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Résumé

Cette thèse a été menée dans le cadre du dispositif CIFRE1 et s’est déroulée entre
l’entreprise STMicroelectronics et le laboratoire Verimag.

Chapitre 1: Introduction Générale

Le chapitre 1 décrit le contexte général dans lequel s’inscrit cette thèse. Les systèmes sur
puce sont utilisés quand des contraintes de place, de puissance de calcul ou de consomma-
tion d’énergie rendent impossible l’utilisation d’un ordinateur classique. Un système sur
puce est constitué d’un programme, le logiciel embarqué, qui s’exécute sur du matériel,
incluant un ou plusieurs processeurs. Le système est constitué de ces deux éléments, et
concevoir un système sur puce implique de prendre en compte les interactions entre le logi-
ciel embarqué et le matériel. Pour permettre le développement du logiciel embarqué, le
matériel de la puce est représenté par un modèle, qui est un programme écrit en SystemC
(une bibliothèque C++). Grâce à ce modèle sont réalisées des simulations du système
sur puce : le logiciel embarqué est exécuté non pas sur du matériel physique mais sur le
modèle SystemC qui le représente.

L’objectif des simulations est de représenter les interactions qui ont lieu entre les
instructions du logiciel embarqué et l’état du matériel. La durée d’exécution des sim-
ulations impacte directement la durée du développement du logiciel embarqué. Avec le
temps, cette durée de simulation est devenue un problème, en partie dû à l’augmentation
de la complexité des systèmes, mais aussi à d’autres facteurs. L’objectif de la thèse est
d’étudier les causes des lenteurs observées en simulation, et de proposer des solutions afin
de résoudre ce problème, notamment en identifiant et exploitant un potentiel de calcul
parallèle présent dans ces simulations.

Chapitre 2: Contexte et Problématique

Le chapitre 2 présente des informations techniques faisant partie du contexte nécessaire
pour comprendre la suite du manuscrit. Au début sont présentées les notions de multi-
tâche et de calcul parallèle, ainsi que les problèmes classiques qu’on observe dans ce do-
maine. Ensuite, le chapitre présente la librairie SystemC ainsi que le niveau d’abstraction
TLM (Transaction Level Modeling). En effet, ce sont des modèles TLM qui sont utilisés
pour représenter le matériel d’un système sur puce dans le cadre du développement du
logiciel embarqué.

Enfin, le chapitre termine par une présentation de la synthèse de haut-niveau, ou HLS
(High-Level Synthesis). La HLS permet de concevoir des composants matériels à partir
d’une description de haut niveau, correspondant en général à un programme écrit en C
ou en C++. Ce programme décrit le comportement fonctionnel du composant, et un outil
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de HLS est chargé de générer automatiquement un modèle de matériel réalisant cette
fonction. L’objectif de la HLS est de permettre de concevoir des composants matériels
plus rapidement et plus efficacement qu’en les décrivant à la main dans un langage dit
bas-niveau comme le VHDL ou le Verilog. Le fait que la HLS soit utilisée, notamment
à STMicroelectronics, a une influence sur le flot de conception et aussi sur la façon dont
sont élaborés les modèles TLM.

Chapitre 3: Profilage de Simulation

Le chapitre 3 présente une première série de contributions autour du profilage de simu-
lations SystemC. En effet, nous avons précédemment dit que les simulations devenaient
complexes et que des problèmes de performances apparaissaient. Une des premières étapes
menant à la résolution du problème est donc d’analyser un exemple de simulation. Après
l’étude de l’état de l’art en matière d’analyse de modèles SystemC/TLM, nous avons
conclu qu’il était nécessaire de développer un outil d’analyse spécifique pour récolter des
informations permettant de savoir pourquoi une simulation est lente, et d’identifier par
la même des moyens d’accélération.

Ce chapitre présente donc ensuite l’outil d’analyse SycView, une contribution de cette
thèse. Cet outil d’analyse collecte des traces durant une simulation, à l’aide d’un simula-
teur SystemC instrumenté, puis permet de visualiser les résultats à l’aide d’une interface
graphique. L’outil a été ensuite appliqué à une étude de cas venant d’un vrai mod-
èle utilisé à STMicroelectronics. Ce modèle correspond à une puce pour un décodeur
numérique (set-top box) et est utilisé pour le développement du logiciel embarqué dans
ce décodeur. Les résultats de l’analyse par SycView ont été publiés, un des principaux
résultats étant que le temps de calcul était principalement utilisé dans la simulation de
composants matériels réalisant le décodage vidéo.

Chapitre 4: État de l’Art en Parallélisation de Simulations

Le chapitre 4 présente l’état de l’art en matière de parallélisation de simulations Sys-
temC. Ce sujet est traité quasiment depuis l’existence de SystemC, et avant SystemC la
simulation parallèle de systèmes à événements discrets a déjà été théorisée.

La principale leçon à tirer de cette analyse de l’état de l’art est que chaque approche de
parallélisation s’applique particulièrement bien à une catégorie de modèle donnée, mais pas
à n’importe quel modèle SystemC. Pour le type de modèles que nous avons étudiés dans
le chapitre précédent (l’exemple du décodeur numérique), nous avons identifié qu’aucune
approche existante ne répondait pleinement aux problèmes de performances observés.
Par exemple, les approches classiques de parallélisation dans le cycle de simulation ne
seraient pas efficaces car notre modèle ne présente pas de potentiel de parallélisation au
sein des cycles (il n’y a pas beaucoup de processus SystemC éligibles à chaque cycle), et
les approches de partitionnement ne proposent pas de méthode permettant de trouver le
bon partitionnement à utiliser ou garantissant que les résultats de simulation seront les
mêmes qu’en simulation séquentielle.



Chapitre 5: Infrastructure de Simulation Parallèle

Le chapitre 5 présente une des principales contribution de la thèse, à savoir une infrastruc-
ture de simulation parallèle proposée en réponse aux problèmes de performances observés
sur l’étude de cas industrielle. Le développement de cette solution fait suite à l’analyse
de l’état de l’art en parallélisation de simulation, dont une conclusion était l’absence de
solutions pour une catégorie spécifique de modèles. Notre cas est assez complexe, puisque
les modèles sont en fait assemblés à partir de plusieurs sources, dont des morceaux de
code écrits pour la HLS (présentée au chapitre 2).

L’idée proposée est d’appliquer le modèle de calcul des processus de Kahn à un sous-
ensemble du modèle SystemC. Ce sous-ensemble correspond aux modèles de composants
matériels réalisant des traitements sur des flux de données, ce qui est typiquement le
cas d’un décodeur vidéo (auxquels nous avons attributé en partie la cause des lenteurs
observées en simulation au chapitre 3). Dans l’industrie, les modèles de ces composants
sont généralement issus de descriptions destinées à des outils de HLS, pour des raisons
pratiques évoquées plus en détail dans le chapitre 2. Nous avons donc pris en compte à
la fois le modèle de calcul de ces composants ainsi que la présence du flot de conception
HLS pour proposer l’infrastructure de simulation parallèle DistemC.

DistemC est une infrastructure de simulation parallèle et une contribution de cette
thèse. Avec DistemC, la simulation est partitionnée, et chaque partition est exécutée par
un simulateur SystemC différent. La plupart des composants classiques restent sur un
simulateur principal (les modèles des processeurs, le bus système, les mémoires, etc) et les
composants de traitement de données sont découpés en sous-fonctions et simulés séparé-
ment. En réalité, le découpage des composants de traitement de données est déjà fait au
moment de l’écriture des modèles pour la HLS, et nous exploitons ceci en enveloppant ces
sous-fonctions avec un morceau de code permettant la communication entre sous-fonctions
à l’aide d’une structure de données nommée FOFIFON, développée pendant cette thèse.
L’utilisation de FOFIFON permet les échanges de données entre différents simulateurs
SystemC (exécutés par des processus différents).

Chapitre 6: Application à un Modèle Représentatif

Le chapitre 6 présente l’application de l’infrastructure DistemC/FOFIFON (présentée au
chapitre 5) à un modèle représentatif du problème qu’on cherche à résoudre, à savoir
l’accélération de simulations de composants de traitement de flux de données. Ce modèle
inclut notamment un décodeur JPEG, sur lequel nous avons appliqué l’infrastructure
proposée pour étudier les résultats obtenus.

Les résultats observés montrent une amélioration des performances avec notre infras-
tructure parallèle par rapport à une exécution séquentielle. L’accélération obtenue est d’un
facteur 1,6 pour l’utilisation de 4 processus parallèles. Cette accélération peut paraître
à première vue peu significative, mais elle est en fait proche du maximum théorique que
nous pouvons espérer sur ce type de modèles, et en particulier sur les décodeurs JPEG
qui exposent peu de potentiel de parallélisme (à cause du déséquilibre entre les temps de
calcul des différentes sous-fonctions du décodage).



Chapitre 7: Conclusion Générale

Le chapitre 7 est la conclusion générale de la thèse. Nous résumons d’abord les en-
jeux: étudier le problème de performance observé dans les simulations industrielles en
SystemC/TLM et y proposer une solution. Résoudre ce problème est capital, car si les
performances continuent de diminuer (ce qui a toutes les chances d’arriver compte tenu de
l’augmentation de la complexité des systèmes simulés) il sera bientôt impossible d’utiliser
raisonnablement les simulations dans un cycle de développement industriel.

Ensuite, nous rappelons la solution proposée et les résultats obtenus. L’infrastructure
DistemC/FOFIFON se propose d’aborder le cas particulier de la simulation parallèle de
composants matériels de traitement de données décrits pour la synthèse de haut niveau.
Les résultats obtenus sur un modèle représentatif nous montrent qu’une accélération sig-
nificative est possible, tout en gardant ouverte la possibilité de combiner cette approche
à d’autres approches de parallélisation existantes, pouvant s’appliquer sur d’autres sous-
ensembles de la simulation.

La dernière partie évoque les perspectives ouvertes par cette thèse. Parmi celles-ci: la
combinaison de différentes approches de parallélisation, l’application de DistemC et FOFI-
FON à d’autres types de composants, comme des composants de traitement analogique
(avec SystemC/AMS) et non plus numérique, ou même à d’autres types de simulations
comme la simulation de réseaux de systèmes sur puce.
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— Chapter 1 —

General Introduction

This manuscript explains the work of my CIFRE1 thesis, a three-years joint work be-
tween STMicroelectronics in Grenoble and Verimag in Saint-Martin d’Hères. At STMi-
croelectronics, I joined the team “System Design and Services” working on the virtual
prototyping of systems on chip, notably to enable debugging the embedded software at
early development stages. At Verimag, I joined the team “synchronous” working on for-
mal verification, testing, synchronous languages, and modeling. There has been a long
collaboration between both teams, further presented in the next chapter, that presents
the technical background. The following introduction presents the general context of my
thesis.

Systems on Chip

STMicroelectronics produces millions of systems on chip yearly. Systems on chip are used
in many areas including home automation, autonomous driving, set-top boxes, smart-
phones, spacecrafts, etc. In short, they are used in places where computing power is
required, but where specific constraints prevent the use of a “classic” computer. Most of
the time, those constraints are the lack of space, the need for low power consumption, or
the need for efficiency, which requires custom components. The “chip” part of the “sys-
tem on chip” is an integrated circuit including various components: memories, peripherals
such as sensors, Wi-Fi or Bluetooth interfaces, hardware acceleration blocks, and so on,
but most importantly one or several generic-purpose Central Processing Units (CPUs).
This last component, the CPU is what justifies the term “system” on chip. The CPU
executes a program, the embedded software. The system results from the execution of
the embedded software on the chip.

1Convention Industrielle de Formation par la REcherche — Industrial partnership of learning/training
by research.
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By definition, the software part can be updated during the lifetime of the product;
for example, some set-top boxes were updated to run video games, even though that was
not planned at first. Practically, updating the software means changing data in the chip
memory. The case of the hardware is very different. The hardware is an integrated circuit,
printed on a semiconductor material. To mass-produce this circuit, the process consists
in producing a mask of the chip. The mask can be seen as a stamp, used to reproduce the
same circuit. The production of a mask costs several million dollars: this step is critical
in the production flow. With this in mind, one can easily see why the software can be
updated — it costs some man/days of work to develop the new version of a program —
and why the hardware cannot be updated.

The miniaturization of transistors (cf. Moore’s law) enabled semiconductor companies
to put more powerful components, and also more functionalities on a single chip. The
ability to produce complex products mainly depends on two factors: abstraction and
computer-aided design. The abstraction characterizes the model of a system. A model at
a low abstraction level is close to the real system; it models the system in details. Such
level requires a comprehensive knowledge of the internal behavior of the system. A high
abstraction level does not model the details of the system, an approximate representation
is used. High levels enable dealing with very complex systems as they are simpler to
understand, but they are not sufficient to actually make the system. The notions of
“high” and “low” levels are relative, they depend on the context.

In our context, the Register Transfer Level (RTL) description of a system on chip is
considered to be at a low level of abstraction. It represents the system in a detailed way,
which enables the generation of plans for an integrated circuit from its RTL description.
This generation is done by an automatic tool. This is an example of computer-aided
design. Another example of computer-aided design is a High Level Synthesis (HLS) tool.
An HLS tool generates an RTL design from a function written in C or C++, written
at a high level of abstraction. The functional description of the block is behavioral. It
describes what the block does, but not how; the micro-architecture of the RTL design is
decided during the generation process, by the hardware designer.

Simulation of Systems on Chip

The embedded systems market has been growing very fast during the last decades. This
growth is a consequence of such systems being in many promising and already successful
areas. That includes home automation, smart items (e.g. phones, watches, televisions)
and autonomous cars, amongst others. Anticipation is one of the most important quality
in a growing market: not only in terms of “what new feature will be the determining
factor for our product”, but in terms of solving problems before the product is available.
Moreover, in systems on chip design, it is not possible to wait for the availability of the
physical chip to start testing because the cost of an error is too expensive (several million
dollars to produce a mask).
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A model of the chip is used to start testing the system on chip (hardware and software)
before the chip is available. This model is developed as soon as possible, even though the
full specifications of the chip are not available. It must be possible to run the embedded
software on the model of the chip, and to identify potential issues that would happen on
the real chip. In summary, the essential properties of the required simulations are:

Reproducibility The same inputs must produce exactly the same outputs. With repro-
ducibility ensured, when a bug is encountered, the user can reproduce
it to identify and solve the problem.

Speed Simulations must be fast enough to be reasonably used. When software
developers are fixing the code, they need to quickly get a result.

Debug A debug environment must be available to quickly find the root cause
of bugs (when a piece of software runs on a chip and a bug occurs, it
is hard to get more information than “it didn’t work”).

Accuracy The model must be accurate enough to enable the identification of
software bugs or hardware synchronization issues.

The Transaction Level Modeling (TLM) abstraction level has been created specifically
to answer those needs. A TLM model is at a high abstraction level, and it is implemented
using the SystemC library in C++. In particular, such a simulation satisfies each point:
simulations are reproducible thanks to SystemC coroutine semantics (Reproducibility);
they are fast as they are written at a high level of abstraction, plus it also benefits from
the C++ execution speed (Speed) and debug environment (Debug); and they model
enough of the chip by definition (Accuracy). The embedded software is run in the TLM
model of the chip without any modification.

Simulation Speed

The development of systems on chip involves many different teams working together.
Some components of a chip are bought from external companies, some others are internally
designed from scratch, and some others are reused or improved from previous chips. Even
for components that are internally designed, the design method is specific to the type of
component. For example, an Intellectual Property (IP) block for video decoding, has to
be first mathematically designed, described and validated, before it is described in terms
of hardware components. We mentioned the HLS process, that generates a hardware
description of a component based on a functional description. Such process is typically
used for this type of IP blocks. Since this process implies to write C/C++ code, and since
a TLM description of a chip also consists in C++ code, developers reuse the first piece
of code into the second one. Indeed, the development of a TLM model must be fast (a
few months) and there is no time to re-write existing pieces of code. The fact that the
same code is re-used also ensures consistency between the different models. This example
illustrates that when we say “a model”, we actually refer to different models for different
components that are simulated together in order to check the whole system.
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The growing complexity of systems on chip is reflected in their models. And more
complex models lead to slower simulations, while the time-to-market constraints become
shorter in a tight market. Reducing the simulation time of models became a major research
challenge for more than two decades. One solution to speed up computer programs is to
exploit the parallel computation resources available. Indeed, today’s computers often have
several CPUs, as well as powerful Graphics Processing Units (GPUs). However, exploiting
parallel resources for TLM simulations is hard, and is a major research concern; this thesis
falls within this context.

This manuscript is organized as follows. Chapter 2 presents technical background
information that are part of the state of the art, and exposes the problem statement.
Before the presentation of existing parallel simulation approaches for SystemC models, we
examine the profile of an industrial case study from STMicroelectronics in Chapter 3. For
this profiling, we developed a profiling and visualization tool for SystemC. Then, Chapter 4
presents the existing parallel simulation approaches. Chapter 5 introduces our proposed
approach and details a proposed algorithm used for communication between concurrent
simulators. Finally, Chapter 6 presents an application of the proposed approach to a
representative model. Performance results are presented in this last chapter.

In summary, the contributions of this thesis are:

• Identification of profile metrics on SystemC simulations, and development of a vi-
sualization tool and instrumentation of a SystemC kernel in order to obtain the
corresponding measurements.

• Profiling results on an industrial case-study from STMicroelectronics and analysis of
the results, put in perspective with existing parallel SystemC simulation approaches.

• Identification and implementation of an efficient First In, First Out (FIFO) com-
munication algorithm for intensive data exchanges (unidirectional), and adaptation
of this algorithm to SystemC simulations, called Fast Ordered First In, First Out
data exchaNge (FOFIFON).

• Development of DistemC, a non-intrusive multi-process infrastructure of SystemC
simulators communicating through FOFIFON structures.

• Application of DistemC, to simulate in parallel the SystemC/TLM model of a hard-
ware acceleration block (a JPEG decoder) whose behavior is described for an HLS
design flow.
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2.1 General Information

Simulating systems on chip involves to use multitasking. Indeed, hardware systems are in-
trinsically parallel. In this section, we remind different multitasking concepts in computer
science, necessary to understand SystemC simulations. We also emphasis the difference
between describing parallel systems, and executing a program in parallel. This difference
is a key to understand why parallel simulation of systems on chip is a major research
concern. Finally, we introduce discrete event simulation.

2.1.1 Multitasking Concepts

2.1.1.1 Coroutines, Threads and Processes

A task is a generic term that refers to a unit of execution. This unit of execution is a
sequence of instructions with context information (local variables, stack of function calls,
etc). When a system consists of multiple tasks, a scheduler manages their execution.
The scheduler can either be preemptive, which means it has the ability to pause and
resume tasks, or cooperative, which means it cannot. In cooperative multitasking, the
scheduler must wait until a task pauses itself before having the chance to run another one.
The cooperative term comes from the fact that a task must cooperate, i.e. pause itself
sometimes, to enable the execution of other tasks. The fact that a tasks suspends itself
is called a yield. In cooperative multitasking, tasks are called coroutines. In preemptive
multitasking, tasks generally consists in threads or processes.

OS process

User Memory

OS process

User Memory

parent

created

child
OS thread

Stack

OS thread
Stack

OS thread
Stack

Figure 2.1: OS processes and OS threads.

Figure 2.1 reminds the major differences between OS processes and threads, that lies
in the amount of context information. A process (the child) is created by another process
(the parent). The child and the parent processes do not share the same memory space.
Thus, if the child process modifies the value of a variable, the parent process will not see

18



CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

the modification. A thread is created by a process. Each thread belonging to the same
process share the same memory space. Thus, if a thread modifies the value of a variable,
other ones will eventually see the modification. Threads are often referred to as lighter
concurrency features than processes, because their creation and context switching are
faster, and communication between them is easier because they share the same memory
space.

2.1.1.2 Atomicity, Race Conditions and Critical Sections

When multiple tasks are running, atomicity is required to build correct functions. Ety-
mologically, something atomic is something that cannot be divided. In computer science,
an atomic operation is a set of instructions that either occur completely or does not occur
at all. This means that none of the intermediate states of an atomic operation must be
observable from the rest of the system (i.e. the scheduler and the other tasks scheduled
by the same scheduler).

A race condition is a situation where the observable state of an application changes
depending on the execution order of tasks. A typical example of race condition is when
two threads increment a shared variable without any “protection”. The increments per-
formed on a variable can be translated into load, add and store assembly instructions.
Individually, those instructions happen atomically, but they can interleave such as the
value is only incremented once at the end. To avoid this race condition, operations on the
shared variable should be performed in a critical section. At any given time, there can be
at most one task that runs code from a critical section. This is called mutual exclusion,
and it is typically set up with a mutex variable or by using fences.

2.1.2 Parallel Description and Parallel Execution

Task A Task B

Task C

(a) Description of a parallel model.

Host 1 A B C B

(b) Sequential execution of this model.

Host 1

Host 2

A B

B C

(c) Parallel execution of this model.

Figure 2.2: Example of parallel description, either executed sequentially or in parallel.

We already stated that hardware systems are parallel: indeed, each component is
working at the same time as the others. Thus, in order to describe hardware systems, there
is a need for parallel description. However, parallel description does not imply parallel
execution: it is completely possible to execute sequentially a model that is described with
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parallel components. Figure 2.2 shows an example on which three processes are described
(a), and executed either sequentially (b) or in parallel (c).

2.1.3 Discrete Event Simulation

The principle of simulation is to model the evolution of a dynamic system through time.
Discrete Event Simulation (DES) must be distinguished from continuous simulation. Con-
tinuous simulations are time-driven: the simulated time evolves with a specific step (pos-
sibly changing during simulation) and the components of the simulation evolve with it. In
DES, which is event-driven, the state of components changes in response to event occur-
rences. Thus, the simulated time “jumps” from one instant to the other, also in response
to event occurrences. In summary: time is an input parameter in continuous simulation,
while in DES time is an output value. A consequence is that in DES, it is not possible a
priori to know the different simulated time instants the simulation will go through.

Algorithm 1 Typical loop of a discrete event simulator.
1: sim_time ← 0
2: while runnable_processes not empty do
3: while runnable_processes not empty do
4: p ← runnable_processes.pop( )
5: p.run( )
6: end while
7: if events not empty then
8: e ← events.pop( )
9: sim_time ← e.timestamp( )

10: e.trigger( ) . Processes sensitive to e are put in runnable_processes
11: end if
12: end while

A DES simulator enables the execution of a model. The simulator must maintain a
list of processes, a list of events (generally a priority queue), and a variable for the current
simulated time value. An event is an object that has a timestamp value, corresponding to
the simulated date it occurs. Processes can indicate that they have to run computation
when a specific event occurs: in this case, they are called sensitive to such event. The
queue of events is sorted in growing timestamps. The general principle of a discrete event
simulator is presented on Algorithm 1. It consists in a loop program. First, each process
from the model is run. During their execution, they register events to occur at future
simulated time instants. When the execution of processes is over, the first event from
the list of events is retrieved, the simulated time variable takes the event timestamp as
value, and processes that are sensitive to this event are triggered. The simulation stops
either when the simulated time has reached a specific value, or when there are no more
processes to run.
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2.2 The SystemC Library

2.2.1 Presentation of SystemC

SystemC is a C++ hardware modeling library. Since 2005 it is under IEEE standard,
updated in 2011 as IEEE 1666–2011 [1]. The standard notably defines the requirements
of a SystemC simulator. A SystemC simulator is a discrete event simulator. The SystemC
library can be used to write models of hardware at different levels of abstraction. Each
level of abstraction uses different constructs from the SystemC library. Transaction Level
Modeling (TLM) is one of them, and is described as a part of the SystemC standard [1,
pp. 413–561]. The goal of this section is not to exhaustively define the features of SystemC
but some key ones, and to explain how the SystemC simulator works.

2.2.1.1 Elements for Discrete Event Simulation

SystemC offers different types of tasks to describe hardware parallelism: SC_METHOD,
SC_THREAD and SC_CTHREAD. The SystemC clocked threads (SC_CTHREAD) are mentioned
for exhaustiveness, but are only used in cycle-accurate models which are not in the scope of
this manuscript. Whenever the expression SystemC process is used, it means indifferently
SystemC threads or methods.

Both SystemC methods and threads enable the description of concurrent behaviors,
their only difference lies in how this description is made. SystemC methods are imple-
mented as stackless processes, i.e. simple C++ function calls. As a consequence, their
state is not recorded from one run to the other. This execution model is relevant for
simple behaviors, but for complex ones they are not comfortable to use, because manual
recording of the current state would be necessary. For this reason, SystemC also offers
threads, which are implemented as stackful processes.

Simulated time is modeled with the sc_time type. It models the fictional time taken
by the simulated platform (i.e. estimated time that the real chip would take). It is
completely disconnected from the wall-clock time, which is the human perception of time
passed while a simulation is running. Figure 2.3 illustrates the duality between wall-clock
time and simulated time. A SystemC method can schedule a future run for itself, after
a certain simulated time elapse, using the function next_trigger. Similarly, a SystemC
thread may suspend itself for a certain amount of simulated time, using the function wait.

Events are modeled in SystemC with the sc_event class. Events can be triggered
explicitly in a SystemC process, either immediately or after a simulated time delay. They
are used as conditions to wake up suspended SystemC processes. Each SystemC process
can have a sensitivity list, which is a list of events. Each time an event present in
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0
Wall-clock time (s)

Simulated
time (ms)

2 5

3

5
Computations:

immediate for SystemC

SystemC time
elapse

Figure 2.3: Evolution of wall-clock time versus simulated time. In SystemC, as in discrete
event simulation, computations are “immediate” with respect to simulated time, and
simulated time progresses “immediately” with respect to wall-clock time.

a suspended process’ sensitivity list is triggered, it causes this process to run. This
sensitivity list can be specified both statically when the process is created or dynamically
during the process execution. For SystemC methods, the dynamic sensitivity is described
with the family of functions next_trigger. For SystemC threads, it is specified with the
family of functions wait.

Finally, the sc_main function is the equivalent of the main function in a standard C++
program. The role of this function is to instantiate the model components, bind them
together and start the simulation by calling the function sc_start. The instantiation and
binding of components is called the elaboration phase in SystemC. It stops when sc_start
is called, then starts the simulation phase. The hierarchy and bindings of components
can only be modified during the elaboration phase.

2.2.1.2 Elements for Hardware Modeling

Hardware systems are represented as a hierarchical set of blocks which are bound together.
The C++ language, as an object-oriented language, already has the required constructs
for this. Indeed, each kind of hardware component can be described with a C++ class,
and each hardware component is an instance of the corresponding class. To encapsulate
common behavior of all hardware components, SystemC offers the base class sc_module.
Each part of the hardware system identifiable as a building block will be described in a
class inheriting from SystemC’s sc_module, as shown on Figure 2.4.

A module communicates with other modules through its ports (sc_port in SystemC)
and exports (sc_export). A port enables access to a set of services declared in an

22



CHAPTER 2. BACKGROUND AND PROBLEM STATEMENT

Counter

clock

reset

enable

value/
8

Module

Port

Figure 2.4: Example of an 8-bit counter represented in SystemC. This representation is at
the RTL abstraction level. This manuscript is about TLM models, however this example
is given to illustrate that similar SystemC constructs are used at RTL and TLM. However,
we see in further examples (e.g. Figure 2.8) that, for example, a “module” is much more
abstract at TLM than at RTL.

sc_interface. An export is used to enable access to an implementation of a SystemC
interface. A SystemC interface is a set of functions.

Depending on the level of abstraction of the model, the elements defined for com-
munication in SystemC are used differently. As an example, we compare the two main
communication paradigms in SystemC. The first one uses channels inheriting from Sys-
temC’s sc_prim_channel class, as shown on Figure 2.5. In this example, there is a shared
channel (called “Channel” on the figure) that stores a state. The channel has a current
state (relatively to simulated time) and a next state. When “Module 1” writes on the
channel, it modifies its next value. When “Module 2” reads the channel, it reads its cur-
rent value. Thus, both modules do not access the same memory location. This introduces
a specificity of SystemC simulation (with respect to discrete event simulation) called the
update phase. It consists in affecting the “next” value to the “current” value. This does
not correspond to a simulated time progress, but simply as a “delta” progress in the sense
of a very small amount of time (in fact, the implementation uses a zero time value). This
update phase creates a delta cycle. We present how the SystemC simulator handles delta
cycles further.

