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Introduction Context

Classically, most people envision radars as they are often represented in cinema: a small round screen, circularly swept by a cone, displaying blinking points and beeping whenever a target is detected. That vision, which might have been true in the past, is no longer an accurate representation.

In the last decades, radar systems have become increasingly complex but also more versatile. Their missions have extended alongside their capabilities. This evolution was greatly favoured by the electronic and digital revolution in the industry. Modern radars are faster, adaptable and rely heavily on electronic systems. They can now dynamically and freely sweep their surroundings using electronic panels as antennas, freeing them from the mechanical limitations of rotating antennas and sequential scanning. Modern radars incorporate digital high-rate receptors, with high-performance numerical processors relying on precise statistical estimators.

The paradigm shift brought by the digital era fundamentally changes the mathematical models of radar engineering. Integration of this evolution in the engineering methodology is a necessary step for harnessing the full potential of modern radar systems.

And this evolution also impacts how radars are used; while older systems were each dedicated to a single task, modern radars are now multifunction, using their new-found flexibility to alternate between scanning, tracking, identification, communication, clutter mapping, etc. Each of those tasks requires time for emission, reception and processing of the radar signal. Radar time is the essential resource of radar task scheduling.

In modern warfare, increasingly intelligent systems compete against each other, seeking reactivity in ever shorter time and managing ever more information. In this context, optimizing radar efficiency is necessary to achieve desired performances in due time and avoid overload.
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Motivation and Objectives

One the main challenges for modern radar engineering is to assimilate digital tools to efficiently exploit the available computing power: mathematical modelling, algorithmics, operational research and optimization.

Those transformations will push the production of aided-design tools for facilitating, improving and speeding up design and simulation of radar architectures; as well as the development of real-time practical algorithms for optimizing resource management and radar processing in operational situations.

One particular radar function, fundamental but costly is the searching (or scanning) of yet-unknown targets. Radar search optimization is an important topic for radar resource management, and the subject of this thesis, a joint project between THALES AIR SYSTEMS, the Direction Générale de l'Armement (DGA) of the French Ministry of Defence and the Laboratory of Digital Sciences of Nantes (LS2N). The thesis main objectives are:

• to define the theoretical framework and mathematical model of radar search optimization for tridimensional scanning radars.

• to identify, implement and test the appropriate approaches and algorithms for solving radar search optimization problems.

The work accomplished during the thesis in pursuit of those objectives includes:

• a general problem formulation for radar search pattern optimization of scanning radars. This formulation can also be extended to any radar capable of dynamical beamforming, i.e. electronic control of the antenna radiation pattern.

• a procedure for approximating this problem as a combinatorial cover problem, and solving it using integer programming methods. Dynamic programming based algorithms have also been designed and can solve to optimality certain specific cases.

• a classification of the theoretical complexity of radar cover problems. Each case is proved to be either computationally easy (polynomial complexity) or hard (NP-hard).

• extensions of the initial formulation accounting for localized clutter, terrain masking, localized scan update rates and multi-mission constraints.
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• computational improvements based on reduction methods for decreasing the number of variables and/or constraints, and thus the size, of the combinatorial problem.

• exploration and theoretical work on future research leads, such as how to exploit overlaps in the radar search pattern, formulated as a probability cover problem.

• implementation of a software framework for optimization of radar search patterns, identification of short-term applications in aided-design and performance simulations, and long-term applications in real-time radar resource management.

Thesis outline

The contents are organized in four chapters:

• Chapter 1 presents the basic principles of radar theory and builds the mathematical radar model which will be considered in the rest of the thesis.

• Chapter 2 focuses on optimization and complexity theory, presents the theoretical framework for solving combinatorial cover problems as well as results on the computational complexity of radar cover problems.

• Chapter 3 defines the general formulation for radar search optimization, and describes a procedure for its approximation and solving as a combinatorial cover problem.

• Chapter 4 presents extensions for integrating localized multi-mission constraints, computational improvements for faster computation and multiple solutions generation and representation. It also explores and presents the theoretical work on future research leads of interests.

The thesis concludes on synthesis of the work achieved, the possible applications and the continuation of this research.

Résumé français

Contexte

Les radars modernes sont des systèmes de plus en plus complexes mais aussi de plus en plus autonomes. Les missions des radars modernes se sont étendues conjointement avec leurs capacités, dont l'évolution a profité du développement de l'électronique et du numérique à travers toute l'industrie. Ces nouveaux radars sont plus rapides, plus flexibles et entièrement électroniques.

Ils sont capables de balayer dynamiquement et librement l'espace grâce à des panneaux numériques, libérés des limitations mécaniques des antennes tournantes qui parcourent l'espace de manière séquentielle. Les nouveaux radars intègrent des chaînes de réception haut débit et des calculateurs numériques intensifs afin d'implémenter des traitements statistiques complexes. Ces nouvelles caractéristiques changent fondamentalement les modèles mathématiques sous-jacents de l'ingénierie radar. Afin d'en exploiter pleinement les possibilités, il devient nécessaire d'intégrer ces évolutions à la méthodologie et développer en conséquences de nouvelles solutions d'ingénierie adaptées aux spécificités de ces nouveaux radars.

Ces évolutions changent également la façon d'utiliser les radars. Tandis que les anciens radars avait généralement une seule fonction, les radars modernes, de par leur plus grande flexibilité, sont généralement pensés pour gérer plusieurs tâches à la fois : surveillance (aussi appelée veille radar), poursuite de cibles, identification, communication, analyse et estimation du fouillis ambiant, etc. Chacune de ces fonctions radars nécessite du temps afin d'émettre, de réceptionner puis de traiter les signaux radar. Le temps-radar est donc la ressource fondamentale dans le cadre de la gestion des fonctions radar.

Dans le contexte de la guerre électronique moderne, où des systèmes de plus en plus intelligents doivent rivaliser sur des temps de réaction toujours plus courts en prenant en charge de plus en plus de tâches, il devient primordial d'optimiser l'utilisation du temps radar, sous peine de voir le radar dépassé par sa charge et à échouer à atteindre ses objectifs.

Motivation et Objectifs

L'un des challenges principaux dans l'ingénierie radar moderne est donc de mettre à profit les outils récents et les puissances de calcul de l'ère numérique : la modélisation mathématique, les statistiques, l'algorithmie, la recherche opérationnelle et l'optimisation.

L'utilisation conjointe de ces domaines a deux objectifs à terme : la production d'outils d'aide à l'ingénierie, afin de faciliter, améliorer et accélérer la conception et la simulation des architectures de radars ; et le développement d'algorithmes utilisables en temps-réel pour l'optimisation des ressources et l'adaptation des traitements radars en situation opérationnelle.

En particulier, une tâche prépondérante du radar, mais coûteuse en ressources temporelles est la veille radar : la recherche des cibles qui n'ont pas encore été détectées. L'optimisation de la veille radar est une question importante de la gestion des ressources radar. C'est le sujet de cette thèse, réalisée dans le cadre des activités de recherche de THALES AIR SYSTEMS, en partenariat avec la Direction Générale de l'Armement (DGA) et le Laboratoire des Sciences du Numérique de Nantes (LS2N). Les objectifs principaux de la thèse sont :

• de définir et modéliser le problème d'optimisation de la surveillance radar, plus précisément du maillage de veille, pour des radars à balayage électronique.

• d'identifier la théorie et les méthodes d'optimisation adaptées à la résolution de ce problème.

Les travaux réalisés durant cette thèse ont été :

• la formalisation théorique du problème générale d'optimisation de la veille pour le modèle radar à balayage électronique utilisant une antenne réseau à contrôle de phase et d'amplitude. Cette formulation générale du problème peut s'éteindre à d'autres modèles d'antennes, tant que ces dernières permettent un contrôle électronique du diagramme de rayonnement.

• l'approximation de ce problème général par le recouvrement d'ensemble, un des problèmes fondamentaux de l'optimisation combinatoire. Et sa résolution par des méthodes basées sur la programmation dynamique dans certains cas, ou la programmation linéaire en nombres entiers dans le cas général.

• la classification théorique des problèmes de couverture radar selon leur complexité algorithmique, chaque problème étant soit solvable en temps polynomial, soit NP-difficile.

• l'extension de la méthode de résolution pour intégrer de nouvelles contraintes : fouillis localisé, masques de terrain, cadences adaptatives, et pour gérer des situations avec plusieurs types de cible.

• l'implémentation et la simulation des outils théoriques conçus pour l'optimisation de la veille radar.

• une formulation probabiliste du problème, permettant d'exploiter les recouvrements de la veille radar, c'est-à-dire les zones scannées plusieurs fois durant la veille.

• l'identification d'applications industrielles potentielles à court terme et à long terme.

Plan de la thèse

Le contenu de la thèse est organisé en quatre chapitres. Les deux premiers chapitres se concentrent donc sur les aspects théoriques, et les deux suivants sur les applications :

• Le Chapitre 1 introduit la théorie du radar et construit un modèle mathématique d'un radar tridimensionnel à balayage électronique, qui sera utilisé dans le reste de la thèse.

• Le Chapitre 2 décrit les concepts provenant de la théorie de l'optimisation et la complexité algorithmique qui serviront de base théorique à la formalisation et la classification des problèmes de couverture radar.

Ces outils serviront ensuite à la conception d'algorithmes pour résoudre les problèmes de couverture radar.

• Le Chapitre 3 définit le problème d'optimisation du maillage de la veille radar, et décrit une procédure pour son approximation et sa résolution sous forme de problème combinatoire.

• Le Chapitre 4 présente les améliorations que cette approche fructueuse a permis de développer. Le problème d'optimisation du maillage de la veille radar a pu être étendu à des cas plus généraux, prenant en compte des contraintes de fouillis localisé ou de cadences adaptatives. La géométrie du problème peut être exploitée par des méthodes de réduction de contraintes et/ou de variables pour accélérer l'optimisation.

