In our study, LCTF was the most effective available way for such acquisition. On the one
hand, its speed guarantees a short image acquisition time comparing to other cameras,
such as filter wheel camera (The approximative time for the acquisition of one multispec-
tral image is 40s when using VIS filter and 60s when using NIR filter). On the other hand,
it reduces the chromatic aberration and minimizes the geometric distortions that usually
increase the execution cost in other sensors [22].

Kinect The Kinect is initially an input device for the Xbox 360, that was basically con-
ceived to control video games without using any gamepad [109]. But thanks to the depth
map, it is used in many scientific applications. The Kinect measures the distance between
itself and the objects within its field of view. It measures the distance by emitting a pattern
of infrared dots toward the object and capturing the reflected signal by the IR camera.
The pattern shape changes by expanding with the distance. The difference between the
original known pattern and the detected one is used to construct the 3D depth map of the
whole scene. It provides three outputs: infrared image, RGB image thanks to its RGB
camera and the depth map. The Kinect can detect objects up to 10m but it shows some
inaccuracies beyond 5m.
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Scenes were set up again in the same room where the acquisition of the color images
took place. The acquisition session was performed on a cloudy day of May 2016 from
11:00 a.m. to 4:00 p.m. For each of the scenes described later, we define a particular
illuminant, since daylight illuminant changes over the daytime. This time, the scenes were
placed in front of the large window, forming an angle of 180◦ with it. The sensors were
placed by the window. Thus, the intensity is uniformly diffused on the scenes’ objects.

For each scene, once it is installed, using the Kinect sensor, a depth image is captured.
It is then removed to be replaced with the multispectral camera, which keeps the same
place until the end of the given scene acquisition session. For the haze-free scene, a
multispectral data acquisition is performed by the multispectral camera. The spectro-
radiometer is once calibrated on the white patch placed at the back of the scene, than the
measurement of the fog transmittance is done on the black patch. These two steps are
repeated for each fog density.

In order to get different fog densities, in the closed room fog is emitted until we are not
able to see anything than a uniform opaque layer of fog. Then, a part of it is evacuated
consecutively through the window. The image of the setup is provided in Figure 4.11.

Figure 4.11: Image of the setup.

4.4.1.2/ SCENES

1. Scene M1: The shoot session of this scene was performed at 11:00 a.m. It is similar
to the scene A of CHIC. The distance from the camera to the color checker placed
at the back of the scene is 4.5 m. In order to reduce the side effect induced by
the position of the window relative to the camera (cf. Section 4.3.2.2), the window
is intentionally kept behind the camera. We were just physically limited by that
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distance, since the Kinect sensor does not provide accurate measurements beyond
this value. Its measurement session lasted 40 min. This scene is only acquired by
the visible filter. We denote it by M1V .

2. Scene M2: This is almost the same as scene M1, but for this scene, two simultane-
ous images are captured for each fog level, one when the lamp is turned off and one
it is lit. Two series of acquisitions were made. The first one using the VIS tunable
filter, Scene M2V , and the second one using the NIR tunable filter, Scene M2NIR.
Each acquisition series took 60 min.

The characteristics of the scenes containing in CHIC and MHIA databases are summa-
rized in Table 4.3.

Table 4.3: The characteristics of CHIC and MHIA databases.

CHIC MHIA: Visible MHIA: NIR
Image type Color Multispectral Multispectral
Image resolution 6000 × 4000 1312 × 1082 1312 × 1082
Wavelength band 380-730 nm 400-720 nm 730-1100 nm
Number of chan-
nels

3 33 38

Number of fog lev-
els

9 10 (M1V ), 13 (M2V ) 13

Width of bands Large bands 10 nm 10 nm
(Figures 4.12, 4.10) (Figures 4.12, 4.10)

Pixel coding 8 bits 16 bits 16 bits
Measured depth Sampled depths Depth map Depth map
Acquisition time of
a scene’s levels

20 min 40 min 60 min

Maximum distance
from the camera

4.25; 7 m 4.5 m 4.5 m

4.4.1.3/ PREPROCESSING

We consider in this section the preprocessing stage, which includes a dark correction to
get rid of the offset noise that appears all over the image, and a spectral calibration to
deal with the spectral sensitivities of the sensor and the used filters.

Dark Master Dark Master or dark image correction is a standard processing, which is
applied on images to eliminate offset noises [111]. It consists in taking several images in
the dark at the same integration time. For each pixel, we calculate the median value over
these images. Therefore, we obtain the dark image. We then subtract the dark image
from the spectral images taken with this integration time. The negative values are set
equal to zero.
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Spectral calibration The relative spectral response of the camera and the filter being
provided in the user manuals [7]. For each captured image at each wavelength band with
an integration time of 530 ms, we divided by the maximum peak value of the spectral
response of the sensor (Figure 4.13) and the filter (Figure 4.12).

These two steps have been performed for all spectral images before the construction of
color images and the extraction of the haze model parameters (cf. section 5.4).

Since images contain Macbeth colorchecker, the color images have been constructed
through a linear combination of the reflectance values of the 24 patches of the col-
orchecker, the standard illuminant D65 and the human color matching functions.

(a) (b)

Figure 4.12: Transmission curves of LCTFs: (a) VIS and (b) NIR. These graphs have been
scanned from the technical documentations of VariSpec Liquid Crystal tunable filters.
Note that the transmission values are within the interval of [0,1] in the graph (a) and
within the interval of [0,100] in the graph (b).

Figure 4.13: Transmission curve of the sensor Photon focus MV1-D1280I-120-CL cam-
era based on e2v EV76C661 CMOS. This graph is borrowed from the correspondent
technical documentation [7].
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4.5/ CONCLUSION

In this chapter, we proposed and described a new color image database composed of
static and dynamic scenes that we named CHIC (Color Hazy Images for Comparison).
This database could be used for many purposes like haze model assessment or dehaz-
ing methods evaluation since the reference (haze-free image) is available. Unlike other
existing databases used to enhancement visibility algorithms assessment, CHIC provides
a set of metadata making it original and suitable for previous mentioned purposes. It is
freely available for everyone to test a proposed algorithm, to compare it with other algo-
rithms and to see its ability to meet the original image after recovering haze-free data.

For a more refined analysis, following the same logic, a multispectral hazy image
database MHIA has been also developed. Besides the narrow visible bands, we acquired
images in the near infrared region.

Both of these databases do not offer a large number of varied scenes. However, general
tendencies and conclusions could be drawn. More scenes, potentially related to given
applications may be generated by following the same principles.

The remaining chapters consider the issues of haze model validation in terms of inversion
accuracy through fog densities and imprecision of spectral dependence, by considering
CHIC and MHIA databases, respectively. We consider also CHIC database to address
the challenging image quality topic. CHIC database provided us the possibility to deal
and to discuss for the first time the subjective and objective assessment of the fidelity of
recovered original image features.
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Figure 4.4: Scene A. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 1, level 2, level 3 and level 4.
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Figure 4.5: Scene A. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 5, level 6, level 7 and level 8.
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Figure 4.6: Scene A. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 9 and clear image.
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Figure 4.7: Scene B. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 1, level 2, level 3 and level 4.



80 CHAPTER 4. HAZY IMAGE DATABASES

(a)

400 500 600 700
40

60

80

100

Wavelength (nm)

T
ra

ns
m

itt
an

ce

(b)

(c)

400 500 600 700
40

60

80

100

120

Wavelength (nm)

T
ra

ns
m

itt
an

ce

(d)

(e)

400 500 600 700
40

60

80

100

120

Wavelength (nm)

T
ra

ns
m

itt
an

ce

(f)

(g)

400 500 600 700
40

60

80

100

Wavelength (nm)

T
ra

ns
m

itt
an

ce

(h)

Figure 4.8: Scene B. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 5, level 6, level 7 and level 8.
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Figure 4.9: Scene B. Scene images taken under different fog levels and their correspon-
dent transmission curves, which are measured over the farthest white patch from the
camera. From top to bottom: level 9 and clear image.



5
HAZE MODEL EVALUATION

”It is not what you look at that matters, it is what you see.”

-Henry David Thoreau-

This chapter considers the problem of achieving an accurate recovery of a color hazy
scene. It first explains the aspects of color fidelity violation. An investigation of the per-
formance of physics based dehazing approach on real hazy image and simulated one
with the same fog density has been done. Using CHIC and MHIA data, we consider as
well the inversion accuracy of the haze model through different fog densities as well as
the spectral behavior of fog. These two aspects lead to mark out the limits of the haze
model validation. Using our hazy images, we propose a geometrical way to calculate the
atmospheric light.
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5.1/ INTRODUCTION

Visibility through fog is a complex psycho-physical phenomenon. In some conditions, a
vision system is able to handle atmospheric conditions and sometimes its performance is

82
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restricted by the atmosphere, which represents a limiting factor. Dehazing methods are
varied and numerous and they often provide dissimilar results. The recovered images
of the same hazy image being different, we would logically refer this to the imprecision
induced differently by the assumption on which each method is based. This is true. How-
ever, additional fundamental reasons related to the physical properties of fog and the
vision system may lie behind color shift and dehazing inefficiency.

Away from any assumptions, the inversion of the haze model even when using accurate
values shows some limitations. This is mainly due to the amount of fog, which represents
a physical limiting factor that a near infrared sensor does not overcome. Light being uni-
formly scattered through fog, some imprecision due to sensor noise and filter sensitivities
variations, lead to an inaccurate color recovery in light fog conditions.

Having generated images with different fog densities, we investigated the contradictory
effects the high fog densities have. On one hand, a high density hampers dehazing
process and, on the other hand, the calculated atmospheric light is closer to the real.
Accordingly, we provide a mathematical characterization of the fog limitations with regard
to colors.

5.2/ HAZE MODEL VS HAZE DENSITY

5.2.1/ REAL DATA

Single image dehazing methods, which consider the haze model given in Equation 2.16,
are usually based on strong assumptions to estimate A∞ and t(x) from the single RGB
hazy image [72, 167]. Having access to the haze-free image permits to verify these
assumptions and the model formulation.

Consequently, A∞ is the R, G and B values of the fog layer calculated from image level 1,
which is uniformly covered by fog. For each level, the airlight A(x) = A∞(1−t(x)) is similarly
calculated over the black patch of MCC placed at the scene’s back (color patch within the
red surrounding in Figures 5.1 and 5.2). We subtracted from it the offset values of R, G,
and B of a patch of 20×20 pixels of the same black patch from the original image without
fog.
Once A∞ and A are estimated, t(x) of a given scene depth is deduced from the second part
of Equation 2.16 over the same color chart. Since the distance of each chart is known,
the scattering coefficient β is deduced and the transmission matrix is then calculated over
the entire image, using approximative depths of secondary objects. Based on the known
distances of MCCs, images have been split into four parts (see the green lines shown
at Figures 5.1 and 5.2). Particular focus should be given to the color patch within the
red surrounding, which has an accurate known distance to the camera, and has also the
lowest object’s transmission.

5.2.1.1/ FOG LEVELS CHARACTERIZATION

The scattering coefficient β is already calculated as previously explained, it is constant all
over the scene, since the fog is homogeneous. At each fog level, using β, we calculate the
daylight visual range with Equation 2.17, which characterizes the fog categories shown in
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Level 1 Level 3 Level 5 Level 7 Level 9

Figure 5.1: The original hazy (first row) and the reconstructed images of Scene A (second
row). A and t are estimated on the surrounded red color patch. The distance between
it and the camera is 7m. First row: original hazy images, second row: reconstructed
images. Cropped image size is 1537×2049.

Table 2.3.

Table 5.1: Atmospheric attenuation and visual range of the different fog levels of Scene
A.

Fog level Visual range Attenuation coefficient (km−1)
Level 1 0 m ∞

Level 2 < 24 m 158.12
Level 3 < 27m 142.85
Level 4 < 26m 145.21
Level 5 < 37m 103.69
Level 6 < 40m 97.47
Level 7 < 47m 83.57
Level 8 < 105m 37.03
Level 9 < 220m 17.84

As stated earlier, the particles forming the fog emitted by the used fog machine are water-
based and they have the same visual range as the moderate, thick and dense fog (see
Tables 5.1, 5.2 and 2.3). Thus, they should have a similar radius as the natural fog (Table
2.2). In both scenes, from level 1 to level 7 the covering fog is considered as dense fog.
The lightest layers, level 8 and level 9 are considered as thick fog and moderate fog,
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Level 1 Level 3 Level 5 Level 7 Level 9

Figure 5.2: The original hazy (first row) and the reconstructed images of Scene B (second
row). A and t are estimated on the surrounded red color patch. The distance between
it and the camera is 4.25m. First row: original hazy images, second row: reconstructed
images. Cropped image size is 1537×3073.

Table 5.2: Atmospheric attenuation and visual range of the different fog levels of Scene
B.

Fog level Visual range Attenuation coefficient (km−1)
Level 1 0 m ∞

Level 2 < 12m 306.12
Level 3 < 16m 235.29
Level 4 < 16m 236.32
Level 5 < 30m 126.49
Level 6 < 37m 105.06
Level 7 < 49m 79.35
Level 8 < 108m 36.09
Level 9 < 300m 13.06

respectively. Scattering at all of these levels is not dependent on the wavelength. This
proves the consistency between our semi-indoor conditions and the outdoor model.
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Figure 5.3: Estimated A and t obtained for each level of fog for a given distance of the
MCC placed at the back of the scene. First row: airlight, second row: transmission. First
column: scene A, second column: scene B.

5.2.1.2/ ANALYSIS

Referring to the previous sections (5.2.1 and 5.2.1.1), although Scene A and Scene B
differ slightly from each other by depths and fog densities, corresponding images of both
scenes of the same level provide close values of A and t. This gets reflected through
reconstructed images (Figures 5.1 and 5.2), where the area within the red surrounding
is poorly recovered in level 1 and level 3 from t1 = 0.00 to t2 = 0.09 in Scene A and from
t1 = 0.00 to t2 = 0.12 in Scene B, respectively. From level 5 and on up, when t exceeds 0.17
in Scene A and 0.27 in Scene B, the inversion of the haze model (Equation 2.16) succeeds
to recover recognizable features comparing to the haze-free image. This means that in
dense fog when the visual range is lower than almost 40m, an object placed within 7m is
most likely to be well recognized through haze model inversion.

Since unknown parameters of all fog levels are similarly estimated, this means that the
induced error is the same. When the fog density is relatively high (in our case, below
level 5), even if the estimation is reasonably accurate, it seems difficult, if not impossible,
to compensate due to the lost transmitted light through scattering and absorption and
getting a reconstructed image close to the haze-free image features. This is clearly shown
on images of low levels of fog, where reconstructed images are noticeably noisy with
perceptible saturation shift. This comes to confirm once more what has been pointed
out by Narasimhan and Nayar [127], that this model is not valid for depths that are more
than a few kilometers. Similarly, when the amount of fog greatly increases, even the
radiance of near objects is no more well captured by the camera. Moreover, since the
exponential attenuation comes quickly down to zero, the noise is greatly amplified for
high fog densities.
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5.2.2/ REAL WORLD VS SIMULATION

Exploiting CHIC (scene A), the spectra of Figures 4.4, 4.5 and 4.6 depict the transmittance
of the white patch of each haze level. When the haze veil dominates the image, we can
notice that transmittance curves represent the light scattered by haze particles adding to
it the daylight reflected by the patch. The manner how the transmission intensity evolves
through haze levels, we can notice that the luminance of haze density is exponentially
evolving. From level 6 the transmittance intensity becomes to reach back and to be closer
again to the transmittance spectrum of the clear image. This leads to deduce that the
airlight causes the atmosphere to behave like a secondary light source of a different type
than the outdoor global illumination. According to the definition of convergence model
of transparency perception, b = (1 − α)a + α f , b is the image that is covered by a given
level of haze. a is the clear image, which is considered to be the one captured without
embedding haze. f represents the tristimulus value of the captured target when it is
covered by an opaque haze veil. Finally, α is calculated by inverting the convergence
model and choosing the value corresponding to the black patch. We assume that the
darkest patch does not reflect the daylight, and that the airlight over this patch is only due
to the haze veil. The camera noise is removed by subtracting the tristimulus values of
the black patch in the clear image from the values of the same patch covered by different
haze levels. Equiluminous veil embedded in simulated images where α is constant, is
unnatural, and it cannot be represented in a satisfactory manner by such physical veil.

Figure 5.4: Images resulted through the haze model inversion from a real hazy image and
the correspondent simulated one at fog level 9 and level 5. Unlike level 9 where there is
a color matching between recovered patches of real and simulated scenes, the inversion
of the haze model fails to recover accurately the same colors for both images of level 5
where the haze density is high. This is particularly clear at some patches such as the
framed ones.

Haze that lies between the camera and the ColorChecker target modifies the light that
emanates from it and reaches the camera. The light reflected from the target is added to
the light scattered by the intervening particles. When the haze density greatly increases
and the scattered light overcomes the light reflected by the target, the perceived colors
components, hue and saturation, shift from their original values. This is clearly shown in
Figure 5.4, where the simulation succeeds to represent the real scene of level 9 (with a
little saturation difference related to the clear black patch) and fails for level 5. Referring
to Figure 5.5, the distributions of points representing the red patch from level 5 to level 2
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Figure 5.5: The chromaticities of different haze levels calculated in the color space CIE
xyY and represented by the parameters x and y. They are placed on the chromaticity
diagram of the red patch. (a) Real Scene, (b) Simulated Scene. Red: clear image white:
Level 1 yellow: Level 2 magenta: Level 3 black: Level 4 - gray: Level 5 pink: Level 6
green: Level 7 dark green: Level 8 blue: Level 9. The distributions of points representing
the red patch from level 5 to level 2 are different between (a) an (b), while other points
keep the same relative place between the end points (red and white) with a little shift in
saturation.

change between (a) and (b), while other points keep the same relative place between the
end points (red and white) with a little shift in saturation (as shown in Figure 5.4 for scene
with real fog level 9 and scene with simulated fog level 9).