Channel

Module 1 Module 2

write() read()

update
phase

next
value

current
value

Figure 2.5: Communication between SystemC processes using primitive channels.

Using such channels creates delta cycles, which slows down the simulation. Conse-
quently, higher abstraction levels use an alternative communication paradigm. At the
TLM abstraction level, communication between modules is done with Interface Method
Calls (IMCs), as shown on Figure 2.6. This example presents one of the methods defined
in the TLM-2.0 interface: the blocking transport interface (b_transport). When “Mod-
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ule 1” writes to “Module 2”, it directly calls a method from “Module 2”. This enables
faster communication, simply because less operations are done. The blocking transport
interface is typical of Loosely-Timed (LT) TLM models. We further present TLM and
LT in the next section, but introduced them here to illustrate that the SystemC library
is used differently depending on the abstraction level.

Module 1 (initiator) Module 2 (target)

b_transport()
b_transport()b_transport()

Figure 2.6: Communication using IMC, at the TLM abstraction level.

2.2.2 SystemC Simulation Kernel

A SystemC simulation kernel is an implementation that enables to run a SystemCmodel as
described in the standard. The Accelera Systems Initiative (ASI), formerly Open SystemC
Initiative (OSCI), is the consortium of companies that wrote the SystemC standard. They
propose a reference implementation of the SystemC library, including a simulation kernel 1

(under the Apache 2.0 License since 2016). Commercial implementations also exist with
different extra features.

A SystemC simulator contains a scheduler. It has to manage the execution of the
different SystemC processes described in the model. According to the standard, a Sys-
temC scheduler must fulfill coroutine semantics [1]. This means that each section of code
between two yield (wait) statements must be atomic. To do so, a scheduler can either use
cooperative multitasking, or use preemptive multitasking but behave as if it was using
cooperative. In the latter case, the scheduler must notably ensure that new race condi-
tions are not introduced because of the preemptive scheduling or physical parallelism [2].
This does not prevent multiple processes from running in parallel, but there must exist a
sequential scheduling that reproduces the same simulation. In practice, one must ensure
that shared variables are not modified concurrently by different processes. This semantic
choice has been made to ease the writing of models by avoiding many race conditions
between processes of a model. Indeed, it is frequent for modules to have several threads
using the module’s fields (in C++ terms the class attributes). With coroutine semantics,
the different processes can use these shared variables without any protection (such as
mutual exclusion). Another rule for a SystemC scheduler is that it must ensure the deter-
minism of simulations: running multiple simulations with the same input must produce
the same result. This makes SystemC simulations reproducible, which is a key property
for debugging.

1http://www.accellera.org/downloads/standards/systemc
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The ASI implementation consists in the sequential execution of the processes in the
model. An advantage of a sequential implementation is that coroutine semantics are easy
to fulfill and the determinism is easy to ensure, provided that multiple runnable pro-
cesses are always run in the same order. Moreover, sequential implementation leads to a
lightweight context-switch because it can be performed without underlying system calls.
An obvious drawback is that it does not exploit the multiple cores of the host machine
running the simulation. With the increasing size of models, the simulation time is a major
issue of complex hardware simulation. Achieving parallel execution of SystemC simula-
tions is not straightforward, notably because of the SystemC scheduler requirements, and
is a major research concern.
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Figure 2.7: Behavior of a SystemC scheduler.
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Figure 2.7 shows the expected behavior of a SystemC scheduler during the simulation
phase (the elaboration phase has already been done at this point). The scheduler starts
with an initialization phase that we do not detail here, but it consists in running the
processes of the model once, to let them reach an “initialized” state. Then starts the
simulation loop. As long as there are runnable processes, the scheduler remains in the
same evaluation phase. During this phase, processes can trigger other ones by notifying
immediate events. When there are no more runnable process, update requests are pro-
cessed: this is the update phase. The value of primitive channels, previously presented,
is updated in this phase. If the update phase created delta notifications (i.e. values of
channels were actually changed) they are processed, and an evaluation phase starts again.
If no such notification exists, the scheduler checks for timed notifications, i.e. notifications
that can modify the value of simulated time. If there are timed events, the earliest one is
picked, the simulated time is set to its time, and notifications are processed. The evalua-
tion phase starts again. Otherwise, the simulation is over. The simulation also ends if a
specific simulated time value has been reached (it can be defined when calling sc_start).
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2.3 Transaction Level Modeling

We previously presented the SystemC library, that can be used to model hardware systems
at various levels of abstraction. In this manuscript, we address the case of models at
the Transaction Level Modeling (TLM) abstraction level. It has been created to enable
modeling systems on chip already at early stages of the development. It answers the need
for a fast simulation, quickly made available. But even when the real chip is available,
on-chip software or hardware debug is a tedious task because there is little observability
of what happens inside the chip. Thus, TLM models are useful during all the lifetime of
the product.

Figure 2.8 presents a simple platform as represented at the TLM abstraction level. We
present the different elements from this representation in the following section. This figure
is “unzoomed” compared to Figure 2.4. Components like bit-adders, counters or clock
signals are not represented at this level: they are part of the microarchitecture (which is
often not known when the TLM model is written).

Bus Interconnect

Interrupt Ctrl

Module

Target
socket

CPU RAM

Video Decoder

Interrupt
port

Display

Initiator
socket

Figure 2.8: Example of a simple platform at the TLM abstraction level.

2.3.1 The TLM Layer

The SystemC standard has been extended to define the TLM layer, which adds core
interfaces and utilities to the SystemC library, mainly specifying interprocess (in the sense
of SystemC processes) communication. The main goal of the TLM standard is to ensure
interoperability to enable the use of hardware models coming from different vendors. Two
complementary versions of TLM are currently used: TLM-1.0 and TLM-2.0.
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2.3.1.1 Key Concepts of TLM

A transaction is an atomic exchange of information between an initiator module and one
or multiple targets. Most of the time, a transaction consists in a read or a write operation.
Since TLM-2.0, a generic payload is defined to be the base information object. It contains
a set of default fields to address most of the bus communication protocols (e.g. address
field, data field). Generic payload also support protocol-specific extensions. A transaction
is transported from one module to the other through transport methods. We previously
presented an example on how transport methods work, using direct method calls in the
target module. TLM also supports the modeling of interrupts, which are boolean wires
asynchronously triggering actions on a state change.

To send or receive transactions, TLM offers initiator and target sockets, as shown
on Figure 2.8. In terms of SystemC, an initiator socket is an sc_port that contains an
sc_export and a target socket is an sc_export that contains an sc_port.

The TLM standard defines initiator, target and interconnect components. An initiator
component has at least one initiator socket, a target component has at least one target
socket and an interconnect component has at least one of each. For example, the Central
Processing Unit (CPU) from Figure 2.8 is an initiator component, the memory is a target
component and the bus is an interconnect. Figure 2.9 represents a possible processing of
a transaction with an interconnect component. Even in this case, the transport is still a
function call, performed in the final target by the thread from the initiator component.

Initiator

Wall-clock time

Interconnect Target

call
call

return
return

init
receive

return
status

resulting
status

Figure 2.9: Diagram illustrating the transport of a transaction through an interconnect
component.

We remind here that the “wires” represented on Figure 2.8 are modeled in TLM with
transport methods, using Interface Method Calls (IMCs). Consequently, performing a
TLM transaction is equivalent to calling a function in the final target component.
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2.3.1.2 TLM Coding Styles

The TLM standard defines two coding styles: Loosely-Timed (LT) and Approximately-
Timed (AT). The major difference between those coding styles are how transactions are
performed. In the LT style, transactions only has two timing points: before the transaction
(call) and after the transaction (return). For this coding style, the blocking transport
interface is used, which means that the initiator cannot continue its execution before
having received the response to a transaction. Figure 2.10 illustrates how transactions
occurs with the LT coding style. In the AT style, transactions can be split in phases, each
associated with two timing points (before and after).

Initiator

Simulated
time

Target

t = 0 ns
t = 0 ns

No wait

t = 0 ns

t = 20 ns

wait 20 ns

Figure 2.10: Two different transactions in loosely-timed style.

Each of those coding styles corresponds to different use cases. Both can be used for
embedded software development or software performance analysis. Both can also be used
for hardware functional verification and architectural analysis. Moreover, the AT style also
enables hardware performance verification. The more transactions are split closely to the
real hardware, the more accurate the performance evaluation will be. However, to answer
the use cases enabled by both styles, the LT style is used for a simple reason: simulations
run faster, because fewer details are specified in the model. Moreover, to develop AT
models, more information is required, that is not available at early development stages.

2.3.1.3 Modeling CPUs

The simulation of CPUs is particular compared to other hardware components, as there
are two very different approaches. A first approach is to use an Instruction Set Simulator
(ISS). An ISS is, as the name indicates, a simulator of the instruction set of the target
(i.e. the chip) processor architecture. An ISS is an accurate way to simulate a specific
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architecture (e.g. ARM) on another one (e.g. x86). With an ISS, the embedded software
is compiled for the target architecture (cross-compilation). This approach targets accu-
racy, in the sense that the software execution on the target processor can be simulated
instruction per instruction. An ISS includes a translation mechanism from the simulated
architecture to the host machine architecture; in the end, the ISS is a program that runs
on the host machine. Another approach is to use native execution of the embedded soft-
ware. This means that the embedded software is compiled for the host machine. The
embedded software is run nearly in the same conditions as the rest of the model, i.e. as
a regular program, except that the hardware functionalities (e.g. memory accesses) are
captured and translated into transactions on the SystemC/TLM model. Instead of trans-
lating each instruction, only bus transactions need to be translated to communicate with
the simulated platform. This results in simulations much faster than with an ISS.

The two approaches answer different needs. An ISS is used to simulate the execution
of the software instruction by instruction: this can be used for an accurate performance
evaluation of the software. Native code execution includes everything for fast simulation
at a high abstraction level such as LT TLM.

2.3.2 Time Modeling

2.3.2.1 Temporal Decoupling

Temporal decoupling has a specific meaning in TLM-2.0, but before presenting this par-
ticular case, we introduce the idea. Temporal decoupling consists in enabling SystemC
processes to run ahead of the current simulated time, thus without actually advancing
simulated time. Each process has a local value modeling its own simulated time. Each
process may increase its local simulated time without performing a SystemC wait. This
is a low-cost timing annotation. To keep time consistency in the whole simulation, each
process must at some points yield to the kernel to advance the SystemC simulated time.
The purpose of temporal decoupling is to increase computation locality, which reduces
the overhead of context switches between processes.

In TLM-2.0, temporal decoupling is implemented in transactions, with a simulated
time annotation. This timing annotation is not necessarily transformed into a SystemC
wait call. Different strategies for taking such annotation into account are possible. To
limit the maximum advance a process is allowed to have (compared to the least advanced
process), a time quantum can be defined. If any local time goes further than the quantum,
a SystemC wait is performed.

In practice, temporal decoupling was already used in SystemC models, notably at
STMicroelectronics, before TLM-2.0. Internally, timing annotations are performed with
a family of functions called annotate. The synchronization points can either be implicit
(e.g. using TLM-2.0 time quantum, performed in transactions) or explicit (synchronization-
on-demand in TLM-2.0) by using a synchronize method.
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2.3.2.2 Loose Timing: Time Ranges

One of the purposes of the TLM abstraction level is to enable the modeling and simu-
lation of a chip that is not already fully specified. However, at such early stages of the
development, not only the chip is not fully specified, but the micro-architecture is not
fixed yet. Consequently, it is not possible to have precise timing information for the op-
erations performed by the chip. Yet, the model can and must still be written, without
such information. Different strategies are possible to overcome this issue: not using time,
over-specifying or partially specifying.

The first one, not using time, results in an untimed TLM model. It often corresponds
to under-specifying the model, because at least some timing information can be derived
from the early specifications. The over-specification strategy consists in choosing an
arbitrary value. The choice can be constrained in different ways. An example is to use
an approximated value, plus or minus a certain percentage. Of course, the approximated
value and the percentage are also arbitrary values. This leads to a model that looks like
it is specified, but the values that are used do not actually mean a lot, thus it is an
over-specification. A third strategy is to add in the model the fact that the information
is partially known. Indeed, for most transactions, it is possible to find a minimum and a
maximum time value that bounds the actual one (even if at start, this interval is wide).
Such annotation indicates a partial information: we do not know the actual timing, but
it will be within those bounds.

Among those three strategies, the one that adds the most information on the model
is the third one, using time ranges. On one side, it adds information on the model, but
on the other side it introduces the need for the simulator to support ranges. That has to
do with how those time ranges are implemented. In practice, the SystemC kernel does
not support time ranges, it needs time values. This is why, at STMicroelectronics, time
ranges are part of the internal implementation of LT TLM, in an overlay on the SystemC
kernel. A time range is specified using the function:

annotate_loose_timing(sc_time min, sc_time max)

In production code, this function picks a random time value within the bounds. We can
notice that adding random values in the simulation does not remove the reproducibility: if
the random seed, fixed at simulation start, stays the same then the same series of random
numbers will be produced.

At first sight, using a random implementation for time ranges seems like the over-
specification approach. However, the fact that we define time ranges as bounds for the
real value enables the use of this information for other analysis tools. For example,
Helmstetter [3] studied different scheduling orders of SystemC processes for different values
chosen in time ranges. By studying the consequences of the different scheduling orders, it
was possible to establish a list of orders that actually change the simulation results, thus
are worth to simulate. We give another example of how those ranges can be exploited in
the next chapter.
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2.3.3 History of the STMicroelectronics/Verimag Collaboration

The Verimag laboratory is specialized in embedded systems, more precisely in improv-
ing their development, both in time and quality. In particular, Verimag is specialized
in formal verification, testing, synchronous languages and modeling. Those fields are in
line with the branch of STMicroelectronics in charge of systems on chip modeling, that
has actively contributed to the standardization of SystemC and TLM. Over more than a
decade, Verimag and STMicroelectronics have collaborated on SystemC/TLM modeling.
The first thesis, by Matthieu Moy, studied the formal verification of SystemC/TLM mod-
els [4], i.e. proving properties on models. Claude Helmstetter worked on partial reduction
of scheduling orders in the case of loosely timed models [3]. This work also includes
study on simulation semantics, further discussed in Chapter 4. Jérôme Cornet worked
on the refinement of models [5], by adding non-functional information to models without
changing the functionality. Giovanni Funchal studied different aspects of TLM [6], in
particular the consistency of models in comparison with the real chip, the semantic signi-
fication of TLM constructs and time modeling. Yussef Bouzouzou2 studied static analysis
of SystemC/TLM code, in order to implement a semantics-preserving parallel SystemC
simulator for TLM models [7]. This work, as a parallel simulation approach, is further
discussed in Chapter 4.

2Verimag and Silicomp (Orange Business Services), in collaboration with STMicroelectronics.
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2.4 High Level Synthesis

The High Level Synthesis (HLS) design flow consists in transforming code from a high
abstraction level, generally written in C++, into synthesizable code in a Hardware Descrip-
tion Language (HDL), generally at Register Transfer Level (RTL). At STMicroelectronics,
HLS is mainly used to design hardware acceleration components containing Intellectual
Property (IP), also called IP blocks.

2.4.1 Hardware Acceleration Blocks

Systems on chip are composed of hardware and embedded software, sometimes called
firmware. The embedded software runs on one or several Central Processing Units (CPUs),
and uses the different hardware blocks available in the system. Communications are made
through bus components. We can distinguish application-specific hardware blocks from
CPUs and bus components. The first ones are finely tuned (e.g. in terms of area, perfor-
mance or power consumption) to implement a specific functionality (e.g. video decoding,
motion detection, signal handling). They contain hardware intellectual property, and are
a key differentiation factor from one vendor’s chip to another.

Registers

Embedded
software

Input data Output dataBehavior

Reset

Clock

External
memory

Bus interface

Streaming bus
interface

Streaming
bus interface

Figure 2.11: Example of an IP block.

Figure 2.11 shows a typical IP block example. An important point to highlight on
this figure is how the embedded software interacts with the block. This communication is
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enabled by hardware registers. Hardware registers have properties similar to memories in
the sense that they contain data that can be read or written. But contrary to memories,
registers can also trigger hardware functions. Registers can be private in the block, which
means that the software cannot see them, or can be accessible to the software. To read or
write a register, the software performs a bus transaction with the address of the register,
just as it would do to read or write a memory. These registers are memory-mapped and
in this context, they are often simply called registers.

2.4.2 Principle of High Level Synthesis

2.4.2.1 HLS Automatic Tool

The transformation of high level behavioral code into synthesizable RTL code is enabled by
the use of an HLS tool. Several commercial tools exist in the market, including CatapultC
(Mentor Graphics), SymphonyCC (Synopsys) or Stratus (Cadence Design Systems). Fig-
ure 2.12 illustrates the step performed by the HLS tool. Before HLS, this output design
was handwritten by RTL designers directly from the specification. During the synthesis
performed by the HLS tool, the user provides input parameters to the tool to influence
the resulting design. These parameters include component libraries, details about the
micro-architecture (e.g. whether to pipeline computations, to unroll loops) and the target
frequency of the design.

Algorithmic
model for HLS
(C, C++, . . . )

HLS
tool

Input parameters
(script)

Synthesizable
RTL model

(VHDL, Verilog, . . . )

• Untimed
• Behavioral
• Hierarchical

• Microarchitecture
• Target technology
• Clock frequency

Figure 2.12: Principle of HLS.

2.4.2.2 Behavioral Code

The input of this flow is a high level code, generally written in C or C++. An example
code is given in Figure 2.13. To disambiguate the meaning of high level code in this case,
we assume the following list of properties for HLS code:

• The behavior is described without clock.
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• Computations are described using classic C++ operators (e.g. line 7 on Figure 2.13).
In particular, micro-architecture details (e.g. how many hardware multipliers are
used, how these operations are scheduled) are not present in the code.

1 ac_int<8, false> coef[64]; // table of coefficients, defined in another file
2

3 void mult_coef_stream(ac_channel< ac_int<8, false> > & data_in,
4 ac_channel< ac_int<16, false> > & data_out)
5 {
6 for (int i = 0; i < 64; ++i) {
7 data_out.write(data_in.read() * coef[i]);
8 }
9 }

Figure 2.13: Example of code for the HLS tool CatapultC. This describes a block that
reads 64 data from an input stream, and outputs them multiplied by an array of coeffi-
cients.

With C++ datatypes, only “classic” bit length are available (8, 16, 32, 64). However,
describing an algorithm for an HLS tool may require to deal with non-standard bit lengths.
Each tool proposes its own solution to solve this issue. For example, CatapultC uses an
algorithmic C library including the ac_int<SIZE, SIGNED> type (e.g. lines 1 and 3–4
on Figure 2.13). HLS tools that use SystemC code as input (e.g. Stratus) directly use
SystemC bit-accurate datatypes like sc_int<SIZE> or sc_uint<SIZE> in this purpose.
Similarly, the same answer can be made to deal with fixed point numbers.

2.4.2.3 Design Flow

The design flow at STMicroelectronics with HLS is presented on Figure 2.14. The Sys-
temC/TLM model of the system includes parts written for HLS. The design contains
parts that interact with the embedded software (e.g. registers) then there is a need to
simulate the HLS code with a Transaction Level Modeling (TLM) platform, to enable the
software to run. TLM users need the functionality described in the HLS code to have a
comprehensive simulation.

From the previous explanations, one might think that a whole TLM platform could
be given as input to a tool that outputs a synthesizable RTL code. In practice, there are
several reasons explaining why this is not the case. The main reason is that a TLM model
does not contain enough details to generate a synthesizable hardware design. Moreover,
a TLM model contains simulation features that do not model hardware, but are used for
convenience (e.g. using a graphical library to open a display, using third party libraries for
better performances). There is also an issue with microprocessors of the platform: either
they are modeled with an Instruction Set Simulator (ISS) or using native execution. In
both cases, such models of processors are not intended to be synthesized by an HLS tool.
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Figure 2.14: Design flow using HLS.

2.4.3 Studies and Experience on HLS

The current generation of HLS tools, starting in 2005 [8], is used by major semiconduc-
tor companies including STMicroelectronics. The maturity of HLS tools is growing and
enables industrial use for the development of hardware IP blocks. Even if it is hard to
accurately measure the benefits of HLS over RTL handwriting [9], we present research
work that compares them for specific examples. Pagliari et al. presented a study on a
medical imaging application [10]. The authors notably compared the development time
and performance of RTL handwriting versus HLS for two different image processing meth-
ods. The development by an RTL designer took three months. Their result is that even if
the development with HLS was slower, four months by a person with no prior knowledge
about the implemented algorithms, the resulting design was three times faster. But the
difference in the development time should be put in perspective with the lack of expe-
rience of the developer mentioned in the paper. Another result is that using the RTL
flow, the authors only have one implementation for one of the two methods. With the
HLS flow, they could explore 104 alternative RTL designs for one method and 80 for the
second one, by changing input parameters of the HLS tool. Here is a potential benefit
offered by HLS: with similar development times, the exploration possibilities on both the
architecture and the algorithm have dramatically increased. Inggs et al. presented a case
study on finance algorithms, where the conclusion is that the HLS tools under survey
were ready for industrial needs considering the performance of produced designs [11].

Gajski et al. discussed about which language was the best for HLS [12]. Indeed,
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HLS code does not have to be written in pure C++. In particular, they emphases the
advantages of using SystemC code as HLS input. SystemC adds missing features to C++
that are required to model hardware, such as parallel description, hierarchical description
and bit-accurate datatypes. The choice of using mostly C++-based inputs for HLS is
motivated by the following reasons:

• C++ is a standard and well-known language. Since many developers already know
at least its syntax, it avoids to learn a whole new specific language for HLS.

• Quality of existing tools around C++, especially when it comes to work with an
abstract syntax tree, which is needed for HLS tools.

• High speed of execution when compiled with a C++ compiler (for simulation).
• Substantial existing code bases, which can ease the effort needed to develop an

algorithm from legacy code.

At STMicroelectronics, HLS is used mostly to design hardware acceleration blocks
for systems on chip. The overall feedback is that even though HLS tools have their
defects, the benefits on development time are good enough to continue to use this design
flow. Moreover, the reusability of HLS code from one project to the other is valued.
Indeed, some teams have encapsulated frequent functions (e.g. fast Fourier transform)
into template libraries to save development time. This library code is valuable in several
ways: it is already functionally verified, and it is already known that it will produce an
efficient design with the HLS tool for a specific set of input parameters.

To write good quality HLS code, the developer must be aware that the code will be
translated into hardware description code. Using HLS does not mean that one shifts from
hardware design practices to software design practices: designing hardware is still a job for
hardware designers. However, the technology changes and so does the level of abstraction.
With HLS, the micro-architecture aspects are settled by the tool, and depending on the
tools, different choices are possible. Depending on how the designer writes HLS code, the
tool tries to infer what the designer had in mind in terms of hardware implementation.

We make the assumption that the use of an HLS flow will in time replace manual
writing at RTL level for the development of IP blocks. Similarly, for software development,
there are very few use cases requiring writing assembly code. Instead, developers mostly
program using high level programming languages like C++ or Python. But before the shift
to fully happen, the main conditions are that HLS tools reach a sufficient state of maturity
to replace the previous flow and that previous design flow users are ready to shift to a new
technology. Those conditions are not completely related because some developers had bad
experiences with the first generations of HLS tools [8], which introduced distrust in the
technology. However, recent work cited in this part, and the current level of industrial
use shows that the level of maturity is high enough at least in specific cases.

To sum up what was explained in this part, the rationale behind the use of HLS is
the reduced amortized time-to-market compared to RTL handwriting. The amortized

37



2.4. HIGH LEVEL SYNTHESIS

qualifier comes from the fact that the first design may be obtained in more time with
HLS than with handwritten RTL, because of the learning curve for using HLS tools and
HLS code writing. However, the higher reusability of algorithms developed for HLS and
the ability to perform exploration on the resulting architecture make the shift to an HLS
design flow interesting for the design of hardware IP blocks.

2.4.4 Interface of a Block Designed with HLS

The HLS/RTL partitioning is the name we give in this manuscript to the choice hardware
designers make when they use an HLS design flow. It consists in answering the question:
“which part of an hardware block will be generated by the HLS tool, and which part
will be handwritten in RTL?”. This is a different question from: “which IP block will
be generated with HLS and which will be handwritten in RTL?”. In this case, we are
speaking of an IP block for which the choice has been made to use an HLS design flow.

Figure 2.15 presents an example IP block whose behavior is described with algorithmic
code for HLS. This example is inspired from a real-life design from STMicroelectronics,
simplified and generalized for confidentiality. This block performs processing on video
data coming from an acquisition device and the output is directly connected to a display
device. The HLS tool used for this project is CatapultC.
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Figure 2.15: An IP designed with HLS.

In this paragraph, we describe the elements on Figure 2.15 only added in the RTL
model of this IP block. The input and output data exchanges are performed through a
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high frequency streaming bus (AXI3 stream). To enable this, RTL code is added to send
and receive data accordingly with the bus protocol. The IP block contains registers that
can be read or written by the embedded software through a low speed system bus. The
registers are used by the HLS code, where they are given as arguments in the form of
an array or encapsulated in a custom structure. Another point is that even if the HLS
code uses the registers, their hardware design is often not synthesized by the HLS tool, so
they are added in the RTL model. In the industry, registers are often described using the
IEEE standard format IP-XACT, and IP-XACT to RTL tools already exist, so there is
no rationale to generate the registers differently. One of the registers is notably used by
the software to perform a reset. A hardware reset signal is also provided as input to the
IP block, with some logic to interact well with the software reset. In the HLS code there
is no reset signal, so all this logic is added in the RTL code. The block needs access to
a memory area, which can be accessed directly from within the block. It is also possible
for the software to access that memory, through another bus access. To enable this,
RTL code for memory arbitration is added. This code is not generated by the HLS tool
because it was already available in RTL and is quite stable from one design to the other.
The clock signal is completely absent in the HLS code for CatapultC. In this example,
combinational logic is added in the RTL to disable the clock signal when no input data
is available.

2.4.5 Necessity to Split Designs in Sub-Blocks

In order to design complex hardware IP blocks, the development must be split into sub-
blocks. We can detail at least three reasons that justifies that statement. Firstly, it
enables the design to be done in parallel within a team, or even by different teams. This
decreases the overall development time, provided a clear specification of the interfaces.
Secondly, it is easier and less error-prone to develop several simple functions than one
complex function. Thus, in addition to enable multiple designers to work in parallel, their
individual work is also simplified. The two reasons previously presented justifies that
splitting designs in sub-blocks speeds up the development, but not that it is mandatory
for complex designs.

The main reason is that the resulting hardware designs have to be validated. We
remind that IP blocks are key differentiating factors from one product to the other, thus
formal validation is mandatory for such parts of the design. This verification is made by
covering the different inputs possible. Here, by “inputs”, we mean all the different wires
produced by the synthesis tool. Not only the ones at the interface of the block, but also
all the internal ones. Yet, it is not possible to formally validate, for example, a complete
JPEG decoding block (as a whole), because the combination of values to test is too wide;
there is a combinatory explosion. Thus, the development of complex blocks requires to
split the design into sub-blocks. Moreover, this enables to build pipelined architectures
when assembling the sub-blocks, which in many applications speeds up the throughput.

3Advanced eXtensible Interface, from ARM.
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To describe hierarchical blocks, CatapultC distinguishes the top-level block and sub-
blocks. Each block corresponds to a C++ function (but each C++ function does not need
to result in a block: they can also be inlined). For Symphony, a design is completely
described in one function and sub-blocks are extracted from code sections, e.g. from a
loop nest. For Stratus, a block is a SystemC module.

Communication between blocks can be done with memories (or registers), with a
simple wire, or through a First In, First Out (FIFO) streaming interface. As an example,
CatapultC algorithmic library proposes the ac_channel<TYPE> class. Used in a block
interface (e.g. lines 3–4 on Figure 2.13) it will be replaced by a FIFO interface. On
the other hand, Stratus requires the user to describe in a cycle-accurate manner (using
SystemC clocked threads) the input and output protocol used to read and write data
(even if the computational part is described without using the clock).

