
HAL Id: tel-01722991
https://hal.science/tel-01722991v2

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprehending heterogeneity at (very) large scale
Raphaël Bleuse

To cite this version:
Raphaël Bleuse. Apprehending heterogeneity at (very) large scale. Modeling and Simulation. Uni-
versité Grenoble Alpes, 2017. English. �NNT : 2017GREAM053�. �tel-01722991v2�

https://hal.science/tel-01722991v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES

Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Raphaël BLEUSE

Thèse dirigée par Denis TRYSTRAM

et codirigée par Grégory MOUNIÉ

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale MSTII

Appréhender l’hétérogénéité à
(très) grande échelle
Apprehending heterogeneity
at (very) large scale

Thèse soutenue publiquement le 11 octobre 2017,
devant le jury composé de :

Lionel EYRAUD-DUBOIS
Chargé de Recherche, LaBRI, Inria, France, Examinateur

Nectarios KOZIRIS
Professeur d’Université, School of Electrical and Computer Engineering, National
Technical University of Athens, Grèce, Rapporteur

Vitus J. LEUNG
Principal Member of Technical Staff, Sandia National Laboratories, États-Unis,
Rapporteur

Grégory MOUNIÉ
Maître de Conférence, LIG, Univ. Grenoble Alpes, France, Co-Directeur de thèse

Alix MUNIER
Professeure d’Université, LIP6, UPMC, France, Examinatrice

Yves ROBERT
Professeur d’Université, LIP, ENS Lyon, France, Président

Denis TRYSTRAM
Professeur d’Université, LIG, Univ. Grenoble Alpes, France, Directeur de thèse

À cette grande mère, Mimi.

„ L’expression est œuvre difficile, lente et tortueuse,
— et l’erreur est de croire que n’est pas ce qui ne
peut d’abord s’énoncer.

— Antoine DE SAINT-EXUPÉRY

Remerciements
(Acknowledgments)

I would like to first thank the jury members, and especially the two reviewers
Nectarios KOZIRIS and Vitus J. LEUNG who provided insightful comments on my
dissertation. I would like to thank the DGA-MRIS for the scholarship they granted
me. I would like to thank the JLESC for funding my travels to the USA. I am grateful
to the NCSA members who welcomed me; notably Greg BAUER, Jeremy ENOS,
Andriy KOT, and Sharif ISLAM.

Mes travaux de thèse ne seraient pas ce qu’ils sont sans Denis et Grégory. Je souhaite
chaudement remercier Denis pour ses conseils avisés et sa patience. Je remercie
Grégory pour son enthousiame, son optimisme à toute épreuve et son foisonne-
ment d’idées. Je souhaite aussi vivement remercier les collègues des deux équipes
MESCAL/MOAIS (ou plutôt DATAMOVE/POLARIS) pour l’environnement exception-
nel de recherche qu’ils arrivent à faire vivre. Merci en particulier à Jean-Marc de
m’avoir integré dans ton effort de médiation. Merci aussi à Olivier et Florence
pour ces discussions de cafét’ pendant cet été de rédaction. Annie tient aussi une
place spéciale au travers du soutien quotidien qu’elle apporte aux deux équipes.
Merci à Alexis, David et David, thésards du bureau 443 pour ces moments de tra-
vail/rédaction/codage/discussion/etc. partagés. Je ne remercie pas Millian afin de
mieux le troller1. Une attention spéciale va à Fernando, en qui j’ai trouvé un frère
brésilien habile du fer souder mais rétif au français.

Un grand merci aussi à mes parents ainsi qu’à mes deux sœurs pour leur compagnie,
soutien, dessins, etc.

Je tiens aussi à remercier mes compagnes et compagnons de liberté—que sont
notamment Hélène, Manu, Pauline et Sylvain-Lio’—pour ces aventures verticales et
spirituelles qui ont marqué ces dernières années.

Enfin, merci à Mathou d’Être qui Elle Est.

1Vous aurez, bien entendu, saisi le ton ironique.

v

Abstract / Résumé

Abstract

The demand for computation power is steadily increasing, driven by the need
to simulate more and more complex phenomena with an increasing amount of
consumed/produced data. To meet this demand, the High Performance Computing
platforms grow in both size and heterogeneity. Indeed, heterogeneity allows splitting
problems for a more efficient resolution of sub-problems with ad hoc hardware or
algorithms. This heterogeneity arises in the platforms’ architecture and in the variety
of processed applications. Consequently, the performances become more sensitive to
the execution context.

We study in this dissertation how to qualitatively bring—at a reasonable cost—
context-awareness/obliviousness into allocation and scheduling policies. This study
is conducted from two standpoints: within single applications, and at the whole
platform scale from an inter-applications perspective.

We first study the minimization of the makespan of sequential tasks on platforms with
a mixed architecture composed of multiple CPUs and GPUs. We integrate context-
awareness into schedulers with an affinity mechanism that improves local behavior.
This mechanism has been implemented in a parallel run-time, and experiments show
that it is able to reduce the memory transfers while maintaining a low makespan.
We then extend the model to implicitly consider parallelism on the CPUs with the
moldable-task model. We propose an efficient algorithm formulated as an integer
linear program with a constant performance guarantee of 3

2 + ε.

Second, we devise a new modeling framework where constraints are a first-class
tool. Rather than extending existing models to consider all possible interactions,
we reduce the set of feasible schedules by further constraining existing models.
We propose a set of reasonable constraints to model application spreading and
I/O traffic. We then instantiate this framework for unidimensional topologies, and
propose a comprehensive case study of the makespan minimization under convex
and local constraints.

vii

Résumé

Le besoin de simuler des phénomènes toujours plus complexes accroît les besoins en
puissance de calcul, tout en consommant et produisant de plus en plus de données.
Pour répondre à cette demande, la taille et l’hétérogénéité des plateformes de
calcul haute performance augmentent. L’hétérogénéité permet en effet de découper
les problèmes en sous-problèmes, pour lesquels du matériel ou des algorithmes
ad hoc sont plus efficients. Cette hétérogénéité se manifeste dans l’architecture des
plateformes et dans la variété des applications exécutées. Aussi, les performances
sont de plus en plus sensibles au contexte d’exécution.

L’objet de cette thèse est de considérer, qualitativement et à faible coût, l’impact
du contexte d’exécution dans les politiques d’allocation et d’ordonnancement. Cette
étude est menée à deux niveaux : au sein d’applications uniques, et à l’échelle des
plateformes au niveau inter-applications.

Nous étudions en premier lieu la minimisation du temps de complétion pour des
tâches séquentielles sur des plateformes hybrides intégrant des CPU et des GPU. Nous
proposons de tenir compte du contexte d’exécution grâce à un mécanisme d’affinité
améliorant le comportement local des politiques d’ordonnancement. Ce mécanisme a
été implémenté dans un run-time parallèle. Une campagne d’expérience montre qu’il
permet de diminuer les transferts de données tout en conservant un faible temps de
complétion. Puis, afin de prendre implicitement en compte le parallélisme sur les
CPU, nous enrichissons le modèle en considérant les tâches comme moldables sur
CPU. Nous proposons un algorithme basé sur la programmation linéaire en nombres
entiers. Cet algorithme efficace a un rapport de compétitivité de 3

2 + ε.

Dans un second temps, nous proposons un nouveau cadre de modélisation dans
lequel les contraintes sont des outils de premier ordre. Plutôt que d’étendre les
modèles existants en considérant toutes les interactions possibles, nous réduisons
l’espace des ordonnancements réalisables via l’ajout de contraintes. Nous proposons
des contraintes raisonnables pour modéliser l’étalement des applications ainsi que
les flux d’E/S. Nous proposons ensuite une étude de cas exhaustive dans le cadre de
la minimisation du temps de complétion pour des topologies unidimensionnelles,
sous les contraintes de convexité et de localité.

viii

Contents

Acknowledgments v

Abstract / Résumé vii

Contents ix

1 Introduction 1
1.1 Background . 1

1.2 Contextualization . 2

1.2.1 Intra-Application Level . 5

1.2.2 Inter-Applications Level . 5

1.3 Explicit vs. Implicit Modeling of Communications 6

1.3.1 Existing Explicit Models . 7

1.3.2 Limits of Explicit Models . 8

1.3.3 Implicit Modeling . 8

1.4 Contributions . 9

1.5 Content . 12

2 Scheduling Independent Sequential Tasks on Multi-Cores with GPUs 15
2.1 Problem Definition . 17

2.2 Related Work . 17

2.2.1 Algorithmic Results . 17

2.2.2 Parallel Run-times . 19

2.3 XKaapi Scheduling Framework . 20

2.3.1 Execution Flow . 21

2.3.2 Performance Model . 21

2.4 Scheduling Policies . 22

2.4.1 HEFT: Heterogeneous Earliest-Finish-Time 22

2.4.2 Dual Approximation Based Algorithms 23

Pure Dual Approach . 24

Bringing Context-Awareness in: Affinity 24

2.5 Usability of Scheduling Policies for Linear Algebra 27

ix

2.6 Performance Evaluation . 29

2.6.1 Experimental Setup: Platform and Benchmarks 29

Platform . 29

Benchmarks . 29

Methodology . 30

2.6.2 Impact of the Affinity Control Parameter α 30

2.6.3 Comparison of Scheduling Policies 31

Experimental Evaluation . 32

Discussion . 32

2.7 Summary . 34

3 Scheduling Independent Moldable Tasks on Multi-Cores with GPUs 37
3.1 Problem Definition . 38

3.2 Related Work . 40

3.3 Algorithm APPROX-3/2 . 41

3.3.1 Partitioning Tasks . 41

3.3.2 Mathematical Formulation . 43

Objective Function and Constraints 43

Filtering . 44

Integer Linear Program . 46

3.4 Analysis of the Algorithm APPROX-3/2 46

3.4.1 Structure of a Schedule of Makespan λ 47

3.4.2 Structure of the Partitioning 48

3.4.3 Correctness of the Dual Approximation 51

3.4.4 Building the Schedule . 54

3.5 Algorithm APPROX-2 . 54

3.5.1 Sketch . 55

3.5.2 Analysis . 55

3.6 Experimental Evaluation . 56

3.6.1 Problem Instances . 56

3.6.2 HEFT-like Heuristics . 59

3.6.3 Implementation Details . 60

3.6.4 Experimental Results . 61

3.7 Summary . 65

4 Geometric Constraints as a First-Class Modeling Tool 67
4.1 General Problem Setting . 68

4.1.1 Intrinsic Constraints . 70

4.1.2 Extrinsic Metrics . 74

x

4.1.3 Extension of Graham Notation 75
4.2 Related Work . 76

5 Unidimensional Problem’s Instantiations 79
5.1 Formal Instantiation . 79

5.1.1 Structural Properties . 80
5.2 Study of unpinned I/O . 81

5.2.1 Complexity . 81
5.2.2 Meta Approximation Algorithm 82

Sketch . 83
Analysis . 83

5.3 Study of pinned I/O . 84
5.3.1 Complexity . 84
5.3.2 Approximation Algorithm . 86

Algorithm with a single I/O node per job 86
Analysis with a single I/O node per job 90
Extending to any number of I/O nodes per job 92

5.4 Summary . 95

6 Conclusion and Future Steps 97
6.1 Future Steps . 98

Bibliography A1

List of Figures A11

List of Tables A13

xi

Introduction 1
1.1 Background

In High Performance Computing (HPC), the demand for computation power is
steadily increasing, driven by the need to simulate more and more complex phenom-
ena (structures at the atomic level, protein folding, fluid dynamics, etc.) with an
increasing amount of consumed/produced data. In the near future, the great chal-
lenge for the HPC community is to build the ecosystem for both exaflop (1018 Flop/s)
and sustained petaflop (1015 Flop/s) performance levels. To measure up to such a
challenge while keeping both construction and operating costs at a minimum, the
HPC platforms (or supercomputers) require disruptive evolutions [Don+11]. Among
these evolutions, two aspects require particular attention: scale and heterogeneity.

First, the extreme scale of the platforms is a challenge on its own. To absorb
the demand in computing power, the platforms now integrate about ten million
computing cores [@top500]. Still, increasing the number of cores is not sufficient
as it only tackles the question of the available raw theoretical processing power. At
such an extreme scale, the issues of feeding input data to the cores and retrieving
the produced resulting data become the predominant difficulty. Due to the cost and
scaling constraints, most of the current supercomputers have a unique and multi-
purpose interconnection network. These networks, such as the DragonFly or SlimFly
interconnects [Kat+15], are usually organized as very dense local subnetworks that
are interconnected by a global sparse network. Such topologies further emphasize
the effects of locality.

Second, the platforms and their usages are growing in heterogeneity. This hetero-
geneity arises from various factors:

• The tremendous amount of data transiting in the platforms requires dedicated
nodes within the platform to handle the generated load. It is indeed impossible
for the computing nodes to keep in their local memories all the data required
for computations.

• The platforms are now hybrid systems built with computing cores of various
architectures. For example, the platforms may integrate slow general purpose

1

cores, or CPUs; efficient SIMD cores, such as GPUs or MICs; programmable
cores dedicated to complex specific computations, or FPGAs; etc.

• The various network traffics induced by the applications share a unique net-
work resource.

• The applications running on the platforms vary in many ways: their size, the
time to process them, their communication patterns, etc.

As of today, the most efficient, state-of-the-art HPC platforms are able to achieve
power efficiency in the order of 1010 Flop/s W−1 [@green500]. A quick calculation
leads to an estimated power consumption of 100 MW for an exascale platform. Due
to the ever-increasing power generation costs, such a tremendous power consump-
tion for a single platform is not reasonable, and justifies the need for disruptions.
However, we do not directly target the power consumption. We rather look at it
through the prism of communications: communications, and more precisely data
movements, are indeed the most power hungry operations. As a consequence,
optimizing data movements will lower power consumption, but is particularly chal-
lenging for two reasons. First, as aforementioned, the volume of data is tremendous:
the biggest applications routinely manage volumes of 10 TB to 100 TB. Such volume
of data considerably stresses the interconnection network, and this volume of data
is expected to follow the growth of applications and platforms. Second, the gap
between memory, network and processor speeds is widening. This gap is such that
applications, if not properly scheduled, spend more time waiting for data than
computing [Ash+10].

1.2 Contextualization

By essence, any model reduces the object under study to a simpler set of characteris-
tics, parameters and postulates. While this reduction is mandatory to apprehend
the studied object, it is done at the cost of losing accuracy. In the case of executing
applications on modern parallel platforms, phenomena such as network contention,
complex data dependencies, memory hierarchies or tightly coupled tasks often
are not modeled, though they have a huge impact on performance. We define
context as such external elements that are not included into the model, but still
have a significant impact. The governing idea of this dissertation is to bring—at
a reasonable cost—context awareness, or even context obliviousness, in the
scheduling policies. This idea is derived at two levels: within a single application
at a fine grain scale, and with multiple concurrent applications at a coarser level.

2 Chapter 1 Introduction

computing nodes file system

app. deployment,
execution control

res. allocation,
app. priorities

app. registration

res. managerschedulerapp. manager

RJMS

users

app. submission

Figure 1.1 Overview of an application submission process on a typical parallel platform [Geo10].
The application manager is the interface between the users and the scheduler: the users
send the description of their applications to the application manager.
The resource manager is the interface between the scheduler and the platform: it monitors
the resources, deploy applications, and control the execution of the applications.
With respect to the resources status reported by the resource manager, the scheduler decides
where (which resources to allocate) and when an application will execute.
[Credits: icons by Madebyoliver and Zlatko Najdenovski; https://www.flaticon.com]

Before detailing both levels, let us sketch an application execution. When users of
a parallel platform want to run an application, they submit the description of the
application to the RJMS (Resource and Job Management System). An application
description usually consists in an executable, resources requirements, and an estima-
tion of the time needed to run the application. The RJMS is responsible for managing
the applications (collecting users’ requests, queuing applications), scheduling them
(allocating resources to the applications), and managing the resources (deploying
and starting applications). The critical role of the scheduler component is to satisfy
the users’ demand for computation by allocating some resources of the platform for
some amount of time to their applications. An overview of an application submis-
sion process on a parallel platform is depicted on Figure 1.1. The decisions of the
scheduler are often visualized as Gantt charts, as shown on Figure 1.2.

1.2 Contextualization 3

https://www.flaticon.com

0
2000

4000
6000

8000
10000

tim
e / s

0 20 40 60 80

100

120

proc. id

1

2 3 4 4 5 6 78 8

9 9 9 1011 12 13 14 14 15 1617

18 19 20

21 2223 24

2526

27

28 28

29 30

31 31 32 3334 34 35 36

3738 38 3839 39

40 4142 42

4344 45 4647 474849 50 5051 5152 52 5354 54 54 55

56

57 57

58 59

60

61

62
63 63 636465 65 66 67 6869 6970

71 72 7374

7576 77 7778 7879 80

81 81

82 82 83 8485 85 85 85 86 87

88 88

89 90 91 92 93 93 94 95 96 97 98

99

100

101 102

102

103

104

105

106

107

108

109 110111

111

112

113

113

114115

116

116 117

118119

119120

120

121

121 122

123124

124

124

125

126

126

127

128

129

129

130131

132

132

132

133134

135

135

136

137

138139

140 141

141

142

142

143

143

143

144

144

145

145146 147

148

149

150151

151152

152

153

153

154

155156

156
157

158

158

159

159

160161

162

162

162

163

164

165

166

166

167

168

169

170

171

172

173

174

175

176

177

178

179

179

180

181

181

182 183

183

184

185

186

187

188

189

190

191

192

193

193

194

195

196

197

198

199

200

201

202

203

204

205

206

206

206

207

208

209

210

211

212

212

212

213

213 214
215

216

216

217

218219

220

220

220

220

221

221

221

221

221

221

222

222

222

222

223

223

224

224

225

225

225

225

225

226227

227

228229230

230

230

231

231

231

231

231

232

232

232

233234235 236

236237

237

237
238

239

239

239

240

240

241

242

243

243

244245

245

246

247

248

249

250

250

250

250

250

Figure 1.2 Gantt chart of a typical HPC workload. Jobs executed by processors (y-axis) are depicted by
rectangles along the time line (x-axis). This chart represents the execution of 250 jobs on a
platform with 128 processors. Two distinct phases are visible: the system starts to populate
during a transient phase until the processors are saturated (around 5000 s), the system then
enter a steady state and processors are almost always used.

4 Chapter 1 Introduction

1.2.1 Intra-Application Level

From the RJMS point of view, an application may be viewed as a black box (as
depicted by rectangles on the Gantt chart on Figure 1.2), and we do not want to
open this Pandora’s box. Once some resources have been allocated to an application,
the application itself is responsible for their correct usage.

An application is usually described as a set of tasks to process. These tasks are the
core concept at this level: they represent the basic unit of computations. To efficiently
leverage the allocated resources, the application needs to consider various factors.
Some factors to consider are trustworthy and stable, such as the application structure
or the topology of the allocated resources of the platform. Other factors can only
be unreliably measured, such as the effective processing time or the interconnect
(internal buses or platform network). Moreover, the execution of an application is
perturbed by factors alien to the application [Bha+13]. For example, an application
may share some bandwidth with other applications, the temperature of the platform
may raise and degrade performance due to other overdemanding applications, etc.

Facing such uncertainties, there is a need for simple, robust and context-aware
scheduling policies. These policies also need to be able to handle the heterogene-
ity in the computing resources. There exist scheduling policies based on strip
packing problems that provide efficient solutions with provable approximation ra-
tios [Bou+11]. However, these policies are not robust as they require very precise
estimations of the time to process tasks, but such estimations do not exist [HC16].

Locality is a well-known mechanism that drastically improves the execution perfor-
mance. We propose to bring context-awareness through contextual affinity, which we
define as a score derived from rough measures of the context (e.g., memory usage at
a given moment). Each task prioritizes the computing resources it may be executed
on with this qualitative score, and this serves as a guide for the scheduler.

Still, as of today, the application knowledge of the platform is limited to its allocated
resources. However, as the platform is shared by several applications, it is not
sufficient to consider the intra-application level.

1.2.2 Inter-Applications Level

As stated earlier, HPC platforms now include millions of computing nodes. Very few
applications, if any, are able to leverage that many resources. It is however crucial to
maintain a high utilization of the platform. Hence, many applications are executed

1.2 Contextualization 5

simultaneously. Similarly to the tasks at the intra-application level, applications are
competing for the computing and the communication resources. Yet, when working
at this level, the core concept is the single application, and we do not care about too
detailed a description of the applications.

As the platforms and applications grow in size, the amount of data transiting
increases. Still, even if the memory density increases, the computing nodes cannot
keep the whole datasets in their local memories. These datasets are hence stored
on parallel file systems (e.g., Lustre) that reside on dedicated hardware. To ensure
that the computing nodes can access data is the responsibility of the interconnection
network. There exist various cost-effective and efficient interconnection topologies:
multidimensional torus, fat-tree, SlimFly, DragonFly [Kat+15]. Such interconnection
networks are meant to be unique and all-purpose within the platforms. Consequently,
intra-application communications and I/O traffic have to share a global network: this
induces complex interactions such as network contention between applications.

These nocuous interactions can either be tackled once applications have been sched-
uled (reactive strategy) or while scheduling them (proactive strategy). A typical
reactive strategy would be—given some application allocations—to schedule the
data movements [Gai+15]. On the other hand, a proactive strategy would tackle
the interactions by enforcing smart allocations. With these smart allocations, the
applications would induce less traffic. It is worth noticing that reactive strategies
need a fine knowledge of the context, while proactive strategies do not.

We consider context in an oblivious manner at this inter-application level. Rather
than optimizing communications once the applications have been scheduled, we
propose to enforce constraints on the allocations. These constraints allow us to
completely abstract the context of execution while guaranteeing the applications
will behave well by isolating them.

1.3 Explicit vs. Implicit Modeling of Communications

The 2010 Turing award laureate, Leslie Valiant, described a good model as a bridge
between the chosen programming model and the hardware [Val90]. More precisely,
a good model has to be “easy to implement in hardware” and “efficiently targeted
by programmers”. As an example, the von Neumann model (a.k.a. RAM model) of
the computer is a very good abstraction for sequential programming. On the other
hand, the search for a good parallel programming model is still going on.

6 Chapter 1 Introduction

1.3.1 Existing Explicit Models

PRAM The natural extension of the von Neumann model for parallel platform is
the PRAM model (Parallel Random-Access Machine) [FW78]. A parallel platform
is modeled as an unbounded number of processors with access to an unbounded
global memory. At each step in this model, the processors simultaneously execute
three successive operations: an optional read, followed by a computation, finished
by an optional write. Despite being a powerful classification tool, the PRAM model
ignores the communications cost and the synchronization overhead, and it is not
representative of modern parallel platforms.

To overcome this weakness of the PRAM model, many modeling approaches have
been proposed. We quickly review three classical model families aiming at integrat-
ing communication: communication delays, BSP, and LogP.

Communication Delays The communication delays modeling techniques rely on
the representation of a computation as a directed acyclic graph of dependencies:
vertices represent computations, and edges represent data dependencies between
computations. A parallel platform is modeled as a set of processors with local
memory connected by an interconnection network. Following the edges of the
dependency graph, a data exchange is delayed if the computations are not scheduled
on the same processor. A review of various models with communication delays can
be found in [BGT97].

BSP The BSP model (Bulk Synchronous Parallel) has been proposed in the 1980s
by Valiant [Val90]. The BSP model integrates the communication from a macro-
scopic point of view. A parallel platform is modeled as a set of processors, a network
to exchange messages, and some hardware support for synchronization. The com-
putations under BSP are modeled as a series of supersteps: each superstep consists
in a phase of concurrent computations, a phase of global communications, and a
synchronization phase.

LogP The LogP model tackles the issue of communications from an architectural
point of view [Cul+93]. A parallel platform under LogP is modeled as a set of pro-
cessors communicating thanks to an interconnection network. However, contrarily
to the BSP model, the processors communicate asynchronously with messages of
small size (e.g., 16 bytes in [Dus+96]). The time to exchange messages is then

1.3 Explicit vs. Implicit Modeling of Communications 7

modeled with three parameters: the latency of the network, the overhead (time
spent to process a message) and the gap (reciprocal of the network bandwidth).

1.3.2 Limits of Explicit Models

Parallel platforms are complex systems, where integrating more and more com-
ponents emphasizes some unforeseen patterns. Existing models exhibit various
limitations that prohibit their use at the extreme scales we target. Explicit modeling
of the communications faces the issue of choosing between models that are too
precise or too coarse.

Too precise models are unable to scale due to the number of parameters needed to
apprehend the exascale. Moreover, gathering valid data to instantiate models is an
arduous task: the volume of data is tremendous, the granularity of measures is often
too coarse to get useful data, instrumentation of code is tedious, etc. Furthermore,
the patterns of application submission times are ever-changing: they depend, for
example, on the day of the week, whether the location of a conference is attractive
or not, how tight the next deadline is. Such behaviors are barely quantifiable. In
light of these points, what is the purpose of having ultraprecise model when we are
unable to instantiate them?

On the other side of the spectrum, coarse models are unable to capture phenomena
such as contention. For example, the BSP model makes the assumption that the
network is in a steady state by considering the “basic throughput [. . .] when in
continuous use” [Val90]. This assumption presupposes the latency in the intercon-
nection network can be bound: this is at best a very imprecise assumption, at worst
a false hypothesis. Thus, the contention on networks is either imprecisely modeled,
or falsely taken into account. Although the LogP model cannot be considered a
coarse grain model, it is flawed as it makes the assumption that the bandwidth is
sufficient with respect to the message sizes.

1.3.3 Implicit Modeling

As stated in the previous section, explicit models are unable by design to capture
contention at scale. Precise models are unable to scale as the number of parameters
to account for explodes, while coarse models are too simple to model contention.
The goal is instead to find a good balance between the two worlds, by keeping the
simplicity of coarse models while capturing phenomena such as contention.

8 Chapter 1 Introduction

The moldable task model arose from this idea [DMT04; Fei+97]. In this model, the
communication times are implicitly taken into account by a penalty function that
represents the overhead caused by the parallelization. This model is however limited
as the only factor of parallelization is the number of resources allotted to a task.
It does not capture, for example, the impact of the allocation shape. Nonetheless,
it showed that implicitly modeling communications is an effective way to model
modern parallel platform. Rather than trying to capture more and more of the
complexity of the modern parallel platform, we keep a simpler model than we enrich
with constraints. These extrinsic constraints are cheap safeguards that derive either
from the structure of the platform or from the structure of the application. These
constraints do not aim to model the context. They however ensure the whole system
will behave correctly with regard to the context. As an example, a constraint could
forbid the scheduler to use certain allocation shapes if they degrade performance.
With such an approach, we are able to mitigate the curse of dimensionality while
capturing the context.

1.4 Contributions

The focus of this dissertation is to bring—at a reasonable cost—awareness of the
execution context into scheduling policies. The contributions of this dissertation
are twofold: we develop this idea within a single application (i.e., intra-application
level), and with multiple concurrent applications (i.e., inter-applications level).
We address as a first step the intra-application level. More precisely, we study in
Chapters 2 and 3 the problem of scheduling independent tasks on a single computing
node composed of multiple CPUs and GPUs. Secondly, we propose a generic model
of modern large-scale parallel platforms. We expose in Chapter 4 the proposed
model framework, and we study in Chapter 5 some instantiations of the model for
unidimensional topologies.

