
HAL Id: tel-01713846
https://hal.science/tel-01713846

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A contribution to Computational Linguistics and
Natural Language Processing: From the Semantics of

Space and Time to Annotations and Agreement
Measures
Yann Mathet

To cite this version:
Yann Mathet. A contribution to Computational Linguistics and Natural Language Processing: From
the Semantics of Space and Time to Annotations and Agreement Measures. Artificial Intelligence
[cs.AI]. Université de Caen Normandie, 2017. �tel-01713846�

https://hal.science/tel-01713846
https://hal.archives-ouvertes.fr

Groupe de Recherche en Informatique,
Image, Automatique et Instrumentation de Caen

Group “Hultech”

Habilitation thesis

A contribution to Computational Linguistics and Natural
Language Processing: From the Semantics of Space and

Time to Annotations and Agreement Measures.

Yann Mathet

December the 5th, 2017

Committee:

Jean-Yves Antoine Professor, Université François-Rabelais, Tours . . . reviewer
Delphine Battistelli Professor, Université Paris X reviewer
Massimo Poesio Professor, University of Essex, UK reviewer
Frédéric Landragin Senior Scientist, CNRS, LATTICE, Montrouge
Pierre Zweigenbaum Senior Scientist, CNRS, Université Paris-Saclay, Orsay
Marc Spaniol Professor, Université de Caen Normandie advisor

Yann Mathet, https://mathet.users.greyc.fr/
Group “Human Language Technology”, GREYC

Université de Caen Normandie
CNRS UMR 6072, ENSICAEN, France

2

Contents

Foreword 7

I Semantic Modeling of space and time 9

1 The semantics of space and motion 11
1.1 Topological models : strengths and limitations . 11
1.2 An extended model of spatio-temporal semantics which considers paths as fundamental

objects . 12

2 The semantics of time and iteration 17
2.1 The Laurent Gosselin’s theory of time . 18
2.2 Definition and terminology of iteration . 20
2.3 Mental spaces and Iterative models . 23
2.4 Cloning and Projection . 27
2.5 SdT intervals in mental spaces . 29
2.6 An Object Oriented Iteration Model . 30
2.7 Implementing Mental Spaces: links between model events. 39
2.8 Implementing the Iteration Model on simple cases . 41
2.9 Selections: how to access to a given part of the iterates 48
2.10 Implicit Iterations . 58
2.11 Framed Iteration . 58
2.12 Conclusion . 59
2.13 Perspectives . 60

II Annotation of continuums and its assessment 65

3 Annotation of continuums with Glozz and GlozzQL 67
3.1 Introduction . 67
3.2 Why another tool ? . 69
3.3 Underlying model . 70
3.4 Main features . 74
3.5 Customizing and using Glozz . 76
3.6 GlozzQL: a query language for annotation mining . 78
3.7 Conclusion . 81

4 Assessment of annotations - Part I:
Understanding and assessing agreement measures 83
4.1 Main concepts . 84

3

4 CONTENTS

4.2 Chance correction: a necessity and a difficulty . 87
4.3 Benchmarking and understanding agreement measures: the Corpus Shuffling Tool (CST) 92

5 Assessment of annotations - Part II:
The Gamma family of agreement measures for unitizing tasks 97
5.1 Introduction . 98
5.2 Motivations, scope and illustrations . 98
5.3 Introducing γ . 100
5.4 The implementation of γ . 108
5.5 benchmarking γ . 112
5.6 The additional coefficients γcat and γk . 112
5.7 Main requirements of a categorial measure . 113
5.8 How best to handle missing values ? . 114
5.9 The design of γcat . 116
5.10 The in-depth coefficient γk which focuses on each category 120
5.11 Benchmarking γcat and γk . 120
5.12 Overview and dependencies of the gamma family . 121
5.13 Software . 122
5.14 Conclusion on the Gamma family . 123
5.15 Future work . 124

Bibliography 125

Foreword

5

Foreword 7

Acknowledgments

I wish to thank Jean-Yves Antoine, Delphine Battistelli and Massimo Poesio for having agreed to
review this work, and Frédéric Landragin, Marc Spaniol and Pierre Zweigenbaum for having accepted
to be committee members. Marc was also my advisor, and I thank him for his confidence and his
support.

This work was conducted in the GREYC laboratory, which provided me with optimal research
conditions, and prolific colleagues. I have to stress a particular collaboration with Antoine Widlöcher I
have worked with on many projects for years, as evidenced by the number of times our names jointly
appear in our publications, but I have also to thank many other colleagues whether we officially con-
ducted some research together or just have informal discussions. Besides, Antoine and I have both
really appreciated the priceless assistance of two engineers, Jérôme Chauveau and Stéphane Bouvry.

In the recent years, I have also had the fabulous opportunity to discuss and then to collaborate with
Klaus Krippendorff on questions related to agreement measures. I thank him so much for his vitality,
his confidence, and the long series of e-mails we have exchanged over the years.

To finish, I have a special thought for Patrice Enjalbert I still collaborate with on some projects
related to the semantics of time, but more importantly who was a primary factor for my taste for
research.

Of course, I also thank my family and relatives for their great support, and in particular my wife
Sophie, my parents and my parents-in-law, who provided me with a huge amount of time which was
an essential requirement to write this dissertation.

Introduction

First of all, I would like to warn the reader that in this dissertation, I will use "I" rather than the royal
"we" to refer to myself. This is quite unpleasant, but this is for the sake of clarity, in order to make
obvious the distinction between what my personal contributions are, and what belongs to joint studies.

This study addresses two different questions in the fields of Computational Linguistics (CL) and
Natural Language Processing (NLP): the question of how to model natural language semantics, espe-
cially in space and time paradigms, and the question of how to annotate corpora. These seemingly
different questions are tied by the fact that when studying how to model some linguistic phenomena,
for instance in semantics, it is necessary to get annotated data related to these phenomena, first to get
inspiring examples of what is really studied, and second to assess our models by confronting their
productions with reference annotations. Precisely, because of these ties, my research domain has pro-
gressively widened from pure semantics questions to questions about annotation.

In my PhD thesis, I addressed spatio-temporal semantics as it appears in natural language. Most
available models rely on so-called topological relations, where the very questions is "in what place is X
located?" These models fail to render the semantics of many expressions which cannot be described in
terms of being located into a place, nor in terms of going into (or getting out of) a place. For instance,
the sentence "(the road / the car) circumvents the city" involves a complex relationship between the
shape of the road or of the trajectory of the car and the city (in addition to a topological relation of
exteriority). I introduced the limits of these models and proposed solutions. Subsequently, my work
has been focusing more and more on the semantics of time, in collaboration with other computer
scientists, and also a linguist. In particular, we have addressed the question of how repetition (iterative
events) is conveyed in natural language, in such examples as: "every Thursday, they played cards. The
game lasted about 2 hours", and how to model it. One of the main results of this study is that natural
language is able to handle an iterative event as if it were a sole generic event. This is clearly visible
in the second sentence by the use of the singular "the game" which surprisingly refers to a plurality of
games. We have designed a model which accounts for that, and for a wide range of related phenomena.

8 Foreword

At the same time, several collaborations in CL and NLP research projects led us to focus more and
more on annotation process. In particular, the ANNODIS project consisted in creating and providing
a discourse relations corpus, and made appear the need for new methods and tools to annotate texts.
Together with a colleague, Antoine Widlöcher, we designed and developed a versatile annotation plat-
form, namely Glozz, which not only fulfills the ANNODIS requirements, but also fits a wide range of
projects worldwide. Producing annotations brings another question: how to make sure that annotations
are valid? Consequently, we have studied the existing methods to assess annotations, and we found
that most of them do not fit CL nor NLP purposes. In particular, CL and NLP mainly refer to linguis-
tic streams (texts, videos), whereas most used assessment methods concern sets of independent items.
As a consequence, in many cases, scholars do not use relevant measures to assess their annotations,
which leads to strong biases in the results. Here again, we have proposed solutions with a new set of
agreement measures, namely the Gamma family. Besides, this work goes along with a more general
reflection on the principles of assessment methods, which is an additional contribution.

Part I

Semantic Modeling of space and time

9

Chapter 1

The semantics of space and motion

Contents
1.1 Topological models : strengths and limitations 11

1.2 An extended model of spatio-temporal semantics which considers paths as fun-
damental objects . 12

1.2.1 Spatio-temporal objects . 13

1.2.2 Polymorphism: several points of view on a same thing 13

1.2.3 Main spatio-temporal relations . 13

1.2.4 A short overview of the expressivity of the model through some examples . . 14

This chapter briefly recaps the main contributions of my PhD thesis (Mathet, 2000) which addressed
the question of how to model space and motion as their are dealt in natural language, for both text
understanding and automatic text generation.

1.1 Topological models : strengths and limitations

Most studies on space and motion in natural language rely on a model made of objects which have
spatial boundaries, and which share relations based on their boundaries. For instance, "she is in Paris"
corresponds to the fact that "she" is inside the boundaries of "Paris", and "the ball is on the table" to the
fact that the "ball" and the "table" are externally connected. A well known and very illustrative such
model is RCC8, which defines 8 possible relations between two continuous objects.

Figure 1.1: The 8 RCC (Region Connection Calculus) relations

11

12 CHAPTER 1. THE SEMANTICS OF SPACE AND MOTION

This very basic set of relations was extended to cover proximity relations, such as "the car is near
the house", with additional proximity boundaries. Hence, "near" is rendered by two relations: being
out of the core region, while being into the proximity region.

Then, these static relations which initially render spatial states rather than events, are also used to
render motion: A movement is described as a change of spatial relation between the moving object
and some spatial reference. For instance, "he went to Paris" corresponds to a change from the relation
"being out of Paris" to the relation "being in Paris".

Typically, the study by Laur (1991), relies on such kinds of relations.
Some years later, Sablayrolles (1995) proposed a model which combines proximity boundaries and

change of relations to try to cover the whole semantics of motion in language, as shown in figure 1.2.

Figure 1.2: A topological model for motion by Pierre Sablayrolles

The theoretical motivation for using such kinds of models is that natural language does not con-
vey precise spatial positions, for instance in terms of (x, y, z) coordinates, but mainly qualitative and
under-specified relations between spatial objects. This assumption is partially true: most often natural
language is under-specified, in the sense that nothing more than necessary is said. But it misses the
capability of natural language to provide as detailed spatial descriptions as needed: "don’t put anything
closer than 12 inches to the heater to prevent from any risk of fire". More importantly, it misses a whole
range of relations, possibly also under-specified but which do not rely on so-called topology. Examples
are numerous, and the following three are very illustrative: "He is driving very fast" clearly involves a
motion, but no change of relation ; "the road circumvents the city" and "the road doesn’t go through
the city" have different meanings but are the same in terms of topological relations ; proximity cannot
be modeled through proximity regions, since it is very contextual: we can say "please get close, get
closer" to anyone whatever how close she stands from us.

1.2 An extended model of spatio-temporal semantics which considers
paths as fundamental objects

To overcome the mentioned limitations, my main contribution has been to propose a model where paths
and trajectories are primary objects which share various kinds of relations (including but not limited to
topology) with other spatial or spatio-temporal objects.

1.2. AN EXTENDED MODEL OF SPATIO-TEMPORAL SEMANTICS 13

1.2.1 Spatio-temporal objects

• First, a path is defined as a continuous curve in a 2D or 3D space. It may be oriented (denoted
OP) or not (denoted P). An OP provides a total order relation of its constituting points.

• Then, a trajectory (denoted T) is a pair (TP , Tf) where TP is a path, and Tf is a strictly growing
and continuous (hence bijective) function from time to TP (to each moment corresponds one
position on the path). TP is oriented thanks to Tf .

• A place (denoted PL) is a continuous function from time to space to associate to any moment a
contiguous portion of space. Of course a place may be static (with a constant function of time).

• a plural entity (denoted PE) is a set of a finite number of entities of the same kind. For instance,
a crowd is a plural entity composed of many people (each of them may be rendered by a place).

• A hybrid entity (denoted HE) is the combination of two kinds at least of primary entities. For
instance, a road or a river may be seen as the hybridation of a curve (the center line of the road
or the river) and of a constant place (the 2D asphalt surface, or the water of the river).

1.2.2 Polymorphism: several points of view on a same thing

In addition, polymorphism is an important mechanism which operates on these entities. It corresponds
to the cognitive ability, very frequent in language, especially in space, to consider something from
different points of view. By construction, PE and HE are polymorphic entities. For instance a road
(considered from the sky) may be viewed as a path, or as a surface, and many soldiers may be seen
as whole, namely a troop. Moreover, a trajectory T may be reduced, in some way, to its (static) path.
But I have also designed some mechanisms able to transform an object of a given type to another type,
which drastically extends the scope of polymorphism. For instance, a long and narrow place (PL) may
be transformed, because of its shape, into a path (P), and a plural entity (PE) into a place (PL) if it is
dense enough, or into a path P if its constituants are somehow disposed along a path. Hence, we get a
rich and polymorphic range of objects which better correspond to how space and motion are dealt in
language than sole places typically used in topological approaches.

1.2.3 Main spatio-temporal relations

• Topological relations. First kind is relations between places, and resembles the RCC8 with some
extensions. Second kind is between a P or an OP (hence, a T) and a PL.

• Distance relations. First kind is between places (PL), second kind is between paths (P, OP, T).
Third is within paths (P).

• Shape relations: Parallelism between two paths (P, OP, T) is an extension of the classical paral-
lelism relation (between straight segments) to curves; Convex covering of a place (PL) by a path
(P, OP, T); Covering of a place (PL) either by another place (PL), or by a path (P, OP, T) or by a
plural entity (EP).

• Monodimensional relations. They may occur on oriented paths OP, thus on trajectories (T), and
state that a given point of OP is before or after another point, near or far (with respect to the
curve), etc.

14 CHAPTER 1. THE SEMANTICS OF SPACE AND MOTION

1.2.4 A short overview of the expressivity of the model through some examples

We will not go here through all the capabilities of the proposed model, but just illustrate some of them
through some examples.

Let us consider the following expressions which involve a river:

(1) "The bird follows the river"

(2) "The road follows the river"

(3) "The trees are along the river"

(4) "Paul felt into the river"

From a linguistic point of view, "river" may give rise to a place PL when associated with the verb
"to fall", or to a path P when associated with verbs such as "to hug", "to follow", or "to go along". In the
first three examples (1, 2 and 3), the river is considered as a path P, which shares a parallelism relation
with another path: either the path associated with the trajectory T of the bird in example 1, or with the
road also considered as a path in example 2, or with the path constructed over the EP corresponding to
the trees in example 3. Examples 1 and 3 are shown simultaneously in figure 1.3. We can see through
these examples three forms of polymorphism: river or road as a path, that is formally selecting P from
a hybrid entity made of a P and a PL, trees as a path, that is formally transforming a PE into a P (thanks
to its configuration), and trajectory as a path, that is formally selecting TP from (TP , Tf).

In example 4, there is a topological relation between Paul’s trajectory (who is falling) and the place
associated to the river, namely the trajectory starts from outside of the river and finishes inside the river.

An important point is that the polymorphic capabilities of the model render the fact that natural
language often uses the same verbs to express both movement (example 1) or positioning (example 2),
or the fact that the same "river" may be seen as a path from example 1 to 3, or a place in example 4.

Trees as a PE

Trees as a path
P1

River as a path
P2

River as a PL

Parallelism
relation between

P1 and P2

Bird trajectory
T Parallelism

relation between
T and P2

Figure 1.3: Some examples of polymorphism and parallelism in both static and motion configurations

We finish this quick overview by the semantics of "to circumvent" or "to avoid", which is particu-
larly interesting since it combines topology and shape relations.

(5) The car avoided the cat

(6) (The road / the car) circumvents the town

In both examples 5 and 6, there is a topologic relation of exteriority, because to circumvent or to
avoid means there is no contact between the verb subject and the verb object, but there is also the need
for another relation which renders the fact that the verb object was kind of an obstacle to the path or
the trajectory of the verb subject. We modeled the latter by the fact that the convex envelop of the
path coming from the verb subject covers at least a part of the place coming from the verb object, as

1.2. AN EXTENDED MODEL OF SPATIO-TEMPORAL SEMANTICS 15

shown in figure 1.4. Once again, we can see that polymorphism may occur since both a positioning or
a movement relation can be expressed by this complex relation.

Figure 1.4: Convex covering of an object O by a path P (or a trajectory)

16 CHAPTER 1. THE SEMANTICS OF SPACE AND MOTION

Chapter 2

The semantics of time and iteration

This chapter mainly relies on the joint book (Gosselin et al., 2013), which was written in french,
and in particular on its second chapter of my own pp. 153 - 233.

Contents
2.1 The Laurent Gosselin’s theory of time . 18

2.1.1 The SdT theory in a nutshell . 18
2.1.2 An implementation of the SdT interval relations construction 20

2.2 Definition and terminology of iteration . 20
2.2.1 Definition of iteration . 20
2.2.2 Iterator, iterating event, iterated event . 21

2.3 Mental spaces and Iterative models . 23
2.3.1 Mental spaces from Gilles Fauconnier . 23
2.3.2 Iterative mental spaces (Model Spaces) . 24
2.3.3 Iterative mental spaces in discourse . 24
2.3.4 Main features of iterative mental spaces . 24
2.3.5 Mental spaces and calendar . 26
2.3.6 Mental Spaces and construction of iterations 26

2.4 Cloning and Projection . 27
2.5 SdT intervals in mental spaces . 29
2.6 An Object Oriented Iteration Model . 30

2.6.1 UML in a nutshell . 30
2.6.2 Iteration . 31
2.6.3 Iterator . 32
2.6.4 IterativeModel . 34
2.6.5 ModelEvent . 35
2.6.6 ModelEvent relationships . 35
2.6.7 Circumstantial model intervals . 35
2.6.8 Recursive constructions: Iteration as a model event 36
2.6.9 A second view on the extensional / intensional duality 37
2.6.10 A model of Events . 38

2.7 Implementing Mental Spaces: links between model events. 39
2.7.1 Concomitant model events . 39
2.7.2 Successive model events . 40
2.7.3 General case . 41

17

18 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

2.8 Implementing the Iteration Model on simple cases 41
2.8.1 Quantifying Iterator . 41

2.8.2 Iterations with a SteadyCalendar Iterator 42

2.8.3 Iterations with a Frequency Iterator . 42

2.8.4 Iteration coming from an EventDrivenIterator: "when", "each time that", etc. 45

2.8.5 Merging iterative models . 47

2.9 Selections: how to access to a given part of the iterates 48
2.9.1 Introduction . 48

2.9.2 Defining and modeling Selections . 48

2.9.3 The purpose of Selections . 50

2.9.4 Examples and analyses of Selections . 51

2.10 Implicit Iterations . 58
2.11 Framed Iteration . 58
2.12 Conclusion . 59
2.13 Perspectives . 60

2.13.1 Enrichment of the model to cope with an evolutionary situation 60

2.13.2 Towards an automatic processing of Iteration in discourse 63

Following a study initiated by François Levy through the OGRE project ("Ordre de Grandeur et
REpétiton", time order of magnitude and iteration) in which about 10 persons where involved, we have
been collaborating since 2005 with Laurent Gosselin (linguist, University of Rouen), Patrice Enjalbert
and Gérard Becher (computer scientists, University of Caen) on the specific question of how natural
language handles iteration.

We call iteration the fact that a repeated activity or a repeated state is expressed through natural
language. For instance, sentence 7 expresses the fact that an activity "they play cards" was repeated
weekly:

(7) Every Thursday, they played cards.

We have conducted a multidisciplinary research where linguistics meets computer science to ana-
lyze the linguistic ground of iteration, and model it in a formal way. In this context, my contribution
has been to propose an object-oriented model of iteration which is able to cope with the semantics of
complex iterations even at discourse level, with a cognitive focus. I introduce this model and some of
its extensions in this chapter.

2.1 The Laurent Gosselin’s theory of time

This multidisciplinary study has involved a strong collaboration with Laurent Gosselin, who has been
developing a theory of time semantics since 1995, and whose works are exploited here to deal with
iteration. Let us introduce his SdT (for "Sémantique de la Temporalité") model in a few words.

2.1.1 The SdT theory in a nutshell

This theory is focused both on time and aspect, providing at the same time a rich description of how
events are located in time (in past, present and future, but also in relation with other events), but also
how they are linguistically shown (as continuous, ended, upcoming, and so on). To do so, several
intervals are associated with each conjugated verb of a text. In particular, one interval corresponds
to what is usually considered as time (see EI below), and another one corresponds to what is usually
considered as aspect (see RI below). In more details, here are the four kinds of intervals involved:

2.1. THE LAURENT GOSSELIN’S THEORY OF TIME 19

• UI : Utterance Interval, corresponds to the time when the utterance is done (i.e. the text is writ-
ten, the speech is done, etc.).

• EI : Event Interval, corresponds to the whole period of time of an event when considering the
infinitive form of a verb (instead of its conjugated form).

• RI : Reference Interval, somehow corresponds to the reference point of Reichenbach (1947). It
is the period of time which is shown by a conjugated verb.

• CI : Circumstantial Interval, corresponds to the period of time defined by a circumstantial com-
plement of time.

Gosselin also proposes a set of relations between these intervals, such as "equals" (the boundaries
are the same) "covers" (begins before and finishes after), "is before", "is after", and so on.

Each event of a discourse is produced at a time corresponding to its UI interval, and is given two
main intervals, namely one EI and one RI, and optionally some CI.

Of course we cannot detail here, but we will just consider a very illuminating series of three exam-
ples below.

(8) Paul was eating

Example 8 involves past continuous tense and typically corresponds to a continuous event in the
past, and may be illustrated in the Gosselin’s theory by figure 2.1. The continuity is rendered by the
relation "EI covers RI", which means that we focus on the period of time which is inside the event
(we consider it from inside). The past is rendered by the relation "RI is before UI". It is important
to understand that the past feature of the past continuous tense does not come directly from a relation
between EI and UI, but from the combination of the relation between EI and RI, and RI and UI. In
particular, we can infer that the event "Paul <to eat>" started in the past, but it may go beyond the UI
interval (i.e. in the present or the future). In other words, it is not said that Paul has stopped eating.

Paul was eating
RI1

EI1

UI1
[1]

Figure 2.1: Intervals involved in example 8

(9) Mary had done her homework

Example 9 involves past perfect tense, and typically corresponds to anteriority in past : something
is shown as already terminated at a given period of time which is located in the past. Being a combined
tense ("had" + "done"), it involves two additional intervals, but the most important point is that one RI
is located in the past, and one EI is located before this RI, as shown in figure 2.2

UI2RI2 RI2'
Mary had done her homework

EI2
[2]

Figure 2.2: Intervals involved in example 9

The Gosselin’s theory then uses a full set of rules of different levels (up to pragmatics), and ends up
associating each RI with either an EI or a CI. We finally get a whole presentation of what is temporally

20 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

meant, both with regard to location in time, and also with regard to how events happen and how they
are linguistically shown.

To sum up this whole process with one example, let us consider example 10:

(10) When her father came in, Paul was eating and Mary had done her homework.

It provides the whole graph shown in figure 2.3 (with an aoristic aspect for "their father came in"),
where the three UI are equal (they correspond to one and same text), and where we can see in detail
that somewhere in the past, the event "father <to come> in" is surrounded by the event "Paul <eating>",
and that "Mary <to do> her homework" is already over when the father comes in.

UI3

UI2

RI3

RI2 RI2'

Their father came in

Mary had done her homework
EI2

EI3

Paul was eating
RI1

EI1

UI1

[3]

[2]

[1]

Figure 2.3: The whole set of intervals and relations corresponding to 10

2.1.2 An implementation of the SdT interval relations construction

The SdT ends up with providing a huge set of intervals and relations when applied to a whole text.
Moreover, there are lots of "domino effects" because intervals are often linked to other intervals in a
waterfall way. As a consequence, it is difficult to build oneself, manually, the whole final time sequence.

In addition, it is not really possible to draw a final result, since many relations between intervals are
underspecified (with respect to what is linguistically said). For example, as we have already mentioned,
figure 2.1 is in fact over-specified: without any additional information (from pragmatics or so), it is not
possible to say if EI terminates before or after UI. It is possible that exemple 8 is followed by "and Paul
is still eating while I am writing this". As a consequence, what should be shown here is not a fixed
interval, but an interval whose right frontier could be moved beyond UI.

As a consequence, I designed and implemented a free Java application which receives all the in-
tervals and relations associated with a text, once the SdT has been applied, and which constructs a
complete resulting chronograph which fulfills all the relations (with respect to the "domino effects"),
as shown in figure 2.4. In addition, the proposed chronograph is not static, with respect to what is
computed by the SdT, and the user is able to move any frontier or interval she wishes: the system
automatically applies the "domino effect" to each interval involved.

This implementation was used by Person (2004) in his PhD thesis (supervised by L. Gosselin
himself and by P. Enjalbert) devoted to perform a complete automatic system which applies the SdT
theory to texts.

2.2 Definition and terminology of iteration

2.2.1 Definition of iteration

We consider iteration as a linguistic object. That is, we aim to understand and to model how a language
such as french or english enables us to conceive and express repetition of events (including states) or
period of time, that is to say any kind of unit which has a temporal dimension, and for whose one may
consider a succession of occurrences over time. Such repetitions are very frequent in our everyday

2.2. DEFINITION AND TERMINOLOGY OF ITERATION 21

Figure 2.4: An implementation of the SdT interval relations construction

experience, for instance through the notion of hours, days, months, seasons or years, but language may
also go beyond the scope of calendars, and is able to consider different events as being somehow the
same phenomenon happening at different periods of time, regardless of the calendar.

First of all, in order to simplify this chapter, we use hereafter the terminology from Vendler (1957):
an Event, driven by a verb, is either a State (static: "I know that", "he is here"), an Activity (dynamic
and homogeneous: "He plays chess"), an Accomplishment (dynamic and with an endpoint: "he climbs
the mountain"), or an Achievement (with an endpoint and which occurs instantaneously for Vendler,
or which is atomic for Gosselin: "The bomb exploded"). The main notion we will use below is Event,
which subsumes all other categories.

Then, we define iteration as the repetition of the same event over time:

• "Repetition over time" means that the corresponding time intervals are not coinciding, which
means at least they do not start at the same time. However, overlapping is possible, since "Suzan
starts a new book each year" does not necessarily mean that Suzan has finished a book before she
starts the next one.

• "Same event" means that a sole infinitive verbal form (possibly complex) is able to express each
of the repeated occurrences.

• To reduce the scope of this study, we have restricted our definition to the fact that these infinitive
verbal forms must include an explicit subject, and this subject must steadily refer to the same
entity from one occurrence to the next. For instance, in "in France, the president is elected every
5 years" does not fit this requirement since "president" may refer to different persons over time.

2.2.2 Iterator, iterating event, iterated event

Let us consider a simple iteration sentence in exemple 11.

22 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

(11) She went seven times to Paris

Iteration process consists in generating several events from one single event. The single event used
to generate the others is called an iterating event, or, shortened, an interating, and each of the thus
created events is called an iterate. In our exemple, "she <to go> to Paris" is the iterating, and there are
seven iterates. Most of the time, an iteration is triggered by an explicit expression, "seven times" in our
example, which is then called the iterator.

It is particularly important to point that all the iterates share a family likeness. In that respect, they
are different from usual independent events which would result from seven consecutive uses of the verb
"to go". This will be discussed further.

This process is illustrated in figure 2.5:

end of
trip

start of
trip

Iterating event (Iterative Model) : "she <to go> to Paris"

end of
trip

start of
trip

Iterates from: "She went seven times to Paris"

Iterator: "seven times"

Figure 2.5: Iterating and Iterate events construction

This figure shows two fundamental aspects of iteration, and how they are linked. How to integrate
this duality both to linguistic context and to our model?

In this study, I have made the strong following assumption: in language, iteration may be handled
from two points of view, namely extensional and intensional, as describe below, sometimes simultane-
ously, sometimes independently, depending on the needs of the speaker. In other words, when facing
an iterated situation (either an event or a set of events which are repeated), we have the possibility to
consider the whole:

• either as a set of events distributed over time (extensional point of view, corresponding to the top
of figure 2.5), which may coexist with other independent events,

• or as a single situation (intensional point of view, corresponding to the bottom of figure 2.5),
whose multi occurrences are known but resolutely ignored.

It is possible for the speaker to put the focus on one of these two sides, and then it is also possible
to shift from one to the other. We can even observe a linguistic continuum:

2.3. MENTAL SPACES AND ITERATIVE MODELS 23

(A) Focus on the extensional side : "The third of September, she went to the swimming-pool for the
first time, and performed one hour of breast stroke. She went back there three weeks later for
two hours, and once again yesterday morning from 8 to 10 in the morning."

(B) Focus on the intensional side : "At that time, my day started at about 7 in the morning. I went to
work at 8, and back home at 6 p.m."

(C) Focus on both sides at the same time : "Every Thursday, we played cards."

In configuration A, there is a situation (she <to go> to the swimming-pool) which is repeated over time.
However, the speaker introduces each individual event independently, from first to third, and specific
features of each event are mentioned (the kind of swimming, the duration, etc.). This is very close to
how we express non iterative situations. In this configuration, the emphasis falls on the set of iterates,
which corresponds to an extensional point of view. However, the intensional point of view does not
entirely disappear, since it is linguistically reflected by the use of specific words as "back" and "once
again", which clearly indicates this situation has already occurred.

On the contrary, in configuration B, a generic situation is described (which we will call "Iterative
Model", see after), namely the content of a day. The linguistic content is very similar to the one of non
iterative situations: if we substitute "at that time" with "yesterday", then the text depicts a sole day.

Configuration C seems to be less targeted than the two others, and can be easily oriented towards
configuration A by adding "overall, there has been 12 Thursdays", where the focus is on the whole
occurrences from an extensional point of view, or configuration B by adding "The game started by
shuffling cards, then (...)" where the focus is on one generic game, from an intentional point of view.

The two sides may be successively used, either to depict some particular occurrences, or to depict
what commonly happens (which will be called an iterative model).

2.3 Mental spaces and Iterative models

2.3.1 Mental spaces from Gilles Fauconnier

Mental spaces were introduced by Fauconnier (1984) in order to model some cognitive processes. We
will not detail here, but illustrate the main principles through some examples.

(12) In the portrayal by Luc, the blue eyes girl has green eyes.

In example 12, how the referent of girl can have "blue eyes" and "green eyes"? In fact, there are
two referents, one corresponding to reality where a model girl is painted, and one corresponding to the
pictural representation of this girl. In such a case, the principle of mental spaces is as follows: "the por-
trayal by Luc" triggers the creation of a mental space M corresponding to the pictural representations.
This mental space is linked to a first space which corresponds to "real world", denoted R. R is called
parent space of M. In addition, R is linked to M by a function F called connector, so that each entity
in R is associated with an entity in M. In our example, an entity denoted xR corresponds to a blue eyes
girl in the real world, an entity denoted xM corresponds to a green eyes girl in the space associated
to the picture, and these entities are related by xM = F (xR). Hence, an utterance such as "the blue
eyes girl" may refer either to xR or, through the "identification principle", to xM , that is the "green
eyes girl", and what could appear contradictory in example 12 becomes natural in the scope of mental
spaces.

Fauconnier tackles example 13 which has a temporal dimension, with mental spaces connected by
a temporal function.

(13) Before she died, the head less woman went to the hair dresser.

24 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

Even more interesting for our study is example 13 which is somehow iterative, even if it does not
fit our definition (the president may be different from one occurence to the next one).

(14) The French president changes every 5 years

2.3.2 Iterative mental spaces (Model Spaces)

Despite my objectives differ from the ones of Fauconnier, I inspired myself of his mental spaces to
propose iterative mental spaces in order to model the way iterations are handled in natural language.
Indeed, the two sides of iteration may correspond to two different mental spaces. From a reference
mental space M corresponding to "real time", in which all iterated events are extensionally positioned,
it is possible to build a more abstract space M’ in which this iterated situation is considered as a whole,
that is, a one and only (not iterated) situation. Each iterate of M is connected by FITER to an iterating
event in M’. There is a difference between the mental spaces from Fauconnier and the iterative mental
spaces proposed here: whereas in Fauconnier, an item from M’ can have only one antecedent in M for
a given connector F, it is possible and natural here that a connector FITER associates to different iterate
from M the same iterating event in M’ (FITER is a surjective), as shown in figure 2.6.