Une résolution rapide du problème permet la génération itérative de solutions multiples et l'analyse de l'ensemble des solutions optimales. Le chapitre conclut par des travaux théoriques sur des pistes futures.

La conclusion fait une synthèse des travaux effectués, des possibilités d'applications et des pistes de recherche ouvertes par la thèse.

Théorie et modèle mathématique du radar

Historique

Le terme RADAR est la contraction de l'expression anglaise "RAdio Detection And Ranging", qui peut se traduire par « détection et estimation de la distance par ondes radio ». Ce terme désigne de façon très générale tout système utilisant des ondes électromagnétiques pour détecter et analyser des objets à distance.

Le concept du radar est apparu dès la fin du 19 e siècle avec la naissance des télécommunications, et la technologie radar s'est beaucoup développée durant les dernières décennies. Les radars sont des outils essentiels pour la défense militaire, en particulier avec la présence prépondérante de la guerre électronique dans les conflits modernes. Ils jouent également un rôle vital dans de nombreux domaines civils, comme le trafic aérien, la météorologie et la cartographie. La recherche prolifique sur le sujet a donné naissance à divers systèmes durant la seconde moitié du 20 e siècle.

Fonctionnement d'un radar

Les systèmes radar utilisent les ondes électromagnétiques pour détecter la présence et estimer la position de cibles distantes. Leur fonctionnement physique peut être décrit par trois étapes : l'émission d'une onde électromagnétique dans une direction d'intérêt, sa réflexion par une cible, et enfin sa réception et son analyse par la radar afin d'estimer la présence et les caractéristiques de la cible.

L'écho renvoyé vers le radar est cependant pollué par le bruit ambiant. Qualitativement, plus l'objet est éloigné, plus l'écho renvoyé est faible, et donc difficile à distinguer du bruit ambiant. Améliorer la détection peut être fait en augmentant la puissance du radar, en concentrant le faisceau d'émission de l'antenne, ou rallongeant la durée du signal émis. La première option a souvent un cout matériel important, et est donc généralement évitée. On préfèrera plutôt les deux dernières options, en cherchant un compromis entre la taille de la zone de surveillance et la durée disponible pour effectuer la surveillance.

Les performances du radar peuvent être calculées à partir de l'équation radar, qui quantifie la relation entre les caractéristiques du radar et sa performances de détection. Elle peut être interprétée comme la mise en équation des phénomènes de propagation et de dispersion qui ont lieu entre l'émission du signal et sa réception après réflexion par une cible.

Diagramme de rayonnement

L'antenne radar est modélisée par un réseau bidimensionnel à commande de phase et d'amplitude. Chaque élément rayonnant correspond à une source électromagnétique isotrope de fréquence pure dont la phase et l'amplitude peuvent être contrôlées indépendamment. L'ensemble des amplitudes et phases des éléments du réseau forment la loi d'illumination de l'antenne.

Le diagramme de rayonnement de l'antenne est la transformée de Fourier de sa loi d'illumination. Contrôler les phase et amplitudes des éléments du réseau permet donc de contrôler la forme du diagramme de rayonnement, via des techniques communes en traitement du signal :

• L'amplitude permet de contrôler la forme du diagramme de rayonnement, entre autres la largeur du lobe principal et la hauteur des lobes secondaires, via un fenêtrage.

• La phase permet de translater le diagramme de rayonnement et de changer la direction d'émission du lobe principal, via un déphasage linéaire.

Forme d'onde

On appelle forme d'onde le signal émis par l'antenne radar. Ce dernier a une forme caractéristique que l'on va rechercher dans le signal reçu par le radar, afin de retrouver l'écho du signal émis réfléchi par une cible, validant la présence de cette dernière.

Le modèle considéré dans cette thèse est celui d'un radar mono-statique Doppler pulsé, donc utilisant des formes d'ondes qui sont des séries d'impulsions courtes (émission) entrecoupées de silences d'écoute (réception). Ces séries d'impulsions sont combinées afin d'améliorer le rapport signal sur bruit, cette technique s'appelle l'intégration.

Les performances de détection de formes d'ondes radar peuvent venir de mesures réelles, ou peuvent avoir été simulées par un modèle énergétique de Introduction L'optimisation est une branche de mathématiques s'intéressant à la résolution efficace de problèmes rencontrés dans la vie réelle. Elle englobe plusieurs aspects, entre autres la modélisation mathématique de ces problèmes, l'analyse de leur complexité et le développement de procédures, appelées algorithmes, permettant leur résolution systématique.

Qualitativement, l'optimisation de la veille radar consiste à chercher d'un maillage de veille performant, capable d'assurer la détection sur l'espace de surveillance en prenant le moins de temps possible. Cela revient à utiliser un nombre « minimal » de pointages, à une pondération près. Le problème d'optimisation de la veille radar peut être relié à la classe des problèmes de recouvrement combinatoire, dont l'objectif est de couvrir un ensemble, appelé univers, en utilisant le moins d'éléments possible parmi un ensemble de couvertures disponibles, ces dernières étant des sous-ensembles de l'univers.

Problème de couverture par ensembles

Le problème de couverture par ensembles est la forme la plus générale de recouvrement combinatoire, et est NP-complet, faisant partie des problèmes les plus durs de la classe NP. Qualitativement, un problème NP-complet a des solutions faciles à tester (complexité polynomiale pour vérifier la validité et le cout d'une solution) mais ses solutions optimales sont difficiles à trouver (complexité exponentielle pour tester toutes les solutions) dans l'état de l'art de la recherche informatique. Les problèmes industriels difficiles sont généralement NP-complets.

Un problème de couverture radar peut être transformé en problème de couverture par ensembles, avec différentes propriétés selon le modèle du radar. De manière générale, un problème de couverture radar s'écrira comme le recouvrement d'une grille de surveillance par des pointages. Les radar bidimensionnels (pas de dépointage en élévation) correspondent aux problèmes de recouvrement de grilles unidimensionnelles alors que les radars tridimensionnels correspondent au problème de recouvrement de grille bidimensionnelle. Un cas intéressant de ce dernier pour la modélisation des radars tridimensionnels est le problème de recouvrement de grille rectangulaire, où les zones de détection des pointage sont représentées par des rectangles. Ce modèle offre un bon compromis entre choix et complexité du nombre de pointages candidats pour former le maillage de veille.

Classification de problèmes de recouvrement de grille

Sous forme générale, le problème de couverture par ensembles est NP-complet, mais certains cas particuliers de ce problème ne le sont pas nécessairement. Ainsi, les restrictions géométriques des problèmes de recouvrement de grilles unidimensionnelles permettent une résolution efficace de ces derniers, en temps (fortement) polynomiale, par des algorithmes de programmation dynamique. Certains sous-cas du problème unidimensionnel peuvent aussi être résolus par méthode gloutonne ou programmation linéaire, mais la programmation dynamique reste néanmoins l'approche la plus simple à implémenter et la plus efficace.

A l'inverse, le problème de recouvrement de grille rectangulaire est NPcomplet. La démonstration est faite par réduction depuis le problème de couverture par sommets de la théorie des graphes, l'un des 21 problèmes NP-complets originels de Karp. De façon plus générale, tous les problèmes de recouvrement modélisant des radars tridimensionnels sont NP-difficile à résoudre.

Méthode par séparation et évaluation

Il se peut qu'on ne trouve jamais d'algorithmes garantis en complexité théorique de résoudre efficacement les problèmes de recouvrement de grille bidimensionnelle, si P =NP. Il reste cependant possible de résoudre ces problèmes efficacement en pratique. La méthode par séparation et évaluation, qui explore l'espace des solutions possibles, obtient généralement de bonnes performances en pratique, en évitant certaines portions de l'espace de décision via des méthodes d'évaluation, d'où son nom.

Cette méthode offre de plus de nombreux avantages d'un point de vue opérationnel, déjà la possibilité de stopper à n'importe quel moment l'exploration pour récupérer la meilleure solution trouvée, mais aussi la connaissance des bornes d'évaluation sur le reste de l'espace à explorer, qui permettent de quantifier le gain potentiel de la poursuite de l'optimisation. Ces avantages sont particulièrement pertinents pour les systèmes radars qui fonctionnent en temps critique et ont besoin d'une solution, même sous-optimale, dans un délai limité. La connaissance du gain potentiel permet de choisir si la poursuite de l'optimisation en vaut la peine, où si la puissance de calcul sera mieux utilisée à d'autres tâches. D'autant plus que pour les problèmes de couverture, les solutions sont très rapidement de très bonne qualité, arrivant en quelques secondes à moins d'une dizaine de pourcents de l'optimale, alors que combler ces derniers pourcents pour arriver à l'optimalité peut être difficile.

Optimisation du maillage de la veille radar

Formulation générale du problème

Le problème d'optimisation de la veille radar est défini à partir des besoins opérationnels. Le cahier des charges de la mission confiée au radar est décrit comme la contrainte de détection d'une cible ayant une taille apparente et suivant un modèle (Swerling) connus, à une portée souhaitée qui dépend de la direction d'observation, avec une probabilité de détection minimum garantie et une probabilité de fausse alarme (détection en l'absence de cible réelle, généralement causée par du bruit) maximum garantie.

Pour accomplir cette mission, le radar a à disposition une base de données de formes d'ondes, chacune ayant ses propres paramètres. Les performances des formes d'ondes, en terme de probabilités de détection/fausse alarme à rapport signal-sur-bruit donné, sont soit connues par mesures réelles, soit simulées à l'aide du modèle énergétique du Chapitre 1.