Efficient implementations of parallel applications on heterogeneous hybrid archi-
tectures require a careful balance between computations and communications with
accelerator devices. Even if most of the communication time can be overlapped by
computations, it is essential to reduce the total volume of exchanged data. The litera-
ture therefore abounds with ad hoc methods to reach that balance, but these methods
depend on both the targeted architecture and application. We propose a generic
mechanism to automatically optimize the scheduling of sequential independent tasks
between CPUs and GPUs. This mechanism consists of grouping the tasks by affinity
before running a fast dual approximation [HS87]. This affinity-based algorithm

1.4 Contributions 9

has been tested against the reference algorithm HEFT [THW02] by simulation and
experimentation. We assessed the performance with standard dense linear algebra
kernels. We ran the experiments on a hybrid parallel machine composed of twelve
CPUs and eight GPUs. The results show that HEFT and the new algorithm perform
well for various experimental conditions. The new algorithm scales better for larger
systems and number of GPUs. Moreover, in most cases, the new algorithm generates
much lower data transfers than HEFT to achieve the same performance.

However, as the approach detailed above targets sequential tasks, it still relies on an
explicit view of the parallelism on the CPUs. We further extend the model to assume
tasks are parallelizable on CPUs by using the moldable model: the final number of
cores allotted to a task is decided and set by the scheduler. We design an algorithm
aimed at minimizing the makespan—the maximum completion time of all tasks—for
this scheduling problem. The proposed algorithm combines a dual approximation
scheme with a fast integer linear program (ILP). A worst-case analysis shows that
the algorithm has an approximation ratio of 3

2 + ε. Since the time complexity of the
ILP-based algorithm could be non-polynomial, we also present a polynomial-time
algorithm with an approximation ratio of 2 + ε. We complement the theoretical
analysis of our two novel algorithms with a simulation study. In these simulations,
we compare our algorithms to a modified version of the classical HEFT algorithm,
which we adapted to handle moldable tasks. The simulation results show that
our algorithm with the

(
3
2 + ε

)
-approximation ratio produces significantly shorter

schedules than the modified HEFT for most of the instances. In addition, our results
provide evidence that our ILP-based algorithm can solve large problem instances in
a reasonable amount of time.

Moving up to the inter-application level, schedulers for large parallel platform
face challenges to efficiently share the platform between users. These challenges
mainly arise from the scale of the machines, the heterogeneity of the resources, and
the structure of the interconnection network. As the interconnection network is
unique and shared, the interweaving of network flows begets complex interactions
detrimental to performance. Among the various types of network traffic induced by
applications, we distinguish the flows induced by data exchanges for computations
(i.e., intra-application flows) and the flows targeting the external storage. We
propose here a new direction to consider and limit such complex interactions. We do
not try to directly optimize the communications. The core idea is to use geometric
constraints as first class modeling tools. We propose to derive constraints from
the topology of the parallel platform. These constraints restrict the allocations the
scheduler is allowed to use. We classify the constraints, and identify the constraints
of interest for the integration of the execution context. We address the issue of

10 Chapter 1 Introduction

intra-application flows with structurally intrinsic constraints such as convexity or
contiguity. For example, the convexity constraint ensures intra-application flows do
not interact with any other concurrent application. Furthermore, we address the
issue of I/O flows with extrinsic constraints, such as compacity or proximity. These
extrinsic constraints ensure applications are allocated resources close to the location
of their datasets. The generic scheduling problem is then defined as an optimization
problem with the application description and the platform (nodes and topology) as
input. The objective for example is to minimize makespan or maximize throughput,
while respecting the constraints on the allocations.

We then study with this methodology several instances of the generic problem with
unidimensional topologies. Unidimensional topologies are indeed a first step to-
wards the study of instances with characteristics deriving from machines such as
Curie [@curie] (fat-tree interconnect) or Blue Waters [@bw] (3D-torus intercon-
nect). More precisely, we study the line and the ring topologies. We start by stating
structural dominance of some properties. These dominance results are independent
of the optimization objective. Second, we study thoroughly the problem of minimiz-
ing the makespan under convexity and locality constraints. We prove complexity
results for various setups. We then propose approximation algorithms with constant
approximation ratios.

Work dissemination

The following communications result from the preparation of this dissertation.

Journal Articles

• Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié,
and Denis Trystram. “Scheduling independent tasks on multi-cores with GPU
accelerators”. In: Concurrency and Computation: Practice and Experience 27.6
(2015), pp. 1625–1638. DOI: 10.1002/cpe.3359.

• Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, et al. “Scheduling
Independent Moldable Tasks on Multi-Cores with GPUs”. In: IEEE Transactions
on Parallel and Distributed Systems 28.9 (Sept. 2017), pp. 2689–2702. DOI:
10.1109/TPDS.2017.2675891.

1.4 Contributions 11

https://doi.org/10.1002/cpe.3359
https://doi.org/10.1109/TPDS.2017.2675891

Peer reviewed international conferences

• Raphaël Bleuse, Thierry Gautier, João Vicente Ferreira Lima, Grégory Mounié,
and Denis Trystram. “Scheduling Data Flow Program in XKaapi: A New Affinity
Based Algorithm for Heterogeneous Architectures”. In: Euro-Par. Vol. 8632.
Lecture Notes in Computer Science. Springer, Aug. 2014, pp. 560–571. DOI:
10.1007/978-3-319-09873-9_47.

International Workshops

• Raphaël Bleuse, Giorgio Lucarelli, Grégory Mounié, and Denis Trystram.
“Interference-Aware Scheduling with 2D-Torus as a Case Study”. Presented at
ECCO XXX. Koper, Slovenia, May 2017.

• Raphaël Bleuse. “Affinity Scheduling: from Quantitative to Qualitative”. Pre-
sented at the 2nd JLESC Workshop. Chicago, USA, Nov. 2014.

• Raphaël Bleuse, Giorgio Lucarelli, and Denis Trystram. “Convex Allocations
under IO Constraints”. Presented at New Challenges in Scheduling Theory.
Aussois, France, Mar. 2016.

• Raphaël Bleuse, Giorgio Lucarelli, and Denis Trystram. “Convex Allocations
under IO Constraints”. Presented at the 5th JLESC Workshop. Lyon, France,
June 2016.

Popularization

• “CS Unplugged: Alice déménage”. Workshop animation at Fête de la Science.
Grenoble, France, Oct. 2014, 2015, 2016.

1.5 Content

The remainder of the dissertation is organized as follows. Each chapter includes a
section addressing the relevant related work. At first, we study the intra-application
level. We propose in Chapter 2 a new algorithm based on affinity to schedule
independent sequential tasks on a platform composed of multiple CPUs and GPUs.
We then report the performances of its implementation in a parallel run-time. We
extend the model in Chapter 3, by allowing the tasks to be moldable on the CPUs. We
propose two algorithms with performance guarantees, and study their performances

12 Chapter 1 Introduction

https://doi.org/10.1007/978-3-319-09873-9_47

by simulation. The next two chapters address the inter-applications level. We
propose in Chapter 4 a generic framework to model current and upcoming parallel
platforms. More precisely, we identify constraints and metrics of interest for the
study of such platforms. We then instantiate the proposed model for unidimensional
topologies in Chapter 5, and study all variants of makespan minimization under
the constraints of convexity and locality. Finally, a conclusion and future work
perspectives are presented in Chapter 6.

1.5 Content 13

Scheduling Independent
Sequential Tasks on
Multi-Cores with GPUs

2

This chapter presents new methods to schedule independent sequential tasks on
hybrid CPU-GPU architectures designed for HPC. We propose and study the integra-
tion of scheduling algorithms based on the dual approximation technique [HS87].
We propose an extension of such algorithms that is able to find a compromise
between performance and transfers. This is done by bringing context awareness
through an affinity based abstraction. The contributions of this chapter are first the
design and implementation of new algorithms, and second their evaluation on three
dense linear algebra algorithms in double precision floating-point operations from
PLASMA [But+09]: namely Cholesky, LU, and QR.

With the recent evolution of processor design, the future generations of processors
will contain hundreds of cores. To increase the performance per watt ratio, the
cores will be non-symmetric with few highly powerful cores (CPU) and numerous
simpler cores (GPU) [Lee+10]. The success of such machines will rely on the
ability to schedule the disparate workload at run-time, even for small problem
instances. One of the main challenges is to define a scheduling policy that may be
able to exploit all potential parallelisms on a heterogeneous architecture composed
of multiple CPUs and multiple GPUs. These new hybrid architectures have given rise
to new scheduling problems. In the field of High Performance Computing (HPC),
one of the most studied scheduling problem is the minimization of the maximum
completion time (makespan) of the schedule. Some Polynomial-Time Approximation
Schemes (PTAS) exist for problems of minimizing the makespan on heterogeneous
processors [BW12; HS88], but their running times make them impractical for solving
scheduling problems on actual computing platforms.

In the field of parallel processing, there exists a huge number of papers dealing with
ad hoc implementations of algorithms using GPUs or hybrid architectures. These
works expand over several aspects of parallelism from operating system, run-time,
application implementation or languages. However, few of them focus on the inter-
mediate problem of scheduling on hybrid platforms [PDB13]. An online algorithm

15

with a performance guarantee [CYZ13] has recently been developed for CPU-GPU
platforms, but there is no performance guarantee for any offline problem on these
systems. Many works in the literature consist of studying the gains and performances
of parallel implementations of some specific numerical kernels [Agu+11b; STD12],
specific applications like multiple alignments of biological sequences [Bou+10b], or
molecular dynamics [PSS08]. As a result, most of the existing scheduling algorithms
and tools are not well-suited for general purpose applications. Scheduling is done
on a case by case basis, and often offers good performances. However, we lack
high-level mechanisms that provide transparent and efficient schedules for any
application.

Some actual run-time systems include the basic mechanisms for developing schedul-
ing algorithms like OmpSs [Bue+12], StarPU [Aug+11] or XKaapi [Gau+13]. Sev-
eral scheduling algorithms have been implemented on top of these systems. Previous
works demonstrate the efficiency of policies such as static distribution [Son+10;
TDB10], centralized list scheduling with data locality [Bue+12], cost models [Agu+11a;
Agu+11b; ATN09; Aug+11] based on Heterogeneous Earliest Finish Time schedul-
ing (HEFT) [THW02], and dynamic scheduling for some specific application do-
mains [Bos+12; Her+10]. Locality-aware work stealing [Gau+13], with a careful
implementation to overlap communication by computation [Fer+12], improves
significantly the performance of compute-bound linear algebra problems such as
matrix product and Cholesky factorization. Nevertheless, none of the works cited
above considers scheduling strategies from the viewpoint of a compromise between
performance and locality.

The chapter is organized as follows. A formal description of the scheduling problem
with k GPUs is provided in Section 2.1. In Section 2.2 we report existing works
from an algorithmic point of view, and we briefly survey related works on run-time
systems, scheduling policies and performance prediction. Section 2.3 provides an
overview of XKaapi run-time system, describes the XKaapi scheduling framework and
the cost model applied for performance prediction. Section 2.4 details the scheduling
policies that have been studied. We study in Section 2.5 the usability of the proposed
scheduling policies. Section 2.6 presents the experimental results obtained with the
retained scheduling policies on a heterogeneous machine composed of twelve CPUs
and eight GPUs. Finally, a synthesis is provided in Section 2.7.

The work presented in this chapter has led to two publications [Ble+14; Ble+15],
and has been done in collaboration with Thierry GAUTIER, Safia KEDAD-SIDHOUM,
João V. FERREIRA LIMA, Florence MONNA, Grégory MOUNIÉ, and Denis TRYSTRAM.

16 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

2.1 Problem Definition

We consider a multi-core parallel platform composed of m identical CPUs and
k identical GPUs. The m CPUs are considered independent from the GPUs. Each
GPU is driven by a dedicated CPU. The driving CPUs are not considered in the
scheduling problem because they do not execute any task. An instance of the
problem is described as a set T1, . . . , Tn of n independent sequential tasks. The
processing time of any task Tj is denoted by pj if Tj is processed on a CPU, and by
pj if the task is processed on a GPU. We assume that the processing times are known
in advance. This is a common assumption when scheduling dense linear algebra
kernels (as we do in the experiments).

The scheduling problem consists in computing a function σ that associates every
task to a starting time and either a CPU or a GPU. The makespan is defined as
the maximum completion time of the last finishing task. The objective is to min-
imize the makespan Cmax of the whole schedule, which is the maximum of the
makespan on CPUs and the makespan on the GPUs. The problem is denoted by
(Pm,Pk) || Cmax.

2.2 Related Work

This section is organized in two parts: first we discuss complexity and algorithmic
results, and second we briefly describe existing work in parallel run-times.

2.2.1 Algorithmic Results

With the constraint that processing times match on both CPUs and GPUs (i.e.,
∀j, pj = pj), the problem (P1, P1) || Cmax is equivalent to P2 || Cmax. As P2 || Cmax

is NP-hard [GJ79], the problem of scheduling with GPUs is NP-hard. Hence, we
are interested in proposing efficient approximation algorithms with performance
guarantees. Recall that for a given minimization problem, the approximation ratio
ρA of an algorithm A solving this problem is defined as the maximum over all the
instances I of the ratio f(I)

f∗(I) where f is the minimization objective and f∗ is its
optimal value [HS87].

The problem targeted here is a new problem. It is harder than the classical problem of
scheduling on uniform machines P || Cmax. Although (Pm,Pk) || Cmax is a specific

2.1 Problem Definition 17

case of the problem of scheduling on unrelated machines R || Cmax [Bła+07], it is
possible to get better results by considering the problem on its own. Lenstra et al. pro-
posed a Polynomial-Time Approximation Scheme (PTAS) for the problem R || Cmax

with a running time bounded by the product of (n+ 1)
m
ε and a polynomial of the

input size [LST90]. Let us notice that if parameter m is not fixed, then the algorithm
is not fully polynomial. The authors also proved that unless P = NP, R || Cmax

admits no PTAS with an approximation factor better than 3
2 . They proposed a

2-approximation algorithm for R || Cmax. This algorithm works by optimally solving
with a linear program the preemptive version of the problem, and by rounding this
optimal solution. Shmoys and Tardos generalized this technique to obtain the same
approximation factor for the generalized assignment problem [ST93]. Furthermore,
they generalized the rounding technique to hold for any fractional solution. Re-
cently, Shchepin and Vakhania introduced a new rounding technique which yields
an improved approximation factor of 2 − 1

m [SV05]. This technique has a similar
time complexity as the one developed by Lenstra et al. [LST90]. To the best of our
knowledge, this is so far the best approximation result for this problem. However,
the prohibitive computational cost of these algorithms prevents their usage on actual
computing platforms.

It is worth noticing that if all the tasks of the problem have the same acceleration
on the GPUs, the problem reduces to the classical problem of scheduling on related
machines Q || Cmax, with two machine speeds. For Qm || Cmax, Friesen proved
that the approximation ratio of the well-known Longest Processing Time (LPT)
scheduling policy satisfies 1.52 6 CLPT

max
C∗max

6 5
3 [Fri87]. The first PTAS for Q || Cmax

was given by Hochbaum and Shmoys [HS88]. The overall running time of their
algorithm is O

((
log(m) + log(3

ε)
)
m
ε
n
ε

1
ε

)
. However, these solving methods would

only work for specific instances of the problem of scheduling on hybrid platforms,
where the acceleration factors pj

pj
would be equal to a constant. This is not the case

in practice.

Another direction is to consider the problem of scheduling on unrelated machines of
few different types. Indeed, the R || Cmax reference problem can be refined to better
fit the constraints of the hybrid platforms. Bonifaci and Wiese [BW12] presented
a PTAS to solve a scheduling problem with unrelated machines of few different
types. The tools used in their solving method are somewhat similar to the ones used
for solving R || Cmax. The rounding phases of the algorithm require a significant
amount of time, raising the time complexity of the algorithm to an impractical
level. Despite considering only two machine speeds with (Pm,Pk) || Cmax, their
method is too costly to be implemented in a parallel run-time in our case. There is a
need to consider other algorithms than these PTAS to design algorithms that could

18 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

be implemented on actual platforms. A PTAS with a reasonable time complexity
has been developed for the online version of the problem of the assignment of
sporadic tasks on hybrid platforms [RN12]. However, an offline version of the
problem with non-periodic tasks has not been studied, and the algorithm cannot
be trivially extended to the problem (Pm,Pk) || Cmax. On another hand, Imreh
presented different greedy algorithms for the problem of scheduling on two sets
of identical machines, with varying approximation ratios including 2 + m−1

k and
4− 2

m (for m CPUs and k GPUs) [Imr03]. These algorithms are fast enough for being
implemented in modern platforms, nevertheless the approximation ratios of these
algorithms are quite high since usually the number of GPUs is much lower than the
number of CPUs.

The objective is to build a bridge between purely theoretical algorithms with perfor-
mance guarantees and practical low cost heuristics. Thus, we propose a trade-off
solution with a provable performance guarantee and a reasonable time complexity.

2.2.2 Parallel Run-times

From a practical perspective, the scheduling policy is a key point for the performance
of an application. Tuning scheduling algorithms for a specific case (problem and
computer architecture) is common. Fast heuristics without performance guarantee
are often used on computing platforms, time efficiency being the crucial factor.
However, simple policies are not sufficient to guarantee the performance for more
general cases potentially far from the specific one, and ad hoc methods cannot be
reused. The performance portability is difficult to achieve when the number of
CPUs and GPUs varies or when the speedup of the various parts of the application is
evolving during the execution.

When writing a parallel run-time for hybrid machines, one of the main challenges is
to define a scheduling policy that may be able to exploit all potential parallelisms on
a heterogeneous architecture composed of multiple CPUs and multiple GPUs.

StarPU [Aug+11], OmpSs [Bue+12] and QUARK [YKD11] are programming envi-
ronments or libraries that enable the automatic scheduling of tasks with data-flow
dependencies. OmpSs is based on OpenMP-like pragmas while StarPU and QUARK
are C libraries. QUARK does not schedule tasks on multi-GPU architecture and
implements a centralized greedy list scheduling algorithm. OmpSs locality-aware
scheduling, similar to our data-aware heuristic from [Gau+13], computes an affin-
ity score based on both data location and size. Then, the task is placed on the

2.2 Related Work 19

highest affinity resource or in a global list, otherwise. The StarPU scheduler uses
the HEFT [THW02] algorithm to schedule all ready tasks in accordance with the
cost models for data transfer and task execution time [ATN09]. Our data transfer
model is based on the StarPU model with minor extension. In the context of dense
linear algebra algorithms, PLASMA [But+09] provides fine-grained parallel linear
algebra routines with dynamic scheduling through QUARK, which was conceived
specially for numerical algorithms on multi-CPU architecture. MAGMA [TDB10]
implements static scheduling for linear algebra algorithms on heterogeneous systems
composed of GPUs. Recently it has included some methods with dynamic scheduling
in multi-CPU and multi-GPU systems on top of StarPU, in addition to the static
multi-GPU version. In [Son+10], the authors based their Cholesky factorization on
2D block cyclic distribution with an owner compute rule to map tasks to resources.
DAGuE [Bos+12] is a parallel framework focused on multi-core clusters and sup-
ports single-GPU nodes. Other papers reported performance results of task-based
algorithms with HEFT cost model scheduling on heterogeneous architectures for
the Cholesky [Aug+11], LU [Agu+11a], and QR [Agu+11b] factorizations. All
the results report evaluation of single floating-point arithmetics with up to three
GPUs. Due to the small number of GPUs, such studies cannot observe contention
and scalability.

2.3 XKaapi Scheduling Framework

The XKaapi data-flow model [GBP07]—as in Cilk, Intel TBB, OpenMP-3.0, or
OmpSs [Bue+12]—enables non-blocking task creation: the caller creates the task,
and proceeds with the program execution. Parallelism is explicit while the detec-
tion of synchronizations is implicit [GBP07]: the dependencies between tasks and
memory transfers are automatically managed by the run-time system.

The XKaapi run-time system is structured around the notion of a worker: it is the
internal representation of a kernel thread. A worker executes the code of the tasks,
and takes local scheduling decisions. Each worker owns a local queue of ready
tasks. Our interface is mainly inspired by the one of a work stealing scheduler, and
is composed of three operations that act on workers’ queues of tasks: pop, push and
steal. Previous work demonstrated the efficiency of XKaapi’s locality-aware work
stealing, as well as the corresponding multi-GPU run-time support using specialized
implementation of these operations [Gau+13]. A new operation, called activate, has
been defined to push ready tasks to a worker’s queue.

20 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

2.3.1 Execution Flow

A framework interface for scheduling policies is not a new concept in heterogeneous
systems. Bueno et al. [Bue+12] and Augonnet et al. [Aug+11] described a minimal
interface to design scheduling policies with selection at run-time. However, there is
little information available on the comparison of different policies. Most of them
reported performance on centralized list scheduling and performance models. The
XKaapi framework is composed of three classical operations in the work stealing
context, plus an action to activate tasks when their predecessors have completed:

• The push operation inserts a task into a queue. A worker can push a task into
any other workers’ queue.

• A pop removes a task from the local queue owned by the caller worker.

• A steal removes a task from the queue of a remote worker. The operation is
called by an idle thread—the thief—in order to pick tasks from a randomly
selected worker—the victim.

• The activate operation is called after the completion of a task. The role of this
operation is to allocate the tasks that are ready to be executed. The scheduling
decision are computed during this operation.

The sketch of the execution mechanism is as follows. At each step, either the own
local queue of worker is non-empty and the worker uses it; or the worker emits
a steal request to a randomly selected worker to get a task to execute. Once a
worker finishes processing a task, the activate operation is called. With respect to
the dependencies, this operation marks as ready the successors of the completed
task that become ready for execution (i.e., the completed task was the last blocking
dependency). The scheduling policy then schedules the ready tasks. The execution
of the application terminates when all the tasks have been executed.

2.3.2 Performance Model

Cost models depend on a certain knowledge of both application algorithm and the
underlying architecture to predict performance at run-time. In order to predict
performance, we designed a StarPU-like performance model for both task execution
time and communication [ATN09]. The prediction of task processing time relies on
a history-based model, and the estimation of transfer time is based on asymptotic
bandwidth. These predictions are given to the scheduling policies that need task
processing time such as HEFT and dual approximation based policies.

2.3 XKaapi Scheduling Framework 21

The XKaapi run-time system gets information from every internal events (such
as start/end of task execution, or start/end of communication with a GPU) to
calibrate the performance model, and corrects erroneous predictions due to unpre-
dictable or unknown behavior (e.g., operating system state or I/O disturbance).
StarPU [Aug+11] uses similar run-time measurements in order to correct the perfor-
mance predictions in its HEFT implementation.

To efficiently balance the load XKaapi maintains for each processor—as a shared
time-stamp—the predicted time at which the processor will become idle. The
completion date of the last executed task is also kept for each processor. The update
and incrementation of the time-stamps are efficiently implemented with atomic
operators.

2.4 Scheduling Policies

This section introduces the scheduling policies designed on top of the XKaapi
scheduling framework. We consider a multi-core parallel architecture with m

homogeneous CPUs and k homogeneous GPUs. First, we describe our implementa-
tion of HEFT [THW02]. Then, we recall the principle of the dual approxima-
tion scheme [HS87]. We propose a new algorithm—Distributed Affinity Dual
Approximation (DADA)—based on this paradigm which takes into account the
affinity between tasks.

In the following, the number of tasks is denoted by n. We denote by pj the processing
time of task Tj on a CPU and pj on a GPU. We define the speedup Sj of task Tj as

the ratio Sj = pj
pj

.

2.4.1 HEFT: Heterogeneous Earliest-Finish-Time

The Heterogeneous Earliest-Finish-Time algorithm (HEFT), proposed by [THW02],
is a scheduling algorithm for a bounded number of heterogeneous processors. HEFT
is the natural extension of list algorithms for unrelated processors. This is however
not a list scheduling algorithm as some resources may stay idle. The algorithm time
complexity is in O

(
n2 · (m+ k)

)
. It has two major phases: task prioritizing and

worker selection. Our XKaapi version of HEFT implements both phases during the
activate operation. The task prioritizing phase computes for all ready tasks Tj its
speedup Sj relative to an execution on GPU. Next, it sorts the list of ready tasks by

22 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

decreasing speedups. Whereas the original HEFT rule sorts the tasks by decreasing
upward rank (average path length to the end), our rule gives priority on minimizing
the sum of the execution times. In the worker selection phase, the algorithm selects
tasks in the order of their speedup Sj and schedules each task on the worker which
minimizes the completion time. Algorithm 1 describes the basic steps of HEFT over
XKaapi.

Algorithm 1: HEFT—activate operation
Input :a list LR of ready tasks Tj
Output : tasks Tj pushed to the worker’s queues

1 foreach Tj ∈ LR do
2 Sj ← pj/pj

3 end
4 sort all ready tasks Tj by decreasing speedup Sj
5 foreach Tj ∈ LR do
6 schedule Tj on the worker i achieving the earliest finish time
7 push Tj into queue of worker i
8 update processor load time-stamps on worker i
9 end

As of today, HEFT is the de facto reference algorithm to schedule tasks on machines
with diverse computation resources. From a theoretical point of view, it is not a
satisfying algorithm as its worst case performance ratio is arbitrarily bad. More
precisely, Monna proved the following result:

Lemma 2.1 ([Mon14]). For problem (Pm,P1) || Cmax, the worst case performance
ratio of HEFT is at least m

2 .

2.4.2 Dual Approximation Based Algorithms

The algorithms exposed in this section all rely on the dual approximation tech-
nique [HS87]. Let us recall that dual approximation is a powerful technique to
design approximation algorithms for minimization problems. A g-dual approxima-
tion algorithm takes an estimation (guess) λ of the value of the objective to minimize.
If a feasible solution of objective value at most λ exists, the algorithm is guaranteed
to find a solution of objective value at most gλ. On the contrary, if there exists
no feasible solution of objective value at most λ, the algorithm correctly reject the
guess λ. Given a lower bound and an upper bound of the optimal objective value, a
binary search on the guess until a given precision ε is reached.

2.4 Scheduling Policies 23

In the context of scheduling, the dual approximation algorithm uses a guess λ of the
makespan. The g-dual approximation algorithm then finds a schedule of makespan
at most gλ if there exists a feasible schedule of makespan at most λ, or the algorithm
rejects λ.

Pure Dual Approach

The dual approximation technique is a powerful tool to reduce the complexity of
the algorithms. Having an estimation of the makespan allows searching feasible
solutions with a specific structure. We detail here the algorithmic aspects of the
studied algorithms.

DA-2 DA-2 is a 2-approximation algorithm [Ble+15]. The computing resources
are split into two shelves: one shelf contains all the CPUs, the other shelf contains
all the GPUs. The key idea to allocate the tasks is to minimize the work on the CPUs
by offloading as much work as possible to the GPUs.

Given a guess λ of the makespan, the algorithm works as follows. There is no choice
for the tasks that fits in λ only on one type of architecture: allocate them to the
corresponding architecture. Sort the remaining unallocated tasks by decreasing
speedup. Following this order, schedule each task on the least loaded GPUs until
each GPU is loaded more than λ. Schedule the remaining tasks on the CPUs with a
list algorithm.

DP-4/3 DP-4/3 [Ble+15] is based on the same principles as DA-2: it partitions the
computing resources into shelves, allocates the tasks to shelves, and schedules the
tasks within their shelves. The algorithms provide a guarantee of 4

3 + 1
3k + ε by using

a finer partitioning of the tasks into eight shelves. The allocation of the tasks to the
shelves is done with a dynamic program of computational cost of O

(
n2m2k3) per

step of the binary search.

