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Peter SUDHÖLTER Professor Suffragant
University of Southern Denmark
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année de thèse. Merci pour son suivi et son soutien durant cette première etape de mon doctorat.
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Abstract

This dissertation consists of three self-contained papers in which we analyze cooperation and
strategic information transmission in situations of asymmetric information where communica-
tion is subject to incentive constraints. Chapter 1 proposes a new solution concept for coopera-
tive games with incomplete information. Chapter 2 compares this solution and other cooperative
solutions in various classes of games (two-player games, games with transferable utility, games
with verifiable information). Chapter 3 proposes a new approach to Bayesian persuasion by
characterizing the ex-ante optimal communication equilibrium for the sender in the class of
sender-receiver games.

Myerson [Cooperative games with incomplete information. Int. J. Game Theory, 13, 1984,
pp. 69- 96] has made significant progress towards a general concept of value for cooperative
games with asymmetric information. His cooperative solution, called the M-value (short for
Myerson value), generalizes the Shapley non-transferable utility (NTU) value to games with
incomplete information. In Chapter 1, we show that Myerson’s theory exhibits some “difficul-
ties” for recognizing certain informational externalities. To do this, we construct a three-player
cooperative game in which the M-value does not capture some “negative” externality generated
by the adverse selection. We then introduce a new solution concept, which we call the H-value.
Our theory generalizes the Harsanyi NTU value to cooperative games with incomplete infor-
mation. When we explicitly compute the H-value in our game, it turns out that it prescribes a
more intuitive outcome taking into account the informational externalities not captured by the
M-value.

In Chapter 2 we explore the relationship between the following value like solution concepts
for cooperative games with incomplete information: the M-value, the H-value and A. Kalai
and E. Kalai’s [Cooperation in strategic games revisited. Q. J. Econ., 128, (2013), 917-966]
cooperative-competitive (or “coco”) value. We consider a model in which utility transfers
in the form of sidepayments are allowed. In our model, however, state-contingent contracts
are required to be incentive compatible, thus utility might not be not fully transferable (as it
would be in the complete information case). Restricting attention to games with orthogonal
coalitions, which do not involve strategic externalities, we show that the M-value and the H-
value coincide. Allowing for arbitrary informational and strategic externalities, we show that
the ex-ante evaluation of the M-value equals the coco value in two-player games with verifiable
information.
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In Chapter 3 we provide an analytical framework for studying Bayesian persuasion problems.
We consider a model of strategic information transmission in which a sender chooses a com-
munication system for signaling his information to an uninformed receiver, who then takes an
action that affects the welfare of both individuals. Our main concern in this chapter is the ques-
tion, what kinds of communication systems are the best ones for the informed party? By a use of
a general form of the revelation principle, we can restrict attention to communication equilibria
(mediated communication protocols). Using a geometric approach based on Duality Theory,
we are able to characterize the optimal communication equilibrium from the concavification of
a (modified) non-revealing payoff function as in Aumann and Maschler [Repeated Games with
Incomplete Information. (1995). Cambridge, MIT Press.].



Résumé

Dans cette dissertation, composée de trois articles, nous étudions la coopération et la transmis-
sion stratégique d’information dans des situations d’asymétrie d’information où la communica-
tion est soumise à des contraintes d’incitation. Le chapitre 1 propose un nouveau concept de
solution pour les jeux coopératifs en information incomplète. Le chapitre 2 compare cette solu-
tion et d’autres solutions de coopération dans différentes classes de jeux (jeux à 2 joueurs, jeux
à utilité transférable, jeux en information vérifiable). Le chapitre 3 propose une nouvelle ap-
proche pour la “persuasion Bayésienne” en caractérisant l’équilibre en communication optimale
(ex-ante) pour l’émetteur dans les jeux émetteur-récepteur.

Myerson [Cooperative games with incomplete information. Int. J. Game Theory, 13, 1984,
pp. 69- 96] a fait des progrès considérables vers un concept de valeur s’appliquant aux jeux
coopératifs en information asymétrique. Sa solution coopérative, désignée valeur M, étend la
valeur de Shapley à utilité non-transférable (UNT) aux jeux en information incomplète. Dans
le Chapitre 1, nous montrons que la théorie développée par Myerson présente des “difficultés”
pour reconnaı̂tre certaines externalités d’information. Pour ce faire, nous construisons un jeu
coopératif à trois joueurs dans lequel la valeur M ne capture pas une externalité négative en-
gendrée par la sélection adverse. Nous introduisons ensuite un nouveau concept de solution,
que nous appelons la valeur H. La théorie que nous proposons généralise la valeur d’Harsanyi
UNT aux jeux coopératifs en information incomplète. Lorsque nous calculons explicitement
la valeur H dans notre jeu, il s’avère qu’elle prescrit un résultat plus intuitif tenant compte des
externalités non reconnues par la valeur M.

Dans le Chapitre 2, nous examinons la relation entre les concepts de solution suivants: la valeur
M, la valeur H et la valeur coco introduite par A. Kalai and E. Kalai’s [Cooperation in strategic
games revisited. Q. J. Econ., 128, (2013), 917-966]. Nous considérons un modèle dans lequel
des transferts d’utilité sous forme de paiements latéraux sont autorisés. Cependant, dans notre
modèle, les contrats prennent en compte les possibilités de communication des individus et les
contraintes d’incitation qui en résultent, de sorte que l’utilité pourrait ne pas être entièrement
transférable (comme c’est le cas dans le modèle en information complète). En se concentrant sur
les jeux à coalitions orthogonales, c’est à dire qui ne comportent pas d’externalités stratégiques,
nous montrons que la valeur M et la valeur H coı̈ncident. En permettant simultanément des
externalités stratégiques et d’information, nous montrons que l’évaluation ex-ante (c.à.d. avant
que tout joueur ne reçoive son information privée) de la valeur M coı̈ncide avec la valeur coco
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dans les jeux à deux joueurs dont l’information est ex-post vérifiable.

Dans le chapitre 3, nous proposons un cadre analytique pour l’étude des problèmes dits de
“persuasion Bayésienne”. Nous étudions un modèle de transmission stratégique d’information
dans lequel un agent informé, l’émetteur, choisit un système de communication pour relayer
son information privée à un agent non informé, le récepteur, qui prend une décision affectant
les utilités des deux individus. Notre principale préoccupation dans ce chapitre est de déterminer
les meilleurs systèmes de communication pour l’émetteur. En utilisant une forme générale du
principe de révélation, on ne perd rien à se limiter aux équilibres en communication (protocoles
de communication assistés d’un médiateur). Grâce à une approche géométrique basée sur la
Théorie de la Dualité, nous sommes en mesure de caractériser l’équilibre en communication
optimale pour l’émetteur à partir de la concavification d’une fonction de paiements d’équilibre
non révélateur (modifiée), comme dans la méthode d’Aumann et Maschler [Repeated Games
with Incomplete Information. (1995). Cambridge, MIT Press.].
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Introduction

Communication is often limited by the conflict of interest between the different parties. The
reason is that, although an individual may find it advantageous to disclose her private infor-
mation, the uninformed parties cannot always believe in such disclosure, since in alternative
circumstances the informed individual would have released the same information in order to
reap the benefits from cheating. Communication is therefore subject to incentive constraints,
which take into consideration the fact that anything an individual says about her private infor-
mation or any promise she does to make some decision is not believable whenever it contradicts
the individual’s incentives. Incentive constraints might thus limit the ability of individuals to
coordinate joint decisions, which explains some of the difficulties that individual parties in dis-
pute face for reaching mutually beneficial cooperative agreements. This matter is treated in
Chapters 1 and 2, where we study the extent to which the concept of value from Cooperative
Game Theory can be extended to analyze cooperative agreements in situations of asymmetric
information. Incentive constraints also rise important conceptual issues for the optimal design
of communication systems. Our main concern in Chapter 3 is the analysis of incentives in situa-
tions where an informed individual wants to signal information to some uninformed party who
retains the ultimate right of making the final decision. We consider a model in which a player
can send messages about his private information to an uninformed receiver, through some com-
munication system, to try to influence the receiver’s decision. We are interested in answering
the question, what kind of communication systems are the best ones for the sender? Although
the model adopted in Chapter 3 differs conceptually from the one studied in the preceding chap-
ters, there are some similarities in the mathematical description of both interaction situations
that allow us to adapt some techniques and results introduced in Chapters 1 and 2 in order to
provide an answer to the question motivating Chapter 3.

The concept of value from Cooperative Game Theory starts with the assumption that players
will agree on some feasible utility (payoff) allocation that is efficient, in the sense that there
is no feasible reallocation of the utilities making all individuals better off. Yet, in most game
situations there are multiple efficient allocations, each of them being preferred by different
individuals. Equity principles are then used in order to identify an efficient allocation to be,
in some sense, a “fair” compromise between the interests of the different individuals. The
selected allocation is called a value. Various values may be defined according to different equity
principles.

1



2 Incentives in Cooperation and Communication

Notable efforts have already been done to understand the implications of asymmetric informa-
tion for the notions of feasibility, efficiency and equity1. In particular, Myerson (1983, 1984a,b)
has made significant progress towards a general concept of value for cooperative games with
asymmetric information. However, in the same vein as de Clippel (2005), we exhibit in Chapter
1 some “difficulties” with Myerson’s theory for recognizing certain informational externalities.
In the same chapter we provide an alternative notion of value dealing with these difficulties.
Even though there are important conceptual differences between Myerson’s theory and ours, in
Chapter 2 we identify instances in which both theories can be reconciled.

Cooperative Game Theory generally represents an interaction situation as a collection of utility
sets describing the feasible outcomes that the players can achieve when they cooperate in diffe-
rent coalitions (groups of players). Any explicit mention of the decisions generating the utilities
is suppressed. This characteristic function form, by definition, rules out strategic externali-
ties –situations in which the utilities of the players inside a coalition depend on what the other
coalitions are doing–. Coalitions are then said to be orthogonal. The characteristic function is
defined according to several hypothesis on the geometric properties of the utility sets. A widely
accepted assumption is that of comprehensiveness, which means that players can dispose of
their utility at will (free disposal)2. This assumption has been considered to be innocuous, since
it can only enlarge the utility sets by adding Pareto dominated allocations3. Nevertheless, its re-
levance extends beyond the fact that it increases the strategic possibilities of the players. Indeed,
comprehensiveness is of upmost importance for the existence and axiomatic characterizations
of the value.

In Chapters 1 and 2 we study game situations with orthogonal coalitions where, at the time in
which coalitional agreements are made, each player may have private information that the other
players do not know4. We use the concept of type developed by Harsanyi (1967-8) for modeling
asymmetric information. Each player can be of several types where a type is an encapsulated
description of the whole hierarchy of beliefs that a player holds about the unknown parameters
of the game, about the other players’ beliefs about these parameters, about the other players’
beliefs about her beliefs about the parameters, and so on ad infinitum. More commonly, a
player’s type is thought as a full description of the player’s private information. In a situation
of asymmetric information, an allocation should now be seen as a mechanism (type-contingent
decision plan). The enforcement of any such mechanisms is subject to incentive constraints
guaranteeing that the cooperative agreement does not create the incentives for any player to
lie about her actual type. Incentive constraints restrict what is feasible in a way that makes it
impossible to describe a cooperative game as a collection of utility sets. Indeed, the fact that
a utility allocation is feasible at some type profile does not allow us to determine what would

1See Myerson (1979, 1983, 1984a,b), Holmström and Myerson (1983), Nehring (2004), de Clippel (2008,
2012), de Clippel and Minelli (2004) and de Clippel, Pérez-Castrillo and Wettstein (2012). Forges and Serrano
(2013) present a brief survey describing some of the recent progress and open problems in the area of cooperative
games with asymmetric information.

2If a utility set fails to be comprehensive, then it may be bounded below.
3An allocation is Pareto dominated if it is possible to reallocate the utilities so as to make one individual better

off without making any other individual worse off.
4This situation is known as the interim case. Other forms of incomplete information include the ex-ante case,

in which players enter into coalitional agreements before they receive any private information.
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be the utility an individual would get by reporting a different type. Thus, decisions should be
explicitly included in the (primitive) description of the game. As a consequence, the geometric
properties assumed in the characteristic function cannot be easily adapted to situations with
asymmetric information. In particular, free disposal activities may have an important effect on
the incentives structure of the game, thus they cannot be considered innocuous anymore. This
issue is discussed in Chapter 1 (see below).

Holmström and Myerson (1983) characterize incentive-efficient mechanisms through parametric
linear programming problems. The incentive constraints of these optimization problems yield
“shadow prices” that are employed by Myerson (1984a,b) to define the virtual utility of players.
These virtual utility scales incorporate into the player’s utility function the signaling costs (in-
formational inefficiencies) that may be incurred due to the incentive constraints. By considering
virtual utilities, rather than real utilities (virtual utility hypothesis), Myerson (1984a,b) defines
some principles for an equitable compromise. Such a compromise is proportional with the con-
tributions of every individual to all coalitions to which she belongs. Moreover, it is inscrutable,
in the sense that it achieves a balance between the interests of the actual type of a player and the
goals of the other possible types that she pretends to be. Elaborating on this equity principle,
Myerson (1984b) develops a theory of values for selecting a mechanism among the many incen-
tive efficient mechanisms. The so-defined M-value (short for Myerson value) extends Shapley’s
(1969) non-transferable utility (NTU) value to games with asymmetric information.

Aware of the difficulties that incentive constraints may entail for the feasibility of equitable
agreements, Myerson (1984b) imposes a series of assumptions to guarantee the existence of his
value5. The implied simplified nature of the M-value has led to it being insensitive to some
“positive” information externalities. This is evidenced by an eloquent example introduced by
de Clippel (2005). In Chapter 1, we provide another intuitive example in which the M-value
does not capture some “negative” externality generated by the adverse selection. In the hope
to provide more appealing outcomes for these examples, we elaborate on the virtual utility
approach in order to develop alternative equitable compromises based on the principle of equal
gains (egalitarian criterion), according to which cooperating players within a coalition should
have equal compensations for their cooperation. These egalitarian principles are then used to
define a new value, which we call the H-value. Our theory generalizes Harsanyi’s (1963) NTU
value to games with asymmetric information.

The H-value is a more sophisticated adaptation of the Myerson’s (1984b) theory. Indeed, our
egalitarian criterion implies that the H-value is also equitable in the sense of Myerson (1984a,b).
However, both theories differ in the way they evaluate the strength of the different coalitions.
When applied to the examples mentioned above, the H-value prescribes outcomes for which
there is more agreement with what we intuitively expect these outcomes to be. Unfortunately,
the H-value may fail to exist for some games. The reason is that, when utility cannot be trans-
ferred between the players, equal compensations might require some of the players to forego
a portion of their proceeds6, which might be impossible due to the way incentive constraints

5Indeed, in the absence of appropriate assumptions on the feasible utility sets, it may not exist a (feasible)
efficient allocation which is also equitable. This problem is exacerbated by the presence of incentive constraints.

6To illustrate the situation, imagine that two kids have to agree on a way to distribute 3 candies. Assume that
each bonbon cannot be splitted into smaller pieces (lack of transferable utility). If both children are constrained to



4 Incentives in Cooperation and Communication

restrict what is feasible. In the absence of information asymmetries, the same difficulty is ruled
out by the comprehensiveness assumption7. Then, one is tempted to accommodate free disposal
by introducing decisions specifying how much utility a player may discard. However, adding
new decisions may change the incentive structure of the game: free disposal can be used for
signaling purposes, i.e., for weakening incentive compatibility8. As a result, for any (interim
incentive) efficient utility allocation, we cannot generally extend the original game by intro-
ducing additional decisions allowing players to discard utility, while leaving the original utility
allocation efficient in the expanded game. This issue prevents us from obtaining an existence
result of the H-value. Incentive constraints interconnect the decisions in different states in an
intricate way, which complicates matters for identifying (nontrivial) conditions on the primi-
tives of the game allowing to introduce free disposal activities without having to be concerned
about the issue described above. Despite the recognized difficulties, our results suggest that the
H-value is the most suitable way to extend the Harsanyi NTU value to games with information
asymmetries.

In Chapter 2 we look for ways to reconcile the differences between the M-value and the H-value.
A simple situation in which both values coincide is when there are only two players. This is
so because, in two-player games, the only possible threats come from “singleton” coalitions
(consisting of a single player) which are treated the same by both solution concepts. When in-
formation is complete, it is well known that both the Shapley NTU value and the Harsanyi NTU
value coincide in games with unrestricted utility transfers. Moreover, their common formula
is given by Shapley’s (1953) transferable utility (TU) value. We thus explore the possibility
of extending this result to games with asymmetric information. For that, we consider a broad
class of mechanisms allowing the players to transfer utility in the form of state-contingent side-
payments. Any of these mechanisms is required to satisfy the incentive constraints, and thus
our model may exhibit restricted utility transfers, i.e., not all state-contingent sidepayments are
feasible. In spite of this, our first main result in Chapter 2 states that, in our model with sidepay-
ment, any M-value is an H-value, and viceversa9. Their common definition, however, cannot
be described by a simple closed form expression as the Shapley TU value. The reason is that,
due to the incentive constraints, the set of (interim incentive) efficient utility allocations is not
generally described by an hyperplane as it would be in a game with complete information.

In the second part of Chapter 2 we consider game situations in which the players face strategic
externalities. However, we simplify the coalitional analysis by focusing only on two-player
games. We first extend the definition of the M/ H-value to allow for strategic externalities10.
To do this, we follow the method developed by Nash (1953) in defining his bargaining solution

have the same number of candies, they have to forego one of the candies.
7Comprehensiveness of the characteristic function is sometimes replaced by the more stringent assumption that

feasible sets are compactly generated, i.e., they are the (closed) comprehensive hull of a compact set.
8“I forego a portion of my proceeds for the sake of a fair agreement, but also I want to demonstrate that I am

the type that loses very little by agreeing to discard utility”.
9Remarkably, this result is not the consequence of the fact that sidepayments can be used for weakening in-

centive compatibility (see d’Aspremont and Gérard-Varet (1979, 1982)), but rather it follows from the fact that
coalitional agreements can be made equitable by means of an appropriate transfer scheme.

10Recall that in the two-player case both the M-value and the H-value coincide regardless of whether sidepay-
ments are allowed or not.
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with variable threats11. Recently, A. Kalai and E. Kalai (2013) proposed a value for two-player
games with incomplete information and transferable utility. Their semi-cooperative solution,
called the cooperative-competitive (or “coco”) value, is based on a decomposition of the game
into cooperative and competitive component games. The coco value conceptually differs from
the M-value in that the former ignores potential incentive compatibility issues. Also, it is defined
only at the ex-ante stage, i.e., before any player receives her private information. Our second
main result in Chapter 2 asserts that, when sidepayments are allowed and private information
is ex-post verifiable12 (so that incentive constraints are unnecessary), the M-value and the coco
value are ex-ante utility equivalent, that is, if the players evaluate their welfare as if they were
uninformed, both values prescribe the same utility allocation.

The analysis presented in Chapters 1 and 2 leads us through the basic conceptual issues aris-
ing for cooperation in situations of asymmetric information where communication is subject to
incentive constraints. On the other hand, incentive compatibility also gives rise to important
issues for the problem of information design. In Chapter 3 we study optimal design of com-
munication systems in a particular model of information transmission. We consider a model in
which, before learning his type (ex-ante stage), an individual, called the sender, chooses a public
communication device for signaling his information to an uninformed receiver, who then takes
an action that affects the welfare of both individuals. Here a communication device is meant
to be any procedure helping the players to transmit information and to coordinate decisions. It
may include plain conversation schemes (direct communication), consisting of several rounds
in which the players exchange messages. It also may consist of noisy communication channels
(indirect communication) in which an intermediary individual (or a machine) sends signals to
every player over multiple stages but also receives messages from them. These two kinds of
communication devices are examples of interplay communication systems in which communi-
cation occurs after the sender has learnt his type. However, a communication device may also
involve preplay communication i.e., before the sender learns his type (correlation device).

Mediated communication is a particular communication device in which the sender reports a
type to a neutral trustworthy mediator who then recommends an action to the receiver. The
sender’s report is not verifiable either by the mediator or by the receiver, which allows the
sender to strategically manipulate his private information. The mediator’s recommendation is
not binding, that is, the receiver is free to choose any action different from the recommended
one. A mediation protocol is then constrained by the necessity to provide the appropriate incen-
tives for the sender to reveal his private information (informational incentive constraints) and
for the receiver to follow the prescribed recommendation (strategic incentive constraints). A
mediation protocol in which the sender always reports the truth and the receiver always follows
the recommendation is called a communication equilibrium. In our setting, a very broad form
of the revelation principle applies and, thus, without loss of generality, we can focus on com-
munication equilibria (see Forges (1985, 1986)). The problem of the sender is thus to select a
communication equilibrium maximizing his ex-ante expected payoff.

11The generalization here presented is not new. Indeed, Myerson (1984b) offers a more general approach to the
case n ≥ 2 without sidepayments.

12Private information is verifiable ex-post if when agreements are implemented all private information becomes
public.
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This model of information transmission is mathematically analogous to a two-person coopera-
tive game with asymmetric information in which contracting takes place at the ex-ante stage13

and the unique informed individual has all the bargaining ability (as in Myerson (1983)). In this
context, having all the bargaining ability does not mean that the sender can force the receiver
to behave in a certain way. It means that the sender has the power to manipulate the receiver’s
incentives by controlling the communication channels (persuasion ability) and that the receiver
does not have any threatening ability. As a consequence, here a mechanism is a mediation pro-
tocol in which the mediator merely suggests an action but has no power to impose decisions,
which makes necessary the presence of additional strategic incentive constraints. This is in
contrast with the mechanisms considered in Chapters 1 and 2, which must be understood as ar-
bitration protocols in which the “mediator” imposes a settlement once it is agreed upon. Under
this alternative interpretation of the model, the value can be assimilated to the sender’s optimal
(ex-ante) expected payoff.

The previous interpretation of the model gives us some insights into the use of the virtual utility
approach for characterizing the optimal mediated communication protocol. Specifically, the
truth-telling incentive constraints of the sender’s problem yield shadow prices that can be used
to define the virtual utility of the sender exactly in the same way as in Chapters 1 and 2. These
virtual utility scales are characterized by the signaling costs measured by the shadow prices
and the prior beliefs. Relying on the virtual utility hypothesis, we construct a fictitious game in
which there are no truth-telling incentive constraints and the sender’s payoffs are in the virtual
utility scales. We then proceed to construct a non-revealing virtual payoff function over prior
beliefs describing the (ex-ante) expected virtual payoffs that the sender can achieve when there
is no communication in the fictitious game. As in Kamenica and Gentzkow (2011), the sender’s
optimal expected payoff (value of persuasion) in the fictitious game equals the concavification14

of the non-revealing virtual payoff function evaluated at the initial prior beliefs. Our main result
in this chapter says that the value of persuasion in the original problem equals the value of
persuasion in the fictitious game with virtual scales defined by the optimal shadow prices, i.e.,
those minimizing the signaling costs.

We characterize the optimal mediation protocol through a constrained splitting of the prior
belief into a distribution over posterior beliefs. Given the optimal signaling costs, the posterior
beliefs induced by any optimal mediation protocol correspond to the points on the domain of
the non-revealing virtual payoffs function for which the convex combination of their images
yields the value of persuasion. The corresponding distribution of posteriors is constrained by
the Bayes plausibility (martingale property) together with complementary slackness conditions
from Duality Theory. Complementary slackness says that if a shadow price is positive, then the
associated informational incentive constraint must be binding.

13By assuming that the choice of a communication device is made at the ex-ante stage, we exclude the possibility
that the mere fact of choosing it signals information. This allows us to focus on the problem of information
transmission without having to worry about the need to consider the sender’s inscrutable inter-type compromises.

14The concavification of a function f is the smallest concave function that is larger or equal to f .



Chapter 1
A Generalization of the Harsanyi NTU Value
to Games with Incomplete Information

1 Introduction
The value is a central solution concept in the theory of cooperative games1. Introduced by Shap-
ley (1953) for the study of games with transferable utility (TU), the value has been extended in
different ways to general games with nontransferable utility (NTU); some of the most notable
NTU values are due to Harsanyi (1963) and Shapley (1969)2. The value has proved to be a sur-
prisingly useful solution concept for the analysis of cooperative outcomes in economic models
under complete information (see Aumann (1994) for a partial bibliography of applications).
However, many interesting economic situations are characterized by information asymmetries,
such as adverse selection and moral hazard problems. Then, the question of examining the
value in more realistic environments with incomplete information naturally arises.

Under incomplete information, an agreement should be seen as a mechanism (state contingent
decision plan). The enforcement of any such mechanisms relies on the players’ claims about
their private information. As a consequence, the final agreement may be subject to strategic
manipulation. A cooperative agreement must then be incentive compatible, in the sense that it
provides the appropriate incentives for every individual to reveal honestly his private informa-
tion.

Myerson (1984a,b) developed a method in which the incentive constraints are used to define
the virtual utility of the players. Virtual utility generalizes the weighted-utility scales in the
Harsanyi-Shapley fictitious transfer procedure3. Elaborating on this approach, Myerson (1984b)

1This chapter corresponds to the paper: A Generalization of the Harsanyi NTU Value to Games with Incomplete
Information, HAL Working paper 01579898, 2016.

2The Shapley NTU value is sometimes referred as the “λ -transfer value”. The Harsanyi NTU value, being
less tractable, has received less attention. Indeed, the Shapley NTU value was introduced as a simplification of
the Harsanyi NTU value. Both values are compared in Hart (2004) by means of a simple example. The reader is
referred to Peleg and Sudhölter (2007, ch. 13) and Myerson (1991, ch. 9) for further details and formal definitions
of these two solution concepts.

3Myerson (1992) provides a detailed explanation of the fictitious transfer procedure.
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defines a bargaining solution which extends the Shapley NTU value to games with incomplete
information. The M-solution (short for Myerson’s solution) takes into account not only the
signaling costs associated to incentive compatibility, but also the fact that individuals negotiate
at the interim stage. It also involves the identification of “rational threat” mechanisms for each
coalition. Rational threats determine how much credit each (type of a) player can claim from
the proceeds of cooperation.

