
HAL Id: tel-01714428
https://hal.science/tel-01714428

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Verification of Hybrid Systems
Goran Frehse

To cite this version:
Goran Frehse. Scalable Verification of Hybrid Systems. Systems and Control [cs.SY]. Univ. Grenoble
Alpes, 2016. �tel-01714428�

https://hal.science/tel-01714428
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES
Spécialité : Informatique

Présentée par

Goran Frehse

préparée au sein du laboratoire Verimag et de l’Ecole Doctorale Mathé-
matiques, Sciences et Technologies de l’Information, Informatique

Scalable Verification
of Hybrid Systems

Habilitation à diriger des recherches soutenue publiquement le
26.05.2016, devant le jury composé de :

M. Alain Girault
Directeur de Recherches, INRIA, Président
M. Eugene Asarin
Professeur, IRIF, Université Paris Diderot et CNRS, Rapporteur
M. Manfred Morari
Professeur, ETH Zurich, Suisse, Rapporteur
M. Pravin Varaiya
Professeur, University of California Berkeley, USA, Rapporteur
M. Rajeev Alur
Professeur, University of Pennsylvania, USA, Examinateur
M. Eric Goubault
Professeur, École polytechnique, Examinateur
M. Oded Maler
Directeur de Recherches, CNRS, Examinateur

2

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Research Supervision and Projects 4

2 Hybrid Automata and Reachability 7
2.1 Hybrid Automata . 7
2.2 Set-based Reachability . 13
2.3 Reachability for Piecewise Affine Dynamics 14

3 Template Reachability with Support Functions 21
3.1 Support Functions and Template Polyhedra 21
3.2 Flowpipe Approximation . 23
3.3 Computing Transition Successors 28
3.4 Clustering . 30
3.5 Experimental Results . 31

4 One-Step Template Refinement 37
4.1 Intersection of Support Functions with Polyhedra 39
4.2 Flowpipe-Guard Intersection . 44
4.3 Branch-and-Bound Clustering . 46
4.4 Experimental Results . 47

5 Semi-Template Reachability in Space-Time 51
5.1 Flowpipe Approximation in Space-Time 55
5.2 Clustering in Space-Time . 64
5.3 Experimental Results . 71

6 Property-Based Template Refinement 75
6.1 Approximate Support Functions 76
6.2 Separating Convex Sets . 78
6.3 Timed Flowpipe Separation . 84
6.4 Experimental Results . 89

7 The SpaceEx Verification Platform 93
7.1 SpaceEx Architecture . 96
7.2 Scenario Implementations . 99
7.3 Modeling in SpaceEx . 100

8 Conclusions and Outlook 105

i

ii CONTENTS

Chapter 1

Introduction

Hybrid systems describe the change of a set of continuously evolving, real-valued
variables combined with discrete states. In continuous time, the change is gov-
erned by a set of ordinary differential equations (ODEs) or, more generally,
inclusions. Jumps of the discrete state can modify the ODEs or the values of
the variables, and such changes can be state-dependent and non-deterministic.
Cyber-physical systems can be considered as hybrid systems if one can abstract
from networking and distributed aspects. Hybrid systems occur in a wide range
of domains such as automotive control, robotics, electronic circuits, systems bi-
ology, and health care. Hybrid automata are a modeling paradigm for hybrid
systems. The discrete states and the possible transitions from one state to an-
other are described with a finite state-transition system. Each discrete state is
associated with a set of ODEs that describes how variables evolve with time. A
change in discrete state can update the continuous variables. Hybrid automata
are non-deterministic, which means that different futures may be available from
any given state. Rates of change or variable updates can be described by pro-
viding bounds instead of fixed numbers. Incomplete knowledge about initial
conditions, perturbations, parameters, etc. can easily be captured this way.
Complex models are readily constructed by composing automata that interact
by sharing variables and synchronizing events. Hybrid automata are well-suited
for formal analysis, since sets of behaviors are readily described by mathematical
equations. In this sense, they are an analysis-friendly rather than a user-friendly
modeling formalism. There are no mechanisms to avoid modeling mistakes, such
as unintended deadlocks.

The traditional technique for analyzing the behavior of hybrid systems, e.g.,
in model based design, is numerical simulation. Numerical simulation approx-
imates the evolution of the variables with a sequence of points in discretized
time. This highly scalable technique is widely used in engineering and system
design, but it is difficult to simulate all representative behaviors of a system.
Hybrid systems are particularly difficult to analyze, since neighboring states, no
matter how close, may exhibit qualitatively different behaviors. Even numerical
simulation can be difficult for such systems, in particular if high confidence in
the result is required. Conventional techniques from model-based design, such
as simulation of corner cases or stochastic simulation, may fail to detect critical
behavior and require a prohibitive number of simulation runs to be conclusive.
To ensure that no critical behaviors are missed, reachability analysis aims at

1

2 CHAPTER 1. INTRODUCTION

accurately and quickly computing a cover of the states of the system that are
reachable from a given set of initial states. Reachability can be used to formally
show safety and bounded liveness properties. Set-based reachability constructs
a cover of of all behaviors by exhaustively computing one-step successor states
until a fixed-point is found. This can be seen as a generalization of numeri-
cal simulation to sets, plus book-keeping to detect previously visited states. In
addition to verifying safety properties, set-based reachability can be used to
obtain quantitative information, e.g., bounds on the jitter in an oscillator cir-
cuit. Hybrid and cyber-physical systems in a wide range of application domains
have been analyzed through reachability analysis, e.g., automotive control [40],
robotics [77], electronic circuits [43], and systems biology [30].

A major obstacle to applying reachability analysis in practice is scalability.
In general, one-step successors can only be computed approximately and are dif-
ficult to scale in the number of continuous variables. The approximation error
requires particular attention since it can accumulate rapidly, leading to a coarse
cover, prohibitive state explosion, or preventing termination. The complexity
of one-step successor computations depends decisively on the dynamics of the
system. Piecewise-affine dynamics are particularly suitable, since covering the
solution of affine ODEs can be reduced to a linear problem once an approxima-
tion for the initial time-step is available [10]. Several different set representations
have been proposed for obtaining the cover. In the year 2000, a scalable ap-
proach based on ellipsoids was proposed [61, 63]. However, ellipsoidal techniques
do not easily extend to hybrid systems because ellipsoids are not closed under
essential set operations such as Minkowski sum, convex hull, and intersection.
Approximation errors can quickly accumulate. In 2005, a particular type of
polytope, called zonotope, was successfully used for reachability analysis of hy-
brid systems [59, 49]. Zonotopes are a subclass of central-symmetric polytopes
that is closed under Minkowski sum, and for which good approximations of the
convex hull can be efficiently obtained. While more computationally intensive
than ellipsoids, the approximation error can be made smaller. However, zono-
topes are not closed under intersection, which can make the computation of
jump successors problematic. In special cases, an approach called continuiza-
tion (interpolation between dynamics of neighboring locations) can help to avoid
the intersection operation [3].

In 2006, Le Guernic and Girard achieved a breakthrough with an algorithm
for affine dynamics that allowed them to avoid the error accumulation during
time elapse computation, known as the wrapping effect [51]. Using zonotopes,
precise image computations became possible for systems with hundreds of vari-
ables. A second breakthrough was reached in 2008, when Le Guernic and Girard
proposed to use support functions as set representations [50]. Support func-
tions had been proposed for approximating the reachable set of linear ODEs in
[52, 13, 87] and the Russian literature cited in [68]. If the set of initial states
is convex, these approaches define a convex approximation (a polyhedron) for
each point in the dense time domain. Over an interval of time, one obtains
an uncountable number of polyhedra, whose union is in general not convex.
Le Guernic and Girard found a way to efficiently compute an approximation
of this union with a single convex set, and then propagate this approximation
forward in time to cover the entire reachable set up to a given bounded time
horizon. As a result, the reachable states are covered with a finite number of
convex sets, each of which can be computed efficiently. The approximation error

1.1. CONTRIBUTIONS 3

is linear in size of the initial time interval. The approach was extended to hybrid
systems in [66]. Support functions have the advantage over zonotope techniques
that arbitrary compact convex sets can be represented, and that approximations
can be computed lazily, with the possibility to incrementally refining the result
up to the desired accuracy.

1.1 Contributions

The work presented in this monograph is a collection of theoretical and heuristic
improvements of the support function approach by Le Guernic and Girard, with
the central aim to obtain a scalable algorithmic approach that makes set-based
reachability applicable in practice. The contributions are as summarized in the
following paragraphs, following the outline of the chapters. Chapter 2 provides
an introduction to reachability and support functions are defined in Sect. 3.1.

Template Reachability : The template reachability approach by Le Guernic and
Girard from [66] was complemented by the book-keeping required for a fixed-
point reachability algorithm containment checking, and implemented on the
SpaceEx platform. The underlying ODE-approximation was improved in ac-
curacy by intersecting approximation bounds going forward and backwards in
time; this heuristic lead to accuracy improvements of many orders of magni-
tude. The fixed-step algorithm was extended to variable time steps, where the
time steps are adjusted separately for each template direction. The approach is
described in Chapter 3 and published in [44].

One-Step Template Refinement : The accuracy of template reachability depends
highly on the a-priori choice of the template. In principle, the support function
approach allows one to side-step this problem through nested evaluations of the
support functions of predecessor states, all the way back to the initial states.
However, the number of evaluations grows exponentially with the depth of nest-
ing, to the point where nesting is impractical. It is possible to approximate the
solution set up to a given precision by adding template directions [52], but in
general the number of directions grows exponentially with the dimension [68].
For the sake of scalability, we add directions to increase the accuracy only with
respect to the original template directions. From the structure of our reachabil-
ity algorithm, this is best carried out before the intersection with the so-called
guard condition, which specifies when a state can jump. We developed a so-
lution for guards that are halfspaces or hyperplanes, and extend the approach
heuristically to polyhedral guards. In experiments the increase in precision is
rewarded by a faster convergence of the reachability algorithm, leading to an
overall approach that is both faster and more precise. The approach is described
in Chapter 4 and published in [46].

Piecewise-Linear Flowpipe Approximations and Clustering : In the support func-
tion approach, the complexity of successor computations for each individual set
is a function of the number of template directions, which in turn determine
the accuracy. If one accepts the resulting approximation error, the successor
computations are highly scalable. But this does not yet lead to a scalable fixed-
point algorithm. Under these premises, it is the number of sets produced by
successor computations that constitutes the major bottleneck. In the original

4 CHAPTER 1. INTRODUCTION

approach [66], increasing the accuracy with respect to a particular direction
forcibly increases the number of sets. Heuristic clustering of sets, as in [44],
leads to approximation errors that are wildly unpredictable. We developed an
approach that allows us to produce for a given directional accuracy the minimal
number of semi-template polyhedra, with the minimal number of constraints,
covering the reachable states in space-time (the state space plus time as addi-
tional dimension). As a key ingredient, the nonconvex flowpipe approximations
are represented by sets of piecewise linear functions, on which many geometric
operations can be computed very efficiently. To the best of my knowledge, these
representations are novel. The approach is described in Chapter 5 and published
in [42, 38].

Property-Driven Refinement and Underapproximations of the Support Function:
As a second approach to template refinement, we considered the problem of re-
fining template directions just enough to show non-emptiness of a one-step suc-
cessor computation. This can also be considered as solving the safety problem
for a continuous system with affine dynamics, but with a focus on fast resolu-
tion rather than completeness. The technique was applied in [39] to eliminate
spurious transitions, which are frequently at the heart of the explosive growth
in the number of states. We propose underapproximations of the support func-
tions [42], which to my knowledge are novel. These can suffice to show or refute
certain geometric properties, like disjointness, before it is possible to deduce a
single point that is actually in the set. The approach is described in Chapter 6.

SpaceEx : The software tool SpaceEx was designed and implemented as an ex-
perimentation platform for developing and evaluating competing reachability
algorithms. Its architecture is generic in the sense that it suits all set-based
reachability algorithms known to the author. Implementations of wildly differ-
ing algorithms, such as the PHAVer algorithm [35] and the support function
approaches from [66] and [42], show the competitive performance. Third-party
additions are available from the University of Freiburg [17, 18] and further are
being developed by the Technical University of Munich in the EU project Un-
CoVerCPS [85]. The platform architecture is outlined in Chapter 7 and pub-
lished in [45].

1.2 Research Supervision and Projects

I had the pleasure and privilege to work with a number of PhD students and
PostDocs, with funding from several projects that are briefly described below.

PhD students: From 2008 to 2012 I co-supervised, together with Oded Maler,
Rajarshi Ray. Rajarshi is now an assistant professor at the National Institute of
Technology, Meghalaya, India. He was instrumental in developing SpaceEx and
its architecture as described in Chapter 7, and wrote his thesis on the implemen-
tation and improvements of the support function algorithms in Chapters 3 and 4.
His work was published in [44, 45, 46]. Since April 2015 I’ve been co-supervising,
together with Oded Maler, Nikos Kektatos. Nikos is currently investigating the
combination of trajectory computation with set-based reachability.

1.2. RESEARCH SUPERVISION AND PROJECTS 5

PostDoc: Stefano Minopoli has been working with me as a PostDoc since April
2013. He has worked on reachability with urgent semantics, as well as translating
simulation models to hybrid automata. Our work was published in [73, 75, 74].

External collaborations: I have collaborated with Xin Chen during his time
as PhD student of Erika Ábrahám. This lead to publications on polynomial-
complexity reachability for hybrid systems with piecewise constant derivatives
[23], benchmarks for hybrid systems [25], and a survey on reachability techniques
[81]. Another fruitful collaboration developed with Sergiy Bogomolov during
his time as PhD student of Andreas Podelski. The resulting work on high-
level improvements and applications of set-based reachability was published in
[16, 17, 19, 18]. We further worked on support function reachability in [39]

SpaceEx contributors: I would also like to acknowledge the contributions of
people involved in the creation of the SpaceEx platform, amongst others Rodolfo
Ripado, Scott Cotton, Rajat Kateja, and Manish Goyal.

The research presented here was partly financed by the following projects,
whose support I gratefully acknowledge:

• The FP7 EU project Integrated Multi-formalism Tool Support for the De-
sign of Networked Embedded Control Systemes (MULTIFORM) started
in September 2008 and terminated in February 2012. I was co-founder and
PI. The academic partners were the Universities of Dortmund, Eindhoven,
Aachen, Aalborg, and Grenoble (UJF - Verimag); the industrial partners
were the Stichting Embedded Systems Institute; VEMAC and KVCA.

• The H2020 EU project Unifying Control and Verification of Cyber-Physical
Systems (UnCoVerCPS) started in January 2015 and is expected to run
until December 2018. I was one of the co-founders et PI. The academic
partners in the project are the Universities of Munich (TUM), Kassel, Mi-
lano, and Grenoble (UJF/Verimag); and the industrial partners are Gen-
eral Electric, Bosch, Esterel Technologies, DLR, Tecnalia, and R.U.Robots.

• The sub-project Variabilité des circuits analogique hiérarchiques of the
project NANO2017 started in January 2015 and runs until december 2017.
I was one of the co-founders and PI. The partners are STMicroelectronics
and UJF/Verimag.

The development of the SpaceEx platform was supported in part through two
one-year projects of the Institute Carnot-LSI, in 2014 and 2015.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Hybrid Automata and
Reachability

Hybrid automata are a modeling formalism that combines discrete states with
continuously evolving, real-valued variables. The discrete states and the possible
transitions from one state to another are described with a finite state-transition
system. A change in discrete state can update the continuous variables and mod-
ify the set of differential equations that describes how variables evolve with time.
Hybrid automata are non-deterministic, which means that different futures may
be available from any given state. Rates of change or variable updates can be
described by providing bounds instead of fixed numbers. Incomplete knowledge
about initial conditions, perturbations, parameters, etc. can easily be captured
this way. Hybrid automata capture a rich variety of behaviors, and are used in a
wide range of domains such as automotive control, robotics, electronic circuits,
systems biology, and health care. The hybrid automaton model is well-suited
for formal analysis, in the sense that sets of behaviors are readily described by
mathematical equations.

In Sect. 2.1 we give a formal definition of hybrid automata and their se-
mantics. The fundamentals of set-based reachability are discussed in Sect. 2.2.
A specific instance of successor operations for piecewise affine dynamics is de-
scribed in Sect. 2.3. It builds the foundation for the improvements in Chapters 3
and 5. Related work is indicated throughout the text, but given the rich litera-
ture on the topic this introduction is far from exhaustive. For further reading,
see [70, 5, 83].

2.1 Hybrid Automata

Hybrid automata describe the evolution of a set of real-valued variables over
time. In this section, we give a formal definition of hybrid automata and their
behaviors, and illustrate the concept with an example. But first, we introduce
some notation for describing real-valued variables, and sets of these values in
the form of predicates and polyhedra.

7

8 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

2.1.1 Preliminaries

Variables: Let X = {x1, . . . , xn} be a finite set of identifiers we call variables.
Attributing a real value to each variable we get a valuation over X, written as
x ∈ RX or x : X → R. We will use the primed variables X ′ = {x′1, . . . , x′n} to
denote successor values and the dotted variables Ẋ = {ẋ1, . . . , ẋn} to denote the
derivatives of the variables with respect to time. Given a set of variables Y ⊆ X,
the projection y = x ↓Y is a valuation over Y that maps each variable in Y to
the same value that it has in x. We may simply use a vector x ∈ Rn if it is clear
from the context which index of the vector corresponds to which variable. We
denote the i-th element of a vector x as xi or x(i) if the latter is ambiguous. In
the following, we use Rn instead of RX except when the correspondance between
indices and variables is not obvious, e.g., when valuations over different sets of
variables are involved.

Predicates: A predicate over X is an expression that, given a valuation x over
X, can be evaluated to either true or false. A linear constraint is a predicate

a1x1 + a2x2 + · · ·+ anxn ≤ b,

where a1, . . . an and b are real-valued constants, and whose sign may be strict
(<) or nonstrict (≤). A linear constraint is written in vector notation as

aTx ≤ b,

with coefficient vector a ∈ Rn and inhomogeneous coefficient b ∈ R. A halfspace
H ⊆ Rn is the set of points satisfying a linear constraint. A predicate over
X defines a continuous set, which is the subset of RX on which the predicate
evaluates to true.

Polyhedra: A conjunction of finitely many linear constraints defines an H-
polyhedron, or polyhedron in constraint form,

P =
{
x
∣∣∣ ∧m

i=1
aTix ./i bi

}
, with ./i∈ {<,≤},

with facet normals ai ∈ Rn and inhomogeneous coefficients bi ∈ R. In vector-
matrix notation, an H-polyhedron can be written as

P =
{
x
∣∣∣ Ax ./ b}, with A =

 aT1
...
aTm

, ./= (./1

...
./m

)
, b =

(
b1
...
bm

)
.

An H-polyhedron is a closed set if it can be defined using only nonstrict con-
straints. A bounded polyhedron is called a polytope. Note that the constraints
defining P are not necessarily unique. A closed polyhedron P can be represented
in generator form by a pair (V,R), where V ⊆ Rn is a finite set of vertices, and
R ⊆ Rn is a finite set of rays. They define the V-polyhedron

P =
{∑
vi∈V

λi · vi +
∑
rj∈R

µj · rj
∣∣∣ λi ≥ 0, µj ≥ 0,

∑
i

λi = 1
}
,

which consists of the convex hull of the vertices, extended towards infinity along
the directions of the rays. The generator representation can be extended with
closure points to deal with non-closed polyhedra [12]. An H-polyhedron can be
converted to a V-polyhedron and vice versa, but this may increase the complex-
ity exponentially.

2.1. HYBRID AUTOMATA 9

2.1.2 Definition and Semantics

We now give a formal definition of a hybrid automaton and its run semantics.

Definition 2.1 (Hybrid automaton). [6, 57] A hybrid automaton

H = (Loc, Lab,Edg, X, Init, Inv,Flow, Jump)

consists of

• a finite set of locations Loc = {`1, . . . , `m} representing the discrete states,

• a finite set of synchronization labels Lab, also called its alphabet, which
can be used to coordinate state changes between several automata,

• a finite set of edges Edg ⊆ Loc× Lab× Loc, also called transitions, which
determines which discrete state changes are possible using which label,

• a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled
variables U and controlled variables Y ; a state of H consists of a location
` and a value for each of the variables, and is denoted by s = (`, x);

• a set of states Inv called invariant or staying condition; it restricts for
each location the values that x can possibly take and so determines how
long the system can remain in the location;

• a set of initial states Init ⊆ Inv; every behavior of H must start in one of
the initial states;

• a flow relation Flow, where Flow(`) ⊆ RẊ ×RX gives for each state (`, x)
the set of possible derivatives ẋ, e.g., using a differential equation such as

ẋ = f(x);

Given a location `, a trajectory of duration δ ≥ 0 is a continuously differ-
entiable function ξ : [0, δ] → RX such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈
Flow(`). The trajectory satisfies the invariant if for all t ∈ [0, δ], ξ(t) ∈
Inv(`).

• a jump relation Jump, where Jump(e) ⊆ RX×RX′ defines for each transi-
tion e ∈ Edg the set of possible successors x′ of x; jump relations are typi-
cally given by a guard set G ⊆ RX and an assignment (or reset) x′ = r(x)
as

Jump(e) = {(x, x′) | x ∈ G ∧ x′ = r(x)}.

We define the behavior of a hybrid automaton with a run: starting from
one of the initial states, the state evolves according to the differential equations
whilst time passes, and according to the jump relations when taking an (in-
stantaneous) transition. Special events, which we call uncontrolled assignments,
model an environment that can make arbitrary changes to the uncontrolled
variables.

Definition 2.2 (Run semantics). A run of H is a sequence

(`0, x0)
δ0,ξ0−−−→ (`0, ξ0(δ0))

α0−→ (`1, x1)
δ1,ξ1−−−→ (`1, ξ1(δ1)) . . .

αN−1−−−−→ (`N , xN),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

10 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

m

Fs

Fg

xr

xr + L

x

(a) extension

m

Fg
xr

xr + L

x

(b) freefall

Figure 2.1: A ball suspended from a ceiling by an elastic string

1. The first state is an initial state of the automaton, i.e., (`0, x0) ∈ Init.

2. Trajectories: In location `i, ξi is a trajectory of duration δi that satisfies
the invariant.

3. Jumps: If αi ∈ Lab, there exists a transition (`i, αi, `i+1) ∈ Edg with jump
relation Jump(e) such that (ξi(δi), xi+1) ∈ Jump(e) and xi+1 ∈ Inv(`i+1).

4. Uncontrolled assignments: If αi = τ , then `i = `i+1 and ξi(δi) ↓Y =
xi+1 ↓Y . This represents arbitrary assignments that the environment
might perform on the uncontrolled variables U = X \ Y .

A state (`, x) is reachable if there exists a run with (`i, xi) = (`, x) for some i.

Note that the strict alternation of trajectories and jumps in Def. 2.2 is of no
particular importance. Two consecutive jumps can be represented by inserting
a trajectory with duration zero (which always exists), and two consecutive tra-
jectories can be represented by inserting an uncontrolled assignment jump that
does not modify the variables.

May and Must semantics: In Def. 2.2, transitions may be taken when they
are enabled, but there is no obligation to do so – the system may remain in
a location as long as the invariant is satisfied. These so-called may semantics
allow one to include nondeterminism about when a transition will be taken, e.g.,
when it is not clear how fast a discrete controller will react to a stimulus. In
the Ball/String example, this could be used if the length of the string (position
of the ceiling) is not exactly known. In contrast, must or ASAP semantics
dictate that the transition is taken as soon as possible. These semantics are
used by simulators such as Simulink [72], Dymola [20], MapleSim [71], etc.,
since they require deterministic models. Some verification tools, like HyTech
[55] and PHAVer [35], allow one to include both types of transitions.

Example 2.3 (Ball/String). Consider a ball that is suspended from a ceiling by
a string, as shown in Fig. 2.1. We will construct a simple model that only takes
into account the vertical movement of the ball. The Ball on String example is
modeled by the hybrid automaton with

• locations Loc = {freefall, extension},

• labels Lab = {up,down,bounce},

2.1. HYBRID AUTOMATA 11

Figure 2.2: A hybrid automaton model of a ball on string, constructed in the
tool SpaceEx. In the flow equations, x′ denotes the derivative ẋ

• transitions Edg =
{

(freefall,down, extension), (extension,up, freefall),

(freefall,bounce, freefall)
}

,

• variables X = {x, v}, with controlled variables Y = X and uncontrolled
variables U = ∅,

• initial states Init = {extension} × {x = −1, v = 0},

and the invariants, flow relations, and jump relations as shown in Fig. 2.2. Since
we do not expect x or v to be modified by the environment, we consider both
variables to be controlled (as is usually the case for variables whose derivative is
given). The transition from freefall to extension has the constraint v < 0 since it
is only necessary to change the location if the ball is actually moving. Similarly,
the transition from freefall to extension has the constraint v > 0. In terms
of the behavior of the hybrid automaton for single trajectory, both constraints
are redundant. We introduce them here to avoid unnecessary chattering between
locations, since it could degrade the accuracy and performance of the reachability
analysis that will be presented later.

The behaviors of the hybrid automaton are derived as follows. In location
extension, the dynamics are those of a damped oscillator. The ODE system is
linear in the variables x and v, so its solution is a combination of exponential,
sine and cosine functions of time. In location freefall, the dynamics are also
linear, but of a particularly simple kind. The derivative of v is constant, v̇ = −g,
so that v evolves in a straight line and x in a parabola. Figure 2.4 shows the
trajectories of the same run as in Fig. 2.3, but in the state space (also called
phase space), which allows one to graph over an infinite time horizon.

12 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

0 0.5 1 1.5 2 2.5

−1

0

1

x0

x1

x2

x3
x4

x5

t

p
o
si

ti
o
n
x

(a) position x over time t

0 0.5 1 1.5 2 2.5

−5

0

5

v0

v1

v−2

v2

v3

v4

v5

t

v
e
lo

c
it

y
v

(b) velocity v over time t

Figure 2.3: A run of the ball on string model consists of a sequence of tra-
jectories. Trajectories in location extension are shown in black, trajectories in
freefall in gray

−1 −0.8 −0.6 −0.4 −0.2 0

−5

0

5

x0

ξ0(δ0)

x3

ξ3(δ3)

x5

position x

v
e
lo

c
it

y
v

(a) location extension

0 0.2 0.4 0.6 0.8 1

−5

0

5

x1

ξ1(δ1)

x2

ξ2(δ2)

x4

ξ4(δ4)

position x

v
e
lo

c
it

y
v

(b) location freefall

Figure 2.4: A sample run of the ball/string example, with trajectories ξ0, . . . , ξ5.
The initial state x0 corresponds to the variable values x = −1, v = 0 in location
extension. The arrows indicate the direction and magnitude of the derivative

2.2. SET-BASED REACHABILITY 13

2.2 Set-based Reachability

A standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a
set of states S, let postC(S) be the set of states reachable by letting time elapse
from any state in S,

postC(S) = {(`, ξ(δ)) | ∃(`, x) ∈ S : (`, x)
δ,ξ−−→ (`, ξ(δ))}.

Let postD(S) be the set of states resulting from a jump from any state in S,

postD(S) = {(`′, x′) | ∃(`′, x′) ∈ S, ∃α ∈ Lab ∪ {τ} : (`, x)
α−→ (`′, x′)}.