Bringing Context-Awareness in: Affinity

The pure dual based algorithms presented neglect a key point as they use a flat view
of the resources within each partition. Although scheduling ready tasks only allows
us to consider tasks as independent, the choice of where to allocate a task needs to

24 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

take into account the context. DADA builds a compromise taking into account both
raw performance (makespan) and transfers (context).

The idea is to split the scheduling in two successive phases: a first local phase
targeting the reduction of the communications, and a second global phase which
counter-balances the induced serialization. The combination of the two phases
follows the scheme introduced by Stein and Wein [SW97]. The local phase uses the
affinity abstraction described below. The second phase aims at a global balance. Any
algorithm optimizing the makespan could be used for the second phase. We use here
DA-2. In order to gain a finer control, the length of the first phase is controlled by a
parameter (denoted by α, 0 6 α 6 1). A value of 0 for α means that the affinity is
not taken into account: DADA is then equivalent to DA-2. While at the opposite end,
a value close to 1 allows a length up to λ for the first phase, thus giving a greater
weight to affinity.

Each pair (task, computation resource) is given an affinity score. Maximizing the
score over the whole schedule makes possible to consider local impacts. The affinity
scores are computed using extra information automatically gathered by the run-time
system. In our implementation, they were computed using the amount of data
updated by each task. For instance, a task that writes or modifies a data stored on a
resource i has a high score and is prone to be scheduled on i.

The dual approximation part of Algorithm 2 consists in the following steps:

• Choice of the initial guess λ (lines 2 and 4);

• Extract the tasks which fit only into GPUs (pj > λ), and symmetrically those
which are dedicated to CPUs (line 9);

• Keep this schedule if the tasks fit into λ (line 12). Otherwise, reject it if there
is a task larger than λ on both CPUs and GPUs (line 15);

• Add to the tasks allocated to the GPU those which have the largest speedup Sj
up to overreaching the threshold λ (line 19) which guarantees the ratio ρ = 2;

• Put all the remaining tasks in the m CPUs and execute them using an earliest-
finish-time scheduling policy (line 19).

2.4 Scheduling Policies 25

Algorithm 2: DADA—activate operation
Input :a list LR of ready tasks Tj
Output : tasks Tj pushed to the worker’s queues

1 lower ← 0
2 upper ←

∑
j max(pj , pj)

3 while (upper − lower) > ε do
4 λ← (upper + lower)/ 2

5 begin local affinity phase
6 schedule tasks of LR per affinity score on its affinity processor, loading

each processor up to overreaching αλ
7 end

8 begin global balance phase
9 schedule LR to minimize finish time using λ as hint

10 if tasks do fit into (ρ+ α)λ then
11 upper ← λ
12 keep current schedule
13 else
14 lower ← λ
15 reject current schedule
16 end
17 end
18 end

19 push each task Tj of LR on queue of worker i based on the last fitting schedule
and update processor load time-stamps

26 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

2.5 Usability of Scheduling Policies for Linear Algebra

The performances of the algorithms have been first assessed by simulation [Ble+15].
The dual approximation policies computed schedule with smaller makespans. We
study in this section the practical usability of the scheduling policies. The algorithms
have been implemented as scheduling policies in the XKaapi run-time.

We measured the performances of the HEFT, DA-2 and DP-4/3 policies with linear
algebra kernels because these kernels are extensively used, well-maintained, and
the processing times of the generated tasks are well-known and stable.

Some preliminary experiments have been conducted on a quad-core Intel i7-3840QM
running at 3.8 GHz, with hyperthreading enabled, and with 32 GB of memory.
The machine is augmented with a single NVIDIA Quadro K1000M GPU (Kepler
architecture) of 192 GPU cores (scalar processors) running at 850 MHz with 2 GB
DDR3 memory.

We study the variation of the computation time as a function of the block size for the
same matrix size of a Cholesky factorization (DPOTRF) extracted from the MAGMA
library. Varying the block size allows us study the behavior of the run-time under
various conditions as the block size has a direct impact on memory transfers between
the CPUs and the GPU. The block sizes also impacts the number of scheduled tasks:
the smaller the block size, the greater the number of tasks.

We observe on Figure 2.1 that the execution time using DP-4/3 increases drastically
with the number of tasks (small block size). This behavior is caused by the time to
compute the schedule dominating the execution time. Regarding the processing time
of each task (i.e., linear algebra kernel), DP-4/3 is too slow to compute a schedule.
Despite providing a better performance guarantee, DP-4/3 does it at too great a cost
(quadratic in the number of tasks) for linear algebra kernels.

The algorithm DP-4/3, and its better performance guarantee, is therefore usable
for cases where the processing time of tasks is greater than the time to compute
a schedule. In the context of linear algebra kernels, DP-4/3 is not the best suited
algorithm. On the other hand, HEFT and DA-2 are fast enough to compute schedules
in such a setup.

2.5 Usability of Scheduling Policies for Linear Algebra 27

ntasks: 4

bsize: 16384

ntasks: 20

bsize: 8192

ntasks: 45760

bsize: 512

0 1.0e-5 2.0e-5 3.0e-5 0 0.5e-4 1.0e-4 1.5e-4 0 250 500 750

0

100

200

300

400

scheduling time / s

pr
oc

es
si

ng
ti

m
e

/
s

scheduler
DP-4/3

DA-2

HEFT

Figure 2.1 Distribution of the execution time between scheduling time and effective processing time for
various block sizes.
The sum of both times gives the real execution time of the factorization. The computed
kernel is a Cholesky factorization (DPOTRF) of a matrix of size 32768. Block sizes between
1024 and 4096 exhibit the same behavior as with a block size of 512: they have been removed
for the sake of clarity.
The factorization is scheduled by DA-2, DP-4/3, and HEFT on three hyperthreaded cores
and a single GPU.

28 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

Xeon X5650

QPI-PCIe
Bridge

Tesla C2050
Xeon core

Xeon X5650

PCIe
Switch

PCIe 16x

QPI

QPI

QPI

QPI-PCIe
Bridge

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

PCIe
Switch

PCIe
Switch

PCIe
Switch

PCIe 16x

QPI

Figure 2.2 Architecture of a multi-cores with GPUs system [Gau+13]. CPUs and GPUs do not share
memory, and communicate via the PCIe buses.

2.6 Performance Evaluation

As stated in Section 2.5, DP-4/3 is too costly to compute schedules for linear algebra.
We hence compare the performances of HEFT, DA-2, and DADA. Recall that DADA
is a variation of DA-2 with an improved context-aware mapping (affinity).

2.6.1 Experimental Setup: Platform and Benchmarks

Platform

All experiments have been conducted on a heterogeneous, multi-CPU, multi-GPU
system. The machine is composed of two hexa-core Intel Xeon X5650 CPUs running
at 2.66 GHz with 72 GB of memory. The machine is enhanced with eight NVIDIA
Tesla C2050 GPUs (Fermi architecture) of 448 GPU cores (scalar processors) running
at 1.15 GHz each (2688 GPU cores total) with 3 GB GDDR5 memory per GPU (18 GB
total). The machine has four PCIe switches to support up to eight GPUs. Figure 2.2
depicts the architecture of the machine. When two GPUs share a switch, their
aggregated PCIe bandwidth is bounded by the one of a single PCIe 16x. Experiments
using up to four GPUs avoid this bandwidth constraint by using at most one GPU
per PCIe switch.

Benchmarks

All benchmarks ran on top of a GNU/Linux Debian 6.0.2 squeeze with kernel 2.6.32-
5-amd64. We compiled with GCC 4.4 and linked against CUDA 5.0 and the li-

2.6 Performance Evaluation 29

brary ATLAS 3.9.39 (BLAS and LAPACK). All experiments use the tile algorithms
of PLASMA [But+09] for Cholesky (DPOTRF), LU (DGETRF), and QR (DGEQRF). The
QUARK API [YKD11] has been implemented and extended in XKaapi to support
task multi-specialization: the XKaapi run-time system maintains the CPU and GPU
versions for each PLASMA task. At the task execution, our QUARK version runs the
appropriate task implementation in accordance with the worker architecture. The
GPU kernels of QR and LU are based on previous works from [Agu+11a; Agu+11b]
and adapted from PLASMA CPU algorithm and MAGMA from [TDB10]. Each run-
ning GPU monopolizes a CPU core to manage its worker. The remaining CPU cores
are involved in the application computations.

Methodology

Each experiment has been executed at least 30 times for each set of parameters.
We report on all the figures (Figures 2.3, 2.4, 2.5 and 2.6) the mean and the 95%
confidence interval. The factorizations have been done in double precision floating-
point operations with a PLASMA internal block (IB) of size 128 and tiles of size 512.
For each of them, we plot the highest performance obtained on various matrix sizes
with the discussed scheduling policies.

In the following, DADA(α) represents DADA parametrized by α. We denote by
DADA(α)+CP the algorithm using Communication Prediction as supplementary
information. Note that DA-2 and DADA(0) denote the same algorithm: we use
the latter form to denote this algorithm. HEFT policy always computes the earliest
finish time of a task taking into account the time to transfer data before executing
the task.

2.6.2 Impact of the Affinity Control Parameter α

This section highlights the impact of the affinity control parameter α on the com-
promise between performance and data transfers. The measures have been done
with the Cholesky decomposition on matrices of size 8192× 8192 and 16384× 16384.
However, we present only results for the smallest size as we observe similar behaviors
for both matrix sizes.

Figure 2.3 shows both performance (Figures 2.3(a) and 2.3(b)) and total memory
transfers (Figures 2.3(c) and 2.3(d)) for several values of α with respect to the
number of GPUs. Both metrics are shown without (Figures 2.3(a) and 2.3(c)) and

30 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

α=0.95
α=0.25
α=0.1
α=0.05

α=0

(a) Performance of DADA(α).

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

α=0.95
α=0.25
α=0.1
α=0.05

α=0

(b) Performance of DADA(α)+CP.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

α=0.95
α=0.25
α=0.1
α=0.05

α=0

(c) Memory transfer of DADA(α).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

 α=0.95
α=0.25
α=0.1
α=0.05

α=0

(d) Memory transfer of DADA(α)+CP.

Figure 2.3 Impact of the affinity parameter α on Cholesky factorization (DPOTRF) with matrix of size
8192× 8192.

with (Figures 2.3(b) and 2.3(d)) communication prediction taken into account. Once
affinity is considered (i.e., α 6= 0), the higher the value of α, the better the policy
scales. Using as little information as possible (i.e., DADA(0) and no communication
prediction), the policy performance does not scale with more than two GPUs because
of too many transfers.

2.6.3 Comparison of Scheduling Policies

We present in this section the results for the three kernels (DPOTRF, DGETRF, and
DGEQRF) with matrix size 8192 × 8192. Other tested sizes have the same behavior.
The idea is to evaluate the behavior of each policy with different workloads. We
study both performance and data transfers of the policies introduced above: HEFT,
DADA(0), DADA(α) and DADA(α)+CP.

2.6 Performance Evaluation 31

Experimental Evaluation

Figure 2.4 reports the behavior of the Cholesky decomposition (DPOTRF) with respect
to the number of GPUs used. It studies both performance results (Figure 2.4(a))
and total memory transfers (Figure 2.4(b)). All scheduling algorithms have similar
performances. DADA(α)+CP scales slightly better with the number of GPU. As
expected, DADA(α)+CP and DADA(α) are the policies with the lowest bandwidth
footprint up to six GPUs. Yet, as the number of GPU grows, the use of communi-
cation prediction allows to reduce the communication volume with sustained high
performances.

Figure 2.5 reports the behavior of the LU factorization (DGETRF). It studies both
performance results (Figure 2.5(a)) and total memory transfers (Figure 2.5(b)).
Apart from the performance of DADA(α)+CP for six CPUs and six GPUs (with a
large confidence interval), all scheduling policies sustain the same performance.
Data transfers seem to have a little impact on performance. However, DADA(α)+CP
generates less memory movements than other policies. DADA(0) is the costliest
policy while DADA(α) and HEFT have similar impacts. The total memory transfers
of the LU and the Cholesky factorizations behave similarly. Still, the gap between
the curves is widening: DADA(α)+CP is 3.5 times less demanding in bandwidth
than HEFT for only a slowdown of about 1.13 in performance for eight GPUs.

Finally, Figure 2.6 reports the behavior of the QR factorization (DGEQRF) with respect
to the number of GPUs used. Both performance results (Figure 2.6(a)) and total
memory transfers (Figure 2.6(b)) are studied. All dual approximations (DADA(0),
DADA(α), DADA(α)+CP) behave the same, and are outperformed by HEFT. Even
the low transfer footprint of both DADA(α) is not able to sustain performance.
It seems that the dependencies between tasks for QR factorization have a strong
impact on the schedule computed by all dual approximation algorithms. We are still
investigating this particular point.

Discussion

Communication Prediction Affinity is a viable alternative to communication mod-
eling. Indeed, DADA without communication prediction is comparable to HEFT in
terms of performance. Moreover, affinity based policy combined with communica-
tion prediction allows to further reduce the amount of memory transfers (up to a
factor 3.5 when compared to HEFT).

32 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

 0

 100

 200

 300

 400

 500

 600

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
DADA(α=0.95)+CP

(a) Performance (8192 × 8192).

 0

 0.5

 1

 1.5

 2

 2.5

 3

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
DADA(α=0.95)+CP

(b) Memory Transfer (8192 × 8192).

Figure 2.4 Benchmarks of Cholesky factorization (DPOTRF).

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
DADA(α=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

 7

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
 DADA(α=0.95)+CP

(b) Memory Transfer (8192 × 8192).

Figure 2.5 Benchmarks of LU factorization (DGETRF).

 0

 20

 40

 60

 80

 100

 120

 140

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

Pe
rfo

rm
an

ce
 /

G
Fl

op
/s

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
DADA(α=0.95)+CP

(a) Performance (8192 × 8192).

 0

 1

 2

 3

 4

 5

 6

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

M
em

or
y

tra
ns

fe
r /

 G
B

Number of CPUs/GPUs

HEFT
DADA(α=0)

DADA(α=0.95)
DADA(α=0.95)+CP

(b) Memory Transfer (8192 × 8192).

Figure 2.6 Benchmarks of QR factorization (DGEQRF).

2.6 Performance Evaluation 33

Comparison with Work Stealing Scheduling Algorithm For the sake of complete-
ness, we also tested the work stealing algorithm. However we did not plot the results
in previous figures for the sake of readability. We briefly discuss them now. The naive
work stealing algorithm is cache unfriendly, especially with small matrices as its ran-
dom choices are heavily penalizing [Gau+13]. On the contrary, the affinity policies
proposed here are suitable for this case. When scheduling for medium and large
matrix sizes, the impact of modeling inaccuracies grows. Model oblivious algorithms
such as work-stealing behave well by efficiently overlapping communications and
computations while HEFT is misled by the imprecise communication predictions.
Hence, our approach is much more robust than work stealing and HEFT since it
does not need too precise a communication model, and adapts well to various matrix
sizes.

2.7 Summary

In this chapter we designed new algorithms, and we proposed the evaluation of vari-
ous generic scheduling algorithms for hybrid architectures consisting in multi-core
machines augmented with GPUs. This evaluation has been conducted by implement-
ing the algorithms on top of the XKaapi parallel run-time. The behaviors of the
algorithms have been studied with three dense linear algebra kernels. The studied
algorithms (DP-4/3, and DADA variations) are based on the dual approximation,
and provide performance guarantees. Their performances have been compared to
the de facto standard HEFT algorithm. Among the studied algorithms, DADA is a
new approach. DADA relies on affinity to introduce context-awareness at a tractable
cost.

We first validate that the trade-off between the computational complexity and the
performance guarantee matters. Despite having a better guarantee than DADA,
DP-4/3 is not a viable option in such a setup as the algorithm is too slow to compute
a schedule.

Although HEFT achieves the best absolute performance on the QR factorization,
DADA has similar or better performances on the Cholesky and LU factorizations
for large numbers of GPU. Nevertheless, DADA allows to significantly reduce the
amount of data transfers with a negligible impact on raw performances.

More interestingly, thanks to its affinity criterion, DADA proposes a qualitative way
to take communications into account. This is a valuable alternative to the precise

34 Chapter 2 Scheduling Independent Sequential Tasks on Multi-Cores with
GPUs

communication cost models which are required by HEFT to predict the completion
time of tasks.

2.7 Summary 35

Scheduling Independent
Moldable Tasks on
Multi-Cores with GPUs

3

In the previous chapter, we showed first steps to devise generic scheduling algo-
rithms for heterogeneous compute nodes. In particular, we have developed an
approximation algorithm with a constant worst-case performance guarantee that
provides solutions for the scheduling problem of independent, sequential tasks onto
CPUs or GPUs for the makespan objective. However, the DP-4/3 algorithm had two
main drawbacks. First, even though the algorithm has a polynomial-time complexity,
it relies on dynamic programming, in which a vast state space has to be explored.
For that reason, the practical applicability of the algorithm is limited due to its large
run-time. Second, tasks could potentially benefit from internal (data-)parallelism
on CPUs, and the previous algorithm worked for sequential tasks only. Thus, in the
current chapter we assume that tasks are moldable, i.e., they are computational units
that may be executed by several (more than one) processors. Then, the run-time
of such a moldable task depends on the number of processors allotted to it. Such a
model allows us to exploit the two types of parallelism offered by hybrid parallel
computing platforms: the inherent parallelism induced by GPU’s architecture, and
the parallelization of tasks on several CPUs. The objective of this chapter is to
propose a generic method to leverage these two different kind of parallelism.

This chapter reflects a publication [Ble+17] done in collaboration with Sascha
HUNOLD, Safia KEDAD-SIDHOUM, Florence MONNA, Grégory MOUNIÉ, and Denis
TRYSTRAM.

Compared to the state of the art, the contributions of this chapter are:

• To present a novel algorithm—combining dual approximation and integer
linear programming—that can solve the scheduling problem of independent,
moldable tasks on hybrid parallel compute platforms consisting of m CPUs and
k GPUs.

• To prove that this algorithm has an approximation ratio of 3
2 + ε.

37

• To show through a sequence of experiments that even though our algorithm
is based on integer linear programming, which may be theoretically non-
polynomial, it is still practically relevant, as it provides competitive schedules,
and has a relatively short run-time.

• To present a fully polynomial-time algorithm for the same scheduling problem,
for which we prove an approximation ratio of 2 + ε.

The chapter is organized as follows: in Section 3.1, we define the scheduling problem
targeted in this work. We examine existing related works on scheduling with GPUs
and moldable tasks in Section 3.2. We present our novel scheduling algorithm,
which is based on integer linear programming (ILP), in Section 3.3 and provide
the theoretical analysis of the algorithm in Section 3.4. Section 3.5 presents a
fully polynomial approximation algorithm, which we introduce to compare with
our ILP-based algorithm. In Section 3.6, we present an experimental study that
compares the solution quality (makespan) of various scheduling algorithms for a
variety of test instances. We conclude the chapter in Section 3.7.

3.1 Problem Definition

We target the same architecture as in Chapter 2. We consider a multi-core parallel
platform composed of m identical CPUs and k identical GPUs. An instance of the
problem is described as a set {T1, . . . , Tn} of n independent tasks considered as
moldable when assigned to the CPUs and sequential when assigned to a GPU. The
processing time of any task Tj is represented by a function pj : l 7→ pj,l that represent
the processing time when executed on l CPUs and by pj that is the processing time
when executed on a GPU. We assume that these processing times are known in
advance.

Recall that the scheduling problem consists in finding a function σ that associates for
each task Tj its starting time and the computing resources assigned for its execution.
A task is either assigned to a single GPU or to a subset of the available CPUs, under
the constraints that the task starts its execution simultaneously on all the allocated
resources and occupies them without interruption until its completion time.

We define the CPU work function wj of a task Tj as wj : l 7→ wj,l = l × pj,l for
l 6 m. The value wj,l corresponds to the computational area—in the Gantt chart
representation of a schedule—of the task Tj when executed on l CPUs. According to
the usual executions of parallel programs, we assume that the tasks assigned to the

38 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

CPUs are monotonic: assigning more CPUs to a task usually decreases its execution
time at a price of an increased work. This is due to some internal communications
and synchronizations. There are two types of monotonicities: namely the time
monotonicity which is achieved when pj is a non-increasing function for any task,
and the work monotonicity that is achieved when wj is a non-decreasing function for
any task. A set of tasks is said to be monotonic when it achieves both monotonicities.
This assumption may be interpreted by the well-known Brent’s lemma [Bre74],
which states that the parallel execution of a task achieves some speedup if it is large
enough, but does not lead to super-linear speedups. Notice that an instance of the
problem can always be transformed to fulfill the time monotonicity property by
replacing function pj by pj ′ : l 7→ min {pj,q | q ∈ 1, . . . , l}. Such a transformation
does not affect the optimal solution of the scheduling. In the sequel, we always
assume that the set of tasks of the considered instance is monotonic. There is no
need for such a hypothesis on the GPUs as the tasks are considered sequential on
this architecture.

The makespan is defined as the maximum completion time of the last finishing
task. For the problem considered here, the objective is to minimize the makespan of
the whole schedule, which is the maximum of the makespan on the CPUs and the
makespan on the GPUs. The problem is denoted by (Pm,Pk) | mold | Cmax.

Observe that if all the tasks are sequential and the processing times are the same
on both devices (pj = pj,1) for j ∈ 1, . . . , n, the problem (Pm,Pk) | mold | Cmax is
equivalent to the classical P || Cmax problem, which is NP-hard. Thus, the problem
of scheduling moldable tasks with GPUs is also NP-hard, and we are looking for
efficient algorithms with guaranteed approximation ratio. Recall that for a given
problem the approximation ratio ρA of an algorithm A is defined as the maximum
over all the instances I of the ratio f(I)

f∗(I) where f is any minimization objective and
f∗ is its optimal value.

This study considers algorithms that provide non-preemptive schedules with con-
tiguous processor assignment. It is clear that the optimal assignment could use CPUs
that are not consecutive ones. However, this restriction does not hinder the achieved
results [MRT07].

3.1 Problem Definition 39

3.2 Related Work

We present in this section existing results dealing with moldable tasks. Please refer
to Section 2.2 for a discussion about heterogeneous scheduling and the problem
(Pm,Pk) || Cmax.

The problem of scheduling independent moldable tasks on homogeneous parallel
systems has been extensively studied in the last decade. Among other reasons, the in-
terest in studying this problem was motivated by scheduling jobs in batch processing
in HPC clusters. For instance, the documentation of TORQUE mentions a basic mold-
able submission mechanism [@torque]. A noteworthy work is the implementation
and evaluation of a moldable scheduler for OAR by Lionel Eyraud [Eyr06].

Jansen and Porkolab [JP99] proposed a Polynomial-Time Approximation Scheme
based on a linear programming formulation for scheduling independent moldable
tasks. The complexity of their scheme, although linear in the number of tasks, is
highly dependent on the accuracy of the approximation due to an exponential factor
in the number of processors. Thus, although the result is of significant theoretical
interest, this algorithm cannot be considered for a practical use.

Most existing previous works are based on a two-phase approach, initially proposed
by Turek, Wolf and Yu [TWY92]. The basic idea here is to select first an assignment
(the number of processors assigned to each task), and in a second step to solve
the resulting rigid (non-moldable) scheduling problem. The rigid task scheduling
problem is a classical scheduling problem with multiprocessor tasks. As far as
the makespan objective is concerned, this problem is related to a 2-dimensional
strip-packing problem for independent tasks [Bou+10a; Cof+80].

It is clear that applying an approximation of guarantee ρ for the rigid problem on the
assignment of an optimal solution provides the same guarantee ρ for the moldable
problem if ever an optimal assignment can be found. Two complementary ways
have been proposed for solving the problem, either focusing on the first phase of
assignment or on the scheduling (second phase). Ludwig improved the complexity
of the assignment selection in the special case of monotonic tasks leading to a
2-approximation [LT94]. The other way corresponds to choosing an assignment
such that the resulting non-moldable problem is not a general instance of strip-
packing, and hence better specific approximation algorithms can be applied. Using
the knapsack problem as an auxiliary problem for the selection of the assignment,
this technique leads to a (3

2 + ε)-approximation algorithm for any ε > 0 [MRT07].

40 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

Furthermore, an extensive, both theoretical and experimental comparison of low-cost
scheduling algorithms for moldable tasks has been carried out by Fan et al. [Fan+12].

3.3 Algorithm APPROX-3/2

The principle of the algorithm is based on a dual approximation [HS87]. Recall that
a ρ-dual approximation algorithm for our scheduling problem uses a guess λ of the
makespan. The ρ-dual approximation algorithm then finds a schedule of makespan
at most ρλ if there exists a feasible schedule of makespan at most λ, or the algorithm
rejects λ. We target ρ = 3

2 . Let λ be the current real number input for the dual
approximation. In the whole section, we suppose there exists a schedule of length
lower than λ, and we show how to build a schedule of length at most 3λ

2 .

Given a positive number h, we define—as in [MRT07]—for each task Tj its canonical
number of CPUs γ (j, h). The number γ (j, h) is the minimal number of CPUs needed
to execute task Tj in time at most h. If Tj cannot be executed in time less than h on
m CPUs, we set by convention γ (j, h) = +∞. Observe that wj,γ(j,h) is the minimal
work area needed to execute Tj on CPUs in time at most h. Also note that if the set
of tasks is monotonic, the canonical number of CPUs can be found in time O (log(m))
by binary search.

3.3.1 Partitioning Tasks

The idea of the algorithm is to partition the set of tasks on the CPUs into five sets,
and on the GPUs into two sets, as depicted in Figure 3.1. This choice of the task
assignement to CPUs is detailed below:

(0): the set containing the sequential tasks assigned to the CPUs with a processing
time at most λ

2 .

(1): the set containing the sequential tasks assigned to the CPUs with a processing
time greater than λ

2 and at most 3λ
4 . This set is partitioned in two shelves as

depicted in Figure 3.1: namely, the left set (1)L and the right set (1)R.

(2): the set containing the tasks—either parallel or sequential—assigned to the
CPUs with different canonical numbers of CPUs for the times λ and 3λ

2 . Task Tj
is then assigned to γ

(
j, 3λ

2

)
CPUs.

3.3 Algorithm APPROX-3/2 41

µ∅

µ(3)

µ(1)

µ(2)

µ(4)
(3)

(0)

(1)L

(2)

(4)

(1)R

t
0 λ

2
3λ
4 λ 3λ

2

(a) Structure of the schedule on the CPUs with an even number of tasks in set (1).

µ∅

µ(3)

µ(1)

µ(2)

µ(4)(3)

(0)

(1)L

(2)

(4)

(1)R

t
0 λ

2
3λ
4 λ 3λ

2

(b) Structure of the schedule on the CPUs with an odd number of tasks in set (1).

µ(5) (5) (6)

t
0 λ

2
3λ
4 λ 3λ

2

(c) Structure of the schedule on the GPUs.

Figure 3.1 Structure in seven sets of the schedule. The number of processors used by set (i) is denoted
by µ(i). The number of CPUs below set (3) is denoted by µ∅.

42 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

(3): the set containing the tasks assigned to their canonical number of CPUs for
time λ. If this number is 1, then the processing time of the corresponding task
is strictly greater than 3λ

4 .