Sous sa forme initiale, l'optimisation du maillage de la veille est un problème d'optimisation difficile à résoudre, même d'un point de vue pratique. Ce dernier mélange variables continues (lois d'illuminations des pointages) et variables discrètes (choix des formes d'ondes). De plus la taille du maillage de veille n'est pas nécessairement fixée, et est une « méta-variable » qui conditionne le nombre des précédentes variables dans le problème. De surcroît les fonctions dans la contrainte de détection peuvent être non-convexes. Toutes ces caractéristiques rendent la résolution directe du problème difficile.

Approximation discrète

Il est cependant possible d'approcher ce problème sous une forme combinatoire, qui peut être résolue, en faisant les deux approximations suivantes :

• la discrétisation de la contrainte de détection sur une grille finie de surveillance.

• la restriction des diagrammes de rayonnement des pointages candidats à des formes rectangulaires.

La résolution du problème sur la base de ces approximations peut être divisée en trois étapes :

• la quantification sur la grille représentant l'espace de surveillance.

• la synthèse de diagrammes de rayonnement faisables à partie des besoins énergétiques de la mission.

• l'écriture du problème sous forme de recouvrement combinatoire et sa résolution par séparation et évaluation.

Synthèse de diagrammes de rayonnement

Le diagramme de rayonnement idéal assurant la détection sur une partie de l'espace de surveillance, ici une zone rectangulaire, est une fonction avec une discontinuité, car le diagramme doit émettre parfaitement et uniquement dans la zone rectangulaire, et pas en-dehors. Le diagramme de rayonnement étant la transformée de Fourier de la loi illumination du réseau de l'antenne, il faudrait une loi d'illumination de taille infinie pour émettre un diagramme discontinu. Une antenne réelle de taille finie n'est donc pas capable d'émettre un tel diagramme. Il est cependant possible d'approcher ces diagrammes idéaux via la méthode d'échantillonnage de Woodward-Lawson, qui approxime un faisceau à partir d'une formule très similaire à une transformée de Fourier inverse. Les diagrammes synthétisés sont ensuite filtrés par une fenêtre de Taylor, souvent utilisée en traitement radar.

Il est cependant possible d'utiliser d'autres méthodes de synthèse pour générer des diagrammes de rayonnement faisables à partir des diagrammes idéaux.

Formulation combinatoire

L'ensemble des pointages candidats est le produit Cartésien de l'ensemble des diagrammes synthétisés à l'étape précédente, avec l'ensemble des formes d'ondes disponibles sur le radar. Pour chacun de ces pointages candidats, la couverture discrète du pointage est calculée comme une matrice binaire indiquant la détection sur la grille de surveillance.

Plusieurs schémas sont possibles pour l'échantillonnage de la détection : sur les coins de chaque case, au centre de chaque case, ou sur une sous-grille. Pour chacun de ces points, la portée de détection du pointage est calculée par l'équation radar. À chaque couverture discrète est associé un coût, qui correspond à la durée de la forme d'onde du pointage.

À ce stade, le problème peut s'écrire sous forme combinatoire, où l'on cherche à trouver un maillage, un sous-ensemble de couvertures discrètes couvrant chaque case de la grille, avec un coût total en budget-temps radar minimum. On reconnaît le problème de recouvrement de grille décrit au Chapitre 2, qui peut être résolu par séparation et évaluation.

Extensions et améliorations algorithmiques

L'une des grandes forces de l'optimisation du maillage de la veille radar par approximation combinatoire est le découplage que ce dernière effectue entre le modèle radar et le problème de recouvrement combinatoire. Ainsi, le modèle radar peut intégrer des contraintes locales à chaque case de la grille de surveillance, comme du fouillis ou des masques de terrain, ou gérer des missions multiples sans que cela impacte la structure du problème combinatoire.

Certaines extensions du problème, telles que les contraintes de cadences de mise à jour localisées ou l'utilisation des recouvrements entre pointages nécessitent cependant des formulations plus générales de recouvrement combinatoire :

• problème de multiples recouvrements : chaque élément doit être couvert un certain de nombre de fois, choisi de manière indépendante pour chaque élément, représentant ainsi les différentes contraintes de cadences.

• problème de recouvrement probabiliste : les couvertures discrètes ne représente plus une détection binaire, mais une probabilité de détection, permettant de combiner plusieurs pointages sous-énergétiques pour assurer une probabilité de détection globale.

Dans une autre direction, l'amélioration des puissances de calcul des ordinateurs et des performances des solveurs combinatoires permet d'envisager la génération de solutions multiples. La particularité géométrique du problème de recouvrement de grille rectangulaire permet aussi de réduire très efficacement la taille du problème par des méthode de réduction de variables/contraintes.

Contraintes localisées de fouillis, de masque et de cadence

En situation opérationnelle, l'environnement du radar est souvent inhomogène, avec :

• du fouillis localisé dans certaines zones de l'espace de surveillance.

• des reliefs qui peuvent limiter la portée de détection.

• des zones de danger à scanner de façon plus régulière, car avec un fort risque de voir une cible y apparaître.

Gestion des missions multiples

Les radars en situation opérationnelle ont souvent pour tâches de détecter plusieurs types de cible à la fois : missiles, chasseurs, avions, etc. Chaque tâche correspond à une mission avec un modèle de cible et une portée souhaitée différents. Les missions peuvent aussi avoir des objectifs de probabilité de détection et de fausse alarme différents. Les différents besoins énergétiques sont combinés lors de la synthèse de faisceaux.

Le problème combinatoire peut ensuite être approximé pour les différentes missions, chaque pointage candidat ayant une couverture discrète de détection pour chaque mission. Les contraintes de détection des différentes missions peuvent être combinées sous une seule forme matricielle, pour former un problème de détection globale. Ainsi le maillage sera optimisé globalement, pour accomplir toutes les missions à la fois en utilisant un budget temps radar minimal.

Méthodes de réduction

La complexité de l'optimisation, en particulier pour la méthode par séparation et évaluation, est fortement dépendante du nombre de variables et de contraintes, qui augmente avec la résolution de la grille de surveillance. Dans le cas d'une grille rectangulaire, le nombre de contraintes évolue linéairement, et le nombre de variables quadratiquement, avec la résolution de la grille. Le nombre de variables peut rapidement devenir le facteur limitant de l'optimisation.

Il est cependant possible de réduire considérablement le nombre de variables dans le cas d'un problème de recouvrement de grille rectangulaire. Car en pratique, un certain nombre de couvertures rectangulaires sont dominées par d'autre couvertures, au sens où une couverture domine un autre si elle couvre au moins la même zone en temps égal ou plus court. Les couvertures dominées peuvent être éliminées du problème sans changer le coût optimal du problème. Dans le cas général, cela nécessite de comparer toutes les couvertures deux à deux, ce qui peut être couteux en calcul. Dans le cas rectangulaire, il est possible d'exploiter la structure géométrique du problème pour éliminer en une seule passe toutes les couvertures dominées, en parcourant l'ensemble des rectangles de la grille par ordre décroissant de taille. La méthode exploite la propriété que pour toute couverture dominée, il existe une séquence de rectangles de taille décroissante depuis une couverture dominante.

De manière similaire, il est possible d'éliminer des contraintes superflues pour réduire la taille du problème. Une contrainte de détection est superflue si elle est impliquée par une autre contrainte, dans le sens où si la seconde est vraie, alors la première l'est forcément aussi. Une méthode de réduction, exploitant elle aussi la structure rectangulaire du problème, permet de supprimer les contraintes superflues en une seule passe.

Le gain le plus spectaculaire en pratique reste cependant celui de la réduction de variables, capable de réduire par dix la taille du problème. La raison étant qu'il y a généralement beaucoup plus de variables (croissance quadratique) que de contraintes (croissance linéaire).

Génération et représentation de solutions multiples

La génération de multiples solutions est faisable en poursuivant la phase d'exploration de la méthode par séparation et évaluation même après avoir trouvé une solution optimale. L'obtention de plusieurs solutions optimales est intéressante d'un point de vue de l'ingénierie à la fois pour offrir du choix aux ingénieurs, mais aussi pour raffiner la fonction de coût et la modélisation du problème à partir de leur choix.

Il se peut cependant qu'il y ait un nombre trop grand de solutions optimales différentes pour que leur ensemble puisse être généré. De plus une forte redondance entre solutions optimales diminue l'intérêt d'une recherche exhaustive, car beaucoup des nouvelles solutions trouvées seront des combinaisons de solutions déjà connues.

Une approche possible pour éviter cette redondance d'information est de résoudre de manière itérative des problèmes de maximisation de distance entre solutions. Le coût optimal étant connue à partir de la première solution optimale, on peut l'intégrer sous forme de contrainte au problème, et choisir comme fonction de coût le nombre de couvertures de la solution qui ne sont pas déjà présentes dans les solutions précédentes. Cette méthode itérative permet de construire l'ensemble des couvertures optimales, les couvertures qui sont utilisées par au moins une solution optimale. Parallèlement, il est possible de calculer l'invariant d'optimalité, qui correspond à la partie constante commune à toutes les solutions optimales, c'est à dire l'ensemble des couvertures utilisées par toute solution optimale. Ces outils permettent d'analyser la structure type d'une solution optimale, qui sera généralement une combinaison de l'invariant d'optimalité avec des couvertures optimales optionnelles.

Grille adaptative

La conception de grilles adaptatives fait partie des pistes de recherche futures. Pour l'instant, les cases de la grille de surveillance sont délimitées par des valeurs uniformément réparties, de telle sorte que chaque case recouvre la même surface. Il est cependant possible de travailler sur une grille avec des valeurs non uniformes, dont les cases seraient plus ou moins grande de manière à refléter les besoins énergétiques de la détection. La précision de la grille varierait donc localement sur l'espace de surveillance.