Starting from the initial states, postC(S) and postD(S) are computed in alter-
nation. All states that are obtained are recorded, as in the following sequence:

R0 = postC(Init),
Ri+1 = Ri ∪ postC(postD(Ri)).

(2.1)

If the sequence reaches a fixed-point, i.e., when Ri+1 = Ri, then Ri is the set
of reachable states. Note that simply computing the sequence and testing for a
fixed-point may not terminate, even for systems where reachability is decidable.
E.g., a system with an (unbounded) counter would enter a new state at each
iteration such that the fixed-point is never reached.

In tools such as HyTech [55], PHAVer [35] and SpaceEx [44], the sequence
(2.1) is computed using symbolic states s = (`,P), where ` ∈ Loc and P is
a continuous set, e.g., a polyhedron. Computing the timed successors postC
of a symbolic state s = (`,P) produces a new symbolic state s′ = (`,P ′).
Computing the jump successors postD of s = (`,P) involves iterating over all
outgoing transitions of `, and produces a set of symbolic states {s′1, . . . , s′N},
each in one of the target locations. A waiting list contains the symbolic states
whose successors still need to be explored, and a passed list contains all symbolic
states computed so far. The fixed-point computation proceeds as follows:

1. Initialization: Compute the continuous successors of the initial states and
put them on the waiting list.

2. Pop a symbolic state s from the waiting list and compute its one-step
successors {s′1, . . . , s′N} = postC(postD(s)).

3. Containment checking: Discard the s′i that have previously been encoun-
tered, i.e., those contained in any symbolic state on the passed list. Add
the remaining symbolic states to the passed and waiting list.

4. If the waiting list is empty, terminate and return the passed list as the
reachable states. Otherwise, continue with step 2.

Different approaches are taken for computing the one-step successors, depend-
ing on the type of dynamics. In the following sections, we present the major
methods.

14 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

Figure 2.5: Reachable states of the ball/string example, computed using
SpaceEx

Example 2.4. Figure 2.5 shows the reachable states of the ball/string example,
starting from an initial set of −1.05 ≤ x ≤ −0.95, −0.1 ≤ v ≤ 0.1 in loca-
tion extension. Initializing the waiting list with the continuous successors of
the intial states, the fixed point is reached on the 6th iteration. Each symbolic
state corresponds to a segment of the run from Ex. 2.3, and contains all of the
corresponding trajectories, from any of the initial states.

2.3 Reachability for Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA) have

• initial states and invariants given by conjunctions of linear constraints,

• flows given by affine ODEs, and

• jumps given by a guard set and linear assignments.

We divide the continuous variables into state variables X = {x1, . . . , xn}, whose
derivative is explicitly defined, and input variables U = {u1, . . . , um}, whose
derivative is unconstrained. The input variables can be used to model nondeter-
minism such as open inputs to the system, approximation errors, disturbances,
etc. In each location of a PWA, the continuous dynamics are given by affine
ODEs of the form

ẋ = Ax+Bu, u ∈ U , (2.2)

where A and B are matrices of appropriate dimension and the input set U
is compact and convex. Note that U may be specified in the invariant. To
simplify notation in this section, we assume that constants are modeled with
U , e.g., ẋ = Ax + b with B = I and U = {b}. Some differential inclusions can
be brought to the form of (2.2) by introducing auxiliary variables. The jump

2.3. REACHABILITY FOR PIECEWISE AFFINE DYNAMICS 15

constraints of an edge e are defined by a guard set G and an assignment of the
form

x′ = Cx+Du, (2.3)

where x′ denotes the value of x after the jump, u is defined as above and C and
D are matrices of appropriate dimension.

2.3.1 Continuous successors

We start with a basic version of approximating the successor states reachable
by time elapsing. This version ignores the invariant. The evolution of the input
variables is described by an input signal ζ : R≥0 → U that attributes to each
point in time a value of the input u. The input signal does not need to be
continuous. A trajectory ξ(t) from a state x0 is the solution of the differential
equation (2.2) for initial condition ξ(0) = x0 and a given input signal ζ. It has
the form

ξx0,ζ(t) = eAtx0 +

∫ t

0

eA(t−s)Bζ(s)ds. (2.4)

It consists of the superposition of the solution of the autonomous system, ob-
tained for ζ(t) = 0, and the input integral obtained for x0 = 0. Let Xt be the
states reachable in time t from any state in X0 and let Yt be the states reachable
from X0 = {0}, then (2.4) can be written as

Xt = eAtX0 ⊕ Yt. (2.5)

The goal is to compute a finite sequence of sets Ω0,Ω1, . . . such that⋃
0≤t≤T

Xt ⊆ Ω0 ∪ Ω1 ∪ (2.6)

We present the construction of the sequence Ωk for a fixed time step δ > 0 such
that Ωk covers Xt for t ∈ [kδ, (k + 1)δ], as illustrated in Fig. 2.6. The so-called
semi-group property of reachability says that, starting from Xs, for any s ≥ 0,
and then waiting r time units leads to the same states as starting from X0 and
waiting r+ s time units. Applying this to (2.5), we obtain that for any r, s ≥ 0,

Xr+s = eArXs ⊕ Yr. (2.7)

Substituting r ← δ, s← kδ, we get a time discretization

X(k+1)δ = eAδXkδ ⊕ Yδ.

It follows that if we have initial approximations Ω0 and Ψδ such that⋃
0≤t≤δ

Xt ⊆ Ω0, Yδ ⊆ Ψδ, (2.8)

then the sequence
Ωk+1 = eAδΩk ⊕Ψδ. (2.9)

satisfies (2.6). Note that Ω0 covers the reachable set over an interval of time
[0, δ], while Ψδ covers the values of the input integral at a single time instant δ.

16 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(a) polyhedra

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(b) ellipsoids

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(c) zonotopes

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(d) bounding boxes

Figure 2.6: A sequence of sets Ω0,Ω1, . . . (solid outline) that covers Xt (shaded
light green) over a finite time horizon T . The choice of set representation for
Ωk has a substantial impact on accuracy and computational complexity

Computing initial approximations Ω0 and Ψδ : The set Ω0 needs to cover Xt
from t = 0 to t = δ. A good starting point for such a cover is the convex hull of
X0 and Xδ. One approach, shown in Fig. 2.7(a), is to compute the convex hull in
constraint representation, and push the facets out far enough to be conservative
[53]. The required values can be computed from a Taylor approximation of
(2.4) [10], or by solving an optimization problem [26]. Note that the cost of
computing the exact constraints of the convex hull can be exponential in the
number of variables, which limits the scalability of this approach.

A scalable way to obtain Ω0 is to bloat X0 and Xδ enough to compensate for
the curvature of trajectories, as illustrated in Fig. 2.7(b). The approach from [49]
uses uniform bloating and whose approximation error is asymptotically linear in
the time step δ as δ → 0. This is asymptotically optimal for any approximation
containing the convex hull of X0 and Xδ [65]. The bloating factor is derived from
a Taylor approximation of (2.4), whose remainder is bounded using norms. To
formalize the above statements, we use the following notation. Let ‖ · ‖ be a
vector norm and let ‖A‖ be its induced matrix norm.1 Let µ(X) = maxx∈X ‖x‖
and let B be the unit ball of the norm, i.e., the largest set B such that µ(B) = 1.
For a scalar c, let cX = {cx | x ∈ X}.

Lemma 2.5. [49] Given a set of initial states X0 and affine dynamics (2.2),
let

αδ = µ(X0) · (e‖A‖δ − 1− ‖A‖δ),
βδ = 1

‖A‖µ(BU) · (e‖A‖δ − 1),

Ω0 = CH(X0 ∪ eAδX0)⊕ (αδ + βδ)B,
Ψδ = βδB.

Then
⋃

0≤t≤δ Xt ⊆ Ω0 and Yδ ⊆ Ψδ.

1For example, the infinity norm ‖x‖∞ = max{|x1|, . . . , |xn|} induces the matrix norm
‖A‖ = max1≤i≤n

∑m
j=1|aij |, where A is of dimension n ×m. Its ball B∞ is a cube of side

length 2.

2.3. REACHABILITY FOR PIECEWISE AFFINE DYNAMICS 17

X0

Xδ

(a) pushing facets

X0

Xδ

(b) bloating

Figure 2.7: An approximation Ω0 that covers Xt for t ∈ [0, δ] can be obtained
from the convex hull of X0 and Xδ and compensating for the curvature of tra-
jectories

X0

eAδX0

Appr(eAδX0)

Appr(eAδAppr(eAδX0))

(a) wrapping effect

X0

eAδX0

Appr(eAδX0)

Appr(eA2δX0)

(b) wrapping-free algorithm

Figure 2.8: An example for the wrapping effect, with eAδ performing a rotation
of 45 degrees around the origin. The exact solution is eAkδX0 (shaded). Mapping
(dashed) and then applying the approximation operator (thick) at each step
leads to the wrapping effect. For visual clarity, X0 is used here instead of Ω0

Approximations and the wrapping effect : The sequence in (2.9) can be problem-
atic to compute since the complexity of Ωk may increase sharply with k. To
avoid this increase in complexity, we approximate each Ωk by a simplified set.
Let Appr be an approximation function such that for any set P, P ⊆ Appr(P).
The sequence (2.9) then becomes

Ω̂k+1 = Appr(eAδΩ̂k ⊕Ψδ). (2.10)

The recursive application of the approximation function can lead to an expo-
nential increase in the approximation error. This phenomenon is known in
numerical analysis as the wrapping effect [59] and is illustrated in Fig. 2.8.

For affine dynamics, the wrapping effect can be avoided by combining two
techniques [51]. First, the alternation of the map eAkδ with the Minkowski sum
in (2.9) is avoided by splitting it into two sequences

Ψ̂k+1 = Appr(eAkδΨδ)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k = Appr(eAkδΩ0)⊕ Ψ̂k.

(2.11)

Second, the approximation operator is chosen such that

Appr(P ⊕Q) = Appr(P)⊕Appr(Q),

18 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

which is the case, e.g., for the interval hull (bounding box). Under this assump-
tion it holds that Ω̂k = Appr(Ωk), which means the resulting approximation is
free of the wrapping effect.

Invariants: A simple but frequently sufficient heuristic to account for the in-
variant is to stop computing the sequence Ωk as soon as Ωk lies completely
outside of the invariant. The computed Ω0, . . . ,Ωk−1 are then intersected with
Inv(`), which produces an overapproximation of the exact solution. A more pre-
cise solution can be obtained by intersecting at each step with the set of states
reachable from the invariant itself [66].

2.3.2 Discrete successors

The discrete successors of a polyhedron P for an edge e = (`, α, k) is the poly-
hedron:

poste(P)
{
x′
∣∣ ∃x ∈ P : (x, x′) ∈ Jump(ε) ∧ x′ ∈ Inv(k)

}
.

This set is defined using existential quantification, and computing it may re-
quire costly quantifier elimination. Frequently occurring special cases can be
computed more efficiently. Consider an edge e = (`, σ, k) of a PWA, with guard
set G and assignment

x′ = Cx+Du,

with constant matrices C,D of appropriate dimensions Recall that u ∈ U , where
U is compact, convex and given by constraints in Inv(`). The discrete successors
of a set P is

poste(P) =
(
C(P ∩ G)⊕DU

)
∩ Inv(k).

Now consider the assignment to be deterministic, i.e., x′ = Cx + d, with a
constant vector d of appropriate dimension. If C is invertible and P,G are H-
polyhedra, the computation is straightforward since intersection corresponds to
concatenation of constraints, and for any polyhedron Q = {x | Ax ≤ b},

CQ⊕ {d} = {x | AC−1x ≤ b+ C−1d}.

2.3.3 Set Representations

Whether the presented successor operators post`(P) and poste(P) are efficient
to compute, depends on the type of set used for P and how it is represented. We
summarize some of the set representations proposed in literature. Scalable im-
plementations and approximations need to be available for the operators in the
algorithm. Using the initial approximation from Lemma 2.5 and the recurrence
equation (2.11), the operators are linear map, Minkowski sum, convex hull and
intersection.

Polyhedra: Figure 2.6(a) shows a reach set approximation computed using poly-
hedra. The class of polyhedra is closed under all required operations, i.e., linear
map, Minkowski sum, convex hull, and intersection. However, not all of them
scale well. E.g., intersection is computed on H-polyhedra and Minkowski sum
on V-polyhedra, and the result can be of exponential complexity in both forms.
A polyhedral approximation for the non-scalable operations can be efficiently

2.3. REACHABILITY FOR PIECEWISE AFFINE DYNAMICS 19

computed by a-priori fixing the facet normals of the result, which leads to so-
called template polyhedra. The accuracy of the approximation can be increased
by including additional directions, leading to a scalable approach [11].

Ellipsoids: A scalable reachability algorithm for affine dynamics is obtained for
ellipsoids [63], see Fig. 2.6(b). An ellipsoid E(c,Q) ⊆ Rn is represented by a
center c ∈ Rn and a positive definite2 matrix Q ∈ Rn×n,

E(c,Q) =
{
x
∣∣ (x− c)TQ−1(x− c) ≤ 1

}
.

Deterministic affine transforms can be computed efficiently for ellipsoids. How-
ever, ellipsoids are not closed under Minkowski sum, convex hull, nor inter-
section. The algorithm in Sect. 2.3.1 therefore suffers from the wrapping effect
when implemented with ellipsoids, unless BU is a singleton. The wrapping effect
can be avoided by using approximations over continuous rather than discrete
time, as in [87, 63]. Efficient approximations are available for Minkowski sum,
convex hull, and special cases of intersection, but the computation of discrete
successors can be problematic in terms of accuracy. For an implementation, see
[64].

Zonotopes: Zonotopes are a subclass of central-symmetric polytopes that has
been used successfully for reachability analysis [49, 4], see Fig. 2.6(c). A zonotope
P ⊆ Rn is defined by a center c ∈ Rn and generators v1, . . . , vk ∈ Rn as

P =
{
c+

∑k

i=1
αivi

∣∣ αi ∈ [−1, 1]
}
.

Affine transformations and Minkowski sum can be computed efficiently for zono-
topes. Since zonotopes are closed under Minkowski sum, it is straightforward
to devise an approximation operator Appr that distributes over Minkowski sum
and use the wrapping-free sequence (2.11). Zonotopes are neither closed under
convex hull, nor under intersection. But efficient approximations exists, and the
accuracy of approximating the convex hull in the above reachabililty algorithm
can be improved by taking smaller time steps. However, the lack of accuracy in
intersections can make the computation of discrete successors with zonotopes
problematic. In special cases it can be advantageous to use an approach called
continuization to avoid the intersection operation, see [3].

2.3.4 Clustering

The accuracy of the approximation in Lemma 2.5 depends on the size of the
time step. This property, common to all approaches cited in Sect. 2.3, points to
a potential bottleneck: To achieve a desired accuracy, one may end up with a
large number of sets to cover the required time horizon. In the next iteration of
the fixed point computation, each one of these sets may become the initial set
of yet another sequence, easily leading to an exponential increase in the number
of sets.

If only very few of these sets intersect with the guard sets, the discrete
successor computation acts as a filter that might just keep the number of sets
manageable. But this is not the case in general; note that these sets necessarily

2A matrix Q is positive definite iff it is symmetric and xTQx > 0 for all x 6= 0.

20 CHAPTER 2. HYBRID AUTOMATA AND REACHABILITY

overlap. To prevent an explosion in the number of sets, a common approach
is to cluster together all sets that intersect with the same guard [66]. The
clustering operation, e.g., taking the convex hull, can itself be costly and adds
to the approximation error in a way that is not easy to quantify or predict. An
approach to obtain an optimal number of clusters for a given error bound is
presented in [42].

2.3.5 Extension to Nonlinear Dynamics

We describe an approach to deal with nonlinear dynamics

ẋ = f(x),

where f is usually assumed to be globally Lipschitz continuous. These dy-
namics can be approximated piecewise with affine dynamics ẋ = Ax+u, u ∈ U .
Reachability algorithms for piecewise affine dynamics can then be applied to the
approximation. The approximation is nondeterministic, so that all solutions of
the original dynamics are covered.

First, the states are confined to a bounded domain S. This could be the
invariant in a location, or S can be derived from suitable bounds around a given
set of initial states. Then, a suitable matrix A and vector b are chosen. For
example, linearizing f(x) around a point x0 ∈ S gives matrix elements

aij =
∂fi
∂xj

∣∣
x=x0

andb = f(x0)−Ax0.

Finally, one derives a set Uε that bounds the error such that for all x ∈ S,

f(x)− (Ax+ b) ∈ Uε.

Such bounds can be obtained using, e.g., interval arithmetic or optimization
techniques. The states reachable using the affine dynamics

ẋ = Ax+ u, u ∈ Uε ⊕ {b}

cover those of the original nonlinear dynamics. The accuracy of the linearization
depends on the size of the domain S and can be increased by partitioning S into
smaller parts. This process is known as phase portrait approximation [56]. It
can be useful even when dealing with purely continuous dynamical systems, and
is also known as hybridization [8].

Chapter 3

Template Reachability with
Support Functions

In this chapter, we describe an efficient and scalable reachability algorithm,
which builds on the one in [67] and is adapted specifically for maximum scala-
bility. We present its extension to variable time steps, and propose an improved
approximation model, which drastically improves the accuracy of the algorithm.
Experimental results demonstrate the scalability of the algorithm and the per-
formance of its implementation in the SpaceEx tool, which is described in more
detail in chapter 7.

The chapter is structured as follows. Section 3.1 presents support func-
tions, which are used to represent convex sets and derive the scalable geomet-
ric operations. Section 3.2 describes the variable time step algorithm and the
new approximation model used to compute time elapse successor states. The
computation of successor states of discrete transitions is presented in Sect. 3.3.
Experimental results based on our implementation in SpaceEx are provided in
Sect. 3.5.

3.1 Support Functions and Template Polyhedra

A convex set can be represented by its support function, which attributes to each
direction in Rn the signed distance of the farthest point of the set to the origin.
Computing the value of the support function for a given set of directions, one
obtains a polyhedron that overapproximates the set. In this paper, we consider
this computation to be approximative, i.e., only a lower and an upper bound on
the support function can be computed.

Support Functions The support function of a closed and bounded continuous
set X ⊆ Rn with respect to a direction vector ` ∈ Rn is [15]

ρX (`) = max{`Tx | x ∈ X}.

Figure 3.1(a) shows an illustration of the geometrical interpretation of the sup-
port function, which is the position of a tangent halfspace that is tangent to

21

22 CHAPTER 3. TEMPLATE REACHABILITY

d
ρX (`)

X

0

(a) support function in direction `

`3

`4

`1

`2

P

dXeD

(b) outer approximation

Figure 3.1: Evaluating the support function in a set of directions gives a poly-
hedral outer approximations that can be computed very efficiently

and contains the set. The support function of a convex set X is an exact repre-
sentation of the set:

X =
⋂
`∈Rn
{x | `Tx ≤ ρX (`)}.

A point x∗ ∈ X is called a support vector or maximizer of X in direction ` if

`Tx∗ = ρX (`).

The set of maximizers for ` is denoted by σX (`). The set of support vectors (or
maximizers) of X in direction ` is denoted by

σX (`) = {x∗ ∈ X | `Tx∗ = ρX (`)}.

Geometric Operations We are interested in support functions because many
set operations are computationally cheaper to carry out on support functions
than on, say polyhedra [66, 48]. We consider the following algebraic operations
on sets X ,Y ⊆ Rn. The linear map MX ⊆ Rn with matrix M ∈ Rn×n is

MX =
{
Mx

∣∣ x ∈ X}.
The Minkowski sum X ⊕ Y ⊆ Rn is

X ⊕ Y =
{
x+ y

∣∣ x ∈ X , y ∈ Y}.
The convex hull CH(X) ⊆ Rn of a set X is

CH(X) =
{ m∑
i=1

λivi

∣∣∣ vi ∈ X,λi ∈ R≥0,

m∑
i=1

λi = 1
}
.

These operations can be very expensive for polyhedra in constraint repre-
sentation [84], while for support functions they are simple:

ρMX (`) = ρX (MT`), (3.1)

ρX1⊕X2
(`) = ρX1

(`) + ρX2
(`), (3.2)

ρCH(X1∪X2)(`) = max (ρX1
(`), ρX2

(`)) . (3.3)

3.2. FLOWPIPE APPROXIMATION 23

Template Polyhedra Our reachability algorithm requires two operations for
which support functions are not efficient: intersection and deciding contain-
ment. For these operations, we use another set representation, template poly-
hedra, which are polyhedra with faces whose normal vectors are given a priori.
Given a set D = {`1, . . . , `m} of vectors in Rn called template directions, a tem-
plate polyhedron PD ⊆ Rn is a polyhedron for which there exist coefficients
b1, . . . , bm ∈ R such that

PD =
{
x ∈ Rn

∣∣∣ ∧
`i∈D

`i · x ≤ bi
}
.

Template polyhedron lead to a particularly compact representations when work-
ing with large sets of template polyhedra, since the template directions need to
be stored only once for the whole set. In order to go from a support function
representation of a set S to a template polyhedron, we use its template hull
or outer polyhedron, which is the template polyhedron defined by coefficients
bi = ρ(`i,S),

dSeD =
{
x ∈ Rn

∣∣∣ ∧
`i∈D

`i · x ≤ ρ(`i,S)
}
. (3.4)

Figure 3.1(b) shows an illustration. The support function of a polyhedron can
be computed efficiently for a given direction ` using linear programming. We
consider in particular the following sets of template directions:

• 2n box directions: xi = ±1, xk = 0 for k 6= i;

• 2n2 octagonal directions: xi = ±1, xj = ±1, xk = 0 for k 6= i and k 6= j;

• m uniform directions (as evenly as possible distributed over the unit
sphere).

However, our algorithms support a more general choice of directions, which re-
mains to be investigated. The use of both support functions and template hulls
is justified by the fact that they are efficient for different operations, and both
set representations are present in our implementation. Support functions are
an exact and complete representation of convex sets – implemented as function
objects, they can compute values for any direction. With template hulls, the di-
rections D are fixed once and for all at the time of construction, and information
for other directions is lost. By switching representations only when necessary
(data-dependently) we remain as precise as possible.

3.2 Flowpipe Approximation

We consider the affine continuous dynamics

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (3.5)

Following the flowpipe approximation approach from Sect. 2.3, we compute a
flowpipe, a sequence of continuous sets Ω0, . . . ,ΩN−1 that covers the reachable
states up to a given time horizon T (N depends on the chosen time steps).
Before we present the actual algorithm, we discuss how we take into account
the invariant of the corresponding location of the hybrid automaton. In our
implementation, we test at the k-th step whether Ωk is entirely outside of the

24 CHAPTER 3. TEMPLATE REACHABILITY

invariant, and stop the sequence once this is the case. Then we intersect the
invariant with the computed sequence Ω0, . . . ,Ωk (see Sect. 3.3 for a discussion
of the intersection operation). The resulting sets are an overapproximation of
the reachable states, and the overapproximation may be particularly conserva-
tive if it includes trajectories that should have been cut off by the invariant
in intermediate time steps. A variation of our algorithm with proper handling
of invariants is presented in [66]. In practice we have not yet encountered any
case where this ad-hoc handling of the invariant results in an excessive over-
approximation, but this issue deserves to be investigated further. We typically
include the invariant facet normals in the template directions (SpaceEx does
this automatically), and find that the result is usually of satisfactory precision.

We use a variation of the approximation sequence (2.9) with variable time
steps. Given arbitrary time steps δ0, δ1, . . ., we construct the sequence Ωk that
covers the set of reachable states. Each set Ωk covers the reachable states in
the time interval [tk, tk+1], where tk =

∑k−1
i=0 δi. The algorithm is based on two

functions Ωm(0, δ) and Ψm(δ), which we call approximation models. Given any
time interval [0, δ], the approximation model must produce a set that contains
the reachable states, similar to the requirement in the case of a fixed time step
(2.8). Suitable implementations of such approximation models could be obtained
using a variety of methods, such as interval arithmetic, or using set operations
such as those in Lemma 2.5. What we require for our algorithm to be sound is
that the approximation models cover the actual reachable states:

X0,δ ⊆ Ωm(0, δ), Yδ ⊆ Ψm(δ). (3.6)

Each Ωk is constructed by computing Ωm(0, δk), which covers X0,δk , and then
shifting this set forward in time so that it covers Xtk,tk+δk . We compute se-
quences Ψk, Ωk as follows, with Ψ0 = {0}:

Ψk+1 = Ψk ⊕ eAtkΨm(δk),
Ωk = eAtkΩm(0, δk)⊕Ψk

(3.7)

We can show that Ytk ⊆ Ψk and that Xtk,tk+δk ⊆ Ωk, see [44], so the sequence
Ωk indeed covers the flowpipe. Representing the sets Ψk and Ωk by their support
function, the operators used in (3.7) – linear map and Minkowski sum – can be
computed efficiently as discussed in Sect. 3.1.

In the next section, we present the new approximation model which we use to
compute Ωk as in (3.7). In Sect 3.2.2, we provide direction-wise error bounds on
this computation, and discuss how to adapt the time steps in order to guarantee
given error bounds.

3.2.1 Approximation Model

The approximation quality of the sequence Ωk evidently hinges on the quality of
the approximation model. In [67], an approximation model was proposed that
uses the norms of A, X0 and U to bound the error of a first-order approximation
of the solution of the state equations, see Fig. 3.2 for an illustration. If this allows
one to establish an asymptotically optimal error over a given time interval, it is
sometimes overly conservative in practice. In [2], the approximation model was
improved by using element-wise absolute values instead of matrix norms, which

3.2. FLOWPIPE APPROXIMATION 25

(a)

eAδX0

X0
(c)

(b)

-0.4 -0.2 0.0 0.2 0.4 0.6
0.8

0.9

1.0

1.1

1.2

x

y

Figure 3.2: Different approximation models for a segment of a circular trajectory,
computed by SpaceEx: (a) using a first-order approximation of the ODE [67],
(b) using a first-order approximation of the error of the linear interpolation
between the states at time t = 0 and at t = δ [65], (c) the new model, which
intersects a first-order approximation of the interpolation error going forward
in time from t = 0 with one that goes backward from t = δ.

can reduce the exponent of error bounds by orders of magnitude. The model we
use in this section is a strict improvement over the method in [67] if the norm
used is the infinity norm. For other norms, it is possible to find cases for which
the resulting sets are incomparable. Similar to the models in [65, 2], it is based
on a first-order approximation of the interpolation error between the reachable
set at time 0 and at time δ. On top of that, it combines an approximation that
goes forward in time with one that goes backward in time in order to further
improve the accuracy.

Before presenting the model, we introduce the following notation. The sym-
metric interval hull of a set S, denoted �(S), is �(S) = [−|x1|; |x1|] × . . . ×
[−|xd|; |xd|] where for all i, |xi| = sup{|xi| | x ∈ S}. Let M = (mi,j) be a
matrix, and v = (vi) a vector. We define as |M | and |v| the absolute values
of M and v respectively, i.e., |M | = (|mi,j |) and |v| = (|vi|). These absolute
values allow us to bound matrix-vector operations (component wise) without
taking their norm. The approximation model uses the following transformation
matrices:

Φ1(A, δ) =

∞∑
i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai. (3.8)

If A is invertible, Φ1 and Φ2 can be computed as Φ1(A, δ) = A−1
(
eδA − I

)
,

Φ2(A, δ) = A−2
(
eδA − I − δA

)
. Otherwise, they can be computed as subma-

trices of the block matrixeAδ Φ1(A, δ) Φ2(A, δ)
0 I Iδ
0 0 I

 = exp

Aδ Iδ 0
0 0 Iδ
0 0 0

.