2.4.6 Wrapping HLS code for TLM

In Section 2.4.4, we presented an example of HLS/RTL partitioning. From the HLS code,
the set of elements missing for TLM is a subset of the elements missing for RTL. But it
is not the same set. For example, the clock signal does not exist in a Loosely-Timed (LT)
TLM model nor in the HLS code, but it is does exist in RTL.

To wrap HLS code for TLM means to enable the use of HLS code in a TLM simu-
lation. In the case of CatapultC for example, this means to adapt block interfaces from
ac_channel to use TLM protocols and to write an sc_module for the block. The latter
part consists in writing a module having an SC_THREAD that executes the HLS function
in a loop. About the block interfaces, since a data streaming protocol is already available
internally at STMicroelectronics, a mapping has been done between the read and write
functions of ac_channel to the read and write functions of this streaming protocol.
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2.5 Problem Statement

The main objective of this thesis is to speed up the execution of SystemC/TLM simula-
tions. More accurately, an interesting improvement is to reduce the time to get a first
answer after a code change. Indeed, during the development of a model and of the em-
bedded software, each change in the source code induce another run of the platform in
order to test the modification. A significant reduction in the duration needed to get a
result directly impacts the development speed, which reduces the time-to-market of the
final product.

Using parallel computation resources is a natural idea to speed up the execution of a
program. We stated that the reference implementation of the SystemC kernel is sequential.
Thus, there is potential to speed up simulations with parallel execution. However, this is
hard to achieve, as a SystemC parallelization approach must not introduce race conditions.
As stated in Section 2.3.1.1, communication is done by function calls, which creates shared
resources. For example, two initiators (e.g. processors) that concurrently access the same
target (e.g. a memory) will concurrently call the same function of this target. That makes
the target component itself a shared resource, introducing a race condition if not protected.
Consequently, a great part of the work to achieve parallel execution of SystemC model
is to extract potential for parallelism (namely safe parallelism, without race conditions)
from a model.

Another huge challenge for SystemC parallelization is the adaptability on existing
platforms. Indeed, as for every technology change, the migration has a cost. This cost
must be put in perspective with the time saved if the parallelization solution was in
production: a solution that requires an important effort may not be profitable even if it
shows substantial performance benefits.

Also, the different flows and technologies presented in this chapter, namely TLM
modeling and High Level Synthesis (HLS), are part of the problem. Indeed, industrial
design flows result of the interweaving of different specific design flows. The development
of a model does not come from a single team, but is partly done by several different
teams. Each team has its own requirements and constraints. For example, the team that
develops the code of a hardware component for HLS must follow the syntax of the HLS
tool and complete a validation step. This impacts the way models are written. Since we
cannot remove those constraints, we must include them as assumptions.

To conclude with this section, we emphasis an important point regarding the concep-
tion of a parallelization technique: the knowledge of the profile of a simulation. Ana-
logically, parallelizing huge independent computations on matrices is not performed the
same way as parallelizing a shortest path algorithm. In our case, a simulation is mostly
characterized by the model and not by the simulation kernel in itself. In other words, it
is mandatory to characterize a simulation in order to find potential parallelization.
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3.1 Introduction

Before optimizing a program, a natural step to go through is to identify its performance
bottlenecks. The size and complexity of industrial SystemC models, e.g. at STMicroelec-
tronics, make it hard if not impossible to have comprehensive knowledge of the whole
simulation. To get a big picture of such simulations, we therefore needed to measure
and visualize different parameters. For example, how the different SystemC processes
of the model are run, how they consume the wall-clock time and how many processes
are runnable at each simulation cycle. We have not found an existing tool for SystemC
models that helps getting those measurements, so we developed SycView, presented in
Section 3.2. Then, we used SycView to profile a case study from STMicroelectronics.
Those results are presented and analyzed in Section 3.3. In summary, the contributions
presented in this chapter are:

• Identification of profile metrics on SystemC simulations, interesting with parallel
simulation in mind. Development of a visualization tool and instrumentation of
the SystemC kernel in order to obtain the corresponding measurements. This tool
has been presented at the Design Automation for Understanding Hardware Designs
(DUHDe) workshop in 2016 [13].

• Profiling results on an industrial case-study from STMicroelectronics and analysis
of the results. The results presented in this section have been published at the
Rapid Systems Prototyping (RSP) international symposium in 2015 [14] and further
discussed in an article of the MDPI Electronics journal in 2016 [15].

3.1.1 Motivation for Developing SycView

Setting up parallel computations in a computer program can be done using several differ-
ent approaches. The choice of an efficient approach depends on the shape or profile of the
program. In the case of SystemC, a program consists in different parts: the SystemC ker-
nel, the hardware model and the embedded software. Very little information on how the
whole program behaves is available from the kernel. It is mostly the model of the hard-
ware and the embedded software that defines the profile of a simulation. For example, a
Register Transfer Level (RTL) model is essentially composed of clocked threads executing
small computations at each clock cycle, while a Loosely-Timed (LT) Transaction Level
Modeling (TLM) model uses as little wait as possible, targeting execution speed. Thus,
finding a suitable parallelization approach for SystemC is through knowledge of the profile
of the simulated models.

The word profile, previously used hastily, is referring in our case to a set of measure-
ments performed during the execution of a SystemC simulation. Those measurements are
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relative to wall-clock time, because our target is to speed up simulations, thus to reduce
the wall-clock duration of a simulation. The following list gives interesting measurements
for this purpose:

1. How many SystemC processes are runnable at each simulation cycle? What is the
partitioning between SC_THREAD and SC_METHOD?

2. How many wall-clock time does each transition consume?

3. From which process, module or part of the model comes the most wall-clock time-
consuming processes?

SycView can also be used for a different purpose than profiling a simulation. In an
industrial context, complex models are partially developed by several teams, including
external ones from different companies. This results in a large quantity of source code on
which it is hard to have comprehensive knowledge. Moreover, some parts of the model or
the embedded software may be available only in binary form. In this type of project, it
is precious to be able to take a step back and see the big picture. Contrary to the profile
measurements, the views mentioned here are relative to simulated time because they are
used for understanding the simulated platform. With this in mind, we identify a set of
questions that are interesting to answer:

1. Which SystemC processes are run, and in which order?

2. How does the simulated time advance in the model?

3. Can we identify patterns in the execution of processes? If so, are they meaningful
with respect to the platform under test?

3.1.2 Existing Tools

Existing profiling tools such as valgrind1 or gprof 2 are lacking the separation between the
SystemC kernel and the model. For example, without instrumentation, they cannot find
which transitions are the most time-consuming and which SystemC process and module
they belong to. Consequently, to answer the needs formulated in the previous part, we
need tools that understand SystemC constructs and can show results with respect to
them.

Most of the literature about SystemC visualization focus on structural visualization.
Große et al. [16] present a Graphical User Interface (GUI) for a system view showing the
different modules of a design with their ports and bindings. Berner et al. [17] extract
structural information from a SystemC model using the documentation system Doxygen.

1http://valgrind.org/
2https://sourceware.org/binutils/docs/gprof/
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Albrecht et al. [18] extend SystemC with a GUI called gSycC that is not only used for
structural visualization, but also for simulation control. Such a tool could be extended
to collect traces during execution. However, annotations must be added to the model.
ViSyC is a tool developed by Genz et al. [19, 20] enabling interactive system exploration of
SystemC models. It performs static analysis on a SystemC program to extract structural
information to display on a GUI and bind them with the source code describing their
behavior.

As the complexity of models increases, so does the difficulty to understand them. This
difficulty is illustrated by the diversity of visualization tools previously outlined around
SystemC. How to visualize SystemC simulations is still a very open question, as much as
how to retrieve data from SystemC simulations. This depends of course on the purpose of
the observer. A recent overview on these questions is given by Drechsler and Stoppe [21].
SycView falls within this approach to improve how users and developers can understand
the models and improve them. Our goal is to find the bottlenecks of a simulation as well
as to help finding rationale to explain these bottlenecks.
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3.2 SycView: A Visualization Tool

SycView results of two development axes. The first one is an instrumented version of a
SystemC kernel, that generates traces online during a simulation. The second one is a
visualization tool that enables the offline view of tables or charts based on the traces. We
developed both parts during this thesis.

3.2.1 Trace Recording

We added instrumentation code for trace recording in the reference implementation of the
SystemC kernel, as shown on Figure 3.1. We remind that the version we call the reference
is the one developed by the Accelera Systems Initiative (ASI). The trace recording is done
in the SystemC kernel, because we needed SystemC information in the traces. We do not
instrument the user model code, to make the tool easy to use on different models.

Embedded software

SystemC/TLM user code

SystemC kernel (instrumented)

Operating system

SycView traces

valgrind, gprof

Figure 3.1: Positioning of the trace recording mechanism.

The trace recording consists in writing data into files at interesting points. Each time
a process yields to the kernel, a trace is recorded, as illustrated on Figure 3.2. The trace
contains the name of the yielding SystemC process, the type and arguments of the wait
performed (if it is a SystemC thread) and the wall-clock duration of the transition that
just ended.

Runnablestart

RunningSuspended

Trace
recording

Figure 3.2: Trace recording for a SystemC process.
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Moreover, at the end of each delta cycle, we record the maximum number of runnable
processes among all the subsequent evaluation cycles. The purpose of this measure-
ment requires further explanations, which itself needs a quick presentation on parallel
simulation approaches (further presented in Chapter 4). A common parallel simulation
approach consist in running multiple SystemC threads in physical parallelism when they
are runnable at the same cycle. Such approaches use a synchronization barrier at each
evaluation cycle. Thus, an upper bound of the potential for such parallel simulation is
given by our measurement. Figure 3.3 sums up the states of a SystemC simulation where
traces are recorded.

Initializationstart

Evaluation

Update

Delta
notification

Timed
notification

End of
simulation

P = ∅

P = ∅

P 6= ∅
P = ∅

P 6= ∅

Trace
recording

Figure 3.3: Trace recording in the SystemC kernel (P is the set of runnable processes).

3.2.2 Evaluation of the Trace Recording Overhead

We measured the influence of trace recording on simulation performance, in order to quan-
tify the bias it introduces on the measurements. This enables to qualify our measurements
as “reliable” or “not reliable”. The relative overhead is obtained by comparing the wall-
clock duration of a simulation with the instrumented kernel versus the reference version.
The time measurements were done using clock_gettime from Linux’s time.h, using the
CLOCK_MONOTONIC parameter. It has a resolution of 1 ns according to clock_getres. The
experiments were done on a host with an Intel® Xeon® CPU at 2.4 GHz.

On our host machine, the average time needed for trace recording is barely less than
50 µs per process transition. This does considerably increase the time normally used to
switch from one SystemC method to the other (given that methods are just function calls)
and also increases the context-switch duration for SystemC threads (normally executing
only a few assembly instructions). In case a transition consumes a large amount of time
compared to the duration of a recording, the measurement is accurate. In case a transition
is very short compared to the duration of a recording, the measurement is not reliable and
the measured duration should not be taken as accurate. Figure 3.4 shows the overhead
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of trace recording on the SystemC thread context switches, compared to the reference
version.
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Figure 3.4: Trace recording overhead for the SystemC thread context switches, as a
function of the duration of the transition (wall-clock time) preceding the context switch.

3.2.3 Visualization

We have implemented a Graphical User Interface (GUI) called SycView providing different
views to exploit data collected by our instrumented kernel during a simulation. To improve
the readability of this manuscript, the measurements made by our tool are represented in
tables or charts rather than screenshots when it is possible to do so. In this part, we show
data from example platforms: the focus is not on the results as they are, but on how we
present and interpret them. The focus will be on the results in Section 3.3, where data
from an industrial case study are presented and discussed.

3.2.3.1 Quantitative Views

The views presented in this part display quantitative measurements. The wall-clock time
consumption per SystemC process can be displayed. In particular, a table shows infor-
mation for each process as a whole, and also about each transition. The per-process
information are the name of the process, its type (thread or method), the total wall-clock
duration of the process, as well as the proportion relatively to the overall simulation
duration. The per-transition information are statistical metrics (minimum, quartiles,
maximum) and the number of transitions that occurred.

Table 3.1 shows an example of a wall-clock time consumption table for the processes
of a simulation. For each process, the table indicates its SystemC name, its type, its total
wall-clock duration, the percentage it represents against the total wall-clock duration of
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the simulation, and the two last columns are the number of transitions executed and the
mean duration of a transition. The three columns we skipped indicate statistical metrics.
The first quartile (1st Q.) is a duration such that 25 % of the process’ transitions are
shorter than this value. For the median it is 50 % of the transitions and for the third
quartile (3rd Q.) it is 75 %. In this example, the first process (named “decoder.compute”),
which is a SystemC thread, consumed 13 % of the total simulation duration (wall-clock
time) in 5411 transitions. The third process (named “vga.compute”) is also a SystemC
thread, and consumed 8.4 % of the simulation duration, but only in 10 transitions. For
the SystemC kernel itself, the measured times are mostly very short, i.e. the duration
of a trace recording is not negligible compared to most of the measured times. This
artificially exaggerated the percentage spent in the SystemC kernel compared to the overall
simulation duration.

Name Type Total (ms) % 1st Q. Median 3rd Q. Transitions Mean

decoder.compute Thread 7328.9 13.0 1.2 1.3 1.8 5411 1.4

cpu.compute Thread 5658.4 10.1 76.4 78.6 80.2 72 78.6

vga.compute Thread 4723.4 8.4 400.6 499.7 511.4 10 472.3

dma.compute Thread 3972.6 7.1 133.8 135.0 232.1 25 158.9

SystemC kernel - 3159.2 5.6 < 1 < 1 < 1 400 7.9

Table 3.1: Wall-clock time usage of some SystemC processes of a simulation. Time values
are expressed in ms.

Another view available with SycView is the partitioning of simulation cycles depending
on the number of runnable processes there were at the beginning of the cycle. Table 3.2
shows one example. In this example, there were 23,694 cycles with only one runnable
process (at the beginning of the cycle). There were 127,070 cycles with only three runnable
processes. Moreover, 96.6 % of the cycles had less than four runnable processes. This type
of information gives an upper bound of the potential for parallel simulation there is in
the execution of a model, in the case of an approach that runs simultaneously runnable
processes in parallel. Such approaches are probably the most natural ones when it comes
to parallel SystemC simulation, and were studied in several research work (see Chapter 4).
This illustrates why we made such measurements: it gives in one table a good reason to
study parallel simulation approaches other than the “classical” ones.

3.2.3.2 Simulation Charts

Additionally to the views shown on Tables 3.1 and 3.2, two other views are available with
SycView. Those views are graphical and consist in plotting the scenario of an execution
relatively to either wall-clock time or simulated time. Contrary to the previously presented
views, those ones do not give quantitative information about a simulation. However, let
us remind that models such as the ones developed at STMicroelectronics are developed
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Nb. Runnable Nb. Cycles % (rounded) Cumulated %

1 23,694 14.6 14.6

2 6078 3.7 18.3

3 127,070 78.3 96.6

4 621 0.4 97.0

5 94 0.1 97.0

6 17 0.0 97.0

7 1 0.0 97.0

17 3205 2.0 99.0

21 14 0.0 99.0

25 1585 1.0 100.0

Table 3.2: Number of cycles per number of runnable processes.

by many different teams, and even by external companies. Having the comprehensive
knowledge on a model is hardly possible, because of both the size and complexity of
the source code. The simulation charts can help to understand the global behavior of a
simulation, from an external point of view, and to raise up questions on how models are
written.

1

1
2

3

Figure 3.5: Example of simulation charts, relatively to wall-clock time (above) and sim-
ulated time (below).

Figure 3.5 shows two simulation charts for an example simulation. The chart above
represents wall-clock time on the x-axis, and the one below represents simulated time on
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the x-axis. The y-axis shows the different processes of the simulation. Let us start with the
above graph for wall-clock time. Each time a process executes a transition, a rectangle is
drawn, with a width proportional to the wall-clock time duration of the transition. Since
the reference kernel we instrumented executes SystemC processes sequentially, there is
always at most one rectangle for each value of time. In the graph below, for simulated
time, each time a process executes a transition, a vertical stoke is drawn. This illustrates
the instantness of transitions with respect to simulated time.

Mark (1) represents the initialization of the simulation. During this phase, each process
executes its first transition, at simulated time zero. The strokes in the simulated time
graph are stuck to the left, thus barely visible. On the wall-clock time graph, however, we
can see that each initialization transition takes some time to run. On this simple example,
we can easily map each transition execution in the wall-clock time chart with one in the
simulated time chart, as we did for the initialization phase. As another example, Mark
(2) indicates that the stroke below represents the same transition as the rectangle above.
Mark (3) refers to the rectangles around some strokes. They represent a time range in
which the execution of the transition could have occurred. This information comes from the
time ranges annotations, notably used at ST and previously presented in Section 2.3.2.2.
Of course, if only one of the transition occurred at a different time, this may change all
the rest of the simulation. Those potential changes are not represented on this chart:
it would be too complex not only to plot, but also to get such information. Thus, the
rectangles represents time ranges relatively to the execution that actually happened.
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3.3 Case Study: Model of a Chip for a Set-Top Box

3.3.1 Overview

This section presents the results obtained with SycView on an industrial case study from
STMicroelectronics. The case study consists in the model of a chip for a set-top box. This
chip includes video encoding and decoding capabilities. It has one Central Processing Unit
(CPU) containing four general purpose cores, as well as hardware acceleration blocks for
video processing, as illustrated on Figure 3.6. A modified Linux kernel runs on the CPU.
Other dedicated cores that we do not detail here are also present in the chip.

The SystemC model is composed of ∼ 900, 000 lines of code including ∼ 750, 000
lines of C++ code as counted by cloc. It contains 850 modules hierarchically organized.
Counting only the leaf modules leads to the number of 750 modules. There are 1068
registered SystemC threads and 163 SystemC methods in the whole model.

I/O

I/O

I/O

Image
processing

units

Video
encoding
hardware
blocks

Video
decoding
hardware
blocks

4 core
CPU

Figure 3.6: Overview of the chip from the case study.

Different test scenarios have been experimented. The first one is the boot and initial-
ization of the platform, which starts in the beginning of the simulation and ends when
a command shell is available. All the other scenarios exclude the boot and initialization
phase. The next two cases are display video broadcast tests for h264 and mpeg2-encoded
streams. They consist in decoding a previously encoded video stream and then send it for
display. The last case is a transcoding, which redirects the decoded video stream to encod-
ing hardware blocks, to produce a h264-encoded stream from an originally mpeg2-encoded
stream.
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3.3.2 Simulation Charts

As an overview, we first present simulation charts obtained from the execution of the
mpeg2 decoding and display scenario. Figure 3.7 shows two simulation charts of the
whole simulation where six frames have been decoded and displayed. It is not possible,
with this level of zoom, to see the details of the simulation. However, we can identify
different patterns that correspond to the test case. Mark (1) shows the hardware block
threads that are computing when a frame is decoded. On the top chart, we can see that
the execution take a non-negligible amount of wall-clock time. However, on the chart
below, the same transitions were executed at the same simulated time instant. With this
level of zoom, we see that each frame decoding and display corresponds to one chunk
of transitions. Between each frame, the CPU executed some transitions; the SystemC
thread for the main CPU is pointed by Mark (2).

1

2

Figure 3.7: Simulation charts for the simulation of our case study when running the mpeg2
decoding and display scenario.

Figure 3.8 proposes a zoom on one of the chunks of transitions. Understanding the
details of the simulation on such a chart is not possible because of its complexity. However,
in some places, we observed what seems to be a “chain triggering” of short transitions
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executing in one order (1) and later in the reverse order (2). Those transitions were
triggered by the notification of SystemC events and happened in the same simulated
time instant. Seeing this, one could question the coding style of this part of the model.
Indeed, in the case of a Transaction Level Modeling (TLM) model, communications are
mostly made using Interface Method Calls (IMCs). This tends in average to result in long
transitions: one process performing an IMC executes code from another module, but still
in the same SystemC process. In this part of the model, processes were notifying each
other and transitions were very short. If such patterns are frequent in the simulation,
they may cause over-slowness because such parts of the model are not using at best the
principles of high level of abstraction of loosely-timed TLM.

1

2

Figure 3.8: Zoom on hardware block processes (see Figure 3.7) involved in image decoding.

3.3.3 Wall-Clock Duration

From the simulation charts, we could only have a feel on the complexity and on the overall
behavior of the simulation. With the quantitative measurements, we get information that
are both easier to understand and to exploit. To start, Figure 3.9 presents the wall-clock
time consumption per type of SystemC process (thread, method) or spent in the SystemC
kernel. Rather expectedly, a huge proportion of the time, namely 91.3 %, was spent in
SystemC threads (i.e. not SystemC methods). For this reason, in case a distinction is
made, we focus on SystemC threads rather than methods for the following results.

Figure 3.10 presents the distribution of wall-clock time between three different cate-
gories: SystemC processes from CPU core models, from hardware Intellectual Property
(IP) blocks and the SystemC kernel itself.

For the boot and initialization case, 79 % of the wall-clock time was spent in core
models, 10 % in hardware blocks and the remainder in the SystemC kernel. The explana-
tion is rather straightforward: the system boot is performed by the CPU, and hardware
blocks are only initialized. In the video stream decoding cases (both h264 and mpeg2),
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SC_THREAD

91.3%

SystemC kernel
5.9% SC_METHOD
2.8%

Figure 3.9: Distribution of the wall-clock time between SystemC threads, methods and
kernel.

0 % 50 % 100 %

boot+init

mpeg2
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mpeg2 → h264

Cores Kernel IPs

Figure 3.10: Partitioning of the wall-clock time elapsed, by category of processes, for four
different test cases.

one third of the time (respectively 25 and 31 %) was spent in simulated cores and the rest
mostly in hardware blocks. The time spent in the SystemC kernel is below 6 %. This
illustrates that the decoding computations are mostly done by IP blocks. Finally, for the
transcoding case, 10 % of the time was spent on the core, 25 % on the SystemC kernel
and 65 % on IP blocks. Again, we notice that hardware blocks are performing most of the
computations, even if in this case there is more time spent in the SystemC kernel than in
the decoding cases.

To get into more details, we present in Table 3.3 the results for the four most time-
consuming SystemC processes in the test case h264. More than 35 % of the total time was
spent on those processes. However, if we look at the number of transitions, we see that
the first process (part of the IP category) consumed 12.9 % of the total time in 10,111
transitions while on the other hand, the second and third processes (also IP blocks) per-
formed considerably fewer transitions (less than 100) but still consumed around 8 % of the
time each. This means that transitions of the second and third processes are performing
long computations, while transitions of the first process are short in comparison. This is
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Category Type Part Exec. Min (ms) Median (ms) Max (ms)

IP block Thread 12.9% 10,111 < 0.1 1.1 18.4

IP block Thread 8.6% 93 73.7 77.5 84.1

IP block Thread 8.0% 14 395.2 486.6 495.7

SystemC kernel — 5.9% 635,129 < 0.1 < 0.1 1.0

Table 3.3: Measurements of wall-clock time consumption for the four most consuming
processes. Min, median and max corresponds to the execution time of transitions. For
confidentiality reasons, we did not show the SystemC names of those processes, but only
their category (IP block, core or kernel).

confirmed by the minimum, maximum and median execution times for those processes’
transitions. The fourth row represents the SystemC kernel.

3.3.4 Number of Runnable Processes per Cycle

In this part we present the measurements of the number of runnable processes at each
cycle, performed by SycView (as in Table 3.2, however, for clarity we show these results
on charts).

Figure 3.11 shows the proportion of simulation cycles having a specific number of
runnable processes. Figure 3.11a only considers SystemC threads. As an example, we
analyse the case of mpeg2 video display. For 53 % of the cycles, there were no threads
to run (i.e. only methods). For 32 % of the cycles, there were one runnable thread. For
12 % there were two runnable threads and finally for the remaining 3 % there were three
threads to run. The h264 case showed the same trend. For the transcoding case, most
of the cycles only had one thread to execute. Figure 3.11b shows the measurements
considering both SystemC threads and methods. The big picture is that most simulation
cycles only contain one to three transitions to run before moving to the next cycle.

This measurement gives an upper bound of the degree of parallelization achievable
with approaches that use parallelization inside cycles. The number of runnable processes
at the beginning of each cycle is too low to expect interesting speed-ups with such par-
allelization approaches. Due to shared resources, the real degree of parallelization might
be lower. Indeed, a runnable process may share a dependency with another one, making
the concurrent run of those two processes not consistent with coroutine semantics.
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(a) SystemC threads only
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Figure 3.11: Partitioning of simulation cycles, per number of runnable processes, in four
different test cases.
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3.4 Influence of Time Ranges on the Number of Pro-
cesses per Cycle

3.4.1 Discussion on Previous Results

The low number of runnable processes at each cycle can be explained by at least two
factors:

1. Since the implementation of time ranges in production at STMicroelectronics con-
sists in choosing a random time within the range (see Section 2.3.2), there is little
chance of having two processes waking up at the same instant. For example, even
two processes executing the exact same code will not be temporally synchronized if
they use random timing within an interval.

2. Platforms are described at a high abstraction level, where both the time and space
granularity are coarse. Instead of modeling the behavior of small pieces of circuit
at each clock cycle, as at Register Transfer Level (RTL), the overall behavior of
components is modeled, minimizing the amount of wait statements. The coarse
space granularity leads to fewer processes than at RTL. Since hardware clock cycles
are not modeled at Loosely-Timed (LT) Transaction Level Modeling (TLM), the
chances of simultaneous execution of multiple processes is reduced.

Item 2 is intrinsic to the way we describe the platforms, but Item 1 is a side effect
of the random time choosing policy for time ranges. The idea behind the use of time
ranges (instead of time values) was to enable the exploration of different time values. In
production code, random time choosing is used, as it may reveal synchronization bugs
that are specific to one scheduling. Simulations are still reproducible because the random
seed can be set at simulation start to control the generated series of random numbers.

We can try taking advantages of time ranges in another purpose. Since the time
values may be chosen arbitrarily within an interval, we can pick a value that increases
parallelism. This section describes such implementation and the results on our case study,
which shows that Item 1 is actually not significant here.

3.4.2 Example

The semantics of waiting for a time range is: yield to the kernel, and wake up the current
thread at any time within the given range. In any case, the SystemC kernel eventually
chooses one simulated time instant for the simulation. But with time ranges, multiple
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choices are possible, and a careful choice of which time values are simulated can increase
the number of runnable processes at specific cycles. As an example to illustrate this, let
us consider the following code, in two distinct SC_THREAD that we consider independent
from each other:

void Module_One::compute() {
annotate_loose_timing(

sc_time(1, SC_NS),
sc_time(5, SC_NS));

synchronize();
}

void Module_Two::compute() {
annotate_loose_timing(

sc_time(3, SC_NS),
sc_time(7, SC_NS));

synchronize();
}

Simulated time (ns)0 1 2 3 4 5 6 7

Module_One.compute

Module_Two.compute

possible
execution
times

time
simulated by
the kernel

(a) Random time picking.

Simulated time (ns)0 1 2 3 4 5 6 7

Module_One.compute

Module_Two.compute

(b) “Better” time picking.

Figure 3.13: Execution diagrams of two processes using loose timing, for two different
time choice policies: a random value (a) and a value which maximizes the number of
runnable processes (b) in the next cycle.

A graphical representation of an execution for this model is shown on Figure 3.13.
We used the same formalism as shown in SycView simulation charts: a filled rectangle
represent the valid time range for a transition, and the time instants actually simulated
are represented by strokes. With this representation, it clearly appears that the number of
runnable processes varies depending on which time instants are simulated by the SystemC
kernel:

• In the case of Figure 3.13a (random time picking), there are two simulated time
instants, each with one runnable process.

• In the case of Figure 3.13b (“better” time picking), there is only one simulated time
instant, with two runnable processes. Thus, this case induces a higher degree of
parallelism for the simulation.
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3.4.3 Implementation of a Time Picking Policy

In its current form, the modification can be implemented neither with the loose timing
Application Programming Interface (API) (which does not have visibility on the number
of runnable processes at a specific simulated time) nor in the SystemC kernel in its current
form (which is called through wait statements after the random time choice). Thus, for
this experiment, we added the following function to the SystemC kernel:

void wait(sc_time min, sc_time max);

We have bound the synchronize/annotate API from ST to this function. Having
delegated the choice of the time value to the kernel, there are more information that can
be used to choose the time instant. When there are no runnable processes and no pending
delta notifications, the SystemC kernel picks the first event from the event queue and set
the value of simulated time to its timestamp. We changed the way time elapses in the
kernel. The first change modifies the events, so they do not have one but two time values,
representing the range in which they are considered valid. Thus, when the kernel needs to
elapse simulated time, it will go through the list of recorded future events, and compute
a time value based on the ranges of those events. We want this time value to maximize
the number of runnable processes in the next cycle. In the following explanations, we call
this time value tmax. Moreover, we assume that:

• the kernel always triggers an event if its time range includes the chosen time value,

• the old wait using one time value is replaced by the ranged wait with the same
value for both bounds.

