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Abstract

L’interaction Humain-Robot est un domaine de recherche en pleine expansion parmi la com-
munauté robotique. De par sa nature il réunit des chercheurs venant de domaines variés, tels
que psychologie, sociologie et, bien entendu, robotique. Ensemble, ils définissent et dessinent
les robots avec lesquels nous interagirons dans notre quotidien.

Comme humains et robots commencent a travailler en environnement partagés, la diversité
des taches qu’ils peuvent accomplir augmente drastiquement. Cela créé de nombreux défis
et questions qu’il nous faut adresser, en terme de sécurité et d’acceptation des systemes robo-
tiques. L'étre humain a des besoins et attentes bien spécifiques qui ne peuvent étre occultés
lors de la conception des interactions robotiques. D’une certaine maniere, il existe un besoin
fort pour I'émergence d’'une véritable interaction humain-robot ergonomique.

Au cours de cette thése, nous avons mis en place des méthodes pour inclure des critéres
ergonomiques et humains dans les algorithmes de prise de décisions, afin d’automatiser le
processus de génération d'une interaction ergonomique. Les solutions que nous proposons
se basent sur 'utilisation de fonctions de cofit encapsulant les besoins humains et permettent
d’optimiser les mouvements du robot et le choix des actions. Nous avons ensuite appliqué
cette méthode a deux problemes courants d’interaction humain-robot.

Dans un premier temps, nous avons proposé une technique pour améliorer la lisibilité des
mouvements du robot afin d’arriver a une meilleure compréhension des ses intentions. Notre
approche ne requiert pas de modéliser le concept de lisibilité de mouvements mais pénalise les
trajectoires qui amenent & une interprétation erronée ou tardive des intentions du robot durant
I'accomplissement d'une tache partagée. Au cours de plusieurs études utilisateurs nous avons
observé un gain substantiel en terme de temps de prédiction et une réduction des erreurs
d’interprétation.

Puis, nous nous sommes attelés au probleme du choix des actions et des mouvements
qui vont maximiser 1’ergonomie physique du partenaire humain. En utilisant une mesure
d’ergonomie des postures humaines, nous simulons les actions et mouvements du robot et
de 'humain pour accomplir une tiche donnée, tout en évitant les situations ott I’humain
serait dans une posture de travail a risque. Les études utilisateurs menées montrent que notre
méthode conduit a des postures de travail plus siir et a une interaction pergue comme étant
meilleure.

Mots-Clés: Interaction Humain-Robot, Ergonomie, Facteurs Humains, Mouvements Lisibles,
Apprentissage par 'Interaction, Planification de Taches et de Mouvements.

Ce travail a été supporté par des fonds nationaux au travers de Fundagdo para a Ciéncia e
a Tecnologia (FCT), référence UID/CEC/50021/2013, et par EU FP7-ICT projet 3rdHand sous
l"autorisation n°® 610878.



Abstract

Human-Robot Interaction (HRI) is a growing field in the robotic community. By its very
nature it brings together researchers from various domains including psychology, sociology
and obviously robotics who are shaping and designing the robots people will interact with on
a daily basis.

As human and robots starts working in a shared environment, the diversity of tasks they
can accomplish together is rapidly increasing. This creates challenges and raises concerns to
be addressed in terms of safety and acceptance of the robotic systems. Human beings have
specific needs and expectations that have to be taken into account when designing robotic
interactions. In a sense, there is a strong need for a truly ergonomic human-robot interaction.

In this thesis, we propose methods to include ergonomics and human factors in the motions
and decisions planning algorithms, to automatize this process of generating an ergonomic
interaction. The solutions we propose make use of cost functions that encapsulate the human
needs and enable the optimization of the robot’s motions and choices of actions. We have
applied our method to two common problems of human-robot interaction.

First, we propose a method to increase the legibility of the robot motions to achieve a
better understanding of its intentions. Our approach does not require modeling the concept
of legible motions but penalizes the trajectories that leads to late or mispredictions of the
robot’s intentions during a live execution of a shared task. In several user studies we achieve
substantial gains in terms of prediction time and reduced interpretation errors.

Second, we tackle the problem of choosing actions and planning motions that maximize the
physical ergonomics on the human side. Using a well-accepted ergonomic evaluation function
of human postures, we simulate the actions and motions of both the human and the robot,
to accomplish a specific task, while avoiding situations where the human could be at risk in
terms of working posture. The conducted user studies show that our method leads to safer
working postures and a better perceived interaction.

Keywords: Human-Robot Interaction, Ergonomics, Human Factors, Legible Motions, Learn-
ing from Interaction, Task and Motion Planning.

This work was supported by national funds through Fundagdo para a Ciéncia e a Tecnologia
(FCT) with reference UID/CEC/50021/2013 and by the EU FP7-ICT project 3rdHand under
grant agreement N° 610878.
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Résumeé en Francais

LE poMAINE DE L INTERACTION HoMME-RoBoT (IHR) a vu son
essor se renforcer, ces derniéres années, par I'émergence de systemes
robotiques complexes et d"une intelligence artificielle de plus en plus
poussée. Les robots ne sont plus simplement des machines indus-
trielles cloisonnées afin d’éviter tout contact avec les ouvriers. De
nombreuses industries investissent dans des solutions robotiques ot
ouvriers et machines travaillent en contact direct afin de bénéficier
des forces et avantages des deux parties, i.e puissance et précision
de la machine combinées aux capacités d’adaptation et de la dex-
térité accrue de 'étre humain. On parle alors de cobots ou cobotique,
un néologisme issu de la contraction des mots coopération et robotique
proposé par Colgate, Peshkin, and Wannasuphoprasit (1996), tel que
celui présenté en Figure 1.

Cette situation crée une opportunité pour I'émergence d"une robo-
tique sociale ou les robots assisteront 'Homme dans ses taches
quotidiennes, au travail mais aussi chez lui. De ce fait, elle force
aussi a I'étude poussée des comportements humains afin de faciliter
I'intégration des systemes robotiques dans la société. L'étre humain
est un systeme complexe dont les comportements sociaux et les at-
tentes qui en découlent en terme d’interactions ont été forgés par
plusieurs milliers d’années d’évolution. A contrario, les systémes
robotiques, a 1’échelle de I'humanité, n’en sont qu’a leurs balbu-
tiements. Il est donc crucial de bien comprendre et analyser les com-
portements sociaux formant les interactions avec nos pairs afin de
les retranscrire dans les robots que nous créons et déployons. Tout
robot qui ne satisfait pas les attentes sociales les plus basiques sera
simplement oublié et finira par étre inutilisé (De Graaf et al. 2017).
C’est en ce sens que l'on peut parler de la nécessité d’une véritable
robotique ergonomique®.

AMELIORER L'ERGONOMIE DES SYSTEMES ROBOTIQUES passe bien
évidemment par 1'étude et la conception de robots plus attrayants
et inspirant une plus forte confiance (Breazeal 2004). Néanmoins,
le comportement et les actions choisies par le robot jouent aussi un
role crucial dans son acceptation et le confort de son partenaire hu-
main. Le projet européen 3rdHand, dans le cadre duquel s’inscrit
cette these, vise a la création d’un assistant robotique pour les ouvri-
ers sur chaine de montage. Cet assistant se veut autonome et capable

Figure 1: Cobot de la firme ABB. Photo
par Marco Verch.

*“L'ergonomie est l'étude scientifique
de la relation entre 1'homme et ses
moyens, méthodes et milieux de tra-
vail. Son objectif est d’élaborer, avec
le concours des diverses disciplines sci-
entifiques qui la composent, un corps
de connaissances qui dans une perspec-
tive d’application, doit aboutir & une
meilleure adaptation a 1’homme des
moyens technologiques de production,
et des milieux de travail et de vie.”
(Mosar et al. 1969)



de répondre aux besoins de l’'ouvrier pour I'accompagner dans son
travail. Les solutions envisagées doivent donc étre le plus génériques
possible et, de ce fait, il est nécessaire qu’elles ne soient pas spéci-
fique a un modele de robot en particulier. La cible principale du
projet étant les petites et moyennes entreprises, qui possédent des
chaines de montage variables ol le changement de produits peut étre
fréquent, il est aussi requis de proposer des solutions s’adaptant au-
tomatiquement et demandant le minimum de programmation possi-
ble. C’est dans cette optique que nous avons choisi, au cours de cette
these, d’étudier des méthodes permettant de générer une interaction
plus ergonomique, sans apporter de modifications matérielles a un
robot déja existant. Notre choix s’est donc naturellement porté sur
l'étude de l'impact des mouvements et des actions choisies par la
machine sur le partenaire humain, tant d’un point de vue physique
que psychologique.

DEUX CAS D’ETUDES ONT ALORS ETE CONSIDERES. Le premier est
la génération de mouvements plus prévisibles, permettant au collab-
orateur de lire les intentions du robot sans passer par une communi-
cation verbale®. En terme robotique, on parle de lisibilité des trajec-
toires (Dragan, K. C. Lee, et al. 2013). Cette lisibilité accrue permet
d’améliorer la productivité de I'équipe humain-robot en réduisant
les erreurs dues a une mauvaise compréhension des intentions de la
machine. Si, en observant les mouvements du robot, je suis persuadé
qu’il se dirige vers le tournevis je peux alors commencer a préparer
les vis pour la tache suivante. Si, par malheur, il se dirigeait en fait
vers un autre outil je vais devoir changer mon action complémen-
taire, entrainant un ralentissement du rythme de production et une
certaine frustration.