26 CHAPTER 3. TEMPLATE REACHABILITY

We can now use these operators to obtain a precise over-approximation of
Reach0,δ(X0) and Reachδ,δ({0}). We start with a first-order approximation of
the latter :

Lemma 3.1. [44] Let Ψδ be the set defined by

Ψδ = δU ⊕ EΨ(δ), (3.9)

EΨ(δ) = �
(
Φ2(|A|, δ) � (AU)

)
. (3.10)

Then Yδ ⊆ Ψδ.

Our starting point for Ω0,δ is a linear interpolation between X0 and Xδ
using a parameter λ = t/δ representing normalized time. For each point in
time t, Reacht,t = Reachλδ,λδ is a convex set, for which we construct an over-
approximation Ωλ. Our overapproximation for the time interval [0, δ] is then
the convex hull of all Ωλ over λ ∈ [0, 1]. Using a forward, respectively back-
ward, interpolation leads to an error term proportional to λ, respectively 1− λ.
Intersecting both approximations gives the following result:

Lemma 3.2. [44] Let λ ∈ [0, 1], and let Ωλ be the convex set defined by:

Ωλ = (1− λ)X0 ⊕ λeδAX0 ⊕ λδU
⊕ EΩ(δ, λ)⊕ λ2EΨ(δ), with

EΩ(δ, λ) =
(
λE+

Ω (δ) ∩ (1− λ)E−Ω (δ)
)

E+
Ω (δ) = �

(
Φ2(|A|, δ)�

(
A2X0

))
,

E−Ω (δ) = �
(
Φ2(|A|, δ)�

(
A2eδAX0

))
,

EΨ(δ) = � (Φ2(|A|, δ)� (AU)) .

Then Xλδ ⊆ Ωλ and X0,δ ⊆ Ω0,δ, with

Ω0,δ = CH
(⋃

λ∈[0,1]
Ωλ

)
. (3.11)

Ω0,δ, as defined above, might seem hard to represent. In fact, its support
function is not much harder to compute than the one of X0 and U . Let

ω(λ, `) = (1− λ)ρX0
(`) + λρX0

(
(eδA)>`

)
+ λδρU (`)

+ ρλE+
Ω∩(1−λ)E−Ω

(`) + λ2ρEΨ(`). (3.12)

Since the signs of λ, (1− λ), and λ2 do not change on [0, 1], we have:

ρΩ0,δ
(`) = max

λ∈[0,1]
ω(λ, `). (3.13)

The support function of EΩ(δ, λ) can easily be expressed as a piecewise linear
function of λ. For any λ, this set is a centrally symmetric box and its support
function is:

ρEΩ(δ,λ)(`) =

n∑
i=1

min(λe+
i , (1− λ)e−i)|`i|,

where vectors e+ and e− are such that ρE+
Ω

(`) = |`|Te+ and ρE−Ω
(`) = |`|Te−.

Thus we only have to maximize a piecewise quadratic function in one variable
on [0, 1] after the evaluation of the support function of the sets involved.

3.2. FLOWPIPE APPROXIMATION 27

3.2.2 Time Step Adaptation with Error Bounds

Time steps are generally hard to choose, and their value is rarely chosen in
itself, but according to an expected precision. In order to efficiently choose our
variable time step, we must be able to evaluate the error introduced by time
discretization. In our error calculation, we do not bound the error introduced
at each step, but the overall error introduced since the beginning of the current
continuous evolution. We must take into account the accumulation of errors,
not done carefully we might exhaust our error tolerance before the end of the
computation and become unable to advance in time without exceeding it.

Our choice of error bound ε(`) is the difference between the computed sup-
port function and the support function of the reachable set at time t. For each
set Ωk we define

εΩk(`) = ρΩk (`)− ρXtk,tk+1
(`) (3.14)

The total approximation error is then

ε(`) = max
k∈0,...,N−1

εΩk(`).

Note that Xtk,tk+1
is generally not a convex set, and by overapproximating it

with the convex set Ωk we incur an additional error that is not captured by
εΩk(`). The bound ε(`) allows us to decide whether or not the reachable set
satisfies a linear constraint ` · x ≤ b (e.g., whether the states surpass a certain
threshold) with an uncertainty margin of ε(`).

To compute εΩk(`), we must take into account the error for Ψδ defined as in
Lemma 3.1 and Ω0,δ defined as in Lemma 3.2. Let

εΨδ(`) = ρΨδ (`)− ρYδ (`) , (3.15)

εΩ0,δ
(`) = ρΩ0,δ

(`)− ρX0,δ
(`). (3.16)

Lemma 3.3. [44] For any ` in Rn:

εΨδ(`) ≤ ρEΨ(δ)(`) + ρ−AΦ2(A,δ)U (`) (3.17)

εΩ0,δ
(`) ≤ max

λ∈[0,1]

(
ρλE+

Ω (X0,δ)∩(1−λ)E−Ω (X0,δ)
(`)

+λ2ρEΨ(δ)(`) + λρ−AΦ2(A,δ)U (`)
)
. (3.18)

Computing the support function of Ωk as defined by (3.7) and applying the
above lemmas as well as time shifting, we obtain εΩk(`) as follows.

εΨk+1
(`) = εΨk(`) + εΨδk

(eAtk
>
`),

εΩk(`) = εΩ0,δk
(eAtk

>
`) + εΨk(`).

(3.19)

Given the above error bounds, one can adapt the time steps during the com-
putation of the sequence such that ε(`) is kept arbitrarily small. The problem
lies in the error εΨk(`), which accumulates with k, so that an a-posteriori re-
finement would require the whole squence to be recomputed. We therefore use
the following simple heuristic to compute the sequence of ρΩk(`) for a given
template direction ` such that ε(`) ≤ ε̂ for a given error bound ε̂ ∈ R>0. In-
stead of computing ρΩk(`) directly, we first compute the whole sequence ρΨk(`),

28 CHAPTER 3. TEMPLATE REACHABILITY

then the sequence ρΩ0,δk
(eAtk

>
`), and only then combine them to get the se-

quence ρΩk(`). This separation allows us to choose a separate time step for each
sequence, adapting the error as necessary. Additionally, by computing the se-
quences one after another, the last one can pick up the slack in the error bound
of the first sequence.

In the following we suppose that ε̂ is distributed a-priori on both sequences,
so that we have ε̂Ω and ε̂Ψ in R>0 with ε̂ = ε̂Ω + ε̂Ψ. This distribution can be
established, e.g., by a prior coarse-grained run with a large error bound, or by
a run with large fixed time steps. Because the error of Ψk accumulates with k,
it is chosen (somewhat arbitrarily) to remain below a linearly increasing bound.
The error of eAtkΩ0,δk does not depend on previous computation steps, so it can
be adapted on the fly to meet the required bound. We proceed as follows:

1. Compute ρΨk(`) such that εΨk(`) ≤ tΨk
T ε̂Ψ. At each step k, we must find

a δΨ
k , ideally the biggest, such that:

εΨk(`) + εΨ
δΨ
k

(eAt
Ψ
k
>
`) ≤ tΨk + δΨ

k

T
ε̂Ψ

Finding δΨ
k is possible because εΨδ(e

At>`) = O(δ2). First, we fix an initial
time step δΨ

−1. Then, at each step k, we start a dichotomic search from
δΨ
k−1 along the δ for which sets and matrices involved in the computation

of Ψδ have already been evaluated, trying new values only when necessary.

2. Compute ρΩ
0,δΩ
k

(eAt
Ω
k
>
`) such that

εΩ
0,δΩ
k

(eAt
Ω
k
>
`) + εΨi(k)

(`) = εΩk(`) ≤ ε̂

where i(k) is such that tΨi(k)−1 < tΩk ≤ tΨi(k). This can be done with a

dichotomic search over the sequence of tΨk already computed for ρΨk(`).
If there is a k such that δΨ

i(k) must be further refined, then for the newly

introduced indices kj , we have i(kj) = i(k).

To combine the above two sequences into ρΩk(`), we use the sequence of time
steps δΩ

k . If this introduces new times tΩk in the sequence of tΨk , we can compute
the missing values for ρΨk(`) by starting from tΨi(k)−1. This does not trigger

the recomputation of ρΨk(`) for other time points since the sequence εΨk(`) is
increasing.

3.3 Computing Transition Successors

Each flowpipe that is created by the time elapse step is passed to the compu-
tation of transition successors. States that take the transition must satisfy the
guard, are then mapped according to the assignment and the result must satisfy
the invariant of the target location. Consider a transition e with guard G and
an assignment of the form

x′ = Rx+ w, w ∈ W.

3.3. COMPUTING TRANSITION SUCCESSORS 29

Let the invariant of the source location be I− and of the target location be I+.
Then the discrete successors of the transition are given by

poste(X) =
(
R
(
X ∩ G ∩ I−

)
⊕W

)
∩ I+. (3.20)

We now discuss how the operations for this image computation, intersection and
assignment, can be carried out efficiently. We assume G,I−,I+ to be polyhedra
and assume that the set of template directions L contains the normal vectors
of the constraints of these polyhedra. To make the intersection of the support
function object X and G,I−,I+ scalable, one can compute the outer approxi-
mation before the intersection operation, as in [44]. For lack of a better term,
we call this the standard discrete image operator for template approximation:

poststde (X) =
⌈
R
(
dXeL ∩ G ∩ I

−)⊕W⌉
L
∩ I+. (3.21)

Since all operators that make up poste (X) are monotone,

poste(X) ⊆ poststde (X). (3.22)

Note that if R is invertible andW is deterministic (a point), the outermost outer
approximation is not necessary since the resulting polyhedron can be computed
efficiently with exact methods. With the intersection operator proposed in this
paper, we aim at increasing the precision by computing instead of poststde (X)⌈

R
(
X ∩ G ∩ I−

)
⊕W

⌉
L
∩ I+. (3.23)

To further improve the accuracy of this approximation, we include the pre-image
of the target invariant as follows. This can lead to substantial improvements,
as shown in Fig. 3.3. Let the target invariant be

I+ =
{
x
∣∣∣ m∧
i=1

āTix ≤ b̄i
}
.

An overapproximation of the pre-image of I+ with respect to the assignment
x′ = Rx+ w is given by

I∗ =
{
x
∣∣∣ m∧
i=1

āTiRx ≤ b̄i + ρW(−āi)
}
. (3.24)

Lemma 3.4. (RX ⊕W) ∩ I+ ⊆ R(X ∩ I∗)⊕W. Equality holds if W = {w}.

We obtain our image operator

p̂oste (X) =
⌈
R
(
X ∩ G ∩ I− ∩ I∗

)
⊕W

⌉
L
∩ I+. (3.25)

It is straightforward to show that this is a tight overapproximation in the fol-
lowing sense:

Lemma 3.5. poste (X) ⊆ p̂oste (X). If W = {w}, then

p̂oste (X) = dposte (X)eL ∩ I
+.

30 CHAPTER 3. TEMPLATE REACHABILITY

X

I+

p̂oste (X)

without I∗

Figure 3.3: The image of X using the approximation operator (3.25), with the
axis directions as template directions. Here, R = I,W = 0, so I+ = I∗. Due
to the intersection with the pre-image of the target invariant, I∗, the result
of (3.25) (shown in thick red) is considerably more accurate than the same
approximation without I∗ (shown shaded gray)

Note that G, I−, I∗ frequently contain redundant constraints and have match-
ing inequalities that can be simplified to equality constraints. Let G∗ = G∩I−∩
I∗ be simplified this way. The result of the operator (3.25) is a polyhedral outer
approximation. Recalling its definition from (3.4), it involves computing for
each ` ∈ L the value of the support function,

ρR(X∩G∗)⊕W(`) = ρX∩G∗(R
T`) + ρW(`), (3.26)

which we obtain exactly or approximately through minimization, as will be
discussed in Sect 4.1.

3.4 Clustering

Each flowpipe consists of a possibly large number of convex sets that cover the
actual trajectories. When we compute the successor states for a transition, each
of these convex sets spawns its own flowpipe in the next time elapse computation.
This may multiply the number of sets with each iteration, leading to an explosion
in the number of sets and slowing the analysis down to a stall. To avoid this
effect and speed up the analysis, we apply what we call clustering. Given a hull
operator, clustering reduces the number of sets by replacing groups of these sets
with a single convex set, their hull. We use the following clustering algorithm
for a given hull operator HULL. Let the width of P1, . . . ,Pz with respect to a
direction ` ∈ D be

δP1,...,Pz (`) = max
i=1..z

ρ(`,Pi)− min
i=1..z

ρ(`,Pi). (3.27)

Given P1, . . . ,Pz and a clustering factor of 0 ≤ c ≤ 1, the clustering algorithm
produces a set of polyhedra Q1, . . . , Qr, r ≤ z, as follows:

3.5. EXPERIMENTAL RESULTS 31

1. Let i = 1, r = 1, Qr := Pi.

2. While i ≤ z and ∀` ∈ D : δQr,Pi(`) ≤ cδP1,...,Pz (`),
Qr := HULL(Qr,Pi), i := i+ 1.

3. If i ≤ z, let r := r + 1, Qr := Pi. Otherwise, stop.

We consider two hull operators: template hull, which is fast but very overap-
proximative, and convex hull, which is precise but slower. It can be advatageous
to combine both, as illustrated by the following example:

Example 3.6. Consider the 8-variable filtered oscillator from Sect. 3.5.1. At
the first discrete state change alone, 57 convex sets can take the transition.
Without clustering, the computation is not feasible, as these sets would spawn
57 new flowpipes, and similarly for their successors. Template hull clustering
with cTH = 0.3 produces three sets and results in a total runtime of 11.5s. With
cTH = 1 it produces a single set and takes 3.36s, but with a large overapproxi-
mation. Convex hull clustering by itself with cCH = 1 is very precise but takes
8.19s. Combining both with cTH = 0.3, cCH = 1 takes 3.64s without noticeable
loss in accuracy.

3.5 Experimental Results

To demonstrate the scalability of our algorithm and the performance of the tool
SpaceEx, we present the following experiments. The first system is a simple
parameterized system which we use to empirically measure the complexity of our
algorithm. The second system is a multivariable continuous control system with
complex, tightly coupled dynamics. It illustrates the faithfulness and accuracy
of the continuous part of the algorithm. The SpaceEx model files are available
at http://spaceex.imag.fr.

3.5.1 Filtered Oscillator Model

To measure the performance of our approach, we use a simple parameterized
switched oscillator system. The complexity of the system is increased by adding
a series of first-order filters to the output x of the oscillator. The filters smooth
x, producing a signal z whose amplitude diminishes as the number of filters
increases. Note that the dynamics are rather simple, as the filter variables are
only weakly coupled with one another. The oscillator is an affine system with
variables x, y that switches between two equilibria in order to maintain a stable
oscillation, which together with k filters yields a parameterized system with
k + 2 continuous variables and two locations. One location has the invariant
x ≥ −1.4y, the other x ≤ −1.4y, and the guards consist of the boundaries of
the invariants.

To empirically measure how the complexity depends on the n variables of the
system and the m template directions, we run experiments varying just n, just
m, and both. Fixed n: The average time for a successor computation (discrete
followed by continuous) for the 6-variable system over m uniform directions,
m = 8—256, shows an root mean sqare (RMS) tendency of O(m1.7). Fixed
m: The average time for a successor computation with 200 uniform directions

32 CHAPTER 3. TEMPLATE REACHABILITY

Table 3.1: Performance results for the filtered oscillator benchmark, varying
the number of variables in the system. The time step is δ = 0.05, applying
template hull clustering with cTH = 0.3 followed by convex hull clustering with
cCH = 1. Indicated are the runtime, memory and iterations required to compute
a fixed-point, and the largest error in any direction in any time step

Variables Time [s] Mem. [MB] Iter. Error

Box constraints

18 2,0 9,3 9 0,010
34 9,1 20,2 13 0,010
66 77,3 50,3 23 0,013

130 1185,6 194,3 39 0,030
198 7822,5 511,0 57 0,074

Octagonal constraints

2 0,7 11,8 6 0.009
4 1,4 11,8 6 0.025
6 4,7 13,3 6 0.025

10 33,0 23,0 7 0.025
18 538,4 67,9 10 0.025

with n = 6–16 shows an RMS tendency of O(n). Table 3.1 shows the complete
runtime of a fixed-point computation for box and uniform directions for the
system with up to 198 variables. The RMS tendency is O(n2.7) for box directions
and O(n4.7) for octagonal directions, which confirms the results for fixed n and
fixed m.

3.5. EXPERIMENTAL RESULTS 33

3.5.2 Helicopter Controller

To measure the performance of our algorithm for complex dynamics, we an-
alyze the helicopter controller from [82]. We analyze the controlled plant, a
28-dimensional continuous linear time-invariant (LTI) system. The plant is a
small disturbance model of a helicopter, given as an 8-dimensional LTI sys-
tem. The controller we examine is an H∞ mixed-sensitivity design for rejecting
atmospheric turbulence, given as a 20-dimensional LTI system.

Figure 3.4 shows the increased accuracy of our new approximation model
with respect to previous models. Tables 3.2 and 3.3 show the performance
results with fixed time steps and with variable time steps, each for the different
error models.

In [82], two different controllers are designed for the helicopter, one of which
is specifically tuned for disturbance rejection. Letting the rotor collective be a
nondeterministic input in the interval [−1, 1], we compute the reachable states
in 5s for one controller and in 14s for the other, as shown in Fig. 3.5.

34 CHAPTER 3. TEMPLATE REACHABILITY

(a) δt = 0.05 for both

(b) forw: δt = 0.005, interpfb: δt = 0.05

Figure 3.4: The reachable states of the 28-variable controlled helicopter system
in the plane (x2, x3) (corresponding to roll attitude and roll rate), computed
with octagonal constraints. We compare the new error scheme (interfb), shown
in dark blue, with that of [65] (a) and of [67] (b), shown in bright red.

3.5. EXPERIMENTAL RESULTS 35

(a) Roll stabilization

(b) Pitch stabilization

Figure 3.5: Comparison of two disturbance rejection models. Reachable sets
with nondeterministic inputs for the helicopter example for the two disturbance
rejection models compared in [82] (T = 20, method interfb and error tolerance
of 0.1 for both). This confirms that the better disturbance rejection model
proposed (in blue) actually stabilizes the system faster. However, in [82], this
analysis was based only on several simulations.

36 CHAPTER 3. TEMPLATE REACHABILITY

Table 3.2: Comparison of error models with fixed time-step on the helicopter
controller. The error model introduced in this paper (interpfb) clearly outper-
forms that proposed in [67] (forward) and the one proposed in [65] (interp). The
runtime is given in seconds and memory is indicated in MB.

forward interp interpfb

δt Mem. Time Error Mem. Time Error Mem. Time Error

0.05 9.44 1.48 9.67e+22 9.61 1.60 16.1 9.59 1.65 2.95

0.01 10.5 7.09 3.85e+5 10.5 7.60 0.191 10.5 8.16 0.178

5e-3 10.3 14.1 2.47e+3 10.2 15.2 4.37e-2 12.6 15.8 2.82e-2

1e-3 23.1 71.1 12.4 18.4 76.7 1.59e-3 18.5 78.7 1.07e-3

5e-4 27.9 142 2.56 27.9 155 3.89e-4 28.2 157 2.66e-4

Table 3.3: Comparison of variable time-step vs fixed time-step on the helicopter
controller. The variable step implementation outperforms a fixed step scheme
even in the ideal case, i.e., with the best error model and assuming we know
in advance the optimal time step δt to satisfy the error bound. This is always
true for the number of steps taken and the slightly higher computational time
for some case is explained by frequent changes in choice of the time step.

Ideal fixed step (interpfb) var step (interp) var step (interpfb)

Err. req. nb steps δt used Time [s] nb steps Time [s] nb steps time

1 1500 0.02 11.68 1475 12.0 974 8.359

0.1 3418 8.78e-3 26.6 4334 33.9 2943 31.2

0.01 11539 2.6e-3 90.3 14070 108 9785 77.9

1e-3 44978 6.67e-4 351 39152 301 27855 234

1e-4 101352 2.96e-4 902 85953 688 64315 811

Chapter 4

One-Step Template
Refinement

In chapter 3 we presented a scalable technique for computing the reachable states
for hybrid systems with piecewise affine dynamics. Simply put, its efficiency
hinges on computing an overapproximation in the form of template polyhedra,
whose facet normals consist of user-defined template directions. One of the
strong points of the algorithm is the precision of time elapse operator. At
each application of the operator, the approximation error can be fixed to an
arbitrarily small value and does not accumulate with time if the ODEs are
deterministic. While restricting the approximation to few template directions,
e.g., bounding box directions, makes this approach scalable, it can result in a
large approximation error when computing the image of a discrete transition as
illustrated in Fig. 4.1(a). The accuracy of the flowpipe-guard intersection has
therefore considerable impact on the quality of the computed reachable set.

An approach to more accurately compute the flowpipe-guard intersection
for hyperplanar guards was proposed by [66], see also [65, p.114–122]. Their
algorithm computes the intersection of a convex set, represented by its support
function, with a single hyperplane. This reduces the intersection to the min-
imization of a unimodal function, for which they propose a dichotomic search
and a golden section search algorithm, for more details see Sect. 4.1.

In this chapter, we revisit this approach, generalizing it from hyperplanes
to halfspaces and polyhedra. Using a different formulation of the problem, we
reduce the intersection to minimizing a convex function, which allows us to com-
pute the optimality gap and thus obtain a result of guaranteed accuracy. In the
setting of our reachability algorithm, the minimization function is the support
function of a polyhedral set and therefore piecewise linear. For this class, our
minimization algorithm terminates in finite number of steps for any desired error
bound including zero. Similar to [65], we use branch-and-bound techniques and
solve these minimization problems simultaneously to avoid redundant computa-
tions. In the case of polyhedra, the exact solution leads to a multi-dimensional
optimization problem. As an alternative with lower complexity, we propose a
per-constraint intersection to which branch-and-bound techniques are readily
applied.

37

38 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

X0

flow

jump

position x

speed v

(a) Using outer approximations for the intersection with the guard set (x =
0), the approximation error increases with each jump, to the point where the
computed set diverges when more jumps are added

X0

flow

jump

position x

speed v

(b) Our accurate intersection algorithm adds template directions when re-
quired by subsequent jump computations. Here, the flowpipe after the second
jump has no additional template directions since the third jump has not yet
been computed

Figure 4.1: Reachable state computation for two jumps (discrete transitions)
of a bouncing ball, without and with accurate intersection, all other parame-
ters being equal. The user-defined template directions are the axis directions,
resulting in a bounding-box overapproximation

4.1. INTERSECTION OF SUPPORT FUNCTIONS WITH POLYHEDRA39

Our minimization algorithm is similar to sandwich algorithms used in lit-
erature mainly for approximation, see [21] and references therein. While the
literature on minimizing piecewise linear functions is mostly concerned with
convergence properties, our focus is on the result for a very small number of
evaluations, since in our application each function evaluation is rather costly.

In the next section we discuss the problem of intersecting a hyperplane,
halfspace or polyhedron with a convex set represented by its support function
independently of the reachability context. We present our minimization algo-
rithm and compare its performance for hyperplane intersection to the golden
section search proposed in [66]. In Sect. 4.2, we apply this technique to the
flowpipe-guard intersection problem. Since our flowpipe approximation consists
generally of a large number of convex sets, we discuss efficiency improvements
such as branch-and-bound techniques. The performance of our algorithm is
illustrated by experimental results in Sect. 4.4.

4.1 Intersection of Support Functions with Poly-
hedra

We consider convex sets represented by their support function, as introduced in
Sect. 3.1. While support functions are very efficient for geometric operations like
affine maps or convex hull, the intersection operation is difficult, and generally
involves solving a high-dimensional optimization problem. In the following, we
will present scalable techniques for computing the intersection of such a set with
a polyhedron.

Intersection with a Halfspace or Hyperplane We now consider the inter-
section of a closed and bounded convex set X with a halfspace or a hyperplane.
Later we extend these results to polyhedra. As noted in [65], the support func-
tion of the intersection of compact convex sets X and Y can be reduced to the
minimization problem

ρX∩Y(`) = inf
v∈Rn

(ρX (`− v) + ρY(v)). (4.1)

If Y is a halfspace or a hyperplane, we show that (4.1) simplifies to a univariate
minimization problem as follows.

Lemma 4.1. Consider the halfspace H = {x | aTx ≤ b} and the hyperplane
H′ = {x | aTx = b}, and let

f(λ) = ρX (`− λa) + λb. (4.2)

Then we have

ρX∩H(`) = inf
λ∈R≥0

f(λ), ρX∩H′(`) = inf
λ∈R

f(λ). (4.3)

Note that f(λ) is convex, since every support function is convex and the sum
of two convex functions is convex. If X is a polyhedron, (4.3) is a parametric
linear program (LP), with λ as parameter, and f(λ) is continuous, convex,
piecewise linear function, see [32].

40 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

Lemma 4.2. The following relationships about the intersection of a closed,
bounded and convex set X with a halfspace H are relevant:

1. X ∩H = ∅ iff −ρX (−a) > b.

2. If ρX (a) ≤ b, then ρX∩H(`) = ρX (`).

3. f(λ)→ −∞ as λ→∞ iff X ∩H = ∅.

4. If X ∩H 6= ∅, then f(λ) ≥ −ρX (−`).

Sandwich Algorithm We have the following sandwich algorithm to find a
sequence of λi that converges towards the minimum of f(λ), see Fig. 4.2 for an
illustration. For each λi, we compute the corresponding value f(λi), and we
call (λi, f(λi)) a sample of f(λ). We compute a lower bound function f−(λ) ≤
f(λ), which we update with each newly computed sample. Given two samples
(λi, f(λi)) and (λj , f(λj)), λi < λj , the convexity of f(λ) implies that the
straight line through them,

f−ij (λ) =
f(λj)− f(λi)

λj − λi
(λ− λi) + f(λi), (4.4)

is a lower bound on f(λ) to the left and right of the two points, i.e., for all
λ ≤ λi and λ ≥ λj , and an upper bound between them, i.e., for λi ≤ λ ≤ λj .
We combine (4.4) for all known samples (λi, f(λi)) to the following lower bound
function, which is defined pointwise over λ:

f−(λ) = max
(
−∞, max

λ≤λi<λj
f−ij (λ), max

λi<λj≤λ
f−ij (λ)

)
. (4.5)

We compute an interval [r−, r+] containing minλ∈R≥0 f(λ), whose optimality gap
r+ − r− is smaller than a given threshold ε ≥ 0. Our algorithm, called Lower
Bound search, proceeds as follows:

1. Let i = 0, λi = 0, r− = −∞, r+ = +∞.

2. Bracket the minimum by adding samples until a turning point is found, i.e.,
f(λi−1) ≤ f(λi−2) and f(λi−1) ≤ f(λi), increasing the distance between
λi exponentially.

3. Compute f(λi) and tighten the interval bounds
r− ← infλ∈R≥0 f−(λ), r+ ← min(r+, f(λi))

4. Choose the next sample at the lowest point of f−(λ) unless already visited:

(a) Let λi+1 ← arginfλ∈R≥0(f−(λ)).

