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1
Introduction

The technology evolution of cameras, mobile devices, screens, etc., leads to increase on using such electronic devices.
For instance, nowadays, people prefer to use videos in their daily life activities. These activities include video calls
and messages, recording videos for memories, recorded CV, etc. Hence, and according to Cisco report [1], the IP video
traffic is 70% of all IP traffic in 2015 and expected to increase up to 82%. Besides, according to Cisco forecast [2],
Internet video downloads and streaming are the major applications that are expected to have 80% of the bandwidth,by
2020, of all Internet traffic. It is also reported that content delivery network (CDN) is the dominant way to stream
videos. 61% of all Internet video traffic crossed CDNs in 2015 and is expected to reach up to 73%. Since people are
now connected to different types of networks especially the Internet using different devices (computers, TVs, portable
devices, ... etc.), they are demanding for high quality videos. Moreover, the demanding includes immersive contents as
well such as ultra-high definition (UHD), high dynamic range (HDR) and 360o videos. The delivery (from capturing
to the end user) of such high quality is challenging. It requires saving bandwidth by using good encoders, producing
robust streams to be sent over error-prone channels, ability to recover errors, and finally good quality estimation for
perceived videos.

1.1 Problem Statement

Indeed, there are different types of video sequence contents such as sporting, news, natural scene, movies, computer-
generated, and cartoon sequences. Each of these content types can be divided into sub categories. Each content has
its own features and underlying content characteristics that make the video content different from other contents.
For instance, Figure 1.1 shows four video content sequences that cover different amounts of spatial (SI) and temporal
information (TI) (perceptual information). SI is a statistical texture measure that finds edges in the frame. TI is a
statistical measure that measure the amount of difference between adjacent frames.

As indicated at the beginning of this chapter, the delivery of video contents with quality that satisfies the end users
is challenging. One way to improve the current state-of-the-art of video delivery chain is to take advantage of video
content characteristics. The wide variety of video content causes a challenge for content-based research since, of course,
natural scenes differ from sport scenes and sport scenes differ from cartoons, etc. Hence, considering content types
and their corresponding features is very important in different aspects. First, in setting up subjective experiment;
in [3–5], Video Quality Experts Group (VQEG) and Pinson et al. mention some limitations to video source selection
to conduct researches. Second, in improving objective measures of video quality; in [6–8], the video content features
are analysed to improve the objective video quality measure. Third, in improving video coding efficiency; it can be
concluded from the subjective experiment of Pitrey et al. [9] that the video content influences the video encoding.
Fourth, in designing error resilience tools: in [10–13], switch algorithms that utilize the content features are used to
decide which error concealment technique should be applied.
Hence, the main focus of this dissertation is to take the advantages of content features/indicators to improve the
video delivery chain in different aspects. The delivery chain includes, in this dissertation, pre-encoding process, error
resilience, error concealment, and quality assessment.
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Figure 1.1 – Four sequences with different amounts of spatial and temporal information

1.1.1 Pre-encoding process

The aim of any coder is to reduce the size of the video file to target a specific bitrate budget. The latest video coding
standard, High Efficiency Video Coding (HEVC) [14], is designed especially to target different types of applications
and particularly high resolution video applications [15]. Quality, bitrate and complexity (encoding time) are the key
elements of video coding performance evaluation. The complexity of HEVC is increased due to the new/improved
coding tools. This complexity is a liability for some targeted users, for some applications, or, for some devices. Some
targeted users, like content providers, may not care about the complexity since they have the power to build high
performance encoders, i.e. parallel encoders. Some applications (security and safety applications) require that the
captured videos need to be quickly encoded and sent. Due to the limited computational power and batteries of some
devices, the complexity is an important issue. This dissertation targeted this issue and investigates the impact of using
content characteristics to reduce the effect of complexity.

1.1.2 Error resilience

Video transmission system characteristics depend on the application type. Figure 1.2 shows the abstract overview of
the video transmission/storage system layers. Real-time application uses RTP/UDP based systems since it is suitable
for low-delay applications while progressive download based applications use HTTP/TCP based systems since it is a
reliable protocol. In [16] the authors summarize these system technologies to:

— RTP [16], is a real-time transport protocol developed by Internet engineering task force (IETF) and is used
over UDP.

— MPEG-2 Systems [17]. It is used in broadcast systems as IPTV.
— The ISO Base Media Format [18] and MPEG-DASH, Dynamic Adaptive Streaming over HTTP, [19]. They

are used in VoD streaming, progressive download, and HTTP streaming over Internet. For more information
about the standard principles and concepts, readers are advised to refer to [20–23].

The decoded video quality might not be satisfying if one or more packets are lost in error-prone channels. The main
goal of video coding like high efficiency video coding (HEVC) [14] is to minimize the coding distortion for a target
bitrate. This requires a complex prediction process to remove the redundant information in the video signal [15].
As a result, the error resilience in HEVC is decreased compared to H.264/AVC due to the increase of temporal
dependency [24]. Protection methods of a compressed stream [25] can be categorized into three categories: error
resilience, error control coding, and error concealment. It is stated in [25] that “Error resilience refers to schemes
that introduce error resilient elements at the video compression stage, which reduce the interdependencies of the
data-stream, in order to mitigate error propagation”. Error propagation is a phenomenon when successive frames are
affected by single/multi transmission error. Several error resilience techniques are introduced in the literature [26–28].
This dissertation targeted this issue and investigates the impact of using content characteristics and the impact of
using good network structure when multiple description coding is used as an error resilience tool. The target is to: 1)
reduce the effect of error propagation that happens due to packet losses, and 2) to reduce the amount of redundant
data that needs to be sent.
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Figure 1.2 – Abstract overview of video transmission/storage system layers

1.1.3 Error concealment
Error concealment (EC) is one category of methods to protect the compressed stream. EC is a passive operation

that does not place resilient element in the streams but uses the correctly received video data to recover the lost
information. One objective of an error resilient tool is to make the job of error concealment easier. Spatial EC
techniques [29, 30] utilize available surrounding pixels to reconstruct the missing pixels. They are not efficient for
large areas, non-constant areas, and in terms of complexity. They usually reconstruct the texture (such as edges) but
not the structure. Temporal EC techniques use available motion information to predict the missing motion vectors
(MVs), for instance, by interpolating [31] or by selecting the MV that minimizes the side match distortion [32]. Despite
providing information about whether the current area is moving or not, this technique is efficient only for low-motion
and smooth sequences and for small areas since the precision of predicted MVs is not guaranteed. Thus, the structure
(of copied data) is reconstructed but not the texture.
The target of any error concealment algorithms is twofold: reconstructing a satisfying reconstruction of a lost area and
reducing the mismatch between the encoded and the reconstructed blocks which yield to reduce the error propagation
effect. To achieve that we need to reconstruct the texture and the structure of a missing area and that can be
done using inpainting techniques. This dissertation targeted this issue and investigated the impact of using content
characteristics in improving the inpainting-based error concealment algorithms.

1.1.4 Quality assessment
Human satisfaction is one aspect quality of experience (QoE). The popular metric to measure video quality is

MSE/PSNR which does not necessarily express the human satisfaction especially when parts of the video are delayed
or concealed. Researchers trust observers’ judgements in video quality assessment, although building subjective ex-
periments are very expensive and cannot be incorporated in real-time systems. Many efforts have been dedicated to
implement objective measurements to automatically assess the image or video quality and give results very close to
what human observers give. Quality of Experience (QoE) is defined in [33] as “the degree of delight or annoyance of
the user of an application or service. It results from the fulfilment of his or her expectations with respect to the utility
and/or enjoyment of the application or service in the light of the user’s personality and current state”. Subjective
experiment is the accurate way to judge the quality of the perceived video. Because of its inability to be part of the
video delivery and its time and money consumption, efforts have been dedicated to implement objective measurements
to automatically assess the image or video quality taking into account perceptual properties of the content and the
human visual system properties.
This dissertation targets different issues of video quality assessment. Firstly, how to study the agreement of different
objective video quality measures and the influence of the content types and the encoding conditions on this agreement.
Secondly, the impact of content characteristics are studied in order to see the correlation of content features with
respect to the behaviour of full-reference objective measurements for error-free and loss-impairment videos. Thirdly,
selecting encoding conditions for testing the objective measures is also investigated. Finally, to mitigate the short-
comings of current methods (correlations and mean square errors) to evaluate the performance of the video quality
measure, analyses are conducted to introduce new methods.

1.2 Main research questions and contributions
As the subtitle of this manuscript indicates, the main focus of this dissertation is to utilize the content characteristics

of the video shots to improve the video delivery chain. For each component of the video delivery chain that is mentioned
in the Section 1.1, the following research questions are investigated:

— Pre-encoding process:
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1. Can the generic/global content features be used as indicators for finding the links between the content
features and the encoders parameters? If so, then building a joint content and complexity aware encoder’s
parameters prediction model is applicable.
In addition to that, the following secondary research questions are investigated too:
+ How does the encoder behave in terms of complexity with different content?
+ How is the encoder complexity linked with different parameters per content?

— Error resilience:
1. Which content features can be used in order to take advantage of the received redundant representa-

tions/descriptions when using n−MDC with n ≥ 4?
2. With these features, is the quality of experience (QoE) of the reconstructed video sequence improved?
3. Which content features would help to build an adaptive MDC scheme?

In addition to that, the following secondary research question is investigated too:
+ Can we trade-off between quality and bitrate in MDC schemes by not always using a specific MDC

scheme? In other words “Is it better to use SDC, 2-MDC, or 4-MDC for a specific content?”
4. How can the quality of temporal-MDC scheme be evaluated?

In addition to that, the following secondary research question is investigated too:
+ How to take advantage of TCP and UDP protocols to build a good networking structure that allows to

reduce the amount of redundant MDC data to be sent.
— Error concealment:

1. What is the information, content indicators, that needs to be considered as inputs of the inpainting-based
EC algorithm?
In addition to that, the following secondary research question is investigated too:
+ How to adapt the state-of-the-art inpainting-based EC algorithms to be suitable for low delay commu-

nication?
2. Does the observer get disturbed with the proposed inpainting-based EC algorithm? Does that correlate

with DMOS?
3. Which content indicators may help in predicting this correlation?

— Quality assessment:
1. How do different full-reference video quality measures behave in terms of ranking for the error-free and

loss-impairment sequences?
2. Characterize the behaviour of FR video quality measures at frame and sequence levels with respect to video

content and coding parameters.
3. What is the impact of using pixel-based content features in building machine learning based NR VQA for

error-free and loss-impairment sequences along with channel and coding parameters?
4. Can a representative subset be selected from a large-scale database such that this small-scale database can

be further analysed and the conclusions drawn on the small-scale database also apply to the large scale
database?

5. In case that the PLCC and RMSE cannot report the goodness of a model, what other performance measures
that we need to report this goodness?
In addition to that, the following secondary research question is investigated too:
+ How does the goodness analysis work when the content sources are different as well as the HRCs?

Research has been conducted to utilize the content characteristics in the above-mentioned fields. The aims, based
on the raised research questions, were to develop frameworks, methods, and algorithms to integrate video content
features as a main component. To reach that end, different types of analysis and experiments (including subjective
experiments) have been conducted. As a result of these efforts, this dissertation presents the following contributions:

— Contribution #1: A framework to predict the encoder parameters at the sequence level using content indi-
cators has been proposed: (Part II)
1. The primary contribution of this work is the prediction of the encoding parameter values leading to minimum

complexity in terms of execution time using the underlying content features. For instance, features like cross
correlation, Laplacian-based, chrominance information, and motion intensity features have a high impact in
finding the links between the content features and the motion search range parameter in HM encoder. The
model trades-off rate (R), distortion (D), and complexity (C). For instance, if a video sample is encoded using
different configurations and the output videos are in same bitrate and distortion ranges, the configuration
that achieve the minimum encoding time will be chosen. If the output videos achieve same complexity and
distortion ranges, the configuration of the lowest bitrate will be chosen.
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— Contribution #2: Introducing content awareness in MDC and subsequently introducing a quality control
scheme for MDC that exploits state-of-the-art network architectures: (Part III)
1. A new temporal MDC scheme which is characterized by standard compatibility, redundancy tuning, lightweight

complexity, and suitability for n-MDC schemes. This scheme includes the process of generating descriptions
and the process of reconstructing video sequences when primary data is lost. Coding unit splitting and the
temporal distance properties are used to train a weighting coefficient to reconstruct the lost primary frame
from the redundant frames.

2. The subjective experiment that shows the preference of the proposed scheme against other MDC schemes
is introduced.

3. An adaptive content-aware framework to predict the suitable description scheme (SDC, 2-MDC, or 4-MDC)
to be transmitted over an error-prone channel in order to maximize the quality of experience. The contrast
of Gray Level Co-occurrence Matrix and the ratio of entropy of Laplacian levels 4 and 5 features are used
to build the adaptive MDC scheme.

4. Quality evaluation framework for temporal-MDC schemes is proposed. The framework introduces an inter-
active networking structure that helps reducing the amount of redundant data to be sent. During this work,
all the steps of the proposed framework are done except the quality evaluation (subjectively and objectively)
stage. This due to time and computing power limitations.

— Contribution #3: Content-aware inpainting-base EC algorithm and subjective experiment to study the
subject’s disruption: (Part IV)
1. A modified version of the inpainting-based error concealment [34] is proposed. The following improvements

are achieved in the proposed algorithm:
— The concept of motion map Mc is introduced. It includes the predicted motion vectors Mmv, the pixel-

based motion intensityMpi and the motion vector of interests (MVI) that relate to camera motionMcm.
It was shown that the proposed motion map improves the performance of the inpainting.

— The algorithm is adapted to be practical for low-delay video communications.
— An adaptive search window size for temporal and spatial inpainting is introduced.
— Reduce the spatio-temporal artifacts using simple Poisson blending strategy with the proposed mask

strategy.
2. A subjective experiment that analyses the observer disruption when loss-impairments are introduced in the

video sequence. It is observed that the disruption measure has a high correlation with the perceived DMOS.
In addition to that, it is shown that the inpainting-based EC technique achieves a better perceived quality
with respect to one of the-state-of-the-art EC techniques.

3. Three content features are introduced to study the subject disruption as one step forward to help measure
the quality of the perceived degraded videos. The features are: texture, colour, and motion entropy maps.

— Contribution #4: Content-aware VQA that predicts the behaviour of full-reference measures is proposed
and a content-based subset selection algorithm is proposed as well: (Part V)
1. The agreement between the three tested measures PSNR, SSIM, and VIFP showed that the results of their

predictions are similar, notably in the high and low quality range, less so in the middle range. It was
further noted that the disagreement of the measurements is more pronounced in case of packet loss than for
coding-only conditions which may be seen as a first step towards an automatic identification of the scope
of application for objective measures. Thanks to the large size of the analysed dataset, some important
effects on the characterization of the performance were highlighted that are not evident when a limited set
of contents and parameters is considered.

2. The disagreement between several objective measures exist on a frame-level even if the measures agree on
a sequence level. However, the particular patterns of this disagreement point to two important conclusions.
The first conclusion is that the usage of one single measure may not be sufficient. In particular, it may be
beneficial to analyse the usage of several complementary algorithms within the coding loop, i.e. for rate-
distortion optimization. In addition, it should be noted that performance bias may occur when improvements
are measured only objectively and only using one single method, thus weakening such proposals. The
second conclusion is that the pronounced correlation between content characteristics and encoder parameter
selection encourages further analysis, for example with respect to the efficiency of rate-control algorithms.
Some coding factors are almost not influential, whereas others have a strong impact, suggesting that quality
comparisons among sequences without considering the detailed behaviour of the quality over the frames in
the sequence itself could be strongly misleading.

3. A content-based NR VQA is built for error-free and loss-impairment video sequences along with coding,
and channel characteristics. It predicts the behaviour of the full-reference VQA. The following features are
found useful for the prediction model:
— Channel parameters: loss rate, average and burst length.
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— Coding parameters: GOP size/type, intra-period, number of slices, open/close GOP, QP.
— Channel and coding parameters: number of frames hit, number of slices hit, and number of affected

frames.
— Content-based features:

+ Gray-level co-occurrence matrix properties,
+ Chrominance information,
+ Spatial and temporal information,
+ Cross-correlation,
+ DCT and Laplacian based properties,
+ Motion intensity, and
+ MPEG-7 motion activity descriptor.

4. Two subset selection algorithms are proposed. They are targeting a wide range of a specific target; qual-
ity/bitrate or content targets. Specifically, a small-scale set is selected from a large-scale database such that
this small-scale database can be further analysed and the conclusions drawn on the small-scale database
also apply to the large scale database.

5. The following new performance measures are proposed for learning-based video quality assessment algo-
rithms:
— Measures depend on analysing the residual error using PCA,
— Measures depend on analysing the confidence intervals of the predicted data, and
— Measures depend on analysing the confidence intervals of the linear coefficients of the trained and tested

models.

1.3 Dissertation structure

Box 1.1 – Note

The work that is presented in this dissertation has been published or submitted for publications in different
international conferences and journals. Hence, the chapters of this dissertation provide a complete overview of
these publications.

This thesis consists of six parts including the background, conclusions, and perspective future works. Figure 1.3
shows the main four parts of this thesis and how it is connected together.

1.3.1 Part I: Background
The scientific part of this manuscript begins with Chapter 2. It reviews the related works of the main parts that are

mentioned in Section 1.2. Firstly, the related works of how the complexity of the encoder can be reduced are reviewed.
Secondly, the definitions of the quality of service and the quality of experience are reviewed. Thirdly, since multiple
description coding (MDC) is a method that falls in source coding category of error resilience, an overview of source
coding technique is discussed. It explains why we conducted research efforts on MDC. Fourthly, error concealment
techniques are reviewed to explain why inpainting-based error concealment technique is pursued. Finally, the research
efforts to introduce the no-reference video quality measures are reviewed.
In Chapter 3, an overview of global/local content features are introduced. Some of these features are developed for
this work. Besides, the procedures to select few video sequences of a big video sequences set are illustrated. Finally,
the list of contents that are used in different parts of this dissertation is listed.

1.3.2 Part II: Proof-of-Concept: Role of Generic Content Characteristics in Optimizing
Video Encoders; predicting the video encoder’s parameters

This part consists only of one chapter, Chapter 4. This chapter deals with the complexity issue from a novel
perspective. The well-known techniques to deal with this matter mainly focus on not using some of the coding tool(s)
to reduce the complexity. On the other hand, the proposed framework uses the underlying content features to predict
the encoder parameters that trade-off between bitrate, distortion, and complexity. The prediction process starts before
the encoding. It means that the predicted parameter values are applied to the whole sequence. The prediction model
is built offline. The input of the prediction model are 1) the content features as variables, 2) the preferred encoder
parameter value as a class/label. This class are selected after the proposed analysis space is analysed. The framework
is tested with UHD video sequences against different encoder (HM) configurations.
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Figure 1.3 – Thesis’s parts map

1.3.3 Part III: Content-aware Multiple Description Coding (MDC)
This part introduces the content-aware multiple description scheme and consists of 3 chapters. In the first chapter,

Chapter 5, an MDC scheme that is suitable for high-order MDC is introduced. It also provides the recovery procedures
if primary frames are lost. The scheme takes advantages of two important properties of the MDC streams in the
recovery process: 1) the distance of the corresponding redundant pixels of the lost primary pixels from their reference
frames that are used for predictions (three variables), 2) the coding unit (CU) area that belongs to each pixel of the
redundant data (three variables). Each group of these six variables are trained with pixel values of the redundant and
primary frames to provide weights that minimize the error of the primary pixel value. Then, this scheme is subjectively
evaluated and it has been shown that it is preferred than other MDC schemes.
In the second chapter, Chapter 6, an important observation that results from the subjective experiment is analysed.
It led to the introduction of an adaptive content-aware MDC scheme. It simply recommends the transmission mode
for a specific content. Instead of always sending one type of MDC scheme, a specific type of MDC schemes can be
sent according to the content features of the sequence.
Finally, in Chapter 7, it is observed that the content-aware MDC that is proposed in Chapter 6, together with a
good/smart networking implementation, proposed in Chapter 7, provide a promising solution to use temporal-MDC
scheme as one way to maximize the quality of experience. Quality evaluation framework for temporal-MDC schemes is
proposed. The framework introduces an interactive networking structure that helps reducing the amount of redundant
data to be sent.

1.3.4 Part IV: Inpainting-based error concealment (EC) technique in video communi-
cation

To reconstruct the texture and the structure of a missing area; we can use inpainting techniques. In Chapter 8,
an adaptation to one of the state-of-the-art EC algorithms is proposed. The main enhancements include 1) It uses
different motion maps; motion vector map, motion intensity map, and camera motion map. 2) adapted to low-delay
video communications, 3) adaptive window size for different inpainting steps is proposed. The algorithms have three
main steps: inpainting the moving foreground object, inpainting the stationary background temporally and spatially.
In Chapter 9, observations from existing loss-impairment video datasets are analysed. Particularly, we analysed the
perceived subjective quality of videos containing H.264/AVC transmission impairments, incident at various degrees
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of retinal eccentricities of subjects. We relate the perceived drop in quality, to five basic types of features that are
important from a perceptive standpoint: texture, colour, flicker, motion trajectory distortions and also the semantic
importance of the underlying regions. Then, a subjective evaluation of inpainting-based EC is conducted to study
the observer’s disturbance of inpainting-based EC technique. This disturbance is correlated with different content
properties such as entropy maps of motion, colour, and texture.

1.3.5 Part V: Role of measured content characteristics in quality assessment
This part contains three chapters. In the first one, Chapter 10, we are aiming to use the large-scale database

in order to conduct analysis and see observations that cannot be obtained with the subjective experiments. 1) FR
measure agreement for error-free and loss-impaired sequences is analysed. 2) Impact of content and coding condition
in FR agreement consistency is studied frame-wise within individual sequences and across sequences.
Following the conclusions of Chapter 10, Chapter 11 utilizes and trains content features to predict the behaviour of
the FR video objective measures for error-free and loss-impairment sequences.
Finally, in Chapter 12, we targeted two important issues that are existing in evaluating the objective quality measure.
The first issue is that how to select a set of hypothetical reference circuits (HRCs) that is representative for the
large-scale database. The second issue is what shall we do if the PLCC and RMSE cannot report the goodness of a
model, what other performance measures that we need to report this goodness? A set of new performance measures
are proposed to target this issue. The HRC selection algorithms and the new performance measures are tested with
other randomly selected HRC sets.

1.3.6 Part VI:Conclusion and future perspectives
Simply, this part, in Chapter 13, summarizes the main conclusions of the research efforts that are conducted in

this dissertation. It highlights the usefulness of the PhD work. Then, the work perspectives are discussed to highlight
the room of the improvements that can be conducted for the proposed models in this dissertation.

1.4 Publications

1.4.1 Journals
— Ahmed Aldahdooh, Enrico Masala, Glenn Van Wallendael, Marcus Barkowsky. “Reproducible research

framework for objective video quality measures using a large-scale database approach”, Elsevier Digital Signal
processing, submitted.

— Ahmed Aldahdooh, Enrico Masala, Glenn Van Wallendael, Marcus Barkowsky. “Framework for reproducible
objective video quality research with case study on PSNR implementations”, Elsevier SoftwareX, submitted.

— Ahmed Aldahdooh, Marcus Barkowsky and Patrick Le Callet, “Proof-of-Concept: Role of Generic Content
Characteristics in Optimizing Video Encoders,” Springer Multimedia Tools And Applications, submitted.

1.4.2 Conferences
— Ahmed Aldahdooh, Marcus Barkowsky, Patrick Le Callet, and David Bull, “Inpainting-Based Error Conceal-

ment For Low-Delay Video Communication,” The 42nd IEEE International Conference on Acoustics, Speech
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2
Related works

2.1 Introduction
In this Chapter, the state of the art of different parts of the dissertation will be reviewed. The video content

characteristics will be reviewed in a separate chapter, Chapter 3. Since this PhD work targets different parts of the
video delivery chain, each section of this Chapter will cover one target with a specific scope. The structure of the
chapter is shown in Box 2.1.

Box 2.1 – Chapter structure

This chapter will be organized and structured as shown in Figure 2.1. In Section 2.2, works that are related to
the encoder parameters prediction is illustrated in Section 2.2. In Section 2.3, a brief review of quality of service
(QoS) and of quality of experience (QoE) will be presented. Section 2.4 reviews the source coding technique as
a way to enhance the QoE. The second way to enhance the QoE is reviewed in Section 2.5. Finally, Section 2.6
shows the state of the art of content-aware video quality and no-reference quality assessment (QA).
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Figure 2.1 – Chapter 2 Structure

2.2 Predicting Encoder Parameters
The aim of any encoding system is to provide the best-effort video quality for the end users. Due to the limited

bandwidth, coding systems since H.261 employ rate-distortion optimization (RDO) model aiming to achieve minimum
degradation in video quality for a given bitrate. It is expressed mathematically as [35]:

min{D}, subject to R ≤ Rc (2.1)
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where Rc is the given bandwidth. This is solved using Lagrangian optimization as expressed in [35]:

min{J}, where J = D + λR, (2.2)

where λ is a Lagrange multiplier.
When a new video coding standard is introduced, new or improved tools are introduced that increase the complexity
dramatically since the RDO needs to test all possible combinations of the modes. Therefore, many research efforts have
been conducted to reduce the encoder complexity [36–56]. The awareness of complexity in these algorithms came from
the fact that not each coding tool needs to be utilized. In [37,38,40,41,43,49,51], the complexity control algorithms are
implemented for inter frames based on fast mode decision, changing motion estimation search methods, or reducing
the number of reference pictures. Going into more detail, in [37], three complexity controls are proposed; the first
uses spatial and temporal blocks to determine the search range using proper threshold, the second uses the sum of
absolute differences (SAD) cost with two thresholds to determine the prediction mode, finally, SAD, motion vectors
and optimal reference frame are used to decide the number of reference frames. In [38], the authors proposed to use
both the fractional motion estimation and fast integer motion estimation algorithms to reduce the complexity. Kim et
al. [40] use the best mode information of a correlated macro-blocks (MB) in the time-successive frame to determine the
search mode and use the adaptive rate distortion cost threshold for early termination process. Su et al. [41] manage the
complexity by changing the motion estimation parameters and by adjusting mode decision processes using different
complexity levels. In [43], the motion estimation tools are categorized into five states according to the complexity
using SAD cost. Shen et al. [49] utilize inter-level correlation of quadtree structure and the spatiotemporal correlation
to determine the inter mode. In [51], the rate distortion cost on reference frame is used to determine the CU splitting.
Other algorithms are implemented for intra-frames [36,39,40,53,54]. In [36], partial computation of the cost function
is used to determine the intra mode while in [39], the Discrete cosine transform (DCT) based dominant edge direction
is used. In [40], the best inter mode is used to determine the proper intra mode. Chen et al. [53] map the edge direction
to a proper prediction mode in HEVC while Zhao et al. [54] use SSIM structure similarity of neighbouring coding
units to determine the intra-mode. Algorithms like [41] analyse the complexity of each coding tools and range them
to provide coding levels of complexity. Some of the above-mentioned algorithms are implemented in H.264/AVC and
they might be adapted in HEVC. The largest amount of complexity of HEVC is due to quadtree structure, therefore
a lot of efforts have been introduced in this domain [44, 47, 48, 50, 52, 53, 55, 56]. In [44], the authors utilize the fact
of correlation between consecutive frames to ignore the rarely used depth information at frame level and utilize the
neighbouring and co-located blocks to determine the CU splitting while in [47], the authors extract features that are
related to the content at the CU level and use them to build a prediction model to determine the CU splitting. Shen
et al. [48] use Mean Absolute Deviation (MAD) to measure the texture homogeneity of the CU to early terminate
the splitting. In [50], the CU depth decision is determined by utilizing the spatial correlations in the sequence frame
while Nguyen et al. [52] determine the most probable CU depth ranges by utilizing temporal correlation of depth levels
among CUs and the continuity of the motion vector field. Chen et al. [53] propose a bottom-up partition process by
utilizing the gradient information of pixels. In [55], the back-propagation neural network (BPNN) was used to build
a classifier to decide the splitting of the CU using the sum of absolute transform difference (SATD) and the coded
block flag (CBF) as features while in [56] the authors use the decision trees to decide the CU splitting by utilizing the
encoding information such as rate-distortion, skip merge flag, and merge flag. In [46], the authors use the max tree
depth of unconstrained frame to encode a specific number of next consecutive frames while in [45], the complexity is
controlled by weighting the basic operations in the reference encoder.
The above-mentioned techniques achieve significant reduction in complexity although the complexity awareness came
from the fact that some of the introduced modes and tools of the encoder either are rarely used or unnecessary in some
situations. Most of these algorithms employ content properties as demonstrated in the aforementioned algorithms.
Properties like spatio-temporal correlation between blocks, SAD cost, MVs, RD cost, or flags are used in these
algorithms. Moreover, these algorithms work on block or frame level which may yield block-to-block and frame-to-
frame variations in quality. The aim of these algorithms is to reduce the complexity while the bitrate and quality are
not balanced. A room of improvement can be accomplished by utilizing the underlying content features to predict the
encoder’s parameters at sequence level.

2.3 Quality-of-Service Versus Quality-of-Experience

The video delivery chain consists mainly of two services; compression and transmission which are the sources of
distortions due to the use of quantization and best-effort networks respectively. The service quality can be judged
using two factors, technical and human factors. The technical factor is named quality-of-service (QoS) while the
human factor is named quality-of-experience (QoE). In the following subsections, a short review of each term will be
introduced.
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2.3.1 Quality of Service (QoS)
The application type has a vital role to determine a suitable error resilient tool to use to mitigate transmission loss.

In [26], the author mentioned that end-to-end delay can be calculated using following factors and all factors except
the transmission delay are relatively fixed since they are acceptable by the underlying application:

1. encoder processing delay (including acquiring the data and encoding),
2. encoder buffer delay (to smooth the rate variation in the compressed bit stream),
3. transmission delay (delay caused by the transmission itself, which is usually very small, and that due to queuing

and perhaps retransmission in packet-based network),
4. decoder buffer (to smooth out transmission jitters), and
5. decoder processing delay (including both decoding and display buffer for constant frame play-out).

Hence, the QoS of the video transmission application is identified by the maximum transmission delay, latency, and
the delay variation, jitter, allowed by the application and the probability loss rate of the underlying network.
For example, the video telephone application allows 150ms as a maximum delay and 40ms as a maximum delay of the
decoder. Therefore, designing error concealment tools with low complexity is required for this type of application. A
tighter delay constraint is required for ultra-low delay applications.
There are intensive efforts to enhance the QoS to stand solidly against the existing challenges like:

1. Real-time applications: this challenge still undermining the enhancement of QoE. It allows the implementing
of simple error concealment mechanisms which leads to dissatisfaction and instability of the quality.

2. Thirst for bandwidth: although the network capacity is increased but, from another side, the need for high
definition and even for Ultra-HD applications are increased. Relying on the compression efficiency is the
promising solution.

3. Network stability: network conditions are time varying and these variations are not predictable especially the
packet loss behaviour. Hence, the service is stand as best-effort service and relying on the error robustness tool
is promising.

2.3.2 Quality of Experience (QoE)
In the previous Section, an overview of QoS is introduced. In this Section, the human opinion on the quality and

the satisfaction is presented. This satisfaction has a term namely quality of experience (QoE). The popular metric to
measure video quality is MSE/PSNR which does not necessarily express the human satisfaction especially when parts
of the video are delayed or concealed. Researchers trust observers’ judgments in video quality assessment despite the
fact that building subjective experiments are very expensive and cannot be incorporated in real-time systems. Many
efforts have been dedicated to implement objective measurements to automatically assess the image or video quality
and give results very close to what human observers give.
Quality of Experience (QoE) is defined in [33] as “the degree of delight or annoyance of the user of an application
or service. It results from the fulfillment of his or her expectations with respect to the utility and/or enjoyment of
the application or service in the light of the user’s personality and current state”. The reader is referred to [33] for
the history of the definitions and be noticed that the above-mentioned definition is “working definition" since this
definition might be changed in the future as QoE research efforts evolve.

2.3.2.1 Ways to Measure QoE

Subjective experiment is the accurate way to judge the quality of the video. Because it cannot be part of the
video delivery and it is time and money consuming, efforts have been dedicated to implement objective measurements
to automatically assess the image or video quality taking into account perceptual properties of the content and the
human visual system properties.

Subjective Experiment

There were standardization efforts to formalize how to setup the experiment. ITU-T body in [57–59] standardizes
subjective experiment procedures. Procedures include:

— Source signal: includes recording environment, recording systems, and scene characteristics.
— Test methods and experimental design.
— Evaluation conditions: include viewing conditions (room illumination, viewing distance, ... etc.), processing

and playback systems, viewers, and instruction to them.
— Statistical analysis and results reporting.
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Subjects evaluate the visual data in different ways depending on the test method used for that. For instance, absolute
category rating (ACR) uses (5 down to 1) scale which reflects excellent, good, fair, poor, or bad rating respectively.
Another example is Degradation category rating (DCR) test method in which the subjects report the overall quality
using (5 down to 1) rating scale that reflects imperceptible, perceptible but not annoying, slightly annoying, annoying,
and very annoying rating respectively. For more information about test methods, readers are advised to read [58,59].

Objective Measurements

Researchers classify video quality measurements to three categories; Full-Reference (FR), Reduced Reference (RR),
and No reference (NR). The widely used technique is to evaluate frame by frame as still image independently and then
one score is evaluated as global measure by using temporal pooling techniques. A review of full-reference objective
measures is presented in [60]. The authors highlight that the visual characteristics and human visual system features
have a high impact when designing the objective measures. Results of subjective experiments, mostly mean opinion
score (MOS), are used as a ground truth dataset to evaluate the performance of the objective measure.
Traditional point-based metrics: Peak-Signal-to-Noise-Ratio (PSNR) metric
It is the most widely used metric due to it is simplicity and mathematically convenient for optimization but it is not
good in the perceived visual quality as you can get two images with same PSNR but not in the same visual quality.
It depends on Mean Square Error (MSE).
Natural Visual Characteristics: Natural Visual Statistics: SSIM
A new approach is introduced in [61, 62] that depends in the fact the Human Visual System is highly adapted to
extract structural information from the scene. The authors extract information related to luminance, contrast, and
structure measurements of the scene.
Natural Visual Characteristics: Natural Visual Features: Video Quality Model (VQM)
The VQM [63] is widely used recently as it is highly correlated to subjective experiments results. It starts with the
calibration step to correct the spatial and temporal alignments. After that a set of features are extracted from original
and processed video. These features characterize the perceptual changes in spatial and temporal properties. The
VQM score is calculated by linearly combining the seven independent parameters calculated from extracted features.

— Four parameters are computed from Luminance (Y) component.
— Two parameters are computed from the two chrominance components (CB and CR)
— One parameter is computed from the contrast and the absolute temporal information extracted from Y com-

ponents.
Perceptual (HVS): Frequency Domain: Digital Video Quality Metric (DVQ)
Watson et al. [64] use DCT to measure the human visual system aspects like light adaptation, luminance and chromatic
channels, spatial and temporal filtering, spatial frequency channels, contrast masking, and probability summation to
evaluate the video quality.
Perceptual (HVS): Pixel Domain: Perceptual Video Quality Measure (PVQM)
The quality measure in [65] models three perceptual features, edginess, colour error, and the temporal decorrelation.

2.3.2.2 Ways to enhance the QoE

Video transmission over IP networks is challenging since it is a best effort environment. Video packets are vulnerable
to loss and techniques for mitigating these errors are indeed required. Of course, enhancing the underlying network
environments, i.e. enhancing QoS parameters, for video transmission is very important factor to increase the quality
of experience (QoE) of the end-users. In this Section, we focus in tools that directly enhance the QoE. The well-known
classification for these tools are mentioned in [26,66,67] and depicted in Figure 2.2. Forward error concealment tools
refer to those tools in which the encoder plays the primary role while the decoder plays the primary role in error
concealment by post-processing or simply error concealment tools. In the interactive error-concealment tools, both
encoder and decoder play equally.
Channel coding is quite popular. Techniques like forward error correction (FEC) [68, 69], packets interleaving, and
retransmission techniques are used in video transmission systems. In addition, joint channel-source coding might also
be applied to protect some data more than others. Data Prioritization concept is introduced in [70]. Using this
concept, for instance, packets that contain important data like headers or ROI data can be protected strongly to form
unequal error protection.
To maximize the QoE of end users, considering the cooperation between encoder and decoder in designing robustness
tools is highly recommended in types of applications. Based on the received information from the feedback channel, the
encoder may change his parameters. For instance, if the packet loss probability decreased, the allocated bandwidth for
FEC can also be decreased. Another way to utilize the feedback information as applied to H.263 [71] is the reference
picture selection technique in which the encoder does not consider the damaged areas as references [72]. Another
example is the error tracking technique [73] in which the current block will be intra coded if it affected by the lost
blocks. Using feedback-based transmission system, encoders like H.264/AVC [74] and HEVC can be used. In case the
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feedback is not applicable in some of the applications, other techniques like video redundancy coding can be used [75].
Several factors are considered to report the efficiency of error robustness tools: the final perceived quality, complexity,
and amount of redundancy.
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Figure 2.2 – Error robustness techniques classification

2.4 Source Coding
Despite of channel coding techniques are trying to detect or correct errors, bitstream may still contain corrupted

data. Consequently, the need for other techniques that make the bitstream strong enough against channel errors. In
this Section, the state-of-the-art of error robustness tools developed for the source coding will be introduced. Encoder
robustness tools will firstly be visited and then the layer coding and multiple description coding.

2.4.1 Encoder Robustness
The encoding of video sequences passes through two processes, prediction and entropy coding processes. Synchro-

nization codeword marker has to be implemented in the entropy coding to reset the entropy coder. Synchronization
marker can be inserted in the block and/or frame levels. For instance, MPEG-4 [76,77] inserts the marker to separate
motion and texture information. MPEG-4, in addition, uses reversible variable length coding (RVLC) to decode the
bitstream backward. Later, the RVLC is not used in H.264/AVC and HEVC. Readers are advised to refer to [26,66,67]
for more information about robust entropy coding and to [78,79] review entropy coding of HEVC and its comparison
with respect to H.264/AVC standard.

2.4.1.1 Error robustness in prediction process

Robust bitstram contains redundancy bits to preserve video quality in presence of transmission errors and make it
not optimal as standard one.
Data Partitioning/Isolation : It is one tool of the error robustness. The idea is to put coded data into different
parts. For example, put header information in one part and the rest in another part. Codecs like H.263 [71, 80, 81],
MPEG-4 [66, 81], and H.264/AVC [82, 83] use this technique. In H.264/AVC, the data is partitioned into three parts
A, B, and C in which header information and motion vectors, intra coded blocks, and inter coded block information
is stored in respectively. It is an added value to guide the error concealment in the decoder side. Wenger et al. [84]
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proposed the recommended action in case one (or more) partition is lost. If, for instance, partition B and C are lost,
then, MV in partition A can be used to conceal the block. Ideas like putting low frequency coefficients in partition A
or putting a copy of intra block related header information to partition B is introduced in [85] and [86] respectively.
In [27], data partitioning method is tested under 5%, 10%, and 20% error rates and it was shown objectively and
subjectively that the data partitioning is superior for Foreman sequence and competitive for Paris sequence. Unfortu-
nately, this technique is not supported in HEVC [28,87].
Picture Segmentation: slice concept is introduced in different codecs H.263, MPEG-4, H.264/AVC, and H.265/HEVC.
As mentioned before, the frame can be segmented to one or more slices and each slice contains blocks in sequential
order. Using slice technique decrease the coding efficiency since the prediction outside the slice boundary is prohibited.
In [27], the authors tested slice concept and yielded unsatisfied objective results but very satisfied subjective results.
The performance increased if the slices are interleaved. Blocks can be grouped in more flexible way like chessboard
fashion. Studies, like [88], showed that if the lost blocks arranged in chessboard like, the error concealment results
will be enhanced. This technique is called Flexible Macroblock Ordering (FMO) and it is introduced in H.264/AVC
but removed from HEVC due to the rare usage.
Redundant Slices: The idea is to have primary coded slice and one or more redundant slice representations with
different qualities. In case of losing primary slice the decoder can reconstruct the lost slice with lower quality redun-
dant slices.
Parameter Sets: This concept is introduced in H.264 and HEVC in which common parameters among video, sequence
and picture are stored in sets. Parameter set [27] is not itself an error resilient tool but it can be used intelligently to
maximize the error robustness by making sure that they are received reliably.
SP-/SI-Frame: The SP- and SI-Frames [89] are introduced in H.264/AVC and removed from HEVC due to rare
usage. The main concept behind the SP-Frame is that it can be reconstructed even if it is predicted using two different
reference frames. This concept makes it useful to be used for streams switching, splicing and random access, and error
resiliency. Studies are conducted to see its benefits in the context of transmission errors [90–93]. For instance, in [91],
each macroblock is additionally predicted with different reference frames and store them as SP-Frame to use them
when the original block is lost and hence the error propagation is reduced, if not stopped. While in [92], Zhou et al.
utilized feedback information from the decoder to re-encode the affected blocks by the errors by using concealed frame
as predictor as SP-frame. I believe that removing such technique from recent video coding standard, HEVC, is not a
wise decision.
Intra Refresh: The normal coding standards support enforcing the insertion of intra frame periodically to mitigate
error propagation and it is usually set to one second. In inter coded frame, rate-distortion optimization in video
coding [35, 94] makes its decision in the coding mode. Many enhancements are done to enforce intra coding of a
block. [72, 95–103]. In [99], Haskell et al. proposed two strategies: periodic intra update and content-adaptive strate-
gies. The periodic updates depends on the expected life of the errors while the content-adaptive leaky difference used
to mitigate the error propagations and it requires to send side information. In [96, 104], a metric to determine the
block sensitivity to the errors is used which depends on error probability and blocks that have high metric are encoded
as intra blocks. If this idea is included in the rate-distortion model, it will give better results. In [103], Farber et
al. utilized feedback information to track errors of the current block to decide if intra update or not. This system is
not applicable of real-time applications. Hence, in [72], the model is adopted for low-complexity applications which
makes it suitable for real-time applications. In [95], Willebeel et al. analysed the temporal dependency of the blocks
in successive frames to determine the intra refresh. It is not suitable for real-time application due it is complexity.
In [100,101], the authors adopted rate distortion optimization to include the error probability and the distortion came
from concealing error frames. It requires that the encoder knows the error concealment technique in the decoder side.
In [98], the Recursive Optimal per-Pixel Estimation (ROPE) model is introduced to estimate the decoder distortion.
It integrates with rate distortion optimization and it yields better results than [100] since the decoder estimation is
measured more precisely. In [94], it changes the Lagrange multiplier and includes error-free, error-concealment, and
error-propagation distortions. It was shown that this approach is promising as an effective error concealment tool, [74]
since it trades-off between coding efficiency and error robustness and it robustness to mitigate the error propagation.