Des méthodes de calcul numérique reposant sur la médiane ou la moyenne, comme l'algorithme de Max-Lloyd, permettent d'adapter la grille aux besoins énergétiques.

Problème de recouvrement probabiliste

Une autre piste de recherche est la représentation probabiliste des couvertures discrètes des pointages, où pour chaque case la couverture ne représente plus une détection binaire, mais la probabilité de détection du pointage sur cette case. Ainsi, deux pointages qui n'atteignent pas une probabilité de détection suffisante séparément, par exemple 70% < 90%, peuvent l'atteindre conjointement, la probabilité qu'au moins un des deux pointages détecte la cible étant 1 -(1 -70%) 2 = 91% > 90%.

Le problème de recouvrement probabiliste peut se réécrire sous forme matricielle en utilisant la fonction anti-log probabilité x → log(1x), et correspond à un programme linéaire en nombres entiers qui peut être résolu par séparation et évaluation.

Conclusions et perspectives

Les nouvelles capacités numériques des radars modernes à balayage électronique offrent des larges possibilités pour l'optimisation du maillage de la veille radar. Une utilisation efficace et flexible des ressources en budget-temps peut permettre aux radars de gérer des situations complexes même sous des délais très courts.

Le principal objectif de la thèse était d'identifier les approches mathématiques adaptées à la représentation du problème du maillage de la veille radar, et de formaliser sur la base de ces outils un canevas théorique pour la résolution de ce problème. L'approximation du maillage de la veille radar sous forme de problème de recouvrement combinatoire s'est révélée être un outil puissant et flexible, pouvant être généralisé à des situations complexes avec plusieurs missions et des contraintes localisées.

Les contributions théoriques de la thèse ont permis la classification des problèmes de couverture radar, selon le type de radar, entre la classe des problèmes solvable en temps fortement polynomial ou la classe des problèmes NP-difficiles. Les contributions incluent également la conception de méthodes de réduction exploitant la géométrie du problème pour accélérer l'optimisation, et des travaux sur la génération et la représentation de solutions multiples.

Les applications possibles de ces travaux portent sur l'aide à la conception de maillage de veille par des ingénieurs pour des radars existants, et la simulation des performances d'architectures de futurs radars. Sur le long terme, les algorithmes présentés dans cette thèse pourraient être inclus directement dans le radar, afin d'optimiser en temps réel le maillage de veille en situation opérationnelle.

Ces travaux ont également ouvert la voie vers de nouvelles pistes de recherche, par exemple l'utilisation les recouvrements entre pointages ou les grille de surveillance adaptées aux besoins énergétiques de mission. D'autres pistes sont également envisagées, portant notamment sur l'utilisation de grilles multidimensionnelles. Ainsi la grille couvrirait les axes azimut et élévation, mais aussi les axes portée et vitesse de la détection des cibles, permettant l'optimisation des formes d'ondes. Le temps pourrait aussi être ajouté comme axe supplémentaire, afin d'inclure l'ordonnancement dans l'optimisation du maillage de la veille et de compenser les mouvements de radars mobiles.

À la vue de ces possibilités, le principal résultat de la thèse est d'avoir montré la pertinence de l'utilisation du recouvrement combinatoire comme un outil pour l'optimisation du maillage de la veille radar.

Chapter 1

Radar theory and mathematical model

History

The term RADAR is the contraction of "RAdio Detection And Ranging". It encompasses all systems and techniques for detecting and analysing distant objects through the use of radio waves, which usually refer to electromagnetic waves with frequencies between a few kilohertz to several hundred gigahertz.

The first radar experiments were pioneered by German physicist Heinrich Hertz in the late 19th century, applying James Maxwell's ideas. However, radar technology has most significantly developed during the last decades, principally for military use and defence applications.

Radars are nowadays essential assets in modern warfare and military defence, ever since World War II. They also play an important role in civilian applications, most notably in flight control with the ever increasing traffic, but also in weather forecasting, topography and geology. Radar research has been prolific in the latter part of the 20th century during which many radar systems and technological improvements have been made.

Radar theory covers a wide variety of fields: from antenna design focusing on the electromagnetic properties of radiating elements, to signal processing studying the structure and efficiency of transmitted signals, and statistics for extracting reliable information for target detection and analysis.

Radar basic principle

A radar system detects an object by propagating electromagnetic waves, from which it can also infer information regarding the object. This process can be • The radar first sends an electromagnetic wave in the scanning direction.

• Upon encountering an object, the wave is reflected and partially propagates back to the radar antenna.

• The radar receives and processes the reflected wave to detect an object and estimate its characteristics, usually position and radial speed.

Unfortunately, the received signal is polluted with ambient noise. The further the object is, the weaker the echo is and the harder it becomes to distinguish the echo from noise. Detection of weak echo signals can be improved through different approaches:

• Increasing the emitter antenna power. This is the most straightforward solution, but has significant material, logistic and energetic costs. A more powerful antenna will be bigger, and use more energy, thus producing more heat and requiring a better cooling system. This is usually not the preferred solution, rather used as a last resort.

• Focusing the antenna radiation pattern in a unique direction rather than dispersing it uniformly in all directions. Concentrating the radiating power decreases the angular width of the detection area but improves the detection range. Modern radars rely on electronics to numerically control and dynamically generate a desired radiation pattern.

• Increasing the emitted signal duration. After reflection, a longer echo is easier to extract from noise, as the echo has a consistent temporal structure. The longer the echo, and the more it contrasts with the randomness of noise, typically assumed white (thus incoherent between any two instants). A longer signal means sending more energy on the target. Time integration of the received signal increases the echo strength comparatively to the ambient noise power.

The formal mathematical relation between those parameters and the detection range is called the radar equation.

Radar equation

Definition

The radar equation expresses the relationship between the energy reflected by a target towards the radar, the radar characteristics (emission power, antenna gain), the target characteristics (radar cross-section, distance to the radar) and various losses.

The radar equation sometimes appear under different forms, depending on the situation and radar model, which are all mathematically equivalent however. Formulas used for radar design and sizing under detection constraints (for given target at given range, etc.) may look different than formulas for computing performances of a known radar architecture. Though the equation always models the same phenomenon and quantify the propagation and dispersion of radar waves travelling forth and back between the radar and a target [START_REF] Skolnik | Radar Handbook[END_REF]:

E r = P T g t g r λ 2 σ (4π) 3 R 4 L (1.1)
with :

• E r the reflected energy received on the antenna (J),

• P the antenna average power (W),

• g t the antenna emission gain in the target direction (dB),

• g r the antenna reception gain in the target direction (dB),

• T the emitted signal time duration (s),

• λ the signal wavelength (m),

• σ the target radar cross-section, its "visibility" to the radar (m 2 ),

• R the radar↔target distance (m),

• L the energetic losses (dB). 

Energetic dispersion interpretation

The radar equation models the physical phenomenon of energy propagation. Under the far-field hypothesis, an antenna can be modelled as a point source "seen from far away". The antenna is isotropic if it emits the same power in all directions, and has a constant gain. It is directive if the antenna focuses the power in certain directions, and has a variable gain. Both cases are shown in Figure 1.2. An isotropic antenna radiates its power P uniformly, emitting spherical waves at far-field. At a distance R from the radar, its power is distributed evenly on a sphere with a surface 4πR 2 , see Figure 1.3. For a directive antenna, the power distribution is proportional to the antenna gain. The power flux density radiating from the antenna is

P g t 4πR 2
A target with radar cross-section σ at range R will partially intercept and reflect this power. Under the far-field hypothesis, the target is far away from the radar, and can be viewed as a point source dispersing spherical waves. The reflected power at a distance R from the target is distributed on the sphere with radius R, see Figure 1.3, and the reflected power flux density is

P g t 4πR 2 σ 4πR 2
and is intercepted by the antenna effective reception area A e = grλ 2 4π [START_REF] Skolnik | Radar Handbook[END_REF]. The total energy received by the radar is the power multiplied by the signal duration T :

P g t 4πR 2 σ 4πR 2 g r λ 2 4π
T and including losses L, this corresponds to the radar equation (1.1). semi axis ∆u 3dB = 2u 0 and ∆v 3dB = 2v 0 , see Figure 1.13, where u 0 and v 0 are solutions of the system

       sin( πKdx λ u) sin( πdx λ u) = 1 2 K ⇔ √ 2 sin πKdx λ u = K sin πdx λ u , 0 < u < λ 2Kdx sin( πLdz λ v) sin( πdz λ v) = 1 2 L ⇔ √ 2 sin πLdz λ v = L sin πdz λ v , 0 < v < λ 2Ldz
which can numerically be solved by using root-finding line search, such as the popular Brent's method [START_REF] Brent | Algorithms for Minimization Without Derivatives[END_REF] (implemented in MATLAB by fsolve, and in SciPy by scipy.optimize.brentq). The half-power narrow beamwidth can also be approximated using

∆u 3dB ≈ 0.89 λ Kdx if K ≫ 1 ∆v 3dB ≈ 0.89 λ Ldz if L ≫ 1
which are the formulas for a continuous rectangular electromagnetic source. Physically, a discrete array with enough elements can be viewed as a continuous source.