(b) If λi+1 ∈ {λ0, . . . , λi}, let λi+1 ← (λi+1 + λj)/2, where λj is an
appropriate neighboring sample.

5. If r+−r− > ε, let i← i+1 and go to (3). Otherwise terminate and return
the interval [r−, r+].

4.1. INTERSECTION OF SUPPORT FUNCTIONS WITH POLYHEDRA41

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

(a) The polytope P and its intersection with the hyperplane H′

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.75

0.8

λ

f(λ)

(b) To compute ρX∩H′(`), we minimize f(λ). The function and the
samples chosen by the Lower Bound search are shown for ` = (0, 1)

Figure 4.2: Intersection of the hyperplane H′ = {x+ y = 0} with a polytope P
with 15 facets

42 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

Table 4.1: Average performance of Lower Bound search vs GSPD (fixed to 14
function evaluations), intersecting a hyperplane with a polytope

Lower Bound GSPD

facets samples err runtime [ms] samples err×10−4 runtime [ms]

4 6.741 0 0.15 14 8.197 0.71
8 8.523 0 0.34 14 3.200 0.82

16 9.611 0 0.50 14 1.612 1.27
24 10.222 0 0.74 14 1.111 1.80

If f(λ) is piecewise linear with a finite number of pieces, the above algorithm
terminates with a finite number of steps for every ε ≥ 0. This is the case if X
is a polytope.

Our implementation contains further steps to optimally reduce the number
of samples and to account for floating point errors. We refer the reader for
further details to [79].

Related Work : To the best of our knowledge, this is the first published solution of
the intersection with a halfspace or polyhedron. It is derived from previous work
on the intersection with a hyperplane in [66]. There, computing the support
function of the intersection is reduced to a univariate minimization problem that
is derived geometrically. Its parameter θ ∈ (0, π) describes the angle between the
sample direction and the normal vector of the hyperplane H′ = {x | aTx = b}:

ρX∩H′(`) = inf
θ∈(0,π)

ρX (` sin θ + a cos θ)− b cos θ

sin θ
. (4.6)

While (4.6) has the advantage over (4.3) that its argument ranges over a finite
interval, its cost function is only known to be unimodal instead of convex. We
refer to the approximate solution of (4.6) by golden section search as Golden
Section Search in the Polar Domain (GSPD).

Experiments: The following experiments shall illustrate the performance of
Lower Bound search in comparison with GSPD. The results in this paper were
obtained on a standard x86 machine with 32bit operating system. To measure
the computation error err = r+ − infλ∈R f(λ), we compare the different output
values to the result of the Lower Bound search for ε = 0.

Table 4.1 compares the support function computation of the intersection
between a regular n-polyhedron in two dimensions with the line x cos θ+y sin θ =
0 in the direction [x = 0, y = 1], for 1000 uniformly distributed θ ∈ [0, π] by
GSPD and our Lower Bound search. The table shows the averaged results. Note
that the error of GSPD decreases as the number of facets increases. The reason
is that the function becomes flatter near the minimum for a larger number
of facets. Hence for a fixed interval in the function domain bracketing the
minimum, the difference between the minimum and the upper bound decreases.

Table 4.2 compares the intersection between a regular n-polyhedron with the
line x cos θ + y sin θ = 0 in the direction [x = 0, y = 1], for 1000 uniformly dis-
tributed θ ∈ [0, π] for a fixed number of samples. The table shows the averaged
results.

4.1. INTERSECTION OF SUPPORT FUNCTIONS WITH POLYHEDRA43

Table 4.2: Average performance of Lower Bound search vs GSPD given 6 func-
tion evaluations, intersecting a hyperplane with a polytope

Lower Bound GSPD

facets opt. gap err runtime [ms] err runtime [ms]

4 0.0338614 0.0285933 0.16 0.0351516 0.25
8 0.0274455 0.0107857 0.10 0.0228235 0.32

16 0.0298651 0.0063944 0.28 0.0156476 0.51
24 0.0302147 0.0044049 0.47 0.0131288 0.98

2 4 6 8 10 12 14 16

10−12

10−8

10−4

100

samples

max. error
avg. error

Figure 4.3: Approximation error over the number of samples for the intersection
of random halfspaces with random polytopes with 16 facets

Remark 4.3. Note that in Table 4.2 the computation times differ even though
the same number of samples is computed for both LB search and GSPD. In-
deed the computation time of a sample is data as well as state dependent. In
particular, the LP solver computing the support function keeps its state between
calls. A sample can therefore be computed faster if its optimal solution for the
corresponding direction is close to the one computed in the previous call.

Figure 4.3 shows the approximation error of the intersection with a halfspace
as a function of the number of samples taken. We measure the absolute error
over 10000 random instances of a polytope with 16 facets intersected with a
halfspace. The polytope and the intersection are by construction nonempty and
the halfspace is nonredundant. After 17 samples, both maximum and average
error are below 10−13, which is about as close as we expect given machine
precision.

Intersection with a Polyhedron Since a polyhedron is an intersection of
halfspaces, we can apply (4.3) repeatedly to obtain the support function of the
intersection of a set X with a polyhedron P:

44 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

Lemma 4.4.

ρX∩P(`) = inf
λ∈Rm,λ≥0

ρX (`−
∑
i

λiai) +
∑
i

λibi. (4.7)

This is a convex minimization problem over m variables, where m is the
number of constraints in P.

In our implementation, we compute the intersection with each halfspace
separately, which allows us to apply the results from the previous section. We
intersect X with each halfspace of P separately, and combine the results in the
approximation

ρX∩P(`)+ = min
i=1,...,m

ρX∩{aTix≤bi}(`). (4.8)

Since X ∩ P is contained in all of the sets X ∩ {aTix ≤ bi},

ρX∩P(`) ≤ ρX∩{aTix≤bi}(`).

Consequently, ρX∩P(`) ≤ ρX∩P(`)+, so we are sure to obtain an overapproxi-
mation. An outer approximation computed with ρX∩P(`)+ may be non-empty
even though X ∩ P is empty.

4.2 Flowpipe-Guard Intersection

We now apply the results from the previous section in the reachability compu-
tation of a hybrid system. We use the reachability algorithm from Sect. 3.2 to
compute a sequence of closed and bounded convex sets Ω0, . . . ,ΩN that covers
the flowpipe starting from X0, with convex inputs U . We denote this operation
by

(Ω0, . . . ,ΩN) = postc (X0,U) . (4.9)

Each Ωi is the result of convex hull and Minkowski sum operations on polytopes.
So Ωi is by construction a polytope, but such that computing its constraint rep-
resentation would be prohibitively expensive. Its support function can, however,
be computed efficiently for any given direction. The computation of the sequence
Ωi amounts to a symbolic integration of the ODEs, see (3.5), so the values of Ωi
depend on the values of Ωi−1, etc. This gives us the following limitation, which
becomes important when considering intersections:

Assumption 1. To compute ρΩi(`) for given index i, we also need to compute
all preceding values, i.e., ρΩj (`) for j = 0, . . . , i− 1.

There is a partial remedy to this problem. Consider the case where we
are interested in computing a subsequence of the flowpipe approximation Ωi,
say for i ∈ [c, d]. This could be, e.g., sets that may take a transition. Under
Assumption 1 this requires us to compute the d+ 1 sets with i ∈ [0, d]. We can
reduce this computational burden as follows. The sequence Ωi is constructed
such that each set covers the flowpipe over a known time interval [ti, ti+1]. We
decompose the system into its autonomous dynamics (U = ∅) and its input
dynamics (X = ∅). Recall that for autonomous dynamics, the set of states
reached at exactly time tc is Xtc = eAtcX . Starting the flowpipe computation

4.2. FLOWPIPE-GUARD INTERSECTION 45

for the autonomous dynamics from t = tc instead of t = 0, we end up with fewer
sets to compute. Let

(Ωxc , . . . ,Ω
x
d) = postc

(
eAtcX , ∅

)
, (4.10)

(Ωu0 , . . . ,Ω
u
c , . . . ,Ω

u
d) = postc (∅,U) , (4.11)

such that Ωxi and Ωui cover the respective flowpipe on the same time interval
[ti, ti+1]. Then using the superposition principle we have that Ωxi ⊕ Ωui covers
the flowpipe of X0 and U on the time interval [ti, ti+1]. This means we only
need to compute the d − c + 1 sets of (4.10). While (4.11) still requires the
computation of d+1 sets, the set U is in practice often simple, e.g., a hyperbox,
so that its support function can be computed much quicker than that of X0.

Intersection with a Halfspace/Hyperplane In our reachability algorithm,
we need to apply the discrete image operator from the previous section to the
flowpipe approximation Ω0, . . . ,ΩN , where N is possibly very large. For now
we assume that the invariants and the guard are such that G∗ = G ∩ I− ∩ I∗ is
the halfspace

G∗ = {āTx ≤ b̄}.

The extension to hyperplanes is straightforward, as only the domain of the
parameter λ changes in (4.3).

According to (3.25), the image is nonempty only for Ωi where Ωi ∩ G∗ is
nonempty. So with Lemma 4.2, we can limit ourselves to Ωi with indices in

Ijump = {i | −ρΩi(−ā) ≤ b̄}. (4.12)

The result of the discrete image computation is⋃
i∈I

p̂oste (Ωi) . (4.13)

According to (3.26), we need to compute for each p̂oste (Ωi) the support ρΩi∩G∗(`)
for all ` ∈ RTL. Applying the approach from Sect 4.1, this involves minimizing
for each Ωi an instance of (4.2), i.e.,

f i(λ) = ρΩi(`− λā) + λb̄. (4.14)

Recall that according to Assumption 1, computing ρΩi(`) requires computing
ρΩj (`) for j = 0, . . . , i − 1. Therefore running a minimization algorithm on
f i(λ) also produces samples of f j(λ), j = 0, . . . , i − 1. These samples can be
used to improve the estimate of the minimum of f j(λ). In addition, one can
aim at choosing the next λ such that as many of these estimates as possible
benefit from the new sample. Our algorithm proceeds as follows to compute the
min f i(λ) up to a given error ε ≥ 0:

1. We start with a work list Iwork = Ijump , and a first sample at λnext = 0.

2. Compute ρΩi(`− λnext ā) for i = 0, . . . ,max(Iwork).

3. Update bounds on minima and requests of next λ for each f i(λ):
Compute (ri−, r

i
+, λ

i
next) for i ∈ Iwork

46 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

4. λnext = select({λinext}i)

5. Keep only problems on the work list whose bounds exceed the error:
Iwork = {i | ri+ − ri− > ε}.

6. If Iwork 6= ∅, go to (2).

The output of the algorithm are the ri+, i.e., an upper bound on the minimum
for each f i(λ). The function select chooses one of the candidates λinext for the
next sampling point. We consider picking the first, the last, the median and a
random candidate.

Intersection with a Polyhedron The results from the previous section can
be used to compute the intersection of a flowpipe with a polyhedron. To trade
accuracy against performance, we follow the lines of Sect. 4.1 and intersect with
each halfspace of the polyhedron separately. Our goal is to intersect the convex
hull of the flowpipe Ωi in the kth interval Ik with the set

G∗ =
{
x
∣∣∣ m∧
j=1

āTjx ≤ b̄j
}
,

similar to the intersection with a single halfspace in (4.19). For the intersection
of Ωi the jth halfspace in G∗, we must minimize the function

f ij(λ) = ρΩi(`− λāj) + λb̄j . (4.15)

Applying the same approximation for polyhedron intersection as in (4.8), we
obtain the overapproximation

ρYk(`) ≤ max
i∈Ik

min
j=1,...,m

inf
λ∈R≥0

f ij(λ). (4.16)

As with (4.19), we can use a branch-and-bound algorithm to eliminate instances
of i, j for which the upper bound of f ij(λ) is lower than the largest lower bound.

4.3 Branch-and-Bound Clustering

Computing the one-to-one image of the sets covering the flowpipe, as in (4.13),
can have the devastating effect of increasing the number of convex sets expo-
nentially with the search depth. To avoid an explosion in the number of sets
and gain efficiency, we compute the convex hull of subsets of these sets instead.
This is referred to as convex hull clustering, see Sect. 3.4 for details. We now
discuss how to compute the support function of these clusters efficiently using
a branch-and-bound approach.

For any set X ⊆ Rn, let CH(X) ⊆ Rn denote the convex hull

CH(X) =

{
n+1∑
i=1

λivi

∣∣∣∣∣ vi ∈ X,λi ∈ R≥0,

n+1∑
i=1

λi = 1

}
.

4.4. EXPERIMENTAL RESULTS 47

Let I0, . . . , IK be the maximal connected subsets of Ijump i.e., each Ij is the set
of indices of a connected subsequence of Ωi that can take the transition. We
compute the outer approximation of the convex hull of these sets,

Yk = CH
(⋃

i∈Ik
Ωi

)
. (4.17)

The final result is the outer approximation of the image of the discrete transition,

Zk = p̂oste (Yk) . (4.18)

With (3.3),(4.3),(3.26) and (4.14), this requires computing for all directions
` ∈ RTL

ρYk(`) = max
i∈Ik

inf
λ∈R≥0

f i(λ). (4.19)

Similarly to above, we accelerate the computation of (4.19) by solving the min-
imization problems for i ∈ Ik in parallel, and applying the following improve-
ments:

• updating the estimates for all f i(λ) with every sample, as warranted by
Assumption 1,

• using a branch-and-bound algorithm to eliminate the f i for which the
upper bound is lower than the currently largest lower bound.

We provide experimental comparison of the different techniques in the following
section.

4.4 Experimental Results

A few benchmarks shall illustrate the performance and precision of the proposed
algorithms.

4.4.1 Timed bouncing ball

We take advantage of the simplicity of the timed bouncing ball to compare
accuracy and speed of the different intersection variants. The timed bouncing
ball has the state variables position x, speed v, and time t. Its hybrid automaton
model consists of a single location with invariant x ≥ 0 and continuous dynamics

ẋ = v, v̇ = −g, ṫ = 1,

where g is the gravitational constant (here normed to 1). A discrete transition
from the location to itself changes the sign of th velocity when the ball touches
the ground. Here we chose the guard constraints x ≤ 0 and v < 0 (the latter to
keep the velocity from flipping when the ball goes upwards), and the assignment

x′ = x, v′ = −cv, t′ = t,

where c is a constant for the loss of speed (here 0.75).

48 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

Table 4.3: Speed versus accuracy comparison of different variants of the discrete
image computation, applied to the timed bouncing ball example. The accuracy
shows in the height of the last jump

direction ε clustering runtime [s] height x

standard discrete image computation

box TH+ 1.3 3.054
box TH & CH+ 2.6 2.209
box CH+ 31.2 2.016
oct TH+ 3.0 0.972
oct TH & CH+ 12.7 0.901
oct CH+ 36.6 0.844

discrete image with precise intersection

box 0.0 TH+ 1.3 1.080
box 0.0 TH & CH+ 3.4 1.017
box 0.0 CH+ 55.9 0.904

precise intersection of convex hull with branch & bound

box 1.0 CH− 0.8 1.175
box 0.1 CH− 0.6 0.815
box 0.0 CH− 0.6 0.807

4.4. EXPERIMENTAL RESULTS 49

In order to avoid an explosion in the number of sets, we cluster the convex
sets before (-) or after (+) we compute the image of the discrete transition. We
consider as alternatives the template hull of all sets (TH), the convex hull of all
sets (CH), and a mix of both (template hull of about 30%, then convex hull).
These alternatives have different speed/accuracy trade-offs. Table 4.3 shows the
performance results for computing the reachable states over five jumps. As a
measure of accuracy, we take the height of the last jump. The time step is fixed
at δ = 0.01, i.e., each convex set Ωi in the flowpipe approximations covers the
flowpipe over the time span [ti, ti + δ].

The standard variant applies the outer approximation before the intersection,
as in (3.21). Using box directions, the error is so large that the flowpipe of the
5th jump is reaches higher than the 4th, and adding further jumps the computed
sets diverge to infinity. Using octagonal directions improves the precision, but
slows down the analysis as 18 directions have to be computed instead of 6.
Note that the convex hull clustering for octagonal directions is not much slower
than for box directions because fewer sets intersect. But even with octagonal
directions and very small time steps, the precision leaves to be desired.

The precise variant of the image computation consists of the image operator
(3.25) using Lower Bound search with error bound ε. It shows better accuracy
than the standard variant, but convex hull clustering comes at a loss in speed.
As we do not detect a significant gain in speed from increasing the error bound,
only results for ε = 0 are shown.

The precise branch & bound variant shows both the highest accuracy and
the greatest speed. It uses the convex approximation of (3.25) indicated in
(4.19). Its major gain in performance comes from applying (4.10) and (4.11),
which reduces the number of sets in the computation. Increasing the error of
the intersection computation reduces somewhat the number of samples, but the
time gain is not substantial, see also Remark 4.3.

4.4.2 Filtered Oscillator Model

For a scalability comparison we turn to the filtered oscillator proposed by [44].
It consists of a switched linear oscillator with two state variables x, y and four
locations that is attached to K first-order filters put in sequence. The filter stack
produces the smoothened output signal z. The total number of state variables
is therefore K + 2.

Table 4.4 shows results for up to 130 state variables, for both standard dis-
crete image computation and the proposed variant with precise intersection.
All instances are computed using box directions. For all except the lower di-
mensional versions, the precise intersection variant outperforms the standard
operator in precision, and often also in speed. In this example, the capacity to
compute the intersection up to a given error (column 3) shows its benefits: a
small but not too small error greatly reduces the analysis time, at an acceptable
loss in accuracy.

50 CHAPTER 4. ONE-STEP TEMPLATE REFINEMENT

Table 4.4: Speed versus accuracy comparison of different variants of the dis-
crete image computation, for computing a fixed-point of the filtered oscillator
example. The accuracy shows in the max amplitude of the output signal z

vars δ ε clustering runtime(s) max. z iter

standard discrete image computation

6 0.01 TH+ 0.3 0.570 5
18 0.01 TH+ 2.1 0.361 9
34 0.01 TH+ 8.7 0.243 13
66 0.05 TH+ 17.4 0.291 23
130 0.05 TH+ 132.7 0.569 39
130 0.025 TH+ 206.0 0.166 41

precise intersection of convex hull with branch & bound

6 0.01 0 CH− 0.4 0.567 5
18 0.01 0 CH− 2.4 0.356 9
34 0.01 0 CH− 9.0 0.237 14
66 0.05 0.1 CH− 17.3 0.243 23
66 0.05 0.01 CH− 18.1 0.232 24
66 0.05 0.001 CH− 27.4 0.192 37
66 0.05 0 CH− 55.6 0.190 71
130 0.05 0.1 CH− 126.0 0.339 39
130 0.05 0.01 CH− 126.5 0.314 39
130 0.05 0.001 CH− 205.5 0.190 39
130 0.025 0.01 CH− 174.2 0.128 65

Chapter 5

Semi-Template Reachability
in Space-Time

The reachability algorithms of the previous chapters, as well as related ap-
proaches [9, 27, 49, 62, 66], have in common that flowpipes (states reachable
over time) are overapproximated with a finite but frequently large number of
convex sets. Each of the convex sets covers the flowpipe on a certain time inter-
val, and the approximation error usually increases rapidly with the size of this
interval. Often, the time step has to be made very small to achieve a desired
accuracy. This in turn may lead to a very large number of convex sets that,
depending on the processing or further image computation to be performed,
can quickly become prohibitive. For reachability analysis of hybrid systems in
particular, we have often observed a fatal explosion in the number of sets when
more than a few of the convex sets can take a discrete transition, as each will
spawn a new flowpipe in the next state, and so on.

This chapter addresses this fundamental problem from two angles: Firstly,
we propose a representation, which we call a flowpipe sampling, that consists
of a set of continuous, interval-valued functions over time. A flowpipe sampling
attributes to each time point a polyhedral enclosure of the set of states reachable
at that time point, thus capable of representing a nonconvex enclosure of a
nonconvex flowpipe. This representation helps to decouple, as far as possible,
the accuracy from the number of convex sets created in the end. Secondly, we
propose a clustering procedure that aims to minimize the number of convex sets
produced for a desired accuracy and does so using accuracy bounds established
by the flowpipe construction. A-posteriori error measurements help evaluate the
distance of the approximation to the actual flowpipe.

The following examples shall illustrate different aspects of the flowpipe ap-
proximation problem, as well as showcase the performance of our proposed so-
lution.

Example 5.1 (Helicopter). Figure 5.1(a) show a flowpipe approximation for
an affine helicopter model with 28 state variables plus a clock variable. It was
obtained using the approach in Chapter 3, which constructs for each time-step a
convex polyhedron in the 29-dimensional state space. The facet normals of the
polyhedra, also called template directions, are given by the user. In this case, the
axis directions are used so that the polyhedra are boxes. The complex dynamics

51

52 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

of the system require using a very small time step throughout the time horizon
of 30 s. Note that only the projection on two of the 29 variables is shown (the
vertical speed and the clock), while the approximation takes the variation of all
variables into account. As a result of the small time step, 1440 convex sets are
constructed for a given directional error estimate of ε = 0.025. The construc-
tion itself is computationally cheap at 5.9 s CPU time, but the sheer number of
sets makes further processing and image computation impractical.
The approach proposed in this chapter combines an enhanced flowpipe approx-
imation with adaptive clustering that guarantees a conservative error bound on
the directional distance to the actual reachable set at each point in time. The
time step is adapted separately for each of the template directions and can there-
fore be considerably larger. In the directions corresponding to the axis of the
clock the system evolves linearly, so the time step spans the entire time horizon.
The clustering step produces the 32 polyhedra shown in Fig. 5.1(b) for a given
directional error bound of ε = 0.025. The construction of the flowpipe sampling
takes 9.4 s and the clustering and outer polyhedral approximation 4.8 s.

As the following example illustrates, the convexification error is by no means
restricted to complex dynamics.

Example 5.2 (Hourglass). Consider the simple linear ODE system ẋ = 0,
ẏ = x, with initial states X0 = {−1 ≤ x(0) ≤ 1, y(0) = 0} as shown in
Fig. 5.2(a). We consider the states reachable up to time t = 1. The reachable
set is pointwise convex in time, but every convex set that covers the reachable
states over a nonsingular time interval is forcibly an overapproximation. The
time-step adaptation of the LGG-algorithm in Chapter 3 decreases the time step
until all error terms fall below the desired threshold. In this case, the error terms
are zero since the trajectories are linear, i.e., x(t) = x(0), y(t) = t · x(0). The
LGG-algorithm therefore covers the whole flowpipe in a single timestep. In the
best case (arbitrarily well-chosen template directions), the result is the convex
hull of the flowpipe, shown in Fig. 5.2(a).

The flowpipe approximation proposed in this chapter can produce a result
of arbitrary accuracy in terms of a directional error that is measured in the
template directions. As more template directions are added, this directional error
converges towards the Hausdorff distance between the actual reachable states and
the overapproximation. Figure 5.2(b) shows the result for a given error bound
0.1 in 64 uniformly distributed template directions.

The basis of our approach is the representation of a convex set by its support
function. Simply put, given the normal vector of a halfspace (direction), the
support function tells the position where the halfspace touches the set such that
it contains it. If the dynamics are affine and the set of initial states is convex, the
states reachable at a given point in time is also convex and can be represented
by their support function. The flowpipe can therefore be described by a family
of support functions parameterized by time, which has been considered in, e.g.,
[87, 68]. Our flowpipe sampling builds on this concept, which we refine by
accounting for the fact that we can only compute a finite number of values in
terms of both direction and time points. There are methods to approximate
flowpipes directly with sets that are nonconvex, e.g., with polynomial tubes
[78].

The flowpipe construction in this chapter builds heavily on previous work
in [66, 44]. Notably, this chapter provides error measurements that include

53

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t [s]

v z
 [f

t/s
]

(a) The flowpipe approximation from Chapter 3 constructs one convex
polyhedra per time-step, in total 1440 polyhedra

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t [s]

v z
 [f

t/s
]

(b) The flowpipe approximation with clustering proposed in this chapter
constructs 32 convex polyhedra

Figure 5.1: Flowpipe approximations for the 28-dimensional affine helicopter
model from Ex. 5.1, plus a clock. The shown sets are projections of 29-
dimensional polyhedra onto two variables, the vertical speed and the clock

54 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

X0

X1

(a) The initial set X0, the final set X1, and the smallest convex approxi-
mation of the reachable set X[0,1] (shaded)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

(b) An approximation of X[0,t] constructed by the proposed technique for
a given error bound 0.1

Figure 5.2: Example 5.2 has a nonconvex reachable set in the shape of an hour-
glass. It is pointwise convex in time, but every convex set covering a nonsingular
interval is forcibly an overapproximation. All trajectories are linear, so the ap-
proximation error is impossible to detect based on the dynamics alone

5.1. FLOWPIPE APPROXIMATION IN SPACE-TIME 55

the convexification error. For more detailed comments, see Sect. 5.1.4. The
clustering approach of Sect. 5.2 is, to the best of our knowledge, novel.

In the next section, we define flowpipe samplings as a general means to de-
scribe and approximate flowpipes and then present our flowpipe approximation
algorithm. We also show how a flowpipe sampling can be translated into a set
of convex polyhedra. In Sect. 5.2, we present our clustering approach, which
minimizes the number convex polyhedra that a flowpipe sampling defines. Sec-
tion 5.3 presents experimental results.

5.1 Flowpipe Approximation in Space-Time

We consider continuous dynamical systems given by differential equations

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (5.1)

where x(t) ∈ Rn and A ∈ Rn×n. The closed, bounded, and convex set U ⊆ Rn
can represent, e.g., nondeterministic inputs, disturbances or approximation er-
rors. The initial states of the system are given as a convex compact set X0,
i.e., x(0) ∈ X0. We refer to the states reachable from X0 by time elapse as
the flowpipe of X0. We compute a sequence of closed and bounded convex sets
Ω0, . . . ,ΩN that covers the flowpipe using an extension of the approximation
technique in Chapter 3. In our construction, each Ωi is the result of convex
hull and Minkowski sum operations on polytopes. So Ωi is itself a polytope,
but explicitly computing it would be prohibitively expensive in higher dimen-
sions. Its support function can, however, be computed efficiently for any given
direction. In the next section we present how we approximate convex sets by
computing their support function, and in the following section we extend the
approach to flowpipes.

5.1.1 Approximating Convex Sets with Support Samples

A convex set can be represented by its support function, which attributes to
each direction in Rn the signed distance of the farthest point of the set to
the origin. Computing the value of the support function for a given set of
directions, one obtains a polyhedron that overapproximates the set. We call
this sampling the support function. In this chapter, we allow this computation
to be approximative, i.e., a lower and an upper bound on the support function
is computed. In this section, we define support samples and derive error bounds
for approximations from support samples.

Because support functions are cheap, we would like to use them in our flow-
pipe approximation. However, in our construction it is not always possible or
efficient to compute the exact value of the support function. Instead, we allow
for interval bounds on the support function. Furthermore, we consider that
those bounds are only computed for a finite number of directions. In the follow-
ing, we examine how such bounds provide an outer approximation of the actual
set and characterize the approximation error. Given a set X , a support sample
r = (`, [r−, r+]) pairs a direction ` ∈ Rn with a real-valued interval [r−, r+] that
contains the value of the support function of X , i.e.,

ρX (`) ∈ [r−, r+]. (5.2)

56 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

A support sampling is a set of support samples

R = {r1, . . . , rK}, with rk = (`k, [r
−
k , r

+
k]).