M' space

M space

Figure 2.6: The FITER function from M to M’

M’ space is designed to build and to handle the iterating situation, that is the situation that serves
as a model for iterates in M. In accordance with Fauconnier’s assumptions, these mental spaces do not
directly correspond to specific linguistic structures, but they do correspond to constructions resulting
from the interpretation of the latter (see Fauconnier, 1984, p.32). Moreover, as Fauconnier defines
"introducers" as expressions which build a new mental space or which refer to a space already built,
we can consider iterative expressions such as "every Thursday", "every time", etc., as mental space
introducers.

2.3.3 Iterative mental spaces in discourse

We posit that a reference mental space ME (where letter E stands for Enunciative level) is associated
with any discourse, which corresponds to the first understanding level of iterations. This level proposes
a fully extensional perception of iterated events. In addition, it is possible from this level to access
to enunciative intervals (IE of the SdT), which provides an absolute access to time (by opposition to
relative access): an event is located in past, present or future thanks to its relations with IE.

While performing an analysis of a discourse, we build as many iterative mental spaces (henceforth
MM, where the second M stands for Model) as the number of iterations we find, possibly in a recursive
way, as detailed later.

As a consequence, for a given discourse, we get a single ME, and multiple MM. Each MM is
included either in ME, or in another MM, and, possibly in a recursive way, each MM is finally included
in ME.

2.3.4 Main features of iterative mental spaces

Let M and M’ be two mental spaces so that M is the parent of M’ (reminder: by construction, M’ is
necessarily a MM, and M may be either a MM in case of recursive iterations, or ME). M properties

2.3. MENTAL SPACES AND ITERATIVE MODELS 25

shall be deduced both from the ones of M, and from the iteration trigger. Some of these properties are
temporal, and others are referential.

Temporally:
M’ provides a limited access to temporal line. By "limited", we mean two aspects:

• First, M’ intervals may not interact with M intervals, hence, recursively, with not any parent
space of M. As a consequence, M’ cannot access EI intervals (since they belong to ME, as shown
in figure 2.7, hence, it does not provide access to absolute time (there is no notion of past, present,
nor future).

• Second, the length of the part of the time line of a given space access to is bounded by the longer
iterate it is able to generate. For instance, in an iteration based on calendar triggered by "each
week", like in example 15, this length is most of the time limited to seven days (even if exceptions
do exist, like in "every year, Suzan writes a new book", where some book writing may overlap,
but in fact it is more "starts a new book" than "writes a new book" which is meant in such a
formulation).

(15) Every week, Paul went to the movies twice.

Let us illustrate these principles through example 15. It is a two-level iteration, the first one being
triggered by "every week", the second one, included in the first one, being triggered by "twice". Hence,
there are three levels of mental spaces, as shown in figure 2.7.

Time line

m
en

ta
l s

pa
ce

ME

M'

M''

EI

Paul <to go> to the movies

Paul <to go> twice to the movies

Every week, Paul went twice to the movies

week

Event
Unreachable part of the time line (for a given space)
Reachable part of the time line (for a given space)

in
te

ns
io

na
l

(m
od

el
)

ex
te

ns
io

na
l

(o
cc

ur
re

nc
es

)

Figure 2.7: Mental spaces associated with a multi-level iteration

At the lowest level, ME provides a full access to the time line, where all iterates are present. At the
second level, M’, whose parent space is ME, provides access to a reduced part of the timeline which is
one week long. Then, at the third level, M”, whose parent space is M’, provides access to an even more
reduced part of the timeline whose length roughly corresponds to the duration of a movie.

In order to simplify, we will use the inclusion relation to mean that a mental space is built from
another one: M’ ⊂ M. This relation is different from the mathematical inclusion (in particular, if x ∈
M’, one cannot conclude that x ∈ M). It is convenient for what it stands for here since it makes clear
the fact that the part of the timeline of a mental space is included in the part of the time line of its parent
space. For instance, in example 15, we see that M” ⊂ M’ ⊂ ME, and we can check that: some hours
(M”) < one week (M’) < full time line (ME).

26 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

From a reference point of view:
All the entities which are iterated in a given space M (for instance ME in figure 2.7) are seen as

a single unit in M’, which keeps the features common to the set of iterated entities. For instance, in
"last year, she bought a (new) pastel color dress every week", there are about 52 instances of dress in
M (possibly of different pastel colors), and a single one in M’, whose color property is reduced to the
fact it is pastel.

However, each entity is not necessarily iterated. For instance, in "she went seven times to the
mountain", there may be a single mountain, or up to seven different ones. This may or may not be
linguistically specified.

2.3.5 Mental spaces and calendar

The calendar is often used to carry temporal information in natural language, and this is also true in
the case of iterations. Such syntagms as "every day", "every year", "50 times per second" show us how
useful calendar data are to generate repetitive events, and a part of the model I propose relies on this
paradigm. This is not surprising when considering that the calendar is intrinsically built on cycles, in
a semi-recursive manner (hours are repeated within days, days are repeated within weeks, and so on).
Consequently, it is necessary to study how mental spaces and the calendar interoperate.

We consider that the calendar is made of different imbricated levels, each level introducing a kind
of temporal period which is repeated n times within an occurence of next level. We will denote Level(i)
<n< Level(i+1) the fact that an interval of level i is repeated n times in an occurence of level i+1. For
instance, Second <60< Minute indicates that minute is the next level after second, and that an instance
of Minute contains 60 seconds.

This system is not totally homogeneous since Months may contain from 28 to 31 days, and not
exactly 4 weeks. However, we can determine that :

Second <60< Minute <60< Hours <24< Day <365.25< Year <100< Century <10< Millennium
Day <7< Week < 4< Month
Day <28-31< Month <12< Year
This system well lends itself to dating by ranking (rank of year in "in 1984", rank of day in "may

the 5th"), or by naming ("Tuesday", "June"). This dating may be relative, that is, confined within a
given level, and then is compliant with iteration. Or it may be absolute, that is, set with respect to an
absolute point of the time line (for instance J.-C. birth for Christian calendar), and then is no compliant
with iteration.

We assume that:

• A mental space may be subjected to calendar system. Then, it depends on a single calendar level
(second, minute, etc.). Then, it can access to lower calendar levels, but cannot access to the upper
levels.

• When two mental spaces M1 and M2 are both subjected to calendar system, and M1 ⊂M2, then
M1 level < M2 level.

• We also consider that a mental space subjected to calendar system has access to one and only one
occurrence of the concerned level. This occurrence is denoted "model occurrence". For instance,
we can talk about a "Sunday model" in the case of "every Sunday". In order to simplify, we will
not consider such cases as "every Sunday and Wednesday".

2.3.6 Mental Spaces and construction of iterations

To conclude this section about mental spaces, it is important to mention some cognitive facts about how
iteration is built in natural language.

2.4. CLONING AND PROJECTION 27

I think I found in Fauconnier’s works a conceptual mechanism that accounts for iteration, through
the propositions we have just seen. However, it should be noted that in a linguistic and maybe in a
cognitive perspective, the way iterations are built may also use the opposite way to the one mental
spaces work. Indeed, the latter start from an initial situation where all iterates are present, that is, a
parent space, and goes toward a child space, where an iterative model (i.e. some iterating events) is
obtained by subsumption of the iterates, in accordance with configuration (A) seen in section 2.2.2.

Yet, in many cases, namely the ones of configuration (B), iteration is built from a iterative model,
through a process which creates iterates (in a reverse way to the one of mental spaces). This is the
way which corresponds to the model I propose in this study, but this fact does not alter the compliance
between Fauconnier’s perspective and my approach: it simply corresponds to two reciprocal cognitive
processes, namely iteration and subsumption, as shown in figure 2.8.

Su
bs

um
pt

io
n Iteration

Child Space

Parent Space

Iterative Model

Iterates

Paul <to go> to the movies

Paul often <to go> to the movies

Figure 2.8: Two reciprocal cognitive processes: Iteration and Subsumption

The process of iteration cognitively consists in going from a model situation (such as "Paul <to go>
to the movies") to the creation of iterates (such as in "Paul often <to go> to the movies"). Conversely,
the process of subsumption consists in considering several events as belonging to a whole, that is to a
model event which stands for each of them.

2.4 Cloning and Projection: the links between model event and iterates

Going from a model event to an iterate will be formalized by the notion of cloning. Cloning is quite
usual in Object Oriented Programming, being a mechanism which enables to create a new object from
a yet existing object, by duplicating all its features.

(16) Every Thursday, they played cards from 8 PM to 10 PM.

In example 16, we can consider as an initial approach that the iterator, thought as a simple math-
ematical function, clones the iterating event from the model space (henceforth MM) a certain number

28 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

of times, and projects each of these clones in its parent space (henceforth MP). It is a steady iterator,
whose period is one week.

10PM8PM

Iterative Model of "they <to play> cards from 8PM to 10PM"

Thursday
10PMh

thursday
8PM

iterates from "Every Thursday, they played cards from 8PM to 10PM"

Iterator: "Every Thursday"

etc.

Figure 2.9: Cloning and projection processes

This projection consists in two things: first, a change of mental space, from one space to its parent
space. Second, a repositioning, so that each iterate is put at its particular position in this widened
space. For instance, if a model event is located into the "Thursday model" of MM space built from
"every Thursday", each of its clones is positioned into a different Thursday in the parent space MP.

This first approach is quite simple, but needs to be extended to fit the language reality. Indeed,
its absolute regularity, that is the fact that each card game begins exactly at 8PM and stops at 10PM
is clearly an over-specification of the iterates: the speaker does not necessarily assume that each card
game is scheduled so precisely. Moreover, the context of card games may differ from one iterate to the
next one, like in example 17.

(17) Sometimes, they invited Suzan, which made the game lasting longer.

In this example, the content of the iterate, that is, what happens, may change from time to time,
with an additional player, and a longer game.

In addition, it is even possible to override the content of the model as much as needed, like in
example 18:

(18) Thursday the seventh of September 2017, the game started earlier, at 7PM.

To finish, deeper derogations to the model are possible, such as in example 19 where the card game
itself is changed to chess. What could appear not logical at first sight is linguistically possible thanks
to the fact that the hypernym "game" subsumes both "card game" and "chess".

(19) Occasionally, they played chess instead of cards.

These examples show us that cloning and projection are looser than a classic mathematical mecha-
nism, in the sense that they use the iterating event as a model to what is cloned and projected, but this
model may be declined in different projected entities, namely the iterates, which inspire themselves
from the model, but have their own specificities.

2.5. SDT INTERVALS IN MENTAL SPACES 29

As a result, an iterate includes two sides :

• The model side: as the clone of a given model, it shares with other iterates some properties
coming from the model.

• The singular side: this side falls within MP, and accounts for the specificities of a given iterate
(for instance the fact that a game starts at 7PM instead of 8PM).

In the absence of any linguistically formulated particularity, a new iterate is given all the features
of its model. For instance, in our example, the fact that a game starts at 8PM and stops at 10PM. In
other words, at birth, an iterate exactly corresponds to its model (except its temporal position which is
necessarily singular in MP), that is to its model side. Then, it is possible to override or to add features,
which enrichies its singular side. For instance, it is the case of example 18, as illustrated in figure ??.

10PM8PM

Iterative Model of "they <to play> cards from 8PM to 10PM"

Thursday
10PM

Thursday
8PM

Iterates of "Every Thursday, they played cards from 8PM to 10PM.
The seventh of September, they started at 7PM."

etc. etc.
Thursday

7PM
Thursday

10PM

Iterator: "Every Thursday"

September the 7th
2017

Figure 2.10: The two sides of iterates

From a formal point of view, we will call iterative model the class of objects which describe
the iterative situation, where the term "model" captures the link existing between iterative events and
iterates, and in particular the fact that an iterative situation behaves as a model which can be declined
in different occurrences each of them happening to be slightly different from the others.

2.5 SdT intervals in mental spaces

During this collaborative study, Laurent Gosselin has extended the SdT theory to iteration, and has
created new specific intervals. I shall shortly introduce them, and see what they correspond to in our
model.

The main idea, in the extended SdT, is that an iteration can be considered as a whole, and so is
given intervals as it is for any regular event.

For that, first, an interval [B1s, B2s] is designed to cover the set of iterates. It somehow corresponds
to the EI of a regular event. Second, a reference interval [Is, IIs] is created especially for the set of
iterates. It somehow corresponds to the RI of a regular event.

30 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

In addition, Gosselin also considers the idea of an "occurrence model", which corresponds to the
notion of iteration model. He designed corresponding intervals, respectively [EI1, EI2] and [RI1, RI2].

It is the same for circumstantial intervals, with [CI1s CI2s] corresponding to the set of iterates, and
[CI1 CI2] corresponding to the model of what is iterated.

Let us now make a bridge from iterative models to the SdT intervals.
[EI1s, EI2s] and [RIs1, RIs2] intervals are systematically located in the parent space of another

space, namely a child space in which an iterative model takes place.
[EI1, EI2] and [RI1, RI2] intervals take place in the child space (a.k.a. model space).
It is also the case, when relevant, for circumstantial intervals: [CI1 CI2] belongs to the model space,

and [CI1s CI2s] belongs to the parent space. It is worth noting that some circumstantial complements
concern [CI1s CI2s] (i.e. the parent space), such as "for years" in example 20, and others concern [CI1
CI2] (i.e. the model space), such as "on Sundays" still in example 20.

(20) He came here on Sundays for years.

The intervals resulting from example 20 are shown in figure 2.11

Enunciative Space
ME

Model Space
M'

UI1

RI1 RI2

EI1 EI2

CIs1 CIs2

UI2

CI1 CI2

RIs1 RIs2

EIs1 EIs2

"for years"

Sunday

Figure 2.11: The intervals of the extended SdT in the different spaces

While in Gosselin’s study, all kinds of intervals take place in the same axis, they take place in
different spaces in the present model. The intervals related to the whole series of events ([EI1s, EI2s],
[RI1s, RI2s], [CI1s CTIs]) take place in a given space MP parent of a child space M, whereas the
intervals related to an iterative model ([EI1, EI2], [RI1, RI2], [CI1 CTI]) take place in M. This is a
recursive structure, since an iterative model may come itself from another iteration, and in this case it
has its own [EI1s, EI2s], [RI1s, RI2s] and [CI1s CTIs] intervals.

With regard to utterance intervals UI, in the SdT any event is related to a UI interval which corre-
sponds to the moment when the utterance occurs (i.e. is said or is written). We take over this principle,
but we put the UI intervals only in the highest level space, that is the enunciative space ME, never in the
other spaces. Indeed, the latter are free of any UI, and thus have no access to absolute time. As a con-
sequence, there is no notion of past, present or future in such spaces, but only anteriority, simultaneity
and ulteriority. In other words, in MM spaces, there is no absolute time, but only relative time.

2.6 An Object Oriented Iteration Model

By now that iterative mental spaces have been introduced, and our modeling objectives defined, it is
time to introduce our iteration model.

2.6. AN OBJECT ORIENTED ITERATION MODEL 31

2.6.1 UML in a nutshell

In order to better understand the model introduced here, it is necessary to get some core points of UML
(Unified Modeling Language, cf. Rumbaugh et al., 2004).

The model I propose is built within the "oriented object" paradigm, where we can design kinds of
objects through the notion of classes. A class describes what is common to a series of objects, the latter
being called instances of this class. For example, the Car class enables to create (instanciate) as many
car objects as we wish. Each of these objects has its own state, independently of the one of the others
(for instance, a given car can move while another one is stopped), but they all share a common structure
provided by the class.

In first approach, we can distinguish two kinds of relationships between classes: association rela-
tionship, or inheritance relationship.

Association relationship stands for the fact that a class uses another one in its design. For instance,
the Car class may use the Motor class to indicate that each car has a motor, and the Wheel class to
indicate that each car has four wheels. In this case, there are two association relationships, one from
Car to Motor, of multiplicity 1, and another one from Car to Wheel, of multiplicity 4. To finish,
association may be symmetric or, in most cases, not symmetric. The corresponding UML diagram is
shown in figure 2.12.

CarMotor Wheel
41

Figure 2.12: an UML diagram with association relationships

Inheritance relationship stands for the fact that a class can be the super-class of another one, which
is, reversely, the child class. It is an asymmetrical relationship, being hierarchical, which indicates
that the child class is a sub-type of the super-class. For instance, The Car class may be a sub-class of
the Vehicle class, in the same way as hypernym and hyponym relationships. This is a very powerful
feature of object-oriented modeling, and is the basis of polymorphism. The latter makes it possible
to consider an object from different points of view, or, more precisely, from any of its parent types.
Indeed, inheritance corresponds to a "is a" relationship, and it follows that for example an instance
of Car is also an instance of Vehicle, because a Car is a Vehicle. Concretely, every time a process
concerns a given type, it automatically concerns any of its sub-types, or sub-sub-types, and so on. The
corresponding UML diagram is shown in figure 2.13.

Vehicle

Car

Figure 2.13: an UML diagram with an inheritance relationship

32 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

2.6.2 Iteration

Iteration is the main class of this model, and models completely any iteration of any kind.
It is composed (with association relationships) of an Iterator and an IterativeModel.
An Iterator is an object which triggers the repetition of events through time. It may rely on a set

of time intervals as the ones resulting from "every Thursday" (each of them receiving one iterate), but
also on other means than intervals, as for instance in "three times" (quantifying), "often" (frequency),
"each time that" (event-driven).

An IterativeModel corresponds to a model of what is iterated (a.k.a. the iterative situation), and is
composed of one or several IterativeEvents. The latter may be linked each other by relationships of
different kinds (temporal, causative, etc.). It is shown in figure 2.15.

Iteration

Iterator

IterativeModel

1

1

Figure 2.14: Iteration, Iterator and IterativeModel UML graph

These objects may correspond to different linguistic elements, but this is not in a systematic way.

(21) Every Thursday, they played cards

(22) She often goes to Paris / to the garden

(23) Each time they come, we play pool

Indeed, in example 23, the Iterator seems to come directly from the circumstantial complement
"every Thursday", and the IterativeModel seems to come directly from "they played cards", but:

• In example 22, the Iterator is built not only from the adverb "often", but also from pragmatic and
referential considerations, since "to Paris" induces a few times a year frequency, whereas "to the
garden" induces a few times a day frequency.

• In example 23, "they come" not only constitutes a trigger of iteration, but also belongs itself to
what is iterated. Hence, it is both in the Iterator and the IterativeModel.

As a conclusion, this model is devoted to render the semantics of iterations in natural language, but
is not directly anchored to textual elements.

2.6.3 Iterator

Introducing Iterators

Iterators are meant to provide a series (most often, ordered) of "positions" (known or not) on the time
line, each of which an iterate is positioned on. From a formal point of view, it provides from 1 to n
"positions".

2.6. AN OBJECT ORIENTED ITERATION MODEL 33

These positions are not necessarily temporally known. For instance, in example 24, one can say
that they belong to the lifetime period.

(24) In her whole life, she went three times to the sea.

(25) Before the rooster crows, you will deny me three times.

In addition, an Iterator is given a frame, that is an interval which covers the whole set of iterates,
which resembles the "reference period" from Gosselin. This frame may be contextual, or given directly
in the sentence, like in examples 24 or 25.

Linguistically, this frame may be constrained by a circumstantial interval, and it covers [Bs1, Bs2]
of the SdT model.

To finish, in accordance to the SdT model, a boolean attribute tells if the resulting iteration is
intrinsically bounded or not. For instance, with "three times", this boolean is true, whereas it is false
for "often" or "sometimes".

Iterator Model

Different classes of Iterators exist:

• Interval set: "every Thursday" (steady calendar), "one Monday out of three" (frequency calen-
dar), "last Monday and Wednesday" (calendar)

• Quantifying: "three times", "a few times", "<to eat> three apples"

• Event driven: "When they come", "as soon as they arrive", "when the weather is fine"

• Frequency: "often", "frequently", "from time to time"

• Composite (resulting from the juxtaposition of several Iterators): "3 Thursdays and another time"

There is a clear difference to be made between CalendarIterator (and its sub-classes) and the other
ones. Indeed, with this class, the temporality is already provided in the iterator, outside of the iterative
model (since intervals are provided from the outset), while there is no pre-existing interval with other
classes. However, we have decided to propose a flat hierarchy of all the classes in order to simplify.

Iterator

CalendarIterator

SteadyCalendar

FrequencyIteratorQuantifyingIterator EventDrivenIterator
CompositeIterator

2..*

FrequencyCalendar

Figure 2.15: The Iterator classes

Let us now come back to the effective content of an Iterator. As already mentioned, its first goal
is to create iterates, and to provide access to them. Each of the latter may be in relation with other
iterates, or with other temporal elements (for instance calendar data). Let us consider two examples
semantically close, but which use two different classes: (a) "three times" and (b) "three consecutive

34 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

Thursdays". Each of these Iterators provides three iterates. But, whereas (a) provides no temporal
information about these iterates, (b) tells that they belong to Thursdays, and that these Thursdays are
consecutive. (a) is rendered by a QuantifyingIterator, and (b) by a SteadyCalendar.

A bridge between Iterators and "iteration sources" of the SdT

Even if this study focuses on how to model iterations, it is nevertheless interesting to link some classes
of Iterators to some linguistic configurations. If we take a look at the SdT "iteration sources" proposed
by Gosselin, we can make the links as follows:

(a) Intrinsically iterative verbs such as "shake": they are not treated in this study

(b) Determiner in the complement of the verb such as "<to eat> two apples": QuantifyingIterator

(c) Circumstantial complements such as "Every Tuesday": SteadyCalendar

(d) frequency adverbs such as "sometimes": FrequencyIterator

(e) iterative adverbs such as "three times": QuantifyingIterator

(f) Presuppositional adverbs such as "again": iterate to be linked to a pre-existing iteration.

(g) "Conflicts" (when something seems to be contradictory or illogical at first stage of reading):
may concern different Iterators. For instance, "For a long time I used to go to bed early" (conflict
between "for a long time" which concerns a long period of time, and "to go to bed" which is quite
short) provides a SteadyCalendar for pragmatic reasons (usually once a day), whereas "in those
days, he played the piano" (one cannot play continuously during several days) should provide a
FrequencyIterator.

2.6.4 IterativeModel

An IterativeModel is intended to provide a model of what is iterated. For instance, in example 16, it is
"they <to play> cards". That is the most simple model, but we will see much more elaborate ones later.

Formally, an IterativeModel consists of a set of one to n ModelEvents, and of relationships between
the latter.

IterativeModel

1..*

- [RI1, RI2]
- [EI1, EI2]

ModelEvent

InterEventRelationship

2

*

Temporal Causative PartWhole etc.

Figure 2.16: The IterativeModel class and its associate classes

2.6. AN OBJECT ORIENTED ITERATION MODEL 35

Figure 2.16 represents the association between an IterativeModel and its ModelEvents, and between
the IterativeModel and the InterEventRelationships. Besides, an InterEventRelationShip concerns two
ModelEvents, which can be seen with the number 2 in the figure. To finish, an InterEventRelationShip
may belong to different kinds, which can be seen through the inheritance relationship between classes.

The fact that an IterativeModel can contain several ModelEvents should be compared to what Gos-
selin calls "agglomerates". Indeed, it is the formal representation of the fact that several events may
constitute a whole, and, moreover, that this whole may constitute, by inheritance, an event.

2.6.5 ModelEvent

A ModelEvent is an event which takes place in a model space. We must remember that in such a space,
time access is totally focused on a generic representation of what happens. In particular, the intervals
which belong to an upper level (in the parent spaces) are not available, and as a consequence, there is
no absolute time (no present, past or future since enunciative intervals belong to the enunciative space).

The fact that different events are located into different spaces may evoke the "temporal referential"
from Desclès (1995) or Battistelli et al. (2006). However, the goal is different. In the present case, that
is to provide spaces where events from two different spaces are never temporally linked, but where it is
possible from a child space to clone and project events towards a parent space.

A ModelEvent adopts the main features of normal events, in particular is three kinds of intervals:
event interval, reference interval, and, sometimes, circumstantial intervals.

To finish, a ModelEvent is not given any enunciative interval. As already said, the SdT provides
such intervals to any event, whether it is iterative or not. In the present case, they belong only to ME.
Hence, ModelEvents, which are not in ME, are totally out of enunciation, and behave in a generic and
uncoupled way. However, thanks to their event and reference intervals, they keep all the necessary
features to cope with relative time and linguistic "aspect".

2.6.6 ModelEvent relationships

In the SdT, temporal and aspectual relationships are grounded on the different kinds of intervals, as
already seen, and on different relationships between these intervals. In the present model, I wish to
categorize the different kinds of relationships that exist between events, so that the model renders
the content of texts in a more intuitive and more readable way. Since I have not worked on such
relationships thoroughly, I will simply give a single picture through three cases:

• temporal relationship (see example 26)

• causative relationship (see example 27)

• part-whole relationship (see example 28)

(26) She often arrived after Paul

(27) When it rained, we took our umbrellas

(28) The card games began with the distribution of the cards

A temporal relationship between two events involves one of the relationships defined by Gosselin
in the SdT. A non temporal relationship may have temporal consequences. For instance, a causative
relationship usually implies that the consequence event is subsequent to the causative event, and a
part-whole relationship implies a temporal covering of the part by the whole.

36 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

2.6.7 Circumstantial model intervals

It is necessary to broaden the iterative model so that it accounts for examples such as 29 or 30. This is
done by adding circumstantial model intervals.

(29) Each time, the cards were prepared the day before

(30) Each time, the cards were prepared in ten minutes

These circumstantial intervals are part of a model space, and as a consequence, are not temporally
connected to a parent space. In example 31, we can assume that the model space gives access to a
"model year", since the iteration is triggered by "each year", and that this space contains a single "10th
of July". However, this "10th of July" cannot be dated in an absolue manner, like in example 32.

(31) Each year, they prepared the fireworks as early as the 10th of July

(32) * Each year, they prepared the fireworks as early as the 10th of July 1984

According to the current study, circumstantial model intervals can belong to two kinds:

• They can provide an anchor relative to another interval from the same mental space. It is the case
of "the day before".

• They can provide a partly defined calendar anchor, with a granularity level (day level in our
example) strictly lower than the one of the model space it belongs to. For instance, in examples
31 and 32, the granularity level of the model space is "year", but while in example 31, "10th of
July" is of level "day", and "July" is of level "month", hence compatible, in example 32, "1984"
is of level "year", hence not compatible.

2.6.8 Recursive constructions: Iteration as a model event

An Iteration can itself constitute a model event, and thus can recursively belong to another Iteration.
This is shown in figure 2.17 (not complete), through an inheritance relationship.

IterativeModel

1..*

- [I, II]
- [B1, B2]

ModelEvent

- [RI1, RI2]
- [EI1, EI2]

Iteration

Iterator

1

1

Figure 2.17: Iteration as a model event

Hence, it is possible to account for example 33.

(33) Every Sunday, they swam twice

2.6. AN OBJECT ORIENTED ITERATION MODEL 37

However, when an Iteration serves as a ModelEvent to another Iteration, its iterates belong to model
space, as any other ModelEvent of the IterativeModel it belongs to. Consequently, this Iteration should
comply with the constraints relating to the affiliation to such a model space, as already formulated.
Only the top level Iteration belongs to the enunciative space.

2.6.9 A second view on the extensional / intensional duality

Now that Iteration has been defined, and mental space introduced, it is wised to revisit the duality
between the two possible ways to consider iterations which were introduced at the beginning of this
study, and to see the related linguistic and cognitive aspects.

This model strongly relies on the construction of iterations based on the declination of an iterative
model (a model of the situation that is iterated) in a certain number of singular elements called iterates,
through a cloning and projection mechanism. In that sense, it is grounded on an intensional logic of
iteration phenomena.

This does not mean that this study postulates that iterations in natural language always follow this
intensional perspective.

First of all, we have seen with the first examples that the duality intensional / extensional is present
in natural language. Moreover, the present model accounts simultaneously for this duality, since it
provides both the iterative model (in an intensional perspective) and the mean to build all the iterates
as well as the way to personalize any of the iterates (in an extensional perspective). Consequently, this
is a dual model. To finish, it is important to distinguish between the phenomenon we want to account
for, and the particular way we model it: we do not posit that any iteration in natural language comes
first from an iterative model. On the contrary, it seems that the way iterations are cognitively built is a
rich and various process, that we propose here to revisit.

Let us consider a excerpt of the beginning of "À la recherche du temps perdu" from Marcel Proust :

(34)

(Translated from the French by C. K. Scott Moncrieff). For a long time I used to go
to bed early. Sometimes, when I had put out my candle, my eyes would close so
quickly that I had not even time to say “I’m going to sleep.” And half an hour later
the thought that it was time to go to sleep would awaken me; I would try to put
away the book which, I imagined, was still in my hands, and to blow out the light; I
had been thinking all the time, while I was asleep, of what I had just been reading,
but my thoughts had run into a channel of their own, until I myself seemed actually
to have become the subject of my book: a church, a quartet, the rivalry between
François I and Charles V. This impression would persist for some moments after I
was awake; it did not disturb my mind, but it lay [sic] like scales upon my eyes and
prevented them from registering the fact that the candle was no longer burning.
Then it would begin to seem unintelligible.

Example 34 puts its reader almost instantly in a model space. A long series of sentences (using the
"imparfait" tense in french) creates a situation which is obviously iterated, but it is built in the same way
as a non iterative situation. We only need to remove "longtemps" ("for a long time" in the translated
version) to get a single (i.e. non iterative) situation.

Moreover, this iteration comes from a conflict rather than from an iteration trigger, which hides
even more the extensional aspect.

An interesting clue of iteration lies in the fact that there is an enumeration of three items: "a church,
a quartet, the rivalry between François I and Charles V" which would not be possible in a single sit-
uation. Each of these items corresponds to one iterate, that is, to one declination of the model. Inter-
estingly, these different situations are subsumed by the singular "this situation" in the next sentence,
which corresponds again to the model, i.e. the intensional point of view.

Except from that particularity, this text is a canonical example of an intensional presentation of
iteration: from the enunciative space ME, we go into the past (thanks to the "passé composé" and

38 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

then a series of "imparfaits" in the original version, which are past tenses), from which we consider a
repetitive situation which occurs through a long period of time. Then, we incorporate a model space
MM included in ME, which gives access to about a 24 hours period of time, from which one can build
an iterative model by adding progressively different model events.

In a reverse way, instead of building an iterative situation in MM in order to clone and project it
in ME, it is possible to build an iteration from ME, by describing, first, one of its iterates, which then
behaves both as an iterate and as a model, like in example1 35.

(35) Today, like every day, you come to the shooting studio for a new episode (# 783) in
the series "Salama Bay" in which you have struggled to get a key role.

Just removing "like every day" transforms this text in a single situation. Moreover, it is interesting
that the number 783 only concerns one of the iterates. However, the phrase "like every day" indicates
that this situation serves simultaneously as an iterative model for other iterates (in the past, but also
possibly in the future). This example shows how close model events and single events are, both seman-
tically and in the present model, and that their differences mostly come from the space from which we
consider them. Regarding the present case, it must be noted that a single event can be seen as a model
event by erasing some of its features (in accordance to what is allowed in a MM space, like absolute
time, or, here, the number 783).

In a very similar manner, it is possible to build an iteration a posteriori from a past situation, like
in the presuppositional "again" in example 36:

(36) Yesterday, it rained all day long, and today, it is happening again.

These linguistic considerations show that overall, model events and single events are of the same
nature, and that it is possible to go from one to the other in the two ways. Building iterates from a
model is what we have thoroughly detailed in the previous sections. The reciprocal process, that is,
which consists in building a model from a single event, should also be provided. It is what we will see
in the next section.

Let us finish with an example which goes beyond the scope of this study, but which shows some
possible extensions to the present model.

(37) Yesterday, John went to the fair. So will Paul today.

In example 37, a single situation serves as a model for another situation where the subject is differ-
ent (Paul instead of John).