Dans la littérature, la plupart des méthodes cherchant a améliorer
la lisibilité des trajectoires reposent sur la création d"un modele prob-
abiliste de ce que représente une trajectoire prévisible. Cette dé-
marche, longuement étudiée par Dragan and Siddhartha S. Srinivasa
(2013) et illustré en Figure 2, suppose que la lisibilité de trajectoire
est un concept universel, i.e. qui ne dépend pas d’un contexte cul-
turel ou social particulier. Par ailleurs, cela demande la création d'un
nouveau modele pour chaque changement de taches, ce qui va a
I’encontre d’un robot adaptatif et simple a programmer.

legible: correct,

early prediction s, tual
ofthegoal,/.‘.-‘ ago%? /
7 /‘. O
i COE(EC}L’.' ) I
('—”'b'\.\t \ate N (I]) (I])
N, e
XEarIy, but

wrong prediction

2 Cette démarche s’inscrit dans le con-
stat que la plupart des communications
entre partenaires humains est non ver-
bal (Harrison 1965). De ce fait il est
nécessaire de considérer une approche
similaire afin de générer une interaction
plus naturelle.

Figure 2: Illustration de trajectoires lis-
ibles. Lorsque le robot est confronté
a deux cibles possibles, une exagéra-
tion de la trajectoire sur le c6té entraine
une prédiction plus rapide. A l'inverse,
une exagération du mauvais coté peut
générer des erreurs d’interprétations.



A contrario, la solution que nous avons proposée est
I'optimisation des trajectoires en se basant sur une méthode essai-
erreur par interaction directe avec 1’ouvrier sur la tiche a accomplir
(Busch, Grizou, et al. 2017; Stulp, Grizou, et al. 2015). Cette approche
présente l'intérét de ne pas émettre d’hypotheses, potentiellement
biaisées, sur le concept méme de lisibilité. Par ailleurs, tout change-
ment dans la tache a accomplir requiert simplement une nouvelle
période d’adaptation.

La méthode d’optimisation que nous avons choisie repose sur
le principe de boite noire3 et est dénommée PI*® (Stulp and Sigaud
2012). Nous avons testé cette approche via une expérience basée sur
un systeme similaire a l'illustration en Figure2, i.e le robot décide
d’un bouton a presser et le sujet doit presser le méme bouton le
plus rapidement possible. Pour évaluer les trajectoires générées par
I'algorithme d’optimisation nous avons repris les fondements méme
du concept de lisibilité, tels que décrit par Dragan, K. C. Lee, et al.
(2013), i.e. une trajectoire est lisible lorsqu’elle entraine une prédic-
tion plus rapide et sans erreur des intentions du robot. De ce fait,
la fonction d’évaluation que nous avons considérée comporte trois
éléments:

] = Lo + Tsubject + ldbulums +“|q'1...N,1...T| (0'1)
Efficacité Robustesse Energie

Efficacité: Le temps entre le début du mouvement du bras du robot
(to) et la pression sur le bouton par I'humain (T,..) et le robot
(’I‘robot)'

Robustesse: Erreur de prédiction. Une valeur est donnée si la per-
sonne a pressé le bon bouton (S, =0) OU NON (Sypuuens =1). 7y €St
un fort cotit déterminé arbitrairement et fixé & 20 dans nos expéri-
ences, ce qui équivaut a une pénalité de 20s en termes d’efficacité.

Energie: La somme du jerk, i.e. la dérivée troisieme de la valeur
angulaire des joints du robot (q; ) a chaque pas i de la trajectoire.
Le pas A; utilisé pour calculer les dérivées a été fixé a 0.2. Le
facteur d’échelle « est choisi de maniére a ce que le cofit en jerk
représente 1/20 du cofit total de la trajectoire initiale.

Les expériences menées aupres de 30 volontaires ont montré une
nette diminution d’environ 20% du temps de prédiction lors de
'observation des trajectoires optimisées comparé aux trajectoires ini-
tiales correspondant a des lignes droites vers les boutons a presser.
Au vu de ces résultats, nous avons effectué une étude plus appro-
fondie afin de vérifier I'influence de la politique représentant les tra-
jectoires sur la lisibilité finale et évaluer a quelle point les trajectoires
optimisées peuvent se transférer d’un utilisateur a l'autre (Busch,
Grizou, et al. 2017).

CONTENTS 3

3 L'optimisation en boite noire est
utilisée lorsque l'on possede peu
d’informations sur la fonction a opti-
miser. L'algorithme se base simple-
ment sur une méthode d’évaluation des
tirages aléatoires sans connaissance du
modele sous-jacent.



LE SECOND CAS ETUDIE LORS DE CETTE THESE concerne une er-
gonomie plus physique. Selon Punnett et al. (2004) les Troubles
Musculo-Squelettiques (TMS) représentent la majeure partie des ac-
cidents du travail dans les pays industrialisés. Ils sont souvent in-
duits par une mauvaise posture ou de mauvaises habitudes de tra-
vail, ainsi que par la répétition de taches a risque (Gallagher et al.
2013). Si nous sommes amenés a introduire des robots sur les chaines
de montage, cela ne peut se faire au détriment de la santé des ouvri-
ers. De ce fait, il est important de mettre en place des solutions, en
amont, afin de limiter les risques de TMS.

Le choix du placement des objets par le robot et des action qu’il
peut accomplir n’est pas anodin et peut avoir un impact négatif sur
la santé de son partenaire humain. Prenons 'exemple illustré en Fig-
ure 3. Sur la photo la plus a gauche, il est clair que le choix du place-
ment de I'objet sphérique n’est pas judicieux. Ce type d’interaction
aura, pour str, de lourdes conséquences sur la santé de 'ouvrier sur
le long terme. A l'inverse, la photo de droite présente une interaction

plus ergonomique.

La problématique est donc d’automatiser le choix des actions
robotiques, d"un point de vue moteur comme d’un point de vue déci-
sionnel, afin d’obtenir une interaction ergonomique et sécurisée pour
I'ouvrier (Busch, Maeda, Mollard, et al. 2017; Busch, Toussaint, et al.
2018). Pour ce faire, nous proposons une approche d’optimisation a
priori. A partir d'un modeéle personnalisé de ’ouvrier nous déter-
minons la posture présentant le moins de risque de TMS lors de
I'accomplissement d"une tache puis établissons les mouvements du
robot qui améneront 'ouvrier & adopter cette posture optimal. Afin
d’attribuer un score a la posture de I'ouvrier nous avons mis en place
une évaluation automatique basée sur la méthode Rapid Entire Body
Assessment (REBA) (Hignett et al. 2000). Le détail des calculs intro-
duits par la méthode REBA est disponible en Annexe A. Une étude
utilisateur sur 40 volontaires montre que l'interaction optimisée est
largement préférée et les postures enregistrées présentent un risque
réduit de TMS (Busch, Maeda, Mollard, et al. 2017).

Dans un second temps, nous avons introduis la méthode REBA
dans un logiciel de planification développé par Toussaint and Lopes
(2016). L’avantage de cette approche est de pouvoir résoudre les
problemes d’allocation de tache et I'optimisation de mouvements si-
multanément*. De ce fait, cela nous permet de proposer une inter-
action ergonomique a la fois en terme de mouvements, mais aussi

Figure 3: Différences entre deux types
d’interaction. Une interaction ayant un
impact négatif sur la santé de 1’'ouvrier
(gauche) comparé a une interaction
plus saine (droite)

4Ce type de probleme est dénommé
Task and Motion Planning (TAMP). Il per-
met d’attribuer des taches a valeurs sé-
mantiques, e.g. le robot prend le tournevis
et de résoudre leurs impacts logique
et géométrique en terme d’effet sur la
scene.



en terme du choix des actions a accomplir. Par exemple, les taches a
faible valeur ajoutée, comme soulever des objets lourds, peuvent étre
automatiquement attribuées au robot, réduisant la fatigue physique
des ouvriers (Busch, Toussaint, et al. 2018).

EN CONCLUSION, au travers de plusieurs expériences d’interaction,
nous avons proposé des méthodes permettant de rendre l'interaction
plus ergonomique. Dans un soucis de généralité et de réutilisabil-
ité, ces méthodes sont indépendantes d'un robot particulier>. Cette
philosophie transparait aussi dans le choix des approches et leur im-
plémentation. L'utilisation d’une approche non basée sur un mod-
ele pour améliorer la lisibilité des trajectoires permet, par exem-
ple, de s’affranchir de la programmation de spécificités qui peu-
vent étre culturelles ou méme dépendante d'un ouvrier en parti-
culier. De ce fait, cela permet aussi de proposer une interaction
unique et personnalisée. De la méme maniere, méme si nos méth-
odes pour améliorer 'ergonomie physique, reposent sur 1'utilisation
d’une technique d’évaluation spécifique, la technique REBA, cette
derniere peut étre remplacée par une technique équivalente, poten-
tiellement plus adaptée & certains besoins ou a certaines situations
particulieres.
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5 Bien que vérifiées et implémentées sur
un seul robot, le robot Baxter du projet
3rdHand, les méthodes présentées dans
cette thése sont indépendantes des car-
actéristiques physiques du robot et peu-
vent donc étre implantées sur d’autres
robots.



1
Introduction

WE, HUMAN BEINGS, are very social creatures. We interact with
each other-and also other animals—on daily basis. Evolution has fa-
vored the development of complex social behaviors in humans, along
with the brain architecture that supports them (Bjorklund et al. 1995).
Compared to other mammals, humans have the largest neocortex, a
brain area responsible for language acquisition, conscious thought
and emotion regulation. The capacity for attributing mental states,
i.e. intentions, beliefs, and desires, to others has been defined Theory
of Mind (Premack et al. 1978) and is also thought to be regulated by
the neocortex. We are, in a certain manner, hardwired to be sociable
and to express social behaviors.