(4): the set containing the parallel tasks assigned to their canonical number of
CPUs for time λ

2 . Note that γ
(
j, λ2

)
is greater than 1.

Similarly, the tasks assigned to GPUs are partitioned in two sets:

(5): the set containing the tasks assigned to a GPU with a processing time greater
than λ

2 and at most λ.

(6): the set containing the tasks assigned to a GPU with a processing time at most
λ
2 .

Such a partition ensures that both the makespans on the CPUs and on the GPUs are
lower than 3λ

2 .

Note that if there is an even number of tasks assigned to set (1), both sets (1)L
and (1)R occupy the same number of CPUs. On the contrary, if set (1) contains
an odd number of tasks, the right set occupies one less processor (as shown in
Figure 3.1(b)).

3.3.2 Mathematical Formulation

Partitioning tasks into the seven above-mentioned sets using a list algorithm does
not achieve the desired performance guarantee. Therefore, we propose an Integer
Linear Program (ILP) for solving the assignment problem.

Objective Function and Constraints

We define WC as the computational area of the CPUs on the Gantt chart represen-
tation of a schedule, i.e. the sum of all the works of the tasks assigned to some
CPUs:

WC =
∑

Tj∈(0)∪(1)
wj,1 +

∑
Tj∈(2)

wj,γ(j, 3λ
2) +

∑
Tj∈(3)

wj,γ(j,λ) +
∑
Tj∈(4)

wj,γ(j,λ2)

We want to obtain a specific five-set schedule on the CPUs and a two-set schedule on
the GPUs. The assignment minimizes the total computational area WC on the CPUs,
and the assignment must satisfy the following constraints:

3.3 Algorithm APPROX-3/2 43

(C1) The total computational area WC on the CPUs is at most mλ.

(C2) Sets (1)L, (2) and (3) use a total of at most m processors.

(C3) Sets (1)R, (2) and (4) use a total of at most m processors.

(C4) The total computational area on the GPUs is at most kλ.

(C5) Set (5) uses a total of at most k processors.

(C6) Each task is assigned to exactly one set.

(C7) The number of tasks assigned to set (1) is the total number of tasks processed
in its two shelves.

(C8) The tasks of set (1) are evenly shared between its two sets (1)L and (1)R, i.e.
there is at most one task less in (1)R. The idle time induced by the difference
is used to process a fraction of a task assigned to set (4).

Such an assignment clearly defines a schedule of length at most 3λ
2 which allows us

to build a solution.

Filtering

The structure of the schedule allows tasks to belong only to a limited number of
shelves. Hence we define for each task j the filtering function F (j) computing the
set of possible containing shelves. For each set (i) we also define the set T (i) of tasks
eligible for an allocation in (i). The eligible allocation sets are explicitly defined in
Equation (3.1). We furthermore define for each task Tj several binary variables x(i)

j ,

where i ∈ F (j). If Tj is assigned to set (i), we define x(i)
j to be 1. Otherwise we

set x(i)
j to be 0. We also define for set (1) the variables left(1) and right(1), which

44 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

T (0) T (1) T (2) T (3) T (4)

T (5) T (6)

Figure 3.2 Intersection graph of the eligible allocation sets, in its most generic shape. Actual instances
may have fewer edges.

correspond to the number of tasks assigned to the left ((1)L) and to the right ((1)R)
of set (1), respectively (see Figure 3.1).

T (0) =
{
j | pj,1 6

λ

2

}
T (1) =

{
j | λ2 < pj,1 6

3λ
4

}
T (2) =

{
j | λ < pj,γ(j, 3λ

2) 6
3λ
2

}
T (3) =

{
j | λ2 < pj,γ(j,λ) 6 λ

}
\ T (1)

T (4) =
{
j | pj,γ(j,λ2) 6

λ

2 ∧ γ

(
j,
λ

2

)
> 1

}
T (5) =

{
j | λ2 < pj 6 λ

}
T (6) =

{
j | pj 6

λ

2

}

(3.1)

This filtering step helps a lot reducing the search space. The intersection graph of
the eligible allocation sets shown in Figure 3.2 explains this behavior. Each task can
simultaneously belong to only a limited number of sets, since most sets are mutually
exclusive. In most cases, a task belong to 2 or 3 sets.

3.3 Algorithm APPROX-3/2 45

Integer Linear Program

Determining if such an assignment exists reduces to solving an ILP that can be
formulated as follows:

minW (ILP)
C =

∑
j∈T (0)

wj,1x
(0)
j +

∑
j∈T (1)

wj,1x
(1)
j +

∑
j∈T (2)

wj,γ(j, 3λ
2)x

(2)
j

+
∑

j∈T (3)

wj,γ(j,λ)x
(3)
j +

∑
j∈T (4)

wj,γ(j,λ2)x
(4)
j

s.t. W (ILP)
C 6 mλ (C1)∑

j∈T (2)

γ

(
j,

3λ
2

)
x

(2)
j +

∑
j∈T (3)

γ (j, λ)x(3)
j + left(1) 6 m (C2)

∑
j∈T (4)

γ

(
j,
λ

2

)
x

(4)
j +

∑
j∈T (2)

γ

(
j,

3λ
2

)
x

(2)
j + right(1) 6 m (C3)

∑
j∈T (5)

pjx
(5)
j +

∑
j∈T (6)

pjx
(6)
j 6 kλ (C4)

∑
j∈T (5)

x
(5)
j 6 k (C5)

∑
i∈F (j)

x
(i)
j = 1 ∀j ∈ {1, . . . , n} (C6)

∑
j∈T (1)

x
(1)
j = left(1) + right(1) (C7)

0 6 left(1) − right(1) 6 1 (C8)

x
(i)
j ∈ {0, 1} ∀j ∈ {1, . . . , n},∀i ∈ F (j) (C9)

left(1), right(1) ∈ {0, . . . ,m} (C10)

The first eight equations of this integer linear program correspond to the constraints
listed above in order to obtain a five-set schedule on the CPUs and a two-set schedule
on the GPUs. The last two equations (C9), and (C10) are integrity constraints for
the variables of the integer linear program.

3.4 Analysis of the Algorithm APPROX-3/2

The integer linear program presented above derives from the structural properties
of the schedule we aim to construct. The analysis—rather technical—is structured
in three steps. First we explain how the estimation of the instance’s makespan λ

46 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

helps us to sort and allocate tasks. We then give some insight on the structure of the
proposed partitioning. We finally prove the correctness of the dual approximation,
i.e. we prove the reject condition is actually matched by the algorithm.

3.4.1 Structure of a Schedule of Makespan λ

To take advantage of the dual approximation paradigm, we have to make explicit
the consequences of the assumption that there exists a schedule of length at most λ.
We state below some straightforward properties of such a schedule. They should
give the insight for the construction of the solution.

Proposition 3.1. In a solution of makespan at most λ, the execution time of each task
is at most λ. The computational areas on the CPUs and GPUs are at most mλ and kλ,
respectively.

Remark that for the problem of scheduling moldable tasks on identical proces-
sors [MRT07], it is enough to look at the 2m tasks with the longest processing times.
If they have a computational area larger than mλ, then a schedule of length λ cannot
exist. In the case of heterogeneous processors some of these tasks can be assigned
to a GPU, therefore the n tasks have to be considered in our case.

Proposition 3.2. In a solution of makespan at most λ, if there exist two consecutive
tasks on the same processor such that one of the task has an execution time greater
than λ

2 , then the other task has an execution time lower than λ
2 .

Proposition 3.3. Two tasks with sequential processing times on CPU greater than λ
2

and lower than 3λ
4 can be executed successively on the same CPU within a time at most

3λ
2 .

We now look at exploiting the properties of a schedule of makespan at most λ, in
order to construct the seven sets. The constraints of the integer linear program
derive from these properties.

From Proposition 3.3, as we aim at a makespan of 3λ
2 , two tasks from set (1) can

be executed successively on the same CPU. The whole set occupies µ(1) CPUs. The
number of tasks in set (1)R is given by µ(1) − 1(1)odd where 1(1)odd is an indicator
function equals to 1 when the number of tasks in set (1) is odd.

From Proposition 3.2, the tasks whose execution times on CPUs are greater than λ
2

do not use more than m− µ(1) CPUs, and hence can be executed concurrently on
the CPUs in set (3). They occupy µ(3) CPUs.

3.4 Analysis of the Algorithm APPROX-3/2 47

Set (2) does not exist in a solution of makespan λ, since the processing times of all
the tasks in (2) are greater than λ with the number of CPUs they are assigned to.
However, with this assignment and the work monotonicity of the tasks on CPUs,
the work of the tasks in (2) is lower than their corresponding work in the optimal
schedule. Therefore, every task assigned to (2) in the constructed schedule is a gain
on the total work on the CPUs. The tasks of (2) occupy µ(2) CPUs and the inequality
µ(1) + µ(2) + µ(3) 6 m must be satisfied.

The remaining tasks on CPUs have execution times lower than λ
2 on CPU, and those

that are not sequential can be executed within a time at most λ
2 in set (4). These

tasks cannot be executed on the CPUs occupied by tasks from set (2) but can be
processed after the tasks from set (3). They cannot be on the CPUs that already
process two tasks of (1), but if the number of tasks in (1) is odd, there is a CPU that
only processes one task from (1)L and a task from (4) can be executed on this CPU.
Therefore, if we denote by µ(4) the number of CPUs occupied by tasks of (4), the
inequality µ(1) − 1(1)odd + µ(2) + µ(4) 6 m must be satisfied.

The remaining sequential tasks on CPUs have execution times lower than λ
2 on CPU

and are assigned to set (0).

With the same reasoning, the tasks on GPUs whose execution times are greater
than λ

2 do not use more than k GPUs, and hence can be executed concurrently in
set (5).

The remaining tasks on GPUs have execution times lower than λ
2 on GPU and can be

executed within a time at most λ
2 in set (6) on the GPUs. It can be after a task from

(5) or on the remaining free GPUs.

3.4.2 Structure of the Partitioning

We now have to prove that, under the assumption that the dual approximation does
not reject the current guess λ (i.e., W (ILP)

C 6 mλ) the ILP solution leads to a feasible
seven-shelf schedule.

The structure of the partitioning verifies some properties exposed hereinafter.

Lemma 3.1. With the assumption that W (ILP)
C 6 mλ, the tasks assigned to sets (1),

(2), (3) and (4) occupy at most m CPUs, in a time at most 3λ
2 .

48 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

Proof. From Constraints (C2) and (C3), the assignment of the tasks of the four sets
is such that they occupy at most m CPUs. The tasks are scheduled two by two in
(1). According to Constraint (C8), set (1) may have an even number of tasks (see
Figure 3.1(a)) or an odd number of tasks (see Figure 3.1(b)). Whenever set (1) is
assigned an odd number of tasks, an extra processor is available to compute tasks
from set (4). The tasks of (4) are scheduled after tasks of (3) or on remaining free
CPUs. With this schedule, at most m CPUs are occupied and the makespan is at most
3λ
2 .

Lemma 3.2. If W (ILP)
C 6 mλ, the tasks assigned to set (0) fit in the remaining free

computational space, while keeping the makespan under 3λ
2 .

Proof. The tasks of set (0) all have a sequential processing time on CPU lower than
λ
2 by construction, and they necessarily fit into the remaining computational space
in the allowed area of 3λ

2 m (represented by the dashed area in Figure 3.1). The
schedule would otherwise contradict Proposition 3.1.

The following algorithm can be used to schedule these tasks:

1. Consider the remaining tasks T1, . . . , Tf ordered by non-increasing sequential
processing time on CPU, where f is the number of remaining tasks.

2. At each step s (s ∈ 1, . . . , f) assign task Ts to the least loaded CPU, at the
latest possible date, or between set (3) and set (4) if relevant. Update the
CPU’s load.

At each step, the least loaded CPU has a load at most λ: it would otherwise contradict
the fact that the total work area of the tasks is bounded by mλ (according to
Proposition 3.1). Hence, the idle time interval on the least loaded CPU has a length
at least equal to λ

2 , and can contain the task Ts. This proves the correctness of the
algorithm above.

Lemma 3.3. If W (ILP)
C 6 mλ, the tasks assigned to sets (5) and (6) occupy at most

k GPUs, in a time at most 3λ
2 .

Proof. When the tasks of set (5) are assigned to the GPUs, they take up to k GPUs
from Constraint (C5), and their processing time is lower than λ: the dual approxi-
mation would otherwise reject the solution. The tasks of set (5) are scheduled first,
one per GPU.

3.4 Analysis of the Algorithm APPROX-3/2 49

The tasks of set (6) all have a processing time on GPU lower than λ
2 by construction

and they necessarily fit into the remaining computational space in the allowed area of
3λ
2 k. The schedule would otherwise contradict Proposition 3.1 and Constraint (C4).

The following algorithm can be used to schedule these tasks:

1. Consider the remaining tasks T1, . . . , Tf ordered by non-increasing processing
time on GPU, where f is the number of remaining tasks.

2. At each step s (s ∈ 1, . . . , f) assign task Ts to the least loaded GPU, at the
latest possible date. Update the GPU’s load.

At each step, the least loaded GPU has a load at most λ: it would otherwise
contradict the fact that the total work area of the tasks is bounded by kλ (according
to Proposition 3.1 and Constraint (C4)). Hence, the idle time interval on the least
loaded GPU has a length at least equal to λ

2 and can contain the task Ts. The
correctness of the algorithm above is proved.

These three lemmas allow us to derive the following theorem:

Theorem 3.4. If W (ILP)
C 6 mλ, then there exists a schedule of length at most 3λ

2 built
upon the assignment of the tasks given by the solution of ILP.

Proof. The solution of ILP returns an assignment such that the computational area on
the CPUs is minimized, therefore its value W (ILP)

C is lower than the computational
area on the CPUs in the optimal schedule, W ∗C , which is lower than mλ since we
assumed that there exists a schedule of makespan at most λ. The three lemmas show
that the schedule constructed with the assignment of the tasks given by the solution
of ILP has a makespan lower than 3λ

2 .

If the computational area on the CPUs, i.e. the objective of the integer linear program
W

(ILP)
C , is greater than mλ, the dual approximation algorithm rejects λ. Indeed, this

computational area is minimized in the resolution of (ILP): if we had λ 6 C∗max, we
would get W (ILP)

C 6 W ∗C , which is impossible since we have W ∗C 6 mλ. Therefore
in that case there exists no solution with a makespan at most λ, and the algorithm
rejects the current guess λ.

We have so far proved that—for a given guess λ of the dual approximation algorithm—
if the solution of ILP has a computational area on the CPUs greater than mλ, then

50 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

there is no solution of makespan λ, and the guess has to be rejected. If the solution
of ILP has a computational area on the CPUs lower than mλ, then we can construct
a solution with a makespan at most 3λ

2 , with the corresponding sets on the CPUs and
GPUs.

3.4.3 Correctness of the Dual Approximation

It remains to be proved that the existence of a solution of makespan at most λ
implies the existence of a solution with the seven-shelf structure. To do so, we
first expose and prove two technical lemmas before stating the existence theorem
(Theorem 3.7).

Lemma 3.5. Suppose there exists a solution σref of makespan at most λ. The assignment
of tasks on the GPUs in σref is compatible with the seven-shelf structure.

Proof. All tasks assigned to the GPUs by σref are sequential. Hence we can assign
these tasks in two distinct sets: tasks with a processing time strictly greater than λ

2
and tasks with a processing time lower than λ

2 . These two sets exactly match the
sets (5) and (6) of the structure we seek.

Lemma 3.5 allows us to only consider tasks assigned to the CPUs in the proof of the
existence of the sought schedule.

Lemma 3.6. If there exists a solution σref of makespan at most λ, then there exists
a solution σstruct with the seven-shelf structure whose sub-solution σstruct (considering
only tasks assigned to CPUs) uses at most m CPUs with a lower CPU load than the CPU
load of σref.

Proof. First, let us prove that the big tasks of σref, namely tasks with a processing
time greater than λ

2 , fit in sets (1), (2) and (3) without using more than m CPUs and
without increasing the CPU load:

• The tasks assigned to set (1) are sequential tasks of length greater than λ
2 :

their work is minimal. Since their processing time is at most 3λ
4 , only one of

the tasks assigned to set (1) can fit on one CPU in σref, whereas in σstruct, these
tasks are stacked by pair, one in shelf (1)L, the other in shelf (1)R. As a result,
the tasks in set (1) in σstruct use fewer processors than they would in σref.

3.4 Analysis of the Algorithm APPROX-3/2 51

• The tasks assigned to sets (2) and (3) are using their canonical number of CPUs
for a time limit at least λ, hence they generate a lower or equal work than they
would in σref. As these tasks use their canonical number of processors for a
time limit greater than λ, they use fewer processors than they would in σref.
Observe that the tasks assigned to set (2) use fewer processors than they do in
σref thanks to the relaxed time limit.

We now have to consider the tasks of σref assigned to CPUs with a processing time
lower than λ

2 . All the tasks with a sequential time at most λ
2 are assigned to set (0).

The remaining tasks are the tasks that have been assigned to more than one CPU
in σref, with a processing time lower than λ

2 . The monotonicity assumption ensures
that they can fit in any set among sets (1), (2), (3) and (4) without increasing
the computational load. In order to prove that there exists such an assignment
of these remaining tasks, we consider the integer linear program introduced in
Section 3.3.2 that we relax by removing Constraint (C3). This allows set (4) to
occupy as many CPUs as needed. The tasks already assigned to the GPUs as in
σref thanks to Lemma 3.5 have their corresponding variables in the integer linear
program set according to their assignment. The same is done for the variables of
the integer linear program corresponding to the tasks already assigned to sets (1),
(2), (3) and (0) above in the proof. We let the integer linear program choose the
remaining assignments. By doing so, since Constraint (C3) was removed, set (4)
could use too many CPUs. It remains to prove that the assignment returned by the
revised integer linear program does not need to use more than m CPUs. Two cases
are to be distinguished: either every CPU is busy or some CPUs remain idle after
assigning tasks to sets (1), (2) and (3). The first case’s proof is straightforward while
the second case’s proof is done in three steps.

Let us first consider the case where every CPU is busy. By construction, at most
one processor—in set (1)—is loaded less than λ but more than λ

2 . As all the tasks
assigned to set (4) have a processing time larger than λ

4 , we cannot use more than
m CPUs without contradicting the facts that the integer linear program is minimizing
the CPU load and that σref exists.

Let us consider now the case where some CPUs remain idle. We denote by µ∅ their
number.

(i) We begin by proving that at most one task in set (4) does not fit. As µ∅ > 0, every
task of set (4) has a work greater than µ∅λ, otherwise it would have been assigned
to set (3) by the integer linear program. The maximum amount of work by which a
task of set (4) could be overreaching is bounded by the gap left between mλ and
the work of the tasks filling sets (1), (2) and (3). Because of the five-set structure on

52 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

the CPUs, such a gap is at most 3λ
4 µ∅ + λ

4 1(1)odd, which is strictly smaller than the
work of any task assigned to set (4). The existence of a task in set (4) executed only
on processors not meant to do so by the five set structure would contradict the fact
that sets (1), (2) and (3) were filled by the integer linear program while minimizing
the CPU load. Therefore there is at most a fraction of a task assigned to (4) whose
execution requires processors that do not exist.

In the next two steps, we consider an arbitrary assignment for the tasks assigned to
set (4) and suppose exactly one task does not fit. We focus on this particular task,
denoted by T∆. Proving its existence contradicts the fact that the work is minimized
by the integer linear program. We denote by (3)∆ the subset of (3) that shares
processors with the task T∆.

(ii) We show now that the inequality µ(3)∆ > 2µ∅ holds under the assumption that
T∆ exists. The integer linear program chose to assign task T∆ to set (4). As set (4) is
the one creating the most work amongst sets (1), (2), (3) and (4), this choice had
to be made because otherwise constraints would have been violated. We know for
sure that µ(3)∆ > 0, otherwise this would contradict Step (i). Moreover, as T∆ was
not assigned on µ∅ processors in set (2), its work is greater than 3λ

2 µ∅. Such a case
is only possible if we have enough space next to set (3), which is equivalent to the
following inequality:

3λ
4 µ(3)∆ + 3λ

2 µ∅ < (µ(3)∆ + µ∅)λ (3.3)

This inequality reduces to the one we are interested in, i.e. µ(3)∆ > 2µ∅.

(iii) To finish the proof, let us shows that the previous point leads to a contradiction,
hence σstruct fits into m CPUs. Inequality (3.3) can be rewritten in the following
form:

3λ
4 µ(3)∆ + λ

2
(
µ(3)∆ + µ∅

)
> λ

(
µ(3)∆ + µ∅

)
The left part of the sum is a lower-bound of the work of set (3)∆. The monotonicity
ensures that the work of T∆ is greater than λ

2

[
γ
(
T∆,

λ
2

)
− 1

]
, and we know that the

number of processors needed by task T∆ is at least µ(3)∆ + µ∅ + 1. Hence the work
of T∆ is greater than λ

2

(
µ(3)∆ + µ∅

)
. This brings the contradiction as this would

mean that the total work is greater than mλ.

Theorem 3.7. If there exists a solution of makespan at most λ, then there exists a
solution with the seven-shelf structure we are looking for with a makespan at most 3λ

2
and a lower CPU load. The theorem is a direct consequence of Lemmas 3.5 and 3.6.

3.4 Analysis of the Algorithm APPROX-3/2 53

The correctness of the reject condition of the dual approximation is given by the
contrapositive of Theorem 3.7.

3.4.4 Building the Schedule

We have described the core step of the dual-approximation algorithm, with a fixed
guess. A binary search is used with successive guesses to approach the optimal
makespan. Using an initial lower bound Bmin and an initial upper bound Bmax of
the optimal makespan, the number of iterations of this binary search is bounded by
log (Bmax −Bmin).

Each iteration of the dual approximation algorithm consists in solving an ILP. The
complexity of this step is not bounded by a polynomial function. However, solving
the ILP with a standard linear solver (e.g., CPLEX or Gurobi) shows a very good
efficiency as described in Section 3.6.4. Indeed, the filtering functions allow to
reduce the search space size of the ILP, since a task can be assigned to at most
four sets instead of seven. Moreover, as the number of tasks increases, every task’s
relative execution time shrinks. Thus, for large instances, most of the tasks will be
assigned to sets (0) and (6) only.

This has to be compared to an algorithm using dynamic programming to solve
the allocation problem. Even if this paradigm would lead to a proved polynomial
complexity, the size of the search space makes it intractable to explore. Adapting the
technique proposed in [Ble+15] would result in an algorithm whose complexity is
O
(
n2m4k2) in our case.

3.5 Algorithm APPROX-2

As stated in Section 3.4.4, APPROX-3/2 is not proved to be polynomial. To get more
insight on dual approximation algorithms, we devise APPROX-2 that is a simpler
polynomial-time algorithm providing an approximation ratio of 2 + ε. APPROX-2
uses the same principle as APPROX-3/2: it partitions the computing resources,
allocates the tasks to a partition, and then schedules them within their partition.

54 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

3.5.1 Sketch

We consider a guess λ of the optimal makespan value. The scheduling problem on
the CPUs is simplified by forcing the number of CPUs a task can use to its canonical
number of CPUs, with respect to λ. The algorithm then works as follows:

1. Allocate the tasks that fits in λ only on one type of architecture.

2. Sort the tasks by decreasing work ratio
wj,γ(j,λ)

pj
. The approximation ratio

derives from this sort as explained in Lemma 3.9.

3. Allocate the tasks on the GPUs until each GPU has a load more than λ.

4. Schedule the remaining rigid tasks on the CPUs with a 2-approximation algo-
rithm. List algorithms or strip-packing algorithms are viable options.

If all the tasks do not fit with a makespan at most 2λ, then the algorithm rejects this
guess. Otherwise, we have founded a valid schedule.

3.5.2 Analysis

We now analyze some properties of APPROX-2. First we study the approximation
ratio, then the complexity.

Lemma 3.8. The makespan of the tasks allocated to the GPUs is smaller than 2λ.

Proof. By construction, all the tasks considered for an allocation on a GPU are
smaller than λ. As the algorithm stops loading a GPU when its load exceeds λ, the
makespan bound is straightforward.

Lemma 3.9. If there exists a solution of makespan at most λ, then the makespan of
the tasks allocated to the CPUs is smaller than 2λ.

Proof. Using the canonical number of CPUs with respect to λ ensures that every
task allocated to some CPUs generates a minimal amount of work (as stated in
Section 3.3). In particular, this amount of work is at most the amount of work
generated in the optimal schedule. The GPUs have been—by construction—allocated
a greater share of work than the optimal solution. Moreover, the tasks are sorted by
decreasing work ratio

wj,γ(j,λ)
pj

. This specific order implies that the work remaining
on the CPUs is smaller than mλ if there exists a solution of makespan at most λ.
The makespan bound follows from the fact we schedule the remaining tasks with a

3.5 Algorithm APPROX-2 55

list algorithm [GG75] or a strip-packing algorithm [Ste97]. Using the strip-packing
algorithm would provide a contiguous solution.

The two previous lemmas prove that APPROX-2 provides a solution whose makespan
is at most 2λ.

APPROX-2 is an algorithm of low polynomial complexity. It indeed only relies
on sorting the tasks, and on keeping track of the computing resources using
priority queues. Moreover, each task is considered at most once when sched-
uled. Hence, and more precisely, the complexity of the algorithm belongs to
O (n [log(n) + log(k) +m log(m)]).

3.6 Experimental Evaluation

After providing the theoretical foundation for solving the given scheduling problem,
we will now examine the applicability of our approach. For that reason, we will
compare the makespans produced by APPROX-3/2 and APPROX-2 as well as the
run-time required to compute the solutions. In our evaluation, we will also consider
the scheduling solutions from heuristics, which are modifications of the classical
Heterogeneous Earliest Finish Time algorithm (HEFT) [THW02].

We start by explaining the problem instances used in our analysis. After that, we
give a description of the heuristics used to evaluate our proposed algorithms. We
present implementation details for all algorithms, and last, we show and discuss the
experimental results.

3.6.1 Problem Instances

Finding the right problem instances for evaluating scheduling algorithms is generally
a hard problem. Real world instances are often considered to be essential when
choosing test instances. However, testing an algorithm on a small set of real world
instances will often not support the claim that an algorithm is generally well applica-
ble. Another problem is that influencing factors, such as the number of tasks or the
size of tasks, are fixed in real world instance. Therefore, we generated scheduling
instances that allows us to study the general applicability of our algorithms and to
investigate the influence of experimental factors.

56 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

description variable values

number of tasks n {10, 50, 100, 1000}
number of CPUs m {4, 16, 64, 128, 256, 384, 512}
number of GPUs k {1, 2, 4, 8, 16, 32}
minimum sequential run-time of tasks pmin 10
maximum sequential run-time of tasks pmax 100
minimum sequential fraction of a task βmin 0
maximum sequential fraction of a task βmax 0.5
mean speedup factor for tasks on GPUs meang 0.2
standard deviation of speedup factor for tasks on GPUs sdg 0.5
minimum speedup factor for tasks on GPUs ming 0.1 (10× speedup on the GPU)
maximum speedup factor for tasks on GPUs maxg 1.5 (50% slowdown on the GPU)

Table 3.1 Parameter settings used to generate scheduling instances.

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of cores

ru
n-

ti
m

e
/

s

t1 t2 t3 t4 t5

0

25

50

75

GPU

Figure 3.3 Example of a problem instance: Each of the five tasks exhibits a different parallel scalability
on the multi-core machine (left) and has a different run-time on the GPU (right).