As it is defined above, the direct transmission is the light that reaches the camera without
being scattered. Thus, the hue of this light is assumed to be independent of the reflected
surface depth. The hue of airlight depends on the particle size distribution and tends to
be gray or light blue in the case of haze and fog [132]. According to Figure 5.5, when the
haze veil becomes great, the points placed on the chromaticity diagram of the patches,
deviate from the line linking the haze veil color (white point) to the original unveiled color
(red point), and they are biased toward blue/green area. Some points are also located
outside the area between the red and the white points. The deviation rate depends on
the patch color, the airlight and the sunlight interference. When the deviation in simulated
scenes is smaller, all points representing a given patch at different haze levels remain
between the red and the white point.

When the haze model inversion is applied to the scene of real fog level 5 (Figure 5.4),
it accentuates the veiled colors by enhancing saturation. The recovered colors are very
different from those recovered from the scene with the simulated fog level 5, where the
target and the veil are colorimetrically independent. This work confirms the previous con-
clusions considering that the inversion of the haze model saturates colors. And the way
it estimates the airlight and the transmission does not enable it to take into consideration
the interference of different illuminants. As the retrieval of these parameters is limited to
the pixels intensities estimation, its mission remains limited to saturation enhancement,
and original hues are not accurately recovered (Figure 5.4). On the other side, when
the density of haze is small and the original hue is not altered, an adjustment based on
convergence model could reinstate original saturation.

In this part, we study the similarities between a simulated hazy scene created by a conver-
gence model and a real hazy scene. Physical luminous interaction modifies the perceived
scene, while colors in the simulated image maintain their hue information and only their
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saturation component shifts between the original color (saturated), and the haze color
(unsaturated). Convergence model fails to stand for hazy image when the density of
haze becomes considerably high. Dehazing methods like DCP, aim just to remove the
covered veil and to recover the color as it is not completely hidden, without taking into
consideration the interaction of different phenomenon. Thus, it is mandatory to have a
pre-processing stage that aims to adjust the color’s hue, and a post-processing stage
based on convergence model for saturation adjustments.

The atmospheric light A∞ has a particular relation with each of the ColorChecker colors
placed at the back of the scenes A and B (7 and 4.25 m, respectively)(see Figures 5.6
and 5.7). A relative low or medium density of fog, through which we can distinguish the
color of the object, converges proportionally to the haze-free colors all colors toward A∞.
Thus, the convergence shape is preserved across medium and low levels (level 5 to level
6).
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(a)

(b)

Figure 5.6: Chromaticities (a) and color appearance distribution (b) in CIE xyY and CIE
Lab color spaces, respectively, of the ColorChecker patches (Figure 3.13) at fog level 7
(red), fog level 9 (green) and haze-free level (blue) of Scene A. A∞ is placed at the center.
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(a)

(b)

Figure 5.7: Chromaticities (a) and color appearance distribution (b) in CIE xyY and CIE
Lab color spaces, respectively, of the ColorChecker patches (Figure 3.13) at fog level 7
(red), fog level 9 (green) and haze-free level (blue) of Scene B. A∞ is placed at the center.
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Beyond the density at level 5, colors become to be hardly distinguishable as indicate the
∆E∗ab values in Tables 5.3 and 5.4 (∆E∗ab � 6). Colors coordinates become very close to
A∞ and the convergence looses its shape. Thus, we are no more able to find back the
color direction indices.

Considering the perceptual color difference represented by ∆E∗ab in Tables 5.3 and 5.4.
When the density of fog is relatively high (level 1 to level 4) the values are around 2 (no
distinction is perceived anymore) and the standard deviation is very small. At level 5 for
both scenes, ∆E∗ab values are close to 6, thus the recovered colors at this level are similar
to the haze-free images. However, unlike Scene A, at level 5 values being higher than 6
in Scene B, this is reflected by a better color recovery (see Figures 5.1 and 5.2).

In all of this, we distinguish between:

• A critical high density of fog (small transmission’ values (Figure 5.3)) that brings all
colors to look alike (from level 1 to level 4 in our CHIC database). The result does
not depend on the objects colors.

• A low density (high transmission’ values) that differently alters the perception of
various colors. But since the values of ∆E∗ab are all very high, even if they are
different, they are all easily distinguished from the airlight and they are therefore
accurately recovered in hue but with a small bias in the saturation (level 7, level 8
and level 9 in our CHIC database).

• A medium density behavior that lies at the edge between the two others. In our
database, we consider level 5 and level 6 as representative. In the presence of such
densities, some colors such as patch B and patch F, unlike other patches, have low
∆E∗ab values (< 6) (see Table 5.3). This is manifested by providing recovered colors
not easily recognized with the naked eye (see the recovered patches B and F at
level 5 in Figure 5.1).

How can we generally represent this convergence behavior? From the geometrical
point of view, the perceptual convergence of a haze-free color towards the atmospheric
light A∞ is presented in the Figure 5.8, where we show three segments with a common
point A∞, to which all colors should converge. J1, J2 and J3 are three different haze-
free colors. I1, I2 and I3 are the hazy colors and they are connected to the segments
extremities as given in Equation 5.1:

Ic = A∞ + γc(Jc − A∞) (5.1)

The blue circle marks the achromatic critical zone of center A∞ and radius r. r is a
constant value common to all colors. This geometrical distance denotes the smallest
perceived dissimilarity between A∞ and all hazy patches at level 4. For a given color c,
dc is a constant value. It represents the distance between A∞ and a given fully saturated
(haze-free) color. We assume that γc =

lc
dc
∈ [0,1]. lc is the distance from the center A∞ to

the hazy color Ic. Depending on the color c, through fog levels, lc varies from 0 (opaque
layer of fog, level 1) to dc (haze-free image).

We consider that a given physical value of t induces a geometrical value of γc. When
the t value decreases, γc decreases also. This brings the hazy color closer to the critical
area. When the hazy color falls into this critical zone (lc < r), the original color is no more
accurately recovered. The direction of the color saturation levels is no more known. For
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Table 5.3: ∆E∗ab between atmospheric light and the chromatic patches of the Macbeth
ColorChecker at different fog levels of Scene A. For each level we calculate the standard
deviation of ∆E∗ab of all patches. A∞ is placed at the center.

Patch L1 L2 L3 L4 L5 L6 L7 L8 L9 Haze-

free
A 0 2.255 2.553 2.272 4.890 7.968 6.957 11.878 18.610 33.882
B 0 2.329 2.585 2.089 3.817 5.539 4.965 7.736 9.596 15.469
C 0 2.468 2.774 2.286 4.294 6.497 5.742 9.758 14.903 25.544
D 0 2.549 2.797 2.275 4.715 7.709 6.958 11.878 18.849 39.065
E 0 2.705 2.936 2.295 3.878 5.849 5.039 9.571 13.694 22.702
F 0 2.788 2.846 2.089 3.318 4.773 5.234 9.589 11.926 17.669
G 0 2.297 2.568 2.244 4.773 9.568 10.051 18.250 23.656 48.620
H 0 2.315 2.648 2.283 4.844 8.289 8.368 17.167 24.911 42.125
I 0 2.567 2.674 2.253 4.554 8.406 8.365 15.139 20.825 37.878
J 0 2.582 2.935 2.388 5.056 8.102 7.433 13.588 22.606 42.441
K 0 2.725 2.863 2.497 4.971 9.924 10.285 21.136 26.697 46.609
L 0 2.828 2.868 2.353 5.191 10.365 11.280 20.694 26.692 58.027
M 0 2.251 2.629 2.283 4.848 8.407 8.695 18.113 28.068 50.053
N 0 2.498 2.690 2.178 4.807 7.543 6.954 13.200 20.294 40.062
O 0 2.531 2.840 2.298 4.747 8.966 8.390 15.830 23.448 47.742
P 0 2.628 2.724 2.302 5.615 14.229 15.624 28.110 33.453 60.413
Q 0 2.679 2.971 2.353 4.506 8.003 7.528 16.813 22.993 41.051
R 0 2.774 2.986 2.399 4.325 6.700 6.760 12.785 17.825 30.181
STD 0 0.190 0.143 0.099 0.542 2.125 2.604 5.084 6.081 12.735

a given t, the induced γc depends strongly on dc, the distance between the atmospheric
light and the original haze-free color, and the proportion that r represents from it. Indeed,
for the shortest distance d1 shown in Figure 5.8, not a very low value of t is able to bring
I1 inside the achromatic area. In contrast, for d2 and d3, a larger decreasing of t is needed
to reach the achromatic crucial area.

Thus, referring to Figure 5.4, for the same t value, the recovered colors of some patches
are close to the original ones and some are not. This proves our observations made upon
Figures 5.3 and 5.4.

5.3/ GEOMETRIC MODEL

Here we present a geometric model to estimate the atmospheric light A∞ for a given
layer of fog. This can be verified using CHIC images, since the experimental A∞ value is
calculated from level 1 image.

In digital images, the fog converges the scene’s colors to A∞. In geometry, this means
that all the lines plotted through two points (∗: haze-free color, 4: hazy color) of all image
pixels, intersect at one point A∞ (in the best conditions), or to cross its surrounding area.

In the following sections, we explain how the A∞ is simply calculated in the 2D space rg,
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Table 5.4: ∆E∗ab between atmospheric light and the chromatic patches of the Macbeth
ColorChecker at different fog levels of Scene B. For each level we calculate the standard
deviation of ∆E∗ab of all patches.

Patch L1 L2 L3 L4 L5 L6 L7 L8 L9 Haze-

free
A 0 0.818 3.377 2.573 7.282 9.989 11.830 19.811 25.023 32.411
B 0 0.569 2.445 1.886 4.561 6.094 6.615 9.860 11.237 12.839
C 0 1.029 3.144 2.770 6.602 8.990 10.214 17.084 20.865 25.462
D 0 1.115 3.266 2.760 6.761 9.791 11.367 19.988 25.568 35.743
E 0 1.064 3.081 2.562 6.072 8.208 10.059 16.524 19.415 23.745
F 0 1.068 2.721 2.466 5.4616 7.020 8.570 12.907 15.900 18.006
G 0 0.441 2.736 2.109 7.177 11.168 13.561 24.399 33.123 46.997
H 0 0.977 3.368 2.848 8.475 12.086 15.336 26.580 33.413 42.378
I 0 0.836 2.868 2.370 6.889 9.904 12.088 21.199 27.863 36.257
J 0 1.054 3.530 2.882 7.560 10.747 13.047 23.232 30.671 43.735
K 0 0.722 2.685 2.183 6.717 11.139 15.598 27.548 35.240 44.273
L 0 0.501 2.270 1.768 6.992 11.146 15.686 27.546 37.281 54.518
M 0 0.851 3.465 2.911 8.552 12.824 15.905 29.290 39.229 51.463
N 0 0.885 2.875 2.521 7.063 9.157 10.965 22.047728.679 37.599
O 0 0.581 3.089 2.391 7.109 10.305 13.402 24.133 32.660 45.267
P 0 0.274 2.456 2.209 9.739 16.137 21.643 34.921 44.201 56.347
Q 0 0.711 2.819 2.204 6.901 9.756 12.784 24.000 31.641 41.773
R 0 1.002 3.042 2.793 6.904 9.443 11.951 19.387 24.325 31.320
STD 0 0.249 0.368 0.343 1.137 2.213 3.338 6.029 8.391 12.143

and how the accuracy of calculation changes over fog levels. We then investigate as well
the change in its estimation exactness with the number of selected colors all over the
image.

5.3.1/ ATMOSPHERIC LIGHT CALCULATION

As a first step, for the sake of simplicity, we selected manually 8 patches sized of 20 ×
20 pixels. They are different in colors, in the distance to the camera and therefore in the
density of fog and the attenuation rate of the transmitted signal. The selected colors are
shown on the Figure 5.9. We matched them to the colors of lines of the Figures 5.10 and
5.11.

For a given level of fog of scene A, to plot the lines shown in Figures 5.10 and 5.11,
we considered 2 points: the haze-free color value (saturated color) and its hazy value
(desaturated color). In Figures 5.10 and 5.11, we show the convergence behavior, in
zoomed out and zoomed in views, of two different levels of fog, level 5 and level 9, which
are away from each other.

Considering the coordinates r and g calculated from the RGB channels: r = R
R+G+B ,

g = G
R+G+B , we plotted the lines. When we look at the zoomed out graphs, we notice

a convergence towards the A∞. But when we look more closely, we realize that for level
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Figure 5.8: Representative graph showing the distribution of the original haze-free colors
and the atmospheric light A∞. J1, J2 and J3 are three different haze-free colors. A∞ is
the center of the achromatic zone. Considering r as the radius of the achromatic zone.
Depending on the distance between A∞ and J, the transmission value from which the
original color can be recovered. The shorter the distance d, not a very low t value is
enough to put the color inside the blue achromatic area, and the accurate recovery is no
more feasible.

5, which is of higher fog density, the lines pass closer to the A∞. More the haze is close
to the A∞, we achieve a higher computation precision of it. This is confirmed according
to the values presented in Table 5.5, where we present the geometric distance between
the real and the calculated A∞. Based on the convergence of the image colors towards
the airlight in foggy conditions, we calculated A∞ as unweighted centroid of the hazy col-
ors coordinates in the rg color space. Since the haze-free colors are different, they are
distributed around the achromatic zone where the A∞ is located. Thus, the calculated
value falls in the same zone, but with a lower accuracy than all other hazy images. The
distance values in Tables 5.5 and 5.6 increases when the fog density decreases. This
means that, more the hazy colors are closer to the A∞, its calculation accuracy is higher.
Overlapping values on some adjacent levels are due to the densities closeness and pos-
sible flawed homogeneity. Although the calculation accuracy of A∞ is high at high haze
densities, this does not necessarily means that recovered scene at such densities will be
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Figure 5.9: Selected color patches. The patches colors are the same matched with the
curves colors in the Figures 5.10 and 5.11.

better (cf. Section 5.2.1.2).

Table 5.5: The values of 2D distance between the real A∞ and the calculated one as the
centroid of the selected hazy colors at each fog level of the scene A.

Level
1

Level
2

Level
3

Level
4

Level
5

Level
6

Level
7

Level
8

Level
9

clear
image

0.001 0.0021 0.003 0.0027 0.0033 0.0043 0.0046 0.0047 0.0052 0.0163

5.3.2/ IMPACT OF THE NUMBER OF SAMPLES

In a second step, we applied an automatic sampling of colors present in the image. The
selected colors have been selected randomly respecting the precondition to be all differ-
ent. For that, we transformed the RGB values into CIE Lab color space. At each selection
iteration we calculated the values of the standard color difference metric ∆Eab between
the pixel candidate and the previous selected pixels. According to the meaning of the
∆Eab value [21], we selected the pixels when all values are over than 6.

We randomly selected 10, 20, 70 and 100 patches sized of 20 × 20 of different colors,
respectively. We show in Table 5.6 the change of the computation precision depending
on the number of the selected color samples. When it is a small number of selected
colors (10 or 20 samples), according to the conditions of the selection algorithm, selected
hazy colors do not necessarily surround the A∞. Thus, the euclidean distance across fog
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Figure 5.10: (a) The lines constructed by the haze-free color and the hazy color 4 at the
same pixels of the level 5; (b) Zoom in of the red rectangle.

levels for such few samples seems to be greater than for the manual selection. When the
number of samples relatively increases, the calculated value becomes closer to the real
one. Since, when there is a high number of samples, A∞ is perfectly surrounded, and the
calculated value is therefore more accurate. According to the algorithm conditions, with
more samples, the algorithm is no more practical. Consequently, the optimal number of
samples would be all the image’s pixels.
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Figure 5.11: (a) The lines constructed by the haze-free color ∗ and the hazy color 4 at the
same pixels of the level 9; (b) Zoom in of the red rectangle.

5.4/ HAZE MODEL VS SPECTRAL DEPENDENCE

As we have stated previously, it is critical to verify whether the real situation of hazy
scenes meets the physical haze model. Considering the fog levels of the database scenes
(cf. Section 5.2.1.1) and the prevailing scattering type, we proceed to investigate the
behavior of the haze model parameters across narrow wavelength bands in the VIS and
the NIR ranges.

After performing the preprocessing steps (Dark Master and spectral calibration) described
in Section 4.4.1.3, we have adopted the same method described in Section 5.2.1 to cal-
culate A and t at visible and NIR wavelengths over the black patch of the MCC placed in
the middle of the scene. A test of acquisition system linearity has been also performed
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Table 5.6: The change in the accuracy of A∞ estimation with the number of selected
colors all over the image. The values below represent the 2D distance between the real
atmospheric light and the calculated one as the centroid of the selected hazy colors at
each fog level of the scene A.