The half-power beamwidth of the centered narrow beam is approximately the area A 3db = πu 0 v 0 = π 4 ∆u 3dB ∆v 3dB of the ellipse with axis ∆u 3dB and ∆v 3dB . Considering the number of parallel beamforming computations the digital processor can perform is a known system value N DBF ∈ N, the maximum area in direction cosines which can be scanned at reception is

A max = N DBF A 3db = N DBF 2π∆u 3dB ∆v 3dB
and the minimum reception gain of digital beamforming is at most 3 decibels below the maximum gain of the antenna array 

Waveform definition and detection principle

The waveform is the shape along time of the signal emitted by the radar. The principle of radar detection is to "search" and try to "recognize" the waveform, the emitted signal shape, inside the received signal to find an echo reflected by a target, see Figure 1.14 for a simplified example. The radar model in this thesis is a mono-static pulse-Doppler radar. A mono-static radar uses the same antenna for emission and reception, and thus cannot receive while emitting. The complete waveform is a series of short pulses (emission) alternating with silences (for reception). Those series of pulses are combined to increase the signal-to-noise ratio. This technique, used for improving detection, is called integration. This thesis presents an energetic waveform model, which does not detail the signal processing aspects of waveform design: pulse modulation, spectral occupation, ambiguity function, encoding, etc., nor the associated processing chain: demodulation, matched/mismatched filtering, etc.

Inside a waveform, series of pulses with similar characteristics are grouped together, such a group is called a burst. A waveform is thus a series of bursts, and each burst is a series of pulses, see Figure 1.15. The signal parameters are different from burst-to-burst inside a waveform, but are constant inside • τ : pulse width (s).

• T p : pulse repetition interval, the period between the start of two successive pulses (s), thus T pτ is the silence duration between a pulse end and the next pulse start.

• N p : number of pulses in the burst, with the burst duration being N p T p

• f : duty cycle, ratio between the pulse width and the pulse repetition interval f = τ T p which also relates the radar average power P m to the radar peak power P p P m = P p f and the total energy emitted during the waveform is P m T where T is the waveform total duration.

In presence of target, the emitted signal is reflected back toward the radar. A target at range R reflects a pulse echo with a time delay

∆t = 2R c
where c the speed of light, since the signal takes ∆t to travel the radar-target distance R forth and back at speed c. If the target has a radial speed v, then between two pulses the target gets closer by 2vT p ≪ R. In practice, this of a single pulse p f a [START_REF] Mahafza | Radar Signal Analysis and Processing Using MATLAB[END_REF][START_REF] Meyer | Radar target detection, handbook of theory and practice[END_REF]:

Swerling I/II : p d = p f a 1 1+s
Swerling III/IV :

p d = p f a 2 2+s 1 -2s (2+s) 2 ln(p f a ) Swerling 0 (V) : p d = +∞ -ln(p f a ) e -(x+s) 1 π π 0 e 2 √ sx cos θ dθdx (1.7)
Reciprocally, knowing the desired detection and false alarm probabilities for a given target model, it is possible to numerically compute the minimum signal-to-noise ratio required for achieving desired detection and false alarm probability, also called detectability factor.

Energetic model

Since a waveform is formally defined as a collection of bursts, its parameters are the aggregation of all its bursts parameters. A signal processing model of waveform and the corresponding radar processing chain fall outside the scope of this thesis. But a simpler energetic model of the waveform can be defined using fewer parameters, such that for a waveform ω:

• N b : the number of bursts inside the waveform.

• T ω : the waveform total duration (s)

• f ω : the (average) dutycycle in the waveform.

• s ω (P d , P f a ): the waveform detectability factor for detection and false alarm probabilities P d , P f a .

For a real system, the detectability factor s ω can be measured for each waveform and stored in a database. With this approach, a system database of available waveforms with known performances in various scenarios can be computed. Another approach is to simulate waveform performances. A simple energetic model for doing so is described below. The model uses Doppler filtering for pulse integration inside each burst; then performs double threshold detection to aggregate multiple bursts inside a waveform:

• Pulse integration: Doppler filtering is coherent integration, and N p coherently integrated pulses can be viewed as one virtual pulse with an N p -times stronger signal-to-noise ratio. Sterling mono-pulse formulas (1.7) can be used to compute the detectability factor s ω for burst detection probability p d and burst false alarm probability p f a . • Burst integration: In double threshold detection, a detection is validated if and only if there are at least "K b out of N b " detections among the bursts, with K b a chosen threshold. Considering each burst detection as statistically independent, the waveform detection and false alarm probabilities P d and P f a are related to the burst detection and false alarm probabilities p d and p f a by the following relations

range Doppler v a R a -v a/2 range Doppler v a 2v a v c R c /2 v a -v a
P d = N b k=K b N b k p d k (1 -p d ) N b -k P f a = N b k=K b N b k p f a k (1 -p f a ) N b -k (1.8)

Radar eclipses and clutter

A radar in operation usually has blind areas, also called eclipses, see Figure 1.18 :

• Range eclipses: Along the distance axis, a mono-static radar cannot receive while emitting. Either the same antenna is used for both emission and reception, or different antennas are used but will interfere with each other. Thus there is a blind interval during each pulse emission, see Figure 1 

, k ∈ N with R a = c Tp 2 .
R a is called the range ambiguity: if a target is located at R > R a , further than the ambiguity range, then a reflected pulse is received only after the next pulse has been emitted, leading to an ambiguity on which of the two pulses reflection has actually been received, see Figure 1.19. Range measurements from a burst are only known "modulo R a ".

• Doppler eclipses: the target radial speed can be estimated using Doppler filtering. In general, the entire surrounding environment (ground, sea, trees, etc.) also reflects back the radar signal with no (or little) radial speed. The zero speed estimation is polluted by the entire environment. In practice, it is impossible to discriminate a non-moving target of interest from the rest of the environment. Because Doppler filtering is essentially a form of "speed sampling", aliasing occurs for speeds over a certain value v a , known as the Doppler ambiguity, and target faster than v a appears to be slower (or even moving away). Because of aliasing, the zero-speed blind area is also replicated along the Doppler axis.

• Clutter eclipses: environmental elements hindering detection are called clutter. The zero-speed Doppler eclipse is usually due to ground or sea clutter, which are immobile. However, certain elements, such as rain, can be moving due to wind, and occult areas on the clutter map which are beyond the zero speed. Doppler aliasing replicates clutter eclipses as well along the Doppler axis. They are also replicated on the range axis, since an echo of the i-th pulse reflected by a target at kR a + R c arrives at the same time than the clutter echo of the (i + k)-th pulse.

The eclipse coefficient α is defined as the ratio of all eclipsed areas over the total area of the range-Doppler map

α = A e A v + A e
Considering that each burst has the same detection probability p d , then the probability of having K b successful detections out of n visible bursts is

n k=K b n k p d k (1 -p d ) n-k
The waveform detection probability, and by similar reasoning false alarm probability, accounting for eclipse coefficient α are

P d = N b n=K b N b n (1 -α) n α N -n n k=K b n k p d k (1 -p d ) n-k P f a = N b n=K b N b n (1 -α) n α N -n n k=K b n k p f a k (1 -p f a ) n-k (1.9)
This model requires the assumption that burst detections are independent for the same target position on the range-Doppler map, which in practice is unlikely to be accurate, especially for target close to the range-Doppler map origin, i.e. slow targets close to the radar location. However it can be used as a simple method to approximate the energetic impact of clutter. Within this model, the waveform detectability factor also depends on the eclipse coefficient α and is noted s ω (P d , P f a , α).

Dwell model and range computation

Radar detection depends on both the radiation pattern and the waveform. The electromagnetic signal emitted by each radiating element is the signal waveform weighed by the illumination law phase and amplitude.

To achieve detection of a given target, one must feed the phased array radiating elements with an adequate illumination law, and then feed an adequate waveform signal in the radiating elements. In terms of optimization, the illumination law and the signal waveform can be viewed as "variables", meaning they are the physical values through which radar detection can be controlled. Informally, the illumination law controls "where the radar looks" and the waveform controls "how the radar listens in that direction".

The combination of a given illumination law and a given waveform is called a dwell d = ({a k,l }, ω)

Computing the detection range of a given dwell at desired detection and false alarm probabilities P d and P f a in direction (az, el) can be done using the radar equation with the model described in this chapter. The radar equation (1.1) can be reformulated to express the detection range in function of the other parameters

R 4 = P p f ω T ω g t g r λ ω 2 σ (4π) 3 s ω L u L s 2 (1.10)
which can be further simplified:

• The radar peak emission power P p , the reception gain of digital beamforming g r = g DBF and the uniform losses L u are constants of the system by design and can be computed as a unique term

K r = P p g r (4π) -3 L u -1
• The dutycycle f ω , duration T ω , carrier wavelength λ ω are constants1 of the waveform can be computed as a unique term

K ω = f ω T ω λ ω 2
The simplification reduces the equation to

R 4 = K r K ω g t σ s ω -1 L s -2
(1.11)

The scanning direction cosines coordinates can be expressed from the direction operational coordinates and the radar tilt angle t using (1.4) u = cos(el) sin(az) v = sin(el) cos(t)sin(t) cos(az) cos(el) w = sin(el) sin(t) + cos(t) cos(az) cos(el) which can then be used to compute

• The emission gain from (1.3), knowing the waveform carrier wavelength

g t (u, v) = K-1 k=0 L-1 l=0 a k,l e jφ k,l e j2π ldxu+kdy v λω • The scanned losses as L s -2 = w 2
The waveform detectability factor s ω can be computed through measurements or simulations. In our experiments, we used the waveform model presented in the previous section for computing this signal-to-noise ratio.

To achieve waveform detection and false alarm probabilities P d and P f a out of the double threshold detector, each burst detection and false alarm probabilities must be the solutions p d = x and p f a = y of the system

N b n=K b N b n (1 -α) n α N b -n n k=K b n k x k (1 -x) n-k -P d = 0 N b n=K b N b n (1 -α) n α N b -n n k=K b n k y k (1 -y) n-k -P f a = 0
with N b the number of bursts in the waveform, K b the detections threshold, and α the eclipse ratio. Analytically, the solutions are the roots of high-degree polynomials which in general might not have a closed form. Numerically, the solutions can be found by root-finding line search [START_REF] Brent | Algorithms for Minimization Without Derivatives[END_REF]. The detectability factor s b of each burst can be deduced from the Swerling formulas (1.7), either analytically or by numerical root-finding, and so the waveform detectability factor is

s ω = N b s b
Knowing all terms of (1.11), the detection range of dwell d can be computed.