We also communicate, and cooperate, to achieve our goals. None
of our greatest achievements or constructions were made by a single
person but rather groups of people, often at the cost of their own
life. This behavior is quite unique in the animal kingdom and prob-
ably originate from genetic and cultural evolution that has produced
a species in which substantial numbers make sacrifices to uphold
ethical norms and to help even total strangers (Bowles et al. 2011).
Darwin proposed “social and moral faculties” as a key factor for
the survival of human tribes in the early stage of their development
(Darwin 1888):

It must not be forgotten that, although a high standard of morality
gives but a slight or no advantage to each individual man and his
children over the other men of the same tribe, yet that an advance-
ment in the standard of morality and an increase in the number of
well-endowed men will certainly give an immense advantage to one
tribe over another. There can be no doubt that a tribe including many
members who, from possessing in a high degree the spirit of patri-
otism, fidelity, obedience, courage and sympathy, were always ready
to give aid to each other and to sacrifice themselves for the common
good, would be victorious over most other tribes; and this would be
natural selection.

Figure 1.1: Animal used to help farm-
ing in Indonesia. Photo by Jan-Pieter
Nap.



Not only do we collaborate with each other, but we also develop
tools and make use of other animals to help us in our labor. Beeves
and horses have been extensively used throughout history, and still
nowadays in developing countries as illustrated in Figure 1.1, for
their strength, compensating our own relative weakness. Tool cre-
ation and usage has greatly contributed to our evolution and is
strongly linked with increased brain size, population size, and geo-
graphical range (Ambrose 2001). Our most complex robotic systems
are, therefore, nothing more than an improvement of the first bone
tool depicted by Kubrick in his movie 2001: A Space Odissey.

RELYING ON THIS, roboticists are trying to enhance the human ca-
pabilities by developing machines, more and more capable, but also
more and more complex. However, for a long time robots and hu-
mans had very few social interactions. For security reasons, norms
in industry have created barriers between them, limiting the inter-
actions to their strict minimum, most of them to program or repair
the expensive machineries (Robots and Robotic Devices — Safety Require-
ments for Industrial Robots — Part 1: Robots 2011).

Science fiction, on the other hand, is full of example of social
robots, interacting with human beings, for better or for worse. In
its own manner, it has shape our ideas on robotics, both in terms of
designs and capabilities™. Interestingly, it also highlights, and often
relies on, the human capacity to recognize living patterns and social
behaviors in other lifeforms, even artificial mechanism or machines.
Referred as anthropomorphism, it seems to be an innate tendency
of the human psychology. From animals we observe, to spiritual
deities we worship, we tends to explain their behavior with human-
like goals and intentions (Epley et al. 2007). This capacity allows us,
for example, to interpret the language of R2D2, the can-like robot of
Figure 1.2, which is only composed of a succession of beeps and whis-
tles. Although this “language” is artificial*>, we seem to understand
what the robot “feels” on the moment.

Opver the past few years, the extensive progresses in terms of safety
and sensing capacities opened up challenges and opportunities to
make those fictional robots a reality. The neologism cobot, or co-robot,
refers to a robot that shares its workspace with humans and physi-
cally interacts with them. Invented in 1996 by Colgate, Peshkin, and
Wannasuphoprasit (1996) it is described in a US patent (Colgate and
Peshkin 1999) as “an apparatus and method for direct physical in-
teraction between a person and a general purpose manipulator con-
trolled by a computer”. Nowadays, many industrial companies have
designed their own cobots. Some of them, like Baxter robot from
Rethink Robotics are safe by design, i.e velocity of the robot mo-
tion and deployed forces are limited by the actuator design (Robotics
2017). Lots of effort are made to create robots that are safe and will
be well accepted by industrial workers.
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Figure 1.2: Probably the most famous
couple of robots in science fiction.
C3PO and R2Dz2 have inspired many re-
searches on social robots and human-
robot interaction (HRI). Credit: Gordon
Tarpley

* Throughout history, myths and fic-
tional arts have modeled our views on
artificial machines like robots. It might
explain why Western people tend to be
afraid by most advanced robots while
the same robots are well integrated in
the Japanese society (Kaplan 2004).

2The sound designer of both movies,
Ben Burtt, has pointed out that some
of these sounds were purely made on
a synthesizer, while others origin from
recorded mechanical and motor sounds
(Rinzler et al. 2010)



As ROBOTS BECOME MORE AND MORE SOCIAL, new challenges
arise, with the increase of end users expectations. Extensively stud-
ied by Reeves et al. (1996) our relations with computer and television
might seem irrational and might look like interactions we have with
our peers. This effect also appears in our relation with robotic system
(Meerbeek et al. 2008). This type of relation is a great opportunity
for roboticists as it facilitates the acceptance of their robotic systems
and design. But it is, in fact, a double-edged sword as people tend to
overestimate the capacities and intelligence of the robots they are in-
teracting with. The disillusion when they realize its limitations is one
of the first reason they simply drop using it (De Graaf et al. 2017).

To overcome this, robotic designers must understand human soci-
ology to facilitate the acceptance of the their systems. For example,
any robot that do not respect some simple codes of interaction will
simply fail to complete its purpose. As such, it is not surprising to
see why so many researches rely on “Wizard of Oz” which refers
to social robots partially or fully remotely controlled. It has been
named after the character in Baum (1900)’s fictional book. This solu-
tion aims at analyzing how people respond to their robotic system,
mainly its design, before developing complex autonomous systems.
In a way we can see this as the need for a truly ergonomic robotics3

THE 3RDHAND EUROPEAN PROJECT, in which this thesis takes part,
aims at developing a semi-autonomous robot assistant that acts as
the third hand of a human worker. To facilitate the integration of
such a technology in industry it is necessary to develop robotic be-
haviors that will ease the collaboration. Research areas leaded by
the institutions of the srdHand committee, cover a large variety of
topic directly linked to Human-Robot Interaction (HRI). One aspect,
which motivated the researches in this thesis, is to improve the com-
fort of the human coworker during the interaction, i.e. to propose a
more ergonomic interaction.

New robotic assistants should be able to prevent worker’s dis-
comfort as well as more aggravated work-related illness. By contrast
with a human-human interaction, where both parties try to maxi-
mize their own comfort, sometimes at the expense of the other, an
assistive robot should always maximize the comfort of its coworker.
On the other hand, humans are complex systems and the notion
of human comfort is very difficult to assess. It might be linked to
the notion of acceptability, which is usually divided into social ac-
ceptability: How does the society perceive robotic systems?, and practical
acceptability: How do people perceive the robot when interacting with it?

Aspect of the robot is an important factor of its acceptance
(Breazeal 2004). For example a spider-like robot could be perfectly
fit to operate in uneven terrain but probably not to interact with hu-
mans due to its dreadful design. Kajita et al. (2009) suggested this as
a reason why humanoid robotics has undergone such a remarkable
expansion in the last few years. Humanoid design and especially
bipedal locomotion is probably not the most optimal but it greatly

Figure 1.3: Baxter and Sawyer collabo-
rative robots from Rethink Robotics.

3 Ergonomics (or human factors) is the
scientific discipline concerned with the
understanding of interactions among
humans and other elements of a sys-
tem, and the profession that applies
theory, principles, data and methods to
design to optimize human well-being
and overall system performance—
International Ergonomics Association


http://www.iea.cc/whats/index.html

facilitates the acceptance of the robotic system by the human work-
erst.

However, when working with already designed robotic systems,
such as Baxter robot which was used in all our experiments and is
illustrated in Figure 1.3, the only left levering approach relies on im-
proving the acceptance of the robot motions and behaviors. Choice of
actions, robot motions, proximity with the human coworker>, might
lead to uncomfortable situations. Assessing those situations is not
trivial. It usually relies on questionnaire answered after the exper-
iment, recorded videos analyzed by experts, or physiological data
such as cardiac or ocular activity (Dehais et al. 2011).

Although the acceptance is strongly linked to the worker’s com-
fort, it only covers the psychological aspects of the comfort notion.
More physical constraints need also to be considered. Work related
injuries cost between 13$ to 20$ billions annually to US industries
and cobots researches were essentially funded to address this issue
(Akella et al. 1999). Some of those injuries are linked to traumatic
accidents due to physical contact with the machineries but Muscu-
loskeletal Disorders (MSDs)® are the largest category of work re-
lated illness (Punnett et al. 2004). Risk-factors for MSDs are work
or individual related (Putz-Anderson et al. 1997). Work-related fac-
tors include high task repetition and wrong body posture, while
individual-related factor comprise poor work practice and poor rest
recovery. In both cases, a robotic approach could help reduce those
factors by assigning the most burdensome tasks to the robot and as-
sist the worker to help him or her keep good working posture and
practices.

BOTH THE PSYCHOLOGICAL AND PHYSICAL IMPACT of the interac-
tion were motivating the research conducted during this thesis. The
first situation we consider concerns the understanding of the robot
actions. In a joint collaboration scenario, it is important that the hu-
man coworker understands what the robot plans to do or achieve.
Failing to achieve such understanding could lead to stressful situa-
tions or unnecessary human actions. For example, if I believe the
robot next action is to reach for the screws I will probably move to-
ward the screwdriver. However, if I realize later on that it was aiming
for a different part of the assembly I will have to put back the screw-
driver on the table before starting the correct complementary action.
On the other hand, a fast understanding of the robot actions allows
me to anticipate on my own corresponding actions and generate a
faster and smoother interaction. In an industrial setup where tim-
ings is often crucial this is a non negligible improvement to consider.
To achieve such understanding, two approaches could be envisaged.
The robot could explicitly details its next action, using for example
signals on its screen or natural language. However, a coworker that
says out loud all the actions he is planning of performing would
slowly become annoying and the interaction would feel unnatural”.
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4 Another reason is that most of the
tools and workstations are designed for
humans. Therefore, introducing hu-
manoid robots in industry would not
require a complete reshape of the work-
ing environment.