10 samples 20 samples 70 samples 100 samples
Level 1 0.0037 0.0030 2.7 × 10−4 8.5 × 10−5

Level 2 0.0060 0.0052 5.2 × 10−4 9.1 × 10−5

Level 3 0.0066 0.0090 6.6 × 10−4 9.1 × 10−5

Level 4 0.0110 0.0120 6.4 × 10−4 1.3 × 10−4

Level 5 0.013 0.0136 6.8 × 10−4 1.5 × 10−4

Level 6 0.0070 0.0205 7.5 × 10−4 2 × 10−4

Level 7 0.0235 0.0260 7.4 × 10−4 2.2 × 10−4

Level 8 0.0273 0.0204 7.9 × 10−4 2.5 × 10−4

Level 9 0.0245 0.0426 8.8 × 10−4 3.5 × 10−4

for a more accurate analysis of the measured data (Figure 5.12). Referring to Appendix
B, Figures B.1, B.2, B.5, B.6, B.9 and B.10 show the evolution of A and t across fog levels
of the scenes M1V , M2V and M2NIR, respectively. At a given wavelength, A and t have
opposite behaviors across fog levels. When the fog density decreases (from level 1 to
level n) A decreases and t increases. This is true for VIS and NIR. However, in NIR this
variation is very subtle. This is due quantum efficiency of the sensor beyond 950 nm (see
Figures 5.13, 5.14 and 5.15).
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Figure 5.12: Linearity of the system composed of the sensor and the filter VIS. Consid-
ering the haze-free image, the luminance component of CIE xyY is plotted against the
digital values (16 bits) calculated over the patches S, T, U, V, W and X (Figure 3.13). Be-
ing quasi-linear over 4 different wavelengths (550, 600, 650 and 700 nm), no correction
such as Gamma correction is applied.
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Figure 5.13: M1V haze-free image. At low wavelengths (400-500 nm) the sensor noise
prevails on the image. Thus, it avoids the accurate measurement of the airlight.

Figure 5.14: M2V haze-free image. At low wavelengths (400-500 nm) the sensor noise
prevails on the image. Thus, it avoids the accurate measurement of the airlight.

Figures B.3, B.4, B.7, B.8, B.11 and B.12 show the A values at the same level over the
spectral channels of the VIS and the NIR filters. Referring to 2.3.5 and the fog levels
characterization provided in Tables 5.1 and 5.2, the NIR ranges covered by our filters
should not provide a remarkable enhancement over visible range. Thus, at the same
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Figure 5.15: M2NIR haze-free image. The energy beyond visible range seems to be
extremely low. Thus, what we detect, especially from 900 nm is just noise. Thus, airlight
using these images is erroneously measured.

fog level, no difference is supposed to exist between the values of A at the considered
visible and NIR wavelengths. Thus, there is a different reason lying between the values
difference shown of the figures. Considering the airlight values across wavelength at
haze-free level (see (f) in Figure B.4 and (c) in Figure B.8), they should be all set to zero
as they are measured over the black patch. However, they have not negligible values. This
bias widely the calculated values of A at other fog levels. Hence, this variation does not
necessarily underline the dependence of the haze model parameters on the wavelengths.

In all of this, when the parameters are measured and extracted from an image, they are no
more pure physical parameters. They undergo directly some transformations that make
them strongly influenced and dependent on the acquisition system.

5.5/ CONCLUSION

Using our databases described in chapter 5, we sought to evaluate the haze model
through two different vision systems properties: color system, which is characterized
by wide sensitivity ranges and multispectral system characterized by narrow sensitivity
ranges over a larger global range.

The haze model evaluation has been done according to two focuses: the amount of
fog and the spectral dependence of estimated parameters. According to the first one,
a critical saturation area is defined, where the perceptual difference between A∞ and
the desaturated hazy color is not that much. For a given color, it is hard to retrieve the
hue line of the haze-free color. Since noise increases exponentially with t, it prevents
the accurate color recovery with the high densities. As these limitations are imposed by
the atmosphere, which represents a limiting factor for a color-based imaging system, the
accurate estimation of the unknown parameters would not make an improvement. For the
second focus, the sensor with its characteristics and precision play an active role in the
estimation of the weather parameters and may bias the physical model validation.
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QUALITY ASSESSMENT OF SINGLE

IMAGE DEHAZING

”The quality of beauty lies on how beholder values an object.”

-Jonathan Swift-

Quality assessment of enhanced images is inevitable. It guides us to select the most vi-
sually pleasing results and to develop automatic evaluating methods for computer vision.
In this chapter we review the objective metrics that were developed to evaluate dehazing
performance focusing on their pros and cons. Then, we describe the psychometric ex-
periment that has been carried out using our hazy image database, to investigate fidelity
quality attribute of a set of different approaches. A detailed discussion of a potential good
evaluating metric is given.
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6.1/ INTRODUCTION

The physical properties of a given environment as well as the imaging systems introduce
some amount of distortions that degrade the quality of captured images. The valuable
information is no more properly extracted from such images to be used in further process-
ing. Thus, we usually apply whether enhancement or restoration methods to improve the
quality.

Evaluating the perceived quality of an image is usually done along two axes. On one
hand, the subjective assessment through which we comprehend how the human visual
system reacts effectively to the variations in features from a scene’s image to another.
On the other hand, observers’ judgments are modeled as mathematical functions that
correlate well with the subjective ratings, forming then a group of metrics used for the
objective assessment.

In its turn, the quality of hazy and dehazed images represents an attractive research topic
regarding the number of affected features and the lack of appropriate image databases.

In this chapter, we will first evaluate some dehazing methods using both dehazing-
dedicated and non dehazing-dedicated metrics of different types. On the other hand,
through a subjective evaluation, we will understand better to which extent observers suc-
ceed to judge image features recovery compared to the original image. It is not the first
time that correlation between subjective and objective assessments provide useful infor-
mation.

6.2/ QUALITY OF COLOR DEHAZED IMAGES

The quality evaluation of dehazed images forms an important part of this thesis. De-
hazing is like other image processings, whose first goal is to optimize and to enhance
an imperfect image in order to, either display it in a better way or to extract some useful
information in order to be used in other post dehazing applications.

Throughout dehazing process, many modifications are introduced, affecting the image
features. These modifications might lead to have a better or a worse rendering to the
whole image, while knowing that image features are affected differently. The rendering
level depends directly on the hypothesis of the method and the distortions introduced by
viewing and capturing conditions.

There is a wide set of dehazing approaches and a variety of results (see Figure 6.1).
The objective and subjective investigations of dehazed image quality are still relatively
limited and miss some common data and tools. Thus, we dedicate this part to discuss
the different aspects of dehazing quality using CHIC database images. It aims to:

• Outline the major challenges of such evaluation;

• Point out the performance of some representative dehazing methods through vari-
ous haze densities;
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• Emphasize as well the ability of metrics to quantify the perceived quality of dehazed
images according to the haze-free image.

Figure 6.1: Case of confusion and disagreement between observers for the quality of
recovered images that matches the best with the original haze-free image. scene A at
haze level 9 taken from CHIC. In the second row, from left to right: image dehazed by
CLAHE, image dehazed by VAR, haze-free image and dehazed image by Fusion (cf.
Section 6.3).

The main difficulty in such evaluation is to specify the quality aspect we need to measure
for dehazing. The selection of methods providing the best given type of quality depends
strongly on the concerned application.

6.2.1/ BACKGROUND AND MOTIVATION

Image quality is an image characteristic that quantifies the perceived image degradation.
Each step an image goes through, from the scene formation to the image storage, in-
troduces some amounts of distortions or artifacts in the image. Image quality is affected
by:

1. Visibility conditions: in bad mediums such as underwater environment, bad
weather day, smoky place and outer space, the light emanating from an imaged
objects scene undergoes attenuation caused by the particles of the substance lying
along the path between the scene and the vision system. The degradation of the
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visual quality worsens when, whether the particles become bigger or their concen-
tration increases. The information loss is greater when the distance of the sensor
to the scene increases and the viewing conditions become too bad, like a bad illu-
minant type or without light at all. All these conditions lead to a poor-quality image
and may destroy drastically the original data.

2. Capture: depending on the performance of the acquisition device, it is quite possible
that noise is introduced while shooting, when the settings of the camera are not
correctly adjusted. For example, noise is introduced into images when we shoot
a long exposure image or shoot at a high ISO setting. In other cases, a relative
motion between the object and the camera may produces blurry and noisy images.

3. Process: when images are converted from one to another through processes such
as enhancement and restoration techniques, the resulting output image is no more
the same as the input image. While these processes are supposed to improve qual-
ity, it is likely to induce side effects. Some filtering processes may cause sharpness
lost such as Mean filter. And other processes like dehazing may amplify noise (cf.
Section 3.2.5).

4. Transmission: when an image is transmitted over channels susceptible to noise and
errors such as satellite communication channels [18], an adequate tradeoff should
be established between the degradation of the received image quality caused by the
loss of data and the added noise, and the adequate transmission delay imposed by
the available bandwidth.

5. Display: a considerable amount of processing is required between the image or sig-
nal source and the actual display device. All of this processing affects and modifies
what each pixel winds up displaying, often adversely affecting image quality and
accuracy and frequently introducing artifacts into the image. For example, a num-
ber of artifacts show up when we adjust image colors to be included in the color
gamut of the display device to be finally reproduced by it. When the colors that can
be reproduced by the device are less than the colors in the source image, we loss
some color information. Likewise when we consider the features of the device like
Gamma correction, dynamic range, color temperature, display contrast, etc.

6. Store: digital images are usually compressed so that the files take up less storage
space and can be transmitted more quickly. There is a tradeoff to make between the
file size and the image quality. More the size is reduced, more compression artifacts
are introduced into image. Depending on the type of lossy image compression,
several types of artifacts can appear, like ringing, contouring, posterizing, aliasing,
etc.

The distortions caused by each of the mentioned stages, induce distortions in one or
more of these image quality features, such as sharpness, noise, contrast, color accuracy,
vignetting, distortion, lens flare, etc.

After all that, the definition of image quality seems to be confusing. It is considered as
a quantification of a preference accorded by an observer to an image over another one
within the scope of a particular application. In this study, rather than considering the
quality as a general concept, we differentiate between preference, usability and fidelity,
which seem to be dependent on the fog densities (see Figure 6.2).
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1. Preference When we favor an image over another one, either in a guided survey
or to just evoke the aesthetic sense, this is known as image preference.

The human visual preference does not offer a stable behavior. It may be influenced
by extrinsic and/or intrinsic factors. As extrinsic factors we may cite the purpose of
the study and the visual conditions. Intrinsic factors could be the emotional state,
the professional background, the individual gender and age, etc.

Human visual preference for some image features varies with learning experience
and for some others it does not. The perception for the latter category relies on
innate visual recognition mechanisms [149].

2. Usability Image usability refers to the level of processing efficiency from which an
image becomes usable and provides useful information. Usability is defined by the
target application domain.

If we consider, for example, driver assistance applications, what we consider of the
best quality is an image that shows clearly the obstacles we have on the road. No
matter if they appear in their real colors or not. Thus, we prioritize the methods
that remove better the fog even if the recovered colors are completely different from
the original ones. On the other hand, if we consider color-based segmentation, we
prioritize the methods that maintain the original colors while the fog is removed to
an extent, which is sufficient to recognize the colors (Figure 6.3).

3. Fidelity Image fidelity refers to the ability of a process to eliminate undesirable
effects from a degraded image and to render it similar to the original image with
no discriminable differences between them. The original image is considered as
reference and it is assumed to have a perfect quality.

In this thesis, the dehazing matters are basically outlined by the image enhance-
ment inside an oven. This represents an application where the fidelity of color is
considered to be important for the color measurement of cooking meats in an oven.
The funding that permitted this thesis work has been issued from the OFS project.
Thus, only the Fidelity will be assessed in this thesis. The general integration of this
thesis within the project is described in Appendix C.

In order to make best use of the CHIC characteristics, which are not provided for other
sets of images, we deal only with the fidelity criterion through this study.

Quality of dehazed images Considering the different stages an image goes through,
we match each of them to dehazing process. A hazy image is captured in a bad environ-
ment. Thus, besides the noise, which is due to the sensor, some amount of noise is due
to the environment and particularly the haze and the induced bad visibility. The reversing
of the haze model known by dehazing, increases exponentially (Equation 3.31) the noise
added through the capture step. The remaining steps which are responsible for transfer
and data communication, are common to different types of images.

Through all of these steps, a dehazed image looses its accurate features and ends up by
having a lower quality comparing to the real raw haze-free scene.

IQA (Image Quality Assessment) of dehazed images is a challenging task, since the
haze-free image is often not available and there is no easy way to have a proper reference
image, as in the case of underwater and low light enhancement. Several factors make



6.2. QUALITY OF COLOR DEHAZED IMAGES 107

Figure 6.2: Preference, usability and fidelity have ranges of validation, which depend on
the density of fog. When the density of fog is very high, we only consider the dehazing
usability, which underlines the ability of dehazing to unveil some usable information. Us-
ability can be considered for all fog densities. For intermediate densities, when the haze
model is valid, we consider the fidelity of recovered features. When the fog is basically
very light, the dehazed images are usually over-contrasted and therefore more preferred
than the original haze-free images.

the evaluation of dehazing approaches not straightforward to be done. This is mainly due
to the nature of the fog and the surrounding environment, and the way they influence
the scene visibility (see Figure 2.4). Unlike classical image noise, fog is a continuous
uniform/non-uniform layer across the image. It has depth effect: the chromatic effects of
fog increase with depth, as the amount of fog intervening between surface and viewer
increases. It leads to contrast reduction and color shift. Fog may have also different
color casts depending on its density, the airlight and the surrounded medium ambient
color. All of these factors turn dehazing IQA into a challenging task requiring an accurate
evaluation of the altering features.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: (a, e) Haze-free image; (b, f) Hazy image; (c, g) Dehazed image: efficient
dehazing with color shift; (d, h) Dehazed image: inefficient dehazing with no color shift.
In the case of obstacles detection for road safety, the result (c) is better than the result (d),
since it provides a higher facility for objects detection. However, for applications consisting
in segmentation based on color, the result (h) seems to be better than (g), since colors
are recognized and similar to the original ones.

6.2.2/ SUBJECTIVE QUALITY ASSESSMENT

Image quality assessment is a crucial step for all processing and multimedia applications.
It is mainly related to the humans’ judgments. Only humans, who are the ultimate users of
these applications, are able to judge accurately the perceptual quality. That is why, there
are a number of subjective methods that define the way the humans should proceed to
evaluate image quality in a controlled environment. We describe briefly the methods that
are usually used for subjective quality evaluation [123].

Single stimulus categorical rating In this method, test images are shown randomly
on a displaying device for a fixed period of time, then they will be disappeared and the
observers will be asked to rank them according to five categories: excellent, good, fair,
poor, or bad.

Double stimulus categorical rating This method is similar to the previous one. How-
ever, in addition to the test images, the reference image is also displayed.

Ordering by force-choice pair-wise comparison In this method, only two images are
displayed for an indefinite time. Observers are asked to choose the one they prefer or
the one they think it is of the best quality. Even, if they do not perceive any difference
between them, they are required to choose one of them.
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Pair-wise similarity judgments Unlike Ordering by force-choice pair-wise comparison
method, observers are not forced to choose an image of two. However, they are asked to
indicate the level of difference between both of them on a continuous scale.

Difference mean opinion score (DMOS) This method indicates the quality loss of the
test image by calculating the difference between the raw scores assigned by observers
to the test and the reference images.

Z-score In order to make easier the comparison between observers’ opinions, we apply
a linear transform to the DMOS. Equation 6.1 represents zm,n, which is the Z-score of the
observer m according to the reference image of the test image n.

zm,n =
DMOS m,n − DMOS m

σm
(6.1)

DMOS m,n is the calculated DMOS for the observer m and the test image n, DMOS m and
σm are the mean DMOS and the standard deviation of the observer m computed for all
test images.

Subjective quality assessment is a challenging task, since it is time consuming and ex-
pensive. Thus, it is not suitable for real-world applications. On the other hand, various
factors make the subjective assessment complicated and not always reliable: lighting con-
dition, display device, viewing distance, observer’s mood, observer’s ability [123]. Thus,
mathematical models should complete the subjective evaluation, only on condition they
provide the same predictions.

Figure 6.4: Scene 1. From left to right: Haze-free; Level A (highest fog level); Level B
(medium fog level); Level C (lowest fog level). Image size is 1537×2049. These images
are successively acquired within 5 minutes.

6.2.3/ OBJECTIVE QUALITY ASSESSMENT

Objective image quality assessment aims to measure and automatically evaluate the
quality of a given image in agreement with the judgments of observers. Since the auto-
matic evaluation should reflect the human judgment, the design process of a new metric
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Figure 6.5: Scene 2. From left to right: Haze-free; Level A (highest fog level); Level B
(medium fog level); Level C (lowest fog level). Image size is 1537×3073. These images
are successively acquired within 5 minutes.

should go first through subjective testing. This is the most reliable method for assessing
the quality of images. A good visual objective IQA metric is the one that can globally
mimic human prediction.

Objective IQA metrics are divided into three categories: No-Reference Image Quality
Assessment (NR-IQA), Reduced-Reference Image Quality Assessment (RR-IQA) and
Full-Reference Image Quality Assessment (FR-IQA).

NR-IQA No-reference, referenceless and blind metrics, these nominations can all be
used to designate the metrics that are applied when the reference image is not available.
In many applications such as communication systems, radar systems, and dehazing ap-
plications, the reference image cannot be available. Then, the quality evaluation is only
based on the test image. Such assessment is based on the fact that human being is able
to evaluate the quality of a perceived image even if the reference image is not available.
This can be done, since the human’s brain knows how a good image should look like. Or,
they are based on models that can learn to predict human judgments of image quality
from databases of human-rated distorted images.