2.6.10 A model of Events

An Event takes place in a temporal MentalSpace. It bears a TemporalLocation, which is relative to a
MentalSpace. It owns one to several protagonists. It can be cloned as is (i.e. in the same MentalSpace),
or in order to conform to another MentalSpace.

The main contribution of this model is to make no difference between what we have previously
called normal events and model events. In this model, both kinds of events come from the same class,
and only differ on the fact that normal events take place in ME, whereas model events take place in
child spaces. According to me, this is consistent with some cognitive mechanisms if we judge by how
easy it is to go from one kind of event to the other. We have already observed this phenomenon, and
two new examples are provided in 38 and 39.

(38) Yesterday, John went to the swimming pool at 2 PM.

In example 38, we create an event e1 which is related to protagonist John, and which depends on
ME space. The corresponding temporal location is absolute, provided by the deictic "yesterday", and
specified by "2 PM".

1translated from http://www.scenariotheque.org/Document/info_doc.php?id_doc=4411

2.7. IMPLEMENTING MENTAL SPACES: LINKS BETWEEN MODEL EVENTS. 39

Protagonist 1..* MentalSpace1>>
takes place in

EnunciativeSpace ModelSpace

1 <<
has as
parent

TemporalLocation 1

1

>>
is relative to

1
+ clone() : Event
+ clone(e : MentalSpace) : Event

Event *

Figure 2.18: The Event class and its associate classes

(39) He returns there tonight at 8 PM.

In example 39, we should process in two steps. First, we have to create an Iteration, because we
go from a single event e1 to an iterated situation clearly triggered by "<to return>" (which bears a
presupposition). To do so, it is necessary to create a ModelEvent. Then, it is necessary to create a
second event e2 corresponding to this second sentence:

• The ModelEvent which is created, called "me", is created by cloning e1, but in a child space of
the space of e1 (which is ME), called here MM. Its temporal location is within MM and does not
take into account the absolute location of e1, but keeps its temporal specification "2 PM").

• The second event e2 can be created either by cloning e1, staying in the same mental space, or by
cloning me, with a projection into ME. In both cases, its temporal location is given in ME, and
is specified by the deictic "tonight" and by "8 PM".

(40) In fact, he has made a habit of going there regularly since the beginning of the year,
and usually swims for one hour.

In example 40, the speaker refers to the whole iteration from the beginning of the year, and gives an
additional piece of information concerning the duration, and another piece of information about when
the iteration has started. Thanks to this model, the event e1 and e2 get retrospective information (the
one hour duration), and so we know that e1 lasts from 2 PM to (probably) 3 PM, and that e2 lasts from
8 PM to (probably) 9 PM.

To sum up, iteration in natural langage may take very various ways to be built, and the present
model is able to account for any of them.

2.7 Implementing Mental Spaces: links between model events.

Mental spaces make it possible to get away from difficulties to manipulate and to render iterations. It
is then possible, in such spaces, that events are no longer iterated, and the way we consider iterative
temporality resembles the way we consider usual temporality.

2.7.1 Concomitant model events

(41) Since he was married, every Sunday, Paul was baking a cake when his
mother-in-law arrived.

40 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

Let us analyse example 41. This is an Iteration whose Iterator is a SteadyCalendar which repeats
Sundays and so which provides a one week long duration space.

Besides, the frame of this Iteration starts with Paul’s wedding, and has no specified end.
The iterative model, induced by "Paul was baking a cake when his mother-in-law arrived", is com-

posed of two ModelEvents. We have to move into the associated model space to figure how they work
together. The available timeline is one week long, and so contains a Sunday model (a Sunday which has
no absolute location). In this space, it is possible to apply the regular SdT theory: "his mother-in-law
arrived" is an aoristic, which provides a coincidence relationship between the reference interval and
the event interval. "Paul was baking a cake" is here a progressive, which provides a covering relation-
ship between the event interval and the reference interval. Moreover, "when" provides a coincidence
between the two reference intervals. Overall, we get the whole representation shown in figure 2.19.

available period of time : one week

Iterator: "every Sunday"
(SteadyCalendar, period=1 week)

Sunday 0 AM Sunday 12 PM

Paul <to bake> a cake

mother-in-law <to arrive>

: Event interval [EI1, EI2]

: Reference interval [RI1, RI2]

Model Space MM

Figure 2.19: An example of concomitant model events

2.7.2 Successive model events

In the same way as concomitant model events, it is also possible to have successive model events, which
correspond to what Gosselin calls "iterative series of events". It is a particular case of model events
where events occur one after the other, like in example 42.

(42)

(74 – Chapter 1) At eight o’clock in the morning he [Regimbart] was descending
from the heights of Montmartre to drink white wine in the Rue Notre-Dame des
Victoires. His lunch, which was followed by several games of billiards, led him till
three o’clock. He was then heading towards the Passage des Panoramas [...].
(Flaubert, L’Education sentimentale, Gallimard, 1965: 57)

2.8. IMPLEMENTING THE ITERATION MODEL ON SIMPLE CASES 41

In this example, there are several successive events, corresponding to "to descend", "to drink", "to
have lunch", and so on.

2.7.3 General case

We have just seen two particular cases of relations between model events. In the general case, we just
have to build the relationships exactly as we do with the SdT with normal events, which may lead to
some quite complex structures, like in example 43:

(43)
Every Thursday at 8 pm, the game started. At that time, the house was generally
quiet for a long time. The games kept rolling. The evening ended at about 10 pm
with an aperitif.

In this example, there are successive model events with "to start", "to keep rolling", "to end", while
there is a concomitance (more precisely, a covering relationship) between "to be quiet" and "to start",
as shown in figure 2.20.

available period of time : one week

Iterator: "every Thursday"
(SteadyCalendar, period=1 week)

Thurday
12 PM

Thursday
0 AM

<to keep> rolling games

house <to be> quiet

Mental Space MM

8 PM 10PM

<to start> playing

<to have an aperitif>

Figure 2.20: A rich example of model event relationships

2.8 Implementing the Iteration Model on simple cases

In this section, we show how the model can be implemented in simple cases through some examples.

2.8.1 Quantifying Iterator

Let us go back to one of the first examples of this study, reproduced as example 44 below:

(44) She went seven times to Paris

42 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

This simple iteration relies on the QuantifyingIterator coming from "seven times". There is no
specified frame for this iteration, and we only know that this iteration takes place in the past (taking
account of the past tense), and for pragmatic reasons that it starts after the birth of the subject. There
is only one ModelEvent coming from "she <to go> to Paris", so the iteration model is simple. The
resulting graph is provided in figure 2.21.

Model Space

Ite
ra
tio
n

Type : Quantifying

Quantity : 7

Frame : not provided (occurs in the past)

Iterator

Iterative Model

She <to go> to Paris

ModelEvent

Figure 2.21: An iteration coming from a quantifying iterator

The two white frames correspond on one side to the content of the model space, in which the iter-
ative model takes place (and its ModelEvents), and on the other side to the description of the associate
Iterator, whose content depends of the type (here Quantifying). A vertical dotted line (named Iteration)
merges these two frames to represent the whole iteration. For the sake of brevity, the temporal and
aspectual information previously mentioned are not reported here (but would take place in the iterative
model).

2.8.2 Iterations with a SteadyCalendar Iterator

We go back now to another example, reproduced as example 45:

(45) Every Thursday, they played cards from 8 PM to 10 PM.

In this case, there are some time specifications provided by "8 PM to 10 PM", which concern the
only ModelEvent, as reported in figure 2.22.

At this stage of our study, it is important to note that the iterative constructions we have built are
quite generic. Indeed, if the proposed model clearly distinguishes between Iterative Model (in the
top of the figures) and Iterator (in the bottom of the figures), it is because these two parts are really
independent.

It is possible to reassemble elements coming from different iterations, and get representations con-
sistent with the linguistic correspondant reassembly, such as in "Every Thursday, she went to Paris"
which mixes examples 44 and 45, or "They played cards 8 times from 8 PM to 10 PM". This reveals
the compositional aspect of iterations and of the present model.

2.8. IMPLEMENTING THE ITERATION MODEL ON SIMPLE CASES 43

Model Space

Ite
ra

tio
n

Type : SteadyCalendar

Subtype : Day

Name : "Thursday"

Frame : not provided

Iterator

Iterative Model

They <to play> cards

ModelEvent

 0 AM 12 PMThursday
8PM 10PM

Figure 2.22: An iteration coming from a SteadyCalendar iterator

2.8.3 Iterations with a Frequency Iterator

Frequency Iterators are more difficult to handle for two reasons.
First, they bear a frequency value which is mainly given by extra-linguistic data. For instance, the

obvious difference of frequency between "he (quite) often goes to the kitchen" and "he (very) often
goes to New York" lies in the interpretation of the situations (we cannot go as often to New York as
to the kitchen). For this reason, "quite often" in the first case may provide an higher frequency than
"very often" despite the fact that linguistically, the adverbs say the contrary. This is due to the notion
of "norm" provided by Gosselin.

Second, if in some cases frequency iterators make sense with respect to absolute temporality (case
A), like in the examples we have just seen, they can also make sense with respect to an event driven
temporality (case B) in other cases, that is, with respect to iterated events. For instance, "Paul often goes
to Cabourg, more rarely to Deauville", the frequency may be related to each time Paul has a week-end
trip. This is thoroughly studied by Gosselin, relying on De Swart.

For this reason, we tackle these two cases in two different ways. Case A is tackled in this sec-
tion, whereas case B is tackled in section 2.9 which requires some additional developments, namely
Selectors, which will be introduced later.

To make the distinction between cases A and B, we will call FrequencyIterator the one correspond-
ing to case A, and FrequencySelector the one corresponding to case B. Besides, some adverbs like
"often" in example 46 can have a double meaning, the one of case A in example 47, and the one of case
B in example 48.

(46) Often, after doing our homework, we were watching a movie

(47) We often did our homework, and then went (each time) to the movies

(48) Our homework was often followed by a movie.

44 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

It is possible to disambiguate example 46 by supplementing it by "it happened two or three times a
week" (acceptation A) or with "it happened three times out of four".

We now focus exclusively on case A, that is on FrequencyIterators, in the rest of this section,
by analyzing example 47. This is an opportunity to address a more complex iterative model than
previously, since it involves two ModelEvents : "we <to do> homework", and "we <to watch> a movie".
These two events are linked by a succession relationship, as shown in figure 2.23.

ModelSpace

IterativeModel

we <to do> our homework

ModelEvent

we <to go> to the movies

ModelEvent

succession

Figure 2.23: A complex iterative model

In the rest of this study, we will not provide the detail of temporal relationships, and we will
only provide, at most, the name of the relationships between ModelEvents (like "succession" in this
example).

The Iterator is quite simple, and is devoted to provide a certain number of temporal locations
corresponding to the position of the iterates. It is very under-specified at this stage because it requires
contextual or pragmatic informations in order to get better specifications (consider for instance "he
changes his shirt very often" versus "he changes his house very often").

From an object point of view, we have designed a class hierarchy of different FrequencyIterators.
A FrequencyIterator may be "numeric" (NumericFI) of "fuzzy" (FuzzyFI : "we often go to the

movies") depending whether or not it quantifies the frequency.
Among NumericFI iterators, we distinguish between the steady ones (SteadyNFI : "we go to the

movies every three days") and others (UnsteadyNFI : "we go to the movies one week-end out of four")
depending whether or not they provide a strict period of time between two iterates.

The inheritance graph is provided in figure 2.26.
There is an obvious proximity between NumericFI and calendar iterators, in particular as far as the

SteadyNFI class is concerned. This is because the numeric content of the latter can be projected on
a calendar. Indeed, it is possible to build very similar iterations coming from these different kinds of
iterators.

(49) We recycle our bottles every Monday (SteadyCalendar)

(50) We recycle our bottles every seven days (SteadyNFI)

(51) We recycle our bottles once a week (UnsteadyNFI)

2.8. IMPLEMENTING THE ITERATION MODEL ON SIMPLE CASES 45

ModelSpace

IterativeModel

we <to do> our
homework

ModelEvent

we <to go> to the
movies

ModelEvent

succession

Ite
ra
tio
n

Type : FuzzyFI

Name : "often"

Frame : not provided

Iterator

Figure 2.24: Iteration coming from a FrenquencyIterator

FrequencyIterator

Name
FuzzyFI NumericFI

SteadyNFI UnsteadyNFI

Figure 2.25: Iteration coming from a FrenquencyIterator

However, the third example (51) is clearly distinct from the first two of them (49 and 50) insofar as
the concerned day may change from one week to the next one (hence the unsteady behavior). There is
still to debate about the tenuous difference between SteadyCalendar and SteadyNFI. My opinion is that
SteadyNFI relying first on frequency rather than on the calendar, it may easily provide temporal drifts.
For instance, if we supplement example 50 by "Sometimes, it is 6 days only because the container
is full", then there will be long term temporal drifts, whereas if we supplement 49 by "Sometimes,
we need to do it as soon as on Sunday", the Mondays should then come back again because of the
semantics of "every Monday"...

46 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

2.8.4 Iteration coming from an EventDrivenIterator: "when", "each time that", etc.

We address now a very different kind of iterators from the ones we have just seen, insofar as it is
interwoven with the iterative model of which it accounts for.

(52) When they came, we played cards.

Indeed, in example 52, which relies on an EventDrivenIterator, the ModelEvent "they <to come>"
serves both to build the IterativeModel, that is, what is being iterated, but also to build the Iterator, that
is, what generates the iteration. In other words, this means that the ModelEvent "they <to come>" de-
termines all iterates, i.e. each time the event "they <to come>" occurs, then an iterate should correspond
to it. This also means that this triggering event belongs to the IterativeModel.

Type : EventDriven

Event :

Frame :

Iterator

ModelSpace

Ite
ra
tio
n

IterativeModel

They <to
come>

ModelEvent

we <to start>
a game

ModelEvent

trigger

succession

Figure 2.26: Frequency Iterators hierarchy

This model is quite different from what is proposed by the other authors of the book (Gosselin et al.,
2013) than I, insofar as it does not rely on a set of time intervals as a prerequisite to build an iteration,
but relies directly on a ModelEvent.

These two points of view are not incompatible, since it is possible to associate a time interval to
each event coming from "they <to come>", but they do correspond to two different ways to consider this
kind of iteration. In the present model, the main objectives are expressivity and factorizing information.
And it turns out that the series of intervals that could come from the events "they <to come>" is the
consequence of the iteration, not its cause: while a SteadyCalendar such as "every Thursday" cuts the
timeline in a series of disjoint intervals so that, in a second time, iteration is build over this series,
according to me, the process seems to be the contrary here: all the information linguistically provided
by this iteration is present in our model. Moreover, as far as expressivity is concerned, the proposed
model renders directly the fact that each event "we <to play> cards" is linked to an event "they <to
come>", what would be somehow hidden by a representation relying on a series of intervals.

This model also accounts for the description of recurring states, as in example 53, in a quite natural
manner.

(53) He always come empty handed

2.8. IMPLEMENTING THE ITERATION MODEL ON SIMPLE CASES 47

In this example, it would be weird to build intervals coming from the events "he <to come>", and
then say that in each of these intervals, there is one event "he <to come> empty handed": there would
be twice as many events as needed, which would be unclear and redundant information.

2.8.5 Merging iterative models

Such phrases as "when", "each time", "as soon as", may be iteration triggers. However, they are often
used several times within a given iteration, as in examples 54 and 55. A local analysis may lead to
several separate iterations while only one iteration is concerned.

(54) As soon as they arrived, we started a game

(55) As soon as they left, we stored the cards

These examples can be represented by figure 2.27.

Type : EventDriven

Event :

Frame :

Iterator

ModelSpace

Ite
ra

tio
n

IterativeModel

They <to
arrive>

ModelEvent

we <to start>
a game

ModelEvent

Trigger

Immediacy

(a) Context 1

Type : EventDriven

Event :

Frame :

Itérateur

ModelSpace

Ite
ra
tio
n

IterativeModel

They <to
leave>

ModelEvent

we <to store> the
cards

ModelEvent

Trigger

Immediacy

(b) Context 2

Figure 2.27: Two iterative models before merging

However, discourse analysis of such examples should make it possible to say that example 55 is
only supplementing what is said in example 54, and that there is one single iteration. Note that in the
french original version of example 55, the verb "repartir" provides a clear evidence of the link between
the two events, namely the "re-" prefix of "repartir".

Hence, I propose the formal way to merge two iterative models:

• let i1 and i2 be two event driven iterations

• let metrigger the ModelEvent which triggers i2

• if i2 finally turns out to complement what is asserted by i1, then it exists an Event e1 in i1 which
is linked to metrigger by a given relation r.

• then, i1 and i2 can be merged in i=merge(i1, i2), whose Iterator is the one of i1, and whose
IterativeModel is the union of the IterativeModels of i1 and i2, complemented by the additional
relation r:

IterativeModel(i) = IterativeModel(i1) ∪ IterativeModel(i2) ∪ {r}.

In the present case, linguistic and pragmatic analyses should determine that what is asserted in
example 55 is after what is asserted in example 54. Hence, we getmetrigger="they <to leave>", e1="we
<to start> a game", and r=Succession, which provides the merge shown in figure 2.28.

More and more complex constructions are possible, including, for example, "elaborations" from N.
Asher’s SDRT, resulting in increasingly rich iterative models.

48 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

Type : EventDriven

Event :

Frame :

Itérateur

ModelSpace

Ite
ra
tio
n

IterativeModel

they <to
arrive>

ModelEvent

we <to start>
a game

ModelEvent

Trigger

Immediacy
They <to
leave>

ModelEvent

we <to store>
the cards

ModelEvent

ImmediacySuccession

Figure 2.28: Fusion of two iterative models

2.9 Selections: how to access to a given part of the iterates

2.9.1 Introduction

As we have seen in the previous sections, an iteration makes it possible to generate iterates from an
iterating situation. An additional mechanism, that I will call Selection, makes it possible, once an
iteration has been built, to select a subset of iterates.

From a linguistic point of view, it corresponds to such examples as the following:

• "She throws an ace once in four times"

• "The first times that she came, ..."

• "The third time she came, ..."

• "Often, when she came, ..."

Let us go back again to one of the first examples of this study, reproduced as example 56 below:

(56) She went seven times to Paris.

And let us complement it by example 57:

(57) The first three times, it was to meet her sister.

Sentence 57 creates a selection over iterates coming from sentence 56, in the sense that "the first
three times" refers to the first three iterates.

2.9.2 Defining and modeling Selections

A Selection is intended to create a subset of iterates coming from a given Iteration. From a formal point
of view, a Selection bearing a certain (reduced) number of iterates, it is itself an Iteration (we will not
discuss here the difficult case of singleton selection as in "one single time").

Formally, it is possible to build the Iteration corresponding to a given Selection in the usual way:
take the same IterativeModel as the one of the initial Iteration (the one the Selection relies on), and
create the Iterator as the composed function fOg (i.e. f(g(...))) so that g is the Iterator of the first
Iteration, and f is the selecting function.

However, we will prefer the first way to define a selection (i.e. relying on a given Iteration) to the
second (i.e. building a new Iteration with a combined Iterator function), because it clearly shows that a
Selection relies on an Iteration, and it does not create (duplicate) any new iterate (what the second way
might suggest).

As a consequence, Selection is a subclass of Iteration. It has two main attributes:

2.9. SELECTIONS: HOW TO ACCESS TO A GIVEN PART OF THE ITERATES 49

• the Iteration it relies on

• the Selector, that is, the restriction function which chooses a subset of iterates

The corresponding diagram is shown in figure 2.29 which evokes, in the Design Pattern paradigm,
"Decorator". A Selection somehow decorates an Iteration in the sense that it complements the latter by
a certain number of modifications, as we will see later.

Iteration

Selection

1

Selector
1

Figure 2.29: The Selection inheriting class

The different ways it is linguistically possible to make a Selection lead to the class hierarchy shown
in figure 2.30.

Selector

FrequencySelector

Name
FuzzyFS NumericFS

SteadyNFS UnsteadyNFS

QuantifyingSelectorBasicSelector

Figure 2.30: Selectors Hierarchy

A Selector is either "basic", when it directly provides a certain number of iterates through their rank
(for instance "the first two times"), or "frequency", or even "quantifying".

Among FrequencyIterators, there are FuzzyFS ("often, after doing our homework") which do not
provide any numeric information, and NumericFS. The latter may be SteadyNFS ("toutes les deux fois"
in french), or UnsteadyNFS ("three times out of four"). We have to mention that the choice between
SteadyNFS and UnsteadyNFS is not necessarily linguistically driven, and may depend on pragmatic
criteria.

It is important to have a second look at the frequency notion, and see thoroughly the difference that
exists between a frequency selector and a frequency iterator. Whereas a FrequencyIterator is intended

50 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

to indicate, with respect to the timeline, what density of events we can infer, a FrequencySelector does
not rely directly on the timeline, but relies on a discrete set of iterates. Hence, it is a frequency with
respect to a discrete set, not to a temporal continuum.

Finally, a QuantifyingSelector selects a certain number of iterates, without specifying which ones,
as in "She went seven times to Paris. Peter accompanied her three times". It resembles a BasicSelector,
but does not provide any specification on which iterates are selected.

2.9.3 The purpose of Selections

Obviously, Selections are not intended just to select a certain number of iterates, which would be
worthless. It is always intended to modify or enrich the selected iterates. Let us take an example
through a short text beginning with a classic Iteration in example 58, and then using Selections to
operate some modifications in examples 59 and 60.

(58) When they come, they use to offer us gifts.

(59) One out of three times, they go through Montélimar.

(60) Each of these times, they bring us nougat.

First of all, sentence 58 generates an Iteration. Then, sentence 59 creates a Selection among the
times when "they <to come>", at the rate of one time out of three, with the amendment that "they
<to go> through Montélimar". All that is conveyed by the iteration is inherited at Selection level, and
then amended (that is, modified or enriched). Hence, "they <to offer> gifts" is still true in the iterates
selected by example 59, and is enriched by two facts, first that "they <to go> through Montélimar", and
second, that "they <to bring> us nougat."

Why to reify the Selection operation? We could settle to integrate what is selected within the Iter-
ations instead of creating Selection objects. Indeed, we can legitimately consider that such operations
do not create new Iterations, but simply modify existing ones.

However, there are two strong reasons why I have chosen to create Selections as independent ob-
jects.

First, it would be a mess to integrate amendments within a given Iteration. It would force to
have an IterativeModel which includes different possibilities, which quantifies each of them, and so
on. Moreover, this would probably become near impossible to tackle when there are Selections of
Selections, as we will see below.

Second, and probably the most important reason, is that according to me, Selections are linguistic
and cognitive real entities, and so it is important this model renders them as independent objects. For
instance, "each of these times" from example 60 clearly refers to the Selection created in example 59,
not to the Iteration created in 58. Besides, it would be very difficult to tackle example 60 if what is said
by example 59 was directly put in the Iteration coming from 58.

Addressing the role of Selections bring us to the question of the dependency between Iterations
and Selections. By design, Selections rely on a preexisting Iterations. Less obviously, an Iteration also
relies on all its Selections (i.e. all the Selections that rely on it), insofar as each Selection acts on some
of its iterates.

Back to our example, it is obvious that sentence 59 thoroughly modifies the iteration coming from
sentence 58, since as much as the third of what is said by 58 is enriched by 59.

For this reason, I have enriched the Iteration class by adding to it the list of all of its Selections.
Finally, the content of an Iteration is given not only by what it initially contains (an Iterator, an Iter-
ativeModel), but also by all the modifications conveyed by the additional Selections it is concerned
by.

2.9. SELECTIONS: HOW TO ACCESS TO A GIVEN PART OF THE ITERATES 51

2.9.4 Examples and analyses of Selections

BasicSelector

A BasicSelector simply provides a set of iterates by their ranks.

(61) When they came, we played cards. The first time was a poker game. Peter did not
come the fifth nor the sixth time.

Example 61 begins with an Iteration coming from an EventDrivenIterator. Then, two successive
Selections occur, the first one with regard to the first iterate, and the second one with regard to the fifth
and sixth ones. As already said, these selections modify the content of a part of the Iteration. For this
reason, the Iteration now has links towards these Selections, as shown in figure 2.31. In this figure, we
use the object notation such as "a.b" to mean "member b of object a". In the first Selection, the point
is to specify the content of "<to play> cards". We access to the Iteration object via the "it" reference,
and then to its IterativeModel by the member "model". Then we use two methods, one to access to the
Event coming from "we <to play>", and a second to specify its content.

The same applies to the second Selection.

Type : EventDriven
Event :

Frame :

Selections :

Iterator

ModelSpace

Ite
ra
tio
n

IterativeModel

they <to
come>

ModelEvent

we <to play>
ModelEVent

Trigger

succession

Iteration :

Selector : BasicSelector {1}
Action :
it.model.getEvent("we <to
play>").specify("poker")

Selection

Iteration :

Selection : BasicSelector {5, 6}
Action : it.model.getEvent("they
<to come>").specify("Peter <to
be> absent")

Selection

Figure 2.31: An example of simple Selections (relying on BasicSelectors)

FrequencySelector

Now, we introduce two new points through the next example. First, the use of FrequencySelectors.
Second, a more complex way to build Iterations, since the latter is implicitly triggered by the Selection,
and then is complemented by the last sentence, after some Selections have occurred.

52 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

(62) Often, when I walked, I met John. More rarely, I met Suzan. At these times, we had
long conversations. My walk always ended in shopping downtown.

Indeed, once example 62 is fully interpreted, the main Iteration (i.e. the one which concerns all
iterates) contains two ModelEvents: "I <to walk>", coming from the first Selection, and "I <to do
shopping>", coming from the last sentence.

Besides, another important point is the use of the anaphor "at these times", which concerns the
second Selection, and confirms the great interest to have reified Selections.

Type : EventDriven

Event :

Frame :

Selections :

Iterator

ModelSpace
Ite
ra
tio
n

IterativeModel

I <to walk>

ModelEvent

I <to meet>
John

ModelEVent

Trigger

elaboration

Iteration :

Selector : frequency = high
Action : it.model.getEvent("I <to
walk>").elaboration(new ModelEvent("I <to
meet> John"))

Selection
Iteration :

Selector : frequency=moderate
Action : pm1=new ModelEvent("I <to meet>
Suzan");
 pm1.implication(new ModelEvent("we <to
have> long conversations"));
it.model.getEvent("I <to
walk>").elaboration(pm1);

Selection

I <to meet>
Suzan

ModelEvent

elaboration

im
plies

we <to have> long
conversations

ModelEvent

succession I <to do shopping>

ModelEvent

Figure 2.32: Rich selections

The final schema may become quite difficult to read when there are lots of nested elements, like in
figure 2.32. In these cases, it is possible to build specific IterativeModels for each Selection. This is
illustrated in figure 2.33 for the Selection coming from "at these times".

Particularisation of ModelEvents by a Selection

Let us consider the Iteration coming from example 63

(63) On Monday, they usually had three training sessions: two of strength training, and
one of stretching. Then they had an aperitif.

This Iteration comes from a SteadyCalendar, as already seen, and we can now focus on its Itera-
tiveModel. The latter is particularly rich, embedding four ModelEvents, and has the specificity that the
first three ModelEvents constitute an Iteration, through "three training sessions". As a consequence,

2.9. SELECTIONS: HOW TO ACCESS TO A GIVEN PART OF THE ITERATES 53

ModelSpace

IterativeModel

I <to walk>

ModelEvent

I <to meet>
Suzan

ModelEvent
elaboration we <to have> long

conversations

ModelEvent

succession I <to do shopping>

ModelEvent

implies

Figure 2.33: The iterative model corresponding to a given Selection

we put the corresponding Iteration in the IterativeModel, and then particularize two of its iterates with
"strength training", and the other one with "stretching". To do so, we can use two QuantifyingSelectors,
with the additional constraint that the two selections are mutually exclusive.

For simplicity purposes, figure 2.34 accounts only for the IterativeModel of the whole Iteration.

IterativeModel

ModelEvent

Type : Quantifying

Quantity : 3

Frame :

Selections :

Iterator

ModelSpace

Ite
ra
tio
n

IterativeModel

<to do>
training

ModelEvent

<to have> an
aperitif

ModelEvent

succession

Iteration :

Selector : quantity = 2
Action : getProces("<to do>
training").specify(new
Event("strength training"));

Selection
Iteration :

Selector : quantity = 1
Action : getProces("<to do>
training").specify(new
Event("stretching"));

Selection

mutually
exclusive

Figure 2.34: Mutually exclusive Selections

These particularizations being linguistically verified, we can conclude that strength training and
stretching are sub-events of training event, which is shown in figure 2.35.

54 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

<to do> training

ModelEvent

<to do> strength
training

ModelEvent

<to do> stretching

ModelEvent

subclass subclass

Figure 2.35: Compatibility between Events through inheritance relationships

Hypothetical ModelEvents and Conditional ModelEvents as Selection drivers

We focus now on Iterations using "if" or "when". To tackle this question, we could have relied on
mental spaces from Fauconnier, which have been already a source of inspiration for this study. For sure
this will be an interesting option in the future, but for now, I have limited this study to a much more
modest approach, by slightly enlarging the current model.

Let us begin with a non iterative case, as reported in example 64.

(64) Tonight, if they come, we’ll go to a restaurant.

There is here an alternative, with a first event "they <to come>", which is hypothetical, and a second
event "we <to go> to a restaurant", hypothetical too, whose realization depends on the first one. As a
result, we get either two successive events, or none (with the implied event "we <to have dinner> at
home"). The corresponding schema is as follows :

Alternative:

• Hypothesis one: "they <to come>", then "we (including ’they’) <to go> to a restaurant".

• Hypothesis two: "we (not including ’they’) <to have dinner> at home".

However, there is still a missing element in this proposition. Admittedly, we finally get one of the
two hypotheses, but we miss the reason for this (the fact "they <to come>), which is linguistically pro-
vided by "if they come". In order to integrate it into the model, we introduce ConditionalModelEvents
which bear at once a condition event, and the alternative events, as shown if figure 2.36.

Let us now get back to Iterations with example 65, and see that ConditionalEvents apply the same.

(65) On Sunday evenings, if they come, we all go to a restaurant. Otherwise, we eat at
home. Before that, we walk on Les Champs Elysées in the afternoon.

First, there is an Iteration relying on a SteadyRegular iterator (involving Sundays). What is iterated
here is neither the fact that "they <to come>" nor the fact that "we <to go> to a restaurant", nor either
the fact that "we <to eat> at home", but a kind of an alternative between different situations, depending
on the fact that "they <to come>", built over the implicit hypernym event "we <to have> dinner" (which
occurs every day, hence every Sunday). This dinner is available in two versions, with, in the first, the
previous Event "they <to come>". As a consequence, we can build a ConditionalModelEvent which
bears the two versions.

A key point of ConditionalModelEvents is that they bear both a condition, and a full Event. The
whole resulting IterativeModel is shown in figure 2.37.

However, it often happens that iterations derogate somewhat from this scheme, using selections
instead of alternative model processes. Indeed, in example 66, "when" does not explicitly introduce an
alternative, unlike what "if" does.

2.9. SELECTIONS: HOW TO ACCESS TO A GIVEN PART OF THE ITERATES 55

they <to come>

ConditionalEvent

yes no

we <to go> to a
restaurant

ModelEvent

Figure 2.36: ConditionalEvent

they <to come>

ConditionalModelEvent

yes no

we <to have>
dinner to a
restaurant

ModelEvent

we <to have>
dinner at home

ModelEvent

we <to have dinner>

ModelEvent

pa
rtic

ula
riz

es

succession

we <to walk> on the
Champs Elysées

ModelEvent

succession

IterativeModel

particularizes

Figure 2.37: An IterativeModel containing a ConditionalEvent

(66)
On Sunday evening, when they come, we all have dinner at the restaurant.
Otherwise / in other cases, we eat at home. Before that, we walk on Les Champs
Elysées in the afternoon.

First, we have to remark that "when they come" is ambiguous, since it may mean either "among
all Sundays, the Sundays when they come", or "they come every Sunday, and when they arrive...".
However, this ambiguity is resolved by "otherwise" which forces us to keep only the first acceptation.
Reversely, the verb "to arrive" instead of "to come" would have force to keep the second acceptation
because of the presupposition it bears (and the second sentence would not be relevant).