2.4.1.2 Layer Coding (LC) and Multiple Description Coding (MDC)

Layer Coding (LC): Layer coding, special case of scalable coding, basically encode the video sequence as a base
layer with one or more enhancement layers. The temporal, spatial and quality (SNR) scaleability are implemented as
an extension to different video coding standards such as [105,106]. The idea is to allow the heterogeneous receivers to
decode partial part of the compressed stream depending on their capabilities. The base layer delivers an acceptable
video quality to the end-users and the highest quality achieved when all the enhancement layers are decoded. To allow
the layer coding to serve as error resilience tool [26], many considerations have to be applied as:

- Unequal error protection: in which a base layer has to be protected more than the enhancement layer using
FEC.

- Retransmission: in case that the base layer is lost or corrupted, retransmission is required for the base layer
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since the enhancement layers are useless without the base layer.
- The inter prediction between layer has to be restricted to limit the error propagation. Hence, enhancement
layers are directly predicted from the base layer so the coding efficiency is decreased.

- Common information like headers and coding information has to be copied in each layer.
Since the error-free base layer delivery is not guaranteed and the only solution for this problem is to retransmit the
base layer, layer coding may not be convenient to real-time applications. Multiple description combats the drawback
of the layer coding . The video sequence is encoded into two or more different bitstreams, called descriptions, and
each description has acceptable quality if it is received alone without other descriptions. The highest quality will be
achieved if all descriptions are received. A full review of multiple description coding can be found in [107–109]. It was
shown that the multiple description coding is an effective and promising technique for error resilient tools for several
reasons. First, it is suitable for real-time applications since the feedback is not required which simplifies the network
design. Second, it performs better than other error resilience approaches in high error loss rates [110,111]. In the low
error probability loss channels, it is advisable to use single layer coding or scalable coding with error resilience tools to
save bitrate. As mentioned in [109], to judge a multiple description coding, four factors must be considered standard
compatibility, redundancy tunability, complexity, and capability to increase the number of descriptions. Here, a brief
classification for multiple description coding techniques will be reviewed.
Spatial domain MDC: The description is generated by downsampling the original video frame to two or more
frames either by using polyphase or quincunx downsampling [112–114]. The main issue here, downsampling reduces
the pixels correlation in one description. Different solutions are proposed to resolve this problem by zero padding [115],
content adaptive zero padding [116,117], filtering [118,119], and duplicating data [117]. It is difficult to decide which
is better since it depends on the application. For instance, zero padding and filtering is adding complexity while [114]
not compatible with the standard although it achieves better objective quality in the central decoder.
Temporal domain: The descriptions are generated by downsampling the frame rate [120]. The problem is when in-
creasing the number of description the temporal correlation between frames will be decreased especially for scenes with
fast motion. Solutions is also introduced by duplicating motion vectors [121], and duplicating or dropping frames [122].
In addition to the fact that this approach is not compatible with the standard if one of the previous solution is used,
this approach will increase a mount of redundant data if the number of descriptions is increased.
Frequency domain MDC: This approach can be further categorized as scalar quantization, coefficient partitioning,
and transform coding multiple description coding.
Scalar quantization MDC: The descriptions are generated by using different quantization methods [123]. Methods
like quantization interval-shifting [124] and tables indexing [125] are proposed. The quantizations levels for the de-
scriptions are complementary that makes it not suitable for high number of descriptions and for high error loss rate.
Coefficient partitioning: Simply, the DCT coefficients are distributed to descriptions. How to distribute the co-
efficients is the problem. In [126], a threshold is used, while in [127] the high frequency components are fixed and
the low frequency components are distributed among the descriptions. In [128], the distribution is block-wise. The
main problem of this approach is that the side quality is (very) poor. The coefficient splitting using a threshold is not
practical since it is content dependent.
Transform Coding MDC: The descriptions, in case of two descriptions, are generated by applying pairwise cor-
relating transform to a pair of DCT coefficient to introduce correlation and put each in a description [129]. It gives
better results than coefficient partitioning approach since the side decoder has more information about the coefficients
and missing ones are estimated but, of course, it comes at price of complexity and redundancy.
Hybrid domain MDC: The main objective of this approach is to generate more descriptions. For example, the
video can be first spatially downsampled and then temporally downsampled or first spatially downsampled and then
coefficient partitioning [130]. Combining the multiple description coding with other techniques like redundant repre-
sentation or scalable video coding make the error resiliency tool more robust against transmission errors. In [131],
Ivana et al. use multiple description coding with redundant slices tool of H.264/AVC and propose a rate-distortion
model to control the redundancy, while in [132,133] use multiple description coding with scalable video coding.

2.4.1.3 Error Resiliency Tools in HEVC

Most of the tools introduced in H.264/AVC are removed from HEVC because of the rare usage in real life. Here,
I will summarize the error resiliency tools that HEVC supports [28]:

— Intra frame refresh as discussed above.
— Slices and tiles as discussed above.
— Enhanced error detection mechanism using reference picture selection (RPS) by which HEVC is able to detect

losses.
— Temporal scaleability is used to limit error propagation and to guide error concealment techniques.
— Decoded picture hash SEI message that can be used to detect errors since the hash code is derived from the

decoded samples.
— Structure of pictures (SOP) SEI message which describes the temporal and inter prediction structures of the

stream. It can be useful to use it in the multimedia-aware networks to detect errors in the intermediate node
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not in the receiver. Therefore, feedback information to retransmit the lost data can be sent to the decoder
without compromising the overall transmission delay which makes it useful tool for real-time applications.

— Limit the usage of AMVP. It was shown in [24] that the error robustness in HEVC is decreased compared to
H.264/AVC due to the increasing in temporal dependency. When a frame that uses AMVP is lost, the entropy
decoding failure will happen with a serious quality degradation due to the error propagation. Disabling AMVP
in some frames are proposed in [134–136]. In [137], a CU-level proposal has been introduced to limit the error
propagation.

Errors might happen during the transmission process over lossy channels. Theses error can be bit errors or packet
loss. Controlling the errors is challenging for several reasons [26,67].
Error propagation Video coding standards use predictive and entropy coding, therefore the loss of data in one frame
affecting subsequent frames that use the defected frame as reference.
Optimal method Video content is varying through time and also the network conditions, so finding the optimal
solution is very difficult, if not impossible.
Complexity Implementing efficient error resilient tool in the encoder requires extra complexity. In addition, extra
complexity in decoder side is also required for efficient error concealment. These extra complexity not applicable for
specific types of applications.
Coding efficiency Most error resilient tools add extra redundancy the leads to bitrate increasing, so there is a trade-
off between error robustness and compression efficiency.
The challenge is increased in HEVC since the prediction loop is improved. Oztas et al. [24] raised this challenge and
showed that the robustness of HEVC is decreased compared with the H.264/AVC.

2.4.2 Temporal-based Multiple Description Coding
The temporal MDC schemes with their error concealment techniques are categorized into three classes; the first

class is referring to the schemes that do not have any side information, the second class is referring to the schemes
that introduce some additional data for each frame, while the third class is referring to the schemes that include
a redundant frame for each primary frame. Table 5.1 shows the list of some MDC schemes and the corresponding
hypothetical reference circuits (HRCs) as used later in this work, in Chapter 5. Apostolopoulos in [121] reviewed the
first class of the schemes. All schemes in this class share the same encoding and decoding processes and differ in
error concealment strategy. Suppose that an even frame is lost. Copying the previous even frame from the distorted
description to replace the lost even frame in the buffer (HRC00, HRC01, HRC09), copying the previous odd frame from
the undistorted description (HRC02, HRC10), averaging the previous and the next odd frames from the undistorted
description (HRC03, HRC11), scaling the MVs of the next odd frame from the odd description by 1

2 and use them to
do the motion compensation process using the previous odd frame of the undistorted description, namely inplaceMC
(HRC04, HRC12), and generating the MVs using the available previous and next odd frames, namely MCinterp
(HRC05, HRC13), are the error concealment strategies that are reviewed in [121]. In the second class of schemes, a
side information is introduced. This side information can be a duplicate of MVs of each frame in the description or
a duplicate of I-frames (HRC06, HRC14). In [138], a different scheme is proposed in which each description contains
alternatively even/odd frames and odd frames in even description are containing the motion information only predicted
from the previous even frame (HRC08, HRC16). While in the third class of the temporal MDC schemes, a complete
frame is used as side information. Radulovic et al. [131], suggested that each description alternatively contains a fine
quantization frame (even) followed by coarse quantization frame (odd) (HRC07, HRC15).

2.5 Error Concealment by Post-Processing
All error-resilient source coding methods do not guarantee the arrival of all information to the decoder side which

indeed the need for robust error concealment technique is quite important. Unfortunately, due the diversity of video
content types, finding a robust error concealment tool is difficult. The decoder may need to estimate texture infor-
mation, motion information, and coding mode of the missing blocks. The error concealment methods depend on the
fact that the adjacent pixels, blocks, and frames are correlated and smoothly changes except in the area with edges
and scene cuts. The first important step before starting the error concealment is to detect the error. In the following
subsections, firstly, the error detection techniques will be reviewed and then an error concealment overview will be
reviewed.

2.5.0.1 Error detection

The decoder can detect errors if abnormal syntax is detected like [139,140].
— illegal codeword.
— Out of Range Codeword.
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— Contextual Error
— unexpected value of syntax element like for instance wrong mode number.
— number of decoded DCT coefficient is more than expected.
— illegal synchronization header.
— incorrect number of stuffing bits are found

In HEVC, besides its ability to detected frame loss reliably using reference picture selection tool, using hash code SEI
message is also a useful tool to detect errors in the reconstructed samples.

2.5.0.2 Error concealment categories

Video coding standards don’t normalize the error concealment methods as part of the standard. The reference
model JM of H.264/AVC, implements two error concealment methods, spatial and temporal [141]. HEVC reference
model HM does not implement any error concealment methods. Here, spatial and temporal error concealment tech-
niques will be reviewed. For more details, refer to [66,142].

Spatial Error Concealment
One of the first error concealment methods is proposed by Wang et al. [143]. They utilized the smoothness property of
the natural images by minimizing the variations between the damaged pixels, therefore they used boundary samples
to do that. In my opinion, this technique has two main drawbacks. First, it works in smooth areas that do not
contain edges. Second, it works for small regions and blurriness will occur in large missing blocks. In [144–146],
the smoothness is recovered by estimating the DCT coefficients. In [147], the damaged samples are recovered using
two or four neighbouring blocks. It suffers from the same drawbacks of [143]. In [88, 148],a weighted average of the
neighbouring pixels are used for interpolation and this is implemented in H.264 due to its simplicity but the drawback
is that it does not preserve the structure, i.e image edges. A refined proposal can be found in [149]. In [150–152],
Meisinger et al. use frequency selective signal extrapolation technique to conceal missing data. The advantage of this
is; it recovers the block structure since it uses FFT and not only the boundary samples of the damaged data can
be used but also n-neighbouring boundary pixels can be used. The disadvantages of this technique are 1) the error
threshold or number of iterations needs to be specified manually and 2) the number of neighbouring boundary pixels
to be involved need to be specified which make it impractical for real-world applications.
The work in [153] classifies the edges of the neighbouring blocks using Soble operator and the dominant direction
is chosen for interpolation. Since the dominant direction is only used, this method is not suitable for regions with
multi-edges. In [154], a refined version is proposed. This work is further enhanced in [155] by considering only the
pixels whose direction cross the missing block. Projections onto Convex Sets concept is used in [156] to conceal the
damaged block. It recursively projects the damaged block with surrounding blocks to frequency domain and then
applies an adaptive filter guided by block classifier as in [153] and finally, it is projected to the spatial domain. It
preserves the structures since it uses the DFT. The main disadvantage of this method is its complexity since it switches
between frequency domain and spatial domain many times. The results reported in [157] are interesting. Li et al.
recover the missing block pixel by pixel in sequential order for eight directions and the weighted average is applied.
This make it superior, but unfortunately its complexity is comparatively high. An edge-oriented spatial interpola-
tion for consecutive block error concealment method is proposed in [158]. The edge direction is calculated using
1-D matching algorithm (MAD function) from the top and bottom boundary blocks. Its performance decreases in
highly texture areas. The work in [159], does the edge-orientation based spatial pixel average. The candidate samples
are extended to include n-neighbouring boundary samples to do the interpolation by which block structure is preserved.

Temporal Error Concealment
The main idea is to estimate the damaged motion vectors using available motion vectors of neighbouring or collocated
blocks in current or reference frames respectively. The trivial solution is to use the zero motion vector or use the
average or the median or the weighted average [142, 160, 161]. A motion vector of one of the neighbouring, which
minimize the error in the block boundary, is used in the software [141]. For the whole frame loss, either freezing the
previous correctly receiving frame or simple copy its motion vector and conceal it. Simple approach can be applied due
to its simplicity but unfortunately, its performance is decreasing with the scenes of fast motion. In [10], the candidate
list is extended to include internal and external candidates. The internal includes zero MV, the 4-neighbours, the
8-neighbours of the missing, and the average of all neighbours. While, the external includes the MV of the collocated
block in the previous frame and the 8-neighbours of this collocated block. An extension to [150] temporal dimension
is introduced and again this technique is not optimized and it is content dependent.

Switching Algorithms
It is highly considered to account switching algorithms in error concealment. For instance, in H.264/AVC, a switching
algorithm is considered depending on the frame type. Besides, a switching between two temporal methods is also
proposed depending on the motion activity. In [11], a decision tree, to be sent to the decoder, is implemented to adapt
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the video content with its suitable error concealment method. Another content-adaptive spatial error concealment
strategy is proposed in [12] to choose the best method depending on the analysing neighbouring blocks to smooth,
edge-oriented, or texture. In [162], the authors use the proposed directional entropy to choose between their spatial
error concealment implemented in [155] and the bilinear interpolation. In [10], the authors use spatial and temporal
activity measures to switch between temporal and spatial error concealment methods. An enhancement to this work
is introduced [13] in which the directional entropy is normalized and the threshold to switch between spatial and
temporal criteria. The disadvantage of these models is that it is practical in the real world.

2.5.1 Inpainting-based Error Concealment

In post-processing techniques, the decoder utilizes the spatial and/or temporal redundancies to reconstruct the
damaged/lost area in a video frame. Spatial techniques [29, 30]utilize available surrounding pixels to reconstruct the
missing pixels. They are not efficient for large areas, non-constant areas, and in terms of complexity. They usually
reconstruct the texture but not the structure. The work in [163] is an extension of [30] in which a spatio-temporal
selective extrapolation strategy is used to reconstruct the missing area. Temporal techniques use available motion
information to predict the missing motion vectors (MVs), for instance, by interpolating [31] or by selecting the MV
that minimizes the side match distortion [32]. Despite providing information about whether the current area is moving
or not, this technique is efficient only for low-motion and smooth sequences and for small areas since the precision of
predicted MVs is not guaranteed. Thus, the structure (of copied data) is reconstructed but not the texture.
The target of any error concealment algorithms is twofold: reconstructing a satisfying reconstruction of a lost area
and reducing the miss match between the encoded and the reconstructed blocks which yields reducing the error
propagation effect. To achieve that we need to reconstruct the texture and the structure of a missing area and that
can be done using inpainting techniques. A review of inpainting techniques can be found in [164]. In this work we
focus on exemplar-based inpainting in which each lost patch is reconstructed by copying the best match from the
known area. Specifically, inpainting algorithms have many target applications and in this work, we are interested in
error concealment as a target application.
Inpainting-based error concealment algorithms are introduced in [34, 165]. The algorithms have three main steps:
inpainting the moving foreground object, inpainting the stationary background temporally and spatially as in [166]. In
the first step, inpainting the moving foreground object, the moving pixels are identified as in [34] using Bilinear Motion
Field Interpolation (BMFI) [31]. Then, the best match of a moving patch is reconstructed from the neighbouring
frames. In the second step, inpainting the stationary background temporally, the best match of a moving patch is
reconstructed from the co-allocated patches of the neighbouring frames. The remaining pixels are reconstructed in
the third step, inpainting the stationary background spatially.

2.5.2 Perceptual Effects of Packet Loss

A lot of studies are conducted to study and model the visibility of perceptual artifacts in video quality in the
context of packet loss or dropping. During video transmission slice, continuous slice or the whole frame might be lost.
The visibility of a loss depends on its location, the video encoding parameters, the underlying characteristics of the
video signal itself, and the error concealment strategy used to recover the damaged area [167]. In [168], the individual
packet loss is almost invisible for non-reference frames while losses in reference frames may last until the next syn-
chronization signal, i.e I-frame. In [167], they model the error visibility with factors that likely affect the perceptual
effects and they categorize them to content-independent and content-specific factors. Then, a subjective experiment
was run to classify the perceptual effects to visible or invisible. Reibman et al. [169] used scene characteristics, scene
cuts, to predict the packet-loss visibility. The study includes that study of camera motion and the effect of loss at
scene cuts and before/after scene cuts. It was shown that the camera motion is a considerable factor to detect the
packet loss visibility and the error at scene cut increases the error visibility more than errors before/after scene cuts.
A study for burst length was done in [170], it was shown that a burst loss generally produces a larger distortion than
an equal number of isolated losses. A contradicting results was shown in [171,172]. In [172], Boulos et al. also studied
the loss distribution and the percentage of error loss in the picture. They showed that “for the same loss percentage,
multiple burst losses are more damaging than a single contiguous long loss”. Frame dropping technique is useful for
bitrate adaptation and error concealment strategies [173]. Their perceptual effects are studied in [174–176]. In [175],
they run subjective experiments to detect the threshold of temporal discontinuities that result from frame dropping.
They have found that the discontinuity caused by 200ms is always detected. They also found that, in [174], regular
frame dropping is less annoying than irregular frame dropping. In [177], Dai et al. studied the impact of single
packet loss with different frequencies. They found that the video quality will be unaccepted if more than two times
single-losses in a short period.
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2.6 Content-Aware Video Quality and No-Reference QA
A lot of objective quality measurement techniques use simple spatio-temporal statistics or psychovisual-based

complex experimental results. An overview of recent development in visual quality assessment can be found in [178].
It is stated that, in [179], as long as the video content and the codec type are not changed, PSNR is a valid quality
measure and when the content is changed, correlation between subjective quality and PSNR is highly reduced. Le
Callet et al. [180] pointed to the importance of display, resolution, content and visual attention factors in subjective
quality assessment. The same conclusion is drawn in [9]. In [181] a quality metric is proposed that takes into account
quantization errors, frame rate, and motion speed. In [182], the prediction model is fed with the content type, packet
error rate, frame rate, and bitrate. The content type is identified by performing content classification using spatial
and temporal features. A strategy to combine spatial and temporal information activity levels of the analysed video
sequences with peak signal-to-noise ratio (PSNR) in order to produce more reliable estimate of the perceived subjective
quality in terms of mean opinion score (MOS) in introduced in [6]. In [183], a set of spatio-temporal features derived
from the encoded video, such as the AC transform coefficients, the quantization parameters and the motion vectors.
These features together with the bitrate are used to build content-based video quality metric model. In [184], the
author estimates the quality by using frame difference, contrast, motion vector magnitude, motion intensity, motion
direction, quantization step, Gabor-based features, and spatial and temporal resolution. Recently, [7, 185], several
content features are extracted and trained using machine learning approach to build a prediction model. As noticed,
there are a few works that considers the content features for estimating video quality especially for loss-impaired
videos.
New image or video coding standards introduce new or improved coding tools in order to improve the rate-distortion
performance. Each standard may be characterized by the type and amount of degradation that is added to the
encoded image or sequence [186]. A lot of efforts have been done in identifying these coding degradations for different
standards [187], notably for H.264/AVC. In addition to their importance in guiding the improvements in coding
standard, understanding such degradations is also important for objective quality measures especially when there is
no information about the original source. This type of quality assessment is called No-Reference (NR) measurement. A
classification of no-reference quality estimation models has been proposed in [188] and a variety of algorithms has been
reviewed. Although H.264/AVC NR measures can be adapted to the High Efficiency Video Coding (HEVC) use case,
some publications have specifically addressed HEVC. In [189], a no-Reference Pixel (NR-P) based method is proposed in
which the quality estimation for loss-impaired sequences is measured by calculating the temporal variations of the power
spectrum across the decoded frames. As stated in [189], the model has correlation scores between 0.7 and 0.8 and works
well for low-to-medium temporal activity sequences. This calls for integrating further content characteristics, either
pixel-based or bitstream features, in objective video quality measurement models. In [167, 190–192], No-Reference
Bitstream (NR-B) based models are introduced. In [167], Kanumuri et al, modeled the visibility of packet-loss
in MPEG-2 video using pixel and bitstream based features. In [190], the authors train a neural network using
subjective scores as well as packet loss rate, frame type, GOP structure, Intraperiod, percentage of damaged frames,
and percentage of frames at different temporal levels. In [192], the authors use the QP and the spatial information (SI)
to introduce a two-parameter NR-B method to estimate the perceptual quality (DMOS) of encoded HEVC sequences.
The SI, as in [192], is calculated as the weighted sum of the DC difference values of inconsistent transform units (TU)
and their respective neighbouring TUs based on the ratio of the TU edge length. In [191], the authors rely on the
bitstream features to predict the perceptual video quality.





3
Video content characteristics

3.1 Introduction
In the real world, different video classes like, natural scenes, cartoons, sports, news broadcasting and computer-

generated videos exist and each class may be categorized into subclasses. The wide variety of video content causes
a challenge for content-based research since, of course, natural scenes differ from sport scenes and sport scenes differ
from cartoons, etc. Hence, considering content types and their corresponding features is very important in different
aspects. First, in setting up subjective experiment; in [3–5], Video Quality Experts Group (VQEG) and Pinson et al.
mention some limitations to video source selection to conduct researches. Second, in improving objective measures
of video quality; in [6–8], the video content features are analysed to improve the objective video quality measure.
Third, in improving video coding efficiency; it can be concluded from the subjective experiment of Pitrey et al. [9]
that the video content influences the video encoding. In more details, one may encode a given video with several
configurations and may get a similar Mean Opinion Score (MOS) for the output videos, but practically one of them
spent minimal computational power. This minimum may change from one content to another depending on video
content characteristics. Fourth, in designing error resilience tools: in [10–13], switch algorithms that utilize the
content features are used to decide which error concealment technique should be applied. While in [193], a content-
aware adaptive multiple description coding scheme is proposed.
In this chapter, different content characteristics will be listed. They cover a wide range of spatial, temporal, and
spatio-temporal features. These features will be used in this dissertation in different aspects. It will be used in
building the prediction models, in selecting a subset of contents to run the experiments, and in analysing results of
subjective experiments. The goals of this Chapter are listed in Box 3.1 and the Chapter structure is illustrated in Box
3.2.

Box 3.1 – Goals

This chapter aims to answer the following research questions:
— Identify the global/generic content indicators/features that are going to be used in this PhD.
— How to select a set of sequences from the available content sequences?
— Identify the local content features that are going to be used in analysing the subjective experiments of

the loss-impairment sequences.

3.2 Global/generic content features

3.2.1 Extracted Features
Table 3.1 shows 209 content features, listed in [8], that have been extracted from the ten original/encoded video

sequences. The features cover spatial and temporal characteristics that are extracted from the luminance frame
(Y), and the chrominance frames (Cb and Cr), in the spatial domain or in the frequency domain. The features are

31
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Box 3.2 – Chapter structure

This chapter will be organized and structured as shown in Figure 3.1. Different content features that are extracted
from original/distorted sequences will be listed and studied in Sections 3.2.1 and 3.3. The content selection will
be demonstrated in Section 3.2.2 and Section 3.4.

37 Video 

Sequences

2 Features that are used in loss-

impairment sequences

1 Global/generic features

Content Features

Features
3 How to select contents for 

experiments?

Content Selection

4 Content Used in different 

experiments

Selected contents 

(12 sequences)

Figure 3.1 – Chapter 3 Structure

extracted on both block or frame levels. For the features that are extracted at the block level, the Minkowski sum
with different power is applied to obtain a scalar value of each frame, then several statistical measures (e.g., mean,
maximum, standard deviation, etc.) are applied to get a scalar value that represents the video sequence. Three
spatial information features [194] are employed to measure the edge information. Twelve chrominance information
features [195] are used to measure the colour information. Five contrast information features [195] are considered to
measure the distribution of contrast in the frame. Twelve features that belong to spatial perceptual features [195]
measure the perceptual spatial information and extract the changes in the orientation of the spatial activity. One
feature measures the colourfulness of the video sequences [196]. Contrast, energy, correlation, homogeneity, and
entropy of the joint probability distributions of pairs of pixels, namely Gray-Level Co-occurrence Matrix (GLCM), as
in [197] and [198] on the whole frame and on 64x64 blocks are measured using four neighbouring directions (0, 45, 90,
and 135 degrees). In total, 90 features have been extracted from every video sequence using GLCM. Normalized cross
correlation features [199] are represented by 25 values that indicate how much the top-left 16x16 sub-block is correlated
in its 64x64 block. Other 8 features are extracted from the 4x4-DCT decomposition of the luminance frame: these
are kurtosis, smoothness, sharpness, similarity between different frequencies (3 features), and vertical and horizontal
blockiness [200]. Features from Laplacian pyramid subband are also extracted [201]. Energy, entropy, and kurtosis are
extracted from each intra-subband and the ratio between different subbands is considered as features, yielding 33 values.
Other 13 features represent the inter subbands smoothness, subbands similarity and SSIM similarity. Regarding the
temporal domain, 7 features are computed. Two of them directly represent the temporal information [194]. Others are
computed according to the definitions the MPEG-7 motion activity descriptor [202]: they represent motion intensity,
motion direction, and spatial distribution of objects. Other features are also extracted to help select the sequences for
the experiment; Motion intensity maps [203], encoding bitrate, and camera motion descriptors [204].

3.2.2 Content Selection

37 UHD source videos are selected from different content providers: Shanghai Jiao Tong University (SJTU) [205],
Ultra Video Group [206], Sveriges Television AB (SVT) [207], Blender Foundation [208], and MediAVentures [209].
Content features, described in Section 3.2.1, are extracted from these video sequences, Figure 3.2. Feature values are
normalized linearly between [0,1]. Then, each feature is categorized into 3 or 4 classes according to their normalized
values. For instance, labels of 1, 2, and 3 will be assigned to the feature’s value that lies in the range [0,0.33],
(0.33,0.67], and (0.67.1] respectively and labels of 1, 2, 3, and 4 will be assigned to the feature’s value that lies in
the range [0,0.25], (0.25,0.50], (0.50.75] and (0.75.1] respectively. Features that are represented with histograms, tree
classification using Jensen-Shannon divergence as distance metric [210] is used to cluster the video samples to 3 classes.
After the classification process, contents that covers different class levels for different features are selected. As a result,
12 video sequences are selected, Figure 3.24. In the following subsections, some classifications that are related to
motion or spatial features are illustrated.
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Table 3.1 – List of Extracted Features

Features Formula Count

Spatial information [194] SI = F1{F2[Sobel(Y )]}
— {F1, F2} = {max, std}, {max,mean}, {std,mean}

3

Chrominance Informa-
tion [195]

CU = F1{F2{U}}
CV = F1{WR ∗ F2{V }},WR = 1.5

— {F1, F2} = {mean,mean}, {std,mean}, {mean, kurt},
{std, kurt}, {max, kurt}, {max,max}

12

Contrast information [195]
CI = F1{F2[Y ]}

— {F1, F2} = {mean,mean}, {mean, std}, {max, std},
{mean, skew}, {mean, kurt}

5

Spatial perceptual informa-
tion [195]

FSI13 = F1{F2[SI13(Y )]}
SIHV = F3{ (mean(HV [Y ])|p)

(mean(HV [Y ])|p)
}, p(threshold) = 3

— {F1, F2} = {mean,mean}, {mean, std}, {mean, skew},
{mean, kurt}, {mean,max}, {std,mean}, {max,max}

— F3= mean, std, skew, kurt, max

12

Colourfulness [196] CF = mean{CF{Y UV }} 1

Gray-Level Co-occurrence
Matrix (GLCM) [198]

Contrast = F1{cont(GLCM)} ,
Correlation = F1{corr(GLCM)},
Energy = F1{enrg(GLCM)},
Homogeneity = F1{homo(GLCM)},
Entropy = F1{entropy(GLCM)}

— F1 = mean, std, max
— It is calculated per frame (5x3= 15) and per block with

different Minkowski power p=(1,2,4,10, 0.1) = (5x3x5 =
75)

90

Normalized cross correlation
[199]

FNCC = F1{NCC(block64x64)}
— F1 = mean, max, std, skew, kurt
— It is calculated per block with different Minkowski power

p=(1,2,4,10, 0.1)(5x5=25)

25

DCT based features [200] See the reference for more details 8
Laplacian based fea-
tures [201] See the reference for more details 46

Temporal information [194] TI = F1{F2[Y2 − Y1]}
— {F1, F2} = {max, std}, {std,max}

2

MPEG-7 Motion Activ-
ity [202] See the reference for more details 5

How to read the formula:
— For instance, to read the formula SI = F1{F2[Sobel(Y )]} with {F1, F2} = {max, std}:

- Apply the Sobel filter to each Y frame and keep the maximum value.
- Calculate the standard deviation of maximum values.

— Key to read abbreviations: standard deviation (std), maximum (max), skewness (skew), and kur-
tosis(kurt)

3.2.2.1 Bitrate clustering

The video sequences are encoded using single description coding (SDC), and multiple description coding (MDC)
(2-MDC and 4-MDC). The bitrate classification is based on the bitrate increase factor of 4-MDC with relative to SDC.
The bitrate increase values are normalized from 0 to 1. Then, the value the lies in the range [0,0.25], (0.25, 0.5], (0.5,
0.75] or (0.75.1] is labelled to low, low-mid, mid-high, and high respectively. Figure 3.3 shows the classification result
example.

3.2.2.2 Motion intensity clustering

The descriptor that is described in [203] represents the motion content of the video at pixel level as a Pixel Change
Ratio Map (PCRM). It is claimed in [203] that the PCRM enables us to capture the intensity of motion in a video
sequence and indicates the spatial location and size of the moving object. The PCRM is represented using 8/16/32-
bin histogram. The PCRM is pixel-based technique in which the changes in pixel intensity over all the frames in a
video segment is accumulated to generate the PCRM. Figure 3.4 shows the construction field video sequence with its
corresponding PCRM. Figure 3.5 shows the 32-bin histogram of the PCRM and it is clear that the sequence contains
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Figure 3.2 – 37 UHD video sequences from different resources.

Figure 3.3 – 4-MDC Bitrate increase factor classification

high amount of low-intensity motions. Capturing the level of action and motion intensity of a video sequence are
important in identifying different amount of motions in video sequences. MPEG-7 visual motion descriptors [202]
also provide 5 types of motion descriptors; camera motion, motion activity, warping parameters, trajectories, and
parametric motion. Motion activity descriptor captures the intensity of action; slow sequence, fast-paced sequence,
and action sequence. Motion activity descriptor presents 4 attributes of video sequence. All of them depends on
analysing motion vectors. First, Intensity of activity: it expresses the amount of activity from low to high using
integer values (1-5). Second, direction of activity: it identifies the dominant direction of several motion objects and
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it expressed with 8 equally spaced directions. Third, spatial distribution of activity: the frames are divided into
regions (9 regions in this work) and then the motion intensities are computed (7 levels in this work) in each region to
indicate which region is active and which region is not. Finally, temporal distribution of activity: is to express the
variations in motion activity temporally . It is expressed as 5-bin histogram in which each bin represents a level of
intensity. Figure 3.6 shows the BBB sequence with its corresponding temporal distribution of activity and the spatial
distribution of activity respectively. The motion intensity classification is done using tree classification using Jensen

(a) Construction Field Sequence

(b) PCRM of construction Field sequence.

Figure 3.4 – The construction field video sequence with its corresponding PCRM

Figure 3.5 – Construction Field Sequence PCRM 32-bin Histogram. X-axis represents the pixel change ratio values.
Y-axis is the count of each probability range
.

Shannon divergence (JSD) as a distance metric. Firstly, the 32-motion histogram is generated for each sequence [203].
Second, the distance between sequences is calculated using JSD, Figure 3.7. Third, the tree classification is used and
it is adjusted for 3 classes, Figure 3.8. Figure 3.9 shows the classification result example.



36 CHAPTER 3. VIDEO CONTENT CHARACTERISTICS

(a) BBB Sequence

(b) Temporal distribution of activity of BBB Sequence. X-
axis represents the 5 levels of motion intensity. Y-axis repre-
sents the count of each level in the video segment
.

(c) Spatial distribution of activity of BBB Sequence. X-axis
represents the 9 rectangular regions (from left to right and top
to bottom). The Y-axis represents the motion intensity level
value (1-7).

Figure 3.6 – The BBB sequence with its corresponding temporal distribution of activity and the spatial distribution
of activity respectively

3.2.2.3 Camera Motion clustering

A prior knowledge about camera motion in a video sequence is very important since, for instance, it helps select
the suitable error concealment strategy to conceal transmission error. Camera motion histogram descriptor that
is introduced in [204] analyses motion vectors to identify motion vectors of interest (MVI) that are analysed using
principal component analyses to characterize the motion. The frame is divided to 9 rectangular regions. The histogram
represents the dominant angle in each region. There are 13 direction identified. The output of this technique is
a 117(9x13)-bin histogram. The complete description is introduced in [204]. Figure 3.10 shows the OldTownCross
sequence and the corresponding camera motion histogram. It is clear that the camera motion “Zoom in” is represented
well. The camera motion classification [204] is done using tree classification of camera motion descriptors using Jensen-
Shannon divergence (JSD) as a distance metric. Firstly, the 117-camera histogram is generated for each sequence [204].
Second, the distance between sequences is calculated using JSD, Figure 3.11. Third, the tree classification is used,
Figure 3.12. Figure 3.13 shows the classification result example.

3.2.2.4 Perceptual spatial information clustering

Using a perceptual filter, Sobel-like filter of window size of 13, the spatial information is computed to identify
edges. Figure 3.14 shows the classification result example.
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Figure 3.7 – Distance between sequences for motion intensity

Figure 3.8 – Tree classification of motion intensity



38 CHAPTER 3. VIDEO CONTENT CHARACTERISTICS

Figure 3.9 – Motion Intensity class classification

3.3 Local Video Content Features

3.3.1 Viewing Eccentricity

It has been observed in several vision studies that both: the spatial [211] and temporal [212] sensitivity of the
human visual system decreases as we move away from the central region of regard. Visual processing is said to switch
to a coarser spatial scale due to the reduced density of ganglion cells, also known in literature as Cortical Magnification.
We measure the closest distance between the distorted region and the point of regard, see Figure 3.15, in order to
calculate the viewing eccentricity. The viewing eccentricity help us to study the drop in the subjective scores of
loss-impairment sequences. We analyse the effect of viewing eccentricities ranging from 0o till 6o of viewing angle
after which the available data becomes very sparse. We analyse the fixations in the gaze data starting from the time
instance when the distortion is introduced. Although a subject may possibly make a saccade as a response to the
disturbance, the region of initial fixation, where he possibly perceived the change is considered for the eccentricity
calculations.

3.3.2 Distortion in Texture

- As explained in Section 3.3.1, spatial frequency sensitivity decreases with eccentricity and visual processing
changes to a coarser spatial scale. In addition, most modern video coders like AVC and HEVC have an effect
of producing high-frequency distortions due to the aggressive quantization in these bands. Studying the effects
of this frequency loss due to coding is therefore very important to determine the perceptual effects of artifacts
like blurring [213,214].
To measure the effects of blurring, we test the strengths of three important frequencies that are deemed to
be very important from former spatial contrast sensitivity studies [215]: namely 0.46 cpd, 2.8 cpd and 8.0
cpd (cycles per degree). The cpd measure is converted to a digital frequency using the conversion for viewing
angle, and a complex Gabor filter centred at the three different bands (that we call Low Frequency (LF),
Middle Frequency (MF) and High Frequency (HF)) and 4-orientation tuning is used to decompose the image
into several bands. The responses at the four different orientations are then pooled together to produce the
magnitude response for the entire image at the desired frequencies. The response obtained for one of the
sequences after pooling is indicated in Figure 3.18. It is clear from Figure 3.18 that the effects of distortion are
very clearly visible in the medium and high frequency bands.
The use of Gabor filters is motivated by the fact that 1) They are optimal in space and spatial frequency in
two dimensions i.e., they achieve the theoretical lower limit of joint uncertainty in space and spatial frequency;
and 2) The frequency and orientation representations of Gabor filters are similar to those of human visual
system [216]; 3) simple operations on Gabor filters can be established to achieve illumination, rotation, scale
and translation invariance [217]. A complex Gabor filter with the response as in Equation 3.1 can be expressed
as in [217].

ψ(x, y, f, θ) = f2

πγν
exp

(
−
(
−f2x′2

γ2 + −f
2y′2

ν2

)
+ j2πfx′

)
(3.1)

where x′ and y′ are defined as,

x′ = xCos(θ) + ySin(θ) (3.2)
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(a) OldTownCross Sequence

(b) Camera motion Histogram of OldTownCross sequence. X-axis represents the 9 rectangular regions (from left to right and
top to bottom). Each region is represented with 13 directions. Y-axis represents the count of each direction per region.

Figure 3.10 – The OldTownCross video sequence with its corresponding camera motion histogram

y′ = −xSin(θ) + yCos(θ) (3.3)

f is the frequency of sinusoidal plane wave, θ is the rotation of the Gaussian envelope and the sinusoidal, γ
and ν are the spatial widths of the filter along the major and the minor axis respectively. Suppose the image
function is ξ(x, y), the response of Gabor filter to ξ is given by the convolution between ξ and ψ as,

r(x, y; f, θ) = ψ(x, y, f, θ) ∗ ξ(x, y) (3.4)

The response of the Gabor filters at various scales and orientations are shown in Figure 3.16.
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Figure 3.11 – Distance between sequences for camera motion

Figure 3.12 – Tree classification of camera motion

Figure 3.13 – Camera motion classification
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Figure 3.14 – Spatial Information classification

Viewing Eccentricity

Distorted Area

Gazepoint

Figure 3.15 – Viewing Eccentricity definition

- The entropy map, texture entropy map, can be generated using the responses from the above step for texture
clustering. Such an approach has been tried in [218]. The principle is in essentially simple : A simple square
error metric is used to perform a K-Means clustering in aM×N frequency space, where M denotes the number
of frequency scales and N - the orientations. Each pixel of the video is quantified by M timesN parameters to
assign it to a certain location in this multidimensional space. Afterwards the problem reduces to a simple case
of clustering. The authors particularly claim that the problem has a background in the human visual system.
This procedure allows us to classify a scene into a subset of regions purely based on its texturedness.
Calculating the entropy of such a segmented scene helps us isolate irregular or unexpected textures in a sea
of rather boring areas. We obtain the local entropy of each region and therefore derive the amount of un-
predictability in every local area. An output map produced by such an approach is shown in Figure 3.17.