Its outer approximation is the polyhedron

dRe =
{
x
∣∣∣ ∧
k

`Tkx ≤ r+
k

}
, (5.3)

i.e., given a support sampling R of X , we have that X ⊆ dRe.
From the lower bounds in the support samples we can derive a lower bound

on the support function in any direction, which allows us to bound the approx-
imation error of the outer approximation. By definition, a support sample rk
implies that there is at least one point x ∈ X such that `Tkx ≥ r

−
k , as illustrated

in Fig. 5.3. Let the facet slab of rk be

bRck = dRe ∩ {`Tkx ≥ r−k }, (5.4)

then the support function in direction ` cannot be lower than

min{`Tx | x ∈ bRck} = −ρbRck(−`).

Combining the lower bounds from all facet slabs, we obtain the following result:

Lemma 5.3. Given a support sampling R of a nonempty compact convex set
X , the support function of X is bounded in any direction ` by ρ−R(`) ≤ ρX (`) ≤
ρ+
R(`), where

ρ+
R(`) = ρdRe(`), (5.5)

ρ−R(`) = max
k=1,...,K

−ρbRck(−`). (5.6)

For a given direction `, the lower bound (5.6) can be reformulated as a
linear program with O(Kn) variables and O(K2) constraints by introducing an
additional variable z:

ρ−R(`) = min
{
z ∈ R

∣∣∣ ∧
k=1,...,K

z ≥ `Txk ∧ xk∈bRck
}
. (5.7)

We consider two ways to measure the error between the actual set and its outer
approximation: a directional error and the Hausdorff distance. The directional
error of a support samplingR is the width of the bounds on the support function,

εR(`) = ρ+
R(`)− ρ−R(`). (5.8)

Let Bk = {x | ‖x‖k = 1} be the unit ball in the k-norm. The directed Hausdorff
distance between sets X ,Y is

dH(X ,Y) = sup
x∈X

inf
y∈Y
‖x− y‖2 = inf{ε > 0 | X ⊆ Y ⊕ εB2},

and the Hausdorff distance is

dH(X ,Y) = max
(
dH(X ,Y), dH(Y,X)

)
.

5.1. FLOWPIPE APPROXIMATION IN SPACE-TIME 57

` `

X
"

dRe

bRc
k

`>x = ½R
+(`)

`>x = ½R
{(`)

Figure 5.3: A support sampling R of a set X (solid black) defined over the axis
directions, with lower and upper bound being ε apart. The outer approximation
dRe (solid grey) is shown together with the facet slabs bRck (dashed), each of
which contains at least one point of X . For an arbitrary direction `, the outer
approximation dRe provides an upper bound ρ+

R(`) on the support function, and
the facet slabs a lower bound ρ−R(`)

Lemma 5.4. Given a support sampling R of X ,

dH(X , dRe) ≤ max
‖`‖2=1

εR(`). (5.9)

Using the LP formulation (5.7), the above bound on the Hausdorff distance
can be rewritten as a quadratic maximization problem with bilinear constraints.
This bound is generally quite costly to compute. But it implies that, as more and
more directions are sampled, the largest directional error tends towards a bound
on the Hausdorff distance (assuming directions are uniformly distributed).

5.1.2 Approximating Flowpipes with Support Samples over
Time

Our space-time construction is a natural extension of the support function rep-
resentation of sets. For a given convex and bounded set of initial states X0, we
define the flowpipe as the states reachable from this set.

Formally, let Xt be the states reachable from X0 after exactly time t,

Xt = {x(t) | x(0) ∈ X0,∀τ ∈ [0, t] ∃u(τ) ∈ U : ẋ(τ) = Ax(τ) + u(τ)}. (5.10)

A flowpipe segment over a time interval [t1, t2] is the set

Xt1,t2 =
⋃

t1≤t≤t2

Xt.

In this chapter, we assume a finite time horizon T and refer to X0,T as the
flowpipe. Given that X0 is convex and that the dynamics are affine, Xt is convex
at any time t. For a fixed value of t, we can approximate Xt with a support
sampling

R = {(`1, r1), . . . , (`K , rK)},

58 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

where the `k given template directions, and the rk are intervals containing the
support function of Xt. Recall that R allows us to construct an outer approxi-
mation of Xt and quantify the approximation error.

We describe the nonconvex flowpipe over the time interval [0, T] in a similar
way. Letting t vary in the time interval [0, T], we consider the bounds of the
interval rk(t) = [r−k (t), r+

k (t)] to be continuous functions over time. For every t,
rk(t) contains the support function of Xt in direction `k(t). A flowpipe sampling
over K directions is a function F that attributes to each t a support sampling

F (t) = {(`1(t), r1(t)), . . . , (`K(t), rK(t))}. (5.11)

The pairs (`k(·), rk(·)) are called flowpipe samples. In this chapter, we consider
the directions to be constant over time, and simply write `k instead of `k(t). By
combining the outer approximation of the support sampling F (t) at each time
point, we obtain an outer approximation of a flowpipe segment Xt1,t2 . With
Lemma 5.4 it is straightforward to derive a bound on the Hausdorff distance
between the flowpipe segment and its outer approximation.

Lemma 5.5. Let F be a flowpipe sampling (5.11) and let

dF et1,t2 =
⋃

t1≤t≤t2

dF (t)e , (5.12)

εt1,t2 = max
t1≤t≤t2

max
‖`‖2=1

εF (t)(`). (5.13)

Then Xt1,t2 ⊆ dF et1,t2 and the Hausdorff distance between dF et1,t2 and Xt1,t2 is
bounded by εt1,t2 .

Example 5.6. In Ex. 5.2 (hourglass), the trajectories are x(t) = x(0), y(t) =
t·x(0), with initial states X0 = {−1 ≤ x(0) ≤ 1, y(0) = 0}. The support function
over time for a direction vector ` =

(
α β

)
is

ρX0(`) = max
x(0)∈X0

(
α β

)
·
(
x(0) t · x(0)

)
= max(α+ βt,−α− βt). (5.14)

Let’s assume that flowpipe samples have been computed for directions `1 =(
−1 4

)
, `2 =

(
−3 5

)
, `3 =

(
1 0

)
, as well as their negatives. Assuming

the computation is exact, the lower and upper bounds of the flowpipes are iden-
tical. The flowpipe samples r1(t), r2(t), r3(t) are shown in Fig. 5.4(a). The
resulting outer approximation dF e0,T is shown in Fig. 5.4(b) .

5.1. FLOWPIPE APPROXIMATION IN SPACE-TIME 59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

r3(t) = ρXt(`3)

r2(t) = ρXt(`2)

r1(t) = ρXt(`1)

time t

ρ
X
t
(`

1
),
ρ
X
t
(`

2
)

(a) Flowpipe samples for directions `1, `2, `3

Ω2

Ω1
Ω0

X0

X1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

l1Tx = 0

l2Tx = 0

(b) Outer flowpipe approximation dF e0,T in the state space, consisting of
convex polyhedra Ω0,Ω1,Ω2

Figure 5.4: Approximating the flowpipe of Ex. 5.2 for a given set of directions
`1, `2, `3, and their negatives

5.1.3 Polyhedral Approximations of Flowpipes

A flowpipe sampling describes a flowpipe in the same way that a support sam-
pling describes a convex set, only that the flowpipe and its outer approximation
can be nonconvex. We now show that the outer approximation of a flowpipe
sampling with piecewise linear upper bounds is a set of convex polyhedra, one
for each segment for which all upper bounds are concave.

Let F be a flowpipe sampling (5.11), such that for all k, r+
k (t), r−k (t) are

piecewise linear. For constructing the polyhedra, we need some technical nota-
tion for describing the linear pieces. Let the i-th pieces of r+

k (t), r−k (t) be

r+
k (t) = α+

k,it+ β+
k,i for τ+

k,i ≤ t ≤ τ
+
k,i+1,

r−k (t) = α−k,it+ β−k,i for τ−k,i ≤ t ≤ τ
−
k,i+1.

In the following, we consider the time interval [t1, t2] and will assume for sim-
plicity that r+

k (t), r−k (t) have breakpoints at the boundary of [t1, t2], i.e., for
some i′ < i′′, t1 = τ+

k,i′ and t2 = τ+
k,i′′ . Let I+

k ,I−k be the sets of indices i of the

60 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

pieces of r+
k (t), respectively r−k (t), that lie completely inside the time interval

[t1, t2]. If all computed flowpipe samples are concave over [t1, t2], their outer
approximation is convex:

Lemma 5.7. If for all k, r+
k (t) is concave on the time interval [t1, t2], then

dF et1,t2 is the convex polyhedron

dF et1,t2 = M JF Kt1,t2 , where (5.15)

JF Kt1,t2 =
{

(x, t)
∣∣∣ t1≤ t≤ t2 ∧∧

k,i∈I+
k

`Tkx ≤ α+
k,it+ β+

k,i

}
,

and the matrix M maps (x, t) ∈ Rn+1 to x ∈ Rn.

With Lemma 5.7, we can take a flowpipe sampling F and compute the
support function of dF et1,t2 by solving a single LP with O(n) variables and
O(KZ) constraints, where K is the number of template directions and Z is a
bound on the number of pieces of the r+

k (t) in the time interval [tj , tj+1].

With the above, we can construct a flowpipe approximation consisting of
convex polyhedra Ω0, . . . ,ΩN as follows:

1. Compute a piecewise linear flowpipe sample for each template direction.

2. Identify time intervals [t0, t1], . . . , [tN , tN+1], with t0 = 0 and tN+1 = T ,
such that in each interval all samples have concave upper bounds.

3. Construct for each interval [ti, ti+1] its convex polyhedron Ωi = dF eti,ti+1

using (5.15).

Example 5.8. The flowpipe samples of Ex. 5.6, shown in Fig. 5.4(a), are all
concave on the time intervals [0, 0.25], [0.25, 0.6], and [0.6, 1]. The outer ap-
proximation of the flowpipe consists of three convex polyhedra Ω0 = dF e0,0.25,
Ω1 = dF e0.25,0.6, and Ω2 = dF e0.6,1, shown in Fig. 5.4(b) . The facet normals
of Ω0 are `1, `3, those of Ω2 are `2, `3, and those of Ω3 are a linear combination
of `1 and `2.

The above approach produces a precise flowpipe approximation, but the number
of polyhedra can be very large, especially if the concave intervals of the different
flowpipe samples do not coincide. If an upper bound of a flowpipe samples is not
concave on an interval, we can replace it by its concave envelope. The concave
envelope of a piecewise linear function with N points, sorted along the time axis,
can be computed in O(N) with the Graham scan. The approximation error can
be measured via the distance to the envelope. In Sect. 5.2, we will present a
clustering technique that establishes the largest concave intervals that can be
created by relaxing the upper bounds, under a desired error bound.

Note that a convex outer approximation does not imply that the flowpipe
segment is convex. We now derive a bound on the approximation error by using
the lower bounds of the flowpipe samples.

Lemma 5.9. Let for all k, r+
k (t) be concave and r−k (t) be convex on the time

interval [t1, t2]. Let the k-th facet slab of F be

JF Kkt1,t2=
{

(xk, t) ∈ JF Kt1,t2
∣∣∣∧
i∈I−k

`Tkxk ≥ α−k,it+ β−k,i

}
, (5.16)

5.1. FLOWPIPE APPROXIMATION IN SPACE-TIME 61

Then the Hausdorff distance between dF et1,t2 and Xt1,t2 is bounded by

εt1,t2 = max
‖`‖2=1

εt1,t2(`), where (5.17)

εt1,t2(`) = max
{
`Tx− z

∣∣∣ (x, t) ∈ JF Kt1,t2 ∧∧
k=1,...,K

z ≥ `Txk ∧ (xk, t)∈JF Kkt1,t2
}

(5.18)

For a given direction `, (5.18) can be formulated as a linear program. Con-
sequently, Lemma 5.9, allows us to compute a bound on the directional approxi-
mation error εt1,t2(`) by solving a single LP with O(Kn) variables and O(K2Z)
constraints. If we can solve the program for all `, we obtain a bound on the
Hausdorff distance of dF et1,t2 to the actual flowpipe segment.

5.1.4 Computing Flowpipe Samples for Affine Dynamics

We now present a way to construct flowpipe samples for affine dynamics of the
form (5.1), i.e., an interval-valued function that bounds the support function
of the reachable states at time t for a given direction. Our construction takes
as input the initial set X0, a time horizon T , a template direction `, and an
error bound ε. It produces a flowpipe sample (`, [r−(t), r+(t)]), such that for all
0 ≤ t ≤ T ,

r+(t)− r−(t) ≤ ε.

The sample is piecewise quadratic and can easily be approximated by a piecewise
linear sample so that the techniques of the previous section can be applied.
The construction is based on the approach in [44], from which it differs in two
ways: First, we include a lower bound on the support function, which is used
to evaluate the approximation error at all stages including clustering. Second,
instead of computing forward with a certain time-step, we start with a time step
that covers the whole time horizon and recursively refine with smaller steps on
subdomains where the difference between upper and lower bound exceeds the
error bound.

We exploit the superposition principle to adapt the approximation separately
to the autonomous dynamics (created by X0), and to the non-autonomous dy-
namics (created by U). Xt can be decomposed into

Xt = Zt ⊕ Yt, (5.19)

where Zt = eAtX0 and Yt is the set of states reachable when starting from x = 0
instead of X0:

Yt = {x(t) | x(0) = 0,∀τ ∈ [0, t] ∃u(τ) ∈ U : ẋ(τ) = Ax(τ) + u(τ)}. (5.20)

Note that Z0 = X0 and Y0 = 0. We now turn to constructing a flowpipe sample
ω(t) = [ω−(t), ω+(t)] for Zt.

Our starting point is a linear interpolation between Z0 and Zδ. Using a
forward, respectively backward, interpolation leads to error terms represented
by sets E+

Ω ,E−Ω , as defined in Sect. 3.2.1, Lemma 3.2. The intersection of both
error terms gives EΩ. Using a normalized time variable λ = t/δ, the support
function of the error term EΩ(δ, λ) is piecewise linear and efficient to compute.

62 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

An upper bound on the support function of Zt over a time interval [0, δ] is
easy to derive from the linear interpolation between Z0, Zδ, and the above error
terms. For deriving a lower bound, consider a support vector x− of Z0 = X0

in direction `. Since the support function of Zδ = eAδX0 is the maximum of
`Tx over all x ∈ Zδ, it is bounded below by the image of x− at time δ, i.e., by
`TeAδx−. From the linear interpolation between x− and eAδx− we derive a lower
bound by subtracting a suitable error term. A similar argument can be made
with the support vector x+ at the end of the interval, and we take the maximum
of both lower bounds. Using the above error terms we obtain a flowpipe sample
as follows.

Lemma 5.10. We consider the time interval [ti, ti+1]. Let δi = ti+1 − ti,

`i = eAti
T
`, `i+1 = eAδi

T
`i, let x− be a support vector of ρX0

(`i), and x+ be a
support vector of ρX0

(`i+1). Let λ = (t− ti)/δi and

ω+(t) =(1− λ)ρX0
(`i) + λρX0

(`i+1) + ρEΩ(δi,λ)(`i) (5.21)

ω−(t) = max{(1− λ)`Tix
− + λ`Ti+1x

−,

(1− λ)`Tix
+ + λ`Ti+1x

+} − ρEΩ(δi,λ)(`i). (5.22)

Then ω−(t) ≤ ρZt(`) ≤ ω+(t) for all ti ≤ t ≤ ti+δi .

The approximation error of ω−(t), ω+(t) in the time interval [ti, ti + δi] is

εω(ti, ti+1) = max
ti≤t≤ti+1

ω+(t)− ω−(t). (5.23)

Note that the approximation error decreases at least linearly with δi. To meet
the given error bound εω, we construct ω−(t), ω+(t) and the corresponding se-
quence of time points ti by establishing a list of suitable intervals. We begin
with a single interval [t0, t1] = [0, T], which covers the entire time horizon. Each
interval [ti, ti+1] in the list is processed in the following steps:

1. Construct ω−(t), ω+(t) on the interval [ti, ti+1] and compute εω(ti, ti+1).

2. If εω(ti, ti+1) > εω, split the interval in two. Let t′ = (ti + ti+1)/2.
Replace [ti, ti+1] with intervals [ti, t

′], [t′, ti+1], and process each starting
with step 1.

Example 5.11. Consider computing a flowpipe sample of Ex. 5.2 (hourglass)
for direction `2 and up to an error bound of ε = 1, as illustrated by Fig. 5.5.
There are no inputs, so r2(t) = ω(t). We start with the interval [0, 1], which
yields as upper bound the linear interpolation between ω+(0) = 3 and ω+(1) = 2,
shown dashed in Fig. 5.5. In this example, the lower bound ω−(t) happens to
coincide with r2(t). The inital approximation error is εω(0, 1) = 2.4. Since
this exceeds ε, the interval is split into two pieces, [0, 0.5] and [0.5, 1]. The
approximation errors are εω(0, 0.5) = 0 and εω(0.5, 1) = 0.6. They satisfy the
error bound ε, and we obtain the upper bound ω+(t) shown in Fig. 5.5.

We now establish a flowpipe sample ψ(t) = [ψ−(t), ψ+(t)] for Yt. Com-
puting ψ(t) is more difficult than computing ω(t) because there is no analytic
solution for the integral over the input u(t). Because of the integration, the
approximation error accumulates over time. In order to guarantee that for all t

5.1. FLOWPIPE APPROXIMATION IN SPACE-TIME 63

0 0.2 0.4 0.6 0.8 1
0

1

2

3

εω

ρXt(`2) = ω−(t)

ω+(t)

time t

ω
(t
),
ρ
X
t
(`

2
)

Figure 5.5: Computing a flowpipe sample of Ex. 5.2 for direction `2

the (accumulated) error of ψ(t) is below a given bound εψ, we impose that the
accumulated error at the end of each interval [ti, ti+1] must lie below the error
rate εψ · ti+1/T . We use a two-step process: We first compute ψ(ti) at discrete
points in time ti such that the desired error rate is met. Based on these values
we then define ψ(t) over continuous time. To bound the approximation error
we use the error term

EΨ(U , δ) = � (Φ2(|A|, δ)� (AU)) .

For the following two lemmas, we assume the sequence of time points ti as
given. Its construction is presented afterwards, when the required error terms
have been defined. We have the following bounds on ρYt(`) at the discrete time
points ti.

Lemma 5.12. [44] Let t0 = 0, t1, t2, . . . , tN = T be an increasing sequence of

time points. Let δi = ti+1− ti, `i = eAti
T
`, `i+1 = eAδi

T
`i, ψ

+
t0 = 0, ψ−t0 = 0, and

ψ+
ti+1

= ψ+
ti + δiρU (`i) + ρEΨ(U,δi)(`i) (5.24)

ψ−ti+1
= ψ−ti + δiρU (`i)− ρ−AΦ2(A,δi)U (`i). (5.25)

Then for all ti, ψ
−
ti ≤ ρYti (`) ≤ ψ

+
ti .

Based on the bounds on ρYt(`) at the discrete times ti, we obtain the fol-
lowing bounds over the intervals [ti, ti+1].

Lemma 5.13. Let λ = (t− ti)/δi and

ψ+(t) =ψ+
ti + λδiρU (`i) + λ2ρEΨ(U,δi)(`i), (5.26)

ψ−(t) =ψ−ti + λδiρU (`i)− λρ−AΦ2(A,δi)U (`i)

− λ2ρEΨ(U,δi)(`i). (5.27)

Then ψ−(t) ≤ ρYt(`) ≤ ψ+(t) for all ti ≤ t ≤ ti+δi .

We construct the time intervals [ti, ti+1] by refinement until the error ψ(t)
falls below εψ. According to the above Lemmas, the error bound on the interval

64 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

[ti, ti+1] is defined by the following sequence, starting with εψ(t0) = 0:

εψ(ti, ti+1) =εψ(ti) + max
0≤λ≤1

2λ2ρEΨ(U,δi)(`i)

+ λρ−AΦ2(A,δi)U (`i), where (5.28)

εψ(ti+1) =εψ(ti) + ρEΨ(U,δi)(`i) + ρ−AΦ2(A,δi)U (`i). (5.29)

When choosing the time points ti, we must ensure that largest error in the
interval [ti, ti+1] lies below the error bound, i.e., εψ(ti, ti+1) ≤ εψ. To take into
account that the error εψ(ti) accumulates, we also ensure that the rate of the
accumulated error stays below εψ/T , i.e., εψ(ti+1) ≤ εψ · ti+1/T . Beginning
with a single interval [t0, t1] = [0, T], each interval [ti, ti+1] is processed in the
following steps:

1. Compute εψ(ti+1) and εψ(ti, ti+1).

2. If εψ(ti+1) > εψ · ti+1/T or εψ(ti, ti+1) > εψ, split the interval in two.
Let t′ = (ti + ti+1)/2. Replace [ti, ti+1] with intervals [ti, t

′], [t′, ti+1], and
process each starting with step 1.

Using the superposition principle (5.19), we finally combine ω(t) and ψ(t) to
obtain a flowpipe sample for Xt as

r(t) = [r−(t), r+(t)] = ω(t) + ψ(t).

The error bound on r(t) is below ε = εω + εψ.

5.2 Clustering in Space-Time

Given a flowpipe sampling, our goal is to construct a sequence of convex sets
that cover the flowpipe and that are no further than a given distance ε from
it. For computational efficiency, our distance measure is the directional error in
each of the sampled directions, but this implies also a distance in the Hausdorff
sense.

We now given an informal description of our clustering algorithm, deferring
a formal discussion to the subsections that follow. The algorithm takes as input
a flowpipe sampling F = {(`1, r1(t)), . . . , (`K , rK(t))} and an error bound ε, and
produces a flowpipe sampling F ′ by replacing the upper bounds r+

k (t) with a
piecewise concave envelope with as few pieces as possible for the given error
bound. The basic principle is to (over)approximate the upper bounds r+

i (t)
of the flowpipe samples with a set of piecewise concave hulls yi(t), which are
constructed such that they are concave over the same pieces. Recalling from
in Sect. 5.1.3 that an outer approximation in the form of a convex polyhedron
can be constructed for each concave piece, this effectively reduces the number
of convex sets.

Let ρi(t) = ρXt(`i) be the actual value of the support function over time.
By definition, r−i (t) ≤ ρi(t) ≤ r+

i (t). The goal of our clustering is to produce a
piecewise concave hull yi(t) that is no farther than ε away from the actual value
ρi(t), i.e., such that ρi(t) ≤ yi(t) ≤ ρi(t) + ε. Since only r−i (t) and r+

i (t) are
known, we must construct the yi(t) such that

r+
i (t) ≤ yi(t) ≤ r−i (t) + ε. (5.30)

5.2. CLUSTERING IN SPACE-TIME 65

Finding the minimal number of concave pieces for a function between a
lower and an upper bound is possible by establishing the inflection intervals of
(r+
i (t), r−i (t)+ε). The set of inflection intervals has the following property: Any

piecewise concave function between r+
i (t) and r−i (t)+ε has at least one inflection

point inside every inflection interval. The number of inflection intervals is thus
equal to the minimum number of concave pieces of any yi(t). To have the
minimum number of concave pieces, we must find the minimum number of
points such that there is at least one point in every inflection interval of every
sample. This turns out to be a graph coloring problem. The clustering step
itself terminates with the construction of a piecewise concave hull of the flowpipe
samples with a minimum number of pieces. Convex polyhedra can be derived
from the concave pieces as previously described in Sect. 5.1.3.

If the clustering results in a number of concave pieces that is still considered
too high, one can try to reduce the number further by recomputing the flowpipe
samples with higher accuracy. This brings the r−i (t) and r+

i (t) closer together,
which increases the slack in the bounds (5.30) used for clustering. As illustrated
by Fig. 5.6, the new bounds may be wide enough to admit a fewer pieces. We
can obtain a lower bound on the number of pieces by computing the number of
inflection intervals for the bounds

r−i (t) ≤ yi(t) ≤ r+
i (t) + ε. (5.31)

66 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

½Xt

t¼

1

0

s+

s{

-1

(a) Let Xt be a unit circle in the x/y-plane, with ρXt(`) = cos(t) if ` is
the x-direction. A flowpipe sample (`, s−(t), s+(t)) encloses this function

s-+ "

tt+t{

s+

s-

s¶

(b) Any piecewise linear s′ between s+(t) and s−(t) + ε has at least two
concave pieces, separated by an inflection point between t− and t+

s{+ "

t

s+

s{

s¶

(c) Refining s−, s+ leaves more slack between s+ and s−+ ε, and enables
an approximation s′ with a single concave piece

Figure 5.6: Given a flowpipe sample with bounds s−(t), s+(t) and a desired
approximation error ε, we construct a piecewise concave function s′(t) that lies
between s+(t) and s−(t) + ε. Fewer concave pieces in s′(t) mean fewer convex
sets produced by the clustering

5.2. CLUSTERING IN SPACE-TIME 67

Inflection Intervals of a Flowpipe Sample Let l(t), u(t) be a pair of
piecewise linear functions with domain [0, T] such that l(t) ≤ u(t). An inflection
interval is an interval over t that contains at least one inflection point of any
piecewise concave function y(t) lying on or between l(t) and u(t), and no points
that are not inflection points of a piecewise concave y(t) with a minimum number
of pieces. As a consequence of this definition, the minimum number of pieces of
any y(t) is equal to the number of inflection intervals of (l(t), u(t)).

Let the breakpoints of l(t) be l0 to lN . We propose the following algorithm
for finding inflection intervals (for simplicity we omit some special cases), see
Fig. 5.7 for an illustration:

1. Perform a greedy piecewise concave minimal function construction from l0
to lN : choose at each step the point on the lower bound farthest towards
lN that is still visible.

2. Denote the breakpoints where the function is convex by b0, . . . , bz.

3. Perform a greedy piecewise concave minimal function construction in re-
versed direction, from lN to l0.

4. Denote the breakpoints where the function is convex by az, . . . , a0.

5. Return the inflection intervals I0 = [a0, b0], . . . , Iz = [az, bz].

Proposition 5.14. Given intervals I0, . . . , Iz returned by the above algorithm,
there exists a piecewise concave function between l(t) and u(t) with z+ 1 inflec-
tion points, one in every interval Ii. There exists no piecewise concave function
between l(t) and u(t) with less than z + 1 inflection points.

Proof. Let us consider one of the bi, let us denote it b for simplicity, and lb the
previous vertex in the piecewise concave piecewise linear function. lb is on l(t)
(but not necessarily one of the li) otherwise the function would not be minimal.
b is on a segment]li, li+1[and there is a point u′ ∈ u(t) on the segment [lb, b]
otherwise the function would not have been greedily constructed. Let us take x
in]b, li+1[, any concave function on [b, x] above l(t) and below u(t) must be above
lb and x and below u′ which is not possible since u′ is below [lb, x]. Thus any
piecewise concave function must contain at least one inflection point on]lb, x[,
and thus at least one on]lb, b], and one on each]lbi , bi]. Since the intervals are
disjoint, the greedy algorithm reaches a minimum number of inflexion point.
Similarly any piecewise concave function must contain at least one inflection
point on each [ai, lai [.