Chapter 2

Optimization theory and computational complexity

Introduction and literature

Optimization theory is defined as the search of a mathematical function extrema (minima or maxima) within a given domain. One of its main applications in the industry is the generation of good-quality solutions respectively to a certain metric to a formally defined problem. The topics in optimization theory are broad, encompassing:

• Modelling: "how to formalize a real life problem in mathematical terms",

• Complexity theory: "how to consistently define the difficulty of a mathematical problem"

• Algorithmics: the art of designing systematic procedures to solve mathematical problems.

The first step when applying optimization to a real-life problem is to grasp the problem true nature, its underlying mathematical structure. From this knowledge the problem can be linked to known classical problems in the literature, and knowing the problem properties will lead to practical design of balanced algorithm between efficiency, usability and accuracy.

Optimizing radar scanning can be informally described as the search of an efficient radar search pattern, a collection of dwells achieving desired detection requirements. Since multi-functions radar must deal with other tasks in addition to scanning, being able to perform scanning as fast as possible is desirable. Thus an efficient search pattern should achieve detection with minimal radar time-budget. This problem falls in the class of cover problems, whose objective is to cover a space using the "least" elements from a set of available covers.

The most general form of cover problems in optimization is set covering, a classical problem of combinatorial optimization. The objective is to cover a set of elements, called the universe, using a minimum number of available covers. The theoretical problem is known to be generally NP-hard to solve [START_REF] Vazirani | Approximation Algorithms[END_REF], and is often encountered in industrial processes and real-life problems. It has been extensively studied since its description as one of Karp's 21 classical NP-complete problems [START_REF] Karp | Reducibility among combinatorial problems[END_REF], which is the common class for difficult industrial problems. The set cover problem is also hard to approximate: while the greedy heuristic has a logarithmic approximation ratio in the number of constraints in both weighed and unweighed cases [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF][START_REF]A greedy heuristic for the set-covering problem[END_REF], the problem cannot really be more efficiently approximated unless P=NP [START_REF] Lund | On the hardness of approximating minimization problems[END_REF][START_REF] Raz | A sub-constant error-probability low-degree test, and a sub-constant error-probability pcp characterization of np[END_REF][START_REF] Escoffier | Completeness in approximation classes beyond apx[END_REF]. Alternate approximation bounds have also been found using randomized rounding algorithms [START_REF] Srinivasan | Improved approximations of packing and covering problems[END_REF].

Due to its theoretical hardness, a part of the research has focused on finding empirically efficient methods, even with exponential worst-case theoretical complexity. Branch-and-bound approaches based integer programming can be rather efficient [START_REF] Koch | Miplib 2010[END_REF][START_REF] Beasley | An algorithm for set covering problem[END_REF], and most exact methods are variation of the branch-and-bound scheme. Various metaheuristics have also been applied to the problem [START_REF] Yelbay | The set covering problem revisited: An empirical study of the value of dual information[END_REF][START_REF] Beasley | A genetic algorithm for the set covering problem[END_REF]. Certain cover problems which can be viewed as specific geometric cases and weaker formulations of the set cover problem can have stronger properties, even be solvable or approximated in polynomial time [START_REF] Krupa | Demand hitting and covering of intervals[END_REF][START_REF] Li | A ptas for the weighted unit disk cover problem[END_REF][START_REF] Chan | Exact algorithms and apx-hardness results for geometric packing and covering problems[END_REF][START_REF] Schöbel | Optimization in Public Transportation: Stop Location, Delay Management and Tariff Zone Design in a Public Transportation Network[END_REF].

In the case of radar covering, combinatorial problems modelling bidimensional radars have strongly polynomial complexity, meanwhile tridimensional radars models are NP-hard to optimize, as will be shown in this chapter.

Decision problems and complexity classes

For each optimization problem, there is a corresponding decision problem, which puts the optimization problem into the form of a "yes/no" question. The question is usually, for a given value K ∈ Z: "is there a solution to the minimization (maximization) problem whose value is smaller (higher) than K ?". Decision problems are a fundamental concept in computational complexity theory, used to define complexity classes. The most common classes for real-life problems are P and NP, for which informal definitions are given below (see [START_REF] Vazirani | Approximation Algorithms[END_REF][START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF] for formal definitions).

P is the class of all decision problems which can be solved in polynomial time on a deterministic computer machine. For any problem in P, there is a deterministic algorithm which can solve any instance of the problem in polynomial time and answer to the question "is there a solution with better value than a given K ?".

NP stands for non-deterministic polynomial, and is the class of all problems which can be solved in polynomial time on a non-deterministic machine, a machine in which multiple choices can be explored in parallel. A more sensible definition is that for the same problem, a deterministic machine would take polynomial time to check one given solution and answer the question "does this solution has better value than K ?". A non-deterministic machine can use the same algorithm to check all solutions in parallel in the same time. NP is often described as the class of problems for which a solution is easy to check (polynomial time), but hard to find (exponential time) in the current state of the art.

Furthermore, a problem is said to be NP-hard, if any problem in NP can be reduced to said problem through a polynomial reduction. A NPhard problem is thus at least as hard as the hardest problems in NP (but could be harder, as there are NP-hard problems not in NP). A polynomial algorithm for any NP-hard problem could be used to solve any NP problem in polynomial time. A problem that is both in NP and NP-hard is called NP-complete.

By extension, an optimization problem is said to be in P/NP (more formally in PO/NPO), if its decision version is in P/NP.

Problem statement and modelling

Set cover problem

Let G = {g i } be a set of elements, called the universe set. Let C = {C j ⊂ G} be a collection of subsets in G, a set cover is a sub-collection S ⊂ C whose union covers the universe: C∈S C = G.

The decision form of the set cover problem asks whether for a given integer value K ∈ N there exists a set cover S ⊂ C with cardinality inferior to K, i.e. |S| ≤ K. An instance of the set cover problem is described by the system (G, C, K). The optimization form, sometimes called minimum set cover problem, consists in finding a minimum-size set cover:

min |S| s.t. ∀g i ∈ G, ∃C ∈ S, g i ∈ C S ⊂ C (2.1)
If each element C j ∈ C has an associated cost T j ∈ N * , the problem of finding a set cover with minimal aggregate cost C j ∈S T j is called the weighted set

g 1,1 g 0,1 g 1,2 g 1,0 g 2,1 × × Figure 2.4: Set of neighbours {g 0,1 , g 2,1 , g 1,0 , g 1,2
} for a given cell g 1,1 (left), connected shape (center) and disconnected shape (right)

Dwell shape

A radiation pattern with a single main lobe has a connected shape, and results in a connected discrete cover for the associated grid cover problem. The definition of a connected subset on grid G is based on cell neighbourhood, see Figure 2.4, which contains the four adjacent cells for a given cell g a,b :

{ g a+1,b , g a-1,b , g a,b+1 , g a,b-1 }
a subset on the grid is connected if for any two cells in the subset, there is a path between them moving from neighbour to neighbour. A subset which is not connected is said to be disconnected, see Figure 2.4.

Interesting cases of connected covers are rectangular-shaped covers. In radar engineering, a feasible radiation pattern is synthesized to fit as closely as possible a desired shape. Rectangular shapes are usually good candidates.

On the grid, a rectangular-shaped cover is a subset of elements included in a rectangle, uniquely defined by its upper left corner node (m 0 , n 0 ) and its lower right corner node (m 1 , n 1 ), such that 0 ≤ m 0 < m 1 ≤ M and 0 ≤ n 0 < n 1 ≤ N . The set representation of a cover defined by corners (m 0 , n 0 ) and (m 1 , n 1 ) is:

C = {g m,n , (m, n) ∈ [m 0 , m 1 [×[n 0 , n 1 [} See Figure 2.2 for example, cover C 7 , with corners (m 0 , n 0 ) = (0, 1) and (m 1 , n 1 ) = (1, 2).
Rectangles are also easier to synthesize with a bi-linear phased-array antenna, for which the radiation pattern can be separated into an horizontal and a vertical component.

Furthermore, in term of combinatorial complexity, the number of possible rectangles on an M -by-N grid gives a broad choice of available discrete covers for computing the pattern, while avoiding exponential explosion when increasing the grid resolution.

M + 1 2 N + 1 2 = M N (M + 1)(N + 1) 4 = O(M 2 N 2 ) G = g 1 g 2 g 0 g 3 g 4 g 5 g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11 G =

Azimuthal range and circular grid cover problems

The surveillance space of a fixed-panel radar has a limited azimuthal range.

Radar systems can achieve full azimuthal range and scan in all directions by using a rotating-panel or multiple fixed-panels. Limited azimuthal range is modelled by rectangular grids, while full azimuthal range is modelled by circular grids, see Figure 2.5.

Integer programming

Matrix formulation

Set cover problems can be written as integer programs by using matrix formulations. Each cover C ∈ C can be represented as a binary M -by-N matrix noted C, or as a binary vector of length M N noted c, as shown in Figure 2.6:

C(m, n) = c(m + M n) = 1 if g m,n ∈ C 0 otherwise
For each cover C j ∈ C, let x j ∈ {0, 1} be the binary selection variable of cover C j , such that the vector x = (x 1 , . . . , x D ) ∈ {0, 1} D represents the sub-collection S = {C j ∈ C s.t. x j = 1}, containing the chosen covers.