There are subcategories of NR-IQA metrics that have tighter conditions:

• Opinion aware NR-IQA (OA-NR-IQA): a model is OA if it has been trained on a
set of distorted images that have been ranked by humans. In other words, when
the classification is done based on a subjective opinion. Such metrics suffer from
a common problem: they are limited to the distortion types that they have been
trained on.

• Opinion unaware NR-IQA (OU-NR-IQA): since such collections of distorted images
with recorded human opinions are not easily available, OU models do not require
training on distorted images with the related judgments. However, they require
specific information about the expected image distortions. For instance, the mean
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value and the entropy of the phase congruency image, the entropy of the distorted
image and the mean value of the gradient magnitude of the distorted image could
be used as potential quality features [94].

• Distorsion aware NR-IQA (DA-NR-IQA): this model is derived from OU model.
When a model is defined by training on specific distortions.

• Distorsion unaware NR-IQA (DU-NR-IQA): like DA, this model is also based on OU
model. It relies instead only on exposure to naturalistic source images or image
models to guide the QA process.

RR-IQA In this category, the reference image is not fully accessible, and only some
features can be extracted from it. These features are therefore used to evaluate the
image quality. According to [123], the selected features should satisfy some criteria. For
instance, they should represent efficiently the reference image, and to be sensitive to a
variety of distortion types and to have good perceptual relevance.

FR-IQA In this category, the original image that has a perfect quality is fully available.
Among these three objective IQA metrics, FR-IQA was much more developed and used in
a number of application domains like compression [44], [60], watermarking [35], printing
workflows evaluation [138], medical imaging displays [82], and so on. It is likely easier
and more reliable to evaluate an image after comparing it to a full real image that we see,
than to expect how it would look like based on the human memory.

6.2.3.1/ GENERAL QUALITY METRICS

Let us talk about these metrics according to their evolution through time. The first image
quality metrics are error-based metrics that measure quality between an original image
that is assumed to be without defects and an image contaminated by noise and other
distortions. The quality metric Mean Square Error (MSE) has been the basis of the gen-
eration of automatic quality prediction. It points out the weight of distortion that induces
an important difference between the values of the same pixel of both images. Some met-
rics are based on the MSE, such as root mean square error (RMSE), peak signal to noise
ratio (PSNR), mean absolute error (MAE), and signal to noise ratio (SNR). Despite their
limitations that are detailed later, they have been used for a long time for image quality
measuring.

Although they have been widely used, MSE and their relatives have many drawbacks:

• MSE-based measure ignores some image features such as textures, ordering, pat-
terns that affect clearly the image perception quality.

• MSE-based measure is independent of temporal or spatial relationship between
samples and the reference image. It overlooks the structural distortions effects
such as additive Gaussian noise, blur and lossy compression (e.g. JPEG).

• MSE-based measure does not distinguish between a negative and a positive error.
Therefore, all image signals are considered and treated equally with MSE.
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After this generation of metrics, Wang et al. [177] explain widely the weak points error
sensitivity pixel-based quality measurement. The earlier quality models are not correlated
well with the perceived quality. This is due to the fact that these metrics are based on sim-
plistic image features consideration and quasi-linear operations, while the HVS (Human
Visual System) is a complex and non linear system.

Subsequently, the Structural SIMilarity (SSIM) [178] comes to subvert the concepts of
quality metrics. The SSIM approach is based on the observation evoked in [177] that
natural images have highly structured signals with strong neighborhood dependencies,
and it is motivated by the fact that human visual system is highly adapted to extract
structural information from scenes.

Thus, SSIM switches IQA from error sensitivity pixel-based quality measurement to struc-
tural distortion based image quality measurement, to which the human perception is more
sensitive. Three attributes are considered to measure the structure similarity: the lumi-
nance l (Equation 6.2), which is given by the image mean µ. The contrast c (Equation
6.3), which is given by the image variance σ. The structure s (Equation 6.4), which is
calculated through the covariance σXY of the reference image X and test image Y.

l(X,Y) =
2µXµY + C1

µ2
X + µ2

Y + C1
(6.2)

c(X,Y) =
2σXσY + C2

σ2
X + σ2

Y + C2
(6.3)

s(X,Y) =
σXY + C3

σXσY + C3
(6.4)

C1, C2 and C3 are small constant. They are used to avoid unstable measurement when
the denominator is close to 0.

The global index is calculated as Equation 6.5:

S S IM(X,Y) = [l(X,Y)]α.[c(X,Y)]β.[s(X,Y)]γ (6.5)

α, β and γ define the relative importance of SSIM attributes. They are all usually set equal
to 1.

MS-SSIM [179] SSIM gives the best performance when it is applied at an appropriate
scale. The right scale depends on the viewing conditions like viewing distance and the
resolution of the display. MS-SSIM (Multi-Scale SSIM) outperforms SSIM because the
image details at different resolutions and different viewing conditions are integrated into
the quality assessment.

VIF [160] VIF consists of measuring the mutual information between a perceived dis-
torted image F and reference image with no distortions E (see Figure 6.6). A reference
image E is modeled as an output of a natural image source and it passes through HVS
channel before being processed by the brain.

The natural image source C is modeled by Gaussian scale mixture as being a product
of two independent random fields, C = S .U = {S i.

−→
U i : i ∈ I}. I is the set of spatial
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indices. S = {S i : i ∈ I} is a random field of positive scalars. U = {
−→
U i : i ∈ I} is a

Gaussian vector random field with zero mean and covariance CU . The degraded image
D is modeled as the sum of the signal attenuation and the additive noise in the wavelet
domain, D = GC + V = {gi(

−→
C i + (

−→
V i : i ∈ I}. G = {gi : i ∈ I} is a deterministic scalar gain

field and V = {
−→
V i : i ∈ I} is a stationary, additive, zero-mean, white Gaussian noise RF

with variance CV = σv
2I.

While flowing through the HSV channel, an amount of additive noise is added to the input
information. E = C + N (reference image) and F = D + N′ (degraded image). The HSV
noise is modeled in the wavelet domain like V, N = {

−→
N i : i ∈ I} and N′ = {

−→
N′i : i ∈ I}, where

−→
N i and

−→
N′i are zero-mean uncorrelated multivariate Gaussian with the same dimensions

as
−→
C i.

The change in visual quality between the reference and the degraded images can be
related to the amount of mutual information that the brain can extract from both images.
The mutual information is calculated by Equation 6.6:

VIF =

∑
j∈subbands I(

−→
C N, j,

−→
F N, j|sN, j)∑

j∈subbands I(
−→
C N, j,

−→
E N, j|sN, j)

(6.6)

I(
−→
C N, j,

−→
E N, j|sN, j) and I(

−→
C N, j,

−→
F N, j|sN, j) are the information that the brain extracts from the

reference and the degraded image, respectively. For more information about the compu-
tation of the extracted information, reader can refer to [160].

It was shown that VIF is quite able to predict the enhanced image quality by contrast
enhancement operation.

Figure 6.6: Modeling workflow of the reference and distorted images [160].

MS-iCID [144] The Multi-scale improved Color-Image-Difference has been proposed to
rectify the shortcomings of the previous CID metric [101], which is a color version of the
SSIM index. This means that, besides the lightness difference, contrast and structure,
hue and chroma difference have been added. It is basically used for gamut mapping and
tone mapping distortions evaluation.

It is sensitive to many distortions, including the expected color and lightness distortions
generated by dehazing methods, such as lightness difference L, lightness-contrast LC,
lightness-structure LS , chroma-difference CL, hue-difference H, chroma-contrast CC and
chroma-structure CS .

VSI [195] The human system has the ability to focus the attention to salient regions in
the scene. To avoid the overload of visual information, our brain apprehend an image
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content progressively, starting by the most eminent visual stimulus. Two main factors
affect the order that a human adopts to perceive an image: bottom-up and top-down
factors. In the first one, the objects that are different in the low-level features such as
intensity, color and orientations attract the attention of the viewer. In the second one, the
attention is guided by the requested task. In other words, the objects that are expected
capture the observer’s attention. A number of Visual Saliency (VS) models have been
proposed to construct the VS map. For more information about computational VS models,
the reader may refer to [78].

The perceived quality degradation of a given image induces perceptible change in the
VS map. This map showed a weakness in the detection of the change of two features,
contrast and saturation, which are strongly altered by the fog application and fog removal.

Due to the normalization operations involved in the VS map, it becomes no more sensitive
to contrast change. Moreover, since it does not consider any chrominance information, it
is not sensitive as well to color saturation change.
In order to handle the first issue, using the Scharr gradient operator, the gradient modulus
maps of compared images are provided. The similarity score of both maps S G is then
provided. Gradient modulus map has a good potential to underline the local contrast loss
of images.
To handle the saturation change, the RGB image is transformed into an opponent color
space and the chrominance channels similarity score S C is then calculated.

The global VSI (Equation 6.7) is calculated through the combination of the similarity
scores across the image’s pixels i:

VS I = S VS (i).S G(i)α.S C(i)β (6.7)

where α and β define again the relative importance chrominance and contrast attributes.

FSIMc [196] Unlike SSIM, FSIM (Feature SIMilarity) is based on the fact that HVS is
mainly adapted to perceive images degradation according to the change of its low-level
features, such as edges and zero-crossings. It reproaches SSIM and MS-SSIM for the
fact that pool a single quality score from the local quality map, thus, all positions are
considered to have the same importance. In this metric two attributes are considered:

• Phase Congruency (PC): this model postulates that sharp structural features in the
image are perceived at points where the Fourier components are maximal in phase.
For more information about the PC map computation, the reader can refer to [196].

• Gradient magnitude (GM): since PC component is not sensitive to contrast variation,
it was coupled to a GM expressed by convolution masks for edge detection such as
Sobel, Prewitt and Scharr filters.

For each map position x, the similarity score between PC1 and PC2 maps extracted from
haze-free and dehazed images, respectively, is calculated as follows:

S PC(x) =
2PC1(x).PC2(x) + T1

PC2
1(x) + PC2

2(x) + T1
(6.8)
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Likewise, the similarity score between GM1 and GM2 maps extracted from haze-free and
dehazed images, respectively, is calculated as follows:

S GM(x) =
2GM1(x).GM2(x) + T2

GM2
1(x) + GM2

2(x) + T2
(6.9)

where T1 and T2 are positive values. They are used to maintain the stability of S PC(x) and
S GM(x) and they depend to the dynamic range of PC and GM maps, respectively.

The global achromatic FSIM index is given by Equation 6.10:

FS IM =

∑
x∈Ω(S L(x).PCm(x)∑

x∈Ω PCm(x)
(6.10)

where S L(x) = S PC(x))α(S GM(x))β. α and β denote the importance parameters of PC and
GM features. Usually, they are both set to 1. PCm(x) = max(PC1(x), PC2(x)). It has been
introduced to normalize the importance of PC and GM similarities all over the image. Ω

denotes the whole image.

FSIM is basically applied to graylevel images. However, it can be extended to color im-
ages by converting first the RGB to YIQ image, calculating the similarity of PC and GM of
the luminance component Y (as explained before) and calculating likewise the similarity
of the chromatic channels I and Q.

The global chromatic FSIMc index given in Equation 6.11 is calculated after incorporating
the chrominance similarity S C(x) = S I(x).S Q(x), which is the product of the chromatic
channels similarity scores:

FS IMc =

∑
x∈Ω(S C(x))λPCm(x)∑

x∈Ω PCm(x)
(6.11)

where λ is a positive parameter used to define the importance degree of chromatic com-
ponents.

NIQE [121] This OU-DU-NR-IQA is based on a number of quality features extracted
from a large corpus of no distorted natural images. Thus, it is not limited to any specific
distortions. The features of the NSS model [151] are extracted from patches of a given
size and fitted in multivariate Gaussian (MVG) model. NIQE is expressed as the distance
between two multivariate Gaussian models of NSS features extracted from natural images
and the ones extracted from the patches of the test image. The less distortions are there,
the distance difference value is low.

6.2.3.2/ DEHAZING DEDICATED QUALITY METRICS

IQA of dehazed images is a challenging task, since haze-free image is often not available
and there is no easy way to have a proper reference image.
Several factors make the evaluation of dehazing approaches not straightforward to be
done. This is mainly due to the nature of the fog, the surrounding environment and the
way they influence the scene visibility.

In this part, we present the dehazing dedicated metrics in a chronological order.
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Early works focused on showing off contrast enhancement. They overlooked in one way
or the other the impact of color evolution on the global quality of restored images. The
recently proposed indicators take into consideration this aspect, because we are aware
of its ability to alter the perceived image quality.

There are two kinds of dehazing-dedicated metrics: full-reference metric, where the ref-
erence is the hazy image and no-reference metrics.

Hautière et al. As the hazy image is the only available input image, Hautière et al. [68]
proposed to compute the ratio between the gradient of the visible edges between the
image before and after contrast restoration.
Therefore, two indicators have been proposed. The rate of new visible edges:

e =
nr − n0

n0
(6.12)

n0 and nr are the cardinal numbers of the set of visible edges in the original hazy image
and the restored image, respectively.

And the indicator of restoration quality:

r̄ = exp[
1
nr

∑
Pi∈Pr

logri] (6.13)

where Pr is the set of visible edges in the restored image. This indicator is the geometric
mean of the ratios of the visibility level VL defined by:

r =
VLr

VL0
=

∆Lr/∆Lthreshold

∆L0/∆Lthreshold
(6.14)

VLr and VL0 are the difference in luminance between the target and the background of the
original hazy image and the restored image, respectively. ∆Lthreshold is the value at which
a target becomes perceptible with a high probability. This is estimated using Adrians
empirical target visibility model (Adrian, 1989).

In addition to r̄ and e, Hautière et al. proposed to calculate the percentage of the saturated
pixels (black and white) generated by the restoration method, as an indicator of how a
saturation degree may influence the restored image quality:

σ =
ns

dimx × dimy
(6.15)

where ns is the cardinal number of the saturated pixels. dimx and dimy are respectively
the width and the height of the image. Good dehazing methods are supposed to increase
contrast without saturating pixels. Otherwise, some visual information are lost. Therefore,
a high image quality of dehazed images is described by high values of e (Equation 6.12)
and r̄ (Equation 6.13) and low values of σ (Equation 6.15).

This methodology has been widely used to assess the performance of a method against
others. The frequent use of these metrics might goes back to the lack of metrics rating
such kind of treated images, and the faithful color restoration was usually overlooked.
According to Guo et al. [63], the assessment based on these metrics is inconsistent with
the human visual perception for color images. They do not take into consideration the
apparent problems of over-enhancement and color distortion.
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Fang et al. [51] The metric presented here, combines the increasing of contrast de-
gree with the structural similarity. They are respectively computed based on the spatial
frequency contrast and the edges consistency between the hazy and the dehazed image.

Based on the following characteristics, authors searched to highlight the contrast improve-
ment and the structure similarity between the hazy and the dehazed image:

• Although the contrast of a hazy image is low, there is still gradient differences.

• The contrast of the dehazed image is higher than the contrast of the hazy image.

• The scene structure has strong correlation, thus, the pixels of image have similar
property.

As the Michelson contrast [117] computes a global contrast for the whole image and it is
sensitive for noise stimuli, based on the image spatial frequency characteristics, a local
band-limited contrast gives the contrast of every pixel. The ascension of contrast degree
(Equation 6.16) is calculated as follows:

C =

∑H
x=1

∑W
y=1(ce(x, y) − co(x, y))∑H
x=1

∑W
y=1 co(x, y)

(6.16)

x and y are the pixels coordinates, H and W are respectively the height and width of
the image. co and ce are the contrast at the band of spatial frequencies of blurred and
deblurred images, respectively.

When the ascension of the contrast degree is high, this means that the difference between
co and ce is greater, which reflects the difference of image quality between the original and
the processed images.

Structural similarity (Equation 6.17) is measured by the consistency of edges of the orig-
inal and the dehazed image:

S =

∑H
x=1

∑W
y=1(Edge o(x, y) − Edge r(x, y))

E sum o
(6.17)

Edge o(x, y) and Edge r(x, y) are the edges of the original and dehazed image. E sum o is
the sum of the edges in the original hazy image. In this formula, the difference of edge
numbers has no influence. We just consider if the position of the edge of dehazed image
is the same with the original edge. When S is low, this means that the structure is less
similar. Then, the dehazing process has not inserted artificial edges, such as blocking
effects.

The global CS index is given as follows:

CS = (Cα) ∗ (S β) (6.18)

α and β denote again the importance of C and S parameters. Here, they are both set to
1.

Guo et al. [63] They proposed a full-reference metric using synthetic hazy images sim-
ulated by image degradation. It consists on computing the absolute difference between
the hazy image and the dehazed one.
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They proposed as well, two no-reference metrics: the first one considers the fog density
and the second one considers the human visual perception. The fog density f (Equation
6.19) is calculated focusing on the dark channel, which is computed using DCP method,
and the refined fog veil v (Equation 6.21), which is calculated by the mean M (Equation
6.20) of the convolution of each color channel of the input image I with the Gaussian filter
F(x, y) (cf. Appendix A):

f =
∑
Ω∈I

DcΩ(p)VΩ(p)
HW

(6.19)

M(x, y) = I(x, y) ∗ F(x, y) (6.20)

v =
1

HW

H∑
x=1

W∑
y=1

M(x, y) (6.21)

For the hazy image, Dc is the dark channel, v is the estimated fog veil, H and W are the
height and the width of the image. When Dc and V are high, the fog is dense. This is quite
logical. The drawback of this indicator is that it is only consistent with human judgment
for grey level images.
In order to settle this issue, the third indicator is based on the human visual perception that
considers not only the contrast but also the color quality, by combining three components:
contrast, naturalness and colorfulness.
The contrast component (Equation 6.22) is the ratio between the number of visible edges
in the hazy image nX and the number of visible edges in the dehazed image nY :

e =
nY

nX
(6.22)

The second component, Color Naturalness Index (CNI), has been introduced in [189].
This index shapes the degree of correspondence between human perception and reality
world. After transforming the RGB image to CIELUV color space, three kinds of pixels
according to the hue value are defined: skin pixels, grass pixels and sky pixels.