Let IE be the time interval given for an event E, and T be the set of timed intervals
registered in the kernel. We define tmax as follows:

tmax = min ({max(IE) | IE ∈ T })

In other words, it is the minimum value of all the maxima of the registered timed
ranges, as illustrated by the example on Figure 3.14. In particular, we can prove two
properties about tmax.

Property 1: Given that the simulation is currently at a given time instant, tmax is a
correct choice as next instant.

Property 2: tmax maximizes the number of runnable processes of the next cycle.
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Simulated
time

E0
min max

E1
min max

E2
min max

tmaxcurrent t

Figure 3.14: Example of a tmax value for three events.

Property 1 is correct if choosing tmax does not skip any event. An event E is skipped
if tmax > max(IE). However, by definition of tmax, such a process does not exist, because
tmax is the minimum of max(IE) for each event E. Thus, Property 1 holds.

To prove Property 2, let Emax be the set of events that will be triggered if tmax is chosen,
and F a future event such that F /∈ Emax (on Figure 3.14 for example, Emax = {E0, E1}
and F = E2). “F not triggered” means that F ’s minimum triggering date is in the future,
thus tmax < min(IF ). Let G be one of the events whose upper bound equals tmax (such an
event exists by definition of tmax, on our example G = E0). Then tmax = max(IG) which
means that max(IG) < min(IF ).

Now if we try to add F to Emax, the minimum value we could take for the time
is min(IF ). Yet, since max(IG) < min(IF ), choosing this value would exclude G from
Emax. In other words, if we include F in Emax, we immediately exclude G, which violates
Property 1 shown before. Therefore, a process F (not initially in Emax) cannot be added
in Emax, which means that Emax already contains the maximum number of processes for
the next cycle. Thus Property 2 holds.

Two points are to be noticed. First, there may be multiple values that fulfills Proper-
ties 1 and 2. In our example, all the values between the minimum of E1 and the maximum
of E0 are valid. The defined value tmax is only one of those values that it is easy to com-
pute. Second, this only maximizes the number of processes for the next cycle. An optimal
time choosing policy would rather try to globally maximize the number of runnable pro-
cesses, instead of just maximizing it for the next cycle. However, this would require very
complex code analysis to anticipate the influence of the execution of each transition on
the rest of the simulation, in terms of runnable processes. On the contrary, the chosen
policy is simple to implement and we will see that it did not show promising results, thus
this track has not been explored further.

3.4.4 Results

We have run again the simulations of our industrial platform for the same test cases to
measure the same metrics with this modification. Figure 3.15 shows that the number of
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processes is still very low, even though there are more occurrences of cycles with 3, 4 or
more runnable processes.

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

0 Proc. 1 2 3 4 and more

(a) SC_THREAD only

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2 → h264

1 Proc. 2 3 4 and more

(b) SC_THREAD and SC_METHOD

Figure 3.15: Partitioning of delta cycles, per number of runnable processes, for four
different test cases, with optimized time picking within time ranges.

From those results, we see that trying to run multiple processes in the same simulation
cycle in parallel will not be an efficient parallelization approach. We have seen in Figure 3.9
that most of the simulation duration is spent in SystemC threads. Thus, let us consider
Figure 3.15a: even if, say 5 % of the simulation is accelerated by running the four runnable
threads in parallel, Amdahl’s law tells us that the expected speed up is 1.04 at best.
Moreover, we completely neglected dependencies between processes, which can forbid the
concurrent execution of specific transitions. This question is further discussed in the
survey on existing parallelization approaches, presented in the next chapter.
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3.5 Conclusion

According to the previously presented results, we can establish a list of characteristics for
our case study as follows:

• Most of the wall-clock time is spent on models of Intellectual Property (IP) blocks
(Figure 3.10).

• Most of the wall-clock time is spent on SystemC threads (Figure 3.9).

• Most of the simulation cycles contain less than four runnable SystemC processes
(Figure 3.11) and even if we exploit time ranges to maximize this value (Figure 3.13),
the results remain similar (Figure 3.15).

• In cycles containing several runnable processes, most of the time there is zero or
one SystemC thread, the remaining being methods (Figure 3.11 and Figure 3.15).
The wall-clock time consumed by these methods is very low compared to the time
consumed by the threads (Figure 3.9).

Obviously, those characteristics may vary depending on the test scenario. However,
they have been observed for common uses of a set-top box, e.g. video display tests, that
are run several times during the system on chip development. In this part, we gave the
reader an idea of the complexity of such types of platforms. We also highlighted the fact
that in our case, the complexity is located in hardware IP blocks, and not in the embedded
software. Consequently, the performance problem we try to solve mainly comes from the
models of IP blocks, and not from the Central Processing Unit (CPU).

The parallelism exposed by our case study is, at first, not promising. Indeed, the
number of runnable processes at each simulation cycle is very low, 4 at best for 5 % of the
cycles at best. Thus, an immediate implication of the results from this chapter is that
if we want to find a parallelization approach to speed up such models, we must find a
potential for parallelization elsewhere than in the number of runnable SystemC processes.
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4.1 Introduction

Parallel Discrete Event Simulation (PDES) consists in running a Discrete Event Simu-
lation (DES) on a parallel computer. In this manuscript, we use the term PDES with
this general meaning [22]. Research work on PDES includes theoretical techniques, and
some of them have been applied to SystemC simulations. For each technique, we remain
general in the theoretical description and explain in further details the implementations
for SystemC. Then, this opens the discussion on the applicability of the existing tech-
niques for Loosely-Timed (LT) Transaction Level Modeling (TLM) models, such as our
case study, for which we enumerated a list of properties in the previous chapter.

4.1.1 Different Types of Simulated Architectures

Different types of architecture are represented in the hardware part of systems on chip.
This section reminds the most common ones.

4.1.1.1 Shared Resources and Hardware Acceleration Blocks

Multi-Processor System on Chips (MPSoCs) are systems on chip with more than one
generic purpose processor and heterogeneous hardware components. A Symmetric Multi-
Processing (SMP) architecture is generally used in this case. The processors share most
of the hardware resources, including memories, as shown on Figure 4.1. There may
be multiple processors, however, the performance of such systems mostly relies on the
efficiency of hardware acceleration components. The processors generally run a classic
Operating System (OS).

Memory Hardware
IP Block

I/O
Peripheral

Processor Processor

System
Bus

Figure 4.1: Example block diagram of an MPSoC model.
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4.1.1.2 Massively Parallel Architectures: Many-Cores

Contrary to the previous architecture, some systems do not or barely use hardware ac-
celeration blocks. Instead, the system consists in a many-core processor, counting a large
number of processing cores (generally more than 16). Individually, cores are slower than in
the previous architecture, but good performances are obtained thanks to the parallel ex-
ecution of the embedded software. In such systems, the embedded software is partitioned
in several processes: it is finely tuned for efficiency on massively parallel architectures.
Thus, many-core, or Massively Parallel Processing (MPP) systems on chip are used when
a high degree of parallel processing is needed. Many-core systems on chip often use the
Network on Chip (NoC) architecture, which is easily scalable. Figure 4.2 illustrates an
example of NoC for a many-core system. Each memory contained in the cores is private
and cannot be accessed from other cores.

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Router

Processor

Memory

IP Blocks

Network
Interface

Figure 4.2: Example block diagram of a NoC architecture for a many-core processor, like
Kalray’s MPPA [23].

4.1.1.3 Consequences on Models

The two architectures presented here are not incompatible with each other: a processor
from Figure 4.1 can be a many-core processor using a NoC like on Figure 4.2. The variety
of systems on chip is reflected on their models, which leads to very different types of
simulations. The NoC architecture is used precisely to avoid synchronizations between
clusters as much as possible. This specificity can be exploited to speed up the simulations:
because of the natural partitioning and isolation of the clusters, there are few obstacles
to running them in physical parallelism. Moreover, the isolation between clusters induces
that communication costs are not performance critical. In the case of an architecture with
hardware acceleration blocks, of which our case study is an example, there are hardware
synchronizations between components. Most of them are performed through system buses.
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We saw from profiling results that there is, at first sight, little potential for parallelism in
this type of simulations. Consequently, the same parallelization approach will not work
for both types of simulations.

4.1.2 A Reminder on SystemC Semantics

Before detailing the approaches for parallel simulation, let us discuss about the following
inference, which is common in research work:

SystemC simulation semantics state that within a delta cycle, the execution
order of processes it not predefined. Thus, all the runnable processes of a delta
cycle can be run concurrently.

The first sentence is correct with respect to the SystemC standard. However, the
“thus” implying the second sentence is technically incorrect, because of possible race
conditions. Indeed, if two SystemC processes modify the same variable, a physically
concurrent run of those processes produces a race condition on this variable. In fact, the
SystemC language reference manual already covers this [1, p. 18]:

An implementation running on a machine that provides hardware support for
concurrent processes may permit two or more processes to run concurrently,
provided that the behavior appears identical to the coroutine semantics defined
in this subclause. In other words, the implementation would be obliged to
analyze any dependencies between processes and to constrain their execution
to match the coroutine semantics.

The last sentence indicates a technical solution to fulfill coroutine semantics. A parallel
SystemC kernel, that enables the parallel run of any kind of SystemC program, must
indeed analyze dependencies. However, a formal dependency analysis can be avoided
if assumptions on inter-process dependencies are made. For example, at the Register
Transfer Level (RTL) abstraction level, one assumption could be that processes do not
share any variable, and the only form of inter-process communication is achieved through
SystemC signals. With this assumption, a parallel SystemC kernel that correctly handles
concurrent accesses to signals can be considered valid. At the TLM abstraction level,
there are many implicitely shared resources due to Interface Method Calls (IMCs).

4.1.3 Introductory Example

In this chapter, we use the following example to explain the main categories of existing
PDES techniques. The example consists in three SystemC threads, whose execution plan-
ning is represented on Figure 4.3. This representation uses the same visual conventions
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as the SycView simulated time charts from the previous chapter. Figure 4.4 represents
the work of the host processor running this SystemC simulation. At each time, the figure
indicates which SystemC process the simulator is currently running (the time spent in
the kernel itself is neglected in this figure). With a sequential simulator, only one process
is running at each wall-clock time instant. The figure represents a possible scheduling,
but it is not unique. For example, at simulation start, processes could have been run in
a different order.

Simulated
time0

SystemC
threads

A

B

C

current
simulated time

(example)

Figure 4.3: Planning of three SystemC threads. A vertical stroke represent a simulated
time instant where the process has a transition to run. An example current simulated
time instant is indicated.

Wall-clock
time0

Operating
system

processes
Host A B C B A A B C A

Figure 4.4: Possible execution of this simulation in a sequential simulator such as the
reference implementation of SystemC.
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4.2 Overview

To achieve the parallel simulation of a model, one must find potential parallelism in the
model, and use parallel computing resources to exploit the parallelism from the model.
The second point is not the main problem in our case: recent computers have multiple
processors or cores, have powerful Graphics Processing Units (GPUs), and multiple com-
puters can also be used to get more parallel computing power. The problem is to find
parallelism in the model, exploitable by parallel computing resources, while keeping the
results correct and of course achieving better performances.

This chapter presents the different approaches for parallel SystemC simulation, summed
up on Figure 4.5. We start with space partitioning techniques in Section 4.3, that keep
simulations conservative with respect to simulated time. Then, Section 4.4 presents tech-
niques that exploit the relaxation of constraints to increase parallelism. This section
includes most parallel simulation approaches. The following sections are discussions, on
simulation semantics in Section 4.5, and on simulation replication and time partitioning
in Section 4.6. The two latter approaches are not applied to SystemC, or not to speed up
simulations in a development context.

Chopard et al. [24]

parSC [25] RAVES [26]

SCGPSim [27]

Bouzouzou [7]

Chen and Dömer [28] Schmitt et al. [29]
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Combes et al. [31]

SAGA [32]

TLM-DT [33, 34]

Peeters et al. [35]

Jones [36]CoMix [37]

legaSCi [38]

SCope [39, 40]SystemC-Link [41]

Patel et al. [42] sc_during [2]

Anticipation
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Dependency Analysis

Dependency Analysis

Relaxed Timing
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synchronization

relaxed
synchronization

Target RTL Target TLM

Figure 4.5: Existing work on parallel SystemC simulation.
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4.3 Space Partitioning

4.3.1 Presentation

Space separation consists in partitioning data and computations, and run them in physical
concurrency. Implicitly, we assume that in the case of space separation, all the different
workers are synchronous with each other in terms of simulated time. These approaches
are known as conservative parallel simulation approaches. Formally, a conservative syn-
chronization mechanism keeps the same order of simulation cycles, and the same set of
transitions per cycle as in sequential simulation [43].

In SystemC, the strongest synchronization mechanism consists in allowing only pro-
cesses that are in the exact same simulation cycle (i.e. same time and same delta cycle) to
be candidate for parallel execution. An obvious implication is that the number of runnable
processes at each cycle is a limiting factor to the achievable speed up. Figure 4.6 shows
an example of a conservative parallel simulation for our example.

Wall-clock
time0

Host 1

Host 2

Host 3

Synchronization Synchronization

A X B A A X C

B X B

C X A

Figure 4.6: Example of a parallel execution with conservative synchronization. The per-
formance costs due to synchronization are illustrated as “idle” moments.

4.3.2 Applications to SystemC

Chopard et al. proposed a parallel implementation of a SystemC kernel using conservative
PDES [24]. Multiple SystemC scheduler instances are created, and run on different com-
puting units. The SystemC processes of the model are partitioned into groups, attributed
to one of the schedulers. There is a synchronization barrier between simulators at each
delta cycle. This is an example of a strongly conservative synchronization mechanism.
However, this approach typically uses the assertion in Section 4.1.2, assuming that pro-
cesses from a delta cycle can be run in physical parallelism. In this case, the approach
targets models at Register Transfer Level (RTL) level, that communicates with SystemC
channels. Thus, the authors assume that shared variables only consist in channels, which
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is a reasonable assumption at RTL level. In this approach, the time elapse mechanism is
centralized in a master simulator. Before every time cycle, each simulator sends its next
simulated time value to the master, which answers back with the minimum when it has
answers from each simulator. This approach is efficient in specific cases, namely where
several processes from different modules are runnable at each simulation cycle. When this
is not the case, synchronization overheads are very high, and the master simulator acts
as a performance bottleneck.

To address these limitations, Combes et al. have studied possible solutions to relax
the synchronizations, while remaining conservative [31]. For example, they propose to
use the information on SystemC signal bindings to anticipate the update of signals when
it is known that the value will not change (or not be read) in the current delta cycle.
Therefore, the relaxation is still limited to delta cycles. Another idea is to decentralize the
simulation time between simulators, contrary to their first approach [24]. The simulators
are still in the same simulated time instant, but it saves some communications: it removes
the communication bottleneck of having a master simulator. The number of processes
runnable at each cycle stays a strong limiting factor.

A parallel SystemC kernel called parSC has been proposed by Schumacher et al. [25].
The simulation kernel used in parSC is a modified version of the reference implementation.
There is one master thread, that manages the states of the simulation, and several worker
threads. Each worker thread runs transitions during an evaluation step. A synchroniza-
tion barrier is done at the end of each evaluation step. Then, the master thread performs
the update requests and further notifications. This approach is similar to the previous
ones, except the fact that it is a parallel implementation of a SystemC kernel, whereas
the first ones use different sequential SystemC kernels to achieve parallel simulation.

4.3.3 Discussion

The approaches presented in this section are all located on the left part of our overview
graph (see Figure 4.5). This left part corresponds to strongly conservative synchronization
mechanisms. We also indicated on the figure that such approaches target RTL models.
The first reason for this is that the implementation uses features of SystemC for RTL
modeling, such as sc_signal or clocked threads. The second reason is that such type of
parallel execution is naturally efficient when a lot of independent work has to be performed
at each simulation cycle. This corresponds to simulations at low levels of abstraction,
which models the internal details of each component, as at the RTL abstraction level.

With conservative approaches, the number of runnable processes per simulation cycle
is a dramatic limiting factor of the efficiency of parallel simulation. Yet, we focus on
models where most of the wall-clock time is elapsed by SystemC threads (minimum 90 %
in our study) and most of the simulation cycles (minimum 70 % in our study) only have
one runnable thread, or even only methods to run.
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4.4 Relaxed Parallel Simulation

Most of parallel simulation approaches for SystemC use both space and time separation
(the slider being much closer to space than time). To increase the potential for paral-
lel execution, compared to conservative approaches, relaxed synchronization mechanisms
are used. Processes from different cycles can be allowed to run in parallel under some
conditions. Those conditions can be checked by an analysis tool, or assumed to be true.

4.4.1 Common Techniques

4.4.1.1 Lookahead Time

When it comes to relaxing synchronizations in a conservative approach, the use of a
lookahead time is a commonly used technique. It consists in allowing different parts of a
simulation (or different simulators working together) to be at a different simulated time
instants. The maximum time difference allowed within a simulation is defined by a fixed
value, the lookahead time. Figure 4.7 shows an example of parallel simulation with a
lookahead time. A possible corresponding execution is shown in Figure 4.8. We can see
that this execution took less wall-clock time than the one in Figure 4.6, thanks to the
relaxation of the conservative synchronization with the lookahead time.

Simulated
time0

SystemC
threads

A

B

C

current
simulated time

lookahead time

Figure 4.7: Possible simulated time state with a lookahead time. Graphically, the simu-
lated time can be seen no longer as a line but as a window.

The benefits of a lookahead value comes at a price. A lookahead value of zero does not
relax anything compared to standard simulation (thus without any benefit), and a too
high lookahead value will cause problems during the simulation, by breaking causality.
Consequently, the choice of a lookahead value is let to the model developer, as it depends
on the simulated architecture [39]. Different choices for lookahead values are discussed in
the following approach presentation.
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Wall-clock
time0

Host 1

Host 2

Host 3

Synchronization

A A X A A

B B X C

C X B

Figure 4.8: Possible execution for our example, using three host simulators and a looka-
head time as shown on Figure 4.7.

4.4.1.2 Optimistic Synchronization

Optimistic synchronization mechanisms are an answer to the inefficiency of conservative
mechanisms when there are not enough processes to run at each simulation cycle, even
with some relaxed constraints [43]. Optimistic synchronization relies on two mechanisms.
The first one is a forecast mechanism, that enables some processes to take advance on
others. By definition, this forecast mechanism is sometimes wrong. In this case, a rollback
to a previous valid state is done. This is the second mechanism involved. Figure 4.9
shows an optimistic simulation for our example. To rollback a simulation, state saves are
needed, which implies to record the value of each variable and the state of each process.
Further difficulties of using an optimistic mechanism for SystemC simulations have been
discussed by Trams [44]. To the best of our knowledge, there have been no parallel
SystemC simulation approach using optimistic synchronization, i.e. with a forecast and
rollback mechanism. This is mostly due to the fact that a rollback mechanism is costly
both to implement and at runtime.

Wall-clock
time0

Host 1

Host 2

Rollback

Rollback

A B A R A C

B C A B A R A

Figure 4.9: Possible execution for our example, with two host simulators using optimistic
synchronization. When wrong predictions have been made (on timing for example), the
process rollbacks to a previous state.
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4.4.1.3 Platform Partitioning

Partitioning the platform is a common technique to specify that parts of a model can be
run quite independently with each other. This does not mean that they do not communi-
cate at all, but such partitioning can be used to make assumptions. For example, one can
ask the user to define partitions such as there is no shared variables between them (except
with TLM transactions). Formally, this is a “space separation”, however it presented here
because it is often used to desynchronize different partitions in terms of simulated time.

In SystemC terms, partitioning the model consists in partitioning the different Sys-
temC objects of a simulation. Each partition is simulated with a different instance of a
SystemC scheduler. Bounds between objects that go in different partitions are replaced
by inter-simulator connectors (the terminology varies with the approaches). Partitioning
is most of the time done manually, i.e. by the simulation user. Figure 4.10 illustrates an
example of partitioning for different model architectures, previously presented. In mod-
els with a central system bus, a natural cutting point is across this bus. For many-core
architectures, a natural partitioning is groups of clusters.

#1

#2 #3

Memory Hardware
IP Block

I/O
Peripheral

Processor Processor

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Router

#3 #4

#1 #2

Figure 4.10: Example of partitioning for two different platform architectures.

4.4.2 Application to SystemC

In 2004, Mario Trams proposed a parallel simulation approach for SystemC using looka-
head time [44]. This work targets RTL simulations and is not applicable as-is, because it
leaves many future work directions. Most of them are addressed by more recent papers.

Viaud et al. proposed a set of modeling rules to describe multi-processor systems
on chip at the Transaction Level Modeling (TLM) abstraction level for parallel simula-
tion [33]. The key idea is to distribute the simulated time to each processor of the simula-
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tion. Thus, the SystemC simulated time is no longer used. Each component advances its
local simulated time depending on messages received from other components. A message
can be a request packet, a response packet or an interrupt packet. To prevent deadlock
situations, the simulators need to send null messages, as shown on Figure 4.11. Null
messages are messages that only contain a simulated timestamp. The handling of inter-
rupts is done by defining timestamped interrupt messages. Each Central Processing Unit
(CPU) loop starts with a check on interrupt messages. This removes the asynchronous
characteristic of interrupts, but guarantees that they will be handled in a meaningful
time. Acceleration is obtained by trading “accuracy” for “speed up” by using a lookahead
time, that must be specified by the model developer. Higher lookahead values cause a
lost of accuracy in the simulation of processors (which are simulated cycle by cycle).

S1

t = 20

S2

t = 10

S3

t = 0

(m′, 20) (m, 10)

(m, t) = message m with timestamp t

S1: waiting for S2 to process m′ at time 20

S2: waiting for S3 to process m at time 10

S3: waiting for guarantee that S1’s time is at
least 10

(null, 20)

Figure 4.11: Example of potential deadlock situation, if no null messages are sent in a
conservative parallel simulation. The null message sent by S1 to S3 tells S3 that S1 will
not send messages anterior to that null message, thus it unlocks the situation.

The previous set of modeling rules was later extended by Mello et al. as TLM-DT
(TLM with Distributed Time) [34]. A parallel SystemC engine called SystemC-SMP has
been developed to simulate models developed with TLM-DT. In TLM-DT, the behavior
of components is modeled using SystemC threads only. The only yield operations allowed
are delta notifications and waits on events. To the best of our knowledge, there have been
no study on the migration cost of a complete TLM model to TLM-DT. Also, there is no
compatibility between non-TLM-DT and TLM-DT modeling styles (time management,
handling of interrupts, SystemC primitives allowed). The conducted experiments were
done on the model of a multi-cluster Network on Chip (NoC) [34]. In this case, compu-
tations are CPU-intensive, the embedded software is developed to exploit the parallelism
of the architecture, and running the clusters in parallel indeed leads to a good speedup
(e.g. a speedup of 1.9 using 2 cores for simulation). In our case study (see Section 3.3),
the major slowness comes from the complexity of hardware acceleration blocks that, for
example, intensively exchanges video streams. The embedded software is run mostly on
one CPU of the platform. With such a distributed simulation approach, the platform first
needs to be partitioned. Considering our profiling results, the partitioning would occur
near hardware acceleration blocks, exchanging high definition video streams. Thus, using
a timestamped-message passing technique in this situation will lead to a communication
bottleneck.
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Peeters et al. proposed a simulation framework, reusing some ideas from TLM-DT,
but without changing the modeling rules [35]. The model developer has to partition the
model into clusters, each cluster will be run on a different simulator, concurrently with
the other ones. Each inter-cluster TLM transaction is turned into an asynchronous call.
This means that the initiator continues to run while the target processes the transac-
tion. To avoid temporal inconsistencies, two synchronization mechanisms can be used:
“implicit” and “explicit”. The “implicit” one is an exclusive write policy: a writer must
wait for all the readers to finish reading before writing. The “explicit” synchronization is
performed by simulation-specific modules, one for each cluster, that bounds the time in-
tervals between the different clusters by exchanging messages. The models experimented
with this approach have a high degree of parallelism (high number of tasks) and consists
in many-core platforms (64 CPU with 64 memories). Thus, even with a high degree of
interconnection, relaxing synchronizations leads to very good speed-ups with such models.

Jones developed an optimistic parallel simulation approach. The optimistic term in
this approach does not refer the usual definition of “optimistic” in parallel simulation
(i.e. with a forecast/rollback mechanism) but to a weak synchronization mechanism, with
a lookahead time [36]. The platform is divided into groups of modules called partitions.
Each group is simulated by a different instance of a SystemC simulator. This approach
makes strong assumptions about variables shared between partitions: it considers that
shared variables (except the ones from the SystemC kernel) has been either well protected
or purposely not protected. The value of lookahead time is advised to be set to a value be-
low the frequency at which different partitions have to communicate. This value depends
on models, and no general rule can be used. One possible empirical solution proposed
is to run different simulations with growing lookahead time values, until the simulation
fails. However, this solution does not guarantee that this lookahead time is still valid
after only a slight change in the model.

A methodology called legaSCi is proposed to integrate existing SystemC models into
parallel SystemC simulators, with a focus on achieving thread-safety [38]. Similarly to
the previous proposition, the key step involves the model developer, who must describe
partitions, here called containment zones, in the model. The definition of zones consists
in partitioning the SystemC objects (e.g. modules, channels or sockets). A process group
is created for each zone, with all the processes defined in the zone. Within a zone, the
processes are scheduled sequentially. Containment zones are independent with each other,
i.e. they do not share variable dependencies. Thus, parallel execution is not achieved when
a model contains many data inter-dependencies. In particular, with TLM, each Interface
Method Call (IMC) leads to a possible race condition. To answer this specific problem,
the authors propose to intercept IMC, and change the group of the initiating process to
the target group. This solution is technically possible, however it has drawbacks: either
the other processes from the initial group must wait for the completion of the IMC, then
there is no parallelism, or they can go on and this inserts a yield point which breaks the
atomicity of TLM transactions.

CoMix is a concurrent model interface library for distributed SystemC simulation,
developed at Cadence Design Systems [37]. The model developer must partition the
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model, each part is connected to the other through a bridge component. Each partition
is running in a separate process, with its own SystemC kernel instance. The bridges relay
sockets between peers, thus a natural cutting point is around a system bus. Lookahead
time is used in the form of credit, each simulator can get a different credit value. The credit
is mostly used to group processor instructions, which indeed enables to get an acceleration
for loosely-timed models. Nonetheless, this work mostly answers to performance problems
coming from the simulation of models of many-core systems on chip. Such models offer
natural and most possibly efficient cutting points, since the workload is balanced between
the different cores.

SCope is a parallel simulation kernel focusing on support for TLM communications [39,
40]. Multiple SystemC schedulers are instantiated on different worker threads. It uses
a similar idea as the one proposed for legaSCi [38], which is to partition the simulation
into safe zones. The only allowed form of communication between process from different
zones is using a remote event and a remote transactions mechanism. A lookahead time is
used to relax synchronizations. To avoid causality errors when using remote events, this
lookahead time must be set to a value that depends on the simulated system. In fact,
the notification of remote events must be delayed by at least the lookahead time value.
This needed delay is the same when using remote transactions (i.e. through different
simulators). The remote transaction mechanism is implemented in target sockets. It
checks if the initial thread belongs to a different group than the target object, and if so,
puts the transaction to a queue. A relay process, in the same group as the target, then
dequeues transactions and process them sequentially. SCope has been tested on the TLM
model of a NoC with 64 tiles, each one having private memory and a processor (for which
the model is cycle-accurate). As mentioned on Section 4.1.1, the natural partitioning and
regularity of the NoC architecture fits well with this parallel simulation approach, that
requires manual partitioning of the system.

