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Abstract

L’interaction Humain-Robot est un domaine de recherche en pleine expansion parmi la com-
munauté robotique. De par sa nature il réunit des chercheurs venant de domaines variés, tels
que psychologie, sociologie et, bien entendu, robotique. Ensemble, ils définissent et dessinent
les robots avec lesquels nous interagirons dans notre quotidien.

Comme humains et robots commencent à travailler en environnement partagés, la diversité
des tâches qu’ils peuvent accomplir augmente drastiquement. Cela créé de nombreux défis
et questions qu’il nous faut adresser, en terme de sécurité et d’acceptation des systèmes robo-
tiques. L’être humain a des besoins et attentes bien spécifiques qui ne peuvent être occultés
lors de la conception des interactions robotiques. D’une certaine manière, il existe un besoin
fort pour l’émergence d’une véritable interaction humain-robot ergonomique.

Au cours de cette thèse, nous avons mis en place des méthodes pour inclure des critères
ergonomiques et humains dans les algorithmes de prise de décisions, afin d’automatiser le
processus de génération d’une interaction ergonomique. Les solutions que nous proposons
se basent sur l’utilisation de fonctions de coût encapsulant les besoins humains et permettent
d’optimiser les mouvements du robot et le choix des actions. Nous avons ensuite appliqué
cette méthode à deux problèmes courants d’interaction humain-robot.

Dans un premier temps, nous avons proposé une technique pour améliorer la lisibilité des
mouvements du robot afin d’arriver à une meilleure compréhension des ses intentions. Notre
approche ne requiert pas de modéliser le concept de lisibilité de mouvements mais pénalise les
trajectoires qui amènent à une interprétation erronée ou tardive des intentions du robot durant
l’accomplissement d’une tâche partagée. Au cours de plusieurs études utilisateurs nous avons
observé un gain substantiel en terme de temps de prédiction et une réduction des erreurs
d’interprétation.

Puis, nous nous sommes attelés au problème du choix des actions et des mouvements
qui vont maximiser l’ergonomie physique du partenaire humain. En utilisant une mesure
d’ergonomie des postures humaines, nous simulons les actions et mouvements du robot et
de l’humain pour accomplir une tâche donnée, tout en évitant les situations où l’humain
serait dans une posture de travail à risque. Les études utilisateurs menées montrent que notre
méthode conduit à des postures de travail plus sûr et à une interaction perçue comme étant
meilleure.

Mots-Clés: Interaction Humain-Robot, Ergonomie, Facteurs Humains, Mouvements Lisibles,
Apprentissage par l’Interaction, Planification de Tâches et de Mouvements.
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a Tecnologia (FCT), référence UID/CEC/50021/2013, et par EU FP7-ICT projet 3rdHand sous
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Abstract

Human-Robot Interaction (HRI) is a growing field in the robotic community. By its very
nature it brings together researchers from various domains including psychology, sociology
and obviously robotics who are shaping and designing the robots people will interact with on
a daily basis.

As human and robots starts working in a shared environment, the diversity of tasks they
can accomplish together is rapidly increasing. This creates challenges and raises concerns to
be addressed in terms of safety and acceptance of the robotic systems. Human beings have
specific needs and expectations that have to be taken into account when designing robotic
interactions. In a sense, there is a strong need for a truly ergonomic human-robot interaction.

In this thesis, we propose methods to include ergonomics and human factors in the motions
and decisions planning algorithms, to automatize this process of generating an ergonomic
interaction. The solutions we propose make use of cost functions that encapsulate the human
needs and enable the optimization of the robot’s motions and choices of actions. We have
applied our method to two common problems of human-robot interaction.

First, we propose a method to increase the legibility of the robot motions to achieve a
better understanding of its intentions. Our approach does not require modeling the concept
of legible motions but penalizes the trajectories that leads to late or mispredictions of the
robot’s intentions during a live execution of a shared task. In several user studies we achieve
substantial gains in terms of prediction time and reduced interpretation errors.

Second, we tackle the problem of choosing actions and planning motions that maximize the
physical ergonomics on the human side. Using a well-accepted ergonomic evaluation function
of human postures, we simulate the actions and motions of both the human and the robot,
to accomplish a specific task, while avoiding situations where the human could be at risk in
terms of working posture. The conducted user studies show that our method leads to safer
working postures and a better perceived interaction.

Keywords: Human-Robot Interaction, Ergonomics, Human Factors, Legible Motions, Learn-
ing from Interaction, Task and Motion Planning.

This work was supported by national funds through Fundação para a Ciência e a Tecnologia
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Résumé en Français

Le domaine de l’Interaction Homme-Robot (IHR) a vu son
essor se renforcer, ces dernières années, par l’émergence de systèmes
robotiques complexes et d’une intelligence artificielle de plus en plus
poussée. Les robots ne sont plus simplement des machines indus-
trielles cloisonnées afin d’éviter tout contact avec les ouvriers. De
nombreuses industries investissent dans des solutions robotiques où
ouvriers et machines travaillent en contact direct afin de bénéficier
des forces et avantages des deux parties, i.e puissance et précision
de la machine combinées aux capacités d’adaptation et de la dex-
térité accrue de l’être humain. On parle alors de cobots ou cobotique,
un néologisme issu de la contraction des mots coopération et robotique
proposé par Colgate, Peshkin, and Wannasuphoprasit (1996), tel que
celui présenté en Figure 1.

Figure 1: Cobot de la firme ABB. Photo
par Marco Verch.

Cette situation crée une opportunité pour l’émergence d’une robo-
tique sociale où les robots assisteront l’Homme dans ses tâches
quotidiennes, au travail mais aussi chez lui. De ce fait, elle force
aussi à l’étude poussée des comportements humains afin de faciliter
l’intégration des systèmes robotiques dans la société. L’être humain
est un système complexe dont les comportements sociaux et les at-
tentes qui en découlent en terme d’interactions ont été forgés par
plusieurs milliers d’années d’évolution. À contrario, les systèmes
robotiques, à l’échelle de l’humanité, n’en sont qu’à leurs balbu-
tiements. Il est donc crucial de bien comprendre et analyser les com-
portements sociaux formant les interactions avec nos pairs afin de
les retranscrire dans les robots que nous créons et déployons. Tout
robot qui ne satisfait pas les attentes sociales les plus basiques sera
simplement oublié et finira par être inutilisé (De Graaf et al. 2017).
C’est en ce sens que l’on peut parler de la nécessité d’une véritable
robotique ergonomique1.

1 “L’ergonomie est l’étude scientifique
de la relation entre l’homme et ses
moyens, méthodes et milieux de tra-
vail. Son objectif est d’élaborer, avec
le concours des diverses disciplines sci-
entifiques qui la composent, un corps
de connaissances qui dans une perspec-
tive d’application, doit aboutir à une
meilleure adaptation à l’homme des
moyens technologiques de production,
et des milieux de travail et de vie.”
(Mosar et al. 1969)

Améliorer l’ergonomie des systèmes robotiques passe bien
évidemment par l’étude et la conception de robots plus attrayants
et inspirant une plus forte confiance (Breazeal 2004). Néanmoins,
le comportement et les actions choisies par le robot jouent aussi un
rôle crucial dans son acceptation et le confort de son partenaire hu-
main. Le projet européen 3rdHand, dans le cadre duquel s’inscrit
cette thèse, vise à la création d’un assistant robotique pour les ouvri-
ers sur chaîne de montage. Cet assistant se veut autonome et capable



de répondre aux besoins de l’ouvrier pour l’accompagner dans son
travail. Les solutions envisagées doivent donc être le plus génériques
possible et, de ce fait, il est nécessaire qu’elles ne soient pas spéci-
fique à un modèle de robot en particulier. La cible principale du
projet étant les petites et moyennes entreprises, qui possèdent des
chaînes de montage variables où le changement de produits peut être
fréquent, il est aussi requis de proposer des solutions s’adaptant au-
tomatiquement et demandant le minimum de programmation possi-
ble. C’est dans cette optique que nous avons choisi, au cours de cette
thèse, d’étudier des méthodes permettant de générer une interaction
plus ergonomique, sans apporter de modifications matérielles à un
robot déjà existant. Notre choix s’est donc naturellement porté sur
l’étude de l’impact des mouvements et des actions choisies par la
machine sur le partenaire humain, tant d’un point de vue physique
que psychologique.

Deux cas d’études ont alors été considérés. Le premier est
la génération de mouvements plus prévisibles, permettant au collab-
orateur de lire les intentions du robot sans passer par une communi-
cation verbale2. En terme robotique, on parle de lisibilité des trajec- 2 Cette démarche s’inscrit dans le con-

stat que la plupart des communications
entre partenaires humains est non ver-
bal (Harrison 1965). De ce fait il est
nécessaire de considérer une approche
similaire afin de générer une interaction
plus naturelle.

toires (Dragan, K. C. Lee, et al. 2013). Cette lisibilité accrue permet
d’améliorer la productivité de l’équipe humain-robot en réduisant
les erreurs dues à une mauvaise compréhension des intentions de la
machine. Si, en observant les mouvements du robot, je suis persuadé
qu’il se dirige vers le tournevis je peux alors commencer à préparer
les vis pour la tache suivante. Si, par malheur, il se dirigeait en fait
vers un autre outil je vais devoir changer mon action complémen-
taire, entraînant un ralentissement du rythme de production et une
certaine frustration.

Dans la littérature, la plupart des méthodes cherchant à améliorer
la lisibilité des trajectoires reposent sur la création d’un modèle prob-
abiliste de ce que représente une trajectoire prévisible. Cette dé-
marche, longuement étudiée par Dragan and Siddhartha S. Srinivasa
(2013) et illustré en Figure 2, suppose que la lisibilité de trajectoire
est un concept universel, i.e. qui ne dépend pas d’un contexte cul-
turel ou social particulier. Par ailleurs, cela demande la création d’un
nouveau modèle pour chaque changement de taches, ce qui va à
l’encontre d’un robot adaptatif et simple à programmer.

Figure 2: Illustration de trajectoires lis-
ibles. Lorsque le robot est confronté
à deux cibles possibles, une exagéra-
tion de la trajectoire sur le côté entraîne
une prédiction plus rapide. A l’inverse,
une exagération du mauvais côté peut
générer des erreurs d’interprétations.
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À contrario, la solution que nous avons proposée est
l’optimisation des trajectoires en se basant sur une méthode essai-
erreur par interaction directe avec l’ouvrier sur la tâche à accomplir
(Busch, Grizou, et al. 2017; Stulp, Grizou, et al. 2015). Cette approche
présente l’intérêt de ne pas émettre d’hypothèses, potentiellement
biaisées, sur le concept même de lisibilité. Par ailleurs, tout change-
ment dans la tache à accomplir requiert simplement une nouvelle
période d’adaptation.

La méthode d’optimisation que nous avons choisie repose sur
le principe de boite noire3 et est dénommée PIBB (Stulp and Sigaud

3 L’optimisation en boite noire est
utilisée lorsque l’on possède peu
d’informations sur la fonction à opti-
miser. L’algorithme se base simple-
ment sur une méthode d’évaluation des
tirages aléatoires sans connaissance du
modèle sous-jacent.

2012). Nous avons testé cette approche via une expérience basée sur
un système similaire à l’illustration en Figure2, i.e le robot décide
d’un bouton à presser et le sujet doit presser le même bouton le
plus rapidement possible. Pour évaluer les trajectoires générées par
l’algorithme d’optimisation nous avons repris les fondements même
du concept de lisibilité, tels que décrit par Dragan, K. C. Lee, et al.
(2013), i.e. une trajectoire est lisible lorsqu’elle entraîne une prédic-
tion plus rapide et sans erreur des intentions du robot. De ce fait,
la fonction d’évaluation que nous avons considérée comporte trois
éléments:

J = Trobot + Tsubject︸ ︷︷ ︸
Éfficacité

+ γδbuttons︸ ︷︷ ︸
Robustesse

+ α|...q1...N,1...T |︸ ︷︷ ︸
Énergie

(0.1)

Éfficacité: Le temps entre le début du mouvement du bras du robot
(t0) et la pression sur le bouton par l’humain (Tsubject) et le robot
(Trobot).

Robustesse: Erreur de prédiction. Une valeur est donnée si la per-
sonne a pressé le bon bouton (δbuttons =0) ou non (δbuttons =1). γ est
un fort coût déterminé arbitrairement et fixé à 20 dans nos expéri-
ences, ce qui équivaut à une pénalité de 20s en termes d’efficacité.

Énergie: La somme du jerk, i.e. la dérivée troisième de la valeur
angulaire des joints du robot (

...
q ti

) à chaque pas i de la trajectoire.
Le pas ∆t utilisé pour calculer les dérivées a été fixé à 0.2. Le
facteur d’échelle α est choisi de manière à ce que le coût en jerk
représente 1/20 du coût total de la trajectoire initiale.

Les expériences menées auprès de 30 volontaires ont montré une
nette diminution d’environ 20% du temps de prédiction lors de
l’observation des trajectoires optimisées comparé aux trajectoires ini-
tiales correspondant à des lignes droites vers les boutons à presser.
Au vu de ces résultats, nous avons effectué une étude plus appro-
fondie afin de vérifier l’influence de la politique représentant les tra-
jectoires sur la lisibilité finale et évaluer à quelle point les trajectoires
optimisées peuvent se transférer d’un utilisateur à l’autre (Busch,
Grizou, et al. 2017).



Le second cas étudié lors de cette thèse concerne une er-
gonomie plus physique. Selon Punnett et al. (2004) les Troubles
Musculo-Squelettiques (TMS) représentent la majeure partie des ac-
cidents du travail dans les pays industrialisés. Ils sont souvent in-
duits par une mauvaise posture ou de mauvaises habitudes de tra-
vail, ainsi que par la répétition de tâches à risque (Gallagher et al.
2013). Si nous sommes amenés à introduire des robots sur les chaînes
de montage, cela ne peut se faire au détriment de la santé des ouvri-
ers. De ce fait, il est important de mettre en place des solutions, en
amont, afin de limiter les risques de TMS.

Le choix du placement des objets par le robot et des action qu’il
peut accomplir n’est pas anodin et peut avoir un impact négatif sur
la santé de son partenaire humain. Prenons l’exemple illustré en Fig-
ure 3. Sur la photo la plus à gauche, il est clair que le choix du place-
ment de l’objet sphérique n’est pas judicieux. Ce type d’interaction
aura, pour sûr, de lourdes conséquences sur la santé de l’ouvrier sur
le long terme. À l’inverse, la photo de droite présente une interaction
plus ergonomique.

Figure 3: Différences entre deux types
d’interaction. Une interaction ayant un
impact négatif sur la santé de l’ouvrier
(gauche) comparé à une interaction
plus saine (droite)

La problématique est donc d’automatiser le choix des actions
robotiques, d’un point de vue moteur comme d’un point de vue déci-
sionnel, afin d’obtenir une interaction ergonomique et sécurisée pour
l’ouvrier (Busch, Maeda, Mollard, et al. 2017; Busch, Toussaint, et al.
2018). Pour ce faire, nous proposons une approche d’optimisation à
priori. À partir d’un modèle personnalisé de l’ouvrier nous déter-
minons la posture présentant le moins de risque de TMS lors de
l’accomplissement d’une tâche puis établissons les mouvements du
robot qui amèneront l’ouvrier à adopter cette posture optimal. Afin
d’attribuer un score à la posture de l’ouvrier nous avons mis en place
une évaluation automatique basée sur la méthode Rapid Entire Body
Assessment (REBA) (Hignett et al. 2000). Le détail des calculs intro-
duits par la méthode REBA est disponible en Annexe A. Une étude
utilisateur sur 40 volontaires montre que l’interaction optimisée est
largement préférée et les postures enregistrées présentent un risque
réduit de TMS (Busch, Maeda, Mollard, et al. 2017).

Dans un second temps, nous avons introduis la méthode REBA
dans un logiciel de planification développé par Toussaint and Lopes
(2016). L’avantage de cette approche est de pouvoir résoudre les
problèmes d’allocation de tâche et l’optimisation de mouvements si-
multanément4. De ce fait, cela nous permet de proposer une inter-

4 Ce type de problème est dénommé
Task and Motion Planning (TAMP). Il per-
met d’attribuer des tâches à valeurs sé-
mantiques, e.g. le robot prend le tournevis
et de résoudre leurs impacts logique
et géométrique en terme d’effet sur la
scène.

action ergonomique à la fois en terme de mouvements, mais aussi
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en terme du choix des actions à accomplir. Par exemple, les taches à
faible valeur ajoutée, comme soulever des objets lourds, peuvent être
automatiquement attribuées au robot, réduisant la fatigue physique
des ouvriers (Busch, Toussaint, et al. 2018).

En conclusion, au travers de plusieurs expériences d’interaction,
nous avons proposé des méthodes permettant de rendre l’interaction
plus ergonomique. Dans un soucis de généralité et de réutilisabil-
ité, ces méthodes sont indépendantes d’un robot particulier5. Cette 5 Bien que vérifiées et implémentées sur

un seul robot, le robot Baxter du projet
3rdHand, les méthodes présentées dans
cette thèse sont indépendantes des car-
actéristiques physiques du robot et peu-
vent donc être implantées sur d’autres
robots.

philosophie transparaît aussi dans le choix des approches et leur im-
plémentation. L’utilisation d’une approche non basée sur un mod-
èle pour améliorer la lisibilité des trajectoires permet, par exem-
ple, de s’affranchir de la programmation de spécificités qui peu-
vent être culturelles ou même dépendante d’un ouvrier en parti-
culier. De ce fait, cela permet aussi de proposer une interaction
unique et personnalisée. De la même manière, même si nos méth-
odes pour améliorer l’ergonomie physique, reposent sur l’utilisation
d’une technique d’évaluation spécifique, la technique REBA, cette
dernière peut être remplacée par une technique équivalente, poten-
tiellement plus adaptée à certains besoins ou à certaines situations
particulières.



1
Introduction

We, human beings, are very social creatures. We interact with
each other–and also other animals–on daily basis. Evolution has fa-
vored the development of complex social behaviors in humans, along
with the brain architecture that supports them (Bjorklund et al. 1995).
Compared to other mammals, humans have the largest neocortex, a
brain area responsible for language acquisition, conscious thought
and emotion regulation. The capacity for attributing mental states,
i.e. intentions, beliefs, and desires, to others has been defined Theory
of Mind (Premack et al. 1978) and is also thought to be regulated by
the neocortex. We are, in a certain manner, hardwired to be sociable
and to express social behaviors.

Figure 1.1: Animal used to help farm-
ing in Indonesia. Photo by Jan-Pieter
Nap.

We also communicate, and cooperate, to achieve our goals. None
of our greatest achievements or constructions were made by a single
person but rather groups of people, often at the cost of their own
life. This behavior is quite unique in the animal kingdom and prob-
ably originate from genetic and cultural evolution that has produced
a species in which substantial numbers make sacrifices to uphold
ethical norms and to help even total strangers (Bowles et al. 2011).
Darwin proposed “social and moral faculties” as a key factor for
the survival of human tribes in the early stage of their development
(Darwin 1888):

It must not be forgotten that, although a high standard of morality
gives but a slight or no advantage to each individual man and his
children over the other men of the same tribe, yet that an advance-
ment in the standard of morality and an increase in the number of
well-endowed men will certainly give an immense advantage to one
tribe over another. There can be no doubt that a tribe including many
members who, from possessing in a high degree the spirit of patri-
otism, fidelity, obedience, courage and sympathy, were always ready
to give aid to each other and to sacrifice themselves for the common
good, would be victorious over most other tribes; and this would be
natural selection.
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Not only do we collaborate with each other, but we also develop
tools and make use of other animals to help us in our labor. Beeves
and horses have been extensively used throughout history, and still
nowadays in developing countries as illustrated in Figure 1.1, for
their strength, compensating our own relative weakness. Tool cre-
ation and usage has greatly contributed to our evolution and is
strongly linked with increased brain size, population size, and geo-
graphical range (Ambrose 2001). Our most complex robotic systems
are, therefore, nothing more than an improvement of the first bone
tool depicted by Kubrick in his movie 2001: A Space Odissey.

Figure 1.2: Probably the most famous
couple of robots in science fiction.
C3PO and R2D2 have inspired many re-
searches on social robots and human-
robot interaction (HRI). Credit: Gordon
Tarpley

Relying on this, roboticists are trying to enhance the human ca-
pabilities by developing machines, more and more capable, but also
more and more complex. However, for a long time robots and hu-
mans had very few social interactions. For security reasons, norms
in industry have created barriers between them, limiting the inter-
actions to their strict minimum, most of them to program or repair
the expensive machineries (Robots and Robotic Devices – Safety Require-
ments for Industrial Robots – Part 1: Robots 2011).

Science fiction, on the other hand, is full of example of social
robots, interacting with human beings, for better or for worse. In
its own manner, it has shape our ideas on robotics, both in terms of
designs and capabilities1. Interestingly, it also highlights, and often 1 Throughout history, myths and fic-

tional arts have modeled our views on
artificial machines like robots. It might
explain why Western people tend to be
afraid by most advanced robots while
the same robots are well integrated in
the Japanese society (Kaplan 2004).

relies on, the human capacity to recognize living patterns and social
behaviors in other lifeforms, even artificial mechanism or machines.
Referred as anthropomorphism, it seems to be an innate tendency
of the human psychology. From animals we observe, to spiritual
deities we worship, we tends to explain their behavior with human-
like goals and intentions (Epley et al. 2007). This capacity allows us,
for example, to interpret the language of R2D2, the can-like robot of
Figure 1.2, which is only composed of a succession of beeps and whis-
tles. Although this “language” is artificial2, we seem to understand

2 The sound designer of both movies,
Ben Burtt, has pointed out that some
of these sounds were purely made on
a synthesizer, while others origin from
recorded mechanical and motor sounds
(Rinzler et al. 2010)what the robot “feels” on the moment.