Combining Inflection Intervals Having established the inflection intervals
for each flowpipe sample, we combine them to find the minimum number of
inflection points, as well as their possible positions, for our piecewise cover of all
samples. Recall that the pieces of the piecewise cover we seek are common to
all samples. We therefore need to pick at least one point from every inflection
interval of every sample. To minimize their number, we construct their common
sub-intervals, which we call overlap intervals.

For each function we have a (possibly empty) set of inflection intervals Ii
obtained using the algorithm of Prop. 5.14. For the following it is not relevant
that the inflection intervals originate from different functions, so let I0, I1, . . . , Iz

68 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

simply be the set of all inflection intervals. We need to partition the intervals
into groups inside which all intervals overlap. The output of the algorithm
consists of the groups and for each group their common overlap intervals Jj .

Finding maximal groups of overlapping intervals is equivalent to a coloring
problem. Each color j corresponds to one of the groups and defines an overlap
interval, which consists of the overlap between all members of the group. Two
intervals I1, I2 need to be colored differently if they do not overlap, i.e., if I+

1 <
I−2 or I+

2 < I−1 . This relationship is captured by the comparability graph, whose
vertices are the intervals Ii. Its edges are given by Ii → Ij ⇔ I+

i < I−j ,
which is the so-called interval ordering (a strict partial order). Our problem
is equivalent to finding a coloring of the comparability graph with the smallest
number of colors such that no two adjacent vertices have the same color. Once
the intervals have been colored, each color corresponds to a set of intervals that
all overlap. We may freely choose an inflection point from inside the common
region for that color.

It is known that the interval ordering is a perfect elimination ordering of
the comparability graph of a set of intervals. Consequently, a greedy coloring
algorithm produces the optimal result if it chooses the vertices in an order that
satisfies the interval ordering [69]. Such an order of the vertices can be obtained
by a topological sort, i.e., a depth-first search in the graph. The total complexity
is determined by the size of the comparability graph and therefore O(z2), where
z is the number of intervals.

Example 5.15. A set of intervals is shown in Fig. 5.8(a), as well as the cut
intervals. The corresponding DAG is shown in Fig. 5.8(b). A depth-first search
on the graph (going from the top down, left to right) yields the total order
de, fg, ab, bc, gh. Greedy coloring in this order yields the color 1 for ab, de, fg
and 2 for bc, gh. The extracted intervals J1 and J2 are shown in Fig. 5.8(a).

Choosing Inflection Points Our final set of inflection points consists of one
point from each overlap interval Jj . The approximation error of this choice
can be measured as the distance of the lower bounds to the resulting piecewise
concave functions. The choice in one inflection interval generally influences the
approximation error of its neighboring intervals as well, so the optimal choice
is a multivariate optimization problem. In our experiments, we have observed
that the overlap between the intervals of different directions is usually small,
and that choosing inflection points in the middle of each interval yields results
that are close to the local optimum.

5.2. CLUSTERING IN SPACE-TIME 69

2 4 6 8 10

1

2

3

4 u(t)

l(t)

•
lb0

•
b0

•
lb1

•
b1

t

l(
t)
,u

(t
)

(a) Greedy scan of visible lower bound points from l0

2 4 6 8 10

1

2

3

4 u(t)

l(t)

•
la0

•
a0

•
la1

•
a1

t

l(
t)
,u

(t
)

(b) Greedy scan of visible lower bound points from lN

2 4 6 8 10

1

2

3

4 u(t)

l(t)
y(t)

b0

a0

a1

b1
•

•

•

•

t

l(
t)
,u

(t
),
y
(t

)

(c) The greedy scans define inflection intervals I0 = [a0, b0], I1 =
[a1, b1]; for illustration, we show a piecewise concave function y(t)
with the minimum number of pieces

Figure 5.7: Finding the set of inflection intervals. Any piecewise concave func-
tion above l(t) and below u(t) has at least one inflection point inside each
inflection interval

70 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

0 2 4 6 8 10

J2 J1

I1 I2

I3

I4 I5

t

(a) Inflection intervals I1, . . . , I5 and overlap intervals J1, J2

I1(5)
J2

I2(4)
J1

I3(2)
J2

I4(3)
J2

I5(1)
J1

(b) Comparability graph, showing for each node Ii in parentheses its order from
a topological sort and its overlap interval Jj (color), obtained by greedy coloring
in that order

Figure 5.8: Finding the smallest set of inflection points in a set of overlapping
inflection intervals can be solved by greedy coloring of the comparability graph
in any order conform to the interval ordering

5.3. EXPERIMENTAL RESULTS 71

5.3 Experimental Results

In this section, we experimentally compare the proposed algorithms for flowpipe
approximation and clustering with the approximation from Chapter 3. An im-
plementation of these algorithms is used in the verification tool SpaceEx [44] to
compute an overapproximation of the reachable states of a hybrid system. Re-
call that computing the reachable states of a hybrid systems involves computing
the successor states of time elapse (flowpipe approximation) and the successor
states of discrete transitions. The latter involves intersecting the flowpipe with
the invariants of source and target locations, as well as the transition guard,
which can be carried out efficiently on polyhedra. This motivates why we con-
sider the final result of the flowpipe approximation to be the polyhedral outer
approximation as described in Sect. 5.1.3. Note that other variants of the reach-
ability algorithm avoid polyhedra, e.g., by carrying out the intersection on the
support function level through transformation into an optimiziation problem
[66, 46]. We compare the following variants:

LGG (state-space approximation without clustering) variable time-step flowpipe
construction in the state-space, then outer polyhedral approximation, both
as in Chapter 3,

STA (space-time approximation with all pieces) flowpipe construction as in
Sect. 5.1, then outer polyhedral approximation of all pieces as in Sect. 5.1.3
(no clustering),

STC (space-time approximation with clustering) flowpipe construction as in
Sect. 5.1 and clustering as in Sect. 5.2, then outer polyhedral approxima-
tion as in Sect. 5.1.3.

Note that the STA/STC implementation is still a prototype, and we expect that
memory consumption and clustering runtime can be reduced. The parameter
settings are not entirely comparable between LGG and STA/STC, since the er-
ror bounds in STA/STC are conservative, while in LGG they are mere estimates
that do not take the nonconvexity error in account. The error bound in STC
measures the total error, including both flowpipe approximation and clustering.
We choose that 80% of the error can be taken up by the flowpipe approximation,
so that at least 20% of the error bound remain as slack for the clustering step.

To avoid a lengthy description of the models, they are available for download
on the SpaceEx website [37]. For illustration, consider a ball in free-fall together
with a clock, with 3 variables x, v, t, dynamics ẋ = v, v̇ = −1, ṫ = 1, and initial
states 10 ≤ x ≤ 10.2, v = t = 0. We construct the flowpipe until x falls below 0.
The axis directions are used as template directions, so LGG creates bounding
boxes of flowpipe segments in the state space. The flowpipe approximation of
STA/STC creates a bounding box for each point in time, which projected to
the state space yields polyhedra with facet normals other than the template
directions, as Fig. 5.9 illustrates. The error bound ε = 1 is fairly large, and the
clustering step in STC uses the slack to reduce the number of sets from 8 sets
(STA) to 2 sets.

Table 5.1 shows performance results obtained on a laptop with i7 processor
and 8 GB RAM. All examples use the axis directions as template directions. For
each algorithm, the table shows the time taken for flowpipe approximation, the

72 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

0 1 2 3 4 5
0

2

4

6

8

10

12

t [s]

x
[m

]

(a) LGG (blue) versus STA (red)

0 1 2 3 4 5
0

2

4

6

8

10

12

t [s]

x
[m

]

(b) LGG (blue) versus STC (red)

Figure 5.9: Flowpipe approximation of a ball in free fall (position over time),
with axis directions as template directions and a directional error bound ε = 1

time taken for clustering and constructing the polyhedral approximation, and
the memory consumption. As an implementation-independent indicator of the
computational cost, it shows the total number of times the support function of
the initial set has been evaluated. The key column is the total number of convex
sets covering the flowpipe, and the goal of the STC algorithm is to reduce it as
much as possible for the given error bound.

The results indicate that the flowpipe approximation in space-time with clus-
tering (STC) can produce a flowpipe cover with a small number of sets, while
meeting the desired directional error bounds. The construction uses template di-
rections, with which the reachable set is approximated in space-time, pointwise
for every time instant. The projection onto the state space produces polyhe-
dra with facet normals that are linear combinations of the template directions.
Compared to our previous work, which approximates the flowpipe directly in

5.3. EXPERIMENTAL RESULTS 73

Table 5.1: Performance results for different examples

Algo Fl.T [s] Cl.T. [s] Mem. [MB] #eval #sets

Helicopter with controller & clock, 29 variables, ε = 0.025

LGG 5.9 – 14 85144 1440
STA 9.0 3.6 2390 103726 2649
STC 9.4 4.8 203 103726 32

Helicopter with diff. controller & clock, 29 variables, ε = 0.025

LGG 10.4 – 15 150278 2563
STA 14.5 0.0 2620 154026 2568
STC 14.3 19.0 225 154026 10

Ball in free-fall & clock, 3 variables, ε = 0.001

LGG 0.04 – 11 1770 261
STA 0.02 0 14 1453 85
STC 0.02 0 12 1453 56

Ball i. ff. w. input disturbance & clock, 3 variables, ε = 0.001

LGG 6.3 – 94 344676 17208
STA 29.9 0 15 1580834 256
STC 29.9 0 12 1580834 64

Three-tank system, 3 variables, ε = 0.125

LGG 0.03 – 2 1032 105
STA 0.03 0 15 756 137
STC 0.03 0 2 756 9

Overhead crane, 4 variables, ε = 0.05

LGG 0.12 – 11 3944 369
STA 0.17 0 37 4896 633
STC 0.17 0 13 4896 15

Fl.T : flowpipe construction time, Cl.T.: clustering and polyhedral approximation
time, Mem.: memory consumption, #eval: number of evaluations of the support
function of the initial set, #sets: number of convex sets covering the flowpipe

the state space, this can improve precision and reduce the number of sets at the
same time.

74 CHAPTER 5. SEMI-TEMPLATE REACHABILITY

Chapter 6

Property-Based Template
Refinement

In our experiences with applying scalable flowpipe approximation algorithms,
the number of continuous sets that are produced (more accurately, the number of
symbolic states) tends to grow quickly and become a limiting factor. Clustering
is usually applied to help reduce this number, and optimal clustering can be
carried out with support functions as done in Chapter 5. This number of sets is
aggravated dramatically by spurious transitions, i.e., transitions that are enabled
as an artifact of the overapproximation. The approximation accuracy can be
improved by reducing time steps and increasing the number of directions, but
if done indiscriminately this leads to large computational cost: to guarantee a
Hausdorff error of ε in n dimensions, the support function must be evaluated
O(1/εn−1) times [68].

We propose a procedure to show that a transition is spurious, i.e., its guard
set is unreachable. It aims at using as few directions as possible, and adjusting
the accuracy automatically. We call this separating the guard set from the
flowpipe (as opposed to safety), in order to differentiate it from showing safety
over all runs of the hybrid automaton. Our approach is based on the separation
of two convex sets: efficient algorithms are known that produce a hyperplane
separating the two sets, and its normal vector is a suitable template direction
for the support function algorithm.

We propose two different ways to turn the flowpipe separation problem into
a sequence of convex separation problems. In a convexification-based approach,
we approximate the flowpipe with a finite number of convex set as in [42]. To
each of these sets, we apply the above convex separation algorithm. In a point-
wise approach, we run the convex separation algorithm at discrete points in
time. The result (separation or overlap) is propagated along the time axis using
continuous-time bounds on the support function of the flowpipe computed as in
[42]. The main contributions of this chapter are as follows:

• We propose a novel construction of inner approximations of convex sets
based solely on support functions (not support vectors). This construction
is sound even for approximate computations. (Sect. 6.1)

75

76 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

• We propose a novel procedure for separating convex sets using only ap-
proximately computed values of support functions. To the best of our
knowledge, this is the first such procedure using only support functions
(not support vectors) and the first that is sound even for approximate
computations. (Sect. 6.2.1)

• For the point-wise approach, we incorporate both static directions, where
we check for how long the same hyperplane (possibly shifted) still separates
the flowpipe (Sect. 6.3.2), and dynamic directions, where we rotate the sep-
arating hyperplane with the adjunct dynamics of the system (Sect. 6.3.2).
These methods are complimentary since there are systems where either
one or the other technique, but not both, can show separation over an
infinite time horizon.

The problem of showing that a given “unsafe” set (in our case, the guard set)
is not reachable is known as the safety problem. Various approaches exist, and
due to lack of space we cite only a small selection. In [7], predicate abstractions
are used to refute counter-examples of hybrid systems. The separating hyper-
planes that we construct can be viewed as such predicates, although in our
setting they need only be satisfied over intervals of time. In [34], abstractions
based on eigenforms are refined using counter examples until safety is shown.
However the approach is limited to deterministic dynamics, while we can han-
dle additive nondeterminism in the ODEs. Alternating forward and backward
reachability between the initial and the unsafe set can be used to show safety,
but there are inherent problems with numerical accuracy, since a stable system
becomes unstable when going backwards in time [76]. The main difference to all
these approaches is that we are only looking for a technique to detect as quickly
as possible when a set is unreachable within a location; the goal is not to decide
the safety problem.

The remainder of this chapter is organized as follows. In the next section,
we present approximate support functions, which we use to represent convex
sets that can be only computed approximately. In Sect. 6.2, we present our al-
gorithms for approximating and separating convex sets based on approximately
computed support functions. These algorithms are applied to flowpipe sepa-
ration using convexification in Sect. 6.3.1, and using point-wise separation in
Sect. 6.3.2. Experimental results are shown in Sect. 6.4.

6.1 Approximate Support Functions

In practice, we compute the support function of a set with limited accuracy,
e.g., due to floating point computations or to keep the computational costs to
a minimum. An approximate support function is a function support that given
a direction ` and an accuracy ε > 0 produces an upper bound on the support
function. We require the bound to be within ε of the true value:

support(X , `, ε)− ε ≤ ρX (`) ≤ support(X , `, ε). (6.1)

The above form of describing approximate support functions is intended to lead
to simpler notation than the interval-valued support functions used in Chapter 5;
the results essentially equivalent.

6.1. APPROXIMATE SUPPORT FUNCTIONS 77

Outer Approximation: We briefly recall the outer approximation from Sect. 5.1.1.
Consider a set of directions L = {`1, . . . , `N} and values s+

k = support(X , `k, ε)
for i = 1, . . . , N . This gives the outer approximation

dXeL =
⋂

k=1,...,K

{`Tkx ≤ s+
k }, (6.2)

which satisfies X ⊆ dXeL. At least one point x ∈ X is inside the facet slab
associated with `k,

bXck = dXeL ∩ {`
T
kx ≥ s+

k − ε}. (6.3)

With Lemma 5.3, the bounds on the support function of X are

ρ−X (`) ≤ ρX (`) ≤ ρ+
X (`),

where

ρ+
X (`) = ρdXe(`), (6.4)

ρ−X (`) = max
k=1,...,N

−ρbXck(−`). (6.5)

The above bounds on the support function can be used to compute an inner
approximation, i.e., a set of points that are guaranteed to be inside the set. This
will be discussed next.

Inner Approximation: Once the support function of a set X has been evaluated
a number of times, the obtained values can be used to construct facet slabs.
From these facet slabs we can derive an underapproximation of X by using the
following criterion: a point x is in X if

∀x1 ∈ bXc1 , . . . , xN ∈ bXcN : x ∈ CH(x1, . . . , xN). (6.6)

However, this set is costly to compute because it involves quantifier alternation
and bilinear constraints. To obtain an underapproximation of X with (rela-
tively) little cost, we first estimate a point for each facet, then construct their
convex hull, and finally shrink this set sufficiently to be sure that it is an un-
derapproximation.

To estimate a point for a facet of the approximation, we use a center. A
point x ∈ X is a Chebyshev center of X if it is the center of the largest ball
that lies inside X . The set of Chebyshev centers satisfies all constraints when
they are tightened by the same amount, and as long as they are satisfiable.
If the polyhedron is flat, i.e., its constraints contain equalities, these centers
degenerate. We therefore compute them regarding the relative interior of P.
Assuming P has k equalities, let P = {

∧k
i=1a

T
ix = bi ∧

∧m
i=k+1a

T
ix ≤ bi}. The

relative Chebyshev center x∗ and its radius z∗ are

< x∗, z∗ >= argmax
x,z≥0

z s.t.
∧k

i=1
aTix = bi ∧

∧m

i=k+1
aTix + ‖ai‖z ≤ bi. (6.7)

Given any points c1, . . . , cN ∈ dXeL, we define our underapproximation by
shrinking their convex hull as follows.

78 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

Proposition 6.1. Given a set of points c1, . . . , cN ∈ dXeL, let ai be the normal
vectors of their convex hull, i.e.,

CH(c1, . . . , cN) =

{∧M

i=1
aTix ≤ bi

}
.

Let Ji be the indices of the points that lie on the border of the i-th constraint,
i.e., Ji = {j | aTicj = bi}, and let

b−i = min
j∈Ji
−ρbXcj (−ai).

Then the set C− = {c |
∧M
i=1a

T
ic ≤ b

−
i } is a subset of X .

6.2 Separating Convex Sets

A classic way to show that two convex sets do not overlap is to find a hyper-
plane that separates them (the sets lie on opposites sides of the plane). Efficient
algorithms for finding a separating hyperplane are known, e.g., closest points al-
gorithms like the Gilbert-Johnson-Keerthi (GJK) algorithm or the Chung-Wang
algorithm, see [86]. We refer to these as convex separation algorithms. In this
section, we propose convex separation algorithms that differ in two aspects:

• We consider the case where only the value of the support function can be
computed, while classical methods are based on computing points in the
set (support vectors).

• We take into account that the support function is computed with finite
accuracy, i.e., up to an interval that contains the exact value.

The following well-known lemma expresses separation with support functions.

Lemma 6.2 (Separation of convex sets).
Given two compact convex sets R,S, let Q = R⊕ (−S), i.e.,ρQ(d) = ρR(d) +
ρS(−d). R and S are separated if and only if 0 /∈ Q, or, equivalently, there is a
d∗ ∈ Rn with

ρQ(d∗) < 0. (6.8)

If d∗ exists, any hyperplane H = {x | d∗Tx = b} with b in the open interval
(ρR(d∗),−ρS(−d∗)) separates R and S.

In the following, we present separation algorithms adapted to approximately
computing support functions.

6.2.1 Separation using Directed Approximation

We now propose a procedure for deciding the separation problem, based on iter-
atively constructing inner- and outer approximations of Q. It is based on a poly-
hedral approximation algorithm called Mutually Converging Polytopes (MCP)
by Kamenev [68], which approximates a convex set with the asymptotically
optimal number of evaluations of the support function.

Given Q and a given number of iterations kmax, the MCP algorithm con-
structs an outer approximation Qk with at most k facets and an inner approxi-
mation Ck with at most k vertices as follows:

6.2. SEPARATING CONVEX SETS 79

1. Start with n + 1 affinely independent directions di. In each direction di,
compute the support vector ci of Q. Let k := n+ 1.

2. Compute the outer approx. Qk :=
⋂k
i=1{dTix ≤ dTici}.

3. Compute the inner approx. Ck := CH(c1, . . . , ck) in constraint represen-
tation, and let L be its set of constraints.

4. For each constraint aTix ≤ bi in L, compute the directional distance δi
between the inner and the outer approximation, δi := (ρQk(ai)−bi)/||ai||.
Let dk+1 := aimax

with imax = argmaxi δi.

5. Compute the support vector in the new direction dk+1.

6. If k = kmax, stop. Otherwise, let k := k + 1 and go to step 2.

The MCP algorithm has optimal convergence rate, see [68] for details. The
Haussdorff distance between the outer and inner approximation is bounded by
the value of δimax

, and converges to 0; in this sense, the algorithm is complete.
The main steps of the MCP algorithm are inherited by our algorithm, but

it differs in three important ways:

• Instead of support vectors, we use an inner estimation, i.e., points which
might not actually be in Q. This makes the algorithm applicable to using
only support function values and to approximate computations.

• The inner estimation is used for choosing the next direction, while the
inner approximation (points which are known to be in Q), is used only as
a termination criterion in case of overlap.

• We refine only in directions that are still necessary to decide whether Q
contains 0.

We use the following notation: Throughout, we use the index k to indicate the
iteration. Let dk be the direction in which the approximation is refined in the
k-th iteration. Let r+

k be a bound on the support of Q in direction di, and with
accuracy εk, r+

k = support(Q, dk, εk). Let Qk be the outer approximation, i.e.,

Qk = dQeDk =
⋂k

i=1
{dTix ≤ r+

i }.

Let Sk,i be the facet slab of Qk in direction di,

Sk,i = Qk ∩ {dTi x ≥ r+
i − εi},

and let ck,i be a point in Sk,i lying on a facet of Qk, i.e.,

ck,i ∈ Sk,i ∩ {dTi x ≥ ρQk(di)}.

Note that ck,i can be any point in Sk,i, e.g., the relative Chebyshev center. We
choose them on the border of Qk because this allows for an efficient, incremental,
construction of their convex hull. Let Ck = CH(ck,1, ..., ck,k) be the convex hull
of the centers represented in constraint form. Let ei be the n-dimensional vector
with its i-th entry being 1 and all other entries being zero. Let ε ≥ 0 be the
accuracy used when evaluating the support function evaluation, and let εmin ≥ 0

80 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

be a minimum accuracy that serves as termination criterion in case separation
can not be decided.

Our Directed Approximation algorithm takes as inputs Q = R ⊕ (−S), an
initial accuracy ε0, a termination threshold accuracy εmin, and an eagerness
parameter α > 1 that represents the trade-off between sampling more directions
and using a higher accuracy. The algorithm proceeds as follows:

1. Initialization: Choose as initial directions the normal vectors of a regular
simplex: Let di := ei for i = 1, ..., n, and dn+1 := −

∑n
i=1 ei. Let k :=

n+ 1. Compute r+
i = support(Q, di, εi) for i = 1, . . . , k, with εi := ε0.

2. Construct the outer approximation Qk, its facet slabs Sk,1, . . . , Sk,k, and
points on the facets ck,1, ..., ck,k.

3. Compute the convex hull Ck in constraint representation. Decide, which
constraints of Ck are relevant by measuring the directional distance be-
tween the inner approximation and zero. The constraints are contracted
to obtain an inner approximation of Q.

(a) For each constraint aTix ≤ bi of Ck do

i. Ji := {j | aTicj = bi}. (indices of adjacent ci)

ii. b−i := minj∈Ji −ρSk,i(−ai).

(b) Let L = {aTix ≤ b
−
i | b

−
i < 0}. (constraints already satisfied by x = 0

need not be refined)

(c) If L = {}, stop with result “overlap”

4. Decide in which direction to refine, based on the distance δ between the
relevant constraints and the outer approximation.

(a) For each constraint aTix ≤ bi in L, let
δi := (ρQk(ai)− bi)/||ai||.

(b) Let dk+1 := aimax with imax = argmaxi δi.

(c) If δimax
≤ αεk, let εk+1 := εk/10, else εk+1 := εk.

(d) If δimax
≤ εmin, stop with result “unknown”.

5. Compute an upper bound on the support function in the new direction
and with maximum error ε.

(a) r+
k+1 := support(Q, dk+1, ε).

(b) If r+ < 0, stop with result “separation”.

6. Let k := k + 1 and go to step 2.

The eagerness parameter α is motivated as follows: Even assuming that Ck
converges to within distance εk of Q (we have no guarantee), we have that
δimax

→ εk, which may lead to infinitely many iterations without ever satisfying
δimax

≤ εk. Thus we must decrease εk at some point while δimax
> εk still holds,

which is guaranteed by choosing α > 1. Larger values of α lead to a faster
decrease of εk.

6.2. SEPARATING CONVEX SETS 81

Lemma 6.3. There result of the Directed Approximation algorithm is sound if it
returns “separation” or “overlap”. If it returns “unknown”, the distance between
R and S is bounded above by

δ = min
x
‖x‖2 s.t.

k⋂
i=1

{aTix ≤ b−i }.

A demonstration of the directed approximation algorithm can be seen in
Fig. 6.1. On the left hand side, R and S are shown. On the right hand side, the
according Qk and all Ck are shown. Fig. 6.2 shows the set of Ck. We observe
that most of the points are concentrated around the origin.

6.2.2 Adapted GJK Algorithm

Given compact convex sets R,S, a closest point algorithm computes the (not
necessarily unique) pair of points r∗ ∈ R and s∗ ∈ S that are closest to each
other. Finding such r∗, s∗ can be reduced to finding the (unique) q∗ ∈ Q in
closest to 0. If q∗ = 0, then R and S overlap. Otherwise, d = q∗ is the normal
vector of a separating hyperplane as in Lemma 6.2.

The Gilbert-Johnson-Keerthi (GJK) algorithm finds such a q∗ iteratively by
computing maximizers. It takes advantage of the following property: Any q ∈ Q
is closest to 0 if and only if q is the minimizer of Q in direction d = q, and this
point is unique. Note that a minimizer of Q in direction d is a maximizer
(support vector) of Q in direction −d. A rudimentary form of the algorithm
goes as follows:

1. Start from an arbitrary direction d0. Let k = 0.

2. Compute a point qk that maximizes dTkq for q ∈ Q.

3. Let q∗k be the point in CH{q0, . . . , qk} closest to 0, and let dk+1 = −q∗k.

4. If dTkdk+1 = ‖dk‖‖dk+1‖, then stop. The point in Q closest to 0 is q∗k.

5. Let k ← k + 1 and go to step 2.

The GJK algorithm is guaranteed to converge towards the closest point, and
terminate if Q is a polytope. Note that if 0 ∈ CH{q0, . . . , qk}, then R and S
overlap, and the algorithm terminates with q∗k = 0. The termination criterion
in step 4 is usually relaxed to

|dTkdk+1 − ‖dk‖‖dk+1‖| ≤ ε

for some given tolerance level ε ≥ 0. If one is only interested in showing sep-
aration, the criterion (6.8) can be used to terminate early. Several efficiency
improvements are known, but are omitted here for lack of space.

The GJK algorithm is not directly applicable in our setting, because we can
only compute approximate support functions, not the corresponding support
vectors. We now present a variation of the GJK algorithm that is solely based
on approximate support functions.

Because we can not compute maximizers of Q, we use centers of facet slabs
instead. Since these points may not actually be inQ, we must find new directions

82 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

−2 −1 0 1 2

−2

−1

0

1

2

−5 −4 −3 −2 −1 0 1

−4

−2

0

Figure 6.1: Demonstration of the directed approximation algorithm (top to
bottom). The left column shows the setR (black outline), its overapproximation
(dark green), and the guard set S (red box). The right column shows Q =
R ⊕ (−S) (black outline) the outer approximation Qk (dark green) and the
vertices of the inner approximation Ck (red circles). The last iteration shows
separation since the origin (black x) lies outside of Qk

6.2. SEPARATING CONVEX SETS 83

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−3 −2 −1 0 1

−3

−2

−1

0

1

Figure 6.2: Example that shows the directed fashion of the algorithm: facets in
the lower left hand corner of R are no longer refined, since it was shown that
refining them will not improve the separation result.