One common point of Parallel Discrete Event Simulation (PDES) approaches applied
to SystemC is that the reproducibility is hard to ensure, since multiple processes from
the same simulation cycle are run in parallel. A SystemC kernel called SCale address
this issue, by adding a replay mechanism based on traces recorded during simulation [45].
SCale also uses an annotation mechanism on shared resources to detect race conditions
during runtime. This does not prevent race conditions to happen, but it informs the
model developer where to insert protection mechanisms in the model to ensure thread-
safety during parallel simulation.

Weinstock et al. proposed another parallel simulation framework called SystemC-
Link [41]. The formerly called zones are here referred to as simulation segments. It is
still required that the model developer identifies the segments. The major difference with
SCope is the use of a simulation controller that manages the different segments. Again,
the efficiency of parallel simulation depends on temporal decoupling. This makes the
approach best fit for cycle-accurate models, with precise timing, where relaxing temporal
constraints removes more constraints than in Loosely-Timed (LT) models.
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4.4.2.1 Applicability in our Case

The approaches presented in this section mostly target simulation of many-core platforms.
Indeed, such platforms offer a natural partitioning and a strong independence between the
cores. Moreover, the efficiency is best when multiple processors are on different partitions.
In this case, with a cycle-accurate Instruction Set Simulator (ISS), a substantial benefit
can be taken out of relaxed timing with a lookahead time.

In our case, we do not model many-core platforms where the software is the major
part of a simulation, but platforms with Intellectual Property (IP) hardware accelera-
tion blocks, which mostly are the performance bottleneck. The simulation of processors
have already been made fast enough for our software needs, e.g. using native host code
execution. Moreover, the exact effect of a lookahead time on a platform with hardware
acceleration blocks has not been studied yet: most approaches using a lookahead time
focused on simulations of many-core platforms with cycle-accurate CPUs.

4.4.3 Approaches Based on Dependency Analysis

A generic and semantics-preserving parallel SystemC simulator needs a dependency anal-
ysis mechanism to identify independent processes. This section sums up the approaches
based on dependency analysis to achieve parallel simulation. Figure 4.12 illustrates the
general principle of dependency analysis. The different approaches presented in this sec-
tion use various mechanisms to find the dependencies (e.g. static analysis, dynamic anal-
ysis) and have different definitions of a dependency.

4.4.3.1 Presentation of the Approaches

Bouzouzou presented a parallel SystemC simulator and proposed to use static code anal-
ysis to identify dependencies between SystemC transitions [7]. A static analysis tool first
scans the model in order to produce a dependency scheme. Then this dependency scheme
is provided as input to an altered SystemC simulator, which uses it to schedule differ-
ent transitions in parallel. A runnable process can be run if it is independent with each
currently running process. However, the proposed approach has a limiting factor due to
IMCs. When a transaction is sent to a system bus, the address is decoded to determine
the transaction target. During the static analysis, this address decoding is not done,
which implies to suppose that any target component bound to the same bus is a potential
target. Thus, in the case of a system where a central system bus exists, this supposition
is too pessimistic and leads to no physical parallelism.

Segment conflict analysis is introduced by Chen et al. [46]. In the context of the
authors, a segment is a portion of code executed by a SystemC thread between two
scheduling steps, what we call a thread transition in this manuscript. A segment boundary
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A();
wait(); // (1)
if (B()) {

C();
wait(); // (2)

} else {
D();

}
while (E()) {

F();
wait(); // (3)

}
G();
wait(); // (4)

(a) Pseudo-code of a thread.

(1)

(2) (3)

(4)

T1
A

T2
B,C

T3
B,D,E,F

T4
B,D,E,G

T5
E,G

T6
E,F

T7
E,G

T8
E,F

a transition
another
transition

(b) Transition graph for this thread.

T1 T2 T3 T4 T5 T6 T7 T8

T1 × ×
T2 × × ×
T3 × ×
T4 × ×
T5 × × × ×
T6 ×
T7 × × ×
T8 × × ×

(c) Dependency relations between transitions. A cross in the table means that the two tasks
share a dependency and cannot be run in physical parallelism.

Figure 4.12: The different steps of dependency analysis [46]: from user-code (a), identify
the different transitions (b) and then find dependencies between the transitions (c).

is a statement that calls the scheduler (e.g. wait). A segment graph is a representation
of a SystemC model. It is an oriented graph, where boundaries are nodes and segments
are transitions between nodes. Thus, a boundary is connected to another if and only if
they can be executed in direct sequence (considering only boundaries) in a simulation. A
conflict table is built with the graph, to associate to each pair of segment a boolean value
telling if the segments share dependencies or not.

Following this, Chen and Dömer use the conflict tables to implement an out-of-order
simulator [28]. Three types of conflict tables are made: one for data hazards, one for
timing hazards and one for event hazards. Each pair of segments is then associated to

80



CHAPTER 4. SURVEY: EXISTING PARALLELIZATION APPROACHES

three boolean values, one for each table, and the conjunction of those values tells if the
segments are in conflict or not. To increase the number of processes candidate for parallel
execution, the authors use techniques similar to branch predictions in hardware.

In the latest version, as proposed by Schmitt et al., the segment graph and conflict
analysis tables are built using a hybrid approach, that combines static and dynamic
analysis [29]. A dynamic design analysis is first made to determine the components
hierarchy and the location of SystemC processes in those components. This is possible
thanks to the introspection API offered by the SystemC kernel. The results of the design
analysis leads to a first instrumentation of the model source code. Then a static conflict
analysis is done on the instrumented model. During this analysis, amay-happen-in-parallel
table of segments can be built [47], helping to produce a suitable design for thread-safe
parallel simulation. The added value of this last approach is the support of third-party
libraries. Indeed, it is hardly possible to statically analyze a piece of code containing calls
to functions from a third-party library. Within binary code, segment boundaries or used
variables cannot be identified. The authors propose an annotation mechanism to indicate
if a function contains segment boundaries, or can induce conflicts. By default, to deal
with standard libraries functions, no segment boundaries nor conflicts are assumed to be
present.

Reder et al. propose to use both static and dynamic analysis [30]. They target to
achieve the parallel simulation of SystemC/RTL models on many-core architectures (as
simulation host). The authors use conservative PDES with a lookahead time and null mes-
sages. The current solution is based on SystemC/RTL communications, using sc_signal.
For the time being, they do not support IMCs, however supporting TLMmodels is planned
as a future work by the authors.

4.4.3.2 Applicability in our Case

To develop a generic simulation method that enables the parallel run of multiple tasks,
SystemC offers theoretically no other choice than performing conflict analysis (either stat-
ically or dynamically). Even within a delta cycle, coroutine semantics implies that the
parallel run of transitions is safe only if there is no race condition between them. In prac-
tice, it is reasonable to make assumptions that specific conflict situations will not occur.
For example, a reasonable assumption can be that processes from different SystemC mod-
ules do not directly share a variable (except through TLM transport methods). Another
assumption taken in most work for SystemC/RTL is that processes do only share signals,
and not directly variables. In order to develop a generic kernel (i.e. no such assumptions),
the approaches presented in this section have chosen to use conflict analysis to achieve
parallel simulation.

In an industrial context like at STMicroelectronics, virtual platforms contain parts
only available in binary form, as a black box. The combination of static and dynamic
analysis with an annotation mechanism can reduce this problem [29]. However, an anno-
tation mechanism still requires that someone has the sufficient knowledge on the internal
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behavior of the binary code to add annotations. An applicable approach must also be
scalable for large code bases. We remind our case study presented on Section 3.3, which
consists in 750 000 lines of C++ code. Moreover, previously presented analysis approaches
do not support TLM transport calls [30] or use over-approximations that do not extract
potential parallelism [7]. Thus, dependency analysis applied on TLM models remains an
open problem.

4.4.4 Exploit Massively Parallel Computing Architectures

In the case study we presented, the problem is not to find enough workers on the sim-
ulation host, but to identify independent tasks in the model to run in parallel. This
situation is common at high abstraction levels, as LT TLM. Indeed, at such a level, the
number of transitions tends to be reduced, as the coding style asks to group computa-
tions, and use mechanisms as temporal decoupling, notably to limit the need for context
switches. In models where many independent tasks have been identified, the problem is
to find enough computing units in the simulation host. A possible solution is to exploit
the computing abilities of Graphics Processing Units (GPUs) [27, 48, 32]. This can be
done using frameworks like NVIDIA’s Compute Unified Device Architecture (CUDA), or
OpenCL [49].

SCGPSim is a simulation infrastructure that enables parallel simulation of synthesiz-
able SystemC code at Register Transfer Level (RTL) level [27]. It uses a source-to-source
translator to produce code that uses the CUDA framework, therefore exploiting the com-
putation capabilities of NVIDIA’s GPUs. SCGPSim cannot be used for non-synthesizable
SystemC code, all the more so for models at the TLM abstraction level. Sinha et al. later
proposed to reuse concepts from SCGPSim into a simulator compatible with TLM [48].
It exploits multiple CPUs along with GPUs. In this approach, the user must first identify
“GPU-suitable” SystemC processes. The code of those processes is then translated into
CUDA code (as with SCGPSim) and wrapped to enable communication with the Sys-
temC kernel. It is then possible to use SystemC immediate, delta or timed events, as well
as signal handling across the GPU/CPU boundary. Other SystemC processes are run on
CPUs. They are compiled with an altered SystemC kernel to enable the use of multiple
CPUs. This approach also uses the principle of a parallel evaluation phase.

SAGA is another parallel simulation infrastructure for SystemC programs, at RTL
level [32]. As SCGPSim, it exploits GPUs by using CUDA. SAGA determines a process
dependency graph, based on the analysis of reads and writes done on SystemC signals.
This dependency graph is used to build a static scheduling of the processes. Then, the tool
partitions the graph by identifying independent dataflow graphs. A concurrent scheduling
scheme is established from this, which leads to the generation of CUDA code.

An original implementation of a parallel SystemC kernel have been proposed by Ven-
troux et al. [26]. Indeed, it is a hardware implementation of a SystemC simulator, called
RAVES. It consists in a parallel implementation of a SystemC kernel, similar to previ-
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ously seen approaches, with parallel execution of runnable threads in the beginning of each
evaluation phase followed by a synchronization barrier. This SystemC kernel is run on
RAVES, a special-purpose many-core platform (64 cores) offering a highly parallel execu-
tion architecture. On RAVES there is only a custom micro-kernel (not a complete Linux
kernel) made to support and optimize the execution of SystemC processes. This platform
provides hardware acceleration features for the evaluation of processes. Even though the
hardware acceleration along with the parallel kernel in RAVES showed good results, the
same problem still exists with a parallel evaluation phase: there are not enough processes
in our type of models for this to be efficient.

4.4.5 Tasks with Duration

An experimentation framework in Java, called jTLM, has been developed to try the
concept of tasks with duration in TLM [50]. This framework had also another goal,
namely study preemptive scheduling for SystemC, that we further discuss in Section 4.5.
Tasks with duration are an alternative to instantaneous computation followed by a time
elapse. Figure 4.13 illustrates this change with a SystemC code. Tasks with duration
have later been implemented with SystemC in the sc_during library [2].

void thread() { // SC_THREAD
compute();
wait(time);

}

(a) Common pattern with SystemC.

void thread() { // SC_THREAD
during(time, compute);

}

(b) Tasks with duration.

Figure 4.13: Comparison between SystemC classic time elapse and sc_during.

Semantically, this means that the task can be executed in parallel with the rest of
the simulation. This solution needs model refactoring to exploit host parallelism, but it
has the advantage to let legacy SystemC code running as-is, sequentially. This solution
is relevant for platforms where wall-clock time consuming parts can be clearly identified,
and are present in sufficient number to justify the parallelization. This solution explicitly
targets LT models; the notion of tasks with duration is not meaningful for clock sensitive
processes. It is also possible to synchronize a during task with the SystemC kernel. For
example, the duration of the task can be extended, or a SystemC primitive can be called.
However, in the latter case, there is a major overhead because the sc_during thread must
synchronize with the SystemC kernel thread. Consequently, too frequent synchronization
induces a dramatic slowness in the simulation.
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4.5 Discussion on Simulation Semantics

In the context of system on chip simulation, there exist different languages to write models.
They are referred to as System-Level Description Languages (SLDLs) in the literature [51].
Each SLDL enables the definition of objects and comes with specific simulation seman-
tics, that are mandatory to enable the implementation of a simulator, making models
executable. For example, SystemC defines modules, ports, threads, methods, and its sim-
ulation semantics specifies that the processes are run with respect to coroutine semantics.
We have seen many approaches developed specifically for SystemC, but there are also
approaches for other languages than SystemC. The answer to the question “is it possible
to adapt for SystemC an efficient parallelization approach applied to another SLDL?” has
no simple answer in the general case, as it mainly depends on the simulation semantics
of the language.

Dömer et al. proposed a comparison of multi-threading semantics of two SLDLs,
namely SpecC and SystemC [51]. With SystemC, a simulator must use cooperative mul-
titasking semantics. The consequence is that model developers do not have to avoid
race conditions on variables shared by multiple SystemC processes, including Interface
Method Calls (IMCs). We have already explained this in details in Section 2.2.1. On the
contrary, SpecC simulators can use preemptive multitasking and/or physical parallelism.
Thus, model developers must protect shared variables from race conditions. This differ-
ence in the semantics alone leads to the fact that a parallel SystemC simulator requires
conflict (or dependency) analysis, if no specific assumptions are made, whereas it is not
the case for SpecC. In the latter case, only shared variables in channels need a protection
mechanism [52].

The language is not the problem in itself, if we put aside the syntactic aspects. The
fact that a parallelization approach works for one language or another depends on its sim-
ulation semantics. This opens discussion on the comparison of the two types of scheduling,
cooperative or preemptive, in the context of a simulation. In cooperative scheduling, yield
points are explicit: the model developer must place them. Research work have studied
how to place them in an efficient manner, depending on the modeling needs. In preemptive
scheduling, yield points are implicit: they are not part of the model description. Thus, a
correct model needs to be written by taking into consideration all the possible preemption
points. In other words, it makes model writing harder by adding potential race condi-
tions that were not possible in cooperative scheduling [50]. A possible solution to this
difficulty is to offer a dedicated structure for communication between processes (which is
the case in SpecC). However, this restricts the flexibility in the sense that it forces model
developers to use this structure, where it may be more efficient to use another one. A
practical example is SystemC signals: they are used for Register Transfer Level (RTL)
models and could play this role of communication restriction. But in Transaction Level
Modeling (TLM), SystemC signals are not (or barely) used because the higher abstraction
level enables more efficient communication means.
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The question of whether using preemptive or cooperative scheduling is hard to judge.
But what is probably the most important point in favor of cooperative scheduling is that
it ensures the reproducibility. This is a critical property for simulation. The problem with
preemptive scheduling, is that the exact same scheduling order can hardly be reproduced
(it requires a mechanism to record each yield point at assembly level). This has a major
drawback, that most developers using parallel programming have experienced: a bug can
occur only once in a while, with exactly the same input parameters. Of course, proper
programming should avoid that, but in the context of model developing the effort is
focused on the platform that is modeled, not on the model itself (as a piece of software).
Thus, asking model developers to deal not only with modeling problems but also with
software engineering problems makes modeling harder. This can eventually increase the
overall development time, which is opposite to the intended goal.
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4.6 Discussion on Simulation Replication and Time
Partitioning

For exhaustiveness, this section briefly discusses theoretical parallel simulation approaches
that either are not applicable to SystemC (we explain why) or do not address the same
performance issue as ours.

4.6.1 Simulation Replication

Simulation replication consists in running concurrent simulations of the same model with
different inputs. The different simulations do not communicate with each other. A lim-
itation is the quantity of memory available on the host machine. Hybinette et al. [53]
proposes a clone/prune system. Simulations are cloned at specific decision points, and
pruned simulations when an answer is obtained. Figure 4.14 shows a possible example.

Wall-clock
time0

Host 1

Host 2

Host 3

A B C B A A B C A

X B A A B

X A B C A

clone

clone
× stop after error

Figure 4.14: Possible execution of the example simulation with three host processors.
Simulation are cloned when decision points are reached, and pruned when a result has
been obtained.

Simulation replication is useful for non-regression tests, to ensure that new versions
of the model do not break previously working features. In non-regression tests, many
independent tests need to be run, thus it is possible to speed up such tests by running them
in parallel. Simulation cloning/pruning is useful for the exploration of scheduling orders,
as done by Helmstetter [3]. But the problem we address is the slowness of simulation in the
case of development or debugging tests. The purpose is to identify as fast as possible the
root cause of an error, or to get an early validation of the current development. Neither
simulation replication or cloning/pruning covers this.

4.6.2 Time Partitioning

Formally, time separation in parallel simulation consists in splitting the simulation with
respect to simulated time [22]. Each worker gets a simulated time interval to compute
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(the intervals are non-overlapping with each other).

Simulated
time0

SystemC
threads

Simulator 1 Simulator 2 Simulator 3

A

B

C

Figure 4.15: A possible simulated time-partitioning for our example.

A naive example of such approach applied to SystemC is given as illustration on
Figure 4.15. The obvious requirement to apply this approach is to be able to compute
the initial state of each simulator. Generally, this is possible only when each state of the
model is a function of time, and not of the previous states. Another possible example
is when traces for a simulation are available (e.g. from previous runs). In this case, the
traces can be used to quickly reach the initial state of each simulator.

The time separation approach cannot realistically be applied to the parallel simulation
of SystemC models. There are strong dependencies between the different transitions
of a SystemC process. From one transition to the other, the context (in the sense of
OS context: program counter, stack, registers) is restored exactly as it was just before
the previous yield. Moreover, SystemC simulations are discrete event simulations (see
Section 2.1.3). Thus, time is not an input value, but an output value that depends on
how events occur in a simulation. It is therefore not possible to know a priori which
times will be simulated. Consequently, a separation purely based on simulated time is
not applicable to SystemC simulations.
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4.7 Conclusion

The literature review presented in this chapter showed that many approaches have been
proposed through the last decades to address the question of parallel simulation of Sys-
temC models. The first approaches were made for SystemC/RTL models [24, 31, 25].
Those approaches propose to run multiple processes concurrently within simulation cy-
cles. Low-level communication features from SystemC are exploited in this purpose. It
is assumed that running multiple processes in parallel causes no race conditions. This
assumption is reasonable at the RTL abstraction level, but less at the Transaction Level
Modeling (TLM) abstraction level, where Interface Method Calls (IMCs) make processes
dependent with each other. In our case, there is another issue with conservative approach:
there is little potential for parallelism. Indeed, we have seen that the results of our case
study showed low potential for parallelism within simulation cycles.

More recent approaches were made with SystemC/TLMmodels in mind [34, 35, 37, 41].
Some of them impose constraining modeling rules in exchange for parallel simulation,
while others focus on the integration of legacy models. A common point between these
approaches is that they are based on a manual partitioning of the platform. Each partition
is simulated in parallel with the others, but still the different partitions are tightly coupled.
For this type of approaches, the number of runnable processes per cycle remains a limiting
factor. The acceleration is obtained mostly be using lookahead time between simulators,
taking advantage of the fact that processors are simulated with cycle-accurate models,
where relaxing timing synchronizations is efficient. This is particularly the case where
processors are simulated with Instruction Set Simulators (ISSs). In our context, the
simulation of processors (and thus the execution of the embedded software) is not a
performance bottleneck. Moreover, the complexity is located on hardware Intellectual
Property (IP) blocks.
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5.1 Introduction

At this point, one question came on the table. How can we address the performance prob-
lem of simulations such as our case study (see Chapter 3), considering that the analysis
of existing parallel simulation approaches showed that there is a discrepancy between the
type of models addressed, and the types of models we simulate (see Chapter 4). Beyond
our situation, there is a deeper problem that consists in identifying potential for parallel
simulation in SystemC/TLM models, taking into account the industrial context.

In an industrial context, complex models are not developed by one developer, or even
one team. They are made of several different pieces coming from different teams, with
different expertise. Let us take one example, not chosen at random, that is the case of the
High Level Synthesis (HLS) design flow. The HLS design flow is used by one or several
teams to design Intellectual Property (IP) blocks. HLS developers use one HLS tool at
disposal, carrying specific constraints. For example, the validation process requires the
component to be split in sub-blocks, and the HLS tool imposes a specific coding style to
describe the behavior in an understandable manner (for the tool). When this HLS code
has been written, and the team in charge of developing a Transaction Level Modeling
(TLM) virtual platform meets short development time, there is an absolute need to re-
use the work from HLS teams, i.e. their code. Rewriting the SystemC/TLM model of
IP blocks is not possible: platforms are complex, there are many such components and
others to integrate, and not enough time for all of that.

When code written for an HLS tool is used in a TLM model, both sets of constraints
meet each other and may conflict: while computations are rather grouped in TLM mod-
eling, HLS developers may have to split them up. Moreover, the HLS design flow is used
for IP blocks, thus they represent finely-tuned components that are crucial in the final
product performance. Such components use a pipeline of sub-blocks, which produce in-
efficient sequential simulations: it is also one result of our case study. Beyond our case,
the issue is bigger: our assumption is that HLS will be more and more used to develop
IP components, and with the tight embedded systems market, the code for HLS must be
reused in virtual platforms.

In consequence, we decided to address the integration and efficient simulation of hard-
ware acceleration blocks, whose behavior is written for an HLS design flow. This implies
to enable both TLM and HLS users to develop their code only with their own set of con-
straints in mind, and at the same time to increase the performance of code written for HLS
when simulated within a TLM model. Our proposition is to run in physical parallelism
the models of hardware IP blocks. By our experience, the HLS design flow is mostly used
to design hardware IP blocks that performs computations on large amounts of data, such
as image processing blocks, in a pipeline of blocks communicating through First In, First
Out (FIFO) accesses. Thus, finding an efficient FIFO communication mechanism is also
part of the problem.
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Our proposition is compatible with both the HLS requirements, and the TLM require-
ments. It consists in wrapping the code for HLS in SystemC modules, and then simulate
them with a parallel infrastructure. The parallel infrastructure is presented in this chap-
ter. The principle of wrapping HLS code is presented in Chapter 6, but an overview is
given in this chapter to provide the reader with context information. In summary, the
contributions presented in this chapter are:

• Identification and implementation of an efficient FIFO communication algorithm
for intensive data exchanges (unidirectional), and adaptation of this algorithm to
SystemC simulations. The FIFO structure that implements this algorithm is called
Fast Ordered First In, First Out data exchaNge (FOFIFON).

• Development of DistemC, a non-intrusive multi-process infrastructure of SystemC
simulators, which communicates through FOFIFON structures.
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5.2 Wrapping HLS Code for TLM Simulation

5.2.1 Principle

This section introduces what we call the wrapper on HLS code. The purpose of this
wrapper is to help the integration of High Level Synthesis (HLS) code into Transaction
Level Modeling (TLM) models. Section 2.4 already explained that each HLS tool has its
own input syntax, or design rules. In our case, we considered the HLS tool CatapultC,
because it is currently used at STMicroelectronics. From here, we often refer to C++ code
written to be used in CatapultC as HLS code.

Figure 5.1 shows a typical example of wrapping. The TLM/HLS interface consists
in using TLM interfaces to communicate with the rest of the platform (“SystemC/TLM
Model” on the figure). The HLS/HLS interface is purely internal to the component and
does not expose information to the rest of the platform. The fast First In, First Out
(FIFO) data exchanges take place in the HLS/HLS interfaces.

SystemC/TLM model

HLS
Block 1

HLS
Block 2

HLS
Block 3

TLM/HLS interface
HLS/HLS interface

IP Block

Figure 5.1: Typical example of HLS code with interfaces for integration in a TLM model.

The TLM/HLS is the interface that exists between an Intellectual Property (IP) block
and the rest of the TLM model. An IP block is typically connected to a system bus and
has some others input or output wires. The term “TLM/HLS” is a convenience term used
because we interface code written for HLS with a TLM model. However, there is no HLS
abstraction level and thus HLS is not comparable in itself to the TLM abstraction level.

5.2.2 Link with the Kahn Process Network Model

We put this model of computation (pipeline of blocks) in perspective with the Kahn
Process Network (KPN) model [54]. A KPN is a model of computation where a group
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of processes communicate with each other through FIFO channels. On this model, the
following assumptions hold:

1. The FIFO channels are the only way of communication.

2. The FIFO channels are unbounded.

3. The FIFO channels transmit data in a finite amount of time.

4. Each process executes sequential code.

5. At any given time, a process is either computing or waiting on one FIFO channel.

Item 2 means that an operation on a FIFO channel is blocking if and only if it is a read
operation and the buffer is empty. A write operation cannot be blocking since buffers are
unbounded. In particular, a process cannot test for the emptiness or query the numbers
of token of a buffer. Item 5 implies that a process cannot wait on several channels.

The determinism of executions is a very important property of SystemC simulations.
The KPN model of execution ensures the determinism of executions, thus it is a good
property in our case. Moreover, the ability to run computations in parallel is what we are
looking for to speed up the simulation.

When this model of computation is applied, the theoretical unbounded size of buffers
cannot be satisfied. Indeed, the amount of memory available in a computer is not infinite.
This has the consequence that FIFO channels are bounded, and that the formerly non-
blocking write operation becomes a blocking one, in case the buffer is full. This may lead
to artificial deadlock situations, in the sense that they cannot occur in the KPN model.
A very simple example of such deadlock is illustrated on Figure 5.2.

P1 P2

writing. . .

writing. . .

Figure 5.2: Simple example of an artificial deadlock, induced by bounded FIFO channels.
Two processes P1 and P2 are blocking on a write operation, because both buffers are full.

Since this deadlock situation cannot happen in the KPN model, it means that a
sufficiently high size for buffers prevents such deadlocks to occur. In general, the deter-
mination of the needed capacity for each buffer is an undecidable problem [55]. However,
for specific algorithms, it is possible to find at least an overestimation of the size needed
to avoid such artificial deadlocks.
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5.3 DistemC: a Parallel Simulation Infrastructure

5.3.1 Multiple Simulators

In the example outlined on Figure 5.1, what is represented as the “rest of the SystemC
model” includes buses, models of Central Processing Units (CPUs), other peripherals, etc.
This is simulated by one single SystemC simulator as usual. We propose to execute in
parallel the model of a hardware Intellectual Property (IP) block, by running in parallel
the sub-blocks that constitute the hardware pipeline of the complete block.

In order to run multiple tasks in physical parallelism, two main choices are possible:
using OS threads or OS processes. Threads are generally preferred, as they are lighter than
processes (user memory is shared instead of copied). However, in our case, it was better to
use multiple processes, because we want each worker to run a SystemC simulator. Running
multiple instances of a SystemC simulator on different OS threads is not immediately
possible: the reference SystemC simulator was not designed for that. For example, it
contains a global variable for the simulation context. Thus, it is required to modify
the SystemC kernel to run multiple instances on the same process. Having a SystemC
simulator on each worker enables to develop the wrapper for each sub-block as a SystemC
module, thus as a black box. When individual sub-blocks do not represent a sufficient
computing effort (compared to the other sub-blocks), they can be grouped into the same
simulator (thus scheduled sequentially) provided they follow each other in the pipeline.

The isolation provided between OS processes also have positive side-effects: it enables
the possibility to run different versions of SystemC, and more generally different executa-
bles with different versions of external libraries (it is useful if two sub-blocks are developed
using incompatible versions of libraries). As stated, in our case, this isolation is more of
a side-effect and it was not the main reason to use multiple simulators on different OS
processes.

5.3.2 Presentation of the Infrastructure

DistemC is a non-intrusive overlay on the SystemC kernel (i.e. the kernel remains un-
changed) that we developed during this thesis. An example of a main SystemC function
using DistemC is shown on Figure 5.3. DistemC enables to run in parallel a given number
of SystemC simulators. By assumption, those simulators communicate exclusively through
Fast Ordered First In, First Out data exchaNge (FOFIFON) structures, presented fur-
ther in Section 5.4. During the elaboration of the model, each simulator instantiates the
modules it is in charge of. The partitioning of modules can either be hard-coded, or spec-
ified in a separate file given as input parameter. It is possible to run a single executable
(multiple Operating System (OS) processes are created in the distemc::init function),
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or to run different executables, one for each part of the model.

1 int sc_main(int argc, char *argv[])
2 {
3 distemc::init(argc, argv);
4 Top top("top"); // elaboration of the model
5 distemc::sync_start(); // start simulators synchronously
6 distemc::finalize();
7 return 0;
8 }

Figure 5.3: Example code of an sc_main using DistemC.