Over the past few years, the extensive progresses in terms of safety
and sensing capacities opened up challenges and opportunities to
make those fictional robots a reality. The neologism cobot, or co-robot,
refers to a robot that shares its workspace with humans and physi-
cally interacts with them. Invented in 1996 by Colgate, Peshkin, and
Wannasuphoprasit (1996) it is described in a US patent (Colgate and
Peshkin 1999) as “an apparatus and method for direct physical in-
teraction between a person and a general purpose manipulator con-
trolled by a computer”. Nowadays, many industrial companies have
designed their own cobots. Some of them, like Baxter robot from
Rethink Robotics are safe by design, i.e velocity of the robot mo-
tion and deployed forces are limited by the actuator design (Robotics
2017). Lots of effort are made to create robots that are safe and will
be well accepted by industrial workers.



As robots become more and more social, new challenges
arise, with the increase of end users expectations. Extensively stud-
ied by Reeves et al. (1996) our relations with computer and television
might seem irrational and might look like interactions we have with
our peers. This effect also appears in our relation with robotic system
(Meerbeek et al. 2008). This type of relation is a great opportunity
for roboticists as it facilitates the acceptance of their robotic systems
and design. But it is, in fact, a double-edged sword as people tend to
overestimate the capacities and intelligence of the robots they are in-
teracting with. The disillusion when they realize its limitations is one
of the first reason they simply drop using it (De Graaf et al. 2017).

Figure 1.3: Baxter and Sawyer collabo-
rative robots from Rethink Robotics.

To overcome this, robotic designers must understand human soci-
ology to facilitate the acceptance of the their systems. For example,
any robot that do not respect some simple codes of interaction will
simply fail to complete its purpose. As such, it is not surprising to
see why so many researches rely on “Wizard of Oz” which refers
to social robots partially or fully remotely controlled. It has been
named after the character in Baum (1900)’s fictional book. This solu-
tion aims at analyzing how people respond to their robotic system,
mainly its design, before developing complex autonomous systems.
In a way we can see this as the need for a truly ergonomic robotics3

3 Ergonomics (or human factors) is the
scientific discipline concerned with the
understanding of interactions among
humans and other elements of a sys-
tem, and the profession that applies
theory, principles, data and methods to
design to optimize human well-being
and overall system performance—
International Ergonomics Association

The 3rdHand European Project, in which this thesis takes part,
aims at developing a semi-autonomous robot assistant that acts as
the third hand of a human worker. To facilitate the integration of
such a technology in industry it is necessary to develop robotic be-
haviors that will ease the collaboration. Research areas leaded by
the institutions of the 3rdHand committee, cover a large variety of
topic directly linked to Human-Robot Interaction (HRI). One aspect,
which motivated the researches in this thesis, is to improve the com-
fort of the human coworker during the interaction, i.e. to propose a
more ergonomic interaction.

New robotic assistants should be able to prevent worker’s dis-
comfort as well as more aggravated work-related illness. By contrast
with a human-human interaction, where both parties try to maxi-
mize their own comfort, sometimes at the expense of the other, an
assistive robot should always maximize the comfort of its coworker.
On the other hand, humans are complex systems and the notion
of human comfort is very difficult to assess. It might be linked to
the notion of acceptability, which is usually divided into social ac-
ceptability: How does the society perceive robotic systems?, and practical
acceptability: How do people perceive the robot when interacting with it?

Aspect of the robot is an important factor of its acceptance
(Breazeal 2004). For example a spider-like robot could be perfectly
fit to operate in uneven terrain but probably not to interact with hu-
mans due to its dreadful design. Kajita et al. (2009) suggested this as
a reason why humanoid robotics has undergone such a remarkable
expansion in the last few years. Humanoid design and especially
bipedal locomotion is probably not the most optimal but it greatly

http://www.iea.cc/whats/index.html
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facilitates the acceptance of the robotic system by the human work-
ers4.

4 Another reason is that most of the
tools and workstations are designed for
humans. Therefore, introducing hu-
manoid robots in industry would not
require a complete reshape of the work-
ing environment.

However, when working with already designed robotic systems,
such as Baxter robot which was used in all our experiments and is
illustrated in Figure 1.3, the only left levering approach relies on im-
proving the acceptance of the robot motions and behaviors. Choice of
actions, robot motions, proximity with the human coworker5, might 5 People have special concerns about

their personal space either in terms
of intimacy and safety. We con-
sider proxemics–physical and psycho-
logical distancing from othersEdward
Twitchell Hall 1966–to address such
concerns.

lead to uncomfortable situations. Assessing those situations is not
trivial. It usually relies on questionnaire answered after the exper-
iment, recorded videos analyzed by experts, or physiological data
such as cardiac or ocular activity (Dehais et al. 2011).

Although the acceptance is strongly linked to the worker’s com-
fort, it only covers the psychological aspects of the comfort notion.
More physical constraints need also to be considered. Work related
injuries cost between 13$ to 20$ billions annually to US industries
and cobots researches were essentially funded to address this issue
(Akella et al. 1999). Some of those injuries are linked to traumatic
accidents due to physical contact with the machineries but Muscu-
loskeletal Disorders (MSDs)6 are the largest category of work re- 6 MSDs include a wide range of inflam-

matory and degenerative conditions af-
fecting the muscles, tendons, ligaments,
joints, peripheral nerves, and support-
ing blood vessels.

lated illness (Punnett et al. 2004). Risk-factors for MSDs are work
or individual related (Putz-Anderson et al. 1997). Work-related fac-
tors include high task repetition and wrong body posture, while
individual-related factor comprise poor work practice and poor rest
recovery. In both cases, a robotic approach could help reduce those
factors by assigning the most burdensome tasks to the robot and as-
sist the worker to help him or her keep good working posture and
practices.

Both the psychological and physical impact of the interac-
tion were motivating the research conducted during this thesis. The
first situation we consider concerns the understanding of the robot
actions. In a joint collaboration scenario, it is important that the hu-
man coworker understands what the robot plans to do or achieve.
Failing to achieve such understanding could lead to stressful situa-
tions or unnecessary human actions. For example, if I believe the
robot next action is to reach for the screws I will probably move to-
ward the screwdriver. However, if I realize later on that it was aiming
for a different part of the assembly I will have to put back the screw-
driver on the table before starting the correct complementary action.
On the other hand, a fast understanding of the robot actions allows
me to anticipate on my own corresponding actions and generate a
faster and smoother interaction. In an industrial setup where tim-
ings is often crucial this is a non negligible improvement to consider.
To achieve such understanding, two approaches could be envisaged.
The robot could explicitly details its next action, using for example
signals on its screen or natural language. However, a coworker that
says out loud all the actions he is planning of performing would
slowly become annoying and the interaction would feel unnatural7.

7 Actually, most of the communication
between humans is non-verbal and uses
what we refer as “body language” (Har-
rison 1965).



Another option is to share intentions directly from the robot mo-
tions. This concept, referred as legibility in the robotic community
(Dragan, K. C. Lee, et al. 2013), mainly relies on the fact that living or-
ganisms tends to modify the way they move or accomplish actions to
express their intentions. If you look at a dog willing to play, the way
it moves informs you about its true intentions. The same approach
can be applied to robotic systems to modify the robot motions to
share intentionality (Dragan, K. C. Lee, et al. 2013; Sisbot and Alami
2012). Doing so will greatly benefit the productivity, which is always
a concern for industrial applications, as it would reduce both the
timings to accomplish a specific task and the coworker’s cognitive
load.

The second situation concerns the human comfort at a more
physical level. In a physical human-robot interaction, where robot
and humans cooperate to accomplish a specific task, the robot can
provide support actions such as holding parts or handing-over ob-
jects. Such simple actions can negatively impact the posture of the
human coworker. Imagine a situation where the robot holds a piece
of furniture with the human to screw but the screw hole is facing the
ground. The human would have to bend or squat to look for it and
screw correctly. Over the years, such a repeated wrong body posture
could lead to a high physical discomfort and/or world-related illness
such as Musculoskeletal disorders (MSDs). The question that arises
is how can we ensure that the worker will stay away from those high
risk postures. In assembly-line production works, the entire work-
station is adapted to the worker to prevent those situations (Das et
al. 1996). However, in small production series, adapting the entire
workstation introduce a non negligible cost which make it not suit-
able. As human-robot collaboration specifically targets this type of
industry, there seems to be a great opportunity for the robot to adapt
itself to the worker specificities, like height or eventual injuries, and
preferences. Even simple types of interaction, such as handing-over
an object, can be stressful if not performed correctly8. This creates

8 As an example, consider a left-handed
worker that has to interact on an object
positioned and orientated for a right-
handed interaction. Either it will force
him or her to adopt a wrong body pos-
ture or to use the right hand, limiting
his or her efficiency on the task.

a desire to form highly effective human-robot teams that combines
strengths and abilities of both the robot and its human partner (Gom-
bolay et al. 2015; Ogorodnikova 2008), while at the same time caring
for the well-being of the people working with robots. Compared to a
fully automated assembly line, a robot and human worker team also
offers flexibility and adaptability to changing tasks (Bley et al. 2004;
Krüger et al. 2009). This last point is particularly important for small
assembly lines of customized products, where changes made in the
workstations are frequent.

Another interesting aspect lies on the self-awareness of risk asso-
ciated to a given posture. The human body has an extensive amount
of degrees of freedom which allows to accomplish tasks in various
postures. Obviously, not all of those postures are ergonomically safe
and one might perform a task in a wrong posture without even being
aware of it.
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In summary, our contributions for this thesis are twofold. First,
we propose a solution to improve the legibility of the robot motions.
Second, we study the ergonomics of the interaction and propose a
method to reduce the potential risks of MSDs, by ensuring that the
robot motions and actions will not force the user to adopt a high-risk
posture.

To achieve our goals, we use, for both situations, a similar ap-
proach. We define a cost function that leads toward the desired be-
havior and use optimization algorithms to derive the robot motions.
For both cases, we find a simple cost function and validate its us-
age with human subjects interacting with our Baxter robot. In the
following paragraphs, we summarize our main contributions with
their associated scientific publications.

Learning legible motions from interaction: In the first part of the thesis
we describe our work on learning legible robotic motions. In Chap-
ter 2 we explain the notion of legibility and provide some related
work on improving the legibility of robotic motion. Our work on
this question has leaded to two main scientific contributions.

First, a publication in the International Conference on Intelligent
Robots and Systems (IROS 2015) (Stulp, Grizou, et al. 2015) in which
we introduce a cost function based on human feedback to learn leg-
ible motions while interacting with human subjects. Coupled to an
optimization algorithm we apply this cost function to two different
tasks and analyze the gains in term of the subjects’ prediction times
and potential errors. We detail the experiment protocol and results
in Chapter 6 of the thesis.

Our second contributions is an analysis on the universality of the
learned legible motions. By comparing two different policies for rep-
resenting the robot motions, we realize that we can achieve more uni-
versal legibility that require less adaptation. This extensive study has
leaded to a publication in the International Journal of Social Robotics
(Busch, Grizou, et al. 2017) and is detailed in Chapter 3.

Ergonomic human-robot interaction: In the second part of the thesis
we focus on more physical aspects of the human comfort and risks
associated with wrong body postures. We start by introducing the
notion of ergonomics in Chapter 5 and review the researches made
toward a more ergonomic human-robot interaction.

In Chapter 6 we present an optimization algorithm to optimize
human postures to fulfill a specific task under ergonomic constraints.
From the optimized posture, we derive a robot motion that leads the
real user toward the safest posture he or she should adopt. In a user
study we verify that our solution leads indeed to safer posture and
is perceived as more ergonomic. This work has been published in
IROS 2017 (Busch, Maeda, Mollard, et al. 2017).



Reusing the same ergonomic cost function, we have extended our
study to also plan high-level sequences of actions9. We have based

9 We oppose high-level actions to low
level motor commands. A high-level ac-
tion often has a semantic meaning such
as “grasps the screwdriver”.our work on the Logic-Geometric Programming (LGP) framework

introduced by Toussaint and Lopes (2016) that allows to solve Task
and Motion Planning (TAMP) problems simultaneously. Therefore,
we propose an ergonomic interaction at both the low-level motor
commands and the high-level actions. The integration also offers
an interesting aspect of allocating task to either the robot or human
agent based on ergonomic considerations. We provide details of the
approach in Chapter 7 along with the results of the conducted user
study. This work has been accepted for publication to the Interna-
tional Conference on Robotics and Automation (ICRA 2018) (Busch,
Toussaint, et al. 2018).

On a last note, the images and pictures, used to illustrate the dis-
cussions, are either extracted from our publications, made specifi-
cally for the manuscript or under creative comment licensing.



2
Introduction to Legible Robotic Motions

In everyday life, people interact with each other using verbal com-
munication or by means other than explicit natural language state-
ments. Our body gestures and choice of actions communicate a lot
our intentions. In 1974, Duke reported a story, attributed to Ann
Landers1. She was responding to a query from a girl on how was the

1 Ann Landers is a pen name created
by Chicago Sun-Times advice columnist
Ruth Crowley in 1943 and taken over by
Esther Pauline “Eppie" Lederer in 1955.
For 56 years, the “Ask Ann Landers"
syndicated advice column was a regu-
lar feature in many newspapers across
North America.best way to meet a shy boy who rode on the same bus with her each

day.

Landers suggested to the girl that the important thing was to get the
man to talk first because that was really the way he wanted it. To
accomplish this, Landers recommended that the girl get off the bus
with a heavy packages such as several dozen bricks well wrapped.
Presumably the hero would be unable to avoid seeing a lady in distress
and would immediately appear at the lady’s side to offer assistance.

If he didn’t, Landers urged the girl to drop the package or twist her
ankle; the male could never overlook this opportunity for demonstrat-
ing his gallantry, and he would be certain to carry both the girl and
the package to their destination; once there, the girl could offer him
refreshments, thank him and settle down for a get-acquainted chat.

In this story, most of the communication is non-verbal. It has
been estimated that only 35% of the communication among people
happens verbally (Harrison 1965). An important thing to note is that,
here, the girl’s real intention is hidden and her choice of actions do
not clearly signal the goal she wish to achieve. In contrast with this
anecdote, our body gestures and choice of actions might also reflect
upon our true intentions.

When doing so, it is important to select actions that will clearly
convey this information to our interlocutor. The story of John Hinck-
ley Jr. is an example of a poor choice of actions that failed this pur-
pose. In 1981, he attempted to assassinate U.S. President Ronald Rea-
gan with the mean of impressing the actress Jody Foster for whom
he devoted a true obsession. It might be unclear how this specific ac-
tion could achieve Hinckley’s real goal2. Therefore, a wrong choice

2 Some extra information might help
understanding his choice. During her
career, Jodie Foster has played a role in
the 1976 film Taxi Driver, in which dis-
turbed protagonist Travis Bickle (Robert
De Niro) plots to assassinate a presi-
dential candidate. With that informa-
tion in mind, we could see why Hinck-
ley chose this action. A common knowl-
edge might also help the interaction.

of actions might lead to the complete opposite of what you wished
to accomplish.



However, not only does our actions reflect upon our intentions
but also the very way we accomplish them. Humans, and other ani-
mals, are exquisitely attuned to recognize goals and intentions from
the motion of living organisms. Watching a dog making a circling
motion leads us toward its intentionality to play. It is not even nec-
essary to have an organism-shaped body to convey intention in the
motion, as Heider et al. (1944) showed3. Their animations of moving

3 Several videos of this animation
of moving mathematical shapes can
be found on Youtube https://www.

youtube.com/watch?v=sx7lBzHH7c8.

triangles and circles elicited strong subjective impressions of goals
and intentions, e.g., of one triangle trying to catch another.

This non-verbal communication is also central in the context
of joint task between humans to coordinate their actions (Sartori et
al. 2011). If you move an open bottle in my direction, I will place my
glass in an appropriate position for you to pour. If you reach for the
screwdriver, I will lift the shelf to hold it in place for you. By mon-
itoring the actions of others and inferring their intentions, a human
can predict and preemptively initiate the appropriate complemen-
tary actions without the need for verbal communication (Sartori et
al. 2011; Sebanz et al. 2006; Timmermans et al. 2012). Furthermore,
it has been shown that humans unconsciously change their behav-
ior, for instance the speed of task execution, to improve coordination
(Vesper et al. 2011).

If we are to develop social robots that interact with people
on a daily basis, it is important to understand this non-verbal com-
munication mechanism, not only to infer people intentions, but also
to communicate in a similar manner. The actions performed by the
robot, and the way to achieve them, should reflect upon its goal and
convey sufficient information.

Recently, Knepper et al. (2017) proposed a framework to formally
model this implicit communication in human-robot interaction. This
model relies on the notion of surprisal (Hohwy 2013)4. They state 4 Any communicative action will be

perceived by an observer with a certain
level of surprisal, which is an encoding
of how probable the observer believes
the action to be, given the context. The
higher an observer’s surprisal, the more
improbable the observer believes the ac-
tion to be in the given context.

that actions or motions inducing a high surprisal is a mean to convey
information. In other terms, if an action â seems improbable to an
observer, it is chosen over a more probable action a∗ because it has
a specific meaning m∗ that the observer should understand. This,
obviously, requires some basic concepts to be respected:

1. There exist multiple actions to achieve a specific goal ( a∗ 6= â )

2. One action should be more probable than the others given the
context

3. The meaning m∗ should be an easy explanation of the observation
of â

4. There is no other meaning m̂ that is an explanation of â

https://www.youtube.com/watch?v=sx7lBzHH7c8
https://www.youtube.com/watch?v=sx7lBzHH7c8
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Hinckley’s story is a good example that violates the third rule.
His true intention could not be easily derived from his choice of ac-
tions. The fourth rule could be culturally dependent and requires to
know exactly how our actions are perceived by the observer. One
example of action that might fall under this rule is nodding the head
for acceptance5. Although, in most countries, it might be correctly 5 A nod of the head is a gesture in which

the head is tilted in alternating up and
down arcs along the sagittal plane.

understood, there is a few exceptions where the meaning is swapped
and actually means a refusal6. The fourth rule is particularly impor-

6 In Greece, Iran, Lebanon, Syria,
Turkey, Bulgaria, Albania, and Sicily a
single nod of the head up (not down)
indicates a "no".

tant as it highlights the fact that an action that successfully convey
some information to one person might fail to do so with another
one. As we develop robotic behaviors to be very informative, this
might question the universality of our findings. However, this could
be overcome if both parties agree, beforehand, on the meaning of a
specific action.

We can apply this formalism, in human-robot interaction. First,
the choice of individual or sequences of robot actions can highlight
a greater goal and trigger a human response. As an example, if the
robot moves to grasp the screwdriver, the human coworker should
understand that he or she needs to reach for the screws. Second,
the robot can signal its intention directly from its motion7. In the

7 Robot motion might refer to the move-
ment of its mobile base as it has been
studied with mobile robots moving in a
human environment (Sisbot and Alami
2012) or to the motion of its arms when
working with fixed base robots like as-
sembly robots (Dragan, K. C. Lee, et al.
2013). In this work, we only focused on
the latest scenario.

second case, the human would go for the screws before the robot
has even reached the screwdriver. Achieving such a comprehension
between the robot and the human would induce a gain in terms of
productivity as it would reduce the time to accomplish a specific
task.

Conveying information through motion is a concept referred as
legibility, and efforts have been made to improve the legibility of the
robot behaviors (Dragan and Siddhartha S. Srinivasa 2013; Sisbot and
Alami 2012)8. The main idea is that one can infer the robot intention

8 Some researchers prefer to use the
term “readability” rather than “legibil-
ity” (Takayama, Dooley, et al. 2011).

by only observing its motion. Let us take the following example:

John Doe is on his bike, arriving at a zebra crossing. A car is coming
quite fast and John wonders if it will stop to let him cross the road. The
car does not seem to be slowing down, John set foot on the ground.
But finally the car driver brakes and flashes the headlights, signaling
John to pass.

In this situation, John could only rely on the car motion and speed
to infer if it would stop on time to let him cross the road. However,
the car driver failed to convey this information and had to use a more
informative signals, a flashing of headlights. Should the car driver
break earlier, John would have continue on its path without the need
of setting foot on the ground.

The same situation arises in human-robot interaction. We could
have a special signal for each of the robot actions, which akin to
the flashing of headlights in the car bike situation. Or we could
improve the robot legibility to smooth the interaction and trigger an
appropriate human response.



In human-human interaction, this concept has been extensively
studied and a key component that helps to facilitate social interac-
tion is believed to be the action observation network. Motor pro-
cesses underlie the execution of actions as well as the understanding
of other’s people intended actions (Decety et al. 2006; Gallese 2001;
Gallese and Goldman 1998). This process relies on some specific neu-
rons in our brain called mirror neurons9 that allow us to understand

9 A mirror neuron is a neuron that fires
both when an animal acts and when the
animal observes the same action per-
formed by another.a person intention by projecting his or her motor commands onto

ourselves.
Could the same process be used to recognize robot intentions from

its motion? Cross et al. (2012) shows that it could, in fact, go beyond
the simple imitation mechanism and it is also activated by the obser-
vation of non-human agents, specifically robotic systems. Moreover,
if a robot mimic well a human movement, our anthropomorphism
capacity might simply take over and facilitate the recognition pro-
cess.

The question is then, how can we improve the legibility of robot mo-
tions? One way to achieve this can be to imitate the human motion
in the same task context. The minimum jerk model (Flash et al. 1985)
makes the assumption that human hand motion can be mathemati-
cally retrieved, by minimizing the jerk in Cartesian space, during a
grasping task. On an industrial robot, however, trajectories generally
follow a trapezoidal joint velocity profile (Craig 2005). Research has
shown that predicting this type of motion is harder than a minimum
jerk profile (Glasauer et al. 2010)10.

10 In the light of human psychology and
neuroscience, those results suggest that,
because trapezoidal joint velocity pro-
file are “non-natural”, our action obser-
vation network might be unable to map
it onto ourself, which make the recog-
nition process harder.