3.6 Experimental Evaluation 57

To generate the instances, we first select the number of tasks (n), the number of
CPUs (m), and the number of GPUs (k). Then, the instance generator decides on
the run-time of all tasks as follows:

1. It randomly picks the sequential time on the CPU of one task.

2. It defines the speedup of one task on the CPU, by picking the sequential fraction
of this task. The time for the sequential fraction defines the lower bound of a
task’s run-time, as only the run-time of the parallel fraction of a task can be
reduced by adding more CPUs (Amdahl’s law).

3. It picks a speedup factor that defines how much faster a particular task can
run on a GPU compared to being executed on all m CPUs.

4. The generation process is repeated for all the n tasks.

We now provide a more detailed description of each step of the instance generation
process.

Step 1: The sequential run-time pj,1 of task Tj is picked from a uniform distribution
in the interval [pmin, pmax].

Step 2: Next, the speedup model of each task is determined. To this end, we
apply Amdahl’s law to model the speedup of a moldable task. The law states
that the parallel execution time is bounded by the sequential fraction of a program.
Therefore, we select the sequential fraction βj of each task, where βj follows uniform
distribution in [βmin, βmax]. The knowledge of the sequential run-time pj,1 and the
sequential fraction βj allows us to model and compute the parallel execution time
on l CPUs of task Tj as: pj,l = βjpj,1 + (1− βj)pj,1l (for all l in 2, . . . ,m).

Step 3: We assume that GPUs can accelerate the execution of a task, i.e., a task
will—most likely—be faster on a GPU than on all CPUs of the multi-core system.
Thus, we model the time for task Tj on the GPU relative to the parallel time and all
m CPUs pj,m. To obtain the time on the GPU (pj), we pick a speedup factor g, and
set pj = g pj,m. The value of g follows a normal distribution with mean meang and
standard deviation sdg. In this way, we also allow tasks that are slower on the GPU
than on the CPUs. We also bound the maximum speedup and maximum slowdown
for each task on the GPU. For this purpose, we introduce the variables ming and
maxg to denote the minimum and maximum values of g, respectively.

We generated 10 samples for each parameter combination of n, m, and k with the
values shown in Table 3.1. Figure 3.3 shows the characteristics of one of these
instances, which contains only five tasks for the sake of readability. Each task has

58 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

a different scalability behavior (caused by a different sequential fraction), and all
tasks in this example have a shorter run-time when executed on a GPU.

3.6.2 HEFT-like Heuristics

We have proposed here two algorithms that provide approximate solutions to the
scheduling problem stated in Section 3.1. In order to compare our approaches
with practically relevant algorithms, we also include HEFT-like algorithms in our
evaluation. We call them HEFT-like algorithms as they work similar to the original
HEFT algorithm [THW02], but target a slightly different scheduling problem. HEFT-
like algorithms are used in practice. For instance, the run-time system StarPU uses a
very similar algorithm (called MCT for minimum completion time) to schedule tasks
on CPUs and GPUs [Aug+11].

Now, we describe our variants and implementation of the HEFT-like algorithms
for scheduling moldable tasks on a multi-core system with multiple GPUs. Our
implementation resembles the general idea of the original algorithm proposed by
Topcuoglu et al. [THW02], except that—since we have no precedence constraints—
we change the priority function used to sort the tasks. Similar to HEFT, our
algorithm places the highest priority task on the CPUs or one of the GPUs that
minimize the earliest finish time (EFT). We expect that HEFT-like algorithms are
sensitive to the type of prioritization function. To avoid a possible bias towards one
prioritization function, we consider three different strategies, which are:

1. LPT: This strategy sorts the tasks in decreasing order of their execution times
(Longest Processing Time).

2. SPT: This strategy sorts the tasks in increasing order of their execution times
(Shortest Processing Time).

3. RATIO: This strategy sorts the tasks in decreasing order of the following ratio:
execution time on the CPUs over the run-time on a GPU, i.e., pj,lpj , where l is
either 1 for sequential tasks or m for parallel tasks.

For the strategies LPT and SPT, the execution time of task Tj is computed as
max

(
pj,l, pj

)
, for l ∈ {1,m}.

The question is now: how many CPUs should be assigned to each task when
computing the schedule? We use two simple schemes: the strategy PAR allots all
CPUs to a task (l = m), whereas the strategy SEQ allots only one CPU to a task
(l = 1). Considering the monotonicity assumption for the run-time of moldable

3.6 Experimental Evaluation 59

tasks, the strategy PAR is a greedy way of minimizing the execution time of a task, as
the run-time function is non-increasing in the number of CPUs. The second strategy
(SEQ) favors task parallelism and minimizes every task’s work. It is certainly possible
that these HEFT-like implementations can be improved, but such considerations
are outside the scope of this study. In total, we have created six different HEFT-like
heuristics, called Heuristic 1–6, which are listed in Table 3.2.

3.6.3 Implementation Details

We implemented APPROX-3/2 using the programming languages Julia and Python.
Logically, the algorithm APPROX-3/2 consists of two steps: (i) find the best λ by
applying the bisection method to partition the tasks into sets, and (ii) build the
schedule from the computed partitioning. The first step has been implemented in
Julia, as it features the domain-specific modeling language JuMP, which provides
an abstraction layer above different ILP solvers, such as Gurobi, CPLEX, or GLPK.
Hence, we only need to write our ILP problem using the JuMP API, and we can use
different solvers to find a solution. The second step, the building of the schedule,
has been implemented in Python.

As stated above, the lower and upper bound of the scheduling problem are adjusted
during the iterative search for the best λ using the bisection method. The bisection
method stops when the ratio between upper and lower bound is below a certain
threshold (the cutoff value). For both algorithms, APPROX-3/2 and APPROX-2, we
have used a cutoff value of 1.01 (∼ 1%) in all experiments.

The algorithm APPROX-2 has been entirely implemented in Julia. Here, the algo-
rithm also intends to find the best λ, but since it maps tasks to devices (CPUs or
GPUs) greedily, the actual schedule is built on the fly.

The HEFT-like heuristics has been written in Python. Similarly to the implementation
of APPROX-2, the actual schedule can be built directly, as there is no previous
partitioning step.

We have used the following software versions: Julia 0.3.11, Python 2.7.10, JuMP
0.10.1, Gurobi binding for JuMP 0.1.29, CPLEX binding for JuMP 0.0.13, Gurobi
Optimizer for OS X 6.0.0, CPLEX Optimization Studio for OS X 12.6.1.0, and Mac OS X
10.10.5. For the experiments shown in the present study, we have used the Gurobi
Optimizer to solve the integer linear programs.

60 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

name mapping sorting parallel tasks on CPUs

Heuristic 1 EFT LPT no (SEQ)
Heuristic 2 EFT SPT no (SEQ)
Heuristic 3 EFT RATIO no (SEQ)
Heuristic 4 EFT LPT yes (PAR)
Heuristic 5 EFT SPT yes (PAR)
Heuristic 6 EFT RATIO yes (PAR)

Table 3.2 HEFT-like heuristics used for comparison.

3.6.4 Experimental Results

First, we evaluate the produced makespan of each scheduling instance, which is the
most important property of the scheduling algorithms described in this chapter.

Figure 3.4 compares the makespans of the schedules generated by APPROX-3/2,
APPROX-2, and the six different HEFT-like heuristics. For a better comparability,
we normalize the makespan for each scheduling instance by the makespan obtained
from APPROX-3/2. Thus, the algorithm APPROX-3/2 will always have a relative
makespan of 1.0 (red horizontal line). The relative makespan of the other algorithms,
APPROX-2 and the six heuristics, will most likely differ from 1.0. If the computed
relative makespan is smaller than 1.0, the produced schedule of one of the competing
scheduling algorithms is shorter than the one of APPROX-3/2. Similarly, if the
relative makespan is larger than 1.0 then APPROX-3/2 was able to find a shorter
schedule. We can observe that the HEFT-like heuristics produce competitive results
when the number CPUs and GPUs is small (see Figure 3.4(a), case m = 4 and k = 4).
If the number of tasks, CPUs, and GPUs is increased, the results in Figure 3.4(b)
provide evidence that APPROX-3/2 produces significantly shorter schedules than its
competitors. The results of the heuristics 4–6 using the PAR strategy (see Table 3.2)
have been omitted, as they have been found to be largely inferior compared to the
SEQ versions. Among the HEFT-like algorithms, the heuristics that use an LPT
strategy produced the shortest schedules. Interestingly, the solutions obtained from
the approximation algorithm APPROX-2 are most often not better than the much
simpler HEFT-like heuristics, indicating that an approximation factor of 2 is simply
too large for a practical applicability.

The solution quality (the makespan) is only one metric to assess scheduling algo-
rithms. The algorithm APPROX-3/2 requires to solve an ILP for each value of λ.
Therefore, an analysis of the run-time of the algorithms is of equal importance. The
run-times measured do not include the time to read and parse the input files and
the time to write the final schedules to disk. In addition, the results are only meant

3.6 Experimental Evaluation 61

m: 4 m: 16 m: 64

0.75

1.00

1.25

1.50
k:

4

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

algorithm

m
ak

es
pa

n
re

la
ti

ve
to

A
PP

R
O

X-
3/

2

(a) n = 100

m: 128 m: 256 m: 384 m: 512

0.9

1.1

1.3

k:
16

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

APP
ROX-

2

EF
T/L

PT
/S

EQ

EF
T/S

PT
/S

EQ

EF
T/R

AT
IO

/S
EQ

algorithm

m
ak

es
pa

n
re

la
ti

ve
to

A
PP

R
O

X-
3/

2

(b) n = 1000

Figure 3.4 Comparison of the relative makespan obtained with APPROX-2 and the HEFT-like algo-
rithms with respect to the makespan produced by APPROX-3/2 (n tasks, m CPUs, k GPUs).

62 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

to show general trends of the run-time requirements of the different algorithms, as
the algorithms have been implemented using different programming languages.

Figure 3.5 compares mean run-time of the different scheduling algorithms for various
values of n, m, and k. In particular, the run-time of the algorithms APPROX-3/2
and APPROX-2 includes all iterations that were required to obtain the final value of
λ. The experiments were conducted on a quad-core Intel i7-3615QM with a clock
speed of 2.3 GHz. Since the run-times of the various HEFT-like heuristics were very
similar, as only the prioritization function is changed, we only show the time for
Heuristic 1 (EFT, LPT, SEQ). As expected, the run-time of Heuristic 1 grows linearly
with the number of tasks, CPUs, or GPUs, and has been found to be the shortest
among all scheduling algorithms tested. The run-time of the APPROX-2 algorithm
is significantly longer than the run-time of the heuristics due to the iterative nature
of the algorithm. It is also not surprising that the APPROX-3/2 algorithm has
the longest mean run-time for all considered cases. We can also see that the run-
time of APPROX-3/2 grows proportionally faster than the run-times of the other
algorithms, which is a consequence of solving an ILP in each iteration. Nevertheless,
APPROX-3/2 computes the solutions relatively quickly, as it takes about five seconds
to compute the schedule for the largest instance in our test set (n = 1000, m = 512,
k = 16, see Figure 3.5(b)). It goes without saying that this run-time is too large to
schedule many small-grained tasks onto CPUs or GPUs, but it is a very promising
alternative algorithm for scheduling longer running tasks (or even different parallel
application).

We have also studied the effectiveness of the filtering step that we introduced in
Section 3.3.2, and Figure 3.6 shows these results. For different numbers of tasks
(n), the graphs show the distributions of the mean number of possible partitions
per task after the filtering has been applied. We recall that the internal ILP finds
a partitioning of all tasks into seven disjoint sets. That means, each of the n tasks
can only be in one of the seven partitions. Thus, the ILP initially allocates a table
of n × 7 binary variables. In the filtering step, some variables are set to 0, i.e.,
the number of partitions that a task can be assigned will be reduced. Ideally, the
number of available partitions per task reduces from seven to one when the filtering
is applied, and the solution can be obtained immediately. Figure 3.6 shows the
number of available partitions for increasing values of n. The “mean number of
possible partitions” is computed over all the tasks of one iteration. For example, for
one problem instance, the mean number of possible partitions (over all the tasks)
is 2 in iteration 1 and 2.5 in iteration 2. In this case, the distributions shown in
Figure 3.6 will contain the values 2 and 2.5. We observe that for the majority of the
tasks, except in the case of n = 10, only two partitions are available (on average)

3.6 Experimental Evaluation 63

m: 4 m: 16 m: 64

0.0

0.1

0.2

0.3

k:
4

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

algorithm

ti
m

e
to

co
m

pu
te

sc
he

du
le

/
s

(a) n = 100

m: 128 m: 256 m: 384 m: 512

0

1

2

3

4

5

k:
16

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

APP
ROX-

3/
2

APP
ROX-

2

EF
T/L

PT
/S

EQ

algorithm

ti
m

e
to

co
m

pu
te

sc
he

du
le

/
s

(b) n = 1000

Figure 3.5 Comparison of the mean run-time (incl. 95% confidence interval) of each scheduling
algorithms to compute the solutions (n tasks, m CPUs, k GPUs).

64 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

n: 10 n: 50 n: 100 n: 1000

0

2

4

6

2 3 2 3 2 3 2 3
mean number of possible partitions per task (after filtering)

de
ns

it
y

Figure 3.6 Distribution of the (mean) number of possible partitions per task after the filtering has been
applied for APPROX-3/2. The graphs show distributions for all values of m and k presented
in Table 3.1.

after applying the filtering step, which supports our claim that the filtering step is
effective.

Figure 3.7 complements the previous results by an analysis of the number of it-
erations required, such that the bisection method converges. In the experiments
conducted as part of the present study, the required number of iterations was ranging
from 10 to 17.

In summary, we can state that APPROX-3/2 is able to find significantly shorter
schedules than the APPROX-2 algorithm or the HEFT-like heuristics. On the con-
trary, APPROX-3/2 needs more time to compute the solutions. However, even for
larger instances (n = 1000, m = 512, k = 16) APPROX-3/2 can be used to obtain
the solution in a few seconds. If the average task duration lies in the range of
seconds, applying APPROX-3/2 will definitely provide an advantage compared to
the other scheduling algorithms.

3.7 Summary

In this chapter, we presented a new scheduling algorithm using a generic methodol-
ogy (as opposed to the design of specific ad hoc algorithms) for hybrid architectures
(multi-core machine with GPUs) with the moldable task model on CPUs. We pro-
posed an algorithm with a constant approximation ratio of 3

2 +ε. The main idea of the
approach is to determine an adequate partition of the set of tasks on the CPUs and
the GPUs using a dual approximation scheme and integer linear programming. Still,
we do not provide any proof of the complexity of this ILP-based approach. Instead,
we compared this approach with another algorithm with a proved polynomial-time

3.7 Summary 65

0

5

10

15

10 50 100 1000
number of tasks (n)

nu
m

be
r

of
it

er
at

io
ns

Figure 3.7 Distribution of the number of iterations (of the bisection method) performed by
APPROX-3/2 to converge to a solution.

complexity, at the cost of degrading the approximation ratio to 2 + ε. An experi-
mental analysis on realistic instances has been provided to assess the computational
efficiency and the schedule quality of the proposed method when compared to
classical HEFT algorithms. The main conclusion is that the ILP-based algorithm
is stable because of its approximation guarantee, with a reasonable running time.
Moreover, this proposed algorithm outperforms all HEFT algorithms when dealing
with instances of large size, which is the case dealt with HPC platforms.

66 Chapter 3 Scheduling Independent Moldable Tasks on Multi-Cores with
GPUs

Geometric Constraints as a
First-Class Modeling Tool

4

In the two previous chapters we focused our attention on the fine grain scale, that is
within a single computing node. To meet the challenge of greater performance, while
being constrained by ever growing energy costs, the architecture of supercomputers
also grows in complexity at the whole machine scale. This complexity arises from
various factors: i) the size of the machines (supercomputers now integrates millions
of cores); ii) the heterogeneity of the resources (various architectures of computing
nodes, mixed workloads of computing and analytics, nodes dedicated to I/O, etc.);
iii) the interconnection topology. The architectural evolutions of the interconnection
networks at the whole machine scale pose two main challenges: first, the community
is proposing new topologies [Kat+15]; and second, the interconnection network
is now unique within the machine (the network is shared for various mixed data
flows). Sharing such a single multi-purpose interconnection network begets com-
plex interactions (e.g., network contention) between running applications. These
interactions have a strong impact on the performances of the applications [Bha+13;
Eno+14], and hamper the understanding of the system by the users [Che+16]. As
the volume of processed data increases, so does the impact of the network.

We propose in this chapter a generic framework for interference-aware scheduling.
More precisely, we identify two main types of interleaved flows: the flows induced by
data exchanges for computations, and the flows related to I/O. Rather than explicitly
taking into account these network flows, we address the issue of harmful interactions
by constraining the shape of the allocations. Such an approach aims at taking into
account the complexity of the new platforms in a qualitative way that is more
likely to scale properly. The scheduling problem is then defined as an optimization
problem with the platform (nodes and topology) and the jobs’ description as input.
The objective is, for example, to minimize the maximum completion time or the
throughput while enforcing constraints on the allocations.

The development of the modeling framework proposed here is an ongoing work done
in collaboration with Giorgio LUCARELLI, Grégory MOUNIÉ, and Denis TRYSTRAM.
Some of this work has been done during three stays in the team administering
Blue Waters at NCSA.

67

4.1 General Problem Setting

We model in this chapter a platform as of a set V of m nodes divided in two sets:
mC nodes dedicated to computations VC, and mI/O nodes that are entry points to
a high performance file system V I/O. The nodes are indexed by i ∈ 0, . . . ,m − 1.
This numbering provides an arbitrary ordering of the nodes. We distinguish two
interesting distributions of the nodes: i) coupled I/O, where some compute nodes
also are entry points for the I/O (i.e., V I/O ⊆ VC = V); ii) separate I/O, when there
is no overlap (i.e., V I/O ∩ VC = ∅). We also distinguish two ways of interacting with
the I/O nodes: shared I/O when any number of jobs can access an I/O node at any
time, and exclusive I/O when an I/O node is exclusively allocated to a job for the
job’s lifespan. We further annotate node symbols with ?I/O (?C, resp.) if there is a
need to distinguish I/O nodes (compute nodes, resp.).

The nodes can communicate thanks to an interconnection network with a given
topology (i.e., the connected graph of the interconnection), and the localization of
every node within the topology is known. We define the distance that intrinsically
derives from this topology as follows:

Definition 4.1 (Distance). The distance dist (i, i′) between two nodes i and i′ (either
compute or I/O) is defined as the minimum number of hops to go from i to i′.

Batch schedulers are a critical part of the software stack managing supercomputers:
their goal is to efficiently allocate resources (nodes from V in our case) to the jobs
submitted by the users of the platform. The jobs are queued in a set J of n jobs.
Each job j requires a number of compute nodes qC

j and some I/O nodes qI/O
j . The

I/O nodes requirements can either be a number of nodes (unpinned I/O), or a
dedicated subset of V I/O (pinned I/O). The number of allocated nodes is fixed (i.e.,
the job is rigid [Fei+97]). We denote by V(j) the nodes allocated to the job j. Each
job j requires a certain time pj to be processed, and it is independent of every other
jobs. Once a job starts executing, it runs until completion (i.e., it is not preemptible).
Finally, any compute node is able to process at most one job at any time.

Figure 4.1 summarizes the organization of a typical HPC platform. Along with the
compute and I/O nodes, the platform embeds helper nodes (login nodes, monitoring
nodes, etc.) that we do not consider in the model.

68 Chapter 4 Geometric Constraints as a First-Class Modeling Tool

nodes

job queue

file system

login nodes

users platform

data

schedule jobs

submit jobs

data

log in

data

Figure 4.1 Illustration of a HPC platform.
Blue bidirectional arrows depict data flows. Orange unidirectional arrows depict jobs flows.
[Credits: icons by Gregor Cresnar, Madebyoliver and Zlatko Najdenovski; https://www.flaticon.
com]

4.1 General Problem Setting 69

https://www.flaticon.com
https://www.flaticon.com

4.1.1 Intrinsic Constraints

As stated in the introduction of this dissertation, we do not aim at finely modeling
the context of execution. We propose here to model the platform in such a way that
network interactions are implicitly taken into account. We augment the scheduling
problem with alien geometric constraints on the allocations deriving from the
platform topology or the application structure.

Naive implementations of schedulers allocate resources greedily. This is known
to impact performances [Eno+14], and is the core difference between parallel
machine scheduling and packing problems. Constraining the allocations to enhance
performance is however no new idea. For example, Lucarelli et al. studied—for
the fat tree topology—the impact of enforcing contiguity or locality constraints in
backfilling scheduling [Luc+15]. They showed that enforcing these constraints
can be done at a small computational cost, and has minimum negative impact on
usual metrics such as makespan (i.e., maximum completion time), flow-time (i.e.,
absolute time spent in the system), or stretch (i.e., time spent in the system relative
to each job size). One may refer to [Bru07; Dro09] for a detailed definition of classic
optimization objectives in scheduling. More recently, Jain et al. studied the feasibility
of isolating jobs through partitioning on low diameter networks (e.g., DragonFly or
SlimFly [Kat+15]) [Jai+17].

We go further with this model as we target heterogeneous machines, and distinguish
network flows. We seek the following properties for constraints:

• It captures part of the execution context: enforcing the constraint should help
minimize nocuous effects arising from the execution context.

• It derives from minimal reliable data. Constraints on the allocations are enforced
ahead of the scheduling decisions. As a result, the proposed constraints only
use the topology of the interconnection network and the size of the allocation
as input data.

• It is cheap to compute: enumerating the list of allocations respecting some
constraints cannot be a performance bottleneck for the scheduler.

Before presenting the constraints we consider in this work, we need to precisely
define the network flows we target. We distinguish two types of flows, directly
deriving from the fact that we are dealing with two kinds of nodes.

70 Chapter 4 Geometric Constraints as a First-Class Modeling Tool

(a) compute communications (b) I/O communications

Figure 4.2 Figuration of the two distinguished types of communications. Note that some communica-
tions stay within the allocation, while others do not. White nodes represent compute nodes,
and black nodes represent I/O nodes.

Definition 4.2 (Communication types). We distinguish two types of communications
(see Figure 4.2):

compute communications are the communications induced by data exchanges for
computations. Such communications occur between two compute nodes allocated
to the same application.

I/O communications are the communications induced by data exchanges between
compute nodes and I/O nodes. Such communications occur when compute nodes
read input data, checkpoint the state of the application, or save output results.

Avoiding compute-communication interactions Considering this classification of
network flows, we first expose three constraints targeting compute communica-
tions.

Definition 4.3 (Connectivity). An allocation π is said to be connected iff there exists
a subset Vπ of V I/O such that

(
π ∩ VC

)
∪ Vπ is connected in the graph-theory sense. Vπ

may be empty.

The connectivity constraint ensures, for a given allocation, that there exists a path
without interference between any pair of compute nodes of the allocation. This
however, with regard to the interconnection topology, can either require support
for dynamic routing or demand to the application to implement its own routing
policy. Moreover, it may lead to islets of isolated compute nodes. Hence, although
satisfactory from the graph theoretical point of view, the connectivity constraint is
not sufficient to ensure that compute communication do not interfere. We propose

4.1 General Problem Setting 71

Figure 4.3 Example of a convex allocation (dotted orange contour), and a non-convex, but connected
allocation (dashed blue contour). The underlying topology is a 2D-torus, with dimension-
order routing. White nodes represent compute nodes, and black nodes represent I/O nodes.

the convexity constraint with the goal of overcoming these limits. An example of
connected and convex allocations is depicted on Figure 4.3.

Definition 4.4 (Convexity). An allocation is said to be convex iff it is impossible for
compute communications from any other potential allocation to share an interconnect
link with respect to the underlying routing algorithm.

By taking into account the effective routing policy, and by forbidding any potential
sharing, the convexity constraint does forbid interactions.

Note that the convexity constraint dominates the connectivity constraint, as stated
in the following Proposition.

Proposition 4.1. Given any topology, any convex allocation is connected.

Definition 4.5 (Contiguity [Błą+15; Luc+15]). An allocation is said to be contiguous
if and only if the nodes of the allocation form a contiguous range with respect to the
nodes’ ordering.

One has to note that the contiguity constraint is intrinsically unidimensional as it
relies on the nodes’ ordering. For topologies such as trees, lines or rings the ordering
is natural. On higher dimension topologies, no natural ordering exists, and an
arbitrary mapping is needed. An usual strategy to order nodes is to use space-filling
curves (e.g., Z-order curve [Mor66], Hilbert curve [Hil91], etc.) as they enforce a
strong spatial locality. Albing proposes various orderings that may be more suited for
HPC use cases, and a method to evaluate them [Alb15]. Contiguity is an interesting
relaxation of convexity as it offers good spatial locality properties for a reasonable
computing cost. It is however unable to ensure that no jobs could interact.

72 Chapter 4 Geometric Constraints as a First-Class Modeling Tool

Figure 4.4 Given an allocation (dotted orange contour) for a job j, the allocation is local iff j uses a
subset of the I/O nodes marked with the orange dot. Foreign compute nodes potentially
impacted by I/O communications of j are depicted in gray: these nodes can only be in the
neighborhood of the allocation thanks to the locality constraint. The underlying topology is
a 2D-torus, with dimension-order routing. White nodes represent compute nodes, and black
nodes represent I/O nodes.

Avoiding I/O-communication interactions The constraints exposed so far are well
suited to take into account the compute communications, but not the I/O commu-
nications. Indeed, the compute communications may occur between any pair of
compute nodes within an allocation: we usually describe this pattern as all-to-all
communication. I/O communications, on the other hand, generate traffic towards
few identified nodes in an all-to-one or one-to-all pattern. Hence, we propose
the locality constraint, whose goal is to limit the impact of the I/O flows to the
periphery of the job allocations (see Figure 4.4). We must emphasize that the
locality constraint proposed here is not related to the locality constraint described
by Lucarelli et al. [Luc+15].

Definition 4.6 (Locality). A given allocation for a job j is said to be local iff it is
connected, and every I/O nodes from V I/O(j) are adjacent to compute nodes from VC(j),
with respect to the underlying topology. In other words, V I/O(j) is a subset of the closed
neighborhood of VC(j).

Interestingly, the locality constraint enforces a bound on the number of concurrent
jobs that can target a given I/O node.

Proposition 4.2. Given any topology, any I/O node i, at any time, the number of local
jobs targeting i cannot exceed the number of adjacent compute nodes of i.

As a consequence, if the I/O nodes can be shared, the number of concurrent jobs
targeting a given I/O node is bounded by the degree of this I/O node. This identity
obviously also holds for exclusive I/O, but has limited interest in this case.

4.1 General Problem Setting 73

Figure 4.5 Example of four-compute-node allocations with different compacity. The underlying topology
is a 2D-torus, with dimension-order routing. White nodes represent compute nodes, and
black nodes represent I/O nodes. The bottom allocation (dotted orange contour) has a
compacity of 3

2 = 1.5. Note that this allocation is not convex due to the routing policy on
the torus. The middle allocation (dashed blue contour) has a compacity of 4

3 ≈ 1.33. The
top allocation (solid yellow contour) has a compacity of 11

6 ≈ 1.83.