In order to keep a tractable mathematical formalization allowing for general existence of the M-
solutions, Myerson (1984b) imposes various assumptions on the commitment structure of the
underlying bargaining situation (see Section 6 in Myerson (1984b) for a detailed discussion).
These simplifying assumptions entail, however, a reduced sensitivity of the M-solution to some
informational externalities. This is evidenced by a prominent example introduced by de Clippel
(2005).4 In this paper we provide another intuitive example in which the M-solution does
not capture some “negative” externality generated by the adverse selection. Starting from the
two-person bargaining problem studied in Section 10 of Myerson (1984a), we construct a three-
player game in which the uninformed individuals (players 1 and 2) can overcome the potential
adverse selection problem they face by ignoring the informed individual (player 3) and agreeing
on an outcome that is equitable and efficient for both of them. As we will argue in Section
3, a reasonable outcome for this game should leave the informed player with a low expected
payoff. Nevertheless, under the M-solution the informed player extracts a considerable amount
of utility. Our example shares features with a complete information NTU game previously
proposed by Roth (1980). In that game, the Shapley NTU value exhibits some difficulties of
a similar nature to that of the M-solution in our example. Hart (1985a) showed, however, that
the Harsanyi NTU value prescribes a more appealing outcome in Roth’s game. Our main goal
in this paper is to generalize the Harsanyi NTU value to games with incomplete information.
Therewith we hope to provide an alternative outcome for our three-player game.

Harsanyi (1963) introduced his NTU value using a model of bargaining in which players inside
each coalition negotiate a vector of dividends. This dividend allocation procedure is rather
intractable and difficult to extend to games with incomplete information. In this work, we
shall generalize a simpler (yet equivalent) definition of the Harsanyi NTU value introduced by
Myerson (1980). This definition, which dispenses with the notion of dividends, is characterized
by an equity condition called balanced contributions (see also Myerson (1992) for a detailed
explanation). While there might be several appealing ways to extend the balanced contributions
to games with incomplete information, here we adopt a method that preserves a conceptual
coherence with Imai’s (1983) equivalent subgame value characterization of the Harsanyi NTU
value. In Section 4, we build on Myerson’s (1984a,b) virtual utility approach to formulate a
“natural” extended version of the subgame value equity condition. We then define an egalitarian
criterion to be the unique extension of the balanced contributions that is consistent with our
generalized subgame value condition (cf. Proposition 2). These equity principles are then used
in Section 5 to define optimal threat mechanisms for all coalitions. In Section 6 we formally
define our cooperative solution concept, which we call the H-solution. We also exhibit its
properties.

4De Clippel’s example is an incomplete information version of a NTU game introduced by Owen (1972).
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We construct the H-solution to be a more sophisticated adaptation of Myerson’s (1984b) theory.
Indeed, the H-solution requires all threat mechanisms to be equitable, whereas the M-solution
only requires equity in the case of the grand coalition. This difference between both solution
concepts is a matter of “credibility” of the threats. As a result, when we explicitly compute the
H-solution in our example, it turns out that it prescribes an outcome for which there is more
agreement with what we intuitively expect the outcome of this game to be. Unfortunately, and
as it might be expected, extending equity to all coalitions makes a significant difference to the
analysis, and the H-solution may fail to exist. In Section 7 we provide a simple example of a
game in which there is no H-solution. Under complete information, the same difficulty for the
Harsanyi NTU value is ruled out by considering games whose characteristic function is com-
prehensive5. This amounts to assuming free disposal of utility. The same approach does not
immediately extend to games with incomplete information. Indeed, when cooperative agree-
ments are made at the interim stage, it is not clear how to derive an analog of the characteristic
function under incomplete information6. On the other hand, while in a setting with complete
information free disposal is usually taken as an innocuous assumption, the same cannot be done
under asymmetric information. In fact, allowing players to discard utility at the interim stage
may alter the incentives structure of the game, as it will be illustrated in Section 7. The previous
difficulties prevent us from obtaining an existence result of the H-solution. This is not specific
of our approach. Indeed, de Clippel (2012) encounters similar difficulties for the existence of an
alternative (interim) egalitarian criterion in the context of mechanism design. The techniques
used in the special case of complete information to achieve positive results cannot generally
be extended to games with incomplete information. The reason is that incentive compatibility
makes arguments significantly more complicated. This is also the case for the non-emptiness of
the core of an exchange economy with incomplete information (see Forges, Minelli and Vohra
(2002) for a detailed discussion on this issue).

As described above, the paper is organized as follows: Section 2 is devoted to specifying for-
mally the model of a cooperative game with incomplete information and the notations used,
including the basic assumptions on the class of games considered. We also present a summary
of the facts one needs to know about Myerson’s (1984b) virtual utility approach. Our moti-
vating example is analyzed in Section 3. The virtual utility approach is used in Section 4 to
define our egalitarian criterion. In Section 5, the ideas of Section 4 are applied to define optimal
egalitarian threats. In Section 6 we introduce the H-solution. We then compute the H-solution
of the example of Section 3. Non-existence of the H-solution is discussed in Section 7.

5A characteristic function game V is comprehensive if, for every (nonempty) coalition S, whenever V (S) ⊆ R
S

contains an allocation u, it also contains all allocations v satisfying v ≤ u. Further assumptions are also required
for the existence of the Harsanyi NTU value: (i) if u,v ∈ ∂V (N) (i.e., u and v are efficient for the grand coalition)
and u ≥ v, then u = v (non-levelness); (ii) V (N) = K +C, where K ⊆ R

N is a compact set and C ⊆ R
N is a convex

cone (see Peleg and Sudhölter (2007, Theorem 13.3.5)). Assumption (i) excludes vanishing utility weights, while
(ii) is a technical assumption guaranteeing that the set of utility weights λ ∈ R

N
++ for which the “primal problem”

maxv∈V (N) λ · v has a finite optimum is compact and convex. It is worth noticing that these assumptions are not
necessary for the definition of the Harsanyi NTU value. They express restrictions on the space of games for which
a Harsanyi NTU value can be computed. Similar hypothesis are also required for the axiomatic characterization of
the Harsanyi NTU value (see Hart (1985b)).

6See Forges and Serrano (2013) for a discussion about this issue.
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2 Formulation

2.1 Bayesian Cooperative Game
The model of a cooperative game with incomplete information is as follows. Let N =
{1,2, ...,n} denote the set of players. For each (non-empty) coalition S ⊆ N, DS denotes the
set of feasible joint actions for coalition S. We assume that the sets of joint actions are finite
and superadditive, that is, for any two disjoint coalitions7 S and R,

DR ×DS ⊆ DR∪S.

For any player i ∈ N, we let Ti denote the (finite) set of possible types for player i. The interpre-
tation is that ti ∈ Ti denotes the private information possessed by player i. We use the notations8

tS = (ti)i∈S ∈ TS = ∏i∈S Ti, t−i = tN\i ∈ T−i = TN\i and t−S = tN\S ∈ T−S = TN\S. For simplicity,
we drop the subscript N in the case of the grand coalition, so we define D = DN and T = TN . We
assume that players have a common prior belief p defined on T , and that all types have positive
marginal probability, i.e., p(ti) > 0 for all ti ∈ Ti and all i ∈ N. At the interim stage each player
knows his type ti ∈ Ti, and hence, we let p(t−i | ti) denote the conditional probability of t−i ∈ T−i
that player i infers given his type ti.

The utility function of player i ∈ N is ui : D×T → R. As in most of the literature in cooperative
game theory, we assume that coalitions are orthogonal, namely, when coalition S ⊆ N chooses
an action which is feasible for it, the payoffs to the members of S do not depend on the actions
of the complementary coalition N \S. Formally,

ui((dS,dN\S), t) = ui((dS,d′
N\S), t),

for every S ⊂ N, i ∈ S, dS ∈ DS, dN\S,d′
N\S ∈ DN\S and t ∈ T . Then we can let ui(dS, t) denote

the utility for player i ∈ S if dS ∈ DS is carried out. That is, ui(dS, t) = ui((dS,dN\S), t) for any
dN\S ∈ DN\S (recall that DS ×DN\S ⊆ D).

A cooperative game with incomplete information is defined by

Γ = {N,(DS)S⊆N,(Ti,ui)i∈N, p}.

A (direct) mechanism for the grand coalition N is a mapping µN : T → ∆(D), where ∆(D)
denotes the set of probability distributions over D. The interpretation is that if N forms, it makes
a decision randomly as a function of its members’ information. Let the set of mechanisms for
N be denoted MN .

The (interim) expected utility of player i of type ti under the mechanism µN when he pretends
to be of type τi (while all other players are truthful) is

Ui(µN ,τi | ti) = ∑
t−i∈T−i

p(t−i | ti) ∑
d∈D

µN(d | τi, t−i)ui(d,(ti, t−i)).

7For any two sets A and B, A ⊆ B denotes weak inclusion (i.e., possibly A = B), and A ⊂ B denotes strict
inclusion.

8For simplicity we write S\ i, S∪ i and Di instead of the more cumbersome S\{i}, S∪{i} and D{i}.
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As is standard, we denote Ui(µN | ti) = Ui(µN , ti | ti).

Players can use any communication mechanism to implement a state-contingent contract. Be-
cause information is not verifiable, the only feasible contracts are those which are induced by
Bayesian Nash equilibria of the corresponding communication game. By the revelation prin-
ciple (see Myerson (1991)), we can restrict attention to (Bayesian) incentive compatible direct
mechanisms. Formally, a mechanism µN is incentive compatible (for the grand coalition) if and
only if

Ui(µN | ti) ≥Ui(µN ,τi | ti), ∀ti,τi ∈ Ti, ∀i ∈ N.

We denote as M ∗
N the set of incentive compatible mechanisms for coalition N (“*” stands for

incentive compatible as in Holmström and Myerson (1983)).

A mechanism µN is (interim) individually rational if and only if

Ui(µN | ti) ≥ max
di∈Di

∑
t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, ∀i ∈ N.

2.2 Incentive Efficiency and The Virtual Utility Approach
Following Holmström and Myerson (1983) we say that a mechanism µ̄N for the grand coalition
is (interim) incentive efficient if and only if µ̄N is incentive compatible and there does not exist
any other incentive compatible mechanism giving a strictly higher expected utility to all types
ti of all players i ∈ N.9 Because the set of incentive-compatible mechanisms is a compact and
convex polyhedron, (by the supporting hyperplane theorem) the mechanism µ̄N is incentive
efficient if and only if there exist non-negative numbers λ = (λi(ti))i∈N, ti∈Ti , not all zero, such
that µ̄N is a solution to

max
µN∈M ∗

N
∑
i∈N

∑
ti∈Ti

λi(ti)Ui(µN | ti) (2.1)

We shall refer to this linear-programming problem as the primal problem for λ . Let αi(τi | ti)≥ 0
be the Lagrange multiplier (or dual variable) for the constraint that the type ti of player i should
not gain by reporting τi. Then the Lagrangian for this optimization problem can be written as

L (µN ,λ ,α) = ∑
i∈N

∑
ti∈Ti

(

λi(ti)Ui(µN | ti)+ ∑
τi∈Ti

αi(τi | ti) [Ui(µN | ti)−Ui(µN ,τi | ti)]

)

,

where µN ∈ MN . To simplify this expression, let

vi(d, t,λ ,α) =
1

p(ti)

[(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

ui(d, t)− ∑
τi∈Ti

αi(ti | τi)
p(t−i | τi)

p(t−i | ti)
ui(d,(τi, t−i))

]

(2.2)

The quantity vi(d, t,λ ,α) is called the virtual utility of player i ∈ N from the joint action d ∈ D,
when the type profile is t ∈ T , w.r.t. the utility weights λ and the Lagrange multipliers α . Then,
the above Lagrangian can be rewritten as

L (µN ,λ ,α) = ∑
t∈T

p(t) ∑
d∈D

µN(d | t) ∑
i∈N

vi(d, t,λ ,α) (2.3)

9We have departed slightly from the formal definition of Holmström and Myerson (1983) in using strict in-
equalities rather than weak inequalities and one strict inequality.
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Necessary and sufficient first order conditions (from duality theory of linear programming)
imply the following result:

Proposition 1.
An incentive compatible mechanism µN is incentive efficient if and only if there exist some
vectors λ ≥ 0 (λ 6= 0) and α ≥ 0, such that

αi(τi | ti) [Ui(µN | ti)−Ui(µN ,τi | ti)] = 0, ∀i ∈ N, ∀ti ∈ Ti, ∀τi ∈ Ti (2.4)

and µN maximizes the Lagrangian in (2.3) over all mechanisms in MN , namely,

∑
d∈D

µN(d | t) ∑
i∈N

vi(d, t,λ ,α) = max
d∈D

∑
i∈N

vi(d, t,λ ,α), ∀t ∈ T (2.5)

Equation (2.4) is the usual dual complementary slackness condition. Condition (2.5) says that
any incentive efficient mechanism µN must put positive probability weight only on the decisions
that maximize the sum of the players’ virtual utilities, on each information state. This implies
that if players are given the possibility to transfer virtual utility, conditionally on every state,
then µN would be ex-post efficient10. Incentive compatibility forces each player to act as if
he was maximizing a distorted utility, which magnifies the differences between his true type
and the types that would be tempted to imitate him. Myerson (1984b) refers to this idea as the
virtual utility hypothesis. A more detailed discussion about the meaning and significance of the
virtual utility can be found in Myerson (1991, ch. 10).

The natural vector α in this Lagrangian analysis is the vector that solves the dual problem of
(2.1). This dual problem for λ can be written as

min
α≥0 ∑

t∈T
p(t)

(

max
d∈D

∑
i∈N

vi(d, t,λ ,α)

)

(2.6)

2.3 The M-solution
Using the concept of virtual utility, Myerson (1984a,b) generalizes the Harsanyi-Shapley fic-
titious transfer procedure in order to extend the Shapley NTU value to an environment with
incomplete information. Specifically, for any incentive efficient mechanism µN one associates
a vector (λ ,α) of virtual utility scales. These scales correspond to the utility weights λ for
which µN solves the primal problem and the associated Lagrange multipliers α . Then, one con-
siders the fictitious game in which players are allowed to transfer virtual utility, conditional on
every state t ∈ T , w.r.t. the scales (λ ,α). In the virtual game, each intermediate coalition S ⊂ N
commits to a rational threat mechanism to be carried out in case the other players refuse to coo-
perate with the members of S. Rational threats are the basis for computing the (virtual) worth of
each coalition, and thus they determine how much credit each type of a player can claim from
the proceeds of cooperation in the grand coalition. Conditionally on every state, rational threats
thus define a coalitional game with transferable virtual utility. A mechanism is equitable for the

10This property is specially useful for practical applications, in particular when computing value allocations.
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grand coalition N if it gives each type of every player his (conditional) expected Shapley TU
value of the fictitious game. A precise definition is given in Section 4 (see Remark 1).

Myerson (1984b) defines the M-solution to be an incentive efficient mechanism µN for which
there exist virtual scales (λ ,α) such that µN is equitable for the grand coalition. The associated
interim utility allocations are called an M-value. A formal definition of the M-solution can be
deduced from our cooperative solution concept (cf. Definition 6) by removing the egalitarian
restrictions from our optimal threat criterion (see Remark 3). Two variants of the value can be
considered depending on whether coalitional threats are required to be incentive compatible or
not. Myerson exclusively deals with the case in which only the mechanism of the grand coalition
is constrained to be (equitable and) incentive compatible. The M-solution is justified only in
situations where cooperative agreements are made before a coalition structure is determined,
while expecting that only the grand coalition will be forming. A detailed discussion on this
issue is given in Myerson (1984b, sec 6).

3 Motivating Examples
In this section we study two examples which motivate the introduction of our solution concept.
In both examples, it is shown that the M-value exhibits some “difficulties”; specifically, there
are compelling reasons leading to an outcome not consistent with the M-value.

3.1 Example 1: A Collective Choice Problem
We consider the following cooperative game with incomplete information. The set of players
is N = {1,2,3}. Only player 3 has private information represented by two possible types in
T3 = {H,L} with prior probabilities p(H) = 1− p(L) = 9/10. Decision options for every coali-
tion are Di = {di} (i ∈ N), D{1,2} = {D1 ×D2}∪{d12} = {[d1,d2],d12}, D{i,3} = {Di ×D3}∪

{di
i3,d

3
i3}= {[di,d3],di

i3,d
3
i3} (i = 1,2) and DN = {D{1,2}×D3}∪{D{1,3}×D2}∪{D{2,3}×D1}.

A detailed interpretation will be given below. Finally, utility functions are as follows:

(u1,u2,u3) L H
[d1,d2,d3] (0,0,0) (0,0,0)
[d12,d3] (5,5,0) (5,5,0)
[d1

13,d2] (0,0,5) (0,0,10)
[d3

13,d2] (10,0,−5) (10,0,0)
[d2

23,d1] (0,0,5) (0,0,10)
[d3

23,d1] (0,10,−5) (0,10,0)

This game can be interpreted as a collective choice problem in which three individuals have the
option to cooperate by investing in a work project which would benefit them. The project would
cost $10. It is commonly known that the project is worth $10 to player 1 as well as to player 2;
but its value to player 3 depends on his type, which is unknown to the other players. If 3’s type
is H (“high”) then the project is worth $10 to him. However, if 3’s type is L (“low”) then the
project is only worth $5 to him.
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Decision options for all coalitions are interpreted as follows. For each player i∈N, di is the only
available action for himself, which leaves him with his reservation utility normalized to $0. If
coalition {1,2} forms, its members may decide not to undertake the project by choosing [d1,d2]
or they can agree on the option d12 which carries out the project dividing the cost on equal parts.
If players 1 and 3 form a coalition, decision d j

13 ( j = 1,3) denotes the option to undertake the
project at j ’s expense. There is no need to consider intermediate financing options, because
they can be represented by randomized decisions. They may also agree on [d1,d3] which does
not implement the project. Decision options for coalition {2,3} are similarly interpreted. If all
three form a coalition, they may use a random device to pick a two-person coalition which must
then make a decision as above.

To analyze this game, we first consider the situation in which players 1 and 3 must reach a
cooperative agreement to be implemented in case player 2 refuses to cooperate with them. In
such a situation, 1 and 3 face a threat-selection subgame described by a two-person cooperative
game with incomplete information that can be analyzed applying the concepts of Section 2.
Assume that threats are not required to be incentive compatible. Figure 1 illustrates the set of
feasible (i.e., individually rational) interim utility allocations for this (sub)game.

UH
3 UL

3

U1

�

�

�

�

�

�

�

(0,10,5)

(0.5,10,0)

(9.5,0,0)

(9,0,5)

�

( 19
4 ,5, 5

2

)

Figure 1: Feasible allocations for {1,3}

An equitable utility allocation in this game can be constructed as follows. Suppose that player 3
is given the right to act as a “dictator”, so that he may enforce any mechanism that is individually
rational given the information that player 1 may infer from the selection of the mechanism. In
this case, there is a clear decision that both types of player 3 would demand, namely, d1

13. This
decision implements the utility allocation (U1,UH

3 ,UL
3 ) = (0,10,5) which gives both types of

player 3 the highest expected utility they can get in the game. Moreover, it is efficient (see
Figure 1) and safe, i.e., it remains individually rational no matter what player 1 can infer about
3’s type from this proposal. In the terminology of Myerson (1983), it is a strong solution11

for player 3. On the other hand, if player 1 were a dictator, then he would demand his strong
solution which implements the allocation (19/2,0,0). Now consider a random-dictatorship in
which each player is given equal chance of enforcing his strong solution. Then, the interim

11A strong solution may not exist, but if so it is unique up to equivalence in utility.
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efficient allocation (19/4,5,5/2) = 1
2(0,10,5)+ 1

2(19/2,0,0) is equitable for {1,3}. Indeed,
random-dictatorship together with efficiency characterize Myerson’s (1984a) generalization of
the Nash bargaining solution. It is then the unique M-value for this subgame12.

The value of a player is an index based on his ability to guarantee high payoffs to all members
of the coalitions to which he belongs (marginal contribution). From that perspective, player 3
should be considered as a weak player. By agreeing to cooperate with player 3, player 1 cannot
expect to get more than 19/4 in an equitable allocation. Because players 1 and 2 are symmetric,
the same reasoning is also true for a negotiation between players 2 and 3. Hence, both players
1 and 2 are better off in coalition {1,2} in which case they both get 5 each, which is strictly
preferred to 19/4. When negotiating with player 3, 1 and 2 are adversely affected by the likely
presence of 3’s “bad” low type. However, by acting together players 1 and 2 face no uncertainty
at all. Indeed, it is commonly known that the project is equally worth to each of them. A value
allocation for our three player game should thus reward player 3 less than the other players in
both states.
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(9,0,0)
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Figure 2: Incentive feasible allocations for {1,3}

Let us suppose now that threats are required to be incentive compatible. Figure 2 depicts the
set of incentive feasible (i.e., incentive compatible and individually rational) interim utility al-
locations for the subgame faced by coalition {1,3}. For this modified threat-selection game,
the strong solution for player 3 implements again the utility allocation (0,10,5).13 However,
the strong solution for player 1 now implements the allocation (9,0,0). Proceeding as before,
random-dictatorship prescribes the value allocation (9/2,5,5/2).14 We notice that both types of
player 3 get the same expected utility in an equitable allocation regardless of whether incentive
constraints are relevant or not. In contrast, 1’s expected utility is reduced in the presence of

12This allocation is implemented by the mechanism µ{1,3}(d1
13 | L) = 1−µ{1,3}(d3

13 | L) = 3/4, µ{1,3}(d1
13 |H) =

µ{1,3}(d3
13 | H) = 1/2.

13When incentive constraints matter, a safe mechanism for player 3 is one which would be incentive compatible
and individually rational if player 1 knew 3’s type.

14This allocation is implemented by the mechanism µ{1,3}(d1
13 | L) = µ{1,3}([d1,d3] | L) = 1/2, µ{1,3}(d1

13 |H) =

µ{1,3}(d3
13 | H) = 1/2.
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incentive constraints. Incentive compatibility leads to efficiency losses that are mainly beared
by the uninformed party, hence increasing the incentives for 1 and 2 to form a coalition, and
thus reducing the bargaining position of player 3. Therefore, 3’s payoff from a value allocation
in the whole game should be further reduced when coalitional incentive constraints matter.

The unique M-value of our three-player game is the utility allocation15

(

U1,U2,UH
3 ,UL

3
)

=
(10

3 , 10
3 , 10

3 , 5
3

)

. (3.1)

For instance, the incentive efficient mechanism µN([d12,d3] | t) = 2
3 , µN([d2

23,d1] | t) =

µN([d1
13,d2] | t) = 1

6 for all t ∈ T3 is an M-solution. The value is supported by the utility
weights16 (λ1,λ2,λ H

3 ,λ L
3 ) = (1,1,9/10,1/5) and the Lagrange multipliers (α1(L | H),α1(H |

L)) = (0,0).17

An easy way to compute the M-solution in this game is simply to apply the random-dictatorship
procedure to the grand coalition. The strong solution for player 3 in N implements the allocation
(U1,U2,UH

3 ,UL
3 ) = (0,0,10,5). The strong solution for player 1 (resp. 2) in N implements the

allocation (19/2,1/2,0,0) (resp. (1/2,19/2,0,0)). Averaging these utility vectors we obtain
(3.1). It is worth emphasizing that this procedure does not generally characterize the M-value.
Yet for our example, it exhibits the reason why both types of player 3 extract a considerable
amount of utility; namely, players are treated symmetrically. The random dictatorship proce-
dure applied to N ignores the possibilities of cooperation among subsets of players, hence it
is only acceptable when coalitions are symmetric. Indeed, Myerson’s rational threats criterion
cares only about the joint overall gains that can be allocated inside a coalition, but not about
the way in which they are distributed. Since all coalitions can achieve the maximal gains from
the project in both states of the transferable virtual utility game, the M-value treats all coali-
tions symmetrically. This is so even when threats are required to be incentive compatible. For
instance, the mechanism that implements d j

j 3 ( j = 1,2) in both states is a rational threat for
coalition { j ,3}. This mechanism however gives the whole surplus of cooperation to player 3,
which is manifestly not equitable. Such a threat can be considered as being not “credible”, in
the sense that player i /∈ { j ,3} could not believe that player j would agree to implement d j

j 3
in case cooperation in N breaks down. In this example, the M-solution is insensitive to the
negative externality that adverse selection exerts on 3’s bargaining position.

Before proceeding with the construction of our solution concept, and for the sake of complete-
ness, we shall briefly analyze an additional example introduced by de Clippel (2005).

3.2 Example 2: A Bilateral Trade Problem
Let us consider the following cooperative game with incomplete information. N = {1,2,3},
T1 = {H,L}, p(H) = 1 − p(L) = 4/5, Di = {di} (i = 1,2,3), D{1,2} = {[d1,d2],d1

12,d
2
12},

15We focus only on non-degenerated values, i.e., those which are supported by strictly positive utility weights
λ .

16Utility weights are determined up to a positive scalar multiplication. We then normalize utility weights so
that virtual utilities of the uninformed players coincide with their real utilities. This is possible since 1 and 2 are
symmetric.

17Explicit computations are given in the Supplementary material.
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D{1,3} = {[d1,d3]}, D{2,3} = {[d2,d3]}, DN = {[d1,d2,d3], [d1
12,d3], [d2

12,d3],d23,d32} and

(u1,u2,u3) [d1,d2,d3] [d1
12,d3] [d2

12,d3] d23 d32

H (0,0,0) (90,0,0) (0,90,0) (0,90,0) (0,0,90)
L (0,0,0) (30,0,0) (−60,90,0) (0,30,0) (0,0,30)

The game can be interpreted as follows. Player 2 is the seller of a single good that has no value
for himself. Player 1 is the only potential buyer and he has a valuation of the good that can be
low (30$), with probability 1/5, or high (90$), with probability 4/5. Decision [d1,d2] represents
the no-exchange alternative. Decision d1

12 (resp. d2
12) represents the situation where player 1

receives the good from player 2 for free (resp. in exchange of 90$). Any other transfer of
money from player 1 to player 2 (between 0$ and 90$) can be represented by a lottery defined
on {d1

12,d
2
12}. Because of the necessity to give player 1 an incentive to participate honestly,

both players are limited in their abilities to share the gains from trade. Indeed, the mechanism
that gives the entire surplus to player 2 in both states, is not incentive compatible. Player 3
does not generate any additional surplus from the trade. Yet, his participation partly releases
players 1 and 2 from the incentive constraints they face when they cooperate. Indeed, when
he joins coalition {1,2} (so that the grand coalition forms), decisions d23 and d32 are added to
D{1,2} ×D{3}. Decision d23 (resp. d32) gives the whole surplus to player 2 (resp. 3) in both
states18.