As a consequence, we face here a Selection, brought by "when they <to come>". More precisely,
only the Sundays when they come are selected.

56 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

Then, a second Selection is done as the complement2 of the first one, brought by "in other cases".
Finally, the HypotheticModelEvent "they <to come>" supports both Selections, either because it

occurs, or because it does not occur. For this reason, we call it HypotheticModelEvent. Like Condi-
tionalModelEvents, it only occurs in some iterates. The resulting schema is provided in figure 2.38.

The difference between ConditionalModelEvent and HypotheticModelEvent is tenuous, and mostly
linguistic. The first one is coming from an explicit condition mark, whereas the second one accounts
for a Selection. But from a semantic point of view, they are very similar, and we could imagine a
process which transforms one in the other.

Lastly, we notice that HypotheticModelEvent works in a quite similar way as EventDriven selec-
tors, which is not surprising if we consider that the associate linguistic forms are also quite similar
("when", "each time that"). When these linguistic forms occur in the context of an Iteration, it leads to
a Selection based on an HypotheticModelEvent, whereas in the contrary, an Iteration is directly created.

ModelSpace

we <to walk> on
Les Champs

Elysées

ModelEvent

we <to have
dinner>

ModelEvent

succession

IterativeModel

Ite
ra
tio
n

Type : SteadyCalendar

Name : "Sunday"

Frame :

Selections :

Iterator

Itération :

Selector :
Action : iterativeModel.getEvent("we
<to have dinner>").specify("we <to
go> to a restaurant");

Selection

they <to come>

HypotheticModelEvent

Itération :

Selector : NOT
Action : iterativeModel.getEvent("we
<to have dinner>").specify("we <to
have dinner> at home");

Selection

succession

Figure 2.38: Selections relying on HypotheticModelEvents

Recursive Selections

There is little to say about recursive selections, since they are only special cases of regular selections.
Indeed, a selection being itself an iteration, one can naturally apply another selection on it, and so on,
recursively. We can therefore directly study example 67.

2Let S1 and S2 be two Selections of Iteration I. Let {X} be the set of the elements contained in X, then S1 and S2 are
called complementary Selectors if {I} = {S1} ⊕ {S2}.

2.9. SELECTIONS: HOW TO ACCESS TO A GIVEN PART OF THE ITERATES 57

(67) Every Monday, we go to the swimming-pool. Sometimes, Paul accompanies us. The
third time he came, he learned to dive. He has already come ten times.

A first Iteration is trigger by "Every Monday". Then, "sometimes" creates a Selection over this
Iteration, which results in sub-iteration. To finish, "the third time he came" is a Selection of the third
iterate of the sub-iteration.

We can notice that the information coming from "he has already come ten times" also has conse-
quences on the first Iteration, which is shown in figure 2.39 through the cardinality constraint.

Type : SteadyCalendar

Name : "Monday" . Constraint : cardinality > 10

Frame :

Selections :

Iterator

ModelSpace

Ite
ra
tio
n

IterativeModel

we <to go> to the
swimming pool

ModelEvent

Iteration :

Selector : FrequencySelector (low)
Action :
Selections :

Selection

we <to go> to the
swimming pool

ModelEvent

elaboration Paul <to
accompany> us

ModelEvent

Iteration :

Selector : {3}
Action :

Selection

Paul <to
accompany> us

ModelEvent

elaboration Paul <to learn> to
dive

ModelEvent

Figure 2.39: Recursive Selections

58 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

2.10 Implicit Iterations

The canonical way to get Selections is to have first an Iteration on which one can make Selections.
However, this pattern is not systematic. It is common that Selections occur though no corresponding
Iteration has been previously created. In such cases, I shall assume that the Selection presupposes, and
consequently introduces, an Iteration on which it can be built. These are implicit iterations.

(68) The first three times she went to France, it was to visit her sister.

Hence, example 68 contains the same Selection as in example 57, and presupposes the same Iter-
ation as in example 56. Of course, as an implicit Iteration, it is necessarily under-specified. Whereas
example 56 provides a cardinality of seven, we do not know precisely the cardinality of example 68
and can only infer that it is above four (under three, "the first three times" would no be correct", and
with three, it would be written "the three times" rather than "the first three times").

We can note that if the Iteration has been previously introduced, for instance by example 56, the
present formulation would be "the three first times, it was...", that is, an elliptic formulation.

In addition, example 68 can be complemented by example 69:

(69) Allover, she went there seven times.

which specifies retrospectively the content of the implicit Iteration. Hence, with examples 68 and
69 we get a reverse ordered chronology compared to examples 56 and 57. This shows how interwoven
Iteration and Selection are, to the point that we do not pay attention to it while speaking.

This interweaving goes even further insofar as a certain number of syntagms which we have previ-
ously considered as Iteration triggers could be considered as exhaustive selectors, such as "each time
that". Being exhaustive, they do not differ from the associate Iteration, and so can be considered directly
as iterations.

Finally, to see the variety of how the implicit iterations occur, let us observe an example built on a
frequency manner.

(70) One time out of two, he comes with his wife.

Example 70 presupposes the existence of an Iteration of which "once in two" can be a Selector, and
"he comes with his wife" be a modifier. The IterativeModel of the implicit Iteration should therefore
generalize (for instance, be an hypernym) "he <to come> with his wife", for instance "he <to come>".
As a consequence, we could reformulate example 70 in a more explicit manner, as given in example 71.

(71) When he comes, on time out of two, he is accompanied by his wife.

2.11 Framed Iteration

We address now a quite uncommon iterative phenomenon, which consists in building an Iteration the
frame of which is given by another Iteration. Although this kind of iteration is very rare, I think it is
important to show that the present model is able to handle all cases of Iteration we have faced in real
texts.

Let us consider example 72 from "un coeur simple" ("a simple soul") from Gustave Flaubert, with
a special focus on the scope of "sometimes".

2.12. CONCLUSION 59

(72)

She made an arrangement with a livery-stable man who drove her over to the
convent every Tuesday. In the garden there was a terrace, from which the view
extends to the Seine. Virginia walked in it, leaning on her mother’s arm and
treading the dead vine leaves. Sometimes the sun, shining through the clouds, made
her blink her lids, when she gazed at the sails in the distance, and let her eyes roam
over the horizon from the chateau of Tancarville to the lighthouses of Havre. Then
they rested on the arbour. Her mother had bought a little cask of fine Malaga wine,
and Virginia, laughing at the idea of becoming intoxicated, would drink a few drops
of it, but never more.

There is a first Iteration coming from "every Tuesday" (SteadyCalendar). Then, there is a second
Iteration, coming from "sometimes", that we could mistakenly consider either as (1) a nested Frequency
Iteration, or (2) as a Frequency Selection applying on the set of iterated Tuesdays. But it is not so.

In case (1), the imbrication would imply, by design, that "sometimes" applies to each Tuesday,
which is not true: there are obviously some Tuesdays when the sun is not shining.

In case (2), the Selection would keep among all Tuesdays those, and only those, within which the
sun shines through the clouds. This interpretation is better than the first one, but is still not convenient.
Indeed, it is possible that within a given Tuesday, the sun shines through the clouds (and disappears)
several times, which leads to as many iterates, whereas the selection would create a single iterate for
the whole Tuesday (assuming the the sun is shining all day long).

In fact, the Iteration coming from "sometimes", even if it is linked to the first Iteration, is in a much
more loose relationship with it than in the case of a sub-iteration or of a selection. As we have just
seen, Tuesdays are not all involved, contrary to what would assume a nested Iteration, and for a given
Tuesday, there can be several iterates, contrary to what would assume a Selection. This seems to argue
in favor of the independency of the resulting Iteration, but there is a third important point not to be
missed: what is involved by "sometimes" only concerns the Tuesdays iterated by the first Iteration (we
do not talk about the times when the sun shines another day than a Tuesday). Consequently, it is a new
configuration, but that can be easily tackled with the present model as follows:

• a first Iteration, called main Iteration, iterates a series of Tuesdays,

• a second Iteration, called Framed Iteration, is built with its own Iterator, in our example the
FrequencyIterator coming from "sometimes", and has as Frame the set of iterates coming from
the main Iteration.

Hence, there is no need to amend the model to tackle this complex configuration. Whereas until
now he had to deal with simple frames (i.e. simple intervals), in Framed Iterations the frame is a set of
intervals coming from a set of iterates.

As for Selections, Framed Iterations are meant to enrich the main Iteration: what is said through
the IterativeModel of the Framed Iteration concerns (and so, enriches) a part of the main iterates.

2.12 Conclusion

According to the various observed phenomena and to the proposed model, we can now conclude on
how an iteration can be constituted. We finally distinguished four levels:

1. Simple Iteration. It is the simplest case, the IterativeModel of which consists in a single Mod-
elEvent.

2. Enriched Iteration. In this case, the IterativeModel is enriched as much as needed, with additional
ModelEvents with as many relationships as needed, with respect to the the SdT theory.

60 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

3. Supplementations coming from a Selection. We have seen that thanks to Selections, it is possible
to amend or supplement any subset of iterates of any Iteration (if needed, recursively).

4. Framed Iteration. We have seen in the previous section an additional mechanism which also
makes it possible to amend the content of certain iterates.

Finally, an Iteration may result of the combination of these four processes which work in a very
economical way from a linguistic perspective, and provide a rich semantic scope. To give a final illu-
minating example, let us consider another excerpt from Proust reported in example 73 which involves
the first three levels out of the four we have just enumerated.

(73)

(Translated from the French by C. K. Scott Moncrieff). We used always to return
from our walks in good time to pay aunt Léonie a visit before dinner. In the first
weeks of our Combray holidays, when the days ended early, we would still be able
to see, as we turned into the Rue du Saint-Esprit, a reflection of the western sky
from the windows of the house and a band of purple at the foot of the Calvary,
which was mirrored further on in the pond; [...] . But in summer, when we came
back to the house, the sun would not have set; and while we were upstairs paying
our visit to aunt Léonie its rays, sinking until they touched and lay along her
window-sill, would there be caught and held by the large inner curtains and the
bands which tied them back to the wall, and split and scattered and filtered; [...].
But on some days, though very rarely, the chest-of-drawers would long since have
shed its momentary adornments, there would no longer, as we turned into the Rue
du Saint-Esprit, be any reflection from the western sky burning along the line of
window-panes; the pond beneath the Calvary would have lost its fiery glow,
sometimes indeed had changed already to an opalescent pallor [...]. Then, as we
drew near the house, we would make out a figure standing upon the doorstep, and
Mamma would say to me: “Good heavens! There is Françoise looking out for us;
your aunt must be anxious; that means we are late.””

Figure 2.40 shows the implementation of example 73 in the model. There is a main Iteration,
containing a succession of ModelEvents such as "to walk", "to return", "to pay a visit". It constitues a
common core to the rest of text, but is modified later in various ways. A first level of Selections splits
the iterates in two categories depending on whether it is the beginning of the holidays, or it is summer.
Then, within the second Selection, a second level of Selection is done corresponding to "very rare"
days when the protagonist goes back late in the day.

Iterative phenomena abound in this excerpt, as it is in the whole Proust’s works, with recursive
Selections, and can be summarized in a tree depiction, as shown in figure 2.41.

Finally, there are four kinds of possible iterates in this excerpt, which cover three levels from (1)
to (3):

• (1) the general case introduced in the main Iteration

• (2a) a variation of (1) concerning the beginning of the holidays

• (2b) another variation of (1) concerning the summer

• (3) a variation of (2b), hence a double variation of (1), concerning rare days of the summer

2.13 Perspectives

2.13.1 Enrichment of the model to cope with an evolutionary situation

We have seen that natural language makes it possible to assimilate many situations to a canonical
situation (what we have modeled by the Iteration class), while, conversely, providing the possibility

2.13. PERSPECTIVES 61

ModelSpace
Ite
ra
tio
n

IterativeModel

we <to walk>
ModelEvent

we <to return> in
good time

ModelEvent

succession
we <to pay> aunt

Léonie a vist

ModelEventElaboration

Type : EventDriven

Event :

Frame :

Selection :

Iterator

Trigger

Iteration :

Selector : "in summer"
Action :
Selections :

Selection

Iteration :

Selector : "In the first weeks of
our Combray holidays"
Action :

Selection

we <to turn into> ...
ModelEvent

(...) <to be mirrored> ...
ModelEvent

elaboration

we <to come back>
ModelEvent

the sun not <to have> a set
ModelEvent

Etat

succession we <to visit>
aunt Léonie

ModelEvent

rays <to sink> ...

ModelEvent

elaboration

Iteration :

Selector : FrequencySelector (very low)
Action :

Selection

Nous rentrer
ModelEvent

(...) not any reflection
from the western sky

ModelEvent
State

we <to draw> near
house

ModelEvent
elaboration

Mamma <to say> to
me

ModelEvent

we <to make out> a
figure standing

ModelEvent

succession

elaboration

Figure 2.40: Implementing an excerpt from Proust

to give as many specificities as we wish to certain iterates over this canonical scheme (what we have
modeled by the Selection class). That is the point we have just illustrated with the rich example of
Proust.

Thus, example 74, at first sight, belongs to the present model, with a first Iteration corresponding to
the fact that "I <to go> to bed every night", and two related Selections, one corresponding to "<to be>
young," the other corresponding to the enunciative period ("now").

62 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

1

2a 2b

3

Iteration

Selection Selection

Selection

Figure 2.41: A tree depiction of an excerpt from Proust

(74) In my younger days, I went to bed at 10 pm. Now it’s never before 11 pm.

It might be objected that such a representation is to a certain extent a too literal interpretation of
the text, and that a more natural interpretation should deviate from a strict dichotomy made by the two
mutually exclusive Selections. In particular, we could assume that there is a gradual drift of the bedtime
from 10 pm to 11 pm through years. However, we can also assume that the first selection concerns only
the strict youth period of the speaker, whereas the first selection concerns only the very present period,
leaving aside the intermediary period with no Selection. Then, we get a correct while under-specified
representation of the middle part of the iterates.

However, how can we face example 75 where a gradual change is linguistically expressed?

(75) I go to bed later and later. From 10 pm when I was young, I am currently going to
bed at 11 pm.

The iterated content still relies on the same main Iteration, but it can no longer be reduced to the
only addition of two selections. Indeed, it is no longer a matter of selections of iterates to which
common derogations are attributed (for instance bedtime = 10 pm for some, and 11 pm for the others),
but a matter of specification of a gradual change of the value of a property over iterates.

In its current stage, our model is not able to provide an entirely satisfying solution. However, I
do not think that it is beyond its capabilities. Admittedly, there is a difficulty concerning the Itera-
tiveModel: how is it possible to set a value for bedtime in the model which serves as a model for all
iterates while each iterate is said to have a different value. But the very notion of IterativeModel re-
mains: we still have access to it in a linguistic way, and it is possible for instance to complement this
example by "anyway, I have never stopped to read before sleeping", which refers once again to the
whole IterativeModel.

As a consequence, a possible enrichment of the model could consist in providing a way to express
the evolution of one or several properties over time, that is, over iterates. To my mind, this phenomenon
ressembles the Selection operation, and could be modeled as an extension of it (the current Selection
would be a particular case of it). Indeed, whereas a Selection chooses a subset of iterates in order
to enrich or modify their content with a common amendment, the point here is to provide individual
amendments to each selected iterate which may depend on their rank on the timeline. In a formal way,
it would be possible, for instance, to implement the progression induced by example 75 with a function
which associates a value of bedtime to each iterate, which would be increasing, starting from 10 for
the first iterate, and reaching 11 for the last one. In the case of more complex examples, such as 76, it
could be a holistic constraint over the set of selected iterates, which could be rendered by a probabilistic

2.13. PERSPECTIVES 63

function.

(76) However, from 1995 to 2002, my bedtime was very erratic.

The current model of Selection would become a particular case of this enhanced version, insofar
as it is possible to use a simple constant function: for a given property, each iterate is given the same
value as others.

As we can see, Iteration in natural language is a rich and complex cognitive process, which seems
to surf between two seemingly contradictory sides, but which are in fact very complementary: the
assimilation of different iterates to a same model on one side, these iterates being all unique on the
other side. The current version of Selection is a clear witness of the existence of these two sides, since
it creates an intermediary level between them: it provides kind of singularity to a subset of iterates from
the generality provided by an initial Model.

The future version of Selection we are currently discussing is a refinement that endorses the ver-
satility provided by natural language to combine universality and singularity at the same time: in the
first sentence of example 75, it is explicitly said in the same time, through a few words only, that each
iterate relies on a certain IterativeModel, and also that it is different from most of the others.

In addition, we have also to remember that we have tried to reduce as much as possible our def-
inition of iterations, with the particular point that the subject should be sufficiently steady. We have
to recognize that in spite of this cautions, there is a wide range of phenomena involved by iterations.
For this reason, the possible enlargement of our definition of iteration should be very cautious and
progressive in the future.

2.13.2 Towards an automatic processing of Iteration in discourse

While the primary focus of the modeling work proposed in this section was above all to provide a
way to represent iterations in the most expressive way, and with the broadest coverage, a longer-term
objective is also to provide a contribution to automatic processing of texts containing iterations.

It is in this longer-term objective that took place the PhD work of Lebranchu (2011). This quite am-
bitious work consisted in studying how it is possible to account for iterative phenomena in language on
real corpora while taking into account their discursive dimension (iterations spanning several sentences
or even several paragraphs), from a perspective of automatic processing of the iterative representations
and of their aspectual features. Two corpora were thus constituted and manually annotated via the
Glozz platform (see Widlöcher and Mathet, 2012, introduced later in this dissertation): One contains
novels (in extenso or excerpts) and the other contains articles from Le Monde (a french newspaper cor-
pus containing 2053 articles). For each of these two genres, it was possible to determine the iterative
phenomena in a quantitative way: for example, we saw that 5% of the sentences of these texts are
involved in iterative phenomena, and more precisely 7% in novels, and 3% in newspaper articles; But
finer observations are also proposed, such as the distribution of iterations according to their number of
sentences (is it an iteration carried by one, two, or more sentences?).

This work relies on the present study, and in particular on the representation of the iterative content,
with respect to the proposed object model. It reveals the great diversity of textual configurations of
iterative structures in corpus: textual discontinuity, imbrication of structures, and so on. A processing
chain was then set up, relying on the LinguaStream platform see (see Bilhaut and Widlöcher, 2006),
making it possible to annotate the different constituents of iterative structures (events, circumstantial
complements, iteration triggers). This is complemented by a semi-automatic process which generates
the corresponding data in the object model and their aspectual features with respect to the SdT theory.

This study paves the way, in the longer term, for practical contributions in information retrieval
(what are the repeated situations, how often are they repeated, with what variations, and at what times),
but also, from a linguistic perspective, to an observation of the iterative corpus (highlighting the iterative

64 CHAPTER 2. THE SEMANTICS OF TIME AND ITERATION

passages, the linguistic configurations that were found, etc.) which notably enlarges the size of what
can be humanly observed.

Part II

Annotation of continuums and its
assessment

65

Chapter 3

Annotation of continuums with Glozz and
GlozzQL

This chapter strongly relies on two articles, in collaboration with Antoine Widlöcher: (Mathet and
Widlöcher, 2011a) and (Widlöcher and Mathet, 2012).

Contents
3.1 Introduction . 67

3.1.1 Prerequisites . 68
3.1.2 Continuum: first overview . 68
3.1.3 Glozz and GlozzQL overview . 68

3.2 Why another tool ? . 69
3.3 Underlying model . 70

3.3.1 The Unit-Relation-Schema metamodel . 70
3.3.2 Metamodel scope . 73
3.3.3 Granularity and topology . 73
3.3.4 Standoff representation of annotations . 73

3.4 Main features . 74
3.4.1 Polymorphism and heterogeneity of input 74
3.4.2 Several representation paradigms . 74

3.5 Customizing and using Glozz . 76
3.5.1 Annotation campaign . 77
3.5.2 Annotation model . 77
3.5.3 Customizing display . 77

3.6 GlozzQL: a query language for annotation mining 78
3.6.1 Introducing GlozzQL . 78
3.6.2 Annotating and querying simultaneously 79
3.6.3 Advanced concepts . 80

3.7 Conclusion . 81

3.1 Introduction

A growing number of studies in linguistics, computational linguistics (CL) or Natural Language Pro-
cessing (NLP) manifest an increasing interest for corpus studies. Through a wide range of approaches,

67

68 CHAPTER 3. ANNOTATION OF CONTINUUMS

the need for a confrontation between models and corpora makes it necessary to have reference annota-
tions to which linguistic models can be compared. Such reference corpora are also useful for machine
learning, to automatically learn models, and for evaluation tasks, to assess the results of NLP systems.

The elaboration of such annotations is a complex process which requires adequate formal grounds,
encoding standards and dedicated applications. Despite the availability of several annotation tools,
different requirements, especially in terms of abstraction, genericity and ergonomics, were overall not
satisfied, as detailed in (Widlöcher and Mathet, 2012, section 2).

3.1.1 Prerequisites

For this reason, we have been studying since 2008 how to improve the annotation process, which has
resulted in the design and the development of a whole annotation platform, namely Glozz, that features
three fundamental aspects:

• A high level of customization, to fit most annotation campaigns

• Different and simultaneous views on annotated data, because the annotation process is often
multifaceted

• Annotating and querying (i.e. creating annotations and looking for what has been already an-
notated) should be possible at the same time, because we often rely on previous annotations to
annotate new ones.

The Glozz platform1 (Widlöcher and Mathet, 2009), takes these constraints into account and pro-
vides a highly configurable environment, usable for corpus annotation and mining of various linguistic
phenomena.

3.1.2 Continuum: first overview

For historical reasons, Glozz is designed to tackle texts, that is, an ordered series of characters with
respect to a settable encoding. Each character is naturally given an index, in increasing order, which
creates what we will call a continuum. The main point is that a continuum is not just a set of items
(here, items are characters), but, first of all, a mono-dimensional stream which relies on continuous
positions. This notion will be further defined in the section about assessment.

An important point is that even though Glozz, in its current form, relies on textual data, all its
principles could be extended to any other kind of continuums such as audio or video streams.

3.1.3 Glozz and GlozzQL overview

In order to satisfy the requirements of genericity and to support consequently the annotation of hetero-
geneous linguistic objects (in terms of structure, granularity...) as reported in section 3.2, Glozz relies
on an abstract metamodel presented in section 3.3.

Given a specific linguistic model conforming to this metamodel, locating, identifying and describ-
ing linguistic objects in texts require adequate annotation tools. The incremental annotation process,
Glozz GUI (presented in figure 3.5), as well as its main annotation features and tools, will be presented
in section 3.4 and 3.5.

The annotation process, as well as the subsequent use of annotated data, require the ability to access
information featured by the corpus. Glozz provides an easy access to this information through different
"navigation" tools and, in particular, by the mean of a powerful query language called GlozzQL, which
will be presented in section 3.6.

1Glozz was initially developed within the Annodis project citetaln09annodis, supported by the french Agence Nationale
de la Recherche (ANR). Glozz has also been supported by the french Contrat de Projet Etat-Région (CPER) and the Région
Basse-Normandie. The URL address of its website is: http://www.glozz.org.

3.2. WHY ANOTHER TOOL ? 69

3.2 Why another tool ?

Despite the availability of several annotation tools (see Widlöcher and Mathet, 2012, section 2), and
even if some of them are highly customizable, it must be noted that they do not meet the needs of all
varieties of linguistic annotations. In a way, it is necessary to bridge the gap between broad enough
formats and too specialized tools. From this point of view, the following limits have to be emphasized:

1. Priority is globally given to the annotation of objects at quite local granularity levels, making it
difficult to represent and then to explore, for example, structures at discourse level.

2. Available tools are often restricted to a particular theory or to a specific class of linguistic struc-
tures (segments, relations, chains...). Annotation tasks involving heterogeneous structures are
then made difficult.

3. When a class of structure (segment, relation...) is available, ergonomic limits may nonetheless
make its annotation process uneasy. For example, it is uneasy to express and visualise relations
between textual segments, when annotation only consists in the attribution of a same ID to linked
elements. A graphical artefact is necessary.

4. Strong constraints often restrict the usage of the available classes of structures. For example,
in the case of annotation of textual segments, embedded or overlapped structures are often not
allowed or not adequately represented.

5. It may be impossible to represent complex structures using only segments and relations (in par-
ticular if relations can only link segments). For example, annotation of enumerative structures
(Ho-Dac et al., 2010) or complex discourse units (Asher et al., 2011) makes it necessary to link
sub-structures and not only primary textual data. Moreover, linking non-adjacent elements in
sub-structures is often needed, and can not be represented by embedding segments.

6. Annotations (segments or relations) are "labeled" to state the relevant information concerning
identified objects. Simple tag-sets are not expressive enough to meet requirements of rich anno-
tation models, and it is necessary to implement richer labelling possibilities, using for example
feature structure-based models.

The limits mentioned above mainly concern the expressive power of the data model. Other impor-
tant limits concern the annotation process and the annotation environment:

1. Multiple views (in situ, concordancers, trees, graphs, etc.) on the same data are often required.
And any of these views should notify any change to other views. However, available tools often
give priority to one of these paradigms or feature multiple views which do not "observe" each
others.

2. Querying/Mining of annotations should not be considered as a post annotation possibility. In-
deed, at any stage of an annotation process, annotators need to rely on some specific existing
configurations to which query languages can give access.

Most of these requirements, in terms of abstraction, genericity and ergonomics, had already been
implemented in other tools, but not, to our knowledge, in a same tool. The general-purpose Glozz plat-
form takes these constraints into account and provides a graphical and highly configurable annotation
environment, usable for corpus annotation and exploration of various linguistic phenomena.

70 CHAPTER 3. ANNOTATION OF CONTINUUMS

3.3 Underlying model

Due to the diversity of linguistic phenomena, corpus linguistics and NLP studies lead to a variety of
models, theories and formalisms. This diversity often results in heterogenous description formats and
annotation tools, each approach developing its own framework.

However, deep interactions between the different kinds of linguistic phenomena and paradigms
make it necessary to define common frameworks and standards where most kinds of objects, result-
ing of heterogenous models or paradigms, can be described, in order to compare or combine various
approaches.

3.3.1 The Unit-Relation-Schema metamodel

Glozz relies on an abstract metamodel, called URS (for Unit-Relation-Schema), originally coming from
Widlöcher (2008), which provides an adequate framework, unrestricted to a particular theory or to a
specific class of objects, allowing description of existing or future linguistic models.

This metamodel, represented by the figure 3.1, relies on three abstract categories of elements: units,
relations and schemas which will be described below.

!"#$%&'()*&"+

,-&.&$%

!"#$%&'()*&"+

,-&.&$%

!"#$%&'()*&"+

/$#%

!"#$%&'()*&"+

/$#%

!"#$%&'()*&"+

0&-)%#1$

!"#$%&'()*&"+

0&-)%#1$

!"#$%&'()*&"+

2*3&.)

!"#$%&'()*&"+

2*3&.)

4

5667
8&)%9'&2&%8&)%9'&2&%

5

Figure 3.1: UML class diagram of URS

Metamodel and models

Within the general framework defined by the meta-model, specific models can be expressed, depending
on the linguistic theory or approach. Each specific model declares available linguistic object types
(identified by the theory) and explicits the way their instances have to be characterized (or labeled).
The specialization of URS for a specific campaign will be presented in section 3.5.

Element

All available linguistic objects, called elements, may be units, relations or schemas. All of them are
characterized by a type name, which explicits their linguistic category, and a feature set, representing
their properties. Type names, expected features for a given type and possible values for these features
depend on the specific user-defined model designed for a campaign.

3.3. UNDERLYING MODEL 71

Unit

Units, illustrated by figure 3.2, are textual segments, sequences or spans, of any size.

lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero

eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in

justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi.

Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue,

et ultricies lacus lorem varius purus. Curabitur eu amet.

Section 1: Lorem ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus. Suspendisse

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor,

orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis.

Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis

egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat

non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam

faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et

tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus.

 Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh

nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim.

Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus

rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus,

felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus. Suspendisse

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

Figure 3.2: Units

A part of speech annotation task could for example define a unit type word, and two features to
represent its morpho-syntactic tag and its lemma (the former having a predefined set of possible values).
An annotator could then annotate all words of a text, each of them, instance of the type word (derived
from the abstract meta-type unit), having its own tag and lemma values. Named entities, propositions,
sentences, topical units, argumentative segments, sections or the whole document give other examples
of possible units, at higher granularity levels.

Relation

Relations, illustrated by figure 3.3, designate links (directed or not) between two elements.
If relations between units are widely used, it must be noted that the possibility of relations linking

whatever elements, including schemas or relations, significantly improves the expressive power of the
metamodel.

At a syntactic level, dependancies could, for example, be represented by directed relations. At a
higher granularity level, a rhetorical annotation task would make use of directed relations to represent
causality and benefit from symmetric relations to represent contrast, between propositions delimited as
units, or between more complex patterns represented by schemas.

72 CHAPTER 3. ANNOTATION OF CONTINUUMS

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor,

orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam.

Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor

tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula

justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at

fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce

vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed

leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue.

Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna

fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Section 2: Sed non risus

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus. Suspendisse

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor,

orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Figure 3.3: Relations

Schema

If both previous elements are quite common (even if designated otherwise), the schema category, illus-
trated by figure 3.4, is more original. Schemas are used to represent complex configurations or patterns
involving any number of elements (units, relations or sub-schemas).

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor,

orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam.

Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor

tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula

justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at

fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce

vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed

leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue.

Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna

fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Section 2: Sed non risus

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus. Suspendisse

lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices

diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor,

orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.
Figure 3.4: Schemas

Coreference chains could, for example, be represented by a set (or a path) of binary relations, all
grouped in a schema, whose features could describe the common reference. Enumerative structures
provide a more complete example. Composed of a set of consecutive item units, the enumeration is
usually embedded in a larger structure (an enumerative structure), introduced by a header which is
thereby in an introduction relation with items. In addition, inheritance relations between header and
items, and similarity or contrast relations between items, often complete this quite frequent textual
configuration.

3.4. MAIN FEATURES 73

Figure 3.5: The Glozz main GUI

3.3.2 Metamodel scope

This very abstract metamodel enables the representation of very many (if not all) configurations. If
linguistic objects can then often be representend within the URS framework, it must be noted that
"non-linguistic" information can also be encoded in this way.

For example, Glozz also uses the URS metamodel to represent document structure (titles, section
titles...) and typographical information (ordered lists, emphasis...). Thus, with Glozz, everything but
the raw text, is an annotation.

Represented in a unified way, all the available information can be used or mined in a unified way,
as we will see in section 3.6.

3.3.3 Granularity and topology

The proposed meta-model makes no hypothesis on granularity level of elements or on distance between
elements involved in relations or schemas. In particular, it meets the requirements of annotation at
discourse level, which are overall not satisfied by multipurpose tools.

Furthermore, this data model accepts embedded and overlapping structures, as illustrated by the
figure 3.2. More difficult to represent, the latter are often not well supported by annotation tools.

3.3.4 Standoff representation of annotations

Glozz uses standoff annotations. Units are linked to textual data using position offsets. Relations and
schemas refer to objects they link or group.

74 CHAPTER 3. ANNOTATION OF CONTINUUMS

3.4 Main features

3.4.1 Polymorphism and heterogeneity of input

Annotated texts involve heterogenous data. In particular, in a same text, annotations may: come from
different annotators; belong to various granularity levels (word, sentence, paragraph, text, etc.); be
related to various linguistic paradigms (syntax, semantics, discourse, coreference, etc.).

An annotation environment should allow such an heterogeneity, and provide adequate ways to deal
with it.

Several annotators

For a given annotation campaign, several annotators may add annotations to a same document. In
Glozz, each annotator is authenticated, and each annotation is stamped with its creator’s identifier. This
prevents collisions, and makes it possible to allow or disallow modifications by others, and to filter
annotations by authors afterwards.

Granularity

Annotations attached to a same document may concern several levels of granularity. It may be a prob-
lem since each granularity level needs a specific modality to work with, particularly in terms of display.

Glozz proposes two simultaneous text views of the annotated document which are respectively set
to "macro" and "micro" granularities. Thus, it is possible to have a global view of the document, where
macro structures appear, and, at the same time, to have a focused local view, where micro structures
can be well represented.