3.3.3 Distortion in Colour
- The importance of psychophysical cone-opponent colour spaces to measure differences in colour perception, has
been established in Vision Science [219, 220] and Quality evaluation [221, 222]. When light is incident on the
cone receptors in the fovea, the light information is transformed into neuro-electrical signals by the three types
of cone receptors (L, M, S) and are subsequently combined in an opponent manner in the cortical area V4-B
of the visual system [220]. The visual periphery is said to have a deteriorated colour sensitivity as compared
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Figure 3.16 – The response of the Gabor filters at various scales and orientations

Figure 3.17 – (Left): Frames of the video without distortion and with distortion as indicated in the grey window.
(Right): Responses of texture entropy for the respective cases. It is easy to notice the difference in the grey box
marked area. In the other areas the responses are very similar
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(a) (b)

(c) (d)

(f)(e)

(g) (h)

Figure 3.18 – (a,b): Original frame and a distorted frame with a distortion present in the lower part of the frame,
(c,d): The responses at 0.46 cpd, (e,f): Responses at 2.8 cpd, (g,h): Responses at 8 cpd

to the fovea: more so for the red-green components than blue-yellow [219,223].
To understand the effects of distortion in these colour channels, we use the definition of colour opposition chan-
nels from Krauskopf et. al. similar to the studies in [221, 222]. Using the display parameters like the gamma
and monitor luminance, in combination with the values in the RGB colour space, we make the transformation
into the Krauskopf AC1C2 colour space to measure the effects of distortion in C1 and C2 individually. However,
we do not include any frequency analysis or the effects of inter/intra channel masking [222], and only analyse
the influence of the channels separately.

- An entropy map, colour entropy map, can be generated using colour spaces like, for instance, luminance (Y)
component of YUV colour space or lightness (L) component of Lab colour space [224]. The colour entropy map
is generated as follows: firstly, for each frame, the colour space is converted to Lab colour space. Secondly,
the spatio-temporal tubes are generated for each frame. Thirdly, a histogram of each spatio-temporal tube
lightness is counted. Finally, the entropy value is calculated and assigned to the spatial region of the current
frame. This map is generated for the original and the distorted sequences, see Figure 3.19.

3.3.4 Distortion in Motion
- Motion Trajectories: motion is a perception of an illumination that stimulates two spatially displaced photore-
ceptors after a specific interval of time ∆t : a percept whose effects can be represented by a space-time receptive
field which in the visual system, maps onto two separate visual path ways called the M and P pathways com-
prising of specific neuronal cells in the lateral-genicular nucleus(LGN) [225–228]. Experiments performed by
Virsu et al [212]. in the visual periphery suggests that, although central and peripheral vision are qualitatively
similar in motion perception, the quantitative differences seemed to be caused simply by the difference in spatial
sampling of the retinal ganglion cells.
In the present context, motion content in the scene is represented as a series of short-term motion trajecto-
ries [229] of super-pixels. Motion vectors first created by block matching, are aggregated across each of the
super-pixels, by examining the dominant direction of motion and retaining only those motion vectors lying
within a certain angular range of this dominant direction. The trajectories help us construct a relatively noise
free and more realistic motion representation of objects. Human observers do not deduce the motion of objects
by observing merely two frames at a time, and instead have a more detailed understanding of object speeds and
directions by observing them over a finite short-term period [229]. Any distortion in motion trajectories due
to the presence of coding artifacts like in the example of Figure 3.20, therefore indicates that the naturalistic
object trajectory in the scene has been affected. Examining the difference between trajectories, by computing
the area between trajectory curves for example, provides a good indication of motion trajectory distortions in
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Figure 3.19 – (Left): Frames of the video without distortion and with distortion as indicated in the grey window.
(Right): Responses of color entropy for the respective cases. It is easy to notice the difference in the grey box marked
area. In the other areas, the responses are very similar

the scene.

- Entropy map, motion entropy map, can be generated using motion information, i.e. the motion vectors. Motion
flow [230] is a very useful tool to determine the pixel-level motion between consecutive frames of the video.
Because videos and natural scenes often contain discrete, smoothly moving regions, there is a spatio-temporal
homogeneity in the motion map so acquired. Any perturbations or non-homogenity in the regions therefore are
an indication of a localized distortion. Because motion is an important factor that often attracts attention in
case of videos, motion distortion is defined as the amount of disturbance caused to an otherwise smooth motion
trajectory as a result of the distortions. It is expected that the presence of the distortion causes a disturbance
in the otherwise smooth motion flow.
Soft decision: After calculating the motion flow within a certain scene, we then cluster all the pixels in the
motion map in accordance to their direction and magnitude. The cluster centers are automatically chosen using
a K-Means clustering for a set of frames. 8 Angular bins and 6 magnitude bins are used in the work and the
assignment is done as in Equation 3.5 where C(j) refer to the j cluster centers, m(i) the actual motion flow
value and H(i) the actual hard decision for every pixel i. Such a clustering is performed separately for the
magnitude and direction. Although such an approach seems like a reasonable solution to cluster the motion
into separate bins, there is often a problem when we deal with motion flow values that are close to the border
value in between two bins. Assigning such values to either of the two bins can have a huge impact on the final
entropy score obtained.

H(i) = argmin
j

(m(i)− C(j)) (3.5)

We therefore use a Soft Decision process where several bins in addition to the exact cluster are incremented
based on their distance to the remaining cluster centers. This approach is similar to that used in [231] where
a Gaussian was used to explicitly assign the probability to each gaze-state based on its distance from each
super-pixel center. The soft decision S(i) for each m(i) is performed as in Equation 3.6 where φ(x) indicates a
Gaussian with mean value x.

S(1, 2 · · · J) = φ(m(i)− C(j)) (3.6)

Once the soft decision map is obtained for all the pixels in the map, an entropy filter is applied in the usual
manner to identify irregularities in the motion flow.
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Undistorted 
Frames

Distorted 
Frames

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Figure 3.20 – Trajectories of a super-pixel in two different video sequences: the first, a pristine case and the second,
the case when alternate frames are repeated.

3.3.5 Distortion in Temporal Harmonics(Flicker)
In the domain of video compression, it has been found that for both AVC [232,233] and HEVC [234] video coding

standards, flicker plays a very important role in deciding the overall quality of the video. Studies from Snowden
et al. [235] on flicker perception in the far-periphery found that the sensitivity function is band-pass and the peak
sensitivity lies at 10Hz for all eccentricities and spatial frequencies tested.
Flicker in case of [235] is defined as a sinusoidal signal moving in the temporal dimension or a Temporal Harmonic.
To maintain a similar definition, we compare the changes in energy of the various temporal bands in the video using
the scheme indicated in Figure 3.21.
The analysis begins with the motion compensation of all the forward frames in the video, in order to nullify the effects
caused due to motion. We then average blocks of pixels 32 × 32 that roughly corresponds to a receptive field in the
visual system. These super-blocks are subsequently collected from successive frames over a short-term and are subject
to Fourier analysis as shown in Figure 3.21. Based on the studies of [235], we compare the loss/gain in temporal
frequencies in the pristine reference versus the test video in three distinct bands : 0.8 to 3.9 Hz (that we call LF
flicker), 4.69 to 8.6 Hz (that we call MF flicker) and 9.3 to 12.5 Hz (that we call HF flicker).

Object

Reverse motion

Flicker analysis tube

Frame f+2Frame f+1Frame f

Figure 3.21 – Analysis of harmonics in a cuboidal short-term tube: Forward frames in the video are first motion-
compensated and the intensity level inside each block averaged, before performing a Fourier analysis.

3.3.6 Role of Semantic Importance
It is important to understand as to, which objects human subjects regard to be the most important in a video,

so that the semantic importance feature can be calculated. To measure the relative importance of objects in the
scene, a ground truth knowledge of all the objects in the scene and their exact boundaries are required (sequences in
a segmented form) [236].
To measure the importance of every object in the video, different set of subjects were used in order to avoid any bias
due to repeated viewing. The video was played in one of the displays continuously, until the subject finished marking
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the objects of primary and secondary importance in another display. A specialized tool was used for the purpose as
shown in Figure 3.22. The importance score for every individual object in every video were then averaged among the
subjects to obtain an average importance that is less affected by individual variations and has a better precision.
Despite their common goal of identifying the most relevant information in a visual scene, the type of relevance
information that is predicted by various visual attention indicators can be very different. Rather than the salient
portions of an image, users are often interested in those portions that are semantically more meaningful and convey
maximum information about the scene. This perceived interest in objects is strongly driven by context and semantic
information, and involves usually a voluntary control of the gaze shift. Analogous to saliency maps we define another
map known as the Importance map [237] that is obtained using the procedure in section 9.2.1.4. The importance map,
Figure 3.23, is a construct representing each of the objects in a scene with an importance score obtained from users.

Figure 3.22 – (a) Application to mark the importance of objects. Subjects first click the red/green coloured rectangular
box to select the importance level and then choose the object. (b) A subject performing the experiment by watching
the video in one screen simultaneously marking the importance in the other.

Figure 3.23 – Left Column: Frames from three different videos used for the experiment, Middle Column: Manual
marking of different objects in the scene each marked with a colour, Right Column: Average importance rating of the
objects from 14 different observers where white indicates high importance and black very low.

3.4 List of contents
Due to the chronological development of the PhD, different video sequences are used in the different parts of it.

Therefore, the following subsections list the video sequences that are used in each experiment in the PhD.

3.4.1 Contents for Part II
In Part II, 37 UHD video sequences are used. The thumbnail of those sequences are shown in Figure 3.2. Two of

them are excluded due to the licence issues. The 35 UHD video sequences that are available for research purposes are
investigated. Conditions and limitations mentioned in [3] and [4] are considered.
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3.4.2 Contents for Part III
The selection process that is illustrated in Section 3.2.2 is applied. As a result, 12 source sequences are selected

and they are in ultra-high definition (UHD) with a resolution of 3840x2160 pixels. Figure 3.24 shows the thumbnails
of the video sources. The frame rate of the video sequences varies from 25 frames per second (fps) to 120 fps. Each
sequence is 10 seconds long. Video sequences cover different video properties: motion intensity, camera motion type,
spatial complexity, and colours.

SRC 01 SRC 02 SRC 03 SRC 04

SRC 05 SRC 06 SRC 07 SRC 08

SRC 09 SRC 10 SRC 11 SRC 12

Figure 3.24 – 12 UHD video sequences that are used in Part III

3.4.3 Contents for Part IV
3.4.3.1 Contents for Chapter 8

Eight of twelve sequences that are used in Part III are selected because of the computational power issue. Besides,
the contents are down sampled to the resolution of 1280×720.

Seq. 1 Seq. 2 Seq. 3 Seq. 4

Seq. 5 Seq. 6 Seq. 7 Seq. 8

Figure 3.25 – Thumbnails of the eight 1280x720 Video Sequences that are used in Chapter 8

3.4.3.2 Contents for Chapter 9

In Chapter 9, an eye-tracking subjective experiment is conducted. Hence, the twelve sequences that are used in
Part III are changed, i.e. some content are removed and some are added. This is only to adapt the goal of the
experiment without changing the general characteristics of the contents and to ensure that the contents have different
number of objects in the scene. Since this Chapter is about content-aware disturbance analysis of the inpainting-based
error concealment technique, the contents are down sampled to the resolution of 1280×720 due to the computational
power issues. The thumbnails of the selected 14 sequences are shown in Figure 3.26

3.4.4 Contents for Part V
In order to achieve the goals of Part V, a large-scale database has to be used. JEG Hybrid Group, one of the Video

Quality Expert Group (VQEG) projects, aims to improve quality metrics. They publish a dataset to be a reference for
video quality researchers [238]. Figure 3.27 shows the thumbnails of the ten video sources, each 10 seconds long. The
sequences are encoded using HM11.1 with different encoder parameters, see Figure 3.28. As a result, 5952 compression
scenarios are generated. In addition, the dataset provides the results of applying different quality measures like PSNR,
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Seq. 1 Seq. 2 Seq. 3 Seq. 4

Seq. 5 Seq. 6 Seq. 7 Seq. 8

Seq. 9 Seq. 10 Seq. 11 Seq. 12

Seq. 13 Seq. 14

Figure 3.26 – Thumbnails of the 14 1280x720 Video Sequences that are used in Chapter 9

SSIM, VIF, and VQM. An extension to this database which adds a large number of objective quality evaluations when
compressed video streams are subject to data loss. A set of 25 loss patterns has been generated by means of a 2-state
Markov model [239] using loss rate values up to 1% and average burst length up to 2 slices. Applying each loss
pattern to each sequence, 25 degraded bitstreams have been generated, decoded, and objective measurements have
been calculated. Note that for each degraded bitstream we used the effective loss rate and average burst length, as
measurable at the receiver, which may be different from the settings of the model since only part of the loss pattern
has been used. Currently, due to the huge computational effort, this activity has been performed in full only for the
lower-resolution set of encoded sequences (i.e., 19,840). Therefore, 496,000 combinations of encoded sequence and
loss traces have been evaluated with several objective quality metrics. Depending on the position of the lost packets,
determined by the 25 loss patterns, and the encoding configuration, error propagation of different duration occurs.
Using a robust decoder simulation, [240], all video sequences can be decoded, there is no temporal offset, and the
number of affected frames can be exactly calculated.

Figure 3.27 – 10 video sources of JEG dataset that are used in Part V

3.5 Conclusion
In this chapter, the main contributions are introduced and listed in Box 3.3. Moreover, the lists of video sequences

that are used in different parts of this PhD are identified.
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Figure 3.28 – HM encoder parameters that are used in [238].

Box 3.3 – Contributions

— The set of global/generic content features are identified. These content features are used in different parts
of this manuscript.

— A content selection process is illustrated to select a subset of video sequences to be used in the experiments
that are conducted in this PhD.

— The local features that are designed, investigated, and implemented for disturbance analysis of error
concealment techniques are introduced.
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4
Complexity- and Content-Aware
Sequence-level Encoder Parameter
Decision Framework

4.1 Introduction
The recent development in multimedia devices and mobile networks have opened the door for end users to easily

capture videos with different resolutions and qualities, therefore the demand for delivering high quality immersive
videos is increasing. Moreover, smart-phone applications became popular and important. On the other hand, these
devices have limited computational power and batteries. The latest video coding standard, High Efficiency Video Cod-
ing (HEVC) [14], is designed especially to target different types of applications and particularly high resolution video
applications [15]. Quality, bitrate and complexity (encoding time) are the key elements of video coding performance
evaluation.
The complexity of HEVC is increased due to the new/improved coding tools. This complexity is a liability for some
targeted users, for some applications, or, for some devices. Some targeted users, like content providers, may not care
about the complexity since they have the power to build high performance encoders, i.e. parallel encoders. Some
applications (security and safety applications) require that the captured videos need to be quickly encoded and sent.
Due to the limited computational power and batteries of some devices, the complexity is an important issue. Therefore,
tools to reduce the encoding time without compromising the coding efficiency and the perceived quality are important.
There are several sources of complexity increase in video coding. First, the new or improved encoding tools that are
introduced in HEVC such as new intra and inter modes, new quadtree block structure, improved motion estimation,
and the number of reference frames [15]. For instance, testing all combinations of block splitting and inter modes
in each reference frame will highly increase the complexity. In [241], the distribution of encoding time per operation
and encoding configuration is analysed. Second, choosing encoder parameter values also trade-off the quality and the
complexity. For instance, selecting a smaller motion search range value, accelerates the encoding process at the price
of quality and a larger value may slow down the encoding process. Finally, many research efforts have pointed to the
importance of content types and its underlying characteristics in video coding.
The existing tools, Section 2.2, are focusing in reducing complexity to a certain extent while the quality loss and
bitrate decrease levels are not assured and the awareness came from the fact that some of the modes and tools of the
video coding either are rarely used or unnecessary in some situations, Section 2.2. A room of improvement can be
accomplished not just for complexity reduction but also to trade-off between bitrate (R), distortion (D), and com-
plexity (C) by utilizing the underlying content features to predict the encoder parameter values. In this work, a new
approach that addresses and analyses the content features to predict the encoder parameters values are demonstrated.
In the analysis phase, the content features are analysed to find the content features that have an influence in deciding
the appropriate encoder parameter values at sequence level and for a given QP. In order to find this relationship,
R (the total bitrate of a sequence that is required for transmission/storage), D (the PSNR values or another video
quality measurement), and C (the encoding time that is required to encode a sequence using specific configuration)
are considered. Then, for each sample in the dataset, the content features are associated/labelled with the appropriate
encoder parameter value (class). Finally, the dataset is trained using classification tree or support vector machines
learning algorithms. This prediction model is used to predict the encoding parameters of the video to be encoded.

53
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The results show, for instance, that predicting motion search range achieves complexity reduction of 36% on average
when the HEVC reference software HM13 is used.
Box 4.1 shows the research questions that this chapter is trying to answer and Box 4.2 shows the structure of this
chapter.

Box 4.1 – Research Questions

This chapter aims to answer the following research questions:
— Can the generic/global content features be used as indicators for finding the links between the content

features and the encoders parameters? If so, then building a joint content and complexity aware encoder’s
parameters prediction model is applicable.
In addition to that, the following secondary research questions are investigated too:
+ How does the encoder behave in terms of complexity with different content?
+ How is the encoder complexity linked with different parameters per content?

Box 4.2 – Chapter structure

This chapter is structured as shown in the Figure 4.1. Section 4.2 shows the observations and identifies the
problem statement. Steps for the data preparation will be demonstrated in Section 4.3. Classification steps and
the prediction model will be illustrated in Section 4.4. The evaluation of the proposed model will be shown in
Section 4.5.

Video 

Sequences

2 Features Extraction

1 Encoding 

with different 

conditions

R, D, C
3 RDC space 

analysis

Preferred 

condition

Learning
6 Prediction 

Model
Data Preparation

5 

Classification 

Algorithms

(SVM or Tree 

Classificaion)

7 Evaluation

4 Features selection

Figure 4.1 – Chapter 4 Structure

4.2 Observations and problem statement
4.2.1 Observations

In this subsection, a demonstration to show that a specific encoding configuration is not necessarily suitable for
different types of contents in terms of trading-off R,D, and C. Consider a set of four video sequences that have different
spatio-temporal properties V = {V 1 = TrafficFlow, V 2 = HoneyBee, V 3 = Jockey, V 4 = CampfireParty}, Figure 4.2,
a subset from the 35 sequences that are used in this work. Then, encode them with different coding unit sizes and
depths (CUSize/MaxDepth); 16/1, 16/2, 32/2, 32/3, 64/3, and 64/4. All other encoding parameter values are common
(QP = 32,motionSearchRange = 64). Since only one parameter is changed, the variations in R, D, and C are due
to the contents and links between content features and the varied coding parameter might be identified. Figures in
the first column of Table 4.1 show the R (Kbps), D (dB) and C (hours) with respect to different sizes and maximum
depth of the coding unit. It can be observed that the variations in bitrate between contents are different. For instance,
the variation in V2 is low, while the variation in V3 is high. The same observation can be noticed when the motion
search range (MSR) is changed to (MSR = 16, 32, 64, 128, unrestricted(full)) and all other parameters are common
(QP = 32, CU/depth = 64/4), Figures in the second column of Table 4.1. This observation can be used to reduce the
coding time while the bitrate and the quality are very slightly compromised. For instance, the bitrate and the quality
of HonyBee sequence (V2) is very slightly compromised if the CU size/depth is set to 16/1, but the gain of complexity
is very high. Moreover, Figures in the third column of Table 4.1 show all R, D, and C of all possible combination of
CU size/depth and motion search range, i.e. 36 configurations. From these figures, [4.1], several observations can be
concluded;
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— content types/features have an impact in setting up the encoding configuration. Therefore, what is good for one
content is not necessarily good for other contents. This conclusion will be clearer by the end of this subsection
when trading-off between R, D, and C is conducted.

— key element of encoder configuration such as CU size/depth, motion search range are independent. This
concluded observation would simplify the design of the proposed tool by predicting each parameter value
independent of others.

— trading-off tool for R, D, and C is important to balance the gains and losses in terms of R, D, and C.

Table 4.1 – Bitrate, Distortion, and encoding time against (CU size/Max depth, motion search range).
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Figure 4.2 – Four sequences that are used for the observation, from left to right; trafficFlow, honeybee, jockey, and
campfireparty

To trade-off between R, D, and C, a tool that we developed in [242] is used. The tool applies a linear optimization
model and provides a visualization tool that helps select the best configuration for a specific R, D, and C point of
the analysis space as shown in Figure 4.3. In [242], 13 video sequences are used to show the results of the trading-off
tool, Figure 4.4. The sequences are a subset from the 35 sequences that are used in this work. These sequences are
encoded with seven different configurations as shown in Table 4.2. In order to judge the configuration against others,
a linear combination of the three components, bitrate saving, distortion saving, and complexity saving, is established
as an optimization criterion and expressed as in Equation 4.1, where (CminC) the minimum-complexity configuration.
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R

D C

(γ,β ,α) = (0,1,0)

(γ,β ,α) = (1,0,0) (γ,β ,α) = (0,0,1)
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(γ,β ,α) = (0.5,0.5,0)

X-Y Coordinates

(γ,β ,α) = (0.33,0.33,0.33)

Figure 4.3 – The analysis space of the tool in [242]

Figure 4.4 – 13 sequences that are used in [242]

α, β, γ the three coefficients that need to be tuned to obtain the optimization criterion value. These coefficients are
restricted to a sum of one. Each point in the analysis space represents the contribution factor of each component
of the optimization criterion, i.e. bitrate, distortion, and complexity and for the visualization purposes, these points
represent the best configuration.

O = α
C

CminC
+ β

R

RminC
+ γ

D

DminC
(4.1)

An example of applying the proposed visualization tool to the 13 video sequences using configurations that are listed
in Table 4.2 is shown in Figure 4.5. Each point in the analysis space represents the best configuration. The selection
of the best configuration is locally optimized within a limited bitrate and distortion range since the quantization
parameter is fixed. It can be concluded from Figure 4.5 that:

— Configurations 2 and 3 should not be considered for sequence #1 as no gain is obtained for any rate-distortion-

Table 4.2 – 7-different encoder configurations that are used in [242]

Parameters Low Medium High
1 2 3 4 5 6 7

Coding Unit/Depth 16/1 16/2 32/2 32/2 32/3 64/3 64/4
Transform Unit min-max 2-2 2-3 2-3 2-3 2-4 2-4 2-5
Motion Search Range 32 32 32 64 64 Full Full
IntraPeriod 8 8 8 16 16 32 32

- GOP is 8 (hierarchical B-Frames) with QP increased by one in each
level

- QP is 32
- Full: Full search mode
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complexity operation point in comparison to the other configurations.
— Configuration 1 can be considered for less complexity, configuration 4 can be considered for balancing the three

components, and configurations 6 and 7 can be considered for the best quality, for sequence #1.
— For sequence #13, configurations 6 and 7 cannot be used since better results are given with 4 and 5.
— There are sequences that behave alike which is important to note as it points to content properties similarities.

In general, the optimization criterion is critical as it acts as a decision maker for which configuration should be selected.
Changing this criterion alters the selected mode for one parameter, and, consequently, the video sequences properties
that influence this parameter may change as well. Many changes can be done to this criterion. Firstly, a logarithmic
mapping function can be applied to the bitrate (R) and to the complexity (C) due to their logarithmic behaviour.
Secondly, another distortion measurement can be applied rather than the usual PSNR due to its limitations with
respect to modelling the Human Visual System (HVS). Methods like SSIM [61], MS-SSIM [62], PSNR-HVS [243],
PSNR-HVS-M [244], VIFp [245], and VQM [63] can be tested and it is recommended as a future work.
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Figure 4.5 – Visual analysis of optimization criterion with 7-encoding configurations for 13 sequences [242]. The
colours refer to the configurations as shown in Table 4.2

4.2.2 Problem Statement

It is observed in the previous section that in function of the content, encoder parameters lead to different results with
respect to bitrate, distortion, and complexity. Moreover, some contents also behave alike which points to a fact that
they share some similar features. Therefore, prior content awareness together with complexity awareness of encoding
parameters helps predict the suitable encoding parameter values of a specific content type. A model that utilizes this
awareness is introduced in this work. Figure 4.6 shows the proposed model. At the end, the original input video
(VI) is encoded by the encoder instance ENC using global/final decision parameters (PGD) and fixed parameter(s)
(PF ). The optimization process (OPT ) might do many iterations until the final decision is determined (PGD). The
optimization process (OPT ) predicts the encoder parameter values. Optimization model uses video content features
(F ) extracted by (EXT ), the extracted features are listed and reviewed in Chapter 3. Fixed parameters (PF ) can be
bitrate, distortion, quantization parameter, complexity, or any combination of them. In this work PF = QP . Global
parameters (PGD) can be mode decision of intra or inter prediction, encoder parameters such as motion range or
block size, quantization parameter, or a set of them. In this work, PGD = encoding parameters that can be set in
the configuration file of the encoder. When the optimization process finishes, the encoder starts encoding using PGD
and PF parameters. Finally, the output video (VO) is delivered. This model works at least on the Group of Pictures
(GOP) level in order to optimize for a set of video frames. In this work, the sequence level is used in order to obtain
statistically stable and relevant content features.
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Figure 4.6 – The proposed optimization model

4.3 The Proposed RDC Optimization Model
4.3.1 Model Overview

Figure 4.7 shows how the proposed model is utilized. When starting to encode the video sequence (V ) using a
specific quantization parameter (PF = {QP |QP ∈ {0....51}}), the RDC model (OPT ), predicts the parameter values
(PGD), e.g. motion search range. The prediction model (OPT ) is based on analysing the content properties (F ) of the
video sequences in order to know if these properties are correlated with encoding parameters for a given quantization
parameter or not. The extracted features/properties are described in Section 3.2.1 and the offline analysis steps will be
illustrated in Section 4.3.2. The model determines the encoder configuration parameters (PGD). During the training
phase of the model, each encoding parameter is marked as predictable or fixed. Predictable parameter means that
the model found correlations between the video properties and the encoding parameter. On the other hand, the
fixed parameter means that the model did not find correlation between video properties and the parameter. The
optimization criterion that the model uses in the analysis steps to find the correlated properties is illustrated in [242].
This criterion considers the bitrate, complexity, and distortion and selects the best configuration. For instance, if
two configurations have approximately the same bitrate and distortion, the one of the lowest complexity is selected
and if they have approximately the same complexity and distortion, the one of the lowest bitrate is selected. Since
the encoding parameters are independent, as noticed in observations Section 4.2, the model will start predicting the
first parameter, block size, then the second parameter, intra period, and so on until all parameters are set to start
encoding.

4.3.2 RDCO Model Training
The proposed system’s overview is described above. In this subsection, the analysis steps are demonstrated

systematically in order to build the prediction model (OPT ) for each encoding parameter.
The set of video sequences will be denoted as V = {v1, v2, . . . , vn} and each video will be encoded using the parameters
P = {p1, p2, . . . , pm} and each parameter has different values Kpi = {kpi1, kpi2, . . . , kpil}, where 1 ≤ i ≤ m, l is the
number of possible values of each parameter.
The flowchart, Figure 4.8, illustrates the steps that the model follows to build the ground truth dataset. Finding
the links between encoding parameters and the video properties is the aim of this analysis. In the first step (1.1),
different encoding configurations that range from low to high computational complexity are prepared by fixing all
parameters except one (p), for instance motion range. Thereby, the variations in the encoding results are due to
content properties, textures and motions. Then, encode the video sequences (V ) and get the bitrate, distortion,
and complexity. Complexity is measured in terms of execution time in this work˙ The second step (1.2) is to apply
the optimization criterion (O) to each analysis space point. As discussed in Section 4.2, it can be said that each
point in the analysis space represents the contribution factor of each component of the optimization criterion, i.e.
bitrate, distortion, and complexity. By applying the optimization criterion to each point for the different encoding
configurations, each point will represent the best configuration.
The goal of the third step (1.3) is to know if the parameter is influenced by the video properties (see Section 3.2.1).
Therefore, for each video sample, it is assumed that the configuration that covers most of the analysis space is the
winner; for that, the mode function is applied.

kpi(v) = modeα,β,γ{max{O(p, v)}} (4.2)
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Figure 4.7 – Utilizing the proposed model. In order
to simplify, the figure is restricted to a subset of

parameters
.

Figure 4.8 – The RDCO model
training

If kpi(v) values of all video sequences are the same, then the model fixes the value for future use, as it is not influenced
by any of the video properties. For instance, all video sequences select motion range of 64 to be the best mode. On
the other hand, if kpi(v) values are different, then this parameter is influenced by video properties. For instance,
some video sequences were best coded with motion range of 64 and others were best coded with unrestricted motion
range. In this case, correlation analysis has to be conducted and features that have significant correlation on a 10%
of confidence interval are selected. Figure 4.9 shows an example, the X-axis represents the selected modes (1=motion
range 64, and 2=unrestricted motion range), the Y-axis represents the feature values (energy ratio of two laplacian
subbands 1 and 4), and the points represent the video sample.
The fourth step is to build the prediction system. Here, two choices are available. The first one is to apply classification
tree algorithm with one of the attribute selection criterion, such as information gain or gain ratio. Then the model
can select up to three or four properties for future prediction. The second choice is to train a learning algorithm such
as SVM or decision trees for future prediction.

4.4 Experimental Results
In this work, the model results are based on a comparably small dataset, 35-UHD video sequences, and enlarging

the dataset increases the model robustness. This may change the prediction model, i.e. new correlated features may
show up, for one parameter or change the fixed values. In both cases the general idea of the model can still be applied.
The 35 UHD video sequences that are available for research purposes are investigated. Conditions and limitations
mentioned in [3] and [4] are considered. These sequences are from;

— SJTU 4K Video Sequences [205]
— Ultra Video Group 4K sequences [206]
— Xiph.org Video Test Media 4K sequences [246]

The influence of video properties in the motion range and the block unit size parameters are investigated . HM13.0
encoder [247] is used. QP of 32 is used. For the motion range parameter, the video sequences are encoded by fixing
all parameters and changing the motion range to 32, 64, 96, 128, and unrestricted search mode. The video sequences
are also encoded by fixing all parameters and changing the block size and its depth to 16/1, 16/2, 32/2, 32/3, 64/3,
and 64/4 for the HM encoder.

4.4.1 Study the content influence with respect to the block size parameter using the
HM encoder

Using the HM encoder, the model shows that there seems to be no content influence with respect to the block size
parameter. The mode of block size equal to 16/1 is selected. That means that during the analysis steps, the mode
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Figure 4.9 – Correlation analysis. The X-axis represents the selected mode (1=motion range (64), and
2=unrestricted motion range), the Y-axis represents the feature values (energy ratio of two laplacian subbands 1 and
4). The points represent each video sample. Here, motion search range=32 is excluded since it is not selected by any

of the video sequences.

that has the majority over the video sequence set is the block size of 16/1. For now, it can be said that the block size
parameters are not influenced by the video content in 4K resolution in Rate-Distortion-Complexity analysis. Please
note that this conclusion may change if parameters dependency is taken into consideration.

4.4.2 Study the content influence with respect to the motion range parameter using
the HM encoder

Using the HM encoder, the model shows that there is content influence with respect to the motion range. A search
range of 32 and unrestricted search are the most frequent modes. According to the proposed model, it is possible to
start the correlation step and categorize the video sequences into two clusters; one for motion range 32 and another
for unrestricted search mode. The explanation of seeing unrestricted search mode appear is that the "fast mode"
parameter of the encoder is enabled. Here, after applying the correlation step, the characteristics that are correlated
on 10% confidence interval using the non-linearized model are shown in the Figure 4.10.
These features are classified using the classification tree algorithm with "information gain" as attribute selection
criterion and exhaustive search for optimal split configurations, Orange software is used [248]. The aim here is to
make two clusters; one for those contents that choose a motion range size of 32 and the second one for unrestricted
search mode. Figure 4.11 shows the results of the analysis steps and the prune values of chosen features for the video
sequence set (35 UHD) that will be used in future prediction. These features are:

— Chrominance (B) information (CBI),
— Kurtosis ratio extracted from Laplacian based features (laplacian pyramid level 4 over level 5) (LKurt45), and
— Cross-correlation (pattern=64, sub-image=128, ROI=Frame) using p=4 in Minkowski sum (CC_ALL_64_128_4).

The alternative choice is to learn a supervised learning model like SVM or classification tree. Cost-SVM with RBF
kernel and automatic parameters search configuration is used. Cross-validation technique (3 folds) is applied to learn
two algorithms. Table 4.3 shows the classification accuracy (CA) and area under ROC curve (AUC), Orange software
is used [248].

Table 4.3 – Learning results for predicting motion search range using the HM encoder and QP=32

Method CA AUC
SVM 0.884 0.5788

Classification Tree 0.8611 0.6348

4.5 Performance Evaluation
This section shows the model performance evaluation and what the gain and the loss. Here, the comparison

between the analysis steps results, which are called optimal configurations, and results from using the prediction model,
which are called the predicted configurations, are shown. These two datasets are compared with other standalone
configuration. The following steps are followed:
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Figure 4.10 – Correlated features with motion range value using HM encoder. X-axis is the size of motion range
(1:32, 2:64, 3:96, 4:128, and 5:full) and Y-axis is the feature value

.

— Get the bitrate (Kbps), complexity (sec), and distortion (MSE) on average when the 35 UHD video sequences
are encoded with optimal, predicted, and standalone configurations.

— Show the gain or loss factor when using the optimal and predicted results relative to standalone results.
Remember that the prediction value of the parameter is a result of mode function. That means that there are regions
in the analysis space that are not optimized. This is one of the model limitations and that explains why there are
losses.

4.5.1 Evaluation of predicting motion range using HEVC HM encoder and QP=32
Table 4.4 shows the result of the predicted values against the optimal values (derived with our model) and against

other configurations. For instance, if the predicted value is used rather than configuration 2 that uses motion range
of 64, the loss is very small in quality and bitrate (101.73 Kbps), but the gain is 17% (213017.1 sec) in terms of
complexity and 36% against configuration 4. Note that the absolute value of the complexity is the sum difference of
two configurations and is not the average.

4.5.2 Evaluation of using fixed block size using HM encoder and QP=32
In this case, the analysis steps do not find links between content features and block size parameter value because

the block size of 16/1 (2/2) (Block size/Depth (Transform size min/max)) is the result of mode function for all
sequences. Table 4.5 shows the evaluation of choosing 16/1 block size mode against the others. Using this parameter
value will increase the bitrate and reduce complexity. Using different distortion measurements, as mentioned in [242],
may change these results. Table 4.5 shows that MS-SSIM as a quality measurement gives different results than the
usual PSNR. Other quality metrics like PSNR-HVS, PSNR-HVS-M, VIFP, and VQM can be tested in future work.

4.5.3 Features Complexity
The previous results do not include the features complexity. It is clear that the complexity of the proposed model

is feature dependent. Section 4.4.2 shows that there are three features that will be used for motion search range
prediction in HM encoder. All content features are implemented in MATLAB, and a lot of function implementations
are not optimized.
Following the classification tree results, Figure 4.11, if the three features that are used in predicting motion search
range in HM encoder are used, i.e. navigate through all tree depths/levels, the added complexity is 22% with respect
to the encoder complexity using predicted configuration. As shown in Figure 4.12a, with this added complexity, the
model still having gain and loss against other configurations. On the other hand, if the classification tree is optimized
with depth of two instead of three to reduce the complexity introduced by using the feature in the third depth, the
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Figure 4.11 – Selected features to predict motion range using HM encoder

Table 4.4 – Performance results averaged over 35 sequences of predicting motion range using HEVC HM encoder and
QP=32.

Configs. Component Factor compared to Absolute value
Optimal Predicted Average Gain/Loss Unit

Config (1) - MR=32
Rate 1.00 1.00 7844.825 12.00 Kbps

Distortion (MSE) 0.99 1.00 18.67218 -0.09
Complexity 1.00 1.00 35514 -3436.64 sec(s)

Config (2) - MR=64
Rate 0.99 0.99 7731.097 -101.73 Kbps

Distortion (MSE) 0.99 0.99 18.58514 -0.17
Complexity 1.17 1.17 41698.45 213017.07 sec(s)

Config (3) - MR=96
Rate 0.99 0.98 7708.004 -124.82 Kbps

Distortion (MSE) 0.99 0.99 18.5569 -0.2
Complexity 1.25 1.25 44378.98 306835.61 sec(s)

Config (4) - MR=128
Rate 0.98 0.98 7689.099 -143.73 Kbps

Distortion (MSE) 0.99 0.99 18.5286 -0.23
Complexity 1.37 1.36 48520.19 451777.83 sec(s)

Config (5) - MR=unrestricted
Rate 1.30 1.30 10148.44 2315.61 Kbps

Distortion (MSE) 1.09 1.09 20.53126 1.77
Complexity 1.00 1.00 35657.26 -1575.44 sec(s)

Config (Optimal)
Rate 1.00 1.00 7813.052 -19.77 Kbps

Distortion (MSE) 1.00 1.00 18.78857 0.03
Complexity 1.00 1.00 35545.77 -2326.60 sec(s)

overall complexity will be reduced with no noticeable loss. The complexity of the cross correlation feature is high and
not considering it in predicting motion search range will reduce the complexity overhead to 3% as shown in Figure
4.12b. One can reduce the calculation time of the feature by targeting spatial or temporal subregions. For instance,
calculate the cross-correlation on 1 out of 16 blocks or for each third frame.

4.6 Conclusion
This work extends the state-of-art of optimizing video coding by analysing signal based and perceptual charac-

teristics of video sequences. It discusses the research question listed in Box 4.1. The main contributions are listed
in Box 4.3. The calculation time of some features like cross-correlation is time consuming. Hence, calculating the
cross-correlation on 1 out of 16 blocks or for each third frame may significantly reduce the calculation time of the
feature. This work still limited in terms of content features, enhancing the efficiency/optimization model, using other
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Table 4.5 – Performance results averaged over 35 sequences of using block size (16/1) using HEVC HM encoder and
QP=32. (factor > 1 signifies gain and factor < 1 signifies loss)

Configs. bitrate factor MSE factor MS-SSIM factor Time factor
16/1 (2/2) 1.0000 1.0000 1.0000 1.0000
16/2 (2/2) 1.0093 0.9931 0.9997 1.7281
16/2 (2/3) 1.0126 0.9202 1.0031 1.5843
32/2 (2/2) 0.9479 0.9492 1.0031 1.5449
32/2 (2/3) 0.9416 0.8880 1.0062 1.5080
32/3 (2/2) 0.9479 0.9397 1.0032 2.4753
32/3 (2/3) 0.9402 0.8765 1.0063 2.1512
32/3 (2/4) 0.9069 0.8590 1.0075 2.0399
64/3 (2/2) 0.9281 0.9291 1.0038 2.0747
64/3 (2/3) 0.9262 0.8708 1.0069 1.8789
64/3 (2/4) 0.8908 0.8531 1.0081 1.8877
64/4 (2/2) 0.9293 0.9201 1.0039 2.9215
64/4 (2/3) 0.9245 0.8598 1.0070 2.5503
64/4 (2/4) 0.8884 0.8434 1.0082 2.4302
64/4 (2/5) 0.8740 0.8355 1.0088 2.4718

distortion measurements, and setting up subjective experiments to judge the results.

Box 4.3 – Contributions

The primary contribution of this work is the prediction of the encoding parameter values leading to minimum
complexity in terms of execution time using the underlying content features. For instance, features like cross
correlation, Laplacian-based, chrominance information, and motion intensity features have a high impact in
finding the links between the content features and the motion search range parameter in HM encoder. The
model trades off rate (R), distortion (D), and complexity (C). For instance, if a video sample is encoded using
different configurations and the output videos are in same bitrate and distortion ranges, the configuration that
achieve the minimum encoding time will be chosen. If the output videos achieve same complexity and distortion
ranges, the configuration of the lowest bitrate will be chosen. The following properties of the proposed model
can be noticed:

— The video coding tools are not changed and the candidate prediction modes are not reduced.
— Targeting global quality not local quality since block-to-block and frame-to-frame quality variations yield

annoying temporal artifacts.
— The proposed model is a complementary work of other complexity reduction techniques. Suppose that

there is N sequences to be encoded and there is time limitations (not necessarily power supply limitation),
one possible solution is to distribute the time budget evenly. This solution might not be optimum since
some of them are hard to code and some are not. Therefore, one thing to do is to map the predicted
parameters values of each sequence into available budget and then use one of up-to-date algorithms of
complexity reduction such as [45].
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(a) Time and bitrate saving percentage (gain and loss) with added complexity using 3 features. For
instance, using predicted values against Configurations 3 and 4, there is gain in complexity and loss
in bitrate.