As it is shown by de Clippel (2005), the unique M-value of this game is the interim utility
allocation

(

UH
1 ,UL

1 ,U2,U3
)

= (45,15,39,0) . (3.2)

We observe that player 3 is considered a null player. Even though player 3 does not create any
additional surplus, it would be fair to give him some positive payoff, as players 1 and 2 have to
rely on him in order to weaken the incentive constraints they face. As in the previous example,
requiring optimal threats to be incentive compatible does not change the M-value allocation.
We conclude that the M-value is not sensitive to the informational contribution of player 3.

4 Equity Principles for Bayesian Cooperative Games
The Harsanyi NTU value can be characterized using two different fair allocation rules. The
first of these two equity notions, introduced by Myerson (1980) under the name of balanced
contributions, requires that, for any two members of a coalition, the amount that each player
would gain by the other’s participation should be equal when utility comparisons are made in
some weighted utility scale. The second equity principle, denominated subgame value equity by
Imai (1983), says that, for every coalition S ⊆ N, each player in S should obtain his Shapley TU
value from the game restricted to the subcoalitions of S when utility has been made comparable
in some weighted utility scale. These two equity notions are in dual relationship: for fixed utility

18It can be shown that when player 3 drops out of the game and coalition {1,2} forms, the constraint asserting
that type 1H has no incentive to report to be type 1L is binding in any incentive efficient mechanism for this
coalition.
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scales both allocation rules are equivalent (equity equivalence). In this Section, we extend this
result to the case of incomplete information.

Given a vector of utility weights λ and a vector of Lagrange multipliers α , let us consider the
fictitious game in which players make interpersonal utility comparisons in the virtual utility
scales (λ ,α). In such a virtual game, each player’s payoffs are represented in the virtual utility
scales and virtual payoffs are transferable among the players (conditionally on every state).
We assume that, as a threat during the bargaining process within the grand coalition N, each
coalition S ⊂ N commits to some mechanism µS : TS → ∆(DS).19 We denote by MS the set of
mechanisms for S. Let M = ∏S⊆N MS denote the set of possible profiles of mechanisms that
all various coalitions might select.

Let vi(µS, t,λ ,α) denote the linear extension of vi(·, t,λ ,α) (as defined in (2.2)) over µS. We
define WS(µS, t,λ ,α) as the sum of virtual utilities that the members of S ⊆ N would expect in
state t when they select the mechanism µS, that is

WS(µS, t,λ ,α) = ∑
i∈S

vi(µS, t,λ ,α). (4.1)

Let W (η, t,λ ,α) = (WS(µS, t,λ ,α))S⊆N denote the characteristic function game when the vec-
tor of threats η = (µS)S⊆N ∈ M is selected by the various coalitions20 in the virtual game.
For any vector η ∈ M , let ηS = (µR)R⊆S denote its restriction to the subcoalitions of S. We
define W |S(ηS, t,λ ,α) as the subgame of W (η, t,λ ,α) obtained by restricting the domain of
W (η, t,λ ,α) to the subsets of S. Let φ be the Shapley TU value operator ; for i ∈ S ⊆ N,
φi(S,W |S(ηS, t,λ ,α)) will thus denote the Shapley TU value of player i in the subgame re-
stricted to S when the vector of threats ηS is selected in the virtual game.

We denote Vi(µS | ti,λ ,α) the expected virtual utility of type ti of player i∈ S when the members
of S agree on µS, i.e.,

Vi(µS | ti,λ ,α) := ∑
t−i∈T−i

p(t−i | ti)vi(µS, t,λ ,α). (4.2)

Definition 1 (Equitable mechanism).
For any coalition S ⊆ N, the mechanism µS is equitable for S w.r.t. ηS, λ and α if

Vi(µS | ti,λ ,α) = ∑
t−i∈T−i

p(t−i | ti)φi(S,W |S(ηS, t,λ ,α)), ∀ti ∈ Ti, ∀i ∈ S. (4.3)

If for all coalitions R ⊆ S, µR is equitable for R w.r.t. ηR, λ and α , then the vector of threats
ηS = (µR)R⊆S is called equitable w.r.t. λ and α .

19When a coalition S forms, it cannot rely on the information possessed by the players outside S. In other
words, a communication mechanism for a coalition must be measurable with respect to the private information of
its members. This is equivalent to define a mechanism as µS : T → ∆(DS) with µS(t) = µS(t ′) for every t, t ′ ∈ T
such that tS = t ′S.

20Strictly speaking, the component µN ∈MN of η is not a threat, since there is no coalition to threaten. However,
we keep this terminology in order to simplify the exposition.



The Harsanyi NTU value for Bayesian Cooperative Games 19

Then, a mechanism for coalition S is said to be equitable for S if it gives every type of a player in
S his (conditionally) expected Shapley TU value from the virtual subgame obtained by restrict-
ing W (η, t,λ ,α) to the subcoalitions of S. This equity notion extends Imai’s subgame value
equity condition21.

REMARK 1. When S = N, the equality in (4.3) reduces to Myerson’s (1984b) principle for
equitable compromises.

Definition 2 (Egalitarian mechanism).
For any coalition S ⊆ N, the mechanism µS is egalitarian for S w.r.t. (µS\i)i∈S, λ and α if

∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

[

vi(µS, t,λ ,α)− vi(µS\ j, t,λ ,α)
]

=

∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

[

v j(µS, t,λ ,α)− v j(µS\i, t,λ ,α)
]

, ∀ti ∈ Ti, ∀i ∈ S. (4.4)

If for all coalitions R ⊆ S, µR is egalitarian for R w.r.t. (µR\i)i∈R, λ and α , then the vector of
threats ηS = (µR)R⊆S is called egalitarian w.r.t. λ and α .

Equation (4.4) says that the expected average virtual contribution of the different players in S to
player i equals the expected average virtual contribution of player i to the different players in S as
assessed by his type ti. This egalitarian criterion generalizes Myerson’s balanced contributions
condition22. Indeed, when information is complete (i.e., Ti is a singleton for every i ∈ N, so
that we can set α = 0), condition (4.4) implies that the j-th terms on both sides are equal:
the marginal contribution of j to i, measured by vi(µS,λ )− vi(µS\ j,λ ), equals the marginal
contribution of i to j, symmetrically measured by v j(µS,λ )−v j(µS\i,λ ). The same implication
cannot be expected to generally hold in the case of asymmetric information. The reason is that,
since negotiations take place at the interim stage, the individual probability assessments of the
different types of the various players need not be the same. Then, i’s personal evaluation of j’s
gains may not coincide with j’s evaluation of her own gains.

For given arbitrary vectors (µR)R⊂S, λ and α , equity and egalitarianism are in general two
different notions of “fairness” for coalition S ⊆ N. In particular, notice that while an egalitarian
mechanism µS depends only on the mechanisms (µS\i)i∈S, an equitable mechanism depends
on the whole profile of threats (µR)R⊂S. However, it turns out that if the whole profile ηS is
egalitarian, then it is also equitable, and viceversa.

Proposition 2 (Equity equivalence).
For any coalition S ⊆ N, the vector of threats ηS = (µR)R⊆S is equitable (w.r.t. λ and α) if and
only if it is egalitarian (w.r.t. λ and α).

This result is significant, first, in establishing a dual relationship between equity (as defined by
the Shapley TU value) and the balanced contributions in environments with incomplete informa-
tion. Second, and most important, Proposition 2 helps us to justify why our egalitarian criterion
is (probably) the most appropriate generalization of the balanced contributions condition.

21When information is complete, so that Ti is a singleton for every i ∈ N, (4.3) reduces to the first condition in
Proposition 6 of Imai (1983).

22It also extends the “preservation of average differences” principle introduced by Hart and Mas-Colell (1996).
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When information is asymmetric, so that the probability assessments of the various types of dis-
tinct players are different, Proposition 2 cannot be deduced from the equity equivalence under
complete information simply by taking (conditional) expectations. Instead we use a “consis-
tency property” of the Shapley TU value: the value of a player is the average of his marginal
contribution to the grand coalition WN −WN\i and his values φi(N \ j,W |N\ j) in the subgames
with |N|−1 players (see Hart (2004, p. 39)). Apart from this clarification, the proof of Propo-
sition 2 is straightforward .

Proof. We start proving the “only if” part. Let η ∈ M be a vector of equitable threats (w.r.t. λ and α).
Let S ⊆ N and i ∈ S be fixed. Then, for any j ∈ S \ i, µS\ j is equitable for S \ j (w.r.t. ηS\ j, λ and α).
Thus, for all ti ∈ Ti,

∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

φi
(

S\ j,W |S\ j(ηS\ j, t,λ ,α)
)

= ∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

vi(µS\ j, t,λ ,α). (4.5)

Because µS is equitable for S (w.r.t. ηS, λ and α), we have that for any type ti of a player i ∈ S,

∑
t−i∈T−i

p(t−i | ti)vi(µS, t,λ ,α) = ∑
t−i∈T−i

p(t−i | ti)φi (S,W |S(ηS, t,λ ,α))

= ∑
t−i∈T−i

p(t−i | ti)
1
|S|

[

WS(µS, t,λ ,α)−WS\i(µS\i, t,λ ,α)

+ ∑
j∈S\i

φi
(

S\ j,W |S\ j(ηS\ j, t,λ ,α)
)

]

=
1
|S| ∑

t−i∈T−i

p(t−i | ti)

[

vi(µS, t,λ ,α)+ ∑
j∈S\i

vi(µS\ j, t,λ ,α)

+ ∑
j∈S\i

(

v j(µS, t,λ ,α)− v j(µS\i, t,λ ,α)
)

]

, (4.6)

where (4.5) has been used in the last. Finally, rearranging terms in (4.6) we get (4.4).

Consider now the “if” part. Let η ∈ M be a vector of egalitarian threats (w.r.t. λ and α). For any
coalition S ⊆ N and any player i ∈ S of type ti, the (conditionally) expected marginal contribution of
player i to coalition S is

∑
t−i∈T−i

p(t−i | ti)
[

WS(µS, t,λ ,α)−WS\i(µS\i, t,λ ,α)
]

= ∑
t−i∈T−i

p(t−i | ti)vi(µS, t,λ ,α)+ ∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

[

v j(µS, t,λ ,α)− v j(µS\i, t,λ ,α)
]

= ∑
t−i∈T−i

p(t−i | ti)vi(µS, t,λ ,α)+ ∑
t−i∈T−i

p(t−i | ti) ∑
j∈S\i

[

vi(µS, t,λ ,α)− vi(µS\ j, t,λ ,α)
]

= ∑
t−i∈T−i

p(t−i | ti)

[

|S|vi(µS, t,λ ,α)− ∑
j∈S\i

vi(µS\ j, t,λ ,α)

]

,

where the second equality is due to the fact that µS is egalitarian for S w.r.t. (µS\ j) j∈S, λ and α . Therefore,

∑
t−i∈T−i

p(t−i | ti)φi(S,W |S(ηS, t,λ ,α)) = ∑
t−i∈T−i

p(t−i | ti)vi(µS, t,λ ,α).

�
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We conclude this section with a convenient characterization of an equitable mechanism for the
grand coalition. It will allow us to identify the real interim utilities corresponding to an equitable
allocation in the virtual game.

Definition 3 (Warranted claims).
Let (λ ,α) be a vector of virtual scales and η ∈ M a vector of threats. The interim allocation
ω ∈ ∏i∈N R

Ti is warranted by λ , α and η if
(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

ωi(ti)− ∑
τi∈Ti

αi(ti | τi)ωi(τi) =

∑
t−i∈T−i

p(t)φi(N,W (η, t,λ ,α)), ∀ti ∈ Ti, ∀i ∈ N. (4.7)

The quantity ωi(ti) is called the warranted claim of type ti of player i.

REMARK 2. By Lemma 1 in Myerson (1983), the warrant equations have a unique solution
in the vector of warranted claims of player i, provided that λ > 0. Furthermore, the solution
(weakly) increases (in the vector sense) as the right-hand side is increased.

The following result follows from the equalities (3.10) and (3.11) in Myerson (1984b).

Lemma 1.
Let (λ ,α) be a vector of virtual scales such that α is a solution of the dual for λ . Let η ∈ M be
a vector of threats such that µN is a solution of the primal for λ . The mechanism µN is equitable
for N w.r.t. η , λ and α if and only if the vector of interim utilities U(µN) := (Ui(µN | ti))i∈N,ti∈Ti

is warranted by λ , α and η .

We can thus interpret the warrant equations: they implicitly define ω to be the real utility
allocation which would give every type of each player (in the grand coalition) his expected
Shapley TU value in the virtual game.

5 Optimal Threats
In this section we use the equity principles previously developed in order to extend Harsanyi’s
(1963, sec. 9) optimal threat strategies. Specifically, we modify Myerson’s (1984b) rational
threats by requiring coalitional threats to meet our egalitarian criterion.

Definition 4 (Optimal egalitarian threats).
The mechanism µ̄S ∈ MS is an optimal egalitarian threat for S ⊆ N w.r.t. (µS\i)i∈S, λ and α if
and only if µ̄S is a solution to

max
µS∈MS

∑
t∈T

p(t)WS(µS, t,λ ,α) (5.1)

s.t. (4.4)

The optimal threats criterion in (5.1) postulates that each coalition should maximize the ex-ante
expected total virtual utility that its members would earn when coalitions commit to a vector
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of egalitarian threats. In view of Proposition 2, we could also have defined an optimal threat
replacing the egalitarian constraints (4.4) in (5.1) by the equity conditions in (4.3). However,
this alternative definition is less tractable since threats of one coalition cannot be determined
without knowledge of threats of all its subcoalitions23.

We notice that the maximization in (5.1) is carried out over all mechanisms in MS. However,
we can alternatively require threats to be incentive compatible. A mechanism µS is incentive
compatible for coalition S ⊆ N if and only if24

∑
t−i∈T−i

p(t−i | ti) ∑
dS∈DS

µS(dS | tS)ui(dS, t)

≥ ∑
t−i∈T−i

p(t−i | ti) ∑
dS∈DS

µS(dS | τi, tS\i)ui(dS, t), ∀i ∈ S, ∀ti,τi ∈ Ti.

We denote as M ∗
S the set of incentive-compatible mechanisms for coalition S.

Definition 5 (Incentive compatible optimal egalitarian threats).
A mechanism µ̄S ∈ MS is an incentive compatible optimal egalitarian threat for S ⊆ N w.r.t.
(µS\i)i∈S, λ and α if and only if it solves (5.1) over all mechanisms in M ∗

S .

Given some virtual scales (λ ,α), (incentive compatible) optimal egalitarian threats must be
recursively constructed: for each S, given the threats (µ̄S\i)i∈S, µ̄S is determined solving (5.1).
This recursion leads to a profile of threats η̄ = (µ̄S)S⊆N which we call an (coalitionally incentive
compatible) egalitarian solution w.r.t. λ and α .25

Myerson (1984b, sec. 6) argues that maximizing the ex-ante expected virtual worth of a coali-
tion is appropriate in games where only the mechanism chosen by the grand coalition will
be implemented. In such a situation, the final payoffs are granted by the grand coalition and
therefore the mechanisms (µS)S⊂N need not be either equitable or incentive compatible. Thus,
Myerson’s (1984b) rational threats maximize the objective function in (5.1) constrained only
by the feasibility of the mechanisms, i.e., µS ∈ MS. Even if we agree with this reasoning, the
examples in Section 3 illustrate situations in which some relevant aspects of the intermediate
coalitions are ignored by Myerson’s rational threat criterion. In contrast, we think that for a
mechanism µS to constitute an appropriate measure of the strength of coalition S, it must be
equitable regardless of whether it is expected to be implemented or not. It should be clear
that a vector η = (µS)S⊆N of (inductively constructed) optimal egalitarian threats is egalitarian.
Therefore, by Proposition 2, η is also equitable. This reasoning is summarized in the following
proposition.

Proposition 3.
Let η = (µS)S⊆N be an (coalitionally incentive compatible) egalitarian solution w.r.t. λ and α .
Then, for each coalition S ⊆ N, ηS is equitable w.r.t. λ and α .

23A definition like that would be consistent with Imai’s (1983) characterization of the Harsanyi NTU value.
24Clearly, when S = N this definition coincides with the one introduced in Section 2.
25Egalitarian solutions generalize the monotonic solutions introduced by Kalai and Samet (1985) to games with

incomplete information.
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6 The H-Solution
In this section we apply the ideas developed in the preceding sections to construct an egalitarian-
based cooperative solution.

Definition 6 (H-solution).
A mechanism µ̄N ∈ MN is an H-solution if and only if there exist vectors λ > 0, α ≥ 0 and
η = (µS)S⊆N ∈ M with µN = µ̄N such that

(i ) µN is a solution of the primal problem for λ .

(ii ) α is a solution of the dual problem for λ .

(iii ) For each S ⊂ N, µS is an optimal egalitarian threat for S w.r.t. (µS\i)i∈S, λ and α .

(iv ) µN is an egalitarian threat for N w.r.t. (µN\i)i∈N, λ and α .

The vector of interim utilities U(µ̄N) is called an H-value.

Alternatively, a bargaining solution can be defined replacing condition (iii ) by

(iii ′ ) For each coalition S ⊂ N, µS is an incentive compatible optimal egalitarian threat for S
w.r.t. (µS\i)i∈S, λ and α .

In that case an H-solution is called coalitionally incentive compatible.

Conditions (i)− (iv) in our definition of an H-value have natural interpretations: (i) genera-
lizes the λ -weighted utilitarian criterion, (ii) says that α is the vector of Lagrange multipliers
associated with (i), and (iii) extends Harsanyi’s (1963) optimal threats criterion to games with
incomplete information. It follows from (i) that µN maximizes the Lagrangian in (2.3). Hence,
(i) and (iv) imply that µN is also an optimal egalitarian threat for N w.r.t. (µN\i)i∈N, λ and α
(i.e., µN solves (5.1) for N). Therefore, the whole vector of threats η = (µS)S⊆N is an egalitarian
solution.

REMARK 3. By Lemma 1, we can equivalently define an H-solution replacing condition (iv)
by

(iv ′ ) U(µN) is warranted by λ , α and η .

This equivalent definition puts the H-solution in a form that makes it easily comparable with the
M-solution. Indeed, with (iv ′ ), the H-solution differentiates itself from the M-solution only in
that the latter does not require optimal threats to meet our egalitarian criterion. Then, it follows
that when n = 2 both solution concepts coincide26.

Theorem 1 (Two-player games).
Let Γ be a two-player cooperative game with incomplete information. Then, any (non-
degenerated) M-solution is an H-solution and viceversa. Moreover, if Γ is a two-person bar-
gaining problem27, both solution concepts coincide with Myerson’s (1984a) generalization of
the Nash bargaining solution.

26Singleton coalitions are not constrained by the egalitarian restrictions in (4.4)
27A two-person bargaining problem is a cooperative game satisfying: n = 2, Di = {di} for all i ∈ N and

ui(d∗, t) = 0 for all i ∈ N and t ∈ T , where d∗ := [di,d j] is the disagreement outcome.
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Theorem 2 (Individual rationality).
Both variants of the H-bargaining solution are interim individually rational.

Proof. Let µN be an H-solution supported by η , λ and α . For each i ∈ N, let µ̂i ∈ Mi be defined by

∑
t−i∈T−i

p(t−i | ti) ∑
di∈Di

µ̂i(di | ti)ui(di, t) = max
di∈Di

∑
t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, (6.1)

For each t ∈ T , the TU game W (η , t,λ ,α) is weakly superadditive28 (since decision sets are supera-
dditive). Then, φi(N,W (η , t,λ ,α)) ≥ vi(µi, t,λ ,α) for every t ∈ T . Also, for all i ∈ N, ∑t−i∈T−i p(t−i |
ti)vi(µi, t,λ ,α) ≥ ∑t−i∈T−i

p(t−i | ti)vi(µ̂i, t,λ ,α) for all ti ∈ Ti, since µi is an optimal egalitarian threat for
i. Then, we have that for each i ∈ N and ti ∈ Ti,

(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

Ui(µN | ti)− ∑
τi∈Ti

αi(ti | τi)Ui(µN | τi)

= ∑
t−i∈T−i

p(t)φi(N,W (η , t,λ ,α))

≥ ∑
t−i∈T−i

p(t)vi(µ̂i, t,λ ,α)

≥

(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

max
di∈Di

∑
t−i∈T−i

p(t−i | ti)ui(di, t)

− ∑
τi∈Ti

αi(ti | τi)max
di∈Di

∑
t−i∈T−i

p(t−i | τi)ui(di,(τi, t−i)), (6.2)

where the first line follows from the fact that U(µN) is warranted by η , λ and α (cf. condition (iv′ )); the
second line follows from the first part of the proof; and finally, the last inequality uses (6.1) applied to τ i.
The desired conclusion is obtained from (6.2) together with Remark 2. �

The following result follows directly from the definitions (cf. Harsanyi (1963, sec. 10)).

Theorem 3 (Generalization of the Harsanyi NTU value).
Let Γ be a cooperative game with complete information, i.e., Ti is a singleton for every i ∈ N.
If µ̄N is an H-bargaining solution, then the utility allocation U(µ̄N) is a Harsanyi NTU value of
Γ. Conversely, if the utility allocation Ū = (Ūi)i∈N is a (non-degenerated) Harsanyi NTU value
of Γ, then there exists an H-bargaining solution of Γ, µ̄N , such that Ū = U(µ̄N).

We are now ready to compute our bargaining solution for the examples introduced in Section 3.

6.1 Example 1
Let us consider the vector of utility weights λ̄ = (λ̄1, λ̄2, λ̄ H

3 , λ̄ L
3 ) = (1,1,9/10,1/5). First, we

notice that for any feasible mechanism µN ∈ MN we have that

U(µN, λ̄) := U1(µN)+U2(µN)+ 9
10U3(µN | H)+ 1

5U3(µN | L) ≤ 10, (6.3)

28A TU game (N,W ) is weakly superadditive if and only if for each player i ∈ N, W (S\ i)+W({i})≤W (S) for
all coalitions S ⊆ N containing i. Clearly, by definition of the Shapley TU value, weak superadditivity implies that
φi(N,W ) ≥W ({i}) for every i ∈ N.
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Consider now the problem of finding the best incentive compatible and individually rational
utility allocation for each possible type of every player. Straightforward computations yield
that the best allocation for player 1 is (U1,U2,UH

3 ,UL
3 ) = (19/2,1/2,0,0). By symmetry, the

best allocation for player 2 is (1/2,19/2,0,0). Finally, (0,0,10,5) is simultaneously the best
allocation for both types of player 3. These three allocations are incentive efficient, and they
lie on the hyperplane U(µN, λ̄ ) = 10. Then, by convexity of M ∗

N , any individually rational
and incentive efficient mechanism µN must satisfy U(µN, λ̄ ) ≥ 10. Thus, (6.3) implies that
the incentive efficient frontier coincides with the hyperplane U(µN, λ̄ ) = 10 on the individually
rational zone. Therefore, in view of Theorem 2, condition (i ) implies that a value allocation can
only be supported by the utility weights λ̄ .29

The utility weights λ̄ reflect the optimal inter-type compromise between both types of player
3. To conceal his type, player 3 must achieve a balance that puts extra weight on the payoff
maximization goals of type L (inscrutability principle). This is what explains that λ̄ L

3 differs
from the prior probability p(L) by scaling up the actual utility of type L. On the other hand, the
optimal value of the dual variables in the dual problem for λ̄ is (ᾱ3(L | H), ᾱ3(H | L)) = (0,0).

Given these virtual scales, it can be easily verified that the only H-value of this game is30

(

U1,U2,UH
3 ,UL

3
)

=
(61

18 , 61
18 , 60

18 , 20
18

)

. (6.4)

The value allocation gives less to both types of player 3, compared to what they get players 1
and 2. This is due to the fact that, by requiring optimal threats to satisfy our egalitarian criterion,
coalitions {1,3} and {2,3} cannot agree to fully distribute the total gains of cooperation in state
L. Indeed, because players in coalition {i,3} (i = 1,2) are constrained to choose a feasible
allocation giving them equal gains (in the virtual utility scales), then they have to settle for a
sum of payoffs of at most $20/3(< $10) in state L. This implies that, in a two-person coalition
with 3, players 1 and 2 cannot expect to get more than $29/6(< $5) each. Hence, the expected
“marginal contribution” of player 3 in a two-person coalition with him is strictly lower than
what 1 and 2 can get by acting together. Consequently, 3 is perceived to have a weak bargaining
position. It then appears that the H-value reflects the game situation better that the M-value.

The asymmetry reflected in the allocation (6.4) comes uniquely from the fact that players 1
and 2 are adversely affected by 3’s low type. None of the inefficiencies created by the incentive
compatibility is taken into account: incentive constraints are not essential for the grand coalition
(i.e., incentive constraints do not impose any restriction for achieving an ex-post efficient allo-
cation) and optimal egalitarian threats are not required to be incentive compatible. The unique
coalitionally incentive compatible H-value of this game is

(

U1,U2,UH
3 ,UL

3
)

=
(41

12 , 41
12 , 40

12 , 10
12

)

. (6.5)

When we take account of the incentive constraints that coalitions {1,3} and {2,3} face, our
bargaining solution gives much less to player 3 in both states compared to the situation in
which incentive constraints only matter for the grand coalition (compare (6.4) and (6.5)). In

29The same utility weights support the unique M-value (see Section 3).
30Detailed computations are provided in the Supplementary material.
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fact, when coalition {i,3} (with i = 1,2) is required to choose a mechanism that is incentive
compatible, its members cannot agree on a virtual utility allocation giving them equal gains
without an efficiency loss. Thus player 3’s bargaining ability is further lowered by the necessity
for players to trust each other.

All in all, it seems that, in this particular game, our solution concept provides much more
agreement with what we expect the outcome to be.

6.2 Example 2
Proceeding as in Example 1, it can be shown that any incentive compatible and individually
rational mechanism is incentive efficient if and only if it satisfies

4
5U1(µN | H)+ 1

5U1(µN | L)+U2(µN)+U3(µN) = 78, (6.6)

The natural vector of utility weights is thus λ̄ = (λ̄ H
1 , λ̄ L

1 , λ̄2, λ̄3) = (4/5,1/5,1,1). For these
utility weights, the corresponding dual variables are (ᾱ1(L | H), ᾱ1(H | L)) = (0,0). Then, we
conclude that incentive constraints do not matter for the grand coalition. As it was previously
discussed in Section 3, the participation of player 3 in the grand coalition releases players 1 and
2 from the incentive constraints they face in coalition {1,2}. Unlike Example 1, here utility
weights and prior probabilities coincide. This is so because player 3 allows 1 and 2 to fully
distribute the gains from trade. Types are then essentially verifiable, as any transfer of utility
can be implemented by a utility equivalent incentive compatible mechanism.