For specific tasks, it is possible to manually define motion that
convey the desired intention. This can be made for different applica-
tions. For instance to facilitate handing over an object (Alami et al.
2006; Cakmak, Siddhartha S. Srinivasa, et al. 2011; M. K. Lee et al.
2011; Mainprice et al. 2010; K. W. Strabala et al. 2013; K. Strabala et al.
2012), or to coordinate robot soccer players (Pagello et al. 1999; Stulp,
Isik, et al. 2006). This involves understanding and modeling how hu-
mans interpret actions, and implementing controllers based on this
knowledge. Explicit task-specific encoding of intention prediction
has also been used to coordinate robot soccer players (Pagello et al.
1999; Stulp, Isik, et al. 2006). The concept of legibility has also been
studied in the context of safe navigation in the presence of humans
(Lichtenthäler et al. 2012; Sisbot and Alami 2012).

Another approach, taken by Dragan and Siddhartha S. Srinivasa
(2013) is to provide a general-purpose definition of legibility: how
probable is a goal, given a partially observed trajectory? Higher leg-
ibility implies earlier divergence of probabilities for different goals.
They also clearly formalize the difference to predictability: what is
the most probable trajectory, given knowledge of the goal?
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Imagine a reaching task scenario where two objects are closed to
each other. You have to guess which object the robot is going to pick
only by looking at the robot arm motion. As illustrated in Figure 2.1,
if you knew that the robot would pick the blue object, you would ex-
pect it to perform a straight line toward it. This is the most probable
action a∗ according to Knepper et al.’s formalism. Dragan, K. C. Lee,
et al. refer to it as predictable motion.

Figure 2.1: Predictable motion in a
reaching task scenario. This is the most
probable motion and the least informa-
tive.

The main drawback of this predictable motion is its lack of in-
formation. With two possible targets, very close to each other, you
would need to observe a large snippet of the trajectory before being
able to guess the robot target.

To convey more information, the robot trajectory would then need
to diverge from the straight line. Now, observe the trajectory illus-
trated in Figure 2.2. This type of motion, an â action, is very infor-
mative. It allows you to correctly infer the robot target, even if you
see only a short snippet of the trajectory.

Figure 2.2: Legible motion in a reach-
ing task scenario. This is the most in-
formative type of motion.

On the other hand, the robot could also diverge on the other side
of the straight line. However, this type of motion depicted in Fig-
ure 2.3 would mislead the observer on the real target. It is break-
ing the third rule of Knepper et al.’s formalism. In fact, the yellow
hashed target is an easier explanation of the observation of this tra-
jectory. It is referred as deceptive motion (Dragan, Holladay, et al.
2014).

Figure 2.3: Deceptive motion in a
reaching task scenario. This motion
mislead the observer on its prediction.



One question is, how can we generate those legible motions?. Dragan
and Siddhartha S. Srinivasa (2013) propose a model-based method
to optimize the robot trajectories for legibility. Although they define
legibility and predictability as general ideas, they are implemented
as cost functions that might not apply to all task contexts. It is a non-
trivial task to adapt this cost function to novel task contexts, and
especially to different (classes of) users.

The fundamental problem of trying to model such a complex con-
cept as legibility is being unable to capture its full scope. Each per-
son might have his or her own idea on what is a legible motion,
although probably unconsciously. The whole concept of legibility
might be also culturally dependent, as the concept of nodding for
acceptance presented earlier. And finally, it might be also task de-
pendent. Therefore, accounting for those specificities is almost im-
possible with a model-based approach.

The question becomes then, can a robot learn to generate legible
motions, adapted to its human coworker? This question is the motiva-
tion behind this first part of the thesis. Our goal is to learn how to
generate legible motion in a model-free manner, to adapt the robot
behavior to the observer’s preferences and his or her perception of
legibility.

Rather than defining legibility as an explicit property to be opti-
mized, we investigate legibility as an emergent adaptive property of
robots who are rewarded for efficiently cooperating with humans.
Our approach is based on model-free optimization, where the robot
iteratively improves its legibility through trial-and-error interaction
with a human. By not providing a model we need to find other
means to reward the robot which would lead to a more legible be-
havior. Dragan, K. C. Lee, et al. (2013) defines legible motions as
“motion that enables an observer to quickly and confidently infer [a]
correct goal G”. Therefore, a simple cost function that captures the
time an observer takes to infer a goal G and his or her eventual pre-
diction errors seems to be a good reward candidate. It would force
the emergence of legible behaviors without the need of providing a
probabilistic definition of the whole concept of legibility. Moreover,
this approach has the advantage that no assumptions about the task
or the human must be made, and the robot automatically adapts its
legibility to the user preferences during the interaction.

Since our approach does not require a model, it is applicable to
different tasks without modification. However, it does require a
training phase to learn to generate legible behavior, and the result-
ing behavior generalizes to different tasks. A novel task thus requires
learning a new behavior. In contrast, previous model-based methods
(Alami et al. 2006; Cakmak, Siddhartha S. Srinivasa, et al. 2011; M. K.
Lee et al. 2011; Mainprice et al. 2010; K. W. Strabala et al. 2013; K.
Strabala et al. 2012) are able to generate legible behavior on-the-fly,
but require task-specific models of legibility. A novel task thus re-
quires the design of a novel model by an expert.
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Our approach is thus well suited for scenarios where not all tasks
are known in advance, and where similar tasks are executed many
times. In assembly lines where humans and cobots work together
for instance, the resulting behavior is used thousands of times. The
number of trials required to learn the behavior (<100) may thus well
be worth the investment, and could also be performed on-the-job.

To conclude, the difference between model-based and model-free
approaches can be summarized using the bottom-up and top-down
designs11. Model-based approach is a top-down design as you start 11 Top-down and bottom-up are both

strategies of information processing
and knowledge ordering, used in a va-
riety of fields including software, hu-
manistic and scientific theories

from a general concept of legibility and refines it if necessary. For
example, if you model a robot to nod for acceptance, you will prob-
ably start by the most common design, i.e. an up and down head
motion. If you wish to later deploy your robot in Greece or Lebanon
you will have to add a specific condition as this head motion could
be seen as a “no”. The more exceptions and specificities you have to
adapt to, the more complicated the model grows. Moreover, every
refining require programing skills to rewrite a new adapted model.
Conversely, our model-free approach is a bottom-up design. You start
from a specific concept of legibility, adapted to a single user, and
verify that what you have learned holds for other users. When you
wish to adapt your learned behavior to a new user or specificities
you use a trial and error approach, re-optimizing in the process. No
programming is, therefore, required in this situation.

One important question that we need to verify is whether the
robot learns to generate universally legible behavior, or rather id-
iosyncratic behavior that the observer learns to interpret. The differ-
ence between the two is illustrated in Figure 2.4. To understand this
difference we can come back to our biker example:

John is riding his bike on a very busy road. At the next intersection,
he is going to cross the road to turn left. To signal the cars behind him
he raises his left arm before turning.

This is an example of “universal" and legible behavior. Even for
cultures in which cycling is not widespread, an arm spread out to
the left is likely to convey the intention that the cyclist will make a
left turn.

John is in the leading pack during a bicycle race. He wants to signal
his team that he is going to attack12. He drops his left arm straight

12 An attack is the action of quickly ac-
celerating while riding in a pack, or in
smaller numbers, with a view to create
a gap between yourself and other rid-
ers.

down and joins his thumb with his index.

And this is an idiosyncratic behavior. It is meant only for John’s
teammate to be understood. For any other observer, this is breaking
the third rule of Knepper et al.’s formalism as there is no univer-
sal meaning that can easily explain this signal. Coming back to our
robotic situation, the robot can learn to generate idiosyncratic behav-
ior such as the loop in Figure 2.4 to signal which object it is going to
grasp.



Figure 2.4: Distinction between uni-
versal and idiosyncratic legibility. The
left graph with trajectories has been
adapted from Dragan and Siddhartha
S. Srinivasa (2013) work.

In the next chapters we detail our works on learning legible mo-
tions from interaction. Chapter 3 introduces the experimental pro-
tocol used to learn legible motions and the user study we have con-
ducted on two different tasks13. Following our initial work, we have

13 The text of Chapter 3 is mainly ex-
tracted and adapted from our confer-
ence paper (Stulp, Grizou, et al. 2015)
while most of the text of Chapter 4

comes from our journal article (Busch,
Grizou, et al. 2017)studied the concept of universal legibility and how we can tend to

achieve it. Details are provided in Chapter 4.
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The key idea of our approach is that legibility of robot behavior
does not needs to be defined and optimized explicitly, but that it
arises automatically if joint task execution is penalized for not be-
ing efficient. In particular, this behavior should arise from direct
interaction with users, so as to tailor the legibility to specific user
preferences.

As we need to optimize a cost function, but do not have models
of individual users, we formulate the problem as a model-free opti-
mization. We describe the generic optimization algorithm and policy
representation used in our contribution.

Policy Improvement through Black-Box optimization

Policy improvement is a form of model-free optimization technique,
where the parameters ϑ of a parameterized policy πϑ are optimized
through trial-and-error interaction with the environment. The op-
timization algorithm we use is PIBB, short for “Policy Improvement
through Black-Box optimization” (Stulp and Sigaud 2012). It opti-
mizes the parameters ϑ with a two-step iterative procedure. The first
step is to locally explore the policy parameter space by sampling K
parameter vectors ϑk from the Gaussian distribution N (ϑ, Σ), to ex-
ecute the policy with each ϑk, and to determine the cost Jk of each
execution. This exploration step is visualized in Figure 3.1, where
N (ϑ, Σ) is represented as the large (blue) circle, and the samples
Jk=1...10 are small (blue) dots.



Figure 3.1: Illustration of the PIBB algo-
rithm on a simple cost function J(ϑ) =
‖ϑ‖ (without policies). Left: iterative
updating of the parameters, where the
exploratory samples for the first itera-
tion are shown. Right: mapping the
costs Jk to weights Pk for the first iter-
ation. The algorithmic parameters are
K = 10, λ = 0.7.

The second step is to update the policy parameters ϑ. Here, the
costs Jk are converted into weights Pk with

Pk = e
(−h(Jk−min(J))

max(J)−min(J)

)
(3.1)

where low-cost samples have higher weights. For the samples in
Figure 3.1, this mapping is visualized (to the right). The weights
are also represented in the left figure as filled (green) circles, where
a larger circle implies a higher weights. The parameters ϑ are then
updated with reward-weighted averaging

ϑ←
K

∑
k=1

Pkϑk (3.2)

Furthermore, exploration is decreased after each iteration Σ← λΣ

with a decay factor 0 < λ ≤ 1. The updated policy and exploration
parameters (red circle in Figure 3.1) are then used for the next ex-
ploration/update step in the iteration. Despite its simplicity, PIBB is
able to learn robot skills efficiently and robustly (Stulp, Herlant, et al.
2014). Alternatively, algorithms such as PIˆ2, PoWeR, NES, PGPE, or
CMA-ES could be used1.

1 see Kober et al. (2011) and Stulp and
Sigaud (2012) for an overview and com-
parisons

Policy Representation

The policy πϑ itself is implemented as a Dynamical Movement Prim-
itive (DMP) (Ijspeert, Nakanishi, and Schaal 2002). The authors de-
fine a control policy by a set of nonlinear differential equations with
a well-defined attractor dynamics. For a single degree of freedom de-
noted by y, which, in our case, is one of the internal joint angles, the
following system of linear differential equations with constant coef-
ficients has been proposed as a basis for motion specification (Schaal
et al. 2007),

τż = αz(βz(g− y)− z)− f (3.3)

τẏ = z. (3.4)
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where τ is a time constant and αz and βz are positive constants.
Provided that the parameters αz and βz are selected appropriately,
e.g., αz = 4βz and the forcing term f = 0, this system has a unique
attractor point at (y, z) = (g, 0).

Choosing the forcing function f to be phasic, i.e active in a finite
time window, leads to a point attractive system. Therefore, f can be
defined as

f (t) = ∑N
i=1 Ψi(t)ωi

∑N
i=1 Ψi(t)

, (3.5)

where Ψi are fixed basis function and ωi are adjustable weights2. 2 According to Ijspeert, Nakanishi,
Hoffmann, et al. (2013) Represent-
ing arbitrary nonlinear function as
a normalized linear combination of
basis functions has been a well-
established methodology in machine
learning (Bishop 2006) and also has
similarities with the idea of population
coding in models of computational neu-
roscience (Dayan et al. 2001)

However, the explicit time dependency creates a non-autonomous
dynamical system, or more precisely a linear time-variant dynami-
cal system. Therefore, Ijspeert, Nakanishi, Hoffmann, et al. (2013)
introduce a time replacement x following first order linear dynamics

τẋ = −αxx, (3.6)

with αx a constant. Starting from some arbitrarily chosen initial
state x0 such as x0 = 1 the state x converges monotonically to zero.
x can thus be conceived of as a phase variable, where x = 1 would
indicate the start of the time evolution and x close to zero means that
the goal g has essentially been achieved. Equation (3.6) is called the
canonical system.

Following this, f can be rewritten as a function of the canonical
system

f (x) = ∑N
i=1 Ψi(x)ωi

Ψi(x)
x(g− y0), (3.7)

where Ψi(x) are N Gaussian basis functions defined as

Ψi(x) = exp
(
− 1

2σ2
i
(x− ci)

2
)

(3.8)

with σi and ci are constants that determine respectively the width
and centers of the basis functions. y0 is the initial state at time t =

0. With this formulation, the system is designed to have a unique
equilibrium point at (z, y, x) = (0, g, 0) with y evolving toward the
goal g from any initial conditions.

Therefore DMPs are very convenient for our experiments, as they
ensure convergence towards a goal, whilst allowing the trajectory
towards this goal to be adapted by changing the parameters ωi of
the forcing term f .

In our experimental setup, we represent f with 3 basis functions,
i.e. N = 3 and DMPs are fist initialized by recording straight lines
toward the goal. Then, the weights ωi of the basis functions are op-
timized using the black-box optimization introduced in Section 3.1.



Experimental setup

In the joint human-robot task, depicted in Figure 3.2, the robot
reaches for and presses one of two buttons. Subjects are given two
goals:

• Efficiency: press the same button as you think the robot will, as
quickly as possible,

• Robustness: avoid making mistakes, i.e. pressing a different but-
ton from the one the robot will. Figure 3.2: Button pressing experiment

set-up with the Baxter robot, human
subject, and the two rows of buttons
that they will press. The two possi-
ble targets corresponds to the “red" and
“yellow" button on the box, the two but-
tons on the left side of the subject.

The protocol of an experiment is as follows. The experiment starts
with a habituation phase of 32 trials where the robot performs always
the same trajectory for the same button. This phase allows the subject
to get used to the robotic motions, and practice the prediction and
button pressing. It also allows to validate that the improvement in
the subject’s prediction is not only due to them learning the robot’s
motion. Further improvement after that habituation phase will then
only be explained by the robot being more legible. Preliminary re-
sults indicate that 32 trials are sufficient for habituation.

After habituation, we start the optimization phase of 96 trials with
the optimization algorithm presented in Section 3.1. The two policies
that generate trajectories for the two different buttons are optimized
in two independent processes.

Task Representation: Cost Function

The cost function that the robot optimizes during the 96 trials after
the habituation phase consists of three components:

J = Trobot + Tsubject︸ ︷︷ ︸
Efficiency

+ γδbuttons︸ ︷︷ ︸
Robustness

+ α|...q1...N,1...T |︸ ︷︷ ︸
Energy

(3.9)

Efficiency: The time between the onset of the robot’s movement (t0)
and the pushing of the button by the human (Tsubject) and the robot
(Trobot).

Robustness: Whether the subject pressed the correct button (δbuttons =0)
or not (δbuttons =1). γ is an arbitrary high cost, it was set to 20 in this
experiment, expressing that a failure is equivalent to a penalty of
20s in terms of efficiency.

Energy: The sum over the jerk, i.e. the third derivative of the joint
positions (

...
q ti

). at each time step i in the trajectory. The time step
∆t used to calculate the derivatives was arbitrary set to 0.2. The
scaling factor α is chosen such that the cost of the jerk is about
1/20 of the total cost in the initial trajectories.
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The joint task completion time depends mainly on how fast the
human is able to predict the intention of the robot (proximate cause).
But we use the total time because: 1) the ultimate motivation be-
hind our research is to make human-robot interaction more efficient.
2) our set-up easily allows us to determine the button pressing times,
but not the exact time at which the human predicts the robot’s inten-
tion.

User Study

We perform two experiments with human subjects. In Experiment A,
the task consists in pressing two corresponding buttons. First the
robot decides on a button to press and then the subject needs to
press the corresponding button as soon as possible.

In Experiment B, the task consists in selecting a button based on
the location a robot will deposit a bottle. First the robot decides on
a target location to put a bottle after grasping it, the subject needs to
press the button corresponding to the location of the target location
before the robot grasps the bottle.

In both experiments the time taken by the user to press the button
is used as the main cost of the collaborative task. In practice, if the
motion of the robot is more informative then the subject will be able
to predict sooner the target of the robot.

Both experiments follow the protocol described Section 3.3. Sub-
jects for all the experiments in this study are INRIA staff, PhD stu-
dents in computer science, and under-grad students of cognitive sci-
ence3.

3 A video of both experiments is avail-
able on our Vimeo Channel https://

vimeo.com/237417895

Experiment A: Joint button pressing

In this task, the robot reaches for and presses one of two buttons. The
subject is instructed to press a button of the same color as early as
possible, whilst avoiding mistakes, i.e. pressing another button than
the robot intended to. We used the set-up presented in Figure 3.2,
where the subject sits on the side of the robot. An illustration of the
setup is also depicted in Figure 3.3.

Figure 3.3: Illustration of the button
pressing experiment or reaching exper-
iment. The robot chooses a button to
press and the subject has to press the
button of the same color on his or her
side of the box.

https://vimeo.com/237417895
https://vimeo.com/237417895


The two initial policies, i.e. one for each button, have been
recorded through programming by demonstration, as described in
Ijspeert, Nakanishi, Hoffmann, et al. (2013). The starting position
is the same and the path to each button is straight. Therefore, the
trajectories are hard to differentiate in the first part of the movement.

Results For illustration purposes, the top graph in Figure 3.4 shows
an example experiment for one subject, visualizing both the values
of the time it takes the subject to push the button (Tsubject) and whether
the same buttons are pushed. The transition from the habituation to
the optimization phases is depicted as a dashed line.

The main results of the reaching task experiment are summarized
in the two lower graphs in Figure 3.4, which highlight statistics at
important transitions during learning: the start (trial 1 to 8), the last
trial of the habituation phase (25-32), and the first (33-40), intermedi-
ate (81-88) and final (121-128) block of trials during the optimization
phase. We also measure the trajectory completion at prediction time,
i.e the relative amount of trajectory (timewise) observed by the sub-
ject when it presses the button. This measure is calculated using

the formula 100(1− Trobot−Tsubject
Trobot

). The complete results are shown in
Figure 3.5.

The box plots show the average value of Tsubject over all 9 subjects
and over blocks of 8 trials. To allow comparison between subjects
without introducing variance due to the natural overall differences
in their button pressing time Tsubject, we normalized the results of each
subject by their intrinsic time after habituation, which is computed
as the average of the last 8 values of Tsubject in the habituation phase.
Thus, the normalized mean over the last 8 trials of the habituation
phase is 100 for each subject by definition.

Finally, the bottom graph in Figure 3.4 shows the number of pre-
diction errors per block of 8, averaged over all subjects.
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Figure 3.4: Results of the reaching ex-
periment (1/2).
Top) Example experiment for one sub-
ject, where Tsubject is plotted against the
number of trials. Successful and failed
trials are depicted as circles and crosses
respectively.
Middle) Average over all 9 subjects (µ±
σ) of the trajectory completion at pre-
diction time, i.e, the relative amount
of trajectory (timewise) observed by the
subject when it presses the button. This
value is calculated using the formula

100(1− Trobot−Tsubject
Trobot

).
Bottom) Normalized Tsubject (see main
text for normalization method), aver-
aged over all 9 subjects and blocks of
8 trials; average number of failures, i.e.
when different buttons were pushed,
averaged over all 9 subjects and blocks
of 8 trials. The two graphs show the val-
ues at certain key frames during learn-
ing.



Figure 3.5: Results of the reaching ex-
periment (2/2). The start of the opti-
mization phase is indicated by the ver-
tical dashed line.
Top row) Average (µ ± σ) of the robot
button pushing time (Trobot). It varies
little for the DMP policy (left) and even
less for the viapoint policy (right). For
the latter this is to be expected, as the
duration of pressing the button is not
dependent on the parameters of the
policy in which exploration and opti-
mization takes place.
Second row) Average (µ± σ) of the sub-
ject button pushing time Tsubject, over all
9 subjects. Variance is quite high be-
cause some subjects push quickly over-
all, whereas others are more careful.
Third row) Again the average subject
button time, but this time normalized
with respect to the average value of
Tsubject during the last 8 trials of the ha-
bituation for each subject. This reduces
the variance caused by the overall dif-
ferences between subjects.
Bottom row) Number of times the in-
correct button was pushed, averaged
over blocks of 8 trials and all 9 subjects.
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Discussion The main conclusion we derive from Figure 3.4 and Fig-
ure 3.5 is that optimizing the robot’s motion leads to a substantial
(20%) and significant (p = 5e−8, Wilcoxon signed-rank test) drop in
Tsubject, i.e. the time it takes for the user to press the button, between
the end of the habituation phase (25-32) and the end of the opti-
mization (121-128). As Trobot is consistent throughout the experiment,
this drop in Tsubject also induces a drop in the trajectory completion at
prediction time (from 70% to 50%). This improved efficiency is not
merely due to subjects simply guessing a button, because the number
of mistakes does not increase over time (p = 0.26, Wilcoxon signed-
rank test between end of habituation and end of optimization).

There is also a relatively small but significant (p = 0.001) decrease
of the prediction time during the habituation phase, which indicates
that the differences in the initial trajectories before optimization al-
ready enable the subject to predict the robot’s intention. The fact
that Tsubject is further improved by 20% during the optimization shows
that the optimized trajectories are more easily distinguishable, i.e.
legible, than the initial trajectories.