Choi et al. [32] Recently, a Fog Aware Density Evaluator (FADE) [32] was proposed to
evaluate the performance of dehazing algorithms through the definition of the perceptual
fog density of the image. This is a no-reference metric. Since hazy images are charac-
terized by low contrast, faint color, and shifted luminance, this metric evaluates defogged
image density by calculating by means of Mahalanobis distance the similarity with Natural
Scene Statistics (NSS) and fog aware statistical features, including sharpness, contrast,
image entropy, saturation in HSV color space and colorfulness. These features have been
extracted from 500 images of hazy and 500 of haze-free images of different natural image
databases such as LIVE IQA database [161], the Berkeley image segmentation database
[112], and copy-right free web sources like Flickr.

6.3/ EXPERIMENT

In this experiment we evaluate, using images from CHIC database (cf. Section 4.3.2),
five state-of-the-art dehazing algorithms (see Table 6.1) in terms of perceived quality for
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visualization by means of subjective experiment. We also investigate the performances of
eleven state-of-the-art image-difference metrics (full- and no-reference) (see Table 6.2).

For this study, which investigates the fidelity of dehazed image quality, we selected three
images of different medium and light fog densities level 5, level 7 and level 9 to fulfill the
fidelity requirements (see Figure 6.2). In this chapter, we use a different naming of levels
than previous chapters. Level A, level B and level C denote the highest level (level 5),
the medium level (level 7), and the lowest level (level 9) among the selected fog levels of
scene 1 and scene 2, respectively (Figures 6.4, 6.5).

Why did we select these methods and metrics? A selection of representative dehazing
methods and several quality metrics has been done to reduce the complexity of this study.
These methods belong to different dehazing categories and they are based on different
approaches (cf. Section dehazing model based, Table 6.1). For the metrics, we limited
our selection to the most used and efficient metrics mentioned in literature, with obviously
the dehazing-dedicated metrics that had been released before this study was done.

Table 6.1: Summary of selected dehazing methods. For each method, the default imple-
mentations’ parameters proposed by the authors, have been used.

Dehazing Approach Physics-
method based
DCP [136] Statistics-based assumptions X

& filtering approach
FAST [167] Filtering approach X
FUSION [11] White balance and contrast X

enhancement weights fusion
VAR [57] Variational approach ×

& histogram equalization
CLAHE [187] Histogram equalization ×

Table 6.2: Summary of selected metrics. Type can be Full-reference F and No-reference
N. The reference image is in brackets.

Metric Type Haze-dedicated
MS-SSIM [179] F (haze-free) ×

VIF [160] F (haze-free) ×

MS-iCID [101] F (haze-free) ×

FSIMc [196] F (haze-free) ×

VSI [195] F (haze-free) ×

NIQE [121] N ×

FADE [32] N X
Hautière’s r [68] F (hazy) X
Hautière’s e [68] F (hazy) X

CNC [63] F (hazy) X
CS [51] F (hazy) X
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Dehazed images of Scene 1 of fog levels A, B and C. They have been pro-
cessed by CLAHE, DCP and FAST algorithms. Rows: CLAHE, DCP, FAST. Columns:
level A, level B, level C.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Dehazed images of Scene 1 of fog levels A, B and C. They have been pro-
cessed by FUSION and VAR algorithms. Rows: FUSION and VAR. Columns: level A,
level B, level C.

6.3.1/ DESCRIPTION

Objective We first want to pinpoint which algorithm would give the best results. The
goal is to remove the haze while preserving color and sharpness fidelity comparing to
the original haze-free image. We evaluate the selected algorithms with the selected met-
rics and with visual judgments. Then, we evaluate how metrics correlate with the visual
judgments.

In this work, we consider the similarity between the haze-free and the processed images
according to the most perceived criteria. The sharpness similarity that points at the same
time to the ability to remove fog and the resulting amount of noise and artifacts. The color
similarity that points to the ability to estimate accurately the airlight and the ability to find
an acceptable compromise between the dehazing and the naturalness of images.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Dehazed images of Scene 2 of fog levels A, B and C. They have been pro-
cessed by CLAHE and DCP algorithms. Rows: CLAHE and DCP. Columns: level A, level
B, level C.

Observers A group of 20 subjects, men and women, has been asked to rank images.
The judgments of only 14 observers have been retained (cf. paragraph 6.3.2). Their age
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(a) (b) (c)

Figure 6.10: Dehazed images of Scene 2 of fog levels A, B and C. They have been
processed by FAST algorithm. Columns: level A, level B, level C.

ranges from 20 to 40. They were students and researchers at Gjøvik University College.
Most of them were familiar with images quality features.

Stimuli Scene 1 and scene 2 were used with fog level A, B and C. The five algorithms
have been applied to each of these images (Figures 6.7, 6.8, 6.9, 6.10, 6.11). Thus, in
the subjective evaluation, for each fog level of a scene, the five dehazed images are com-
pared to the correspondent haze-free image in terms of color and in terms of sharpness
similarities.

Thus, the observers examined 36 images for each feature. For the same fog level, 6
images (5 dehazed images and the haze-free image) of scene 1 were displayed followed
by 6 images of scene 2.

Procedure The experiments were run in a dark room. Observers were seated approx-
imately at 70 cm from the display. For each fog density, observers were asked to rank
the dehazed images, considering the degree of matching with the haze-free image in
terms of color and in terms of sharpness, respectively. For each feature, we displayed 6
sets grouping 6 images, starting by level A to level C of scene 1 and scene 2, respec-
tively. This process has been done using the well-established Rank Order Correlation.
Quickeval [174], a web-based tool for psychometric image evaluation, has been used.
Observers were allowed to move the image to a zoomed-in view, and to focus only on
a portion of the displayed scene at a time. In this experiment, we did not impose any
constraints related to the time an observer could spend on the task, nor to the portion of
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Dehazed images of Scene 2 of fog levels A, B and C. They have been
processed by FUSION and VAR algorithms. Rows: FUSION and VAR. Columns: level A,
level B, level C.

scene that was to be considered. Depending on the participants, the global analysis time
of all stimuli varied from 35 to 45 minutes.
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6.3.2/ SUBJECTIVE EVALUATION OF DEHAZING ALGORITHMS

We first performed a screening of the 20 participants according to [25] and found that 6
of them were not valid. Results from these outlying observers were discarded. Overall,
we noted a relatively large inter-observer variability (see error bars on Figure 6.12), which
we assume can be explained by several factors. First, the complexity of the task: even
though we asked the observers to isolate the influence of color and that of sharpness, we
believe that the extent to which they were able to do so varied greatly from one observer
to another. Secondly, the software that we used allowed observers to focus on a portion
of a scene. Although we did not record how each observer browsed the scenes, we argue
that there might have been some variations in terms of what they considered as regions
of interest. In other words, different observers chose to focus on different parts of the
scene, and that behavior cannot be modeled by saliency only.

We computed the average ranks, over all 14 observers, given to each dehazing method
in each sequence and obtained the results shown in Figure 6.12. Again, the large error
bars suggest a large inter-observer variability. However in a few cases, observers tend
to agree to a relatively large extent. For example, according to these results, the CLAHE
method performs significantly worse than the other four in terms of recovering colors on
the second scene, for the fog level A. Observers also agreed that this method performs
poorly on the first scene for the fog level B and that the DCP method performs badly in
terms of both color and sharpness recovery in scene 2 for the fog level C. We can also
see that VAR performs best in terms of recovering color on the first scene and for the fog
level A.

Overall, we found that inter-observer variability is larger for the sharpness recovery as-
sessment (second row in Figure 6.12) than for that of color recovery. This is consistent
with the feedback we obtained from most observers about the higher difficulty of the sec-
ond part of the experiment.

Note that these results, i.e. large inter-observer variability and lack of consistency across
scenes, have also been reported in [107]. Here we demonstrate in addition, and in a
different framework when the observers had access to the original image, that:

• There seems to be no consistency across fog levels and between color and sharp-
ness preservation. For instance, CLAHE is the best performing method of color
recovery, while it fails to maintain a good sharpness at the same level B of scene 1.

• Not a single method performs the best nor the worst overall.

6.3.3/ SUBJECTIVE EVALUATION OF IMAGE QUALITY METRICS

We chose to use the hit rate to measure the agreement between subjective and objec-
tive data. It corresponds to the proportion of correct predictions made by the metric in a
pairwise comparison setup and takes into account both intra- and inter-observer variabil-
ity. A hit rate h has a value between 0 and 1, although it does have an upper bound in
that it is impossible to obtain a perfect agreement with all observers. There is a maximal
achievable hit rate hmax, also referred to as majority hit rate [101], which is defined as
the rate that would be obtained should the metric constantly agree with the majority of
the observers. Additionally, h also has a pseudo lower bound in that a hit rate of 0.5 is
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Figure 6.12: Average ranks obtained for each image sequence, and for each level of
haze. First row: color, second row: sharpness. First column: scene 1, second column:
scene 2.

considered as that of chance. Consequently, we also computed the rescaled hit rate ĥ,
as follows:

ĥ =
h − 0.5

hmax − 0.5
(6.23)

and which ranges between -1 (worst) and +1 (best). Note that negative values can be
considered as worse than chance (i.e. worse than a random predictor).

The subjective ranking data was therefore transformed in pairwise comparison prefer-
ences for each image sequence independently and objective preferences were computed
with the benchmark metrics.

Table 6.3 gives the obtained hit rates for each metric of the benchmark, for each level of
haze and overall. Additionally, we isolated individual features of the MS-iCID and CNC
metrics in order to have a better insight in terms of which perceptual attributes contribute
the most to a good dehazed image quality. Table 6.4 reports the results obtained. Note
that, for the sake of readability, all values were rounded, which explains that some seem-
ingly identical h lead to different ĥ. Note also that hmax is different in each part of the
experiment.

In order to evaluate if the difference between two hit rates is significant, we also performed
a two-sample binomial test with Yule’s confidence intervals [24]. We assumed that the
metrics’ predictions of observer choices can be modeled as binomial distributions. The
test assesses whether or not two scores are likely to come from the same distribution.
If yes, they are not significantly different. We found that, for color recovery assessment,
MS-SSIM, VIF, r and MS-iCID perform significantly worse than CS, VSI, e, CNC, NIQE
and FADE, while NIQE and FADE perform significantly better than CS and FSIMc. As for
sharpness recovery assessment, VSI performs significantly better than r, e, CNC, NIQE,
FADE and MS-iCID.
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Table 6.3: Hit rates obtained by each metric: (rescaled rates in brackets). The table is
divided in four parts: metrics in reference with the haze-free greyscale image (FG), met-
rics in reference with the haze-free color image (FC), no-reference metrics (N), metrics
in reference with the hazy greyscale image (HG) and metrics in reference with the hazy
color image (HC).

COLOR SHARPNESS

FG
MS-SSIM 0.50 (0.00) 0.60 (0.50)

VIF 0.48 (-0.08) 0.60 (0.49)

FC
MS-iCID 0.46 (-0.14) 0.52 (0.10)
FSIMc 0.52 (0.07) 0.62 (0.63)

VSI 0.58 (0.28) 0.63 (0.67)

N
NIQE 0.63 (0.43) 0.58 (0.39)
FADE 0.63 (0.45) 0.55 (0.27)

HG
Hautière’s r 0.48 (-0.06) 0.59 (0.44)
Hautière’s e 0.60 (0.36) 0.57 (0.38)

CS 0.56 (0.22) 0.55 (0.26)
HC CNC 0.60 (0.34) 0.57 (0.35)

These results suggest that:

• State-of-the-art image quality metrics demonstrate only a limited accuracy on de-
hazing quality assessment (the maximal hit rate obtained with our benchmark is
ĥ = 0.67).

• Traditional metrics in reference with the haze-free image perform better at assessing
sharpness than color recovery. Figure 6.13 shows a case of total disagreement be-
tween these metrics and observers, implying in particular that chromatic attributes
such as chroma and hue are especially important in dehazing quality assessment,
compared to more conventional quality assessment. Although we strove to isolate
the influence of color and sharpness in our experiment, a recent study by Le Moan
et al. [90] suggested that, given no particular instructions on which kind of distor-
tions to focus on, observers tend to judge achromatic ones such as JPEG artifacts,
less severely than chromatic ones such as hue shift. Consequently, the rankings ob-
tained for color recovery assessment may be somewhat more meaningful than that
of sharpness for the overall quality assessment case, thus emphasizing the need
for traditional metrics in reference with the haze-free image to give more weight to
chromatic distortions when used for dehazing quality assessment.

• Metrics that are proposed or used for dehazing evaluation (FADE, r, e, CNC and
CS) can be outperformed by metrics in reference with the haze-free image. In par-
ticular, VSI outperforms them all significantly when it comes to sharpness recovery
assessment.

• NIQE and FADE, which are both based on natural scene statistics (NSS), perform
particularly well at assessing color recovery assessment. This supports the conclu-
sions obtained in [107]
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(a) CLAHE (b) Original (c) FAST

Figure 6.13: Case of total disagreement between metrics in reference with the haze-free
image and observers for color recovery quality assessment (scene 1, level B). (a)Result
from CLAHE, (b) original image and (c) result from FAST. While all metrics rate the
CLAHE dehazed image as more fidel to the original, all observers agreed that FAST
is better in terms of color. Indeed, the FAST image seems more vivid, although it clearly
shows artifacts just under the tables and around the plants. When it comes to evaluating
the structure however, a majority of observers (9 out of 14) find the CLAHE image more
fidel. This suggests that these metrics in our benchmark do not perform well at balancing
the importance of chromatic and achromatic attributes for dehazing quality assessment.

Table 6.4: Hit rates obtained by individual perceptual attributes: COLOR (rescaled rates in
brackets). The MS-iCID attributes are as follows (refer to [89] for details): LL: lightness-
difference, LC: lightness-contrast, LS : lightness-structure, CL: chroma-difference, HL:
hue-difference, CC: chroma-contrast, and CS : chroma-structure.

COLOR SHARPNESS
MS-iCID: LL 0.46 (-0.14) 0.56 (0.31)
MS-iCID: LC 0.54 (0.12) 0.61 (0.57)
MS-iCID: LS 0.52 (0.06) 0.49 (-0.02)
MS-iCID: CL 0.69 (0.64) 0.57 (0.37)
MS-iCID: HL 0.42 (-0.28) 0.45 (-0.26)
MS-iCID: CC 0.64 (0.48) 0.51 (0.06)
MS-iCID: CS 0.41 (-0.33) 0.47 (-0.16)

CNC: contrast 0.60 (0.36) 0.57 (0.38)
CNC: colorfulness 0.57 (0.25) 0.52 (0.12)
CNC: naturalness 0.53 (0.09) 0.52 (0.12)

From the results in Table 6.4, we observe that the perceptual attributes that correlate the
best with the subjective data are the MS-iCID CL (chroma-difference) and CC (chroma-
contrast) terms for color, and LC (lightness-contrast) for sharpness. A significance analy-
sis reveals that CL performs significantly better than all other attributes for color, whereas
for sharpness, LC performs significantly better than all other attributes except CL and
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CNC’s contrast term. This implies that attributes such as hue and lightness-structure have
a relatively small importance in dehazing quality assessment. Even chroma-structure
seems to be irrelevant in this context. Finally, it is interesting to note that some of these
features perform better individually than together: the MS-iCID CL term performs signif-
icantly better than the metric itself, but also than FADE and NIQE, thus making CL the
best metric in our benchmark to estimate color restoration quality in dehazing.

6.3.4/ OBJECTIVE EVALUATION OF DEHAZING ALGORITHMS

We first calculated the raw scores of all selected metrics for all dehazed images of scene
1 and scene 2 organized by fog levels (see Figures 6.14, 6.15 and 6.16). Overall, metrics
that belong to the same category have monotonic trends across fog levels. Note that
the metrics in reference with the haze-free image, which measure the similarity (fidelity)
between test and reference images, show that the fidelity of an image’s features is better
maintained at low fog densities (see Figure 6.14). This means that dehazing methods are
globally more efficient at these levels.
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Figure 6.14: The scores of the metrics in reference with the haze-free image, which are
obtained for each scene at each fog level. These five metrics (MS-SSIM, VIF, MS-iCID,
FSIMc and VSI) evaluate the quality of the dehazed image as being the similarity rate of
specified features between the hazy and the haze-free images. For light fog, all of these
metrics show the high similarity rate compared to higher level of fog. Some of them such
as MS-SSIM, FSIMc, VSI and NIQE show that DCP does not perform well in the lowest
fog level. The subjective analysis shows that CL and VSI are the most relevant metrics
to evaluate color and sharpness. Both of these metrics’ values of different methods are
noticeably close to each other.