Given these virtual scales, it can be checked that the interim allocation in (3.2) is also the unique
H-value of this game. Both the M-value and the H-value coincide because the virtual value of
coalition {1,2} is computed while using the vector (λ ,α) as specified for the grand coalition.
By doing so, we act as if incentive constraints do not matter for coalition {1,2}, although they
do.

By imposing incentive constraints for all intermediate coalitions, we have that the unique coali-
tionally incentive compatible H-value of this game is the allocation

(

U1,U2,UH
3 ,UL

3
)

= (45,13,38.6,0.8). (6.7)

The H-value generates an interesting alternative to the M-value in de Clippel’s example. This
game however also puts in evidence some “difficulties” with our bargaining solution. First, no-
tice that while it is the case that the coalitionally incentive compatible value allocation rewards
player 3, it is as if both players 1 and 2 pay $0.8 to player 3 in exchange of his service. This
may be considered as not reasonable since only player 2 needs the help of player 3 in order to
extract the whole cooperative surplus in both states. Second, the virtual worths of all coalitions
in our bargaining solution are computed using the vector (λ ,α) specified for the grand coali-
tion. As a consequence, the efficiency losses due to the incentive compatibility at the level of
all subcoalitions are not taken into account, unless incentive constraints are explicitly required.

It turns out that both examples presented in this paper are similar in nature, and that the H-
solution prescribes intuitively appealing outcomes in each case.
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7 Some Comments About the (Non-)Existence of the H-
solution

The H-solution is characterized by strong equity conditions that may lead to its non-existence
in some cases. In this section we shall exhibit an example of a 4-player cooperative game with
complete information in which there is no H-solution. The following hinders the existence
of the H-solution in this example: first, optimal egalitarian threats do not exist for some utility
weights; second, optimal egalitarian threats vary discontinuously with the utility weights, which
makes impossible the consistency of conditions (i) and (iv) in the definition of the H-solution.
This example can be used to construct a game with incomplete information satisfying the same
properties. The method is outlined in footnote 31 below. We study instead the game with
complete information, this being however easier to analyze. Finally, we discuss the reasons
why the methods and techniques used to obtain existence results of the Harsanyi NTU value
cannot be well adapted to games with incomplete information.

7.1 Example 3: Non-existence of the H-solution

Let ΓC be the following cooperative game (with complete information): the set of players is
N = {1,2,3,4}. Decision options for every coalition are Di = {di} (i ∈ N), D{1,2} = {D1 ×
D2}∪{d12} = {[d1,d2],d12}, D{1,3} = {D1 ×D3} = {[d1,d3]}, D{2,3} = {D2 ×D3}∪{d23} =
{[d2,d3],d23}, D{1,2,3} = {D1 ×D{2,3}}∪ {D{1,2} ×D3}, DS∪{4} = {DS ×D4} (S ⊂ N \ {4})
and DN = {D{1,2,3}×D4}∪{d1

N,d2
N,d3

N,d4
N}. Finally, utility functions are as follows:

dN (u1,u2,u3,u4)

[d1,d2,d3,d4] (0,0,0,0)
[d12,d3,d4] (2,2,0,0)
[d1,d23,d4] (0,1,1,0)

d1
N (−1,3,3,3)

d2
N (3,−1,3,3)

d3
N (3,3,−1,3)

d4
N (3,3,3,−1)

We notice that decisions [d1,d2,d3,d4], [d12,d3,d4] and [d1,d23,d4] are strictly Pareto domi-
nated. Hence, the Pareto frontier (of the grand coalition) is a bounded surface contained in the
hyperplane

u1 +u2 +u3 +u4 = 8.

Natural utility weights supporting an H-solution are λ̄i = 1 for all i∈ N. However, no egalitarian
solution can be constructed for λ̄ . Let us see this. For coalitions consisting of a single player
i (i ∈ N), the unique optimal egalitarian threat is the (deterministic) mechanism di. Similarly,
coalition {1,2} has a unique optimal egalitarian threat given by the (deterministic) mechanism
d12. For coalition {2,3} (resp. {1,3}) we have that the unique optimal egalitarian threat is d23
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(resp. [d1,d3]). Then, the egalitarian restrictions in (4.4) for coalition S = {1,2,3} reduce to:

u1(µS)−u3(µS) = 1 (7.1)
u2(µS)−u1(µS) = 1 (7.2)

Condition (7.2) implies that µS([d12,d3]) = 1−µS([d1,d23]) = 0. However, (7.1) requires that
µS([d12,d3]) > 0, which is a contradiction. We conclude that no egalitarian solution exists w.r.t.
λ̄ .

Proposition 4.
The game ΓC has no H-solution. This holds even if we allow some (but not all) utility weights
to vanish.31

A detailed proof is given in the Appendix. A further difficulty prevents the existence of an H-
solution in this game, namely, the optimal solution correspondence of (5.1) may not be upper-
hemicontinuous in the utility weights. Consider, for instance, coalition {1,2}. The set of fea-
sible expected utility allocations for {1,2} is given by the line segment ~ow illustrated in Figure
3.

o

u2

2

u12

λ1u1 = λ2u2
 w

Figure 3: Feasible allocations for {1,2}

For any vector λ > 0 such that λ1/λ2 6= 1, the unique optimal egalitarian threat is µ̄{1,2}(d12) =
1− µ̄{1,2}([d1,d2]) = 0, this being the unique feasible mechanism satisfying the egalitarian con-
straint λ1u1 = λ2u2. The corresponding utility allocation is o. However, when λ1/λ2 = 1, the
unique optimal egalitarian threat is µ̃{1,2}(d12) = 1− µ̃{1,2}([d1,d2]) = 1, achieving the utility
allocation w. We conclude that the optimal solutions correspondence of (5.1) for S = {1,2},
viewed as a function of λ1/λ2, is discontinuous. As stated earlier, this lack of continuity im-
pedes conditions (i) and (iv) to be simultaneously satisfied as the utility weights λ accommo-
date. This issue can only be appreciated while exhaustively analyzing conditions (i) and (iv)
for all values of λ (see proof of Proposition 4).

31 The game ΓC can be used to construct a game with incomplete information for which there is no H-solution.
Let N and (DS)S⊆N be defined as in ΓC. For each i = 1,2,3, let Ti be a singleton. Player 4 has private information
in the form of two possible types T4 = {A,B} with prior probabilities q(A) = 1− q(B) > 0. Utility functions are
defined as follows: wi(dN ,A) = ui(dN) and wi(dN ,B) = βui(dN) (with β > 0), where (ui)i∈N is defined as in ΓC.
Then, the game ΓI = {N,(DS)S⊆N ,(wi,Ti)i∈N ,q} has no H-solution. Indeed, because the incentives of player 4 are
fully aligned in both states, incentive constraints are not essential. Thus, we can set the Lagrange multipliers to be
α4(A | B) = α4(B | A) = 0. Virtual utilities then reduce to λ -weighted utilities. The rest of the analysis follows,
mutatis mutandis, the same reasoning as for ΓC.
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7.2 Free Disposal and the Structure of Incentives
When information is complete, the above difficulties are ruled out by considering games whose
characteristic function is comprehensive (“free disposal” assumption). Then, one is tempted to
accommodate free disposal activities by introducing decisions in each DS specifying how much
utility a player may discard. This has no significant consequence when information is com-
plete, however under asymmetric information, adding new decisions may change the incentive
structure of the game: free disposal can be used for signaling purposes, i.e., for weakening
incentive compatibility. As a result, for any interim utility allocation on the interim incentive
efficient frontier (of the grand coalition), we cannot generally extend the original game by in-
troducing additional decisions allowing players to discard utility (conditional on every state),
while leaving the original utility allocation efficient in the expanded problem32. In order to il-
lustrate this issue, consider again the (sub)game faced by players 1 and 3 in Example 1. Assume
now that player 3 is allowed to dispose of his utility in state H. Specifically, let d̃ be such that
u3(d̃,H) = 0, u3(d̃,L) = 5 and u1(d̃,H) = u1(d̃,L) = 0. Decision d̃ is equivalent to implement
decision d1

13 but then player 3 agrees to discard 10 units of his utility in state H. Now consider
the expanded problem with decision set D̃{1,3} = D{1,3}∪{d̃}. The new set of incentive feasible
interim utility allocations is depicted in Figure 4.

UH
3 UL

3

U1

�

�

�

�

�

�

(0,10,5)

(9.5,0,0)

(9,0,5)

(5,5,0)

Figure 4: Incentive feasible allocations for {1,3} in the expanded problem

When comparing Figures 2 and 4, we observe that the game has substantially changed after d̃
was introduced. As required, type H of player 1 can now achieve all the allocations in which he
discards any nonnegative amount of utility. However, permitting free disposal facilitated also
the fulfillment of incentive constraints, thus allowing both players to achieve higher interim
utilities with respect to the original problem33. In particular, any incentive efficient allocation
in the expanded game is ex-post efficient, which is not the case in the original game (cf. Figure

32Clearly, this issue is not present in ΓC, this being a game with complete information. Neither is it in ΓI ,
as incentive constraints are not essential in this game. Nevertheless, in more general games in which incentives
constraints are binding, the same difficulties are also encountered. In that cases, in addition to the utility weights λ ,
also the dual variables α have to be taken into consideration. Exemplify such situations is, however, more difficult
due to the endogenous nature of the dual variables.

33In this game, only type H has incentives to impersonate type L. In an effort to distinguish himself from
type H, type L may agree on a mechanism that discards an appropriate amount of utility in state H. Clearly, this
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1). This implies that incentive constraints are not essential in the enlarged problem. In addition,
the supporting utility weights to the Pareto frontier of the expanded bargaining problem are no
longer the same as in the original problem34.

8 Appendix: Proof of Proposition 4
Let µN be an H-solution of ΓC supported by λ and η = (µS)S⊆N . We verify recursively condi-
tions (i)−(iv). Because ΓC has complete information, there are no incentive constraints, which
is equivalent to set α = 0, so that virtual utility reduces to λ -weighted utility and the egalitarian
criterion in (4.4) becomes

λi
(

ui(µS)−ui(µS\ j)
)

= λ j
(

u j(µS)−u j(µS\i)
)

, ∀i, j ∈ S. (8.1)

For coalitions consisting of a single player i, it is clear that ui(µi) = 0. For all two-person
coalitions containing player 4, D{i,4} = {[di,d4]}. Then, it follows immediately that ui(µ{i,4}) =
u4(µ{i,4}) = 0 for all i ∈ N \4. Similarly, D{1,3} = {[d1,d3]}, thus u1(µ{1,3}) = u3(µ{1,3}) = 0.
Consider now coalition {1,2}. It can be easily verified that an optimal egalitarian threat for this
coalition satisfies:

(

u1(µ{1,2}),u2(µ{1,2})
)

=







(2,2), if λ1 = λ2 > 0
(y,y), y ∈ [0,2], if λ1 = λ2 = 0
(0,0), if λ1 6= λ2

Similarly,

(

u2(µ{2,3}),u3(µ{2,3})
)

=







(1,1), if λ2 = λ3 > 0
(y,y), y ∈ [0,1], if λ2 = λ3 = 0
(0,0), if λ2 6= λ3

We proceed now by cases.

Case 1: λ1 = λ2 = λ3 > 0 Condition (8.1) applied to S = {1,2,3} lead to the equations (7.1)
and (7.2). We have already shown in Section 7 that these two equations are inconsistent.

Case 2: λ1 = λ2 > 0, λ2 6= λ3 Without loss of generality, we can set λ1 = λ2 = 1. It can be
easily verified that, (8.1) implies: u1(µ{1,2,3}) = u2(µ{1,2,3}) = u1(µ{1,2,4}) = u2(µ{1,2,4}) = 2

“commitment strategy” does not affect type L, but is harmful for type H. Therefore, type H will never accept any
such mechanism. In this way, types become essentially verifiable. This example shares some features in common
with an exchange economy with differential information proposed by Forges, Mertens and Vohra (2002, sec. 2.5).

34It is worth noticing that in two-person games the H-solution always exists. This follows from the existence of
the M-solution, since by Theorem 1 both solutions coincide whenever n = 2. The issue illustrated in the previous
example does not bring any difficulty for the existence of the H-solution in two-person games. The reason is that,
equity imposes no restrictions for singleton coalitions. Hence, in this case, allowing for free disposal is no longer
necessary for guaranteeing existence and (upper-hemi)continuity of the optimal egalitarian threats.
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and u3(µ{1,2,3}) = u4(µ{1,2,4}) = u2(µ{2,3,4}) = u3(µ{2,3,4}) = u4(µ{2,3,4}) = 0. Then, condition
(8.1) applied to N reduces to

u1(µN) = u2(µN) (8.2a)
u1(µN) = λ3u3(µN)+2 (8.2b)
u1(µN) = λ4u4(µN)+2 (8.2c)

On the other hand, we have that

u1(dN)+u2(dN)+λ3u3(dN)+λ4u4(dN) =







2+3(λ3 +λ4), if dN = d1
N , d2

N
6−λ3 +3λ4, if dN = d3

N
6+3λ3 −λ4, if dN = d4

N

(8.2d)

Subcase 2.1: λ3 > 1, λ4 > 1 Condition (i) implies that µN(d3
N) = µN(d4

N) = 0. But then,
(8.2a) requires that µN(d1

N) = µN(d2
N) = 1/2. Hence, u1(µN) = u2(µN) = 1 and u3(µN) =

u4(µN) = 3. With this, (8.2b) reduces to λ3 = −1/3, which is a contradiction.

Subcase 2.2: λ3 > 1, λ4 = 1 Condition (i) implies that µN(d3
N) = 0. But then, u1(µN) <

λ3u3(µN)+2, which contradicts (8.2b).

Subcase 2.3: λ3 > 1, λ4 < 1 Condition (i) implies that µN(d4
N) = 1. But then, (8.2c) reduces

to λ4 = −1.

Subcase 2.4: λ3 < 1, λ4 ≥ 1 Condition (i) implies that µN(d3
N) = 1. But then, u1(µN) >

λ3u3(µN)+2, which contradicts (8.2b).

Subcase 2.5: λ4 < λ3 < 1 Condition (i) implies that µN(d4
N) = 1. The same conclusion as in

the case 2.3 is obtained.

Subcase 2.6: λ3 < λ4 < 1 Condition (i) implies that µN(d3
N) = 1. The same conclusion as in

the case 2.4 is obtained.

Subcase 2.7: 0 < λ3 = λ4 < 1 Condition (i) implies that µN(d3
N) = 1− µN(d4

N) = β with
β ∈ [0,1]. Condition (8.2b) implies

β [1+λ3]+ (1−β )[1−3λ3] = 0 ⇒ β =
3λ3 −1

4λ

Similarly, (8.2c) implies

β [1−3λ3]+ (1−β )[1+λ3] = 0 ⇒ β =
1+λ3

4λ

Therefore, 3λ3 −1 = 1+λ3, or equivalently, λ3 = 1, which is a contradiction.
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Subcase 2.8: λ3 = λ4 = 0 As in the previous case, condition (i) implies that µN(d3
N) = 1−

µN(d4
N) = β with β ∈ [0,1]. However, (8.2a) and (8.2b) imply that u1(µN) = u2(µN) = 2, which

cannot be satisfied by any such mechanism.

Case 3: λ1 = λ2 = λ3 = 0 From (8.1) with S = N, i = 2 and j = 4, we get that λ4u4(µN) =
0 (since u4(µ{1,3,4}) = 0). Hence, ∑i∈N λiui(µN) = 0. However, condition (i) implies that
∑i∈N λiui(µN) = 3, which is a contradiction.

Case 4: λ1 = λ2 = 0, λ2 6= λ3 Condition (8.1) applied to S = N with i = 2 and j = 3,4 gives
λ3u3(µN) = λ4u4(µN) = 0 (since u3(µ{1,3,4}) = u4(µ{1,3,4}) = 0). Hence, ∑i∈N λiui(µN) = 0.
However, condition (i) implies that ∑i∈N λiui(µN) > 0, which is a contradiction.

Case 5: λ1 6= λ2, λ2 = λ3 > 0 Without loss of generality, we can set λ2 = λ3 = 1. It can be
easily verified that, (8.1) implies: u2(µ{1,2,3}) = u3(µ{1,2,3}) = u2(µ{2,3,4}) = u3(µ{2,3,4}) = 1
and u1(µ{1,2,3}) = u1(µ{1,2,4}) = u2(µ{1,2,4}) = u4(µ{1,2,4}) = u4(µ{2,3,4}) = 0. Then, condition
(8.1) applied to N reduces to

λ1u1(µN) = u2(µN)−1 (8.3a)
λ1u1(µN) = u3(µN)−1 (8.3b)
λ1u1(µN) = λ4u4(µN) (8.3c)

On the other hand, we have that

λ1u1(dN)+u2(dN)+u3(dN)+λ4u4(dN) =







2+3(λ1 +λ4), if dN = d2
N, d3

N
6−λ1 +3λ4, if dN = d1

N
6+3λ1 −λ4, if dN = d4

N

(8.3d)

Subcase 5.1: λ1 > 1, λ4 > 1 Condition (i) implies that µN(d2
N) = 1 − µN(d3

N) = β with
β ∈ [0,1]. But then, since u2(µN) = u3(µN) (by (8.3a) and (8.3b)), we must necessarily have
that β = 1/2. Therefore, u2(µN) = u3(µN) = 1 and u1(µN) = u4(µN) = 3. However, this
together with (8.3a) imply that λ1 = 0, which is a contradiction.

Subcase 5.2: λ1 > 1, λ4 = 1 Condition (i) implies that µN(d1
N) = 0. Hence, (since λ1 > 2/3)

λ1u1(µN) > u2(µN)−1, which contradicts (8.3a).

Subcase 5.3: λ1 > 1, λ4 < 1 Condition (i) implies that µN(d4
N) = 1. With this, (8.3a) implies

that λ1 = 2/3 < 1, which is a contradiction.

Subcase 5.4: λ1 < 1, λ4 ≥ 1 Condition (i) implies that µN(d1
N) = 1. This together with (8.3a)

imply that λ1 = −2.

Subcase 5.5: λ1 < λ4 < 1 Condition (i) implies that µN(d1
N) = 1. The same conclusion as in

case 5.4 is obtained.
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Subcase 5.6: λ4 < λ1 < 1 Condition (i) implies that µN(d4
N) = 1. Hence, (8.3c) implies that

3λ1 = −λ4. Therefore, (since λ1,λ2 ≥ 0) λ1 = λ2 = 0, which is a contradiction.

Subcase 5.7: 0 < λ4 = λ1 < 1 Condition (i) implies that µN(d1
N) = 1− µN(d4

N) = β , with
β ∈ [0,1]. On the other hand, (8.3c) implies that u1(µN) = u4(µN). Hence, we must have that
β = 1/2. But then, (8.3a) implies that λ1 = 2, which is a contradiction.

Subcase 5.8: 0 = λ4 = λ1 As in the previous case, condition (i) implies that µN(d1
N) = 1−

µN(d4
N) = β , with β ∈ [0,1]. Hence, u2(µN) = u3(µN) = 3. However, by (8.3a) and (8.3b),

u2(µN) = u3(µN) = 1, which contradicts the previous fact.

Case 6: λ1 6= λ2, λ2 = λ3 = 0 Condition (8.1) applied to S = N with i = 2 and j = 1,4 gives
λ1u1(µN) = λ4u4(µN) = 0 (since u1(µ{1,3,4}) = u4(µ{1,3,4}) = 0). Hence, ∑i∈N λiui(µN) = 0.
However, condition (i) implies that ∑i∈N λiui(µN) = 3(1+λ4) > 0, which is a contradiction.

Case 7: 0 = λ2 6= λ1, λ2 6= λ3 Condition (8.1) applied to S = N with i = 2 and j = 1,3,4 gives
λ1u1(µN) = λ3u3(µN) = λ4u4(µN) = 0 (since u1(µ{1,3,4}) = u3(µ{1,3,4}) = u4(µ{1,3,4}) = 0).
Hence, ∑i∈N λiui(µN) = 0. However, condition (i) implies that ∑i∈N λiui(µN) = 3(λ1 + λ3 +
λ4) > 0 (since we must have λ1 > 0 and λ3 > 0). But this is a contradiction.

Case 8: λ2 > λ1, λ2 6= λ3 Condition (8.1) applied to S = N with i = 1 and j = 2 gives
λ1u1(µN) = λ2u2(µN) (since u1(µ{1,3,4}) = u2(µ{2,3,4}) = 0). On the other hand, condition
(i) implies that µN(d2

N) = 0. But then, this implies that λ1u1(µN) < λ2u2(µN), which is a
contradiction.

Case 9: λ2 < λ1, λ2 6= λ3 As in the previous case, we have that λ1u1(µN)= λ2u2(µN). We also
have that condition (i) implies µN(d1

N) = 0. But then, this implies that λ1u1(µN) > λ2u2(µN),
which is a contradiction.

We conclude that ΓC has no H-solution. This completes the proof.
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Chapter 2
On the Values for Bayesian Cooperative
Games with Sidepayments

1 Introduction
In this paper we explore the relationship between the following value like solution concepts for
cooperative games with incomplete information1: Myerson’s (1984b) M-solution, Salamanca’s
(2016) H-solution and A. Kalai and E. Kalai’s (2013) cooperative-competitive solution. We
consider a model in which utility transfers in the form of sidepayments are allowed. Trans-
ferable utility is a common assumption in Cooperative Game Theory. It states that utilities
are quasi-linear in money and unrestricted monetary transfers can be performed (see Aumann
(1960)). Our model, however, may exhibit restricted monetary transfers. The reason is that,
in principle, private information is unverifiable. As a consequence, allowable state-contingent
contracts are required to be incentive compatible and, thus, not all state-contingent plans of
sidepayments might be feasible.

It is well known that utility transfers serve as a linear activity that can be used for signal-
ing purposes, i.e., for helping to satisfy incentive compatibility. Yet, in our model, a transfers
scheme will typically affect the interim utilities, which makes impossible to transfer interim uti-
lity across types without affecting the incentive constraints. In particular, one cannot generally
construct, corresponding to a first best interim utility allocation, a transfer scheme satisfying
incentive compatibility (see, e.g., example 1 in Myerson (2007))2.

We separate the analysis of our model in two sections depending on the number of players and
the amount of externalities involved in the game situation. We start by considering general n-
person Bayesian cooperative games in which the actions available to any particular coalition
do not have an impact on the utilities of the players in the complementary coalition (lack of
strategic externalities). Coalitions are then said to be orthogonal. We allow, however, that a

1This chapter corresponds to the paper: On the Values for Bayesian Cooperative Games with Sidepayments,
HAL Working paper 01468867, 2017.

2Similar difficulties are also encountered by Forges, Mertens and Vohra (2002) to analyze the incentive com-
patible interim (coarse) core of an exchange economy with differential information and quasi-linear utilities.
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player’s utility can depend on other players’ information (informational externalities). When
considering the particular case in which information is complete, a cooperative analysis can be
done by applying any standard value-like solution concept for non-transferable utility (NTU)
games. In addition, incentive constraints disappear, thus utility becomes fully transferable.
Therefore, as it is widely known, both Harsanyi’s (1963) NTU value and Shapley’s (1969)
NTU value coincide. Moreover, their formula is given by Shapley’s (1953) transferable utility
(TU) value. We extend this result to games with incomplete information.

Myerson (1984a,b) developed an approach in which incentive constraints are used to define
the virtual utility of players. Virtual utilities play the same role as that of weighted utility in
the Harsanyi-Shapley method of fictitious transfers3. This approach has been used in Myerson
(1984b) to extend the Shapley NTU value to an environment with incomplete information. It
has also been recently used in Salamanca (2016) to generalize the Harsanyi NTU value. Our
first main result (Theorem 1) establishes that these two cooperative solutions are interim utility
equivalent in our model with sidepayments and orthogonal coalitions. Their common definition,
however, cannot be described by a simple closed form expression as the Shapley TU value in
games with complete information. The reason is that, due to the restricted nature of the utility
transfers, the interim incentive efficient frontier is not generally an hyperplane as it would be in
a game with complete information.

The subsequent analysis is devoted to cooperation in two-person Bayesian cooperative games in
which the players face both informational and strategic externalities. In its more general form,
Myerson’s (1984b) solution allows for both kinds of externalities. Thus it can be applied to this
particular class of games. Indeed, his cooperative solution extends Nash’s (1953) bargaining
solution with variable threats. More recently, A. Kalai and E. Kalai (2013) proposed a value for
two-person Bayesian games (in strategic form) with transferable utility. Their semi-cooperative
solution, called the cooperative-competitive (or “coco”) value, is based on a decomposition of
the game into cooperative and competitive component games. The coco value conceptually dif-
fers from Myerson’s solution in that the former ignores potential incentive compatibility issues.
Also, it is defined only at the ex-ante stage. Kalai and Kalai (2013) however conjectured the
existence of a close relationship between these two solution concepts in the case private infor-
mation is verifiable ex-post4. Our second main result (Theorem 2) provides a positive answer to
this open problem. We show that under de Clippel and Minelli’s (2004) verifiable types assump-
tion, Myerson’s solution and the coco value are ex-ante utility equivalent. Myerson’s solution
is thus an appropriate generalization of the coco value to games in which information is not ve-
rifiable ex-post. Our result also exhibits why extending the coco value to general environments
in which no information becomes observable ex-post cannot be done without referring to an
appropriate interim framework as in Myerson’s (1984a,b) approach.

The paper is organized as follows. Section 2 is devoted to specifying formally the model of
a Bayesian cooperative game with sidepayments. In Section 3 we introduce the concept of
incentive efficiency and its relation to the virtual utility approach. Sections 4 and 5 contain the
main body of results. Section 4 analyzes n-player games with orthogonal coalitions. Finally,
Section 5 focus on the two-player case.

3See Myerson (1992) for a detailed explanation of the fictitious transfers method.
4This open problem was also pointed out by Forges and Serrano (2013).
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2 Bayesian Cooperative Game
A cooperative game with incomplete information is a tuple Γ = {N,(DS)S⊆N,(Ti,ui)i∈N, p},
where N = {1,2, ...,n} denotes the set of players and for any (nonempty) coalition5 S ⊆ N, DS
is the set of feasible decisions for S; for any player i ∈ N, Ti denotes the (finite) set of possible
types of player i, p is the prior probability distribution over TN = ∏i∈N Ti, and ui : DN ×TN → R

is the utility function of player i. The sets of feasible decisions are finite and superadditive,
namely, for any two disjoint coalitions S and R, DR ×DS ⊆ DR∪S. This definition allows for
both informational and strategic externalities, since the payoffs of the members of a coalition S
may depend on the types and decisions of the players in N \S.