(b) Time and bitrate saving percentage (gain and loss) with added complexity using 2 features. For
instance, using predicted values against Configurations 2, 3, and 4, there is gain in complexity and
loss in bitrate.

Figure 4.12 – Time and bitrate saving percentage (X-axis: gain and loss) of using predicted configurations with added
complexity relative to the standalone configurations (Y-axis) using (a) 3 features and (b) using 2 features
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5
High-order temporal-based MDC scheme

5.1 Introduction

Video applications became popular and the videos might be sent via error-prone channels. The decoded video
quality might not be satisfying if one or more packets are lost. The main goal of video coding like high efficiency
video coding (HEVC) [14] is to minimize the coding distortion for a target bitrate. This requires a complex prediction
process to remove the redundant information in the video signal [15]. As a result, the error resilience in HEVC is
decreased compared to H.264/AVC due to the increase of temporal dependency [24]. Several error resilience techniques
are introduced in the literature [26–28]. Layer Coding (LC) and Multiple Description Coding (MDC) are both efficient
in terms of error resilience. In LC, if the base layer is lost or corrupted and despite the presence of enhancement layers,
the output video sequence will be degraded seriously. To mitigate this problem, different solutions might be applied
here. One of them is to protect the base layer using forward error correction (FEC). This is useful in packet corruption
with specific number of errors. Another solution is to retransmit the lost packet when feedback channels are available.
The best solution is to use a hybrid scheme. Nevertheless, LC may not be convenient to real-time applications so
MDC is a promising solution to deal with these drawbacks of the LC. In MDC, the video sequence is encoded into two
or more different bit streams called descriptions. One of the most important design principles of MDC is that each
description has to deliver videos with acceptable quality even if it is the only description received by the decoder and
the highest quality will be achieved if all descriptions are received. A comprehensive review of multiple description
coding can be found in [107–109]. It was shown that the multiple description coding is an effective and promising
technique for error resilience for several reasons. First, it is suitable for real-time applications since feedback is not
required which simplifies the network design. Second, it performs better than other error resilience approaches in high
error loss rates [110,111]. In this chapter, a temporal domain multiple description coding is studied.
Each MDC scheme defines two processes, the first is how to generate the descriptions at the encoder side and how to
combine them at the decoder side. The second process is how to do the error concealment when one packet, or more, of
a description is lost. Some schemes introduce side information to provide additional or redundant information to help
the decoder conceal the lost frame. A review of different temporal MDC schemes is discussed in Section 2.4.2. These
schemes are not efficient for the following reasons. First, in schemes that do not include any side information, the
error propagation will be annoying especially if the intra-period is large and if the sequence has high motion intensity.
Second, in schemes that do include side information, the coding efficiency will be decreased and the error propagation
will be noticeable, Figure 5.2. Third, these schemes are less efficient in n-MDC (when n > 2) since the side information
is not fully utilized. For instance, in the case of 4-MDC with side information, each frame has one primary data and
three redundant data and if the primary data is lost, one of redundant data will be utilized and the remaining two will
not. In this chapter, a new scheme is proposed in which the redundant data is represented in a different context and a
new weighted average algorithm for error concealment is also introduced in which all the redundant data is utilized if
the primary data is lost. The proposed scheme, as discussed in Section 5.3, is characterized by lightweight complexity,
standard compatibility, redundant data tuning, and suitability for n-MDC (n ≥ 2). The proposed scheme along side
with other schemes are tested in a subjective experiment , Section 5.4. To sum up, this chapter raises the research
questions listed in Box 5.1 and the chapter structure is illustrated in Box 5.2.
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Box 5.1 – Research Questions

This chapter aims to answer the following research questions:
— Which content features can be used in order to take advantage of the received redundant representa-

tions/descriptions when using n−MDC with n ≥ 4?
— With these features, is the quality of experience (QoE) of the reconstructed video sequence improved?

Box 5.2 – Chapter structure

This chapter is structured as described in Figure 5.1. The generation of the descriptions is illustrated in Section
5.3.1. The extracted features from the descriptions and how the weights are generated for the recovery process is
demonstrated in Section 5.3.2. The Experimental setup and the results are presented in Section 5.4. In Section
5.5, we sum up with the conclusion.

Video 

Sequences

2 Features 

Extraction

1 n-MDC encoders
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Figure 5.1 – Chapter 5 Structure

Figure 5.2 – Bitrate increase factor of all HRCs
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Table 5.1 – List of hypothetical reference circuit (HRC). Check mark (X) means that the HRC is subjectively evaluated
while times mark (X) not. The dash mark (-) means that the HRC is not applicable.

EC technique SD 2-MDC 4-MDC
Copy previous frame from the same description X(HRC00) X(HRC01) X(HRC09)
Copy previous frame from another description - X(HRC02) X(HRC10)
The average between the previous and next frames from another
description - X(HRC03) X(HRC11)

Scale the MV of next frame from another description and use them
to conceal the frame - X(HRC04) X(HRC12)

Average the two concealed frames another description using pre-
dicted MVs using Phase correlation algorithm - X(HRC05) X(HRC13)

Use the duplicate I-frames and MVs - X(HRC06) X(HRC14)
Use the duplicate degraded frames - X(HRC07) X(HRC15)
Use the MVs of redundant frames - X(HRC08) X(HRC16)
Weighted average of the concealed frames using the proposed
strategy - - X(HRC17)

5.2 Problem statement
The 2-MDC scheme that is encoded in low-delay configuration (IPPPP) is used in order to provide a good illus-

tration of different schemes. The descriptions in the 2-MDC are generated as follows; the sequence frame rate is down
sampled by two to generate even/odd descriptions and each has its own encoding loop. Table 5.1 shows the list of
temporal-MDC schemes that are used in this work. In HRC01/09, the distorted description will continue to decode
normally, therefore, the effect of error propagation due to the correlation reduction in one description will be highly
noticeable. On the other hand, in HRC02/10, the effect of error propagation will be reduced relative to the HRC01/09
respectively but still is not efficient in sequences that have large motion intensity. HRC03/11 yield a blurred concealed
frame which is also not an appropriate technique to use when there are spatial and temporal variations in the sequence,
while HRC04/12 work well under the assumption that the motion is completely smooth, which is not the case in most
of the video sequences. HRC05/13 use the technique mentioned in [249] which employs the phase correlation motion
estimation technique to conceal the lost frame. Though it adds extra complexity to calculate the MVs, it still suffers
from blurriness and post-processing for the concealed frame is required. In HRC06/08/14/16, two important informa-
tion are not included that have a vital impact in the concealed frame, the residual signal and the intra-block modes
in inter-frames. The first class of MDC schemes perform well in terms of coding efficiency since no side information is
used but it does not provide a satisfactory video quality especially if there are errors in both descriptions and if the
video has high motion intensity. In the second class, a trade-off between quality and coding efficiency is achieved by
including the MVs and excluding the residual signal and the intra-block modes. While in the third part, the trade-off
is achieved by using the coarse frames. Unfortunately, the second and the third parts are not convenient in more than
two-description schemes since not all redundant data is utilized. Therefore, these designs principles are taking into
consideration in the proposed scheme. Like other schemes except HRC05/13, the complexity is lightweight since the
weighted average is applied and the weights are stored in the decoding side. Standard compatibility and tuning of
redundant data are preserved too. Finally, the scaling to higher number of descriptions is also considered.

5.3 The proposed MDC scheme
In this section, the proposed MDC scheme is explained. Firstly, the encoding process and the corresponding

decoding process are presented, then the error concealment algorithm is elaborated. The 4-MDC is used as an
example to elaborate the two processes. In the 4-MDC, the video sequence frame rate is downsampled by 4 and each
description contains one fourth of the original sequence.

5.3.1 Encoding and decoding processes
Figure 5.3 depicts the encoding process. Each description contains primary frames which represent the frames of

the usual 4-MDC and secondary frames which represent frames of other descriptions and located between two primary
frames. The primary frames are encoded using low-delay configuration and the secondary frames are predicted from
the previous primary frame in the same description. As a result, each frame of the original sequence is represented with
a primary frame and three secondary frames that can be sent in-stream or out as side information. The following rules
are applied in the encoding of secondary frames. First, intra blocks in inter-frames are not allowed, which enforces
reconstructing the lost frame using only MVs. Second, the residual is set to zero during the encoding process and rate-
distortion optimization is used to decide the best splitting in terms of distortion. Such way requires more signalling
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in the stream which may increase the bitrate. Many solutions can be applied to tune the amount of redundant data
(MVs) either by reducing the sub-pixel accuracy to 1

2 -pixel or integer-pixel accuracy or by using one of the algorithms
that prioritize the MVs [250]. At the decoding side, four side decoders are used to decode the descriptions and in case
of no error the central decoder assembles the primary frames from the side decoders and send them to the display
buffer.
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Figure 5.3 – 4-MDC with redundant data/side information. The solid-border square represents the primary frame.
The dot-border square represents the redundant representations to be sent in the stream or as a side information.
The arrows represent the prediction process; the redundant frames between two primary frames are predicted from
the previous primary frame. Only motion vectors are transmitted. The primary frames represent the low-delay

configuration.

5.3.2 Error recovery/concealment process

When one primary frame is lost the central decoder initializes the error concealment process. Figure 5.5 depicts
the error concealment steps. In the first step, each secondary frame is decoded normally in the side decoders. Then,
the lost primary frame is replaced with a weighted average of the three available secondary frames. The weights are
applied on the pixel level and they are a function of the temporal distance (d) and the number of pixels (n) in the
partition unit (PU) that the pixel belongs to. Number of pixels in the PU ranges from 4096 (64x64) down to 16
(4x4). That yields 13 different amounts of pixels in the PU. Since there are 3 redundant/secondary frames, 2197 (133)
combinations are counted. In addition, because secondary frames are predicted from previous, frames 3 distances are
counted. In total, 6591 (3x2197) combinations of (di, ni) are counted. Figure 5.4 shows an example.
Using temporal distance as one factor on the weight function has already been used in the literature in other contexts
[131] and it is believed that the closest frame is not always the best match for the current frame, therefore other
factors may have significant influence. In HEVC, the coding unit (CU) can be split using one of the eight supported
PU modes. For more details and applied constraints, please refer to [15]. In the proposed EC, for each CU, at most
3 different splitting trees are available that are optimized in terms of distortion and the authors believe that it may
have an impact reducing the overall distortion and error propagation in the concealment process.

In order to train the weights, data samples are collected from video sequences. Each sample (each pixel in a
primary frame) has tenth values (d1, d2, d3, n1, n2, n3, p1, p2, p3, p0), where di represents the temporal distance of the
current pixel, ni represents the number of pixels in the PU that the current pixel belongs to, and pi represents the
pixel value of secondary frames and primary frame respectively. Each combination (di, ni) is considered as a unique
condition and enumerated with the parameter k = [1, . . . , 6591].Then the samples that share the same properties, i.e.
the values of di and ni, are grouped and then are split into train and validation sets to train the weights. The training
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(a)      (b)      (c)      

Figure 5.4 – CU partitions for the same CU with different references. (a) reference with distance 3. (b) reference
with distance 2. (c) reference with distance 1. The red arrows show the direction of the motion

.

can be expressed as:

W k = arg min
{wk

1 ,w
k
2 ,w

k
3}

((p0 −
3∑
i=1

wki pi)2),where, wk1 + wk2 + wk3 = 1 (5.1)

where W k = {wk1 , wk2 , wk3} are the weights that minimize the error in the validation samples. After that, the weights
are stored in the decoder side.
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5.4 The subjective experiment
5.4.1 Experimental setup
5.4.1.1 Source video contents

There are different types of content features. Spatial and temporal features are extracted from the luminance frame
(Y), chrominance frames (Cb and Cr), from the spatial and the frequency domain. A complete list of the extracted
features is listed in Chapter 3. Other features are also extracted to help select the sequences for the experiment;
Motion intensity maps [203], encoding bitrate, and camera motion descriptors [204].
The above mentioned features are extracted from 37 UHD video sequences and are normalized linearly between [0,1].
Then, each feature is categorized into 3 classes according to their normalized values. For instance, labels of 1, 2, and
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3 will be assigned to the feature’s value that lies in the range [0,0.33], ]0.33,0.67], and ]0.67,1] respectively. Features
that are represented with histograms, tree classification using Jensen-Shannon divergence as distance metric [210] is
used to cluster the video samples to 3 classes. Finally, the contents that cover all the features classes are selected.
The thumbnails of these sequences are shown in Figure 3.24.
The source videos are from different content providers: 4 from Shanghai Jiao Tong University (SJTU) [205], 2 from
Ultra Video Group [206], 2 from Sveriges Television AB (SVT) [207], 2 from Blender Foundation [208], and 2 from
MediAVentures [209]. The 12 source sequences are in ultra high definition (UHD) with a resolution of 3840x2160
pixels. Figure 3.24 shows the thumbnails of the video sources. The frame rate of the video sequences varies from 25
frames per second (fps) to 120 fps. Each sequence is 10 seconds long.

5.4.1.2 Hypothetical reference circuit (HRC)

In this experiment, the video sequences are encoded as single description (SD), 2 descriptions MDC, and 4 de-
scriptions MDC. All are encoded with QP=32, intra period of 32, and motion search range of 64, 128, and 256 are
used for single description, 2-MDC, and 4-MDC respectively. For HRC00/01/02/03/04/05/06/09/10/11/12/13/14,
the restricted low-delay configuration is used (GOPSize=1), i.e. only the previous frame is used for prediction. For
HRC07/08, the (IPP) GOP structure is used, while in HRC15/16/17, the (IPPPP) GOP structure is used, Figure 5.3.
The same error pattern is inserted to all generated videos. The 34th, 50th, 162nd, and 178th NALUnits are dropped
and concealed with different error concealment techniques as shown in Table 5.1. In this experiment, each NALUnit
represents one frame. For encoding, HM12.1 is used while for the decoding processes, the robust decoder [251] is
used and has been adapted to call the appropriate error concealment strategy. A total of 12x18=216 processed video
sequences (PVS) are generated. Since this number is large for a subjective experiment, not all of them are used.
Each error concealment technique is applied to either 2-MDC or 4-MDC or both as shown in Table 5.1. To sum up
12x11=132 PVS are used in the subjective experiment. Indeed, the redundancy overhead is increasing when MDC is
used. In the above-mentioned HRCs, the redundancy overhead is varied from a factor of 1.1 to 1.7 in terms of bitrate
in 2-MDC and from a factor of 1.5 to 3.5 in 4-MDC relative to SDC. One possible observation that might be obtained
from the experiment is that when comparing two HRCs that are varied in the redundancy overhead, the HRC with
lower overhead may have a better quality than the HRC of higher overhead. Output samples for Source#12 is shown
for Figure 5.6.

5.4.1.3 Testing conditions

Since all processed videos were affected by error insertions, the pair comparison (PC) method from ITU-T Rec.
P.910 [252] was selected to obtain the subjective scale of the experiment. Not all HRCs are involved in the experiment to
reduce the number of pairs, as mentioned in the previous subsection. The optimized square design (OSD) methodology
was selected to reduce the number of pairs [253] in which the ranking of the stimuli in the test is known based on
pre-test results or prior knowledge. In this experiment, the 3x4 rectangular matrix was selected for 11 HRCs and the
ranking of the stimuli is defined by the authors’ prior knowledge as shown in the R matrix: Where the matrix on the
left represents the rank of the stimuli and the matrix on the right represents the corresponding HRC. The 12th cell of
the matrix is filled with a repetition of the proposed error concealment strategy (HRC17). Due to OSD, the number of
pairs is reduced from 11*10/2=55 to 27 pairs for each content, thus 27x12=324 in total. Unfortunately, this number
of pairs is still large. In order to reduce this number, the pairs that have very close quality, ((17,7),(16,6), and (2,0))
are viewed for each observer, and the other pairs are randomly and equally distributed between the observers. Note
that the pair (HRC17,HRC17) is not considered in the experiment.

5.4.1.4 Subjective assessment

For each pair, the two stimuli are viewed one after another. The replay function was supported. The observer
is asked for his preference for each pair in a forced choice manner. A playlist for each observer is prepared taking
into consideration that the pairs that belong to the same content are not viewed consecutively, orders of the pairs are
random, and the temporal order of the pairs is also switched between the observers. The viewing distance was 1.5
times the height of the screen. The experiment was explained to the observers using a training session prior to the
test session. 4 pairs are selected from the PVSs for the training session without any explicit or implicit instruction on
how to choose the preference. The test duration is about 75 minutes including training and breaks. All sequences are
viewed at 60 fps therefore the video of 25 or 30 frame rate are up sampled by 2, i.e. the frames are duplicated. The
PVS are displayed using 3840x2140 native screen resolution with 60 fps. The screen brand is Grundig FINEARTS 55
FLX 9490 SL with a 55-inch diagonal. The ITU Recommendations BT.709-5 [254] and BT.500-13 [255] are followed
to adjust the screen colour and brightness and to set up the testing room respectively. 46 non-expert observers
participated in the experiment, 22 males and 24 females and the age average is 24 (18 to 38). The pairs ((17,7),(16,6),
and (2,0)) are evaluated by the 46 observers and other pairs are evaluated with 11 or 12 observers. A vision check is
performed before the experiment using far and colour vision tests. Any observers with normal or corrected to normal
visual acuity are allowed to do the experiment.
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Original (Source#12: frame 64)

SDC (Source#12: frame 64)

HRC07 (Source#12: frame 64)

HRC08 (Source#12: frame 64)

HRC17 (Source#12: frame 64)

Figure 5.6 – Output samples for Source#12
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5.4.2 Experimental results and discussion
In this subsection, subjective data is analysed in terms of pair comparison of raw data using Barnard’s exact test

[256].Fisher’s exact test and Barnard’s exact test are both statistical exact/significance test of contingency tables. For
2x2 contingency tables, Barnard’s exact test is claimed to be more powerful than Fisher’s exact test. Its powerfulness

came from its unconditional rule to calculate the p-value. Suppose that M =
[
a b
c d

]
, is the Barnard’s contingency

table where, for each pair (A,B), a and d are equal to the number of observers that prefer A rather than B, and b
and c are equal to the number of observers that prefer B rather than A. The M matrix is the input of the Barnard’s
test and the output is the p-value that is calculated on the 95% confidence interval.
Table 5.2 shows the results of applying the Barnard’s test for each pair per content. It shows two types of analysis.
First, the significant difference for each pair per content is calculated. The first and the second columns represent
the pairs while columns labelled 1 to 12 represent the content. Second, the significant difference on the pair level is
calculated using two methods. The first method counts the number of sequences that have significant difference for
two HRCs and is summed up either in the “#←−” or in the “#−→”. It also counts the number of sequences that
do not have significant difference for two HRCs which is recorded in the “#No” column. The significant difference
between the new pair ((#←− or #−→), #No) is calculated and represented in “Sig.” column. The second method is
to sum the votes for each pair across the video sequences and to calculate the significance of the difference between
any two pairs. The result is represented in “Total Sig.” column. For instance, the first row which represents the pairs
that belong to HRC12 and HRC09. HRC12 significantly differs from HRC09 in 7 sequences and HRC09 significantly
differs from HRC12 in one sequence while there is no significant difference in 4 sequences. In this pair we cannot apply
the Barnard’s test on the pair level using the first method because HRC09 is significantly preferred in one sequence,
while the second method shows that there is a significance preference for HRC12. The error concealment strategy
preference for one video content is different for another video content and this is clear in different pairs. An important
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Table 5.2 – Barnard’s exact test between two pairs per content

SRC/HRCs 1 2 3 4 5 6 7 8 9 10 11 12 #←− #−→ #No Sig. Total sig.
12 9 ←− - - −→ ←− ←− ←− ←− - - ←− ←− 7 1 4 × ←−
3 9 ←− - ←− - ←− - - ←− ←− ←− - ←− 7 0 5 - ←−
3 12 - −→ ←− ←− −→ - −→ ←− - ←− - - 4 3 5 × ←−
1 9 ←− −→ ←− - - ←− - ←− - - ←− - 5 1 6 × ←−
1 12 - −→ ←− - - −→ −→ −→ - −→ −→ - 1 6 5 × −→
1 3 −→ −→ −→ −→ −→ −→ - −→ −→ −→ - −→ 0 10 2 −→ −→
13 1 ←− ←− −→ ←− ←− - ←− - ←− - ←− - 7 1 4 × ←−
0 1 ←− ←− - ←− ←− - ←− ←− ←− ←− ←− - 9 0 3 ←− ←−
0 13 - - ←− - ←− ←− - ←− - ←− ←− - 6 0 6 - ←−
2 3 −→ - - −→ - - - −→ - - - - 0 3 9 - −→
2 0 −→ −→ −→ −→ −→ −→ −→ −→ −→ −→ −→ −→ 0 12 0 −→ −→
6 12 ←− ←− - - - - - ←− ←− - - ←− 5 0 7 - ←−
6 0 - - −→ −→ - −→ - - - −→ - - 0 4 8 - −→
6 2 ←− ←− −→ −→ - - - ←− ←− - - ←− 5 2 5 × ←−
16 9 ←− ←− - ←− ←− ←− ←− ←− ←− ←− ←− ←− 11 0 1 ←− ←−
16 0 ←− ←− - −→ ←− - ←− - ←− - ←− - 6 1 5 × ←−
16 2 ←− ←− −→ - ←− ←− ←− - ←− - ←− ←− 8 1 3 × ←−
16 6 ←− ←− ←− ←− ←− ←− ←− ←− ←− ←− ←− ←− 12 0 0 ←− ←−
7 9 ←− ←− ←− ←− ←− ←− ←− - ←− −→ ←− ←− 10 1 1 × ←−
7 13 ←− ←− - - ←− ←− - −→ ←− −→ ←− ←− 7 2 3 × ←−
7 16 −→ - ←− - ←− - - −→ - - −→ - 2 3 7 × -
17 12 ←− ←− ←− - ←− ←− ←− ←− ←− ←− ←− ←− 11 0 1 ←− ←−
17 3 ←− ←− - ←− ←− ←− ←− - ←− ←− ←− ←− 10 0 2 ←− ←−
17 13 - ←− ←− ←− - ←− ←− ←− ←− ←− ←− ←− 10 0 2 ←− ←−
17 2 ←− ←− - ←− - ←− ←− ←− ←− ←− - ←− 9 0 3 ←− ←−
17 6 ←− ←− ←− - ←− ←− ←− - ←− ←− ←− ←− 10 0 2 ←− ←−
17 7 ←− ←− ←− ←− - - ←− ←− ←− ←− ←− - 9 0 3 ←− ←−

question here is raised “What is the impact of involving video properties to select the appropriate EC strategy to
better enhance the QoE?” One of the Barnard’s test intuitive assumption is that if HRC17 is significantly different
from HRC07 and HRC07 is significantly different from HRC09, we can say that the HRC17 is significantly superior
compared to HRC09. Using this property, we can conclude that the proposed algorithm is significantly different from
other HRCs except HRC 16 since there is no evidence of preference.

5.5 Conclusion
In this chapter, two main contributions are introduced and listed in Box 5.3. The proposed scheme is significantly

preferred to the other temporal MDC schemes, but the number of tested sequences is too small for generalization. In
addition, this chapter also highlights the fact that the preference of the MDC scheme depends on the video content
itself. Hence, more investigations are required to identify these content features.

Box 5.3 – Contributions

— A new temporal MDC scheme which is characterized by standard compatibility, redundancy tuning,
lightweight complexity, and suitability for n-MDC schemes. This scheme includes the process of generating
descriptions and the process of reconstructing video sequences when primary data is lost. Coding unit
splitting and the temporal distance properties are used to train a weighting coefficient to reconstruct the
lost primary frame from the redundant frames.

— The subjective experiment that shows the preference of the proposed scheme against other MDC schemes
is introduced.



6
Content-aware adaptive multiple
description scheme

6.1 Introduction
Sending video streams over error-prone channels may yield, depending on the error loss rate, unsatisfying video

quality. Moreover, the need for providing error resilience tools is increased due to the prediction complexity of video
coding. For instance, the latest video coding standard, high efficiency video coding (HEVC) [14], achieves 50%
bitrate reduction at the same quality relative to H.264/AVC. This achievement came from new/improved coding
tools, especially in the motion compensation. As a result, the error resilience in HEVC is decreased compared
to H.264/AVC due to the increase of temporal dependency [24]. The ways to provide error-resilient streams are
investigated in [26–28]. Multiple description coding (MDC) is introduced to be one of the promising tools to maximize
the quality of experience (QoE) in the presence of network errors. A comprehensive review of multiple description
coding can be found in [107–109]. MDC simplifies the network design since a feedback channel is not required therefore
it is suitable for real-time applications. In addition, it performs better than other error resilience approaches at high
error loss rates [110, 111]. In MDC, the video sequence is encoded into two or more different bit streams called
descriptions. One of the most important design principles of MDC is that each description has to deliver videos with
acceptable quality even if it is the only description received by the decoder and the highest quality will be achieved if
all descriptions are received. In this chapter, a temporal domain multiple description coding is studied.
Different temporal MDC schemes are introduced in the literature. Apostolopoulos in [121] reviewed different schemes.
All these schemes share the same encoding and decoding processes but different error concealment strategies. Suppose
that an even frame is lost. Copying the previous even frame from the distorted description to replace the lost even
frame in the buffer, copying the previous odd frame from the undistorted description, averaging the previous and the
next odd frames from the undistorted description, scaling the MVs of the next odd frame from the odd description by
1/2 and use them to do the motion compensation process using the previous odd frame of the undistorted description,
namely inplaceMC, and generating the MVs using the available previous and next odd frames, namely MCinterp,
are the error concealment strategies that are reviewed in [121]. Different approaches [131, 138, 257] introduce side
information. This side information can be a duplicate of MVs of each frame in the description or a duplicate of
I-frames. In [138], a different scheme is proposed in which each description contains alternating even/odd frames and
odd frames in even description are containing the motion information only predicted from the previous even frame.
In [257], Chapter 5, we have introduced a new MDC scheme which is suitable for high order MDC. The lost frame
is concealed using weighted averaging of correctly received redundant frames. While Radulovic et al. [131], suggested
that each description alternatively contains a fine quantization frame (even) followed by coarse quantization frame
(odd). Table 5.1 shows the list of the above-mentioned MDC schemes and the corresponding hypothetical reference
circuits (HRCs) that are used in the subjective evaluation in [257].
Moreover, content types and their underlying characteristics have a high impact in video coding. In [5], the authors
show the impact of content types in setting up a subjective experiment. In [7], content characteristics are used in
improving objective measures of video quality. While in [9], it was shown that the video content influences the video
encoding. The following scenario will illustrate the motivation to study the content influence in MDC. Let us consider
the quality of a slide show video sequence that is encoded with SDC, 2-MDC, and 4-MDC and sent through an error-
prone channel. If the frame loss hits a frame that has the same content as the previous frame, copying previous frame
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error concealment strategy of SDC is perfect. Now, consider that the frame loss hits a scene cut (new slide content),
the copying strategy error concealment will yield unsatisfying output video. In this situation a side information from
the other descriptions will be useful. In another example, let us consider the quality of a high motion-intensity video
sequence. If the frame loss hits non-key frames, error concealment other than copying strategy is needed to conceal
the frame and it depends on spatio-temporal variation of the content. This chapter address the following question, “is
it better to use SDC, 2-MDC, or 4-MDC?”.
The subjective experiment [257], Chapter 5, investigated the above mentioned MDC schemes in the presence of frame
losses. In this chapter, the results of this subjective experiment are more investigated and analysed to study the
influence of considering content features to help recognize the preferred scheme to be used for the transmission.
To sum up, this chapter raises the research questions listed in Box 6.1 and the chapter structure is illustrated in Box
6.2.

Box 6.1 – Research Questions

This chapter aims to answer the following research questions:
— Which content features would help to build an adaptive MDC scheme?

In addition to that, the following secondary research question is investigated too:
+ Can we trade-off between quality and bitrate in MDC schemes by not always using a specific MDC

scheme? In other words “Is it better to use SDC, 2-MDC, or 4-MDC for a specific content?”

Box 6.2 – Chapter structure

This chapter is structured as described in Figure 6.1. Data preparation part will be demonstrated in Section 6.2
and in Section 6.4. The part of building the adaptive model is illustrated in Section 6.3 and in Section 6.5. The
training results will be discussed in Section 6.5.2.
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2 Features Extraction

1 Analysis
Video Sequences
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3 Training

Data Preparation
Build adaptive 

scheme

PSNR as Features
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model

Features
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Figure 6.1 – Chapter 6 Structure

6.2 Framework overview
In this section, an overview of the proposed framework is introduced. Figure 6.2 demonstrates the framework

stages. Firstly, content features are extracted from 37 video sequences as described in Section 6.3. In order to conduct
a subjective experiment, a limited number of sequences needs to be selected. Therefore, a sequence selection process
as illustrated in Section 6.3 is followed to reduce the number of video sequences. 12 video sequences are chosen at
the end. After that, the 12 sequences are encoded using different SDC and MDC schemes, loss-impaired, decoded,
and subjectively evaluated as described in [257] and are summarized in Section 6.4.1. The subjective data is analysed
to know the preference scheme of each content. As illustrated in Section 6.4.2, additional analysis to introduce
labels/classes and to calculate the quality of service of each scheme, i.e. the PSNR values of affected frames. In this
chapter, 5% percentile of PSNR value of affected frames is selected as QoS measure. Finally, the prediction model,
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Figure 6.2 – Framework overview. The Black boxes show the work of [257] while the red ones show the contribution
of this Chapter.

that is fed with the feature set and the labels, is trained using SVM classification as demonstrated in Section 6.5. The
black boxes indicate that they are introduced in Chapter 5, while red boxes indicate the contributions of this chapter.

6.3 Content Features and content selection
As discussed in Section 5.4.1.1, there are different types of content features. Spatial and temporal features are

extracted from the luminance frame (Y), chrominance frames (Cb and Cr), from the spatial and the frequency domain.
A complete list of the extracted features is listed in Chapter 3. Other features are also extracted to help select the
sequences for the experiment. Motion intensity maps [203], encoding bitrate, and camera motion descriptors [204].
The above mentioned features are extracted from 37 UHD video sequences and are normalized linearly between [0,1].
Then, each feature is categorized into 3 classes according to their normalized values. For instance, labels of 1, 2, and
3 will be assigned to the feature’s value that lies in the range [0,0.33], (0.33,0.67], and (0.67,1] respectively. Features
that are represented with histograms, tree classification using Jensen-Shannon divergence as distance metric [210] is
used to cluster the video samples to 3 classes. Finally, the contents that cover all the features classes are selected.
The thumbnails of these sequences are shown in Figure 3.24.

6.4 Observations and Problem statement
6.4.1 Overview of the subjective experiment

In this subsection, an overview of the subjective experiment will be introduced. The full description can be found
in [257]. 12 out of 37 UHD video sources are selected as described in Section 6.3 and are used in the subjective
experiment. They are from different content providers: 4 from Shanghai Jiao Tong University (SJTU) [205], 2 from
Ultra Video Group [206], 2 from Sveriges Television AB (SVT) [207], 2 from Blender Foundation [208], and 2 from
MediAVentures [209]. Figure 3.24 shows the thumbnails of the video sources. The video sequences are encoded as
single description (SD), 2 descriptions MDC, and 4 descriptions MDC. All are encoded with QP=32, intra period of 32.
Motion search range of 64, 128, and 256 are used for single description, 2-MDC, and 4-MDC respectively. The same
error pattern is inserted to all generated videos. The 34th, 50th, 162nd, and 178th frames are dropped and concealed
with different error concealment techniques as shown in Table 5.1. The pair comparison (PC) method from ITU-T
Rec. P.910 [252] was selected to compare the MDC schemes subjectively.

6.4.2 Observations
6.4.2.1 Bradley-Terry model

Bradley-Terry model [258] is a linear model that analyses pair comparison preference in order to map their prob-
abilities to scales. Given K stimuli, suppose that the pair (Ai, Aj) are two stimuli, and Xi, Xj are the number of
Ai beats Aj and the number of Aj beats Ai respectively. The probability that the observers choose Ai over Aj is
P (Xi > Xj) and it is defined as:

P (Xi > Xj) ≡ πij = πi
πi + πj

, i 6= j (6.1)

Where πi > 0 and
∑K
i=1 πi = 1. The value that describes a stimulus (Ai) on the scale is calculated as Vi = log(πi).

Since the πi value is less than one, the Bradley-Terry score Vi is a negative value.
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In this experiment, the Bradley-Terry (BT) test is used to obtain the HRCs scale for each content [259]. Figure 6.3
shows the results. The scale is offset such that HRC00, which represents the single description coding, is set to zero to
easily read the figures. The confidence intervals in the subplots belong to the fitting model and does not represent the
observer’s confidence . In [260], the author shows a method to calculate the significance between the BT scales. Since
the BT scale depends on the goodness of the fitting, the significance results between the HRCs are not necessarily
coherent with Barnard’s test which is an unconditional test.
It was observed that 4 schemes are selected as preference for the video sequences; the single description coding
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Figure 6.3 – Bradley-Terry Scale for each video content

scheme (HRC00) and three MDC schemes (HRC07/HRC15, HRC08/HRC16, and HRC17) and are labelled with A,
B, C, and D respectively. Table 6.1 shows the coding scheme preference label for each content. HRC08 and HRC16
share the same error concealment technique and for the goodness of bitrate utilization, HRC08 is considered. HRC16
will be more effective in high error loss rate channels. The same observation for HRC07 and HRC15. Figure 6.4 shows
the bitrate of each HRC with respect to HRC00 (Class A). Bitrate is content dependent, for instance HRC17, which
is a 4-MDC scheme, consumes high bitrate and it ranges between 1.5 and 3.5. The bitrate consumption of HRC15
and HRC16 will lie in approximately the same bitrate range of HRC17. Moreover, an important observation that
distinguishes the HRCs is observed. We refer to this observation as QoS of using the MDC error concealment strategy
and it is measured with PSNR. Figure 6.5 shows the variations of the PSNR values of different HRCs of source 12.
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Table 6.1 – Associated label/class for each video source

Source SRC01 SRC02 SRC03 SRC04 SRC05 SRC06 SRC07 SRC08 SRC09 SRC10 SRC11 SRC12
Label/Class C D A D B D D A D A C B

These variations are content and error concealment technique dependent as can be seen in Section 6.5.
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Figure 6.4 – Bradley-Terry Scale vs bitrate increase factor with respect to SDC for each video content

6.4.3 Problem statement
As noticed in the observations section, Figure 6.4, and Figure 6.5, the scheme decision depends on the content and

on the error concealment technique that is used in each scheme. Therefore the content features and the effects of using
different error concealment techniques, i.e. the PSNR values as QoS measure, are considered to build a prediction
model to select the appropriate scheme to be used for the transmission. This experiment uses 12 video sources which
may not be sufficient to build a generalized prediction model. Specifically, we analyse the influence of the content
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Figure 6.5 – PSNR values of affected frames of SRC 12 (From frame 34 to 64)

features in optimizing the MDC as an error resilience tool to maximize the quality of experience whatever the bitrate
is. Trading-off the bitrate and the quality is a recommended future work.

6.5 The prediction model

6.5.1 Model training
The feature set in each training sample represents two types of features: the content features and the 5% percentile

value of PSNR values of affected frames for each HRC. Each training sample is labelled with the corresponding HRC,
Table 6.1. The main goal of this machine learning process is to highlight the features that have an impact on prediction
the suitable transmission scheme. Due to the large number of features, ReliefF features ranking algorithm [261] is
applied to rank the features. The top 5 ranked features are selected to train the model. These features are in order:
the PSNR values of HRC11 (PSNR11), the entropy ratio between laplacian subband levels 4 and 5 (LEntropy45) and
between 3 and 5 (LEntropy35), the PSNR values of HRC03 (PSNR3), and the block-based standard deviation of the
contrast of GLCM (GLCMSTDCONT). We found that the HRC11 and HRC03 belong to the same error concealment
technique and they are redundant, so the PSNR value of HRC11 is considered. The same observation is found in
the entropy ratio of different subbands. In summary, three features are considered in the training model: PSNR11,
LEntropy45, and GLCMSTDCONT. SVM training algorithm in Orange software [248] is used to train the model.

6.5.2 Results
The performance of the above-mentioned model is validated by following the following steps. First, the SVM

parameters are trained. Then, the cross validation technique with 4-fold is used to validate the model. Finally, the
classification accuracy (CA), area under the curve (AUC) are used to evaluate the prediction model and they are
91.7% and 0.98 respectively. Having low variations on block-based contrast of GLCM along the video means that
the video may have low variations in texture and using simple copying algorithm will yield a better quality which
is clear in Class A samples. Video that has high variations in contrast is preferred to be concealed with redundant
motion vector (Class C). High value of PSNR11 means that the concealed frames are so close to the undistorted frame
and hence the error degradation will be small, which is clear in Class A. Table 6.2 shows the confusion matrix of the
prediction model. SRC-10 (Treeshade) is misclassified to B instead of A. The LEntropy45 feature’s value of SRC-10
is high compared to other sequences in class A and it is so close to class B sequences, blue filled circles in Figure 6.6.
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The three sub figures in Figure 6.6 show the separation between classes using any 2 features.

Table 6.2 – Confusion Matrix of the classification

Class A B C D
A 2 1 0 0 3
B 0 2 0 0 2
C 0 0 2 0 2
D 0 0 0 5 5

2 3 2 5 12

(a) GLCMSTDCONT vs. LEntropy45 (b) HRC11 vs. LEntropy45 (c) HRC11 vs. GLCMSTDCONT

Figure 6.6 – The separation between classes using two features

6.6 Conclusion
The main contribution of this chapter is listed in the Box 6.3. This chapter highlights and uses two types of features:

the content features and the minimum at 5% percentile PSNR values when different error concealment algorithms are
used. The number of samples that are used in this experiment may not be sufficient to build a generalized framework.
In addition, more investigations to trade-off between the quality and the coding efficiency are recommended as a future
work.

Box 6.3 – Contributions

— An adaptive content-aware framework to predict the suitable description scheme (SDC, 2-MDC, or 4-
MDC) to be transmitted over an error-prone channel in order to maximize the quality of experience. The
contrast of Gray Level Co-occurrence Matrix and the ratio of entropy of Laplacian levels 4 and 5 features
are used to build the adaptive MDC scheme.





7
MDC-based Video Quality Evaluation
Framework

7.1 Introduction
In Chapters 5 and 6, temporal-domain MDC schemes are discussed. The main shortcoming that we observed

is that the better the quality you ask for the higher the amount of redundancy you need to send. One solution is
proposed in Chapter 6. It introduces an adaptive content-aware MDC scheme in which a specific mode of transmission
is recommended, i.e. SDC, 2-MDC, or 4-MDC. It means that for some contents, the perceived quality will not change
if we use MDC. Another solution is application and network structure dependent approach. For instance, having an
interactive sending/receiving application scenario may reduce the amount of redundant data.
The user datagram protocol (UDP) and the transmission control protocol (TCP) are the most used transport layer
protocols. The main key elements in deciding which protocol to use are the delay and the loss. For instance, voice
over IP, video conference calls, and broadcasting applications use UDP since they are lightweight applications that
care about the delay and not too much about the lost data. While applications like, HTTP, emails, and FTP use TCP
since they are heavyweight applications that care about lost data and not too much about the delay. When you have
an application that, indeed, needs to trade-off between the delay and the lost data, you need to design your protocol.
In this case, the application will be, for instance, lightweight and care about the delay and the lost data as well.
For instance, firstly, using TCP for sending MDC description doesn’t make sense since it makes sure that the primary
frames are received correctly (except for cases in which the packets cannot be received after a certain number of trials
and/or a certain time) so, why do we need MDC in the first place? If we assume that we need to send MDC over
TCP channels, making sure that the redundant data is correctly received or not is time consuming (if the primary
data received) and making the network congestion-able. Secondly, using UDP for sending MDC descriptions is not
the best choice as well (especially when the bitrate of MDC scheme is 4 times the bitrate of SDC and the loss rate
is low) because preventing sending some redundant data is applicable if the server reports receiving of primary data
before sending the corresponding redundant data. We use TCP and UDP protocols to give examples because they are
the widely used protocols but there are other protocols that we don’t consider.
To improve the transmission with UDP towards the direction of TCP we allow for out-of-order reception of data
packets and allow for sending acknowledgment. In this chapter, an interactive way that works on the application
layer to deal with the redundant data is proposed, as discussed later in Section 7.2. Sending redundant data of a
current frame is delayed to be sent after the next scheduled frame if the sender doesn’t receive an acknowledgment
from the receiver. In this way the amount of redundant data to be sent is limited. This limitation, of course, depends
on round-trip time and the amount of primary data that needs to be sent per second. Starting from the motivation
inspired from the fact that the amount of sending redundant data may be reduced when using a specific application
scenario, this chapter provides a possible answer to the research questions that are listed in Box 7.1. The structure of
this chapter is illustrated in Box 7.2.

