Apprehending heterogeneity at (very) large scale
PhD thesis defense

Raphaél Bleuse
under the supervision of

Grégory Mounié & Denis Trystram

!umvmst;lré / Grcnub\c)l"‘? ‘ :’ 7
‘Y& Grenoble W
=8 Alpes DGA /

11th October 2017



Apprehending heterogeneity at (very) large scale ' Introducti HPC Ecosystem

High Performance Computing: An Ecosystem

Applications

virology physics weather forecast

V 3 ” El

~. : . = ————

R. Bleuse | LIG — DataMove | 2017-




Apprehending heterogeneity at (very) large scale Introduc HPC Ecosystem

High Performance Computing: An Ecosystem

Applications

virology physics weather forecast

Middleware

OS, run-time, 1/0 layers, deployment tools, monitoring tools, RIMS, ...

R. Bleuse | LIG — DataMove | 2017-10-11




Apprehending heterogeneity at (very) large scale Introduc HPC Ecosystem

High Performance Computing: An Ecosystem

Applications

virology physics weather forecast

Middleware

OS, run-time, 1/0 layers, deployment tools, monitoring tools, RIMS, ...

R. Bleuse | LIG — DataMove | 2017-10-11




Apprehending heterogeneity at (very) large scale Introduc owards Exascale

Exascale (10'®) Goal

Evolution of processing power [@top500]
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Apprehending heterogeneity at (very) large scale | Introduction = Towards Exascale

Exascale (108) Challenges

“Exascale # 1000 Petascale” [Ash+10; Don+11]

power constraint (20-40 MW limit)

accelerators — heterogeneity

data movements — new objective/constraint
m programming models

m reliability
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Scheduling w.r.t. Execution Context

Scheduling Model in HPC

platform tasks/jobs objective

— where? & when?
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Apprehending heterogeneity at (very) large scale Introduction Scheduling for HPC

Topology matters!

Allocation example: snapshot of the 10 biggest jobs on Blue Waters

25.40 s/iter. 11.64 s/iter.

[Eno+14; PML15; Yil+16]
m fragmentation hinders performances

m convexity helps mitigating interferences
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How to bring
at a reasonable cost
context-awareness, or even context-obliviousness,
in the scheduling policies?



Apprehending heterogeneity at (very) large scale Introduction Scheduling for HPC

Two Axes of Contribution: Intra/Inter-Applications

g

[epu]
Intra-Application Axis Inter-Applications Axis
m affinity mechanism [Ble+14; Ble+15] m geometric model of HPC platforms
m implicit parallelism on CPUs [Ble+17] m study of 1D instantiations
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Apprehending heterogeneity at (very) large scale = Intra: Affinity

Intra-Application Axis: Affinity
m Problem Formalization
m Performance Evaluation

R. Bleuse | LIG — DataMove | 2017-10-11




Apprehending heterogeneity at (very) large scale | Intra: Affinity Problem Formalization

Problem Formalization
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CPUs

GPUs

Basic model

m data-flow, batch of ready tasks:

= n independent tasks

m 2 sets of identical nodes:
m CPUs, k GPUs

m minimize Cyax
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Apprehending heterogeneity at (very) large scale | Intra: Affinity Problem Formalization

Integrating Context-Awareness: Affinity

Guiding scheduling decisions w.r.t. Context

New mechanism: Affinity scoring

aff: node x task — Rt
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Integrating Context-Awareness: Affinity

Guiding scheduling decisions w.r.t. Context

New mechanism: Affinity scoring

aff: node x task — Rt
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— maximize score over the allocation (local)
& minimize Cpax (global)

R. Bleuse | LIG — DataMove | 2017-10-11

11 / 30



Apprehending heterogeneity at (very) large scale | Intra: Affinity Problem Formalization

Proposed Algorithm: DADA

ba

se model

m dual approximation [HS87]

affinity m p-approx. (p =2)
{ Stein & Wein schema [SW97] {
DADA: Distributed Affinity Dual Approximation
(+a)-A (tatp)A
eu [T ] [ ‘
cu [ n ]
m «: length of affinity phase o[ T
m A C ., guess U | To |
] GPU, ] [ % | o ]
— binary search on A\ cPU, T T .
N G
affinity Cinax