Several linguistic paradigms

It is necessary that several linguistic paradigms (syntax, semantics, etc.) can combine in a same docu-
ment, because some paradigms may depend on others. However, too many structures at the same time
make interpretation uneasy.

With Glozz it is possible to focus on one or several specific paradigms, and to hide annotations that
do not belong to them. Indeed, annotation models can define groups of types, and each type can belong
to one or several groups (see section 3.5). Users can hide as many groups as necessary.

Several linguistic types

Annotated items, instances of units, relations or schemas, are grouped in types (each type belonging
to one or several paradigms). For example, in order to annotate the argumentative structure of scien-
tific texts (this is an annotation paradigm), we could annotate unit objects having types: introduction,
background, state of the art, own work, experiment, evaluation, future works or conclusion.

Annotation display, in Glozz, uses a stylesheet. This stylesheet makes it possible to define visual
properties for each type, and, if necessary, to hide all instances of a given type.

3.4.2 Several representation paradigms

Different annotation paradigms (coreference chains, argumentative structures, rhetorical relations, etc.)
often require different representation paradigms, called here views.

Nonetheless, we often need different paradigms at a same time, in a same campaign, hence in a
same tool.

3.4. MAIN FEATURES 75

Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam.

Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor

tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula

justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at

fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce

vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed

leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue.

Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna

fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor.

Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue,

euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend

mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa,

scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus

volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent

egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices

posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque

fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit

mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit

pulvinar. Nulla sollicitudin.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id

felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis

egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

Figure 3.6: Annotations over the text

Annotations over the text, in situ annotation

Of course, the most usual way to annotate texts is to process directly upon them, in order to select and
"highlight" identified objects. As shown in figure 3.6, it is possible to add or modify units, relations
and schemas through a WYSIWYG2 interface.

Annotations as a graph

If relations and schemas are integrated in complex constructions, or for specific annotation paradigms,
a graph representation is obviously a good way to reveal what would be confused on the flat view of the
text. Hence, in figure 3.7, the annotations of figure 3.6 are represented by a graph, where the relations
(of elaboration) and their interaction with schemas more clearly appear. In this configuration, units are
represented by circled numbers and schemas by boxes.

Annotations as predicates

It may be convenient, as well, to read and create annotations directly as predicates, straight expressing,
for example, that a relation should exist from annotation 1 to annotation 2, and so on. In Glozz, a
module (illustrated by figure 3.8) permanently shows the list of all existing annotations in this way. A
prompt may also be used to create new objects, with the help of auto-completion for element metatypes
and type names, as well as for syntax checking.

Several simultaneous views

Moreover, a real strength of Glozz is its ability to make all its representation paradigms working at the
same time, and together. Indeed, Glozz keeps central control of what is being selected through any

2What You See Is What You Get

76 CHAPTER 3. ANNOTATION OF CONTINUUMS

28

25

3129

26 27

30

 E
la

bo
ra

tio
n

 Elaboration
 Elaboration

 Elaboration

413 x 188

Figure 3.7: Annotations as a graph

���
��������	
����
����������
������������	
���
���
������
�����������	
�����
�����������
�����������������������������	��������������
����� !"�#��!�	
����
���
�������
��$%�&'(�)�#*��!�	
�����
����������
��$%�&'(�)�#*��!�	
�
���
����������
 �$(*+! *��!�	������������
 �$(*+! *��!�	�����������
��$(*+! *��!�	���������������
 �$(*+! *��!�	����������

 �$(*+! *��!�	������������
���

Figure 3.8: Annotations as predicates

view, and transmits the selection to all other views. This interaction is illustrated by figure 3.9, where
the selection of an object in any of the 3 views selects it in the two other views.

This way, Glozz enhances the annotation process in two ways. Indeed, it makes it possible:

• to observe a same annotation from different points of view, in order to consider, for instance,
its exact position in the text on the one hand, as well as its hierarchical position among other
annotations, on the other hand;

• to select an annotation by using a first view (the most adequate one to detect the searched object),
and modify it by using another one (more adequate to edit its properties).

3.5 Customizing and using Glozz

For a given annotation task, it may be necessary to configure the annotation environment of Glozz.

3.5. CUSTOMIZING AND USING GLOZZ 77
Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam.

Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor

tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula

justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at

fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce

vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed

leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue.

Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna

fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor.

Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue,

euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend

mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa,

scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus

volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent

egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices

posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque

fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit

mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit

pulvinar. Nulla sollicitudin.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id

felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis

egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

28

25

3129

26 27

30

 E
la

bo
ra

tio
n

 Elaboration
 Elaboration

 Elaboration

413 x 188

!!!
"#$%&'(')*+,-./*+-,012345,6
"#789(9%&'(')*+-:-/*+0+*12345,-
"#;<89%&'(')*+:6:/*+=..12345,0
'#$%&'('>789(9%&'('>;<89%&'('),-/,0/?.12345+=
"#389@AB"C9(A8)*+,-./*++:*12345,:
"#DE&FGH(I(CJ9(A8)*+6:./*+-,012345,=
"#DE&FGH(I(CJ9(A8)*?*60/*?,-612345+.
@#DHJKA@J9(A8),:/,=12345+6
@#DHJKA@J9(A8),0/+.12345+-
'#DHJKA@J9(A8),:/,=/??12345?.
@#DHJKA@J9(A8),-/+.12345?*
@#DHJKA@J9(A8),:/+.12345?+
!!!

Figure 3.9: Several views on a same annotation

3.5.1 Annotation campaign

An annotation platform should conform to the requirements of collaborative work. The concept of
annotation campaign refers to an annotation task involving several annotators sharing resources.

Such resources, built by the campaign managers, and distributed to each annotator, include:

1. texts to be annotated;

2. one or several annotation models, to work with different paradigms;

3. one or several stylesheets to configure "points of view" on the data;

4. filters (see section 3.6.1), either to check the reliability of the current annotation, or to bootstrap
higher order annotations.

3.5.2 Annotation model

For a given annotation task, a specific annotation model is defined, conforming to the metamodel URS,
which declares available types of units, relations and schemas. This ad hoc model also specifies the
way of describing each instance of these types, by means of a feature set, and expresses constraints
on the possible values for each feature. Available element types may also be grouped in categories or
levels (see below and section 3.4). Relations may be declared oriented or not.

Conforming to this specific model, annotators can locate instances of these types in corpora, and
feed or select adequate feature values.

3.5.3 Customizing display

There are several ways in Glozz 1) to select annotations to be shown, and 2) to configure the way they
are represented:

Filtering. Three options are given: 1) using style setting of types, since one of the style properties is
visibility; 2) switching visibility of a whole group declared by the annotation model; 3) (tempo-
rary) switching visibility of individual annotation instances.

View settings. Type styling consists in choosing a color (for background or edge), and, for schemas,
a shape. Several stylesheets can be defined for a same annotation model, in order to adopt
successively different points of view on a same data.

78 CHAPTER 3. ANNOTATION OF CONTINUUMS

3.6 GlozzQL: a query language for annotation mining

The annotation process, as well as the subsequent use of annotated data, requires the ability to access
information featured by the corpus. Of course, this information concerns raw textual content, but
it is also necessary to give a convenient access to linguistic (morphologic, syntactic, semantic, etc.)
or infra-linguistic (document structure, typographical data, etc.) information, which may result from
preliminary annotation (manual or computational) steps.

Annotating is an incremental process, which requires to take current annotations into account, in
order to produce new ones. At a given stage of an annotation task, annotators need to find some specific
configurations of annotations from previous steps (e.g. relations of a given type, units linked to other
units by a relation of a given type, and so on).

Besides, it may be very helpful to check that all annotations conform to the annotation directives.
Hence, the ability to locate non-valid configurations while annotating is a very convenient way to do
so.

Glozz provides such facilities within annotation tasks by the means of some basic tools (not pre-
sented here), and a more advanced one, called GlozzQL.

3.6.1 Introducing GlozzQL

Principles

GlozzQL (Glozz Query Language) is a language dedicated to Glozz annotations, and comes with an
associated engine.

It is designed to select in a corpus each instance of element (unit, relation or schema) that satis-
fies expressed constraints. Requests are built piece after piece, in an incremental manner, using two
interdependent concepts: Constraint and Constrained-Annotation.

Constraint: A constraint expresses one condition an annotation must satisfy in order to be selected.
They are classified in 4 categories, depending on their domain, i.e. the kind(s) of element they
concern (units, relations, schemas, any of those).

Constrained-Annotation: This simple concept refers to a set of annotations (of a given corpus) that
all satisfy a given constraint. For a given text, and depending on its associated constraint, a
Constrained-Annotation contains 0 to n entities.

Examples

To get an idea of GlozzQL expressivity, let us mention some incremental possible queries:

• getting all Units of a given type (this set is called U1)

• getting all Units from U1, with a given value for a given feature (this set is called U2)

• getting all Relations whose target is an element of U2 (this set is called R1)

• getting all Schemas containing a relation among R1, with a maximum depth of 3 (this set is
called S1)

• getting all Schemas belonging to S1 and from a given annotator

3.6. GLOZZQL: A QUERY LANGUAGE FOR ANNOTATION MINING 79

How it works

A more complete explanation of this system is provided in (Mathet and Widlöcher, 2011a). Let us only
introduce here one real-world example coming from the Annodis project (Péry-Woodley et al., 2009),
in order to give an overview of the principles.

We need to find all schemas having SE type (french acronym of Enumerative Structures) embedding
a unit having amorce type (french name of the header of an enumerative structure), as well as all the
SE not embedding one.

To do so, we have first to define a Constrained-Unit which represents all amorce units. This is done
by Unit1, in figure 3.11, which relies on C1 Constraint, in figure 3.10.

����������	
 �������
�����

�� ������	�
�
�	��� ���

�� ����������������
������� �������������	�

� ������� �������������	�

�! ������	�
�
�" ���

�# ��$�����!� �������������	�

�% ��$�� ��!� �������������	�

��������� ���������� �������

����� ��
�
������	�
�
�	��� �

����	�� �#
�
��$�����!� ��

����	�� �%
�
��$�� ��!� �

Figure 3.10: Constraints

����������	
 �������
�����

�� ������	�
�
�	��� ���

�� ����������������
������� �������������	�

� ������� �������������	�

�! ������	�
�
�" ���

�# ��$�����!� �������������	�

�% ��$�� ��!� �������������	�

��������� ���������� �������

����� ��
�
������	�
�
�	��� �

����	�� �#
�
��$�����!� ��

����	�� �%
�
��$�� ��!� �

Figure 3.11: Constrained annotations

C1 is a constraint which concerns the type name, which must be amorce. This constraint may be
used with any kind of annotation (which is mentioned by its domain Any), hence with units. At this
stage, having declared Unit1 already implies a mining process : as stated in figure 3.11, 13 units
fitting C1 were found.

The second step consists in building Schema1, which represents all utterances of the first kind of
searched schemas, that is to say schemas a) containing an utterance of Unit1, and b) having SE type.
We express two preliminary constraints C2 and C4 respectively for a) and b). Then, a logical And
constraint named C5 is built over C2 and C4. As a consequence, we get, with Schema1, 12 utterances
of SE containing an amorce.

Then, we do the same to find all utterances of SE not containing any amorce, through C6 built over
C3=not(C2) and C4. We get 2 utterances.

Hence, we have discovered that in the annotated text, 12 amorce units out of 13 are contained in a
SE schema, and that 2 SE schemas out of 14 do not contain any amorce.

3.6.2 Annotating and querying simultaneously

As already mentioned, it is helpful to query what is currently being annotated, and to be able to go from
query results to current annotations.

80 CHAPTER 3. ANNOTATION OF CONTINUUMS
Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque

congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue.

Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere

cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas

adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare

ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula

non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula.

Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam.

Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor

tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat.

Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula

justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at

fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce

vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed

leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue.

Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna

fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor.

Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue,

euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend

mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa,

scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus

volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent

egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue

blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices

posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque

fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit

mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit

pulvinar. Nulla sollicitudin.

1) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus.

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id

felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis

egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat

2) Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in

1

2

Figure 3.12: Querying while annotating

It’s the reason why GlozzQL is integrated to Glozz, and interacts with it as shown in figure 3.12.
On the right of the figure, is the list of all queries. We can click on any of them to make the list of its
results appear, just below (arrow 1). Then, a click on one result will select it in the main interface of
Glozz (arrow 2). We can immediately see this object in its context and we are able to modify or delete
it if needed.

3.6.3 Advanced concepts

The main principles we’ve just introduced make it possible to build requests as complex as needed,
recursively. Additionally, two advanced constraints concepts enable to do more restrictive selections
just activating relevant options.

Double way constraints First advanced option consists in providing some of the constraints with
enhanced semantics. To make it short, let us consider an informal example as shown in fig.3.13 with:
Unit:R1=is-a-circle and
Schema1:R2=Contains(Unit1).

! " #

Figure 3.13: Double way constraints

With standard semantics, Unit1={A,B,C}, whereas with double-way semantics, Unit1={A,B}. In-
deed, with this option, not only Unit is constrained by its own constraint R1, but also by the one of
Schema1 for the reason it is embedded in it : to belong to Unit1, it is also necessary to be contained in
(at least) one utterance of Schema1. Hence, it is possible to double the semantics of the constraints with
no additional writings. To illustrate this option, let’s mention that in fig.3.11, the matches of Unit1
would drop from 13 to 12.

3.7. CONCLUSION 81

Unification mechanism The constraints semantics of GlozzQL is originally built on sets : for a
given utterance of schema s, s belongs to Schema1 if it does exist (at least) one u that belongs to
Unit1 such that s contains u. Consequently, when several ConstrainedAnnotations are linked
via their constraints, only sets are linked, not their utterances. Let us assume that we are looking for
a configuration of 3 units linked in a triangle pattern. Assume that A, B, C, D, E and F in fig.3.14 all
belong to Unit1, Unit2 and Unit3 sets.

! "

#

$ % &

Figure 3.14: Unification

If we write (here, in an informal way): Unit1 is-linked-to Unit2, Unit2 is-linked-to
Unit3, Unit3 is-linked-to Unit1, this will result in selecting not only A, B and C, but also
D, because D is linked to C which is linked to B which is linked to A, and both D and A belong to
Unit1. At this stage, these constraints are not relevant to find triangle patterns only (even if E and F
were rejected, D wasn’t).

However, when using "unification mechanism" option, all ConstrainedAnnotations (Unit1, Unit2
and Unit3 in our example) are considered as mathematical variables involved in equations. Hence, D
will no longer be considered as a relevant unit, and the whole semantics of the constraints is strongly
enhanced.

Basket(s) Using GlozzQL results in getting a certain number of sets of annotations, as many sets as
ConstrainedAnnotations are defined. A special feature makes it possible to collect annotations from
any of these sets in a new set called "basket" (in fact, one of the several available baskets). The same
basket may collect results from different sets. At any moment, the current basket can be stored as
a new annotation file, or reversely it is possible to require that the content of the basket is removed
from the current annotations. In order to illustrate this feature, let us just mention that it is possible,
in a very simple way, to separate a multi-annotated text (from several annotators) to as many mono-
annotated texts as the number of annotators. It is also possible to add or to modify some features to
each annotation of the whole content of a basket through a single request.

3.7 Conclusion

It is not possible to introduce the whole content of Glozz and GlozzQL in this dissertation. In addition
to the two articles cited at the beginning of this chapter, the reader can refer to three documents I have
written which describe Glozz, GlozzQL and a third related tool not mentioned here, the Concordancer.
They are available at http://www.glozz.org/.

In its current state, this platform has a main limitation: It can handle only a single text at the same
time. In the future, it would be helpful to have the opportunity to work on a set of texts, in particular in
order to make requests whose scope is the whole set of texts rather than a single text.

This tool in widely used in the community, worldwide. At the date of June the first 2017, it has
been downloaded 1189 times, and we have been required 267 logins, corresponding to active users (who
create annotations). Interestingly, the designers of ANALEC (Landragin et al., 2012), a powerfull tool

82 CHAPTER 3. ANNOTATION OF CONTINUUMS

devoted to the dynamic annotation of textual data, decided to rely on the Glozz annotation model, and
to use the same storage format. Moreover, the delivery of this tool has been a way to create links with
other research teams, and last but not least, has triggered our involvement in assessment of annotations
which will be introduced in the next sections.

Chapter 4

Assessment of annotations - Part I:
Understanding and assessing agreement
measures

This chapter mainly relies on two articles: (Mathet et al., 2012), which provides a method to
compare and assess agreement measures, and (Mathet and Widlöcher, 2016), a french written
article which is a methodological study about assessing annotations.

Contents
4.1 Main concepts . 84

4.1.1 Continuum, annotation, localization, characterization 84
4.1.2 Gold standard, or reference . 85
4.1.3 Multi manual annotations . 85
4.1.4 Agreement measure . 85
4.1.5 Validity measure . 86
4.1.6 Links between the different concepts . 86

4.2 Chance correction: a necessity and a difficulty 87
4.2.1 An undeniable necessity . 88
4.2.2 First principle: perform a change of referential 88
4.2.3 Estimating chance agreement: several conceptions, and a legitimate debate . 89
4.2.4 An anti-distribution-driven conception of chance 91
4.2.5 Discussion about models of chance . 91

4.3 Benchmarking and understanding agreement measures: the Corpus Shuffling
Tool (CST) . 92
4.3.1 Introducing the CST . 93
4.3.2 Protocol . 93
4.3.3 Interlaced paradigms . 94
4.3.4 Errors versus discrepancies . 95
4.3.5 Results . 95

In CL and NLP, the question of assessment of annotations has been receiving a growing interest
for more than 15 years. It is now out of the question to publish any annotated resource without some
figures supposed to render its validity. For this purpose, agreement measures are often employed,
mainly coming from other domains than NLP, and their use in our fields of study has been largely
described and commented, notably in the survey article by Artstein and Poesio (2008).

83

84 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

However, even if people increasingly make use of assessment measures, they do not always know
which measures, if any, are appropriate to assess their annotations, and do not always understand what
their results really mean. Moreover, the question of how to assess the quality of annotations is still
subject of debate, when not simply ignored.

We have addressed these questions since 2009 in quite a particular way. It started with the need
to get agreement measures to assess Glozz annotations in the context of a research project, namely
(Labadié et al., 2010). Then, we have started to design a new family of measures, the Gammas, within
the GREYC laboratory, and soon after started a joint reflection about agreement measures at a larger
scale with all the authors of the article (Mathet et al., 2012). A collaboration with Klaus Krippendorff
also started in 2013, which has resulted in mutual comparisons between our approaches, and in the
joint article (Krippendorff et al., 2016). During this period, we have gained a solid experience on how
agreement measures work and what their current limitations are, which we have shared in the article
(Mathet and Widlöcher, 2016).

In this chapter, we will first see what the main concepts are (in particular what the nature of anno-
tations can be), what the main principles of agreement measures are, including the so-called "chance
correction", the main methodological flaws one can encounter and we will introduce a method and a
tool (the CorpusShufflingTool) to improve the understanding of what the different agreement measures
really do. We will introduce the new family of Gamma measures in the next chapter for more clarity.

4.1 Main concepts

4.1.1 Continuum, annotation, localization, characterization

In Computational Linguistics (CL) and Natural Language Processing (NLP), the initial data we are
concerned with is, most of the time, a mono-dimensional continuum, whether it is textual, audio or
video data.

Texts are made of contiguous characters, that is, a character stream which forms words, then sen-
tences, and so on, characters upon which one can define positions, either from the positions of the
characters themselves (from position one to the number of characters), or from the frontiers between
characters (position zero is just before the first character, position one is between first and second
character, and so on).

Speech involves an audio stream where one can recognize phonemes, words, sentences, and also
silences.

In video, we may hear people speaking, watch their corresponding facial expressions and gestures
over time, in a rich multi-layer stream (since audio generally goes along with video). Basically, the
video stream itself is composed of frames which are organized through a timeline. Whatever the way
we consider this stream, discrete (which is necessarily the case with computers) or not, steady or not
(i.e. whether all the frames have the same duration or not), the point is that frames are temporally
contiguous, and their temporal bounds constitute ordered positions.

Hence, we decide to define a continuum as a mono-dimensional stream, whatever the matter it
conveys, this matter being discrete or not. The main point for any continuum is that it bears positions,
ordered and contiguous. This definition is different from the mathematical definition (which relies on
the difference between discrete and non discrete data, for instance reals versus integers), and relies on
the etymology "continuous", which bears the notion of contiguity of elements.

This continuum constitutes the context in which annotators have to identify occurrences of the
phenomenon under study, and their characterization. The annotation process hence corresponds to
two steps :

1. locating occurrences on the continuum

4.1. MAIN CONCEPTS 85

2. associating to occurrences representations meant to characterize them.

These two steps are not necessarily the responsibility of annotators. In some cases, step one is
provided, that is to say occurrences are already located on the continuum, and annotators only have to
characterize each of them. For instance, verbs have already been identified and located, and the task of
annotators is to choose a semantic value for each of them. But in other cases, annotators have to fulfill
both steps, which makes both the annotation task and its assessment more complex.

Then, a unit is defined as a continuous part of a continuum, that is, formally, by a pair of positions
(in increasing order) stating the beginning and the end of a part of a continuum. It corresponds to any
element of interest with respect to an annotation task. We make absolutely no assumption about the
granularity of units. In addition, a unit is given a characterization (a category, possibly accompanied
by feature sets, etc.).

Now that units have been introduced, and following the terminology of Krippendorff (2013a), we
will call step one unitizing. This task is very different from usual categorization of predefined items,
since the annotator is free to identify as many units as she wants, and to choose their corresponding
positions. This somehow corresponds to what a reader does with a highlighter pen over a clean text
when she decides to highlight some parts (words, sentences) of particular interest. However, since we
consider that units have not only a position but also a category, we enlarge the definition of unitizing so
that it includes not only the identification of units, but also the categorization of each of them (a reader
may use highlighter pens of different colors).

4.1.2 Gold standard, or reference

Computational Linguistics and NLP need trusted data in order to test linguistic hypotheses or to assess
automatic systems. These annotated data, which serve as a reference, are called gold standard. This
reference is meant to reflect the "reality" of the phenomena under study, or, if this reality cannot be
achieved, at least to reflect the consensual understanding of the phenomena by the community, at a
given time. It is by reference to a gold standard that annotations are validated, with the underlying idea
that validity means adequacy to "reality". As mentioned by Krippendorff (2013a), it is important that
a gold standard accounts for the whole set of phenomena under study, which is difficult to ascertain
when facing an entirely new task.

4.1.3 Multi manual annotations

As we have just seen, assessing annotations requires the availability of a gold standard. However, when
facing a new annotation task, we do not get any, nor, sometimes, any expert to build one. Moreover, it
is not sure at this stage that the task is formally well described (possible problem of fuzzy categories
for instance) and consistent (for a given input, only one possible output) so that a reference could be
built.

An usual practice to get at the same time both the evidence that the task is consistent and the
corresponding gold standard, is to do a multi manual annotation of the same corpus: each human
annotator is provided with the same instructions and the same corpus, and annotates independently
from others, with the underlying assumption: if annotators all produce (almost) the same annotations,
i.e. largely agree, their annotations are likely to be valid, and so, constitute a reference (provided that
there is a final correction). This assumption needs to be discussed, as we will further.

4.1.4 Agreement measure

An agreement measure is meant to measure the degree of consensus reached by several annotators
who annotate the same document. Such a measure compares annotations whose degree of validity is

86 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

unknown to other annotations whose degree of validity is also unknown. By not including reference
data in its computation, an agreement measure cannot, by design, ensure that annotations are valid. On
the other hand, it is generally agreed that a high agreement value ensures a high level of reproducibility
((see for instance Krippendorff, 2013a)), which means that if annotators agree on a part of the data,
they should agree on the whole data. As a consequence of reproducibility, once a high agreement is
achieved on a part of the data: It is no longer necessary to have a multi-annotation of the rest of the
data. We can have each part of the remaining data annotated by a single annotator. As we will see later,
it is important that such measures take into account the part of agreement resulting of "chance" (defined
later).

The survey article (Artstein and Poesio, 2008) provides a very wide picture of agreement measures
for CL, and explains in details how they work.

4.1.5 Validity measure

Once a gold standard is available, it is possible to assess the validity of what is produced by a system
or by humans by means of different measures, kind of distances between the gold standard and the
productions. This can be the percentage of correct responses in the case of categorization of predefined
items, or measures such as recall, precision and f-measure in the case of identification of elements, or
some more complex measures in such cases as topic segmentation, discourse relations identification, or
reference chains. When such measures provide a score of 100%, this means that the system perfectly
does what it is meant to do. Besides, a system which gets a better score than another one can be
considered as better than it.

Contrary to agreement measures, validity measures have no need to use any "chance" correction :
since the comparison is done with a reference, the obtained score is the one we may expect on other
data, and really accounts for the performances of the system. This is one great difference between
reproducibility and validity. However, it is desirable to have a baseline which indicates what is the gain
offered by the system compared to a random system, a naive system, or, better, already existing other
systems.

4.1.6 Links between the different concepts

Now that the main concepts have been introduced, it is important to understand how they relate to-
gether. First of all, figure 4.1, freely inspired by Krippendorff (2013a), where the center of a target
is a metaphor of the correct annotation, depicts the difference between agreement and validity: dis-
agreement limits validity (cf. B versus D), but agreement does not ensure validity (cf. C). It also
illustrates the fact that the absence of reference (in the right sub-figure) hides the differences between
very different configurations (A versus B and C versus D).

Generally speaking, 4.2 depicts the links between the four concepts. In order to obtain a reference,
it is possible and usual to process to a multi-annotation. The reproducibility value of the latter is
assessed by an agreement measure. If it is high, the multi-annotations will serve as a basis to build a
reference annotation, by means of a given strategy1. This reference is then used jointly with a validity
measure to assess the output of a system. It is important to bear in mind that agreement and validity are
two distinct elements in terms of both their inputs and how they work.

1(1) majority strategy: we retain the category which gets the most choices, with the problem of possible equality, and
the problem of poor majority. (2) unanimity strategy: we keep only items which get full agreement, with the problem that
only easy items are kept, but creating a biased reference only composed of "easy items". (3) collegial revision: each item not
reaching unanimity is collectively revised, probably one the best strategies, used for instance in (Péry-Woodley et al., 2009)

4.2. CHANCE CORRECTION: A NECESSITY AND A DIFFICULTY 87

ag
re
em
en
t

validity

A B

C D
With reference Without reference

ag
re
em
en
t

A B

C D

Figure 4.1: Validity versus agreement

reference
annotations

annotations

System

Humans

Agreement
measure strategy

sufficient

not sufficient

annotations

annotations

annotations

Validity
measure

Expert

performance of
the system

Figure 4.2: Links between the different concepts

4.2 Chance correction: a necessity and a difficulty

Agreement measures should take into account the part of agreement coming from "chance" (we usually
talk about "chance corrected" measures). This is a concept used by many measures, but rarely clearly
defined. This is not just a refinement of the computation, but a necessary requirement in order to know
to what extent multi-annotations are reproducible.

We will consider that "chance" corresponds to an agreement between two annotators which results
from an uncontrolled action of at least one of the two annotators. For instance, one of them selects
accidentally another category than the one he has chosen (which accidentally corresponds to the one
of the other annotator, whether it is a correct choice or not), or both annotators make the same mistake
which results in an agreement (sometimes, the mistake may lead to the correct annotation, but for bad
reasons, which should be considered also as chance, kind of correct agreement by chance). We will use
the term "fortuitous2", or the expression "obtained by chance".

What we have to compute is the agreement exclusive of chance, that is, the part of agreement
resulting from the feasibility of the task, the correct understanding of the instructions, and the correct

2in its regular acceptation, that is here, with no apparent logic with respect to the annotation task.

88 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

interpretation of the data to annotate. Indeed, if we consider two annotators whose raw agreement
is not better than if they were annotating randomly (for instance by rolling the dice), their behaviour
would be totally independent from the annotation task they are supposed to accomplish. An agreement
measure should rate them zero. This is a tricky aspect often discussed in the literature, from the first
reservations from Feinstein and Cicchetti (1990) to the recent controversy between Zhao et al. (2013)
and Krippendorff (2013b), that we will investigate in detail. As we will see, the theoretical level of
raw agreement corresponding to chance is usually called "expected agreement", which bears a strong
mathematical connotation, suggests that in such a case one can assimilate the annotators’ behavior to
random variables. This is a strong assumption, which may be interesting to try to find a way to compute
the chance agreement value, but which does not entirely account for what agreement by chance really
is: an uncontrolled action cannot necessarily be described in terms of randomness. As far as I know,
this point is not discussed in the literature.

4.2.1 An undeniable necessity

Often discussed, this classical conception of agreement is vigorously contested by Zhao et al. (2013)
who claim that it deliberately assumes that annotators are dishonest and partly annotate at random.
Before we address the question of chance, let us first observe an example where the raw agreement
value cannot be interpreted straightforwardly, since it cannot achieve zero: three annotators annotate
a series of items with two possible categories A and B. Even if annotators made collusion to try to
never agree, they would automatically get at least 33.3% of agreement, because if two annotators
disagree, the third one has no choice to agree either with the first or with the second. Hence, the
degree zero of agreement really starts here at value 33.3%. But more generally, taking into account
the part of agreement coming from chance is a necessity in order to interpret the results: As soon
as annotators do not perfectly agree, we can conclude that at least a part of their annotations is not
produced in a controlled way, because they cannot disagree and all be consistent with what is expected.
Henceforth, each time they do not have total control, there is a probability that they agree accidentally,
for instance (but not exclusively) because they make the same mistake simultaneously. Clearly, if there
are two annotators and two categories, and assuming that the theoretical degree where annotators would
annotate blindly, they would achieve a 50% agreement value. In this context, a raw agreement value of
75% would be only halfway from chaos to perfect agreement. As a consequence, taking chance into
account is a necessity: an annotation campaign cannot rely on raw agreement value.

4.2.2 First principle: perform a change of referential

Agreement measures first compute a raw measure, which is usually called "observed agreement", de-
noted AO. In the simplest context of categorization of predefined items by two annotators, it may be
the percentage of items for which the annotators have chosen the same category. As such, except it is
100%, this raw value is not informative about the reproducibility of the annotations, as we have just
seen.

Taking chance into account consists in estimating the value Ae (for expected agreement) intended
to correspond to the part of chance, and to perform a change of referential so that value zero means no
correlation between what annotators do and what they are supposed to do, and 1 means a total agree-
ment. This change of referential is provided by equation 4.1 common to most agreement measures:

A =
Ao −Ae
1−Ae

(4.1)

Let us mention that some agreement measures, such as α from Krippendorff (2013a) or γ from Mathet
et al. (2015) are built over computation of disagreements instead of agreements, and so rely on equation
4.2 which is equivalent to the previous one, by considering that disagreement values denoted Do and

4.2. CHANCE CORRECTION: A NECESSITY AND A DIFFICULTY 89

De are complementary values of Ao and Ae. Given this equivalence, our discussion will rely only on
values Ao and Ae.

Ao +Do = 1
Ae +De = 1

}
⇒ A = 1− Do

De
(4.2)

This change of referential is illustrated by figure 4.3. We observe that this new referential leaves
unchanged value 1 corresponding to perfect agreement, but shifts value 0 to the point allegedly corre-
sponding to chance, that is, formally, Ae. In this figure, which corresponds to our last example (two
categories), we observe that despite Ao = 0.75, A is only 0.5 (i.e. the middle of the new referential).
In addition, let us mention that negative values are possible as soon as annotators perform worse than
chance, which means a part of systematic disagreement, and may occur for instance when one annotator
inverts two categories.

0 1
Ae

raw values

0 1
corrected values

Ao

A

Figure 4.3: Chance correction seen as a change of referential

In response to the criticism by Zhao et al. (2013), let us mention that chance corrected measures
do not assume a lack of ethics from annotators: it is important to note that chance correction leaves as
is value 1, i.e. 100% agreement, which means that these measures consider annotators achieve such a
result without chance. A part of chance is estimated only when there is not a total agreement, without
necessarily assuming that annotators roll the dice, as we will see below.