An example of a top module is shown on Figure 5.4. The create_module function
instantiates the module only if it is attributed to the current simulator. In the exam-
ple, the partitioning is not hard-coded (otherwise create_module takes as argument the
simulator number in charge of the module), it is specified in a separate file, where each
module name is associated with a simulator number. By default, modules are assumed to
belong to the main simulator only. The create_fofifon function instantiates the shared
buffers through which modules communicate with each other. The fact that a FOFIFON
structure is used for “remote” communication (i.e. between modules on different simula-
tors) or “local” communication (i.e. between modules on the same simulator) is deduced
at runtime depending on the simulators of the two modules that uses the buffer. Remote
communication buffers are instantiated on POSIX shared memory.
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1 SC_MODULE(Top) {
2

3 SC_CTOR(Top) {
4 producer = distemc::create_module<Producer>("producer");
5 sub_block_1 = distemc::create_module<Sub_Block_1>("sub_block_1");
6 // ... (other modules)
7

8 first_buffer = distemc::create_fofifon<uint32_t>(
9 producer, sub_block_1, "prod_to_1", 200);

10 // ... (other buffers)
11

12 if (sub_block_1) { // if sub_block_1 is on current simulator
13 sub_block_1->input_port(*first_buffer);
14 sub_block_1->output_port(...);
15 }
16 // ... (other bindings)
17 }
18

19 Producer * producer;
20 Sub_Block_1 * sub_block_1;
21 // ... (other modules)
22

23 distemc::fofifon<uint32_t> * first_buffer;
24 // ... (other buffers)
25

26 };

Figure 5.4: Example of a top module. This code is an ellipsis of the code given in
Appendix B.1, that corresponds to an example like Figure 5.1, with three sub-blocks
modules.
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5.4 Fast Communication using FOFIFON

The proposed infrastructure is intended to be used in the context of hardware compo-
nents that processes large amounts of data, e.g. high definition video frames. Thus, the
communication cost must be reduced to a minimum, as it is performance critical. When a
shared resource is intensively used by different computation units, a lock-free implemen-
tation is required to achieve good performances [56]. The Fast Ordered First In, First
Out data exchaNge (FOFIFON) structure presented in this section is based on lock-free
programming.

5.4.1 Lock-Free Programming

5.4.1.1 Terminology

The terminology of lock-free programming mainly includes three levels of “lock-freeness”:
obstruction-free, lock-free and wait-free. The three terms are defined relatively to how the
different thread behaves when they access or modify a shared data structure.

An obstruction-free program guarantees that each thread progresses even when all the
other threads are suspended while not accessing the shared structure. Thus, a thread can
access or modify the shared data structure in a bounded number of steps. This is the
weaker property of a concurrent program.

A lock-free program guarantees the system-wide progression. Individual threads may
starve, but without hindering at least one other thread’s progression. All lock-free pro-
grams are obstruction-free programs. A typical example of non-lock free program is when
two threads lock, at some point, the same mutex. If the first thread locks the mutex and
is suspended by the operating system, then when the second thread reaches the lock of
the mutex, it will starve until the execution of the first thread resumes and unlocks the
mutex. As a consequence, mutexes cannot be used in a lock-free program.

A wait-free program guarantees the individual progression of each thread, even if all the
other threads are suspended (possibly while accessing the shared structure). Thus, each
thread completes any operation on the data structure in a bounded number of steps. All
wait-free programs are lock-free programs. A counter-example is a program containing a
First In, First Out (FIFO) structure with blocking operations. It is not wait-free because,
for example, if a reader thread reads an empty buffer, it will be blocked until a writer
thread pushes data to the structure.

Lock-free programming is enabled by using low-level instructions called memory fences.
Memory fences are required because the order of memory operations can be changed,
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compared to the description in the source code, by either the compiler or the hardware,
as illustrated on Figure 5.5. This reordering is done to get better performances, but when
a program uses concurrent tasks, reordering operations on memory can introduce race
conditions on shared variables.

Source
code

Binary Memory
OperationsCompilation Execution

The compiler may reorder
operations provided specific

conditions are fulfilled.

The hardware may rearrange
operations on memory.

Figure 5.5: Places where memory operations can be reordered.

5.4.1.2 In C++11

C++11 atomic data types enables access and modification of memory in a thread-safe
and portable manner. Atomic datatypes are defined using the atomic structure. This
structure has a template argument which is the type of data stored by the atomic object.
Using this structure guarantees thread-safe accesses to the object content. In practice,
using atomic variables adds constraints for the compiler, which reduces its reordering
possibilities, and it may need to generate specific assembly code to ensure the expected
order and atomicity is fulfilled.

Atomic data types in C++11 allows fine-grain control on memory ordering. Each
operation on an atomic variable, i.e. a load or a store, accepts an extra argument: a
memory order annotation. In order to define the C++11 memory orders, we define the
sequenced before relation and the acquire and release semantics, that are used to define
the happens before relation [57].

The sequenced before relation is defined between two operations on a single thread. If
an operation A is sequenced before an operation B, then the execution of A shall precede
the execution of B. For example, if the operation B uses the result of the operation A,
then the execution of A shall precede the execution of B, thus A is sequenced before B.

The acquire and release semantics are defined using acquire and release operations. A
release operation is a store operation on memory such that the preceding memory oper-
ations cannot be rescheduled after this release operation. An acquire operation is a load
operation on memory such that the following memory operations cannot be rescheduled
before this acquire operation.

The happens before relation is defined between two operations. Let A and B be two
memory operations. If A and B are executed by a single thread, then A happens before
B if A is sequenced before B. If A and B are executed by two different threads, then A
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happens before B if A is sequenced before a release operation on a shared object M (let
us assume the value stored is x), and B happens after an acquire operation on the shared
object M that loads the value x.

In C++11, the acquire and release semantics can be used for atomic operations us-
ing annotations. The annotation memory_order_relaxed indicates that the operation
happens only atomically at some point. Such order does not induce any memory syn-
chronization operation. The memory_order_acquire and memory_order_release an-
notations specify acquire or release operations. The default order for atomic operation
corresponds to memory_order_seq_cst. In this case, the operation happens in a sequen-
tially consistent order with respect to each other atomic operation. This is more than a
combination of acquire and release, as it defines a total order on the operations on the
variable. Consequently, each thread sees such atomic operations in the very same order.

5.4.2 Presentation of FOFIFON

A FOFIFON is a lock-free, single-producer, single-consumer FIFO structure used as com-
munication between modules on different simulators using DistemC. This structure is not
wait-free because the read and write operations are blocking, as in the Kahn Process
Network (KPN) model discussed in Section 5.2.2. A C++ structure is allocated for the
data buffer. This structure is stored on shared memory; it must be directly accessible
from both the reader and the writer. The algorithms for the read and write methods are
implemented in a C++ class, which enables safe access to the structure. Figure 5.6 shows
an overview of the different elements involved.

Data
container

&
indexes

Writer
class

Reader
class

write
data

read
data

User
code

User
code

fifo.write(data); data = fifo.read();

Process 1 Process 2

Shared
memory

Figure 5.6: Overview of the architecture used for FIFO communication.

The data container has a fixed size and is allocated during the elaboration phase.
Consequently, the FIFO buffer is bounded by a maximum capacity, and is used as a
circular buffer. The following sections present the layout of the data container, and then
the read and write algorithms.
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5.4.2.1 Layout of the Data Container

Figure 5.7 introduces the graphical notation we use to represent the state of a FOFIFON
data container. The central part represents the buffer. Indexes are represented pointing
to the cell their value refer to. Cells colored with diagonal hatches or straight hatches
represent the safe zone for the reader or writer. The notion of full cell or empty cell refers
to the fact that the piece of data in the cell is meaningful or not. Initially, the buffer
contains undetermined data, i.e. all the cells are empty.

w_pos

r_pos

w_max

r_max

Ready for writing
Ready for reading

Full cell

Empty cell

Reader indexes

Writer indexes

Figure 5.7: Graphical notation to represent the state of a FOFIFON data container.

Technically, the data container is a template structure with one parameter, which is
the type of objects that must be stored in the buffer. This shared data container contains
the following elements:

• buffer: contiguous array, used as a circular buffer.

• w_pos: index of the next location to write. By convention, the initial value of this
index is zero. This index is an atomic variable.

• r_pos: index of the next location to read. By convention, the initial value of this
index is also zero. It is also an atomic variable.

Along with w_pos and r_pos, which represent positions, there are also maximum
indexes for each side. They are stored locally (they are not atomic variables) by the
writer or reader. The two “max” indexes are defined as follows:

• w_max: index of the first cell where writing is forbidden (starting from w_pos).
Initially, this is the last cell of the buffer (all the buffer is writable).

• r_max: index of the first cell where reading is forbidden (starting from r_pos). The
initial value is zero (no cells are readable).

The value of the “max” indexes always points to existing cells of the buffer. For the
initial case, this implies that there is an extra cell, compared to the visible size of the
buffer. This extra cell acts like a sentinel cell, whose position varies during the execution.
At any time, there is at least one cell of the buffer that cannot be written to and that
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cannot be read from. The use of this sentinel cell avoids to handle a special case where
the counters have made a complete turn of the buffer, thus the same mechanism can be
used independently from the counter’s positions. Figure 5.8 represents the initial state of
a buffer of size 8.

Ready for writing
Ready for reading

(writer) w_pos

r_pos

w_max

r_max(reader)

Figure 5.8: Initial state of a buffer of size 8 (internal size is 9). All cells are empty and
ready for writing.

5.4.3 WeakRB Algorithm

The algorithm we propose for FIFO communication is based on WeakRB, developed
by Lê et al. [58]. WeakRB is a single-producer, single-consumer FIFO queue with a
portable implementation, using the C++11 memory model previously presented. This
implementation has been proven correct by the authors, using a formalization of the
C++11 memory model. We give the original algorithm of WeakRB in the form of C++11
code in Figure 5.9. This algorithm supports writing and reading batches of data at once,
i.e. the memory synchronizations are only performed once for the whole batch of data.

5.4.4 Proposed Changes

The WeakRB’s efficiency relies on three mechanisms: relaxed memory ordering (with
C++11 acquire/release semantics), software caching (with local variables for foreign coun-
ters, namely pfront and cback) and batching (i.e. the “push” and “pop” operations work
with arrays of tokens instead of tokens) [58]. This algorithm is non-blocking: “push” and
“pop” return a boolean value that indicates if the operation was done or not.

The first change we made is to turn these non-blocking functions into blocking func-
tions, to fulfill the KPN model requirements. A simple solution is to call the former
“push” and “pop” methods in a loop. The remaining question is what to do when the
operation failed, i.e. returned false. Doing “nothing” would result in a busy wait, and it
would be counter-productive to use Operating System (OS) calls to suspend and wake-up
the processes in a lock-free algorithm.

Consequently to this first change, we propose a better way to exploit the time spent
waiting, so that a waiting writer or reader is not doing “nothing”. Since operations are
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1 atomic<size_t> front = 0;
2 size_t pfront = 0;
3 atomic<size_t> back = 0;
4 size_t cback = 0;
5

6 T data[SIZE];
7

8 bool push(const T * elems, size_t n) {
9 size_t b = back.load(memory_order_relaxed);

10 if (pfront + SIZE - b < n) {
11 pfront = front.load(memory_order_acquire);
12 if (pfront + SIZE - b < n) {
13 return false;
14 }
15 }
16 for (size_t i = 0; i < n; ++i) {
17 data[(b + i) % SIZE] = elems[i];
18 }
19 back.store(b + n, memory_order_release);
20 return true;
21 }
22

23 bool pop(T * elems, size_t n) {
24 size_t f = front.load(memory_order_relaxed);
25 if (cback - f < n) {
26 cback = back.load(memory_order_acquire);
27 if (cback - f < n) {
28 return false;
29 }
30 }
31 for (size_t i = 0; i < n; ++i) {
32 elems[i] = data[(f + i) % SIZE];
33 }
34 front.store(f + n, memory_order_release);
35 return true;
36 }

Figure 5.9: Code for WeakRB queue.

blocking, when the function returns, the whole batch of data have been read or written.
Thus, it does not matter whether the whole batch is processed at once, or piece by piece.
We propose to start writing or reading data as soon as possible, by using a concept of
“safe zone”. This safe zone is a portion of the buffer where a writer or a reader is allowed
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to operate without risking race conditions. To illustrate this, we propose to see the case
of the read mechanism in details (the write mechanism being symmetrical).

5.4.5 Read Mechanism

Figure 5.10 lists the code of the read function. It is split in three main parts, run in a
loop (the loop that basically turns the non-blocking WeakRB algorithm into a blocking
one). The three main parts are “get safe size”, “actual read” and “update indexes”. The
first part, “get safe size”, gets the immediately available size of the buffer for reading.
Thus, if the size available for reading (given by the position of the writer) is smaller than
the batch size (given as parameter), but greater than zero, then the process is not busy
waiting. When the safe zone size is greater than zero, data are read from the buffer.
This is the second step, the “actual read”, which is straightforward. The third step, the
“update indexes”, updates the position of the reader, i.e. taking into account the data
that have just been read. In terms of memory order specification, the acquire operation is
performed during the “get safe size” step, and the release operation is performed during
the “update indexes” step; thus the intermediate step, the “actual read”, is safe.

5.4.6 Illustrative Examples

Figure 5.11 presents a minimal example with a buffer of size one, thus with an internal size
of two (one extra cell). The hints in red indicates the elements that changed compared
with the previous state. This example illustrates how the extra cell is used. States (1)
and (5) are symmetrical. If the buffer’s actual size was one (not two), the two position
indexes (r_pos and w_pos) would point to an inexisting cell. This, it would be necessary
to handle this case by reseting the values to the first cell of the buffer. Here, both indexes
points to an existing cell, handling this case requires no special handling.

In (1), (3) and (5), the two sides are up-to-date with each other. It is the case when
w_pos equals r_max, or when r_pos equals the cell that precedes r_max. In this state,
there is exactly one cell that is neither in the safe zone of the reader or the writer (the
sentinel) and the other cells are either in the safe zone of the reader or the writer. On the
contrary, in (2) and (4), the two sides are not up-to-date with each other. An operation
has been performed in the buffer (either write or read) but not yet observed by the other
side. In this example, there cannot be a write that happens concurrently with a read,
because the buffer size is only one. Thus the buffer can only be either empty or full.

Figure 5.12 shows an example with a buffer of size two (thus an internal size of three).
In this example, a read and a write happen concurrently. In (1), both sides are up-to-date
with each other. One cell contains data and one cell is available for writing. In (2) the
reader and the writer observe a different state. In particular, after it has performed a
write operation, the writer sees two full cells in the buffer, even though the reader has
already emptied one of them. On the other side, after its read operation, the reader
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1 void read(const T * elems, size_t n) {
2 size_t nb_data_processed = 0;
3 while (nb_data_processed < n) {
4

5 // get safe size
6

7 size_t pos;
8 size_t safe_zone_size;
9 do {

10 pos = r_pos.load(memory_order_relaxed);
11 safe_zone_size = min(r_max + SIZE - pos % SIZE,
12 n - nb_data_processed);
13 if (safe_zone_size == 0) {
14 r_max = w_pos.load(memory_order_acquire);
15 }
16 } while (safe_zone_size == 0);
17

18 // actual read
19

20 for (size_t i = 0; i < safe_zone_size; ++i) {
21 elems[nb_data_processed + i] = data[(pos + i) % SIZE];
22 }
23

24 // update indexes
25

26 r_pos.store((pos + safe_zone_size) % SIZE,
27 memory_order_release);
28 nb_data_processed += safe_zone_size;
29 }
30 }

Figure 5.10: Proposed code for the blocking read function.

observes an empty buffer, even though the writer has already done its write operation.
In (3) both sides updates their indexes. In the drawing they update their indexes at the
same time, but in reality the updates most of the time happen at different times.

The fact that the writer, in (2), sees more data than what is actually in the buffer
is not a problem. In fact, the concept of seeing data for the writer is not even defined.
Indeed, our structure is a single-producer, single-consumer FIFO. The writer cannot read
any data from the buffer; it only sees its safe zone, which consists in empty cells. The
only consequence of overestimating the amount of data in the buffer is that the buffer
could be seen as full when it is not full. This does not corrupt data in the buffer, or
prevent the reader from reading correct data. When the writer updates its indexes, it will
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Ready for writing
Ready for reading

w_pos

r_pos

w_max

r_max

(1) Initial state (empty).

w_pos

r_pos

w_max

r_max

(2) The writer pushes one value (full).

w_pos

r_pos

w_max

r_max

(3) The reader updates its local
counter r_max.

w_pos

r_pos

w_max

r_max

(4) The reader pulls one value.

w_pos

r_pos

w_max

r_max

(5) The writer updates its local
counter w_max (this results in a state
symmetrical to 1).

Figure 5.11: Illustration of the use of an extra cell for a buffer of size one. The changes
from one state to the next are indicated with red hints.
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Figure 5.12: Example state with a buffer of size two, where a read and a write happen
concurrently. The two states in the middle represent a point of the program where the
reader and the writer observe a different version of the shared buffer.

see a more recent state of the buffer, as in (3), which may allow it to write more data.
Symmetrically, the reader can underestimate the amount of data in the buffer, as in (2).
An example with a greater buffer size is shown on Appendix B.2.
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5.4.7 Validation

The correctness of the read and write algorithms have been tested using corner case tests
and stress tests (with large amounts of data). However, such tests are not enough to
guarantee the thread-safety of the algorithm. No matter how many times they are run,
there is no guarantee that a scheduling that hides the race condition does not occur at
each run. Moreover, our tests have been performed on Intel processors which are strongly-
ordered. Thus, for short, they do not enable many reorderings of memory operations. In
comparison, ARM processors are weakly-ordered. This implies that the same program,
run on an ARM architecture, may exhibit race conditions that could not occur on Intel
architectures.

For this reason, the thread-safety of the read and write algorithms have been checked
with a tool called Relacy Race Detector1. In academia, this tool has been discussed [59,
60] and used to test, e.g. Dekker’s mutual exclusion algorithms [61]. It represents each
user thread as a coroutine, and adds yield points around operations on shared variables.
Different interleaving orders are tested depending on the chosen scheduling strategy. For
example, a comprehensive scheduling explores all the possible interleaving orders. Because
of combinatorial explosion, it is often not possible to use this strategy. An alternative
is to run a fixed number of random schedules. The user code must be instrumented; in
particular each shared variable must be wrapped in a template class. We have run a large
number of tests with a random scheduling strategy, which have shown no race conditions.
We also checked that the memory orderings used are at least required for the algorithm
to work (e.g. replacing release operations by relaxed operations leads to race conditions).

1The tool has been developed by Dmitry Vyukov. The presentation and download are available at:
http://www.1024cores.net/home/relacy-race-detector.
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5.5 Preventing Deadlock Situations

5.5.1 Dealing with Multiple SystemC Kernel Instances

Figure 5.13 shows a potentially problematic situation if not well handled. This situation
is specific to the fact that we use this algorithm in a SystemC context, where SystemC
processes from the same simulator are run with coroutine semantics. The two SystemC
simulators are run on different Operating System (OS) processes. The first simulator
contains two SystemC threads: one writes data to the first buffer, and one reads data
from the second buffer. A trivial deadlock situation can happen if the reader thread is
run before the writer thread. In this situation, the reader thread is blocked in a busy
wait on the second buffer, while the compute thread is blocked in a busy wait on the first
buffer. This deadlock situation does not happen when the writer thread is run before
the reader thread busy-waits on its buffer. This situation is a specific case of a more
general problem that we expose in the following paragraphs, with our solution.

SystemC
simulator

SystemC
simulator

FOFIFON

FOFIFON

writer

reader

compute

Figure 5.13: Simple example of a deadlock.

A deadlock situation could occur depending on the minimal number of tokens the
writer or the reader require [62]. Let W be the number of tokens that the writer thread
writes in the first buffer between each SystemC yield. Let R be the number of tokens
required by the compute thread before producing any output to the second buffer. We
assume that the writer thread is executed first. Then, after W write operations on the
first buffer, the reader thread is blocked in a busy wait on the second buffer. Meanwhile,
the compute thread reads W tokens from the first buffer. Two cases are possible:

• If W < R, the compute thread does not produce any output, and remains in busy
waiting tokens from the buffer. This is a deadlock situation.

• IfW > R, the compute thread produces output and the reader thread is unblocked
and may yield to the writer thread. Then, the same situation happens after the
next yield.
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The deadlock situations presented in this section are solved by a function we named
systemc_wait_keep_alive, defined in Algorithm 2. This function is called in the first
part of the read or write method, in case the operation cannot be done immediately
(e.g. after line 13 of Figure 5.10). It enables to yield to other SystemC processes of
the current simulator when blocking operations could not be done immediately, without
ending the simulation “by error” (i.e. because the local simulator is in process starvation).
This problem of not ending simulations because of local process starvation is one of the
first problems to solve when multiple simulators are used for parallel simulation, or even
when multi-threading is used in a simulation.

The proposals for the next version of the SystemC kernel (2.3.2) includes a related
feature. This feature applies in the case of simulations that use async_request_update
(to asynchronously, i.e. from another thread of execution, require the execution of an
“update” method in the next delta cycle). The problem is that a simulation that waits
only on an event that is asynchronously triggered will end (because of starvation). The
solution consists in adding a semaphore in the SystemC kernel, to which primitive channels
can dynamically attach or detach during simulation. The semaphore is checked when no
further events are available (i.e. the case in which the current kernel would end). Our
solution avoided the use of asynchronous update requests and remote event notification:
a simulator in the “starvation” situation (i.e. buffer full or empty) busy waits until the
buffer state changed.

Algorithm 2 Definition of systemc_wait_keep_alive.
1: function systemc_wait_keep_alive( )
2: if sc_pending_activity( ) then
3: wait_time← sc_time_to_pending_activity()
4: if sc_time_stamp() + wait_time > current_max_time then
5: wait_time← current_max_time− sc_time_stamp()
6: end if
7: wait(wait_time)
8: end if
9: end function

The function sc_pending_activity is part of the SystemC library and it returns
false if and only if the set of runnable processes, the set of update requests and the set
of delta and timed notifications or time-outs are all empty. The function sc_time_stamp
returns the current SystemC time stamp (simulated time). The function sc_time_to_
pending_activity returns the time to wait if one wants to reach the next registered
notification or process execution (which is only meaningful if there is pending activity).

This introduces the current_max_time variable. The value of this variable is set each
time the read or write functions are called. The value is equal to the current SystemC
timestamp plus a constant offset. The value of the offset can be set in the model. The
use of an absolute time value for current_max_time avoids that the simulator moves on
too far with its simulated time in case another process constantly advances time: each
operation on the buffer is bound by a maximum simulated time duration.
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We illustrate the use of this value to solve the deadlock problem presented in the
example of Figure 5.13. Indeed, let us consider the case where the reader thread is
blocked in reading the second buffer (empty). The compute thread is waiting for input
from the first buffer (also empty). If the writer thread already advanced its simulated
time (after it has written data) then it will not get the hand back if the reader thread
does not also advance its simulated time. If the time offset for this buffer is set to the
simulated time the writer waits, then this deadlock situation does not occur.

5.5.2 SystemC Time Support

The global synchronization of the subsystem (HLS and wrapper code) is data-driven;
in the Kahn Process Network (KPN) model of computation, the state of processes only
changes when tokens are consumed or produced. Thus, the behavior and output of the
subsystem is not sensitive to timing. Moreover, the loosely-timed coding style is not used
for performance evaluation, and timing should not be used as a synchronization mean
in such models. Also, quantitative timing is not relevant within the subsystem, because
microarchitecture details are not modeled.

Even considering the previous points, one cannot simply put aside the SystemC time,
as the subsystem is used in a SystemC simulation environment. To be consistent with
SystemC simulation semantics, the FOFIFON buffers embbed a SystemC timestamp with
the data. In other words, when a write operation is done on a FOFIFON buffer, the data
is recorded with the current SystemC timestamp. Then, this timestamp can be used, for
example, to keep the SystemC time evolution in remote DistemC partitions consistent
with the SystemC time of the main simulator. This also adds the possibility to include
components on remote DistemC partitions that need to know at least approximately the
current SystemC timestamp.
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5.6 Conclusion

This chapter presented DistemC, a parallel simulation infrastructure where simulators
communicate only through First In, First Out (FIFO) structures. We developed a specific
FIFO structure for this purpose, called Fast Ordered First In, First Out data exchaNge
(FOFIFON). The proposed algorithm offers lock-free blocking accesses to the shared struc-
ture, enabling high performance in data exchanges. We introduced, in the beginning of
this chapter, a location where this infrastructure is interesting to apply, namely for the
parallel run of hardware acceleration blocks, designed as a pipeline of sub-blocks in High
Level Synthesis (HLS).

The current proposal does not support asking the number of data available (for reading
or writing) in a buffer. It is possible to add this feature, but not without adding costly
communication. However, it is possible to get an overestimation of the number of available
data by using the local values of counters (from the previous access). We discuss in the
next chapter the consequences that such modification implies in the context of HLS code.

The purpose of this development is to exploit potential parallelism identified in hard-
ware acceleration blocks, written for a HLS design flow. The remaining question is how
to apply this infrastructure to integrate and efficiently run in a SystemC/TLM simula-
tion such hardware Intellectual Property (IP) blocks. This question is addressed by the
following chapter.
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6.1 Introduction

This chapter presents an application of the DistemC infrastructure for the parallel sim-
ulation of a hardware component of a SystemC model. To be clear, our proposition is
not a parallel SystemC kernel for generic purpose, but an infrastructure that can be used
under our assumptions.

Figure 6.1 summarizes how our approach integrates itself in the design flow. It ad-
dresses the integration of hardware Intellectual Property (IP) blocks, developed using an
HLS design flow, with the tool CatapultC. Let us remind that the development of com-
plex hardware IP blocks is split into sub-blocks. Splitting the design in sub-blocks eases
the development, because within a sub-block, the function is simpler than the overall
functionality, enables parallel development, but more importantly is mandatory because
of the validation requirements (see Section 2.4.5). Using a pipeline architecture follows
on from that: since the overall functionality is split in sub-blocks, it is more efficient to
design the block as a pipeline of smaller functions, with a data stream flowing through
the pipeline.

Sequential
Simulation

Parallel
Simulation

Synthesis

TLM
Code

SystemC/TLM Wrapper

HLS
CodePerformance

issue

Figure 6.1: Integration of our approach in the design flow. We propose to wrap the HLS
code into SystemC/TLM code for parallel simulation.

In this chapter, we use as example the model of a platform that does hardware-
accelerated JPEG decoding. We remind that the JPEG encoding reduces the size of an
image by removing some information and compressing the result using Huffman encoding.
The encoded stream is in the frequency domain, pixels are ordered differently than in
the visible image, the different color components of the Luma and Blue/Red-differences
Chroma (Y′CBCR) color space are separated and the image is divided into macroblocks
of 8 × 8 pixels. The decoding process transforms an encoded stream into a displayable
image. Figure 6.2 shows a block view of the algorithm, composed of four steps: the Inverse
Quantization and Inverse Zig-Zag (IQZZ), the Inverse Discrete Cosine Transform (IDCT),
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the upsampling and the color model change, in our case where the output is expected in
the Red, Green, Blue (RGB) format.

Encoded
stream

(unpacked)
IQZZ IDCT Upsamping Y′CBCR

to RGB
Decoded
stream

Figure 6.2: Block view of the JPEG decoding algorithm.

Section 6.2 presents the example platform that we use for our proof-of-concept. Before
presenting the application of the DistemC infrastructure to this example, we need to
further explain the specificities of developing code for the CatapultC tool. This is done
in Section 6.3. The application itself is described in Section 6.4. Finally, a performance
evaluation of the parallel simulation of our example platform is presented in Section 6.5.
Appendix A gives more details on the steps of the JPEG decoding algorithm, and presents
some implementation steps for HLS. We remind that the goal of this chapter is not to
present an efficient implementation of JPEG for HLS; this is used as a representative
example and for the performance evaluation.