We assume types are stochastically independent6 and p(ti) > 0 for all ti ∈ Ti and all i ∈ N. We
use the notations t−i = (t j) j∈N\i ∈ T−i = ∏ j∈N\i Tj and tS = (ti)i∈S ∈ TS = ∏i∈S Ti. For simplicity,
we drop the subscript N in the case of the grand coalition, so we define D = DN and T = TN .

A mechanism for coalition S ⊆ N is a pair of functions (µS,xS) defined by7

µS : TS → ∆(DS)

tS 7→ µS( · | tS)

xS : TS → R
S

tS 7→ (xi
S(tS))i∈S

The component µS is a type-contingent lottery on the set of feasible decisions for S, while xS is
a vector of type-contingent monetary transfers. Monetary transfers must satisfy the following
budget feasibility condition8:

∑
i∈S

xi
S(tS) ≤ 0, ∀tS ∈ TS (2.1)

In the case S 6= N, the mechanism (µS,xS) stands as a threat to be carried out only if N \ S
refuses to cooperate with S. We let the set of budget-feasible mechanisms satisfying (2.1) be
denoted FS.

The (interim) expected utility of player i ∈ N of type ti under the mechanism (µN ,xN) when he
pretends to be of type τi (while all other players are truthful) is

Ui(µN ,xN,τi | ti) = ∑
t−i∈T−i

p(t−i)

[

xi
N(τi, t−i)+ ∑

d∈D
µN(d | τi, t−i)ui(d,(ti, t−i))

]

Monetary transfers are added linearly to the expected utilities. As is standard, we denote
Ui(µN ,xN | ti) = Ui(µN ,xN, ti | ti).

5For any two sets A and B, A ⊆ B denotes weak inclusion (i.e., possibly A = B), and A ⊂ B denotes strict
inclusion.

6This assumption is made without loss of generality, since the solution concepts studied in this paper satisfy
the probability-invariance axiom described by Myerson (1984a), and so for any game with dependent types, prior
probabilities and utilities can be jointly modified in a way that the new game has independent types and both games
impute probability and utility functions that are decision-theoretically equivalent.

7For any finite set A, ∆(A) denotes the set of probability distributions over A.
8Other forms of budget feasibility can be defined. For instance, Prescott and Townsend (1984) and Myer-

son (2007) consider average budget feasibility, i.e., ∑tS∈TS
p(tS)∑i∈S xi

S(tS) ≤ 0. In Myerson (2007), the amount
∑tS∈TS

p(tS)∑i∈S xi
S(tS) is interpreted as the expected payoff to the mediator.
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A mechanism (µN ,xN) is incentive compatible if and only if

Ui(µN ,xN | ti) ≥Ui(µN ,xN ,τi | ti), ∀i ∈ N, ∀ti,τi ∈ Ti

By the revelation principle, any Nash equilibrium of any noncooperative game that the players
could design in order to exchange information and make decisions can be equivalently repre-
sented by an incentive compatible mechanism. Hence, there is no loss of generality in restricting
our attention to such incentive compatible mechanisms. Also, we notice that the incentive con-
straints only depend on the conditional expected monetary transfers. Hence we can restrict
ourselves without loss of generality to deterministic money transfers. A budget-feasible and
incentive-compatible mechanism for the grand coalition is said to be feasible for N. We denote
F ∗

N the set of feasible mechanisms for N.

3 Incentive Efficiency and Virtual Utility
A mechanism is (interim) incentive efficient for the grand coalition if and only if it is feasible and
no other feasible mechanism yields strictly higher expected utilities to all types of all players.
Incentive efficient mechanisms can be characterized using the concept of virtual utility.

Given vectors λ ∈ ∏i∈N R
Ti
+ and α ∈ ∏i∈N R

Ti×Ti
+ , the virtual utility of a decision d ∈ D in state

t ∈ T for player i ∈ N is defined as follows:

vi(d, t,λ ,α) =
1

p(ti)

[(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

ui(d, t)− ∑
τi∈Ti

αi(ti | τi)ui(d,(τi, t−i))

]

The vectors λ and α are called the virtual utility scales. The virtual utility of player i is a
distorted utility scale that exaggerates the difference between his actual utility and the utilities
of i’s other types that would be tempted to imitate him. The following characterization follows
from duality theory of linear programming (a detailed reasoning is given in Myerson (2007)).

Proposition 1 (Incentive efficiency).
A feasible mechanism (µN ,xN)∈F ∗

N is incentive efficient if and only if there exist λ ∈ ∏i∈N R
Ti
+

and α ∈ ∏i∈N R
Ti×Ti
+ such that

αi(τi | ti) [Ui(µN ,xN | ti)−Ui(µN ,xN ,τi | ti)] = 0, ∀i ∈ N, ∀ti ∈ Ti, ∀τi ∈ Ti (3.1)

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)− ∑
τi∈Ti

αi(ti | τi) = p(ti), ∀i ∈ N, ∀ti ∈ Ti (3.2)

∑
d∈D

µN(d | t) ∑
i∈N

vi(d, t,λ ,α) = max
d∈D

∑
i∈N

vi(d, t,λ ,α), ∀t ∈ T (3.3)

∑
i∈N

xi
N(t) = 0, ∀t ∈ T (exact budget feasibility) (3.4)
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Equation (3.1) is the usual complementary slackness condition. Equations in (3.2) are called
by Myerson (2007) hydraulic equations: consider a network in which at each node a type ti
is located. If we interpret p(ti) as the flow into de network at ti, λi(ti) as the flow out of the
network at ti, and αi(τi | ti) as the flow from τi to ti, then (3.4) says that these flows are balanced
at each node. Finally, (3.3)-(3.4) implies that any incentive efficient mechanism determines an
allocation that is ex-post efficient in terms of the virtual utility scales. Hence, one could say
that incentive compatibility compels the players to behave according to their virtual utilities.
Myerson (1984b) refers to this idea as the virtual utility hypothesis (see Myerson (1991, ch. 10)
for a detailed discussion).

4 Values for Bayesian Cooperative Games with Orthogonal
Coalitions

As in most of the literature in cooperative game theory, in this section we shall assume that
coalitions are orthogonal, namely, when coalition S ⊆ N chooses an action which is feasible for
it, the payoffs to the members of S do not depend on the actions of the complementary coalition
N \S. Formally,

ui((dS,dN\S), t) = ui((dS,d′
N\S), t)

for every S, i ∈ S, dS ∈ DS, dN\S,d′
N\S ∈ DN\S and t ∈ T . Then we can let ui(dS, t) denote the

utility for player i ∈ S if dS ∈ DS is carried out. That is, ui(dS, t) := ui((dS,dN\S), t) for some
dN\S ∈ DN\S (recall that DS × DN\S ⊆ D). This assumption excludes strategic externalities.
However, the payoffs of the members of a coalition S might still depend on the types of the
players in N \S. Hence, informational externalities are allowed.

When information is complete, the orthogonal coalitions hypothesis allows to describe a NTU
game as a collection of feasible utility sets. This characteristic function form suppresses any
explicit mention of the decisions generating the utilities. Although implicitly, we assume that an
utility allocation uS is feasible for S if the players in S together have a joint strategy9 that enables
them to allocate uS. If utilities are linear in money and players can make unrestricted sidepay-
ments of money, we obtain a TU game10. It is well known that both the Shapley NTU value
and the Harsanyi NTU value of a TU game coincide and its formula is given by the Shapley
TU value11. Although, in our model, utility may not be fully transferable due to the presence
of incentive constraints, we provide an analogous result in the class of Bayesian cooperative
games.

9This may include a correlated strategy or a joint decision, discarding utility or even transferring utility.
10Indeed, let V = (V (S))S⊆N be a NTU game. For each S ⊆ N, let P(S) := {u ∈ R

S | ∑i∈S ui ≤ 0} denote the
set of (unrestricted) sidepayments for the members of S. Then, the game W = (V (S)+P(S))S⊆N is a TU game for
which the worth of coalition S is w(S) = maxv∈V (S) ∑i∈S vi and W (S) = {w ∈ R

S | ∑i∈S wi ≤ w(S)}.
11The fact that the Shapley NTU value coincides with the Shapley TU value for TU games can be consulted in

Myerson (1991, pp. 470). On the other hand, Proposition 4.10 in Hart (1985b) establishes the equivalence between
the Harsanyi NTU value and the Shapley TU value in TU games.
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4.1 The M-Solution
We consider the fictitious game in which the players make interpersonal utility comparisons
in terms of some fixed virtual scales (λ ,α). For any coalition S, we let WS(µS,xS, t,λ ,α) be
the sum of virtual utilities that the members of S would expect in state t when they select the
mechanism (µS,xS) as a threat, that is12

WS(µS,xS, t,λ ,α) = ∑
i∈S

[

vi(µS, t,λ ,α)+ xi
S(tS)

]

(4.1)

where vi(µS, t,λ ,α) is the linear extension of vi( ·, t,λ ,α) over µS. For any vector of threats η =
(µS,xS)S⊆N , we define W (η, t,λ ,α) = (WS(µS,xS, t,λ ,α))S⊆N as the characteristic function
game when virtual utility is fully transferable in state t. Let φ be the Shapley TU value operator;
for i ∈ N, φi(N,W (η, t,λ ,α)) will thus denote the Shapley TU value of player i in the virtual
game when the vector of threats η is selected.

The interim allocation ω ∈ ∏i∈N R
Ti is warranted by λ , α and η if and only if

(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

ωi(ti)− ∑
τi∈Ti

αi(ti | τi)ωi(τi) =

∑
t−i∈T−i

p(t)φi(N,W (η, t,λ ,α)), ∀i ∈ N, ∀ti ∈ Ti (4.2)

In other words, ω corresponds to the real utility allocation which would give every type of each
player his expected Shapley TU value in the virtual game.

We say that η = (µS,xS)S⊆N is a vector of rational threats (w.r.t. λ and α) if, for each S ⊆ N,
the mechanism (µS,xS) is an optimal solution to

max
(νS,yS)∈FS

∑
t∈T

p(t)WS(νS,yS, t,λ ,α) (4.3)

A mechanism (µS,xS) is an optimal solution to (4.3) if and only if, for every tS ∈ TS,

∑
i∈S

vi(µS, tS,λ ,α) = max
dS∈DS

∑
i∈S

vi(dS, tS,λ ,α) and ∑
i∈S

xi
S(tS) = 0,

where
vi(dS, tS,λ ,α) := ∑

tN\S∈TN\S

p(tN\S)vi(dS, t,λ ,α)

and vi(µS, tS,λ ,α) is the linear extension of vi( ·, tS,λ ,α) over µS (recall that µS is measurable
w.r.t. TS).

12In the virtual game, sidepayments are meant to be done in terms of the virtual scales (λ ,α). Hence an appro-
priate definition for WS should be WS(µS,xS, t,λ ,α) = ∑i∈S vi(µS, t,λ ,α)+βi(ti,λ ,α)xi

S(tS), where βi(ti,λ ,α) :=
[

λi(ti)+ ∑τi∈Ti αi(τi | ti)−∑τi∈Ti αi(ti | τi)
]

/p(ti). However, the scales (λ ,α) are selected endogenously in a way
that the mechanism (µN ,xN) satisfies (3.2). Then, we can set βi(ti,λ ,α) = 1 for all i ∈ N and all ti ∈ Ti.
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Definition 1 (M-solution (Myerson, 1984b)).
A feasible mechanism for the grand coalition (µ̄N , x̄N) ∈ F ∗

N is a M-solution, if there exist
vectors λ > 0, α ≥ 0, and η = (µS,xS)S⊆N with (µN ,xN) = (µ̄N , x̄N) such that:

(i) (µN ,xN) satisfies (3.1)-(3.4) for λ and α .

(ii) η is a vector of rational threats w.r.t. λ and α .

(iii) U(µN,xN) = (Ui(µN ,xN | ti))ti∈Ti, i∈N is warranted by λ , α and η .

The vector U(µN,xN) of warranted claims is called a M-value. We denote by VM(Γ) the set of
M-values of Γ.13

4.2 The H-Solution
A first component in the definition of the H-solution is the construction of a vector of threats
called an egalitarian solution. An egalitarian solution requires threats to satisfy a condition
of average balanced contributions (principle of equal gains), and differs from the H-solution
in that the latter endogenously determines the virtual scales (λ ,α) by additionally imposing a
utilitarian criterion.

Given a vector of virtual scales (λ ,α), a vector of threats η = (µS,xS)S⊆N is an egalitarian
solution (w.r.t. λ and α) if and only if, for all S ⊆ N, the mechanism (µS,xS) in an optimal
solution to

max
(νS,yS)∈FS

∑
t∈T

p(t)WS(νS,yS, t,λ ,α)

s.t. ∑
t−i∈T−i

p(t−i) ∑
j∈S\i

[

vi(νS, t,λ ,α)+ yi
S(tS)− vi(µS\ j, t,λ ,α)− xi

S\ j(tS\ j)
]

= ∑
t−i∈T−i

p(t−i) ∑
j∈S\i

[

v j(νS, t,λ ,α)+ y j
S(tS)− v j(µS\i, t,λ ,α)− x j

S\i(tS\i)
]

,

(4.4)

∀ti ∈ Ti, ∀i ∈ S

We notice that an egalitarian solution must be constructed recursively: given the vector of
threats (µS\ j,xS\ j) j∈S, (µS,xS) is determined solving (4.4). The possibility to make unrestricted
sidepayments in terms of the virtual utility scales guarantees that this construction is always
possible14.

In the problem (4.4), the objective function is the same as in (4.3). In an egalitarian solution,
however, optimal threats are required to be “equitable”. Here, equitable means that the ex-
pected average virtual contribution of the different players in S to player i of type ti (in coalition

13Definition 1 involves strictly positive utility weights λ . This complicates matters for obtaining existence
results of the M-solution. Myerson (1984b) solves this dilemma by slightly enlarging the solution set to include
utility allocations that are reasonable as emerging from limit points.

14In the absence of sidepayments, the optimization problem in (4.4) may not be feasible. The difficulty is due to
a lack of comprehensiveness in the set of attainable virtual utility allocations (see Section 7 in Salamanca (2016)).
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S) equals the expected average virtual contribution of player i to the different players in S as
assessed by type ti (see Section 4 in Salamanca (2016) for a justification of this equity criterion).

Definition 2 (H-Solution (Salamanca, 2016)).
A feasible mechanism for the grand coalition (µ̄N , x̄N) ∈ F ∗

N is an H-solution, if there exist
vectors λ > 0, α ≥ 0, and η = (µS,xS)S⊆N with (µN ,xN) = (µ̄N , x̄N) such that:

(i) (µN ,xN) satisfies (3.1)-(3.4) for λ and α .

(ii) η is an egalitarian solution w.r.t. λ and α .

The vector U(µN ,xN) of interim utilities is called an H-value. We denote by VH(Γ) the set of
H-values of Γ.

4.3 Reconciling the Differences
When comparing the previous solutions, both satisfy the utilitarian conditions (3.1)-(3.4). In
addition, for any egalitarian solution η = (µS,xS)S⊆N , U(µN,xN) is warranted by λ , α and η .15

Hence, the M-solution and the H-solution differ only in the way both determine the threats for
intermediate coalitions. We will show, however, that this difference disappear in the present
model with sidepayments. Formally, we are going to prove the following:

Theorem 1.
Let Γ be a Bayesian cooperative game with orthogonal coalitions and sidepayments. Then,
VM(Γ) = VH(Γ).

In order to establish this result, we shall construct a particular class of threat mechanisms which
will help us to establish a certain connection between the rational threats and the egalitarian
solution. This relationship is stated in Lemma 1. The final conclusion of Theorem 1 follows
from the double inclusion established in Propositions 2 and 3.

Fix the virtual scales (λ ,α) and let S ⊆ N be a coalition. Given a vector of threats (µS,xS)R⊂S,
we define

ri
S(tS,λ ,α) := ∑

R⊂S
i∈R

(−1)|S\R|+1 [vi(µR, tS,λ ,α)+ xi
R(tR)

]

, ∀tS ∈ TS. (4.5)

The quantity ri
S(tS,λ ,α) can be thought as the cumulated “virtual dividends” that player i ∈ S

expects in state tS from his participation in all coalitions R ⊂ S to which he belongs.

Given the vector rS(λ ,α) = (ri
S(tS,λ ,α))i∈S, tS∈TS , consider a threat mechanism (µ̄S, x̄S) for

coalition S defined by16

∑
i∈S

vi(µ̄S, tS,λ ,α) = ∑
i∈S

v∗i (tS,λ ,α), ∀tS ∈ TS, (4.6a)

15See Remark 3 in Salamanca (2016).
16It is worth noting that (µ̄S, x̄S) is not uniquely determined by (4.6a)-(4.6b). Indeed, there may be several

random joint decisions µS satisfying (4.6a). Yet, once µS is determined, there exists a unique x̄S satisfying (4.6b)
and (4.7a)-(4.7b).
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x̄i
S(tS) = v∗i (tS,λ ,α)− vi(µ̄S, tS,λ ,α), ∀i ∈ S, ∀tS ∈ TS (4.6b)

where v∗(λ ,α) = (v∗i (tS,λ ,α))i∈S,tS∈TS is the solution to

v∗i (tS,λ ,α)− ri
S(tS,λ ,α) = v∗j(tS,λ ,α)− r j

S(tS,λ ,α), ∀i, j ∈ S, ∀tS ∈ TS. (4.7a)

∑
i∈S

v∗i (tS,λ ,α) = max
dS∈DS

∑
i∈S

vi(dS, tS,λ ,α), ∀tS ∈ TS. (4.7b)

The system of linear equations in (4.7a)-(4.7b) is always solvable, and its solution is unique17,
hence v∗i (λ ,α) is well defined. Notice also that for each tS ∈ TS, the transfers x̄S are exactly
balanced

∑
i∈S

x̄i
S(tS) = ∑

i∈S
v∗i (tS,λ ,α)−∑

i∈S
vi(µ̄S, tS,λ ,α) = 0

Lemma 1.
Let (λ ,α) be fixed. For a given coalition S ⊆ N, let (µ̄S, x̄S) be defined by (4.6a)-(4.6b) with
(µR,xR)R⊂S. Then, (µ̄S, x̄S) is an optimal solution to (4.3). If, in addition, for every R ⊂ S,
(µR,xR) is feasible in (4.4) w.r.t (µR\ j,xR\ j) j∈S. Then, (µ̄S, x̄S) is also an optimal solution to
(4.4) w.r.t. (µS\ j,xS\ j) j∈S.

Proof. The fact that (µ̄S, x̄S) is an optimal solution to (4.3) is straightforward. Let (µS,xS) be an optimal
solutions of (4.4) w.r.t. (µS\ j,xS\ j) j∈S. We notice that

∑
tS∈TS

p(tS)

[

∑
i∈S

vi(µ̄S, tS,λ ,α)+ x̄i
S(tS)

]

= ∑
tS∈TS

p(tS) max
dS∈DS

∑
i∈S

vi(dS, tS,λ ,α)

≥ ∑
tS∈TS

p(tS)

[

∑
i∈S

vi(µS, tS,λ ,α)+ xi
S(tS)

]

Then, it suffices to show that (µ̄S, x̄S) is feasible in (4.4) (w.r.t. (µS\ j,xS\ j) j∈S). By construction, for any
tS ∈ TS, (µ̄S, x̄S) satisfies

vi(µ̄S, tS,λ ,α)+ x̄i
S(tS)− ri

S(tS,λ ,α) = v j(µ̄S, tS,λ ,α)+ x̄ j
S(tS)− r j

S(tS,λ ,α), ∀i, j ∈ S. (4.8)

Let ti ∈ Ti be a fixed type of a player i ∈ S. Multiplying both sides of (4.8) by p(tS\i), summing over all

17Consider the homogeneous system. For each tS ∈ TS, the system has exactly |S| linearly independent equations,
namely v1(tS)− v j(tS) = 0 for each j ∈ S \ 1 and ∑i∈S vi(tS) = 0. The unique solution is vi(tS) = 0 for all i ∈ S.
Hence, the non-homogenous system is solvable and its solutions is unique.
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tS\i ∈ TS\i and all j ∈ S\ i, and rearranging terms yields

∑
t−i∈T−i

p(t−i) ∑
j∈S\i

[vi(µ̄S, t,λ ,α)+ x̄i
S(tS)− vi(µS\ j, t,λ ,α)− xi

S\ j(tS\ j)]

− ∑
t−i∈T−i

p(t−i) ∑
j∈S\i

[v j(µ̄S, t,λ ,α)+ x̄ j
S(tS)− v j(µS\i, t,λ ,α)− x j

S\i(tS\i)]

= ∑
R⊂S
i∈R
|R|≥2

(−1)|S\R|

[

∑
t−i∈T−i

p(t−i) ∑
j∈R\i

[v j(µR, t,λ ,α)+ x j
R(tR)− v j(µR\i, t,λ ,α)− x j

R\i(tR\i)]

− ∑
t−i∈T−i

p(t−i) ∑
j∈R\i

[vi(µR, t,λ ,α)+ xi
R(tR)− vi(µR\ j, t,λ ,α)− xi

R\ j(tR\ j)]

]

. (4.9)

If, for every R⊂ S, (µR,xR) is feasible in (4.4) w.r.t (µR\ j,xR\ j) j∈S, then the right hand side (and therefore
also the left hand side) of (4.9) is zero. This concludes the proof. �

The following inclusion readily follows from Lemma 1.

Proposition 2.
VM(Γ) ⊇ VH(Γ).

Proof. Let (µN ,xN) be an H-solution supported by η = (µS,xS)S⊆N , λ and α . For each S ⊆ N, Lemma
1 implies that (µS,xS) attains the optimal value of (4.3). Hence, η is a vector of rational threats18 . �

We shall now prove the reverse inclusion. The basic idea will be to show that, given a M-
solution with corresponding rational threats η = (µS,xS)S⊆N , one can construct a transfers
scheme (x̃S)S⊆N as in (4.6a)-(4.6b), such that the vector of threats (µS, x̃S)S⊆N is an egalita-
rian solution. This is possible thanks to Lemma 1.

Proposition 3.
VM(Γ) ⊆ VH(Γ).

Proof. Let (µN ,xN) be a M-solution supported by η = (µS,xS)S⊆N , λ and α . Recursively define for
each S ⊂ N

x̃ i
S(tS) := ṽ∗i (tS,λ ,α)− vi(µS, tS,λ ,α), ∀i ∈ S, ∀tS ∈ TS

where ṽ∗(λ ,α) = (ṽ∗
i (tS,λ ,α))i∈S,tS∈TS is the solution to (4.7a)-(4.7b) with r̃S(λ ,α) computed using

(µR, x̃R)R⊂S (already defined in the recursion). Define x̃N = xN and η̃ = (µS, x̃S)S⊆N . Obviously, (µN , x̃N)
is a feasible mechanism satisfying (3.1)-(3.4) w.r.t. λ and α and U(µN , x̃N) = U(µN ,xN). Hence, we
only need to show that η̃ is an egalitarian solution w.r.t. λ and α . Notice that, for each S ⊂ N, (µS, x̃S)
satisfies (4.6a)-(4.6b) and (4.7a)-(4.7b) with (µR, x̃R)R⊂S. Then, Lemma 1 (applied inductively) implies
that, for each S ⊂ N, (µS, x̃S) is an optimal solutions of (4.4) w.r.t. (µS\ j, x̃S\ j) j∈S. On the other hand,
since x̃S is exactly balanced for all subcoalitions, WS(µS,xS, t,λ ,α) =WS(µS, x̃S, t,λ ,α) for every S ⊆ N.

18Indeed, we must have that ∑i∈S x i
S(tS) = 0 for every tS ∈ TS, since ∑tS∈TS

p(tS)∑i∈S x i
S(tS) = 0 and ∑i∈S x i

S(tS)≤
0 for all tS ∈ TS.
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Then, U(µN , x̃N) is warranted by λ , α and η̃ .19 Therefore, by Lemma 1 and Proposition 2 in Salamanca
(2016), (µN , x̃N) is feasible in (4.4) w.r.t. (µS\ j, x̃S\ j) j∈S.20 But,

∑
i∈N

vi(µN , t,λ ,α)+ x̃i
N(t) = max

d∈D
∑
i∈N

vi(d, t,λ ,α), ∀t ∈ T.

Hence, (µN , x̃N) is an optimal solution of (4.4) w.r.t. (µS\ j, x̃S\ j) j∈S. We conclude that η̃ is an egalitarian
solution w.r.t. λ and α . �

Theorem 1 says that, in our model with sidepayments, the M-solution and the H-solution are
interim utility equivalent. Moreover, as it is also deduced from the proofs of Propositions 2
and 3, any M-solution is an H-solution and viceversa21. Henceforth, a cooperative solution will
be simply called a MH-solution. Notice that if Γ is a game with complete information (i.e., Ti
is a singleton for every i ∈ N), there are no incentive constraints (or equivalently α = 0) and
consequently (3.2) implies that λi = 1 for every i ∈ N. Hence, all efficient mechanisms are
supported by the same utility weights λi = 1, which means that the Pareto efficient frontier is
thus characterized by an hyperplane. From Definition 1, it then follows that a MH-solution
coincides with the Shapley TU value22. A MH-solution is thus a valid generalization of the
Shapley TU value to Bayesian cooperative games with sidepayments.

Under incomplete information, however, (3.2) only implies that

∑
ti∈Ti

λi(ti) = ∑
ti∈Ti

p(ti) = 1, ∀i ∈ N

therefore λi(ti) > 0 for some ti for each player i ∈ N, but we still have ∑i∈N (|Ti|−1) degrees
of freedom for choosing λ . With incomplete information, the restricted nature of the utility
transfers implies that the interim incentive efficient frontier is not generally an hyperplane. This
indeterminacy makes utility transfers less useful for games with incomplete information than it
is for games with complete information. In particular, it makes imposible to get a general and
simple closed form expression for the value as in the case of the Shapley value for TU games
with complete information.