4.2.3 Estimating chance agreement: several conceptions, and a legitimate debate

We address now a crucial point regarding how to compute an agreement value, and probably the most
sensitive one. If we can demonstrate, as we have just done, that it is necessary to take chance into
account, there is however no certainty about how to do so. To our knowledge, there is no available
model, to this day, of annotators’ behavior, and we even question whether it is possible to design
a model which fits the diversity of annotation campaigns. Though, providing a model of chance is
implicitly making assumptions about the annotators’ behavior. Let us observe and discuss the main
models of chance. We notice that the article (Krippendorff, 2011) provides a very interesting analysis,
while promoting the conception corresponding to his own alpha measures.

Equiprobable model : what random can do

This model, used by Bennett et al. (1954) for his S measure, considers that there is an urn containing
one ball for each available category. For each item to annotate, we draw one ball to select the category,
and put the ball back into the urn. This leads to 50% agreement in the case of two categories. The main
objection to this model is its dependency to the number of categories, with the debatable point that the
more the number of categories, the less the chance. For instance, if we add a third unused category to
our initial two categories, the chance level decreases from 50% to 33.3%. According to us, this fact
results from a conceptual flaw of this model, which assumes a schizophrenic behavior of annotators:
for each item, either they meaningfully annotate and never make mistake in this case, either they roll
the dice to randomly choose a category. In other words, annotators are supposed to oscillate between
perfect and worst annotators.

90 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

Distribution driven models: chance is different from random

In this conception of chance, that we will call "distribution driven", the main principle is the same as
previously, with the difference that the urn (or the urns, see later) includes as balls all the annotations
that were made by the annotators. For instance, if annotators make use of category A more often
than category B, there will be more balls A than balls B. According to us, this better corresponds to a
plausible annotator’s behavior: an annotator has her own weaknesses, such as fatigue, lassitude, habits
(for instance most of items are A rather than B), or simply mistake in how to interpret data, but she
tries to annotate correctly. As a consequence, when she fails, one can assume that what she does is
not totally uncorrelated from the task, but that it comes from all the mechanisms she performs in order
to try to find the correct annotation. And we may assume that these mechanisms lead to the observed
distribution.

This conception of chance is used by most of the current agreement measures, but there are two
opposed versions. The one from Cohen (1960) for his famous κ considers that each annotator has
her own urn, while the other one considers there is a single urn containing all annotations from all
annotators, supported for instance by Scott (1955) for his π and Krippendorff (1980) for his α.

We cannot go into details here, but the reader can have a thorough analysis of the differences
in (Mathet and Widlöcher, 2016). In a few words, our conclusion is the same as Zwick (1988) and
Krippendorff (2011) who argue that for a given observed agreement, κ (i.e. one urn per annotator)
rewards the fact that annotators disagree on the distribution of categories, which is not desirable.

Dependency to prevalence: a difficult debate

However, there is a long term debate concerning the dependence of distribution driven models to preva-
lence of categories, which has started as early as in 1990. Indeed, in the medical filed, Feinstein and
Cicchetti (1990) have mentioned the possibility of a paradoxical low kappa value despite a strong ob-
served agreement, mainly because of an unbalanced category distribution. This paradox has then been
introduced in the CL domain by Di Eugenio and Glass (2004). Let us consider the illuminating medical
example of a rare disease, mentioned for instance by Krippendorff (2013a), which concerns one person
out of 1000. Two doctors compare their diagnostics: they agree on 99.85% of the patients, as detailed
in table 4.1. The resulting kappa value is only 0.499, which is not very good. What value should be
trusted, 0.9985 or 0.499?

+ –
+ 5 5 10
– 5 9 985 9 990

10 9 990 10 000

Table 4.1: High prevalence of a category in the case of a rare disease

In the detailed data provided by table 4.1, we can see that doctors agree on 9985 patients whom they
have evaluated healthy, 5 that they have evaluated diseased, but there are 10 patients that are evaluated
healthy by a doctor and diseased by the other.

We can argue that good doctors are those who are able to identify the rare disease cases, which is
obviously not the case in our example. A second argument is that a fake doctor (relying only on the
fact that it is a rare disease) who would evaluate all patients as healthy would get 99.9% of correct
responses, which confirms that the very question here concerns the diseased patients rather than the
healthy ones. In a few words, what does chance correction here is to remove from computation what is
known, that is, here, that most patients are healthy. Hence, the 0.499 kappa computed here corresponds
to the fact that only one diseased patient out of two is correctly identified.

On the other hand, we cannot dismiss this delicate question. A very illuminating experiment has
been conducted by Bonnardel (1996), which shows that for a given "sensitivity" (the propensity to make

4.2. CHANCE CORRECTION: A NECESSITY AND A DIFFICULTY 91

real positives) and a given "specificity" (the propensity to make true negatives) of doctors, that is, for a
given capability of doctors, the kappa values do fluctuate depending on the prevalence of categories.

For these reasons, it is important to be aware about this dependency, and to understand it. From
our point of view, it may be desirable to identify obvious flaws (such the doctors concerning a rare
disease), but in the case where the fact that a category is most rare than others is not important, this
may be unfair. It is the reason why we should not take into account only the final agreement value, but
also the details of its computation, and in particular the detailed agreement for each individual category
as proposed by Krippendorff et al. (2016).

4.2.4 An anti-distribution-driven conception of chance

A third kind of approach has been driven by Aickin (1990) and next by Gwet (2012). It is intended
to take the opposite view from distribution driven approaches, with the goal to inverse the behavior of
chance corrected measures in the case of unbalanced distributions. Even if such measures are more
rarely used, it is important we discuss them in the present analysis. This approach considers that: (1)
each item is either easy (denoted E), or difficult (denoted H) to annotate; (2) an annotator never makes
mistakes with E items; (3) she rolls the dice with H items (with the difference that E and H are common
to all annotators for Aickin, whereas they depend on annotators for Gwet). Since, obviously, we ignore
a priori if a given item is E or H, a quite complex probabilist model is used which is intended to
estimate the respective quantities of them (without identifying them) from the observed annotations.
Not only the relevance of such a model is not proved, but also the initial assumption appears debatable.
On one side, the dichotomy E vs H is simplistic (why no item is moderately "difficult" ?), and on the
other side the resulting annotator’s behavior is, as it is for the equiprobable model, schizophrenic: for a
E, she never fails, for a H, she behaves the worse one can expect.

More precisely, without going into computation details, and taking a simple example with two
categories with respective distributions p = x and q = 1 – x, coefficient AC1 from Gwet considers that
Ae = 0.5 when x = 0.5, and Ae reaches zero when x reaches 0 or 1 (p or q equals 1 and the other one
0). That is to say that AC1 corresponds to other approaches when categories are balanced, but refutes
any possibility of chance agreement with very unbalanced categories, and then behaves the opposite
way of other approaches. Gwet argues that if annotators’ choice goes toward a particular category, it is
necessarily for a deterministic reason (and that, if they behaved at random, they would get a balanced
distribution p = q = 0,5). However, it is not possible, in the case where annotators would choose always
the same category, to distinguish whether it is conform to the annotation task, or if they behave as
broken thermometers which would always indicate the same temperature.

4.2.5 Discussion about models of chance

Our main contribution in this section will be to open a discussion rather than to provide answers. We
have already given some arguments in favor of the distribution driven (with a single urn) model, and
recommend it at the present time, but we also question its limitations, with some points not addressed
in the literature to our knowledge.

First limitation: This model is less and less justifiable as the agreement decreases3. To the extreme,
when A = 0, which implies Ao = Ae, what annotators do is totally uncorrelated from the annotation
task. In these conditions, their annotations cannot depict to the real distribution of categories, contrary
to what the computation of Ae assumes (this assumption is made for instance in (Krippendorff, 2011):
"Without knowledge of the correct valuation of units, this conception takes the distribution of values
that all coders collectively use to describe a given set of units as the best estimate of what the population
of units is like").

3high agreement values are the most important since they give the green light to consider annotations as reproducible, and
so should be the more accurate. That counterbalances this first limitation which concerns lower values.

92 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

Second limitation: Based on observed distributions, this assumption excludes the cases (difficult
to quantify) where annotators made an input mistake (for instance they click on another category than
their choice), since these cases have no reason to follow the real distribution. In such cases, it is more
the way the software interface is designed which may affect the false choices (for instance an inaccurate
click will lead to choose the next category in presentation order).

Third limitation: This conception of chance implicitly assumes that distributions are homoge-
neous within a given corpus. This is a problem if such homogeneity is not ensured. Let us assume a
textual annotation campaign where items are predefined and where two categories A and B are avail-
able. Let us assume that a given annotated text contains two pages, both having the same number of
items, and the same observed agreement Ao = 0, 9. By contrast, we assume that distributions are very
different between the two pages : 50% A and 50% B for page one, and 10% A and 90% B for page 2,
which results in 30% A and 70% B for the whole text. It follows that Ae values are respectively 0.5,
0.82 and 0.58, and so chance correctedA values are respectively 0.8, 0.44 and 0.76 (we assume that an-
notators have the same distribution to avoid to debate about differences between κ, π et α). From these
values, on can conclude that: (1) page 2 is considered much easier to annotate that page 1 (Ae is 0.82 vs
0.5); (2) from a high agreement on the first half of the document (0.8 for page 1) and a poor agreement
on the second half (0.44) results a high allover agreement (0.76). Conclusion (1) is not straightforward:
annotators, for page 1, use half the time category A, and half the time category B, and then, without
any warning, use by themselves 10% of A and 90% of B for page 2. Why, when doing mistakes on
page 2, do annotators use a different distribution? That is the very hub of the problem concerning this
conception: distribution of categories results, in a interlaced way, partly from the annotation task (for
instance, in a given task, category A is allover more frequent than category B, see the previous example
of a rare disease), and partly from the part of the corpus being currently annotated (from a part of text
to the next, category distribution may change for instance because of citations, change of topic, and
so forth). Consequently, we are facing a double level, respectively local and global, whereas this con-
ception assumes there exists a single level. Conclusion (2) seems to confirm a lack of consistency of
such measures when facing local variations of distribution. To assess that the whole work of annotators
is reproducible from what we observe on a document, while assessing the contrary from what we ob-
serve on half of the same document, is debatable. Our own works around Gamma measures in (Mathet
et al., 2015)4 (introduced later) address this problem, but the question remains open. From our point
of view, it is still necessary to enhance this conception in the case of unsteady distributions. At least,
measures should provide additional information about the homogeneity degree of distribution over a
given corpus, to warn the campaign leader about a possible flaw of the measure.

To conclude, chance is a difficult question, but we cannot dismiss this concept for the reason it is still
an open question: relying only on raw agreement (i.e. observed agreement) provides artificially high
results. From current knowledge, we advise to use distribution driven (with a single urn) approaches,
such as π or α, while being warned about their possible limitations. Even if the results they provide
may seem unfavorable in case of unbalanced distributions, the precautionary principle leads us to prefer
false warning rather than a false guarantee.

4.3 Benchmarking and understanding agreement measures: the Corpus
Shuffling Tool (CST)

The domain lacked a tool providing a clear and generic picture of the agreement coefficients behavior,
allowing to better qualify the obtained agreement results. Why several measures do exist, providing
different results, for the same annotation tasks? Is a given agreement value high enough to ensure

4By proposing to computeAe either at local level (i.e. for each single document), either at global level when it is possible,
that is, for a whole set of documents from the same corpus

4.3. THE CORPUS SHUFFLING TOOL 93

the reproducibility of annotations? The already mentioned survey article (Artstein and Poesio, 2008)
contains a section dedicated to various attempts at providing an interpretation scale for the Kappa family
coefficients and how they failed to converge. Works such as (Gwet, 2012) are also to be mentioned.
They present various inter-rater reliability coefficients and insist on benchmarking issues related to their
interpretation.

Our contribution in this domain has been to design a method and a tool in order to compare the
behavior of all existing measures, and to better interpret the values they provide.

4.3.1 Introducing the CST

Manual annotation, by essence, is subject to human errors. These errors may involve several paradigms.
Indeed, in the quite general case of unitizing, each manually annotated element may diverge from what
it should be (the reference, or gold standard), in one or multiple ways, including: (i) the location is not
correct (the frontiers of an element do not exactly match those of the reference); (ii) the characterization
is not correct (wrong category, or wrong feature value); (iii) the annotation does not belong to the
reference (false positive); or (iv), on the contrary, a reference element is missing (false negative). All
of these error paradigms tend to damage the annotations, so each of them should be taken into account
by agreement measures. We propose here to apply each measure to a set of corpora, each of which
embeds errors from one or more paradigms, and with a certain magnitude (the higher the magnitude,
the higher the number of errors). This experiment allows us to observe how the measures behave
w.r.t. the different paradigms, and with a full range of magnitudes. The idea of creating artificial
damaged corpora is inspired by Pevzner and Hearst (2002b), and then by Bestgen (2009) in thematic
segmentation, but our goal (giving meaning to measures) and our method (e.g. applying progressive
magnitudes) are very different.

4.3.2 Protocol

We cannot describe here the whole protocol, which is detailed in (Mathet et al., 2012), and will just
sum up it below.

The main principle of this tool is as follows. A reference corpus is built, with respect to a statistical
model which defines the number of categories, their prevalence, the minimum and maximum length
for each category, etc. Then, this reference is used by the shuffling tool to generate a multi-annotator
corpus, simulating the fact that each annotator makes mistakes of a certain type, and of a certain mag-
nitude. It is important to remark that the generated corpus does not include the reference it is built
from.

The magnitude m is the strength of the shuffling, that is to say the severity of the mistakes the
annotators make with respect to the reference. It can be set from 0 which means no damage is applied
(and the annotators are perfect), to the extreme value 1 which means annotators are assumed to behave
in the worst possible way (but still being independent each other), namely at random.

A very important point is that magnitude is not a degree of disagreement, but a degree of annotators’
weakness, which, of course, fatally results in more and more disagreement.

Figure 4.4 illustrates the way such a corpus is built: from the reference containing some categorized
units, 3 new sets of annotations are built, simulating 3 annotators who are assumed to have the same
annotating skill level, which is set in this example at magnitude 0.1. The applied error type is position
only, that is to say that each annotator makes mistakes only when positioning boundaries, but does not
make any other mistake (the units are reproduced in the same order, with the correct category, and in
the same number). At this low magnitude, the positions are still close to those of the reference, but
often vary a little. Hence, we obtain here a slightly shuffled multi-annotator corpus. Let us sum up the
way error types (or "paradigms") are currently designed in the CST.

94 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

1
REFERENCE

Annotator 1
41

2

2

4

41 2
Annotator 2

1
Annotator 3

24 ge
ne

ra
te

d
co

rp
us

(R
EF

ER
EN

CE
 is

 N
O

T
 in

cl
ud

ed
)

Figure 4.4: The Shuffling Tool generating 3 annotations with position errors at magnitude m = 0.1

Position At magnitude m, for a given unit, we define a value shiftmax which is proportional to m
and to the length of the unit, and each boundary of the unit is shifted by a value randomly chosen
between −shiftmax and shiftmax (note: at magnitude 0, since shiftmax = 0, units are not shifted).

Category This shuffling cannot be described in a few words (see Mathet et al. [2012] for details). It
uses special matrices to simulate, using conditional probabilities, progressive confusion between cate-
gories, and can be configured to take into account overlapping of categories. The higher the magnitude,
the more frequent and severe the confusions.

False negatives At magnitude m, each unit has the probability m to be forgotten. For instance, at
magnitude m = 0.5, each annotator misses (on average) half of the units from the reference (but not
necessarily the same units as the other annotators).

False positives At magnitude m, each annotator adds a certain number of units (proportional to m)
to the ones of the reference.

Splits At magnitude m, each annotator splits a certain number of units (proportional to m). A split
unit may be re-split, and so on.

Combination It is also possible to combine several error types at the same time, for instance Position
and Category, to see how dedicated measures behave overall.

4.3.3 Interlaced paradigms

A difficulty has to be mentioned: error paradigms may interlace. This is not a weakness of the CST,
but an inherent difficulty of how to interpret several dimension annotation errors, such as unitizing. For
instance, if we consider the annotations done by two annotators named "annotator 1" and "annotator
2", in the dotted parts of figure 4.5, and even if we have access to the reference (shown in the top of the
figure), at least two interpretations are possible:

1. In the left and right parts of the figure, we consider that annotator 1 has annotated the element of
category A exactly as in the reference (arrows A1 and A1’) while s/he has forgotten the element
of category B (arrows B1 et B1’).

2. However, if we consider in the left part of the figure that annotator 2 has forgotten the reference
element of category A (arrow A2), and has done a category mistake with element of category B
(arrow B2), we consider in the right part of the figure that annotator 2 has shifted the reference
element of category A, for a result being the same!

4.3. THE CORPUS SHUFFLING TOOL 95

B
A reference

A annotator 1

annotator 2

A

?

?

A1

A2

B1

B2

B
A reference

A annotator 1

annotator 2A

?

?

A1'

A2'

B1'

B2'

Figure 4.5: Two ways of interpreting a same error in a multi-paradigms error context

As a consequence, it is not possible, at high magnitude, to fully separate all paradigms of errors.
For instance, high shifts may confound with false negatives of false positives.

4.3.4 Errors versus discrepancies

We have to put the emphasis on the fundamental difference between errors and discrepancies. The CST
method is sometimes misunderstood because these two notions are not correctly understood.

As already explained, agreement measure are only concerned with discrepancies between annota-
tors, since they do not have access, by design, to a reference. In the same time, the CST does use a
reference, which may seem contradictory with the fact it is designed to assess agreement measures.
The point is that the reference used by the shuffling tool is a starting point in a process which simulates,
in a controlled manner, the behavior of different annotators who should all, ideally, produce what is in
the reference.

In particular, figure 4.4 shows that the reference is not submitted as an input to the different mea-
sures. This way, the assessed measures are confronted to discrepancies, not to errors.

As a consequence, the magnitude really corresponds to a degree of weakness of the annotators (the
divergence between what they should do and what they produce).

4.3.5 Results

This method provides an immediate visualization of the behavior of a measure for a progressive dam-
aging, for one or several paradigms. At magnitude 0, any measure should be at 1 on the y-axis, since
all annotators fully agree. At the other extremity, that is, at magnitude 1, measures should reach 0,
since annotations are no more linked to the reference (so, to the annotation task). Between these two
extremities, measures should ideally strictly decrease, not reaching a plateau nor being asymptotic.

Moreover, up to now, it was quite difficult to get a precise idea of the meaning of a given score
provided by an agreement measure. If one could consider, for instance, than 0.8 is a “good” agreement,
what does it really mean in terms of mistakes done by the annotators? With the proposed method, it is
possible to read on the graphics, for a given score on the y-axis, what is the corresponding magnitude
on the x-axis. Hence, this magnitude has an accurate signification in each paradigm (for instance, for
the false positive paradigm, it means a particular probability of adding an annotation for each existing
one).

Figure 4.6 shows an experiment involving three measures and a segmentation task. We can see that
only one measure goes from agreement 1 at magnitude 0 to agreement 0 at magnitude 1, as it should,
whereas the two others fail to go under 0.4, simply because they are not chance corrected. More results
will be provided in the next section about the Gamma family.

96 CHAPTER 4. UNDERSTANDING AND ASSESSING AGREEMENT MEASURES

Figure 4.6: An example of output of the Corpus Shuffling Tool

In addition to comparison between different measures, this tool can be used in order to design or
parametrize new measures: it is possible to see almost instantly the consequences of any modification of
the design or of the parameters of a new measure, as we have been doing through the whole conception
of the Gamma family.

Chapter 5

Assessment of annotations - Part II:
The Gamma family of agreement
measures for unitizing tasks

This chapter relies on two journal articles published in Computational Linguistics, MIT Press:
(Mathet et al., 2015) and (Mathet, 2017).

Contents
5.1 Introduction . 98
5.2 Motivations, scope and illustrations . 98
5.3 Introducing γ . 100

5.3.1 Our proposal . 100

5.3.2 Main principles of γ . 100

5.3.3 Definitions : unit, annotator, annotation set 102

5.3.4 Dissimilarity between two units . 103

5.3.5 Unitary alignment, Alignment . 105

5.3.6 Alignment and Disorder . 106

5.3.7 Best alignment, disorder of an annotation set 106

5.3.8 Expected disorder for chance correction . 106

5.3.9 The agreement measure γ . 107

5.4 The implementation of γ . 108
5.4.1 Computing the disorder . 108

5.4.2 Implementation of the expected disorder . 110

5.4.3 Computing an average value: a sampling question 111

5.5 benchmarking γ . 112
5.6 The additional coefficients γcat and γk . 112
5.7 Main requirements of a categorial measure . 113

5.7.1 Positional discrepancies should not impact categorial agreement 113

5.7.2 False negatives/positives should not impact categorial agreement 114

5.7.3 Length of units should not be taken into account 114

5.8 How best to handle missing values ? . 114
5.9 The design of γcat . 116

5.9.1 Getting an alignment of the units from γ . 117

97

98 CHAPTER 5. THE GAMMA FAMILY

5.9.2 Value weight: giving the same importance to each value 117

5.9.3 Confidence weight: enhancing the accuracy of δ 117

5.9.4 Total weight of a pair of units . 118

5.9.5 The algorithm to compute the disorder of γcat 118

5.9.6 Discussion: Why not to use a naive two step method 119

5.10 The in-depth coefficient γk which focuses on each category 120
5.11 Benchmarking γcat and γk . 120
5.12 Overview and dependencies of the gamma family 121
5.13 Software . 122
5.14 Conclusion on the Gamma family . 123
5.15 Future work . 124

Important notice: we cannot expose in this thesis the whole content of our works on the Gamma
family, for which we refer the reader to (Mathet et al., 2015) and (Mathet, 2017), in particular for
the state of the art and for the benchmarking of our methods, and will mainly focus in the current
presentation on the design of our measures.

5.1 Introduction

Admittedly, much work has already been done concerning agreement measures for some kinds of
annotation efforts, namely when annotators have to choose a category for previously identified entities.
This approach, which we will call pure categorization, has led to several well known and widely
discussed coefficients such as κ, π or α, as of the 1950s. Some more recent efforts have been made
in the domain of unitizing. However, studies are scarce, as Krippendorff pointed out: “Measuring the
reliability of unitizing has been largely ignored in favor of coding predefined units” (Krippendorff,
2013a, page 310). This scarcity concerns either segmentation, where annotators simply have to mark
boundaries in texts to separate contiguous segments, or more generally unitizing, where gaps may
exist between units. Moreover, some even more complex configurations may occur (overlapping or
embedding units), which are more rarely taken into account.

The γ family, currently γ, γcat and γk, is a set of agreement measures concerning the joint tasks
of unit locating and unit labeling at the same time, i.e. unitizing. The main measure γ relies on
an alignment of units between different annotators, with penalties associated with each positional
and categorial discrepancy. The alignment itself is chosen to minimize the overall discrepancy in a
holistic way, considering the full continuum to make choices, rather than making local choices. The
proposed method is unified because the computation of γ and the selection of the best alignment are
interdependent: the computed measure depends on the chosen alignment, whose selection depends on
the measure.

This method and the principles proposed in this thesis have been built up since 2010, and were
first presented to the French community in a very early version in (Mathet and Widlöcher, 2011b).
The initial motivation for their development was the lack of dedicated agreement measures for annota-
tions at the discourse level, and more specifically for annotation tasks related to TOPIC TRANSITION

phenomena.

5.2 Motivations, scope and illustrations

In the present work, we focus on both categorizing and locating, and consider therefore annotation tasks
where annotators are not provided with pre-selected units, but have to locate them and to categorize
them at the same time. An example of a multi-annotated continuum (as a reminder, this continuum

5.2. MOTIVATIONS, SCOPE AND ILLUSTRATIONS 99

may be a text or, for example, an audio or a video recording) is provided in Figure 5.1, where each line
represents the annotations of a given annotator, from left to right, respecting the continuum order.

A A AB
annotator 1

A A B . AD
annotator 2

C

B .C

Free OverlapEmbedding
(Hierarchichal overlap)

D

D

Sporadicity (gaps)

}}

Categorization

}

free positioning
(Unitizing)

Figure 5.1: Multi-annotation including positioning and categorizing

Properties of annotation tasks and annotated items

In order to characterize the annotation efforts focusing on specific linguistic objects, we consider the
following properties, illustrated in Figure 5.1.

Categorization occurs when the annotator is required to label (predefined or not) units.

Unitizing occurs when the annotator is asked to identify the units in the continuum: she has to deter-
mine each of them (and the number of units that she wants) and to locate them by positioning
their boundaries. As already said, in our acceptation, unitizing may include categorization.

Embedding (hierarchical overlap) may occur if units may be embedded in larger ones (of the same
type, or not).

Free overlap may occur when guidelines tolerate the partial overlap of elements (mainly of different
types). Embedding is a special case of overlapping.

Full-covering (vs sporadicity) applies when all parts of the continuum are to be annotated. For other
tasks, parts of the continuum are selected.

Two specific cases

We call pure segmentation (illustrated by Figure 5.2) the special case of unitizing with full-covering
and without categorization, and we call pure categorization categorization without unitizing.

annotator 1

annotator 2

Figure 5.2: The particular case of pure segmentation

100 CHAPTER 5. THE GAMMA FAMILY

Examples of annotation tasks

To make our presentation more concrete, it is useful to mention examples of linguistic objects and
annotation tasks for which agreement measures may be required. Small caps are used to refer to the
names of these tasks.

Annotation tasks Cate
goriz

ati
on

Unitiz
ing

Embed
ding

Free
Over

lap

Sporad
ici

ty

PART-OF-SPEECH � �
GENE RENAMING � �
WORD SENSE � � �
NAMED ENTITY � � � � �
ARGUMENTATIVE ZONING � � �
DISCOURSE FRAMING � � � � �
COMMUNICATIVE BEHAVIOR � � � � �
DIALOG ACT � � � � �
TOPIC SEGMENTATION �
HIERARCHICAL TOPIC SEGMENTATION � �
TOPIC TRANSITION � � � � �
ENUMERATIVE STRUCTURES � � � � �

Table 5.1: Properties associated to some examples of annotation tasks. �: mandatory, �: possible.

Table 5.1 summarizes the properties of the linguistic objects and some typical annotation tasks.

5.3 Introducing γ

5.3.1 Our proposal

The basic idea of this new coefficient is as follows: all local disagreements (called disorders) between
units from different annotators are averaged to compute an overall disorder. However, these local
disorders can be computed only if we know for each unit of a given annotator, which units, if any,
from the other annotators it should be compared with (via what is called unitary alignment), that is
to say if we can rely on a suitable alignment of the whole (called alignment). Since it is not possible
to get a reliable preconceived alignment (as explained in Section 5.3.2) , γ considers all possible ones,
and computes for each of them the associated overall disorder. Then, γ retains as the best alignment
the one which minimizes the overall disorder, and the latter value is retained as the correct disorder.
To obtain the final agreement, as with the familiar kappa and alpha coefficients, this disorder is then
chance corrected by a so-called expected disorder which is calculated by randomly resampling existing
annotations.

First of all, we introduce three main principles of γ in Section 5.3.2. We introduce in Section 5.3.3
the basic definitions. The comparison of two units (depending on their relative positions and categories)
relies on the concept of dissimilarity (Section 5.3.4). A unitary alignment groups at most one unit of
each annotator and a set of unitary alignments covering all units of all annotators is called an alignment
(Section 5.3.5). The disorder associated to a unitary alignment results from dissimilarities between all
its pairs of units, and the disorder associated to an alignment depends on those of its unitary alignments
(Section 5.3.6). The alignment having the minimal disorder (Section 5.3.7) is used to compute the
agreement value, taking chance correction into account (Section 5.3.8).

5.3. INTRODUCING γ 101

5.3.2 Main principles of γ

Measuring and aligning at the same time: γ is unified.

For a given phenomenon identified by several annotators, it is necessary to provide an agreement mea-
sure permissive enough to cope with a double discrepancy concerning (1) its position in the continuum,
(2) the category attributed to the phenomenon.

Because of discrepancies in positioning, it is necessary to provide an agreement measure with an
inter-annotator alignment, which shows which unit of a given annotator corresponds, if any, to which
unit of another annotator. If such an alignment is provided, it becomes possible, for each phenomenon
identified by annotators, to determine to what extent the annotators agree both on its categorization and
its positioning. This quantification relies on a certain measure (called dissimilarity hereafter) between
annotated units: the more the units are considered as similar, the lesser the dissimilarity.

But how can such an alignment be achieved? For instance, in Figure 5.3, aligning unit A1 of
annotator A with unit B1 of annotator B consists in considering that their properties are similar enough
to be associated: annotator A and annotator B have accounted for the same phenomenon, even if in a
slightly different manner. Consequently, to operate, the alignment method should rely on a measure of
distance (in location, in category assignment, or both) between units.

A1
annotator A

A2 A3

B1
annotator B

B2 B3

Figure 5.3: An example of alignment choices: two pairs of units are aligned (A1 with B1, A2 with
B2), one is not.

Therefore, agreement measure and aligning are interdependent: it is not possible to correctly mea-
sure without aligning, and it is not possible to align units without measuring their distances. In that
respect, measuring and aligning cannot constitute two successive stages, but must be considered as
a whole process. This interdependence reflects the unity of the objective: establishing to what ex-
tent some elements, possibly different, may be considered as similar enough, either to quantify their
differences (when measuring agreement), or to associate them (when aligning).

Interestingly, Reidsma et al. (2006, page 1119), not really satisfied by the use of the discretizing
measure as already mentioned, “have developed an extra method of comparison in which [they] try to
align the various segments”. This attempt highlights the necessity to rely on an alignment. Unfortu-
nately, the way the alignment is computed, adapted from Kuper et al. (2003), is disconnected from the
measure itself, being an ad hoc procedure on which other measures are applied.

Aligning globally: γ is holistic.

Let us consider two annotators A and B having respectively produced unit A5, and units B4 and B5,
as shown in Figure 5.4. When considering this configuration at a local level, we may consider, based
for instance on the overlapping area, that A5 fits B5 slightly better than B4. However, this local
consideration may be misleading. Indeed, Figure 5.5 shows two larger configurations, where A5, B4
andB5 are unchanged from Figure 5.4. With a larger view, the choice of alignment ofA5 may be driven
by the whole configuration, possibly leading to an alignment with B4 in Figure 5.5(a), and with B5 in
Figure 5.5(b): alignment choices depend on the whole system and the method should consequently be
holistic.

102 CHAPTER 5. THE GAMMA FAMILY

A5

B4 B5

annotator A

annotator B

Figure 5.4: Inter-annotator configuration observed at local level

A5 A6

B4 B5

annotator A

annotator B

(a) Context 1

A5

B4 B5

annotator A

annotator B

A4

(b) Context 2

Figure 5.5: Alignment choices depend on the whole system

Accounting for different severity rates of errors: positional and categorial permissiveness of γ.

As far as positional discrepancies between annotators are concerned, it is important for a measure to
rely on a progressive error count, not on a binary one: two positions from two annotators may be
more or less close to each other but still concern the same phenomenon (partial agreement), or may
be too far to be considered as related to the same phenomenon (no possible alignment). For instance,
for segmentation, specific measures such as WindowDiff (see Pevzner and Hearst, 2002a) rely on a
progressive error count for positions, with an upper limit being half the average size of the segments.
For unitizing, Krippendorff considers with uα that units can be compared as long as they overlap.
However, γ considers that in some cases, units by different annotators may correspond to the same
phenomenon though they do not intersect. We base this claim on two grounds. First, if we observe the
configuration given in Figure 5.6, annotator 2 and 3 have both annotated part of the NAMED ENTITY

which has been annotated by annotator 1. Consequently, though they do not overlap, their units refer to
the same phenomenon. In addition, we find a direct echo of this assumption in (Reidsma, 2008, pages
16-17) where, in a video corpus concerning COMMUNICATIVE BEHAVIOR, “different timing (non-
overlapping) [of the same episode] was assigned by [...] two annotators.” Regarding categorization,

1Microsoft Corporation (MSFT)

2Microsoft Corporation (MSFT)

3Microsoft Corporation (MSFT)

Figure 5.6: Alignments with no necessary intersection

some available measures consider all disagreements between all pairs of categories as equal. Other
coefficients, called weighted coefficients (see Artstein and Poesio, 2008), as well as γ, consider on the
opposite that mismatches may not all have the same weight, some pairs of categories being closer than
others. This closeness is often referred to as overlap.