Linear relaxation

Integer programming is NP-hard to solve [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. Replacing integer variables by continuous variables transforms the problem into a linear program

min T T .x s.t. A • x ≥ 1 0 ≤ x ≤ 1 (2.5)
which is called the linear relaxation of (2.3). Linear programs can be solved in polynomial time [START_REF] Matouek | Understanding and Using Linear Programming (Universitext)[END_REF]. Any valid solution of the integer program is also a valid solution of its linear relaxation, but the reverse is false. An optimal solution of the linear relaxation is not a valid integer solution in general, and only gives a lower bound for the integer program. Note that the constraint x ≤ 1 is in fact unnecessary, since the problem

min T T .x s.t. A • x ≥ 1 0 ≤ x (2.6) 
has the same optimal solutions as (2.5). Intuitively, for the linear relaxation, a cell is going to be covered by a sum of "fractional" covers (with x j < 1), or as at least one integer cover (with x j = 1) and thus has no need for covers with x j > 1. Any solution with some x j > 1 can be strictly improved by reducing x j ← 1 while remaining valid and an optimal solution necessarily verifies x ≤ 1. Furthermore, the positivity constraints 0 ≤ x can be integrated in the matrix formulation with

R = A I and d = 1 0
by rewriting the linear program as

min T T .x s.t. R • x ≥ d (2.7)
The three formulations of the linear relaxation (2.5), (2.6) and (2.7) are equivalent.

The integer program representing our set cover problem and its linear relaxation have two more interesting properties:

• Easily-checked feasibility: an integer program is feasible if there is at least one solution validating all constraints. It is possible that no valid solution exists if some constraints are conflicting, or if one constraint is impossible. In our case, feasibility is easy to check: the integer program as well as its linear relaxation are feasible if and only if

x F = (1 • • • 1) is a feasible solution, i.e. A • x F = D j=1 c j ≥ 1:
if x F is a valid solution, then the problem is feasible by definition.

if x F is an invalid solution, then there is an invalidated constraint for x F :

∃(m, n) s.t. D j=1 C j (m, n) < 1 and since ∀(j, m, n), C j (m, n) ∈ {0, 1}: ∃(m, n) s.t. ∀j, C j (m, n) = 0
In other words, A has its (m + M n)-th row filled with zeros, corresponding to a constraint which can be satisfied by no solution.

Intuitively, x F represents C, the collection of all available covers, and if it is an invalid solution, then there is a cell which cannot be covered. This can happen in a real system if there is a cell which cannot be scanned, because of an obstacle or because the radar has not enough power to achieve the desired detection range.

• Boundedness: a recurring question for linear programs is whether they are bounded, that is whether the cost function is bounded (below for minimization) for valid solutions. For the set cover problem, the cost function is positive and thus always bounded below by 0.

Linear programming

There are three important geometrical aspects describing the decision space of the integer and linear programs, shown in Figure 2.7:

• T is the cost function gradient. The cost function is linear and its gradient is constant. -T is the direction vector of maximum decrease of the cost function.

• A is the cover matrix. Each row of A correspond to a detection constraint on a cell of G. In the decision space, each constraint corresponds to an hyperplane, the limit between the halfspace of solutions validating the constraint and the halfspace of solutions violating the constraint. The set of valid solutions for the linear relaxation is the intersection of the valid halfspaces for all constraints, and the orthant R D + . Geometrically, it is a convex polyhedron defined by

{x : (A • x ≥ 1) ∧ (0 ≤ x)}
Each vertex (or "corner") of this polyhedron is a point where at least D hyperfaces of the polyhedron intersect, in other words, a point where D constraints are tight. Such a point is called a basic solution (or basic vertex) of the linear program. If a linear program is bounded and feasible, then it has a basic optimal solution [START_REF] Matouek | Understanding and Using Linear Programming (Universitext)[END_REF]. Consider a basic optimal solution x for the reduced linear program in (2.6). This solution has D tight constraints. Let B ≤ M N be the number of tight detection constraints. If B < D then there are Z = D -B tight bound constraints, which are of the form x j ≤ 0, and thus x j = 0. The corresponding Z variables are called non-basic variables and are zeros. The other D -Z = B variables are called basic variables and can be non-zero values. Let x B be the sub-vector of basic variables. The B tight detection constraints in A can be written as

A B x B = 1 (2.8) , { } T 4 =1 , C = T 1 =1 , T 2 =1
,

T 5 =1 T 6 =1
,

T 3 =1
Figure 2.9: Available covers for an example of line cover problem fact that all problems presented in this section can be solved by a polynomial algorithm based on dynamic programming.

Line cover problem

Consider a bidimensional radar model, with bounded azimuthal range, using only connected radiation patterns. This model corresponds to bidimensional radars or tridimensional stacked-beam radars, see Figure 2.3. In the associated combinatorial problem, the detection grid has only one dimension and all discrete covers are connected sets. A unidimensional grid can be viewed as a line segment, on which discrete covers represent intervals, see Figure 2.9. In this case, finding an optimal radar search pattern is a line cover problem.

Greedy method

For unweighed line covering, where all covers have the same cost T j = 1, a straightforward algorithm to solve this problem is the greedy method: among intervals covering the first not-yet-covered detection cell, choose an interval covering the furthest cell, and iterate until the line is covered, see Algorithm 1 for a detailed description. The worst case complexity of Algorithm 1 is O(|C| 2 ). It can be improved to perform in O(|C| log(|C|)) by sorting in advance the available discrete covers in increasing order of their starting point, and combining the "while" and "for" loops in a single pass.

The greedy method solution is optimal: consider an optimal solution S of the problem, and C a ∈ S the discrete cover over the first cell, replace C a by the largest cover C b which includes the first cell, and solution S ← (S \ {C a }) {C b } remains optimal. Iterating the process on the next cells transforms S into the greedy method solution while keeping an optimal cost.

The greedy method is however sub-optimal for weighted problems. In that case, the logic of the greedy method would be to add at each iteration the cover maximizing the improvement/cost ratio, i.e. the number of newly 

{ } C = T 1 =3 , T 2 =2
,

T 3 =3 , T 4 =3 ratio=2/3 ratio=1/2 ratio=2/3 ratio=2/3
Figure 2.10: Example for sub-optimality of the greedy method in the weighted case covered cells over the discrete cover cost. In the unweighed case, a larger discrete cover is strictly better than a smaller one, since the former can replace the latter while preserving optimality of the solution. This is no longer true with weighed costs, where a discrete cover with a better improvement/cost ratio (best local choice) can result in a sub-optimal solution because of the general structure of the problem (bad global choice), see Figure 2.10 where C 3 has better ratio than C 2 whereas the latter must be used to construct an optimal solution. The greedy method returns the solution {C 1 , C 3 , C 4 } with cost 9, whereas the optimal solution {C 1 , C 2 , C 4 } has cost 8.

Dynamic programming

In the unweighed case, the greedy method reaches optimality by exploiting the problem optimal substructure, meaning that an optimal solution can be constructed by combining solutions of substructures in the original problem. This type of structure is generally exploited in dynamic programming, which is particularly efficient if the problem substructure can be broken down into a polynomial number of sub-problems. Dynamic programming generalizes the iterative approach of the greedy = ⋃ } } optimal sub-solution S k for k cells cover for cells g k through g n-1

g k g n-1
... method, and unlike the latter, returns an optimal solution even for weighed line covering. An optimal solution covering the first n cells is built from an optimal solution covering some first k (< n) cells. The n-th sub-problem is "to cover {g i : 0 ≤ i < n}, i.e. the first n cells". Iterating the process on n yields a valid solution. See Algorithm 2 for a detailed description.

Algorithm 2 Dynamic programming for line cover S 0 ← ∅ ⊲ the solution for covering no cells is the empty set The algorithm requires O(N |C|) computational steps. The returned solution is optimal: consider an optimal solution S n for the n-th sub-problem, then S n contains a discrete cover C starting at some cell g k and including cell g n-1 , and S n \ {C} is a valid solution for the k-th sub-problem. Let S k be an optimal solution for the k-th sub-problem, then S k ∪ {C} is a valid solution for the n-th sub-problem:

for n ∈ {1, . . . , N } do ⊲ loop on all sub-problems T best ← +∞ for C ∈ {C ∈ C : g n-1 ∈ C} do ⊲ loop on all covers containing next cell k ← index of first cell in C S ← S k {C} ⊲ construct candidate solution T S ← Cj ∈S T j ⊲ compute candidate cost if (T S ≤ T best ) then S n ← S ⊲
-by optimality of S n :

C j ∈Sn T j ≤ C j ∈S k ∪{C}
T j -by optimality of S k :

C j ∈Sn\{C} T j ≥ C j ∈S k T j
and by combining the two equations

C j ∈Sn T j = C j ∈S k ∪{C}
T j so S n \ {C} is an optimal solution for the k-th sub-problem and S k ∪ {C} is an optimal solution for the n-th sub-problem.

Any optimal solution for a given sub-problem is the union of an optimal solution for a smaller sub-problem and a cover, see Figure 2.11. By testing each combination of a cover and its complementary optimal sub-solution, dynamic programming sequentially solves all the sub-problems to optimality.

Unlike the greedy method, the complexity of dynamic programming depends on the grid size N . This will be discussed in more details in 2.4.3.