After the habituation phase, subject’s performance get lowered
(higher prediction time and higher number of mispredictions). This
effect arises from the variance of the parameters. As we do not model
legibility, the robot can perform deceptive motions (Dragan, Holla-
day, et al. 2014) while exploring the parameter space of the trajecto-
ries. This type of motion, which leads to higher cost under our cost
function in 3.9, will slowly disappear after some iterations. Only the
most legible trajectories remain, as confirmed by the drop in predic-
tion time and the low misprediction rate.

In summary, the optimization algorithm effectively improves
human-robot collaboration by producing motions that are easier
to predict by the subject. By penalizing errors and the joint
robot/human execution time, the robot learns policies that enable
the human to distinguish the robot’s intentions earlier without more
errors.



Experiment B: Pick-and-place

In the second task, the robot reaches for and grasps a single object.
After grasping the object, the robot has to place it inside one of two
boxes located on each side (see Figure 3.6). The 7 subjects are in-
structed to press the button corresponding to the aimed box as early
as possible while avoiding mistakes.

Figure 3.6: Illustration of the pick-
and-place experiment. The robot starts
with an initial trajectory toward the ob-
ject that is identical for both placing lo-
cation. Therefore, users’ guesses dur-
ing the habituation phase is purely ran-
dom.

To improve the task, the subject must predict which side the object
will be moved to and press the corresponding button. This experi-
ment differs from the joint button task because the motions to ap-
proach the object are initially identical for both outcomes, guessing
before that point results in 50% chances of success. As the robot aims
at eliciting an early response from the subject, differentiating the ap-
proach motion is necessary to improve joint coordination. Thus, our
hypothesis is that at the end of the optimization phase, the subject
should be able to predict the robot’s intention before it even grasps
the object.

Results As in the previous experiment, Figure 3.7 summarizes the
results by showing the results for one example subject (top), the av-
erage prediction times over all 7 subjects (middle), and the number
of errors (bottom).

The results for the example subject show that during the habitu-
ation phase, the subject waits for the robot to actually start moving
the object (approx. 14s) towards the box to predict the ultimate goal.
Because the initial trajectories for each box are identical during habit-
uation, guessing before that point results in 50% chances of mistakes.
However when the optimization starts, the two trajectories start dis-
tinguishing themselves and there is co-adaptation between the robot
and the human on the intent of each trajectory. After some trials and
errors, the prediction time of the human drops to a consistent 1.5s,
meaning the trajectories for the left or right box differs in their early
parts. Despite such early decision, this subject has close to 0% of pre-
diction errors. In comparison to the previous task, the improvements
due to the optimization are more pronounced.
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The prediction times have a bimodal distribution. Subjects either
wait until the robot starts transporting the object, or make a predic-
tion early on during the reaching phase. Rather than averaging over
this bimodal distribution data, we compute the ratio of early/late
prediction times, averaged over blocks of 8 trials and all 7 subjects.
The threshold is the average over all the prediction times for one
subject. In the middle graph, we see that the late prediction ratio
decreases from [0.8-1.0] during the habituation phase to <0.05 at the
end of the optimization phase. Furthermore, this early prediction
is not accompanied by an increase in the number of errors, as the
bottom graph shows. Thus, the robot learned behaviors that enabled
subjects to predict the correct box before the grasp was even per-
formed.

Because the robot’s reaching behavior is the same for both boxes
during the habituation phase, subjects can expect a 50% error rate
when pressing the button when the robot is still reaching. The in-
crease in the ratio of late predictions and the decrease of errors dur-
ing the habituation phase may indicate that subjects learn that early
guesses lead to errors, and should thus be avoided.

Discussion During habituation, subjects must wait for the robot to
transport the object before being able to robustly predict its inten-
tion. After optimization however, all subjects are able to predict the
intention of the robot very early on during the reaching phase, when
the robot has not yet grasped the object. Experiment B thus confirms
the observations in Experiment A, that earlier intention recognition
is achieved, but without an increase in errors.

As the results suggest, our method successfully increases the
legibility of the robot motions. By optimizing the weights of the
DMPs, it creates variations of the movements that allows a faster
prediction of the target.

However, one question that arises is are those legible motions uni-
versal, i.e recognizable by any individual that observes them once?
As the variations in the motions are unconstrained, the number of
possible trajectories is infinite which render this hypothesis rather
unlikely. Moreover, as the human brain is very efficient at recogniz-
ing patterns, it is much more likely that the subjects were actually
learning to recognize the specificity of the motion that leads toward
one of the goal.

This question has motivated us to extend our work and to con-
tinue our quest toward universal legibility.



Figure 3.7: Results for Experiment B.
Top) Prediction times of an example
subject during learning. Middle) Ratio
of late prediction times (see threshold
in top plot), averaged over the 7 sub-
jects. Bottom) Number times the incor-
rect button was pushed, averaged over
7 subjects. The start of the optimiza-
tion phase is indicated by the vertical
dashed line.
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Although the answer to our initial question “Can a robot
learn to generate legible motion from user interactions?” is positive,
the resulting trajectories were nevertheless different from those ob-
served in (Dragan and Siddhartha S. Srinivasa 2013). As an example,
Figure 4.1 plots two views of the robot’s trajectory. We clearly see a
substantial upward movement at the beginning of the trajectory for
button 1.

Figure 4.1: Side and top view of gener-
ated trajectories after optimization for a
single subject. Black/dashed: trajectory
for button 1/2 respectively.

Therefore, one question that arises is whether the robot learns to
generate universally legible behavior, or rather idiosyncratic behav-
ior that a human learns to interpret. If we consider again the cyclist
example, presented in the introduction (see Figure 2.4), a universally
legible signal, such as raising the left arm before turning left, would



be immediately understood by people, independently of their origin
or cultural background. On the other hand, an idiosyncratic signal
would be only understood by the cyclist teammates that have agreed
beforehand on the meaning of the said signal.

Similarly, a robot may learn arbitrary but recognizable variations
of the movement, which the human may learn to be predictive of
moving to the left. This idiosyncratic behavior will have to be re-
learned by other humans working with the same robot. In univer-
sally legible behavior, the intention is already understood during the
first interaction(s).

Further anecdotal evidence is that some subjects reported be-
ing able to infer the intention of the robot from differences in the
sound produced by its motors. Differences in sound arise due to the
different velocity profiles of the trajectories for the two buttons. This
is clearly a very different type of legibility from that studied in (Dra-
gan, Holladay, et al. 2014; Dragan and Siddhartha S. Srinivasa 2013;
Zhao et al. 2016). Although this can be seen as another learned id-
iosyncrasy, it also suggests that legibility could be obtained by other
means than only observing spatial variations of trajectories. This idea
is also highlighted in Glasauer’s work (Glasauer et al. 2010) where
they prove that minimum jerk velocity profiles are more legible than
trapezoidal joint velocity one. Combining those elements could lead
to even more legible trajectories.

For this reason, we have designed another set of experiments,
following the same protocol described in Chapter 3 which aims at
avoiding such idiosyncratic behavior, and measuring the effects on
learning legibility.

Learning Legible Motion with a Less Expressive Policy

The overall experimental set-up is the same as in Experiments from
Chapter 3. Therefore, we only explain the differences, which are the
policy representation, and a slightly modified cost function.

Methods

To avoid the idiosyncratic behavior observed with the DMPs, we de-
signed a policy that allows for much less variations. The DMPs were
defined in joint space (7 joints) with 3 basis functions that are varied
per joint, leading to a policy that has ϑ=21 parameters. To reduce
this number, the second policy representation generates trajectories
that pass through a viapoint, which itself is parameterized by only
two parameters, as visualized in Figure 4.2. Therefore, we refer to
this policy as the viapoint policy.

We have limited this study to only the button pressing experiment,
i.e experiment A of Chapter 3.



Chapter 4. Toward Universal Legibility 35

Figure 4.2: Viapoint policy representa-
tion. Top: the trajectory is generated
from the start S to the goal G (the loca-
tion of the button), through a viapoint
whose distance to the line S−−G is de-
termined by the parameter h. The rota-
tion around the x-axis is determined by
α.

The trajectories are generated from a start point S (initial robot
configuration) to an end point G (such that the button is pushed),
which are fixed throughout the experiment. The height of the
parabolic path is defined as a parameter h. The rotation around
the x-axis, parallel to the ground, is defined as the parameter α. We
represent this rotation seen from above. This policy constraints the
generated trajectories for more smoothness. We expect them to re-
semble the ones obtain in Dragan’s work (Dragan, K. C. Lee, et al.
2013). However we do not encode explicit informations about their
legibility. Thus during the exploration of the parameter space some
of the generated trajectories might be really deceptive.

The cost function for the viapoint policy is the same as in Eq. 3.9,
except that the penalty on the jerk is now in task space, not joint
space. As before, the optimization of this cost function takes place
within the space of the policy parameters `, which is now of dimen-
sionality 2 (instead of 21 as with the DMP). We again use 9 subjects.
To avoid any habituation effect from the first experiment we have
chosen new participants.

Results

The main results of the experiment using the viapoint policy are
summarized in Figure 4.5, which has the same format as Figure 3.4.
The complete results for this experiment are shown in the right col-
umn of Figure 4.7 Figure 4.7 allows for a direct comparison of the
two policies.

Discussion

We again observe a drop of the prediction time during optimization.
Similarly to the results obtained with the DMP policy, experiment A,
this creates a drop in the trajectory completion at prediction time
(from 80% to 60%). The number of prediction errors increases dur-
ing the optimization process before stabilizing at the end. The av-
erage number of errors is still sufficiently low, and not significantly
different compared to the end of habituation (p = 0.73), to prove that
the subjects are not simply guessing the next target. The decrease in
prediction time during the habituation is significant (p = 0.005) as
well as the decrease after the optimization (p = 2.1e−5).

Qualitatively, these are thus the same results as in the experiment
with the DMP policy. As for the DMPs, we represent in Figure 4.3
two views of the trajectories. As expected, this policy produces
smoother trajectories to the targets. In this case, the trajectories look



like what we would expect from a legible behavior, i.e an exaggera-
tion on the right for the right target and on the opposite side for the
left one.

Figure 4.3: Side and top view of gener-
ated trajectories after optimization for a
single subject. Black/dashed: trajectory
for button 1/2 respectively.

The higher variance at the end of the optimization compared to
the DMP ones suggests that not all the subjects obtain such legible
behaviors. In Figure 4.4 we represent another example of optimized
trajectories. The trajectories seen from above (top view) look rather
deceptive.

Figure 4.4: Side and top view of gener-
ated trajectories after optimization for
a single subject. Black/dashed: trajec-
tory for button 1/2 respectively. The
generated trajectory seems more decep-
tive when looking at the top view. Yet
trajectories are distinguishable in term
of height as represented by ∆h in side
view.
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Figure 4.5: Results of the experiment
with the viapoint policy (1/2)
Top) Average over all 9 subjects (µ± σ)
of the trajectory completion at predic-
tion time, i.e, the relative amount of tra-
jectory (timewise) observed by the sub-
ject when it presses the button. This
value is calculated using the formula

100(1− Trobot−Tsubject
Trobot

).
Bottom) Normalized Tsubject, averaged
over all 9 subjects and blocks of 8 trials;
average number of failures, i.e. when
different buttons were pushed, aver-
aged over all 9 subjects and blocks of 8

trials. The two graphs show the values
at certain key frames during learning.



Figure 4.6: Results of the reaching ex-
periment with viapoint policy (2/2).
The start of the optimization phase is
indicated by the vertical dashed line.
Top row) Average (µ ± σ) of the robot
button pushing time (Trobot). It varies
little for the DMP policy (left) and even
less for the viapoint policy (right). For
the latter this is to be expected, as the
duration of pressing the button is not
dependent on the parameters of the
policy in which exploration and opti-
mization takes place.
Second row) Average (µ± σ) of the sub-
ject button pushing time Tsubject, over all
9 subjects. Variance is quite high be-
cause some subjects push quickly over-
all, whereas others are more careful.
Third row) Again the average subject
button time, but this time normalized
with respect to the average value of
Tsubject during the last 8 trials of the ha-
bituation for each subject. This reduces
the variance caused by the overall dif-
ferences between subjects.
Bottom row) Number of times the in-
correct button was pushed, averaged
over blocks of 8 trials and all 9 subjects.
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Figure 4.7: Comparison between DMP
and viapoint policies. Graph axis are
similar to Figure 4.5



One hypothesis is that by constraining the trajectories to resem-
ble legible behavior we increase the number of local minima of the
optimization. Consider that the global minima is achieved when the
trajectories meet what we expect a legible motion to be. Because of
the sampling in the parameter space that solution might not be found
during the optimization. Moreover subjects might learn a deceptive
or idiosyncratic motion as they do with the DMP policy. Thus most
of them decrease their prediction time at the end of the optimization.
However the ones with the biggest drop obtain trajectories similar to
those represented in Figure 4.3.

The experiment in the next section will investigate how well tra-
jectories generated by the two different optimized policies (DMP and
viapoint) transfer to novel users.

Transferability of Legibility

Previous experiments verify that robots are able to improve the legi-
bility of their behavior from interactions with humans. One question
that remains is whether the learned legibility do transfer to other ob-
servers. We now present two experiments in which we investigate
whether the adaptations that have been learned during interactions
with one subject also improve the legibility for other subjects. The
first experiment (Experiment C) uses the same protocol both pre-
vious experiments, but starts with trajectories that have been previ-
ously optimized. The second experiment (Experiment D) does not in-
volve optimization, but rather presents several previously optimized
trajectories in a random order. Experiment C is aimed at determin-
ing whether humans can learn to interpret the idiosyncratic motions
of robots, whereas D aims at analyzing which type of trajectories en-
able humans to immediately recognize intentions, without the need
to learn how to interpret them.

Experiment C: Pre-optimized policies

Do subjects learn quicker when starting with policies that have been
optimized previously with another subject?

Method We ran the same experimental protocol with the habituation
and optimization phases, as described in Chapter 3, with 4 novel
subjects each for both policy parameterizations. In contrast to the
optimizations described previously, the initial trajectories are now
trajectories that have been previously optimized for other subjects.
The initial trajectories were not chosen randomly but correspond to
the most legible ones for each parameterization, i.e. the ones that
lead to the biggest drop in term of prediction time.
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Results The results of Experiment C are plotted in Figure 4.8.
Whereas previous experiments showed smaller improvements dur-
ing habituation (7% and 10% for DMP and viapoint respectively) and
large improvements during optimization (a further 20% and 20%),
we here see the inverse. The improvement during habituation is
now 37% and 43% (both p < 1−5), whereas during optimization they
are small and not significant (p = 0.47 and p = 0.52). The complete
results of Experiment C are shown in the right columns of Figure 4.9
and Figure 4.10.

Discussion The results in Figure 4.8 suggest that subjects can
quickly learn to recognize the intentions of the robot from trajec-
tories optimized for another subject, for both the DMP and the via-
point policy. Because the improvement in Tsubject during habituation is
much more pronounced than during the experiments with non pre-
optimized policies, we deduce that these trajectories are indeed more
legible.

From a comparison between Tsubject of the two policies and their
equivalent in Experiment C we observe some interesting behaviors.
First the difference in Tsubject for the DMP on the first eight trials is sig-
nificant (p < 0.03, Mann-Whitney U test) with Tsubject being lower for
the DMP policy. We also note that the subject’s predictions happen
at 70% of the trajectory with the DMP policy and 90% with the via-
point policy and that this difference is significant (p < 0.03, Mann-
Whitney U test). Initial trajectories for the DMP policy are close to
straight line to the target (learned by demonstration). According to
the definition of legibility this suggests that optimized trajectories
might be less legible when shown to novel users without habitua-
tion. However humans adapt very quickly and by the end of the
habituation the optimal time is reached and does not vary through-
out the optimization. Moreover at the end of the habituation the
prediction is performed at 50% of the robot trajectory when subject
are shown optimized trajectories compared to 60% with the straight
lines. We then deduce that optimized trajectories are more legible.
This is however a contradiction with the fact that they started as less
legible. As stated, the definition of legibility from Dragan et al. (Dra-
gan, K. C. Lee, et al. 2013), cannot handle such contradictions because
it does not account for the possibility of habituation. At the end of
the optimization phase the difference between the two policies is not
significant neither in term of time (p = 0.42) nor in term of trajectory
completion at prediction time (p = 0.08).

For the viapoint policy the situation is the exact opposite. During
the first eight trials the difference in Tsubject is not significant (p = 0.23)
neither is the difference in term of trajectory completion (p = 0.41).
Thus optimized trajectories are at least as legible as straight lines
without habituation. However at the end of the optimization there
is a significant difference in term of time (p < 0.03) and therefore in
term of trajectory completion trajectory with a drop of almost 10%
(from 50% to 40%). The trajectories selected for Experiment C were



the most legible one, i.e. the one that lead to the greatest drop in
the subject’s prediction time between habituation and optimization.
This observation supports the hypothesis that the optimization of the
viapoint policy presents some local minima.

Are the viapoint trajectories more legible than the DMPs? For the
DMP based trajectories, when looking at trials 8 to 16, the difference,
in term of prediction time, between the straight lines of the habitua-
tion phase of the non pre-optimized and the already optimized tra-
jectories of Experiment C are not significant(p < 0.03). This means
that after 8 trials of habituation subjects were able to perform simi-
larly to those who observed straight lines to the target. But by the
trials 16 to 24 they perform significantly better. For the viapoint pol-
icy it is sufficient to wait for the trials 8 to 16 to see a significant
improvement in the prediction time. Thus we can conclude that the
viapoint policy requires less habituation trials to perform better than
the two other type of trajectories.

Between DMP and viapoint policies we note, at the end of the op-
timization, a difference in term of trajectory completion (50% with
the DMP trajectories versus 40% with the viapoint ones). However
this difference can be explained by the fact that Trobot is slightly differ-
ent between the two policies. In fact, in term only of prediction time,
both DMP and viapoint policies perform similarly (they both con-
verge to 3.5s). Therefore, a direct comparison between them in term
of prediction time might not be suitable as the subject’s prediction
time depends also on the speed of the movement of the robot.
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Figure 4.8: Box plots for the nor-
malized prediction times, when start-
ing with previously optimized trajecto-
ries from the beginning, averaged over
all subjects, and blocks of 8 trials. Top)
DMP based trajectories. Bottom) via-
point trajectories.



Figure 4.9: Comparison between nor-
mal and pre-optimized conditions for
the DMP policy.
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Figure 4.10: Comparison between nor-
mal and pre-optimized conditions for
the viapoint policy.



Experiment D: Cold start

The aim of this experiment is to determine if subjects can imme-
diately recognize the intention of the robot from trajectories opti-
mized for other subjects. Therefore, we use neither a habituation nor
optimization phases for one particular trajectory, but rather present
different previously optimized trajectories only a few times. A lim-
ited number of presentations is necessary, because the human may
learn to interpret potential idiosyncrasies of the movements, which
we want to avoid in this experiment.

Method For both buttons, five types of trajectories are presented:

• trajectories generated by two optimized DMP policies that lead
to the largest reduction in Tsubject. We refer to them as DMP1 and
DMP2

• as above but with two viapoint policies noted VP1 and VP2

• straight line minimum-jerk trajectories (S) with end-effector point-
ing toward the button, as a baseline.

Run 1 2 3 4 5 6 7 8 9 10

Targets R R B R B B B R B R
Types DMP2 S S DMP1 VP1 VP2 DMP1 VP2 DMP2 VP1

Table 4.1: Illustration of one random se-
quence for experiment D. A complete
run comprises a repetition of four such
random sequences. This makes a total
of 40 trials.

The order of the buttons (denoted R and B) and trajectory types
is random within a sequence of 10 trials. The sequence is repeated 4

times which lead to a complete run comprising 40 trials. An exam-
ple of a random sequence is presented in Table 4.1. Zhao et al. (2016)
show that straight line minimum-jerk trajectories, with end-effector
pointing toward the target, are the most legible type of motion for
a high number of possible targets. By comparing the DMPs and the
viapoint based trajectories to this kind of straight lines, we hypoth-
esize that for the two-target case scenario the other types of trajec-
tories convey more informations and thus are more legible. For this
experiment, 8 novel subjects were used.

Results The results of Experiment D are summarized in Figure 4.11.
The top graph, depicts Tsubject for all types of trajectories. Each bar rep-
resents the average over all users and buttons. Differences between
buttons were not significant (p > 0.33, Wilcoxon signed-rank test),
and thus pooled. Differences between the DMP and the two other
type of trajectories are significant (p < 0.03, Welch’s t-test). However
the difference between the viapoint policy and the straight line is not
significant (p = 0.21). The bottom graph depicts the same results for
the number of errors. The differences between the viapoint policy
and the two other type of trajectories is significant (p < 0.03, Welch’s
t-test). However there is no significant difference between the DMP
and the straight lines (p = 0.33).

Figure 4.11: Times (top graph) and pre-
diction errors (bottom graph) for the
three type of trajectories.
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Discussion The results in Figure 4.11 are in accordance with the ob-
servations made in Experiment C. In term of prediction time all tra-
jectories perform similarly. We recall that Trobot differs between the
DMP and the viapoint policies. Thus comparing them only on time
might be biased. However there is no ambiguity when looking at
errors. The number of errors for the DMP policy is similar to that
of the straight trajectory, but the number of errors for the viapoint
policy is far lower. This means that subjects are able to recognize the
intention of the robot from the viapoint policy much more robustly
than from the two other policies. Because subjects are able to do so
immediately without habituation or previous training, this indicates
that the viapoint policy is more legible than the two other policies.