In summary, the contribution presented in this chapter is the application of our pro-
posed infrastructure to integrate code describing hardware acceleration blocks for the
High Level Synthesis (HLS) tool CatapultC in a SystemC/TLM model. This enables the
parallel execution of the hardware block. We did a performance evaluation of the speed-
up enabled with the proposed infrastructure on a proof-of-concept model that consists in
a JPEG decoder platform.
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6.2 Description of the Example Platform

This section presents different block views of the JPEG decoding platform. The first one
presents a block view of the different Transaction Level Modeling (TLM) components of
the platform. Then, we zoom into the decoder block and present its internal structure.

6.2.1 Platform

Figure 6.3 shows the TLM block view of our example platform. The “Decoder” block is
the JPEG decoder. The encoded picture is stored in the memory. The CPU executes a
piece of software that reads the encoded stream from the memory, performs the Huffman
decoding and then sends data to the decoder block. The Huffman decoding is done in
software because this step requires more time to be adapted for an HLS implementation,
which was not done within the time of this thesis.

Bus

Interrupt Ctrl CPU RAM

Decoder Display

Figure 6.3: TLM view of the JPEG decoding platform.

6.2.2 Decoder Block

The decoder block has memory-mapped registers, programmed by the embedded software
executed by the Central Processing Unit (CPU). The decoder block includes a custom Di-
rect Memory Access (DMA) to fetch the encoded data from memory, and feed the pipeline
constituted by the sub-blocks of the JPEG decoding algorithm. When the decoding of
a frame is over, the decoder raises an interrupt. The behavior of the sub-blocks in the
pipeline consists in code written for the High Level Synthesis (HLS) tool CatapultC.
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6.3 Block Design with CatapultC

The explanations in this part are compiled from both our experience at STMicroelectron-
ics, and from the High Level Synthesis (HLS) Blue Book written by Michael Fingeroff [63],
that explains HLS with the CatapultC tool.

6.3.1 Hierarchical Designs

With CatapultC, the C++ functions are translated to Register Transfer Level (RTL)
designs that are functionally equivalent. Each C++ function does not necessarily result
in a hardware block, in the sense described on Figure 6.4. It is indeed possible to inline
functions, that will be integrated into the “behavior” part of the hardware block. The
inputs and outputs of the resulting design are determined by the parameters of the C++
function, and the direction (input, output or both) by how they are used in the code.
During the synthesis, CatapultC adds the different missing signals from C++, like the
clock signal, enables or resets.

Registers

Embedded
software

Input data Output dataBehavior

Reset

Clock

External
memory

Bus interface

Streaming bus
interface

Streaming
bus interface

Figure 6.4: Reminder of a typical example of a hardware block.

We previously explained that in real-life designs, hardware designers build systems by
assembling sub-blocks. In the complete design, in addition to the code describing each
sub-block, there is also a top-level function that binds all the sub-blocks together, i.e. that
relays the inputs and outputs of sub-blocks in the right order.

For the JPEG decoder example, Figure 6.5 shows a possible top-level function. In this
example, we simplified the input and outputs, but the idea is that the input and outputs
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transits from one block to the other until the whole operation is done. In our approach
to use HLS code in TLM simulations, we do not use such a top level function. There
is no parallelism possible if the top level function is kept as in this example. Thus, our
infrastructure replaces this top level function, by directly binding the different sub-block
modules in the SystemC model.

void JPEG_top_level(A input, B output) {
IQZZ(input, tmp_1);
IDCT(tmp_1, tmp_2);
Upsampling(tmp_2, tmp_3);
ConvToRGB(tmp_3, output);

}

Figure 6.5: Example of a top-level function for the JPEG decoder.

6.3.2 Streaming Behavior

There is another aspect we must consider in hierarchical designs, it is how data goes
from one sub-block to the other. Indeed, in the case where each sub-function becomes a
sub-block in the hardware, there are multiple ways to exchange data between them. For
example, one sub-block can write its results into a memory, then send a signal to the next
sub-block, which will then write the memory and so on. This results in area and time
inefficient designs, especially for blocks that handle large amounts of data, as it is the case
for image processing blocks. Another way for data to transit is to use a hardware First In,
First Out (FIFO) interface, also known as “valid, data, ready” interface (see Figure 6.6).
In this case, data is transmitted at each clock cycle where the “valid” and “ready” signals
are high. This kind of handshake protocol is used in common bus protocols, for example
ARM’s AXI4-Stream protocol, designed to enable fast communication in data-intensive
applications.

Producer Consumer

Clock
Valid

Data

Ready

(a) Hardware FIFO interface.

Clock

Valid

Ready read
data

read
data

read
data

(b) Example corresponding chronogram.

Figure 6.6: Description of the hardware FIFO interface.

The following question is “how to tell CatapultC to use this interface between two
blocks?”. There are two situations where a streaming interface is used. The first situation
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is when CatapultC can prove that the behavior described in the C++ code is a streaming
behavior. In this case, the tool implicitly uses the streaming interface between the blocks.
Otherwise, it uses memories and copies of data between blocks. However, in the latter
case, it is possible that a streaming behavior was possible, but not used because the tool
could not prove that it is the case (the proof is not straightforward). Figure 6.7 presents
two example cases from the HLS blue book [63] that illustrates the two situations.

void block0(int in[4], int out[4]) {
for (int i = 0; i < 4; ++i) {

out[i] = in[i];
}

}

void block1(int in[4], int out[4]) {
for (int i = 0; i < 4; ++i) {

out[i] = in[i];
}

}

void top(int in[4], int out[4]) {
int tmp[4];
block0(in, tmp);
block1(tmp, out);

}

(a) Streaming behavior can be proven by Cat-
apultC, because accesses to the arrays are in
order.

void block0(int in[4], int out[2]) {
static int idx = 0;
for (int i = 0; i < 4; ++i) {

if (i & 1 == 0) {
out[idx] = in[i] + in[i + 1];
++idx;
if (idx == 2) {

idx = 0;
}

}
}

}

void block1(int in[2], int out[2]) {
for (int i = 0; i < 2; ++i) {

out[i] = in[i];
}

}

void top(int in[4], int out[2]) {
int tmp[2];
block0(in, tmp);
block1(tmp, out);

}

(b) Streaming behavior cannot be proven by
CatapultC, because of the conditional opera-
tions on the index.

Figure 6.7: Two examples where the streaming behavior can or cannot be proved by
CatapultC.

To force CatapultC to use streaming interfaces between blocks, the designer must write
the C++ code with a specific C++ class called ac_channel. It offers functions for FIFO
accesses, and the designer directly code the behavior using these functions. Figure 6.8
presents an example code that explicit the streaming behavior of the design described in
Figure 6.7b.

On this figure, we see the usage of the two main methods of the ac_channel class,
which are read and write. Amongst all the methods of this class, some of them are
synthesizable, i.e. they are meant to be translated in a hardware design, and some are
not synthesizable, i.e. they are used for simulation only, as in test benches.
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void block0(int in[4], ac_channel<int> & out) {
static int idx = 0;
for (int i = 0; i < 4; ++i) {

if (i & 1 == 0) {
out.write(in[i] + in[i + 1]);

}
}

}

void block1(ac_channel<int> & in, int out[2]) {
for (int i = 0; i < 2; ++i) {

out[i] = in.read();
}

}

void top(int in[4], int out[2]) {
static ac_channel<int> tmp;
block0(in, tmp);
block1(tmp, out);

}

Figure 6.8: Explicit streaming behavior.

Non-synthesizable functions include the test for emptiness, comparison between chan-
nels or out-of-order peeks of values in the channel. Using those functions in a code for
synthesis will simply not produce any output design. Amongst the synthesizable func-
tions, there are the blocking read and write functions. There is also a non-blocking read
function, that returns a Boolean value indicating if a value has been read from the channel
or not. It is also possible to test if at least N tokens are available from a channel with the
function available. This latter function is meant to be used for the C++ execution of
code, where CatapultC forbids to read empty channels. When synthesized, it is replaced
with a handshake. In other terms, it can be seen, for synthesis, as always returning True.

In summary, we consider HLS blocks that describe a streaming behavior. In the
code, this behavior can be obtained using arrays as interfaces (see Figure 6.7a), or using
ac_channel to explicitly describe it (see Figure 6.8).
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6.4 Application

Figure 6.9 shows the infrastructure obtained as a result by the application of the pro-
posed infrastructure. This section details the different steps to follow in order to get this
infrastructure, starting from the set of individual sub-blocks code written for High Level
Synthesis (HLS). The following explanations are split in two major steps: writing the
top-level module, and writing individual wrappers for each sub-block.

Hardware IP Block: Top-Level Module

Registers

FOFIFON

HLS

thread FOFIFON

HLS

thread FOFIFON

HLS

thread FOFIFON

thread thread

write read

read/write read/write

Input
data

read

Embedded
software

read/write

Output
data

write

Figure 6.9: Our method consists in writing code at two places: for the top-level block
(with registers, and proper interfaces) and for each sub-block (with our Fast Ordered First
In, First Out data exchaNge (FOFIFON) structures).

6.4.1 Top-Level Module

This section explains how to write the top block of the hardware Intellectual Property
(IP) block. This top block has two roles:

1. Interface the block with the rest of the platform, i.e. with code to handle TLM
transactions and the programmable registers.

2. Instantiate and bind the different sub-blocks, and the different FOFIFON buffers.
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The different interfaces of the module (Role 1) use common communication proto-
cols (a system bus for the registers, and streaming bus for data). Each company that
develops SystemC/TLM models has its own internal protocol models, as it is the case
at STMicroelectronics. It is also the case for programmable registers, that are common
features of hardware blocks, thus embedded in a development feature at STMicroelec-
tronics. Moreover, registers for hardware blocks are often described in the IP-XACT
format (see Section 2.4.4), and then translated with an automatic tool to SystemC/TLM
registers. The specific behavior of control registers must be added manually as it is appli-
cation dependent. The SystemC processes of this top-level module are scheduled by the
same SystemC simulator than the rest of the platform, thus legacy interfacing code (that
may vary from one company to the other) mentioned in the previous paragraph remains
compatible.

We recommend to instantiate the top-level module and the different sub-blocks in
different main files. This considerably reduce the refactoring effort in the case of large pre-
existing main file, because the user does not have to explicitly put each component to the
first simulator. On the main file, the user instantiates the top-level module as an “empty
shell”: it contains all the proper interfaces to communicate with the rest of the platform,
the registers, but the sub-blocks are not instantiated in the main simulator. On Figure 6.9,
this corresponds to all the surrounding module without the inner sub-blocks, and the
buffers that connects them (except the ones at the two ends of the pipeline). This top-
level module instantiates the required number of FOFIFON buffers to communicate with
the first and last sub-block of the pipeline. We remind that the names of the buffer
will be used to enable the different executables to actually use the same shared memory
area. This main file produces a first executable, that will be executed sequentially by one
simulator. This first version of the top-level module, that we called the “empty shell”,
fulfills Role 1.

Then, in a separate SystemC main file, the user instantiates another version of the
top-level module, that contains the sub-block modules, and the FOFIFON buffers that
connects them together. This version fulfills Role 2. It is important to use the same names,
for FOFIFON buffers at the two ends of the pipeline, that were used in the “empty shell” of
the main file. In this file, the user can attribute a simulator number to each sub-block (the
processes for this executable will be created before simulation start), or use the specific
constructors (see the example in Appendix B.1) to use a separate map file. This enables
to change the mapping without recompiling the source file. Different strategies to assign
sub-blocks to simulators are compared and discussed further when we present performance
results. Intuitively, the best strategy consists in profiling sequentially the different sub-
blocks (e.g. using SycView with a sequential execution of the model) and balance the
work between the different workers depending on the parallel resources available on the
host computer.

The instantiation of the different FOFIFON buffers needs further explanations. To
construct a buffer, one need to provide a name and a capacity (we remind that we use
bounded circular buffers). The choice of a capacity is application dependent, but the
principle is to choose a sufficient capacity to avoid artificial deadlocks, high enough to
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increase the throughput, and reasonable compared to the memory available on the host
simulator [64]. In the example of our JPEG decoder block, let us take the case of the
Inverse Discrete Cosine Transform (IDCT) block (see Appendix A). This block outputs 64
values each time 64 input values are read. Thus, the capacity of buffers around this block
must be at least 64. Then, from 64 to a certain value, the overall throughput globally
increases, because statistically less time is spent waiting because the input buffer is empty,
or the output buffer is full. The user must specify a reasonable buffer size for each one.

6.4.2 Sub-Block Modules

The application of our infrastructure also requires that the code for each sub-block, written
for the HLS tool CatapultC, is embedded in a SystemC module (represented as the inner
rectangles on Figure 6.9). The SystemC module has one SC_THREAD that runs the HLS
function of the sub-block in a loop. However, before or after calling the HLS function, it
is necessary to add code to manage inputs and outputs. In the following explanations, we
refer to this code as extra sub-module code. In order to enable the parallel execution of
the different sub-blocks, they must communicate exclusively through FOFIFON buffers.

A situation that is likely to happen, is when sub-block modules need access to the
values of the main block registers. In the JPEG example, the sub-blocks needs to have
the value of the horizontal and vertical sampling factors. Those values are extracted
by the embedded software (we remind that in our example, the header readout and the
huffmann decode is done in software), and the software programs registers of the decoder
block with those values. But the registers are part of the “empty shell” version of the
top-level module, that is not on the same simulator as the sub-block modules. In order
to enable the sub-blocks to access these values, the only choice we give is to send them
through FOFIFON buffers. In order to do this, different strategies are possible. We
propose an option to address this situation. The first step is to create local registers in
SystemC for each sub-block module. The second step consists in writing an extra token to
the data buffer each time the register values may change (this is application-dependent)
and that indicates if the following data are special (e.g. register values) or are part of
the data stream (in our example the compressed JPEG data). The third step is to add
extra sub-module code to regularly read this extra token and consider the following data
as register values (the number of token to read is application-dependent but it is known).

Then, another piece of extra sub-module code must be added depending on how the
HLS block is written (in terms of interface). Each channel (CatapultC’s ac_channel) is
substituted with a FOFIFON buffer. Thus, in practice, each read or write on the buffer
is done on shared memory. In this case, there is no need to do any particular operation
before or after calling the HLS function, since the algorithm will perform the read and
write operations directly on the shared buffer. In the current version of FOFIFON, the
supported methods are read and write, and the available method that always returns
True (as explained in Section 6.3.2).
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When the interface of the HLS block consists in arrays, the SystemC module simulates
the streaming using local arrays. Before calling the HLS function, the user must add code
that reads the input FOFIFON until the required number of data is available. In this
case, the “batch” read or write on the buffer is effectively used. Similarly, at the end of
the function, code must be added to copy the output array to the output buffer.
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6.5 Performance Evaluation

6.5.1 SycView Measurements

This section presents SycView measurements for our decoder platform, done on the se-
quential version. The first measurement is the wall-clock time consumption of processes,
shown in Table 6.1.

Name Type Total (ms) % 1st Q. Median 3rd Q. Transitions Mean

decoder.idct.compute Thread 11,806 55.7 0.4 1.1 1.1 14,689 0.8

cpu.compute Thread 3474 16.4 0.1 0.3 0.3 14,743 0.2

decoder.upsampler.compute Thread 2374 11.2 < 0.1 0.2 0.2 14,716 0.2

decoder.conv2rgb.compute Thread 2036 9.6 < 0.1 0.2 0.2 14,716 0.1

decoder.iqzz.compute Thread 1179 5.6 < 0.1 0.1 0.1 14,689 <0.1

SystemC_Kernel Thread 185 0.9 < 0.1 < 0.1 < 0.1 36,988 <0.1

Table 6.1: Wall-clock time usage of the most consuming parts of the simulation. Time
values are expressed in ms.

Another result obtained with SycView is the number of runnable SystemC threads
per simulation cycle, shown in Figure 6.10. There are 65.0 % of the delta cycles that start
with one runnable SystemC thread, and 33.8 % with two runnable threads. During the
simulation, the processes from the decoder block are all waiting for data, most of the
time. In the sequential simulation, while they are waiting for data, the sub-blocks are
in practice waiting for the notification of a SystemC event, that notifies that data are
available in the buffer.

0 % 50 % 100 %

0 Proc. 1 2 3 4 and more

Figure 6.10: Partitioning of delta cycles, per number of runnable processes, for an execu-
tion of the decoder platform.

Those measurements are similar to the profiling results on the case study, presented
in Chapter 3. Thus, even though this platform is much less complex than our case study,
it represents a simpler instance of the same performance issue, due to the simulation of
hardware acceleration blocks.
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6.5.2 Results for Parallel Execution

From these measurements, one could, at first, see little potential for parallel execution.
However, in this case there is such a potential as our results will show, using the technique
previously presented. To evaluate the performance of the decoder platform previously
presented, and thus measure the efficiency of our parallel simulation system, we measured
the median wall-clock time needed to decode and display one frame of an MJPEG stream.
This median value is computed after the decoding duration of frames stabilizes.

We measured this value for three different MJPEG streams, each with a different
image size: 256 × 144, 1024 × 768 and 1920 × 800. For each different size, we have run
four different cases, that correspond to four different ways of mapping SystemC processes
to Operating System (OS) processes. Figure 6.11 describes the four cases.
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(d) ONE-TO-ONE: each block in its simulator.

Figure 6.11: The four mapping cases we used for the decoder block. The number indicates
the simulator in which the sub-block is run. The rest of the SystemC platform runs on
simulator number 0.

Case (SEQ) is used as reference to compute the speed up value. Case (BLOCK) runs
each sub-block on the same simulator, but a different one than the rest of the simulation.
Case (ONE-TO-ONE) runs each sub-block on a different simulator. Case (BALANCE)
balances the load amongst the simulators. Indeed, we have previously seen that in the
sequential version, the blocks are, from the most wall-clock time consuming to the least:
the IDCT (far ahead), the upsampler, the color converter and finally the IQZZ. This
case represents a balance between the different parallel parts. Indeed, the simulator 1
groups processes that consumed 55.7 % of the wall-clock time (in fact only one block,
thus indivisible with our approach), the simulator 2 groups 20.8 % (the upsampler and
color conversion) and the simulator 0 the rest, which makes 23.5 %.

Figures 6.12 to 6.14 shows the results on the JPEG decoder platform for the four
cases. The charts on the left hand side present the median wall-clock time to decode and
display one frame, and the ones on the right hand side shows the speed up compared to
the sequential case. Each figure shows results for a different encoded image size.

The best speed up in our experiments was achieved in Case (ONE-TO-ONE), the
case where each block is in parallel with the other ones. On each experiment, there
was a speed up of approximately 1.2 in Case (BLOCK). In this case, all the parts of
the decoding algorithm are run on the same process, but in parallel with the rest of
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the platform. This notably enables to run CPU computations and display operations
in parallel with the decoding operations. An interesting point is that the same speed
up (or very close) is reached in Case (BALANCE) and (ONE-TO-ONE). Indeed, Case
(ONE-TO-ONE) uses the most parallel computing units, however Case (BALANCE) use
them better by balancing (as possible) the load between them. For example, for the third
experiment with the biggest image size, we reached a speed up of 1.57 using 4 processes
(one for the model plus 3 for the decoder).
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Figure 6.12: Wall-clock time to decode and display one frame of an MJPEG stream, in
colors, of a resolution of 256× 144.
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Figure 6.13: Wall-clock time to decode and display one frame of an MJPEG stream, in
colors, of a resolution of 1024× 768.

Currently, the mapping of each sub-block to a different concurrent unit is done stat-
ically, in a text file. However, it is possible in theory to make this mapping automatic,
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Figure 6.14: Wall-clock time to decode and display one frame of an MJPEG stream, in
colors, of a resolution of 1920× 800.

using the best load balancing, by running first a profiling on the platform and then use
those results to generate the mapping. The results tend to indicate that at least in our
case (with few sub-blocks) the best balancing was reached not by running each sub-block
to a different computation unit, but by balancing each simulator. Thus, it has the ad-
vantage to save some of the parallel computing potential of the host machine for another
parallelization technique, applied to another part of a SystemC model that one could
identify as potentially executable in physical parallelism. Using extra-parallel computa-
tion potential will increase the speed up more than using the maximum possible cores for
our approach only.
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6.6 Conclusion

This chapter presented an application of the previously presented parallel simulation
infrastructure to the case of a hardware design written for the HLS tool CatapultC. This
results in integrating the HLS code into a SystemC/TLM simulation, that enables the
parallel execution of the integrated component.

For this experiment, we developed an industrial platform, representative of the problem
we address. The performance results notably shown a speed up of 1.6 for a simulation
using 4 processes. The best performance results were obtained with the highest image
resolutions. This is explained by the fact that there is more parallelism exploited by our
approach, simply because there is more computations to do when images are bigger.

The speed up achieved is a good result, especially when it is put it in perspective
with the rest of the work. In this thesis, we studied cases of SystemC models where
finding potential for parallel computation is hard. Our case study, presented in Chapter 3,
illustrates this problem well. In this work, the first and the main question to answer was
not “how do we run this simulation in parallel?”, but “what can we run in parallel?”.

We did not find, at first sight, potential parallelism in the model, with existing ap-
proaches. Thus, we choose to take the problem differently. We first studied sequential
profiling results of the simulation of a platform, in order to find which part of the plat-
form effectively takes time. Then, from those results, we proposed an infrastructure that
address one instance of this problem: the simulation of hardware components, described
for the High Level Synthesis (HLS) tool CatapultC. In this situation, there is a poten-
tial for parallelism: the components are described as a hardware pipeline of blocks. We
exploit this parallelism by turning it into physical parallelism during the simulation. For
now, there is no better way to speed up such types of models with parallel computation.
Further research work is necessary in order to study more complex designs, for example
with data feedback loops, or designs made for other HLS tools. Moving from one HLS
tool to the other is not simply a syntactic change, each tool has its own way to describe
behaviors, although the underlying model of computation is resulting in a Kahn Process
Network (KPN).

Beyond our specific parallel simulation infrastructure, further research work can iden-
tify other potentially parallel parts in real-life simulations. This can lead to the need of
combining multiple parallel simulation approaches, applied to different parts of a model.
This research direction, and other possible ones, are further discussed in the following
conclusion chapter.
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— Chapter 7 —

Conclusion

Summary

The main objective of this thesis was to study the performance issue that started to
appear in complex models of systems on chip at the Transaction Level Modeling (TLM)
abstraction level, and propose a solution for this issue. The proposed approach addresses
both legacy and future designs, based on real-life design practices from the industry. The
study of parallel execution approaches is natural in this context, because models describe
parallel systems, and parallel computation resources are available on today’s computers.

The first step of this thesis was to profile a complex case study showing performance
issues when running simulations. To get a synthetic view of this case study, we developed
a profiling tool based on an instrumented SystemC kernel. This tool has been presented
at the Design Automation for Understanding Hardware Designs (DUHDe) workshop [13].
We used this tool on the industrial model of a set-top box, and studied the results to char-
acterize the type of models in our scope and the cause of slowness. The profiling results
and analysis have been published at the Rapid Systems Prototyping (RSP) international
symposium [14] and further discussed in an article of the MDPI Electronics journal [15].
From the profiling results, we notably saw that the computation complexity is located
mostly in hardware Intellectual Property (IP) blocks.

The use of an High Level Synthesis (HLS) flow to design complex hardware acceleration
blocks is common in the industry: video, audio, or signal processing blocks are embedded
in a wide variety of systems on chip. Code for HLS describes complex hardware blocks,
containing intellectual property. Once this description exists, it is critical to re-use it in
the TLM model, because timing constraints on model development are tight. Moreover,
re-using the same code ensures consistency between different representations. We assume
that future designs will contain even more IP blocks described in HLS, and disqualify
with time the handwriting of Register Transfer Level (RTL) in this purpose. The re-use
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of HLS code in fast SystemC/TLM simulations is a situation that had to be addressed,
as industrial actors have and will have to face it. Consequently, we decided to study
this problem. We identified a potential for the parallel execution of such IP blocks. We
proposed a parallel simulation infrastructure, and applied it to enable the integration and
parallel simulation of such hardware blocks. In summary, our approach is based on the
reasonable assumptions that future designs will still use hardware pipelining, with data
streaming, and that there will be more IP blocks designed with an HLS design flow, that
must be integrated quickly in fast SystemC/TLM simulations.

Results

We developed DistemC, a parallel simulation infrastructure. With DistemC, a simulation
is partitionned and each part is run on its own Operating System (OS) process, running
a SystemC simulation kernel. The typical use-case of DistemC is to partition a hardware
acceleration component that consists in a pipeline of sub-blocks (e.g. a video decoder).
The different DistemC partitions are designed to communicate only by exchanging data
through a specific First-In, First-Out (FIFO) structure called FOFIFON. We implemented
FOFIFON as a thread-safe lock-free data structure interfacing two SystemC simulations.
This infrastructure particularly fits the case where a hardware component is developed
as code for HLS, which is the main problematic case we identified consequently to the
industrial case study profiling.

The application of DistemC and FOFIFON to a representative model, a JPEG decod-
ing platform on which the decoder block was written for HLS, showed promising results.
The main result is that a speed-up of 1.6 (compared to sequential execution) was achieved
using 4 processes. This speed-up did not involve changing the HLS code, but we had to
write relatively small wrappers to integrate the HLS code into the SystemC/TLM simula-
tion, using DistemC and FOFIFON constructs. The rest of the platform and the interfaces
with the IP block used pre-existing constructs, which induced no refactoring effort on the
rest of the SystemC/TLM model.

This thesis is a step in this direction, which we believe address crucial overcoming
challenges of system on chip simulation. The current version of our infrastructure has
limitations, for example designs with feedback loops have not been studied. Moreover,
the case of HLS tools that rely on a different description of blocks than CatapultC can
cause further problems, since they may require to use code transformation. However, the
underlying model of computation of such blocks still falls within Kahn Process Network
(KPN) models, which is addressed by our approach.

Another important conclusion of this thesis is that there is no “miracle” solution for
parallel SystemC simulation. This statement is not trivial: it comes from a study of both
the state of the art and an industrial case study. An interesting question addressed by
research work is how to turn a sequential SystemC simulator into a parallel simulator.
Some approaches have chosen to aim for semantics-preserving simulation, and some others
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have made assumptions on models to enable more parallelism. The profiling results on
our case study showed another problem: finding potential for parallel simulation when
the model description does not expose it. In other words, simulation at TLM are not the
same than at RTL, and even within the TLM abstraction level, different types of models
shows different parallel simulation possibilities.

Prospects

Finally, we can discuss about longer-term considerations. One first consideration is the
Internet of Things (IoT). The IoT is a paradigm where a wireless network of embedded
devices collect, process and exchange data with each other. One possible application is
home automation: a temperature sensor can control the central heating, a light sensor can
control the shutters, and so on. The biggest technical challenges in this area are low-power
consumption, modularity, data processing, data management and security [65, 66, 67].
In particular, the modularity and communication aspects of such systems brings new
challenges to the simulation. What makes the complexity of simulations here is not one
complex chip, but the quantity of interconnected chips, and the handling of networking
protocols between various devices. In other words, this is a system of systems (on chip),
where the system is dynamic: components can be added or removed from the system
while it is running. Parallel simulation comes naturally at stake in this area: in addition
to speed up simulations, it is a solution for the dynamic aspect and the integration of
various components in a model. Parallel simulation of dynamic systems is currently under
development at STMicroelectronics, as it is an overcoming issue, and this thesis work will
also contribute to advancing in this direction.

There are common problems to solve between our infrastructure and the case of parallel
simulators for dynamic systems. For example, avoiding a simulation to terminate because
it waits for something coming from a different thread or from another simulation. In
our case, this situation could only happen while reading or writing an empty or a full
buffer, thus we proposed a solution that addresses this case. More generally, each parallel
approach that uses multiple simulators has to deal with such a problem.