5People have special concerns about
their personal space either in terms
of intimacy and safety. = We con-
sider proxemics—physical and psycho-
logical distancing from othersEdward
Twitchell Hall 1966—to address such
concerns.

¢ MSDs include a wide range of inflam-
matory and degenerative conditions af-
fecting the muscles, tendons, ligaments,
joints, peripheral nerves, and support-
ing blood vessels.

7 Actually, most of the communication
between humans is non-verbal and uses
what we refer as “body language” (Har-
rison 1965).



Another option is to share intentions directly from the robot mo-
tions. This concept, referred as legibility in the robotic community
(Dragan, K. C. Lee, et al. 2013), mainly relies on the fact that living or-
ganisms tends to modify the way they move or accomplish actions to
express their intentions. If you look at a dog willing to play, the way
it moves informs you about its true intentions. The same approach
can be applied to robotic systems to modify the robot motions to
share intentionality (Dragan, K. C. Lee, et al. 2013; Sisbot and Alami
2012). Doing so will greatly benefit the productivity, which is always
a concern for industrial applications, as it would reduce both the
timings to accomplish a specific task and the coworker’s cognitive
load.

THE SECOND SITUATION concerns the human comfort at a more
physical level. In a physical human-robot interaction, where robot
and humans cooperate to accomplish a specific task, the robot can
provide support actions such as holding parts or handing-over ob-
jects. Such simple actions can negatively impact the posture of the
human coworker. Imagine a situation where the robot holds a piece
of furniture with the human to screw but the screw hole is facing the
ground. The human would have to bend or squat to look for it and
screw correctly. Over the years, such a repeated wrong body posture
could lead to a high physical discomfort and/or world-related illness
such as Musculoskeletal disorders (MSDs). The question that arises
is how can we ensure that the worker will stay away from those high
risk postures. In assembly-line production works, the entire work-
station is adapted to the worker to prevent those situations (Das et
al. 1996). However, in small production series, adapting the entire
workstation introduce a non negligible cost which make it not suit-
able. As human-robot collaboration specifically targets this type of
industry, there seems to be a great opportunity for the robot to adapt
itself to the worker specificities, like height or eventual injuries, and
preferences. Even simple types of interaction, such as handing-over
an object, can be stressful if not performed correctly®. This creates
a desire to form highly effective human-robot teams that combines
strengths and abilities of both the robot and its human partner (Gom-
bolay et al. 2015; Ogorodnikova 2008), while at the same time caring
for the well-being of the people working with robots. Compared to a
fully automated assembly line, a robot and human worker team also
offers flexibility and adaptability to changing tasks (Bley et al. 2004;
Kriiger et al. 2009). This last point is particularly important for small
assembly lines of customized products, where changes made in the
workstations are frequent.

Another interesting aspect lies on the self-awareness of risk asso-
ciated to a given posture. The human body has an extensive amount
of degrees of freedom which allows to accomplish tasks in various
postures. Obviously, not all of those postures are ergonomically safe
and one might perform a task in a wrong posture without even being
aware of it.

8 As an example, consider a left-handed
worker that has to interact on an object
positioned and orientated for a right-
handed interaction. Either it will force
him or her to adopt a wrong body pos-
ture or to use the right hand, limiting
his or her efficiency on the task.



IN suMMARY, our contributions for this thesis are twofold. First,
we propose a solution to improve the legibility of the robot motions.
Second, we study the ergonomics of the interaction and propose a
method to reduce the potential risks of MSDs, by ensuring that the
robot motions and actions will not force the user to adopt a high-risk
posture.

To achieve our goals, we use, for both situations, a similar ap-
proach. We define a cost function that leads toward the desired be-
havior and use optimization algorithms to derive the robot motions.
For both cases, we find a simple cost function and validate its us-
age with human subjects interacting with our Baxter robot. In the
following paragraphs, we summarize our main contributions with
their associated scientific publications.

Learning legible motions from interaction: In the first part of the thesis
we describe our work on learning legible robotic motions. In Chap-
ter 2 we explain the notion of legibility and provide some related
work on improving the legibility of robotic motion. Our work on
this question has leaded to two main scientific contributions.

First, a publication in the International Conference on Intelligent
Robots and Systems (IROS 2015) (Stulp, Grizou, et al. 2015) in which
we introduce a cost function based on human feedback to learn leg-
ible motions while interacting with human subjects. Coupled to an
optimization algorithm we apply this cost function to two different
tasks and analyze the gains in term of the subjects’ prediction times
and potential errors. We detail the experiment protocol and results
in Chapter 6 of the thesis.

Our second contributions is an analysis on the universality of the
learned legible motions. By comparing two different policies for rep-
resenting the robot motions, we realize that we can achieve more uni-
versal legibility that require less adaptation. This extensive study has
leaded to a publication in the International Journal of Social Robotics
(Busch, Grizou, et al. 2017) and is detailed in Chapter 3.

Ergonomic human-robot interaction: In the second part of the thesis
we focus on more physical aspects of the human comfort and risks
associated with wrong body postures. We start by introducing the
notion of ergonomics in Chapter 5 and review the researches made
toward a more ergonomic human-robot interaction.

In Chapter 6 we present an optimization algorithm to optimize
human postures to fulfill a specific task under ergonomic constraints.
From the optimized posture, we derive a robot motion that leads the
real user toward the safest posture he or she should adopt. In a user
study we verify that our solution leads indeed to safer posture and
is perceived as more ergonomic. This work has been published in
IROS 2017 (Busch, Maeda, Mollard, et al. 2017).

CHAPTER 1.

INTRODUCTION

11



Reusing the same ergonomic cost function, we have extended our
study to also plan high-level sequences of actions?. We have based
our work on the Logic-Geometric Programming (LGP) framework
introduced by Toussaint and Lopes (2016) that allows to solve Task
and Motion Planning (TAMP) problems simultaneously. Therefore,
we propose an ergonomic interaction at both the low-level motor
commands and the high-level actions. The integration also offers
an interesting aspect of allocating task to either the robot or human
agent based on ergonomic considerations. We provide details of the
approach in Chapter 7 along with the results of the conducted user
study. This work has been accepted for publication to the Interna-
tional Conference on Robotics and Automation (ICRA 2018) (Busch,
Toussaint, et al. 2018).

On a last note, the images and pictures, used to illustrate the dis-
cussions, are either extracted from our publications, made specifi-
cally for the manuscript or under creative comment licensing.

9 We oppose high-level actions to low
level motor commands. A high-level ac-
tion often has a semantic meaning such
as “grasps the screwdriver”.



2

Introduction to Legible Robotic Motions

IN EVERYDAY LIFE, people interact with each other using verbal com-
munication or by means other than explicit natural language state-
ments. Our body gestures and choice of actions communicate a lot
our intentions. In 1974, Duke reported a story, attributed to Ann
Landers'. She was responding to a query from a girl on how was the
best way to meet a shy boy who rode on the same bus with her each
day.

Landers suggested to the girl that the important thing was to get the
man to talk first because that was really the way he wanted it. To
accomplish this, Landers recommended that the girl get off the bus
with a heavy packages such as several dozen bricks well wrapped.
Presumably the hero would be unable to avoid seeing a lady in distress
and would immediately appear at the lady’s side to offer assistance.

If he didn’t, Landers urged the girl to drop the package or twist her
ankle; the male could never overlook this opportunity for demonstrat-
ing his gallantry, and he would be certain to carry both the girl and
the package to their destination; once there, the girl could offer him
refreshments, thank him and settle down for a get-acquainted chat.

In this story, most of the communication is non-verbal. It has
been estimated that only 35% of the communication among people
happens verbally (Harrison 1965). An important thing to note is that,
here, the girl’s real intention is hidden and her choice of actions do
not clearly signal the goal she wish to achieve. In contrast with this
anecdote, our body gestures and choice of actions might also reflect
upon our true intentions.

When doing so, it is important to select actions that will clearly
convey this information to our interlocutor. The story of John Hinck-
ley Jr. is an example of a poor choice of actions that failed this pur-
pose. In 1981, he attempted to assassinate U.S. President Ronald Rea-
gan with the mean of impressing the actress Jody Foster for whom
he devoted a true obsession. It might be unclear how this specific ac-
tion could achieve Hinckley’s real goal®>. Therefore, a wrong choice
of actions might lead to the complete opposite of what you wished
to accomplish.

*Ann Landers is a pen name created
by Chicago Sun-Times advice columnist
Ruth Crowley in 1943 and taken over by
Esther Pauline “Eppie" Lederer in 1955.
For 56 years, the “Ask Ann Landers"
syndicated advice column was a regu-
lar feature in many newspapers across
North America.

*Some extra information might help
understanding his choice. During her
career, Jodie Foster has played a role in
the 1976 film Taxi Driver, in which dis-
turbed protagonist Travis Bickle (Robert
De Niro) plots to assassinate a presi-
dential candidate. With that informa-
tion in mind, we could see why Hinck-
ley chose this action. A common knowl-
edge might also help the interaction.



However, not only does our actions reflect upon our intentions
but also the very way we accomplish them. Humans, and other ani-
mals, are exquisitely attuned to recognize goals and intentions from
the motion of living organisms. Watching a dog making a circling
motion leads us toward its intentionality to play. It is not even nec-
essary to have an organism-shaped body to convey intention in the
motion, as Heider et al. (1944) showed3. Their animations of moving
triangles and circles elicited strong subjective impressions of goals
and intentions, e.g., of one triangle trying to catch another.