In our terminology, we call category-overlapping this closeness between categories, and overlap
means positional overlap. For example, within annotation efforts related to WORD SENSE or DIALOG

5.3. INTRODUCING γ 103

ACTS, it is clear that disagreements on labels are not all alike.

5.3.3 Definitions : unit, annotator, annotation set

Given a multi-annotated continuum t:

• let A = {a1, ..., an} be the set of annotators

• let n = |A| be the number of annotators

• let U be the set of units from all annotators

• ∀i ∈ J1, nK, let xi be the number of units by annotator ai for t

• let x =

n∑
i=1

xi

n be the average number of annotations per annotator

• for annotator a = ai, ∀j ∈ J1, xiK, we note uaj unit from a of rank j

Annotation set : an annotation set s is a set of units attached to the same continuum and produced
by a given set of annotators.

Corpus : a corpus c is defined with respect to a given annotation effort, and is composed of a set
of continua, and of the set of annotations related to these continua.

Unit : a unit u bears a category denoted cat(u), and a location given by its two boundaries, each of
them corresponding to a position in the continuum, respectively denoted start(u) and end(u), start
and end being functions from U to N+.

Equality between units is defined as follows:

∀(u, v) ∈ U2, u = v ⇔

cat(u) = cat(v)
start(u) = start(v)
end(u) = end(v)

5.3.4 Dissimilarity between two units

We introduce here the first brick to build the notion of disorder, which works at a very local level,
between two units. A dissimilarity tells to what degree two units should be considered as different,
taking into account such features as their positions, their categories, or a combination of the two.

A dissimilarity is a function d : U2 → R+, so that :

∀(u, v) ∈ U2,

{
d(u, v) = d(v, u) (d is symmetric)
u = v ⇒ d(u, v) = 0

A dissimilarity is not necessarily a distance in the mathematical sense of the term specially be-
cause triangular inequality is not mandatory (for instance, in Figure 5.7, d(A1, B2) > d(A1, C1) +
d(C1, B2)).

Empty unit u∅, empty dissimilarity ∆∅

As we will see, γ relies on an alignment of units by different annotators. In particular, this alignment
indicates for unit ua1i of annotator a1, to which unit ua2j of annotator a2 it corresponds, in order to
compute the associated dissimilarity. In some cases, though, the method will choose not to align ua1i
with any unit of annotator a2 (none corresponds sufficiently). We define the empty pseudo unit, denoted

104 CHAPTER 5. THE GAMMA FAMILY

u∅, which corresponds to the realization of this phenomenon: ultimately, a pseudo unit u∅ is added to
the annotations of a2, and ua1i is aligned with it.

We also define the associated cost ∆∅:

∀u ∈ U , d(u, u∅) = d(u∅, u) = ∆∅

and d(u∅, u∅) = ∆∅

Dissimilarities should be calibrated so that ∆∅ is the value beyond which two compared units
are considered critically different. Consequently, it constitutes a reference, and dissimilarities will be
expressed as multiples of ∆∅ for better clarity. It is not a parameter of γ, but a constant (which is set to
1 in our implementation).

Positional dissimilarity dpos

Different positional dissimilarities may be created, in order to deal with different annotation tasks. We
will use the dissimilarity shown below in Equation 5.1, which is very versatile.

dpos−sporadic(u, v) =

(
|start(u)− start(v)|+ |end(u)− end(v)|
(end(u)− start(u)) + (end(v)− start(v))

)2

·∆∅ (5.1)

Equation 5.1 sums the differences between the right and left boundaries of both units in its numer-
ator. Its denominator sums the lengths of both units, so that this dissimilarity is not scale dependent.
Squaring the value is an option used here to accelerate dissimilarity when differences of positions in-
crease. It is illustrated in Figure 5.7 with different configurations and their associated values, from 0
for the perfectly aligned pair of units (A1, B1) to 22.2 ·∆∅ for the worst pair (A1, C2).

Annotator AA1

B2B1
Annotator B

C1 C2

A2
4 14 20 30

14

144

24

20 25

40 44

Annotator C

0

22.2

0.11

0.22

1

3.22

Figure 5.7: Real examples of dpos−sporadic values (divided by ∆∅)

Categorial dissimilarity dcat

Let K be the set of categories. For a given annotation effort, |K| different categories are defined. For
more convenience, we first define categorial distance between categories distcat via a square matrix of
size |K|, with each category appearing both in row titles and column titles. Each cell gives the distance
between two categories through a value in [0, 1]. Value 0 means perfect equality, whereas the maximum
value 1 means that the categories are considered as totally different. As distcat is symmetric, such a
matrix is necessarily symmetric, and bears 0 in each diagonal cell. Table 5.2 gives an example for 3
categories, and shows that an association between a unit in category cat1 with one in category cat3 is
the worst possible (distance=1), whereas it is half as much between cat1 with cat2 (distance=0.5). This
makes it possible to take into account so-called category-overlapping (in our example, cat1 and cat2
are said to overlap, which means they are not completely different), as weighted coefficients such as
κw or α already do. Note that in the case of so-called “nominal categories”, the matrix will be full of 1

5.3. INTRODUCING γ 105

Table 5.2: Categorial matrix of distcat for 3 categories
cat1 cat2 cat3

cat1 0 0.5 1
cat2 0.5 0 1
cat3 1 1 0

outside the diagonal, and full of 0 in the diagonal (different categories are considered as not matching
at all).

This categorial distance matrix is then used to build the categorial dissimilarities, taking into ac-
count the ∆∅ value. We define categorial dissimilarity between two units by:

dcat(u, v) = fcat(distcat (cat(u), cat(v))) ·∆∅ (5.2)

Function fcat can be used to adjust the way the dissimilarity grows with respect to the categorial
distance values. The standard option1 (used in this study) is to simply consider fcat(x) = x, with which
dcat naturally increases gradually from zero when categories match, to ∆∅ when categories are totally
different (distcat(cat(u), cat(v)) = 1 =⇒ dcat(u, v) = ∆∅).

Combined dissimilarity dcombi

Since in some annotation tasks units may differ both in position and in category, it is necessary to
combine the associated dissimilarities so that all costs are cumulated. This is provided by a combined
dissimilarity.

Let d1 and d2 be two dissimilarities. We define:

dα,βcombi(d1,d2)(u, v) = α.d1(u, v) + β.d2(u, v) (5.3)

It is easy to demonstrate that this linear combination of dissimilarities is itself a dissimilarity
(if (α, β) 6= (0, 0)). It enables the same weight to be assigned to positions and categories using
d1,1
combi(dpos,dcat)

, which is currently used for γ.
Then, we can note that it is the same cost ∆∅ for a unit either not to be aligned with any other

one, or to be aligned with a unit in the same configuration as (A1, C1) of Figure 5.7 (if they have the
same category), or to be aligned with a unit having an incompatible category (if they occupy the same
position).

5.3.5 Unitary alignment, Alignment

Unitary alignment ă

A unitary alignment ă is an i-tuple, i belonging to J1, nK (n being the number of annotators), containing
at most one unit by each annotator: it represents the hypothesis that i annotators agree to some extent on
a given phenomenon to be unitized. In order to make all unitary alignments homogenous, we eventually
complete any unitary alignment that is an i-tuple with n−i empty units u∅, so that all unitary alignments
are ultimately n-tuples. Figure 5.8 p. 108 illustrates unitary alignments with some u∅ units.

1Another option is for example to use fcat(x) = −ln(1−x)x30 +x which is a function almost similar to fcat(x) = x on
the [0, 0.9] range, and reaches∞ near 1. Then, when the categorial distance is equal to 1, the categorial dissimilarity reaches
infinity, which guarantees that the units cannot be aligned.

106 CHAPTER 5. THE GAMMA FAMILY

Alignment ā

For a given annotation set, an alignment ā is defined as a set of unitary alignments such that each unit
of each annotator belongs to one and only one of its unitary alignments. Mathematically, it constitutes
a partition of the set of units (if we do not take u∅ into account).

5.3.6 Alignment and Disorder

Disorder of a unitary alignment

The disorder of a unitary alignment ă, denoted δ̆(ă), is defined for a given dissimilarity d as the average
of the one-to-one dissimilarities of its units:

δ̆(ă) =
1

C2
n

·
∑

(u,v)∈ă2
d(u, v) (5.4)

Averaging dissimilarities rather than summing them makes the result independent of the number of
annotators.

Disorder of an alignment

The disorder of an alignment ā, denoted δ̄(ā), is the sum of the disorders of all its unitary alignments
divided by the mean number of units per annotator:

δ̄(ā) =
1

x
·
|ā|∑
i=1

δ̆(ăi) (5.5)

We chose to consider the average value rather than the sum so that the disorder does not depend on
the size of the continuum.

5.3.7 Best alignment, disorder of an annotation set

Best alignment â. An alignment ā of the annotation set s is considered as the best (w.r.t. a dissimi-
larity) if it minimizes its disorder among all possible alignments of s. It is denoted â. The proposed
method is holistic in that it is necessary to take into account the whole set of annotations in order to
determine each unitary alignment.

Disorder of an annotation set δ(s). The disorder of the annotation set s, denoted δ(s), is defined
as the disorder of its best alignment(s) δ̄(â). Note that it may happen that several alignments produce
the lowest disorder.

We have just presented the two crucial definitions of our new method, which make it “unified”. In-
deed, the best alignment is chosen w.r.t. the disorder, therefore w.r.t. to what computes the agreement
measure, and, conversely and simultaneously, the resulting agreement value (see below) is given by the
best alignment: agreement computation and alignment are fully intertwined, whereas in most agree-
ment metrics, the alignment is fixed a priori or no alignment is used.

5.3. INTRODUCING γ 107

5.3.8 Expected disorder for chance correction

The model of chance of γ

As we have already mentioned in this dissertation, it is necessary for an inter-annotator agreement
measure to provide chance correction. We have also seen that there are several chance correction
models, and that it is a controversial question. However, we compte γ on the basis of the average
distribution of observed annotations of the several annotators for the reasons already given.

More precisely, we define the expected (chance) disorder as the average disorder of a multi ran-
domly annotated continuum where:

• the random annotations fulfill the observed annotation distributions for the following features:

– the distribution of the number of units per annotator

– the distribution of categories

– the distribution of unit length per category

– the distribution of the length of gaps

– the distribution of overlapping or covering between each pair of categories (for instance,
units of categories A and B may never intersect, 7% of the units of category A may cover
one unit of category C, and so on...).

• the number of random annotators is the same as the number of annotators in the observed data

Two possible sources to build chance: local data versus corpus data

In addition, whereas other studies systematically compute the expected value on the data also used to
compute the observed value, we consider that it should be computed, when possible (that is to say when
several continua have been annotated with the same set of categories and the same instructions), from
the distribution observed in all continua of the annotation effort the evaluated continuum comes from:
if distribution changes from one continuum to another one, it is more because of the content of each
continuum than because of chance.

As a consequence, γ provides two ways to compute the expected values. One which considers
only the data of the continuum being evaluated, as do every other coefficients. A second one, which
considers the data from all continua of the annotation effort the evaluated continuum comes from.
When available, we recommend to use the second one, for the reasons already expressed.

Using sampling to compute the expected value

Expected agreement (or disagreement) is the expected value of a random variable. But which random
variable? For coefficients like kappa and alpha, observed agreement (or disagreement) is the mean
agreement (or disagreement) on all pairs of instances, so the random variable can be as simple as a
random pair of instances (however we interpret “random”). This value can be readily computed. For
gamma, however, observed disagreement is determined on a whole annotation, so the random variable
needs to be a whole random annotation. The expected value of such a complicated variable is much
more difficult to determine analytically. Instead, gamma uses sampling, as introduced in Section 5.4.

5.3.9 The agreement measure γ

Now that the disorder and the expected disorder have been introduced, we can define the agreement
measure (of annotation set s belonging to corpus c, with c = {s} if s is a sole annotation set) by
Equation 5.6 which comes from Equation 4.2 p. 88:

108 CHAPTER 5. THE GAMMA FAMILY

∀s ∈ c, γ = 1− δ(s)

δe(c)
(5.6)

If all annotators perfectly agree (Figure 5.8(a)), γ = 1. Figure 5.8(c) corresponds to the worst
case, where the annotators are worse than annotating at random, with γ < 0. Figure 5.8(b) shows an
intermediate situation.

A

A

A

B

B

B

C

C

C

annotator 1

annotator 2

annotator 2

(a) best

A

A

A

B

B

C

C

C

annotator 1

annotator 2

annotator 2

(b) intermediate

B

A

annotator 1

annotator 2

C
annotator 2

(c) worst

Figure 5.8: Examples of best, intermediate and worst possible disorders

5.4 The implementation of γ

In this section, we first propose an efficient solution to compute the disorder of an annotated continuum,
which relies on linear programming. Second, we propose two ways to generate random annotated
continua (with respect to the observed distributions) to compute the expected disorder, one relying on
a single continuum, the other one relying on a corpus (i.e. several continua). Third, we determine the
number of random data sets that we must generate (and compute the disorder of) to get an accurate
value of the expected disorder.

5.4.1 Computing the disorder

In order to simplify the discussion and the demonstrations, we consider in this section that n annotators
all made the same number of annotations p.

The proposed method has now been fully described on a theoretical level, but, being holistic, its
software implementation leads to a major problem of complexity. One can demonstrate that there
are theoretically (p!)n−1 possible alignments. However, we will (1) show how to reduce the initial
complexity, and (2) provide an efficient linear programming solution.

Reducing the initial complexity

The initial number of possible unitary alignments (which are used to build a possible alignment) is
pn. Fortunately, Theorem 5.7 states that any unitary alignment with a cost beyond the value n · ∆∅
cannot belong to the best alignment, and so can be discarded. Indeed, any unitary alignment with a cost
above ∆∅ can be replaced by creating a separate unitary alignment for each unit (of cost ∆∅ per unitary
alignment, so of total cost n ·∆∅).

Demonstration Consider the best alignment â, of cardinality m. Let ă be any of its unitary align-
ments. For convenience, we attribute to it the index 1 (ă = ă1), while the others are indexed from 2 to
m. This unitary alignment ă contains n units (either real or u∅). For each of these units ui (1 ≤ i ≤ n),

5.4. THE IMPLEMENTATION OF γ 109

we create the unitary alignment ăm+i = (ui, u∅, ..., u∅) of cardinality n. It is possible to create an
alignment ā made up of the set of unitary alignments of â \ {ă}, to which we add the unitary align-
ments ăm+1 to ăm+n that we have just created.2 It is of cardinality m+ n− 1. Since â minimizes the
disorder, we get:

δ̄(â) ≤ δ̄(ā)⇒ 1

x

m∑
i=1

δ̆(ăi) ≤
1

x

m+n∑
i=2

δ̆(ăi)

⇒
m∑
i=1

δ̆(ăi) ≤
m+n∑
i=2

δ̆(ăi)

⇒ δ̆(ă1) ≤
m+n∑
i=m+1

δ̆(ăi)

since ∀i > m, δ̆(ăi) = 1
C2

n
(C2

n∆∅) = ∆∅, and since we have denoted ă = ă1,

⇒ δ̆(ă) ≤ n ·∆∅ (5.7)

Experiments have shown that this theorem allows us to discard about 90% of the unitary alignments.

Finding the best alignment: a linear programming solution

Finding the best alignment consists in minimizing the global disorder. A collaboration with J.-P. Mé-
tivier has shown that such a problem may be described as a linear programming problem, so that the
solution can be computed by a linear programming solver. For more convenience, we introduce two
new definitions:

• Let UA be the set of all unitary alignments.

• Let UAu bet the set of the unitary alignments which contain unit u.

The description of the problem in linear programming terms is threefold.
First, for a given alignment ā, for each possible unitary alignment ăi, we define the boolean vari-

able Xăi which indicates if this unitary alignment belongs or not to the alignment:

∀ăi ∈ UA, X ā
ăi

=

{
0 iff ăi 6∈ ā
1 iff ăi ∈ ā

Second, we have to express the fact that, by definition, each unit u (of each annotator), should
belong to one and only one unitary alignment of the alignment ā, that is to say that among all unitary
alignments containing u, exactly one Xăi equals 1, and all the others equals 0:

∀u ∈ U ,
∑

ăi ∈ UAu

X ā
ăi

= 1

Third, the goal is to minimize the global disorder δ̄(ā) associated to ā, among all possible align-
ments ā:

Minimize δ̄(ā) =
∑

ăi ∈ UA
δ̆(ăi) ·X ā

ăi

The LPSolve solver3 finds the best solution in less than one second with n = 3 annotators and
p = 100 annotations per annotator on a current laptop (once the initial complexity has been reduced
thanks to the previous theorem), which is fast enough to be practical.

2ā is indeed an alignment, since each of its units appears in one and only one unitary alignment.
3http://lpsolve.sourceforge.net

110 CHAPTER 5. THE GAMMA FAMILY

5.4.2 Implementation of the expected disorder

The first two following subsections detail two strategies to generate randomly annotated continua with
respect to the definition of the expected disorder of γ, and the third subsection explains how to choose
the number of expected disorder samples to generate so that their average is an accurate enough value
of the theoretical expected value. The two strategies correspond to the need expressed in Section 5.3.8
to compute the expected value on the largest set of available data, either a single continuum, or, when
available, several continua from the same corpus.

A strategy to compute the expected disorder using a single continuum

When the annotation effort is limited to a single continuum, we can only rely on the annotated con-
tinuum itself to compute the expected value. To create random annotations which fulfill the observed
distributions, the implemented strategy is as follows: we take the real annotated continuum of an an-
notator (such as the example shown on the left in Figure 5.9), choose at random a position in this
continuum, split the continuum at this position, and permute the two parts of the split continuum.
Three examples of split and permutation are shown in the right part of the figure, for split positions

1 2 3

real annotations (by one annotator)

1 234 4

4 1 2 3

2 3 4 1

continuum length = 44
position 38

position 24
position 15

examples of transformed annotations (number 15, 24 and 38)
by circular shifts of real annotations

n°15

n°24

n°38

Figure 5.9: Principle of circular shift for creating random annotations

of respectively 15, 24 and 38, all coming from the same real continuum, with units that are no longer
aligned (except by chance). However, we have to address the fact that some units may intersect with
themselves, generating some part of agreement beyond chance. For instance, in Figure 5.9, unit 3 inter-
sects with itself between #15 and #24, because the length of the unit, 12, is higher than the difference
of shifts 24 − 15 = 9. To limit this phenomenon, we do not accept the distance between two shifts to
be below the average length of units.

A strategy to compute the expected disorder using several continua (from the same corpus)

This strategy consists in mixing annotations coming from different continua, so that their units may
align only by chance. To create a random annotation of n annotators, we randomly choose n different
continua of the corpus, and pick the annotations of one annotator (randomly chosen) of each of these
continua. When different continua are of different lengths, each of them is adjusted to the longest one
by duplicating as many times as necessary (like a mosaic).

This is shown in Figure 5.10 for n = 3 annotators. We assume the corpus contains 8 continua,
each annotated by 3 annotators. To generate a random set of 3 annotations, we have randomly selected
a combination of 3 values between 1 and 8, here (2, 4, 7) to select 3 different continua among the
8 available ones of the corpus. Then, for each of these selected continua, we choose one annotator,
here annotator 2 for continuum 2, annotator 3 for continuum 4, and annotator 1 for continuum 7. We
combine the associated annotations as shown in the right part of the figure, and obtain a set of random
annotations which fulfill (on average) the observed distributions. The (very limited) extent of resulting

5.4. THE IMPLEMENTATION OF γ 111

1

2

3

co
nt

in
uu

m
 2

1

2

3

co
nt

in
uu

m
 4

1

2

3

co
nt

in
uu

m
 7

random annotations from
2-2, 4-3, 7-1

22

34

17

Figure 5.10: A corpus level strategy for creating random annotations (3 annotators)

agreement we can see in this example (only two units have matching categories, but with discrepancies
in position) is only by chance since the compared annotations come from different continua.

In addition, it is possible to create a great number of random sets of annotations with this strategy:
with n annotators and m continua (m ≥ n), it is possible to generate up to Cnm · nn different combi-
nations. For instance, in our example which assumes n = 3 and m = 8, there are 56 · 33 = 1512
combinations to create random annotations.

5.4.3 Computing an average value: a sampling question

Since the expected disorder is by definition randomly obtained on average, and since there is virtually
an infinite number of possible random annotations (with a discrete and finite continuum, it is not really
infinite, but still too big to be computed), we can only compute a reduced but sufficient number of
experiments and get an approximate value of the expected disorder. This is a sampling problem as
described for example by Israel (1992). What statistics provide is a way to determine the minimal
number n0 of experiments to do (and to average) so that we get an approximate result of a given
precision with a given confidence level. It consists in: first, taking a small sample to estimate the mean
and standard deviation; then, using these estimates to determine the sample size n0 that is needed.

We follow the strategy provided by Olivero (2001) to compute a disorder value which differs less
than e = 2% from the real value with a (1−α) = 95% confidence (the software distribution we provide
is set by default with these values).

First, we consider a sample of chance disorder values of size n = 30. Let µ be the sample mean,
and σ′ be its standard deviation. µ is directly an unbiased estimator of the population mean, and
σ =

√
(n
n−1) · σ′ is an unbiased estimator of the real standard deviation.

Let Cv = σ
µ be the coefficient of variation (i.e. the relative standard deviation).

Let U1−α
2

be the abscissa of the normal curve that cuts off an area α at the tails. This value is
provided in statistical tables. We get n0 by the following equation:

n0 =

(
Cv · U1−α

2

e

)2

Let us consider a real example. We generate a sample of random disorders of size n = 30. We compute
its mean µ = 3.49, its standard deviation σ′ = 0.1379, hence σ = 0.1403, and Cv = 0.040188. We
get U1− 0.05

2
= 1.96 from the corresponding available table, hence we get n0 = 15.5. This means

that a sample of 16 disorder values gives 2% of precision with 95% confidence. The mean we have

112 CHAPTER 5. THE GAMMA FAMILY

already computed with 30 values fulfills this condition, and is a good approximation of the real expected
disorder. If we wish to get a high precision of 1%, we get n0 = 62. It is beyond the initial size of our
sample (which is 30), and we will have to generate an additional set of 32 values in order to reach the
required number.

5.5 benchmarking γ

We cannot go into the details of the benchmarking of γ in this thesis, and we refer the reader to the
full presentation provided in (Mathet et al., 2015). However, to get a first idea of the benefits of γ over
the other available measures, figure 5.11 depicts the response of different measures, including γ, to
different error types via to the Corpus Shuffling Tool.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●
●

●

●
●

●

●
●

●
●

● ●
● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

● ●
●

● ●
● ● ●

● ●
● ●

●
●

● ●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

Magnitude

A
gr

ee
m

en
t

(a) γ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Magnitude

A
gr

ee
m

en
t

(b) uα

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Magnitude

A
gr

ee
m

en
t

(c) c|uα

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Magnitude

A
gr

ee
m

en
t

(d) SER

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Magnitude

A
gr

ee
m

en
t

(e) κd

Figure 5.11: Overviews : γ, uα, c|uα, SER and κd

Briefly, γ shows a steady behavior for all error types, almost strictly decreasing from 1 to 0, which
is the case of no other measure. Some measures have increasing parts, negative values, no response at
all (stuck at 1), and so on.

Moreover, γ is the only measure which copes with overlapping units (intersecting or even nested
units).

5.6 The additional coefficients γcat and γk

γ is an overall coefficient for all unitizing discrepancies at the same time. When its value is close to 1,
annotations can be trusted as reliable, but when it is not the case, this coefficient does not provide an

5.7. MAIN REQUIREMENTS OF A CATEGORIAL MEASURE 113

insight of the kind(s) of discrepancy(ies) between annotators: We know the annotations are not reliable,
but we do not know what to focus on to improve them.

I have designed an additional coefficient to γ, named γcat, which focuses on the categorizing part
of disagreement between annotators, leaving aside, as much as possible, the unitizing part (in particular
positional discrepancies). In simple words, γcat tries to answer the question: If annotators had not
had to unitize the continuum (put units by themselves and categorize them), but only to categorize
predefined units on the continuum, what would have been their agreement? It shares the same goal
as cuα, the measure belonging to the αs from Krippendorff dedicated to categorization of a continuum,
but relies on the same assumptions as γ. In particular, it shares the same alignment method, before it
does a specific computation focused on categories.

In addition, an even more in-depth coefficient, named γk, is provided which focuses on the agree-
ment on each individual category. It helps to know if a low or moderate γcat value comes from discrep-
ancies on some particular categories, and so may be useful in order to modify the annotation model or
to enhance the annotation instructions. This additional coefficient somehow corresponds to the recent
kα from Krippendorff et al. (2016), which replaces a first attempt (Krippendorff, 2004).

5.7 Main requirements: what should a categorial measure account for?

In this section, we will see how γcat should complement γ. The very objective is that γcat be insensitive
to disagreements which involve other aspects of unitizing than categorization (positions, lengths, etc.),
contrary to γ. All the points introduced below are benchmarked in section 5.

5.7.1 Positional discrepancies should not impact categorial agreement

Since γcat aims at providing the agreement on categorization only, it is important that it does not
take disagreements on positioning into account. This sounds obvious, but it is not straightforward
with unitizing. Figure 5.12 shows a case of perfect agreement on categories which comes with some
disagreement on positions: both annotators have identified 3 units at about, but not exactly, the same
positions, and totally agree on categorizing these units (respectively with category “1,” “4” and “2”).
Hence, a measure focused on categorization should provide a total agreement in such a configuration.

1 annotator A

annotator B41

2

2

4

1-1 4-4 2-24-1 4-2

1-1

4
-4

2-
2

(alignments)

(intersections)

Figure 5.12: Positional discrepancies but perfect agreement on categories

However, measures based on intersections, like the αs, or on atomization of the continuum (a
workaround method discussed later), will find a part of the continuum with categorial disagreement,
since there are an intersection between units of categories “4” and “1,” and between units of categories
“4” and “2.” This is reported in the bottom of Figure 5.12: there are 5 intersections, 3 of them corre-
sponding to correct comparisons, and 2 of them corresponding to unfortunate comparisons. This leads
here to about 20% of fake categorial disagreement, according to corresponding intersection lengths.

What a categorial measure should do here is to compare each unit from annotator A to the corre-
sponding one from annotator B (if any), as reported in Figure 5.12 by the 3 gray arrows “1-1,” “4-4”
and “2-2,” and assess here a total agreement. This is typically what the γ family is designed to do,
thanks to its alignment capability.

114 CHAPTER 5. THE GAMMA FAMILY

5.7.2 False negatives/positives should not impact categorial agreement

We have to be cautious concerning the terminology. A false negative occurs when an annotator fails
to put a unit where she should, i.e. where the reference (if any) tells us there should be a unit, and a
false positive is the opposite situation. However, no reference exists in the case of agreement measures,
and there is a symmetry between false positives and false negatives: if annotator 1 puts a unit where
annotator 2 doesn’t, it is a false positive if we consider annotator 2 as the reference, or a false negative
if we consider annotator 1 as the reference. However, to make this discussion more simple, we will
extend the meaning of false positives/negatives to the field of agreement measures.

Here again, such disagreements should not be taken into account by a measure focused on catego-
rization. For instance, such a measure should provide a total agreement if annotator A identifies and
categorizes 100 units, and annotator B identifies only 50 of them but agrees with A on categories.

5.7.3 Length of units should not be taken into account

For categorization of predefined units, all known coefficients (κ, α, and so on) give the same importance
to each item. Why should it be different for unitizing?

In Figure 5.13 (text from Wikipedia), which is an example of a Named Entity Recognition effort,
both annotators identified two units, containing respectively “Barack Hussein Obama II” and “Obama.”
They agree on the category of the first one, and disagree on the category of the second one. This leads
to an observed categorial agreement of 50% if we consider, as measures do with predefined units, that
all units have the same importance. However, if we rely on unit lengths, the first unit counts 4 times
as much as the second one (if we work at word level), and the observed agreement would artificially
reach 80% (instead of 50%). This does not make sense for most CL annotation tasks. In this example,
it is the same entity which is referred to by a long or a short expression, which confirms, if necessary,
that the annotations are of the same importance.

In the same manner, in Sentiment Analysis, it is as important to correctly assess the short “Yes”
answer as the twice as long “For sure” one, or as the even longer one “I am absolutely convinced of
that”.

Barack Hussein Obama II is the 44th and current (…). In 2004, Obama received national (…)

Barack Hussein Obama II is the 44th and current (…). In 2004, Obama received national (…)

Figure 5.13: Units of different lengths, but of the same importance (in Named Entity Recognition)

5.8 How best to handle missing values ?

In categorization tasks, there is a so-called “missing value” (a.k.a. “missing data”) when an annotator
does not provide a value to a given item, like a “no opinion” answer. They are inherently and frequently
present in unitizing: since annotators have to put units by themselves on a continuum, it is part of the
game that they do not put units where others do. However, this question goes beyond the scope of
unitizing, and the results of this section concern any categorization measure.

The conceptualization problem here is how to handle the fact that the number of values may differ
from one item to another. It is hardly addressed in the literature: Not only do annotation softwares
and annotating formats not always provide this possibility to annotators, but many popular coefficients
simply cannot handle such data, and even in the reference survey by Artstein and Poesio (2008), this
notion is mentioned once but never discussed. As a precursor, Krippendorff’s α coefficient was inher-
ently conceived to cope with missing values as early as in 1980 (Krippendorff, 1980); More recently,

5.8. HOW BEST TO HANDLE MISSING VALUES ? 115

Gwet (2012) wrote the third version of his handbook specifically to give answers to this question. Each
of them provides solutions as we will see below, but as far as I know the present study is the first attempt
to compare different approaches.

I will consider in this study that the observed agreement is computed from pairwise comparisons.
This is the way most coefficients work, including kappas, alphas, and also gamma, even if exceptions
exist, like Lotus (Fretwurst, 2015). For instance, if a given predefined item is categorized respectively
A, A and B by 3 annotators, the resulting observed agreement is 33.3%. Indeed, there are 3 combinatory
pairs : A-A (1 with 2), A-B (1 with 3) and A-B (2 with 3), and so there is one agreement for two
disagreements (on the contrary, Lotus would consider that the “most commonly coded value” is A, and
that two annotators agree with this value, hence 66.6% of agreement, but a discussion would be out of
the scope of this paper).

There are in the literature three very different ways to natively consider missing values in agreement
coefficients, and a workaround method introduced just after:

1) item level (IL). In this conception, all items are given the same weight. Consequently, item 4
from table 5.3 is given the same weight as item 1, which is equivalent to consider that Suzan, Jack and
Robert said “noun” for item 4 though they did not say anything.

2) value level (VL) . This intermediate conception gives the same importance to any pairable value.
Since in an item having nv values, each value can be paired with nv − 1 other values, each pair is
weighted 1

nv−1 so that the total weight of the value is 1.
3) pair level (PL). At the extreme opposite end of IL, this conception considers any pair of values

as having the same weight as any other, whatever the item they belong to. For instance, when Mary
says “noun” for item 1 (giving rise to 4 pairs), this weighs four times as much as when she says “noun”
for item 4 (giving rise to one pair).

To better understand the differences between these 3 conceptions, table 5.3 shows4 for each of them
the item weight wu, the value weight wv, and the pair weight wp.