From those results we conclude that reusing optimized trajec-
tory on novel subjects allows for a faster learning of the robot’s sense
of legibility. Even with DMP based trajectories, where the robot’s
motion can be considered as idiosyncratic, subject were able to rec-
ognize faster the robot’s intention. Moreover only the habituation
phase is sufficient to reach the performances of the initial subjects
for whom trajectories have been optimized. After habituation, no
further improvement is achieved. The legibility of previously op-
timized trajectories could not be further increased by further opti-
mization with another user. Another conclusion is that the viapoint
policy is significantly more legible than the two other type of trajec-
tories as it requires less habituation and leads to a lower error rate
when presented without habituation. Although we cannot conclude
that the viapoint trajectory is indeed universally legible, it is a first
step toward generating more universally legible motion.

This chapter concludes our study on the legibility of robotic mo-
tions and the first part of the thesis. By incorporating more legibility
in the robot motion we are aiming at reducing the cognitive load of
the human coworker during the interaction. When uncertain about
the robot’s intention, the human might perform incorrect support ac-
tions which creates stressing situations and increases the global time
of a complete task. Therefore, improving the legibility of the robotic
motions impact the productivity of the human-robot team as well as
the overall human comfort.

Obviously, there are also other factors that impact the comfort
of the human coworker. As the robot interact physically with the
human, its motions and behaviors could be harmful at a physical
level. This physical aspect of the interaction is the motivation behind
the second part of this thesis. In the next chapters, we will introduce
and detail our work on the ergonomics of human-robot interaction.



5
Introduction to Physical Ergonomics

Figure 5.1: Cello players in an orches-
tra. Image downloaded from pixabay.

com.

As we have seen in the previous chapters of the thesis, the legi-
bility of the robot motions is an important factor to improve for an
efficient human-robot team. Improving the legibility of the robot mo-
tions reduces the human cognitive load and allows for a faster and
smoother interaction.

However, the comfort of the human coworker not just concerns
psychological effects but sometimes reduces to more physical con-
straints. Due to its large number of degrees of freedom, the human
body is a wonderful machine that allows us to accomplish a single
task in very different manners. Observe two people performing the
same task, you will most probably notice differences in the way they
accomplish them. Take as an example the two ladies in the front row
in Figure 5.1. Although they are playing the same score, their pos-
tures are actually different. The main problem with this multitude
of possible postures is that not all of them are, in fact, adapted to
perform the task. This is truly an issue for autodidact musicians that
were never taught the importance of a good posture during the prac-
tice of a musical instrument. It might have a strong impact on their
capacity to play and the sound they produce. In the worst cases, it
can even lead to sever injuries (Brockman et al. 1992; Medoff 1999;
Rietveld 2013).

This clearly raises concerns on the self-awareness about one’s pos-
ture and is not restricted to music players. Physical ergonomics is a
key issue as 30% of the European workers suffer from chronic lower
back pain, leading to enormous social and economic costs1. Most 1 According to the European Agency

for Safety and Health at Work https:

//osha.europa.eu/en.
industrial companies have made a lot of effort to improve the er-
gonomics of the workstations (Rosecrance et al. 2000; Wagenaar et
al. 1994). The automotive industry is probably one of the sector that
have invested the more. Many automotive manufacturing companies
use existing health and safety standards, such as OSHA, to develop
their own set of guidelines (Desa et al. 2013). Evaluating the results
and benefits of the proposed solutions is, however, a very long and
tedious process (Fredriksson et al. 2001).

pixabay.com
pixabay.com
https://osha.europa.eu/en
https://osha.europa.eu/en
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Despite the many efforts “Musculoskeletal disorders" (MSDs) are
the single largest category of work-related diseases in many indus-
trial countries (Punnett et al. 2004). Over the years, assessment tech-
niques have been developed to evaluate worker’s body posture at
their workstation (Takala et al. 2010). Methods for postural assess-
ment can be classified according to the accuracy of data collection
and the degree of intrusion caused by the required sensors to collect
them (Beek et al. 1998; Wells et al. 1997). Observational methods,
based on observations of the worker, are straightforward to use and
applicable to a large variety of situations (Hignett et al. 2000; Karhu
et al. 1977; Kee et al. 2001). Their accuracy is however limited as they
are mainly developed for paper-based observations without the need
of specific tools or sensors. With the development of non-intrusive
human tracking system, like depth sensors, automatic postural as-
sessment based on observational methods start to emerge (Diego-
Mas et al. 2013). The development of such techniques will have a
significant impact in industry by drastically reducing the cost of er-
gonomic solutions. Moreover, it will also benefit fields like human-
robot interaction by allowing a more thorough analysis of the human
coworker.

In human-robot interaction safety and potential hazards is a
central aspect of the interaction (De Santis et al. 2008). Humans
and robots are starting to work in shared environments allowing
an increasing diversity of tasks they can accomplish together. As
we are developing robots to assist workers in industry, we have here
a good opportunity to increase the well-being at work, by provid-
ing solutions to prevent work related diseases and injuries. Some
efforts have already been made to improve acceptability by includ-
ing social behaviors, like proxemics2 (Koay et al. 2014; Mitsunaga 2 Proxemics is defined as physical and

psychological distancing from others
(Edward Twitchell Hall 1966)

et al. 2008; Takayama and Pantofaru 2009). Most advanced robotic
planners combine multiple notions, including safety and social ac-
ceptance, to create human-aware robotic responses (Sisbot, Luis F.
Marin-Urias, et al. 2010). In contrast to a human-human interaction,
where both parties try to maximize their own comfort, sometimes at
the expense of the other, an assistive robot should always maximize
the comfort of its coworker.

Consider, as an example, a situation where the robot has to hand-
over an object. By carefully planning the motion, we ensure that
the trajectory is safe, i.e the robot does not enter in contact with the
human while moving toward its final position. Yet, is it enough to
consider it as a safe interaction? Probably not if you look at the left
picture of Figure 5.2.



Figure 5.2: Difference between two in-
teractions. An interaction that might
hurt the receiver over the long term (left
picture) opposed to a safer interaction
(right picture)

The scenario represented in this image is clearly uncomfortable for
the worker who has to overextend his wrist to insert the piece in the
object. If this happens only once, it could be acceptable. Repetition
of this situation, however, can be hazardous3. The right image of

3 Evidence suggests that there may
be interdependence between force and
repetition with respect to MSD risk.
Repetition seems to result in modest in-
creases in risk for low-force tasks but
rapid increases in risk for high-force
tasks. This interaction may be repre-
sentative of a fatigue failure process in
affected tissues (Gallagher et al. 2013)

Figure 5.2 shows, on the other hand, an interaction that seems more
ergonomic and more comfortable for the worker.

When the robot passes, or presents, an object to the worker the
final object pose influences the way he or she grasps it (Kölsch et al.
2003; Rosenbaum et al. 1996), and by extension, the comfort of the
posture at receiving time. Improving this posture requires analyzing
how the human receiver grasps a specific object, and orient it to im-
prove the receiving posture (Aleotti et al. 2012). Another way is to
define a cost function that captures all possible hand-over configu-
rations which allows to find the optimal comfortable solution. Com-
mon cost functions comprise safety, visibility, and postural comfort
(Sisbot, Luis F. Marin-Urias, et al. 2010) or naturalness & appropri-
ateness (Cakmak, Siddhartha S Srinivasa, et al. 2011).

Reasoning in terms of human capacities to solve a task or
plan safe human motions requires the use of a realistic human model.
Most researches make use of a generic human model such as the one
included in OpenRAVE4 (Mainprice et al. 2010; Sisbot and Alami 4 OpenRAVE provides an environment

for testing, developing, and deploy-
ing motion planning algorithms in real-
world robotics applications (Diankov et
al. 2008).

2012). The main drawback of this approach is that it fully ignores
biological differences between people that might limit the proposed
solutions. Figure 5.3 shows how the result of a simple handover can
impact the posture at receiving time if planned for a non adapted
human model.

Only a few recent studies propose to consider biomechanical mod-
els adapted to the current user (Bestick et al. 2015; Suay et al. 2015).
Creation of those model has been greatly simplified with the devel-
opment of efficient skeleton tracking solutions based either on depth
sensor data, such as a Kinect (Papadopoulos et al. 2014), or more
recently, directly from a simple RGB flux (Cao et al. 2017).
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Figure 5.3: Representation of how the
difference between people might im-
pact the planned solution for handing
over an object.
Top drawing) A solution to hand over
an object where the robot starts from a
position S and deliver the object at po-
sition G.
Bottom drawing) The same solution ap-
plied to a smaller model. Even by fully
extending its arm the receiver is unable
to grasps the object.

One question is, how can we include physical ergonomics in the inter-
action?

There are multiple levels where the ergonomics could leverage
the interaction. One aspect, for example, is to plan the robot motions
for maximum ergonomics on the human side as it has been already
addressed in the literature. Most researches optimize the robot’s
placement and behaviors with respect to specific cost functions that
acknowledge human needs (Ikuta et al. 2003; Sisbot, Luis F Marin-
Urias, et al. 2007; Sisbot, Luis F. Marin-Urias, et al. 2010). However,
many do not make use of the extensive amount of available cost
functions provided by the ergonomics field. Most of them also reason
on a generic human model, with the issue illustrated in Figure 5.3.
For this reason, we have decided to incorporate simple cost functions
from the ergonomics field to plan the robot motion and actions while
making use of a personalized human model for each of our users.

In Chapter 6 we present an optimization algorithm to plan the
robot motion for maximum physical ergonomics on the human side,
while considering constraints linked to the task at hand5. This ap- 5 This work is published in the Interna-

tional Conference on Intelligent Robots
and Systems (IROS 2017) (Busch,
Maeda, Mollard, et al. 2017)

proach also tries to maximize the acceptance of the robotic system by
introducing notions derived from proxemics (Mitsunaga et al. 2008),
subject laterality, and visibility (Pandey et al. 2014). Other measures
such as legibility could also be considered, as described in the previ-
ous Chapters, but here we focus more on physical comfort.



Our idea is to find an optimal human body posture to solve a task
considering three important aspects of the interaction that are safety,
acceptability and task constraints as illustrated in Figure 5.4. Those
three factors were chosen according to their importance in the ex-
isting literature and are very similar to previous researches in the
human-robot interaction field (Cakmak, Siddhartha S Srinivasa, et
al. 2011; Sisbot and Alami 2012). By first extracting a personalized
human model from the Kinect skeleton of the user, we optimize the
human posture to fulfill a task under those defined constraints.

Figure 5.4: Illustration of the trade off
between safety, acceptability and task con-
straints. The set of optimal postures lies
at the intersection between the three.
Each constraint can be seen as an inde-
pendent cost function. Optimizing for
the three of them is performed by op-
timizing the weighted sum of the cost
functions.

The key component of our solution is the physical ergonomic cost
function. We label this cost under the safety category as it drives
the human body away from postures that present a risk of MSDs.
The ergonomics literature introduces a large variety of assessment
techniques. We needed a score function that provides a quantitative
measure from joint angles of the human body. Therefore, after a
careful review of available choices we have selected the Rapid Entire
Body Assessment (REBA) method6 (Hignett et al. 2000). As we will

6 Although the REBA method is a good
fit, other techniques could have been
also selected. In our solution, the
ergonomics component is sufficiently
modular to be replaced by any other
technique to fit specific needs.

see in Chapter 6 we still had to adapt a bit the REBA cost which was
originally developed for pen and paper assessment of a worker’s
posture.

Once the optimal human body posture is selected, we derive a
robot motion that would lead the human coworker toward this opti-
mal posture. Our hypothesis, verified in this work, is that the user
will intuitively behave similarly to the predictions made by our algo-
rithm. In the case of handing over objects or joint manipulation, the
robot can induce the human location and posture by planning the
positioning of the object within the shared workspace.

One could wonder why did we choose such a model-based ap-
proach after considering a model-free method to optimize for legibil-
ity? Using model-free trials and errors, similar to the way we have
handled legibility, would have consisted of relying on the subject’s
conscious feedback, e.g. asking him or her where the robot should
hand-over an object or place it on a table (Cakmak, Siddhartha S
Srinivasa, et al. 2011). Although this approach is interesting to un-
derstand why do people prefer to interact with the robot in some
specific ways, we believe it is not sufficient to ensure that the inter-
action will remain safe.

As we have stated before, MSDs are often due to a repetition of
a wrong posture over a long period of time. When you ask for a
conscious subject’s feedback people often tend to provide an instan-
taneous response that represent their feelings on the moment. The
problem is that a given posture could let the person feel perfectly
safe but lead to MSDs if repeated. As an example, think about the
way you sit in front of your computer. You know you are probably
doing it wrong, but the lack of pain or discomfort do not forces you
to reconsider it. In worst cases there might even be a conflict between
people preferences and ergonomic recommendations as illustrated in
the automobile seat designer’s dilemma7 (Kolich 2003)

7 Reed et al. (1991) described the auto-
mobile seat designer’s dilemma as the need
for a balance between prescribing a
physiologically appropriate seated pos-
ture and accommodating a driver in a
preferred posture. They reasoned that
prescribed postures sometimes com-
promise long-term comfort.
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Because of this, we believe a model-based approach to be more ap-
propriate in this case. Moreover, as the only differences between
different users appear in their morphologies, a parameterized model
can overcome this effect.

Is only planning the motions enough to achieve an ergonomic
human-robot interaction?

We believe the choices of actions and the sequences in which they
are performed also impact the ergonomics. Take as an example the
situation where both the robot and the human can lift an heavy box.
This is a burdensome task that does not require any specific skills.
Such a task should automatically be assigned to the robot, relieving
the human from an excessive physical overload.

Task allocation and coordination between humans and robots is
an extensively studied topic in HRI (Johannsmeier et al. 2017; Tou-
ssaint and Lopes 2016; Tsarouchi et al. 2016). A strong emphasis is
made on the communication with the human partner and negotiat-
ing the planned sequence of action (Clodic et al. 2009; Foster et al.
2008) Johannsmeier et al. (2017) proposes a framework to assign a
full sequence of atomic tasks to a human-robot team based on the
capabilities of each agents. The geometric part of the tasks is, how-
ever, known in advance and supposed to be immutable, i.e objects
arrive on conveyors without variability in their locations. On the
other hand, Toussaint and Lopes (2016) introduces a Monte Carlo
Tree Search (MCTS)8 approach to solve Task and Motion Planning 8 Monte Carlo Tree Search (MCTS) is a

method for making optimal decisions
in artificial intelligence (AI) problems,
typically move planning in combinato-
rial games. MCTS combines the gen-
erality of random simulation with the
precision of tree search (Browne et al.
2012).

(TAMP) problems simultaneously(Lozano-Pérez et al. 2014; Plaku et
al. 2010; Srivastava et al. 2014). This approach allows to define cost
functions based on the geometry of the scene, such as velocity and
contact constraints, to adapt to changing environment when plan-
ning the task allocation. For example, if the next task requires to use
the screwdriver but this one is too far for the human to directly grasp
it, the robot should go pick up the screwdriver and hand it over to
the human.

In Chapter 7, we present our work on ergonomic task allocation9. 9 At the time of the thesis writing this
work was submitted to the Interna-
tional Conference on Robotics and Au-
tomation (ICRA 2018) and still under
review (Busch, Toussaint, et al. 2018)

We have based our work on the planning solution proposed by Tous-
saint and Lopes (2016). With that approach we can integrate the cost
functions introduced in Chapter 6 in the optimization process. Do-
ing so allows us to plan the actions, not only considering capabilities
of both the robot and human agents and geometric feasibility of the
task, but also the ergonomics of the interaction.
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We took the approach that ergonomic interaction can be achieved
by optimizing the robot motion with cost functions that capture the
needs of the human coworker. To capture the ergonomic cost, we rely
on a well-accepted measure in the industry called the Rapid Entire
Body Assessment technique (Hignett et al. 2000). In Section 6.2 we
give a detailed explanation on how to assess a body posture using the
REBA method. While there exist many other assessment technique
that could have been potential candidates for our method, we have
chosen to use the REBA metric due to its generality and the provision
of a quantitative assessment.

As we have seen in the introduction, personalized human model
is also an important feature to consider. Therefore, the first step of
our solution is to generate a personalized model as described in Sec-
tion 6.1. In Section 6.3 and 6.4 we detail the different cost function we
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have introduced in the optimization and the implementation details
we had to consider respectively.

Finally, we conclude this work with a user study on an insertion
task with 40 participants where we prove the benefits of including
ergonomics in the interaction. Both qualitative results, from ques-
tions asked to the participants, and quantitative results, from the
assessment of their recorded posture during the interaction, show
significant improvements.

Personalized Human Model

Reasoning in terms of human kinematics requires the use of a per-
sonalized human model. In order to evaluate the risk associated
with a given posture, this model should provide joint values from
pose of body segments. To this end, we create a personalized human
model as a URDF1 with 32 degrees of freedom (DOF) by calculating

1 The Universal Robotic Description
Format (URDF) is an XML file format
used in ROS to describe all elements of
a robot (Garage 2017).

the length of each body segments on the observed subject’s skeleton
from a Kinect.

(a) Kinect skeleton (b) Animated model

Figure 6.1: Images of the personalized
human model.
Left) The Kinect skeleton on which our
model is based. Image taken from mi-
crosoft website.
Right) A view of our model animated
in Rviz.

This model can be used ofline to plan the robot motion as detailed
in Section 6.3 or online to track the subject and automatically assess
his or her current posture.

Rapid Entire Body Assessment (REBA)

Automatic postural assessment, based on observational methods, has
started growing in interest with the development of cheap and easy
to use human tracking systems (Li et al. 1999). Although the REBA
technique has been initially developed for pen-paper observations
(Hignett et al. 2000), the fact that it handles static as well as dynamic
postures and that it relies on quantitative values makes it suitable for
an automatic assessment. It describes ergonomic preferences with a
table as follows. First, a part table assigns a score to each parts of
the body (trunk, neck, upper arms, . . . ), based on their inclinations
at the time of the assessment. Then, an overall score is calculated
from correspondence tables that take into account the importance of
the body segment. Indeed, a score of 3 for the trunk represents a
greater risk than the same score for the upper arm. Details of the

https://msdn.microsoft.com/en-us/library/jj131025.aspx
https://msdn.microsoft.com/en-us/library/jj131025.aspx


calculation are given in the Appendix A. This assessment technique
is the main component of our algorithm for postural optimization
detailed in Section 6.3.

Postural Optimization

To respect the three main aspects of interaction, that are safety, ac-
ceptability, and task constraints, we define several cost functions and
constraints to find an optimal body posture during the interaction.
In the following sections we detail, for each aspect, the associated
cost function or constraint.

Safety and Comfort

Human safety is a central piece of the interaction. In term of body
posture, safety corresponds to minimizing the risk of MSDs. To
achieve this we find the body posture that minimizes the score re-
turned by the REBA assessment technique as detailed in Section 6.2.

With our work we want to adopt such meaningful industrial stan-
dards, but make them applicable in our optimization algorithm. This
requires us to propose a differentiable version of the REBA cost func-
tion, as described in the following.

Differentiable REBA (dREBA) In its original formulation, the REBA
score is a stepwise linear function. We propose to fit a differentiable
model to the REBA score, dREBA, and use this as cost function in
the LGP formulation. We model dREBA as a sum of weighted poly-
nomial functions,

dREBA(q, t) = δpayload +
n

∑
i=1

wiQi(qi, t) , (6.1)

where n is the number of joints considered in the REBA techniques
and Qi(qi, t) is a 2nd order polynomial of the joint i as a function of
the joint value qi at time t. First, the coefficients of each polynomial
Qi(qi, t) are calculated to minimize the squared error to the the part
tables of the original REBA score table, for each joint separately. Then,
the weights wi are learned from the total REBA score, including the
corresponding tables. For this, the squared error of our surrogate and
the original REBA score is minimized on a set of sample body con-
figuration: We define a set of random poses, ensuring each class of
the original REBA cost (from 1 to 10) are evenly represented.

Computing the gradients of the fitted dREBA cost function (6.1) is
straightforward,

∇qi dREBA(q, t) = wi∇qi Qi(qi, t) . (6.2)

Table 6.1 shows the root mean-square error (RMSE, bottom row)
of the dREBA approximation for each of the 10 REBA classes (upper
row). As we can see, the RMSE is relatively high for classes of high
REBA cost but acceptable for those of low REBA cost.
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1 2 3 4 5 6 7 8 9 10

0.72 0.91 0.86 1.08 1.02 1.72 1.86 2.18 2.18 1.50

Table 6.1: RMSE for each REBA classes

In our experiments, we use dREBA to enable optimization of the
REBA score. However, as the original REBA score is the accepted
standard we will report all the scores with respect to the original
REBA score.

Payload cost calculation The term δpayload in (6.1) corresponds to the
cost for carrying an object. Although convenient for pen and paper
assessment, as it is simpler to work with integer values, the func-
tion of (A.1) from the original REBA calculation means that carrying
objects lighter than 5kg is costless and transitions are sharp. As we
are working in the continuous domain, we find it more suitable to
also consider a continuous function to represent the payload coast.
Therefore, we propose the following linear cost term for load,

δpayload =
load
ωload

, (6.3)

where ωload = 5kg. The function defined in (6.3) is strictly equivalent
to the original calculation in (A.1) at the boundaries fixed by the
REBA method but has the advantages to set a cost even for light
weight objects.

Task constraints

For some tasks, the pose of a specific body part, like the hand, is
constrained to a specific location. For example when we use a tool
our hand is tied to it, which itself is linked to the object we are acting
upon. This part of the algorithm is the only specific part that needs
to be specified for each task. Most common task constraints would
be to set parts of the worker’s body to a certain pose.

Considering the forward kinematic of our human model FK, the
pose in Cartesian space of body part i is represented as FKi. Con-
straining a body part to a certain location in space is equivalent to
minimizing the distance between the forward kinematic and the de-
sired pose FKdes

i . This distance is expressed as two subcomponents,
one for the position as Euclidean distance and one for the orienta-
tion as distance between two quaternions. The distance between two
quaternions is defined as (Q1, Q2) = 1 − 〈Q1, Q2〉2. Constraining
multiple body parts is performed by summation of the distances,

Ctask(FK, FKdes) = ∑
i
(‖FKi,pos − FKdes

i,pos‖

+ k(1− 〈FKi,rot, FKdes
i,rot〉2)). (6.4)



Because position and orientation distances do not share the same
unit, it requires the addition of a scaling factor k ∈ R. In practice, we
have set k ≈ π. As the quaternion distance varies between 0 and 1,
this then corresponds to the distance between the two angles traveled
on the unit circle. We also note that FKdes might be expressed with
respect to the object frame. This is particularly interesting when the
object is free to move in space and its pose is part of the optimization.