7.2 MDC Evaluation Framework
The reliable way to evaluate the quality of perceived videos that are transmitted over error-prone networks is to

build a real-world application scenario and then subjectively evaluate the perceived video quality. Since this approach
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Box 7.1 – Research Questions

This chapter aims to answer the following research questions:
— How can the quality of temporal-MDC scheme be evaluated?

In addition to that, the following secondary research question is investigated too:
+ How to take advantage of TCP and UDP protocols to build a good networking structure that allows

to reduce the amount of redundant MDC data to be sent.

Box 7.2 – Chapter structure

This chapter is structured as described in Figure 7.1. In Section 7.2, the framework to evaluate the perceived
video quality of MDC schemes is proposed. The simulation results of the proposed framework are analysed and
discussed in Section 7.3. The parts with (∗) are planned as future work.

Input videos
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Figure 7.1 – Chapter 7 Structure

is time consuming and expensive, network simulators, like Qualnet and NS2, are the best alternative. In this work,
we follow the idea that is introduced in [262, 263]. In [262], an evaluation framework for MPEG and H.264/AVC is
presented to evaluate the perceived video quality using NS2 simulator. While in [263], Yi et al. presented a framework
to evaluate the perceived quality of AVC/SVC. In this Section, we present a framework, as shown in Figure 7.2, to
evaluate the perceived video quality of MDC schemes. We will use video traces to characterize an encoded video for
network simulation. Video traces only contain metadata information about the actual video stream that is required for
the analysis such as the NALUnit size and the creation time in the form of discrete events usually written in clear text
files. We characterize the video bitstream (i.e. the video traffic) of each MDC scheme using HEVCESBrowser [264],
a tool for analysing HEVC(h265) bitstreams, and a script, that is developed for this work. The proposed framework
can be adapted to work with different networks and in this work, an Ad-hoc network is used to test the proposed
framework.

7.2.1 Bitstream Extractor at encoding side
This process is meant to let the MDC and SDC encoders generate the bitstream files. This bitstream contains

information about each NAL unit. Once the YUV file is ready to encode, the SDC encoder generates one stream only.
While in n-MDC, n streams/descriptions are generated. Then, the HEVC stream browser is used to extract the basic
information from each stream/descriptor. Figure 7.3 shows an example. The NAL unit information is extracted; the
length (size), type, and other information like frame type or parameter set type.

7.2.2 Traffic generator
After the bitstream information of each description is ready, the trace information, that is required for the simulator

to do the job, will be generated. This trace file represents the traffic information. A traffic generator program is
implemented. The program takes as input the output of the bitstream extractor. Other supplemental inputs like the
type of the MDC are provided as well to distinguish the primary and the secondary/redundant data. Each line of the
traffic trace file represents a discrete event for the simulator and it provides the following information:
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Figure 7.3 – Bitstream information extraction using HEVCESBrowser

— Time: The relative time of when the simulator will start to execute one event, i.e. when to send the data.
— Length: The amount of bytes that need to be transmitted for each event.
— Frame type: This is a flag indicating whether the event transmits primary data (flag=1) or transmits sec-

ondary/redundant data (flag=2).
— Description number: This represents which part of the MDC bitstream is transmitted, in an n-MDC bit-

stream, the number ranges from 0 to n− 1.
— Reference number: This number to: 1) represent the NALUnit (here is one frame) order of the primary data

in the bitstream 2) links each secondary/redundant data with the corresponding primary data.

Please note that the order of the traffic trace is important. Our strategy is to give the server the opportunity to
acknowledge the receiving of the primary data (via feedback channel) and accordingly the client will not send the
secondary/redundant data if the acknowledgment is received on time. In order to reach that goal, we propose, as
shown in Figure 7.4, to send the primary data of current frame with the secondary/redundant data of previous frame.
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Figure 7.4 – Traffic trace for MDC scheme (HRC17) for the first primary and secondary frames

7.2.3 The Simulator: the changes to the network structure

The traffic trace application that is part of the simulator is changed in order to fulfil the new requirements. The
new requirements are shown in red texts and arrows of Figure 7.5. According to The Qualnet simulator definitions,
the client is responsible for sending the data while the server is responsible for receiving the data. On the client side
the following changes are applied: the first one is the changing of the header’s packet information. It is changed to
be able to parse each line of the traffic trace events. The second change is to update the packets sending process to
prevent sending secondary/redundant data if the primary data is acknowledged by the server. The third change is
to create a list to maintain the list of the acknowledged primary data. On the server side, the following changes are
applied. The first change is to send an acknowledgment packet through a feedback channel to the client if the primary
data is correctly received. The second change is to create a file to keep information about receiving each primary or
secondary data. In addition to this log file, the simulator creates statistics file that keeps information for each network
layer.
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Figure 7.5 – The proposed Qualnet simulator network layers structure. Red texts and arrows represent the updates
to the existing structure.

7.2.4 Simulator Trace Parser

This process is meant for the analysis of the simulator log and statistics files. It provides information for each
description, specifically, the order of received primary and secondary data. Further information about the bandwidth,
sent/received bytes, jitter,delay, etc. is provided as well.

7.2.5 Bitstream Extractor at decoding side

After having all the information about each description, we set a flag for each frame (flag=0 or flag=1 if the
primary/redundant data is lost or not respectively) and these flags are saved in a text file for each description. This
file represents the error pattern that the decoder needs to decode the distorted stream. Zero means that the NAL unit
is received correctly while one means the NAL unit is not received correctly.

7.2.6 Decoding

Once the error pattern is generated for each description, a robust decoder, for instance [251], is used to decode the
distorted video sequences. Here, each MDC scheme has error recovery process that uses some/all available descriptions
to reconstruct the lost NAL unit.



7.3. PERFORMANCE ANALYSIS USING QUALNET 87

7.2.7 Quality Evaluation
In order to run the quality estimation/comparison process, a set of HRCs has to be selected. These HRCs should

have similar bitrate but actually all of the bitrates that we have to use should be comparable against each other.
Therefore, video contents have to be encoded with different bitrate budgets. Then, we use the simulator, such as
Qualnet, to run a simulation over a specified network in order to know the practical bitrate consumption for each
MDC scheme. Finally, the HRCs that have bitrates that are close to the SDC scheme will be selected to run the
quality estimation process either objectively or subjectively.

7.3 Performance Analysis using Qualnet
7.3.1 The Test Conditions

In this experiment, only two sources out of twelves will be used to illustrate the steps of the analysis. The two
sources are: Source #2 (CampfireParty) and Source #11 (Wood). These two sources are selected due to their behaviour
to the bitrate increase factor as shown in Figure 3.3 (Page 34). CampfireParty and Wood video sequences have a low
and high bitrate increase factor, respectively. The video sequences are encoded with the different MDC schemes MDC
encoders (adapted from HM12.1): HRC00 (SDC), HRC07 (2-MDC), HRC08 (2-MDC), HRC15 (4-MDC), HRC16
(4-MDC), and HRC17 (4-MDC). These HRCs are chosen as labels as explained in Chapter 6. The video sequences
are encoded with different rate control options: 1.5nMbps, where n ∈ {1, 2, . . . , 8}.

7.3.2 The Network Scenario
The simulation is performed using Qualnet (version 5) with 20 nodes in a 150×150 area as shown in Figure 7.6.

The TRAFFIC-TRACE application is used for sending packets to the server side. In this example, as shown in Figure
7.6, node #1 sends video data to node #16. The scenario has the following main parameters:

— Mobility: Random Way Point Model (RWP), speed: 10 m/s.
— Transport protocol: UDP protocol, Packet size 2048 bytes.
— Radio Type: 802.11a, Data rate: 54 Mbps.
— Routing protocol: OLSRv2 NIIGATA
— Network Protocol: IPv4 .

Figure 7.6 – The network scenario for the Ad-hoc network

7.3.3 Simulation Results
7.3.3.1 Bitrate analysis experiment of Chapters 5 and 6 conditions

The bitrate increase factors of the MDC schemes, that are listed in Table 7.1, are shown for two cases; the first
one is the maximum case as discussed in Chapter 5. The second one is the case under the proposed transmission
scenario. A letter N will be added to the HRC name to reflect it is conducted under the above-mentioned specific
network condition. For instance, HRC07 will become HRC07_N01. The results in Table 7.1 are for video sequences
that are encoded using QP = 32 as explained in Chapters 5 and 6.
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Table 7.1 – Comparison of bitrate increase factors of different MDC schemes relative to the SDC. The coloured cells
refer to the selected class of each source as shown in Table 6.1 (if source name is coloured, it means that it refers to
class A (SDC)).

Src HRC07_N01 HRC08_N01 HRC15_N01 HRC16_N01 HRC17_N01
Max. Effect. Diff. Max. Effect. Diff. Max. Effect. Diff. Max. Effect. Diff. Max. Effect. Diff.

1 BBB_seq1 1.57 1.34 0.23 1.45 1.35 0.10 2.84 1.89 0.95 2.31 1.93 0.38 3.05 1.91 1.14
2 BBB_seq2 1.65 1.37 0.28 1.52 1.36 0.16 3.10 1.96 1.14 2.57 2.02 0.56 3.52 2.02 1.50
3 Beauty 1.23 1.10 0.14 1.19 1.10 0.09 1.68 1.20 0.48 1.50 1.20 0.30 2.27 1.40 0.87
4 CampfireParty 1.30 1.11 0.19 1.16 1.09 0.07 1.88 1.29 0.58 1.45 1.45 0.00 2.16 1.40 0.76
5 CrowdRun 1.56 1.56 0.01 1.51 1.51 0.01 2.60 2.57 0.03 2.35 2.34 0.01 2.91 2.89 0.02
6 PROMO_WIENER_2 1.50 1.23 0.26 1.40 1.24 0.16 2.36 1.44 0.92 1.99 1.46 0.53 3.39 1.47 1.93
7 ParkJoy 1.44 1.43 0.01 1.38 1.37 0.01 2.20 2.18 0.01 1.92 1.92 0.00 2.47 2.46 0.00
8 TOS_3 1.64 1.41 0.23 1.54 1.43 0.11 2.83 1.98 0.85 2.61 2.10 0.51 2.80 1.98 0.82
9 TallBuildings 1.22 1.11 0.11 1.20 1.12 0.07 1.72 1.35 0.38 1.61 1.38 0.22 1.61 1.34 0.28
10 TreeShade 1.45 1.34 0.11 1.48 1.38 0.10 2.10 1.70 0.40 2.31 2.11 0.20 2.43 1.81 0.62
11 Wood 1.53 1.38 0.15 1.42 1.37 0.05 2.72 2.15 0.57 2.26 2.10 0.16 2.47 2.08 0.40
12 YachtRide 1.42 1.30 0.12 1.37 1.28 0.09 2.13 1.73 0.39 1.89 1.64 0.24 2.88 2.14 0.74

Average 1.46 1.30 0.15 1.39 1.30 0.09 2.35 1.79 0.56 2.06 1.81 0.26 2.66 1.91 0.76

As it can be observed, the amount of redundant data to be sent is reduced by factors of 1.93 in source #6 but not
even slightly reduced in source #7. The coloured cells refer to the selected class of each source as shown in Table 6.1
on page 79 (if source name is coloured, it means that it refers to class A (SDC)). The content-aware scenario that is
proposed in Chapter 6, together with good/smart networking implementation, provides a promising solution for using
temporal-MDC scheme as one way to maximize the quality of experience.

7.3.3.2 Choosing HRCs for testing

Amajor criticism to the conducted subjective experiment in Chapter 5 is that the comparison is done with sequences
encoded at the same quality level. Hence, the bitrate budget of each HRC differs from others. That was done because
we do not know the effective bitrate of each MDC scheme. Now, after we are capable of knowing the effective bitrate
budget of each MDC under a specified networking scenario, we can compare the perceived video sequences at the same
bitrate budget. As can be noticed in Table 7.2, to test the quality of the CampireParty sequence at a bitrate budget
of 7.76Mbps±10%, the shaded HRCs are going to be selected for the quality testing.
Regarding the end-to-end delay, Table 7.3, it is clear that increasing the bitrate budget increases the delay. Moreover,
the delay is also increasing if the amount of redundant data increased too, i.e. the amount of data per second is
increasing. This leads to increase the network congestion. It can be noticed, as well, that the end-to-end delays of the
selected MDC schemes for testing are sometimes smaller and sometimes larger than the SDC (@7.59Mbps) scheme
by 0.73 and 1.7 seconds, respectively. While at budget of 25.63Mbps, the end-to-end difference is neglectable. The
effect of end-to-end delay is application dependent, and it might be applicable for Ad-hoc networks to have such delay
especially when UHD videos are transmitted. Further experiments have to be done with different resolutions to study
this parameter/characteristic.
Jitter is often defined as variations in packet delay. It is an important issue for the interactive real-time application,
such as voice over IP. To avoid the jitter issues, a proper buffer size in the server (receiver) should be allocated. As
noticed in Table 7.4, the jitter of the selected MDC schemes are smaller compared to the SDC scheme but it seems
an issue when the amount of redundant data is much bigger than SDC scheme in high bitrate budget.

Table 7.2 – Maximum and effective bitrate consumption (in Mbps) for different bitrate budgets and different MDC
schemes

SRC Rate SDC_N01 HRC07_N01 HRC08_N01 HRC15_N01 HRC16_N01 HRC17_N01
Max. Effect. Max. Effect. Max. Effect. Max. Effect. Max. Effect.

CampfireParty

2.25 2.31 3.91 2.47 4.48 4.01 7.95 3.23 8.79 6.95 8.86 5.98
3.38 3.45 5.04 3.60 6.70 6.07 9.13 4.59 13.20 10.72 13.27 9.37
5.06 5.15 7.53 5.43 10.05 9.22 13.11 7.20 19.78 16.96 19.88 14.27
7.59 7.76 11.27 8.65 15.19 14.17 19.37 11.63 29.64 28.41 29.81 22.34
11.39 11.78 17.05 13.16 22.70 21.46 29.03 19.32 44.14 44.09 44.91 34.64
17.09 17.59 25.61 20.44 33.94 33.81 43.56 30.11 65.71 65.67 67.53 66.90
25.63 26.21 38.41 31.37 50.70 50.51 65.55 63.67 98.21 98.13 101.05 100.11

Wood

2.25 2.54 4.46 2.92 4.64 4.41 9.98 4.76 9.07 7.69 9.15 7.17
3.38 3.75 5.69 4.38 6.89 6.54 11.37 6.62 13.46 11.40 13.62 10.47
5.06 5.50 8.36 6.46 10.25 9.69 15.94 9.93 20.02 17.30 20.31 15.29
7.59 8.22 12.37 9.54 15.35 14.64 23.03 14.86 30.00 29.97 30.40 23.87
11.39 12.13 18.23 14.51 22.88 21.98 33.71 22.83 44.60 44.56 45.39 36.76
17.09 17.94 26.90 21.77 34.13 34.01 48.80 39.73 66.15 66.10 67.83 67.24
25.63 26.64 39.64 33.59 50.93 50.75 71.37 69.24 95.59 94.28 101.32 100.42
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7.4 Conclusion
The main contribution of this chapter is listed in the Box 7.3. It is observed that the content-aware scenario that is

proposed in Chapter 6, together with feedback-capable networking implementation, proposed in this Chapter, provide
a promising solution to use the temporal-MDC scheme as one way to maximize the quality of experience.

Box 7.3 – Contributions

— Quality evaluation framework for temporal-MDC schemes is proposed. The framework introduces an
interactive networking structure that helps reducing the amount of redundant data to be sent. During this
work, all the steps of the proposed framework except the quality evaluation (subjectively and objectively)
stage are conducted. This is due to time and computing power limitations.

Table 7.3 – End-to-End delay (in seconds) for different MDC schemes transmitted over ad-hoc network with different
bitrate budgets

SRC Rate SDC_N01 HRC07_N01 HRC08_N01 HRC15_N01 HRC16_N01 HRC17_N01

CampfireParty

2.25 0.09 0.21 0.21 0.45 0.32 0.34
3.38 0.14 0.30 0.33 0.60 0.72 0.59
5.06 0.24 0.52 0.66 0.91 1.47 1.25
7.59 0.65 1.18 1.57 2.67 4.76 4.27
11.39 1.33 2.45 4.29 5.81 9.21 8.94
17.09 4.28 4.54 7.85 9.99 17.06 21.56
25.63 7.61 9.80 13.86 20.88 27.72 31.12

Wood

2.25 0.25 0.55 0.53 0.85 0.82 0.67
3.38 0.38 0.76 0.90 1.25 1.40 1.28
5.06 0.63 1.15 1.37 2.44 2.78 3.92
7.59 1.40 2.80 3.68 6.64 6.82 6.69
11.39 3.89 6.28 6.84 9.14 12.43 11.46
17.09 6.43 9.32 10.39 13.00 19.36 22.67
25.63 7.91 11.33 15.98 23.16 28.28 32.50

Table 7.4 – Jitter (in milliseconds) for different MDC schemes transmitted over ad-hoc network with different bitrate
budgets

SRC Rate SDC_N01 HRC07_N01 HRC08_N01 HRC15_N01 HRC16_N01 HRC17_N01

CampfireParty

2.25 2.6 1.7 2.0 1.2 2.2 1.5
3.38 3.2 2.0 3.1 1.5 3.7 1.8
5.06 3.8 2.5 5.2 1.6 7.7 2.6
7.59 5.4 3.5 11 3.1 15 4.2
11.39 9.4 7.3 20 5.3 24 4.4
17.09 15 12 42 4.9 36 4.8
25.63 19 11 63 4.7 53 8.2

Wood

2.25 7.6 4.1 4.5 2.0 4.4 2.9
3.38 9.6 5.1 5.8 2.6 5.9 3.6
5.06 11 6.1 7.9 4.2 9.3 4.6
7.59 16 11 16 6.3 17 7.3
11.39 23 12 24 5.3 25 5.9
17.09 22 13 43 5.9 36 6.1
25.63 26 15 65 6.2 59 9.6
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8
Inpainting-based error concealment for
low-delay video communication

8.1 Introduction
Ensuring error resilience has become more complex in recent video coding standards due to the increased complexity

of their prediction processes [265]. Conventional error resilience techniques [26] can be categorized into three main
classes depending on where the processing is performed: forward-error-concealment (encoding side), post-processing
error concealment (decoder side), and interactive error concealment (encoder and decoder sides). In this work we
focus on error concealment by post-processing. In post-processing techniques, the decoder utilizes the spatial and/or
temporal redundancies to reconstruct the damaged/lost area in a video frame. Spatial techniques [29, 30]utilize
available surrounding pixels to reconstruct the missing pixels. They are not efficient for large areas, non-constant
areas, and in terms of complexity. They usually reconstruct the texture but not the structure. The work in [163] is an
extension of [30] in which a spatio-temporal selective extrapolation strategy is used to reconstruct the missing area.
Temporal techniques use available motion information to predict the missing motion vectors (MVs), for instance, by
interpolating [31] or by selecting the MV that minimizes the side match distortion [32]. Despite providing information
about whether the current area is moving or not, this technique is efficient only for low-motion and smooth sequences
and for small areas since the precision of predicted MVs is not guaranteed. Thus, the structure (of copied data) is
reconstructed but not the texture.
The target of any error concealment algorithms is twofold: reconstructing a satisfying reconstruction of a lost area
and reducing the miss match between the encoded and the reconstructed blocks which yields reducing the error
propagation effect. To achieve that we need to reconstruct the texture and the structure of a missing area and that
can be done using inpainting techniques. A review of inpainting techniques can be found in [164]. In this work we
focus on exemplar-based inpainting in which each lost patch is reconstructed by copying the best match from the
known area. Specifically, inpainting algorithms have many target applications and in this work, we are interested in
error concealment as a target application.
Inpainting-based error concealment algorithms are introduced in [34, 165]. The algorithms have three main steps:
inpainting the moving foreground object, inpainting the stationary background temporally and spatially as in [166]. In
the first step, inpainting the moving foreground object, the moving pixels are identified as in [34] using Bilinear Motion
Field Interpolation (BMFI) [31]. Then, the best match of a moving patch is reconstructed from the neighbouring
frames. In the second step, inpainting the stationary background temporally, the best match of a moving patch is
reconstructed from the co-allocated patches of the neighbouring frames. The remaining pixels are reconstructed in
the third step, inpainting the stationary background spatially. There is some room of improvements. In this chapter,
we try to improve one of the state-of-the-art inpainting-based error concealment algorithm [34] by raising the research
questions that are listed in Box 8.1. The structure of this chapter is illustrated in Box 8.2

8.2 Inpainting-based error concealment strategy
Inpainting-based error concealment algorithms are introduced in [34, 165]. The algorithms have three main steps:

inpainting the moving foreground object, inpainting the stationary background temporally and spatially as in [166].
In this work, a modified version of [34] is introduced with the following contributions:
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Box 8.1 – Research Questions

This chapter aims to answer the following research questions:
— What is the information, content indicators, that needs to be considered as inputs of the inpainting-based

EC algorithm?
In addition to that, the following secondary research question is investigated too:
+ How to adapt the state-of-the-art inpainting-based EC algorithms to be suitable for low delay com-

munication?

Box 8.2 – Chapter structure

This chapter is structured as described in Figure 8.1. Generation of the motion map is shown in Section 8.2.1,
and the inpainting process is demonstrated in Section 8.2.2. The experimental results are shown in Section 8.3.
Finally, we sum up with the conclusions in Section 8.4.

Loss-impairment 

sequences

1 Motion Vector Map

Prepare Motion Maps

2 Motion Intensity Map

3 Camera Motion Map

Motion map

Inpainting-based EC

4 Inpaint moving pixels

5 Inpaint back. Pixels 

temporally

6 Inpaint back. Pixels 

spatially

7 Reconstructed 

sequences

Figure 8.1 – Chapter 8 Structure

— The quality of the results depend on the input Mc which indicates whether a pixel p is moving Mc(p) = 1 or
not Mc(p) = 0. The quality also depends on the strategy that replaces the simple copy strategy of the best
patch match by other strategies like LLE [266] and NMF [267]. The latter factor is investigated in [268] and
it is shown that the performance of the inpainting algorithm is improved. In this paper we will investigate the
former factor by introducing a concept of motion map Mc that includes the predicted motion vectors Mmv, the
pixel-based motion intensity Mpi and the motion vector of interests (MVI) that relate to camera motion Mcm.
It will be shown that the proposed motion map will significantly improve the performance of the inpainting.

— The algorithm in [34] works on the sequence level. The process does not start once the error occurs, but it waits
until more frames are available. Then, it first searches for the highest priority frame to start with. That means
that there may occur more than one error and it also means that the concealment might be performed out
of temporal order. This strategy is not practical for some video applications, since, in video communication,
once the error is detected in a frame, especially those that are used as reference for coming frames, it must be
concealed before the decoder continues. In this paper, the error concealment strategy is optimized for low-delay
configuration.

— Using a full search strategy or fixed window size is not efficient in terms of complexity and quality respectively.
In this paper an adaptive search window size for temporal and spatial inpainting is introduced.

— Trying to reduce the spatio-temporal artifacts, a simple blending strategy is employed using Poisson blending
[269] with the proposed mask strategy.

8.2.1 Motion Map

In this subsection, the concept of the motion map is illustrated. The motion map Mc is computed as: Mc =
Mmv ∨ Mpi ∨ Mcm, where (∨) is the logical OR operator, and the Mmv,Mpi, and Mcm will be described on the
following subsections.
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8.2.1.1 Motion Vector Map

As in [34], the lost MVs are predicted using Bilinear Motion Field Interpolation (BMFI) [31]. MV components Vx
and Vy are threshold to determine whether the pixel p belongs to a moving object Mmv(p) = 1 or not Mmv(p) = 0.
In this work, a threshold of 1 is used such that Mmv(p) = 1 if Vx(p) or Vy(p) > 1. Figure 8.2

Figure 8.2 – Motion vector map for source 1

8.2.1.2 Motion Intensity Map

In order to measure the pixel-based motion intensity, the pixel change ratio map (PCRM) [270] strategy is used.
This algorithm assumes that that a high intensity of motion yields a large change in pixel intensities over a video shot.
In this work the shot is represented by up to 8 previous frames. Mpi(p) = 1 if PCRM(p) > thi and Mpi(p) = 0 if
PCRM(p) ≤ thi, where thi motion intensity threshold. In this work it is set to 0.25 to exclude the pixels that have
low intensity changes over the video shot. Figure 8.3

Figure 8.3 – Motion Intensity Map for source 1

8.2.1.3 Camera Motion Map

In [271], the MVs of up to 8 previous frames are analysed to obtain motion vectors of interest (MVI). MVIs identify
the spatial region where the motion information has a direct relationship with the camera movements [271]. In this
work, the MVI of each frame is computed and assigned to Mcm. Figure 8.4
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Figure 8.4 – Camera motion map for source 1

8.2.2 Inpainting Process
In this section, the three main steps of inpainting-based error concealment method will be illustrated. Let some

blocks be lost in frame F at time t (Ft). The frame Ft has known/source area Φ and lost/target area Ω to be filled.
The fill front δΩ is defined as a contour that separates known and lost areas. The key elements of exemplar-based
inpainting algorithms are the filling order (or patch priority) of lost area and the texture synthesis, i.e. finding the
best match of the current processed patch. These two key elements will be illustrated in the following steps.

8.2.2.1 Inpainting Moving Objects

Once the error occurs, the error concealment (EC) process starts filling the lost area patch by patch using the
following steps: for each pixel p of the fill front δΩ, compute the patch Ψp priority, Eq. 8.1, as in [34,165], where C(p)
is the confidence term and D(p) is the data term. The confidence term, Eq. 8.2 represents the ratio of known data
to the patch area. While the data term, Eq. 8.3, gives more priority to the patches that have orthogonal motion di-
rection (∇M⊥c ) to the fill front δΩ. np is the normal to the fill front δΩ at p, and α is a normalizing constant (α = 255).

P (p) = C(p)D(p) (8.1)

C(p) =
∑
q∈Ψp∩(F−Ω) C(q)

|Ψp|
(8.2)

D(p) = |∇M
⊥
c .np|
α

(8.3)

The next step now is to synthesize the patch that has the highest priority Ψp̂, where p̂ = arg maxp∈δΩP (p). The block
matching algorithm is used to find the best matching patch Ψq of the known part of Ψp̂ within a search window w in
the previous/reference frame using the sum of squared differences (SSD) of colour and MV components (R, G, B, Vx,
Vy) of known pixels of Ψp̂ and all candidates in the search process. Where w is equal to the double of the largest value
of MV components of the surrounding area. The pixels values of Ψq are copied to the co-located unknown pixels of
Ψp̂.
The aforementioned steps are repeated until all moving and damaged pixels are concealed, the confidence term of the
copied pixels Ψp̂ is updated and the motion map Mc is also updated by copying the Mc of Ψq to the Ψp̂.

8.2.2.2 Inpainting The Stationary Background Temporally

In the previous step, all the moving pixels are concealed. In this section, the steps for inpainting the stationary
background temporally are demonstrated.
Following almost the same process of filling-in the moving pixels, the priority term, Eq. 8.1, for each patch centred
at p, where p ∈ δΩ needs to be computed. First, the confidence term of each pixel that is either damaged or moving
is set to C(p) = 0 and C(p) = 1 otherwise. The data term is defined to measure the amount of available temporal
information (Mt(p)) in the up to 8 previous frames. Hence, the data term is defined [165] as Eq. 8.4, where Mt(p) is
0 if p is either a moving or a damaged pixel, else Mt(p) is 1. The time index t indicates the relative position of up to
8 previous frames from t = 0 (the current frame) and β is a normalizing factor that represents the number of previous



8.3. EXPERIMENTAL RESULTS 97

frames used to compute the data term.

D(p) =
∑
p∈δΩ,t=−δn...0Mt(p)

β
(8.4)

The next step is to copy the patch Ψq from the nearest frame to the unknown part of the patch Ψp̂ that has the highest
priority. Then, the confidence terms of previously damaged pixels are updated. The process iterates until no more
temporal information needs copying, i.e. D(p) = 0,∀p ∈ δΩ. That means that the remaining pixels of the stationary
background have to be inpainted spatially.

8.2.2.3 Inpainting the Stationary Background Spatially

In this section, the steps for spatially inpainting the remaining pixels of the stationary background will be demon-
strated. This process follows the algorithm that is described in [166] exactly except for the search window size wp.
The search window size is adaptively changed for each process patch as follows. First, the minimum and maximum
allowed window size is computed as Eq. 8.5, and Eq. 8.6, where d(p) is the nearest distance between unknown pixels
to the known pixels. Second, for each patch the search window size is set to Eq. 8.7. This adaptive procedure is to
trade-off the quality and the complexity of the spatial inpainting.

minw = 2 ∗ patchSize (8.5)

maxw = 2 ∗max(d) (8.6)

wp = max(minw, d(p) ∗ maxw
minw

) (8.7)

8.2.3 Blending Step
In [272], the Poisson blending [269] is used to reduce the artifacts of the inpainting process and it was shown that

it improves the performance since the inpainting algorithm is based on frames registration. In this work, we first
demonstrate the blending of the inpainted frame temporally using the motion-compensated frame of the lost frame
and using the lost area as a mask. It is observed that this process will not improve the quality if not making it worse
since the structure of the lost area is not respected. This is because of the predicted motion vectors. Therefore, the
blending mask Mblend is changed to blend only the pixels that are far enough from the edges dedge and have a low
motion magnitude MVmag. Hence, the pixel will be blended if Mblend(p) = dedge

MVmag
> thblend. In this work, the thblend

is set to 2. It was observed that this blending mask gives better results than the former method. Unfortunately,
in general, this blending process is not improving the inpainted frame as assumed since the proposed motion map
maintains the structure and the texture of the inpainted frame.

8.3 Experimental results
The proposed algorithms and other state-of-the-art algorithms [31, 34] are implemented using MATLAB. Spatial-

only method [166] is compared in [34] and for the sake of complexity, it is not tested in this work. Eight 1280×720
video sequences are used in the experiment, Figure 3.25. In each frame, 5%, 10%, and 20% of the 64×64 blocks are
randomly lost and inpainted using different error concealment methods. For the sake of fair comparison, each source
share the same error pattern. The patch size should be greater than the thickest structure (e.g., edges) in the source
region [166]. In this work, it is set to 9 for all sequences. Figures 8.5, 8.6, and 8.7 show the results of the recovered
areas from sequence 1. It can be noticed that the proposed method improves the visual quality of the recovered areas.
Table 8.1 shows the performance of the different methods, in terms of difference of quality (PSNR). Method of [34] is
used as reference of comparison. The results are the average of the first 45 frames in the video shot. It can be noticed
that the proposed method achieves 1 to 6 dB of quality improvements depending on the video shot characteristics. In
terms of complexity, the proposed algorithm is faster than the algorithm in [34] by a factor of two on average.

8.4 Conclusion
This work proposes a modified version of the inpainting-based error concealment [34] by introducing several en-

hancements that are listed in Box 8.3. The experimental results show that the proposed methods improve the visual
quality and hence, reduce the error propagation. More investigations are required to know when the blending technique
might be used. Moreover, running the proposed method in a real network environment and real coding environment
is planned as future work.
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Table 8.1 – Quality performance of the different EC methods.

Sequences %lost ∆ PSNR (dB) compared to [34]

[31] Proposed
Proposed
with blend-
ing

Seq. 1
5 -0.2 2.0 2.0
10 -1.1 2 1.9
20 -2.4 1.5 1.4

Seq. 2
5 -0.6 6.0 5.6
10 -0.7 6.0 5.7
20 -0.7 6.3 6.2

Seq. 3
5 -8.2 1.0 0.3
10 -9.7 0.6 -0.1
20 -9.5 0.9 0.2

Seq. 4
5 -13.3 1.4 0.8
10 -13.5 1.2 0.9
20 -13.7 1.1 0.7

Seq. 5
5 -3.7 6.3 6.0
10 -4.4 6.3 6.0
20 -5.1 5.3 4.9

Seq. 6
5 -8.7 5.1 5.1
10 -8.3 6.2 6.1
20 -8.7 5.9 5.9

Seq. 7
5 -6.9 15.6 12.2
10 -6.8 15.4 11.7
20 -6.9 14.3 10.3

Seq. 8
5 -6.8 4.7 4.4
10 -7.2 4.9 4.3
20 -7.1 4.5 4.1

average
5 -6.0 5.3 4.5
10 -6.5 5.3 4.6
20 -6.8 5.0 4.2

(a) original (b) motion comp. [31] (c) inpaint [34] (d) inpaint (proposed)

Figure 8.5 – Example 1: Comparison of different error concealment methods for 10% of lost of sequence 1 (pink
rectangle).

(a) original (b) motion comp. [31] (c) inpaint [34] (d) inpaint (proposed)

Figure 8.6 – Example 2: Comparison of different error concealment methods for 10% of lost of sequence 1 (yellow
rectangle).
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(a) original (b) motion comp. [31] (c) inpaint [34] (d) inpaint (proposed)

Figure 8.7 – Example 3: Comparison of different error concealment methods for 10% of lost of sequence 1 (white
rectangle).

Box 8.3 – Contributions

A modified version of the inpainting-based error concealment [34] is proposed. The following improvements are
achieved in the proposed algorithm:

— The concept of motion map Mc is introduced. It includes the predicted motion vectors Mmv, the pixel-
based motion intensity Mpi and the motion vector of interests (MVI) that relate to camera motion Mcm.
It was shown that the proposed motion map improves the performance of the inpainting.

— The algorithm is adapted to be practical for low-delay video communications.
— An adaptive search window size for temporal and spatial inpainting is introduced.
— Reduce the spatio-temporal artifacts using simple Poisson blending strategy with the proposed mask

strategy.





9
Content-aware observer’s disruption
analysis of inpainting-based EC technique

9.1 Introduction

Visual scenes often contain enormous amounts of information: many orders of magnitude greater than the process-
ing capacity of the brain. For a simplified representation of this huge data, the visual system limits the high resolution
sensitivity to less than two degrees of viewing angle around the central viewpoint known as the Foveola. Second, from
the temporal perspective, the visual system needs a finite duration of time before it semantically understands and
grasps the temporal activity in a scene as well. This temporal and spatial localization of real-world information in the
visual system is what we refer to as a Spatio-Temporal Short-Term.
The visual periphery in general refers to one of the several regions outside the central foveal area: the Para-Fovea,
Peri-Fovea or Extra Peri-Fovea, the exact definition based on the photoreceptor mosaic topology which determines the
visual sensitivity and acuity of an area [273–275]. Irrespective of the exact terminology, vision studies have highlighted
the drop in spatial texture [211], colour [219], motion [212] and flicker [235] sensitivity across the periphery of the
retina. Aspects regarding how these reduced sensitivities translate to drop in perceived quality have been less explored.
In an earlier instance, it was observed that humans were sensitive to both: spatial and High Efficiency Video Coding
(HEVC) based flicker distortions in the visual periphery [276], although the exact sensitivity was found to be content
dependent. There has also been a significant amount of work in peripheral perception studies, through the study of
visual equivalents known as Peripheral Metamers : stimuli that differ physically but look the same [277]. In addition,
the recent work from Wallis et al [278] indicates that humans have an impressive sensitivity towards deviations from
natural appearance, in viewing eccentricities as much as ten degrees.
In this chapter we aim to analyse the perceived subjective quality of videos that are subject to losses. The lost areas
are reconstructed using two error concealment algorithms: the first on is the motion vector prediction and motion
compensation using Bilinear Motion Field Interpolation (BMFI) [31]. The second EC algorithm is the inpainting-based
EC technique that is illustrated in Chapter 8. The main goal is to study the subject’s disturbance by following the
hypothesis “if the user changes gaze, he is giving a lower MOS”. Hence, in this chapter, we raise the research questions
that are listed in Box 9.1. The structure of this chapter is shown in Box 9.2.

Box 9.1 – Research Questions

This chapter aims to answer the following research questions:
— Does the observer get disturbed with the proposed inpainting-based EC algorithm? Does that correlate

with DMOS?
— Which content indicators may help in predicting this correlation?

101
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Box 9.2 – Chapter structure

This chapter is structured as descried in Figure 9.1.

Loss-impairment 

sequences

2 EC using inpainting-based 

technique (HRC02)

1 EC using Bilinear Motion 

Field Interpolation (HRC01)

Concealment Process (HRC 

preparation)

Eye-tracking experiment

3 Subjective Experiment

Quality scores

Loss-free 

sequences 

(HRC00)

2 Role of content features

1 Disturbance analysis

Analysis of existing 

Subjective dataset
Feature extraction and analysis

4 Quality scores and 

disturbance analysis

5 Content features impact

- Texture entropy map

- Motion entropy map

- Color entropy map

Figure 9.1 – Chapter 9 Structure

9.2 Observations from existing loss-impairment video dataset
In this Section, we particularly analyse the perceived subjective quality of videos containing H.264/AVC transmis-

sion impairments [279], incident at various degrees of retinal eccentricities of subjects. We relate the perceived drop in
quality, to five basic types of features that are important from a perceptive standpoint: texture, colour, flicker, motion
trajectory distortions and also the semantic importance of the underlying regions.

9.2.1 Subjective Experiment
The subjective experiment consists of two parts: The first involved the measurement of quality scores in addition

to gaze recording as explained in [279]. The second experiment was performed much later in order to assess the
importance of each object in the presented scenes.

9.2.1.1 Experimental Setup and Test Subjects

The experimental setup is described in [279] and we restrict ourselves only to the relevant details here. 30 naive
human observers were each presented with 20 different videos from the VQEG dataset, under 5 different conditions
- only 3 of them being relevant here : (a) Control condition where no transmission impairment is embedded. (b)
Transmission impairment in a salient area for 400ms and (c) Transmission impairment in a non-salient area for 400ms.
The Joint Video Team (JVT) loss simulator was used to introduce packet loss into the H.264/AVC bit stream to
produce a transmission impairment that lasted exactly for 0.4 secs corresponding to our short-term. To have a better
control regarding the location and extent of the loss patterns, a fixed number of 45 macro blocks (MB) per slice was
chosen, and the error was restricted to this single slice only.
The experiment was designed according to ITU Rec. BT.500 and the videos were presented on a LVM-401W full HD
screen by TVlogic with a size of 40" and a native resolution of 1920× 1080 pixels and frame rate 25fps.

9.2.1.2 Measuring Subjective opinion

The 5-point impairment scale was used to assess the annoyance of the distortions in the sequences. Here, the
subjects assigned one of the following adjectival ratings to each of the sequences: ’Imperceptible (5)’, ’Perceptible, but
not annoying (4)’, ’Slightly annoying (3)’, ’Annoying (2)’, and ’Very annoying (1)’. Scores obtained for the pristine
undistorted sequences were then subtracted from the scores obtained for test cases with transmission errors for each
individual subject and video, in order to obtain the 1200 difference scores (30 observers × 20 videos × 2 impairments)
for the analysis.

9.2.1.3 The Eye-Tracking experiment

The eye-movement patterns of the subjects were recorded throughout the test, with the scoring in Section 9.2.1.2
also performed using the eye-tracker. The SMI Hi-Speed eye-tracker was used to obtain 500 gaze data samples per
second. Calibration was performed before displaying the actual video to minimize errors due to bad calibration.
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9.2.1.4 Measuring Object Importance

It is important to understand as to, which objects human subjects regard to be the most important in a video,
so that the semantic importance feature can be calculated. As explained in 3.3.6, the object semantic importance is
calculated. The importance score for every individual object in every video were then averaged among the subjects to
obtain an average importance that is less affected by individual variations and has a better precision.

9.2.2 Feature Analysis
This section lists the content features/indicators that will be used in this work. Each item in the list refers to the

section where more details can be found.
— Viewing Eccentricity 3.3.1
— Distortion in Texture 3.3.2
— Distortion in Colour 3.3.3
— Role of Semantic Importance 3.3.6
— Distortion in Motion Trajectories 3.3.4
— Distortion in Temporal Harmonics(Flicker) 3.3.5

9.2.3 Observations
Each of the 1200 difference opinion scores (DOS) corresponding to that of each subject in each viewing (30 observers

x 20 videos x 2 impairments) are examined in 12 separate groups in accordance to the impairment viewing eccentricities
derived from the corresponding Eye Tracking data. In addition, content feature analysis is performed in order to relate
the perceived quality drop at each individual eccentricity to the underlying video content.

9.2.3.1 Effect of viewing eccentricity on perceived quality

Investigating the relation between the viewing eccentricity and the drop in the quality score (as compared to the
pristine reference), shows us that viewing eccentricity is a major factor that determines perceived quality. It is seen
from Figure 9.2, that the drop in quality score of subjects is dependent on the eccentricity at which they observed the
distortion. The drop in Cortical Magnification factor in the V1 area follows a similar characteristic as well [280].
The eccentricity at which the distortion was incident upon the retina of the subject is therefore a very important
determinant of perceived quality. This is mainly due to the nature of photoreceptor arrangement in the early vision
stages of the human visual system, which in turn affects its resolving power.