Table 5.3: Item, value and pair weight comparisons in the case of 5 annotators with missing values
(denoted by “.”)

item 1 item 2 item 3 item 4
Mary noun noun noun noun
Paul noun noun noun noun
Suzan noun noun verb .
Jack noun noun . .
Robert noun . . .
nv = number of values 5 4 3 2
np = number of pairs 10 6 3 1
wu(IL) : item weight in IL 1 1 1 1
wu(VL) : item weight in VL 5/2 2 3/2 1
wu(PL) : item weight in PL 10 6 3 1
wv(IL) = 2wu(IL)/nv : value weight in IL 2/5 1/2 2/3 1
wv(VL) = 2wu(VL)/nv : value weight in VL 1 1 1 1
wv(PL) = 2wu(PL)/nv : value weight in PL 4 3 2 1
wp(IL) = wu(IL)/np : pair weight in IL 1/10 1/6 1/3 1
wp(VL) = wu(VL)/np : pair weight in VL 1/4 1/3 1/2 1
wp(PL) = wu(PL)/np : pair weight in PL 1 1 1 1

Key facts are: (1) wu is steady for IL by design, whereas it grows linearly with nv for VL, and
with nv(nv−1)

2 for PL. (2) wv reveals the opposite conceptions of IL and PL, the first decreasing and

4Notice that the values being relative weights, they are comparable only within a given row (since rows have different
sums). Accordingly, wv values are multiplied by 2 for better readability.

116 CHAPTER 5. THE GAMMA FAMILY

the second increasing with nv, while wv is steady by design. (3) Since agreement measures rely on
pairwise comparisons, wp discloses the very differences between them. There is up to a ratio of 1 to 10
between the different conceptions, which shows the importance to make the best choice among them.

Besides, a workaround method (rather than a real conception of missing values) to use measures
such as κ on such data, which is called RM (for “ReMove”) hereafter, is simply to remove items which
are not valued by all the annotators. In our example, items 2 to 4 would simply be discarded before
computation by a standard measure.

In addition to these comparisons, to make an objective choice between these different conceptions
(and the workaround method), I have designed a specific experiment reported in Table 5.4. Consider a
set of items fully annotated by n ≥ 3 annotators (column 1). This leads to a given observed pairwise
agreement (column 2). Now consider the same initial set of items but with some randomly chosen miss-
ing values (w.r.t. the percentage shown in column 3), and apply the different conceptions of missing
values to these data. The better the conceptualization of missing data, the lesser the results should
diverge from complete data. The standard deviation of each conception is reported5 from column
4 to 7 for 1,000,000 tests from a given set of data, each row corresponding to a certain initial data.
Obviously, VL steadily shows less deviation than all other conceptions, which makes this conception
the best (known) choice under any circumstances. At the opposite, RM, i.e. removing the whole item
when value(s) is (are) missing is the worst choice. To finish, IL and PL rank differently depending on
the number of annotators and the initial observed agreement.

Table 5.4: Standard deviation of different methods when coping with missing values
annotators observed missing % σ(VL) σ(IL) σ(PL) σ(RM)
6 0.567 25% 0.073 0.077 0.089 0.285
6 0.567 12.5% 0.050 0.051 0.061 0.230
6 0.567 4% 0.028 0.029 0.034 0.100
3 0.905 10% 0.031 0.036 0.038 0.058
3 0.476 5% 0.040 0.051 0.041 0.058

The α measure for predefined units was natively designed to cope with missing values according to
VL, as explained by Krippendorff (2013a, page 284): “The number of pairs of values from the values-
by-units matrix [is] weighted by 1

(nu.−1) so that each pairable value in the reliability data adds exactly
one to its total count.” As a consequence, it is the measure of choice for predefined units with missing
values. As a matter of fact, Krippendorff wished to have cuα behave as a generalization of α for a
continuum, but he failed on this point because cuα deeply relies on independent pairwise comparisons
of (intersections of) units with no notion corresponding to items: “While cuα ignores gaps between
units, it does it unlike how α ignores missing values.” More precisely, cuα unfortunately relies on PL,
whereas α relies on VL. Finally, Gwet, in his attempt to adapt classical coefficients to missing values,
uses IL, as we can see in equation 2.9 of (Gwet, 2012, page 31).

Of course, γcat relies on the same conception of missing values as α, namely VL, since we have
just seen it is the best known choice. This is made possible, as we will see, thanks to its alignment
process.

5.9 The design of γcat
As already said, we focus here only on the computation of the disorder of γcat, which is used to
calculate the observed and the expected values. To do so, γcat uses a four step process, as detailed in
the following sections. The main idea is to rely on an alignment of units (provided by γ) to compare
the categories used by different annotators to assess the same items. In addition, γcat uses special

5The average result of each method is not reported because interestingly, they all provide the exact initial result in average.

5.9. THE DESIGN OF γCAT 117

features to cope with VL conception of missing values and to improve its accuracy thanks to statistical
considerations.

In this introduction to γcat, we will use the following example of unitized annotations:

A

B

A

B

B

C

annotator 1

annotator 2

annotator 3

Figure 5.14: Free unitizing by 3 annotators

5.9.1 Getting an alignment of the units from γ

For its first step, γcat uses the alignment provided by γ6, which seemingly transforms a difficult unitiz-
ing problem into a more simple categorizing of predefined items question, as shown in Figure 5.15.

A B .

B B .

A . C

item 1 item 2 item 3

annotator 1

annotator 2

annotator 3

missing values
(from empty units)

Figure 5.15: Resulting units/values matrix from unitary alignments

Each unitary alignment translates into a column of a matrix, and each unit belonging to this unitary
alignment gives its category as a value in this column. Hence we get a very usual matrix similar to
those used for predefined items. To sum up, what is usually called an “item” (and sometimes a “unit”)
with predefined items corresponds here to a unitary alignment, and what is usually called a “value”
corresponds here to the category of a unit. Of course, empty units generated by γ translate into missing
values. The remaining work of γcat resembles what the usual α (which copes with missing values)
does, but there are two important differences as pointed in section 5.9.6.

5.9.2 Value weight: giving the same importance to each value

As we have seen in section 3, it is important that γcat relies on VL conception of missing values. This
is done in a simple way here, now that unitary alignments have been translated in kind of predefined
items with possibly missing values: we just have to count the number nv of values in a column, and
weight 1

nv−1 each of its pairs.

5.9.3 Confidence weight: enhancing the accuracy of δ

γcat relies on an alignment, but aligning is a bet, and even if γ was designed to get the most likely
overall alignment, it cannot ensure that a particular given pair of aligned units from two annotators

6The reason for using the alignment from γ instead of creating an alignment which maximizes the score of γcat is that a
correct alignment relies both on positions and categories.

118 CHAPTER 5. THE GAMMA FAMILY

really corresponds to the same intent of both of them. More precisely, some pairs are aligned with a
great confidence (because they correspond both in position and category) whereas others are hardly
aligned (γ hesitates to align them). Given this, how to get the most accurate value of the (categorial)
disorder δ from our data? We could think about two opposite methods: (1) keeping only pairs of total
confidence, hence relying on a trusted but very reduced set of data, or (2) considering that all pairs are
of the same importance, and so relying on fake data as much as on trusted data.

However, statistics provide a third method, through the notion of conditional expectation, which
takes the best from these two naive methods. To simplify the problem, let us put aside missing values,
just addressed in the previous section, and consider we have full alignments with no empty units.
In these conditions, VL, IL and PL conceptions are equivalent, and if we had predefined units, the
categorial disorder would correspond to the average categorial dissimilarity between all pairs of units.

In the context of unitizing, let {pairi} be the set of pairs of units aligned by γ, let δi = dcat(pairi)
be the categorial dissimilarity of pairi, and let pi be the probability of the event called “truePair” that
pairi really corresponds to a same intent of both annotators. Let D be the random variable defined as
the function of dissimilarity between pairs of units from different annotators. The categorial disorder δ
we want to estimate is the average value taken by D for true pairs only, which formally corresponds
to the conditional expectation of D given the event truePair, and is provided by equation 5.8:

δ = E(D|truePair) =
1∑
i(pi)

·
∑
i

(pi · δi) (5.8)

In other words, what we really get from an alignment is a “fuzzy set” of true pairs rather than a classical
set, and the best estimate of δ we can get from this data is the weighted (by pi) average value of {δi}.

For our purpose, I built the probability pi on positional ground only, because taking categories
into account would bias the results: agreements (on categories) would be more weighted than dis-
agreements, which would lead to a lowered overall disorder value. Consequently, the probability pi is
designed so that it equals 1 for two units positioned at the exact same location (dpos = 0), and so that it
reaches 0 when γ begins to prefer not aligning them because of too much difference in positions (that
is to say when dpos reaches 1): for pairi = (uj , uk), pi = max(0, 1− dpos(uj , uk)).

I call this value “pairing confidence”, and it is a second weight which will be taken into account in
the global computation. Experiments with the Corpus Shuffling Tool (introduced later) have confirmed
the benefits from using the notion of confidence weight, which provides an agreement value of 0 with
random annotations, which is correct, whereas when not using it, agreement may be slightly below 0,
which is not desirable.

5.9.4 Total weight of a pair of units

Figure 5.16 illustrates both the value weight and the pairing confidence weight for each pair of units
(i.e. for each pair of values in the table) still for the data coming from Figure 5.14. The total weight
for a given pair of units is the product of its value weight and its confidence weight. For instance, the
total weight for the pair annotator 1 with annotator 3 of item 1 is 0.5 (because there are 3 values for this
item) multiplied by 0.98 (because of the slight positional discrepancy), which is 0.49.

5.9.5 The algorithm to compute the disorder of γcat
We can now formally define all the steps of the computation of the disorder of γcat. The detailed
procedure is provided in Algorithm 1.

First of all, let us recap the γ terminology: â is the best possible alignment computed by γ, i.e.
which minimizes the total disorder of its unitary alignments. The unitary alignments are denoted ă, and
each of them contains one or zero unit from each annotator, denoted u1 to unv .

The first step, at line 1, is to get â exactly as γ does.

5.9. THE DESIGN OF γCAT 119

A B .

B B .

A . C

item 1 item 2 item 3

annotator 1

annotator 2

annotator 3

0.94
0.98

1

0.98

positional weights of pairs of values:

0.5

0.5

1
0.5

1/(n-1) weight:

Figure 5.16: Adding weights for VL conception and for pairing confidence

Then, a loop, from line 4 to line 14, computes the contribution of each unitary alignement to the
total disorder. To do so, it considers the number of true units (i.e. not empty ones) contained in the
unitary alignment, and then computes the 1

nv−1 weight shared by all pairs of units. Then, it uses a sub
loop to enumerate each possible pair of units of the unitary alignment. For each of them, it computes
its (categorial) dissimilarity, its own confidence weight, and so gets its resulting weight (product of the
shared weight and the confidence weight) and its disorder contribution.

At the end of the main loop, we get the total disorder contribution and the total weight, hence the
total disorder.

Algorithm 1 Computation of the total disorder
1: Compute an alignment â by using the normal γ dissimilarity dcombi = dpos + dcat
2: disordertotal ← 0
3: weighttotal ← 0
4: for all ă ∈ â do
5: nv ← number of real units in ă (exluding u∅)
6: weightbase ← 1

nv−1
7: for all (ui, uj) ∈ ă do
8: weightconfidence ← max(0, 1− dpos(ui, uj))
9: weight← weightbase × weightconfidence

10: dissimilarity ← dcat(ui, uj)
11: disordertotal ← disordertotal + dissimilarity × weight
12: weighttotal ← weighttotal + weight
13: end for
14: end for
15: return disordertotal/weighttotal

5.9.6 Discussion: Why not to use a naive two step method

Of course, to build such a coefficient, one might think to use a naive method which consists, first,
in generating an alignment thanks to γ, and second in applying the α measure (for predefined units)
to the resulting matrix (as the one shown in Figure 5.15). However, doing so, we would miss two
important points: (1) Obviously, we would not benefit from the statistical enhancement provided by
the confidence weight; (2) A more hidden problem is that the expected value computed by α would be
biased. Indeed, when units are of different lengths, mixing tabulated values coming from an alignment
is not the same as resampling unitized units and then aligning them. For instance, in the example of
Figure 5.17 (left: unitizing, right: resulting matrix), the naive method would provide an expected value
δe = 0.5 (what we get in average from 50% of A and 50% of B), whereas γcat would provide δe = 1,
since A and B would never be aligned because of too much differences in lengths, and so only A-A and
B-B pairs would occur when resampling unitized units.

120 CHAPTER 5. THE GAMMA FAMILY

A

A

B

B

annotator 1

annotator 2

A B

A B

item 1 item 2

Figure 5.17: Computing the expected value is not the same for unitizing (left) and for predefined items
(right)

5.10 The in-depth coefficient γk which focuses on each category

γk works the same way as γcat does, except the fact that it focuses on each particular category, and so
provides not just one agreement value, but as many agreement values as the number of categories. For
instance, if there are 3 categories A, B and C in the annotations, γk will provide 3 agreements, namely
γk(A), γk(B) and γk(C). I have chosen the letter “k” by reference to kα from Krippendorff which aims
at the same goal.

By focusing on a given category, for instance A, this measure will only look at what a unit of type
A is combined with: in our example, A with A, A with B, A with C, but not B with C. Hence, it is γcat
reduced to a subset of pairs of units, only the ones which contain at least one unit of type A.

It is very simple to design γk from γcat: we just have to add one condition in Algorithm 1 so that we
keep only relevant pairs of units: more precisely, we add the condition (cat(ui) = k) ∨ (cat(uj) = k)
to line 7 to focus on pairs which concern (at least) one unit of category k only:

7: for all (ui, uj) ∈ ă | (cat(ui) = k ∨ cat(uj) = k) do

Of course, the computation is done as many times as the number of categories, since several agree-
ment values are provided: γk is in fact a set of measures.

5.11 Benchmarking γcat and γk

Here again, we refer the reader to the dedicated article (Mathet, 2017) for a comprehensive benchmark
of these additional coefficients. Let us just list below the main results provided in the latter article:

• γcat has been demonstrated to behave the same way as α (the coefficient from Krippendorff that
we consider as the best currently available for pure categorization) when we reduce unitizing to
pure categorization (with a special set of annotations where positions are steady), which proves
that this coefficient has reached the goal to extend to unitizing what works the best for pure
categorization (and it is the only unitizing coefficient to do so at present time).

• When facing positional discrepancies via the shuffling tool, γcat remains steady at 1 up to high
magnitudes, which was one of the most important requirements

• The same occurs, as expected, with false positives and false negatives

• γ and γcat are complementary when facing pure categorial discrepancies (when annotators still
agree on positions) with the shuffling tool, since γcat goes from 1 to 0 as it should, whereas γ is
stuck at 0.35 because of agreement on positions, as shown in figure 5.18.

• Reversely, when combining positional and categorial discrepancies, γcat is now above γ, which
shows once again that the two coefficients are complementary, as shown in figure 5.19.

5.12. OVERVIEW AND DEPENDENCIES OF THE GAMMA FAMILY 121

• The corpus shuffling tool has also demonstrated that γcat is not sensitive to variation of units
length, as expected (and contrary to the α family).

• γk was tested with a special experiment of the shuffling tool, where disagreement concerned
only 3 categories out of 4, and it succeeded in showing on which categories annotators disagree,
which makes it a fundamental complement to γcat (which only provides an overall agreement),
as reported in figure 5.20.

Figure 5.18: Categorial discrepancies

Figure 5.19: Categorial plus positional discrepancies

5.12 Overview and dependencies of the gamma family

Now that γcat and γk have been introduced on the basis of γ, let us recap the links between the three
measures, as illustrated in Figure 5.21.

From the multi-annotators annotations, the unified and holist method is used to compute γ and to
generate an alignment at the same time. This process relies on an overall dissimilarity which combines
positional and categorial dissimilarities. Then, from the alignment and the confidence weights which
have been computed by γ, and using only the categorial dissimilarity from the previous step, γcat and
γk are computed.

122 CHAPTER 5. THE GAMMA FAMILY

Figure 5.20: Benchmarking γk

Alignment & Measure
using

positional+categorial
dissimilarity

Ɣ

Aligned
annotations

(with confidence
weights)

Annotations
Measure

using categorial
dissimilarity (and

confidence weights)

 Ɣcat

 Ɣkeach category

all categories

Figure 5.21: Overview of the γ family

5.13 Software

The full implementation of the γ family (γ, γcat and γk) is provided as a free software on the http:
//gamma.greyc.fr website. It is a standalone application written in Java, which runs on any
platform, and successfully tested on Mac Os X, Windows and Linux. It is also available as a web
service for people who do not want to install it. It is compatible with annotations created with the Glozz
Annotation Platform (Widlöcher and Mathet, 2012), and with annotations generated by the Corpus
Shuffling Tool (Mathet et al., 2012). Since these formats rely on simple and public CSV specifications,
it is easy to translate other formats to these ones.

The application comes with a graphical user interface, as shown in the screenshot of Figure 5.22.
The window is divided in 3 panels, respectively, from top to bottom, settings, results, and annotations:
In the setting panel, one can choose the measure(s) to apply, either γ, or both γcat and γk. One may also
set the desired precision to compute the expected value, since, as explained in (Mathet et al., 2015, page
460), the latter is computed by sampling. In the results panel, all the results are detailed: the agreement,
observed and expected values, and also the number of unitary alignments found. In the example, the
user chose 2% of precision for the expected value, hence γcat is known to be between 0.34 and 0.37
with a 95% degree of confidence. Also, the values of γk are provided for the 3 categories, and γk(C) is
not available (NA) because there is no pair of units containing at least one unit of category C. When the
user loads a new file of annotations, or when she changes a setting, the computation is automatically
relaunched, so that the results always correspond to what is shown in the interface.

In our example, γcat is quite low at 0.36, because of confusions between categories A and B, since
category C is not contributing to the result as we have just seen. To go deeper into details, γk tells that
this low agreement is due more to category A (γk(A) = 0.335) than to category B (γk(B) = 0.494).
Moreover, γ = 0.29 (not visible in the screenshot since one have to click on “Gamma” to make it
appearing), is quite close to γcat, which tells that the annotators have to improve both unitizing and
categorization.

5.14. CONCLUSION ON THE GAMMA FAMILY 123

Figure 5.22: The γ familly software

5.14 Conclusion on the Gamma family

In computational linguistics, when annotation efforts are relative to a continuum (which implies the
combination of positioning and categorizing) rather than to predefined items, researchers are not pro-
vided very much with methods and tools to assess the agreement among several annotators.

In the end, only Krippendorff’s coefficients uα and c|uα was specifically addressing unitizing, but
they do not fulfill all the needs of CL, in particular by giving much importance to size of units, and with
the restriction that they are natively limited to non-overlapping units.

The main reason why research on this topic is sparse, and why it may be difficult to enlarge Krip-
pendorff’s coefficients to overlapping units, probably results from the fact that we are facing here a
major difficulty: the simultaneous double discrepancy between annotators, with annotations possibly
differing both in positioning relevant units anywhere on a continuum, and in categorizing each of these
free units. Consequently, it is difficult for a method to choose precisely which features to compare
between different annotators (unlike pure categorizing, where we know exactly what each annotator
says for each predefined element to be categorized), and this problem is exacerbated when overlapping
units (within an annotator) occur.

To cope with this critical point, we advocate the use of an alignment which ultimately expresses
which unit from one annotator should be compared to which unit, if any, from another one, and con-
sequently makes it natural and easier to compute the agreement. Moreover, we have shown that this
alignment cannot be done in an independent way, but is part of the measure method itself. This is the
“unified” aspect of our approach. We have also shown that in order to be relevant, this alignment cannot
be done at a local level (unit by unit), but should consider the whole set of annotations at the same time,
which is the “holistic” aspect.

Recently, we designed a set of new coefficients, the Gamma family, for that purpose. γ proposes
an overall solution which takes into account all kinds of discrepancies (categories, positions, false
positives and negatives) in order to assess whether the multi-annotations are reliable or not.

However, when the agreement is not as good as wished, the researchers would like to have more
details about the discrepancies, in order to better understand the difficulties and so to enhance the

124 CHAPTER 5. THE GAMMA FAMILY

annotation model or the annotation manual. In particular, is a given overall low agreement due to poor
specifications of categories? Or even of some particular categories? For that purpose, I also provided
such complements to γ, with two additional coefficients γcat and γk which focus on the categorization
part of the agreement, with the wish they also fulfill three important requirements for computational
linguistics: (1) Positional discrepancies should not impact categorial agreement; (2) Length of units
should not be taken into account; (3) Missing values should be tackled the best way. γcat was designed
not only as a complement to γ, but also with the same conception of how to handle unitizing, and
with a common alignment process. Relying on an alignment, it compares genuine units and so ensures
requirements (1) and (2).

Since the aim of γcat is somehow to extend what agreement measures do for predefined items to
the case of unitizing a continuum, it was important that γcat performs as well as the best specialized
measures. Moreover, the context of free unitizing leads to a great number of so called “missing values”,
when some annotators put units where others do not, which led me to frontally study this other neglected
question for requirement (3): how a measure should natively handle missing values? I made a thorough
analysis of the question and formulated a clear answer: the best solution is to do as the classic α
measure does (and what cuα unfortunately fails to do). This is also a result which goes beyond the
scope of this paper focused on unitizing. γcat manages to do (almost) exactly the same as α when
restrained to the simpler case of predefined units, which constitutes a strong basis.

Finally, the Gamma family fulfills all the requirements expressed for computational linguistics.
Experiments with the shuffling tool confirm all these capabilities, and also that the three coefficients γ,
γcat and γk are complementary.

These coefficients are already implemented, ready to use, and freely available.

5.15 Future work

If we have reached a first important step for CL and NLP agreement measures with the Gamma family,
there are still many other points to address in the future. The three main goals we intend to achieve
are :

1. Improving the understanding of the part of chance in agreement. As we have seen, this is an
important and difficult point which deserves further work and probably some experiments. In
particular, we wish to find a way to correctly account for the fact that distribution of categories
may change through a given continuum, which is not taken into account by any measure at
present time.

2. An important problem with assessment of unitizing is that the way we measure the agreement
depends on the nature of the task. For certain tasks, a little disagreement in position is important,
whereas for others it may be almost negligible. Currently, the Gamma family is set with what
we consider as the most versatile measures of dissimilarity, but we wish in the future to propose
special settings for each kind of annotation task.

3. A recurrent need expressed by scholars is also the possibility for measures to take into account
feature-sets in the computation in the agreement, in addition to mere categories. For instance, if
there are two categories Noun and Verb, and if these categories come with feature sets saying for
instance what is the "gender" of a given Noun, or what are the "tense" and "aspect" of a given
Verb, the current measures only take into account the agreement on Noun and Verb, not on the
gender, tense nor aspect. We have ongoing developments to fulfill this need.

4. Of course, we also wish in the future to provide new coefficients for even more difficult tasks,
in particular the case where unitizing is complemented by relationships (i.e. when units can
be linked, like in discourse annotation). We think that γ is an interesting start point for such a

5.15. FUTURE WORK 125

measure, but we will probably face complexity problems when computing an alignment which
relies not only on the units but also on the relationships between them.

126 CHAPTER 5. THE GAMMA FAMILY

Bibliography

Aickin, M. (1990). Maximum likelihood estimation of agreement in the constant predictive probability
model, and its relation to cohen’s kappa. Biometrics, 46:293–302.

Artstein, R. and Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational
Linguistics, 34(4):555–596.

Asher, N., Venant, A., Muller, P., and Afantenos, S. (2011). Complex discourse units and their seman-
tics. In Proceedings of Constraints in Discourse.

Battistelli, D., Chagnoux, M., and Desclès, J.-P. (2006). Référentiels et ordonnancements temporels
dans les textes, information temporelle, procédures et ordre discursif. In Cahier Chronos 18.

Bennett, E. M., Alpert, R., and C.Goldstein, A. (1954). Communications through limited questioning.
Public Opinion Quarterly, 18(3):303–308.

Bestgen, Y. (2009). Quels indices pour mesurer l’efficacité en segmentation thématique? In Actes de
TALN’09, Senlis (France).

Bilhaut, F. and Widlöcher, A. (2006). Linguastream: An integrated environment for computational
linguistics experimentation. In Proceedings of the 11th Conference of the European Chapter of the
Association of Computational Linguistics (EACL’06), pages 95–98.

Bonnardel, P. (1996). Test statistique Kappa : programmation informatique et applications pratiques.
Phd thesis, Université de Paris V.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Desclès, J.-P. (1995). Les référentiels temporels pour le temps linguistique. In Modèles Linguistiques
XVI, pages 9–36.

Di Eugenio, B. and Glass, M. (2004). The kappa statistic: a second look. Computational Linguistics,
30(1):95–101.

Fauconnier, G. (1984). Espaces mentaux : Aspects de la construction du sens dans les langues na-
turelles. Les éditions de Minuit.

Feinstein, A. and Cicchetti, D. (1990). High agreement but low kappa : The problems of two paradoxes.
Clin. Epidemiol., 43:543–548.

Fretwurst, B. (2015). Reliability and accuracy with lotus. In Proc. of the 65’th ICA Annual Conference,
San Juan, Puerto Rico. International communication association, ICA.

Gosselin, L., Mathet, Y., Enjalbert, P., and Bécher, G. (2013). Aspects de l’Itération, L’expression de
la répétition en français : analyse linguistique et formalisation, volume 106. Peter Lang éditions,
Sciences pour la communication, Laurent Gosselin, Yann Mathet, Patrice Enjalbert, Gérard Bécher.

127

128 BIBLIOGRAPHY

Gwet, K. L. (2012). Handbook of Inter-rater Reliability. Advanced Analytics, LLC, third edition.

Ho-Dac, L.-M., Péry-Woodley, M.-P., and Tanguy, L. (2010). Anatomie des Structures Énumératives.
In Actes de la conférence TALN 2010, Montréal, Canada.

Israel, G. D. (1992). Determining Sample Size. Agricultural Education and Communication Depart-
ment, University of Florida, IFAS Extension, PEOD6 (Reviewed 2013).

Krippendorff, K. (1980). Content Analysis : An Introduction to Its Methodology, chapter 12. Sage :
Beverly Hills, CA.

Krippendorff, K. (2004). Content Analysis : An Introduction to Its Methodology, chapter 11. Sage :
Thousand Oaks, CA., 2nd edition.

Krippendorff, K. (2011). Agreement and Information in the Reliability of Coding. Communication
Methods and Measures, (5.2):1–20.

Krippendorff, K. (2013a). Content Analysis : An Introduction to Its Methodology, chapter 11. Sage :
Thousand Oaks, CA., 3rd edition.

Krippendorff, K. (2013b). A dissenting view on so-called paradoxes of reliability coefficients. C. T.
Salmon (ed.), Communication Yearbook, 36:481–499.

Krippendorff, K., Mathet, Y., Bouvry, S., and Widlöcher, A. (2016). On the reliability of unitizing
textual continua: Further developments. Quality and Quantity, 50(6):2347–2364.

Kuper, J., Saggion, H., Cunningham, H., Declerck, T., de Jong, F., Reidsma, D., Wilks, Y., and Wit-
tenburg, P. (2003). Intelligent multimedia indexing and retrieval through multi-source information
extraction and merging. In IJCAI, pages 409–414.

Labadié, A., Enjalbert, P., Mathet, Y., and Widlöcher, A. (2010). Discourse structure annotation : Cre-
ating reference corpora. In Workshop on Language Resource and Language Technology Standards
- state of the art, emerging needs, and future developments, La Valetta, Malta. Conference LREC
2010.

Landragin, F., Poibeau, T., and Victorri, B. (2012). Analec: A new tool for the dynamic annotation
of textual data. In Eighth International Conference on Language Resources and Evaluation (LREC
2012), pages 357–362.

Laur, D. (1991). Sémantique du déplacement et de la localisation en français : une étude des verbes,
des prépositions et de leurs relations dans la phrase simple. PhD thesis, University of Toulouse II.

Lebranchu, J. (2011). Étude des phénomènes itératifs en langue : Inscription discursive et Calcul
aspectuo-temporel, Vers un traitement automatisé. PhD thesis, University of Caen, France.

Mathet, Y. (2000). Etude de l’expression en langue de l’espace et du déplacement : analyse linguis-
tique, modélisation cognitive, et leur expérimentation informatique. PhD thesis, University of Caen,
France.

Mathet, Y. (2017). The agreement measure gamma-cat (γcat), a complement to gamma focused on
categorization of a continuum. Computational Linguistics, 43(3):661–681.

Mathet, Y. and Widlöcher, A. (2011a). Stratégie d’exploration de corpus multi-annotés avec GlozzQL.
In Traitement Automatique des Langues Naturelles 2011 (TALN 2011), Montpellier, France.

BIBLIOGRAPHY 129

Mathet, Y. and Widlöcher, A. (2011b). Une approche holiste et unifiée de l’alignement et de la mesure
d’accord inter-annotateurs. In Traitement Automatique des Langues Naturelles 2011 (TALN 2011),
Montpellier, France.

Mathet, Y., Widlöcher, A., Fort, K., Francois, C., Galibert, O., Grouin, C., Kahn, J., Rosset, S., and
Zweigenbaum, P. (2012). Manual corpus annotation: Giving meaning to the evaluation metrics. In
COLING 2012, Mumbai, India.

Mathet, Y., Widlöcher, A., and Métivier, J.-P. (2015). The unified and holistic method gamma (γ) for
inter-annotator agreement measure and alignment. Computational Linguistics, 41(3):437–479.

Mathet, Y. and Widlöcher, A. (2016). Évaluation des annotations : ses principes et ses pièges. Revue
T.A.L., 52(2):73–98.

Olivero, P. (2001). Calcul de la taille des Échantillons. CETE du Sud-Ouest / DAT / ZELT.

Person, C. (2004). Traitement automatique de la temporalité du récit : implémentation du modèle
linguistique SdT. PhD thesis, University of Caen.

Péry-Woodley, M.-P., Asher, N., Enjalbert, P., Benamara, F., Bras, M., Fabre, C., Ferrari, S., Ho-
Dac, L.-M., Le Draoulec, A., Mathet, Y., Muller, P., Prévot, L., Rebeyrolle, J., Tanguy, L., Vergez-
Couret, M., Vieu, L., and Widlöcher, A. (2009). ANNODIS: une approche outillée de l’annotation de
structures discursives. In Actes de la 16e Conférence Traitement Automatique des Langues Naturelles
(TALN’09), session poster, Senlis, France.

Pevzner, L. and Hearst, M. (2002a). A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–36.

Pevzner, L. and Hearst, M. A. (2002b). A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, 28(1):19–36.

Reichenbach, H. (1947). Elements of Symbolic Logic. Macmillan & Co, New York.

Reidsma, D. (2008). Annotations and Subjective Machines of Annotators, Embodied Agents, Users,
and Other Humans. Phd thesis, University of Twente. publisher: Twente University Press, publish-
erlocation: Enschede, ISSN: 1381-3617, ISBN: 90-365-2726-0.

Reidsma, D., Heylen, D., and Ordelman, R. (2006). Annotating emotions in meetings. In Proc. of
the fifth international conference on Language Resources and Evaluation, LREC 2006, pages 1117–
1122, Paris. ELRA. ISBN=2-9517408-2-4.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Unified Modeling Language Reference Manual.
Pearson Higher Education, 2nd edition.

Sablayrolles, P. (1995). Sémantique formelle de l’expression du mouvement. De la sémantique lexicale
au calcul de la structure du discours en français. PhD thesis, University Paul Sabatier, Toulouse.

Scott, W. (1955). Reliability of content analysis: The case of nominal scale coding. Public Opinion
Quarterly, 19(3):321–325.

Vendler, Z. (1957). Verbs and times. The Philosophical Review, 66(2):143–160.

Widlöcher, A. (2008). Analyse macro-sémantique des structures rhétoriques du discours - Cadre
théorique et modèle opératoire. PhD thesis, Université de Caen Basse-Normandie.

130 BIBLIOGRAPHY

Widlöcher, A. and Mathet, Y. (2009). La plate-forme Glozz: environnement d’annotation et
d’exploration de corpus. In Actes de la 16e Conférence Traitement Automatique des Langues Na-
turelles (TALN’09), session posters, Senlis, France.

Widlöcher, A. and Mathet, Y. (2012). The glozz platform: a corpus annotation and mining tool. In
Concolato, C. and Schmitz, P., editors, ACM Symposium on Document Engineering (DocEng’12),
pages 171–180, Paris, France. ACM.

Zhao, X., Liu, J., and Deng, K. (2013). Assumptions behind inter-coder reliability indices. C. T. Salmon
(ed.), Communication Yearbook, 36:418–480.

Zwick, R. (1988). Another look at interrater agreement. Psychological Bulletin, (103):347–387.