THIS NON-VERBAL COMMUNICATION is also central in the context
of joint task between humans to coordinate their actions (Sartori et
al. 2011). If you move an open bottle in my direction, I will place my
glass in an appropriate position for you to pour. If you reach for the
screwdriver, I will lift the shelf to hold it in place for you. By mon-
itoring the actions of others and inferring their intentions, a human
can predict and preemptively initiate the appropriate complemen-
tary actions without the need for verbal communication (Sartori et
al. 2011; Sebanz et al. 2006; Timmermans et al. 2012). Furthermore,
it has been shown that humans unconsciously change their behav-
ior, for instance the speed of task execution, to improve coordination
(Vesper et al. 2011).

IF WE ARE TO DEVELOP SOCIAL ROBOTS that interact with people
on a daily basis, it is important to understand this non-verbal com-
munication mechanism, not only to infer people intentions, but also
to communicate in a similar manner. The actions performed by the
robot, and the way to achieve them, should reflect upon its goal and
convey sufficient information.

Recently, Knepper et al. (2017) proposed a framework to formally
model this implicit communication in human-robot interaction. This
model relies on the notion of surprisal (Hohwy 2013)4. They state
that actions or motions inducing a high surprisal is a mean to convey
information. In other terms, if an action 4 seems improbable to an
observer, it is chosen over a more probable action a* because it has
a specific meaning m* that the observer should understand. This,
obviously, requires some basic concepts to be respected:

1. There exist multiple actions to achieve a specific goal (a* # 4 )

2. One action should be more probable than the others given the
context

3. The meaning m* should be an easy explanation of the observation
of a

4. There is no other meaning # that is an explanation of 4

3Several videos of this animation
of moving mathematical shapes can
be found on Youtube https://www.
youtube.com/watch?v=sx71BzHH7c8.

+Any communicative action will be
perceived by an observer with a certain
level of surprisal, which is an encoding
of how probable the observer believes
the action to be, given the context. The
higher an observer’s surprisal, the more
improbable the observer believes the ac-
tion to be in the given context.


https://www.youtube.com/watch?v=sx7lBzHH7c8
https://www.youtube.com/watch?v=sx7lBzHH7c8
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Hinckley’s story is a good example that violates the third rule.
His true intention could not be easily derived from his choice of ac-
tions. The fourth rule could be culturally dependent and requires to
know exactly how our actions are perceived by the observer. One
example of action that might fall under this rule is nodding the head
for acceptance>. Although, in most countries, it might be correctly
understood, there is a few exceptions where the meaning is swapped
and actually means a refusal®. The fourth rule is particularly impor-
tant as it highlights the fact that an action that successfully convey
some information to one person might fail to do so with another
one. As we develop robotic behaviors to be very informative, this
might question the universality of our findings. However, this could
be overcome if both parties agree, beforehand, on the meaning of a
specific action.

WE CAN APPLY THIS FORMALISM, in human-robot interaction. First,
the choice of individual or sequences of robot actions can highlight
a greater goal and trigger a human response. As an example, if the
robot moves to grasp the screwdriver, the human coworker should
understand that he or she needs to reach for the screws. Second,
the robot can signal its intention directly from its motion7. In the
second case, the human would go for the screws before the robot
has even reached the screwdriver. Achieving such a comprehension
between the robot and the human would induce a gain in terms of
productivity as it would reduce the time to accomplish a specific
task.

Conveying information through motion is a concept referred as
legibility, and efforts have been made to improve the legibility of the
robot behaviors (Dragan and Siddhartha S. Srinivasa 2013; Sisbot and
Alami 2012)8. The main idea is that one can infer the robot intention
by only observing its motion. Let us take the following example:

John Doe is on his bike, arriving at a zebra crossing. A car is coming
quite fast and John wonders if it will stop to let him cross the road. The
car does not seem to be slowing down, John set foot on the ground.
But finally the car driver brakes and flashes the headlights, signaling
John to pass.

In this situation, John could only rely on the car motion and speed
to infer if it would stop on time to let him cross the road. However,
the car driver failed to convey this information and had to use a more
informative signals, a flashing of headlights. Should the car driver
break earlier, John would have continue on its path without the need
of setting foot on the ground.

The same situation arises in human-robot interaction. We could
have a special signal for each of the robot actions, which akin to
the flashing of headlights in the car bike situation. Or we could
improve the robot legibility to smooth the interaction and trigger an
appropriate human response.

5 A nod of the head is a gesture in which
the head is tilted in alternating up and
down arcs along the sagittal plane.

®In Greece, Iran, Lebanon, Syria,
Turkey, Bulgaria, Albania, and Sicily a
single nod of the head up (not down)
indicates a "no".

7 Robot motion might refer to the move-
ment of its mobile base as it has been
studied with mobile robots moving in a
human environment (Sisbot and Alami
2012) or to the motion of its arms when
working with fixed base robots like as-
sembly robots (Dragan, K. C. Lee, et al.
2013). In this work, we only focused on
the latest scenario.

8Some researchers prefer to use the
term “readability” rather than “legibil-
ity” (Takayama, Dooley, et al. 2011).



In human-human interaction, this concept has been extensively
studied and a key component that helps to facilitate social interac-
tion is believed to be the action observation network. Motor pro-
cesses underlie the execution of actions as well as the understanding
of other’s people intended actions (Decety et al. 2006; Gallese 2001;
Gallese and Goldman 1998). This process relies on some specific neu-
rons in our brain called mirror neurons9 that allow us to understand
a person intention by projecting his or her motor commands onto
ourselves.

Could the same process be used to recognize robot intentions from
its motion? Cross et al. (2012) shows that it could, in fact, go beyond
the simple imitation mechanism and it is also activated by the obser-
vation of non-human agents, specifically robotic systems. Moreover,
if a robot mimic well a human movement, our anthropomorphism
capacity might simply take over and facilitate the recognition pro-
cess.

THE QUESTION IS THEN, how can we improve the legibility of robot mo-
tions? One way to achieve this can be to imitate the human motion
in the same task context. The minimum jerk model (Flash et al. 1985)
makes the assumption that human hand motion can be mathemati-
cally retrieved, by minimizing the jerk in Cartesian space, during a
grasping task. On an industrial robot, however, trajectories generally
follow a trapezoidal joint velocity profile (Craig 2005). Research has
shown that predicting this type of motion is harder than a minimum
jerk profile (Glasauer et al. 2010)*°.

For specific tasks, it is possible to manually define motion that
convey the desired intention. This can be made for different applica-
tions. For instance to facilitate handing over an object (Alami et al.
2006; Cakmak, Siddhartha S. Srinivasa, et al. 2011; M. K. Lee et al.
2011; Mainprice et al. 2010; K. W. Strabala et al. 2013; K. Strabala et al.
2012), or to coordinate robot soccer players (Pagello et al. 1999; Stulp,
Isik, et al. 2006). This involves understanding and modeling how hu-
mans interpret actions, and implementing controllers based on this
knowledge. Explicit task-specific encoding of intention prediction
has also been used to coordinate robot soccer players (Pagello et al.
1999; Stulp, Isik, et al. 2006). The concept of legibility has also been
studied in the context of safe navigation in the presence of humans
(Lichtenthéler et al. 2012; Sisbot and Alami 2012).

ANOTHER APPROACH, taken by Dragan and Siddhartha S. Srinivasa
(2013) is to provide a general-purpose definition of legibility: how
probable is a goal, given a partially observed trajectory? Higher leg-
ibility implies earlier divergence of probabilities for different goals.
They also clearly formalize the difference to predictability: what is
the most probable trajectory, given knowledge of the goal?

9 A mirror neuron is a neuron that fires
both when an animal acts and when the
animal observes the same action per-
formed by another.

* In the light of human psychology and
neuroscience, those results suggest that,
because trapezoidal joint velocity pro-
file are “non-natural”, our action obser-
vation network might be unable to map
it onto ourself, which make the recog-
nition process harder.
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Imagine a reaching task scenario where two objects are closed to
each other. You have to guess which object the robot is going to pick
only by looking at the robot arm motion. As illustrated in Figure 2.1,
if you knew that the robot would pick the blue object, you would ex-
pect it to perform a straight line toward it. This is the most probable
action ax according to Knepper et al.’s formalism. Dragan, K. C. Lee,
et al. refer to it as predictable motion.

predictable: correct

prediction, but late actual | observer

goal predicts

@E

The main drawback of this predictable motion is its lack of in-
formation. With two possible targets, very close to each other, you
would need to observe a large snippet of the trajectory before being
able to guess the robot target.

To convey more information, the robot trajectory would then need
to diverge from the straight line. Now, observe the trajectory illus-
trated in Figure 2.2. This type of motion, an 4 action, is very infor-
mative. It allows you to correctly infer the robot target, even if you
see only a short snippet of the trajectory.

. . actual | observer
. te., goal predicts

/1. legible: correct, ’ . ﬂ’}i@
Ve

// early prediction (I])

On the other hand, the robot could also diverge on the other side
of the straight line. However, this type of motion depicted in Fig-
ure 2.3 would mislead the observer on the real target. It is break-
ing the third rule of Knepper et al.’s formalism. In fact, the yellow
hashed target is an easier explanation of the observation of this tra-
jectory. It is referred as deceptive motion (Dragan, Holladay, et al.

2014).
actual | observer
. goal predicts
deceptive: early,
but wrong prediction . .

@
-

Figure 2.1:  Predictable motion in a
reaching task scenario. This is the most
probable motion and the least informa-
tive.

Figure 2.2: Legible motion in a reach-
ing task scenario. This is the most in-
formative type of motion.

Figure 2.3: Deceptive motion in a
reaching task scenario. This motion
mislead the observer on its prediction.