4.1.2 Extrinsic Metrics

The constraints presented in the previous section only target inter-application inter-
actions. Moreover, the constraints are binary and omit that many allocation shapes
are compatible. Considering all shapes compatible with a given constraint, not all are
equal in terms of application performance, and there is a need for more finesse in the
choice of allocations. The number of hops traversed to communicate between two
nodes is known to be a key factor for the performance of the applications [Eno+14;
PML14; Leu+02]. These intra-application behaviors can be captured with dispersal
metrics.

Reflecting the fact that compute communications occur between any two com-
pute nodes of an allocation, we define the compacity metric as follows:

Definition 4.7 (γ-Compacity [PML14]). The compacity characterizes how spread an
allocation is. It is defined as the average distance between any pair of compute nodes
within the allocation. More formally, the compacity of an allocation of qC

j compute nodes
for job j is defined as

γ = 1
qC
j (qC

j − 1)
∑

i∈VC(j)

∑
i′∈VC(j)

dist
(
i, i′
)

The allocation is then said to be γ-compact.

A comprehensive review of the various existing dispersal metrics could be found
in [PML14]. The experiments in this work motivated our choice of the average

74 Chapter 4 Geometric Constraints as a First-Class Modeling Tool

Figure 4.6 Example of four-compute-node allocations with different proximities. The underlying
topology is a 2D-torus, with dimension-order routing. White nodes represent compute nodes,
and black nodes represent I/O nodes. The bottom allocation (dashed blue contour, and
blue I/O node) has a proximity of 1. The top allocation (dotted orange contour, and orange
I/O node) has a proximity of 3

4 = 0.75. Note that both allocations are local, but only the top
one is convex.

distance as compacity metric, as they show that the average distance is highly
correlated with application performance: the smaller the compacity is, the better
the performances are. Figure 4.5 depicts an example of two convex allocations of
the same size with different compacity values.

As stated in the previous section, the I/O communications occur between com-
pute nodes and identified I/O nodes. This observation leads to the following
definition of the proximity metric, which is an adaptation of the compacity metric
for the I/O nodes. Similarly to the compacity, the lower the proximity, the better.
Figure 4.6 depicts two allocations of the same size with different proximity values.

Definition 4.8 (ρ-Proximity). The proximity characterizes an allocation by measuring
how far the compute nodes are from the I/O nodes. More formally, the proximity of an
allocation for job j is defined as

ρ = max
i∈V I/O(j)

1
qC
j

(
min

i′∈VC(j)
dist

(
i, i′
)

+ max
i′∈VC(j)

dist
(
i, i′
))

The allocation is then said to be ρ-proximate.

4.1.3 Extension of Graham Notation

We use throughout this work the α | β | γ notation proposed by Graham et al. [Gra+79].
Drozdowski did a thorough survey of parallel jobs’ scheduling in his book [Dro09]:
we make the notation more specific, and extend it to suit our modeling framework.

4.1 General Problem Setting 75

symbol meaning

sizeC
j jobs require a number of compute nodes (i.e., rigid)

sizeI/O
j jobs require a number of I/O nodes (i.e., unpinned I/O)

fixI/O
j jobs require identified I/O nodes (i.e., pinned I/O)

exclI/O exclusive use of I/O nodes
connect connected allocations
convex convex allocations
contig contiguous allocations
local local allocations

Table 4.1 Extension of Graham notation for the β field.

We summarize in Table 4.1 the symbols added to the β field. Note that the symbols
sizeI/O

j and fixI/O
j are mutually exclusive. We assume by default that I/O nodes can

be accessed by multiple jobs simultaneously (shared I/O). If this is not the case, we
indicate that I/O nodes cannot be shared with exclI/O (exclusive I/O).

Second, we extend the γ field with the following optimality criteria (all of them are
minimization objectives): maxj compactj , maxj proxj ,

∑
j compactj , and

∑
j proxj .

4.2 Related Work

Tackling the nocuous interactions arising from the context of execution, or, more
specifically, network contention, can be done either by preventing these interactions
from happening or by mitigating them. Still, the approaches discussed above
require knowledge of the application communication patterns (either compute or
I/O communications). We start reviewing related work in the prevention/mitigation
of interactions before discussing monitoring techniques.

Interactions Prevention Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into the batch sched-
uler. For example, Georgiou et al. studied the integration of TREEMATCH into
SLURM [Geo+17]. Given the communication matrix of an application, the sched-
uler minimizes the load of the network links by smartly mapping the application’s
processes on the resources. This approach however is limited to tree-like topologies,
and does not consider the temporality of communications. Targeting the mesh/torus
topologies, the works of Tuncer et al. [TLC15] and Pascual et al. [PML14] are note-
worthy. Another way to prevent interactions is to force the scheduler to use only

76 Chapter 4 Geometric Constraints as a First-Class Modeling Tool

certain allocation shapes with good properties: this strategy has been implemented
in the Blue Waters scheduler [Eno+14]. The administrators of Blue Waters let the
scheduler pick a shape among 460 precomputed cuboids.

Yet, the works proposed above only target compute communications. HPC appli-
cations usually rely on highly tuned libraries such as MPI-IO, parallel netCDF or
HDF5 to perform their I/O. Tessier et al. propose to integrate topology awareness
into these libraries [Tes+16]. They show that performing data aggregation while
considering the topology allow to diminish the bandwidth required to perform
I/O. The CLARISSE approach proposes to coordinate the data staging steps while
considering the full I/O stack [ICR16].

Interactions Mitigation Given a set of applications, Gainaru et al. propose to sched-
ule I/O flows of concurrent applications [Gai+15]. Their work aim at mitigating
I/O congestion once applications have been allocated computation resources. To
achieve such a goal, their algorithm relies on past I/O patterns of the applications to
either maximize the global system utilization, or minimize the maximum slowdown
induced by sharing bandwidth.

Application/Platform Instrumentation A lot of effort has been put into developing
tools to better understand the behavior of HPC applications. Characterizing I/O
patterns is key as it allows the developers to identify performance bottlenecks, and
allows the system administrator to better configure the platforms. Some tools, such
as Darshan [Car+11], instrument the most used I/O libraries, and record every
I/O-related function call. The gathered logs provide valuable data for postmortem
analysis. Taking a complementary path, Omnisc’IO aims at predicting I/O perfor-
mances during execution [Dor+16]. The predictions rely on a formal grammar to
model the I/O behavior of the instrumented application.

These instrumentation efforts allow for a better use of the scarce communication
resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight on
the inter-application interactions [Age+14; EBB16]. For example, the OVIS/LDMS
system deployed on Blue Waters collect 194 metrics on every 27648 nodes every
minute [Age+14]. Among the metrics of interest are the network counters: the
number of stalls is a good indicator of congestion [Dev+14].

4.2 Related Work 77

Unidimensional Problem’s
Instantiations

5
We proposed in the previous chapter a framework to model modern HPC platform
where constraints are a first-class modeling tool. With this framework, we aim at
developing low cost algorithms with performance guarantees while being able to
apprehend the scale of modern platforms. We study, as a first step, the instantiation
of this framework with unidimensional topologies. Namely, these are the line
(Figure 5.1(a)) and the ring (Figure 5.1(b)). Studying topologies of one dimension
is a first step towards the study of state-of-the-art platforms. The line may indeed be
seen as a degenerate tree. Fat-tree topologies are a common interconnect, and are
for example used in the Curie [@curie] and Oakforest-PACS [@ofp] platforms. The
toric topologies, such as the one used by Blue Waters [@bw] and Titan [@titan] (3D
torus) or the K computer [@kcomp] (6D torus), may be studied from the ring with
embedding techniques. Moreover, these simple topologies provide lower bounds for
the other topologies.

We first recall the notations, and give a formal definition of the studied instantiations.
We then expose some properties specific to unidimensional topologies. As a second
step, we study the complexity, and give constant-ratio approximation algorithms for
the studied instantiations.

The work presented in this chapter is an ongoing collaboration with Konstantinos
DOGEAS, Giorgio LUCARELLI, Grégory MOUNIÉ, and Denis TRYSTRAM

5.1 Formal Instantiation

Let us recall that a platform is a set V ofm nodes. We consider in this chapter separate
I/O where the platform is partitioned in two sets: a subset VC of mC compute nodes
and a subset V I/O of mI/O I/O nodes. As a consequence, we have m = mC + mI/O.
The nodes are indexed by i ∈ 0, . . . ,m− 1. On the line and the torus, the natural
order is such that i ∈ 1, . . . ,m− 2 is adjacent to i− 1 and i+ 1. On the torus, we set
the index such that nodes 0 and m− 1 also are adjacent.

79

0 1 2 3 4 5 6

(a) Line topology. The nodes are ordered with
the natural order.

0

1

2

3

4

5

6
7

(b) Ring topology.

Figure 5.1 Example of platforms with unidimensional topologies. White nodes represent compute nodes,
and black nodes represent I/O nodes.

Let us also recall that jobs are queued in a set J of n jobs. Each job j requires pj
units of time to be processed, some compute nodes qC

j , and some I/O nodes qI/O
j . We

consider jobs to be rigid and non-preemptible. Moreover, any compute node is able
to process at most one job at any time.

We are interested in this chapter in minimizing the maximum completion time, while
enforcing the convexity (Definition 4.4) and locality (Definition 4.6) constraints. We
study first the case of unpinned I/O, followed by pinned I/O. The differences between
exclusive I/O and shared I/O are highlighted along the chapter when relevant.

5.1.1 Structural Properties

As stated in Section 4.1.1, the convexity constraint dominates the connectivity
constraint (see Proposition 4.1). However, the unidimensional topologies are more
constrained, and the following properties also hold in this chapter:

Proposition 5.1. Let us consider the line topology, any connected allocation is convex.
Hence, connectivity and convexity constraints are equivalent on a line topology.

Proposition 5.2. Let us consider the line topology, ordered with its naturally associated
order. The constraints of contiguity and connectivity are equivalent.

80 Chapter 5 Unidimensional Problem’s Instantiations

5.2 Study of unpinned I/O:
P C, P I/O | sizeC

j , sizeI/O
j , convex, local | Cmax

We study in this section the problem with unpinned I/O. In this configuration,
each job requires a given number of I/O nodes. Such a setup occur when jobs
have minimum requirements in bandwidth towards the file system, or when the
availability of the I/O nodes is crucial (i.e., minimizing the latency).

We start by a complexity analysis of the problem, and continue by proposing a meta
approximation algorithm based on packing techniques.

5.2.1 Complexity

Theorem 5.1. P C, P I/O | sizeC
j , size

I/O
j = 1, convex, local | Cmax is NP-complete. Fur-

thermore, if there are at least three I/O node in the platform, the problem is NP-complete
in the strong sense.

Proof. The problem clearly belongs to NP. The proof of the strong NP-completeness
is done by reducing the problem to 3-PARTITION1 [GJ79].

Let us consider a set A of 3M positive integers, a bound B ∈ Z+ such that for
each a ∈ A, B4 < a < B

2 , and such that
∑
a∈A a = MB. The 3-PARTITION decision

problem is to decide whether A can be partitioned in M disjoint sets A1, A2, . . . , AM ,
such that for 1 6 i 6M,

∑
a∈Ai a = B.

The corresponding input for our problem is the following:

• mC = B, mI/O = 3;

• the topology is a line starting with an I/O node, followed by B
2 compute nodes,

an I/O node, B2 compute nodes, and finishing with a third I/O node;

• for each a ∈ A, we create a job j with qC
j = a, qI/O

j = 1, and pj = 1.

Let us suppose there exists a partition. We build a schedule of makespan at most M
by scheduling jobs from Ai at time i. The size constraint ∀a ∈ A, B4 < a < B

2 ensures
the I/O nodes cannot be shared while the locality constraint is met by the schedule.
This constraint indeed ensures at most three jobs can be executed in parallel.

13-PARTITION is indexed as SP15 in [GJ79].

5.2 Study of unpinned I/O 81

Let us suppose now there exists a schedule of makespan M . As the whole work is
MB, there is no idle time. The partition is directly derived by assigning jobs that
start at time i to Ai.

The proof of the NP-completeness when the platform contains exactly two I/O nodes
is done by reducing the problem to PARTITION2 [GJ79]. Consider the same topology
as above, and remove the middle I/O node. The partition derives from the choice of
assigning a job either to the left or to the right I/O node. The full proof is left to the
reader.

When the platform contains a single I/O node, the complexities of the exclusive I/O
model and the shared I/O model differ. On one hand, the problem with exclusive I/O
constraint becomes solvable in linear time: it is an instance of 1 || Cmax. On the other
hand, with the shared I/O model, the problem can be reduced to PARTITION [GJ79].
We however consider a topology with a single I/O node between two compute nodes.
Each element a from the set to partition is associated to a job j with qC

j = qI/O
j = 1,

and pj = a. Similarly to the proof with two I/O nodes, the partition derives from the
choice of assigning a job either to the left or to the right while adding the processing
times. The full proof is left to the reader.

Note that if the distance between the I/O nodes is greater than the maximum size
qC
j of the jobs, and under the constraint that each job requires exactly one I/O node,

the problem reduces to P || Cmax.

5.2.2 Meta Approximation Algorithm

We propose in this section a meta approximation algorithm for the line topology.
Additionally, we consider in this section that the I/O nodes are uniformly distributed
on the line. In other words, the I/O nodes are equidistant from each other. Without
loss of generality, let us assume that m is divisible by mI/O. We then denote by
δ = m

mI/O the distance separating two consecutive I/O nodes. Furthermore, we
constraint each job to require exactly one I/O node.

2PARTITION is indexed as SP12 in [GJ79].

82 Chapter 5 Unidimensional Problem’s Instantiations

Sketch

The key idea is to notice that all the small jobs (i.e., qC
j < δ) need special care to

be local. The remaining jobs, with size at least δ, are structurally guaranteed to be
adjacent to at least an I/O node.

We propose a meta approximation algorithm that works by scheduling small and big
jobs apart. We partition the set J of jobs in two subsets: J<δ =

{
j ∈ J | qC

j < δ
}

and J>δ =
{
j ∈ J | qC

j > δ
}

. The meta algorithm schedules the jobs from the
subsets in independent shelves: jobs from J<δ are scheduled as a P || Cmax problem,
and jobs from J>δ are scheduled with a strip-packing algorithm.

Analysis

Lemma 5.2. If there exists a ρ-approximation algorithm for the P || Cmax scheduling
problem, then there exists a ρ-approximation algorithm to schedule jobs of size less
than δ, where δ is the distance between two consecutive I/O nodes (i.e., δ = m

mI/O).

Proof. Due to their small size, jobs in J<δ need special care to be local. However,
their small size also ensures they do not interact with each other. Hence, choosing
which I/O node to allocate to each small job is sufficient to schedule them. With this
consideration, the problem of scheduling small jobs is the same as P || Cmax with
mI/O machines.

Lemma 5.3. If there exists a ρ-approximation algorithm for the strip-packing problem,
then there exists a ρ-approximation algorithm to schedule jobs with sizes at least δ.

Proof. We can consider the problem of scheduling large jobs as a strip-packing
problem. The width of the strip is m as a node may process at most one job at any
time. Moreover, jobs of size at least δ are structurally guaranteed to be local as their
needs in compute node exceed the distance between two consecutive I/O nodes.
Hence, any solution given by solving the strip-packing problem is a valid feasible
solution for our problem. The makespan of the solution is the height produced by
the packing.

Theorem 5.4. The meta algorithm computes a feasible schedule with an approximation
ratio of ρ + ρ′, where ρ and ρ′ are the approximation ratios for the P || Cmax and
strip-packing problems, respectively. The proof directly derives from Lemmas 5.2 and
5.3.

5.2 Study of unpinned I/O 83

For example, one may schedule small jobs with the Longest Processing Time (LPT)
list algorithm [Gra69], and big jobs with Steinberg’s algorithm [Ste97]. Such an
instantiation would have a performance guarantee of 4

3 + 2 with a computational
cost in O

(
n · logn+ n·log2 n

log logn

)
, where n is the number of jobs.

5.3 Study of pinned I/O:
P C, P I/O | sizeC

j , fixI/O
j , convex, local | Cmax

We study in this section the problem with pinned I/O. Let us recall that in this case,
each job requests a specific set of I/O nodes. Such a model is representative of HPC
platforms where the parallel file system is organized in stripes. For example, this is
the case with the configuration of the Lustre file system in Blue Waters, where each
I/O node is responsible for an address range (i.e., a stripe). The input data of jobs
resides on multiple stripes. Hence, the jobs will request the I/O nodes corresponding
to their data.

We first study the computational complexity of this model. We then propose a
constant-approximation algorithm.

5.3.1 Complexity

Definition 5.1 (NUMERICAL 3-DIMENSIONAL MATCHING3 [GJ79]). An instance con-
sists in three disjoint sets W , X, and Y , each containing M positive integers, and a
bound B ∈ Z+.

The decision problem is to decide whether W ∪X ∪Y can be partitioned into M disjoint
sets A1, A2, . . . , AM such that each Ai contains exactly one element from each of W ,
X, and Y ; such that for 1 6 i 6M,

∑
a∈Ai a = B.

This decision problem is NP-complete in the strong sense.

Lemma 5.5. Let us consider the decision problem NUMERICAL 3-DIMENSIONAL MATCH-
ING (denoted N3DM in short), and let us enforce that all elements that belong to one
of the disjoint sets are greater than B

2 . This constrained version of N3DM remains
NP-complete in the strong sense.

3NUMERICAL 3-DIMENSIONAL MATCHING is indexed as SP16 in [GJ79].

84 Chapter 5 Unidimensional Problem’s Instantiations

Proof. The proof is done by reducing the constrained version of N3DM to the original
version of N3DM.

Let us consider three disjoint sets W , X, and Y , each containing M positive integers,
and a bound B ∈ Z+. We build the following instance that is compatible with the
size constraint: W ′ = W , Y ′ = Y , X ′ = {x+B, x ∈ X}, and B′ = 2B.

Let us suppose there exists a partition for the original instance. The exact same
partition is a solution for the constrained instance. Similarly, if there exists a partition
for the constrained instance, it is also a solution for the original instance.

Theorem 5.6. P C, P I/O | sizeC
j , fix

I/O
j , convex, local | Cmax is NP-complete in the

strong sense.

Proof. It is clear the problem belongs to NP. Thanks to Lemma 5.5, we prove the
problem is NP-complete by reducing it to the constrained version of N3DM.

Let us consider three disjoint sets W , X, and Y , each containing M positive integers,
and a bound B ∈ Z+. Furthermore, we impose that any element belonging to X is
greater than B

2 . The decision problem is explained in Definition 5.1.

We craft the following corresponding input for our problem:

• mC = B, mI/O = 3;

• the topology is a line starting with an I/O node, followed by B
2 compute nodes,

an I/O node, B2 compute nodes, and finishing with a third I/O node;

• for each a ∈ A, we create a job j with qC
j = a, and pj = 1. All jobs derived from

sets W , X, and Y target the first, second, and third I/O node, respectively. The
jobs mapped to the middle I/O nodes derive from the set with a size constraint.

Let us suppose there exists a matching. The schedule built by scheduling jobs from
Ai at time i has a makespan of M , and fulfills the convexity and locality constraints.
The size constraint ∀x ∈ X,x > B

2 ensures the I/O nodes cannot be shared, and at
most three jobs are processed concurrently.

Let us suppose now there exists a schedule of makespan M . There is no idle time as
the whole work is MB. The partition is derived by assigning to Ai the jobs starting
at time i.

5.3 Study of pinned I/O 85

Figure 5.2 Potential allocations for a job requesting the middle I/O node and three compute nodes.
White nodes represent compute nodes, and black nodes represent I/O nodes.

It should be pointed out that if the distance between the I/O nodes is greater than
the maximum size of the jobs, and under the constraint that each job requires exactly
one I/O node, the problem reduces to several independent instances 1 || Cmax. In
this specific case, the optimal solution can be computed in linear time.

5.3.2 Approximation Algorithm

We propose in this section a constant-approximation algorithm. First we propose an
6-approximation algorithm for the sub-case where all jobs require a single I/O node.
We then show that any instance can be reduced to a single I/O instance.

Algorithm with a single I/O node per job

Sketch The algorithm is split in two phases. We first reduce the problem to
an instance of the dedicated processors scheduling problem (P | fixj | Cmax in
Graham notation) by determining the compute nodes allocated to each job. The
dedicated processors scheduling problem can be seen as the DYNAMIC STORAGE

ALLOCATION4 problem [GJ79] where time and space have been swapped. This first
phase (dedication phase) is done by solving a linear program, and rounding the given
solution. In a second phase (scheduling phase), we set the starting time of every
job.

Dedication Phase We are interested in allocations that are simultaneously convex
and local. As a consequence, there exist at most qC

j + 1 valid allocations for each
job j. An example is depicted on Figure 5.2. In order to transform our problem into
an instance of the dedicated processors scheduling problem, we need to choose a
single allocation for every job.

4DYNAMIC STORAGE ALLOCATION is indexed as SR2 in [GJ79].

86 Chapter 5 Unidimensional Problem’s Instantiations

Let us formally introduce the notations we use in this section. We define the local
load Li of a node i as the sum of the processing time of the jobs allocated to node i.
The (global) load of an allocation is defined as Λ = maxi Li. We define by αC (s, q)
the smallest convex allocation containing q compute nodes of index at least s. If such
an allocation does not exist, we set αC (s, q) = ∅. Such a definition is ambiguous on
a ring: this technical point is addressed later (see page 92). We extend the definition
of the distance of a specific node to an allocation as the minimum distance between
this specific node and any node belonging to the allocation. The distance to the
empty allocation is set to infinity. For the purpose of notation, when a job j requires
a single I/O node, we will designate this I/O node by V I/O(j). We furthermore define
for each job j the variables xj,s, that corresponds to the fraction of j computed on
αC
(
s, qC

j

)
.

We are seeking an assignment of compute nodes for each job such that the allocation
minimizes the maximum load Λ. The choice of the allocation for each job is done
with the linear program outlined below.

min Λ,

s.t. Λ > Li ∀i (C1)

Li >
∑
j

∑
s

xj,spj1i∈αC(s, qC
j) ∀i (C2)

∑
s

xj,s = 1 ∀j (C3)

dist
(
αC
(
s, qC

j

)
,V I/O(j)

)
6 1 ∀j ∀s (C4)

0 6 xj,s 6 1 ∀j ∀s (C5)

Constraints (C1) and (C2) report the load induced by the choices of the xj,s variables.
Constraints (C3) and (C5) ensure that each job is entirely processed. Constraint (C4)
represents the locality constraint.

The solution of the previous linear program is then rounded to an integral solution.
A convex allocation can be identified by its leftmost node (i.e., the node of the
smallest index, or s) and its size. The allocation chosen for a job j is the allocation
with the smallest index σ such that

∑
s6σ xj,s is at least a half. The rounding is done

independently for each job. The rounding procedure is detailed on Figure 5.3.

In the setup where I/O nodes can be shared, the linear program is modified to ignore
the load on the I/O nodes. This is done by altering the Constraint (C2).

5.3 Study of pinned I/O 87

0 1 2 3 4 5 6 7 8 9 10 11 12

αC (1, 4) xj,1 = 0.1
αC (2, 4) xj,2 = 0.2

αC (3, 4) xj,3 = 0.2
αC (4, 4) xj,4 = 0.3

αC (5, 4) xj,5 = 0.2

0.1

0.3

0.5

0.8

1
0.9

0.7

0.5

0.2

Figure 5.3 Rounding procedure of the linear program for the dedication phase.
White nodes represent compute nodes, and black nodes represent I/O nodes.
Below the nodes are represented the valid allocations for a job j requesting the I/O node
of index 5 and four compute nodes. Among the valid allocations for j, the linear program
distributed the load as indicated by the xj,s variables. This distribution is influenced by the
other jobs that are not represented for the sake of clarity.
Above the nodes is depicted the induced cumulated load on each node. Without loss of
generality, we assume here pj = 1.
The rounding procedure would dedicate the nodes αC (3, 4) to job j, as the node of index 3
is the node of the smallest index with a load of at least 0.5.

88 Chapter 5 Unidimensional Problem’s Instantiations

Scheduling Phase Once an allocation has been chosen for every job, our problem
is an instance of the dedicated processors scheduling problem. We compute a
feasible schedule with the algorithm proposed by Gergov [Ger99] (see Algorithm 3).
The algorithm is split in two phases: first it constructs an infeasible schedule such
that two jobs can overlap but the intersection of any three jobs is empty, then it
transforms this infeasible schedule into a feasible one.

Algorithm 3: Gergov’s algorithm
Input: a set J of jobs; the number m of nodes
Output: a feasible schedule σ

1 begin Incremental 2-Allocation
2 P← {(0, 0,m− 1)} /* priority queue with lexicographic order */
3 σ′ ← empty schedule
4 while J 6= ∅ do
5 p = (t, xl, xr)← P.popmin()
6 if ∃j ∈ J s.t. j only intersects with p then
7 remove j from J
8 σ′(j)← t
9 L← min qj /* leftmost node of j */

10 R← max qj /* rightmost node of j */
11 P.insert((t+ pj ,max(xl, L),min(xr, R))) /* ∩ pillar */
12 if xl < L then
13 P.insert((t, xl, L)) /* left pillar */
14 end
15 if R < xr then
16 P.insert((t, R, xr)) /* right pillar */
17 end
18 end
19 end
20 end

21 begin Feasible Scheduling
22 color jobs using first fit
23 build a feasible schedule σ using σ′ and one shelf per color
24 end

The first phase relies on an auxiliary data structure called the pillar structure. A pillar
is a convex subset of nodes with an associated height where the height corresponds
to the load of the nodes in the pillar. It is represented as a triple (h, L,R), where h, L
and R are the height, leftmost node and rightmost node, respectively. The pillars are
stored in a priority queue with ascending lexicographic order. The pillar structure
is initialized with a single pillar of height 0 containing all the nodes (line 2). Then,
jobs are successively stacked on the pillars. At each iteration of the algorithm, the

5.3 Study of pinned I/O 89

smallest pillar is removed from the priority queue (line 5). If there does not exist a
job that only intersects with this pillar, the pillar is simply removed. Otherwise, the
job is stacked on the pillar, and the pillar structure is updated accordingly (lines 6
to 18). Three new pillars at most are created. Figure 5.4(b) on page 93 depicts an
infeasible schedule produced by this first phase.

For the second phase, the algorithm assigns a color to each job such that two
overlapping jobs have different colors (line 22). This coloring is done with a first-fit
strategy. Then, a shelf is created for each color, and all jobs of a given color are
scheduled in the corresponding shelf (line 23). The final produced schedule is shown
on Figure 5.4(c), page 93.

When dealing with shared I/O, the I/O nodes are removed from the topology seen
by Gergov’s algorithm.

Analysis with a single I/O node per job

We show in this section that the proposed algorithm is a 6-approximation for the
instances where each job requires a single I/O node. To ensure this performance
guarantee, we link both phases by bounding the maximum induced load.

Lemma 5.7. The dedication phase finds an allocation for each job such that the
maximum load is at most two times the maximum load of the optimal allocation.

Proof. Without loss of generality, we consider a single job j of unitary processing
time. To prove the correctness of the rounding procedure, we need to show there
exists a large enough convex set of compute nodes processing at least half of the job.

The locality constraint ensure a unitary load on the targeted I/O node. Hence, there
exists a compute node that is loaded at least half of the job processing time. We
denote by σ the leftmost—according to the order exposed above—compute node
loaded at least half the processing time of the job. By construction, we have
xj,σ+

∑
s<σ xj,s+

∑
s>σ xj,s = 1 and

∑
s<σ xj,s < 0.5. We can derive from both these

relations that xj,σ +
∑
s>σ xj,s = 1−

∑
s<σ xj,s > 0.5. Hence, all the compute nodes

belonging to the allocation with the leftmost node σ are loaded at least half the
processing time of the job.