Figure 9.2 – Variation of difference scores of subjects and cortical magnification factor [280] with viewing eccentricity
along with the 95 percent confidence intervals

9.2.3.2 Overall effect of the content features

For analysing the overall effect of the content features (at all eccentricities), as shown in Figure 9.3, we use two
different methods: The correlation score obtained by correlating the normalized feature responses with the drop in
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MOS and second, the weights obtained by fitting a linear model (weights constrained between -1 and 1) to predict the
drop in MOS (also normalized 1). Both indicators show a strong influence of the flicker distortion phenomenon (Low
and Middle frequencies) and both the colour opposition channel distortions (R-G and B-Y) on the overall quality. In
case of temporal harmonics (or flicker) however, the increase in the energy of temporal harmonics in the distorted case
as compared to the reference, reverses the sign of the feature value.

Figure 9.3 – Pearson correlation coefficients and the Linear model weights, of the normalized feature responses versus
the normalized difference opinion score. Negative correlation indicates an improving difference opinion score with
reducing feature response. Please refer to Section 3.3 to have more detail about the feature labels.

9.2.3.3 Effect of content features in the periphery

Perhaps the most important part of the analysis is to obtain a relation between the various features and the
perceived drop in quality at every individual eccentricity. Fitting a separate linear model at every individual eccentricity
shows us the importance of each feature as in Figure 9.4. While semantic importance, motion distortions and spatial
low frequency distortions are important features that determine the drop in perceived quality in the fovea, flicker
and colour opposition channel distortions are perhaps the most important quality indicators at six degrees of visual
periphery. The colour opposition channel distortions in particular, maintain their importance at all eccentricities.

9.2.4 Discussion
We are able to observe that the perceived drop in quality across the visual periphery is closely related to the Cortical

Magnification fall-off characteristics of the V1 cortical region. Additionally, we see that while object importance and low
frequency spatial distortions are important indicators of quality in the central foveal region, the low-medium temporal
distortions (< 9.3Hz) and colour distortions are the most important determinants of quality in the periphery. We
therefore conclude that, although human observers are more forgiving of distortions they viewed peripherally, they are
nevertheless not totally blind towards it: the effects of flicker and colour distortions being particularly important.
It is noteworthy that any single feature fails to produce a dramatically high correlation as seen in earlier studies [281].
The current work, however, attempts to study this multi-dimensional feature dependency, by projecting the quality
scores separately into each individual feature dimension.
Because more than 90 percent of the information in a visual scene is incident on the peripheral areas, these results
serve as important indicators to produce video content whose quality is perceptually optimum.

9.3 Subjective Evaluation of inpainting-based EC
9.3.1 Source video contents

In Chapter 3.4, the contents that are used in this section are shown. The 14 source sequences are in high definition
(HD) with a resolution of 1280×720 pixels. The frame rate of the video sequences varies from 25 frames per second
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Figure 9.4 – Weights of the various features (constraint: −1 ≤ weighti ≤ 1) in the Linear Model, that is used to
predict the drop in normalized quality score. The vertical axis indicates the eccentricity at which the impairment was
observed, and the horizontal axis indicates the different features that were used to predict the difference opinion score.
Please refer to Section 3.3 to have more detail about the feature labels.

(fps) to 60 fps. Each sequence is 10 seconds long. Video sequences cover different video properties: motion intensity,
camera motion type, spatial complexity, and colours.

9.3.2 Hypothetical reference circuit (HRC)
The 14 video contents are subject to loss-impairment and are concealed using two error concealment algorithms; the

first one (HRC01) is the motion vector prediction and motion compensation using Bilinear Motion Field Interpolation
(BMFI) [31]. The second EC algorithm (HRC02) is the inpainting-based EC technique that is illustrated in Chapter 8.
Hence, we have 2 HRCs and one original pristine (HRC00). To sum up, 14×3=42 processed video sequences (PVSs)
are generated. Each content has the same error pattern. The video sequences are divided spatially and temporally.
Regarding the spatial division, each frame is divided to regions; top-left, top-right, bottom-left, bottom-right, and
centre. The centre region left without distortion. Regarding the temporal division, the video sequence is divided into
5 time slots each is 2 seconds. The other slots are subject to loss-impairments in one of the spatial regions. The loss
is 256×128 or 128×256. The order of appearing the loss is random and different from content to content.

9.3.3 Testing conditions
The experiment was designed according to ITU Rec. BT.500. [255]. The 5-point impairment scale was used to

judge the annoyance of the distortions in the sequences. After each sequence viewing the observers has to choose
one of the 5-point impairment scale: ‘Imperceptible (5)’, ‘Perceptible, but not annoying (4)’, ‘Slightly annoying (3)’,
‘Annoying (2)’, and ‘Very annoying (1)’. Since all processed videos were affected by error insertions, the impairment
scale is selected over the quality scale.

9.3.4 Subjective assessment
For each content, the stimulus is viewed one after another. The gaze information, eye-tracking, is recorded in

the viewing using the SMI Hi-Speed eye-tracker operated in binocular viewing mode, providing 500 gaze samples per
second. After the viewing of each PVS, and, of course, collecting the eye-tracking data, the observer is asked for his
score for each PVS. A playlist for each observer is prepared taking into consideration that the sequences that belong
to the same content are not viewed consecutively, and orders of the sequences are random. The viewing distance was
4.5H times the height of the screen. The experiment was explained to the observers using a training session prior to
the test session. The test duration is about 50 minutes including training and breaks. The screen brand is Grundig
FINEARTS 55 FLX 9490 SL with a 55-inch diagonal. The content is displayed on the centre of the gray screen. The
ITU Recommendations BT.709-5 [254] and BT.500-13 [255] are followed to adjust the screen colour and brightness
and to set up the testing room respectively. 24 non-expert observers participated in the experiment, 13 males and 11
females and the age average is 24 (19 to 30). A vision check is performed before the experiment using far and colour
vision tests. Any observers with normal or corrected to normal visual acuity are allowed to do the experiment.
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9.4 Analysis

9.4.1 Quality scores

9.4.1.1 Subjective scores

Figure 9.5 shows the mean opinion scores of the observers and the corresponding confidence interval (CI). The
MOS of the undistorted sequences have a better quality than HRC01 and HRC02 except for Sources 4 (CrowdRun),
5 (ParkJoy), and 11 (ReadySteadyGo). Source 4 has a lot of faces and although there are distortions in the texture,
the distortion does not disturb the subjects. Source 5 has different textures; trees, water, and grass. The distortion
caused by HRC02 is not perceptible. The visible distortions in Source 11 do not annoying the subjects since it lies on
the not of interest region.
Regarding the comparison between the two distortions; HRC01 and HRC02. HRC02 shows significance in quality
with no/ignored overlap in CI in Sources 2 (Beauty), 3 (CampFireParty), 4 (CrowdRun), 5 (ParkJoy), 8 (YachtRide),
11 (ReadySteadyGo), and 12 (ResidentialBuilding). Figure 9.6 shows examples. It is observed that HRC02 shows
significant quality improvements. On the other hand, HRC02 gives a higher MOS but without ignored CI with
Sources 1 (BigBugBunny), 6 (TallBuilding), 10 (Library), and 13 (Marathon). Figure 9.7 shows examples. It can also
be observed that HRC02 has better quality frame-wise but sequences-wise there are some overlaps in quality with
HRC01. An even performance for the two HRCs is noticed on Source 14 (TrafficandBuilding), Figure 9.8. HRC01
shows better MOS than HRC02 without ignored CI on Sources 7 (Treeshade) and 9 (ConstructionField). Figure
9.9 shows that HRC01 performs better due to the lack of motion activity in the scene. In such situation, the main
step that gives the inpainting-based EC technique an important value is the inpainting the background temporally.
Without this step the spatial inpainting step will limit the performance of the technique.
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Figure 9.5 – MOS and CI for each content

9.4.1.2 Objective scores

The full-reference (FR) quality assessment tool helps gives a quality score for the distorted sequence if the refer-
ence (original) exists. In this subsection, PSNR, SSIM [61], MS-SSIM [62], VIF [245], and VMAF [282] are used to
give the quality score of each distorted sequence despite the fact that these measures are not implemented for the
loss-impairment sequences. VMAF (Video Multimethod Assessment Fusion) is a FR VQA tool provided by NetFlix.
Figure 9.10 shows the correlation of each objective measure and the DMOS of the MOS scores for each HRC. All
measures give a bad correlation with DMOS although the correlation in HRC01 is much better than the correlation of
HRC02. As discussed in the previous subsection, the perceptual quality of HRC02 is much better than the perceptual
quality of HRC01. It means that the error concealment using HRC01 makes kind of global distortion in the sequence
which makes it easy to notice. While the error concealment with HRC02 makes a kind of local distortion that not
always visible to observers and this kind of distortion make the job of FR VQA much harder. That explains the low
correlation of all measure except for the VMAF since it employs the detail loss metric (DLM) [283] which measures the
loss of useful visual information that affects the content visibility. It is clear that the traditional objective video quality
measures are not sufficient to measure the quality of a sequence with local distortion. Following these observations,
this chapter introduces in the next section the content-aware disturbance analysis that may be useful in order to model
the subjects behaviour for each HRC.
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Figure 9.6 – Examples when HRC02 outperforms HRC01
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Figure 9.7 – Examples when HRC02 and HRC01 performances are questionable, but HRC02 is better in general

9.4.2 Disruption analysis
9.4.2.1 Defining Disruption

Although gaze disruption was previously defined as a sudden change in visual attention due to a certain unexpected
event/characteristic of the video, this definition is mathematically insufficient to appropriately quantify and identify
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Figure 9.8 – Examples when HRC02 has the same quality of HRC01
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Figure 9.9 – Examples when HRC02 and HRC01 performances are questionable, but HRC01 is better in general

Figure 9.10 – Objective scores for each HRC and per metric type; PSNR, SSIM,MS-SSIM,VIF, VMAF

disruption. Hence this subsection aims to provide a basic definition of disruption. For more details, reader is advised
to read [284]. Before defining disruption, it is essential to quantify and define two important measurements extracted
from the eye-tracking data: the eccentricity of viewing just before the distortion is presented (known as the Relative
position(RP) of initial gaze) and the eccentricity of viewing after the presentation of the transmission impairments
(known as Relative position(RP) of saccadic target). This is shown in Figure 9.11 and serve as an important indicator
of disruption. Eccentricity in this context is defined as the shortest distance (in degrees) between the point of gaze and
the impaired region in the video. As disruption is defined as the change in the attended location due to the presence
of a special signal, it is especially important to consider cases with a large RP of initial target and a small RP of
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saccadic targets. Such a scenario indicates that the annoyance due to the impairment possibly caused the observer to
shift his attention from some other point in the video towards the area the impairment has occurred. It is, however,
possible that the observer executed this saccade with a natural exploratory intention and hence statistical tests are
required to ascertain the purpose of such a saccade.
Impairments often disturb the natural viewing behaviour of an observer, in turn strongly affecting the RP of the

Figure 9.11 – Point of initial gaze refers to the region that the subject was initially looking at before the distortion
appeared. On the other hand, saccadic targets refer to the region where the user shifted his gaze, as soon as the
distortion was presented

.

saccadic target. Examining the probability of an observer being drawn towards the impairment therefore serves as a
measure of disruption. Assuming that a viewer was in a RP of initial gaze X and that the impairment makes him
saccade towards a RP of saccadic target say Y, we define disruption D as the probability that the saccadic amplitude
X−Y caused by the impairment is greater than a finite threshold δ, when examined at every possible X ranging from
δ to the maximum possible viewing angle Amax, as shown in equation 9.1

D =
Amax∑
xi=δ

p((X − Y ) > δ|X = xi)p(X = xi) (9.1)

Amax can be normally derived from the maximum display dimensions that are under consideration considering that
the user cannot execute a saccade that is greater than this amplitude. Note that the summation starts from a finite
δ because, it is impossible to measure disruption, if the observer was already in the impaired location even before the
impairment was introduced. Hence we neglect such cases and start the summation only from a certain offset : δ. It
can also be deduced that disruption can be completely and sufficiently deduced by just examining X and X − Y at
every possible X = xi.

9.4.2.2 Disruption correlation with DMOS

The disruption D is defined in the previous subsection. Hence, this disruption is measured for each content in
HRC1 and HRC2 once an error occurs.
Figure 9.12 shows the subjective scores (DMOS) against disruption (D). The measured disruption correlates well with
the subjective scores. The Pearson Linear Correlation Coefficient is calculated and the value of 0.899 is recorded. In
the Figure, the blue and red points represent HRC1 and HRC2 respectively. It can be noticed that the sequences,
that are concealed using HRC1, have higher entropy value than HRC2. This high entropy value is an indicator of
insufficiency of the EC technique to recover the lost texture and structure especially for sequences of high motion
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Figure 9.12 – Subjective score (DMOS) against disruption (D). The correlation is 0.899. The blue points for HRC1
and red points for HRC2.

intensity and for sequences of high spatial details.
Moreover, it can be observed that there are sequences (3, 5, and 10) haveDMOS = 0 and a small amount of disruption.
It means that there are few subjects who noticed the distortion.

9.5 Content-aware disruption analysis
The first among the many features to consider in the disruption model is the effect of the content. It is plausible

that the saccades, or more specifically saccadic disruptions in the gaze-data can arise due to the nature of the content
itself and hence, it would be naive to disregard the effects of the content when assessing the effect of disruptions.
The following content features are used, in this experiment, to analyse the subject gaze patterns and scores: Texture
entropy map, Section 3.3.2, colour entropy map, Section 3.3.3, and motion entropy map, Section 3.3.4.

9.5.1 Role of Entropy
Morandi et al [285]., have highlighted that while unusual details and unpredictable contours in the picture results

in shift of attention towards them and a high concentration of fixations, boring textures and predictable regions often
seem uninteresting. They conclude that informativeness of a region, as determined in terms of its recognizance had a
huge role to play in the final density of the fixated regions.
This principle has been used in various forms by many other studies like [286,287]. In [286] for example where entropy
gain along a feature dimension is measured by the Incremental Coding length. Their basic principle was to ensure that
their system must respond placidly to common stimuli and be alert to anomalous ones, in line with the above principles.
Further, evidence for such an approach has also been found in the Sparse coding theory in the visual cortex region.
Measurement of large coding length increments helps the computational system achieve attention selectivity in any
space: texture, colour or temporal, based on the feature dimension, because such a system responds very aggressively
to frequently activated features. A very similar strategy is followed in the models of [287], where saliency is defined
as given the surrounding area, it is the minimum uncertainty of the local region (namely the minimum conditional
entropy). They especially define conditional entropy in their work, as the lossy coding length of Multivariate-Gaussian
data.

9.5.1.1 Calculation of entropy

Entropy in the present work is calculated within the short-term spatio-temporal construct. At every pixel of every
frame, we consider a short term filtering window of 2 degrees of visual angle (120 pixels at standard viewing distance)
and 500ms temporal extent centred at that pixel as shown in Figure 9.13. In the Figure, we see an example of a
cylindrical spatio-temporal window centred at the considered pixel. In case we intend to keep the calculations causal,
we might additionally consider the past temporal neighbours alone, as opposed to considering the candidates from
the future, as well. All the feature values (like motion, colour for example) within this short term tube are collected
together and used (jointly) for the calculation of entropy.
It is believed that such an entropy calculation within every small window will point out the anomalies and disturbances
in the flows (possibly due to a distortion) along a certain feature dimension.
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Figure 9.13 – Calculation of entropy occurs over a tube that encompasses a spatial neighbourhood and several temporal
neighbours

9.5.1.2 Calculation of Differential cumulative sum of entropy (CSE)

The following steps are followed to calculate an objective value that represents the difference in the entropy maps
of reference and distorted sequences.

— once an error occurs, a set of n presumed scan-paths are generated as explained in [284].
— for each scan-path pair (reference, distorted),

— calculate the cumulative sum of entropy (CSE).
— calculate the cumulative difference (CDE) of entropy as in 9.2

— calculate the average per sequence for the sequence.
CDE(n) = CSEref (n)− CSEdist(n) (9.2)

9.5.2 Texture entropy map
Section 3.3.2 describes how we calculate the entropy for each pixel in the video shot. Then, the CDE is calculated

for each sequence. Figure 9.14 shows the subjective score (DMOS) against logarithmic scale of texture CDE. The
Pearson Linear Correlation Coefficient is calculated and the value of 0.63 is recorded. Although this correlation is not
high, the texture entropy map can highlight the importance of texture features, i.e. this entropy map can be improved.
Besides, this indicator correlates better than the objective measures.
It is observed that the texture CDE of sequences that are concealed using HRC1 is higher than those that are used
HRC2 except for sequence #7 (TreeShade) and sequence #8 (YachtRide). This observation is consistent with the
perceived MOS scores for sequence #7. This sequence has no camera motion and very small motion which make it
so perfect for HRC1. For sequence #8, the inpainting EC (HRC2) caused a high change in the texture properties
especially the dynamic texture. This change is captured by the objective CDE but not the subjects.

9.5.3 Colour entropy map
Section 3.3.3 describes how we calculate the entropy for each pixel in the video shot. Then, the CDE is calculated

for each sequence. Figure 9.15 shows the subjective score (DMOS) against logarithmic scale of colour CDE. The
Pearson Linear Correlation Coefficient is calculated and the value of 0.7 is recorded. Although this correlation is not
high, the texture entropy map can highlight the importance of texture features, i.e. this entropy map can be improved.
Besides, this indicator correlates better than the objective measures and the texture entropy map.
It is observed that the colour CDE of sequences that are concealed using HRC1 is higher than those that are used
HRC2 except for sequence #7 (TreeShade) and sequence #8 (YachtRide). This observation is similar to the CDE of
texture. What is different is that the rank/order of sequences texture and colour CDEs is different. This could be one
step towards introducing a hybrid entropy measure.

9.6 Conclusion
The main contributions of this chapter are listed in Box 9.3. In this chapter, the subject disruption for an existing

database and for the inpainting-based EC algorithm are analysed in order to know if such disruptions are related to
the perceived quality. The visual disruption and MOS scores are calculated. As expected, traditional objective metrics
struggled to even achieve a strong correlation, while visual disruption achieved a correlation of 0.899 with the recorded
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Figure 9.14 – Subjective score (DMOS) against logarithmic scale of texture CDE. The correlation is 0.63. The colour
bar refers to the content and the number on each point refers to the HRC number.

Figure 9.15 – Subjective score (DMOS) against logarithmic scale of colour CDE. The correlation is 0.7. The colour
bar refers to the content and the number on each point refers to the HRC number.

opinion scores. These findings support the claim that the disruption is a good indicator of the perceived local quality.
The proposed content features (texture, colour, and motion entropy maps) are good steps to be further analysed by
the VQA researchers to implement and introduce objective video quality measurement for loss-impaired sequence.

Box 9.3 – Contributions

— It is observed that the disruption measure has a high correlation with the perceived DMOS. In addition to
that, it is shown that the inpainting-based EC technique achieves a better perceived quality with respect
to one of the-state-of-the-art EC techniques.

— Three content features are introduced to study the subject disruption as one step forward to help measure
the quality of the perceived degraded videos. The features are: texture, colour, and motion entropy maps.



V
Role of measured content characteristics

in quality assessment

113





10
Influence of content and coding
conditions on different full-reference
video quality measures

10.1 Introduction

Typical industrial video distribution chains may continuously monitor the video quality at several processing steps,
at the camera capture, on the contribution channel to the studio, for the distribution to the customer, and finally at
the customer side. In this work, the application focus would be on those parts where a reference video is available for
comparison to a degraded video using Full-Reference (FR) video quality measures and measurement needs to be per-
formed in real-time, potentially on low-performance network equipment. The reference video may either be available
explicitly, for example as input to an encoder step, or implicitly, for example using a (camouflaged) test video during a
regular operation. A huge number of FR algorithms have been developed and are still in development by researchers in
industry and academia ranging from very low to very high computational demands. The evaluation of these methods
is usually performed by comparing their prediction performance to ground truth data obtained in subjective experi-
ments, a typical example being the validation experiments by the Video Quality Experts Group (VQEG) [288] that
led to several Recommendations of the International Telecommunication Union (ITU-T J.144, J.247, J.341).
Performance evaluation by subjective experiments may be seen as mandatory and thus necessary but not sufficient due
to the limited number of test cases with respect to the above-mentioned application scenario. It is usually considered
as ground truth for the training, verification, and validation of objective video quality measures. The number of test
cases that may be obtained in subjective assessment is however limited. Less than 200 video sequences of about 10
seconds in one session may be evaluated when using one of the most efficient methods, Absolute Category Rating [194].
In addition, with a reasonable number of observers, only about 75% of the test cases are pairwise distinguishable with
confidence intervals around 0.3 on a five-point scale [289]. Even with recent collections of available databases, notably
the Qualinet Database [290], the choice of available annotated databases for a particular usage scenario stays limited.
Automatic performance analysis only using objective measurements provides a complementary approach. Two alter-
natives shall be mentioned here. First, the creation of dedicated test sequences in which the performance is expected
to be known a priori such as increasing strength of a distortion [291]. The second possibility is to create and evaluate
successively a large-scale database [240,292]. A review of the large-scale database can be found in 3.4.4. It is comple-
mentary, as it may be expected that performance anomalies, such as outliers, may be detected that may be missing
in the limited selection performed for subjective assessment. In [293], Ciaramello and Reibman explained a similar
approach for image quality predictors by creating a large amount of test images with specific degradations.
This chapter is aiming to use the large-scale database in order to conduct analysis and see observations that cannot
be obtained with the subjective experiments. Hence, in this Chapter, we follow the research questions listed in Box
10.1. The structure of this Chapter is outlined in Box 10.2
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Box 10.1 – Goals

This chapter aims to answer the following research questions:
— How do different full-reference video quality measures behave in terms of ranking for the error-free and

loss-impairment sequences?
— Characterize the behaviour of FR video quality measures at frame and sequence levels with respect to

video content and coding parameters.

Box 10.2 – Chapter structure

This chapter will be organized and structured as shown in Figure 10.1. In Section 10.2, the behaviour of the
quality measures in terms of ranking/agreement will be studied. In Sections 10.3.1 and 10.3.2 characterize the
impact of video content and coding parameters on the agreement of FR quality measures at frame and sequence
levels, respectively.

Large-scale database

0 Objective FR measures per 

frame and sequence; PSNR, 

SSIM, and VIFp

1 Agreement Analysis

For error-free sequences

For loss-impairment 

sequences

2 Characterizing the 

impact of video content 

and coding parameters

At frame level

At sequence level

Figure 10.1 – Chapter 10 Structure

10.2 FR measures agreement for loss-impaired sequences
The focus of this section is on the characterization of three well-known objective video quality predictors in terms

of ranking agreement and distance with realistic coding and lossy network transmission conditions. On other words,
we study the stability of the measures with the ultimate goal of better understanding the intrinsic limits of the mea-
sures themselves. To this aim, we present an extension to the database [292] which adds a large number of objective
quality evaluations when compressed video streams are subject to data loss. It shall be noted that none of the three
measures was specifically designed for measuring degradations due to packet loss, notably concealment artifacts and
time varying quality. However, they have been used repeatedly in the literature in order to measure such scenarios
regardless of such considerations. Transmission degradations have therefore been considered as being at least in the
extended scope of application: prediction with a limited accuracy was expected using these measurement algorithms.
Having several measures for the same video sequence naturally yields to the question if such measures are consistent
in ranking. In other words, given two processed video sequences (PVS), do all the measures agree about which is the
one with the highest quality score? This agreement can be expressed mathematically as in Eq. 10.1. The underlying
idea is that if one or more of these measures do not agree, this condition should deserve further investigation. In [240],
a similar approach is used when dealing with PVSs that do not contain data loss impairments.

Agreement =
{

1 |
∑
Q∈{PSNR,SSIM,V IFP} sign(Q(A)−Q(B)) |= 3

0 else
(10.1)

Table 10.1 reports results for the nine sources considered in this work. The first data column shows the percentage
of comparisons with disagreement among all comparisons within the same source (i.e., 1,230,055,200 pairs). The next
three columns show how many cases (as a percentage out of all disagreement cases) can be ascribed to each measure
(PSNR, SSIM, VIFP). These results can be directly compared with the ones in [240] showing that, in the considered
scenario, the loss impairment tends to increase the amount of disagreement. Moreover, for most sources the share of
disagreement attributed to PSNR increases compared to the case in [240] (i.e., no losses), whereas there is a decrease
for the VIFP measure. This behaviour may suggest that some measures are more influenced (and perhaps are more
sensitive) to loss impairment than others.
However, the previous results should be taken carefully since very limited variations around the equivalence between
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Table 10.1 – Reasons of disagreement among quality measurements for each sequence. src09 is not included due to
the PSNR issue: infinite values for some encoded frames are present.

% of % due to % due to % due to
Source disagreement PSNR SSIM VIFP
src01 12.74 38.81 41.60 19.59
src02 4.29 61.37 23.97 14.66
src03 12.07 45.47 26.42 28.11
src04 10.41 57.51 22.55 19.94
src05 4.11 47.26 32.27 20.47
src06 9.98 71.81 12.43 15.76
src07 5.64 65.27 11.89 22.84
src08 5.46 59.19 19.73 21.07
src10 12.44 46.67 32.12 21.21

the pairs could yield disagreement that may be due to potentially tiny modifications of the characteristics of the PVS.
Therefore, for each algorithm we introduce a normalized difference by linearly rescaling the results in the interval
[0..1]. Normalized values are denoted by the hat symbol (e.g., P̂SNR). Then, the individual differences of all the
measurements for a sequence pair are combined in a single normalized difference d̂ by using the Euclidean distance:

d̂ =
√

∆P̂SNR
2

+ ∆ŜSIM
2

+ ∆V̂IF
2

(10.2)

so that the results can then be plotted in one dimension using a histogram for each source, as suggested in [240].
Figure 10.2 presents a sample histogram showing the reason of disagreement as a function of the normalized difference
for src03. As expected, the amount of disagreement decreases as the distance increases. Moreover, the figure shows
a smooth reduction trend for all the three considered measures, though the share is generally higher than the one
in [240]. This result is in part different from [240], in particular for src03, where the share strongly fluctuates as
the distance increases. This effect was described as being potentially attributed to the characteristic of the sequence
content.
Since the share of agreement increases more slowly compared to [240], we plotted the histograms for a larger distance,
as shown in Fig. 10.3 for src01 and src06. For convenience, a black vertical line shows the point up to which Fig. 10.2
and all histograms in [240] have been plotted. It can be noticed that the disagreement spans over a larger interval of
normalized distances: this is expected since loss impairments typically have stronger influence on the measurements.
However, strong differences in the reasons of disagreement can be observed: src01 is dominated by SSIM disagree-
ment, whereas PSNR is the main reason of disagreement for src06. Therefore, content characteristics appear to play a
significant role in this regard. The analysis presented in Figure 10.3 shows that our approach can help investigate the

Figure 10.2 – Reason of disagreement (expressed as a ratio over the total pairs) between the various algorithms as a
function of the normalized difference for src03.

stability of video quality measures even when a large number of test sequences are involved, which makes subjective
assessments impossible. However, we remark that our aim is not substituting subjective assessment. On the contrary,
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Figure 10.3 – Reason of disagreement (expressed as a ratio over the total pairs) between the various algorithms as a
function of the normalized difference for src01 and src06. To simplify comparisons, the black vertical line shows the
point up to which Fig. 10.2 and all histograms in [240] have been plotted.

we aim at identifying potential shortcomings in terms of, e.g., stability and agreement, of existing video quality metrics
that could not be investigated without resorting to large scale assessment. Interesting conditions and outlier situations
can be identified, further studied, and analysed. We remark that such results can only be achieved by means of using
a large scale database. In particular, we noted how some peculiar observations on the behaviour of metrics such as
PSNR are due to the use of a large number of combinations of coding parameters.

10.3 Impact of content and coding condition in FR agreement consis-
tency

Analysis methods and preliminary conclusions using such agreement analysis were proposed by the authors for
coding and packet-loss scenarios [240, 294] and discussed in previous sections. The analysis used either pairwise
comparisons or additional indicators that were fitted either to improve coherence or to analyse the behaviour of the
measures. Using the same type of analysis, this section proposes an evaluation of objective measurements that is
difficult to achieve in subjective assessment: characterization of single frame prediction performance in the context
of a video sequence. By frame-wise analysis, important insight may be gained concerning the scope of application
of a measure, for example regarding suitable temporal pooling strategies, i.e. required smoothing for outliers or
rate-distortion applications. In the latter case, different distortion measures may be considered in order to improve
the smoothness of the perceived video quality optimization. Due to the still limited size of the current large-scale
database and the selection of the objective measures dictated by the available processing power, this study focuses on
presenting innovative analysis methods rather than generalizable results. Two types of analysis are shown as depicted
in Fig. 10.4. The first, pairwise ranking comparison of consecutive frames as a measure of coherence is presented in
Section 10.3.1. The second is introduced in Section 10.3.2 in which different source videos and coding parameters are
frame-wise compared providing insight into influence of content and coding structure decisions on coherence.

10.3.1 Consistency measure on consecutive frames
In this section, the continuity of agreements and disagreements is analysed within one HRC, i.e. within one coding

condition, for each source content. The continuity of agreements is measured in a sequential manner as formerly
described in Eq. 10.1 and as illustrated in Figure, 10.4 with solid arrows. Once the disagreement is happening
between frames (A and B), there is high probability that frame B disagrees too with frames before A. For the given
large-scale database, there are 5952 HRCs for each 250-frame source. Hence, a 5952x249 agreement/disagreement
matrix is calculated for each source. Then, for each of these sources, the columns are summed and divided by the
number of HRCs. This type of analysis shows the temporal behaviour of different objective video quality metrics,
namely PSNR, SSIM, and VIFP. Fig. 10.5 shows the variations of the number of disagreements over time for two source
contents: source number 6 and 10. The darker the bar for a particular frame, the higher the fraction of disagreement
between the frame represented on the X-axis and its previous frame.
It is difficult to make general interpretations from such an overall analysis. A better strategy is to consider agreement
with respect to the different sources or coding conditions as described in the following subsections as well as in Section
10.3.2. On the other hand, what can already be observed in this high-level analysis is that the highest number
of agreements (white peaks) are happening when agreement between video quality measures is calculated between
Intra-frames and their successive/preceding Inter-frame. Further analysis of the data reveals that this is because the
Intra-frame has a notable higher quality compared to next/previous Inter-frame from the quality measure point of
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1 2 ... N

1 2 ... N
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PVS-1
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Consecutive pairwise comparison within one HRC PVS

Frame-wise pair comparison between PVSs

Figure 10.4 – Illustrations for the two types of analysis that are demonstrated in Section 10.3.

view. The used encoder configurations imply a higher quality to the Intra-frame compared to Inter-frames such that
all measures easily agree on which frame is highest in quality. Thus, when measuring improvements for upcoming
algorithms, it is advantageous to compare all available objective measures with respect to the content in order to
provide a thorough analysis of the proposal.

10.3.1.1 The impact of content

When analysing the data in more detail, the influence of the content types and characteristics clearly appears.
From the data, it can be observed that the number of disagreements varies from one content type to the other. In
Fig. 10.6, the fraction of disagreement for each quality measure is displayed. It can be observed that the contribution
of each quality measure to the overall disagreement is very clear. The majority of disagreement in SRC3 is due to
PSNR, while the majority of disagreements in SRC10 is due to SSIM, the figure is not presented here due to space
limitations. From these observations, it can be concluded that depending on the type of the source content, PSNR,
SSIM, and VIF can act differently. Thus, when measuring improvements of algorithms, it is advantageous to compare
all available objective measures with respect to the content in order to provide a thorough analysis.

src10

src06
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Figure 10.5 – The variations of the number of disagreements over time for two source contents: source number 6 and
10.

10.3.1.2 The impact of Intraperiod

As mentioned in the high-level analysis, the Intraperiod is a very important factor in understanding the temporal
behaviour of the quality measures. Fig. 10.7 shows this effect. It demonstrates the variation of disagreements of HRCs
of SRC6. It is obvious that the disagreement fractions between Intra-frames and next/previous frames are very low
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Figure 10.6 – The cause of disagreements in SRC3.

compared to other frames. Similar observations can be made for all Intraperiods (8, 16, 32, and 64) and also for
the other source contents. The capability of the quality measures to agree when comparing two frames of notable
difference in quality is the main reason for this phenomenon. Hence, when a source is encoded with coding conditions
that only differ in the Intraperiod, temporal pooling strategies for calculating the video quality score may be examined
and this effect may be taken further into account.
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Figure 10.7 – The variation of disagreement fractions of HRCs with Intraperiod of 8, 16, 32, and 64 of SRC6.

10.3.1.3 The impact of GOP structure

Low-delay and the hierarchical structure of GOP configurations are widely used in different application scenarios.
In this work, the consistency of quality measures is categorized to show the role of hierarchical GOP structure with
different sizes and a low-delay configuration of size four. Fig. 10.8 shows this role for SRC6. The number of disagreement
in the low-delay configuration is higher than the number in the hierarchical coding structures. This observation stands
for all source contents except for SRC3. This behaviour of low-delay might be due to its configuration of using not
only the previous frame but also -5,-9, and -13 frames relative to the first frame of the GOP. Moreover, in low-delay
there is only one layer and the quality of the inter-frames are very similar, which yields a high inconsistency between
the quality measurements.

GOP 2
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GOP 8

LDGOP 4

 0  20  40  60  80  100  120  140  160  180  200  220  240
Frame number

0.00

0.10

0.20

0.30

Figure 10.8 – The variation of disagreement fractions of HRCs with hierarchical GOP of 2, 4, and 8 and the low delay
of 4.
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10.3.1.4 The impact of QP and rate control

An interesting observation can also be made for the impact of using a constant quantization parameter or a rate
control configuration. Very low and very high disagreement fractions periodically alternate at the beginning and the
middle of the GOP while this is not observed when rate control is used. Fig. 10.9 shows this observation for SRC7.
In this source, the fraction of disagreements for some frames is higher than 50% when constant QP is used while it is
not the case for the rate control option.

Fixed QP

RateControl
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Figure 10.9 – The variation of disagreement fractions of HRCs with constant QP and rate control options.

10.3.2 Consistency with respect to source content and coding parameters
In this section the agreement of the measures is analysed across PVS, i.e. by considering two PVS at a time

and comparing their quality measure values for each single frame (see the dashed arrows in Fig. 10.4). Consider, for
instance, the sequence-level values of each of those metrics for two different PVSs. Two cases are possible: either
all the measures agree (Case Agree) on which PVS provides the best quality, or they do not agree (Case Disagree).
From this point, we only consider Case Agree, and we investigate if such an agreement at the overall sequence level
corresponds to agreement for single frames as well.
First, we observed that, for sequences for which the quality is strongly different, typically there is agreement at the
frame level, i.e., comparing the measures for frames in the same position in the two sequences yields to agreement
among the measures. However, when the quality difference is less pronounced, even in Case Agree, for some frames
in the sequence there is no agreement for frames in the same position. For the purpose of this work we consider
only sequences for which the agreement holds for more than 90% of the frames (Case Agree90). The rationale behind
this choice is that when a new coding and/or processing technique is proposed, typically quality values for the overall
sequence are presented to show that the new technique is better than some reference. In absence of further information,
such form of presentation typically creates the expectation that the improvement holds for the large majority of the
frames in the sequence. If this is not the case, it might be a symptom of some temporal irregularities that should be
better investigated directly by the proponents.
In the rest of the section, we will focus on Case Agree90 by investigating how the disagreement between corresponding
frames in different sequences is influenced by the coding parameters. By fixing the value of most of the coding
parameters, we obtain a set of sequences from which we choose the Case Agree90 ones. The latter ones are compared
one against each other, yielding to N(N − 1)/2 comparisons when N sequences are considered.
As a first example, we consider the number of slices per frame. Fig. 10.10 shows, for each frame position, the fraction of
frames in that position that disagree among all the performed comparisons, and for which the reason of disagreement
is the PSNR. This operation is repeated for similar sets in which only the number of slices per picture changes. It can
be observed that the number of frames and their temporal position is very similar, therefore it seems that the number
of slices does not significantly affect the number of disagreement. This method allows to intuitively see the difference
and their position for a few different conditions. However it is impractical to perform large scale analysis. Therefore,
instead of visually comparing the behaviour over time of the fraction of disagreement, we propose to compute a
similarity index, i.e., the absolute value of the correlation coefficient. Such an approach also allows to provide a
quantitative measurement of the similarity. The previous figure 10.10 can be compactly represented by the data in

1 sl/frame 2 sl/frame 4 sl/frame 1500 B/slice
1 sl/frame 1,000 0.988 0.976 0.969
2 sl/frame 0.988 1,000 0.974 0.973
4 sl/frame 0.976 0.974 1,000 0.966

1500 B/slice 0.969 0.973 0.966 1,000

Table 10.2 – Correlation coefficient among the results of Fig. 10.10.
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Figure 10.10 – Fraction of frames in disagreement for different number of slices per frame. Fixed QP, GOP size 8,
intra refresh 16, open GOP.

Table 10.2. To further improve the scaleability of the method, we represent such data using matrices with different
gray values, where the darker is the gray level, the higher is the absolute correlation. Fig. 10.11 shows the same data
of the previous table in this form. The image is obviously symmetric along the diagonal as the values in the table.

Figure 10.11 – Graphical representation of correlation coefficients shown in Table 10.2.

We adopt this technique to analyse the influence of the major coding parameters. When the correlation is close
to one, the parameter has almost no impact, whereas lower values show much higher influence. First, we consider
the fixed quantization parameter (QP) case, as done in most of the video coding works [295], and we vary only one
parameter at a time. When all combinations of all the other coding parameters, including the source sequence, are
considered, instead of only a subset as in Fig. 10.11, results are similar, as shown in the left part of Fig. 10.12.

Figure 10.12 – Correlation coefficients between the cases (HRCs); left only slice size parameter is changed and right
only resolution is varied.

The same behaviour happens for the open or closed GOP parameter (not shown in figures, correlation equal to
0.906), and partly for the resolution as in the right side of Fig. 10.12. The more interesting parameters are the
Intraperiod and the GOP size. Significant variations can be observed, especially when they are considered jointly as
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Figure 10.13 – Correlation coefficients between the cases in which all but the GOP size and intra refresh parameters
are varied.
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Figure 10.14 – Fraction of frames in disagreement for different number of slices per frame. HM rate control, LDGOP
size 4, intra refresh 32. Note the peaks (darker vertical lines) at multiples of 32 frames.

in Fig. 10.13. In particular, it seems that when the GOP size is small and the intra period is large, there might be
a strong impact on the position of disagreements, whereas with the largest GOP size the effect is reduced. With the
low-delay GOP configuration (LDGOP) correlation is very high, meaning that the influence of the intra refresh rate
is much more reduced. When the rate control algorithm of the HM test model software [296] is used instead of the
fixed QP parameter, interesting observations can be made in the data, in particular when they are represented as a
function of the frame position in the sequence. Fig. 10.14 is an example of such condition. The two rows are almost
equal since they only differ for the open or closed GOP parameter which, as previously stated, has very little influence.
For instance, in the first part a high fraction of disagreement is visible. This can be ascribed to the fact that an initial,
fixed, QP is used by the HM rate control algorithm, which then quickly adapts to the requested bitrate. Moreover,
note the peaks which appear in correspondence of the periodicity dictated by the intra refresh rate, i.e., when frames
with I-type blocks only are inserted. By further experiments we determined that this behaviour is probably due to
the inclusion of some source sequences which seems particularly difficult for the HM rate control when a frame with
I-type blocks is inserted. This observation underlines the importance of performing such types of analysis on a large
database with multiple coding parameters and several different content types. Although our database is somehow
limited in the latter aspect, nevertheless such effects can already be observed.

Finally, we consider the fraction of disagreement by considering the same sets of comparisons but computing the
fraction of disagreement for all the three measures. Figure 10.15 shows an example of the typical situation. While
some behaviours are common for all metrics, e.g., the initial frames and the periodicity of the peaks, others seem to
be peculiar of the measures. However, the latter often have a lower intensity.
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Figure 10.15 – Fraction of frames in disagreement separated for each measure. HM rate control, LDGOP size 4, intra
refresh 32, open GOP.

10.4 Conclusions
This work showed how statistical analysis of a large-scale database including about half a million video sequences

distorted by data loss can provide insights on the behaviour and particular limits of widespread simple objective
video quality measures that are used partly out of scope. The main observations of the analysis that has been
conducted in this Chapter are listed in Box 10.3. While these results concern future developments of coding and
quality measurement algorithms, further work on the large-scale database approach requires a significant extension
of the samples, both sequences and algorithm results, which is currently limited by the computational resources and
the availability of implementations of objective measurement algorithms. Methodical work on analysis methods using
statistical methods will continue towards the identification of particular cases that require inclusion in subjective
experiments and the characterization of objective measures.