One question is, how can we generate those legible motions?. Dragan
and Siddhartha S. Srinivasa (2013) propose a model-based method
to optimize the robot trajectories for legibility. Although they define
legibility and predictability as general ideas, they are implemented
as cost functions that might not apply to all task contexts. It is a non-
trivial task to adapt this cost function to novel task contexts, and
especially to different (classes of) users.

The fundamental problem of trying to model such a complex con-
cept as legibility is being unable to capture its full scope. Each per-
son might have his or her own idea on what is a legible motion,
although probably unconsciously. The whole concept of legibility
might be also culturally dependent, as the concept of nodding for
acceptance presented earlier. And finally, it might be also task de-
pendent. Therefore, accounting for those specificities is almost im-
possible with a model-based approach.

THE QUESTION BECOMES THEN, can a robot learn to generate legible
motions, adapted to its human coworker? This question is the motiva-
tion behind this first part of the thesis. Our goal is to learn how to
generate legible motion in a model-free manner, to adapt the robot
behavior to the observer’s preferences and his or her perception of
legibility.

Rather than defining legibility as an explicit property to be opti-
mized, we investigate legibility as an emergent adaptive property of
robots who are rewarded for efficiently cooperating with humans.
Our approach is based on model-free optimization, where the robot
iteratively improves its legibility through trial-and-error interaction
with a human. By not providing a model we need to find other
means to reward the robot which would lead to a more legible be-
havior. Dragan, K. C. Lee, et al. (2013) defines legible motions as
“motion that enables an observer to quickly and confidently infer [a]
correct goal G”. Therefore, a simple cost function that captures the
time an observer takes to infer a goal G and his or her eventual pre-
diction errors seems to be a good reward candidate. It would force
the emergence of legible behaviors without the need of providing a
probabilistic definition of the whole concept of legibility. Moreover,
this approach has the advantage that no assumptions about the task
or the human must be made, and the robot automatically adapts its
legibility to the user preferences during the interaction.

Since our approach does not require a model, it is applicable to
different tasks without modification. However, it does require a
training phase to learn to generate legible behavior, and the result-
ing behavior generalizes to different tasks. A novel task thus requires
learning a new behavior. In contrast, previous model-based methods
(Alami et al. 2006; Cakmak, Siddhartha S. Srinivasa, et al. 2011; M. K.
Lee et al. 2011; Mainprice et al. 2010; K. W. Strabala et al. 2013; K.
Strabala et al. 2012) are able to generate legible behavior on-the-fly,
but require task-specific models of legibility. A novel task thus re-
quires the design of a novel model by an expert.
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Our approach is thus well suited for scenarios where not all tasks
are known in advance, and where similar tasks are executed many
times. In assembly lines where humans and cobots work together
for instance, the resulting behavior is used thousands of times. The
number of trials required to learn the behavior (<100) may thus well
be worth the investment, and could also be performed on-the-job.

To conclude, the difference between model-based and model-free
approaches can be summarized using the bottom-up and top-down
designs''. Model-based approach is a top-down design as you start
from a general concept of legibility and refines it if necessary. For
example, if you model a robot to nod for acceptance, you will prob-
ably start by the most common design, i.e. an up and down head
motion. If you wish to later deploy your robot in Greece or Lebanon
you will have to add a specific condition as this head motion could
be seen as a “no”. The more exceptions and specificities you have to
adapt to, the more complicated the model grows. Moreover, every
refining require programing skills to rewrite a new adapted model.
Conversely, our model-free approach is a bottom-up design. You start
from a specific concept of legibility, adapted to a single user, and
verify that what you have learned holds for other users. When you
wish to adapt your learned behavior to a new user or specificities
you use a trial and error approach, re-optimizing in the process. No
programming is, therefore, required in this situation.

ONE IMPORTANT QUESTION that we need to verify is whether the
robot learns to generate universally legible behavior, or rather id-
iosyncratic behavior that the observer learns to interpret. The differ-
ence between the two is illustrated in Figure 2.4. To understand this
difference we can come back to our biker example:

John is riding his bike on a very busy road. At the next intersection,
he is going to cross the road to turn left. To signal the cars behind him
he raises his left arm before turning.

This is an example of “universal" and legible behavior. Even for
cultures in which cycling is not widespread, an arm spread out to
the left is likely to convey the intention that the cyclist will make a
left turn.

John is in the leading pack during a bicycle race. He wants to signal
his team that he is going to attack’. He drops his left arm straight
down and joins his thumb with his index.

And this is an idiosyncratic behavior. It is meant only for John’s
teammate to be understood. For any other observer, this is breaking
the third rule of Knepper et al.’s formalism as there is no univer-
sal meaning that can easily explain this signal. Coming back to our
robotic situation, the robot can learn to generate idiosyncratic behav-
ior such as the loop in Figure 2.4 to signal which object it is going to

grasp.

" Top-down and bottom-up are both
strategies of information processing
and knowledge ordering, used in a va-
riety of fields including software, hu-
manistic and scientific theories

> An attack is the action of quickly ac-
celerating while riding in a pack, or in
smaller numbers, with a view to create
a gap between yourself and other rid-
ers.



universal legibility idiosyncratic legibility

IN THE NEXT CHAPTERS we detail our works on learning legible mo-
tions from interaction. Chapter 3 introduces the experimental pro-
tocol used to learn legible motions and the user study we have con-
ducted on two different tasks'3. Following our initial work, we have
studied the concept of universal legibility and how we can tend to
achieve it. Details are provided in Chapter 4.

Figure 2.4: Distinction between uni-
versal and idiosyncratic legibility. The
left graph with trajectories has been
adapted from Dragan and Siddhartha
S. Srinivasa (2013) work.

3 The text of Chapter 3 is mainly ex-
tracted and adapted from our confer-
ence paper (Stulp, Grizou, et al. 2015)
while most of the text of Chapter 4
comes from our journal article (Busch,
Grizou, et al. 2017)
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THE XEY IDEA of our approach is that legibility of robot behavior
does not needs to be defined and optimized explicitly, but that it
arises automatically if joint task execution is penalized for not be-
ing efficient. In particular, this behavior should arise from direct
interaction with users, so as to tailor the legibility to specific user
preferences.

As we need to optimize a cost function, but do not have models
of individual users, we formulate the problem as a model-free opti-
mization. We describe the generic optimization algorithm and policy
representation used in our contribution.

Policy Improvement through Black-Box optimization

Policy improvement is a form of model-free optimization technique,
where the parameters ¢ of a parameterized policy 7ty are optimized
through trial-and-error interaction with the environment. The op-
timization algorithm we use is PI**, short for “Policy Improvement
through Black-Box optimization” (Stulp and Sigaud 2012). It opti-
mizes the parameters ¢ with a two-step iterative procedure. The first
step is to locally explore the policy parameter space by sampling K
parameter vectors ¢ from the Gaussian distribution NV (89, Z), to ex-
ecute the policy with each ¢, and to determine the cost J; of each
execution. This exploration step is visualized in Figure 3.1, where
N (9,%) is represented as the large (blue) circle, and the samples
Ji=1...10 are small (blue) dots.
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The second step is to update the policy parameters ¢. Here, the
costs Ji are converted into weights Py with

(3-1)
where low-cost samples have higher weights. For the samples in
Figure 3.1, this mapping is visualized (to the right). The weights
are also represented in the left figure as filled (green) circles, where

a larger circle implies a higher weights. The parameters ¢ are then
updated with reward-weighted averaging

K
9+ Z Pkl9k (32)
k=1

Furthermore, exploration is decreased after each iteration  <— AL
with a decay factor 0 < A < 1. The updated policy and exploration
parameters (red circle in Figure 3.1) are then used for the next ex-
ploration/update step in the iteration. Despite its simplicity, PI*® is
able to learn robot skills efficiently and robustly (Stulp, Herlant, et al.

2014). Alternatively, algorithms such as PI"2, PoWeR, NES, PGPE, or

*see Kober et al. (2011) and Stulp and
CMA-ES could be used®.

Sigaud (2012) for an overview and com-
parisons

Policy Representation

The policy 7ty itself is implemented as a Dynamical Movement Prim-
itive (DMP) (Jjspeert, Nakanishi, and Schaal 2002). The authors de-
fine a control policy by a set of nonlinear differential equations with
a well-defined attractor dynamics. For a single degree of freedom de-
noted by y, which, in our case, is one of the internal joint angles, the
following system of linear differential equations with constant coef-

ficients has been proposed as a basis for motion specification (Schaal
et al. 2007),

TZ=0:(B(g—Yy) —2)— f (3-3)
Ty = Z.

(3-4)
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where T is a time constant and «, and f, are positive constants.
Provided that the parameters «, and j, are selected appropriately,
e.g., &; = 4B, and the forcing term f = 0, this system has a unique
attractor point at (y,z) = (g,0).

Choosing the forcing function f to be phasic, i.e active in a finite
time window, leads to a point attractive system. Therefore, f can be
defined as

L Yilhw
T Yilt)

where ¥; are fixed basis function and w; are adjustable weights?.

f(t) , (3-5)

However, the explicit time dependency creates a non-autonomous
dynamical system, or more precisely a linear time-variant dynami-
cal system. Therefore, Ijspeert, Nakanishi, Hoffmann, et al. (2013)
introduce a time replacement x following first order linear dynamics

TX = —0yX, (3.6)

with ay a constant. Starting from some arbitrarily chosen initial
state xg such as xo = 1 the state x converges monotonically to zero.
x can thus be conceived of as a phase variable, where x = 1 would
indicate the start of the time evolution and x close to zero means that
the goal g has essentially been achieved. Equation (3.6) is called the
canonical system.