Allocating the whole job to the above-mentioned allocation doubles at most the
(optimal) load computed by the linear program.

90 Chapter 5 Unidimensional Problem’s Instantiations

Lemma 5.8. Gergov’s algorithm computes a feasible schedule for the dedicated proces-
sor scheduling problem such that the makespan of the schedule is at most three times the
maximum load. The proof of the lemma is available in the original publication [Ger99].

Theorem 5.9. The two-phases algorithm is a 6-approximation algorithm. This is a
direct consequence of Lemmas 5.7 and 5.8.

Theorem 5.10. The 3-approximation ratio of Gergov’s algorithm is asymptotically
tight.

Proof. We prove the approximation ratio of the algorithm is tight with an adversary
argument.

Given a target makespan of M for the optimal solution, we craft an instance with
3M + 1 nodes and 4M jobs of unitary processing time (i.e., pj = 1). The nodes
are indexed by i ∈ 0, . . . , 3M , and the jobs are indexed by j ∈ 0, . . . , 4M − 1. The
jobs are divided in four families: jobs aligned on the left edge when j ≡ 0 (mod 4),
jobs aligned on the right edge when j ≡ 1 (mod 4), jobs centered on the node of
index M when j ≡ 2 (mod 4), and jobs centered on the node of index 2M when
j ≡ 3 (mod 4). More specifically, the jobs require the following nodes:

q0 = {0}, q4k = {0, . . . ,M − k} ∀k ∈ 1, . . . ,M − 1

q1 = {3M}, q4k+1 = {3M − k, . . . , 3M} ∀k ∈ 1, . . . ,M − 1

q2 = {M}, q4k+2 = {M − k, . . . ,M + k} ∀k ∈ 1, . . . ,M − 1

q3 = {2M}, q4k+3 = {M + k, . . . , 3M − k} ∀k ∈ 1, . . . ,M − 1

The key element in this structure is that the node of index 0 is only requested by
jobs that belongs to the first family. Similarly, the nodes of index 3M , M and 2M
are only requested by the second, third and fourth family, respectively.

On one hand, an optimal schedule of this instance has a makespan of M , as shown
on Figure 5.4(a). An area argument shows the optimality of the depicted schedule
as it reaches the lower bound of the total work divided by the number of available
nodes.

On the other hand, let us suppose jobs are sorted by increasing index. In such a case,
thanks to the structure in four families, the four first jobs define four pillars that span
the entire first phase of the algorithm. As jobs are sorted by increasing index, they
are scheduled by layers of jobs of index with identical quotient when divided by four.
The jobs in the middle intersect other jobs at both their extrema. These intersections
impose to use three colors in the coloring step, as depicted by Figure 5.4(b). Finally,

5.3 Study of pinned I/O 91

after the shelving step, the solution computed by the algorithm has a makespan of
3M − 2 (see Figure 5.4(c)).

Hence, for any positive ε, there exists an M such that the approximation ratio is at
least 3− ε. This concludes the proof.

Ring reduction Let us point out that we supposed in both the formulation of the
linear program and the proofs that the nodes can be totally ordered. This is trivial
with the line topology. However, finding such an order on the ring topology is not
straightforward as it is a cyclic graph. We can nonetheless order the allocations
with the intuitive leftmost order introduced above. Note that the allocation ordering
and the rounding are job dependent, and are independent of other jobs. The ring
(Z/?Z) can be seen as the quotient space of an infinite line (Z). The projection of an
allocation is the set of all the nodes whose representative node on the ring belongs
to the initial allocation. This set is a collection of intervals. We choose to consider
a single interval to account for the allocation. The choice is done by selecting the
interval that contains an origin node. This origin node is arbitrarily chosen, on a
per job basis, as a node on the infinite line equivalent to the requested I/O node on
the ring. This transformation clearly brings us to the same setup as the line. Such a
transformation is depicted on Figure 5.5.

Extending to any number of I/O nodes per job

Under a line topology, the more I/O nodes are required by a convex local job, the
easier the problem becomes. As the number of required I/O nodes grows, the
problem gets more constrained, and it leaves fewer choices for the compute nodes
intervals. The algorithm proposed in Section 5.3.2 can easily be adapted for any
instance.

Let us consider a job that requires exactly two I/O nodes. Note than requiring
more than two I/O nodes reduces to requiring exactly two I/O nodes: the same
transformation considering only the extreme I/O nodes works. The two I/O nodes
can be considered as one by using the following transformation:

• if there are at least qC
j compute nodes between the two I/O nodes, there exists

only a single valid allocation for the job: the interval whose extrema are the
I/O nodes;

92 Chapter 5 Unidimensional Problem’s Instantiations

0

12

3

4

56

7

8

910

11

12

1314

15

16

1718

19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) Optimal schedule.

0 12 3

4 56 7

8 910 11

12 1314 15

16 1718 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Infeasible schedule produced by the Incremental 2-Allocation phase.

0 12 3

4 5

6

7

8 9

10

11

12 13

14

15

16 17

18

19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) Gergov’s final schedule.

Figure 5.4 Comparison of the Gergov’s schedule and an optimal schedule for the dedicated processors
scheduling problem (P | fixj | Cmax in Graham’s notation).
The instance depicted is the instance described in the proof of the asymptotic tightness with
M = 5 (see Theorem 5.10). The jobs are colored with the colors from the coloring step of
Gergov’s algorithm. The nodes’ indexes are shown on the horizontal axis, and time is on the
vertical axis.

5.3 Study of pinned I/O 93

01

2

3 4

-2 -1 0 1 2 3 4 5 6 7

Figure 5.5 Projection of the ring on an infinite line topology. White nodes represent compute nodes,
and the black node represents an I/O node. We choose (arbitrarily) the interval [−1, . . . , 1]
to account for the allocation of the job.

a b c

macro

Figure 5.6 Aggregation of many I/O nodes into a macro I/O node through edge contraction. A job j
requesting four compute nodes and the I/O nodes a and c can be viewed as another
job j′ requesting a single macro I/O node and two compute nodes. White nodes represent
compute nodes, and black nodes represent I/O nodes.

• if not, consider the I/O nodes and the compute nodes within their range as a
single macro I/O. The transformed job is now requiring a single I/O node (the
macro I/O) and qC

j compute nodes diminished by the number of compute nodes
in the macro I/O.

Such a transformation is depicted on Figure 5.6, and uses edge contraction as a base
operation.

This transformation also shows that even if the combination of both the convexity
and locality constraints is of great theoretical interest, it might be too great a
constraint for systems in production. Ensuring both constraints at the same time
obliges the scheduler to give more resources than needed to each job, leading to an
underutilization of the machine.

94 Chapter 5 Unidimensional Problem’s Instantiations

The gap between the line topology and the ring topology widens when the number of
requested I/O nodes increases. The transformation from the ring to the line requires
to choose the origin (i.e., the base I/O node) to order the allocations (see page 92).
Requesting more than a single I/O node brings a more complex combinatorics as
the number of potential origins grows: there are indeed as many potential origins as
requested I/O nodes. It is however possible to tackle the increased complexity at the
cost of a doubled approximation ratio (leading to a ratio of 12).

Theorem 5.11. Transforming a ring topology into a line topology by cutting between
any two nodes doubles at most the maximum load.

Proof. Consider an optimal allocation of minimal load on a ring. We obtain a derived
line topology by cutting between any two nodes. All jobs whose allocations include
the cut have to be re-allocated above the remaining uncut jobs. This represents
an extra load of at most the maximum load. Hence the load on this derived line
topology is bounded by twice the maximum load of the ring topology.

5.4 Summary

We studied in this chapter some simple instantiations of the framework proposed in
Chapter 4. Namely, we studied the minimization of the makespan on the line and
ring topologies, while the allocations were constrained to be both convex and local.
We gave constant-ratio approximation algorithms for all the variants, considering
an uniform distribution of I/O nodes, and jobs requiring a single I/O node and an
arbitrary number of compute nodes. Table 5.1 recapitulates the technical results
proposed in this chapter for the line topology.

pinned I/O (setI/O
j) unpinned I/O (fixI/O

j)

shared exclusive shared exclusive

pj = 1 NPh sNPh sNPh
2-approx. ρBP -approx.

pj
NPh (cf. pj = 1) sNPh (cf. pj = 1) sNPh (cf. pj = 1)

6-approx. (ρ+ ρSP)-approx.

Table 5.1 Summary of complexity classes and approximation ratios for the line. The approximation
ratios ρ, ρBP and ρSP are the ratios for the P || Cmax, Bin Packing and Strip Packing problems,
respectively.

5.4 Summary 95

As future steps, one could implement the proposed algorithms, and study their
performances through simulation. From a theoretical point of view, the tightness
results show the limits of a two-phase approach. The approximation ratios might
be improved by scheduling the problem in a single phase. This could be done, for
example, by only using a linear program to compute the schedule.

96 Chapter 5 Unidimensional Problem’s Instantiations

Conclusion and Future Steps 6
Increasing the number of computing resources embedded in the HPC platforms is
not enough to address the ever-increasing demand for computing power. As we are
reaching the limits of a sensible energetic envelop for these platforms, technological
disruptions are needed. As a consequence, the heterogeneity in HPC platforms
becomes more and more pervasive. This heterogeneity comes in various forms, and
manifests itself in the architecture of the new platforms as well as in the variety of
processed applications. Consequently, this impacts the software stacks managing the
resources (and notably the RJMS). In this work, we studied from two standpoints
how scheduling policies can leverage heterogeneity, and manage the execution
context: within a single application (intra-application level), and at the whole
platform scale from the inter-applications perspective.

Intra-Application Level We studied the minimization of the makespan for platforms
composed of multiple CPUs and GPUs. For such platforms, the approach of partition-
ing tasks in two subsets mapped to each architecture has proved powerful. This is
however not sufficient to take into account the impact of communications, as such an
approach ignores the individuality of resources. We introduced context-awareness
with an affinity mechanism: this affinity guides the global view of the scheduler with
qualitative hints improving local behaviors. We showed this is an efficient and cheap
mechanism to reduce memory transfers while maintaining a low makespan.

We extended the model to implicitly consider parallelism on the CPUs with the
moldable-task model. This leaves more flexibility to leverage the parallelism, as we
shift from a sequential vs. vectorial to a parallel vs. vectorial paradigm. Starting with
the structure of the scheduling problem with CPUs only, we proposed an algorithm
based on an integer linear program that directly derives a feasible schedule for the
problem with GPUs. This formulation is able to break the complexity barrier that
penalizes a dynamic programming approach. Furthermore the formulation of the
algorithm as an integer linear program makes it easier to reuse as a future building
block.

97

Inter-Applications Level Moving up to the whole platform scale, it is not realistic
to schedule each application down to the single computing resource. Rather, we
have considered applications as black boxes with coarse resources requirements.
However, quantifying every possible combination of concurrent applications remains
unrealistic as the combinatorics explode with the number of applications. Instead,
we have proposed to reduce the set of all feasible schedules by further constraining
the scheduling problem. These constraints are considered a first-class modeling tool.
We have proposed a set of reasonable constraints to model application spreading
and I/O traffic.

More precisely, we then instantiated this modeling framework with unidimensional
topologies. This case study focused on minimizing the makespan under the convex
and local constraints. This is a first step towards the study of production grade
topologies. Although the optimization problems remain hard, we were able to derive
low-complexity constant-ratio approximation algorithms. This theoretical study
shows that it is viable to use adequate constraints as a modeling tool to obliviously
apprehend the execution context.

6.1 Future Steps

We proposed in this work generic low-cost algorithms that are able to take into
account the execution context. However, some points were not fully addressed, and
deserve to be further studied.

First, from a technical point of view, the algorithms proposed in this work may be
implemented in other run-time than XKaapi. The performances of the algorithms
could also be assessed with different workloads.

The two-phase approach (partitioning then scheduling) proved to be an efficient
technique to design scheduling policies for the platforms with CPUs and GPUs.
However, as the local interactions have a greater impact in the new proposed
modeling framework, it is unclear if such an approach is the good one in this case.
Trying to design algorithms with a unique scheduling phase is hence a path to
consider.

A natural extension of the unidimensional case study is the study of topologies of
greater dimensions such as 2D or 3D tori. Following this path, the study of the
tree-based topologies also is a step towards the study of topologies such as DragonFly
or SlimFly.

98 Chapter 6 Conclusion and Future Steps

Lastly, all our work was focused on the heterogeneity of the resources in the targeted
platforms. Another direction would be to consider the heterogeneity of applications
instead. Indeed, by distinguishing applications sensitive to the surrounding I/O
traffic from the insensitive applications, one could efficiently co-schedule these
classes of applications. A first step in this direction would be to identify reasonable
classes of applications.

6.1 Future Steps 99

Bibliography

[@bw] Blue Waters User Portal. URL: https://bluewaters.ncsa.illinois.edu/
(visited on Aug. 9, 2017). | cit. on pp. 11, 79

[@curie] TGCC Curie Supercomputer. URL: http://www-hpc.cea.fr/en/complexe/
tgcc-curie.htm (visited on Aug. 9, 2017). | cit. on pp. 11, 79

[@green500] Wu Feng and Tom Scogland. Green500 list. URL: https://www.green500.
org/lists/ (visited on June 29, 2017). | cit. on p. 2

[@kcomp] K Computer. URL: http://www.aics.riken.jp/en/k-computer/about/
(visited on Aug. 9, 2017). | cit. on p. 79

[@ofp] Oakforest-PACS System. URL: http://jcahpc.jp/eng/ofp_intro.html
(visited on Aug. 9, 2017). | cit. on p. 79

[@titan] Titan Cray XK7. URL: https://www.olcf.ornl.gov/computing-resources/
titan-cray-xk7/ (visited on Aug. 9, 2017). | cit. on p. 79

[@top500] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. TOP500
list. URL: https://www.top500.org/lists/ (visited on June 16, 2017).

| cit. on p. 1

[@torque] Torque 6.1.1 Administrator Guide. URL: http://docs.adaptivecomputing.
com/torque/6-1-1/adminGuide/help.htm (visited on June 16, 2017).

| cit. on p. 40

[Age+14] Anthony Agelastos, Benjamin A. Allan, Jim M. Brandt, et al. “The Lightweight
Distributed Metric Service: A Scalable Infrastructure for Continuous Monitor-
ing of Large Scale Computing Systems and Applications”. In: SC. IEEE, Nov.
2014, pp. 154–165. DOI: 10.1109/SC.2014.18. | cit. on p. 77

[Agu+11a] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, et al. “LU Factorization
for Accelerator-based Systems”. In: AICCSA. IEEE, Dec. 2011, pp. 217–224.
DOI: 10.1109/AICCSA.2011.6126599. | cit. on pp. 16, 20, 30

[Agu+11b] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, et al. “QR Factorization
on a Multicore Node Enhanced with Multiple GPU Accelerators”. In: IPDPS.
IEEE, May 2011, pp. 932–943. DOI: 10.1109/IPDPS.2011.90.

| cit. on pp. 16, 20, 30

[Alb15] Carl Albing. “Characterizing Node Orderings for Improved Performance”. In:
PMBS@SC. ACM, 2015, 6:1–6:11. DOI: 10.1145/2832087.2832094.

| cit. on p. 72

A1

https://bluewaters.ncsa.illinois.edu/
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
https://www.green500.org/lists/
https://www.green500.org/lists/
http://www.aics.riken.jp/en/k-computer/about/
http://jcahpc.jp/eng/ofp_intro.html
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.top500.org/lists/
http://docs.adaptivecomputing.com/torque/6-1-1/adminGuide/help.htm
http://docs.adaptivecomputing.com/torque/6-1-1/adminGuide/help.htm
https://doi.org/10.1109/SC.2014.18
https://doi.org/10.1109/AICCSA.2011.6126599
https://doi.org/10.1109/IPDPS.2011.90
https://doi.org/10.1145/2832087.2832094

[Ash+10] Steve Ashby, Pete Beckman, Jackie Chen, et al. Opportunities and Challenges
of Exascale Computing. Tech. rep. U.S. Department of Energy, 2010. URL:
https://science.energy.gov/~/media/ascr/ascac/pdf/reports/
Exascale_subcommittee_report.pdf. | cit. on p. 2

[ATN09] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. “Automatic Cali-
bration of Performance Models on Heterogeneous Multicore Architectures”.
In: Euro-Par Workshops. Vol. 6043. Lecture Notes in Computer Science.
Springer, Aug. 2009, pp. 56–65. DOI: 10.1007/978-3-642-14122-5_9.

| cit. on pp. 16, 20, 21

[Aug+11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. “StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures”. In: Concurrency and Computation: Practice and Expe-
rience 23.2 (Nov. 2011), pp. 187–198. DOI: 10.1002/cpe.1631.

| cit. on pp. 16, 19, 20, 21, 22, 59

[BGT97] Evripidis Bampis, Frédéric Guinand, and Denis Trystram. “Some models
for scheduling parallel programs with communication delays”. In: Discrete
Applied Mathematics 72.1 (Jan. 1997), pp. 5–24. DOI: 10 . 1016 / S0166 -
218X(96)00034-0. | cit. on p. 7

[Bha+13] Abhinav Bhatele, Kathryn Mohror, Steve H. Langer, and Katherine E. Isaacs.
“There Goes the Neighborhood: Performance Degradation due to Nearby
Jobs”. In: SC. ACM, Nov. 2013, 41:1–41:12. DOI: 10.1145/2503210.2503247.

| cit. on pp. 5, 67

[Bła+07] Jacek Błażewicz, Klaus H. Ecker, Erwin Pesh, Günter Schmidt, and Jan
Weglarz. Handbook on Scheduling: From Theory to Applications. International
Handbooks on Information Systems. Springer, 2007. DOI: 10.1007/978-3-
540-32220-7. | cit. on p. 18

[Błą+15] Iwo Błądek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler.
“On contiguous and non-contiguous parallel task scheduling”. In: Journal of
Scheduling 18.5 (Oct. 2015), pp. 487–495. DOI: 10.1007/s10951-015-0427-
z. | cit. on p. 72

[Ble+14] Raphaël Bleuse, Thierry Gautier, João Vicente Ferreira Lima, Grégory Mounié,
and Denis Trystram. “Scheduling Data Flow Program in XKaapi: A New
Affinity Based Algorithm for Heterogeneous Architectures”. In: Euro-Par.
Vol. 8632. Lecture Notes in Computer Science. Springer, Aug. 2014, pp. 560–
571. DOI: 10.1007/978-3-319-09873-9_47. | cit. on p. 16

[Ble+15] Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié,
and Denis Trystram. “Scheduling independent tasks on multi-cores with GPU
accelerators”. In: Concurrency and Computation: Practice and Experience 27.6
(2015), pp. 1625–1638. DOI: 10.1002/cpe.3359.

| cit. on pp. 16, 24, 27, 54

A2 Bibliography

https://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://doi.org/10.1007/978-3-642-14122-5_9
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1016/S0166-218X(96)00034-0
https://doi.org/10.1016/S0166-218X(96)00034-0
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1007/978-3-540-32220-7
https://doi.org/10.1007/978-3-540-32220-7
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/978-3-319-09873-9_47
https://doi.org/10.1002/cpe.3359

[Ble+17] Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, et al. “Scheduling
Independent Moldable Tasks on Multi-Cores with GPUs”. In: IEEE Transactions
on Parallel and Distributed Systems 28.9 (Sept. 2017), pp. 2689–2702. DOI:
10.1109/TPDS.2017.2675891. | cit. on p. 37

[Bos+12] George Bosilca, Aurélien Bouteiller, Anthony Danalis, et al. “DAGuE: A generic
distributed DAG engine for High Performance Computing”. In: Parallel Com-
puting 38.1 (Jan. 2012), pp. 37–51. DOI: 10.1016/j.parco.2011.10.003.

| cit. on pp. 16, 20

[Bou+10a] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Otte, and De-
nis Trystram. “A Fast 5/2-Approximation Algorithm for Hierarchical Schedul-
ing”. In: Euro-Par (1). Vol. 6271. Lecture Notes in Computer Science. Springer,
Aug. 2010, pp. 157–167. DOI: 10.1007/978-3-642-15277-1_16.

| cit. on p. 40

[Bou+10b] Azzedine Boukerche, Jan Mendonça Correa, Alba Cristina Magalhaes Alves
de Melo, and Ricardo P. Jacobi. “A Hardware Accelerator for the Fast Re-
trieval of DIALIGN Biological Sequence Alignments in Linear Space”. In: IEEE
Transactions on Computers 59.6 (June 2010), pp. 808–821. DOI: 10.1109/TC.
2010.42. | cit. on p. 16

[Bou+11] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Robenek,
and Denis Trystram. “Approximation Algorithms for Multiple Strip Packing
and Scheduling Parallel Jobs in Platforms”. In: Discrete Mathematics, Al-
gorithms and Applications 3.4 (Dec. 2011), pp. 553–586. DOI: 10.1142/
S1793830911001413. | cit. on p. 5

[Bre74] Richard Peirce Brent. “The Parallel Evaluation of General Arithmetic Ex-
pressions”. In: Journal of the ACM 21.2 (Apr. 1974), pp. 201–206. DOI:
10.1145/321812.321815. | cit. on p. 39

[Bru07] Peter Brucker. Scheduling Algorithms. Fifth Edition. Springer, 2007. DOI:
10.1007/978-3-540-69516-5. | cit. on p. 70

[Bue+12] Javier Bueno, Judit Planas, Alejandro Duran, et al. “Productive Programming
of GPU Clusters with OmpSs”. In: IPDPS. IEEE, May 2012, pp. 557–568. DOI:
10.1109/IPDPS.2012.58. | cit. on pp. 16, 19, 20, 21

[But+09] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. “A class
of parallel tiled linear algebra algorithms for multicore architectures”. In:
Parallel Computing 35.1 (Jan. 2009), pp. 38–53. DOI: 10.1016/j.parco.
2008.10.002. | cit. on pp. 15, 20, 30

[BW12] Vincenzo Bonifaci and Andreas Wiese. “Scheduling Unrelated Machines of
Few Different Types”. In: CoRR abs/1205.0974 (May 2012). URL: https:
//arxiv.org/abs/1205.0974. | cit. on pp. 15, 18

[Car+11] Philip H. Carns, Kevin Harms, William E. Allcock, et al. “Understanding
and Improving Computational Science Storage Access through Continuous
Characterization”. In: ACM Transactions on Storage 7.3 (Oct. 2011), 8:1–8:26.
DOI: 10.1145/2027066.2027068. | cit. on p. 77

Bibliography A3

https://doi.org/10.1109/TPDS.2017.2675891
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1007/978-3-642-15277-1_16
https://doi.org/10.1109/TC.2010.42
https://doi.org/10.1109/TC.2010.42
https://doi.org/10.1142/S1793830911001413
https://doi.org/10.1142/S1793830911001413
https://doi.org/10.1145/321812.321815
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1016/j.parco.2008.10.002
https://arxiv.org/abs/1205.0974
https://arxiv.org/abs/1205.0974
https://doi.org/10.1145/2027066.2027068

[Che+16] Nan-Chen Chen, Sarah S. Poon, Lavanya Ramakrishnan, and Cecilia R.
Aragon. “Considering Time in Designing Large-Scale Systems for Scientific
Computing”. In: CSCW. ACM, Feb. 2016, pp. 1533–1545. DOI: 10.1145/
2818048.2819988. | cit. on p. 67

[Cof+80] Edward Grady Coffman Jr., Michael Randolph Garey, David Stifler Johnson,
and Robert Endre Tarjan. “Performance Bounds for Level-Oriented Two-
Dimensional Packing Algorithms”. In: SIAM Journal on Computing 9.4 (Nov.
1980), pp. 808–826. DOI: 10.1137/0209062. | cit. on p. 40

[Cul+93] David E. Culler, Richard M. Karp, David A. Patterson, et al. “LogP: Towards
a Realistic Model of Parallel Computation”. In: PPOPP. ACM, May 1993,
pp. 1–12. DOI: 10.1145/155332.155333. | cit. on p. 7

[CYZ13] Lin Chen, Deshi Ye, and Guochuan Zhang. “Online Scheduling on a CPU-GPU
Cluster”. In: TAMC. Vol. 7876. Lecture Notes in Computer Science. Springer,
2013, pp. 1–9. DOI: 10.1007/978-3-642-38236-9_1. | cit. on p. 16

[Dev+14] Mehmet Deveci, Sivasankaran Rajamanickam, Vitus J. Leung, et al. “Exploit-
ing Geometric Partitioning in Task Mapping for Parallel Computers”. In:
IPDPS. IEEE, May 2014, pp. 27–36. DOI: 10.1109/IPDPS.2014.15.

| cit. on p. 77

[DMT04] Pierre-François Dutot, Grégory Mounié, and Denis Trystram. “Scheduling
Parallel Tasks Approximation Algorithms”. In: Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis. Computer & Information Science
Series. Chapman and Hall/CRC, Apr. 2004. DOI: 10.1201/9780203489802.
ch26. | cit. on p. 9

[Don+11] Jack Dongarra, Peter H. Beckman, Terry Moore, et al. “The International
Exascale Software Project roadmap”. In: International Journal of High Per-
formance Computing Applications 25.1 (Jan. 2011), pp. 3–60. DOI: 10.1177/
1094342010391989. | cit. on p. 1

[Dor+16] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Robert B. Ross. “Using
Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc’IO Approach”.
In: IEEE Transactions on Parallel and Distributed Systems 27.8 (Aug. 2016),
pp. 2435–2449. DOI: 10.1109/TPDS.2015.2485980. | cit. on p. 77

[Dro09] Maciej Drozdowski. Scheduling for Parallel Processing. Computer Communica-
tions and Networks. Springer, 2009. DOI: 10.1007/978-1-84882-310-5.

| cit. on pp. 70, 75

[Dus+96] Andrea C. Dusseau, David E. Culler, Klaus E. Schauser, and Richard P. Martin.
“Fast Parallel Sorting Under LogP: Experience with the CM-5”. In: IEEE
Transactions on Parallel and Distributed Systems 7.8 (Aug. 1996), pp. 791–
805. DOI: 10.1109/71.532111. | cit. on p. 7

[EBB16] R. Todd Evans, James C. Browne, and William L. Barth. “Understanding
Application and System Performance Through System-Wide Monitoring”. In:
IPDPS Workshops. IEEE, May 2016, pp. 1702–1710. DOI: 10.1109/IPDPSW.
2016.145. | cit. on p. 77

A4 Bibliography

https://doi.org/10.1145/2818048.2819988
https://doi.org/10.1145/2818048.2819988
https://doi.org/10.1137/0209062
https://doi.org/10.1145/155332.155333
https://doi.org/10.1007/978-3-642-38236-9_1
https://doi.org/10.1109/IPDPS.2014.15
https://doi.org/10.1201/9780203489802.ch26
https://doi.org/10.1201/9780203489802.ch26
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1177/1094342010391989
https://doi.org/10.1109/TPDS.2015.2485980
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1109/71.532111
https://doi.org/10.1109/IPDPSW.2016.145
https://doi.org/10.1109/IPDPSW.2016.145