In order to evaluate methods by metrics in reference with the hazy image, we calculated
the score of the haze-free image considered as the optimal one. Amongst these metrics,
the scores of r and e which refer to the gain of visibility, are higher at high fog densities.
This denotes that a good range of improvement is done at high fog densities, thus, the
hazy and the recovered images are less similar. In other words, the less similarity would
refer to a good improvement in quality. However, it is not always true. For the same fog
level in Figure 6.15, the gain of visibility of corrected images is higher than the one of
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Figure 6.15: The scores of the metrics in reference with the hazy image, which are ob-
tained for each scene at each fog level. These four metrics (r, e, CNC, CS) compare the
dehazed image to the hazy image. The dissimilarity is small for low levels of fog. The
values of metrics on different dehazing methods are noticeably close to each other. e,
CS and CNC scores exceed, across levels, the haze-free image scores. This is because
appearing artifacts are accounted for edges in the resulting image.
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Figure 6.16: No-reference NSS-based metrics scores obtained for each scene at each
fog level. NIQE is a non haze-dedicated metric. According to it, the image of the highest
quality is the haze-free image. Dehazed images, which were basically covered by a light
fog, have almost the same quality of the haze-free image. While for FADE, which is
a haze-dedicated metric, some methods across the three fog levels beat the haze-free
image’s score. Indeed, it presents a weakness in evaluating the preservation of image’s
features comparing to the haze-free image.

haze-free image. This does not agree with the perceptual judgment. Thus, the highest
dissimilarity does not necessarily mean the best quality. These indices that have been
widely used to assess new proposed dehazing methods are inconsistent with the human
visual evaluation of color, which was evoked in [63] and proved again in Table 6.3. Indeed,
these indices ignore the apparent problems of over-enhancement and color distortion,
and focuses on the recovered structures that may be an amplified noise and blocking
artifacts [107]. The same issue is met when using CS metric.

CNC measures the dissimilarity between the test and the reference images. The dissimi-
larity decreases with the fog density. Across all fog densities, the haze-free image keeps
globally the best score (lowest score).

Considering no-reference metrics, NIQE and FADE, they are both able to quantify the
evolution of dehazed image quality. However, FADE seems to be more sensitive to over-
saturated colors, which usually occur when the fog is very light (level C). At this level, the
processed images seem to be of higher quality than the original haze-free image. Thus,
such metric, which assesses better color than sharpness underlines the preference rather
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than fidelity (see Table 6.3).

Now, we only consider CL and VSI that statistical analysis showed as the most adequate
metrics to judge respectively color and sharpness restoration. These two metrics denote
a good recovery of color and sharpness at low fog densities (see Figure 6.14). At the
highest fog level of A, VAR followed by CLAHE and DCP perform the best in sharpness
recovery. For color recovery, while VAR and DCP maintain a good performance in addition
to FAST, CLAHE seems to be significantly bad. At the medium level of B, all methods
show a similar performance in sharpness recovery, with a significant advancement of
FAST and FUSION and a significant regress of DCP’s performance comparing to others.
In case of color, CLAHE remains the bad performing method and VAR seems to be bad in
preserving color comparing to other methods. At the lowest fog level of C, all methods are
globally efficient in sharpness recovery, except DCP, which fails as well in color recovery
with VAR, while the other methods are more suitable.

In all of this, considering globally color and sharpness recovery, the physics based dehaz-
ing method DCP and the variational approach of contrast enhancement VAR are the most
suitable for relatively high fog density. On the other hand, FAST and FUSION, perform
well for thin layer of fog. CLAHE, which is a histogram equalization method, has a partic-
ular behavior. At all considered fog levels CLAHE has the ability to preserve sharpness.
However, it widely fails to maintain color fidelity.

6.3.5/ COMPUTATIONAL TIME

In computer vision, the efficiency of an image processing method is not only measured by
the perceived quality of processed images. It involves the determination of the amount of
resources such as computational time and storage space a method requires for execution.

When it comes to real time applications the determination of such resources becomes
strongly inevitable and becomes prior to any other evaluation factors. When they do not
meet the real time execution conditions, the method is automatically discarded and there
is no more need to investigate image quality.

We usually consider in such applications the efficiency of methods. A method’s efficiency
is the ability to provide images of high quality within an extremely brief time. Thus, the
efficiency rate can be calculated as the ratio of the quality index over time. Regarding
the real-time application, when this ratio is high, this means the considered method is
properly adequate.

A high execution time is not suitable for real world applications. Different reasons can
justify it such as non optimized code, lack of resources (i.e. CPU, memory) and size of
input data. To deal with these issues, a number of optimization measures can be taken
[180]. Regarding the values presented in Table 6.5, we allowed ourselves to make this
time-based comparative study since methods share the same physical resources and the
same input data. The related codes are supposed to be quite optimized since they were
provided by the authors of methods.

Let us first analyze the performance of methods according to the time without any regard
for the previous interpretation.

Globally, all methods have a relatively high processing time that makes them no suitable
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Table 6.5: Computational time of dehazing methods applied on scene A and scene B.
These algorithms were run using MATLAB R2010b on HP Intel(R) core (TM) i7 - 3687U
CPU @ 2.10 GHZ 2.60 GHZ.

Dehazing method Computational time
Scene A Scene B

DCP 7.894 s 39.42 s
FAST 1398.943 s 7328.681 s
FUSION 18.845 s 31.202 s
VAR 35.456 s 57.392 s
CLAHE 4.128 s 4.978 s

for real time applications. An example would be if in a driver assistance application the
dehazing process takes 4 s (which is the best time score in our set) to allow driver to
distinguish better possible obstacles, the driver would be definitely exposed to a grave
risk since a consequent accident can happen in a shorter time.

6.3.6/ DENOISING

An additional step to this experiment has been added later to deal with the noise, which
is mainly amplified after the dehazing, especially when the haze density is relatively high
(cf. Section 3.2.5).

Considering the same images that have been used for the quality assessment experi-
ments, we have applied first the denoising method BM3D described in [36], respectively,
as a pre-processing step to dehazing and then as a post-processing step to it. They are
denoted as denoising + dehazing and dehazing + denoising, respectively.

In denoising + dehazing case, since the noise standard deviation is estimated and not
accurately known, it could be over-estimated or under-estimated. In hazy images, the
noise is considered to be uniform on the image and independently distributed of the fog
level. Thus, we expect that any standard spatially-invariant denoising methods would
have a proper performance. If the noise is over-estimated, this means that the hazy
image is over-denoised and therefore smoother. The over-smoothing induces the lost of
useful details such as edges and textures. However, it produces a better results than
when the noise is under-estimated, because the remaining amount of noise is amplified
after dehazing [113].

In dehazing + denoising case, the standard spatially-invariant denoising methods are
not suitable and they produce erroneous results, since the noise is amplified depending
on the haze level (Equation 3.31). Thus, a local denoising processing is required. The
actions of both over-denoising and under-denoising are similar to those of denoising +
dehazing case, but with a lower impact, since these inaccuracies will not be amplified by
a post inversion process.

In the image processing, the imperfection of the environment and the instruments causes
the noise in digital images. The noise degrades the overall quality of these images. Thus,
there is a need to remove this noise to get back the original high quality. The selection
of the denoising method depends upon the type of noise [83], which is characterized by
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particular properties and a specific source [20]. For example, non-linear filter is suitable
for salt and pepper noise and speckle noise. Wiener Filter reduces better the Gaussian
noise than Mean filter and Median filter.

Three main reasons lie behind the selection of BM3D: this denoising method has been
already used to reduce the noise in hazy images [113] and it showed good results. It is
among the best denoising methods in terms of PSNR, MSE and subjective image quality.
Finally, it takes only one tuning parameter, which is the estimating value of the standard
deviation of noise.

Our selected denoising method BM3D consists of two steps: basic and final denoising.
The first one aims at grouping similar 2D patches into 3D groups by calculating block-
distance. Then, the noise is reduced through a hard-thresholding in a 3D transform do-
main (Discrete Cosine Transform). Estimates are calculated for each group of blocks and
the estimates are placed at the original positions. Finally, an aggregation step is there to
calculate a global estimate of the whole image by weighted averaging of all overlapping
blocks estimates.
The second one consists in applying again a grouping of similar blocks but this time the
groups are taken from the original noisy image and the image resulted from the first step.
A Collaborative Wiener filtering 3D transform domain is applied to the new groups as
an estimate of the resulted image energy spectrum. Finally, an aggregation step is also
performed to compute the final result.

For RGB images, they are first transformed to a luminance-chrominance color space such
as YCbCr. Since the Grouping step in BM3D is sensitive to noise, it is only performed
on the luminance channel, which contains the most important image features such as
high-frequency information, and it is reused for the chrominance channels. The rest of
the algorithm is applied naively on each channel before to convert back the image to RGB
image.

The images processed by BM3D have been compared to the images processed only by
dehazing. Since the metrics show a similar behavior across fog densities (cf. Paragraph
6.3.4), we used only the metric MS-SSIM to make this comparison and to see the impact
of denoising when it is considered before and after dehazing.

Table 6.6: MS-SSIM scores of the results of CLAHE dehazing method preceded by de-
noising, dehazing without denoising, dehazing followed by denoising and dehazing pre-
ceeded and followed by denoising. Denoising is performed by BM3D. The highest scores
are written in bold. The BM3D applied after CLAHE provides globally the best results.

CLAHE Denoising + Dehazing Dehazing + Denoising + dehazing
dehazing denoising + denoising

Scene1-Level A 0.6336 0.6232 0.6484 0.6539
Scene2-Level A 0.7920 0.7552 0.7950 0.8106
Scene1-Level B 0.8763 0.855 0.8909 0.8829
Scene2-Level B 0.9173 0.8759 0.9166 0.9198
Scene1-Level C 0.8647 0.8263 0.8635 0.8707
Scene2-Level C 0.8607 0.8405 0.8654 0.8689

Referring to the scores shown in Tables 6.6, 6.7, 6.8, 6.9 and 6.10, MS-SSIM scores
underline a better quality when BM3D is applied, no matter if it is done before or after
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Table 6.7: MS-SSIM scores of the results of DCP dehazing method preceded by denois-
ing, dehazing without denoising, dehazing followed by denoising and dehazing preceeded
and followed by denoising. Denoising is performed by BM3D. The highest scores are writ-
ten in bold. The BM3D prior to DCP provides the best results.

DCP Denoising + Dehazing Dehazing + Denoising + dehazing
dehazing denoising + denoising

Scene1-Level A 0.6339 0.611 0.6324 0.6984
Scene2-Level A 0.8200 0.6702 0.6982 0.8565
Scene1-Level B 0.7291 0.7411 0.7454 0.8943
Scene2-Level B 0.8190 0.7077 0.7333 0.8956
Scene1-Level C 0.5332 0.5051 0.4993 0.7611
Scene2-Level C 0.6556 0.6139 0.6290 0.7520

Table 6.8: MS-SSIM scores of the results of FAST dehazing method preceded by de-
noising, dehazing without denoising, dehazing followed by denoising and dehazing pre-
ceeded and followed by denoising. Denoising is performed by BM3D. The highest scores
are written in bold. The BM3D prior to DCP provides the best results.

FAST Denoising + Dehazing Dehazing + Denoising + dehazing
dehazing denoising + denoising

Scene1-Level A 0.5342 0.533 0.5494 0.5644
Scene2-Level A 0.6968 0.6516 0.6810 0.7012
Scene1-Level B 0.7118 0.7147 0.7331 0.7349
Scene2-Level B 0.8161 0.7802 0.8125 0.8191
Scene1-Level C 0.8632 0.8438 0.8710 0.8640
Scene2-Level C 0.8850 0.8604 0.8854 0.8855

Table 6.9: MS-SSIM scores of the results of FUSION dehazing method preceded by
denoising, dehazing without denoising, dehazing followed by denoising and dehazing
preceeded and followed by denoising. Denoising is performed by BM3D. The highest
scores are written in bold. The BM3D prior to DCP provides the best results.

FUSION Denoising + Dehazing Dehazing + Denoising + dehazing
dehazing denoising + denoising

Scene1-Level A 0.4957 0.4959 0.4953 0.4817
Scene2-Level A 0.6251 0.6149 0.6382 0.6232
Scene1-Level B 0.7244 0.7239 0.7245 0.7052
Scene2-Level B 0.7922 0.7834 0.8097 0.7789
Scene1-Level C 0.8689 0.8604 0.8708 0.8455
Scene2-Level C 0.8996 0.8831 0.9060 0.8822

dehazing (the scores are globally very close to each other) for a given noise variance
σ = 0.25. This is mainly related to the accuracy in the noise variance estimation.

Thus, using BM3D, if σ is close to the real value, no matter if the denoising is performed
before or after dehazing. The result of dehazing will be better when we deal with the
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Table 6.10: MS-SSIM scores of the results of VAR dehazing method preceded by de-
noising, dehazing without denoising, dehazing followed by denoising and dehazing pre-
ceeded and followed by denoising. Denoising is performed by BM3D. The highest scores
are written in bold. The BM3D prior to DCP provides the best results.

VAR Denoising + Dehazing Dehazing + Denoising + dehazing
dehazing denoising + denoising

Scene1-Level A 0.7498 0.6709 0.7489 0.8236
Scene2-Level A 0.7846 0.7355 0.7911 0.8359
Scene1-Level B 0.8701 0.8365 0.8798 0.8961
Scene2-Level B 0.8863 0.8459 0.8926 0.8856
Scene1-Level C 0.9203 0.8932 0.9180 0.9205
Scene2-Level C 0.9108 0.8928 0.9194 0.9287

noise.

One may wonder, what would provide a processing consisting of denoising process ap-
plied before and after dehazing. For the majority of dehazing methods, when a noise
filtering is applied before and after dehazing, the quality of the resulted image is better.
For FUSION method, which shows a decreasing in the quality after this process, this
may be due to the over-denoising (over-smoothing) since the method basically includes a
smoothing step. In all of this, only an adequate denoising increases the quality of dehazed
images.

6.3.7/ DISCUSSION

The application of fog and fog removal induces several types of distortions, such as noise,
color fade, contrast degradation and artifacts near the edges, which are spatially vari-
ant and spatially correlated to imaged objects: the accuracy of colors recovery depends
largely on initial objects colors and on their distance to the camera [27]. Thus, an ade-
quate full-scale metric is required.

According to the statistical significance, it seems that in color-based metrics, image struc-
ture evaluating features are more weighted than color evaluating features. The individual
feature CL, which calculates the chromatic difference in CIELAB color space [102], is
significantly better than all other metrics in color preservation judgment. VSI, which was
basically detecting perceptual quality distortions as changes in visual saliency map, was
not sensitive to contrast change. It was then boosted through the insertion of the scharr
gradient operator similarity map [195].

The clue for mastering the quality assessment of dehazed images is to specify the de-
sired quality type to be assessed. Metrics, as we categorized, seem to be related to the
identified quality types. As they calculate the similarity between the haze-free and the
processed images, metrics in reference with the haze-free image are the most suitable
for fidelity evaluation. However, they show a variable efficiency between evaluated fea-
tures (see Table 6.3). Metrics in reference with the hazy image, as they emphasize the
dissimilarity between the hazy and the processed images, they mainly fail to accurately
judge the perceived quality at extreme fog densities. Such metrics can be rather used
to characterize the extent from which a processed image becomes usable according to
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a target application. For metrics without reference image, at extreme fog levels such as
level C, it becomes clear that they rather judge preference, which is not always equivalent
to the natural appearance.

6.4/ CONCLUSION

Quality assessment of single image dehazing is a challenging task. According to the
target application, quality is differently considered. Although single image dehazing has
been an active field for several years, not much work has been dedicated to subjective
and objective quality assessment. This is mainly because original haze-free image, which
is assumed to have the highest visual quality is not easily available.

Using a new hazy image database that contains scenes degraded with several levels of
fog with their haze-free images, we conduct a composite study based on the agreement
between subjective and objective evaluation. Accordingly, we evaluate the performance
of three categories of quality metrics and five dehazing methods.

We single out the clear distinction between what people perceive as good quality in terms
of color restoration and in terms of sharpness fidelity across the fog levels. Though, we
deduce that metrics with reference to the haze-free perform the best at features fidelity
assessment if the evaluated features are adequately weighted. Accordingly, the perfor-
mance of dehazing methods changes across fog levels. Image enhancement techniques
except variational approach, are only suitable for recovery at light fog. Otherwise, the
colors are badly recovered.

Based on our observations, for natural hazy images with no reference image, metrics
without reference image would be adequate for dehazing if they were designed to handle
all types of distortions that may be introduced differently by dehazing processing, while
respecting the improvement’s boundaries.

In order to support the strong conclusions, some technical points should be addressed.
Further research direction would be the validation of these contributions on other similar
indoor scenes with reference images and natural hazy images. A complementary work
would focus on the investigation of how regions of interest are defined in the image and
how these change between observers and across fog levels.



7
GENERAL CONCLUSION

”A conclusion is simply the place where you got tired of thinking.”

-Dan Chaon-

This general conclusion summarizes our contributions. It reports as well, the extent to
which we have succeeded to answer to our research questions. Moreover, we highlight
our study limitations and propose to extend our method toward a more extensive study.
Then, we provide some directions and areas for future research.

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1/ SUMMARY

In this thesis, we have addressed a number of problems that hamper normal functioning
of computer vision applications by making the performance and the reliable evaluation of
dehazing not straightforward. Through this project, we wanted to make clear how we can
proceed and what kind of data we may need to make a step forward in optimizing the use
of dehazing.

We started this dissertation by presenting in Chapter 2, the natural and unnatural phe-
nomena and the different scenarios that cause the degradation of the visibility and the
quality of images taken in these conditions. Since this study focused on the outdoor im-
ages taken in various weather conditions, we explained the strong relation between the
properties of the atmospheric particles and the visual observation. On the other side, the
vision system stands, which has a particular variable way to perceive the resulting effects.