84 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

even if 0 ∈ CH{q0, . . . , qk}. In this case, we choose the closest point on the border
of CH{q0, . . . , qk}, which tends to “push” facets outwards in a way similar to
the Directed Approximation algorithm. Since we need bounded facet slabs, we
start with a bounded initial approximation. Given the set Q and a termination
threshold accuracy µmin ≥ 0, our modified GJK algorithm proceeds as follows:

1. Construct an initial, bounded outer approximation to get facet slabs.

(a) Let Dinit = {d0, . . . , dm−1} be a set of directions that span Rn, e.g.,
the normals of a regular simplex or a bounding box.

(b) Start from an arbitrary direction dm. Let k = m.

2. Estimate a point qk that maximizes dTkq for q ∈ Q.

• Compute r+
k = support(Q, dk, ε). If r+

k < 0, stop with result “separa-
tion”.

• Choose qk ∈ bQck, e.g., the relative Chebyshev center.

3. Let q∗k be the point on the border of CH{qm, . . . , qk} closest to 0. If
0 /∈ CH{qm, . . . , qk}, let dk+1 = −q∗k (like GJK). Otherwise, let dk+1 = q∗k.

4. If dk+1 ∈ D, abort since an infinite cycle may take place. Otherwise, add
dk+1 to D.
If |dTkdk+1 − ‖dk‖‖dk+1‖| ≤ µmin, stop with result “unknown”.

5. Let k ← k + 1 and go to step 3.

This modified GJK algorithm may not terminate, or even converge to the point
closest to 0. It is presented here because it can detect separation often much
faster than Directed Approximation. This will be examined closer in the exper-
imental section.

6.3 Timed Flowpipe Separation

Our goal is to decide whether and when the solutions of the differential equation

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (6.9)

i.e., the flowpipe Xt, intersect with a given convex set S. We call this the flowpipe
separation problem. The timed flowpipe separation problem is to identify the
time points where the flowpipe is separated from a given (guard) set S. We
limit our discussion to a bounded guard set S and a finite time horizon T . If
S is unbounded, one can render it bounded by computing a coarse flowpipe
approximation that is bounded due to finite T , and intersecting S with this
coarse approximation.

Definition 6.4 (Timed flowpipe separation). Given compact convex sets X0,S ⊂
Rn and a time interval [t1, t2], a separating time domain T is a subset of [t1, t2]
such that for all t ∈ T , Xt ∩ S = ∅.

6.3. TIMED FLOWPIPE SEPARATION 85

Knowing the time intervals in which the system enters and leaves the guard
can be used to improve the flowpipe approximation. Similarly, timed flowpipe
separation can identify at what time t′ all trajectories have left the invariant I.
Then t′ can be taken as time horizon for a more precise flowpipe approximation.
The smaller the time domain T , the more precise (and cheaper) the flowpipe
approximations can be.

In this section, we present algorithms to decide flowpipe separation with as
little computational effort as possible.

6.3.1 Flowpipe Separation using Convexification

Flowpipe separation using convexification is a straightforward application of the
convex separation algorithms to a flowpipe approximation consisting of a finite
number of convex sets. For each set in the approximation, a convex separation
algorithm is executed. If it shows separation on all sets in the sequence, the
flowpipe is separated. However, it must be decided when a convex set is accurate
enough, or whether it requires being split in several parts.

We now present a separation procedure for a given initial set X0, a guard
set S and a time interval [t1, t2]. It uses the convexified flowpipe approximation
from Sect. 5.1.3 and a convex separation algorithm from Sect. 6.2.1, and returns
a set of convex sets that could not be separated from S.

1. Start with an initial accuracy ε0 and an initial set of directions D =
{d1, . . . , dm} that spans Rn, which guarantees that the approximation is
bounded.

2. Apply the flowpipe approximation from Sect. 5.1.3 to compute the flow-
pipe approximation consisting of convex sets Ω0,Ω1, . . ., using directions
D and accuracy ε0.

3. For each Ωj , run a convex separation algorithm to separate it from S,
where each call to support(Ωi, d, ε) is implemented as follows:

(a) Compute upper and lower bounds on the support function of Xt:
(s+
d,ε(t), s

−
d,ε(t)) = sReach(X0, A,U , [tj , tj+1], d, ε).

(b) Let ŝ(t) be the concave hull of s+
d,ε(t) over the time interval [tj , tj+1].

This corresponds to convexifying the set over this time interval.

(c) Let s+ = maxt∈[tj ,tj+1] ŝ(t),

let εresult = maxt∈[tj ,tj+1] ŝ(t)− s−d,ε(t).

(d) If εresult ≤ ε, use s+ as support value for the support function of Ωj .

(e) Otherwise, a single set does not suffice to represent the flowpipe with
sufficient accuracy. Divide [tj , tj+1] into subintervals such that on
each interval, the concave hull of s+

d,ε(t) satisfies the conditions of
step 3c and 3d. Replace Ωj by restrictions of Ωj to those subintervals.
For each, apply the convex separation algorithm again.

4. Return the Ωj , for which separation could not be shown.

86 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

6.3.2 Flowpipe Separation Point-Wise over Time

A convex separation algorithm can solve the flowpipe separation problem for
any given point in time t∗, since we know that Xt∗ is convex. However, we
need to extend separation to intervals of time. With Lemma 6.2, the following
criterion is straightforward.

Lemma 6.5. The flowpipe Xt1,t2 is separated from a convex set S if and only
if for all t ∈ [t1, t2] there exists a direction dt ∈ Rn such that

ρXt(dt) + ρS(−dt) < 0. (6.10)

The question is therefore how to find a suitable direction dt for each point
in time. We present two ways for applying separation over an interval of time:
first, keeping the direction d fixed over time, and second, letting dt evolve over
time according to the dynamics of the system.

Separating with Fixed Direction

We use the bounds on the support function of Xt as described in Sect. 5.1.3.
Given a time interval [tb, te] and a fixed direction d, let

sepS,X0,A,U,d(t) = ρXt(d) + ρS(−d). (6.11)

Applying (6.10), the flowpipe is separated from S for any t ∈ [tb, te] for which

sepS,X0,A,U,d(t) < 0. (6.12)

Using the approach from Chapter 5 we can compute a bound +
d,ε(t) on the

support function of Xt for a given precision ε > 0, i.e.,

s+
d,ε(t)− ε ≤ ρXt(d) ≤ s+

d,ε(t).

Let r+
d be an upper bound r+

d ≥ ρS(−d). Since

sepS,X0,A,U,d(t) < s+
d,ε(t) + r+

d ,

the function s+
d,ε(t) is a witness that Xt is separated from S at any time point

t ∈ [tb, te] at which
s+
d,ε(t) + r+

d < 0.

The following example shall illustrate that there are cases where only a
single, fixed, direction (or an arbitrarily small neighborhood around it) can
show separation.

Example 6.6. Consider the example shown in Fig. 6.3(a). The initial set X0

consists of a single point, and the flowpipe consists of the point moving around
the origin in a circle. The direction d = (1, 0) shows separation even over an
unbounded time horizon, as indicated by the green arrows. By making S large
enough in the vertical direction, we can reduce the set of separating directions
to an arbitrarily small neighborhood of d. A guard may not be separable by a
single fixed direction over the entire time horizon, as shown in Fig. 6.3(b).

We can characterize precisely when separation with a fixed direction is useful:

Lemma 6.7. A fixed direction d ∈ Rn separates a flowpipe Xtb,te from a convex
set S if and only if CH(Xtb,te) and S are separated by d.

6.3. TIMED FLOWPIPE SEPARATION 87

(a) Keeping the direction that separates the initial set shows sepa-
ration over the entire time horizon

(b) Dynamically adapting the direction that separates the initial set
shows separation over the entire time horizon

Figure 6.3: In both examples, separation can be shown for the entire flowpipe
after finding a separating direction for the initial set

88 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

Separating with Dynamic Direction

Instead of keeping the direction fixed over time, we can let it evolve according

to the dynamics of the system. Given a direction d0, let dt = e−A
Ttd0. The

dynamic direction dt evolves with the system in the following sense. If d0 is a
normal vector of X0 at a point x∗(0) (meaning it is tangent to X0 and touches
at x∗0), then dt is a normal vector of Xt at a point x∗(t). E.g., if X0 is a polytope
and d0 is a facet normal of X0, then dt is a facet normal of Xt. The following
example shall illustrate where a single dynamic direction can show separation
over the entire time horizon.

Example 6.8. Consider the example shown in Fig. 6.3(a). Starting from a
direction that separates the initial set, the dynamic direction (red arrows) shows
separation for only a small amount of time, which is even smaller if the guard
set is larger in the vertical direction. For the guard set shown in Fig. 6.3(b), the
dynamic direction separates over the entire time horizon, while no fixed direction
can do so.

We can reduce the separation along a dynamic direction to the separation
of a fixed direction, which allows us to apply the techniques from the previous
section.

Lemma 6.9. Xt is separated from S in direction dt = dT0 e
−At if and only if

sep−S,−X0,−A,U,d0
(t) < 0 or, equivalently, sepS,X0,−A,−U,−d0

(t) < 0.

For clarity, we use the following notation. Let Reacht(S, A,U) be the (for-
ward) reachable set from S under the dynamics (6.9). The backwards reachable
set can be computed as a forward reachable set by transforming the dynamics,
since

Reach−t(S, A,U) = Reacht(S,−A,−U)

is the set reachable from S going backwards in time. Applying this interpretation
to Lemma 6.9, separating X0 from S by forward reachability with a dynamic
direction is equivalent to separating S from X0 by backward reachability with
a fixed direction.

As a corollary of Lemma 6.7, we can characterize when a dynamic direction
is useful:

Corollary 6.10. A flowpipe Xtb,te can be separated from S with a dynamic
direction dt = dT0 e

−At if and only if the convex hull of the backwards reachable
set from S is separated from X0 in direction −d0.

Pointwise Separation Algorithm

We now describe an algorithm that uses a convex separation algorithm pointwise
in time to separate the flowpipe from a guard set S over a time interval [t1, t2].

The algorithm takes as input the system description, the initial set X0, the
guard set S, a time interval [t1, t2]. It returns a set of time intervals for which
separation could not be shown.

1. Picking some t∗ ∈ [t1, t2], e.g., the midpoint, we use a convex separation
algorithm on Xt∗ to detect or refute separation at time t∗. If separation
cannot be shown, stop. Otherwise, we obtain a separating direction d and
a bound ε on the required accuracy.

6.4. EXPERIMENTAL RESULTS 89

2. Compute s+
d,ε(t) = sReach(X0, A,U , [t1, t2], d, ε) and

p+
d,ε(t) = sReach(−S,−A,U , [t1, t2], d, ε).

3. Remove from [t1, t2] the t where s+
d,ε(t)+ρS(−d) < 0 or p+

d,ε(t)+ρ−X0(−d) <
0 (separation holds).

4. For each of the remaining sub-intervals, apply the pointwise separation
algorithm recursively and return the obtained intervals.

The algorithm has the weakness that it may stop prematurely if the separation
time t∗ is poorly chosen. We propose two improvements: First, the algorithm
may be repeated on the subintervals [t1, t

∗] and [t∗, t2], until their size falls below
a given threshold. Second, the algorithm may be applied a second (and third)
time, choosing t∗ to be the start (and end) times of the intervals instead.

Indeed, separating on start and end times may reduce the size of the flowpipe
segments, for which discrete successor states are computed, and thus improve
the approximation accuracy of the reachability algorithm even in cases where
separation could not be shown.

6.4 Experimental Results

In this section, we evaluate the presented algorithms on two classes of bench-
marks. We have implemented the algorithms in the SpaceEx hybrid model
checker. We conducted the experiments on a machine with an Intel i7 3.4 GHz
processor and 16 GB of RAM. We illustrate the results for the convex separa-
tion algorithms from Section 6.2 on the sphere benchmark. Here, we consider
an overapproximation of an n-dimensional sphere by a polytope with m con-
straints. The guard set is a single point. Recall that with Lemma 6.2, any
convex separation problem can be reduced to separating one convex set from
a single point (the origin). Our benchmark is thus equivalent to separating
two ball-approximations (each with half the radius), which we consider to be a
challenging instance.

We consider a number of benchmark instances by varying the dimension of
the sphere n, the number of constraints m as well as the distance to the guard.
By varying those parameters we can flexibly adjust the benchmark instance
complexity. The guard is defined based on the distance and the normal of the
guard hyper-plane. For every tuple (n,m,distance) we pick 10 random vectors
to be used as guard normals. We analyze every instance using the adapted GJK
algorithm and the directed approximation algorithm. Note that we accumulate
the results over those 10 random vectors for every tuple (n,m,distance). In par-
ticular, we report the relation of the number of the benchmark instances where
a convex separation algorithm has found the right answer before the time-out
(success rate), the minimum, maximum and average numbers of direction re-
finements and run-time, respectively (see Table 6.1). We terminate the analysis
when either the timeout of 500 s or the maximum number of 500 refinement
iterations has been reached.

We observe that the time needed to show the separation generally increases
with the sphere dimensionality and the number of constraints. Furthermore,
the number of direction refinements to show separation increases as well. We
note that the run-time complexity also depends on the chosen guard. This can

90 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

be seen in the column “3 %” where the success rate is reported. For example,
for the instance 4, we succeed in 55% of the cases. Moreover, the distance to the
guard plays an important role: The smaller the distance, the more complex it
becomes to find a separating plane. The success rate goes from 5% for instance
24 with the distance equal to 0.1 up to 100% for distance 1.

The GJK algorithm proves separation in most cases in a short time. The
DA algorithm performed very well for the smaller dimensions and number of
constraints, still scales worse than the GJK algorithm. We note that the DA
algorithm provides more guarantees compared to the GJK algorithm. Further-
more, the DA algorithm can provide sound results for the cases with overlap.

We examine the flowpipe separation algorithms from Section 6.3 based on
the circle benchmark. In this setting, we iteratively call the convex separation
algorithm for every time interval where the system is expected to enter and leave
the guard. In the circle benchmark, we model an object which moves on a circle
orbit in 2D space, i.e, its dynamics are provided by the following differential
equations: ẋ = −y ∧ ẏ = x. The system behavior is illustrated in Figure 6.3.
We take a segment between two points on the orbit as an initial region. We
consider two positions of a rectangular guard: the guard is inside the circular
orbit (GI; see Figure 6.3(b)) and the guard is outside (GO; see Figure 6.3(a)).
The results for the circle benchmark are presented in Table 6.2.

We observe that with the GO-instances (guard outside), we need to consider
much less time intervals. Furthermore, the number of directions to prove the sep-
aration drastically differs. For example, the directed approximation algorithm
with flowpipe separation using convexification needs 5 direction refinements if
the guard is outside. However, the number of refinements increases to 108 if the
guard is located inside. Note that the algorithm also cannot prove the separation
in this case.

For the GO-instances (guard inside), there exists at least one separating
plane for all the time intervals. However, if the guard is located inside, we
observe that no plane exists which separates the guard from the flow-pipe for
all time intervals. Therefore, the algorithm needs to search for an individual
separating plane for every time interval for the GI-instances. Therefore, we
expect the flowpipe separation using convexification to be particularly useful
for GO-instances. This hypothesis is confirmed by our experiments where all
the convex separating algorithms require only one interval refinement. However,
due to the same reasons, the flowpipe separation performs badly on the GI-
instances. Moreover, the convex separating algorithms cannot even find the
separating plane because the convexification leads to rather over-approximative
results.

6.4. EXPERIMENTAL RESULTS 91

Table 6.1: Experimental results for the sphere benchmark

Direction Ref. Runtime

ID Alg. n m Dist. 3 % min. max. avg. min. max. avg.

1 GJK 2 16 0.01 100% 2 52 13.550 0s 0.077s 0.015s

2 GJK 3 36 0.01 95% 7 54 30.789 0.008s 0.125s 0.061s

3 GJK 4 64 0.01 85% 20 110 67.588 0.056s 0.895s 0.446s

4 GJK 5 100 0.01 55% 105 162 133.909 1.402s 6.689s 3.027s

5 GJK 2 16 0.1 95% 1 19 7.157 0s 0.021s 0.005s

6 GJK 3 36 0.1 100% 2 34 12.000 0s 0.067s 0.017s

7 GJK 4 64 0.1 95% 2 56 18.263 0.001s 0.241s 0.057s

8 GJK 5 100 0.1 65% 9 40 18.833 0.027s 0.288s 0.104s

9 GJK 2 16 0.5 100% 1 3 1.900 0s 0.002s 0s

10 GJK 3 36 0.5 100% 1 11 3.800 0s 0.015s 0.003s

11 GJK 4 64 0.5 100% 1 21 6.300 0s 0.057s 0.013s

12 GJK 5 100 0.5 95% 2 27 7.000 0.001s 1.300s 0.089s

13 GJK 2 16 1 100% 1 2 1.650 0s 0.001s 0s

14 GJK 3 36 1 100% 1 3 2.150 0s 0.002s 0s

15 GJK 4 64 1 100% 1 8 2.850 0s 0.015s 0.002s

16 GJK 5 100 1 100% 2 8 3.150 0.001s 0.026s 0.004s

17 DA 2 16 0.01 100% 2 10 6.500 0.003s 0.047s 0.023s

18 DA 3 36 0.01 95% 30 116 46.368 0.707s 33.642s 3.553s

19 DA 4 64 0.01 40% 150 210 180.875 142.302s 470.624s 309.943s

20 DA 5 100 0.01 0% 500 500 — — 0s —

21 DA 2 16 0.1 100% 2 7 3.750 0s 0.027s 0.008s

22 DA 3 36 0.1 100% 7 40 18.800 0.030s 1.421s 0.306s

23 DA 4 64 0.1 95% 13 161 88.210 0.207s 188.231s 51.952s

24 DA 5 100 0.1 5% 116 116 116.000 188.580s 188.580s 188.580s

25 DA 2 16 0.5 100% 2 4 2.450 0s 0.010s 0.002s

26 DA 3 36 0.5 100% 2 13 5.500 0s 0.103s 0.028s

27 DA 4 64 0.5 100% 2 83 22.900 0.001s 23.274s 2.704s

28 DA 5 100 0.5 85% 2 113 28.000 0.001s 179.145s 20.968s

29 DA 2 16 1 100% 2 2 2.000 0s 0.002s 0s

30 DA 3 36 1 100% 2 10 3.150 0s 0.079s 0.009s

31 DA 4 64 1 100% 2 31 7.300 0s 1.396s 0.182s

32 DA 5 100 1 100% 2 40 9.050 0s 7.546s 0.671s

ID: benchmark instance ID, Alg.: convex separation algorithm, n: dimension of the sphere, m:
number of facets in the over-approximation of the sphere, Dist.: distance between the guard and
the polytope which over-approximates the sphere, 3 %: the relation of the number of the benchmark
instances where a convex separation algorithm has found the right answer (until OOT = 500 s.) to
the total number of benchmarks in this class, # Direction Ref.: number of directions the separation
algorithm has tried out (minimum, maximum and average values), Runtime: runtime in seconds
(minimum, maximum and average values), DA denote the directed approximation algorithm, GJK
stands for the adapted GJK algorithm.

92 CHAPTER 6. PROPERTY-BASED TEMPLATE REFINEMENT

Table 6.2: Experimental results for the circle benchmark.

flowpipe sep. convex sep. # Calls # d Runtime Result

guard outside the circular orbit

CH GJK 1 7 0.038s SEP
CH DA 1 5 0.046s SEP
PW GJK 1 6 0.042s SEP
PW DA 1 6 0.060s SEP

guard inside the circular orbit

CH GJK 9 1767 37.903s INT
CH DA 14 108 0.749s INT
PW GJK 19 258 0.960s SEP
PW DA 18 128 0.791s SEP

CH: flowpipe separation using convexification. PW: pointwise flowpipe separation. GJK:
adapted GJK algorithm. DA: directed approximation algorithm. SEP: separation shown.
INT: intersection shown.

Chapter 7

The SpaceEx Verification
Platform

The verification of hybrid systems requires ingredients taken from the classi-
cal verification of transition systems, augmented with new special techniques
for doing verification-like operations (successor computation) on the continuous
dynamics. Early tools [55, 6] focused on relatively simple continuous dynamics
in each discrete state, where the derivative of the continuous variables does not
depend on their values. For such “linear” hybrid automata, the computation of
successors in the continuous domain can be realized by linear algebra. Never-
theless, it turned out that switching between such simple continuous modes one
can easily construct undecidability gadgets and hence the exact verification of
hybrid systems turned out to be a dead end.

The second wave of hybrid verification tools [26, 10, 60] indeed abandoned ex-
act computations and focused more on computing approximations of the reach-
able states for systems admitting less trivial continuous dynamics. Such tech-
niques and tools could handle hybrid systems with continuous dynamics defined
by linear differential equations with inputs. However, the size of systems that
could be handled was modest, typically very few continuous state variables.
Another thread in hybrid verification focuses on systems with a very large dis-
crete state-space with very few continuous variables. Typically such models are
aimed to verify the code of computerized control systems, with a very modest
modeling of the external environment. The major preoccupation in these efforts
is in combining the continuous part with techniques, such as BDD or SAT, for
handling large discrete state-spaces [29, 80].

Algorithmic improvements and the use of support functions [66, 65, 67] have
dramatically increased the scope of linear systems that can be verified to several
hundreds of state variables. Moreover, significant advances have been made
on applying these linear techniques to nonlinear systems via “hybridization”
(approximating a nonlinear system by a piecewise-affine one) [8], which have
led to the verification of non-trivial nonlinear systems [31].

In order to transfer these research achievements into a robust and user-
friendly toolset, we developed SpaceEx, an extensible verification platform for
hybrid systems. It features implementations of many of the above-mentioned
developments, a graphical model editor and a graphical user interface. This

93

94 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

transfer is not only about software engineering, modularity and user interfaces:
it consists in improving and fine-tuning the algorithms to make them applicable
to real-world problems. SpaceEx consists of three components:

• The analysis core is a command line program that takes a model file, a
configuration file that specifies the initial states, the scenario and other
options, and then analyzes the system and produces a series of output
files.

• The web interface, shown in Fig. 7.1(a), is a graphical user interface with
which one can comfortably specify initial states and other analysis param-
eters, run the analysis core, and visualize the output graphically. The web
interface is browser-based, and accesses the analysis core via a web server,
which may be running remotely or locally on a virtual machine.

• The model editor, shown in Fig. 7.1(b), is a graphical editor for creating
models of complex hybrid systems out of nested components.

The SpaceEx platform is publicly available at spaceex.imag.fr. In this chap-
ter, we describe the architecture of the SpaceEx platform, its input language,
and its model editor. Further information about modeling and verifying systems
in SpaceEx is given in [36].

95

(a) Web interface

(b) Model editor

Figure 7.1: Graphical user interfaces of the SpaceEx platform

96 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

7.1 SpaceEx Architecture

The SpaceEx architecture was designed by comparing a variety of existing ver-
ification tools and algorithms, which fit the set-based reachability algorithm
described in Sect. 2.2. We first report on the comparison and then present the
chosen architecture and its typical execution.

7.1.1 Comparison of Tool Architectures

In this section, we give an overview of the architectural tool comparison in [45].
Note that while the analysis was carried out in 2008, architectures do not seem
to have changed since. A majority of recent tools like CORA [1], Flow* [24],
and HyCreate [14] fall into the same category and fit the SpaceEx architecture.
The following approaches were considered in our analysis:

• Constant continuous and affine discrete dynamics

A HyTech [55]

B PHAVer [35]

• Affine continuous and discrete dynamics

C d/dt [9]

D Using zonotopes [49]

E Using support functions [50]

F Algorithmic improvements to compute postc for D,E [51]

• Nonlinear dynamics and abstraction refinement

G Approximating nonlinear dynamics by hybridization [8]

H Forward/backward refinement [43]

I CEGAR-type approaches [41]

The reachability techniques in A,B are for piecewise constant derivatives, exact
as well as overapproximative over an infinite time horizon. In C, affine contin-
uous and discrete dynamics are overapproximated by discretizing time over a
finite time horizon. In D and E, this technique is improved by exploiting the
advantages of a particular representation of continuous sets, plus some low-level
algorithmic improvements. In G, the techniques for affine dynamics are ex-
tended to nonlinear dynamics by overapproximation based on partitioning the
state space. In H, a very simple abstraction/refinement technique is used for
deciding safety, and more sophisticated ones based on counter example guided
abstraction refinement (CEGAR) can be found in I. Approaches A–E consti-
tute low-level algorithms that deal with computing post-images for particular
dynamics, while G–I are high-level techniques that use low-level reachability
algorithms as an intermediate step.

An analysis of common elements and differences shall provide us with the
basis for our design. The system under examination is described as a network
of interacting automata. The specification consists of the set of initial and (for
safety) forbidden states. In addition, the user has to provide analysis parameters

7.1. SPACEEX ARCHITECTURE 97

such as discretization time steps or partition sizes. For the analysis, a parallel
composition operator transforms the automaton network into a single automa-
ton, possibly on the fly. The set of reachable states is computed using some
variant of the symbolic state algorithm in Sect. 2.2. The resulting set of states
undergoes some basic processing (intersection with forbidden states, projection
onto variables of interest), and is output to a file or visualized.

The approaches we consider differ along the following lines:

Set Representations Polyhedra (A,B), zonotopes (D), and support functions (E)
have each various advantages and disadvantages on fundamental set operations.
For example, for polyhedra in constraint form computing intersection is cheap
and Minkowski sum is expensive, while for zonotopes Minkowski sum is cheap
and the intersection of two zonotopes is not generally a zonotope.

Discrete post-computations Various exact as well as overapproximative tech-
niques for computing the image of discrete transitions are used and depend on
the set representation. Most techniques apply to discrete dynamics in the form
of affine maps (resets). Most approaches use some type of clustering, such as
taking the convex hull of all sets that intersect with the guard set.

Continuous post-computations The states reachable by time elapse are generally
overapproximated. Different techniques are applicable according to the type of
continuous dynamics as well as the set representation. For A,B the image is over
infinite time, while C,D,E,F discretize time and compute it over a bounded in-
terval. Even for just linear dynamics, variations abound. For example, F avoids
the wrapping effect by essentially reordering the computation and its approach
is applicable to D,E.

State exploration Most approaches are defined for forward reachability, but can
equally be applied as backward reachability by reversing the system dynamics.
One direction may work better than another depending on the characteristics
of the system [76], and H combines both. I requires keeping track of the de-
pendency graph between symbolic states, i.e., which are the successor states of
which. The explored states need to be stored in some form of passed/waiting
list, and at each iteration the explored states need to be separated into those
that are new and those that already been explored, which involves some form
of difference operation (exact, overapproximative, see A).

Model transformations Hybridization (G) and abstraction/refinement techniques
(B,H,I) involve duplicating (splitting) locations, adding and removing transi-
tions, and modifying dynamics and invariants. Such changes in the model must
be compatible with the state exploration if they are to be carried out on the
fly, or if state representations are to be compatible with different variants of the
same model.

High level algorithms In abstraction/refinement schemes like H or I, computing
the reachable states is just one step in a larger process. They require certain
low-level information like the dependency graph and counter examples to be
accessible, and they entail model transformations.

Automaton composition Composition operators differ in the type of commu-
nication (synchronization) and how variables are shared (A versus B). The

98 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

Figure 7.2: Schematic of the tool architecture (solid arrows represent acquain-
tance between objects, dashed arrows represent instantiation). Grey arrows
indicate in which order the different components are executed

composition should take place on the fly and on demand in order to avoid the
construction of the full product automaton, which is typically too large to be
represented explicitly.