Example 1 Consider the following Bayesian cooperative game introduced by Salamanca
(2017). Let r be a parameter with 0 < r < 1/2. The set of players is N = {1,2,3}. Only player
1 has private information about one of two possible states T = {H,L} with prior probabilities

19In particular, (µN , x̃N) is also a M-solution supported by η̃ , λ and α .
20Using the terminology and results developed by Salamanca (2016), for any S ⊂ N we have that η̃S =

(µR, x̃R)R⊆S is egalitarian w.r.t. λ and α . Then, applying Proposition 2 in his paper, for any S ⊂ N, η̃S is equitable
w.r.t. λ and α . But U(µN , x̃N) is warranted by λ , α and η̃ , therefore by Lemma 1 in the same paper, (µN , x̃N) is
equitable for N w.r.t. λ , α and η̃ . We conclude that η̃ is equitable w.r.t. λ and α , thus by Proposition 2 again η̃
is egalitarian w.r.t. λ and α , which means, in particular, that (µN , x̃N) is feasible in (4.4) w.r.t. (µN\ j, x̃N\ j) j∈N , λ
and α .

21Notice however that Definitions 1 and 2 are not equivalent: an optimal solution to (4.3) is not necessarily also
an optimal solution to (4.4), unless an appropriate transfers scheme is used (see proof of Proposition 3).

22Since α = 0 and λi = 1 for every i ∈ N, the TU characteristic function can be simply described by v(S) =
max{∑i∈S ui(µS) | µS ∈ ∆(DS)}. Thus, condition (ii) implies that, for every S ⊆ N, a rational threat achieves v(S).
Hence, condition (iii) reduces to ui(µN) = φi(N,v).
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p(H) = 1− p(L) = 4/5. Feasible decisions for each coalition are: D{i} = {di} (i = 1,2,3),
D{i, j} = {[di,d j],di j} (i 6= j) and DN = D{1,2}×D{3} ∪D{1,3}×D{2}∪D{2,3}×D{1}. For each
value of r, utility functions are given by

(u1,u2,u3) [d1,d2,d3] [d12,d3] [d13,d2] [d23,d1]
H (0,0,0) (50,50,0) (100r,0,100(1− r)) (0,100r,100(1− r))
L (0,0,0) (40,40,0) (40r,0,40(2− r)) (0,40r,40(2− r))

Decision [d1,d2,d3] denotes the noncooperative outcome which leaves each player with his
reservation utility (normalized to zero), whereas [di j,dk] denotes the cooperative outcome in
which players i and j form a coalition (leaving player k alone) and they share the proceeds from
cooperation as specified above.

Let us consider the game when sidepayments are not allowed, i.e., we set xi
S(tS) = 0 for all i∈ S,

tS ∈ TS and S ⊆ N. A mechanism for a coalition S is thus only composed by a state-dependent
lottery µS : TS → ∆(DS).23 In this case, no matter the state, player 3 can only offer players 1
and 2 a payoff which is strictly lower than what they both can get by acting together (lack of
transferability). Hence, a reasonable outcome for this game should reward player 3 strictly less
than players 1 and 2. On the other hand, incentive constraints do not reduce interim efficiency,
that is, incentives play no role in this game. This implies that player 1 has no information rents
(α = 0) and therefore, 1 and 2 must be treated symmetrically. In addition, as r goes to zero, 3’s
ability to transfer payoffs decreases, thus his reward should also reduce.

For any value of r, the unique M-value of this game is the interim allocation24

(

UH
1 ,UL

1 ,U2,U3
)

=
(100

3 , 80
3 ,32,32

)

(4.10a)

The M-value treats all players symmetrically, and this irrespectively of the value of r. On the
other hand, the unique H-value is the allocation25

(

UH
1 ,UL

1 ,U2,U3
)

=
(

50− 100
3 r
(88−88r

96−88r

)

,40− 80
3 r
(88−44r

96−88r

)

,48− 88
3 r, 176

3 r
)

(4.10b)

The arguments presented above are better reflected by this allocation. In particular, as r de-
creases to 0, the H-value converges to (50,40,48,0).

Let us now turn to the situation in which players are allowed to transfer payoffs using state-
contingent sidepayments. In such a situation, utility is fully transferable26, so that in any two-
person coalition with player 3, its members can agree on an arbitrary distribution of the proceeds
on every state. In particular, if coalition {1,3} or {2,3} forms, its members can get half of the
gains each. There is no puzzle in the present case; the three players are symmetric, thus the
allocation (4.10a) is a reasonable outcome. In fact, (4.10a) is the unique MH-value of the game
with sidepayments.

23When sidepayments are not allowed, the hydraulic equations in (3.2) are removed from Proposition 1. More-
over, condition (3.4) is automatically satisfied. Therefore, conditions (3.2) and (3.4) disappear from Definitions 1
and 2.

24The value is supported by the vectors λ = (4/5,1/5,1,1) and α = (0,0).
25The value is supported by the same vectors λ and α as the M-value.
26Since α = 0, condition (3.2) then implies that λi(ti) = p(ti) for all ti ∈ Ti of every player i ∈ N. Real and virtual

utilities coincide, hence the interim Pareto frontier is an hyperplane.
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5 Values for Two-person Bayesian Games
In this section, we shall study in detail both the M-solution and the H-solution in two-player
games (n = 2). In order to explore all the particularities of this case, we first consider games
with orthogonal coalitions in which sidepayments are not allowed (as in Example 1). We then
extend the analysis to allow for both strategic and informational externalities. In this latter
situation, we investigate an additional semi-cooperative solution introduced by Kalai and Kalai
(2013) under the further assumptions of sidepayments and ex-post verifiable information.

In the previous section we have shown that in our model with orthogonal coalitions and sidepay-
ments, the M-solution and the H-solution are interim utility equivalent. This holds, in particular,
for the two-player case. The question now is whether the same result also extends to a situation
in which sidepayments are not allowed. We notice that when there are just two players, the
only intermediate coalitions are the singletons { i} (i ∈ {1,2}). For any of these coalitions, the
optimization problem in (4.4) is the same as in (4.3).27 Therefore, it follows immediately that
Definitions 1 and 2 are equivalent28. This reasoning is summarized in the following proposition
(which already appeared in Salamanca (2016)).

Proposition 4.
Let Γ be a two-player Bayesian cooperative game with orthogonal coalitions (with or without
sidepayments). Then, the M-solution and the H-solution for Γ coincide.

Thus, we may continue to call a M(or H)-solution simply a MH-solution.

Let Γ be a two-person cooperative games with orthogonal coalitions. Suppose that, for every
i ∈ {1,2}, Di = {di} and ui(d∗, t) = 0 for all t ∈ T , where d∗ := [d1,d2](= D1 ×D2 ⊆ DN) is
called the disagreement decision. To make this game interesting, we further assume that there
exists at least one joint decision in DN which is beneficial for both individuals. Such a game
is called a two-person bargaining problem with incomplete information. Clearly, the issue of
coalitional threats does not arise in this model. For this kind of problems, Myerson (1984a)
defined a neutral bargaining solution which generalizes Nash’s (1950) bargaining solution with
fixed threats. The next result follows from the characterization theorem 5 in Myerson (1984a)29.

Proposition 5.
Let Γ be a two-person bargaining problem with incomplete information. Then, the MH-solution
and the neutral solution for Γ coincide.

In the subsequent analysis we allow for strategic externalities, that is, we let the utility of ev-
ery player to depend on the choices of the other individual. We will represent the underlying
game situation by a non-cooperative Bayesian game in strategic form Γ = {N,(Ti,Di,ui)i∈N, p},
where N = {1,2}. All components of Γ have the same interpretation as in the model of the pre-
vious section, but the decision set D is now defined to be D = D1 ×D2. For this specific model,
we extend the MH-solution. We follow the method developed by Nash (1953) in the proposal to

27This conclusion is independent of whether sidepayments are allowed or not.
28Recall from the previous section that the M-solution and the H-solution differ only in the way they determine

the threats for intermediate coalitions.
29see also Myerson (1991, sec. 10)
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modify his bargaining solution (Nash (1950)) by making the threat point endogenous. The ge-
neralization here presented is not new. Indeed, Myerson (1984b) offers a more general approach
to the case n ≥ 2 without sidepayments.

Let (λ ,α) be some fixed virtual scales and consider the virtual game in which players make
interpersonal utility comparison in the scales (λ ,α). As in the previous section, before entering
into negotiations within the grand coalition, each player i commits to a threat strategy (mecha-
nism) µi : Ti → ∆(Di) to be used in case the players fail to reach a cooperative agreement30.
Then, vi((µi,µ j), t,λ ,α) is the disagreement virtual payoff to player i ∈ {1,2} in state t ∈ T .
The total transferable virtual utility in state t available to both players if they cooperate is

w12(t,λ ,α) := max
d∈D

(v1(d, t,λ ,α)+ v2(d, t,λ ,α))

Therefore, the Shapley TU value (or equivalently, the Nash bargaining solution) of player i in
the virtual game conditional on state t is

φi(W ((µ1,µ2), t,λ ,α)) = vi((µi,µ j), t,λ ,α)

+
1
2
[

w12(t,λ ,α)− vi((µi,µ j), t,λ ,α)− v j((µi,µ j), t,λ ,α)
]

(5.1)

That is, the total virtual surplus “w12 − vi − v j” is equally divided among the two players. Sup-
pose now that players expect to reach a cooperative agreement (µN ,xN) giving every type of
each player his conditionally expected Shapley TU value from the virtual game. Then, the real
interim utility allocation U(µN ,xN) = (Ui(µN ,xN | ti))ti∈Ti, i∈N must be warranted by λ , α and
(µi,µ j), that is31,
(

λi(ti)+ ∑
τi∈Ti

αi(τi | ti)

)

Ui(µN ,xN | ti)− ∑
τi∈Ti

αi(ti | τi)Ui(µN ,xN | τi) =

∑
t j∈Tj

p(t)φi(W((µ1,µ2), t,λ ,α)), ∀ti ∈ Ti. (5.2)

It must be the case that players should evaluate their threats only in terms of their impact on
the payoffs granted by the final agreement (µN ,xN). By Lemma 1 in Myerson (1983), the final
warranted payoffs are (weakly) increasing in the right hand side of (5.2). Then each player i
should want to choose his threat strategy µi so as to maximize his expected Shapley TU value.
Notice that the virtual payoff to player i in the Shapley TU value increases as the disagreement
virtual payoff to player j decreases. Therefore, an optimal threat strategy for player i should
solve

max
µi∈Fi

∑
t∈T

p(t)
(

vi((µi,µ j), t,λ ,α)− v j((µi,µ j), t,λ ,α)
)

,

given j’s threat strategy µ j. That is, optimal threats form an equilibrium of a two-person
Bayesian zero-sum game in which the players’ utility functions are given by

wi((µi,µ j), t,λ ,α) := vi((µi,µ j), t,λ ,α)− v j((µi,µ j), t,λ ,α). (5.3)

30The use of transfers inside a single person coalition is unnecessary for the coalition member.
31Myerson (1984a, sec. 9) provides a rationale for equation (5.2).
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We let Γad(λ ,α) denote this zero-sum game. The superscript “ad” stands for advantage, since
the utility scale wi(·,λ ,α) is a measure of the payoff advantage of player i in the virtual game32.

Definition 3 (MH-Solution).
Let Γ be a two-player noncooperative Bayesian game with sidepayments. A feasible mechanism
for the grand coalition (µN ,xN) is a MH-solution of Γ, if there exist vectors λ > 0, α ≥ 0, and
threat strategies (µ1,µ2) such that:

(i) (µN ,xN) satisfies (3.1)-(3.4) for λ and α .

(ii) (µ1,µ2) is a profile of minmax strategies of Γad(λ ,α).

(iii) The vector U(µN,xN) of interim utilities satisfies (5.2) w.r.t. λ , α and (µ1,µ2).

The vector U(µN,xN) is called a MH-value. In the case that sidepayments are not allowed, so
that x i

N(t) = 0 for all i ∈ {1,2} and t ∈ T , conditions (3.2) and (3.4) are removed from (i).

It is worth noticing that Definition 3 generalizes Nash’s (1953) bargaining solution with variable
threats (cf. Myerson (1991, sec. 8)).

Recently, A. Kalai and E. Kalai (2013) proposed a semi-cooperative solution for the class
of two-player noncooperative Bayesian games with sidepayments. Their solution, called the
cooperative-competitive (or “coco”) value, is based on a decomposition of the game Γ into
cooperative and competitive components. Let Γad be the Bayesian zero-sum game defined as Γ
except that player i’s utility function is now ui − u j. In a similar fashion, we define the game
Γeq, which differs from Γ in that both players share the same utility function given by ui + u j.
The superscript “eq” stands for equal payoffs. Clearly, ui = 1

2(ui + u j)+ 1
2(ui − u j). Thus, the

game Γeq describes the cooperative component of Γ in which the interests of both players are
aligned. On the other hand, the game Γad reflects each player’s competitive advantage in Γ.
Incentives to reveal private information are opposed in both components games. While in Γeq

the obvious incentive is to truthfully disclose any private information, in Γad each player would
like to prevent any information disclosure increasing the opponent’s payoff advantage.

The team optimum of Γeq is defined by

Opt(Γeq) = ∑
t∈T

p(t)max
d∈D

∑
i∈N

ui(d, t)

In words, the team optimum is the maximum expected utility that each player can get in Γeq

when they all share truthfully their information.

The game Γad is a zero-sum game in which each player is trying to maximize the difference of
his payoff and that of his opponent. This game has a unique minmax (ex-ante) expected value
denoted Vali(Γad). The coco value of Γ, denoted κi(Γ), is defined by

κi(Γ) =
1
2

(

Opt(Γeq)+Vali(Γad)
)

32Myerson (1991, sec. 8) refers to Γad(λ ,α) as the difference game. We keep the designation “advantage” in
order to be consistent with Kalai and Kalai’s (2013) terminology.
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The MH-solution deeply differs from the coco value. On one hand, the coco value assumes
that the incentives in playing each of the component games are independent of each other, thus
it ignores possible incentive compatibility issues. As a consequence, the coco value is ex-
post (first best) efficient. In contrast, the MH-solution takes into account the tension that may
exist between ex-post efficiency and incentive compatibility (see Myerson and Satterthwaite
(1983)). On the other hand, the coco value is defined only at the ex-ante stage so that its interim
evaluation cannot be determined without specifying a protocol for its interim implementation.
Finally, in the MH-solution players bargain over mechanisms and not directly over payoffs
as in the coco value. Despite these differences, there is a close relationship between these
two solution concepts when incentive constraints are unnecessary, in the sense that incentive
compatibility is not an issue for the implementation of the final agreement.

The simplest bargaining situation in which incentive constraints are not required is when all
private information becomes publicly verifiable at the implementation stage. In principle, there-
fore, any budget-feasible mechanism in FN can be enforced once it is agreed upon. We sum-
marize this situation in the following assumption introduced by de Clippel and Minelli (2004):

Definition 4 (Verifiable types).
A game Γ satisfies the verifiable types assumption if, when agreements are implemented, each
individual can costlessly verify the true information state33.

The verifiable types assumption is satisfied in games where private information relates to signals
about states that eventually become public. For instance, differential forecasts about weather
conditions, as in Kalai and Kalai’s (2013) vendors example. This assumption is particularly
strong in the sense that it rules out game situations such as auctions or trading problems where
payoffs depend on valuations which are not observable ex-post. Kalai and Kalai’s (2013) non-
cooperative interim implementation of the coco value heavily relies on this observability as-
sumption, which severely limits its practical applicability.

Let (µN ,xN) be a MH-solution supported by the virtual scales (λ ,α) and the minmax strategies
(µ1,µ2). The verifiable types assumption is equivalent to setting α = 0, since incentive con-
straints are dispensable. Under such circumstance, equation (3.1) is straightforwardly satisfied.
Condition (3.2) becomes λi(ti) = p(ti) for all ti ∈ Ti and i ∈ N. Hence, virtual utilities and real
utilities coincide. Conditions (3.3) and (3.4) become:

max
d∈D

∑
i∈N

ui(d, t) and ∑
i∈N

xi
N(t) = 0, ∀t ∈ T.

On the other hand, the zero-sum game Γad(λ ,α) coincides with the competitive component

33In our model, the entire game structure Γ is commonly known to all players, so that each player knows how
much each player would have received in every information state given any combination of strategies. Therefore,
the states of nature are completely determined by the information states. As a consequence, the verifiable types
assumption is equivalent to Kalai and Kalai’s (2013) (unrestricted) revealed-payoff assumption.
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game Γad of Γ. Finally, the warrant equations (5.2) simplify to

Ui(µN ,xN | ti) =
1
2 ∑

t j∈Tj

p(t j)max
d∈D

∑
k∈N

uk(d, t)

+
1
2 ∑

t j∈Tj

p(t j)
(

ui((µi,µ j), t)−u j((µi,µ j), t)
)

, ∀ti ∈ Ti, ∀i ∈ N.

Hence, the ex-ante evaluation of any MH-solution of Γ is

∑
ti∈Ti

p(ti)Ui(µN ,xN | ti) =
1
2 ∑

t∈T
p(t)max

d∈D
∑
i∈N

ui(d, t)+
1
2

Vali(Γad) = κi(Γ)

The following result is deduced:

Theorem 2.
Let Γ be a two-player Bayesian noncooperative game with sidepayments satisfying the veri-
fiable types assumption. Then, the MH-solution and the coco value of Γ are ex-ante utility
equivalent.

Notice that each player might have multiple minmax strategies in the game Γad(= Γad(λ ,α)).
The multiplicity of equilibria in the competitive zero-sum component game may lead to di-
fferent type-conditional vectors payoffs34. Of course, all combinations of minmax strategies
are equilibria with the same ex-ante expected payoff (minmax value). Therefore, there might
exist various MH-values, all of them guaranteeing the same ex-ante expected payoffs, in accor-
dance with Theorem 2. This indeterminacy of the conditional payoffs makes difficult to get an
appropriate definition of the “interim” coco value.

The following bilateral trading problem, adapted from Myerson (1985, 2007), analyzes how
the HM-solution relates to Myerson and Satterthwaite’s (1983) result about the impossibility to
achieve an ex-post efficient trade. In particular, it illustrates a situation in which the applicability
of the coco value is limited by its assumptions.

Example 2 There are two players N = {1,2}. Player 1 is the seller of a single good whose
quality may be high ( H ) with probability p = 1/2 or low ( L ) with probability 1− p = 1/2.
Player 2 is the only potential buyer. The quality can only be observed by the seller, that is,
T1 = {H,L} is the set of types of player 1. If the quality of the good is L then the value of the
good is $1 to player 1 and is $2 to player 2. If the quality is H then the value of the good is $5
to player 1 and is $6 to player 2. Players must decide whether to trade ( T ) or not ( NT ) and at
which price. Utilities from no trade are normalized to be 0. The utility functions are:

L

u1,u2 T NT
T −1,2 0,0

NT 0,0 0,0

H

u1,u2 T NT
T −5,6 0,0

NT 0,0 0,0

34See the payoff matrices proposed in Section IV.C. of Kalai and Kalai (2013).
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For the game under consideration, the verifiable types assumption says that the quality of the
good becomes publicly observable at the execution of the contract. In particular, it implies that
if trade does not occur, the buyer would still observe the quality of the good. This might be
considered not reasonable in this particular game situation. Therefore, the first best interim
implementation of the coco value is limited in this game. For illustrative purposes only, we
compute the MH-solution under the verifiable types assumption (and a fortiori also the coco
value).

The cooperative component game Γeq has a team optimum equal to 1, whereas the competitive
component has a minmax value 0. Therefore, the coco value of this games is κ1(Γ) = κ2(Γ)= 1

2 .
It can be easily checked that the conditional minmax value is also 0 in both states. Thus, the
unique MH-value is the (ex-post efficient) interim allocation

(UH
1 ,UL

1 ,U2) =
(1

2 , 1
2 , 1

2

)

This allocation is implemented by the mechanism

µN((T,T ) | H) = µN((T,T) | L) = 1, x1
N(H) = 11

2 = −x2
N(H), x1

N(L) = 3
2 = −x2

N(L).

That is, trade occurs in both states at a price that gives each player an equal gain from the trade.
This is an efficient and fair solution, yet it cannot be implemented whenever information is
not verifiable. Indeed, this mechanism is not incentive compatible: type L will always gain by
reporting that the good is of high quality.

Let us consider now the more reasonable situation in which the quality of the good is not veri-
fiable before consumption takes place. It can be shown that all incentive efficient mechanisms
in this example satisfy Proposition 1 for the virtual scales (see Myerson (1985)):

λ H
1 = 5

8 , λ L
1 = 3

8 , λ2 = 1,

α1(L | H) = 0, α1(H | L) = 1
8 .

The virtual utility game is thus described by the following payoff matrices:

L

v1,v2 T NT
T −1,2 0,0

NT 0,0 0,0

H

v1,v2 T NT
T −6,6 0,0

NT 0,0 0,0

The only difference between virtual utilities and actual utilities is for 1’s type H, for which the
virtual value of the good is 6. The advantage game Γad(λ ,α) has a conditional minmax value
that equals 0 in both states. Hence, the unique solution to the warrant equations in (5.2) is:

(UH
1 ,UL

1 ,U2) =
( 1

10 , 1
2 , 1

4

)

(5.4)

The virtually equitable and incentive efficient allocation in (5.4) is the unique MH-value of this
game. It is implemented by the mechanism

µN((T,T ) | H) = 1
10 , x1

N(H) = 6 = −x2
N(H),

µN((T,T ) | L) = 1, x1
N(L) = 3

2 = −x2
N(L).

(5.5)
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According to this mechanism, if player 1 announces that the quality is L then with probability 1
they trade at a price $3/2, yet if player 1 reports a high quality then with probability 1/10 they
trade at a price $6. In state H no-trade has probability 9/10, but the seller never trades at a price
lower than his virtual valuation of the good, which guarantees that he extracts the whole surplus
from trade.

At this point, it should be noted that the unresolvable tension between incentives and ex-post
efficiency in Myerson and Satterthwaite’s (1983) impossibility theorem holds only if we insist
on (interim) individually rational outcomes. In the current model, individual rationality does not
appear as an explicit constraint in the set of feasible mechanisms. However, it does appear as
an indirect restriction imposed by the definition of the MH-solution. Indeed, the MH-solutions
are individually rational (see theorem 3 in Myerson (1984b))35. To illustrate this issue, consider
again the incentive compatible mechanism in (5.5). Notice that if the actual quality of the good
is high, and of course type H is telling the truth, there is a chance of not trading. This efficiency
loss reduces type H’s expected utility from cooperation, which tightens individual rationality.
Therefore, the whole surplus from cooperation must be given to type H whenever trade occurs.

The coco value has been constructed to be a general semi-cooperative solution with a tractable
definition. Its description by a simple closed form expression comes at the cost of restrictive
conditions such as two-person games and verifiable information. Theorem 2 exhibits why re-
laxing these assumptions cannot be easily done while preserving the tractable nature of the coco
value. Firstly, keeping track of the incentive constraints requires referring to an appropriate in-
terim framework. In particular, bargaining directly over payoffs, as in the coco value, does not
allow to determine what the utility of a player would be when he reports a different type. In
contrast, incentive compatible mechanisms include all equilibria that can be achieved by any
communication system, and so this set can be viewed as the feasible set. Also, interim prefe-
rences matter when defining a suitable definition of an equitable cooperative agreement under
incomplete information. As Myerson (1983, 1984a,b) argues, identifying a cooperative solution
among the set of incentive efficient mechanisms requires to define some principles for equitable
compromises not only among the different players (as in the case of complete information),
but also among the different possible types that a player pretends to be. Secondly, even under
the verifiable types assumption, there is no a unique way of extending the coco value to n > 2.
Myerson’s (1984b) approach provides a reference in this direction. However, other cooperative
solutions can be constructed to achieve this goal. For instance, proceeding as in Harsanyi’s
(1963) solution for n-person strategic games with complete information, the H-solution can be
straightforwardly generalized to allow for both strategic and informational externalities.

35Even though we could restrict attention to individually rational mechanisms, we cannot apply Myerson and
Satterthwaite’s (1983) result to our example simply because they require a continuum of types.
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Chapter 3
The Value of Mediated Communication

1 Introduction
This paper provides an analytical framework for studying Bayesian persuasion problems in
which the sender cannot commit himself to truthfully communicate his information to the re-
ceiver, so that incentive compatibility becomes one of the major issues for communication to
be meaningful1. By allowing the two players to communicate with a neutral third party, we
are able to solve two analytical problems that could possibly prevent a tractable analysis of
incentive compatibility: first, truthful revelation of information when communication is direct
may considerably limit the ability of the sender to credibly signal his information by himself.
In particular, Forges (1985) and Farrell (1993) propose some examples in which no substan-
tive communication can occur between the players. However, it is well known that the set of
implementable outcomes may be strictly larger when players use mediated rather than direct
communication (see for instance, Forges (1985, 1990)). Second, revelation of influential in-
formation with direct communication requires the sender to be indifferent between all signals
he sends with positive probability. This is a strong form of incentive compatibility that reflects
the fact that the sender sends a random signal by himself. In contrast, when the players use a
mediator to perform the randomization of the signals on behalf of the sender, incentive compa-
tibility will only demand each type of the sender to prefer the expected allocation designated to
him.

In a recent pioneering work, Kamenica and Gentzkow (2011) offer a general approach to
Bayesian persuasion under full commitment on the part of the sender. They consider a sender-
receiver game in which before learning his type (ex-ante stage), the sender publicly chooses a
signaling strategy, i.e., a conditional distribution of signals for each of his types, that he will
use for transmitting his information to an uninformed receiver2. The sender produces a sig-
nal according to his true type and the corresponding distribution of signals. He cannot distort

1This chapter corresponds to the paper: The Value of Mediated Communication, HAL Working paper
01289379, 2016.

2Kamenica and Gentzkow (2011) refer to a signaling strategy simply as a signal. In order to distinguish the con-
ditional distribution from its realizations, they call the latter signal realization. This paper follows the terminology
developed in the literature of communication games.
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the signal realization, nor can he misrepresent his information (full commitment assumption).
The receiver observes the signal realization and then takes an action that affects the welfare
of both individuals. Drawing on a geometric approach developed by Aumann and Maschler
(1995), Kamenica and Gentzkow characterize the sender’s optimal value of persuasion. They
first construct a non-revealing payoff function over prior beliefs, â(·), describing the (ex-ante)
expected equilibrium payoffs the sender can achieve in the absence of communication. Then,
they compute the concavification of â(·), denoted cav â(·), i.e., the smallest concave function
that is larger or equal to â(·). Their main result establishes that, for given prior beliefs p, the
sender’s optimal expected payoff (value of persuasion) is cav â(p).