We reviewed in Chapter 3 the different categories of dehazing methods with shedding the
light on those with significant impact on this active research field. Some of these methods
have been used to perform a composite study of subjective and objective image quality
evaluation to deal with the challenging issue of dehazed image quality. Having a contin-
uous increasing number of dehazing methods, which tackle the haze removal differently
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and providing therefore non consistent results, this creates new research ways. This led
us to define what we should consider while developing a new method and evaluating it.
All of this can be considered in the future potential methods.

Based on what was evoked in Part I, we pointed out in Chapter 4 the lack of the ground
truth haze-free image. This fundamental problem hampers the proper evaluation of de-
hazing methods, especially when it comes to evaluate the fidelity of original information,
which represents the heart of this project. To tackle this problem, we have created a color
hazy image database (CHIC) of semi-indoor scenes covered by real fog, which contains
the haze-free image, images with different fog densities and a set of physical measured
parameters. We proposed also a multispectral database (MHIA) associated to a depth
map acquired by a Kinect sensor, which is not fully exploited. In addition to the haze-free
image and the different fog levels that provides, it can be used to test the extended ver-
sion dehazing methods from color to multispectral. It can be used also to optimize the
filters characterization of a sensor conceived for acquisition in bad weather. Moreover, it
can be used for many other research purposes.

Using CHIC database images, we addressed in Chapter 5 the dissimilarities between
simulated and real hazy images. The hazy images formed by the haze model, fail to
simulate the real situation for objects located at very long distances or for high fog levels.
This appears clearly through dehazing, when the haze model is no more properly inverted
in these both situations. This failure is noticed in the context of the perceived recovered
colors that deviate from the original ones and the amplification of noise after dehazing
and the incomplete removal of haze, especially when it is abundant.

We close this dissertation in Chapter 6 by addressing the challenging subject of qual-
ity evaluation of single color image dehazing algorithms. Through our inter-correlated
subjective and objective experiments, we provided, for the first time, qualitative elements
allowing to compare quality criteria such as color and sharpness. Besides the investiga-
tion that was done on various dehazing algorithms, we addressed also the evolution of
the selected criteria according to the fog level. Considering the objective metric-based
analysis, we concluded that not a single dehazing algorithm performs the best, nor the
worst, for different fog densities. Likewise, there is a clear distinction between what peo-
ple perceive as good quality in terms of color and sharpness restoration. Moreover, in
processing such as dehazing, which do not have a linear behavior over fog densities, it is
mandatory to specify the quality type that can be evaluated in regards to the fog densities.

Since this work falls within three main areas: physics, image processing and color sci-
ence, it consisted to apprehend first the natural physical phenomena and to model them
to whether reproduce real-world or to recover useful information, which are likely to be
deteriorated. All of this should be done while keeping a closeness to the real situation and
maintaining a high perceived quality. Therefore, we retain from this work the importance
to model accurately the real situation and to consider methods, which deal with it. The
accuracy of modeling depends mainly upon the data type. Color images, being limited in
wavelength band, do not provide sufficient data to retrieve objects hidden with a thick fog
layer.
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7.2/ PERSPECTIVES

Not all issues of color and multispectral dehazing have been addressed in this thesis.
Nevertheless, our contributions and our experience of this problem allows us to provide
valuable suggestions and openings for further research.

• Color image dehazing

– Image database and haze model
1. CHIC database is a step forward in the migration from simulated to real

hazy images with the haze-free image. However, it comprises a limited
number of images. There is a need to have more real hazy images with
various contexts. In addition to the images with uniform airlight and fog
density which were used in this thesis, further efforts could be made to
build images with different lights. Moreover, nighttime hazy scenes could
be set up. Such scenes are often met in reality.
For more accurate measurements, it would be nice to quantify the amount
of outdoor lighting. When the acquisition time of a frame increases with the
number of fog layers and the sensors speed, the outdoor lighting remains
no more constant. In this case, the lighting quantification using a light
meter becomes mandatory.

2. Referring to Section 5.2.2, we can imagine to:
∗ Refine a connection model between the physical transmission and the

appearance of colors while considering the chromatic properties of the
atmospheric light.

∗ Refine a method to calculate the airlight at a given fog density based
on the geometrical distribution of the airlight and the hazy colors within
a color space.

3. The scope of this study was limited to the aerosols and water droplet par-
ticles presented in Table 2.2. Other conditions such as sandstorm causes
chromatic airlight. In terms of scattering, large particles like sand (radius
= 25 µm) do not behave like small achromatic particles. They reflect light
like big objects. Similar processing steps of the ones provided in this the-
sis could be adopted for database construction and methods and model
evaluation. In such case of chromatic airlight, multispectral images can
provide useful data for methods optimization.

– Quality evaluation
1. Although the quality criteria of dehazed images seem to be fuzzy and

application-dependent, it would be interesting to keep on investigating the
possibilities to design either a global metric that encompasses as much as
possible the main different altered criteria, or a metric dedicated for each
application profile. Since the haze-free image is not always available, it
would be better to focus on no-reference metrics trained on clear images
of the particular context in question.

2. In the light of the quality aspects identification (preference, usability and
fidelity), it is worth considering in similar studies the ones that we did not
consider in this work. Usability and preference are more likely to be con-
sidered in wider application fields such as photography, assistance appli-
cations, objects recognition, tracking, etc.
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3. Further subjective evaluations are required to understand better the fea-
tures that observers consider without being already specified and to ex-
tend this study in order to investigate more features with many more im-
ages. Considering fidelity, more features such as global contrast of the
image and naturalness could be considered in similar experiments. This
leads to more accurate and exhaustive metrics.
For the preference, it may be a global or a particular preference, which
considers a specific feature. Depending on the evaluation purpose, the
haze-free image will be or not among the images to compare.
When it comes to usability, regarding the target application, we favor, in-
stead of subjective evaluation of dehazing, the hit rate of its post process-
ing applications. A good associated metric should predict the achieve-
ment possibility. For instance, returning to the driving assistance example
shown in Figure 6.3, a good metric must be able to point out the extent
of the post recognition algorithm to which it is able to detect correctly the
obstacles at different distances, in order to predict therefore the risk of
accident. Thus, several preventive measures will be taken.

4. In terms of clearly determining how Regions of Interest (ROI) vary between
observers and also with different levels of fog, we may consider in a future
work the recording of the observers’ interaction with hazy images.

5. As explained previously, the perceived quality within the same dehazed
image is not constant. It varies from region to another, since it depends on
the distance from the object to the camera, the scattering coefficient and
the object color. In the subjective experiment 6.3.1, observers were free to
focus on different parts of the scene and make therefore their raking. This
was one of the main reason of that divergence in judgments. A better way
could be to cut the scene into different parts with the same distance and
the same fog density.
As directions for future work, it will be good in such fuzzy evaluation to
have simple scenes and pointed question by precising the zone to look at
to make decision. It may be computationally expensive, but more exact.

6. Dehazing is time consuming process and it strongly depends on the size of
the image. Some images like the one present in our database have huge
sizes, it seems sensible to add a preliminary step to dehazing to detect ar-
eas of fog and define the density, to avoid unnecessary long process over
clear areas that could have negative effect. The fog detection and estima-
tion of density can be refined and tested through our database thanks to
different densities of real fog, which are accurately measured.
Furthermore, a good dehazing method must hold a compromise between
the efficiency of fog removal in regards to the application requirements
and its processing time. In real-world applications, computational time
is a limiting and critical factor. Thus, it must be considered prior to the
quality. To this end, several options can be considered such as the use
of images with as low as possible resolution, optimized algorithms and
adequate hardware resources.

• Multispectral image dehazing
Since multispectral image dehazing has not been investigated as much as color
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image dehazing, it would be of interest to develop a specific method for the
reconstruction of dehazed images using the data contained in our multispectral
images, and then to investigate the possibility to apply it in other domains such as
satellite and underwater imaging.

In this context, two focal areas are defined. The first one seeks to construct
multispectral outdoor hazy images. Other multispectral databases could be created
also to simulate satellite images and the non-uniformities we find in such images.
The second one aims at developing a specific method based on a variational ap-
proach to the reconstruction of the spectral information of the images by exploiting
the elements identified in the first area. Indeed, the variational treatment was
applied to color images and showed a good performance comparing to other ap-
proaches, when there is no uniformities within the hazy image, such as non-uniform
illumination and a variable brightness and when the fog density is relatively high
(cf. Section 6.3.4). The variational approach showed this superiority, however it
was not directly attached to hazy images (haze model), but it can be applied to all
types of images that present a contrast reduction problem. Thus, in a future work
haze model parameters will be estimated through variational approaches in order
to maintain as much as possible the haze model integrity.

In summary, haze model should be reviewed and refined through the spatial and the
spectral dimensions. Furthermore, the criteria of usability must be revealed through the
best quality metrics in order to optimize them in time and modeling.

7.3/ CLOSING

One may wonder about the consequences of such a study may have on the world, and
especially on the dehazing research field. The choice of a dehazing method is critical and
depends on the user needs. It changes with the fog densities and the scenes properties.
Hence, it is important to prompt the use of common tools for different methods evaluation
and global reliable quality metrics. Moreover, these tools are useful for the elaboration of
other quality metrics.

Following the methodology presented in this thesis, there is a tendency to move toward
the standardization of dehazing quality assessment in terms of evaluating tools. This
can help researchers in two directions. First, one can use a reliable comparison method
to judge different dehazing algorithms. Second, one can design a customized dehazing
method dedicated to act on a specific image feature for a particular aim.
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A
TRANSMISSION REFINEMENT

ALGORITHMS

(a) (b)

Figure A.1: (a) U080 (640×480, taken from FRIDA database [169, 77]), (b) Scene A Level
7 (6000×4000).

Table A.1: Execution time of different refinement transmission methods using two RGB
images of different sizes shown in Figure A.1. These algorithms were run using MATLAB
R2010b on HP Intel(R) core (TM) i7 - 3687U CPU @ 2.10 GHZ 2.60 GHZ.

Method U080 Scene A Level 7
Time MS-SSIM Time MS-SSIM

Soft matting 23400.316916 s 0.4496 ∞s −

Bilateral filter 7.150849 s 0.4553 341.545093s 0.3555
Guided filter 0.358185 s 0.3551 19.384212 s 0.8364
Gaussian filter 0.197987 s 0.4550 0.265905 s 0.3553

It must be noted that a considerable margin of error is induced while estimating the trans-
mission t of the hazy pixels. In a local patch, t is assumed to be constant. This is no more
true when this patch contains an edge. This leads to obtain an irregular transmission
map. In order to smooth it without loosing the sharpness of edges, some methods are
applied.

In this chapter, we want to compare the performances of four different filtering approaches
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that have been widely used in the state of the art dehazing methods, in terms of compu-
tational complexity and global quality. For this aim, we have selected two hazy images
of different resolutions. The first one is synthetic, taken from FRIDA database with the
reference haze-free image and the second one is a real hazy image taken from our CHIC
database with its reference image also.

As regards the computational complexity, which represents a crucial element in dehazing
processing that are often used in real-world computer vision applications, the processing
time should be as short as possible. While maintaining a short time, it is mandatory to
reach a compromise which retains the good quality of the recovered image.

According to the scores given in Table A.1, in both images, the soft matting takes up an
enormous amount of time, even if the image size is not very large. Such processing is
not at all suitable for CHIC database images.
The processing time of the Bilateral filter increases significantly with the image size and
the resulting image does not seem of good quality as the guided filter result (Scene A
Level 7).
The processing time of the Guided filter increases as well with the image size but not
as much as the Bilateral filter. It provides an image among the highest qualities. Thus,
comparing to the other refinement methods, it succeeds to achieve the compromise noted
above. This is clear when considering the real hazy image Scene A Level 7.
Even when the image size greatly increases, the computational time of the Gaussian filter
remains small. Considering the calculated scores in Table A.1, this filter fails to provide a
good quality comparing to the others.

All refinement methods show a similar performance for the synthetic scene U080. How-
ever, when considering the real scene, the Guided filter proves its efficiency since it con-
siders, like the soft matting, not only the gray image of the transmission map like the
Gaussian and the Bilateral filters but the color hazy image. Indeed, this reduces the er-
roneous textures removal and maintains a similar sharpness to the original color hazy
image.

In what follows, we will see the main characteristics of the refining methods.

N.B. In this section tr and t0 denote the refined transmission and the estimated transmis-
sion before refinement, respectively.

A.1/ SOFT MATTING

We start by the method that was the first to be used to refine the transmission in DCP. This
method is basically used for digital image matting. It requires a reduced user interaction
and deals analytically with the separation of the foreground F and the background B
colors based on the assumption that the variation of F and B colors is smooth in order
to obtain a quadratic cost function in alpha. Since haze model is similar to the matting
equation [93], transmission map is equivalent to the alpha map:

Ii = αiFi + (1 − αi)Bi (A.1)

where Ii is the input image and αi is the foreground opacity at pixel i.

The first step is to minimize the following cost function:

E(t) = argtmin{tT Lt + k(tr − t0)T (tr − t0)} (A.2)
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where k is a weight parameter that defines the importance of the data term. The solution
of Equation A.2 is given by [93]:

(L + kU)tr = kt0 (A.3)

where U is an identity matrix and it has the same size as L, which is the Laplacian matrix
deduced from the hazy image.

A.2/ GAUSSIAN FILTER

Gaussian filter is a linear filter. It is applied to smooth the image using a low pass filter.
The refined transmission map is expressed as:

tr(x) =
1
W

∑
Ω(x)

Gσs(||x − y||)t0(y) (A.4)

where W is:
W =

∑
Ω(x)

Gσs(||x − y||) (A.5)

Ω(x) is a local patch centered at pixel x.
Gσs denotes the 2D Gaussian kernel:

Gσs(x) =
1

2πσ2 e−
||x||2

2σ2 (A.6)

σ is the neighborhood size.

A.3/ BILATERAL FILTER

Bilateral filter is an adaptive alternative filter that preserves better edges by calculating
weighted average near of nearby pixels. Pixels are treated based on nearby location and
similar values.
The refined transmission is calculated as:

tr(x) =
1

W1

∑
Ω(x)

Gσs(||x − y||)Gσr (||I(x) − I(y)||)t0(y) (A.7)

where W1 is:
W1 =

∑
Ω(x)

Gσs(||x − y||)Gσr (||I(x) − I(y)||) (A.8)

Gσs and Gσr denote a spatial Gaussian weighting that decreases the influence of distant
pixels and a range Gaussian that decreases the influence of pixels y when their intensity
values differ from I(x), respectively.

Bilateral filter is used for denoising, texture and illumination separation, tone mapping,
retinex and dehazing. It suffers from high computational time and gradient reversal arti-
facts.
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A.4/ GUIDED FILTER

Unlike Gaussian and Bilateral filters, Guided filter as the soft matting considers the hazy
image as guidance. This helps to maintain similarities in intensity/color regarding the
guidance hazy image. It has as well a better behavior near the edges than the bilateral
filter. Its computational complexity is independent of the filtering kernel size. Thus, it
guaranties the accurate smoothing and the reduced computational time even when the
image size greatly increases.

tr(y) = axI(y) + bx ∀y ∈ Ωx (A.9)

ax and bx are linear coefficients assumed to be constant in Ωx. This model ensures that
tr has an edge only if I has an edge:

∇tr = a∇I (A.10)

To determine ax and bx, we have to minimize the difference between t and the filter input
I. Thus, the cost function should be minimized in the window:

E(ax, bx) =
∑
y∈Ωx

((axI(y) + bx − t(y))2 + εa2
x) (A.11)

where ε is a regularization parameter penalizing large ax. ax and bx are calculated as:

ax =

1
|Ω|

∑
y∈Ωx I(y)t(y) − µxP̄x

σ2
x + ε

(A.12)

bx = P̄x − axµx (A.13)

µx and σx are the mean and variance of the hazy image I in the local patch Ωx. After
calculating ax and bx and tr for each window, we calculate their averages along the image.