Following this, f can be rewritten as a function of the canonical
system

N w. )
) = BRI gy, 62)

where ¥;(x) are N Gaussian basis functions defined as

¥i(x) = exp( - 55 (- i)?) 58)

with ¢; and c; are constants that determine respectively the width
and centers of the basis functions. yq is the initial state at time t =
0. With this formulation, the system is designed to have a unique
equilibrium point at (z,y,x) = (0,¢,0) with y evolving toward the
goal g from any initial conditions.

Therefore DMPs are very convenient for our experiments, as they
ensure convergence towards a goal, whilst allowing the trajectory
towards this goal to be adapted by changing the parameters w; of
the forcing term f.

In our experimental setup, we represent f with 3 basis functions,
i.e. N = 3 and DMPs are fist initialized by recording straight lines
toward the goal. Then, the weights w; of the basis functions are op-
timized using the black-box optimization introduced in Section 3.1.

? According to Ijspeert, Nakanishi,
Hoffmann, et al. (2013) Represent-
ing arbitrary nonlinear function as
a normalized linear combination of
basis functions has been a well-
established methodology in machine
learning (Bishop 2006) and also has
similarities with the idea of population
coding in models of computational neu-
roscience (Dayan et al. 2001)



Experimental setup

In the joint human-robot task, depicted in Figure 3.2, the robot
reaches for and presses one of two buttons. Subjects are given two
goals:

¢ Efficiency: press the same button as you think the robot will, as
quickly as possible,

* Robustness: avoid making mistakes, i.e. pressing a different but-
ton from the one the robot will.

The protocol of an experiment is as follows. The experiment starts
with a habituation phase of 32 trials where the robot performs always
the same trajectory for the same button. This phase allows the subject
to get used to the robotic motions, and practice the prediction and
button pressing. It also allows to validate that the improvement in
the subject’s prediction is not only due to them learning the robot’s
motion. Further improvement after that habituation phase will then
only be explained by the robot being more legible. Preliminary re-
sults indicate that 32 trials are sufficient for habituation.

After habituation, we start the optimization phase of 96 trials with
the optimization algorithm presented in Section 3.1. The two policies
that generate trajectories for the two different buttons are optimized
in two independent processes.

Task Representation: Cost Function

The cost function that the robot optimizes during the 96 trials after
the habituation phase consists of three components:

] == ’T,robot + Tsubject + r)/ébuﬂons + tx|q1N,1T| (3‘9)
——— ~—— —_———
Efﬁciency Robustness Energy

Efficiency: The time between the onset of the robot’s movement (tp)
and the pushing of the button by the human (T.,,..) and the robot

(’I‘robot) .

Robustness: Whether the subject pressed the correct button (Suuens =0)
or NOt (Spuuons =1). 7y is an arbitrary high cost, it was set to 20 in this
experiment, expressing that a failure is equivalent to a penalty of
20s in terms of efficiency.

Energy: The sum over the jerk, i.e. the third derivative of the joint
positions (q,,). at each time step i in the trajectory. The time step
Ay used to calculate the derivatives was arbitrary set to 0.2. The
scaling factor « is chosen such that the cost of the jerk is about
1/20 of the total cost in the initial trajectories.

Figure 3.2: Button pressing experiment
set-up with the Baxter robot, human
subject, and the two rows of buttons
that they will press. The two possi-
ble targets corresponds to the “red" and
“yellow" button on the box, the two but-
tons on the left side of the subject.
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The joint task completion time depends mainly on how fast the
human is able to predict the intention of the robot (proximate cause).
But we use the total time because: 1) the ultimate motivation be-
hind our research is to make human-robot interaction more efficient.
2) our set-up easily allows us to determine the button pressing times,
but not the exact time at which the human predicts the robot’s inten-
tion.

User Study

We perform two experiments with human subjects. In Experiment A,
the task consists in pressing two corresponding buttons. First the
robot decides on a button to press and then the subject needs to
press the corresponding button as soon as possible.

In Experiment B, the task consists in selecting a button based on
the location a robot will deposit a bottle. First the robot decides on
a target location to put a bottle after grasping it, the subject needs to
press the button corresponding to the location of the target location
before the robot grasps the bottle.

In both experiments the time taken by the user to press the button
is used as the main cost of the collaborative task. In practice, if the
motion of the robot is more informative then the subject will be able
to predict sooner the target of the robot.

Both experiments follow the protocol described Section 3.3. Sub-
jects for all the experiments in this study are INRIA staff, PhD stu-
dents in computer science, and under-grad students of cognitive sci-
ence3.

Experiment A: Joint button pressing

In this task, the robot reaches for and presses one of two buttons. The
subject is instructed to press a button of the same color as early as
possible, whilst avoiding mistakes, i.e. pressing another button than
the robot intended to. We used the set-up presented in Figure 3.2,
where the subject sits on the side of the robot. An illustration of the
setup is also depicted in Figure 3.3.

legible: correct,

early prediction ..., actual
ofthegoal’/".- goal /
AT A @@
s coreCi @ T
€=~ put lete . (I]) ([D
. et )L
xea.rlly, but

wrong prediction

3 A video of both experiments is avail-
able on our Vimeo Channel https://
vimeo.com/237417895

EHE

Figure 3.3: Illustration of the button
pressing experiment or reaching exper-
iment. The robot chooses a button to
press and the subject has to press the
button of the same color on his or her
side of the box.


https://vimeo.com/237417895
https://vimeo.com/237417895

The two initial policies, i.e. one for each button, have been
recorded through programming by demonstration, as described in
Ijspeert, Nakanishi, Hoffmann, et al. (2013). The starting position
is the same and the path to each button is straight. Therefore, the
trajectories are hard to differentiate in the first part of the movement.

Results  For illustration purposes, the top graph in Figure 3.4 shows
an example experiment for one subject, visualizing both the values
of the time it takes the subject to push the button (T,,,..) and whether
the same buttons are pushed. The transition from the habituation to
the optimization phases is depicted as a dashed line.

The main results of the reaching task experiment are summarized
in the two lower graphs in Figure 3.4, which highlight statistics at
important transitions during learning: the start (trial 1 to 8), the last
trial of the habituation phase (25-32), and the first (33-40), intermedi-
ate (81-88) and final (121-128) block of trials during the optimization
phase. We also measure the trajectory completion at prediction time,
i.e the relative amount of trajectory (timewise) observed by the sub-
ject when it presses the button. This measure is calculated using

the formula 100(1 — W} The complete results are shown in
Figure 3.5.

The box plots show the average value of T, over all 9 subjects
and over blocks of 8 trials. To allow comparison between subjects
without introducing variance due to the natural overall differences
in their button pressing time T.,.., we normalized the results of each
subject by their intrinsic time after habituation, which is computed
as the average of the last 8 values of T in the habituation phase.
Thus, the normalized mean over the last 8 trials of the habituation
phase is 100 for each subject by definition.

Finally, the bottom graph in Figure 3.4 shows the number of pre-
diction errors per block of 8, averaged over all subjects.
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Figure 3.4: Results of the reaching ex-
periment (1/2).

Top) Example experiment for one sub-
ject, where Ty is plotted against the
number of trials. Successful and failed
trials are depicted as circles and crosses
respectively.

Middle) Average over all g subjects (i &=
o) of the trajectory completion at pre-
diction time, i.e, the relative amount
of trajectory (timewise) observed by the
subject when it presses the button. This
value is calculated using the formula
100(1 _ Trobof;z;s:lbfec.‘ )

Bottom) Normalized Tgwjet (se€ main
text for normalization method), aver-
aged over all 9 subjects and blocks of
8 trials; average number of failures, i.e.
when different buttons were pushed,
averaged over all 9 subjects and blocks
of 8 trials. The two graphs show the val-
ues at certain key frames during learn-
ing.
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Figure 3.5: Results of the reaching ex-
periment (2/2). The start of the opti-
mization phase is indicated by the ver-
tical dashed line.

Top row) Average (4 & o) of the robot
button pushing time (T,por). It varies
little for the DMP policy (left) and even
less for the viapoint policy (right). For
the latter this is to be expected, as the
duration of pressing the button is not
dependent on the parameters of the
policy in which exploration and opti-
mization takes place.

Second row) Average (¢ & 0) of the sub-
ject button pushing time Typject, OVer all
9 subjects. Variance is quite high be-
cause some subjects push quickly over-
all, whereas others are more careful.
Third row) Again the average subject
button time, but this time normalized
with respect to the average value of
Toupject during the last 8 trials of the ha-
bituation for each subject. This reduces
the variance caused by the overall dif-
ferences between subjects.

Bottom row) Number of times the in-
correct button was pushed, averaged
over blocks of 8 trials and all 9 subjects.
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Discussion  The main conclusion we derive from Figure 3.4 and Fig-
ure 3.5 is that optimizing the robot’s motion leads to a substantial
(20%) and significant (p = 5¢~8, Wilcoxon signed-rank test) drop in
T.jes 1-€. the time it takes for the user to press the button, between
the end of the habituation phase (25-32) and the end of the opti-
mization (121-128). As T, is consistent throughout the experiment,
this drop in T, also induces a drop in the trajectory completion at
prediction time (from 70% to 50%). This improved efficiency is not
merely due to subjects simply guessing a button, because the number
of mistakes does not increase over time (p = 0.26, Wilcoxon signed-
rank test between end of habituation and end of optimization).

There is also a relatively small but significant (p = 0.001) decrease
of the prediction time during the habituation phase, which indicates
that the differences in the initial trajectories before optimization al-
ready enable the subject to predict the robot’s intention. The fact
that T, .. is further improved by 20% during the optimization shows
that the optimized trajectories are more easily distinguishable, i.e.
legible, than the initial trajectories.