R. Bleuse | LIG — DataMove | 2017-10-11

12 / 30



Apprehending heterogeneity at (very) large scale Intra: Affinity Performance Evaluation

Performance Evaluation

Implementation Details / Benchmark Setup

Implementation details
m implemented in XKaapi core (33,385 l.o.c. / scheduler ~1000 l.o.c.)
m online computation of affinity: number of valid bytes
m 3 variants: DADA(a = 0), DADA(«), DADA(a)+CP
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Performance Evaluation

Implementation Details / Benchmark Setup

Implementation details
m implemented in XKaapi core (33,385 l.o.c. / scheduler ~1000 l.o.c.)
m online computation of affinity: number of valid bytes
m 3 variants: DADA(a = 0), DADA(«), DADA(a)+CP

Benchmark Setup
m PLASMA kernels (LU, QR & Cholesky factorization)
m scalability in number of GPUs

m 2 metrics:

raw performance (GFlop/s) — Cpax
data transfers (GB) — affinity
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Apprehending heterogeneity at (very) large scale Intra: A Performance Evaluation

Performance Evaluation
Cholesky factorization: 8192 x 8192 matrices
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Number of CPUs/GPUs Number of CPUs/GPUs

Performance / GFlop/s Data Transfers / GB

higher is better lower is better
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Apprehending heterogeneity at (very) large scale | Inter: Platform Model

Inter-Applications Axis: Modeling HPC Platforms
m Platform Example: Blue Waters
= Modeling Platforms
m 1D Instantiation
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Apprehending heterogeneity at (very) large scale | Inter: Platform Model | Platform Example: Blue Waters
Platform Example: Blue Waters

System Summary
m operated by NCSA @ UIUC
m 26,868 computer nodes ; 396,032 cores = 13.34 PFlop/s peak
m 672 1/0 nodes

Interconnect
m 3D Torus: 24 x 24 x 24
m single, multi-purpose network

m static dimension-order routing (x > y > z)
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Key Properties recap.
m unique & multi-purpose interconnection network

m heterogeneous nodes (compute & 1/0)

Formalization
n nodes divided into 2 sets: V¢ & V0

machine =
m arbitrary ordering of the nodes: 1...n
m interconnection topology
m distribution: mapping of the nodes on the topology
jobs  m set J of independent jobs
® p;: processing time
n qjC: number of requested nodes in VC

qj{/oz requested nodes in VO (pinned, unpinned)
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms
Nocuous Interactions
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Nocuous Interactions

Types of nodes:
() compute nodes

@ /0 nodes

allocation
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Nocuous Interactions

Types of nodes:
() compute nodes

@ /0 nodes

allocation

Communication types:
compute comm.
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Nocuous Interactions

Types of nodes:
() compute nodes

@ /0 nodes

3=,

allocation
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Communication types:
compute comm.

= 1/O comm.
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2D torus, static routing

R. Bleuse | LIG — DataMove | 2017-10-11 19 / 30



Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Avoiding Nocuous Interactions

Proposed Intrinsic Geometric Constraints

contiguity allocated nodes form a contiguous range w.r.t. the ordering
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Avoiding Nocuous Interactions

Proposed Intrinsic Geometric Constraints

contiguity allocated nodes form a contiguous range w.r.t. the ordering

connectivity connected component of the topology
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Avoiding Nocuous Interactions

Proposed Intrinsic Geometric Constraints

contiguity allocated nodes form a contiguous range w.r.t. the ordering
connectivity connected component of the topology

convexity compute communications cannot be shared
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Avoiding Nocuous Interactions

Proposed Intrinsic Geometric Constraints

contiguity allocated nodes form a contiguous range w.r.t. the ordering
connectivity connected component of the topology
convexity compute communications cannot be shared

locality 1/O nodes are adjacent to compute nodes
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | Modeling Platforms

Characterizing Allocations

Proposed Extrinsic Metrics

v-compacity: how spread is an allocation? [PML14]
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p-proximity: how far are 1/O nodes?