Under full commitment, restricting attention to either direct or indirect communication systems
does not change the value of persuasion. Yet, in the absence of commitment, the communication
system determines the strategic opportunities the sender has for manipulating his private infor-
mation and, thus, it might have an impact on the sender’s payoffs. We consider the Bayesian
persuasion setup studied by Kamenica and Gentzkow (2011), but with limited commitment and
mediated communication. Under mediation, the sender reports a type to a neutral trustworthy
mediator who then recommends an action to the receiver. The sender’s report is not verifia-
ble either by the mediator or the receiver, which allows the sender to strategically manipulate
his private information. The mediator’s recommendation is not binding, that is, the receiver is
free to choose any action different from the recommended one. The mediator can only create
value by controlling the flow of information between both players. He introduces noise in the
communication, which may relax the incentive constraints faced by the sender. In our setting,
a very broad form of the revelation principle applies and, thus, without loss of generality, we
can restrict attention to mediation protocols in which the sender reports his type truthfully and
the receiver obeys the prescribed recommendation. A mediation protocol in which the sender
always reports the truth and the receiver always follows the recommendation is called a com-
munication equilibrium (see Myerson (1986) and Forges (1986)). The sender’s problem is thus
to select a communication equilibrium maximizing his ex-ante expected payoff.

The Lagrange multipliers associated to the truth-telling incentive constraints yield “shadow
prices”, γ , that can be used to define the sender’s virtual utility (see Myerson (1991, ch. 10)).
These virtual utility scales incorporate into the sender’s utility function the signaling costs asso-
ciated with incentive compatibility3. Considering virtual utilities rather than real utilities, we
construct a fictitious persuasion problem in which there are no truth-telling incentive constraints.
For this game, the non-revealing payoff function, α̂(·; p,γ), depends on the prior probability p
and the signaling costs γ . Our main result (Theorem 1) says that the sender’s optimal expected
payoff at the prior belief p, denoted a∗(p), equals the value of persuasion in the fictitious game
with virtual scales defined by the optimal signaling costs, namely,

a∗(p) = min
γ

cav α̂(p ; p,γ).

Ex-post inefficiencies derived from the signaling costs are geometrically expressed in the form
of non convexities in the subgraph (or hypograph) of a∗. That is, the optimal value of persuasion

3The approach is similar to the one used in Auction theory to define the virtual surplus that takes into account
the bidders’ information rents (see Myerson (1981)).
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may not be a concave function of the prior beliefs, as it is in the full commitment model. In
fact, it may contain convex segments lying strictly below cav â(·). Moreover, it may also exhibit
discontinuities.

We characterize the optimal mediation protocol through a constrained splitting of the prior be-
lief into a distribution over posterior beliefs. Given the optimal signaling costs γ ∗, the posterior
beliefs induced by any optimal mediation protocol correspond to the points on the domain of
α̂( · ; p,γ∗) for which the convex combination of their images yields a∗(p). The corresponding
distribution of posteriors is constrained by the Bayes plausibility (martingale property) together
with complementary slackness conditions from Duality Theory (see Proposition 1). Comple-
mentary slackness says that if a shadow price is positive, then the associated informational
incentive constraint must be binding.

We also provide an upper-bound on the number of messages that the sender requires to trans-
mit in order to attain the value of persuasion. Under full commitment, the greatest number of
messages the sender needs to convey does not exceed his number of types. However, when mis-
representation is problematic, the sender might need to transmit one extra message with every
binding incentive constraint. Hence the number of messages is bounded by the total number
of types plus the total number of incentive constraints (see Proposition 2). To understand the
idea behind this result, consider for instance a situation in which the sender could be a “good”
type or a “bad” type. Assume that he would prefer to be perceived as the good type, so that
the incentive constraint asserting that the bad type should not gain by imitating the good type
is binding. The good type of the sender would like to communicate his true type to the receiver
(which requires every type to send a different message). However, since the receiver will face
difficulties preventing the bad type from claiming to be the good type, the latter will need to
find a way to separate himself from the bad type. To do this, he may commit to recommend
some additional action that might be unpleasant for him but highly hurtful for the bad type.

We conclude the paper with some discussions about the cheap-talk implementation of the op-
timal mediation protocols and the extension of our approach to general information design
problems.

Related literature Our analytical framework is the same as in Kamenica and Gentzkow
(2011), except that we consider a more general interaction situation in which communica-
tion is mediated and the sender may strategically manipulate his private information. In that
respect, our paper relates to the recent literature on information design known as Bayesian per-
suasion. To our best knowledge, this literature so far has been rather unsuccessful in developing
a tractable approach for an explicit analysis of the sender’s informational incentive compati-
bility. It is worth mentioning that Kolotilin, Li, Mylovanov and Zapechelnyuk (2016) study
Bayesian persuasion with a privately informed receiver. In their framework, the sender designs
a communication device that gathers information from the receiver and then sends a recom-
mendation to the receiver conditional on her report and the sender’s true type. In addition to the
strategic incentive constraints ensuring that the receiver will follow the recommendation, the
sender is also led to consider informational incentive constraints guaranteeing that the receiver
finds it optimal to report truthfully her information. In their setup, the communication device is
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a mediation rule unable to verify the receiver’s private information, but capable of identifying
the sender’s type.

This paper also relates to the literature on contracting with limited commitment. This literature
considers a principal-agent setup in which the principal (receiver) is imperfectly informed about
the agent’s (sender’s) type. The principal cannot contractually commit herself to chose any ac-
tion, however, she may extract information from the agent by using a communication system.
Bester and Strausz (2001) study direct communication in which the agent simply sends a sin-
gle message to the principal. In contrast, Bester and Strausz (2007) allow the principal to use
general communication devices which may enlarge the set of implementable contracts. Con-
trary to Bayesian persuasion, here the communication device (mechanism) is designed by the
uninformed party, i.e., the principal. However, because the agent cannot commit to truthfully
transmit his information, informational incentive compatibility is a relevant matter.

Mitusch and Strausz (2005) and, Golstman, Hörner, Pavlov and Squintani (2009) compare diffe-
rent communication protocols in the framework of Crawford and Sobel (1982). In this regard,
our paper is also connected with this literature. They study the conditions under which media-
tion improves upon direct communication. As with contracting problems with adverse selection
and limited commitment, it is also assumed that the communication procedures are designed to
maximize the ex-ante welfare of the receiver. However, due to the particular structure of pay-
offs, it turns out that this is also equivalent to maximize the ex-ante welfare of the sender.

Finally, it is worth mentioning that our model is mathematically analogous to a problem of
mechanism design by an informed principal (as in Myerson (1983)) in which contracting takes
place at the ex-ante stage4. Indeed, by using the concept of virtual utility, we borrow some
analytical tools that were developed by Myerson (1983) in order to characterize his neutral
optimum.

This paper is organized as follows. In the next section we present a motivating example. Section
3 is devoted to formally describing the basic interaction scenario. The concept of communica-
tion equilibrium is also defined. Section 4 introduces the mediated persuasion problem and
the virtual utility approach. The main results are presented. It also contains some examples
illustrating our findings. Finally, Section 5 presents some concluding discussions.

2 Motivating Example
In this section we study an example which motivates several aspects of our analytical frame-
work. First, it illustrates how, in the absence of commitment, the necessity of players to trust
each other may lead to inefficiencies derived from the signaling costs associated with incentive
compatibility. Second, the example shows that mediated communication may help the sender
to reach equilibrium outcomes that cannot be achieved under direct communication. Finally,
the example provides an instance in which, by allowing for more signaling opportunities, me-

4Myerson (1983) considers contracting at the interim stage, whereby the principal chooses the mechanism after
she has received her private information. This is a more involved problem, as the choice of the mechanism may
signal information about the principal’s type.
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diated communication compels the sender to disclose more information than when he is fully
committed.

Consider the following sender-receiver game. Player 1 (the sender) has a privately known type
that may be H with probability p = 1/10 or L with probability 1− p = 9/10, and player 2 (the
receiver) must choose an action from the set J = { j1, j2, j3}. Payoffs for both players depend
on the sender’s type and the receiver’s action as follows:

j1 j2 j3
H 1,3 3,1 -5,-3
L -1,-3 2,-1 0,0

We can set this example in an economic situation described as follows. The informed player is
a financial analyst knowing whether the general state of the financial markets is more favorable
for investments in portfolios j1 and j2 (type H) rather than in j3 (type L). The uninformed
player is an investor who must select among these three different portfolios offered by the
analyst5. Thus, each portfolio generates an expected return for the investor that depends on the
state. On the other hand, the analyst’s preferences are explained by fact that he gets profits with
investments in the portfolio j2 but he wants also to give good advice to the investor.

The expected payoff of the receiver, as a function of her belief q ∈ [0,1 ] about the type H, is
depicted in Figure 1. Thick lines denote her best-reply payoff (optimal actions appear above
the corresponding best-reply payoff). At q = 1/5 (resp. q = 1/2) any randomization between
j3 and j2 (resp. j2 and j1) is a best reply for the receiver.

1
5

1
2

j3 j2

j1

1

−3

−1

0

1

3

q

Figure 1: Receiver’s expected payoffs (thin lines) and best-reply expected payoffs (thick lines)

Given the receiver’s best-replies, the sender’s (ex-ante) expected payoffs, as a function of the
belief q∈ [0,1 ], are represented in Figure 2. In particular, according to the prior belief p = 1/10,
in the absence of communication, the receiver will choose action j3. Thus, leaving the sender
with an expected payoff equal to −1/2(= −5× p+0× (1− p)).

Assume now that, in order to persuade the receiver to change her action, the sender publicly
commits to disclose his information according to a signaling strategy (i.e., a conditional distri-
bution of signals for each of his types). This commitment assumption means that the sender

5To keep the example as simple as possible, we suppose that the investor has no outside option.
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Figure 2: Non-revealing payoffs and optimal split under full commitment

cannot distort the signal realization, nor can he misrepresent his private information. The prob-
lem for the sender is then to induce posterior beliefs leading the receiver to choose actions
maximizing his expected payoff. Without loss of generality, the sender may choose to send
“recommendations” in J. Then, the unique optimal signaling strategy can be described as fol-
lows:

�

�

�

π : H

j2

j3

1

0

�

�

�

L

j2

j3

4/9

5/9

According to π , the sender recommends j2 with probability 1 when he is type H and randomizes
between j2 and j3 with probabilities 4/9 and 5/9 respectively, when he is type L. After receiving
the recommendation to play j2 (resp. j3), the receiver forms a posterior belief p2 = 1

5 (resp.
p3 = 0). Since j2 (resp. j3) is optimal for the receiver at p2 (resp. p3), she will follow the
recommendation. Both actions are recommended with an expected probability equal to 1/2(=
1× p+4/9×(1− p)), and thus the sender’s expected payoff is 11/10(= 1/2×0+1/2×11/5).
Figure 2 illustrates this situation.

Let us now consider the situation in which commitment cannot be (legally) enforced, for in-
stance because the sender’s private information is not verifiable by any authority. The question
is then: why would the sender like to maintain his commitment? Knowing that the receiver
will follow the recommendation, type L of the sender will send message j2 with probability 1.
But then a message that is sent with probability 1 by both types will convey no information
to the receiver. Therefore, in anticipation of this behavior, the receiver will rationally choose
her optimal action at p = 1/2. As a consequence, the information transmitted by the sender is
not credible and thus π has no persuasive effect. In the absence of commitment, the signaling
strategy must be part of a Nash equilibrium of the underlying cheap-talk game. Thus, truthful
revelation of information requires the sender to be indifferent between the distinct outcomes
that his messages lead the receiver to choose. This is a strong form of incentive compatibility
that may considerably limit the ability of the sender for credibly signaling his information. In
this game, the most the sender can get in the absence of commitment is 1/6. To achieve this
payoff, he can use the signaling strategy6

6The signaling strategy π̃ is part of the unique cheap-talk equilibrium of this game that maximizes the sender’s
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After receiving the recommendation to play j2 and j3, the receiver forms posterior beliefs p2 =
1/2 and p3 = 0, respectively. At p3 action j3 is her unique best-reply, so she follows the
recommendation. At p2 action j2 is optimal for the receiver, yet following this recommendation
(with probability 1) will lead type L of the sender to recommend j2 with probability 1, thus
making communication not credible. Instead, the receiver may randomizes between actions j1
and j2 with probabilities 2/3 and 1/3, respectively, which is also optimal for her at p2. In this
way, the receiver makes type L indifferent between the recommendations j1 and j2 and, thereby
communicating his information according to π̃ remains optimal for the sender.

Assume now that, instead of communicating his information directly to the receiver, the sender
sends a confidential report about his type to an impartial mediator commissioned to produce a
recommendation for the receiver. Because information is nonverifiable, even with the help of
a mediator, the sender may strategically manipulate his information. For instance, consider a
mediator that recommends actions according to π . This mediation rule is not incentive com-
patible for the sender. Indeed, type L would have incentives to report that he is type H. As a
consequence, the sender cannot get 11/10, yet he can do better than 1/6. Consider a mediator
that recommends actions as follows:

"

#

$

%δ : H

j3

j2

j110/19

9/19

0

&

'

(

)L

j3

j2

j10

4/19

15/19

According to this mediation protocol, the receiver will infer posterior beliefs p1 = 1, p2 = 1/5
and p3 = 0, where as before p j denotes the probability of type H conditional on the recommen-
dation to play j. For any j ∈ J, action j is a best-reply at p j, then following the recommendation
is optimal for the receiver. On the other hand, given that the receiver is obedient, no type of the
sender has incentives to misrepresent his information. Indeed, by reporting to the mediator that
he is type H, type L gets an expected payoff equal to 8/19(= −1×10/19+2×9/19+0×0),
while by telling the truth he gets 8/19(= −1× 0 + 2× 4/19 + 0× 15/19). That is, type L is
indifferent, and thus he has no incentives to lie. A similar analysis reveals that type H has no
incentives to misrepresent his information either.

The mediation protocol δ gives the sender an (ex-ante) expected payoff equal to 109/190(≈
0.57 > 1/6). No other mediation rule can guarantee a higher expected payoff to the sender. In
this particular game, mediation facilitates incentive compatibility, thus allowing the sender to
achieve an outcome that cannot be attained under direct communication. Mediation alleviates
the conflict between the incentives of both players. However, its potential benefits are reduced
by the degree of such a conflict. In particular, the sender’s expected payoff in the absence of

(ex-ante) expected payoff.
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commitment is larger under mediation than under direct communication, but lower than what
he gets under full commitment.

Finally, notice that δ requires the sender to transmit 3 (> 2) different messages with positive
probability. That is, the sender communicates more information than just his true type (which
has two possible values). Unlike the full commitment case, in which the number of messages
need not exceed the number of types, when misrepresentation is problematic, the sender might
need to disclose more information. The idea is that the sender requires to signal as much
information as when he is fully committed (i.e., he needs to induce posterior beliefs p3 = 0,
p2 = 1

5 ), but also he needs to make such revelation credible to the receiver. Because type L has
incentives to imitate type H, the latter type will need to find a way to separate himself from type
L. To do this, type H can commit himself to recommend action j1 (with probability 10/19),
something that is unpleasant for type L. In this manner, the receiver can discriminate between
both sender’s types, so that whenever j1 is recommended, she deduces that this message can
only come from type H, i.e., p1 = 1, and thus, she follows the recommendation.

3 Basic Game
Our basic framework is a two-person finite Bayesian game in which player 1 has no decision
to make, but is the only player to have private (nonverifiable) information. Let K be the (finite)
set of types of player 1. A type k ∈ K is chosen according to7 p ∈ ∆(K), and only player 1
is informed about k. We assume that pk > 0 for every k ∈ K. Player 2 chooses an action in a
(finite) set J. When action j is chosen by player 2 and player 1 is of type k, then player 1 and
player 2 get respective payoffs ak

j and bk
j. We refer to this basic game as Γ(p).

A (mediated) communication device δ is a mapping δ : K → ∆(J), namely a vector of proba-
bility distributions (δ k)k∈K over J for every k ∈ K. By adding a communication device δ to the
game Γ(p), one generates an extended game Γδ (p), which is played as follows:

1. A type k ∈ K is randomly chosen according to p.

2. Player 1 learns his type k ∈ K.

3. Player 1 sends a confidential report k′ ∈ K to a mediator.

4. The mediator chooses an action j ∈ J with probability δ k′
j .

5. The mediator recommends the action j to player 2.

6. Player 2 chooses an action and both players receive payoffs as in Γ(p).

For obvious reasons, we refer to player 1 in Γδ (p) as the sender, and player 2 as the receiver.
In this game, a strategy for the sender is a transition probability τ : K → ∆(K) where τ(k′ | k)
is the probability to report k′ if his type is k. A strategy τ is called sincere if τ(k | k) = 1
for every k ∈ K, namely, if the sender always reveals honestly his type to the mediator. A

7For any finite set A, |A| denotes its cardinality and ∆(A) denotes the set of probability distributions over A.



The Value of Mediated Communication 63

strategy for the receiver in Γδ (p) is a transition probability ς : J → ∆(J) where ς(i | j) is the
probability to choose i when j is recommended by the mediator. A strategy ς is called obedient
if ς( j | j) = 1 for every j ∈ J, i.e., if the receiver always follows the recommendation made by
the mediator. When both players are sincere and obedient, respectively, in Γδ (p), the (ex-ante)
expected payoff of the sender is

a(δ ; p) := ∑
k∈K

pk ∑
j∈J

δ k
j ak

j. (3.1)

The communication device δ is incentive-compatible for the sender if and only if the sincere
strategy is a best response for the sender in Γδ (p) whenever the receiver is obedient, that is,

∑
j∈J

δ k
j ak

j ≥ ∑
j∈J

δ k′
j ak

j, ∀k,k′ ∈ K. (3.2)

The informational incentive constraints in (3.2) reflect the fact that neither the receiver nor the
mediator can verify the sender’s private information (adverse selection problem).

Suppose action j is recommended to the receiver according to the communication device δ ,
provided that the sender is sincere in Γδ (p). Then, the receiver computes posterior probabilities
p j(δ ) =

(

pk
j(δ )

)

k∈K
given by

pk
j(δ ) =

δ k
j pk

∑k′∈K δ k′
j pk′

. (3.3)

The communication device δ is incentive-compatible for the receiver if and only if the obedient
strategy is a best response for the receiver in Γδ (p) whenever the sender is sincere, namely,

∑
k∈K

pk
j(δ )bk

j ≥ ∑
k∈K

pk
j(δ )bk

i , ∀ i, j ∈ J. (3.4)

The strategic incentive constraints in (3.4) characterize the receiver’s inalienable right to control
her action in J (moral hazard problem). By definition of the posterior probabilities in (3.3), both
sides of (3.4) are divided by the total probability of receiving the recommendation to play j.
Then, the strategic incentive constraints can be equivalently written as

∑
k∈K

δ k
j pkbk

j ≥ ∑
k∈K

δ k
j pkbk

i , ∀ i, j ∈ J. (3.5)

We define Y (q) as the set of receiver’s optimal actions at belief q ∈ ∆(K), i.e.,

Y (q) =

{

y ∈ ∆(J)

∣

∣

∣

∣

∑
k∈K

qk ∑
j∈J

y j bk
j = max

j∈J
∑
k∈K

qkbk
j

}

.

Let π j(δ ) := ∑k∈K pkδ k
j be the probability of sending the recommendation j when δ is im-

plemented. Then, δ is incentive compatible for the receiver if and only if for each j ∈ J,
π j(δ ) > 0 implies that j is optimal for the receiver given the posterior probabilities p j(δ ), i.e.,
j ∈ Y (p j(δ )).
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Definition 1 (Communication equilibrium).
A communication device δ is a communication equilibrium of Γ(p) if and only if the sincere
and obedient strategies form a Nash equilibrium of Γδ (p), that is, δ satisfies the incentive
constraints in (3.2) and (3.5). We let D∗(p) denote the set of communication equilibria of Γ(p).

REMARK 1. Communication equilibria are defined by a set of linear inequalities, hence the set
D∗(p) is a convex polyhedron. Furthermore, this set is closed, bounded and non-empty.

A communication equilibrium δ is fully revealing (FR) if it recommends different actions for
every type of the sender, so that the receiver can infer the true state by looking at the prescribed
recommendation. It is non-revealing (NR) if δ k = δ k′ for every k,k′ ∈ K, so that no useful
information is revealed to the receiver. It is partially revealing (PR) if it is neither NR nor FR.

Thanks to a very general form of the revelation principle for Bayesian games (see Forges (1985,
1986)), there is no loss of generality in restricting attention to communication equilibria, in the
following sense: assume that the game Γ(p) is extended by allowing the players to communi-
cate for a possibly infinite number of stages through a general communication device, sending
signals to every player at every stage but also receiving messages from them. Such devices may
involve preplay communication, before player 1 learns his type, but also interplay communica-
tion, after player 1 has learnt his type but before player 2 chooses his action. The set of all Nash
equilibrium payoffs of all extensions of Γ(p) by general communication devices coincides with
the set of all communication equilibrium payoffs.

4 Mediated Persuasion
In the basic game Γ(p), player 1 has the option to remain silent and let player 2 to choose
an action given her prior belief p. He can also design a communication system to signal his
private information, and try to persuade player 2 to change her action. We assume that player 1
publicly chooses a mediated communication device δ (i.e., a mediator) before learning his type.
Then both players interact as in Γδ (p). Because the selection of the communication device is
done at the ex-ante stage, this choice is by itself uninformative. The problem of player 1 is
then to choose a communication equilibrium maximizing his ex-ante payoff, namely, to select
a communication device solving

max
δ∈D∗(p)

a(δ ; p). (4.1)

We shall refer to this optimization problem as the primal problem for p.

REMARK 2. The optimization problem in (4.1) is a linear programming problem: the objective
function is linear in δ (see (3.1)) and the feasible set is defined by a system of linear inequalities
in δ (see Remark 1).

Definition 2 (Value of persuasion).
The optimal value of the primal problem for p will be called the value of persuasion at p and is
denoted a∗(p).

REMARK 3. Viewed as a correspondence defined on ∆(K), the set of communication equilibria
is upper-hemicontinuous. Then, a∗ is an upper-semicontinuous function. It may however fail to
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be continuous.

4.1 Mediated Persuasion Under Verifiable Information
Before proceeding with the analysis of the primal problem, let us consider the more simplified
persuasion game in which the type of the sender is verifiable by the mediator but not by the
receiver. In such a situation, the informational incentive constraints are not relevant, so that our
framework reduces to Kamenica and Gentzkow’s (2011).

Definition 3.
For a given prior p, we denote as D(p) the set of communication devices satisfying the strategic
incentive constraints in (4.5).

Under verifiable information, the problem for the sender can thus be expressed as

max
δ∈D(p)

a(δ ; p). (4.2)

In this case, the sender has nothing to communicate to the mediator. The only thing he has to do
is to choose a communication device that will recommend an action to the receiver depending on
his true type. The verifiability assumption is thus equivalent to the full commitment assumption.

Given any prior belief q, the maximal ex-ante utility that the sender can expect in the absence
of communication is

â(q) := max
y∈Y (q)

∑
k∈K

qk ∑
j∈J

y jak
j.

We refer to the function â as the non-revealing payoff function. Let cav â be the concavification
of â, i.e., the smallest concave function that is larger or equal to â. As observed by Aumann and
Maschler (1995) and Kamenica and Gentzkow (2011), the optimal value of the relaxed primal
problem (4.2) is cav â(p). Also there exists a subset I ⊆ J of actions with |I| ≤ |K| and posterior
probabilities {pi}i∈I with pi ∈ ∆(K) for every i ∈ I, such that there exists a unique probability
vector ρ ∈ ∆(I) satisfying

∑
i∈I

ρi pi = p (4.3a)

and
∑
i∈I

ρiâ(pi) = cav â(p). (4.3b)

Then, it is possible to “split” the total prior probability p into a set of conditional distributions
{pi}i∈I, such that (i), for every i ∈ I, the posterior probabilities that the receiver computes
after receiving the recommendation to play i are pi ∈ ∆(K) ; and (ii) the sender guarantees an
expected payoff equal to cav â(p). Condition (4.3a) is called Bayes plausibility, while condition
(4.3b) is an optimality requirement. Since the distribution ρ is unique, the receiver will update
her prior beliefs from p to pi with probability ρi.

Notice that in the previous result the number of signals required for achieving the optimal value
of (4.2) is bounded by the number of types of the sender8. Namely, the most the sender needs
to transmit to the receiver is just k, which has |K| possible values.

8This result follows from Carathéodory’s theorem.
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Given the set {pi}i∈I and the corresponding distribution of posteriors ρ , an optimal communi-
cation device can be computed from the following formula:

δ k
j =

{

pk
jρ j

pk , if j ∈ I
0, otherwise

, ∀k ∈ K. (4.4)

Finally, we observe that for any p ∈ ∆(K), we have that

â(p) ≤ a∗(p) ≤ cav â(p). (4.5)

The first inequality follows from the fact that â(p) can always be achieved by a NR communi-
cation equilibrium. The second inequality is due to the fact that D ∗(p) ⊆ D(p).

We start the analysis of the primal problem in Section 4.2 by dealing only with its optimal value.
Then, in Section 4.3 we shall characterize its optimal solutions.

4.2 The Virtual Persuasion Game
As we have seen, when there are no informational incentive constraints, the solution to the
primal problem can be easily characterized. Informational incentive constraints complicate
matters by interconnecting the signals in different states. However, we can integrate the welfare
effects of incentive compatibility into the objective function using duality theory. The idea
is that the set of communication equilibria is defined by a system of linear inequalities (see
Remark 1) for which the dual variables can be used to define the sender’s virtual utility. These
virtual utility scales incorporate into the utility function the signalling costs associated with
the incentive compatibility. Using the concept of virtual utility we can transform the original
primal problem into a simplified problem without informational incentive constraints but with
a different objective function.