Acceptability

The concept of acceptability is not easy to define. It is usually divided
into social acceptability: How does the society perceive robotic systems?,
and practical acceptability: How do people perceive the robot when inter-
acting with it? (Nielsen 1994). In this study we focus on the latter.
We incorporate visibility, proxemics and user’s laterality (right or
left-handed) in our algorithm in order for the worker to feel at ease
during the interaction.

Visibility It is an important notion to consider. When the robot
moves an object, it should always do so in the worker’s field of view.
Otherwise, it might surprise the user. We have put the visibility no-
tion under acceptability although it does not uniquely belong to this
category. For example, a non trained worker would most probably
look at the object he is acting upon in order to fulfill his task (task con-
straints). Such as novices in computers look at their keyboard when
typing. Another one might get hurt if he uses some tools and cannot
visually verify the results of his actions (safety).

To optimize for visibility, the model’s head pose is directly linked
to the pose of the object Xobj acted upon. Pose of the object can be
considered as fixed, attached to the model’s hand by a predefined
transformation or set as a variable of the optimization. We denote
the sight vector coming from the head as ~Hx, H corresponding to
the forward kinematic of the head FKhead. We consider that this
vector originates from the center of the head and is parallel to the
ground when the head is straight. The visibility cost corresponds
to the angle between the vector from the center of the head to the
object ~XobjH and ~Hx. It is calculated using the dot product between
them as arccos(~Hx · ~Xobj H). This way we ensure that the object is
approximately at the center of the vision cone when this cost is close
to 0.

For some objects, the orientation also matters. For example, the
handle of a tool should be directed toward the user to ease the grasp-
ing. To represent this we consider a feature vector ~vobj that need to
be aligned with the directional vector of the head ~Hx. At the mo-
ment, this vector is predefined for each object used in the experi-
ments. The corresponding cost is also defined by the dot product
arccos(~Hx ·~vobj). The final cost for visibility corresponds to the sum
of the two dot products,
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Cvisibility(FKHead, Xobj) = arccos(~Hx · ~XobjH)

+ arccos(~Hx · ~vobj). (6.5)

Proxemics People have special concerns about their personal space
either in terms of intimacy and safety. We consider proxemics to
address such concerns. Close interaction like handing-over an object
would be socially unacceptable and create uncomfortable situations
if it happens too close to the worker, especially for non-trained ones.
In our algorithm we have added the proxemics notion as a constraint
to ensure that the optimized posture will not violate the worker’s
intimate space. The proxemics constraint corresponds to the minimal
distance from the human waist to the object. Only planar distance (x
and y coordinates) are here constrained. This limit correspond to the
boundary of the subject’s intimate space, i.e 0.45m (Edward T. Hall
1963),

XObj ∈ proxemics_constraints. (6.6)

Laterality Every worker is unique. Some are right-handed, other
left-handed. Therefore, the model should also take into account this
specificity. We leave the possibility to select the worker’s laterality.
This impacts which hand is constrained to act upon an object.

Algorithm for postural optimization

Finally, we group all the previous cost functions and constraints (6.1-
6.5) to define a multi-criterion optimization, whose pseudocode is
detailed in algorithm 1, for optimizing the human body posture
while solving a task. Our formalism is very generic and consid-
ers many tasks beyond the ones presented in this study. The task
constraint function and its parameters are the parts that have to be
redefined depending on the specific task to solve.

The final cost function is a weighted sum of the different ele-
ments, some of them with different units for which we need different
weights wi ∈ R. This weights will most probably be task dependent.
For example, in some industrial tasks, visibility might be a critical as-
pect. In this case increasing the weight that account for visibility will
lead to the desired behavior. The outputs of the algorithm qopt and
H popt correspond to the optimal human posture in joint space and
the optimal object pose with respect to the human reference frame
respectively.



Algorithm 1: Postural Optimization Al-
gorithm

1: procedure optimal_body_posture(laterality, w, FKdes,
obj_do f , HXobj)

2: model_laterality← laterality
3: q← random model joint values
4: p← []

5: if obj_do f is “fixed" then
6: p←H Xobj

7: else if obj_do f is “position" then
8: p← random position
9: else if obj_do f is “orientation" then

10: p← random orientation
11: else if obj_do f is “full" then
12: p← random pose

13: f (q, p) = w1 Cposture(q)
+w2 Ctask(FK(q), FKdes)

+w3 Cvisibility(FKHead(q), p)
14: qopt,H popt ← min f (q, p)

subject to p ∈ proxemics constraints
15: return qopt, H popt

Implementation Details

In this section we define the implementation choices we have made
to track the human body to automatically assess the worker’s posture
and to optimize the body posture using the optimization defined in
Section 6.3.

Human tracking and automatic assessment

While during the calibration of the model the environment can be set
up such that the human can stand directly in front the camera, dur-
ing the execution, we found that the presence of the robot, constant
occlusions, and space constraints make it difficult to reliably assess
the REBA score using the same camera.

Therefore, at runtime we opted to track the human using opti-
cal markers. Each subject has been equipped with a suit covered by
OptiTrack markers to track the main body segments (head, hands, el-
bows, torso and waist). The model’s frames are recorded during the
whole interaction. To obtain the model joint values we compute its
inverse kinematic on the recorded data. As the legs are not tracked,
we set them in rest position, i.e. with joint values leading to the
minimal REBA score.

Figure 6.2: Optitrack suit for human
tracking. The suit tracks the Cartesian
location of the waist, trunk, head and
both shoulder, elbows and wrists. To
obtain the q vector of the model we per-
form an inverse kinematic.

The waist frame is the most important frame of the OptiTrack suit.
It corresponds to the model base frame. We also use it to express the
position and orientation of the subject in the robot workspace.
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Finally, we have adapted the protocol for calculating the REBA
score, detailed in Section 6.2, for an automatic calculation. This allow
us to record the subjects’ postures and to provide quantitative results,
based on their REBA score, during the user study.

Optimization of the cost functions

To minimize the costs defined in Algorithm 1 we use a simple gra-
dient descent algorithm from scipy library. This is sufficient as we
consider only static postures and not trajectories2.

2 This approach was the one considered
in (Busch, Maeda, Mollard, et al. 2017).
In Chapter 7 we will see how we have
integrated the cost functions detailed in
Section 6.3 in a more sophisticated mo-
tion planner in order to also account for
trajectories.From human to robot space

The solution provided by Algorithm 1 corresponds to the optimal
body posture in joint space, qopt and the optimal object pose H popt in
the human space. We must now generate a robot trajectory that posi-
tions and orients the object in its optimal location H popt such that the
human is in the optimal posture qopt. The relation between qopt and
H popt is defined as the forward kinematic FK. The robot trajectory
can be designed by expressing the pose of the object w.r.t the robot’s
reference frame, R popt. To this end, at runtime we locate the current
position of the human w.r.t the robot’s frame using, for example, op-
tical markers or depth cameras to compute a transformation RTH .
This process is illustrated in the left part of Figure 6.3.

Transformed into the robot’s space, the optimized solution repre-
sents the optimal posture for the human to interact with the robot.
For simplicity, take the case where R popt needs to be satisfied only at
the end of the interaction (e.g. in handover) and the robot starts from
a pre-defined home position R pinit. Depending on the location of the
human w.r.t. the robot, and the degree of redundancy of the robot,
two situations are possible. If the final object position is within the
workspace of the robot, many possible robot trajectories that lead to
the satisfaction of R popt can be designed. Conversely, if the final ob-
ject position is outside the workspace of the robot, no trajectory can
be generated.

To account for both cases and quickly generate a trajectory, we
solve a motion planning problem where the initial and final end-
effector positions of the robot are connected by a straight line (in
Cartesian space), as an initial guess. The orientation of the end-
effector is interpolated by slerp between the initial and final poses. If
an IK solution on this straight trajectory is not found, we use stochas-
tic optimization to slightly perturb the final desired position of the
end-effector and also to reshape the straight line to search for a valid
robot’s IK trajectory 3. Perturbing the final desired position of the 3 details of this method can be found in

(Maeda et al. 2016)end-effector will make the exact reproduction of R popt and force the
human model to deviate from its optimal posture qopt. Thus, we pe-
nalize deviations from the original desired location to find a compro-
mise between the optimal posture of the human and a kinematically
feasible robot trajectory. This process is illustrated in the right part
of Figure 6.3.



Figure 6.3: Illustration of the trajectory
generation.
Left) finding the desired object pose in
Cartesian space w.r.t. the robot’s ref-
erence frame R popt given the solution
of the ergonomic optimization qopt and
H popt.
Right) a straight trajectory is used as an
initial guess to bring the object from the
robot’s home position to the handover
position. If a solution is not possible,
stochastic optimization is used to opti-
mize the trajectory.

User Study

We apply the postural optimization on an experiment with real users
interacting with our Baxter torso-humanoid robot. Two points are
tested: Are the postures generated with our solution perceived better than
other types of postures? and Does the optimal robot’s behavior leads the
real user to a safer posture?

With the object illustrated in Figure 6.4 we mimic an industrial
scenario where the robot helps the worker by positioning and ori-
enting an object in which the worker has to insert specific shapes.
In total five shapes were considered, located on the blue side of the
ball. Name of the shape to insert was written on the robot’s screen.
Between each insertion the robot was sent back to a neutral pose to
let the user prepare the next shape.

We have conducted an extensive user study with 39 participants
(18 females and 21 males, 2 left-handed, aged 35 ± 11.26). Before
the experiment, subjects were asked to rate their experience with
robotic systems on a scale from 1 (no experience) to 5 (daily usage).
Result is 2.18± 1.27. Three robot’s behaviors have been compared.
We refer to them as fixed, relative and optimized conditions. Each
participant has been presented a sequence of two behaviors from the
set of all permutations. Each run of a behavior is composed by the
five shapes to insert in a random sequence. Behaviors are detailed in
the following paragraphs:

Fixed In this behavior the robot does not take into account the
worker position and deliver the object to a fixed pose. We have used
this behavior as a baseline.

Relative Research from ergonomics tells us that handing-over an ob-
ject should happen at torso height at two-third of the receiver’s arm
maximum elongation (Granjean 1969; Kölsch et al. 2003). For ori-
entation, we constrained the insertion hole to face the user. At exe-
cution, the user’s torso frame is tracked and the pose of the object
on the reference frame of the robot is computed using the required
homogeneous transformations.

Optimized Using the optimization from Sec. 6.3 we plan the user’s
body posture to receive the object and calculate where to deliver
it with reference frame transformations. Computing the optimiza-
tion of the receiving pose is achieved within ∼ 5s on a i7-3720QM
2.60GHz computer.
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(a) Relative pose (b) Optimized pose

Figure 6.4: Difference between the pose
obtained with the relative (left picture)
and the optimized conditions (right pic-
ture).

After observing the two behaviors, the subjects were asked to or-
der them according to their preferences and to complete a survey
composed of a 12 Likert scale items for each observed behavior. Af-
firmations were ranked from 1 (I strongly disagree) to 5 (I totally
agree). They are based on the System Usability Scale methodology
(Brooke 1996) with one affirmation over two written with the nega-
tive form. The survey was divided in three subcategories represent-
ing the considered aspect of the interaction, i.e safety, acceptability
and task constraints. This separation was not made visible to the sub-
jects for whom the 12 affirmations were shown in a random order.
After answering the 12 items, subjects had the possibility to leave
comments on the observed behaviors. Complete results and survey
questions are detailed in Figure6.5. For clarity, the affirmations in the
negative form are drawn with negative values from −5 to −1. Sub-
jects’ body poses were recorded, using the OptiTrack suit, to evaluate
their posture during accomplishment of the task.

The data of the experiment are available on a Zenodo repository
(Busch et al. 2017b) alongside a GitHub repository that contains all
the necessary materials to read them (Busch et al. 2017a). A video
of the experiment is available on our Vimeo channel4 (Busch et al.

4 From our Github repository https:

//github.com/3rdHand-project/

PosturalOptimizationDataReader/

you can access both the video and the
dataset.

2017c).

Qualitative Results

From the survey results Figure6.5 and the recorded data we want to
validate the three following hypothesis:

- The Fixed condition should have the lower rank for all the consid-
ered aspects as it does not respect the task constraints and do not
account for user’s safety (H0).

- In terms of task constraints and acceptability the relative and opti-
mized conditions should produce similar results. Main differences
between them should arise from safety related affirmations (H1).

- On the recorded data the optimized condition should have the low-
est REBA value (H2).

Almost all subjects who have observed the optimized condition
have put it first in their preference ordering. Only one person, who
got the relative and the optimized conditions, has chosen the relative
one first. Second preferred method is the relative condition. The Fixed
condition has never been ranked first. For all the affirmations in Fig-
ure6.5 there is a tendency for the optimized condition to be preferred

https://zenodo.org/record/321599#.Wd9Y8XBLdhE
https://github.com/3rdHand-project/PosturalOptimizationDataReader/blob/master/README.md
https://vimeo.com/163699896
https://github.com/3rdHand-project/PosturalOptimizationDataReader/
https://github.com/3rdHand-project/PosturalOptimizationDataReader/
https://github.com/3rdHand-project/PosturalOptimizationDataReader/


over the two other ones. Results have been compared using Mann-
Whitney U test and show a significant preference for the optimized
condition when summing up all the affirmations (p− values < 0.05
for the three combinations). The order of the conditions does not
influence the results (p − values ≈ 0.5 for the three method). Due
to the small number of left-handed people we cannot check for any
significant differences between laterality.

Considering the results for the three subcategories, there is no sig-
nificant differences between the optimized and the relative conditions
for the questions on task constraints and acceptability (p − values =

0.19 and 0.33 respectively). All the other combinations are signifi-
cantly different.

Figure 6.4 shows the difference between the pose obtained with
the relative and the optimized conditions. In the relative condition, we
observe that the interaction happens at a higher level and forces the
subject to bend his wrist.

Quantitative Results

During all the process the subjects’ body motions have been recorded
and their posture evaluated using the REBA method. We only con-
sider the moment of insertion and average over the few time-steps
it has taken the subject to do this action. The moment of insertion
was automatically detected from the Cartesian distance between the
subject’s dominant hand (the one that have been used to insert the
shape) and the center of the ball. We arbitrarily set that distance to
be less than 20cm for the time-step to be accepted as an insertion.
Figure6.6 shows the averaged REBA score over all the subjects for
the three behaviors for some parts of the body. Differences between
the conditions have been tested using a paired t-test on paired data
from subjects, merging conditions in opposite order. For example,
statistical differences between the fixed and the optimized conditions
have been obtained from people that have observed the fixed then
the optimized conditions and people that have observed the optimized
then the fixed conditions.

The data in Figure6.6 show a significantly lower score on shoul-
der, wrist and total values for the optimized condition. The Relative
condition presents the highest wrist score. In their comments some
subjects have written that their wrist was not in a correct pose when
they had to insert the shapes. Especially one subject that had a wrist
tendinitis said he felt some discomfort.
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Figure 6.5: Average results and stan-
dard error of the mean for the re-
sponses to the survey. Each subject
have observed two of the three behav-
iors in a random order. Affirmations
are Likert scale items, based on the
SUS methodology, ranked from 1 to 5
(Brooke 1996). The negative values for
the affirmations in negative form only
appear in the figure for clarity mat-
ters. Significance have been tested us-
ing Mann-Whitney U test and noted ac-
cording to the standard defined by the
APA(American Psychological Associa-
tion). The optimized condition is rated
significantly better in almost all of the
items.



Figure 6.6: Average REBA score and
standard error of the mean of the
recorded body posture. Only dominant
arm have been included in the figure for
clarity, but data for the opposite arm are
also available. Significance have been
tested using Wilcoxon test on paired
data. The recorded postures for the op-
timized condition present a lower REBA
score. The relative condition leads to an
higher wrist score that can create some
discomfort.

Analysis

From the results of the user study we validate the three hypothesis
enunciated previously. The fixed conditions is the worst possible be-
havior both in terms of subject’s perception and REBA score (H0).
Although relative condition seems to be an acceptable solution it pro-
duces a significantly higher body posture score, especially on the
wrist. In terms of acceptability and task constraints it is perceived sim-
ilarly to the optimized solution returned by the optimization. Yet in
terms of user’s safety it performs significantly worst (H1).

From the analysis of the recorded data, we observe that the opti-
mized condition significantly reduces the body posture cost. There is
1.1 point of reduction (3.35 to 2.21 in average) compared to the fixed
condition and 0.4 point (2.63 to 2.21) compared to the relative con-
dition. Although this is not a huge improvement, we have to note
that only the dominant arm is used to solve this task. We can expect
better results for some task that put a strain on all the body parts.
Nevertheless, the repetition of a suboptimal posture can increase the
risk of MSDs. Interestingly, the higher wrist score for the relative con-
dition can be linked to the comments made by the subjects. During
the insertion their wrist was put in extension due to the orientation
of the insertion hole. This have been correctly detected by the assess-
ment technique and it is the main weakness of the relative condition.
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Obviously the relative condition results could be improved by
changing the orientation that causes the wrist discomfort. But then
this would require to empirically find a “correct" solution for each
task considered. For some of them this might be not trivial. There-
fore, the genericity of our solution allows to automatically find better
postures in any task.

The results of the user study suggest that our algorithm is
successfully able to generate more ergonomic interactions. By op-
timizing the robot motion for ergonomics, not only are the obtained
posture perceived as better solution compared to naive approaches,
the real subject’s posture are also rated better according to the REBA
method.

However, there are a few limitations to this approach. First, the
robot motion are calculated independently from the optimization.
This means that, when the robot cannot reach the optimal trajectory,
we select a sub-optimal posture as detailed in Section 6.4.3. Second,
the optimization is performed for a static posture and not for a whole
trajectory.

In the next Chapter we address those limitations by including the
studied cost functions in a more advanced motion planner. This
planning solutions allows us to plan the robot and human motions
simultaneously, and also to reason in terms of sequences of actions
instead of a single task.
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In the previous chapter, we have considered optimizing robotic
motions for maximum ergonomics on the human side. However, not
only the motions are important but also the choices of tasks and the
order they are performed. In this Chapter, we reuse the dREBA sur-
rogate introduced in Section 6.3.1 of Chapter 6 and include it in the
Logic-Geometric Program (LGP) formalism introduced by Toussaint
(2015) and solved using a Multi-Bound Tree Search (MBTS) approach
(Toussaint and Lopes 2016).

In Section 7.1 we present the LGP formalism, used to solve TAMP
problems simultaneously. We have applied this formalism in a sim-
ulation experiment, detailed in Section 7.2, and a user study, which
results are analyzed in Section 7.3.

Ergonomic Task Allocation and Path Optimization

A LGP is an optimization problem over both, a symbolic sequence
of actions and a (piece-wise) smooth motion of a system (Toussaint
2015). The logic (e.g., STRIPS-like rules) defines which sequence of
actions is feasible; and a sequence of actions defines which geomet-
ric constraints the motion has to fulfill. Both are optimized jointly
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with respect to a cost function, typically control costs of the resulting
motion. Formally, an LGP is of the form

min
x,s1:K

∫ T

0
c(x(t), ẋ(t), ẍ(t)) dt + fgoal(x(T))

s.t. ∀t∈[0,T] hpath(x(t), ẋ(t) | sk(t)) = 0

∀t∈[0,T] gpath(x(t), ẋ(t) | sk(t)) ≤ 0

∀K
k=1 hswitch(x(tk) | sk, sk-1) = 0

∀K
k=1 gswitch(x(tk) | sk, sk-1) ≤ 0

∀k=1:K sk ∈ succ(sk-1)

sK |= ggoal ,

where x(t) is the path, s1:K the symbolic state sequence, t1:k the time
points of symbolic state transitions, h∗, g∗ the constraints on the mo-
tion given s1:K, and ggoal, fgoal define goal constraints and objectives.

Solving an LGP is hard; most existing combined task and motion
planning solvers employ sampling-based methods (Lozano-Pérez et
al. 2014; Plaku et al. 2010; Srivastava et al. 2014). As we aim for
the optimization with respect to an ergonomic measure we adopt
the optimization-based LGP formulation. In (Toussaint and Lopes
2016) a Multi-Bound Tree Search (MBTS) method is proposed to ap-
proximate LGP solutions. MBTS uses several bounds of the full LGP
that are themselves optimization problems but with less constraints
or only over sub-paths and therefore much faster to evaluate. These
bounds are used to prune subtrees when they are found infeasible
and prioritize search for symbolic sequences.

To apply the LGP framework to our problem we need to formulate

1. the joint symbolic decision space for the specific human-robot co-
operation task,

2. the constraints on the human or robot pose depending on such
decisions,

3. the cost function for both, the human and the robot.

Concerning the symbolic decisions, we use STRIPS-like operators
to define the action space depending on the specific task. For exam-
ple, for the first task of our experiment section (see Section 7.2) we
will define two possible actions, grasp and place:

• grasp(t,e,o)

* description: at time t, the end-effector e (robot or agent) grasps
the object o

* precondition: free(e) on_table(o)

* effect: grasped(e,o) ¬free(e) ¬on_table(o)



• place(t,e,o,p)

* description: at time t, the end-effector e (robot or agent) places
the object o on table p

* precondition: grasped(e,o)

* effect: placed(o,p) ¬grasped(e,o) free(e) on_table(o)

These operators define feasible symbolic successor states
succ(sk-1), where sk is a first-order logic state initialized as
placed(screwdriver, table_left). Note that the variable e refers to possi-
ble end-effectors1.