Box 10.3 – Main observations

— The agreement between the three tested measures PSNR, SSIM, and VIFP showed that the results of
their predictions are similar, notably in the high and low quality range, less so in the middle range. It
was further noted that the disagreement of the measurements is more pronounced in case of packet loss
than for coding-only conditions which may be seen as a first step towards an automatic identification of
the scope of application for objective measures. Thanks to the large size of the analysed dataset, some
important effects on the characterization of the performance were highlighted that are not evident when
a limited set of contents and parameters is considered.

— It may have been expected that disagreement between several objective measures exists on a frame-level
even if the measures agree on a sequence level. However, the particular patterns of this disagreement
point to two important conclusions. The first conclusion is that the usage of one single measure may
not be sufficient. In particular, it may be beneficial to analyse the usage of several complementary
algorithms within the coding loop, i.e. for rate-distortion optimization. In addition, it should be noted
that performance bias may occur when improvements are measured only objectively and only using one
single method, thus weakening such proposals. The second conclusion is that the pronounced correlation
between content characteristics and encoder parameter selection encourages further analysis, for example
with respect to the efficiency of rate-control algorithms. Some coding factors are almost not influential,
whereas others have a strong impact, suggesting that quality comparisons among sequences without
considering the detailed behaviour of the quality over the frames in the sequence itself could be strongly
misleading.
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Content and Machine Learning Based
No-Reference (NR) VQA

11.0.1 Introduction

New image or video coding standards introduce new or improved coding tools in order to improve the rate-
distortion performance. Each standard may be characterized by the type and amount of degradation that is added
to the encoded image or sequence [186]. A lot of efforts have been done in identifying these coding degradations for
different standards [187], notably for H.264/AVC. In addition to their importance in guiding the improvements in
coding standard, understanding such degradations is also important for objective quality measures especially when
there is no information about the original source. This type of quality assessment is called No-Reference (NR)
measurement. A classification of no-reference quality estimation models has been reviewed in [188] and a variety
of algorithms has been discussed. Although H.264/AVC NR measures can be adapted to the High Efficiency Video
Coding (HEVC) use case, some publications have specifically addressed HEVC. In [189], a no-Reference Pixel (NR-P)
based method is proposed in which the quality estimation for loss-impaired sequences is measured by calculating the
temporal variations of the power spectrum across the decoded frames. As stated in [189], the model has correlation
scores between 0.7 and 0.8 and works well for low-to-medium temporal activity sequences. This calls for integrating
further content characteristics, either pixel-based or bitstream features, in objective video quality measurement models.
In [167, 190–192], No-Reference Bitstream (NR-B) based models are introduced. In [167], Kanumuri et al, modeled
the visibility of packet-loss in MPEG-2 video using pixel and bitstream based features. In [190], the authors train a
neural network using subjective scores as well as packet loss rate, frame type, GOP structure, Intraperiod, percentage
of damaged frames, and percentage of frames at different temporal levels. In [192], the authors use the QP and
the spatial information (SI) to introduce a two-parameter NR-B method to estimate the perceptual quality (DMOS)
of encoded HEVC sequences. The SI, as in [192], is calculated as the weighted sum of the DC difference values of
inconsistent transform units (TU) and their respective neighbouring TUs based on the ratio of the TU edge length.
In [191], the authors rely on the bitstream features to predict the perceptual video quality. Please, refer to Section
2.6 for more related work. While these measurement tools provide promising results, the question of generalization in
the real application remains and may thus be seen as the main limitation of the proposed measures in the literature.
In this chapter, the content dependent and machine learning based NR VQA models are introduced for error-free
and loss-impairment sequences, respectively. We try to answer the research questions that are listed in Box11.1. The
structure of this Chapter is illustrated in Box 11.2.

Box 11.1 – Goals

This chapter aims to answer the following research questions:
— What is the impact of using pixel-based content features in building machine learning based NR VQA for

error-free and loss-impairment sequences along with channel and coding parameters?
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Box 11.2 – Chapter structure

This chapter will be organized and structured as shown in Figure 11.1.

Large-scale database 

(res. 960x544)

1 Objective FR 

measures
NR VQA models100 HRCs selected 

(error-free)

49600 HRCs (loss-

impairment)

VQM for error-free

PSNR for loss case

2 For error-free

3 For loss case

0 Extract features

0 Extract features

Figure 11.1 – Chapter 11 Structure

11.1 The pixel-based content features
The pixel-based content features, that are used in this paper, have been listed in Chapter 3 and used in [297,298].

A brief overview of these features will be listed here. The features cover spatial and temporal characteristics that are
extracted from the luminance frame (Y), and the chrominance frames (Cb and Cr), in the spatial domain or in the
frequency domain. The features are extracted on both block or frame levels. For the features that are extracted at
the block level, the Minkowski sum with different power is applied to obtain a scalar value of each frame, then several
statistical measures (e.g., mean, maximum, standard deviation, etc.) are applied to get a scalar value that represents
the video sequence. In addition to those features, standard deviation, the variance, the skewness, and the kurtosis of
the motion intensity histogram that is computed using pixel change ratio map (PCRM) [203] are calculated. In total,
284 features are extracted.

11.2 Feature selection process
Firstly, all HRCs are encoded and then an objective full-reference measure is used to estimate the quality, the

VQM in our case. Then, the pixel-based features is extracted from the decoded output and finally the support vector
regression (SVR) is used to train the model. The feature selection Algorithm 1 as in [297] is used to get the features
that are required for the regression process (SVR). It is an exhaustive process of adding each feature one by one until
no improvement is introduced. Epsilon-SVR (LIBSVM tool [299]) with radial basis function is used to train the model
with n-fold cross validation. The SVR parameters are trained before applying the training algorithm. Table11.1 shows
a summary of inputs and outputs of the proposed NR VQA models.

11.3 Content-dependent NR VQA model for Error-free sequences
In this Section, a link will be established between Full Reference and future Hybrid No-Reference measures by

showing how to predict the results of one of the measures, in this case VQM, to information extracted from the
transmitted video sequences, notably content features characteristics.
Figure 11.2 shows the training model that is used in the experiments. In the training phase, the following inputs are
prepared as explained in Table 11.1. The samples, i.e the processed video sequences (PVSs), are 1000 (100 HRCs×10
SRCs). The variables are the content features, listed in Section 3.2, that are extracted from the decoded sequences.
Finally, the responses are the quality score of VQM [300], the objective video quality metric. Then, the feature selec-
tion process, Algorithm 1, is applied with cross-validation approach to select the content features that are going to be
used in the training model. The 11 selected features are listed in Table 11.1. These features contain different types of
features, i.e. motion and texture features. The model is validated using the training data and two different random
subsets from the large-scale database, 100 HRCs each. Figure 11.3 shows the results of the testing process. Pearson
Linear Correlation Coefficient (PLCC) and Root Mean Squared Error (RMSE) are used to compute the prediction
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Table 11.1 – Summary of inputs and outputs of the proposed NR VQA models

Error-free NR model Loss-impaired NR model
Number of PVSs
(samples)

100 HRCs (in Random) x 10 SRC 1984 HRCs x 25 Error x 10 SRC

Features (variables) Pixel-based features from encoded seq. Pixel-based of original, encoding param.,
and channel param.

Model response VQM quality score Q, here is PSNR
Performance mea-
sure (PLCC)

0.9830 0.932

Number of selected
features

11 18

List of features — Histogram dissimilarity of low
and medium frequency DCT
maps.

— Mean of (V) chrominance com-
ponent.

— Mean of SI std.
— Contrast of GLCM (2).
— Std of Motion intensity Hist.
— Skewness of cross-correlation
— Kurtosis of TI.
— Kurtosis of SI13,
— Skewness of (U) chrominance

component.
— Entropy ratio extracted from

Laplacian based features (Lapla-
cian pyramid level 5 over origi-
nal)

— Encoding Parameters (8)
— Channel Parameters (2)
— Number affected frames (1)
— Content features (7)

— Temporal information
— Correlation of,GLCM (2)
— Energy of GLCM
— Entropy of GLCM
— DCT based smoothness
— MPEG-7 short length of zero

of spatial distribution of the
objects

model performance, see the title of each sub-figure in Figure 11.3. The model maintains its stability across other
validation sets.
Hence, the possibility to correlate the values of video quality measures with content features has interesting implica-
tions. For the case analysed here (VQM) it seems that the video quality metric value can be predicted quite reliably
by a subset of content selected by using the algorithm proposed in this work. This could be the first step towards
designing a hybrid No-Reference quality metric that can show good agreement with full reference metrics such as VQM.

Encoding with 

different 

Parameters 

VIN

Quality

Training 

(SVM)

Quality as responses

Streams
Low-level 

features
Decoder

Decoded

sequences
Training model

Figure 11.2 – NR-Reference VQA model for error-free sequences

11.4 Content-dependent NR VQA model for loss-impaired sequences
In this Section, a link will be established between Full Reference and future Hybrid No-Reference measures by

showing how to predict the results of one of the measures, in this case PSNR, to information extracted from the
transmitted video sequences, notably content features, coding parameters, and network characteristics.
We focus on a method to predict the behaviour of one of the measures, namely PSNR, from a set of features by

employing a machine learning approach, so that difficult-to-predict situations (i.e., outliers) can be identified. The
main goal of this machine learning process is to highlight the content features, besides the encoding and channel
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Algorithm 1 Training algorithm
Input: (data,target) {data is m × n, where m is the samples and n is number of features, and target is the response of each

data sample (∆PSNR)}
Output: F {set of selected features}

1: F ⇐ data(channel and encoding parameters)
2: Train SVM model with 5-fold cross validation
3: pBest = Save the performance results of the training as best performance
4: for i = 1 : n do
5: for i = 1 : n do
6: F ′ ← F + data(i)
7: Train SVM model with 5-fold cross validation using F ′

8: p(i) = performance {Save the training results}
9: end for

10: [p′ indx] ← max(p)
11: if p′ > pBest then
12: F ← F + data(indx)
13: pBest← p′

14: else
15: break
16: end if
17: p← 0
18: end for

Figure 11.3 – NR-Reference VQA test results for error-free sequences

Figure 11.4 – NR-Reference VQA model for loss-impairment sequences

parameters, that have an impact on improving the prediction of the difference in quality between sequences with
and without packet loss, i.e. ∆PSNR, that is calculated as the difference between the PSNR of each condition with
coding-only degradation and the PSNR of the same condition with applied packet loss pattern. Figure 11.4 shows the
training model that is used in the experiments. In the training phase, the following inputs are prepared as explained
in Table 11.1. The samples, i.e the processed video sequences (PVSs), are 496000 (1984 HRCs of 960×544 resolution
×10 SRCs ×25 error patterns). The variables are the content features listed in Section 3.2, coding parameters, and
network characteristics, that are extracted from the original sequences due to the complexity issues. We assume that
the features that are extracted from the original signal are good approximation for the features that will be extracted
from the decoded sequences. Finally, the responses are the ∆PSNR. Then, the feature selection process, Algorithm 1,
is applied with cross-validation approach to select the features that are going to be used in the training model. The 18
selected features are listed in Table 11.1. The channel parameters and the encoding parameters are fixed to be part
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of the selected features. After the end of the training, 7 content features only are selected.
Table 11.2 shows the performance of the prediction model using the test data set. Pearson Linear Correlation Co-
efficient (PLCC), Spearman Rank Order Correlation Coefficient (SROCC), and Root Mean Squared Error (RMSE)
are used to compute the prediction model performance. In addition, Figure 11.5 shows the correlation between the
predicted data against the original data. It can be observed that when ∆PSNR decreases (i.e. the encoded and
degraded sequences are approximately of the same quality), the prediction error increases.
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Figure 11.5 – Performance of predicting ∆PSNR from content features only. Please note the lack of significant
outliers.

Table 11.2 – Performance of the predicting model

Performance PCC SROCC RMSE
Test data (reduced feature set) 0.9320 0.833 0.0305
Train data (reduced feature set) 0.9310 0.832 0.0305
Test data (All features) 0.9144 0.770 0.0368
Train data (All features) 0.9135 0.769 0.0368

11.4.1 Analysis based on ∆PSNR prediction
By modelling on all the features, the importance of every feature can be derived. Such analysis indicated that

counting the number of frames that get affected by packet loss (frames_affected) is one of the appropriate features
that correlate well with simple objective measures. Aided by this observation, questions arise about how the amount
of affected frames influences the agreement between different quality measures. In Fig. 11.6, this analysis has been
performed on all the sequences of src5. Other sources show a similar behaviour. On the Y-axis, the number of affected
frames of all src5 sequences has been displayed with respect to the PSNR of these sequences on the X-axis. Every dot
represents a sequence of src5, each having a different number of affected frames, caused by the packet loss scenario
and the video stream structure, and each having a different PSNR. First of all, when looking at the distribution of
the points, it can be observed that the number of affected frames does not behave linearly with respect to the PSNR
that the model needs to learn. Using simple reasoning, one would expect that when many frames are affected by a
slice loss, a strong PSNR reduction would result from this loss. In contrast, it can be observed that a large part of
the range of the objective measure can be obtained from any different amount of frames affected. Obviously, even
the smallest impact or change of a frame is considered as an additional affected frame. Because there is not a simple
linear relation between the feature and the measure, it could be useful to design other features from which further
linear correlation can be derived. Such feature would be able to provide more insight than the ones that are available
in this set. So, although the precision of the designed model is high, the features should not yet be regarded as a
comprehensive generic set.
When analysing the disagreement properties of all these sequences, the intensities of the plotted sequences need to
be investigated. Light dots indicate sequences which have a low maximum disagreement with other sequences in the
set. Dark points, on the other hand, depict regions where the objective measures can reach a high disagreement when
comparing all sequences of src5. This high disagreement means that when one sequence is compared with all the others
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Figure 11.6 – The analysed objective measures, namely PSNR, SSIM, and VIFP plotted together with the transmission
feature frames_affected of all src5 sequences. Darker dots indicate high disagreement, lighter dots indicate small
disagreement.

from the same source, disagreement is measured as the normalized amount of sequences on which PSNR disagrees.
When taking the maximum value resulting from all comparisons with other sequences, a high value is coloured darker
in the plot. Fig. 11.6 also provides these plots with respect to SSIM and VIFP. It may be observed that agreement
mainly occurs in the high and low PSNR range. So, when objective quality measures indicate a very high or a very low
quality, it is more likely for the measures to agree. On the other hand, when operating at more average values, PSNR,
SSIM, and VIFP tend not to agree. In both the plots of SSIM and VIFP, it can be observed that the frames_affected
indicator influences the rate of agreement in an insignificant way. For PSNR, the frames_affected indicator influences
the amount of agreement in the high PSNR quality range. This agreement persists longer at lower PSNR values when
frames_affected is high.

11.5 Conclusion
In this chapter, we conduct experiments to find a possible correlation between the values of video quality measures

and the content, coding, and channel characteristics. This possibility has interesting implications. For the cases
analysed here (VQM and PSNR) it seems that the video quality metric value can be predicted quite reliably by a
subset of content and channel features selected by using the algorithm proposed in this work. This could be the first step
towards designing a hybrid No-Reference quality metric that can show good agreement with traditional full reference
metrics such as PSNR. The list of contributions for this Chapter is listed in Box 11.3. It was shown that the results of
the Full-Reference measures may be predicted from content features, coding, and packet-loss parameters with a high
correlation, even if a reduced set of only seven parameters are used. This indicates that the complete image data may
not be required in order to achieve the typical prediction performance of the evaluated measures. This is important
for Reduced-Reference and No-Reference measures. Furthermore, although the number of affected frames provides the
highest importance in predicting the PSNR within the developed model, there is no easily interpretable correlation
between this feature and PSNR. Therefore, it would be beneficial to look further for features that can provide this
easy to understand knowledge. Additionally, this analysis provides insight in the ranges in which the objective quality
measures PSNR, SSIM, and VIFP agree. Especially in the average quality regions, comparing different sequences
results in higher disagreement of the measures. This region is certainly of higher interest when performing subjective
evaluation in order to further improve the large database approach of quality metric investigation.
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Box 11.3 – Contributions

— A content-based NR VQA is built for error-free and loss-impairment video sequences along with coding,
and channel characteristics. It predicts the behaviour of the full-reference VQA. The following features
are found useful for the prediction model:
— Channel parameters: loss rate, average and burst length.
— Coding parameters: GOP size/type, intra-period, number of slices, open/close GOP, QP.
— Channel and coding parameters: number of frames hit, number of slices hit, and number of affected

frames.
— Content-based features:

+ Gray-level co-occurrence matrix properties,
+ Chrominance information,
+ Spatial and temporal information,
+ Cross-correlation,
+ DCT and Laplacian based properties,
+ Motion intensity, and
+ MPEG-7 motion activity descriptor.





12
HRC Selection Algorithms and Improved
Performance Measures for
Learning-based Video Quality
Assessment Algorithms

12.1 Introduction
As discussed in the Chapter 11, while the NR VQA tools provide promising results, the question of generalization

in the real application remains and may thus be seen as the main limitation of the proposed measures in the literature.
In order to tackle the problem of general applicability, we proposed in [294], also discussed in Section 11.4, to use a
large-scale database to predict the behaviour of the objective measures with full-reference (FR) video quality metrics
for loss-impaired sequences using encoding, channel, and content features. Following the conclusions from [294], we
extend this work in Section 11.3 by including pixel-based features to predict the video quality.
In [292], the limitations of subjective experiments and future goals beyond the large-scale database are discussed.
In this Chapter, we address one of the main limitations of the previous work, notably the fact that dealing with
1,984 HRCs for one resolution of a single content is often a large effort. While this may be justified in performance
verification, it may be prohibitive when iteratively developing a new measurement method. In [301], we therefore
propose two HRC subset selection algorithms for this purpose that aim at reducing the size of the large database
with limited loss of generality. In Figure 12.2 the pseudo-code of the two subset selection algorithms is presented;
each one elaborates the algorithm for selecting a subset of HRCs for a specific target. More details will be found
in Section 12.2. The first one shows the selection that is optimized for HRCs that cover different ranges of (PSNR,
Bitrate) values. The second shows the selection that is optimized for the HRCs in terms of content, i.e. those that
behave differently depending on the sources. In order to verify whether these targets are reached, we compare these
HRC subsets with several randomly selected subsets. The comparison approach is based on the typical development
cycle for an objective measure: First, a training dataset (one of the subsets) is selected; second, machine learning is
applied to a number of content and quality indicators in order to optimize the prediction of the ground truth data for
this training dataset; third, the trained model is applied to a validation dataset (another one of the aforementioned
subsets). Measuring the suitability of the different subsets for the training stage and for the verification stage is not
straightforward. In the video quality assessment community often the Pearson Linear Correlation Coefficient (PLCC),
Spearman’s Rank Order Correlation Coefficient (SROCC), and the Root Mean Squared Error (RMSE) are used. We
discuss advantages and shortcomings of these evaluation measures and propose further measures based on the analysis
of the results obtained with the performed subset analysis. The subset selection for the training stage introduces a bias
in the quality measurement model which may be chosen such that particular degradations or content characteristics
are predicted with a better performance at the expense of worse performance for others as it is demonstrated in this
contribution with a subset aimed at content variety and a subset that is aiming at predicting rate-distortion scenarios.
In general, the approach of informed subset selection from a large-scale database may be a solution to the bias often
introduced when training objective models on available or newly created subjective datasets. Instead of selecting the
degradations a priori, the experimenter would create a large set of candidate sequences, run the automatic subset
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selection tool with a specific target, and only then evaluate the subset in a subjective experiment.
In this Chapter, we raise the research questions listed in Box 12.1 in order to tackle the above-mentioned issues. This
Chapter is structured as detailed in Box 12.2.

Box 12.1 – Goals

This chapter aims to answer the following research questions:
— Can a representative subset be selected from a large-scale database such that this small-scale database

can be further analysed and the conclusions drawn on the small-scale database also apply to the large
scale database?

— In case that the PLCC and RMSE cannot report the goodness of a model, what other performance
measures that we need to report this goodness?
In addition to that, the following secondary research question is investigated too:
+ How does the goodness analysis work when the content sources are different as well as the HRCs?

Box 12.2 – Chapter structure

This chapter will be organized and structured as shown in Figure 12.1. The HRC subsets preparation will be
demonstrated in Section 12.2. The extracted features for video sequences and the images will be discussed in
Sections 12.3.1, 12.3.2, and 12.5. The training phase of the trained models are illustrated in Section 12.3.4. The
testing results are shown in Section 12.3.5. Finally, the proposed improved performance measures are discussed
and demonstrated in Section 12.4.
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Figure 12.1 – Chapter 12 Structure

12.2 Goal-driven Large-scale Database Subset Generation
In Section 8.1, we discussed the limitations of the subjective experiments and the goals beyond the large-scale

database. In this section, one goal beyond the generation of the large-scale database is discussed. Identifying tar-
get HRCs for a subjective experiment or for training a no-reference (NR) quality measure is challenging. Different
correlation scores may be obtained if one tests an objective video quality (VQ) measurement using two different
databases [302]. The reason could be the lack of content variety in the databases or the use of different HRCs in
the experiments. Generally speaking, neither choosing different quality levels, i.e. different QPs or different bitrate
budgets, nor selecting different content types is the optimal way to generate the database. What we need is to choose
the HRCs that cover a wide range of the targets. If the target is a quality measure, e.g. the PSNR, we need to select



12.2. GOAL-DRIVEN LARGE-SCALE DATABASE SUBSET GENERATION 135

HRCs that cover all ranges of bitrate and quality. If the target is the content, we need to select HRCs that behaves
differently with the contents. Dealing with the full set of 1984 HRCs for one resolution of a content is often compu-
tationally expensive. Therefore, in this section, a demonstration of two algorithms, Figure 12.2, to select a subset of
the HRCs is discussed. Figure 12.2 shows two flowcharts. Each elaborates the algorithm of selecting a subset of HRCs
for a specific target. The left flowchart shows the selection that is optimized for HRCs that cover different ranges of
(PSNR, Bitrate). The right flowchart shows the selection that is optimized for the HRCs in terms of contents, i.e.
those that behave differently with sources. The following subsections demonstrate the two algorithms.
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Figure 12.2 – Two algorithms for selecting large-scale database subsets for different targets. Left ) Selection is optimized
on HRCs that cover different ranges of (PSNR, Bitrate). Right ) Selection is optimized on the HRCs in terms of contents
(i.e. those that assign sources to different clusters)

.

12.2.1 Quality/Bitrate-driven HRCs Subset
In this subsection, the algorithm for selecting HRCs that cover a wide range of PSNR and bitrate values is

demonstrated. Please refer to the flowchart in the left part of Fig. 12.2. At a specific quality level or in a specific
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Figure 12.3 – Rank(PSNR) against Rank(Rate) of all HRCs and contents. Numbers and colours indicate the cluster
number.
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Figure 12.4 – Rank(PSNR) against Rank(Rate) per content of all HRCs. Numbers and colours indicate the cluster
number.

quality range, the higher the quality the higher the bitrate. This intuitive assumption is followed as the main idea of
the selection process. On the other hand, this assumption might be deviated from this assumption when a specific
encoding parameter is changed, such as slice parameters. This deviation is exploited to identify the behaviour of each
HRC in terms of quality and bitrate. The following steps are followed.
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- Step 0: all sources are encoded using all HRCs, then the quality measure and the bitrate are calculated for
each HRC.

- Step 1.1: rank the HRCs according to the quality measure and the bitrate in ascending order. Fig. 12.3 shows
all pairs of rank(PSNR, Rate) of all sources while Figure 12.4 shows the pairs per content.

- Step 1.2: kmeans++ [303] clustering algorithm is used to cluster the HRCs according to their ranks in the
quality measure. Different number of clusters are tested to select the optimal number of clusters. Figure 12.3
shows the 17 coloured clusters and their centroids for all rank pairs for all HRCs while Fig. 12.4 shows the
cluster assignments and their centroids per content. From these two Figures 12.3 and 12.4, one can observe
the following. The intuitive assumption is stable in the very low quality and very high quality in all contents
although there are changes in other encoding parameters. The deviation of this assumption in the middle range
of quality is obvious and it points to the impact of other encoding parameters and to the content.

- Step 1.3: as it can be been observed from Fig. 12.4, each cluster has a different number of HRCs for different
sources. For instance, SRC-03 does not have an HRC that belongs to cluster number 6 and has many of them
in cluster 14. Therefore, in order to get all HRCs that cover a wide range of qualities and bitrates, each cluster
is divided into groups. Each group represents HRCs that are common between content sources. For instance,
the first group contains HRCs that are common between 1st, 2nd, and 10th content sources. The second group
contains the HRCs of the 8th source since there are no common HRCs with other sources. The third group
contains the common HRCs of the rest of the sources.

- Step 1.4: for each group, the quality per rate (Cost = PSNR/log(Rate)) is calculated to characterize each
rank pair.

- Step 1.5: for each group, the Cost values are ordered and divided into N subranges. The value of N affects the
number of HRCs to be selected for each group. The total number of HRCs is 32, 61, 83, and 109 if N equals to
1,2,3, and 4 respectively.

- Step 1.6: for each subrange in each group, compute the mid-subrange point and then select the closest HRC to
this point. Therefore, all ranges of quality and bitrate values are covered.

12.2.2 Content-driven HRCs Subset

In this subsection, the algorithm for selecting HRCs that behave differently with the contents is discussed, please
refer to the flowchart in the right part of Fig. 12.2. The intuitive assumption that has already been discussed in the
previous subsection, Section 12.2.1, is followed and exploited to identify the behaviour of each HRC with different
content sources. The following steps are followed.

- Steps 0, 2.1, and 2.2 are similar to steps 0, 1.1, and 1.2 of the quality/bitrate-driven HRCs algorithm respectively.
- Step 2.3: in this algorithm, we care about the behaviour of each HRC with different contents. The HRCs that
distribute source contents to same clusters are grouped. For instance, if one HRC distributes 3 contents out
of 10 to clusters 2 and 5 respectively and another HRC distributes 4 contents out of 10 to clusters 2 and 5
respectively, then, the two HRCs belong to the same group. This decision is made because it is observed that
this can happen between neighbouring clusters due to clustering error. In total, there are 97 groups for this
dataset.

- Steps 2.4 and 2.5: for each group, in order to characterize each rank pair, the magnitude of rank of each content
per HRC is computed and then the HRC that has the highest standard deviation is selected to represent the
behaviour of this group. Thereby, we reduce the effect of clustering error and ensure that redundant HRCs are
avoided.

12.2.3 Selected HRCs for each subset

In this Section, the selected HRCs’ qualities and bitrate(s) values are shown to confirm the output of each algorithm
of the subset generation. Figures 12.5, 12.6, and 12.7 show the quality measure (PSNR) against the logarithmic bitrate
of all HRCs, quality/bitrate-driven HRCs, and content-driven HRCs per content source respectively. It can be observed
that the quality/bitrate-driven HRCs cover the whole range of quality and bitrate values for each source content, while,
on the other hand, the content-driven HRCs do not present the same behaviour. Moreover, as it can be seen in Fig. 12.8
and 12.8, the distribution of quality and bitrate rank points are regularly distributed in quality/bitrate-driven subset
over all source contents while, in content-driven subset, it can be noticed that the quality and bitrate rank points are
not regularly distributed over all the contents and are distributed roughly in the area of middle qualities and middle
bitrate(s). The standard deviation of the ranks’ magnitudes of each HRC is another indicator that shows that the
quality/bitrate-driven HRCs is not content representative. HRCs that have low standard deviation values in content-
driven subset are not selected, which means that there are similar-behaviour HRCs of higher standard deviation that
strongly distinguish the HRCs from others in terms of content.
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Figure 12.5 – PSNR against log(Rate) of all HRCs per contents.
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Figure 12.6 – PSNR against log(Rate) of all HRCs per contents of selected HRCs for the quality/bitrate-driven subset.

12.3 No-reference video quality measure

12.3.1 The pixel-based content features
The pixel-based content features used in this paper have been listed in [297] and used in [297, 298]. The features

cover spatial and temporal characteristics that are extracted from the luminance frame (Y), and the chrominance
frames (Cb and Cr), in the spatial or frequency domain. The features are extracted on both block and frame levels.
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Figure 12.7 – PSNR against log(Rate) of all HRCs per contents of selected HRCs for the content-driven subset.
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Figure 12.8 – Rank of PSNR against Rank of log(Rate) of all HRCs per contents of selected HRCs for the
quality/bitrate-driven subset.

For the features that are extracted at the block level, the Minkowski sum with different power is applied to obtain
a scalar value of each frame, then several statistical measures (e.g., mean, maximum, standard deviation, etc.) are
applied to get a scalar value that represents the video sequence. In addition to those features, standard deviation, the
variance, the skewness, and the kurtosis of the motion intensity histogram that is computed using a pixel change ratio
map (PCRM) [203] are calculated. In total, 284 features are extracted from a subset of the encoded sequences in the
large-scale database [292].
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Figure 12.9 – Rank of PSNR against Rank of log(Rate) of all HRCs per contents of selected HRCs for the content-driven
subset.
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Figure 12.10 – Standard deviation of rank magnitudes for each HRCs. left) all HRCs. centre) Selected HRCs of
quality/bitrate-driven subset. right) Selected HRCs of content-driven subset.

12.3.2 Bitstream features

In [191], Shahid et. al. use 52 bitstream features in order to perform perceptual quality estimation of HEVC
coded videos. Ratios of various used CU sizes and of various prediction modes of intra and inter frames, and statistics
of different levels of quantization parameters and motion vectors are considered in these features. The features are
extracted as follows:

- The bitstream information extractor (HMIX) [292] is used to generate the ‘.xml’ file from the encoded stream
file.

- HMIXParser, developed for this work, is used to extract the bitstream features. Firstly, the frame-level features
are extracted and then sequence-level features are calculated using a pooling strategy based on the average value.
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12.3.3 Subset description
Five HRC subsets are used in this work. Two HRC subsets are selected using HRC generation algorithms [301],

see Figure 12.2. The first one shows the selection that is optimized for HRCs that cover different ranges of (PSNR,
Bitrate) values. The second shows the selection that is optimized for the HRCs in terms of contents, i.e. those that
behave differently depending on the sources. The other three datasets use a random selection. Figure 12.11 shows
the histograms of the quality scores (PSNR) for the five subsets. This histogram will be useful, for instance, when
testing HRCs that are under represented in the subset (i.e. PSNR > 50). These subsets will be named as follows:
HRC1, HRC2, HRC3, HRC4, and HRC5 and correspond to Content-driven subset, quality/bitrate-driven subset,
and the three random-based subsets respectively. Note that the number of HRCs in each subset are 97, 83, 100, 100,
and 100, respectively. The number of HRCs is not identical due to the selection algorithms but sufficiently close for
comparison.

Figure 12.11 – Histograms of the quality scores for the five subsets

12.3.4 Feature selection process
Figure 11.2 shows the model that is used in the experiments. Firstly, all HRCs are encoded and then an objective

full-reference measure is used to estimate the quality. We relied on VQM. Then, the pixel-based features are extracted
from the decoded output and finally the support vector regression (SVR) is used to train the model. The feature
selection algorithm in [297] is used to get the features that are required for the regression process (SVR). Epsilon-SVR
(LIBSVM tool [299]) with radial basis function is used to train the model with 10-fold cross validation. Before the
training is starting, the parameters of the SVR (C, G, and epsilon) are optimized by selecting one combination of
different C, G, and epsilon values. Five features selection processes (SP) have been carried out: the first one SP1 for
content-driven subset HRC1, the second one SP2 for quality/bitrate-driven subset HRC2, and the SP3, SP4, and
SP5 for the three random subsets HRC3, HRC4, and HRC5, respectively. These processes have been carried out
for the pixel-based NR VQA and other five selection processes have been carried out for bitstream-based NR VQA.
In the training phase, an exhaustive process of adding each feature one by one is applied. In the training process of
SP1, 16 features are selected to be used for the SVR training. LIBSVM reports the squared correlation coefficient
(SCC) as performance criterion. The SCC when using the 16 features is 0.9728. On the other hand, 14 features are
selected in SP2 with an SCC of 0.9735. Figure 12.12 and Figure 12.13 show two features for the selected HRCs.
The first feature (DCTHis13) is the histogram dissimilarity of DCT based feature maps using low and high frequency
maps. The second feature (entrB_p4_mean) is the mean of entropy of 64x64 gray level co-occurrence matrix using
Minkowski pooling (p=4). It can be observed that the features cover different ranges of values which make them useful
for the training model. In SP3/4/5, 45, 11, and 8 features are selected, respectively, with SCC of 0.9883, 0.9830, and
0.9828. It can be observed that the number of selected features largely depends on the training data. Because of the
over-fitting problem, the model that has the highest correlation is not necessarily the best one. This can be tested
when the trained model is further validated with other datasets.

12.3.5 Training and testing results: the impact of content features
After the features have been selected for the training model for the five HRC subsets, each training model is trained

and tested using all other HRC subsets including the subset that is used in the training phase. The experiments are
divided into three categories: the first category will show the overall impact of the pixel-based content features in the
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Figure 12.12 – DCT-based histogram dissimilarity feature of low and high frequency maps for content-driven subset.
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Figure 12.13 – The mean of entropy feature of 64x64 gray level co-occurrence matrix using Minkowski pooling (p=4)
of all sources for quality/bitrate-driven subset.

different datasets. The second category will study the impact of pixel-based features per content. The third category
will show which HRC group behaves differently when using the features. The performance of all experiments are
measured using Pearson Linear Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE).
In the first category, 25 experiments (referenced to as X(row, column)) are conducted as shown in Figure 12.14. The
rows of the figure represent the different training models that are trained, from top to bottom, using HRC1, HRC2,
HRC3, HRC4, and HRC5, while the columns represents the test data for each model and they are, from left to
right, HRC1, HRC2, HRC3, HRC4, and HRC5. Hence, the diagonal represents the evaluation of the model using
the training data as the input. The green line represents y = x, while the red line represents the fitting line of each
experiment. The first observation is the stability of content-driven, quality/bitrate-driven, and random 2 prediction
models. It can be noticed when looking at the performance row by row, there is a stable high performance (PCC
higher than 0.95) for rows HRC1, HRC2 and HRC4. Although the prediction model using HRC3 is stable, it is still
a random process and, as it can be noticed in the other random-based prediction models, the correlation scores are
not stable when using HRC5 and the fitting line deviates by a notable offset. Further discussion on the performance
measure PCC will be presented in Section 12.4. Moreover, the predicted VQM in X(2, 1) is better correlated than
X(1, 2). This can be explained as follows: both experiments try to predict VQM but the HRCs in X(2, 1) cover a
wide range of quality/Bitrate values while this is not the case for X(1, 2). Therefore, the training model has a better
ability to predict the VQM value. Hence, this is an indication that the selection algorithm for quality/bitrate-driven
works well.
Another observation can be made by looking column-wise at the correlation of the experiments. This can suggest
which HRCs are challenging to a certain model. The two challenging sets are, in order, quality/bitrate-based HRCs
and content-based HRCs. Table 12.1 shows the analysis of PCC by calculating the absolute mean difference of the
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Table 12.1 – Correlation analysis, expressed as a percentage, for the NR VQA models using SVR

PCC Difference to train PCC Absolute
mean differenceHRC1 HRC2 HRC3 HRC4 HRC5 Average HRC1 HRC2 HRC3 HRC4 HRC5

Pi
xe
l-b

as
ed HRC1 98.8 97.1 96.3 96.6 96.5 96.6 0 1.7 2.53 2.21 2.29 2.19

HRC2 98.3 98.8 98.8 99.1 98.9 98.8 0.53 0 0.01 -0.32 -0.13 0.02
HRC3 97.8 96.1 99.5 97.2 90.5 95.4 1.71 3.44 0 2.30 9.03 4.12
HRC4 95.1 98.2 98.7 99.3 99.0 97.7 4.13 1.12 0.60 0 0.27 1.53
HRC5 62.7 60.0 68.6 91.9 99.2 70.8 36.52 39.22 30.66 7.33 0 28.43

B
its

tr
ea
m
-

ba
se
d

HRC1 98.0 97.3 97.4 97.5 97.8 97.5 0 0.73 0.59 0.49 0.26 0.52
HRC2 97.2 98.2 97.9 98.1 98.2 97.8 1.07 0 0.35 0.10 0.02 0.38
HRC3 96.5 97.4 98.5 98.4 98.0 97.6 1.96 1.04 0 0.04 0.44 0.87
HRC4 95.7 97.1 98.1 99.0 98.4 97.3 3.34 1.94 0.99 0 0.69 1.74
HRC5 96.8 97.6 97.7 98.4 98.9 97.6 2.09 1.25 1.16 0.46 0 1.24

correlation coefficients. It shows that the quality/bitrate-based and the HRC3 subsets perform better in the pixel-
based models. While the quality/bitrate-based and the content-based subsets perform well than others.
In the second category of the experiments, the influence of the content will be shown. One content is left out during
the training and then the model is tested on the content that is left out. Figure 12.15 shows a typical example where
source 5 is left out of the training set and used for evaluation. Comparing this figure with the results of models that
include all contents in the training, it can be observed that the correlation is reduced and also the residual error is
increased. That is an indication of content importance and how the absence of some content HRCs would affect the
training model. Finally, in order to show that the HRCs subset selection algorithms work well, we compare the results
on the diagonal. In general, on average, Random 1 HRCs set has a lower correlation: this suggests that each content
in the subset is valuable. The content and the quality/bitrate HRC subsets come next. When leaving one sample out
from a subset that has many samples, a negligible drop in correlation means that this sample is redundant, whereas a
huge drop in correlation means that the subset is not good enough. By considering this assumption, the content and
the quality/bitrate HRC subsets are the ones that perform well.
In the third category of the experiments, the influence of individual HRCs cannot be seen by removing one HRC from
the training phase and then tested with this HRC since, in this experiment, only 10 sources are used and there are
HRCs that share the same encoder conditions. Therefore, one HRC group, i.e., coding condition, is removed from
the training phase and the model is tested with this group. It is observed, as shown in Table 12.2, that the main
HRC groups that have the highest impact are the quality groups whereas other groups such as ‘Open/Closed GOP’,
‘Intraperiod’, and ‘Slice Arg.’ have stable results and higher PCC compared to quality groups. In general, removing
one of these HRCs groups will highly impact the training model. For instance, including HRCs of low quality (QP=46)
and high quality (8 Mbps, 16 Mbps, and QP=26) will help the model in better predicting the quality of new sample
videos.

12.3.6 Training and testing results for bit-stream based no-reference model
Figure 12.16 shows the same training/testing experiments done for the pixel-based features, but this time for

bit-stream-based features NR VQA. Here, the samples (HRCs) are common between the pixel-based model and the
pixel-based model. It can be observed that all HRC subsets have a high correlation which makes it quite difficult to
distinguish between them. Since samples and features are important inputs for the training, the following conclusions
can be drawn: first, the bit-stream features are optimal for the prediction, so all subsets have a high correlation.
Second, the performance measures (PCC and RMSE) are not indicative of the significance of the HRCs. Further
discussion will be elaborated in Section 12.4.

12.3.7 Results from different machine learning algorithms
The two NR VQA models are trained using Stochastic Gradient Boosted Regression Trees algorithm, which recently

has been shown objectively to be the state-of-the-art approach on structured data [304]. Furthermore, XGBoost is
used, which is the state-of-the-art variation of the Stochastic Gradient Boosted Regression Trees algorithm [305]. In
recent years, the popularity of this algorithm has risen dramatically due to its performance results in many machine
learning competitions. For example, on the Kaggle platform , 17 out of 29 challenge winning solutions in 2015 used
XGBoost. These XGBoost-based approaches outperformed both neural network and support vector machine-based
solutions [306]. Apart from its success in machine learning competitions, XGBoost has also been proven to work well
for practical applications such as train occupancy prediction [307], offshore wind turbine power prediction [308] and
ads click-through prediction [309]. The success of XGBoost is often attributed to several aspects such as the fact that
it is an ensemble model, requires little hyper parameter tuning, can deal with sparse data, requires no feature scaling
and is very scalable due to its out-of-core learning ability [306].
The aim of this step is to observe some similarities and some dissimilarities when using different machine learning
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Figure 12.14 – The PCC and the RMSE for the 25 experiments of the pixel-based model. Rows: the different training
models that are trained using HRC1, HRC2, HRC3, HRC4, and HRC5,. Columns: the test data for each model, from
the left, HRC1, HRC2, HRC3, HRC4, and HRC5. The green line is the reference (y = x).