B
AIRLIGHT AND TRANSMISSION CURVES

OF MHIA IMAGES

This appendix contains the curves of the haze model parameters, airlight A and trans-
mission t, calculated for each of the VIS and NIR images of the MHIA scenes. They are
calculated, for a given wavelength across different fog levels and for each fog level across
all wavelengths bands (cf. Section 5.4).
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Figure B.1: Exponential fit of A and T values across the fog levels of M2V . Six wavelengths
are considered with steps of 50 nm (450, 500 and 550 nm). The calculated values are
clearly different across fog levels.
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Figure B.2: Exponential fit of A and T values across the fog levels of M1V . Six wavelengths
are considered with steps of 50 nm (650 and 700 nm). The calculated values are clearly
different across fog levels.
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Figure B.3: Exponential fit of A values of M1V across visible wavelengths of fog levels
(level 1, level 2, level 3, level 4, level 5, level 6, level 7 and level 8). At each fog level
the difference between A values at different wavelength is due to the lack in the sensor
precision.
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Figure B.4: Exponential fit of A values of M1V across visible wavelengths of fog levels
(level 9, level 10 and haze-free level). At each fog level the difference between A values
at different wavelength is due to the lack in the sensor precision.
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Figure B.5: Exponential fit of A and T values across the fog levels of M2V . Six wavelengths
are considered with steps of 50 nm (450, 500 and 550 nm). The calculated values are
clearly different across fog levels.
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Figure B.6: Exponential fit of A and T values across the fog levels of M2V . Six wavelengths
are considered with steps of 50 nm (450, 500 and 550 nm). The calculated values are
clearly different across fog levels.
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(h) M2V - A - Level 8

Figure B.7: Exponential fit of A values of M2V across visible wavelengths of fog levels
(level 1, level 2, level 3, level 4, level 5, level 6, level 7 and level 8). At each fog level
the difference between A values at different wavelength is due to the lack in the sensor
precision.
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(c) M2V - A - Haze-free

Figure B.8: Exponential fit of A values of M2V across visible wavelengths of fog levels
(level 9, level 10 and haze-free level). At each fog level the difference between A values
at different wavelength is due to the lack in the sensor precision.
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(g) M2NIR - A - 900nm
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Figure B.9: Exponential fit of A and T values across the fog levels of M2NIR. Four wave-
lengths are considered with steps of 50 nm (750, 800, 850, 900 and 950 nm). The calcu-
lated values show a subtle difference across fog levels comparing to VIS.
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Figure B.10: Exponential fit of A and T values across the fog levels of M2NIR. Four
wavelengths are considered with steps of 50 nm (950, 1000, 1050 and 1100 nm). The
calculated values show a subtle difference across fog levels comparing to VIS.
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(f) M2NIR - A - Level 6

700 750 800 850 900 950 1000 1050 1100
0

0.1

0.2

0.3

0.4

0.5

wavelengths

A
irl

ig
ht

Level 7

 

 

data
fitted curve
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Figure B.11: Exponential fit of A values of M2NIR across visible wavelengths of fog levels
(level 1, level 2, level 3, level 4, level 5, level 6, level 7 and level 8). A value is constant
across wavelengths.
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Figure B.12: Exponential fit of A values of M2NIR across visible wavelengths of fog levels
(level 9, level 10 and haze-free level). A value is constant across wavelengths.



C
LINK BETWEEN IMAGE ENHANCEMENT

INSIDE OVEN AND THIS THESIS

People of today seek ways to make their lives easier, at work, in education and especially
at home. The house is our refuge, where we spend the most of time and we do some
tasks that we cannot do elsewhere. When these tasks are done automatically, we will
be freer for outdoor activities. Cooking is a daily time consuming task. It requires three
steps: food purchase, food preparation (washing, slicing, mixing, etc.) and food cooking.
In its turn, the last step requires the most time and some basic knowledge to pinpoint the
doneness stage and ability to deal with such dangerous cooking materials. For example,
a young person cannot achieve successfully such operation. For all these reasons and
many more, the manufacturers of ovens have been moved towards intelligent cooking
appliances. The new generation of such ovens is not limited to automate cooking in order
to reduce time and user interaction, but to provide also a well cooked food meeting the
standards of a healthy food empty of harmful bacteria.

The properties of food change under the action of heat and the high temperature. One
of these properties is the color that seems to be strongly dependent on the food. Color
and spectral measurements require specific calibrated conditions, which are difficult to
achieve in the cooking conditions. The steam releasing from the oven (steam mode) and
the food creates a veil that deposits on the windows glasses (Figure C.3). This prevents
from getting a clear image and accurate spectral measurements data. Hence the need
to incorporate a process to get rid of this veil and to recover accurately the hidden colors.
Two hardware and software solutions can be considered (see Section C.2).

Considering the color issue, we find a bridge between the oven and the outdoor environ-
ment. The images taken in a hazy/foggy day do not show clearly scenes. The existent
veil reduces contrast and fades colors according to its properties. Although the variety
of existent dehazing methods that aim to remove the undesired veil and enhance image
visibility, the accurate color restoration is still not achieved. Thus, it seems important to
characterize and describe how colors are biased and shifted with the illuminant type, the
particles size and the density of the covered veil.

The oven may be defined as a controlled atmosphere with finite dimensions (see Figure
C.2). The conditions that generate events and disturb others, are from climatic and natural
changes that can never be controlled due to human intervention. By contrast, for ovens,
any component included in their construction is designed by the manufacturer, thus, each
element contributing to the performance of the cooking operation is adjustable.

183
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Figure C.1: Cooking automation flowchart.

Figure C.1 shows the main steps of cooking automation, from data acquisition to data
processing. The user is usually judging cooking based on the global appearance: the
preprocessing of images acquired in good conditions may be used to extract appearance
parameters, which correlate with the cooking stage.

In order to capture spectral data in a proper way, and to maintain reliability between
various measurements, some pre-conditions should be met. The light source and the
camera should be positioned in a manner to cover a largely sufficient part of the food to
represent well the entire portion. The light should emits an energy over the whole visible
spectrum. This ensures to have sufficient information no matter what the color of the
cooked food is. Acquisition should be also preceded by a calibration session.
In the preprocessing step, the acquired data are processed in such a way to be enhanced
after being altered by external factors, such as steam condensation that causes also color
shift and the noise caused basically by the sensor noise and amplified by the inverse
enhancement processes (i.e. dehazing).
Once the collected data are adjusted, we move to features investigation, such as spectral
indices to classify the cooking states.

C.1/ VISIBILITY DISTURBANCE

Two types of steam can be identified inside the oven: the vapor deposited on the glass
due to the variation between inside and outside temperatures. We call it steady steam
(SS). And the moving steam (MS) which is evaporated from the food under the action of
high temperature. Both types are mathematically modeled as follows:

• Steady steam
AS S S = Sαe−d (C.1)
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(a) (b)

Figure C.2: The oven Bartscher equipped with tools such as probe for temperature mea-
sure and oxygen sensor has been used for cooking measurements. The illustration shows
the oven cavity components. Measurements were performed through the windows Hublot
1 and Hublot 2.

• Moving steam
AS MS = S e−αd (C.2)

where AS is the abbreviation of “Attenuated Signal”, S is the real signal value, α is the
attenuation coefficient (it is considered to be: 0 ≤ α ≤ 1), d is the distance between the
sensor and the object.

Condensation is the opposite phenomenon of evaporation. This phenomenon is observed
on the glass of the oven and which is due to the fact that the air in the oven containing
steam and mixed modes, contains water vapor in suspension. When water vapor is
greater than the saturation limit, there is condensation. This condensation is carried out in
priority over the cooler walls: the temperature difference between the temperature inside
the oven and the inner wall (cooled by the outer temperature) of the glass will cause
condensation. The observation of condensation shows the existence of three distinct
phenomena that could be attributed to three consecutive time following the launch of the
oven steam and mixed modes (Figure C.3):

• Film condensation: this type of condensation occurs just after turning the oven on.
Water vapor forms first a thin film that turns then thick.

• Water drops: this aspect of condensation happens after the film condensation,
and it does not stay long. It is an intermediate phase between the two other stages.
The droplets become heavy, and under the influence of gravity, a flow phenomenon
appears on the glass.

• Water drops and seeps: when water droplets get larger and heavier, they fall
down, forming flows. This phenomenon is observed on horizontal windows (Hublot
1) of the oven. In contrast, on the vertical glass (Hublot 2) in the oven ceiling, drops
expand and keep their positions.
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Figure C.3: Evolution of condensation over time. From left to right: film condensation,
water drops, water drops + seeps.

Considering these three phenomena, we suggest different ways to process the data:
dehazing can be applied in case of film condensation. Inpainting and/or drop models can
be used in case of water drops and seeps.

In order to understand how light is influenced by the condensation types previously de-
scribed, in presence of each of them we measured the transmittance of the oven light
through the window. Figure C.4 shows transmittance spectra corresponding to different
condensation aspects.

Figure C.4: Light source transmission variation across condensation aspects. It is mea-
sured throuth the vertical window.

The reflectance of several ceramic tiles with and without condensation, was similarly mea-
sured. As the color of the tile remains constant under the influence of the oven tempera-
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Figure C.5: Spectral emission of the original oven light.

ture for a limited time, unlike food, it helps to monitor the steam effect. These measures
aim to characterize the steam effect across visible wavelengths. The calibration of Kon-
ica Minolta Spectro-radiometer CS-2000 is a white patch whose measurement is done
through the window without steam. Figure C.6 shows the reflectance pieces of red and
blue tiles acquired with the different types of condensation.

(a) Red tile (b) Blue tile

Figure C.6: Reflectance variation across condensation aspects of the red ceramic tile (a)
and the blue ceramic tile (b). The reflectance values across visible wavelengths converge
towards the prevailing steam color.

(a) (b)

Figure C.7: Reflectance curves of a white patch at various locations within the oven.
Since the position changes inside the oven, at position 3, the reflectance exceeds the
calibration value 100.
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Replacing light Concerning the lamp with which the oven is originally equipped, two
related issues are popped up. The first is due to the lamp position (Figure C.7) and the
second one is due to the spectral emission of the lamp (Figure C.5).

Referring to Figure C.7, there is no spatial uniformity of the lamp radiation at various
positions on the horizontal tray.

As it is shown in Figure C.5, the energy emitted from the original oven light is not evenly
distributed across the visible spectrum. This may induce erroneous perceived colors of
the food across cooking steps. What is actually needed is to have a uniform distribution
over all wavelengths.

According to [66], we usually underestimate the importance of the illumination in image
acquisition systems. Many requirements should be met:

• Geometry the light source should be placed in a manner to ensure a spatial uni-
formity. If the camera is to be used for spectrophotometric or colorimetric mea-
surements, a lighting/viewing geometry recommended by the CIE should be used
(typically 45◦/0◦ geometry). Specular reflection should be avoided in many acquisi-
tions, otherwise measurements will be erroneous.

• Power the light source power should be sufficiently high through the spectral band
of the filter. Long integration time can be a solution to compensate low intensity.
However, this may generate additional problems such as amplifying acquisition
noise and slowing down the acquisition.

• Spectral properties sufficient spectral power is also needed in each part of the
visible spectrum. It is preferred that the spectral power be smoothly distributed all
over the spectrum.

• Stability and repeatability of the irradiance from the light source is of great im-
portance for reliable and accurate measuring results.

Referring to the weaknesses, noted earlier and the previous requirements, of the light
type placed originally in the oven, we changed the original light to a new one that lights
up well the food. We have agreed that a combination of two LEDs, white LED and blue
LED (Figure C.8) would provide a good performance because they provide together a
high and well distributed energy over the visible range.

In addition to water vapor, volatile particles are suspended in the oven during cooking
and they are then glued on the internal walls. During cooking, a large amount of heat
is evolved. Under the action of high temperature, other substances than water release
from the food such as oil and fat. The particles which are due to fat have completely
different characteristics than water vapor: the rate of absorption, the extent of persistence,
maintaining the physical condition, size, opacity.

Hence cleaning is an essential process after each cooking. Otherwise, the spots accu-
mulate baking at another preventing the net acquisition of photos and spectral values.
During one firing, the probability that the door is widely spotted is minimal. As the spots
are relatively small, we are simply applying an interpolation method to rebuild the part
obscured by the stain.
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(a) White LED (b) Blue LED

Figure C.8: Relative spectral power distribution of the white LED (a) and the blue LED
(b).

C.2/ PROPOSED SOLUTIONS

In order to reduce the negative effects caused by the steam, especially the steady steam,
two approaches have been proposed.

C.2.1/ HARDWARE SOLUTION

This solution has been proposed by the Open Food System consortium. In consists of
replacing the original window’s glass by a heating glass to avoid the steam condensation.
In this way we succeeded to prevent it. However, the accurate adjustment remains an
open problem unless a software processing is performed.

It is of crucial importance to measure the real color of the food during cooking. From
a certain threshold of inaccuracy, the color that could define a cooking stage may be
confused with another color and the cooking is therefore misled. Such problems are
there even if the glass is clean. This is mainly due to the light of source and the glass
itself. The modeling and the quantification of this is explained in the next section.

C.2.2/ SOFTWARE SOLUTION

Referring to Figure C.1, the link between all what has been addressed in this thesis is
located at the pre-processing step. At this step we correct and enhance the acquired
radiometric and photometric data in order to be properly exploited in the subsequent
steps.

This algorithm may be used when a camera is placed inside the oven. Image data may
be considered in two different ways: the extraction of information on surface properties
and the transmission of images to a tablet or smartphone of the user.

Let us show the link between this project and each of the above chapters.

1. Chapter 2: The oven cavity when the oven is running, and all the resulting interacted
phenomena can be assimilated to the atmosphere. In bad weather, atmosphere
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represents a bad environment like the oven, which both of them degrade the clear
visibility. Therefore, humans activities become risky and inefficient. Hence there is
a need to increase the visibility level, while considering the fidelity of the original
data and the overall quality.
In dehazing, we consider color images and not reflectance measurements.

2. Chapter 3: Referring to Section 3.1, dehazing is considered as a pre-processing tool
that aims at enhancing outdoor visibility. Since several elements that come into the
frame remain the same in the clear and the degraded images, no additional data or
strong assumptions are needed.

Considering Equation 2.16, the parameters are defined as follows:

• I is the captured degraded image containing the cooked food and the sur-
rounding frame.

• The glass through which the image capturing is done, should be first char-
acterized. According to [41], a surface seen through a transparent filter (we
consider here the window glass) leads to color translation or convergence. A∞
is a constant value. It represents the color coordinates of the glass.

• The transmission factor t should be measured by using a surface with known
reflectance. It is calculated as the ratio between the emitted intensities in the
absence and the presence of the glass, respectively. t is no more a function of
distance d and scattering coefficient α. In our case, d is negligible in compari-
son to the outdoor images and it is accurately known as well. α does not stand
for suspended particles. d and α represent together the glass properties that
lead to transmission reduction.

• J is the corrected image that will be considered for the classification process.
In order to simplify this task and reduce the computational complexity, which is
a crucial factor in such real-world application, only a part of the image showing
a representative part of the food is considered.

Since the dehazing is done through the haze model inversion, an amplification of
the noise is highly likely to occur (cf. Section 3.2.5). Noise elimination should be
applied. As the noise is known, it is better to be eliminated before dehazing. Thus,
a simple no consuming space-invariant denoising method can be used.

3. Chapter 4: In outdoor situations, the original clear image is often not available. To
investigate quality and haze model validation, a color image database has been
created including the haze-free image. Indeed, there is a key difference between
the outdoor environment and the oven cavity. Inside the oven, the environment and
its elements do not change. Only the food changes in the image. Thus, an important
part of the problem met in outdoor situations is already solved. There is only a need
to define how much a color shift under the action of the light and the glass.

4. Chapter 5: One may wonder if it is possible to recover the original color regardless
of the thickness of vapor and its condensation type. Using the images of different
fog levels, we showed that the color-based haze model has some limits. Outside
of these limits, the recovery of original data is no more feasible. With color-based
technical capabilities, it is impossible to go across an opaque layer of steam and
clear it out. However, thanks to the heating glass, it is nearly impossible to face
such problem.
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5. Chapter 6: Automatic quality judgment is part of the game. The fidelity criterion is
critical and it must be met. Since the cooking characterization is done based on
the color variation of the food, this variation should be only caused by the cooking
evolution. Otherwise, we will not be able anymore to identify where the color shift
comes from: if it is a cooking indicator changing over cooking time, or it is generated
by the image enhancement algorithms.

Thus, a given dehazing method is considered to be usable for this purpose, if and
only if it maintains a high fidelity of image features.
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Abstract:

This thesis is mainly related to color imaging science, involving many disciplines, such as color
image enhancement, image formation, color reproduction, optical physics, radiometry, colorimetry,
image quality and psychophysics.
Dehazing aims at recovering the image information degraded by light scattering, e.g. bad weather.
This process is an ill-posed and a challenging problem. Although a variety of approaches have been
proposed, there is still room for further improvement and standardization. In this work, we investigate
the limitations of haze model in terms of accuracy of color image recovery. We address also the
link between the visibility deterioration and the spectral content of the images. Moreover, with the
multiple existing dehazing algorithms, it is mandatory to evaluate and compare their performance.
Indeed, only limited investigations have been performed on the quality of dehazing in particular on
the fidelity of the recovered material. Thus, we propose to evaluate the quality of dehazed images. To
this aim, a color and a multispectral hazy image databases have been conceived. These databases
represent with their ground truth clear image, an adequate tool to deal with dehazing quality in terms
of objective and subjective assessment.

Keywords: Dehazing, Image quality, Hazy image database, Psychometric experiment

Résumé :

Cette thèse s’intègre dans le cadre de la science de l’imagerie couleur, impliquant de nombreuses
disciplines, telles que l’amélioration des images couleur, la formation de l’image, la reproduction des
couleurs, la physique optique, la radiométrie, la colorimétrie, la qualité d’image et la psychophysique.
Le Dehazing permet d’améliorer les images dégradées par la diffusion de la lumière. Il représente
un problème difficile et mal-posé. Malgré la diversité des approches qui ont été proposées, la marge
d’amélioration et la standardisation reste encore considérable. Dans ce travail, nous étudions, d’une
part, les limites de la manipulation du modèle de dégradation de la visibilité en termes de précision
de la reconstruction des images couleur. D’autre part, nous examinons le lien probable entre la
détérioration de la visibilité et le contenu spectral des images. En outre, avec la multiplication des
algorithmes de dehazing, il est nécessaire d’évaluer et de comparer leur performance.
En effet, il y a peu d’études qui ont été effectuées sur la qualité de dehazing, en particulier sur
la fidélité des données restituées. Donc, nous proposons d’évaluer la qualité des images traitées
par le dehazing. À cette fin, nous avons élaboré deux bases de données des images couleurs et
multispectrales. Ces bases de données avec l’image originale qu’elles contiennent, représentent
des outils adéquats pour étudier la qualité d’images en termes d’évaluation objective et subjective.

Mots-clés : Dehazing, Qualité de l’image, Base de données des images de brume, Test psychométrique
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