1 In this way these operators define the
decision space for all “agents” (end-
effectors of human and robot)

The decisions imply geometric constraints: A grasp implies a kine-
matic switch of attaching the object o to the end-effector e, with a re-
spective equality constraint hswitch(...) ensuring that the object does
not jump. A place action implies a kinematic switch of attaching the
object o to the table p, detaching from the end-effector e, both con-
strained geometric by not having a jump in the object pose. The
symbolic goal ggoal is grasped(human_right_hand, screwdriver).

Concerning the cost function, we optimize for maximal er-
gonomics in the side of the human, using the dREBA approximation
introduced in Section 6.3.1 of Chapter 6. Additionally we enforce
smooth motions by optimizing for the sum-of-squared accelerations
of both, the robot and human motion.

Simulation Experiment

We apply the method detailed in Section 7.1 in a simulation experi-
ment where the robot has to place the screwdriver on a table for the
human to grasp as illustrated in Figure 7.1. There are three tables of
random heights ranging from 0.6 to 1.6 meters located in front of the
human. Our hypothesis is that depending whether the ergonomic
cost function introduced in Section 6.3 is turned on or off, the choice
of table for placing the screwdriver will differ and the overall er-
gonomic cost will be reduced even if it increases locally. Moreover,
the choice of table should impact the human posture cost.

Figure 7.1: Simulated view of the exper-
iment. The robot places the screwdriver
on one of the three tables for the human
to grasp it. Tables heights are randomly
set at each run of the experiment.



Chapter 7. Ergonomic Task Allocation 71

The actions available to the human and robot are pick and place as
described in Sec. 7.1. The MBTS solver return a sequences of actions,
optimal in terms of the provided cost functions as in the example
given in Figure 7.2.

Figure 7.2: Example of a tree search
made by the MBTS solver to find the
optimal sequence of actions under the
given constraints. The path in plain
lines corresponds to the optimal se-
quence. A state is declared as infeasi-
ble a constraint is broken. In the exam-
ple case given, the screwdriver is too far
away from the human agent which ren-
ders it impossible to grasp. The written
cost are given for illustrative purposes
and do not correspond to real values re-
turned by the solver.

Experimental setup

To validate the benefits of including the ergonomic cost function in
the LGP framework, we have considered three experimental condi-
tions,

1. the non-ergonomic condition with ergonomic costs turned off,

2. the ergonomic condition with ergonomic costs on,

3. and re-optimized condition where the path is optimized with er-
gonomic cost turned on, but the symbolic action sequence s1:K is
fixed to the choice found with non-ergonomic optimizing.

ur main hypothesis is that by optimizing for the dREBA surrogate,
the choice of actions and motions will lead the human model to pos-
tures that are more ergonomic in terms of REBA score. Therefore, we
use the REBA score of the model posture as a measure to validate this
effect. Another hypothesis is that optimizing the path along the full
sequences of actions will lead to more ergonomic postures compared
to stepwise optimization. The objective of the re-optimized condi-
tion is then to serve as another baseline that results from methods
that have a separation between the high-level task planner and the
low-level motion planning. By improving over this baseline we show
that it is worth to pay the cost of using the more computationally
expensive simultaneous optimization of task and motion planning
that is proposed in this work. For example, in this first experiment
s1:K refers to the categorical choice of table, which may be chosen
sub-optimally with the non-ergonomic optimizer.



In the non-ergonomic condition, the planned trajectory of the agent
to grasp the screwdriver might not be natural and lead to non-
ergonomic postures like an over bending of the spine. Clearly, this
will lead to non-favorable REBA scores. In the re-optimized condi-
tion, re-optimizing such a path with ergonomic costs, but fixing s1:K,
allows us an easier comparison with the full ergonomic condition,
which highlights the effects of the choice of the symbolic sequence
s1:K.

We fix a random height for the three tables and test the three
conditions keeping the same table height. The process is repeated
100 times and for each run we collect the table chosen for placing
the screwdriver and the human posture at grasping time. We also
force the human to be right handed to remove the effects of changing
hands to reduce the costs. The initial body posture is set to be at rest
according to the REBA assessment (posture of minimal REBA score).

Results

Figure 7.3: Average REBA score and
standard error of the mean for the three
conditions. The lower the score, the
safer is the posture. Significance are
verified using Anova statistical test and
noted according to the standard de-
fined by the APA(American Psycholog-
ical Association).

As we observe in the results of Figure 7.3 and 7.6, re-optimizing
the path for ergonomics leads, as expected, to a smaller posture
score. Still, the best posture scores are obtained in the ergonomic
condition. Statistical differences are noted directly on the figure and
verified with Anova statistical test.
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In terms of table heights, the average height of the chosen table
in the non-ergonomic condition is 1.08± 0.22. It is slightly below the
average height of the three tables (1.1± 0.3m). The average height of
the chosen table in the ergonomic condition is 0.95± 0.15m.

By looking at the optimal choices, summarized in table 7.1, we
observe that in the ergonomic condition, the most chosen table is the
centered one. This makes sense from an ergonomic point of view
as deviating the arm on the side is more costly. Nevertheless, this
choice also depends on the table height as suggested by the number
of times the left of right table were chosen. On the other side, in
the non-ergonomic condition, the most chosen table is the one located
on the agent’s left side. This choice seems to be almost independent
from the table height.

non-ergonomic ergonomic
left 89 26

center 7 40

right 4 34

Table 7.1: Table choice ratio (%)

This effect arises from the base cost function of the LGP formalism
which minimize by default the sum-of-square accelerations of the
joints for both the robot and the human. As the time to perform
an action is fixed, this leads to select the shortest trajectory for both
agents. By extension, placing the screwdriver on the left table often
corresponds to the shortest path.

Minimizing the joints acceleration also means that the initial hu-
man posture must impact the optimization. To study this effect, we
have performed a new experiment, keeping the same experimental
setup and reusing the previously generated table heights. The only
difference comes from the initial human body posture which is set
randomly.

Figure 7.4: Illustration of the impact of
the initial body posture.
Left) An example of a grasping posture
impacted by the initial body posture
in the non-ergonomic condition. With-
out posture correction the shortest path
leads to this wrong final posture.
Right) The same grasping but in the re-
optimized condition which counteracts
the effects of the initial body posture.

As we observe in Figure 7.5 this strongly impacts the posture score
of the non-ergonomic condition. As the human body possesses a large
number of degrees of freedom, some joints are not necessary to move
to fulfill the task. Therefore the shortest path is to keep them at their
initial value. The left image of Figure 7.4 shows an example of a
grasping posture impacted by the initial body configuration. In the
ergonomic and re-optimized conditions however, the first human mo-
tion is to move back to an ergonomic posture as illustrated in the



right image of Figure 7.4 and especially in the cost profile of Fig-
ure 7.6. This action limits the impact of the initial body configura-
tion. As table 7.2 suggests, choices of tables is not impacted in the
ergonomic condition. For the non-ergonomic condition, the impact is
significant. As the random posture is often bended, such as the one
presented in the left image of Figure 7.5, the shortest path might be a
table of lower height. This point is confirmed by the average height
of the chosen tables, 1.02± 0.2m which is 6cm less than in the normal
configuration.

Figure 7.5: Average REBA score and
standard error of the mean for the three
conditions with random initial posture.
As in Figure 7.3, the lower the score, the
safer is the posture.

By choosing tables of lower heights, the posture score of the non-
ergonomic condition slightly gets better. Still, the best REBA scores
are obtained in the ergonomic condition.

non-ergonomic ergonomic
left 66 26

center 23 40

right 11 34

Table 7.2: Table choice ratio in the ran-
dom body configuration (%)
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Figure 7.6: Evolution of the averaged
REBA score during all the phases of the
interaction. Plain lines) Initial posture
optimal in terms of REBA score. The
human starts moving only to grasp the
screwdriver which explain the flat score
until the last phase. Dashed lines) Ini-
tial posutre chosen as random. In the
ergonomic and re-optimized the human
moves after the initial phase to get back
to an ergonomic posture.

Discussion

From the results of this simulated experiment we conclude that op-
timizing the sequence of actions for ergonomics leads to safer body
posture than only optimizing actions independently. We can also
conclude that optimizing the task allocation and motion planning
for dREBA induces lower REBA score as expected.

Another interesting result is that considering an ergonomic cost
for the body posture allows to remove the effects of the initial body
configuration chosen prior to the optimization.

In next section, we introduce a more complex scenario with a
longer sequence of actions. As a proof of concept we also implement
the generated path and actions on a Baxter humanoid robot.

Box Assembly Experiment

The second experiment we consider is the assembly of a toolbox. We
limit the assembly to screwing the handle (/toolbox/handle) and one
side of the toolbox (/toolbox/side_left) together. We extend the set of
possible actions defined in Section 7.1 with the following decisions:

• handover(t,e1,o,e2)

* description: : at time t, the end-effector e1 (robot) hands over
object o to the end-effector e2 (agent)

* precondition: grasped(e1,o) free(t,e2)

* effect: ¬grasped(e1,o) free(e1) grasped(e2,o) ¬free(e2)



• hold(t,e,o)

* description: : at time t, the end-effector e (robot or agent) holds
object o

* precondition: on_table(o) free(e)

* effect: held(o) ¬free(e)

• screw(t,e,o1,o2)

* description: : at time t, the end-effector e (agent) screws ob-
jects o1 and o2 together

* precondition: on_table(o1) on_table(o2) free(e) held(o1)

* effect: screwed(o1,o2) ¬held(o1)

Initially the place action can be accomplished by both the robot
and the agent. However, in our setup the robot is equipped with a
vacuum gripper on its left end-effector. This type of gripper is conve-
nient to grasp the toolbox parts but cannot be used to precisely place
them vertically on the table. Therefore, we limit the place decision to
only the agent.

To each of those logic decisions we associate a geometric equiva-
lent that defines constraints between objects as kinematic switches.
We set the desired goal to screwed(/toolbox/handle, /toolbox/side_left)

and perform the path optimization. The following is an example of
a decision sequence found by the MBTS solver that leads toward the
set goal.

grasp(1,baxterL,/toolbox/handle)

handover(2,baxterL,/toolbox/handle,handR)

grasp(3,baxterL,/toolbox/side_left)

place(4,handR,/toolbox/handle,tableC)

handover(5,baxterL,/toolbox/side_left,handR)

place(6,handR,/toolbox/side_left,tableC)

hold(7,baxterR,/toolbox/handle)

screw(8,handR,/toolbox/side_left,/toolbox/handle)

The solver also returns a path for both the robot and the agent in
terms of joint trajectories and a simulated view of the scenario.

Real robot application

After planning the sequence of actions for the toolbox assembly we
convert it into actions to be performed on our Baxter torso humanoid
robot. The system also uses a set of predicates to recognize when an
action is finished prior to start the next one. Predicates and actions
were reused from previous work (Toussaint, Munzer, et al. 2016).
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Figure 7.7: Picture of the experimen-
tal setup of the toolbox assembly an-
notated using the same convention as
Figure 7.1.

At the moment, the system supposes that the agent is do not have
the capacity to move freely in the environement, i.e. he or she cannot
walk during the execution to avoid re-planning. As in the simulation
experiment, the solver planify the motion of both the robot and hu-
man agents. However we cannot predict exactly how the real human
coworker will act. Therefore, some actions like grasping or handing
over toolbox parts are converted directly from the geometric part of
the simulation, i.e trajectory of the robot arm to hand over an object
are calculated by the solver. For actions following an agent inter-
vention, such as holding a part placed on the table by the agent,
we cannot rely on this approach. As the agent might decide to put
the object on the table at a different location than the one planned,
the trajectory to hold the object might differ. Therefore we track the
objects parts using Optitrack motion capture system and generate a
new trajectory of the robot arm to the current location of the object.
With this approach we do not need to re-plan the full sequence of
actions every time the geometry of the scene slightly varies. This
greedy approach might, however, be sub-optimal in some cases. In-
deed variation of the geometry could lead to changes in the sequence
of actions when a full re-planning is performed.

As in the simulation experiment, we calculate the plan in the er-
gonomic and non-ergonomic conditions. In this case, we do not con-
sider the re-optimized condition as it produces the same sequence of
actions as the non-ergonomic one. Between the two tested conditions,
not only the trajectory of the handing over is affected but also the
planned sequence of actions. Changes appear on the first four ac-
tions. In the non-ergonomic condition the agent is asked to place the
handle on the table only after the robot has grasped the next part:

grasp(1,baxterL,/toolbox/handle)

handover(2,baxterL,/toolbox/handle,handR)

grasp(3,baxterL,/toolbox/side_left)

place(4,handR,/toolbox/handle,tableC)



This creates an uncomfortable situation where the agent holds the
handle and is unnecessary waiting for his or her next action. Most
likely he or she will place it on the table without being told to do so
which might create some confusion. In the ergonomic condition the
sequence is smoother as a hand over is immediately followed by a
place action:

grasp(1,baxterL,/toolbox/handle)

handover(2,baxterL,/toolbox/handle,handR)

place(3,handR,/toolbox/handle,tableC)

grasp(4,baxterL,/toolbox/side_left)

This change of the sequence of action is due to the weight of the
object being comprised in the calculation of the cost function (6.1).
When holding an object, the cost is slightly higher. Therefore, as the
solver minimizes costs over time, placing the object earlier on the
table leads to a smaller cost. The rest of the sequence of actions is
similar in both conditions2.

2 A video of the experiment is available
on our Vimeo channel https://vimeo.
com/232348427.

As the planned sequence of actions differs between the two con-
ditions, we need a proper way to inform the user about the actions
he or she is required to perform. To this extent, we have generated a
graphical interface from the results of the of the LGP solver.

Visualization of Task Allocation

In human-robot interaction, communication between the robot and
the agent is crucial. For the setup we have considered, the communi-
cation is limited to inform the agent about the steps to perform the
whole task. If one step is awaiting for a worker’s action, it should
also detail how this action is performed.

To visualize the planned sequence of actions we generate a web-
page with a human readable description of each actions and a sim-
ulated view of the last frame of the action path as illustrated in Fig-
ure 7.8. This webpage is based on reveal.js presentation framework3. 3 reveal.js is an HTML based pre-

sentation framework that exposes a
javascript api to interact with the slides
Reveal.js The HTML Presentation Frame-
work 2017.

By clicking on the image, the agent launches a video of the full action
path. We use the reveal.js api to automatically switch to the current
action when the previous action is finished. With this web based
approach, we can display this interface on mobile devices (tablets or
smartphones) or computer screens.

The webpage is accessible offline for the agent to navigate through
the sequence of actions. The offline version can be seen as a training
solution to understand the steps required for a given task. It can also
be displayed online to show the current action to reduce the human
cognitive load of understanding the action performed by the robot
and understanding the action that he or her is expected to perform.

https://vimeo.com/232348427
https://vimeo.com/232348427
http://lab.hakim.se/reveal-js/
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Figure 7.8: A representation of an ac-
tion generated by the solver and dis-
played on a webpage to simplify the vi-
sualization. The agent can click on the
image to start a video of the action. Ar-
rows on the right corner are also click-
able to navigate between the previous
and the next actions.

Thanks to this display interface we are now able to evaluate our
approach by means of a user study with subjects interacting with our
Baxter robot.

User study

We apply the calculated plans in a user study with 10 participants.
Each subject has performed the assembly in the two conditions and
we have recorded his or her posture as in (Busch, Maeda, Mollard,
et al. 2017). Postures score are then calculated and averaged over all
subjects and over all the timesteps of the interaction.

Figure 7.9: Average REBA score and
standard error of the mean for the two
conditions recorded from subjects of
the user study.



Results are presented in Figure 7.9 and show that the ergonomic
condition induces a lower REBA score on average over all the partic-
ipants. This reduced score is partially explained by the lower weight
score as objects were held by the subjects for a shorter amount of
time. Nevertheless, the impact on the shoulder and elbow is also sig-
nificant which indicates that the objects were handed over at a better
position.

Discussion

The results of this experiment confirm the two points made with
the simulation results. First, optimizing for dREBA correctly leads
to lower REBA score, even in a real robot application. Second, in
order to generate ergonomic human-robot interaction, considering
single actions optimized with ergonomic measures, e.g. ergonom-
ically planning a hand over, is not sufficient. Reasoning in term of
sequence of actions leads to more ergonomic situations and improves
the overall human comfort.

Including ergonomics in the LGP formalism allows us to
reason both in terms of motions and task allocation. As the results
suggests, optimizing for task allocation leads to better ergonomics
than motion only. This approach also resolves the two limitations
raised in Chapter 6. By using the LGP formalism, we optimize si-
multaneously the motions for both the human and the robot and we
also optimize over a full trajectory rather than a static pose.

This Chapter concludes our work on the ergonomics of the inter-
action and our contributions for this thesis. In the next Chapters, we
make a final review of our contributions and share some ideas on the
next steps that should be taken for a more ergonomic human-robot
interaction.
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Conclusion

Throughout this thesis we have analyzed the impact of the
robot’s behavior and motions on the human coworker and improved
the ergonomics of the interaction. As this impact can take a large
number of aspects, we have limited our research to two specific sce-
narios. In a first part spanning Chapter 2 to 4 we have studied the
legibility of the robot motions and provided solutions to learn the
concept of legibility through interaction with real user. The second
part, from Chapter 5 to 7, was focusing more on physical human-
robot interaction and how to include physical ergonomics in the
choices of actions and planned motions.

This chapter concludes our thesis on leveraging ergonomics
in human-robot interaction. By studying two concrete problems that
are legibility of the robot motions and physical ergonomics of the
interaction we believe we have made a step towards a more human
centered and ergonomic interaction. In accordance with the philos-
ophy of the 3rdHand project we have proposed methods that are
generic, do not require extra programming to be adapted to new
scenarios and could be deployed on any robot, independently of its
design. This philosophy is also depicted in our choice of methods
and the way we have implemented them.

Our research on legibility shows that it can be obtained in a
model-free approach. As any particular task will require different
properties of motion, we wanted to achieve such results without any
task-specific model of legibility. To such end we took an approach
where we have defined a task-independent cost function that re-
wards efficiency (joint execution time), robustness (task errors), and
energy (jerk). These measures can be readily defined for any task. To
optimize such cost function through experiment we have relied on a
model-free optimization algorithm, PIBB, to efficiently optimize this
cost function through trial-and-error interaction of the robot with
the human.



In several human-robot experiments, we have shown that indeed,
for different types of motions, robots are able to improve their behav-
ior allowing humans to better read the robot’s intentions early and
robustly. Our results show that people, even after being habituated
to robotic motions, can still substantially improve their prediction
times if the robot optimizes its motions.

A second conclusion is that, when optimizing with policies that
have a high-dimensional parameter vector (which leads to a lot of
variance in the types of motions it can generate, such as with the
DMP), it is most likely that idiosyncratic behavior arises. Novel sub-
jects can infer the intention of the robot from its behavior, but this
requires an extended phase of interaction with the robot. These inter-
actions are necessary for the novel subject to get to know the specific
idiosyncrasies the robot has learned with the previous subject.

Furthermore, the robot is still able to learn legible behavior, even if
we actively suppress idiosyncratic behavior by allowing only stereo-
typical curved minimum jerk movements. Already during first inter-
actions, novel subjects are able to read such behavior more efficiently
and robustly than when using the DMP policy. This indicates that
this behavior is immediately and more generally legible.

Considering a model-free approach to increase the legibility of the
robot motions ensure that the robot can adapt to the specificities of
any workers or task without having to program new models. This is
a very important feature that could help the deployment of robotic
structures in small and middle sized assembly lines, which require
adaptations to task and production changes.

Our work on physical ergonomics have highlighted how we
can optimize the motions and task allocation for maximum postu-
ral safety on the human side. By incorporating a simple evaluation
function, such as the REBA method, into a motion planner, we are
able to generate robotic behaviors that are safer in the long-term and
better correspond to the users’ expectations.

By the means of several user studies we have proven that our
solution leads to safer working postures and is more appreciated by
the end users. We also show that, by using the LGP formalism, we
are able to dynamically assign tasks to the human or the robot taking
into account the ergonomics of the situation.

Although in our work on physical ergonomics we have analyzed
the usage of a single evaluation function, the REBA method, the latter
could be replaced by other type of ergonomics evaluation functions
and achieve similar results. Another aspect of our solution for physi-
cal ergonomics lies in the fact that, by optimizing the human motions
for ergonomics, we also achieve realistic human posture, without the
need of a complex model. This was not the initial focus of our ap-
proach, yet it is an interesting contribution as generating human-like
motions is sometimes not trivial.
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We believe integrating ergonomics and human factors in the
human-robot interaction is a major step toward improving the work-
ing conditions in industry. As the cobotic systems will start entering
workstations, we have here a wonderful opportunity to be proactive
and provide solutions in favor of the workers’ health and security.
This would be profitable also for the industries for which work re-
lated injuries are very costly1.

1 In 2012–13, work-related injury and
disease cost the Australian economy
61.8 billion dollars, representing 4.1%
of GDP (The Cost of Work-related In-
jury and Illness for Australian Employ-
ers, Workers and the Community: 2012–13
2015).

Even outside of the cobot scenario, our approach is also suitable to
be used to optimize existing workstations for maximum ergonomics.
It might even be considered to adapt workstations to disable indi-
viduals that require specific needs to continue working in good con-
ditions. A line of research or a company could specialize on those
questions to provide adaptive workstations on demand.

Finally, the solution we propose might have opportunities to serve
not only the robotic community but also ergonomic researches. An
interesting foreseen application could be, for example, to see robotic
setups as an experimental platform to validate ergonomic functions,
by the mean of controlled and validated interaction scenarios.

Although the solutions we have deployed have successfully
leaded to a more ergonomic human-robot interaction, there are still
a few issues that need to be addressed. In Chapter 9 we detail the
main limitations of our approach, the relevant points that need to be
clarified and elements that, we believe, represent interesting lines for
future research.
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In this Chapter, we provide the main limitations of our solutions
and in the way we have implemented them. We also provide addi-
tional details on lines for future research that, we believe, could be
of particular interest.