Another challenge is the simulation of multi-domain systems including physical mod-
ules, e.g. analog signal processing (optical, acoustic, etc). Such simulations combine
discrete event simulation for digital components, and continuous simulation for ana-
log components. This case is addressed by an extension of SystemC called SystemC
Analog/Mixed-Signal (AMS), standardized by Accellera. SystemC/AMS has been further
extended with SystemC Multi-Disciplinary Virtual Prototyping (MDVP) that precisely
addresses the case of multi-physical domains simulations [68, 69]. SystemC MDVP fo-
cused on integrating multi-physical systems in a sequential SystemC simulation, which
not so long ago was not possible. The next step will consist in studying parallel simulation
of those systems. They are good candidates for parallel simulation, since they are made
of independent parts. Existing parallel simulation approaches, including ours, build up a
solid ground basis to find a solution that addresses the simulation of such systems.
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At one point, research on parallel simulation will have to mix different parallel simu-
lation approaches. Our state of the art analysis have shown that an approach that works
well in one context will not work in another context; not because the solution is bad, but
because it is not the same problem. An interesting prospect is thus to study the inte-
grability of different parallel simulation techniques on a single simulation. For example,
a simulation where hardware acceleration blocks are run in parallel, where some analog
parts of the system are also accelerated with parallel computation, and where the whole
system communicates, through a network interface, with another similar system simulated
in parallel. This would require first to study the interaction between different simulators,
or between different parallel simulation techniques. In this situation, different SystemC
kernel implementations could be combined, and for example a parallel SystemC kernel
implementation could be used for one part of the simulation, in parallel with sequential
ones. This kind of research will mainly have to deal with communication and integration
problems between different types of simulators. We believe this thesis is an important
step in this direction.
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— Appendix A —

JPEG Decoding Algorithm

A.1 Inverse Quantization and Inverse Zig-Zag

The first step is the Inverse Quantization and Inverse Zig-Zag (IQZZ). It consists in
reordering values of a macroblock (the “zig-zag” part) and multiply them with a table of
coefficients present in the encoded stream (the “inverse quantization” part). The table
of coefficients is called the dequantization table. Figure A.1 illustrates this step of the
decoding for a macroblock (8× 8 pixels). There is generally one dequantization table per
color component.
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Figure A.1: Illustration of the IQZZ.
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A.2. INVERSE DISCRETE COSINE TRANSFORM

A.2 Inverse Discrete Cosine Transform

A.2.1 Theory
The step after the Inverse Quantization and Inverse Zig-Zag (IQZZ) is the Inverse Discrete
Cosine Transform (IDCT). This step transforms a macroblock from the frequency domain
to the spatial domain. The formula for a macroblock of size n× n is:

S(x, y) = 1√
2n

n−1∑
λ=0

n−1∑
µ=0

C(λ)C(µ) cos
(2x+ 1

2n λπ
)

cos
(2y + 1

2n µπ
)
× F(λ, µ),

where S is the spatial macroblock, F is the frequency macroblock, x and y are the
coordinates in the spacial domain, λ and µ are the coordinates in the frequency domain
and C is defined as:

C(k) =


1√
2

if k = 0,

1 otherwise.

A.2.2 Implementation Notes for HLS
The IDCT is the step that needs the most work to adapt the mathematical formula for an
efficient hardware implementation. Indeed, it contains costly operations for a hardware
implementation, e.g. square root or cosine. There already exist various IDCT hardware
implementations, and our goal here is not to discuss their differences or efficiency.

For our HLS implementation, the macroblock size is known and fixed to 8 × 8. This
already removes the initial square root. Moreover, the computation of cosines can be
avoided by using a precomputed cosine table. Indeed, the cosine parameters do not
depend on pixel values, but only on indexes.
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APPENDIX A. JPEG DECODING ALGORITHM

A.3 Upsampling

After the Inverse Discrete Cosine Transform (IDCT), the spatial information obtained is
in the color space Luma and Blue/Red-differences Chroma (Y′CBCR). This color space
is used in the JPEG encoding instead of the classic Red, Green, Blue (RGB) because
it enables space saving by removing details on colors that are barely perceptible by the
human eye. The luma (Y′) component is present in any case, because the eye is sensitive to
luminosity changes. The blue and red differences (CB and CR) are sometimes subsampled.
Subsampling consists in using the same chrominance value for multiple pixels. Different
strategies are possible for subsampling, the most common are represented on Figure A.2.
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(b) 4:2:2

Y′

Y′

Y′

Y′

CB

CR

(c) 4:2:0

Figure A.2: Most common subsampling strategies.

Similarly to the Inverse Quantization and Inverse Zig-Zag (IQZZ), the upsampling step
does not need major refactoring for High Level Synthesis (HLS). The upsampling factors
(whether to use 4:4:4, 4:2:0 or 4:2:2) are required inputs. The streaming behavior is not
applicable at pixel-scale here, for the same reason as for IQZZ, then full macroblocks must
be read before starting to output the resulting macroblocks.
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A.4. COLOR MODEL CHANGE

A.4 Color Model Change

A.4.1 Theory
The final step is to convert colors from the Luma and Blue/Red-differences Chroma
(Y′CBCR) color model to Red, Green, Blue (RGB). The conversion is straightforward, it
consists in applying the following formula to each pixel:

R = Y ′ + 1.402× (CR − 128)
G = Y ′ − 0.34414× (CB − 128)− 0.71414× (CR − 128)
B = Y ′ + 1.772× (CB − 128)

A.4.2 Implementation Notes for HLS
Each color component either from the Y′CBCR or RGB color models is an integer. How-
ever, the constants from the original formula are decimal numbers. For an hardware
implementation, floating point computations are better avoided for performance reasons.
Then, two options are possible: using fixed-point numbers or integer numbers.

In our context, we use integer constants. We use the implementation proposed by
Manz [70], that consists in multiplying each decimal constant by 1024 and then we divide
the result by the same value. The values of the constants multiplied by 1024 can be
rounded to integer values without loosing too much accuracy. Moreover, the multiplication
and division by 1024 is convenient in hardware because it simply consists in a 10-bit shift.
After this modification, the formula are:

R = (1024× Y ′ + 1436× (CR − 128)) /1024
G = (1024× Y ′ − 352× (CB − 128)− 731× (CR − 128)) /1024
B = (1024× Y ′ + 1815× (CB − 128)) /1024
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Detailed Examples

B.1 Example Code of a Top Module using DistemC

#include "distemc.h"

SC_MODULE(Top) {

SC_CTOR(Top) {
// "create_module" checks the map file (given as input parameter)
// to check if the module (by its name) has a given affinity,
// otherwise it is 0
producer = distemc::create_module<Producer>("Producer");
sub_block1 = distemc::create_module<Sub_Block1>("Sub_Block1");
sub_block2 = distemc::create_module<Sub_Block2>("Sub_Block2");
sub_block3 = distemc::create_module<Sub_Block3>("Sub_Block3");
consumer = distemc::create_module<Consumer>("Consumer");

// "create_fofifon" takes the pointers to the two modules that will
// use the FOFIFON (null => not on current simulator, not null => on
// current simulator) the name of the buffer and its capacity
producer_to_first = distemc::create_fofifon<uint32_t>(

producer, sub_block1, "producer_to_first", 200);
first_to_second = distemc::create_fofifon<uint32_t>(

sub_block1, sub_block2, "first_to_second", 200);
second_to_third = distemc::create_fofifon<uint32_t>(

sub_block2, sub_block3, "second_to_third", 200);
third_to_consumer = distemc::create_fofifon<uint32_t>(

sub_block3, consumer, "third_to_consumer", 200);

// The "producer" is always in simulator 0.
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B.1. EXAMPLE CODE OF A TOP MODULE USING DISTEMC

// It can be e.g. a DMA that reads data from
// memory and feeds the input stream with it.
if (producer) {

producer->output_port(*producer_to_first);
}
if (sub_block1) {

sub_block1->input_port(*producer_to_first);
sub_block1->output_port(*first_to_second);

}
if (sub_block2) {

sub_block2->input_port(*first_to_second);
sub_block2->output_port(*second_to_third);

}
if (sub_block3) {

sub_block3->input_port(*second_to_third);
sub_block3->output_port(*third_to_consumer);

}
// The "consumer" is also always in simulator 0.
// It can be e.g. another DMA that pulls data
// from the stream and writes it in memory.
if (consumer) {

consumer->output_port(*third_to_consumer);
}

}

Producer * producer;
Sub_Block1 * sub_block1;
Sub_Block2 * sub_block2;
Sub_Block3 * sub_block3;
Consumer * consumer;

distemc::fofifon<uint32_t> * producer_to_first;
distemc::fofifon<uint32_t> * first_to_second;
distemc::fofifon<uint32_t> * second_to_three;
distemc::fofifon<uint32_t> * three_to_consumer;

};
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B.2 Example Scenario on a FOFIFON Structure
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(1) Initial state (empty).
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(2) The writer pushes two values.
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(3) The reader updates its local coun-
ters.
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(4) The reader pulls one value.

w_pos

r_pos

w_max

r_max

(5) The writer updates its local coun-
ters.
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(6) The writer pushes 8 values (full).
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(9) The writer updates its local coun-
ters.

Figure B.1: Possible execution scenario for a sequence of reads and writes on the queue.
A circular buffer is used. The visible size of the FIFO is 9, thus the implementation uses
an array of size 10.

141





Bibliography

[1] IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666-
2011 (Revision of IEEE Std 1666-2005), pages 1–638, 2012.

[2] Matthieu Moy. Parallel Programming with SystemC for Loosely Timed Models: A
Non-Intrusive Approach. In Design, Automation and Test in Europe (DATE), 2013.

[3] Claude Helmstetter. Validation de Modèles de Systèmes sur Puce en Présence
d’Ordonnancements Indéterministes et de Temps Imprécis. PhD thesis, Institut Na-
tional Polytechnique de Grenoble (INPG), 2007.

[4] Matthieu Moy. Techniques et Outils pour la Vérification de Systèmes-sur-Puce
au Niveau Transaction. PhD thesis, Institut National Polytechnique de Grenoble
(INPG), 2005.

[5] Jérôme Cornet. Séparation des Aspects Fonctionnels et non-Fonctionnels dans les
Modèles Transactionnels des Systèmes sur Puce. PhD thesis, Institut Polytechnique
de Grenoble (IPG), 2008.

[6] Giovanni Funchal. Contributions to the Transaction-Level Modeling of Systems-on-
a-Chip. PhD thesis, Institut National Polytechnique de Grenoble (INPG), 2011.

[7] Yussef Bouzouzou. Accélération des Simulations de Systèmes sur Puce au Niveau
Transactionnel. Diplôme de Recherche Technologique (DRT), Université Joseph
Fourier, 2007.

[8] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future. IEEE
Design Test of Computers, 26(4):18–25, 2009.

[9] H. Ren. A Brief Introduction on Contemporary High-Level Synthesis. In IEEE
International Conference on IC Design Technology, pages 1–4, 2014.

[10] D. J. Pagliari, M. R. Casu, and L. P. Cartoni. Acceleration of Microwave Imaging
Algorithms for Breast Cancer Detection via High-Level Synthesis. In IEEE Interna-
tional Conference on Computer Design (ICCD), pages 475–478, 2015.

[11] G. Inggs, S. Fleming, D. Thomas, and W. Luk. Is High Level Synthesis Ready for
Business? A Computational Finance Case Study. In International Conference on
Field-Programmable Technology (FPT), pages 12–19, 2014.

143



BIBLIOGRAPHY

[12] D. Gajski, T. Austin, and S. Svoboda. What Input Language is the Best Choice
for High Level Synthesis (HLS)? In Design Automation Conference (DAC), pages
857–858, 2010.

[13] Denis Becker, Matthieu Moy, and Jérôme Cornet. SycView: Visualize and Profile
SystemC Simulations. In Workshop on Design Automation for Understanding Hard-
ware Designs, 2016.

[14] Denis Becker, Matthieu Moy, and Jérôme Cornet. Challenges for the Parallelization
of Loosely-Timed SystemC Programs. In IEEE International Symposium on Rapid
System Prototyping (RSP), 2015.

[15] Denis Becker, Matthieu Moy, and Jérôme Cornet. Parallel Simulation of Loosely
Timed SystemC/TLM Programs: Challenges Raised by an Industrial Case Study.
Electronics, 5(2):22, 2016.

[16] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst. Efficient Auto-
matic Visualization of SystemC Designs. In FDL, pages 646–658, 2003.

[17] David Berner, Jean-Pierre Talpin, Hiren D Patel, Deepak Mathaikutty, and
Sandeep K Shukla. SystemCXML: An Extensible SystemC Front end Using XML.
In FDL, pages 405–409, 2005.

[18] C. Albrecht, C. J. Eibl, and R. Hagenau. A Loosely-Coupled Graphical User Interface
for Run-Time Control of SystemC Simulation Models. IJSSST, 2006.

[19] C. Genz and R. Drechsler. System Exploration of SystemC Designs. In Emerging
VLSI Technologies and Architectures, IEEE Computer Society Annual Symposium
on, pages 6 pp.–, 2006.

[20] C. Genz, R. Drechsler, G. Angst, and L. Linhard. Visualization of SystemC Designs.
In Circuits and Systems (ISCAS), IEEE International Symposium on, pages 413–416,
2007.

[21] Rolf Drechsler and Jannis Ulrich Stoppe. Hardware/Software Co-Visualization on
the Electronic System Level using SystemC. In International Conference on VLSI
Design. IEEE, 2016.

[22] Jason Liu, James J. Cochran, Louis A. Cox, Pinar Keskinocak, Jeffrey P. Kharoufeh,
and J. Cole Smith. Parallel Discrete-Event Simulation. John Wiley & Sons, Inc.,
2010.

[23] B. D. de Dinechin, R. Ayrignac, P. E. Beaucamps, P. Couvert, B. Ganne, P. G.
de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and T. Strudel. A
clustered manycore processor architecture for embedded and accelerated applications.
In IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6,
2013.

144



BIBLIOGRAPHY

[24] B. Chopard, P. Combes, and J. Zory. A Conservative Approach to SystemC Paral-
lelization. In Computational Science, ICCS, volume 3994, pages 653–660. Springer
Berlin Heidelberg, 2006.

[25] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann.
parSC: Synchronous Parallel SystemC Simulation on Multi-core Host Architectures.
In Hardware/Software Codesign and System Synthesis, IEEE/ACM/IFIP Interna-
tional Conference on, pages 241–246. ACM, 2010.

[26] N. Ventroux, J. Peeters, T. Sassolas, and J.C. Hoe. Highly-Parallel Special-Purpose
Multicore Architecture for SystemC/TLM Simulations. In Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS), International Conference
on, pages 250–257, 2014.

[27] M. Nanjundappa, H.D. Patel, B.A. Jose, and S.K. Shukla. SCGPSim: A Fast Sys-
temC Simulator on GPUs. In Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 149–154, 2010.

[28] Weiwei Chen and Rainer Dömer. Optimized Out-of-order Parallel Discrete Event
Simulation Using Predictions. In Design, Automation and Test in Europe (DATE),
pages 3–8. EDA Consortium, 2013.

[29] T. Schmidt, G. Liu, and R. Dömer. Hybrid Analysis of SystemC Models for Fast
and Accurate Parallel Simulation. In Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 226–231, 2017.

[30] Simon Reder, Christoph Roth, Harald Bucher, Oliver Sander, and Jürgen Becker.
Adaptive Algorithm and Tool Flow for Accelerating SystemC on Many-Core Archi-
tectures. Microprocessors and Microsystems, pages 1063–1075, 2015.

[31] Philippe Combes, Eddy Caron, Frédéric Desprez, Bastien Chopard, and Julien Zory.
Relaxing Synchronization in a Parallel SystemC Kernel. In Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing with Applications
(ISPA), 2008.

[32] S. Vinco, V. Bertacco, D. Chatterjee, and F. Fummi. SAGA: SystemC Acceleration
on GPU Architectures. In Design Automation Conference (DAC), pages 115–120,
2012.

[33] Emmanuel Viaud, François Pêcheux, and Alain Greiner. An Efficient TLM/T Mod-
eling and Simulation Environment Based on Conservative Parallel Discrete Event
Principles. In Design, Automation and Test in Europe (DATE), volume 1, pages
1–6, 2006.

[34] A. Vieira De Mello, Isaac Maia Pessoa, A. Greiner, and F. Pêcheux. Parallel Sim-
ulation of SystemC TLM 2.0 Compliant MPSoC on SMP Workstations. In Design,
Automation and Test in Europe (DATE), pages 606–609, 2010.

145



BIBLIOGRAPHY

[35] J. Peeters, N. Ventroux, T. Sassolas, and L. Lacassagne. A SystemC TLM Framework
for Distributed Simulation of Complex Systems with Unpredictable Communication.
In Design and Architectures for Signal and Image Processing (DASIP), Conference
on, pages 1–8, 2011.

[36] Samuel Jones. Optimistic Parallelisation of SystemC. Master’s thesis, Université
Joseph Fourier: MoSiG DEMIPS, 2011.

[37] C. Sauer, H.-M. Bluethgen, and H.-P. Loeb. Distributed Loosely-Synchronized Sys-
temC/TLM Simulations of Many-Processor Platforms. In Forum on Specification
and Design Languages (FDL), volume 978-2-9530504-9-3, pages 1–8, 2014.

[38] Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Laura
Tosoratto, Alessandro Lonardo, Dietmar Petras, and Hoffmann Andreas. legaSCi:
Legacy SystemC Model Integration into Parallel SystemC Simulators. In Proceedings
of the Workshop on Virtual Prototyping of Parallel and Embedded Systems, in Pro-
ceedings of Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), pages 2188–2193, 2013.

[39] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid, and
Laura Tosoratto. Time-Decoupled Parallel SystemC Simulation. In Design, Automa-
tion and Test in Europe (DATE), pages 191:1–191:4. European Design and Automa-
tion Association, 2014.

[40] J.H. Weinstock, R. Leupers, and G. Ascheid. Parallel SystemC Simulation for ESL
Design Using Flexible Time Decoupling. In Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS), International Conference on, pages
378–383, 2015.

[41] Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Dietmar Petras, and Andreas
Hoffmann. SystemC-Link: Parallel SystemC Simulation using Time-Decoupled Seg-
ments. In Design, Automation and Test in Europe (DATE), 2016.

[42] Hiren D. Patel and Eep K. Shukla. Towards a Heterogeneous Simulation Kernel for
System Level Models: A SystemC Kernel for Synchronous Data Flow Models. In
Proceedings of the 14th ACM Great Lakes symposium on VLSI, pages 248–253. ACM
Press, 2004.

[43] R. Fujimoto. Parallel and Distributed Simulation. In Winter Simulation Conference
(WSC), pages 45–59, 2015.

[44] Mario Trams. Conservative Distributed Discrete Event Simulation with SystemC
using Explicit Lookahead. Digital Force White Paper, 2004.

[45] Nicolas Ventroux and Tanguy Sassolas. A New Parallel SystemC Kernel Leveraging
Manycore Architectures. In Design, Automation and Test in Europe (DATE), 2016.

[46] W. Chen, X. Han, and R. Dömer. Out-of-Order Parallel Simulation for ESL Design.
In Design, Automation and Test in Europe (DATE), pages 141–146, 2012.

146



BIBLIOGRAPHY

[47] W. Chen, X. Han, and R. Dömer. May-Happen-in-Parallel Analysis based on Segment
Graphs for Safe ESL Models. In Design, Automation and Test in Europe (DATE),
pages 1–6, 2014.

[48] R. Sinha, A. Prakash, and H.D. Patel. Parallel Simulation of Mixed-Abstraction
SystemC Models on GPUs and Multicore CPUs. In Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 455–460, 2012.

[49] Nicolas Bombieri, Sara Vinco, Valeria Bertacco, and Debapriya Chatterjee. SystemC
Simulation on GP-GPUs: CUDA vs OpenCL. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2012.

[50] Giovanni Funchal and Matthieu Moy. jTLM: an Experimentation Framework for the
Simulation of Transaction-Level Models of Systems-on-Chip. In Design, Automation
and Test in Europe (DATE), 2011.

[51] Rainer Dömer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Parallel
Simulation of System-Level Description Languages. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2011.

[52] Rainer Dömer, Weiwei Chen, and Xu Han. Parallel Discrete Event Simulation of
Transaction Level Models. In Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 227–231, 2012.

[53] Maria Hybinette and Richard M. Fujimoto. Cloning Parallel Simulations. ACM
Transactions on Modeling and Computer Simulation, 11(4):378–407, 2001.

[54] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. Infor-
mation Processing, 74:471–475, 1974.

[55] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University
of California at Berkeley, 1995.

[56] Andrei Alexandrescu. Lock-Free Data Structures. C/C++ User Journal, 2004.

[57] Working Draft, Standard for Programming Language C++ (N4659). Retrieved from
https://isocpp.org/std/the-standard. International Organization for Standard-
ization (ISO), 2017.

[58] N. M. Lê, A. Guatto, A. Cohen, and A. Pop. Correct and Efficient Bounded FIFO
Queues. In International Symposium on Computer Architecture and High Perfor-
mance Computing, pages 144–151, 2013.

[59] A. Nistor, D. Marinov, and J. Torrellas. Light64: Lightweight Hardware Support
for Data Race Detection during Systematic Testing of Parallel Programs. In 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
541–552, 2009.

147

https://isocpp.org/std/the-standard


BIBLIOGRAPHY

[60] Milos Gligoric, Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Efficient Mu-
tation Testing of Multithreaded Code. Software Testing, Verification and Reliability,
23(5):375–403, 2013.

[61] Peter A. Buhr, David Dice, and Wim H. Hesselink. Dekker’s Mutual Exclusion
Algorithm Made RW-Safe. Concurrency and Computation: Practice and Experience,
28(1):144–165, 2016.

[62] Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed F. Deprettere. Realizing
FIFO Communication When Mapping Kahn Process Networks onto the Cell. In
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
International Conference on, pages 308–317, 2009.

[63] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation, 2010.

[64] Marc Geilen and Twan Basten. Requirements on the Execution of Kahn Process
Networks, pages 319–334. Springer Berlin Heidelberg, 2003.

[65] L. Mainetti, L. Patrono, and A. Vilei. Evolution of Wireless Sensor Networks Towards
the Internet of Things: A Survey. In SoftCOM 2011, 19th International Conference
on Software, Telecommunications and Computer Networks, pages 1–6, 2011.

[66] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G. Kim, P. Pan-
nuto, Y. S. Kuo, D. Yoon, W. Jung, Z. Foo, Y. P. Chen, S. Oh, S. Jeong, and M. Choi.
IoT Design Space Challenges: Circuits and Systems. In 2014 Symposium on VLSI
Technology (VLSI-Technology): Digest of Technical Papers, pages 1–2, 2014.

[67] Eleonora Borgia. The Internet of Things Vision: Key Features, Applications and
Open Issues. Computer Communications, 2014.

[68] Liliana Lilibeth Andrade Porras. Principes et Réalisation d’une Interface de Syn-
chronisation Interopérable entre Modèles de Calcul SystemC AMS pour le Prototy-
page Virtuel Optimisé de Systèmes Multi-Disciplines. PhD thesis, École doctorale
informatique, télécommunications et électronique (Paris), 2016.

[69] Cédric Ben Aoun. Principes et Réalisation d’un Environnement de Prototypage
Virtuel de Systèmes Hétérogènes Composables. PhD thesis, École doctorale infor-
matique, télécommunications et électronique (Paris), 2017.

[70] Sebastian Manz. Development and Implementation of a MotionJPEG Capable JPEG
Decoder in Hardware. PhD thesis, Heidelberg, Univ., Dipl., 2008.

148



Résumé
Les systèmes sur puce sont constitués d’une partie matérielle (un circuit intégré) et d’une partie logicielle (un
programme) qui utilise les ressources matérielles de la puce. La conséquence de cela est que le logiciel d’un
système sur puce est intrinsèquement lié à sa partie matérielle. Les composants matériels d’accélération sont
des facteurs clés de différenciation d’un produit à l’autre.

Il est nécessaire de pouvoir simuler ces systèmes très tôt lors de leur conception; bien avant que la puce
ne soit physiquement disponible, et même avant que la puce ne soit complètement spécifiée. Pour cela, un
modèle du système sur puce est réalisé à l’aide du langage SystemC au niveau d’abstraction TLM (Transaction
Level Modeling). La partie matérielle d’un système sur puce est constituée de composants qui s’exécutent en
parallèle. Pour autant, la simulation avec le simulateur SystemC de référence est séquentielle. Ceci permet de
garantir les bonnes propriétés des simulations SystemC, en particulier la reproductibilité et le confort d’écriture
des modèles.

Les travaux de cette thèse portent sur la simulation parallèle de modèles SystemC/TLM. L’objectif de
l’exécution parallèle est d’accélérer les simulations dans un mode d’utilisation correspondant à la phase de
développement, où il est primordial de disposer de simulations qui donnent rapidement un résultat. Afin de
cerner le problème de performance remarqué sur des modèles complexes à STMicroelectronics, le premier travail
de cette thèse a été d’analyser le profil d’exécution d’une étude de cas représentative de la complexité actuelle
des platformes SystemC/TLM. Pour cette étude, nous avons développé un outil de collecte de traces et de
visualisation. Les résultats de cette analyse ont indiqué que la lenteur d’exécution en simulation était due à
la complexité des composants matériels d’accélération. L’étude de l’état de l’art en simulation parallèle de
modèles SystemC nous a conduit à chercher d’autres pistes que celles actuellement existantes.

Pour réaliser les composants matériels plus rapidement et permettre d’augmenter la réutilisabilité de com-
posants d’un projet à l’autre, le flot de conception HLS (High Level Synthesis) est utilisé, notamment à STMi-
croelectronics. Ce flot de conception permet, à partir de la description d’une fonction en C++, de générer un
plan de composant matériel qui va réaliser la même fonction. La description des composants est découpée en
sous-fonctions, individuellement plus simples. Afin d’obtenir de bonnes performances, les sous-fonctions sont
assemblées en chaîne à travers laquelle circulent les données à traiter. Il est indispensable de pouvoir réutiliser le
code écrit pour la HLS dans les simulations SystemC/TLM : cette situation deviendra de plus en plus fréquente,
et il n’a pas assez de temps pour réécrire ces modèles dans ces projets courts.

Nous avons développé une infrastructure de simulation parallèle permettant d’intégrer et de simuler effi-
cacement des composants de traitement de données écrits pour la HLS. L’application de cette infrastructure
à un exemple a permis d’accélérer l’exécution de la simulation d’un facteur 1.6 avec 4 processeurs. Au-delà
de ce résultat, les conclusions principales de cette thèse sont que la simulation parallèle de modèles à haut
niveau d’abstraction en SystemC/TLM passe par la combinaison de plusieurs techniques de parallélisation. Il
est également important d’identifier les parties parallélisables dans des simulations industrielles, notamment
pour les nouveaux défis que sont les simulations multi-physiques et l’internet des objets.

Abstract
Systems on chip consist in a hardware part (an integrated circuit) and a software part (a program) that uses
the hardware resources of the chip. Consequently, the embedded software is intrinsically connected to the chip
hardware. Hardware acceleration components are key differentiation factors from one product to another.

It is necessary to simulate systems on chip very early in the design flow; before the chip is physically available
and even before its full specification. For such simulations, developers write a model of the system on chip in
SystemC, at the TLM (Transaction Level Modeling) abstraction level. The hardware part of a chip consists
in components that behave in parallel with each other. However, the reference SystemC simulator execute
simulations sequentially. The sequential execution enables to keep good properties of SystemC simulations,
namely reproducibility and ease of model writing.

This thesis work address the parallel execution of SystemC/TLM simulations. The goal of parallel simulation
is to speed up simulations in the context of the model development, where it is important to quickly get results.
In order to identify the performance problem of complex models at STMicroelectronics, the first step of this
thesis was to analyse the execution profile of a case study, representative of the complexity of current platforms.
For this study, we developed a trace recording and visualization tool. The results of this study indicated that the
performance critical parts of the simulation are hardware acceleration components. Studying existing parallel
simulation approaches led us to look for other parallel simulation techniques.

To speed up the development of hardware acceleration components and increase the reusability from one
project to another, the HLS (High Level Synthesis) design flow is used notably at STMicroelectronics. This
design flow enables to generate a logically synthesizable model of a component from a high level behavioral
description in C++. This design flow also constraints the development: it is split in sub-functions assembled
in a pipeline. The code written for HLS must be re-used in SystemC/TLM models: this situation will become
more and more frequent and there is no time to rewrite the models of such components within short delays.

We developed a parallel simulation infrastructure enabling the integration and efficient simulation of hard-
ware components written for HLS. We applied this infrastructure to an example platform which resulted in
speeding up the simulation. Beyond this result, one of the main conclusion of this thesis is that parallel sim-
ulation of abstract SystemC/TLM models will require to combine multiple parallelization techniques. Future
research work can identify other types of potential parallelism in industrial models. This will become critical
with the new challenges of simulation as multi-physical simulations and internet of things.
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