Figure 12.15 – The PCC and the RMSE for the 25 experiments that are trained without source 5 and tested with
source 5 HRCs. Rows: the different training models that are trained using HRC1, HRC2, HRC3, HRC4, and HRC5.
Columns: the test data for each model, from the left, HRC1, HRC2, HRC3, HRC4, and HRC5. The green line is the
reference (y = x).

algorithms. The five models are trained using the same selected features for the pixel-based and bitstream-based VQA



12.4. PERFORMANCE MEASURES FOR MODELS AND (SUB)SETS 145

Figure 12.16 – The PCC and the RMSE for the 25 experiments of bitstream-based model. Rows: the different training
models that are trained using HRC1, HRC2, HRC3, HRC4, and HRC5,. Columns: the test data for each model, from
the left, HRC1, HRC2, HRC3, HRC4, and HRC5. The green line is the reference (y = x).

models. In comparisons with SVR technique and using PCC performance measure, the XGBoost results confirm that
HRC5 is the worst subset and it disagrees in the performance order of other subsets. The absolute mean difference
of PCC is considered as the stability measure between two different machine learning algorithms. Therefore, because
they almost agree when using the absolute mean difference of the PCC performance measure, see Tables 12.1 and
12.3, we will complete the rest of this paper with using SVR technique.
After comparing the two machine-learning algorithms, the two NR VQA models using XGBoost are subsequently
compared. From Table 12.3, it can be concluded that content-based and quality/bitrate-based HRC subsets provide
the most optimal results with respect to the correlation analysis; the absolute mean difference performance measure,
Regarding the pixel-based model, HRC3 shows better performance on average, then HRC1 HRC2 HRC4 HRC5
come next in order. It should be noted that it is difficult to distinguish the difference between the HRC1,2. On the
other hand, in bitstream-based models, the average correlation shows that the content-based subset is the worst and
it is very hard to distinguish the difference between the HRC2,3,4. But when analysing the absolute mean difference
of PCC, the content-based and the quality/bitrate-based subsets perform better than others for the both NR VQA
models.

12.4 Performance measures for models and (sub)sets
As explained in the introduction, one of the main goals of this work is to have an HRCs subset that can represent

the large scale database. Hence, a set of analyses for the predicted values should be identified in order to judge the
datasets. In the previous section, it is observed that the usual PCC and RMSE are not enough to judge a dataset. In
this section, other analyses are proposed for performance evaluation.
Please note that a prerequisite of all the following measures is that the input data is restricted to the unit interval,
zero to one. This can be achieved by linear rescaling in most cases.

12.4.1 Analysis of the residuals using PCA
12.4.1.1 Redundancy in the training data PRPCA_T

Purpose: measure the goodness of the training data in the training process by Analysis of the residuals using PCA.
Idea: find the systematic redundancies in the training data that should be avoided such as redundant HRCs or
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Table 12.2 – PCC of the prediction using leave-one-out strategy, i.e. leave one HRC group out.

HRC groups Data sets
HRC1 HRC2 HRC3 HRC4 HRC5

GOP

GOP2 0.99 0.98 0.99 0.99 0.99
GOP4 0.98 0.99 1.00 0.99 0.99
GOP8 0.96 0.98 0.99 0.99 0.99

LDGOP4 0.98 0.99 0.99 0.98 0.99
Q
ua

lit
y
C
on

tr
ol

B
itr

at
e

500000 0.96 0.97 0.96 0.97 0.97
500001 0.95 0.96 0.94 0.94 0.95
1000000 0.98 0.98 0.98 0.96 0.97
1000001 0.98 0.98 0.97 0.97 0.97
2000000 0.97 0.97 0.98 0.95 0.94
2000001 0.99 0.93 0.98 0.96 0.95
4000000 0.83 0.80 0.91 0.86 0.88
4000001 0.88 0.87 0.93 0.94 0.91
8000000 0.58 0.34 0.72 0.67 0.63
8000001 0.55 0.25 0.77 0.75 0.62
16000000 - 0.13 0.50 0.22 0.04
16000001 0.23 0.13 0.54 0.20 -0.02

Q
P

26 0.92 0.93 0.93 0.95 0.91
32 0.92 0.97 0.94 0.92 0.95
38 0.94 0.96 0.90 0.93 0.91
46 0.08 0.42 0.29 0.54 0.22

O
pe

n/
cl
os
e

G
O
P 1 0.96 0.98 0.99 0.99 0.99

2 0.99 0.99 0.99 0.99 0.99

In
tr
a-

pe
rio

d 8 0.97 0.98 0.98 0.99 1.00
16 0.99 0.98 1.00 0.99 0.99
32 0.97 0.98 0.99 0.99 0.98
64 0.97 0.99 0.99 0.99 0.99

Sl
ic
e
A
rg
. 0 0.98 0.98 1.00 0.99 0.99

2 0.99 0.98 1.00 0.99 1.00
4 0.99 0.98 0.99 0.99 0.98

1500 0.98 0.99 0.99 0.99 0.99

redundant contents. By identifying similar behaviour of the RMSE for two contents over all HRCs, redundancies can
be identified. Optimality is reached if the HRCs behave differently for any two contents of the subset. The same
applies to the HRC analysis: Optimality is reached if the contents behave differently for any two HRCs of the subset.
Process: train the model and evaluate it on the training data. Calculate the residual errors of the prediction by the
model. For the content analysis (dimension=SRC), first create a vector per content that contains the residual errors
for each HRC. Perform a PCA on these m vectors. Calculate the sum of the Eigenvalues of the first n components of
the total m components. The default value should be n = 0.2m. Perform the same operations by creating a vector
per HRC (dimension=HRC).
Reporting: Use P dimension

RPCA_T ( nm ,m) = x, i.e. P SRC
RPCA_T(0.2, 10) = 0.9.

Interpretation: the lower the value, the better because the explained variance is low in the first n components, i.e.
the remaining components have significant information.
Example and further explanations: The titles of the subplots in Figure 12.17 show the sum of the first two
principal components, i.e P SRC

RPCA_T(0.2, 10). The higher the value, the higher the possibility of existing systematic
redundancy. As shown in the diagonal of Figure 12.17, it is observed that the quality/bitrate-based subset has the
lowest explained variance in the first two components. That is an indication that the HRCs are valuable in the subset.
Using the RMSE would not provide the same information, as can be seen from Fig. 12.14 because the best subset with
respect to different HRCs is not easy to identify.

12.4.1.2 Redundancy in the validation data PRPCA_V

Purpose: measure the goodness of the validation data in the subset and model comparison process by analysing the
residuals using PCA. In other words, characterizing which subset is challenging for the trained models.
Idea: similar to PRPCA_T, find the systematic redundancies in the validation data. Redundancy should be avoided,



12.4. PERFORMANCE MEASURES FOR MODELS AND (SUB)SETS 147

Table 12.3 – Correlation analysis, expressed as a percentage, for the NR VQA models using XGBoost

PCC Difference to train PCC Absolute
mean differenceHRC1 HRC2 HRC3 HRC4 HRC5 Average HRC1 HRC2 HRC3 HRC4 HRC5

Pi
xe
l-b

as
ed HRC1 96.5 95.8 96.9 97.2 97.0 96.7 0 0.69 -0.40 -0.78 -0.58 0.27

HRC2 94.6 96.4 96.3 97.0 96.8 96.2 1.76 0 0.08 -0.59 -0.47 0.20
HRC3 98.2 98.5 99.9 99.4 99.4 98.9 1.72 1.38 0 0.46 0.46 1.00
HRC4 87.1 89.5 92.0 95.9 95.1 90.9 8.76 6.35 3.89 0 0.77 4.94
HRC5 82.9 85.5 90.3 93.7 94.3 88.1 11.35 8.74 4.01 0.59 0 6.17

B
its

tr
ea
m
-

ba
se
d

HRC1 98.0 95.9 97.0 96.5 97.0 96.6 0 2.13 1.02 1.46 1.03 1.41
HRC2 97.9 100.0 98.8 98.5 98.9 98.5 2.10 0 1.21 1.47 1.06 1.46
HRC3 97.2 97.6 99.6 98.7 98.4 98.0 2.47 1.98 0 0.94 1.18 1.64
HRC4 97.1 97.8 98.8 99.9 99.0 98.2 2.80 2.14 1.12 0 0.97 1.76
HRC5 94.5 96.9 97.4 98.2 99.7 96.7 5.25 2.89 2.37 1.58 0 3.02

Figure 12.17 – The cumulative sum of explained variances of the principal components. The red lines indicate when
the model reach a 95% of cumulative variances.

both as redundant HRC or redundant content.
Process: Evaluate the already trained model on the validation data without retraining. Then, follow the process of
Section 12.4.1.1 in order to obtain PRPCA_V.
Reporting: Use P dimension

RPCA_V ( nm ,m) = x, i.e. P SRC
RPCA_V(0.2, 10) = 0.4.

Interpretation: The lower the value of PRPCA_V, the better the performance as less redundancy is found in the
considered dimension in the validation. There are two sources of redundancy in the validation: The first one is the
same as with training, i.e. the used set contains systematic redundancies, the second source is that the model may
behave alike for different conditions, such as not considering a certain degradation at all. When using several subsets
for training and validation, further analysis on these two can be obtained by comparing the graphs cross-wisely, i.e.
X(n, :) and X(:, n). Good models should provide low values of PRPCA_V row-wise in X(n, :) and good subsets for
verification are characterized by high values of PRPCA_V column-wise, i.e. X(:,m) because a high value indicates that
a model is challenged by the subset m, i.e. the model cannot reliably predict this subset.
Example: following the above interpretation in Figure 12.17, models that were trained on the specific subsets are
performing in the following rank order: quality/bitrate-based, random 2, random 1, content-based, random 3. The
subsets in decreasing order of goodness are quality/bitrate-based, content-based, random 2, random 1 and finally
random 3.
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12.4.2 Analysis of confidence intervals (CIs) of the different models fittings

In this section, further performance measures for the models are explained. These analyses are based on two
different notions of confidence intervals. When fitting a model, the parameters of the model are determined based on
training data. The more training data is available and the better the model fits, the smaller the confidence intervals
for each calculated model parameter. In this text, this is called the model confidence, model-C. When the model is
used for prediction, a certain percentage (usually 95%) of the predicted data lies in a corridor bounded by the upper
and lower confidence intervals. This is called the data confidence, data-C.

12.4.2.1 Model’s prediction performance on particular validation dataset

Purpose: measure the goodness of the trained model with respect to its reliability of predicting validation data.
Idea: Determine the confidence interval corridor for the model predicting its own training data. Then, count the
number of validation data points that fall into this corridor.
Process: Train the model on the training data. Evaluate it on the validation dataset. The 95% confidence interval
boundaries for data-Care obtained by using a function such as MATLAB’s 1 polycon function. This function is applied
on the training data in order to get the two boundary lines that are parallel to the fitting line, i.e. y±δ. The validation
data is then predicted by the same model and for each data point it is determined whether it is inside the previously
determined confidence interval boundary. The ratio of inliers i and outliers o of the total number of data points in
the validation set n is reported. This is similar to the well-known outlier ratio with respect to the standard error but
takes into consideration training and validation. This analysis is taken further in Section 12.4.3.
Reporting: Use PDCI_V(δ, n)= i

o , i.e. PDCI_V(0.12, 100)=0.3.
Interpretation: The higher the ratio, the better the model predicts the validation data with respect to its own
training data.
Example: as shown in Figure 12.18, the black lines are the boundaries of data-Cof the trained model and the black
points are the predicted data points of the trained data. The red points are the predicted data points of the validation
data. In addition, the red lines show the boundaries of data-Cusing the validation subset (further exploited in 12.4.3).
Each sub figure reports the PDCI_V. For instance, the fifth row X(5, :) showing the validation of the model trained on
Random3 shows that the spread of content and quality/bitrate based subset is largest compared to the other subsets
which is reflected in the value of PDCI_V. Since the content-based model is not designed to have a wide range of quality
and bitrate, the predicted VQM values of content-based HRCs lie mostly outside the area of the data-CCIs for other
models. Therefore, its HRCs are challenging for other models, especially random-based models.

12.4.2.2 Model determined by its training data

Purpose: measure the goodness of the model by analysing the area of the confidence interval spread by the model-C.
Idea: the size of the area of the model parameter’s confidence spread provides information about the exactness with
which the model parameters can be determined by the training data.
Process: determine the confidence interval values for each of the trained model parameter on the training data of
size n. For a linear model, gradient and offset have a confidence interval that is provided by the fitting function, e.g.
the MATLAB1 function fitlm in conjunction with coefCI. Determine the maximum confidence boundaries that are
spread by the uncertainty, e.g. for a linear model the lower bound is determined by the line y = (a−CIa)x+(b−CI).
Calculate the area of uncertainty x, e.g. for a linear model between the lower and upper bound y = (a+CIa)x+(b+CI).
This analysis is taken further in Section 12.4.3.
Reporting: Use PMCI_T(n)=x, i.e. PMCI_T(120)=0.4.
Interpretation: the lower the value, the better the model is able to predict its training data. Please note that a low
value may also indicate overtraining or irrelevant training data. Hence, we will consider this value when considering
the interaction between the training data, and the validation data in Section 12.4.3.
Example: Figure 12.14 and Figure 12.15 show in each subplot 5 lines. The green line represents y = x. The two
black ones are the CIs of a fitted model, therefore each row in the figures shows the same two black lines. The value
of PMCI_T(n) for the five models are, respectively, 0.014, 0.014, 0.008, 0.011, and 0.010. The sign of the over-fitting
is obvious for random-based subsets. Going further than PMCI_T, the two red lines represent the model-CCIs when
trained on the validation set. This leads to ideas to observe the amount of overlap between training a model on one or
the other subset. A good model is characterized by red lines located between black lines. As shown in Figure 12.14,
the amount of overlap in quality/bitrate-based model is the largest.

1. MATLAB functions are given here for exact reproducibility, other software such as Octave or R has similar functionality
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Figure 12.18 – How much the predicted VQM values lie in area of confidence interval of the fitted data.

12.4.3 Interaction between the model training, the training data, and the validation
data

In this subsection, the goodness of the trained model on its own training data and on a specific validation subset
is studied. The analysis can be applied to the model fit (model-CCI) or to the data fitting ability (data-CCI). The
following three attributes of the CI analysis are used. The area between the CI boundaries of the training (black lines,
denoted as b), the area between the CI boundaries of the validation (red lines, denoted as r), and finally the area
of the intersection between the two areas (denoted as i). The main conditions with respect to line intersections are
explained in Table 12.4.

12.4.3.1 Goodness of data prediction using a trained model on validation data

Purpose: provide an absolute number for the prediction performance of a trained model on a validation dataset
taking into consideration the training dataset.
Idea: The model prediction performance can be characterized by the data-CCI of the validation data. The smaller
the CI, the better the model. Taking into consideration the training process, the smaller the CI on the training data,
the better the model. Finally, taking into consideration the interaction between the training and the validation, the
larger the intersection between the CI, the better the fitting.
Process: Train the model on the training data. Calculate the area of the data-CCI corridor similar to Subsec-
tion 12.4.2.1 in order to obtain the area b. Perform the same operation without retraining on the validation data in
order to obtain r. Calculate the intersection between the two corridors in order to obtain i.
Reporting: The goodness value is reported as P (b,r,i)

GData= i
max(b,r)2 , e.g. P (0.5,0.4,0.3)

GData = 1.2
Interpretation: The higher the value, the better the model’s performance and the data that the model was trained
on. The calculation is divided into two terms, the first one being i

max(b,r) which gets to its maximum 1 if the intersec-
tion covers exactly the larger area and is equal to zero for no overlap. The second term is 1

max(b,r) which gets larger,
the smaller the CI areas get. The measure was designed to provide a reasonable tradeoff between these goals. The
behaviour of this measure can be seen in Figure 12.19.
Example: Figure 12.20 shows 4 sub-figures, the first column is related for P (b,r,i)

GData for the features-based NR VQA and
bitstream-based NR VQA. In both NR VQA models, the quality/bitrate-based dataset has the largest P (b,r,i)

GData value.
While the content-based subsets is ranked the third and the fifth in both models respectively.
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Table 12.4 – List of interesting cases for analysis of the data-CCI, the cases for model-CCI are similar. Black lines
indicate the CI on the training data. For simplicity it is assumed that these are fixed which is true in most practical
cases. Red lines indicate the CI on the validation data.

Case Icon Condition Note

1 b = r = i

Typical case for validating on the training data, this
is considered the perfect fitting, i.e. all three areas
are identical. Refer for example to the main diagonal
X(n, n) in Fig. 12.14. In this case, G = 1

max(b,r) .
To compare between different models or data, the
lower the max(b, r), i.e. the smaller the larger CI,
the better.

2 r = i

The validation data is better predicted than the
training data and the CI lie completely within the
boundaries of the trained model. This is likely to
be a default of the validation data and thus reduces
the goodness as compared to Case 1. In this case,
G = r

b2 .

3 b = i

The validation data is less well predicted than the
training data but the validation CI covers completely
the training CI. This is considered a case of overfit-
ting of the model and should thus be penalized com-
pared to case 1. In this case, G = b

r2 .

4 b ≈ r

This is the typical case of slight deviation between
training and validation. The goodness depends
mainly on the intersection area. In this case, G =

i
max(r,b)2 .

5 b >> r These cases indicate a larger misalignment either of
the training CI or the validation CI with respect to
the model fit and thus are a combination of case 4
with the cases 2 and 3 respectively. In these cases,
the smaller intersection penalizes the goodness
compared to the case 4 as the value of i is smaller
in G = i

max(r,b)2

.

6 b << r

7 i = 0

This is the worst case, the validation data does suc-
ceed in being predicted by the model, thus G = 0.
Please note that this may also be an indication of
a missing alignment between the training and vali-
dation data. An additional alignment step may be
required in particular for models that were trained
on different conditions (e.g. different video encoder).

12.4.3.2 Goodness of two datasets for determining linear model parameters

Purpose: evaluate the model’s stability when using different datasets.
Idea: A good model should provide a stable linear relation to any given dataset. This is similar to Subsection 12.4.3.1
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Figure 12.19 – The behaviour of G with different max(b, r) and i values.

with exchanging the data-Cwith the model-C
Process: Train the model on the training data. Perform a linear fitting on the training data and calculate the area
b=PMCI_Tas explained in Subsection 12.4.2.2. Perform a linear fitting on the validation data and calculate the area r
similarly. Calculate the intersection between the two areas i.
Reporting: The goodness value is reported as P (b,r,i)

GModel= i
max(b,r)2 , e.g. P (0.5,0.4,0.3)

GModel = 1.2

Interpretation: The higher the value the better. The same explanation as in Subsection 12.4.3.1 holds but in
this case, the stability of the model to predict different datasets is analysed.
Example: The second column of Figure 12.20 is related for P (b,r,i)

GModel for the features-based NR VQA and bitstream-
based NR VQA. In both NR VQA models, the quality/bitrate-based dataset has the largest P (b,r,i)

GModel(b,r,i) value. While
the content-based subsets is ranked the third and the second in both models respectively.
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Figure 12.20 – The G values for the CIs analysis for the pixel-based and bit-stream-based NR VQA models
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Table 12.5 – All HRC subsets ranks for each performance measure and for the pixel-based and the bit-stream-based
NR VQA measures.

Performance measure Pixel-based NR VQA (Proposed) Bit-stream-based NR VQA
Content RD Rand 1 Rand 2 Rand 3 Content RD Rand 1 Rand 2 Rand 3

PCC Cross-dataset 3 1 4 2 5 4 1 3 5 2
PCC Leave-one-out 2 1 5 3 4 2 4 3 5 1
PCC Challenging HRCs 2 1 3 4 5 1 2 3 5 4
RMSE Cross-dataset 3 1 4 2 5 5 1 4 3 2
RMSE Leave-one-out 2 1 4 3 5 3 5 4 1 2
RMSE Challenging HRCs 1 2 3 4 5 1 3 5 2 4
P SRC

RPCA_T( nm ,m), P SRC
RPCA_V( nm ,m) 3 1 4 2 5 1 2 1 1 3

PDCI_V(δ, n)= i
o 3 1 4 2 5 2 1 3 5 4

P (b,r,i)
GModel 3 1 4 2 5 2 1 3 4 5

P (b,r,i)
GData 3 1 4 2 5 5 1 2 3 4

Average 2.5 1.1 3.9 2.6 4.9 2.6 2.1 3.10 3.4 3.10

12.4.4 Comparing the performance of HRC subsets
As discussed and observed in the previous sections, all the aforementioned performance measures yield different

results for different HRC subsets. Therefore, in this subsection, all the results are put together in order to judge the
HRC subsets. A rank-order technique is applied in order to get a final score for each HRCs set. Since we have 5
HRC subsets, each HRCs set will have an order number for each performance measure discussed in this paper and
then a comparison between the two NR VQA measures is shown. Table 12.5 shows all HRC subsets ranks for each
performance measure and for the pixel-based and the bit-stream-based NR VQA measures. From the table, it can
be surmised that the systematic way of selecting the HRC set to be used on the experiments performs better than
the random selection that covers different ranges of bitrate and quality. The key element of using such technique in
evaluation is that when a given performance measure cannot give clear indications about which model is better than
others, another performance measure can.

12.4.5 Detailed Analysis of Support Vectors
Support vector (SV) based machine learning is one of the widespread methodologies for regression fitting. Important

insight can be gained from support vectors because they are actual data points from the training dataset. In most cases
this means that some of the created conditions (resulting in PVS) are deemed of foremost importance for representing
the whole training dataset.
Purpose: Evaluate the efficiency of the distribution and the weighting of the selected support vectors with respect
to the ground-truth quality.
Idea: Because the SVs are training data points, each support vector is assigned one ground truth quality score.
The machine learning should choose SV that equally spread over the predicted quality range. In other words, if the
training chooses SV in a small quality subrange, the prediction may get unstable if confronted with conditions outside
this particular quality range and the chosen SV may be redundant. The weighting of the SV needs to be taken into
consideration.
Process: Train the algorithm on the training data and extract the SVs and their weights. Identify which training
data point corresponds to each SV. Retrieve the ground-truth quality score (i.e. on which the algorithm was trained).
Reporting: Visualize the data in one or several scatterplots: on the x-axis the ground-truth quality score and on the
y-axis the main parameter(s) of the condition for the SV (ex. bitrate). The size of the dots indicates the weight.
Interpretation: The more widespread the data points over the quality range, the better and the more stable the
training result. Higher density of data points and/or higher weights in certain quality ranges should be analysed.
They may either indicate redundant or overrepresented training data points or shortcomings of the algorithm in
distinguishing between these closely related conditions. In order to distinguish further between such conditions,
additional factors (ex. quality indicators) may need to be added to the prediction algorithm.
Example: Figure 12.21 is a typical result of this analysis. It shows the same prediction algorithm trained on three
different training datasets (from left to right: HRC1,2,3). Here, VQM is used as ground-truth quality score and the
“main parameter of the condition for the SV” is the quality control parameter being either QP (if<52) or bitrate
(if>52). A major problem can be observed in the case on the right side. It is evident that the density of SV is higher
on the low subrange and on the high subrange of the VQM scores. This is an indication of redundant HRCs in the set.
On the other hand, the density of support vectors in the content-based (left) and the quality/bitrate-based (middle)
training subsets is mostly uniform over the VQM scores.
The example showed the results for the pixel-based NR-VQA model. For the bit-stream-based NR VQA model, this
strong difference is not observed, i.e. the SVs for each HRC subset cover different ranges of VQM score levels. This
may be due to the usage of different factors, i.e. indicators, in the prediction algorithm. Notably the QP value is
included as one of the quality indicators for the prediction algorithm. This leads to the effect that the output of the
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prediction algorithm is mostly determined by QP or at least more stable when the QP value is similar. Therefore, the
SVM may avoid selecting redundant SVs.
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Figure 12.21 – The VQM quality score and the quality control parameter that are assigned to each SV of the following
models: (left) HRC1, (middle) HRC2, and (right) HRC3. The size of the dots indicates the weight of each SV.

12.5 No-reference image quality measure

We first present the methodology on a large-scale database that is evaluated objectively using the VQM algorithm.
This ensures that sufficiently large subsets of the database can be extracted without database alignment issue. In this
Section, we then present a sample application on a typical quality assessment case: the performance evaluation on
several subjective datasets that can be seen as subsets of possible images/videos.
As discussed in the introduction, in this section the aim is not to compare two NR IQA measures, but to see how they
work with different image datasets that are different in size, content, and image distortion types and levels. In [310], a
machine-learning-based NR IQA measure is introduced. It uses Single Value Decomposition (SVD) based features as
input for the machine learning algorithm. Here, the machine learning can be seen as a feature pooling technique; 256
features are extracted from the distorted images. In [311], natural scene statistic (NSS) based features are extracted
from patches that correspond to original images. The resulting Natural Image Quality Evaluator (NIQE) is an opinion
and distortion unaware model. These NR IQA measures are trained with different datasets that differ in content, size,
and number of distortions. These datasets are: the TID database [312] (68 reference and 1700 distorted images),
the IVC database [313] (10 reference and 185 distorted images), the Toyama database [314] (14 reference and 168
distorted images), and the WIQ database [315] (7 reference and 80 distorted images). TID images are distorted using
17 distortion types. IVC database uses four distortion types while the Toyama database uses two distortion types.
Finally, WIQ uses four distortion types.
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12.5.1 Evaluation method
The predicted quality is fitted using a 5-parameter logistic function as recommended in [316], and the correlation

and the RMSE measures are size-weighted to calculate the average correlation and RMSE.

12.5.1.1 PCC

Figure 12.23 and Figure 12.24 show 16 experiments and the corresponding PCC and RMSE. In the SVD-based and
NIQE models, the TID dataset performs better than the other datasets, i.e., the WIQ, IVC, and Toyama datasets,
respectively. It seems that the WIQ dataset is not large enough to be used to build a NIQE model since it shows a
very low correlation when it is tested on the training data. Hence, this dataset will be excluded in the final ranking
order in the overall ranking Table 12.6. Regarding the distortion types that are challenging for the models, TID and
the WIQ datasets show that there are, indeed, distortion types and levels that are challenging for other models. This
result is expected since TID has very different distortion types and WIQ has different distortions than the ones in the
IVC and Toyama databases.

12.5.1.2 RMSE

With the RMSE performance measure in SVD-based IQA, WIQ performs better than others. Then TID, IVC and
Toyama come next in order. For the case of the NIQE model, the WIQ comes first, and then IVC, Toyama, and TID
come next in order. Regarding the distortion types that are challenging for the models, IVC contains distortion types
that are often challenging for other models.

12.5.1.3 P SRC
RPCA_T and P SRC

RPCA_V

This measure is not applied here since the distortions are not similar in terms of distortion type or distortion level.

12.5.1.4 P (b,r,i)
GData

As discussed in Section 12.4.3.1, this measure tries to provide an absolute number for the prediction performance
of a trained model on a validation dataset taking into consideration the training dataset. The first column of Figure
12.22 shows the P (b,r,i)

GData of both image quality assessment. In the SVD-model and the NIQE-model, IVC and TID
datasets have the ability to predict the quality within the confidence intervals corridors respectively.

12.5.1.5 P (b,r,i)
GModel

This measure reports the model’s stability when using different datasets, Section 12.4.3.2. This is done by measuring
the overlap between the two models (G), Table 12.4. As it can be seen in the second column of Figure 12.22, Toyama
and IVC datasets have a higher stability in SVD and NIQE models respectively. In the SVD-based, the G value of
the WIQ model is very small compared to the others: this is due to the bad fitting model for the training data, i.e.
the black area is very large. Therefore, this dataset is not suitable for training for both models.

12.5.1.6 Performance comparisons

As discussed and observed in the previous sections, all the aforementioned performance measures give different
results for different image datasets. In this subsection, all of them are put together in order to judge the image
datasets. A rank-order technique is applied in order to get a final score for each image dataset. Since we have 3
image datasets (WIQ is excluded), each set will have an order number for each performance measure discussed in this
paper and then a comparison between the two NR IQA measures is shown. Table 12.6 shows all the ranks for each
performance measure and for the SVD-based and the NIQE model NR IQA measures. As can be seen from the table,
there is no clear indication about which dataset can be used as a generalized dataset. In the SVD-based model, the
TID dataset is the winner, while in the NIQE model the IVC dataset is the winner. This observation already considers
the exclusion of the WIQ dataset due to its limitation in size and in types of distortions that are not in common with
the other datasets. In conclusion, we recommend that different datasets should be tested with different performance
measures when a new objective NR IQA tool is introduced.

12.6 Conclusion
This Chapter introduces the contributions that are listed in Box 12.3. In this Chapter, we discussed the effects

of different training and validation datasets on the performance of objective quality measurement algorithms. As an
example study, we used five subsets for training and validation; two were targeted towards different goals, three were
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Figure 12.22 – The G values for the CIs analysis for the SVD-based and NIQE-model NR IQA models.

Figure 12.23 – The PCC and the RMSE for the 16 experiments that are trained and tested with source 4 image datasets
of SVD-based NR IQA measure. Rows: the different training models that are trained using TID, IV C, Toyama, and
WIQ. Columns: the test data for each model, from the left, TID, IV C, Toyama, and WIQ.

random. In the study, two NR VQA algorithms with typical quality indicators were trained by SVR.
We analysed the outcome of this widespread approach with state-of-the-art performance measures and identified
important shortcomings. We therefore proposed several novel performance measures in three categories: The first
category analyses the residual errors to find the systematic redundancies in the training and evaluation subsets. The
second category provides insight on the training by using the confidence intervals of models fitting and the confidence
interval of the predicted data. The third category is specific to SVR and the analysis of the density of SV over the
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Figure 12.24 – The PCC and the RMSE for the 16 experiments that are trained and tested with source 4 image datasets
of NSS-based NR IQA measure. Rows: the different training models that are trained using TID, IV C, Toyama, and
WIQ. Columns: the test data for each model, from the left, TID, IV C, Toyama, and WIQ.

Table 12.6 – All image datasets ranks for each performance measure and for the SVD-based and NIQE NR VQA
measures.

Evaluation SVD-based NR IQA NIQE NR IQA
TID IVC Toyama WIQ TID IVC Toyama WIQ

PCC Cross-dataset 1 2 3 - 1 2 3 -
PCC Challenging HRCs 1 3 2 - 1 2 3 -
RMSE Cross-Dataset 1 2 3 - 3 1 2 -
RMSE Challenging HRCs 1 3 2 - 3 1 2 -
P (b,r,i)

GModel 3 2 1 - 2 1 3 -
P (b,r,i)

GData 3 1 2 - 1 2 3 -
Average 2.17 3.00 3.00 - 2.33 2.00 3.5 -

quality range.
An example study on image quality databases with subjective scores illustrates the usefulness of the performance
measures.
The newly proposed performance measures are presented such that they can easily be reproduced. It would be very
beneficial to report such measures in future proposals of video quality assessment algorithms in order to enable an
in-depth analysis and a comparison across the proposals of different authors in the domain who often use varying
datasets for training and validation.
Further performance measures may be required, in particular when training with other machine learning algorithms
such as deep-learning.
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Box 12.3 – Contributions

— Two subset selection algorithms are proposed. They are targeting a wide range of a specific target;
quality/bitrate or content targets. Specifically, a small-scale set is selected from a large-scale database
such that this small-scale database can be further analysed and the conclusions drawn on the small-scale
database also apply to the large scale database.

— The following new performance measures are proposed for learning-based video quality assessment algo-
rithms:
— Measures depend on analysing the residual error using PCA,
— Measures depend on analysing the confidence intervals of the predicted data, and
— Measures depend on analysing the confidence intervals of the linear coefficients of the trained and

tested models.
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Conclusions and future perspectives

13.1 Conclusions
In this dissertation, a research effort has been conducted to show how the underlying content features/indicators

can be used for enhancing the video delivery chain performance. The following conclusions have been drawn regarding
each delivery chain component.

Pre-encoding process (Part II): the pixel-based features have an impact in predicting the encoder behaviour
of a specific content with respect to bitrate, distortion, and complexity. The proposed framework of predicting the
encoder parameter values is able to link the content features with the parameter value that trades-off the bitrate,
distortion, and complexity. The visualization tool, that shows the impact of the complexity in the rate-distortion op-
timization, shows that the proposed model can be applied in two different scenarios: 1) when the complexity matters:
Chapter 4 follows this assumption. In Chapter 4, a model for predicting coding parameter values using the underlying
content features is proposed. The model trades-off rate (R), distortion (D), and complexity (C). 2) when complexity
doesn’t matter: two dimensions will be used (bitrate and distortion) in order to select the configuration that gives
better results. It was observed that using the complete set of encoder tools doesn’t guarantee better results.

Source coding (multiple description coding) (Part III): in this part, beside showing the impact of pixel-
based features, the impact of good/smart networking structure in reducing the amount of redundant data to be sent
is shown as well. Regarding the impact of pixel-based features, it was observed that the CTU split decision and the
distance between the secondary frame (used in the recovery process) and the reference frame of this secondary frame
have an influence in generating the weights that are going to be used in the recovery process. Moreover, the pixel-based
features have the ability to be used in building an adaptive content-aware multiple description scheme. Regarding
the impact of good/smart networking structure, it was observed that the amount of redundant data to be sent may
be reduced if the proposed network structure is used. This approach allows different types of applications that use
error-prone channels to deliver video content with satisfying perceived quality.

Inpainting-based error concealment (Part IV): the impact of using pixel-based features is twofold in this part.
The first impact is observed on using motion information derived from the motion vectors, motion intensity, and camera
motion maps. These motion maps are combined with the logical OR operator to generate one map. Since having good
motion information participates in better structure reconstruction of the lost area, this motion map is used as input
for inpainting-based error concealment. After finishing from reconstructing moving pixels, the job, then, is easy for
spatial inpainting to reconstruct the texture. The second impact is observed when the user disruption, when looking at
impaired sequences, is analysed using with proposed entropy maps, that are computed from texture, colour, and mo-
tion information. These entropy maps are used as indicators to predict the observer’s disruption in impaired sequences.

Quality assessment (Part V): in this part, the large-scale database is used as a good alternative to analyze
the VQA measures and to evaluate their performance for scenarios that subjective experiments cannot evaluate due
to its limitations. Hence, we can draw the following conclusion for different different quality assessment aspects. 1) As
the whole PhD topic aims to, in this part, the impact of pixel-based features are used to build a prediction model that
predicts the behaviour of the full-reference quality measures for error-free and loss-impaired sequences. 2) The encoder
behaviour of different video sequences of the large-scale database is analysed and led to propose an algorithm to select a
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set of encoding conditions that cover a variety of targets. The targets might be content-based or quality/bitrate-based.
The goal behind introducing the selection algorithms is to generate a representative small-scale database that is able
to reflect the behavior of the large-scale database. 3) It is observed that depending on the correlation measures and the
mean square error as performance evaluation measure doesn’t, in fact, report the right conclusion about the compared
models. Hence, improved measures that help evaluate the performance of the objective measurement with different
datasets are introduced. The measures depend on analysing the residual error using PCA, depend on analysing the
confidence intervals of the predicted data, and depend on analysing the confidence intervals of the linear coefficients
of the trained and tested models.

13.2 Future perspectives
Through the thesis, utilizing the content features have been studied in different aspects. The final goal of this

dissertation is to highlight the relationship between content characteristics and optimizing the video delivery chain.
As a result, these studies are attracting researches due to variety of topics and aspects that can be addressed. Hence,
this work can be extended as follows:

— In this work, we bring complexity awareness to the prediction of the encoding parameter values with the help
of content features. Basically it is targeting the industry with limited computation power. On the other hand,
some enhancements can be done in different aspects: 1) The content features might be linked with the encoder
parameter values without any awareness of complexity as well. This could fit industry that has a superior com-
puting power. 2) The proposed optimization process used PSNR as a quality measure which can be replaced
with other metrics that reflect some aspects of human visual system.

— The developed entropy maps that are used in the disruption analysis can be used to optimize the multiple de-
scription coding. Instead of sending all the redundant data, we can employ the entropy maps to select regions
that are highly important to maintain the consistency of the recovered lost primary frames. On the other hand,
the subjective experiment has to be conducted to compare the temporal MDC. Moreover, a simulation with
different datarates capabilities has to be done as well.

— Regarding the large-scale database, further analysis is required to study the impact of content features in the
disagreement of FR VQA within a short-term. For instance, if the quality measures agree for 10 consecutive
frames and disagree for frame 11. Studying such cases let us know if this disagreement is due to a notable
change in content features or due to the measure inconsistency.

— In this work, two subset selection algorithms are proposed to generate a representative subset that is able
to reflect the behaviour of the large-scale database. Combining these two algorithms in one algorithm may
generate a robust subset. Further analysis has to be done in this aspect.

— Since integrating one property of TCP helps building a robust networking structure of best-effort networks for
temporal-MDC schemes, further investigations are required to 1) target other application scenarios like internet
of things application, for instance, 2) utilize the multi-path property of the routing protocols.

— The pixel-based features that are used in this dissertation are limited, i.e. they are collected from the state-of-
the-art except for the features that are used in the disruption analysis. Hence, more analysis are required to
include more features that might be extracted from the signal based statistics.
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Transmission vidéo «contenu»-adaptée dans le contexte HEVC
Optimisation de la compression, de la tolérance aux erreurs de la transmission, et de la
qualité visuelle

Content-Aware Video Transmission in HEVC Context
Optimization of compression, of error resilience and concealment, and of visual quality

Résumé
Dans cette étude, nous utilisons des caractéristiques locales/globales en vue
d’améliorer la chaîne de transmission des séquences de vidéos. Ce travail est
divisé en quatres parties principales qui mettent à profit les caractéristiques
de contenu vidéo. La première partie introduit un modèle de prédiction de
paramètres d’un encodeur basé sur la complexité du contenu. Ce modèle
utilise le débit, la distorsion, ainsi que la complexité de différentes
configurations de paramètres afin d’obtenir des valeurs souhaitables
(recommandées) de paramètres d’encodage. Nous identifions ensuite le lien
en les caractéristiques du contenu et ces valeurs recommandées afin de
construire le modèle de prédiction. La deuxième partie illustre le schéma de
l’encodage à description multiple (Multiple Description Coding ou MDC, en
anglais) que nous proposons dans ces travaux. Celui-ci est optimisé pour des
MDC d’ordre-hauts. Le décodage correspondant et la procédure de
récupération de l’erreur contenu-dépendant sont également étudiés et
identifiés. La qualité de la vidéo reçue a été évaluée subjectivement. En
analysant les résultats des expériences subjectives, nous introduisons alors
un schéma adaptatif, c’est-à-dire adapté à la connaissance du contenu vidéo.
Enfin, nous avons simulé un scénario d’application afin d’évaluer un taux de
débit réaliste. Dans la troisième partie, nous utilisons une carte de
déplacement, calculées au travers des propriétés de mouvement du contenu
vidéo, comme entrée pour l’algorithme de masquage d’erreur par
recouvrement (inpainting based error concealment algorithm). Une
expérience subjective a été conduite afin d’évaluer l’algorithme et d’étudier la
perturbation de l’observateur au visionnage de la vidéo traitée. La quatrième
partie possèdent deux sous-parties. La première se penche sur les
algorithmes de sélections par HRC pour les grandes bases de données de
vidéos. La deuxième partie introduit l’évaluation de la qualité vidéo utilisant la
connaissance du contenu global non-référencé.

Abstract
In this work, the global/local content characteristics are utilized in order to
improve the delivery chain of the video sequences. The work is divided into
four main parts that take advantages of video content features. The first part
introduces a joint content-complexity encoder parameters prediction model.
This model uses bitrate, distortion, and complexity of different parameters
configurations in order to get the recommended encoder parameters value.
Then, the links between content features and the recommended values are
identified. Finally, the prediction model is built using these features and the
recommended encoder parameter values. The second part illustrates the
proposed multiple description coding (MDC) scheme that is optimized for
high-order MDC. The corresponding decoding and content-dependent error
recovery procedures are also identified. The quality of the received videos is
evaluated subjectively. By analyzing the subjective experiment results, an
adaptive, i.e. content-aware, scheme is introduced. Finally, an application
scenario is simulated to study the realistic bitrate consumption. The third part
uses the motion properties of a content to introduce a motion map that will be
used as an input for the modified state-of-the-art inpainting based error
concealment algorithm. A subjective experiment was conducted to evaluate
the algorithm and also to study the content-aware observer’s disturbance
when perceiving the processed videos. The fourth part has two sub-parts, the
first one is about HRC selection algorithms for the large-scale video database
with an improved performance evaluation measures for video quality
assessment algorithms using training and validation sets. The second part
introduces global content aware no-reference video quality assessment.

Mots clés
Caractéristiques du contenu visuel, Résilience
d’erreur, Masquage d’erreur, Enodage à
description multiple, Compression vidéo,
Evaluation de la qualité visuelle, Transmission
vidéo, HEVC standard.
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