max < min dist (i,/") + max dist(i,i’))
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation

1D Instantiation: pinned /0O

Model
m 1D line @—(O—(O——C0O—@—CO0——CO
m pinned 1/0, |q I/o\ 1

m convex & local

m minimize Cyax
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation

1D Instantiation: pinned /0O

Model
m 1D line @—(O—(O——C0O—@—CO0——CO
m pinned 1/0, \qj{/o\ =1

m convex & local

m minimize Cyax

6-Approximation Algorithm

2 Phases:
fix the nodes allocated to each jobs (2-approximation)
schedule the jobs (3-approximation)

R. Bleuse | LIG — DataMove | 2017-10-11 22 /30



Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation =Dedication Phase

[Phase 1] Dedicating nodes: Linear Program

Assign x; s such that:
min A,

st. N> L; Vi (Cl)
Li > szjﬁpflieac(s,qjc) Vi (C2)
J

S]

ij,s =1 vj (C3)
s

dist (ac <s, qJ-C) ,Vl/o(j)) <1 VjVs (Ca)
xjs € {0,1} Vjvs (Cs)

A: global load | L;: load of node i
pj: processing time of job j | V/O(j): 1/0 node requested by job j
aC (s, q): allocation [s,...] with g compute nodes
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J

S]

ij,s =1 vj (C3)
s

dist (ac <s, qJ-C) ,Vl/o(j)) <1 VjVs (Ca)
0 <xjs<1 VjVs (Gs)

A: global load | L;: load of node i
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation =Dedication Phase

[Phase 1] Dedicating nodes: Rounding
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation =Dedication Phase

[Phase 1] Dedicating nodes: Rounding
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation =Dedication Phase

[Phase 1] Dedicating nodes: Rounding

1

0.9

0.8

0.5

0.1

0.7

0.5

0.2

o 1 2 3 4 5 6 7 8 9 10 11 12
ac(1,4) X1 =0.1
ac(2,4) Xj2 = 0.2
ac(3,4) xj3 =0.2
a (4,4) Xj4 =03
ac (5,4) Xj5 = 0.2
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation =Dedication Phase

[Phase 1] Dedicating nodes: 2-Approximation

Lemma

The dedication phase finds an allocation for each job such that the
maximum load is at most twice the maximum load of the optimal
allocation.

Proof.

Given a job j of unitary load:
m V"/9(}) adjacent to all valid allocations = Lyoy =1
mdi,L; >05
m3ds/Vicat (s,qjc) ,Li > 0.5
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation = Scheduling Phase

[Phase 2] Scheduling: Gergov's Algorithm [Ger99]

s
o] ] 5555 /
Invariants: Operations:
a job belongs to a single pillar dock job on pillar
overlap restricted to direct neighbors remove pillar
pillars are lower bounds of load
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation = Scheduling Phase

[Phase 2] Scheduling: Gergov's Algorithm [Ger99]
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Invariants: Operations:
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Apprehending heterogeneity at (very) large scale Inter: Platform Model | 1D Instantiation = Scheduling Phase

[Phase 2] Scheduling: Gergov's Algorithm Tightness

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Theorem (Thesis, p. 91)
The 3-approximation ratio is asymptotically tight.
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Apprehending heterogeneity at (very) large scale Conclusion

Conclusion
m Summary
m Perspectives
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Apprehending heterogeneity at (very) large scale Conclusion | Summary

Summary

Intra-Application Axis
m designed new algorithm with competitive ratio
m implemented in a run-time

m conducted performance evaluation

—> integrated new constraints with maintained performances

Inter-Applications Axis
m new modeling framework
m tackle interference (via reasonable constraints)

m preliminary analysis shows viability
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Apprehending heterogeneity at (very) large scale Conclusion | Perspectives
Perspectives

Intra-Application Axis
m vary the affinity function

m integrating other constraints, objectives (e.g., energy, NUMA effects)

Inter-Applications Axis
m single phase algorithm for 1D
m higher dimensions through graph embedding
m integration in production-grade schedulers

m heterogeneity of applications
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