In a first section, we will focus on limitations linked to the legibil-
ity part of the thesis. Then we will do the same for the elements on
physical ergonomics. Finally, we detail our ideas on combining the
two approaches in a unified solution.

Legibility of Robotic Motions

Although we have successfully improved the legibility of the robot
motion, there are still some questions that remain unanswered. In
the next sections, we detail, point by point, the different elements
that require a more thorough analysis and could lead to potential
research opportunities.
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Universally legible motions

While we have aimed at approaching universal legibility can we con-
fidently conclude that we have have such a goal? In other words, are
the trajectories generated via the viapoint policy universally legible,
i.e. across different robots or human cultures? From our results, it
seems that they do perform better, compared to straight lines to the
target or DMP based trajectories, in terms of prediction time and er-
rors. However, this is not sufficient to conclude on their potential
universality. Although prediction time is a good indicator of legibil-
ity, there might be other factors that explain its variation. In general,
we expect that the transition from idiosyncratic to universally legible
behavior may not always be that well defined.

As en example, in our studies, we have limited the number of pos-
sible targets. With only two targets, learning idiosyncratic motions
is facilitated as you effectively need to focus on learning the trajec-
tory which goes to one of the two targets. Any motion that does
not resemble the one you have learned is, obviously, going to the
second target. Increasing the number of targets should reduce that
effect and probably forces the emergence of more universally legible
motions. It could also happen that, by increasing the number of tar-
gets, direct straight lines to the target would become the most legible
motions. This point is the conclusion proposed by Zhao et al. (2016)
in their study of legibility with multiple targets, although they only
compare model based legible trajectories (Dragan and Siddhartha S.
Srinivasa 2013) with straight lines. There might be other type of more
legible motions that could only be observed by optimizing for legi-
bility in a model free manner. However, one of the main drawback of
our model-free approach is that, in its current definition, it does not
scale well with the number of targets. Adding more targets would
require a longer optimization phase as the motions to each targets
are optimized independently.

Psychological effects

Although our method successfully lead to an increased legibility
it is not necessarily linked to an increased comfort of the human
coworker. Here we have made the assumption that increasing the
robot legibility would reduce the potential prediction errors and,
therefore, avoid stressful situations. However, one question that
have not been validated by our studies is how do the subjects perceive
those legible motions? Do they feel safer when interacting with a leg-
ible robot, or conversely, more afraid to interact with it? Analyzing
this question would require answering surveys, similarly to those we
have presented in our work on ergonomics. We could also rely on
physiological factors such as cardiac rhythm. An interesting point
could be to also analyze the differences between the two policies
with respect to this question.



Moreover, when working with real humans we also have to con-
sider that some psychological effects can interfere. For example, at
the beginning of the task some subjects might wait for more confi-
dence instead of trying to guess and potentially make mistakes. This
fear of making mistakes, which relates to the notion of perfectionism
(Frost et al. 1990) could be a major impediment to our method. It is
probable that the observers already know the robot’s intentions way
before they actually press the corresponding button. To counteract
this effect, we would need to rely on other factors than their vol-
untary feedback. One possible option would be too look into brain
signals or other physiological factors. Pupil dilation, for example,
is a known factor to be correlated with the decision making process
(Einhäuser et al. 2010; Preuschoff et al. 2011). We could imagine a
setup that records the pupil dilation and uses it as a marker for the
subjects’ prediction time.

Including social cues

In our research, we have improved the robot legibility by focusing
only on the motion to specific targets. This is a very limited subset of
all the available social cues1 that can be used to express intentions.

1 A social cue can either be a verbal or
non-verbal hint, which can be positive
or negative. These cues guide conversa-
tion and other social interactions. Com-
mon social cues in robotics are gaze, i.e
using fake eyes to look at the person or
proxemics.

Gaze and proxemics are potential candidates (Fiore et al. 2013), so is
execution speed of the motion (Zhou et al. 2017). All of those modal-
ities are signals that could be learned to be triggered in a model-free
manner, similarly to an infant that learns through trials and errors
how to use those signals.

The learning of those social cues would, however, require a lot
more of interactions to be fully efficient. One point is that, most
probably, some of those signals are not task dependent and span
between different tasks. Therefore, this type of research would per-
fectly fit in a life-long learning paradigm.

Inferring social intentions

In the context of our experiments we have improved the legibility of
the robot motion to get a better understanding of which target it is
aiming at. One question that is not yet answered is why is it doing this
action?. This amounts to saying can we infer the robot social intention
from its motion?.

As an example, imagine that the robot is aiming for a bottle of
water on the table. Only by observing its motions would you be able
to understand that it wants to tidy up the table or that it is going to
poor you a glass of water2?

2 This question is still a controversy–
even in human-human interaction–and
concerns the role of the motor system in
understanding social intentions (Beer et
al. 2006; Jacob et al. 2005).

As we have seen briefly in the Chapter 2, the mirror neurons allow
us to recognize another person intention by mirroring the motion
onto ourself. The question of deriving the social intention from the
same neural mechanism raises more skepticism which led Jacob et al.
(2005) to propose the following thought experiment:
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Consider Dr. Jekyll and Mr. Hyde. The former is a renowned sur-
geon who performs appendectomies on his anesthetized patients. The
latter is a dangerous sadist who performs exactly the same hand move-
ments on his non anesthetized victims. As it turns out, Mr. Hyde is Dr.
Jekyll. Suppose that Dr. Watson witnesses both Dr. Jekyll’s and Mr.
Hyde’s actions. Upon perceiving Dr. Jekyll, alias Mr. Hyde, execute
the same motor sequence twice, whereby he grasps his scalpel and ap-
plies it to the same bodily part of two different persons, presumably
the very same mirror neurons produce the same discharge in Dr. Wat-
son’s brain. Dr. Jekyll’s motor intention is the same as Mr. Hyde’s.
However, Dr. Jekyll’s social intention clearly differs from Mr. Hyde’s:
whereas Dr. Jekyll intends to improve his patient’s medical condition,
Mr. Hyde intends to derive pleasure from his victim’s agony.

Their conclusion is that simulating the agent’s movements, by
the mean of the mirror cells, allows an observer to understand the
agent’s motors intention but not necessarily his or her social inten-
tion. However, that conclusion relies on the strong assumption that
the way you achieve actions is independent of the social context, i.e. what-
ever your goal is to pour me some water or to move the bottle away,
you will reach for it in the exact same way.

Becchio et al. (2008) have conducted a user study that seems to
discard this hypothesis, by recording the motions of people grasping
a bottle to either pass it to a partner or put it in a box. Both partner’s
hand for the “social condition" and box for the other one were located
at the exact same place to avoid differences in motions due to the
end-point being different. The recorded motions when grasping the
bottle were showing different patterns between the two conditions.
This suggests that, unconsciously, we modify our motions to express
the sociality of our actions, in similar ways that we would modify
our motions to express more legibility. The relatively small number
of participants in the study (n = 13) forces us to take the results with
caution, but this might be a good starting point for a similar study
within a robotic setup. We could imagine a scenario very similar to
the experiments we have led where we improve the expression of
social intentions from the robot motion.

Physically Ergonomic Human-Robot Interaction

In this domain there is also a lot of potentials research opportuni-
ties and we will detail in the following sections the points that need
improvement or could be the most interesting to focus on.

Human tracking

Our solution for tracking the human worker is based on OptiTrack
markers assembled to form a suit. Highly intrusive, this solution is
not adapted for an integration in an industrial setup. Moreover, it
requires to buy an entire OptiTrack setup which comes at a high cost
for small industrial companies. There are, however, other solutions
that start emerging.



Obviously, Kinect skeleton tracking is the first solution that comes
in mind as it is easy to set up and uses a very affordable sensor.
Before moving to an Optitrack based solution, we had based our
tracking on the Kinect. The main drawback of the sensors is that
it requires the subject to be facing the camera at all time and to be
located between 1 to 3 meters in front of the sensor. In practice, this is
rather limiting as there might be situations where the worker would
not face the camera. One solution could be to use an array of Kinect
camera, spanning the whole workspace, and to fuse the skeleton data
coming from all the sensors (Yeung et al. 2013). However, it is worth
noting that on the 25th of October 2017, Microsoft have issued a
statement indicating the end of production of their Kinect sensor3. 3 The Telegraph has written an

article on the subject http:

//www.telegraph.co.uk/gaming/news/

microsoft-shutting-kinect-production/

Although the technology, by itself, will probably continues to live
on, it is unclear how this will affect the ecosystem. As the source
code for the skeleton tracking system is proprietary it will probably
be difficult to replace existing solutions based on the Kinect sensor
with other similar depth sensors.

Therefore, we believe it is necessary to find other solutions to track
the subjects reliably, and if possible open-source ones. The openpose
library, based on simple RGB flux could be a very interesting alter-
native and fit all the criterion. Developed by the CMU-Perceptual-
Computing-Lab, it is a fully open-source skeleton tracking system
based on deep learning and trained on the Coco dataset (Cao et al.
2017). Even if it requires to set up an array of calibrated cameras for
3D reconstruction, it is still a lot cheaper than an OptiTrack installa-
tion and do not need the usage of intrusive markers. A code for 3D
reconstruction based on several camera is available on their GitHub
repository.

Another option, that we thought implementing at some point,
would be to create a suit based on inertial sensors4. Although still in-

4 Inertial sensors measure linear and an-
gular motions usually with a triad of
gyroscopes and triad of accelerometers.

trusive, inertial sensors could be integrated in the workers’ uniforms
as it does not require to be visible at all time. As this is not a camera
based solution it is also not liable to occlusions and could be used to
track workers over a large workspace such as big warehouse.

Dynamic model

In our studies, we have considered only static poses which do not
account for the dynamics of the human body. MSDs are also highly
correlated with the force exercised during an action. With greater
forces comes a higher risk (Gallagher et al. 2013). In order to study
this effect and to consider dynamics in the interaction, we would
need to change for a much more complex humanoid model. The
Opensim simulator could be a great tool to achieve such a complex
model5. Simulating the direct dynamic model is a complex task that

5 Opensim is an open-source simulator
for modeling and analyzing the dynam-
ics of human motions (Delp et al. 2007).

might not be trivial to insert in the LGP formalism as it is not, per
se, a simulation environment6.

6 Gravity and external forces are not yet
considered. A workaround could be to
reason in term of objects velocities to
extrapolate the forces.

http://www.telegraph.co.uk/gaming/news/microsoft-shutting-kinect-production/
http://www.telegraph.co.uk/gaming/news/microsoft-shutting-kinect-production/
http://www.telegraph.co.uk/gaming/news/microsoft-shutting-kinect-production/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/openpose_3d_reconstruction_demo.md
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/openpose_3d_reconstruction_demo.md
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Estimating inverse dynamic model, however, can be achieved from
observations of the workers (Plantard et al. 2017). This is an inter-
esting approach to provide feedback about the risk associated with a
particular motion and help preventing musculoskeletal injuries (Pon-
tonnier et al. 2014; Rasmussen et al. 2003).

Ergonomic role switching

An interesting aspect of our approach is the possibility to introduce a
role switching based on the ergonomics of a situation. For example if
the task requires to lift an heavy box, the robot should perform this
action as this is a very burdensome task for the human coworker.
Generally speaking, all burdensome tasks should be devoted to the
robot, leaving to the human the tasks with great added values, e.g.
tasks that require a certain dexterity.

The choice of experiments we have considered do not really high-
light this capacity. For now, most of the actions we have designed
are agent dependent, i.e. both the robot and human have a set of
action they can accomplish and there is not much overlap between
them. This is mainly due to the geometric definition of the agents
that are quite different. For example, the grasp action would intro-
duce different geometric constraints depending if it is performed by
the robot or the human. As the LGP solver, in its current implemen-
tation, do not allow for a switching between two possible geometric
implementation, a workaround is to duplicate the high-level actions
with a different implementation for both agents.

One drawback of this ergonomic role switching arises when both
agents can accomplish all the necessary actions. As the human
coworker presents an extra cost based on ergonomics, the optimal
solution would be to leave all the actions to the robot. Obviously,
this is not a desired behavior. One way to overcome this issue could
be to also optimize for time execution. Introducing a cost based on
the time it takes to perform the assembly, under a given sequence of
actions, would force the human to actually perform some actions as
two agents are faster than a single one. Therefore, there is a trade-off
to consider between execution time and ergonomics.

Automatic selection of the optimization weights

Our solutions to maximize physical ergonomics comprise a multi-
criteria optimization. To optimize this kind of problem, we consider
weighting the different cost functions with respect to their impor-
tance to solve a task. For example, posture score need to cost less
than task constraints otherwise the human model would simply stay
in a resting position throughout the assembly. For non-trained work-
ers, visibility could also be a crucial issue and the associated cost
should be increased compared to a similar situation with experi-
enced people.



The problem is how to select appropriately the weightings fac-
tors to account for those situations. At the moment, those weighting
factors are empirically selected and might be different for each ex-
periments. An automatic weighting selection is required and should
address the following issues. It should balance the costs of each
components based on their importance at certain moment of the in-
teraction. It should also adapt to the specificity of the tasks, e.g.
increasing the safety cost for tasks of high risk. Finally it should be
adapted to the current coworker and to its different needs, such as
particular disabilities or expertise with the given task.

Online replanning

At the moment, the LGP solver, on which we have based our work,
takes a non-negligible amount of time to provide a solution. The
solver do not use a greedy approach, i.e. the optimal solution is cal-
culated over the full sequence of actions. One problem arises when
the human coworker decides not to follow the calculated plan.

This situation can take two aspects. First, he or she can decide to
accomplish the correct high-level action, but with a change in the ge-
ometry, for example, by moving to another location in the workspace.
To overcome this, we have implemented a greedy approach where
we replan only the trajectories with respect to the new locations.
This greedy approach, however, presents some drawbacks. In some
cases, the new geometry could render the next actions infeasible or
leads to suboptimal sequences of actions. As an example, consider
a situation where the human coworker is standing too far from the
screwdriver. The robot actions would be to pick it up and hand it
over. If the human moves closer to the screwdriver, the robot actions
are not necessary anymore and, if it performs them anyway, it would
create an odd situation.

This situation also highlights the second aspect of the necessity for
replanning. By moving closer to the screwdriver, the human would
probably decide to pick it up by him or herself. Therefore, this intro-
duces a change in the high-level sequences of actions. Our current
implementation do not allow for this possibility. The only solution to
solve this issue would be to re-solve the full TAMP problem starting
from the new geometric configuration and the current logic state. As
this calculation is rather time consuming, the robot would be ineffec-
tive while replanning. Therefore, there is a strong need here for an
online replanning solution.

Human preferences versus ergonomic recommendations

In Chapter 5 we have briefly talked about the automobile seat designer’s
dilemma (Reed et al. 1991) showing that people might have strong
preferences which could enter in conflict with ergonomic recommen-
dations. This can be an important issue as it is linked with a decrease
in long-term comfort.
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There is here a crucial question which is should we enforce behaviors
that go against people preferences if it is for their own safety? In our stud-
ies, this dilemma did not appear as the preferred behavior was the
one in accordance with ergonomic principles. However, this problem
arises in industry during ergonomic auditing. An industrial worker
might decide not to follow the guidelines simply because it requires
a change in the way he or she is performing actions. Those changes
might also impact the efficiency, as well, as consciously changing the
way you act impacts your execution speed (MacKay 1982).

To overcome this effect, it might be interesting to provide the
workers an incentive to follow the recommended guidelines and to
help them during the transition process from their old habits. For
example, we could rely on gamification by using scores as en en-
couragement for improvement. Such a process as been successfully
used in cars to reduce drivers’ distraction (Xie et al. 2016).

Combining Legibility and Physical Ergonomics

In our research we have considered optimizing the robot motions
for maximum legibility and maximum physical ergonomics on the
human side. However, both aspects are currently segregated and
not optimized simultaneously. The main problem to include both
of them, in a general solution, is that the approaches we have used
are fundamentally different. Our solution for optimizing legible mo-
tions is model-free when our algorithm for ergonomics is model-based.
Including the cost function for maximizing legibility in the LGP for-
malism is currently not a feasible solution as it would require to
either simulate an observer or including external rewards, from real
user interaction, in the solver. In the first case we would move from
a model-free to a model-based approach with all the drawbacks asso-
ciated. In the second case, the number of trials required to solve
legibility and TAMP problems at the same time would be far too
extensive to make it a viable solution

From a logical point of view, however, there are few overlaps be-
tween legible and physically ergonomic motions. Legibility of the
motion is mainly located at the trajectory level from a starting con-
figuration to a desired goal, while the physical ergonomics is mainly
impacted by the final configuration of the robot. In this case, there
should not be any trade-off to make between legibility and physical
ergonomics. Therefore, a possible solution is simply to optimize for
the two separately. For example, we could use the trajectories gen-
erated by the LGP solver as initial trajectories to be optimized for
legibility, when interacting with real users. Because our model-free
solution to optimize for legibility do not make any modifications on
the robot end-goal, this ensure that physical ergonomics is conserved
during the optimization process.
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Appendix A
REBA Calculation

The REBA method (Hignett et al. 2000), introduced in Chapter 6

provides a posture score that represents the risk of MSDs from joint
angle values. There are two groups, A and B, for the body segments.
Calculations of the individual joints composing each groups are il-
lustrated in Figure A.1 and A.2 respectively. Correspondence tables A.1
and A.2 provide the scores for the group A (Score A) and B (Score
B) respectively. To Score A, obtained from Table A.1, we need to add
the payload score δpayload:

i f load < 5kg : δpayload = 0

i f load between 5 to 10kg : δpayload = 1

i f load > 10kg : δpayload = 2

, (A.1)

where load corresponds to the weight of the carried object. Finally,
the REBA score is obtained from Table A.3.
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Figure A.1: Illustration of the REBA cal-
culation for individual joints of Group
A composed by legs, trunk, and neck.
Score A is calculated from Table A.1

Figure A.2: Illustration of the REBA cal-
culation for individual joints of Group
B composed by upper arm, lower arm
and wrist. Score B is calculated from
Table A.2



Table A
Neck

1 2 3

Legs
1 2 3 4 1 2 3 4 1 2 3 4

Trunk

1 1 2 3 4 1 2 3 4 3 3 5 6

2 2 3 4 5 3 4 5 6 4 5 6 7

3 2 4 5 6 4 5 6 7 5 6 7 8

4 3 5 6 7 5 6 7 8 6 7 8 9

5 4 6 7 8 6 7 8 9 7 8 9 9

Table A.1: Correspondence table for the
group A

Table B
Lower Arm

1 2

Wrist
1 2 3 1 2 3

Upper
Arm

1 1 2 2 1 2 3

2 1 2 3 2 3 4

3 3 4 5 4 5 5

4 4 5 5 5 6 7

5 6 7 8 7 8 8

6 7 8 8 8 9 9

Table A.2: Correspondence table for the
group B

Score A
Table C
Score B

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 2 3 3 4 5 6 7 7 7

2 1 2 2 3 4 4 5 6 6 7 7 8

3 2 3 3 3 4 5 6 7 7 8 8 8

4 3 4 4 4 5 6 7 8 8 9 9 9

5 4 4 4 5 6 7 8 8 9 9 9 9

6 6 6 6 7 8 8 9 9 10 10 10 10

7 7 7 7 8 9 9 9 10 10 11 11 11

8 8 8 8 9 10 10 10 10 10 11 11 11

9 9 9 9 10 10 10 11 11 11 12 12 12

10 10 10 10 11 11 11 11 12 12 12 12 12

11 11 11 11 11 12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12 12 12 12 12 12

Table A.3: Correspondence table for the
REBA score



Appendix B
Postural Assessment and Feedback

The question on the worker’s self-awareness of the risks associated
with a given posture still remains. There are multiple projects and
companies that develop wearable devices or fabrics that help users
monitor their shape or keep track of their posture (Rettberg 2014)
Most of them are based on intrusive sensors or clothings that are not
really suitable for industrial workers. The growing number of hu-
man tracking solutions based on external sensors allows for a better
integration of automatic postural assessment techniques in industry.

Most of the time, workers are unaware of the risk induced by a
wrong posture. Dangerous postures might not have a direct effect
on the body but it is the repetition that increases the risk of MSDs.
Therefore, a direct feedback is an interesting feature that could help
workers maintaining a good posture at their workstation. To that
extent, we have developed a graphical interface to animate a model
with the user’s observed body posture. The projection on the model
is almost real-time.

The graphical interface has been developed in Unity1 using hu- 1 Unity is a cross-platform game en-
gine, developed by Unity Technologies,
which is primarily used to develop
video games and simulations for com-
puters, consoles and mobile devices
(Unity n.d.).

manoid models made available by Mixamo2. Unity technology al-

2 Mixamo is a 3D computer graphics
technology company. Based in San
Francisco, the company develops and
sells web-based services for 3D charac-
ter animation (Mixamo n.d.).

lows us to display the interface on any screen, including smart-
phones or tablets. Figure B.1 shows multiple views of the graphical
interface, and also present the two models made available. Using the
buttons on the right side, the user can choose to display a male or
a female version of the model. He or she can also switch between a
front or a back view.

Our solution is decoupled in two modules. First, we record the
worker current using inverse kinematic on the tracked frames (see
Section 6.4.1). This provides a joint vector that we send to our graph-
ical interface in order to animate the model. Second, we evaluate the
risk of the posture using the REBA assessment technique. The REBA
values for each individual joints are then also sent to the graphical
interface and displayed with spheres located at the evaluated body
joints. The color of each sphere represents the risk at its correspond-
ing location. It ranges from “green" (no risk) to “red" (high risk)
according to the REBA method.

https://unity3d.com/
https://www.mixamo.com/


(a) female model, front view (b) male model, back view

Figure B.1: Screenshots of the graphical
interface in two possible configurations.
The same body posture is used in both
pictures. In front view, by contrast with
the back view, the body configuration
mirrors the real posture.

After some trials with test subjects, it has been decided that the
front view should mirror the user’s body configuration, i.e rising the
right arm translates to a rising of the model left arm. In back view,
however, the body configuration is normally displayed.
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