Let γ(k′ | k)≥ 0 be the dual variable (or Lagrange multiplier) for the constraint that type k of the
sender should not gain by reporting k′ in the primal problem for p. Following Myerson (1991,
sec. 10.5), we define the virtual utility of the sender from the action j, when his type is k, w.r.t.
the prior p and the duals γ to be

αk
j (p,γ) =

1
pk

[(

pk + ∑
k′∈K

γ(k′ | k)

)

ak
j − ∑

k′∈K
γ(k | k′)ak′

j

]

. (4.6)

In order to understand formula (4.6), we disentangle its components. The terms of the form
γ(k′ | k) measures the information rent that type k can extract by pretending to be type k′. On
the other hand, the terms of the form γ(k | k′) measure the signaling cost that type k must incur in
order to reduce the misrepresentation of type k′. Virtual utility is thus defined as the actual utility
plus the total information rents minus the total signaling costs. Notice that multiplying type k’s
utility ak

j by the positive constant 1
pk

(

pk +∑k′∈K γ(k′ | k)
)

is decision-theoretically inessential.
That is, the unique decision-theoretic difference between the real utility scale and the virtual
utility scale is given by the signaling costs. Hence, the virtual utility of the sender is a distorted



The Value of Mediated Communication 67

utility that magnifies the difference between his actual utility and the utility of the types that
would be tempted to imitate him.

In a situation where information is not verifiable, so that misrepresentation is possible, some
types of the sender may get some information rents from having private information. Also, some
types may be compelled to incur in signaling costs in an effort to distinguish themselves from
the types that try to mimic them. This new compromise in the payoff maximization goals of the
different types of the sender is described by the virtual utility and mathematically measured by
the dual variables.

Let us assume that, as a consequence of the pressure that a type might feel in getting the re-
ceiver to trust him, the sender begins to act as if he were maximizing his virtual utility (Myerson
(1991, sec. 10.8) refers to this idea as the virtual utility hypothesis). Thus, for some fixed prior
beliefs p and signaling costs γ , consider the (p,γ)-virtual persuasion problem, a fictitious game
that differs from the original persuasion game in the following. First, the sender’s types are
verifiable by the mediator (but not by the receiver), so that there are no informational incen-
tive constraints. Second, the sender’s payoffs are in the virtual utility scales (α k

j (p,γ)) j∈J,k∈K

instead of (ak
j) j∈J,k∈K .

Let α̂( · ; p,γ) denote the non-revealing (virtual) payoff function of the (p,γ)-virtual persuasion
problem. As already observed in Section 4.1, the value of persuasion in the (p,γ)-virtual game
is given by cav α̂(p ; p,γ).

Although the (p,γ)-virtual game gives us some insights on how to simplify the sender’s problem
by removing the informational incentive constraints, it does not say anything about the “dual”
relationship between the optimal value of the primal problem for p, a∗(p), and the value of
persuasion in the virtual game. Furthermore, it leaves open the question of determining the
optimal signaling costs incurred by the sender in order to distinguish himself from the types
that are tempted to imitate him. However, there exists an answer to the first question that will
make the second question redundant. The following result is a consequence of strong duality.

Theorem 1.
For any prior p ∈ ∆(K) we have that

a∗(p) = min
γ≥0

cav α̂(p ; p,γ). (4.7)

We refer to the minimization problem in (4.7) as the dual problem for p.9

Proof. The Lagrangian of the primal problem for p is

L (δ , p,γ) = ∑
k∈K

pk ∑
j∈J

δ k
j ak

j + ∑
k∈K

∑
k′∈K

γ(k′ | k)

[

∑
j∈J

δ k
j ak

j − ∑
j∈J

δ k′
j ak

j

]

= ∑
k∈K

pkαk(δ ; p,γ)

9We notice that the right-hand side of (4.7) is not, strictly speaking, the dual problem associated to (4.1).
However, as shown in the proof of Theorem 1, its optimal value equals the optimal value of the dual.



68 Incentives in Cooperation and Communication

where γ ≥ 0 and δ ∈ D(p).

Then, the dual problem for p, associated to the primal problem for p, is given by

min
γ≥0

max
δ∈D(p)

L (δ , p,γ) = min
γ≥0

max
δ∈D(p)

∑
k∈K

pkαk(δ ; p,γ)

= min
γ≥0

cav α̂(p; p,γ)

By strong duality, the value of the primal problem equals the value of its dual10. Thus a∗(p) =
minα≥0 cav α̂(p; p,γ). �

Fix a prior p ∈ ∆(K) and let γ∗(p) be an optimal solution of the dual problem for p. Then, the
key implication of Theorem 1 is that the value of persuasion in the original game coincides with
the value of persuasion in the (p,γ∗(p))-virtual game, namely,

a∗(p) = cav α̂(p ; p,γ∗(p)).

Thus, instead of saying that incentive compatibility restricts the sender’s ability to signal his
information, we may say that he is compelled to modify his actual preferences from the real to
the virtual scales (p,γ∗(p)).

Definition 4 (Value of information).
The value of information for the sender at the prior p is the difference between the value of
persuasion at p and the non-revealing value at p, i.e., a∗(p)− â(p).

We say that the sender benefits from his private information at p if the value of information at
p is positive. Theorem 1 provides a necessary and sufficient condition for the sender to benefit
from his information.

Corollary 1.
The sender benefits from his information at p if and only if for all γ ≥ 0,

cav α̂(p; p,γ) > â(p).

The motivating example of Section 2 will help us to understand the meaning and significance
of the virtual utility. Also, it will provide some interesting conclusions about the effects of
informational incentive compatibility.

Example 1 Consider again the motivating example studied in Section 2. The non-revealing
value function â joint with its concavification cav â are depicted in Figure 3.
We fix the prior probability of type H to be p < 1

5 and we denote p j the posterior belief about
type H that the receiver will infer after receiving the recommendation to choose action j. Under

10The following characterization also results from strong duality. Let α(δ ; p,γ) be the ex-ante expected payoff
the sender gets in the (p,γ)-virtual game when he uses the communication device δ ∈ D(p). Let us define,
for every p ∈ ∆(K), the auxiliary zero-sum game G(p), in which the maximizing player chooses δ ∈ D(p), the
minimizing player chooses γ ≥ 0 and the payoff is α(δ ; p,γ). Then the value of G(p) exists and equals a∗(p).
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Figure 3: Function â and its concavification

full commitment, (which is equivalente to assume that information is verifiable by the mediator),
an optimal communication device must split the total probability p into the posteriors p3 = 0
and p2 = 1

5 with probabilities ρ3 = 1−5p and ρ2 = 5p, respectively (see Figure 3). The value
of persuasion under the verifiability assumption is

cav â(p) = 0ρ3 + 11
5 ρ2 = 11p

Thus, the unique optimal communication device is given by

δ H
2 = 1, δ L

2 = 1−δ L
3 = 4p

1−p

This communication device is, however, not incentive compatible for the sender. This is so
because type L would have incentives to report that he is type H. As a consequence, the sender
cannot achieve the expected payoff cav â(p) when information is not verifiable, yet he can do
better than â(p) as we will see in the sequel.

By solving the dual problem for p < 1
5 , we have that the optimal value of the dual variables

(Lagrange multipliers) is

γ∗(H | L) = 10p(1−p)
3−11p := γ∗(p), γ∗(L | H) = 0

Because type L has incentives to lie, it is natural that γ∗(H | L) > 0. Since type H cannot
take any advantage from his private information (lying is not profitable), γ ∗(L | H) = 0. The
(p,γ∗(p))-virtual utility game can thus be described by the following payoffs matrix:

α,b j1 j2 j3

H 1+ γ∗(p)
p ,3 3− 2γ∗(p)

p ,1 −5,−3

L −
(

1+
γ∗(p)
1−p

)

,−3 2
(

1+
γ∗(p)
1−p

)

,−1 0,0

We notice that type L’s virtual utility is just a positive multiple of his actual utility. Therefore,
both the virtual game and the actual persuasion problem are decision-theoretically equivalent
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in state L. On the other hand, in state H, the sender’s virtual utility magnifies the difference
between his true type and the type that would be tempted to imitate him.

Figure 4 illustrates the non-revealing value function α̂ of the virtual game and its concavifica-
tion. According to Theorem 1, the optimal value of the primal problem for p < 1

5 is

a∗(p) = cav α(p; p,γ∗(p)) = p+ γ∗(p) < 11p = cav â(p)

We observe that ex-post inefficiencies are incurred in an optimal solution of the primal problem.
The optimal value is, however, ex-post efficient in terms of the virtual utility scales. Thus, in-
stead of saying that incentive compatibility forces the sender to incur in (ex-post) inefficiencies,
we may say that incentive compatibility compels the sender to behave according to his virtual
utilities (Myerson (1991, ch. 10) refers to this idea as the virtual utility hypothesis).

q1
5

1
2 1

1+ γ∗(p)
p

−1

0

a

α̂

cav α̂

Figure 4: Function α̂ and its concavification

A similar analysis for the case p > 1
2 shows that optimal value of the primal problem is

a∗(p) = cav α(p; p,γ∗∗(p)) = p+6γ∗∗(p) < 4−3p = cav â(p)

where, γ∗∗(p) := γ∗∗(L | H) = 2p(p−1)
5p−1 and γ∗∗(H | L) = 0 are the optimal solutions of the dual

problem for p.

q1
5

1
2 1

a

5/2
11/5

1 a∗

cav â

Figure 5: Functions a∗ and cav â for Example 1

Whenever p ∈ [1/5,1/2 ], the receiver’s optimal action is to choose j2, which is the preferred
action for both types of the sender. Thus, a∗(p) = â(p) = cav â(p). The value function a∗ looks
like in Figure 5.
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Example 2 As a further illustration of our methodology, we study the following game, pro-
posed by Forges (1990). It has been extensively analyzed in the literature of strategic informa-
tion transmission. Payoffs for both players depend on the sender’s type and the receiver’s action
as follows:

a,b j1 j2 j0 j3 j4
H 3,0 4,4 0,7 10,9 6,10
L 6,10 10,9 0,7 4,4 3,0

This example has a natural interpretation in terms of a job assignment scenario. An employer
must decide whether to hire a candidate and, if so, to assign the employee to one of four possible
jobs. The candidate may be one of two types. Type L performs better in job 1 but prefers job 2;
he is bad at job 3, and even worse at job 4. Type H is similar but with jobs reversed. Sender’s
prior probability of type H is p ∈ (0,1).

By performing a similar analysis as in Example 1, it can be shown that the value of persuasion
in this game (depicted in Figure 6) is given by

a∗(p) =











6+14p+
28p(5p−1)

4−15p , if p < 1
5

44
5 , if 1

5 ≤ p ≤ 4
5

20−14p− 28(1−p)(5p−4)
15p−11 , if p > 4

5

In particular, we have that for any p < 1/5 (resp. p > 4/5) only type L (resp. H) has incentives
to lie, so that γ(H | L) > 0 (resp. γ(L | H) > 0).

q1
5

2
5

3
5

4
5 1

6

44
5

0

a

â

a∗

Figure 6: Functions a∗ and â for example 2

The nature of this game is similar to that of Example 1, except that here there is an outside
option: not to hire the candidate, i.e., action j0.

4.3 Optimal Mediators
So far we have focused on the optimal value of the primal problem. Our aim now is to characte-
rize its optimal solutions. For that, let us start considering the case in which the optimal value of
the dual variables is zero at some prior p, so that incentive constraints are not essential. In such a
situation virtual utilities coincide with real utilities and the value of persuasion at p is cav â(p).
Then, according to (4.3b), the posterior beliefs {pi}i∈I induced by any optimal communication
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device correspond to the points on the domain of â for which the convex combination of their
images yields cav â(p). The corresponding distribution of posteriors ρ = (ρi)i∈I is the (unique)
solution of a well determined system of linear equations given by (4.3a). Hence, given {pi}i∈I
and ρ , an optimal communication device can be easily computed using formula (4.4).

Now consider the situation in which there are binding informational incentive constraints. On
one hand, according to the virtual utility hypothesis, the sender might distort his preferences
from the actual to the virtual scales, exaggerating the difference from the types that try to mimic
him. On the other hand, as we have shown in the motivating example (Example 1), the sender
may require to transmit more messages than his number of types. Then, the number of un-
knowns in (4.3a) (messages) increases while the number of equations (types) remains the same.
The system in (4.3a) may become underdetermined and therefore infinitely many distributions
of posteriors may be consistent with the same prior probability. Thus, additional conditions are
required to characterize any optimal communication device.

To understand this issue, let us return to Example 1. Let p < 1
5 and consider the (p,γ∗(p))-

virtual game. According to Figure 4 and condition (4.3b), the optimal value of the primal
problem can be achieved by splitting the total probability p in either of the following collection
of posteriors:

(i ) p3 = 0, p2 = 1
5 , or

(ii ) p3 = 0, p1 = 1, or

(iii ) p3 = 0, p2 = 1
5 , p1 = 1.

In case (i ), Bayes plausibility implies that (ρ2,ρ3) = (5p,1−5p) and thus formula (4.4) yields
δ H

2 = 1− δ H
3 = 1 and δ L

2 = 1− δ L
3 = 4p

1−p . But this communication device is not incentive
compatible for the sender. In case (ii ) we have that Bayes plausibility implies that (ρ1,ρ3) =
(p,1− p) and therefore formula (4.4) yields δ H

1 = δ L
3 = 1. This communication device is a

FR communication equilibrium giving an expected payoff to the sender equal to p which is
strictly lower than a∗(p). Finally, in case (iii ), Bayes plausibility does not uniquely identify a
distribution of posteriors. In particular, any probability vector (ρ1,ρ2,ρ3) satisfying ρ1 + ρ2

5 = p
is a feasible distribution of posteriors. An additional condition is thus required in order to
identify the correct distribution of posteriors.

Duality theory implies a relationship between the primal and dual problems that is known as
complementary slackness. Specifically, it says that if a dual variable is positive, then the asso-
ciated informational incentive constraint must be binding. Conversely, if a constraint fails to
bind, then the associated dual variable must be zero. Complementary slackness provides us the
additional equations we needed. Consider again Example 1 with p < 1

5 . As we have already
shown, the optimal value of γ∗(H | L) is strictly positive. Then, according to the complementary
slackness, the constraint asserting that the type L should not gain by reporting H is binding, i.e.,

2δ L
2 −δ L

1 = 2δ H
2 −δ H

1

The previous equality joint with formula (4.4) yield the additional restriction

5ρ1(1− p) = 2ρ2(1−5p)
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This equality together with Bayes plausibility implies that the optimal distribution of posteriors
is

ρ1 =
2p(1−5p)

3−11p , ρ2 =
5p(1−p)
3−11p , and ρ3 = 1−ρ1 −ρ2

Given these posteriors, formula (4.4) gives the optimal communication device solving the pri-
mal problem for p. We conclude that, in order to achieve the optimal value a∗(p), the sender
requires to induce a split of the total prior probability p into posterior beliefs p3 = 0, p2 = 1

5
and p1 = 1. Hence, an optimal communication device transmits 3(> |K| = 2) different mes-
sages (recommendations) with positive probability. The sender transmits as much information
as when misrepresentation is not problematic (i.e., he induces posteriors p3 = 0 and p2 = 1

5 ),
however he also requires to send the message j1 to make such revelation credible to the receiver.

Drawing on the virtual utility hypothesis, the increased number of messages can be justified
by the fact that incentive compatibility obliges type H to use an additional costly signal, from
which he gains positive virtual utility. The optimal probability of sending message j1 (i.e., ρ1)
is determined by the minimization of the signaling costs incurred in recommending j1.

Optimality conditions from strong duality theory imply the following result:

Proposition 1.
Let δ be a communication device satisfying the informational incentive constraints for the
sender. Then, δ is an optimal solution of the primal problem for p if and only if there exists a
vector γ ≥ 0 such that

γ(k′ | k)

[

∑
j∈J

(

δ k
j −δ k′

j

)

ak
j

]

= 0, ∀k,k′ ∈ K (4.8)

and
∑
k∈K

pkαk(δ ; p,γ) = cav α̂(p; p,γ) (4.9)

Condition (4.9) is the counterpart of conditions (4.3a) and (4.3b). It says that the optimal com-
munication device induces a distribution of posterior beliefs giving the sender an ex-ante ex-
pected virtual payoff equal to the concavification of the non-revealing virtual payoff function
α( · ; p,γ) evaluated at the prior distribution p. Condition (4.8) is the complementary slackness.

Following Myerson (1991, sec. 10.5), we say that a type k jeopardizes another type k ′ at the
prior p if the optimal value of the dual variable γ(k′ | k) at p is positive.

4.4 Extreme Communication Equilibria and the Number of Signals
Our aim in this section is to provide an upper-bound on the number of recommended actions
required to achieve the value of persuasion. For that, we exploit the geometric properties of the
set of communication equilibria.

Recall that, for any fixed p ∈ ∆(K), the feasible set of the primal problem for p is a convex
polytope (bounded polyhedron). Then, the sender’s expected payoff achieves its maximum at
an extreme point of D∗(p) (or a convex combination of them).
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Definition 5 (Extreme communication equilibrium).
The communication device δ is an extreme communication equilibrium of Γ(p) if it is an ex-
treme point of D∗(p).

Using a basic result from the theory of linear programming, it is possible to characterize the
number of messages sent with positive probability in any extreme communication equilibrium.
A solution of a system of linear inequalities is an extreme point of the corresponding feasible
set if and only if it can be obtained as the unique solution to a system of equations derived from
equality constraints by setting a subset of variables equal to zero (see for instance Schrijver
(1998)). These are called basic feasible solutions. As a consequence, the number of non-zero
components in any extreme point is no greater than the number of binding constraints. Thus, a
way to identify an upper-bound on the number of actions with positive probability in an extreme
communication equilibrium is to determine how many incentive constraints can be binding.

The previous insight was applied by Forges (1994) to show that whenever the sender has only
two types (i.e., |K| = 2), the number of recommended actions in an extreme communication
equilibrium cannot exceed 4. This bound corresponds to the number of types (|K|= 2) plus the
number of informational incentive constraints. Unfortunately, the reasoning in the proof of this
result relies strongly on the fact that |K|= 2. However, a similar statement can be proved for the
general case |K| ≥ 2 by modifying the sender’s problem11. The idea is as follows: let δ̄ denote
a solution of the primal problem for p. Now, replace each δ k

j in the definition of the primal for p
by the variable θ jδ̄ k

j , with θ j ≥ 0 and add |K| constraints of the form ∑ j θ jδ̄ k
j = 1 for all k ∈ K.

By keeping fixed δ̄ and p, we obtain a linear programming problem on θ . For this problem, the
strategic incentive constraints are redundant, thus we end up with |K|2 (= |K|+ |K|(|K|−1))
constraints. Then, applying the previous insights, there exist a solution of the modified problem,
denoted θ̃ , with at most |K|2 positive components. By construction, the communication device
δ̃ defined by θ̃ jδ̄ k

j is also an optimal solution of the primal problem for p. Since, all actions j
for which θ j = 0 have zero probability in δ̃ , we are able to find an upper bound on the number
of signals.

Proposition 2.
For any p ∈ ∆(K), there exists a solution of the primal problem for p for which the number of
actions with positive probability does not exceed |K|2.12

Proof. Let p ∈ ∆(K) and assume that only m(≤ |K|(|K| − 1)) informational incentive con-
straints are linearly independent in the primal problem for p. Then, there exist a set M ⊆ K ×K

11The same method is also applied by Bester and Strausz (2007).
12As it is inferred from the proof, we can also establish a result somewhat stronger than Proposition 2. Suppose

that it is possible to establish that at most m informational incentive constraints are binding, for instance by showing
that some of them can be written as linear combinations of the others. Then, there is a solution of the primal
problem for which the number of actions with positive probability does not exceed |K|+m.
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such that |M| = m and any solution of the programming problem

max
δ ≥0

∑
k∈K

pk ∑
j∈J

δ k
j ak

j (4.10)

s.t. ∑
j∈J

δ k
j ak

j ≥ ∑
j∈J

δ k′
j ak

j, ∀(k,k′) ∈ M

∑
k∈K

δ k
j pkbk

j ≥ ∑
k∈K

δ k
j pkbk

i , ∀i, j ∈ J

∑
j∈J

δ k
j = 1, ∀k ∈ K

is a solution of the primal problem for p, and viceversa. We need to prove that there exists a
solution of the primal problem for p for which no more than |K|+m actions are recommended
with positive probability. Let δ̄ be a solution of (4.10). Let N = { j ∈ J | π j(δ̄ ) > 0} and n = |N|.
If n ≤ |K|+ m, there is nothing to prove. Then, assume that n > |K|+ m. Consider the linear
programming problem

max
θ ≥0

∑
k∈K

pk ∑
j∈J

θ j δ̄ k
j ak

j (4.11)

s.t. ∑
j

θ j δ̄ k
j ak

j ≥ ∑
j

θ j δ̄ k′
j ak

j, ∀(k,k′) ∈ M

∑
j∈J

θ j δ̄ k
j = 1, ∀k ∈ K

Because δ̄ is a solution of (4.10), the vector θ̄ ≥ 0 defined by θ̄ j = 1 for all j ∈ N and θ̄ j = 0 for
all j ∈ J \N solves the linear program (4.11). By a fundamental result of linear programming
(see Schrijver (1998)), we can always find a solution of (4.11) among the extreme points of
its feasible set. Therefore, since (4.11) has |K|+ m constraints, it has a basic feasible solution
θ̃ ≥ 0 with no more than |K|+ m strictly positive components. For every j ∈ J and k ∈ K, we
define δ̃ k

j = θ̃ j δ̄ k
j ≥ 0. Let Ñ = { j ∈ J | π j(δ̃ ) > 0}. Then, |Ñ| ≤ |K|+m,

∑
j∈J

δ̃ k
j = ∑

j∈J
θ̃ j δ̄ k

j = 1, ∀k ∈ K

a(δ̃ ; p) = ∑
k∈K

pk ∑
j∈J

θ̃ j δ̄ k
j ak

j = ∑
k∈K

pk ∑
j∈J

θ̄ j δ̄ k
j ak

j = a(δ̄ ; p)

and
∑
k∈K

δ̃ k
j pkbk

j = θ̃ j ∑
k∈K

δ̄ k
j pkbk

j ≥ θ̃ j ∑
k∈K

δ̄ k
j pkbk

i = ∑
k∈K

δ̃ k
j pkbk

i , ∀i, j ∈ J

Then, δ̃ is a solution of (4.10) for which no more than |K|+ m actions are recommended with
positive probability. �

We now provide an example that shows that the bound in Proposition 2 is actually tight. This
means that without any further knowledge on the number of binding informational incentive
constraints, the lowest possible upper bound on the number of recommended actions is |K|2.
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Example 3 Payoffs for both players depend on the sender’s type and the receiver’s action as
indicated in the following matrix:

a,b j1 j2 j3 j4 j5
H -2,0 2,4 1,7 3

2 ,9 0,10
L 0,10 3

2 ,9 1,7 2,4 -2,0

Let p = 1/2 be the prior probability of type H. Then, the optimal solution of the dual problem
for p is γ(H | L) = γ(L | H) = 17

42 . Complementary slackness implies that both informational in-
centive constraints are binding. Therefore, we expect an optimal solution of the primal problem
to involve 4 messages. Indeed, the unique optimal solution is

δ H
2 = δ L

4 =
8
21

, δ L
4 = δ L

2 =
4
7
, δ H

5 = δ L
1 =

1
21

,

which induces posterior probabilities p1(δ ) = 0, p2(δ ) = 2
5 , p4(δ ) = 3

5 , p5(δ ) = 1. Thus,
actions j1, j2, j4 and j5 are recommended with positive probability. Qualitatively similar results
are obtained for any prior probability p ∈

( 2
5 , 3

5

)

.

5 Discussions

5.1 Cheap-Talk Implementation
In some environments, plain conversation between the players is more natural than mediated
communication. Is it possible to achieve any communication equilibrium payoff by means of
cheap-talk? Forges (1990) shows that there may exist communication equilibrium payoffs that
cannot be implemented as Nash equilibrium payoffs of any long cheap-talk extension of Γ(p).
However, communication equilibrium payoffs can be implemented as correlated equilibrium
payoffs (in the sense of Aumann (1974)). More precisely, a feasibility theorem holds: the set
of all correlated equilibrium payoffs of all cheap-talk extensions of Γ(p) coincides with the set
of all communication equilibrium payoffs. In fact, any communication equilibrium payoff can
be achieved as a correlated equilibrium payoff of a cheap-talk extension of Γ(p) with only one
stage of information transmission (see Forges (1985)).

5.2 Information Design Problems
The fundamental result we use to make the sender’s problem more tractable is the revelation
principle for general Bayesian games. This principle states that without loss of generality, the
sender may restrict attention to communication equilibria, which are described by a set of lin-
ear inequalities. Therefore the sender’s problem can be formulated as a linear programming
problem. One advantage of this approach is that it does not depend on the number of receivers
or the fact that they are uninformed. Indeed, the revelation principle also applies for a persua-
sion problem with an arbitrary number of privately informed receivers. In this general setting,
the mediator (communication device) first asks all informed players (sender and receivers) to
simultaneously and confidentially reveal their individual types. Then he privately recommends
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an action to each receiver. In a communication equilibrium of this game, all informed players
always report their types truthfully and the receivers always follow the prescribed recommenda-
tion. Here again, the set of communication equilibria is a convex polyhedron, thus our analytical
framework readily extends to more general information design problems.

Unfortunately, our main results concerning the dual properties of the primal problem (Theorem
1 and Proposition 1) do not extend to general information design problems. The main difficulty
comes from the fact that, because of the strategic externalities, each receiver’s optimal action
depends not only on the posterior beliefs she infers after receiving a recommendation, but also
on the non observed recommendations made to the other receivers.

Our approach is reminiscent of a recent methodology developed by Taneva (2016) for the study
of information design problems. She considers a basic game in which: (i) a set of multiple
receivers have symmetric uncertainty about an unobserved payoff-relevant state with a com-
monly known prior distribution; and (ii), an information designer has preferences that depend
on the state and the actions taken by the agents. The designer, before observing the realization
of the state, commits to an information structure (i.e., a set of signals together with a signal-
ing strategy). His problem then is to find an information structure which, for the given basic
game, supports a Bayesian equilibrium that maximizes his expected payoff. Using the concept
of Bayes correlated equilibrium, introduced by Bergemann and Morris (2016), Taneva char-
acterizes the set of all Bayesian equilibria associated with all possible information structures
for a given basic game. By doing so, she equivalently reformulates the designer’s problem
as a linear programming problem. The notion of Bayes correlated equilibrium considers only
the strategic incentive constraints related to the “obedience” of the receivers. For that reason,
Tanevas’s approach assumes full commitment on the part of the designer. In contrast, the con-
cept of communication equilibrium captures the idea that players can strategically manipulate
their information by imposing additional truth-telling incentive constraints. As a consequence,
Taneva’s formulation can be seen as a particular case of our analytical framework, one in which
the receivers are uninformed (symmetric uncertainty) and the private information of the designer
is verifiable by the mediator.
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