We designed an architecture capable to host the above approaches, exploiting
the common elements and leaving room for the differences. This architecture is
presented in the next section.

7.1.2 Architecture and Execution

Based on the survey in the previous section, we define the following key elements
and operations for a reachability tool:

• automaton representation: add locations, transitions

• automaton network representation (controls composition; itself an au-
tomaton): add automata

• discrete and continuous set representations: inclusion and emptiness tests,
transforms (intersection, affine maps, etc.)

• adapt: convert sets and dynamics to the right form (if possible)

• Passed-and-waiting-list (PWL): add, pop symbolic states

• continuous-post: transform a symbolic state into a set of symbolic states

• discrete-post: transform a symbolic state into a finite set of symbolic states

The implementation choices depend on each other. E.g., a specific continuous-
post operator might only apply to affine dynamics and require polyhedra as set

7.2. SCENARIO IMPLEMENTATIONS 99

representations. At the same time, we would like to keep the concrete classes
encapsulated as much as possible; whoever writes the polyhedron class shouldn’t
need to know anything about hybrid automata. In the SpaceEx architecture,
each of the above elements is represented by an abstract base class, from which
implementations must be derived. We call a set of implementations for these
elements a scenario, and use a scenario object as a factory for them, similar
to the strategy design pattern in [47]. A developer can provide his or her own
implementation for each element, and define the global set-up via a scenario
object. A run of the tool consists of the following steps, as shown in Fig. 7.2:

1. The user provides the input : models (XML), user commands, scenario
selection, output selection.

2. The input file is parsed to generate a general representation of the au-
tomata (transitions/locations) and sets (initial states, bad states).

3. The general automata are adapted to the right set representation and
dynamics according to the scenario (adapt).

4. The automaton network is instantiated according to the scenario.

5. The user selected algorithm (reachability, safety) is executed, using the
elements provided by the scenario (PWL, post).

6. The output is created : visualization, file export (model, states).

User options are used to select the scenario, additional options can be passed
directly to the scenario.

7.2 Scenario Implementations

A scenario provides implementations for the all key elements listed in Sect. 7.1.2.
The currently available scenarios are as follows:

• PHAVer: This scenario implements the basic reachability algorithms of the
tool PHAVer [35]. The dynamics are piecewise constant, sets are polyhedra
implemented using infinite precision arithmetic by the Parma Polyhedra
Library [12], and successor operations are implemented by geometric op-
erations on polyhedra in dual description. The resulting reachable set is
the exact solution.

• LGG: This scenario implements the support function approach from Chap-
ter 3. The dynamics are piecewise affine. Sets are polyhedra in constraint
representation, implemented using SpaceEx data structures in floating
point representation. An additional data structure represents sets of tem-
plate polyhedra in a compact form. Set representations are approximate,
with user-specified tolerances on the absolute and relative floating point
errors. The resulting reachable set is an overapproximation modulo float-
ing point errors.

• STC: This scenario implements the space-time approach from Chapter 5.
The dynamics are piecewise affine. Sets are polyhedra in constraint rep-
resentation, taken from the LGG scenario, custom data structures for

100 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

efficiently representing flowpipe samples via piecewise linear scalar func-
tions, and generic data structures for representing support functions. The
resulting reachable set is an overapproximation modulo floating point er-
rors.

• Simulator: This scenario implements a rudimentary numerical simulation
algorithm, cast into the reachability framework. The dynamics are non-
linear. Sets are sets of points in the state space. The time successor op-
erations are handled by an ODE solver, here CVODE [58]. Containment
checks and clustering are handled by treating each state as representative
for a neighborhood of given diameter.

These scenarios share implementations for discrete sets, automata, automata
networks and the PWL. Each provides its own version of continuous sets, dy-
namics, adaptors, and post-operators.

7.3 Modeling in SpaceEx

We provide a brief overview of how hybrid systems are modeled in SpaceEx and
its Model Editor. For details, see [36, 28]. SpaceEx models are stored in the
sx format, an XML based format for which there is a graphical model editor.
sx models are similar to the hybrid automata known in literature, except that
they provide a richer mechanism of hierarchy, templates and instantiations. An
sx model consists of one or more components. When SpaceEx reads an sx file,
it translates the components into either a hybrid automaton or into a network
of hybrid automata in parallel composition. So, for the purposes of analysis,
a component defines a hybrid automaton, with everything else (hierarchy etc.)
being syntactic sugar whose only purpose is making the construction of complex
models easier.

7.3.1 Base and Network Components

A model is made up of one or several components. There are two types of com-
ponents: A base component corresponds to a single hybrid automaton as defined
in Sect. 2.1.2. A network component consists of one or more instantiations of
other components (base or network) and corresponds to a set of hybrid automata
in parallel composition. Every component has a set of formal parameters. A
formal parameter may be a continuous variable or a synchronization label. A
formal parameter is part of the interface of a component, unless it is declared
as local to the component.

Example 7.1. The interface of a bouncing ball model is shown in Fig. 7.3.
The continuous state variables are x and v. The constants g, c, and eps are
declared as variables with constant dynamics. They will be assigned values when
the template is instantiated inside a network component. The last parameter is
the synchronization label hop.

Instantiating Components When a component A is instantiated inside a
network component B, a copy of A is created and added to the contents of

7.3. MODELING IN SPACEEX 101

Figure 7.3: A bouncing ball model with its formal parameters: state variables
x and v, constants g, c, and eps, and label hop

network B. The copy must have a name that is unique within B, say A1. It is
a copy by reference, so that any later modifications to A will also apply to A1.
Component A can be instantiated several times inside B, say as A1, A2, A3,
etc. When instantiating a component A in network B, we must specify what
happens to each of the formal parameters in its interface. This is called a bind.
Every formal parameter of A must be bound to either a formal parameter of B
or to a numeric value.

Example 7.2. Figure 7.4 shows the network component system, which is made
up of an instantiation of the base component ball template. The instantiation is
called ball. The formal parameters x, v, and hop are bound to formal parameters
x, v, and hop of system. The constants g, c, and eps are bound to numeric
values.

Connecting Components Components inside a network can be connected
by binding their variables or labels to the same symbols in B. Binding two or
more variables to the same variable in a network component means that they
become literally the same variable. Their dynamics can be defined in one or
several of the components as long as this creates no contradictions.

Example 7.3. Figure 7.5(a) shows a hybrid automaton model of a PI-controller.
It has e as input, e int as internal variable and u as output. The controller pa-
rameters are K P and K I., c is a value determining the cut-off frequency. The
network component Closed Loop shown in Fig. 7.5(b) instantiates this controller
in a closed-loop system. The PI-controller is connected to other components via
shared variables e and u.

102 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

Figure 7.4: The bouncing ball template instantiated in the network compo-
nent system. The constants are bound to the desired values, the other formal
parameters are passed on to the interface of system.

7.3. MODELING IN SPACEEX 103

(a) hybrid automaton model of a PI controller

(b) closed-loop system

Figure 7.5: An SpaceEx model of a standard feed-back control system

104 CHAPTER 7. THE SPACEEX VERIFICATION PLATFORM

7.3.2 Causality and Shared Variables

SpaceEx models have nondeterministic, acausal semantics: Any component can
declare any variable as one its formal parameters, and impose constraints (in-
cluding equalities) on the variable and its derivative. Different components can
impose constraints on the same variable, at the same time or in alternation. In
certain application areas, like mechanics or electric circuits, this allows one to
decompose models into reusable building blocks, or build models directly from
first principles. For example, one component could impose ẋ ≤ 0 and another
ẋ ≥ 0. The resulting behavior has to satisfy both, so ẋ = 0. If the constraints
contradict each other, resulting in, e.g., ẋ ∈ ∅, there is no solution to the dif-
ferential equations (or inclusions) and thus there might not be any trajectories
after a certain point in time. We say that “time stops” in the model. This may
or may not be a modeling error.

Because of the acausal semantics, there are no inputs and outputs in SpaceEx
models per se. For compositional reasoning, there is the notion of a controlled
variable, which is closely related, and SpaceEx enforces compositional semantics
for this purpose. As a rule of thumb, state variables, typically those whose
derivatives are explicitly defined, should be controlled while algebraic variables
should be uncontrolled. For more details, see [33].

7.3.3 Initial and Forbidden States

The specification of a reachability problem includes the set of initial states, from
which all behavior of the system originates. We consider the initial states to
be problem- rather than model-specific, so they are specified in a configuration
file rather than the model file. A set of states can be specified in SpaceEx as
a boolean combination of location constraints and linear constraints over the
variables. A location constraint denotes that a given component is or is not in a
specific location. The specification of a set of forbidden states is optional. If the
reachability analysis terminates, then the output is restricted to the intersection
of the forbidden with the reachable states. In addition, the textual output of
the tool reports whether the forbidden states are reachable or not.

Chapter 8

Conclusions and Outlook

Set-based reachability analysis can provide valuable insight into the critical be-
haviors of a system. As a verification technology, it can be used to show the
absence of critical behavior, or detect and identify critical paths in the sys-
tem. However, the verification problem is undecidable except for the most sim-
ple hybrid systems, and overapproximations are hard to avoid in algorithmic
approaches. The potential uses of set-based reachability go beyond the black-
and-white world of traditional verification. Seen as an extension of numerical
simulation to sets, it allows one to execute the system symbolically, tracing the
evolution of the system not one state at a time, but for groups of behaviors. One
can think of this a debugging, and in particular in the context of cyber-physical
systems, such functionality may come natural to software developers. It should
not be overlooked that set-based reachability can also provide quantitative in-
formation about the system. Conservative bounds on critical variables such as
temperatures, as well as performance criteria such as rise times, can assist the
design process. This may be particularly relevant for component reuse, where
thanks to the capacity to include nondeterminism, such bounds can be propa-
gated along a chain of connected components, or passed on through a hierarchy
of models. Ensuring the consistency between those models remains a challenge,
but reachability may offer one viable technique here, too.

The main challenge for reachability of hybrid systems was, and still is, scal-
ability. In early attempts, even one-step successor computations where expo-
nential in the number of continuous variables, so there were obvious limits to
applying reachability to systems of practical interest. Thanks in particular to
the breakthroughs by Le Guernic and Girard in 2005 and 2008, the one-step
successor computation now scale easily to hundreds of variables, with room for
further improvements through parallelization, model order reduction, and ab-
straction, etc. Unfortunately, this does not immediately translate to scalable
verification approaches. Chaining the one-step successor operations can lead to
an explosive growth in both the approximation error and the number of sets
that are produced. The refinement techniques in Chapters 4 and 6 are a first
step towards a remedy for both difficulties, since they reduce the error and
the number of sets without necessarily hurting scalability. The optimal clus-
tering techniques presented in Sect. 5 can help to master the number of sets
without compromising accuracy. Nonetheless, further research and engineering

105

106 CHAPTER 8. CONCLUSIONS AND OUTLOOK

is required to push refinement and clustering to industrial-strength levels, e.g.,
through merging of neighboring state sets.

One the way to industrial applications, there are two other difficulties apart
from scalability. The construction of suitable verification models is a first and
major hurdle. We are supporting this process with a semi-automatic translation
tool that converts commercial simulation models into networks hybrid automata
[75], and extending analysis techniques that reflect the semantics of such models
[74]. Industrial simulation models need to be simplified on the one hand, and on
the other hand enriched, e.g., through nondeterministic operating conditions, in
order to be able to take advantage of set-based reachability. The second hurdle
towards applications is the identification and specification of suitable proper-
ties. In our experience, design requirements do not always meet the paradigm
of a forbidden set of bad states. Typical specifications can often be encoded
as reachability problems by using so-called observer or monitor-automata [54],
but this is not necessarily a trivial process for timed and hybrid properties, and
merits further study. Other specifications, e.g., stable oscillations, can be han-
dled by combining proofs with monitor automata [43]. Note that for prototypic
properties the proof only needs to be carried out once per monitor. The monitor
can then be applied to arbitrary systems under test without further need for
proofs. Another way of specifying correct or desired behavior may be through
performance measures. New criteria may be developed that are better suited
to reachability than those typically used in control systems. As an example,
consider linear quadratic integrals, which have desirable theoretic properties,
but introduce nonlinearities that are not easy to handle for reachability tools.
Integrating the absolute value instead may be easier since it is a piecewise linear
function, which falls precisely into the class for which we presented efficient and
scalable methods.

Bibliography

[1] M. Althoff. An introduction to CORA 2015. In G. Frehse and M. Althoff,
editors, ARCH14-15. 1st and 2nd International Workshop on Applied veR-
ification for Continuous and Hybrid Systems, volume 34 of EPiC Series in
Computer Science, pages 120–151. EasyChair, 2015.

[2] M. Althoff, C. L. Guernic, and B. H. Krogh. Reachable set computation
for uncertain time-varying linear systems. In Caccamo et al. [22], pages
93–102.

[3] M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in
reachability analysis of hybrid systems. In Hybrid Systems: Computation
and Control (HSCC’12), pages 45–54. ACM, 2012.

[4] M. Althoff, B. H. Krogh, and O. Stursberg. Analyzing reachability of linear
dynamic systems with parametric uncertainties. In A. Rauh and E. Auer,
editors, Modeling, Design, and Simulation of Systems with Uncertainties.
Springer, 2011.

[5] R. Alur. Formal verification of hybrid systems. In S. Chakraborty, A. Jer-
raya, S. K. Baruah, and S. Fischmeister, editors, EMSOFT, pages 273–278.
ACM, 2011.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

[7] R. Alur, T. Dang, and F. Ivancic. Counterexample-guided predicate ab-
straction of hybrid systems. Theor. Comput. Sci., 354(2):250–271, 2006.

[8] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis
of nonlinear systems. Acta Inf., 43(7):451–476, 2007.

[9] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid
systems. In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of
LNCS, pages 365–370. Springer, 2002.

[10] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate reachabil-
ity analysis of piecewise-linear dynamical systems. In HSCC’00, LNCS.
Springer, 2000.

[11] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using redundant con-
straints for refinement. In Automated Technology for Verification and Anal-
ysis, pages 37–51. Springer, 2010.

107

108 BIBLIOGRAPHY

[12] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[13] R. Baier and F. Lempio. Computing aumann’s integral. Progress in Systems
and Control Theory, 18:71–71, 1994.

[14] S. Bak. Hycreate: A tool for overapproximating reachability of hybrid
automata. stanleybak.com/projects/hycreate, 2012.

[15] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Op-
timization. Athena Scientific, 2003.

[16] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan,
A. Podelski, and M. Wehrle. Abstraction-based guided search for hybrid
systems. In E. Bartocci and C. R. Ramakrishnan, editors, Model Check-
ing Software - 20th International Symposium, SPIN 2013, Stony Brook,
NY, USA, July 8-9, 2013. Proceedings, volume 7976 of Lecture Notes in
Computer Science, pages 117–134. Springer, 2013.

[17] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan,
A. Podelski, and M. Wehrle. Guided search for hybrid systems based on
coarse-grained space abstractions. International Journal on Software Tools
for Technology Transfer, pages 1–19, 2015.

[18] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S. Pasareanu,
A. Podelski, and T. Strump. Assume-guarantee abstraction refinement
meets hybrid systems. In E. Yahav, editor, Hardware and Software: Ver-
ification and Testing - 10th International Haifa Verification Conference,
HVC 2014, Haifa, Israel, November 18-20, 2014. Proceedings, volume 8855
of Lecture Notes in Computer Science, pages 116–131. Springer, 2014.

[19] S. Bogomolov, G. Frehse, R. Grosu, H. Ladan, A. Podelski, and M. Wehrle.
A box-based distance between regions for guiding the reachability analy-
sis of spaceex. In P. Madhusudan and S. A. Seshia, editors, Computer
Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in
Computer Science, pages 479–494. Springer, 2012.

[20] D. Brück, H. Elmqvist, S. E. Mattsson, and H. Olsson. Dymola for multi-
engineering modeling and simulation. In Proceedings of Modelica, 2002.

[21] R. E. Burkard, H. W. Hamacher, and G. Rote. Sandwich approximation
of univariate convex functions with an application to separable convex pro-
gramming. Naval Res. Logistics, 38:911–924, 1991.

[22] M. Caccamo, E. Frazzoli, and R. Grosu, editors. Proceedings of the 14th
ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2011, Chicago, IL, USA, April 12-14, 2011. ACM, 2011.

[23] X. Chen, E. Abraham, and G. Frehse. Efficient bounded reachability com-
putation for rectangular automata. In I. Potapov and G. Delzanno, editors,
Reachability Problems, volume 6945 of LNCS, pages 139–152. Springer,
2011.

BIBLIOGRAPHY 109

[24] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe
construction for non-linear hybrid systems. In RTSS, pages 183–192. IEEE
Computer Society, 2012.

[25] X. Chen, S. Schupp, I. B. Makhlouf, E. Ábrahám, G. Frehse, and
S. Kowalewski. A benchmark suite for hybrid systems reachability analy-
sis. In K. Havelund, G. J. Holzmann, and R. Joshi, editors, NASA Formal
Methods - 7th International Symposium, NFM 2015, Pasadena, CA, USA,
April 27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Computer
Science, pages 408–414. Springer, 2015.

[26] A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid
automata using polygonal flow pipe approximations. In HSCC’99, LNCS,
pages 76–90. Springer, 1999.

[27] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system
verification. IEEE Trans. Automat. Contr., 48(1):64–75, 2003.

[28] S. Cotton, G. Frehse, and O. Lebeltel. The spaceex modeling language.
spaceex.imag.fr/documentation/user-documentation/, dec 2010.

[29] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl,
U. Waldmann, and B. Wirtz. Exact state set representations in the verifi-
cation of linear hybrid systems with large discrete state space. In ATVA,
2007.

[30] T. Dang, T. Dreossi, and C. Piazza. Parameter synthesis using parallelo-
topic enclosure and applications to epidemic models. In Int. Ws. Hybrid
Systems and Biology HSB’14, LNBI. Springer, 2014.

[31] T. Dang, O. Maler, and R. Testylier. Accurate hybridization of nonlinear
systems. In K. H. Johansson and W. Yi, editors, HSCC, pages 11–20. ACM,
2010.

[32] G. B. Dantzig and T. M. N. Linear Programming 2: Theory and Extensions.
Springer, 2003.

[33] A. Donzé and G. Frehse. Modular, hierarchical models of control systems in
spaceex. In Control Conference (ECC), 2013 European, pages 4244–4251.
IEEE, 2013.

[34] P. S. Duggirala and A. Tiwari. Safety verification for linear systems. In
EMSOFT’13, pages 1–10. IEEE, 2013.

[35] G. Frehse. PHAVer: algorithmic verification of hybrid systems past
HyTech. STTT, 10(3):263–279, 2008.

[36] G. Frehse. An introduction to spaceex. spaceex.imag.fr/documentation/
user-documentation/, dec 2010.

[37] G. Frehse. SpaceEx state space explorer. Verimag, Grenoble, http://

spaceex.imag.fr, 2010.

110 BIBLIOGRAPHY

[38] G. Frehse. Reachability of hybrid systems in space-time. In Embedded
Software (EMSOFT), 2015 International Conference on, pages 41–50, Oct
2015.

[39] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski.
Eliminating spurious transitions in reachability with support functions.
In A. Girard and S. Sankaranarayanan, editors, Proceedings of the 18th
International Conference on Hybrid Systems: Computation and Control,
HSCC’15, Seattle, WA, USA, April 14-16, 2015, pages 149–158. ACM,
2015.

[40] G. Frehse, A. Hamann, S. Quinton, and M. Wöhrle. Formal Analysis of
Timing Effects on Closed-loop Properties of Control Software. In 35th IEEE
Real-Time Systems Symposium 2014 (RTSS), Rome, Italy, Dec. 2014.

[41] G. Frehse, S. K. Jha, and B. H. Krogh. A counterexample-guided approach
to parameter synthesis for linear hybrid automata. In M. Egerstedt and
B. Mishra, editors, HSCC, volume 4981 of LNCS, pages 187–200. Springer,
2008.

[42] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and
clustering in space-time. In Proceedings of the 16th international conference
on Hybrid systems: computation and control, pages 203–212. ACM, 2013.

[43] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying analog oscillator
circuits using forward/backward abstraction refinement. In G. G. E. Gielen,
editor, DATE, pages 257–262, 2006.

[44] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification
of hybrid systems. In G. Gopalakrishnan and S. Qadeer, editors, CAV,
volume 6806 of LNCS, pages 379–395. Springer, 2011.

[45] G. Frehse and R. Ray. Design principles for an extendable verification tool
for hybrid systems. In ADHS’09 : 3rd IFAC Conference on Analysis and
Design of Hybrid Systems, 2009.

[46] G. Frehse and R. Ray. Flowpipe-guard intersection for reachability compu-
tations with support functions. In IFAC ADHS, pages 94–101, 2012.

[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Pearson Education, 1994.

[48] P. K. Ghosh and K. V. Kumar. Support function representation of convex
bodies, its application in geometric computing, and some related represen-
tations. Comput. Vis. Image Underst., 72(3):379–403, Dec. 1998.

[49] A. Girard. Reachability of uncertain linear systems using zonotopes. In
M. Morari and L. Thiele, editors, HSCC, volume 3414 of LNCS, pages
291–305. Springer, 2005.

[50] A. Girard and C. Le Guernic. Efficient reachability analysis for linear
systems using support functions. In IFAC World Congress, 2008.

BIBLIOGRAPHY 111

[51] A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable
sets of linear time-invariant systems with inputs. In HSCC’06. Springer,
2006.

[52] T. J. Graettinger and B. H. Krogh. Hyperplane method for reachable
state estimation for linear time-invariant systems. Journal of Optimization
Theory and Applications, 69(3):555–588, 1991.

[53] M. R. Greenstreet. Verifying safety properties of differential equations. In
Computer Aided Verification, pages 277–287. Springer, 1996.

[54] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In Algebraic Methodology and Software
Technology (AMAST’93), pages 83–96. Springer, 1994.

[55] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[56] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of non-
linear hybrid systems. IEEE Transactions on Automatic Control, 43:540–
554, 1998.

[57] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57:94–
124, 1998.

[58] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. Sundials: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical
Software (TOMS), 31(3):363–396, 2005.

[59] W. Kühn. Rigorously computed orbits of dynamical systems without the
wrapping effect. Computing, 61(1):47–67, 1998.

[60] A. Kurzhanski and P. Varaiya. Reachability analysis for uncertain
systems—the ellipsoidal technique. Dynamics of Continuous, Discrete and
Impulsive Systems Series B: Applications and Algorithms, 9(3b):347–367,
2002.

[61] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis. In N. A. Lynch and B. H. Krogh, editors, Hybrid Systems: Compu-
tation and Control, Third International Workshop, HSCC 2000, Pittsburgh,
PA, USA, March 23-25, 2000, Proceedings, volume 1790 of Lecture Notes
in Computer Science, pages 202–214. Springer, 2000.

[62] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
under state constraints. SIAM J. Control and Optimization, 45(4):1369–
1394, 2006.

[63] A. B. Kurzhanski and P. Varaiya. Dynamics and Control of Trajectory
Tubes. Springer, 2014.

[64] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (et). In Decision and
Control, 2006 45th IEEE Conference on, pages 1498–1503. IEEE, 2006.

112 BIBLIOGRAPHY

[65] C. Le Guernic. Reachability analysis of hybrid systems with linear contin-
uous dynamics. PhD thesis, Université Grenoble 1 - Joseph Fourier, 2009.

[66] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems using
support functions. In A. Bouajjani and O. Maler, editors, CAV, volume
5643 of LNCS, pages 540–554. Springer, 2009.

[67] C. Le Guernic and A. Girard. Reachability analysis of linear systems using
support functions. Nonlinear Analysis: Hybrid Systems, 4(2):250 – 262,
2010. IFAC World Congress 2008.

[68] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. Interactive Decision
Maps, volume 89 of Applied Optimization. Kluwer, 2004.

[69] F. Maffray. On the coloration of perfect graphs. In B. A. Reed and C. L.
Sales, editors, Recent Advances in Algorithms and Combinatorics, CMS
Books in Mathematics, pages 65–84. Springer, 2003.

[70] O. Maler. Algorithmic verification of continuous and hybrid systems. In
Int. Workshop on Verification of Infinite-State System (Infinity), 2013.

[71] MapleSoft. Maplesim 7: Advanced system-level modeling. http://www.

maplesoft.com/products/maplesim, 2015.

[72] MathWorks. Mathworks simulink: Simulation et model-based design, Mar.
2014. www.mathworks.fr/products/simulink.

[73] S. Minopoli and G. Frehse. Non-convex invariants and urgency conditions
on linear hybrid automata. In A. Legay and M. Bozga, editors, Formal
Modeling and Analysis of Timed Systems - 12th International Conference,
FORMATS 2014, Florence, Italy, September 8-10, 2014. Proceedings, vol-
ume 8711 of Lecture Notes in Computer Science, pages 176–190. Springer,
2014.

[74] S. Minopoli and G. Frehse. From simulation models to hybrid automata
using urgency and relaxation. In HSCC’16, 2016 (to appear).

[75] S. Minopoli and G. Frehse. Sl2sx translator: From simulink to spaceex
verification tool. In HSCC’16, 2016 (to appear).

[76] I. M. Mitchell. Comparing forward and backward reachability as tools for
safety analysis. In HSCC’07, pages 428–443, 2007.

[77] A. Pereira and M. Althoff. Safety control of robots under computed torque
control using reachable sets. In IEEE Int. Conf. Robotics and Automation,
2015.

[78] P. Prabhakar and M. Viswanathan. A dynamic algorithm for approximate
flow computations. In Caccamo et al. [22], pages 133–142.

[79] R. Ray and G. Frehse. An approach to direct minimization of convex
piecewise linear functions. Technical report, Verimag, Nov. 2011.

[80] C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Computing opti-
mized representations for non-convex polyhedra by detection and removal
of redundant linear constraints. In TACAS, 2009.

BIBLIOGRAPHY 113

[81] S. Schupp, E. Ábrahám, X. Chen, I. B. Makhlouf, G. Frehse, S. Sankara-
narayanan, and S. Kowalewski. Current challenges in the verification of
hybrid systems. In C. Berger and M. R. Mousavi, editors, Cyber Physical
Systems. Design, Modeling, and Evaluation - 5th International Workshop,
CyPhy 2015, Amsterdam, The Netherlands, October 8, 2015, Proceedings,
volume 9361 of Lecture Notes in Computer Science, pages 8–24. Springer,
2015.

[82] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis
and Design. John Wiley & Sons, 2005.

[83] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Ap-
proach. Springer, 2009.

[84] H. Tiwary. On the hardness of computing intersection, union and
minkowski sum of polytopes. Discrete & Computational Geometry,
40(3):469–479, 2008.

[85] UnCoVerCPS. EU H2020 project on unifying control and verification of
cyber-physical systems (uncovercps), grant number 643921. cps-vo.org/

group/UnCoVerCPS, 2015.

[86] G. van den Bergen. Collision detection in interactive 3D computer anima-
tion. PhD thesis, Eindhoven University of Technology, 1999.

[87] P. Varaiya. Reach set computation using optimal control. In Proc. KIT
Workshop, pages 377–383, 1997.