[Eno+14] Jeremy Enos, Gregory H. Bauer, Robert Brunner, et al. “Topology-Aware Job
Scheduling Strategies for Torus Networks”. In: Cray User Group. May 2014.
URL: https://cug.org/proceedings/cug2014_proceedings/includes/
files/pap182.pdf. | cit. on pp. 67, 70, 74, 77

[Eyr06] Lionel Eyraud. “Théorie et pratique de l’ordonnancement d’applications sur
les systèmes distribués”. PhD thesis. ID-IMAG, Institut National Polytechnique
de Grenoble, Grenoble, France, Oct. 2006. URL: http://graal.ens-lyon.
fr/~leyraudd/These/manuscrit.pdf. | cit. on p. 40

[Fan+12] Liya Fan, Fa Zhang, Gongming Wang, and Zhiyong Liu. “An effective approxi-
mation algorithm for the Malleable Parallel Task Scheduling problem”. In:
Journal of Parallel and Distributed Computing 72.5 (May 2012), pp. 693–704.
DOI: 10.1016/j.jpdc.2012.01.011. | cit. on p. 41

[Fei+97] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,
and Parkson Wong. “Theory and Practice in Parallel Job Scheduling”. In:
JSSPP. Vol. 1291. Lecture Notes in Computer Science. Springer, 1997, pp. 1–
34. DOI: 10.1007/3-540-63574-2_14. | cit. on pp. 9, 68

[Fer+12] João Vicente Ferreira Lima, Thierry Gautier, Nicolas Maillard, and Vincent
Danjean. “Exploiting Concurrent GPU Operations for Efficient Work Stealing
on Multi-GPUs”. In: SBAC-PAD. IEEE, Oct. 2012, pp. 75–82. DOI: 10.1109/
SBAC-PAD.2012.28. | cit. on p. 16

[Fri87] Donald K. Friesen. “Tighter Bounds for LPT Scheduling on Uniform Proces-
sors”. In: SIAM Journal on Computing 16.3 (June 1987), pp. 554–560. DOI:
10.1137/0216037. | cit. on p. 18

[FW78] Steven Fortune and James Wyllie. “Parallelism in Random Access Machines”.
In: STOC. ACM, May 1978, pp. 114–118. DOI: 10.1145/800133.804339.

| cit. on p. 7

[Gai+15] Ana Gainaru, Guillaume Aupy, Anne Benoit, et al. “Scheduling the I/O of HPC
Applications Under Congestion”. In: IPDPS. IEEE, May 2015, pp. 1013–1022.
DOI: 10.1109/IPDPS.2015.116. | cit. on pp. 6, 77

[Gau+13] Thierry Gautier, João Vicente Ferreira Lima, Nicolas Maillard, and Bruno
Raffin. “XKaapi: A Runtime System for Data-Flow Task Programming on
Heterogeneous Architectures”. In: IPDPS. IEEE, May 2013, pp. 1299–1308.
DOI: 10.1109/IPDPS.2013.66. | cit. on pp. 16, 19, 20, 29, 34

[GBP07] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. “KAAPI: A thread
scheduling runtime system for data flow computations on cluster of multi-
processors”. In: PASCO. ACM, 2007, pp. 15–23. DOI: 10.1145/1278177.
1278182. | cit. on p. 20

[Geo+17] Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Vil-
liermet. “Topology-aware Resource Management for HPC Applications”. In:
ICDCN. ACM, 2017, 17:1–17:10. DOI: 10.1145/3007748.3007768.

| cit. on p. 76

Bibliography A5

https://cug.org/proceedings/cug2014_proceedings/includes/files/pap182.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap182.pdf
http://graal.ens-lyon.fr/~leyraudd/These/manuscrit.pdf
http://graal.ens-lyon.fr/~leyraudd/These/manuscrit.pdf
https://doi.org/10.1016/j.jpdc.2012.01.011
https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1109/SBAC-PAD.2012.28
https://doi.org/10.1137/0216037
https://doi.org/10.1145/800133.804339
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1109/IPDPS.2013.66
https://doi.org/10.1145/1278177.1278182
https://doi.org/10.1145/1278177.1278182
https://doi.org/10.1145/3007748.3007768

[Geo10] Yiannis Georgiou. “Contributions for Resource and Job Management in High
Performance Computing”. PhD thesis. LIG, Univ. Grenoble Alpes, France, Nov.
2010. URL: https://tel.archives-ouvertes.fr/tel-01499598.

| cit. on p. 3

[Ger99] Jordan Gergov. “Algorithms for Compile-Time Memory Optimization”. In:
SODA. ACM/SIAM, Jan. 1999, pp. 907–908. URL: https://dl.acm.org/
citation.cfm?id=314500.315082. | cit. on pp. 89, 91

[GG75] Michael Randolph Garey and Ronald Lewis Graham. “Bounds for Multiproces-
sor Scheduling with Resource Constraints”. In: SIAM Journal on Computing
4.2 (June 1975), pp. 187–200. DOI: 10.1137/0204015. | cit. on p. 56

[GJ79] Michael Randolph Garey and David Stifler Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

| cit. on pp. 17, 81, 82, 84, 86

[Gra+79] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and
Alexander Hendrik George Rinnooy Kan. “Optimization and Approximation
in Deterministic Sequencing and Scheduling: a Survey”. In: Annals of Discrete
Mathematics 5.2 (1979), pp. 287–326. DOI: 10.1016/S0167-5060(08)70356-
X. | cit. on p. 75

[Gra69] Ronald Lewis Graham. “Bounds on Multiprocessing Timing Anomalies”. In:
SIAM Journal on Applied Mathematics 17.2 (Mar. 1969), pp. 416–429. DOI:
10.1137/0117039. | cit. on p. 84

[HC16] Sascha Hunold and Alexandra Carpen-Amarie. “Reproducible MPI Bench-
marking is Still Not as Easy as You Think”. In: IEEE Transactions on Parallel
and Distributed Systems 27.12 (Dec. 2016), pp. 3617–3630. DOI: 10.1109/
TPDS.2016.2539167. | cit. on p. 5

[Her+10] Everton Hermann, Bruno Raffin, François Faure, Thierry Gautier, and Jérémie
Allard. “Multi-GPU and Multi-CPU Parallelization for Interactive Physics
Simulations”. In: Euro-Par (2). Vol. 6272. Lecture Notes in Computer Science.
Springer, Aug. 2010, pp. 235–246. DOI: 10.1007/978-3-642-15291-7_23.

| cit. on p. 16

[Hil91] David Hilbert. “Ueber die stetige Abbildung einer Line auf ein Flächenstück”.
In: Mathematische Annalen 38.3 (Sept. 1891), pp. 459–460. DOI: 10.1007/
BF01199431. | cit. on p. 72

[HS87] Dorit S. Hochbaum and David B. Shmoys. “Using Dual Approximation Al-
gorithms for Scheduling Problems: Theoretical and Practical Results”. In:
Journal of the ACM 34.1 (Jan. 1987), pp. 144–162. DOI: 10.1145/7531.7535.

| cit. on pp. 9, 15, 17, 22, 23, 41

[HS88] Dorit S. Hochbaum and David B. Shmoys. “A Polynomial Approximation
Scheme for Scheduling on Uniform Processors: Using the Dual Approximation
Approach”. In: SIAM Journal on Computing 17.3 (1988), pp. 539–551. DOI:
10.1137/0217033. | cit. on pp. 15, 18

A6 Bibliography

https://tel.archives-ouvertes.fr/tel-01499598
https://dl.acm.org/citation.cfm?id=314500.315082
https://dl.acm.org/citation.cfm?id=314500.315082
https://doi.org/10.1137/0204015
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1137/0117039
https://doi.org/10.1109/TPDS.2016.2539167
https://doi.org/10.1109/TPDS.2016.2539167
https://doi.org/10.1007/978-3-642-15291-7_23
https://doi.org/10.1007/BF01199431
https://doi.org/10.1007/BF01199431
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/0217033

[ICR16] Florin Isaila, Jesús Carretero, and Robert B. Ross. “CLARISSE: A Middleware
for Data-Staging Coordination and Control on Large-Scale HPC Platforms”.
In: CCGrid. IEEE, May 2016, pp. 346–355. DOI: 10.1109/CCGrid.2016.24.

| cit. on p. 77

[Imr03] Csanád Imreh. “Scheduling Problems on Two Sets of Identical Machines”.
In: Computing 70.4 (Aug. 2003), pp. 277–294. DOI: 10.1007/s00607-003-
0011-9. | cit. on p. 19

[Jai+17] Nikhil Jain, Abhinav Bhatele, Xiang Ni, Todd Gamblin, and Laxmikant V. Kalé.
“Partitioning Low-diameter Networks to Eliminate Inter-job Interference”. In:
IPDPS. IEEE, May 2017, pp. 439–448. DOI: 10.1109/IPDPS.2017.91.

| cit. on p. 70

[JP99] Klaus Jansen and Lorant Porkolab. “Linear-time Approximation Schemes
for Scheduling Malleable Parallel Tasks”. In: SODA. ACM/SIAM, Jan. 1999,
pp. 490–498. URL: https : / / dl . acm . org / citation . cfm ? id = 314500 .
314870. | cit. on p. 40

[Kat+15] Georgios Kathareios, Cyriel Minkenberg, Bogdan Prisacari, Germán Rodríguez,
and Torsten Hoefler. “Cost-Effective Diameter-Two Topologies: Analysis and
Evaluation”. In: SC. ACM, Nov. 2015, 36:1–36:11. DOI: 10.1145/2807591.
2807652. | cit. on pp. 1, 6, 67, 70

[Lee+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, et al. “Debunking the 100X
GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and
GPU”. In: ISCA. ACM, June 2010, pp. 451–460. DOI: 10.1145/1815961.
1816021. | cit. on p. 15

[Leu+02] Vitus J. Leung, Esther M. Arkin, Michael A. Bender, et al. “Processor Allocation
on Cplant: Achieving General Processor Locality Using One-Dimensional
Allocation Strategies”. In: CLUSTER. IEEE, Sept. 2002, pp. 296–304. DOI:
10.1109/CLUSTR.2002.1137758. | cit. on p. 74

[LST90] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. “Approximation Al-
gorithms for Scheduling Unrelated Parallel Machines”. In: Mathematical
Programming 46.1 (Jan. 1990), pp. 259–271. DOI: 10.1007/BF01585745.

| cit. on p. 18

[LT94] Walter Ludwig and Prasoon Tiwari. “Scheduling Malleable and Nonmalleable
Parallel Tasks”. In: SODA. ACM/SIAM, Jan. 1994, pp. 167–176. URL: https:
//dl.acm.org/citation.cfm?id=314464.314491. | cit. on p. 40

[Luc+15] Giorgio Lucarelli, Fernando Machado Mendonça, Denis Trystram, and Frédéric
Wagner. “Contiguity and Locality in Backfilling Scheduling”. In: CCGRID. IEEE,
May 2015, pp. 586–595. DOI: 10.1109/CCGrid.2015.143.

| cit. on pp. 70, 72, 73

[Mon14] Florence Monna. “Scheduling for new computing platforms with GPUs”. PhD
thesis. LIP 6, Pierre and Marie Curie University, Paris, France, Nov. 2014. URL:
https://tel.archives-ouvertes.fr/tel-01127919. | cit. on p. 23

Bibliography A7

https://doi.org/10.1109/CCGrid.2016.24
https://doi.org/10.1007/s00607-003-0011-9
https://doi.org/10.1007/s00607-003-0011-9
https://doi.org/10.1109/IPDPS.2017.91
https://dl.acm.org/citation.cfm?id=314500.314870
https://dl.acm.org/citation.cfm?id=314500.314870
https://doi.org/10.1145/2807591.2807652
https://doi.org/10.1145/2807591.2807652
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1109/CLUSTR.2002.1137758
https://doi.org/10.1007/BF01585745
https://dl.acm.org/citation.cfm?id=314464.314491
https://dl.acm.org/citation.cfm?id=314464.314491
https://doi.org/10.1109/CCGrid.2015.143
https://tel.archives-ouvertes.fr/tel-01127919

[Mor66] G. M. Morton. A computer Oriented Geodetic Data Base; and a New Technique
in File Sequencing. Tech. rep. IBM Ltd., Mar. 1966. URL: https://domino.
research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39.

| cit. on p. 72

[MRT07] Grégory Mounié, Christophe Rapine, and Denis Trystram. “A 3/2-Approximation
Algorithm for Scheduling Independent Monotonic Malleable Tasks”. In:
SIAM Journal on Computing 37.2 (2007), pp. 401–412. DOI: 10 . 1137 /
S0097539701385995. | cit. on pp. 39, 40, 41, 47

[PDB13] Frédéric Pinel, Bernabé Dorronsoro, and Pascal Bouvry. “Solving very large
instances of the scheduling of independent tasks problem on the GPU”. In:
Journal of Parallel and Distributed Computing 73.1 (Jan. 2013), pp. 101–110.
DOI: 10.1016/j.jpdc.2012.02.018. | cit. on p. 15

[PML14] Jose Antonio Pascual, José Miguel-Alonso, and José Antonio Lozano. “Application-
aware metrics for partition selection in cube-shaped topologies”. In: Parallel
Computing 40.5 (May 2014), pp. 129–139. DOI: 10.1016/j.parco.2014.04.
006. | cit. on pp. 74, 76

[PSS08] James C. Phillips, John E. Stone, and Klaus Schulten. “Adapting a Message-
Driven Parallel Application to GPU-Accelerated Clusters”. In: SC. IEEE, Nov.
2008, 8:1–8:9. DOI: 10.1145/1413370.1413379. | cit. on p. 16

[RN12] Gurulingesh Raravi and Vincent Nélis. “A PTAS for Assigning Sporadic Tasks
on Two-type Heterogeneous Multiprocessors”. In: RTSS. IEEE, Dec. 2012,
pp. 117–126. DOI: 10.1109/RTSS.2012.64. | cit. on p. 19

[Son+10] Fengguang Song, Hatem Ltaief, Bilel Hadri, and Jack Dongarra. “Scalable Tile
Communication-Avoiding QR Factorization on Multicore Cluster Systems”.
In: SC. IEEE, Nov. 2010, pp. 1–11. DOI: 10.1109/SC.2010.48.

| cit. on pp. 16, 20

[ST93] David B. Shmoys and Éva Tardos. “An approximation algorithm for the
generalized assignment problem”. In: Mathematical Programming 62.1 (Feb.
1993), pp. 461–474. DOI: 10.1007/BF01585178. | cit. on p. 18

[STD12] Fengguang Song, Stanimire Tomov, and Jack Dongarra. “Enabling and Scaling
Matrix Computations on Heterogeneous Multi-Core and Multi-GPU Systems”.
In: ICS. ACM, 2012, pp. 365–376. DOI: 10.1145/2304576.2304625.

| cit. on p. 16

[Ste97] A. Steinberg. “A Strip-Packing Algorithm with Absolute Performance Bound
2”. In: SIAM Journal on Computing 26.2 (Apr. 1997), pp. 401–409. DOI:
10.1137/S0097539793255801. | cit. on pp. 56, 84

[SV05] Evgeny V. Shchepin and Nodari Vakhania. “An optimal rounding gives a better
approximation for scheduling unrelated machines”. In: Operations Research
Letters 33.2 (Mar. 2005), pp. 127–133. DOI: 10.1016/j.orl.2004.05.004.

| cit. on p. 18

A8 Bibliography

https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://doi.org/10.1137/S0097539701385995
https://doi.org/10.1137/S0097539701385995
https://doi.org/10.1016/j.jpdc.2012.02.018
https://doi.org/10.1016/j.parco.2014.04.006
https://doi.org/10.1016/j.parco.2014.04.006
https://doi.org/10.1145/1413370.1413379
https://doi.org/10.1109/RTSS.2012.64
https://doi.org/10.1109/SC.2010.48
https://doi.org/10.1007/BF01585178
https://doi.org/10.1145/2304576.2304625
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1016/j.orl.2004.05.004

[SW97] Clifford Stein and Joel Wein. “On the existence of schedules that are near-
optimal for both makespan and total weighted completion time”. In: Opera-
tions Research Letters 21.3 (Oct. 1997), pp. 115–122. DOI: 10.1016/S0167-
6377(97)00025-4. | cit. on p. 25

[TDB10] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear
algebra for hybrid GPU accelerated manycore systems”. In: Parallel Computing
36.5 (June 2010), pp. 232–240. DOI: 10.1016/j.parco.2009.12.005.

| cit. on pp. 16, 20, 30

[Tes+16] François Tessier, Preeti Malakar, Venkatram Vishwanath, Emmanuel Jeannot,
and Florin Isaila. “Topology-Aware Data Aggregation for Intensive I/O on
Large-Scale Supercomputers”. In: COMHPC@SC. IEEE, Nov. 2016, pp. 73–81.
DOI: 10.1109/COMHPC.2016.013. | cit. on p. 77

[THW02] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing”. In: IEEE
Transactions on Parallel and Distributed Systems 13.3 (Mar. 2002), pp. 260–
274. DOI: 10.1109/71.993206. | cit. on pp. 10, 16, 20, 22, 56, 59

[TLC15] Ozan Tuncer, Vitus J. Leung, and Ayse Kivilcim Coskun. “PaCMap: Topology
Mapping of Unstructured Communication Patterns onto Non-contiguous
Allocations”. In: ICS. ACM, June 2015, pp. 37–46. DOI: 10.1145/2751205.
2751225. | cit. on p. 76

[TWY92] John Turek, Joel L. Wolf, and Philip S. Yu. “Approximate Algorithms for
Scheduling Parallelizable Tasks”. In: SPAA. June 1992, pp. 323–332. DOI:
10.1145/140901.141909. | cit. on p. 40

[Val90] Leslie Gabriel Valiant. “A Bridging Model for Parallel Computation”. In:
Communications of the ACM 33.8 (Aug. 1990), pp. 103–111. DOI: 10.1145/
79173.79181. | cit. on pp. 6, 7, 8

[YKD11] Asim YarKhan, Jakub Kurzak, and Jack Dongarra. QUARK Users’ Guide: QUeue-
ing And Runtime for Kernels. Tech. rep. ICL-UT-11-02. University of Ten-
nessee, Apr. 2011. URL: http://www.icl.utk.edu/sites/icl/files/
publications/2011/icl-utk-454-2011.pdf. | cit. on pp. 19, 30

Bibliography A9

https://doi.org/10.1016/S0167-6377(97)00025-4
https://doi.org/10.1016/S0167-6377(97)00025-4
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/COMHPC.2016.013
https://doi.org/10.1109/71.993206
https://doi.org/10.1145/2751205.2751225
https://doi.org/10.1145/2751205.2751225
https://doi.org/10.1145/140901.141909
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
http://www.icl.utk.edu/sites/icl/files/publications/2011/icl-utk-454-2011.pdf
http://www.icl.utk.edu/sites/icl/files/publications/2011/icl-utk-454-2011.pdf

List of Figures

1.1 Overview of an application submission process 3
1.2 Gantt chart of a typical HPC workload 4

2.1 Comparison of DA-2, DP-4/3, and HEFT performances 28
2.2 Example of a multi-CPU, multi-GPU system 29
2.3 Performance impact of the affinity parameter 31
2.4 Benchmarks of Cholesky factorization (DPOTRF) 33
2.5 Benchmarks of LU factorization (DGETRF) 33
2.6 Benchmarks of QR factorization (DGEQRF) 33

3.1 Structure in seven sets of the schedule 42
3.2 Intersection graph of the eligible allocation sets 45
3.3 Example of a problem instance . 57
3.4 Comparison of the quality of the computed solutions 62
3.5 Comparison of the mean run-time to compute the solutions 64
3.6 Impact of the filtering on the number of possible partitions per task . 65
3.7 Distribution of the number of iterations to converge to a solution . . 66

4.1 Illustration of a HPC platform . 69
4.2 Figuration of the two distinguished types of communications 71
4.3 Figuration of the convexity and connectivity constraints 72
4.4 Figuration of the locality constraint 73
4.5 Figuration of the compacity metric 74
4.6 Figuration of the proximity metric 75

5.1 Example of unidimensional topologies 80
5.2 Potential allocations for a job with a single pinned I/O node 86
5.3 Rounding procedure of the LP for the dedication phase 88
5.4 Comparison of the Gergov’s schedule and an optimal schedule . . . 93
5.5 Projection of the ring on an infinite line topology 94
5.6 Aggregation of many I/O nodes into a macro I/O node 94

A11

List of Tables

3.1 Parameter settings used to generate scheduling instances 57
3.2 HEFT-like heuristics used for comparison 61

4.1 Extension of Graham notation for the β field 76

5.1 Summary of complexity and approximation results for the line . . . 95

A13

Abstract
The demand for computation power is steadily increasing, driven by the need to simulate more and more
complex phenomena with an increasing amount of consumed/produced data. To meet this demand, the
High Performance Computing platforms grow in both size and heterogeneity. Indeed, heterogeneity allows
splitting problems for a more efficient resolution of sub-problems with ad hoc hardware or algorithms. This
heterogeneity arises in the platforms’ architecture and in the variety of processed applications. Consequently,
the performances become more sensitive to the execution context.
We study in this dissertation how to qualitatively bring—at a reasonable cost—context-awareness/obliviousness
into allocation and scheduling policies. This study is conducted from two standpoints: within single applica-
tions, and at the whole platform scale from an inter-applications perspective.
We first study the minimization of the makespan of sequential tasks on platforms with a mixed architecture
composed of multiple CPUs and GPUs. We integrate context-awareness into schedulers with an affinity
mechanism that improves local behavior. This mechanism has been implemented in a parallel run-time, and
experiments show that it is able to reduce the memory transfers while maintaining a low makespan. We then
extend the model to implicitly consider parallelism on the CPUs with the moldable-task model. We propose an
efficient algorithm formulated as an integer linear program with a constant performance guarantee of 3

2 + ε.
Second, we devise a new modeling framework where constraints are a first-class tool. Rather than extending
existing models to consider all possible interactions, we reduce the set of feasible schedules by further
constraining existing models. We propose a set of reasonable constraints to model application spreading and
I/O traffic. We then instantiate this framework for unidimensional topologies, and propose a comprehensive
case study of the makespan minimization under convex and local constraints.

Résumé
Le besoin de simuler des phénomènes toujours plus complexes accroît les besoins en puissance de calcul,
tout en consommant et produisant de plus en plus de données. Pour répondre à cette demande, la taille et
l’hétérogénéité des plateformes de calcul haute performance augmentent. L’hétérogénéité permet en effet
de découper les problèmes en sous-problèmes, pour lesquels du matériel ou des algorithmes ad hoc sont
plus efficients. Cette hétérogénéité se manifeste dans l’architecture des plateformes et dans la variété des
applications exécutées. Aussi, les performances sont de plus en plus sensibles au contexte d’exécution.
L’objet de cette thèse est de considérer, qualitativement et à faible coût, l’impact du contexte d’exécution dans
les politiques d’allocation et d’ordonnancement. Cette étude est menée à deux niveaux : au sein d’applications
uniques, et à l’échelle des plateformes au niveau inter-applications.
Nous étudions en premier lieu la minimisation du temps de complétion pour des tâches séquentielles sur des
plateformes hybrides intégrant des CPU et des GPU. Nous proposons de tenir compte du contexte d’exécution
grâce à un mécanisme d’affinité améliorant le comportement local des politiques d’ordonnancement. Ce
mécanisme a été implémenté dans un run-time parallèle. Une campagne d’expérience montre qu’il permet de
diminuer les transferts de données tout en conservant un faible temps de complétion. Puis, afin de prendre
implicitement en compte le parallélisme sur les CPU, nous enrichissons le modèle en considérant les tâches
comme moldables sur CPU. Nous proposons un algorithme basé sur la programmation linéaire en nombres
entiers. Cet algorithme efficace a un rapport de compétitivité de 3

2 + ε.
Dans un second temps, nous proposons un nouveau cadre de modélisation dans lequel les contraintes sont
des outils de premier ordre. Plutôt que d’étendre les modèles existants en considérant toutes les interactions
possibles, nous réduisons l’espace des ordonnancements réalisables via l’ajout de contraintes. Nous proposons
des contraintes raisonnables pour modéliser l’étalement des applications ainsi que les flux d’E/S. Nous
proposons ensuite une étude de cas exhaustive dans le cadre de la minimisation du temps de complétion pour
des topologies unidimensionnelles, sous les contraintes de convexité et de localité.

	Front Cover
	Dedication
	Epigraph
	Acknowledgments
	Abstract / Résumé
	Contents
	1 Introduction
	1.1 Background
	1.2 Contextualization
	1.2.1 Intra-Application Level
	1.2.2 Inter-Applications Level

	1.3 Explicit vs. Implicit Modeling of Communications
	1.3.1 Existing Explicit Models
	1.3.2 Limits of Explicit Models
	1.3.3 Implicit Modeling

	1.4 Contributions
	1.5 Content

	2 Scheduling Independent Sequential Tasks on Multi-Cores with GPUs
	2.1 Problem Definition
	2.2 Related Work
	2.2.1 Algorithmic Results
	2.2.2 Parallel Run-times

	2.3 XKaapi Scheduling Framework
	2.3.1 Execution Flow
	2.3.2 Performance Model

	2.4 Scheduling Policies
	2.4.1 HEFT: Heterogeneous Earliest-Finish-Time
	2.4.2 Dual Approximation Based Algorithms
	Pure Dual Approach
	Bringing Context-Awareness in: Affinity

	2.5 Usability of Scheduling Policies for Linear Algebra
	2.6 Performance Evaluation
	2.6.1 Experimental Setup: Platform and Benchmarks
	Platform
	Benchmarks
	Methodology

	2.6.2 Impact of the Affinity Control Parameter
	2.6.3 Comparison of Scheduling Policies
	Experimental Evaluation
	Discussion

	2.7 Summary

	3 Scheduling Independent Moldable Tasks on Multi-Cores with GPUs
	3.1 Problem Definition
	3.2 Related Work
	3.3 Algorithm APPROX-3/2
	3.3.1 Partitioning Tasks
	3.3.2 Mathematical Formulation
	Objective Function and Constraints
	Filtering
	Integer Linear Program

	3.4 Analysis of the Algorithm APPROX-3/2
	3.4.1 Structure of a Schedule of Makespan
	3.4.2 Structure of the Partitioning
	3.4.3 Correctness of the Dual Approximation
	3.4.4 Building the Schedule

	3.5 Algorithm APPROX-2
	3.5.1 Sketch
	3.5.2 Analysis

	3.6 Experimental Evaluation
	3.6.1 Problem Instances
	3.6.2 HEFT-like Heuristics
	3.6.3 Implementation Details
	3.6.4 Experimental Results

	3.7 Summary

	4 Geometric Constraints as a First-Class Modeling Tool
	4.1 General Problem Setting
	4.1.1 Intrinsic Constraints
	4.1.2 Extrinsic Metrics
	4.1.3 Extension of Graham Notation

	4.2 Related Work

	5 Unidimensional Problem's Instantiations
	5.1 Formal Instantiation
	5.1.1 Structural Properties

	5.2 Study of unpinned I/O
	5.2.1 Complexity
	5.2.2 Meta Approximation Algorithm
	Sketch
	Analysis

	5.3 Study of pinned I/O
	5.3.1 Complexity
	5.3.2 Approximation Algorithm
	Algorithm with a single I/O node per job
	Analysis with a single I/O node per job
	Extending to any number of I/O nodes per job

	5.4 Summary

	6 Conclusion and Future Steps
	6.1 Future Steps

	Bibliography
	List of Figures
	List of Tables
	Back Cover