After the habituation phase, subject’s performance get lowered
(higher prediction time and higher number of mispredictions). This
effect arises from the variance of the parameters. As we do not model
legibility, the robot can perform deceptive motions (Dragan, Holla-
day, et al. 2014) while exploring the parameter space of the trajecto-
ries. This type of motion, which leads to higher cost under our cost
function in 3.9, will slowly disappear after some iterations. Only the
most legible trajectories remain, as confirmed by the drop in predic-
tion time and the low misprediction rate.

In summary, the optimization algorithm effectively improves
human-robot collaboration by producing motions that are easier
to predict by the subject. By penalizing errors and the joint
robot/human execution time, the robot learns policies that enable
the human to distinguish the robot’s intentions earlier without more
€eITorS.



Experiment B: Pick-and-place

In the second task, the robot reaches for and grasps a single object.
After grasping the object, the robot has to place it inside one of two
boxes located on each side (see Figure 3.6). The 7 subjects are in-
structed to press the button corresponding to the aimed box as early
as possible while avoiding mistakes.
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To improve the task, the subject must predict which side the object
will be moved to and press the corresponding button. This experi-
ment differs from the joint button task because the motions to ap-
proach the object are initially identical for both outcomes, guessing
before that point results in 50% chances of success. As the robot aims
at eliciting an early response from the subject, differentiating the ap-
proach motion is necessary to improve joint coordination. Thus, our
hypothesis is that at the end of the optimization phase, the subject
should be able to predict the robot’s intention before it even grasps
the object.

Results As in the previous experiment, Figure 3.7 summarizes the
results by showing the results for one example subject (top), the av-
erage prediction times over all 7 subjects (middle), and the number
of errors (bottom).

The results for the example subject show that during the habitu-
ation phase, the subject waits for the robot to actually start moving
the object (approx. 14s) towards the box to predict the ultimate goal.
Because the initial trajectories for each box are identical during habit-
uation, guessing before that point results in 50% chances of mistakes.
However when the optimization starts, the two trajectories start dis-
tinguishing themselves and there is co-adaptation between the robot
and the human on the intent of each trajectory. After some trials and
errors, the prediction time of the human drops to a consistent 1.5s,
meaning the trajectories for the left or right box differs in their early
parts. Despite such early decision, this subject has close to 0% of pre-
diction errors. In comparison to the previous task, the improvements
due to the optimization are more pronounced.

Figure 3.6:  Illustration of the pick-
and-place experiment. The robot starts
with an initial trajectory toward the ob-
ject that is identical for both placing lo-
cation. Therefore, users’ guesses dur-
ing the habituation phase is purely ran-
dom.
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The prediction times have a bimodal distribution. Subjects either
wait until the robot starts transporting the object, or make a predic-
tion early on during the reaching phase. Rather than averaging over
this bimodal distribution data, we compute the ratio of early/late
prediction times, averaged over blocks of 8 trials and all 7 subjects.
The threshold is the average over all the prediction times for one
subject. In the middle graph, we see that the late prediction ratio
decreases from [0.8-1.0] during the habituation phase to <o0.05 at the
end of the optimization phase. Furthermore, this early prediction
is not accompanied by an increase in the number of errors, as the
bottom graph shows. Thus, the robot learned behaviors that enabled
subjects to predict the correct box before the grasp was even per-
formed.

Because the robot’s reaching behavior is the same for both boxes
during the habituation phase, subjects can expect a 50% error rate
when pressing the button when the robot is still reaching. The in-
crease in the ratio of late predictions and the decrease of errors dur-
ing the habituation phase may indicate that subjects learn that early
guesses lead to errors, and should thus be avoided.

Discussion During habituation, subjects must wait for the robot to
transport the object before being able to robustly predict its inten-
tion. After optimization however, all subjects are able to predict the
intention of the robot very early on during the reaching phase, when
the robot has not yet grasped the object. Experiment B thus confirms
the observations in Experiment A, that earlier intention recognition
is achieved, but without an increase in errors.

As THE RESULTS SUGGEST, our method successfully increases the
legibility of the robot motions. By optimizing the weights of the
DMPs, it creates variations of the movements that allows a faster
prediction of the target.

However, one question that arises is are those legible motions uni-
versal, i.e recognizable by any individual that observes them once?
As the variations in the motions are unconstrained, the number of
possible trajectories is infinite which render this hypothesis rather
unlikely. Moreover, as the human brain is very efficient at recogniz-
ing patterns, it is much more likely that the subjects were actually
learning to recognize the specificity of the motion that leads toward
one of the goal.

This question has motivated us to extend our work and to con-
tinue our quest toward universal legibility.
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Figure 3.7: Results for Experiment B.
Top) Prediction times of an example
subject during learning. Middle) Ratio
of late prediction times (see threshold
in top plot), averaged over the 7 sub-
jects. Bottom) Number times the incor-
rect button was pushed, averaged over
7 subjects. The start of the optimiza-
tion phase is indicated by the vertical
dashed line.



4
Toward Universal Legibility

Contents

4.1 Learning Legible Motion with a Less Expressive Policy 34

4.1.1 Methods 34

4.1.2 Results 35

4.1.3 Discussion 35

4.2 Transferability of Legibility 40

4.2.1 Experiment C: Pre-optimized policies 40

4.2.2 Experiment D: Cold start 46

ALTHOUGH THE ANSWER TO OUR INITIAL QUESTION “Can a robot
learn to generate legible motion from user interactions?” is positive,
the resulting trajectories were nevertheless different from those ob-
served in (Dragan and Siddhartha S. Srinivasa 2013). As an example,
Figure 4.1 plots two views of the robot’s trajectory. We clearly see a
substantial upward movement at the beginning of the trajectory for

button 1.
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Therefore, one question that arises is whether the robot learns to
generate universally legible behavior, or rather idiosyncratic behav-
ior that a human learns to interpret. If we consider again the cyclist
example, presented in the introduction (see Figure 2.4), a universally
legible signal, such as raising the left arm before turning left, would

Figure 4.1: Side and top view of gener-
ated trajectories after optimization for a
single subject. Black/dashed: trajectory
for button 1/2 respectively.



be immediately understood by people, independently of their origin
or cultural background. On the other hand, an idiosyncratic signal
would be only understood by the cyclist teammates that have agreed
beforehand on the meaning of the said signal.

Similarly, a robot may learn arbitrary but recognizable variations
of the movement, which the human may learn to be predictive of
moving to the left. This idiosyncratic behavior will have to be re-
learned by other humans working with the same robot. In univer-
sally legible behavior, the intention is already understood during the
first interaction(s).

FURTHER ANECDOTAL EVIDENCE is that some subjects reported be-
ing able to infer the intention of the robot from differences in the
sound produced by its motors. Differences in sound arise due to the
different velocity profiles of the trajectories for the two buttons. This
is clearly a very different type of legibility from that studied in (Dra-
gan, Holladay, et al. 2014; Dragan and Siddhartha S. Srinivasa 2013;
Zhao et al. 2016). Although this can be seen as another learned id-
iosyncrasy;, it also suggests that legibility could be obtained by other
means than only observing spatial variations of trajectories. This idea
is also highlighted in Glasauer’s work (Glasauer et al. 2010) where
they prove that minimum jerk velocity profiles are more legible than
trapezoidal joint velocity one. Combining those elements could lead
to even more legible trajectories.

For this reason, we have designed another set of experiments,
following the same protocol described in Chapter 3 which aims at
avoiding such idiosyncratic behavior, and measuring the effects on
learning legibility.

Learning Legible Motion with a Less Expressive Policy

The overall experimental set-up is the same as in Experiments from
Chapter 3. Therefore, we only explain the differences, which are the
policy representation, and a slightly modified cost function.

Methods

To avoid the idiosyncratic behavior observed with the DMPs, we de-
signed a policy that allows for much less variations. The DMPs were
defined in joint space (7 joints) with 3 basis functions that are varied
per joint, leading to a policy that has #=21 parameters. To reduce
this number, the second policy representation generates trajectories
that pass through a viapoint, which itself is parameterized by only
two parameters, as visualized in Figure 4.2. Therefore, we refer to
this policy as the viapoint policy.

We have limited this study to only the button pressing experiment,
i.e experiment A of Chapter 3.



CHAPTER 4. TOWARD UNIVERSAL LEGIBILITY 35

a=-T/2

The trajectories are generated from a start point S (initial robot
configuration) to an end point G (such that the button is pushed),
which are fixed throughout the experiment. The height of the
parabolic path is defined as a parameter . The rotation around
the x-axis, parallel to the ground, is defined as the parameter a. We
represent this rotation seen from above. This policy constraints the
generated trajectories for more smoothness. We expect them to re-
semble the ones obtain in Dragan’s work (Dragan, K. C. Lee, et al.
2013). However we do not encode explicit informations about their
legibility. Thus during the exploration of the parameter space some
of the generated trajectories might be really deceptive.

The cost function for the viapoint policy is the same as in Eq. 3.9,
except that the penalty on the jerk is now in task space, not joint
space. As before, the optimization of this cost function takes place
within the space of the policy parameters *, which is now of dimen-
sionality 2 (instead of 21 as with the DMP). We again use 9 subjects.
To avoid any habituation effect from the first experiment we have
chosen new participants.

Results

The main results of the experiment using the viapoint policy are
summarized in Figure 4.5, which has the same format as Figure 3.4.
The complete results for this experiment are shown in the right col-
umn of Figure 4.7 Figure 4.7 allows for a direct comparison of the
two policies.

Discussion

We again observe a drop of the prediction time during optimization.
Similarly to the results obtained with the DMP policy, experiment A,
this creates a drop in the trajectory completion at prediction time
(from 80% to 60%). The number of prediction errors increases dur-
ing the optimization process before stabilizing at the end. The av-
erage number of errors is still sufficiently low, and not signifi