Linear program integrality

Another approach for solving line cover problems is based on the linear relaxation of the integer program. There are some cases when linear programming methods can be used to solve exactly integer programs:

An integer matrix A is unimodular if it is invertible and

det A ∈ {-1, 1}. A direct consequence of Laplace's formula A -1 = (det A) -1 com A T , with com A the cofactor matrix of A, is that A -1 is integer if A is unimodular.
An integer matrix A is totally unimodular if any square regular submatrix A B in A is unimodular. So any basic solution x B = A B -1 • 1 of (2.8) has integral values. In such cases, all the vertices of the convex polyhedron represented in Figure 2.7 are integral points, and a basic optimal solution of the linear program is also a valid optimal solution of the integer program. Integer programming is reduced to linear programming, which has polynomial complexity, as finding a basic optimal solution to a linear program can be done in polynomial time [START_REF] Megiddo | On finding primal-and dual-optimal bases[END_REF].

In the case of line covering, the cover matrix A has the consecutive-ones property, i.e. in a column of A, all values are zeros or ones, and all the ones are consecutive. This type of matrix is called an interval matrix and is totally unimodular [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF]. So line covering can be solved in polynomial time by linear programming methods.

Circle cover problem

For a bidimensional radar model with full azimuthal range, the detection grid is no longer bounded and represents a full circle, with no beginning nor end, see Figure 2.5. Dynamic programming can still be used to compute an optimal solution in polynomial-time.

The problem still has an optimal substructure. Let the cells be numbered in clockwise order starting from an arbitrary first cell: G = {g 0 , . . . , g N -1 } with cell g N -1 and g 0 being neighbours, see Figure 2.5. The (n, w)-th subproblem is "to cover {g k : k = n + i mod N, 0 ≤ i < w}, i.e. the w cells in clockwise order starting by g n ". A sub-problem can be described by its (starting) index n ∈ {0, . . . , N -1} and its width w ∈ {1, . . . , N }. The substructure of circle covering can be viewed as splitting the problem into all possibles arc segments on the circle.

Algorithm 3 Dynamic programming for circle cover

for n ∈ {0, . . . , N -1} do S n,0 ← ∅ ⊲ the solution for covering no cells is the empty set end for for n ∈ {0, . . . , N -1} do ⊲ loop on all sub-problems for w ∈ {1, . . . , N } do

T best ← +∞ l ← n + w -1 mod N ⊲ compute index of the next cell to cover for C ∈ {C ∈ C : g l ∈ C} do ⊲ loop on all covers containing next cell k ← index of clockwise-leftmost cell in C if k -n mod N ≤ l -n mod N then ⊲ check if "n ≤ k ≤ l" clockwise s ← k -n mod N ⊲ complementary sub-solution width S ← S n,s {C} ⊲ construct candidate solution else ⊲ otherwise "k < n ≤ l" clockwise S ← {C} ⊲ C suffices to solve current problem end if T S ← Cj ∈S T j ⊲ compute candidate cost if T S ≤ T best then
S n,w ← S ⊲ keep best valid solution for (n, w)-th sub-problem T best ← T S end if end for end for end for Algorithm 3 requires O(N 2 |C|) steps and returns an optimal solution: consider an optimal solution S n,w for the (n, w)-th sub-problem with w ≥ 1, then S n,w contains a discrete cover C starting (clockwise) at cell g k and including cell g l with l = n+w-1 mod N . There are two possible situations:

• "k < n ≤ l" clockwise:
{C} suffices to cover the cells {g n , . . . , g l } and is an optimal solution of the (n, w)-th sub-problem: S n,w = {C}.

• "n ≤ k ≤ l" clockwise: Let s = kn mod N , then S n,w \ {C} is a valid solution for the (n, s)-th sub-problem. Let S n,s be an optimal solution for the (n, s)-th sub-problem, then S n,s ∪ {C} is a valid solution for the (n, w)-th subproblem:

-by optimality of S n,w :

C j ∈Sn,w T j ≤ C j ∈Sn,s∪{C}
T j -by optimality of S n,s :

C j ∈Sn,w\{C} T j ≥ C j ∈Sn,s T j g n g n+s-1 g l g n } }
optimal subsolution S k;s some cover for cell g l optimal subsolution S n;w 

T j = C j ∈Sn,s
T j so S n,w \ {C} is an optimal solution for the (n, s)-th sub-problem.

Any optimal solution for a given sub-problem is either a unique cover, or the union of a smaller sub-problem optimal solution and a cover, see Figure 2.12.

Informally, Algorithm 3 can be viewed as "applying N times Algorithm 2", each time taking a different cell as the starting cell of the "line to cover". Another approach could be to

• start with an initial solution S = {C}.

• apply Algorithm 2 for covering the rest of the circle G \ C.

• repeat the first two steps for each cover C ∈ C; keep the best solution.

which would require O(N |C| 2 ). An improved algorithm is presented at the end of the section.

Integrality gap

Linear programming, however, cannot be used to solve circle covering, because the cover matrix A encoding the discrete covers can be non-unimodular. The simplest problem instance for which this situation appears is displayed in Figure 2.13.

The relaxed linear program has the cover matrix 

A =   1 0 1 1 1 0 0 1 1   { } C = , , g 0 g 1 g 2 G = T 1 =1 T 2 =1 T 3 =1 g 0 g 1 g 2 g 0 g 1 g 2 g 0 g 1 g 2
2 ) T , which combines a weighing of all three covers to produce the optimal fractional solution, and is strictly better than an integral optimal solution, say x I = (1 1 0) T . The difference of cost between both solutions is called the integrality gap, here

T T • (x I -x L ) = 1 2 .
x L is the optimal solution to the corresponding fractional set cover problem, where solutions can contain fractions of discrete covers. This situation is not dependant on the integer program encoding (i.e. how the problem is transformed into matrix formulation). Problems with a non-null integrality gap are thus non-integral, and are intrinsically unsolvable by straightforward linear relaxation.

Interestingly, despite being non-integral, the circle cover problem can be solved in polynomial time through dynamic programming. This gives a practical case of a non-integral problem which is still polynomially solvable.

Logarithmic encoding

All problems presented in this section can be solved in polynomial time using dynamic programming. However, the computational complexity of the corresponding algorithms is polynomial in N , the "grid size". If the problem input is given in matrix formulation, i.e. c and A, then the encoding size of the input is |C|N , and the algorithm is truly polynomial.

But for interval covers, this encoding scheme is obviously suboptimal, since an interval can be described using only two integers, its starting index a and its ending index b, see Figure 2.14. The number of bits required to encode indices in {0, . . . , N -1} is p = ⌈log 2 (N )⌉, and the encoding size of a compressed input is |C|2p. For this input size, Algorithm 2 complexity is O(|C|2 p ) and Algorithm 3 complexity is O(|C|4 p ). While those algorithms are polynomial in the size and the values of the input, they are exponential in the number of bits used to encode those values. Such algorithms are said to be pseudo-polynomial.

Problems with pseudo-polynomial algorithm can be NP-complete when elements. The indices of the reduced covers C ′ are obtained by dichotomic search in G ′ . Each new index is encoded using 

⌈log 2 (2|C|)⌉ = 1 + ⌈log 2 |C|⌉ = O(log |C|) bits. C ′ is encoded using 2|C| • O(log |C|) = O(|C| log |C|) bits. Instruction arithmetic cost logarithmic cost Sort G ′ O (|C| log |C|) O (p|C| log |C|) Search indices a ′ , b ′ 2|C| • O (log |C|) 2|C| • O (p log |C|) Total O (|C| log |C|) O (p|C| log |C|)
Dynamic programming O (N |C|) • O (log N ) = O (|C| 2 log |C|) O (N 2 |C|) • O (log N ) = O (|C| 3 log |C|) Total O ((|C| + p)|C| log |C|) O ((|C| 2 + p)|C| log |C|) Table 2.

2: Logarithmic cost of dynamic programming and input reduction

The logarithmic cost of dynamic programming is the product of its number of steps, O(N |C|) or O(N 2 |C|), multiplied by the logarithmic cost of an arithmetic operation: O(log N ). And for the reduced input, the grid size becomes N = |G ′ | ≤ 2|C| = O(|C|). The cost of input reduction and dynamic programming combined is given in Table 2.2. Both line covering and circle covering can be solved in true polynomial time.

Strongly polynomial algorithms

Those algorithms are actually strongly polynomial. An algorithm is strongly polynomial if its arithmetic cost, i.e. the cost considering arithmetic operations as single computational steps regardless of encoding size, is polynomial in the number of input values. This indicates than the number of steps in the algorithm does not depend on the input size and that performances do not deteriorate too much when inputting large values. A counter-example is Euclid's algorithm for computing the greatest common divisor, whose input is only two numbers, but whose number of steps increases when the numbers values grow.

The arithmetic cost of input reduction is O (|C| log |C|), obtained by replacing O(p) by O(1) in the logarithmic cost, since the p factor only appear as the logarithmic cost of comparisons. The overall cost of input reduction and dynamic programming combined is in Table 2.3, and unidimensional grid cover problems are solvable in strongly polynomial time.

Problem

Line covering Circle covering Input reduction

O (|C| log |C|) Dynamic programming O (N |C|) = O (|C| 2 ) O (N 2 |C|) = O (|C| 3 ) Total O (|C| 2 ) O (|C| 3 )
Table 2.3: Arithmetic cost of dynamic programming and input reduction

Bidimensional grid covering

Some grid cover problems remains NP-hard to solve. This includes problems on a bidimensional grid, and problems using disconnected discrete covers, even on a unidimensional grid. This means that tridimensional radar models produce NP-hard optimization problems.

Rectangular grid cover problem

In practice, optimization of search patterns for tridimensional radars can be efficiently modelled by bidimensional covering using rectangular-shaped covers [START_REF] Briheche | Non-uniform constrained optimization of radar search patterns in direction cosines space using integer programming[END_REF]:

• Rectangular radiation patterns are simpler to synthesize than more irregular shapes, since the phased-array is rectangular itself.

• The number of rectangles on the grid grows in O(M 2 N 2 ) keeping the available discrete covers database size reasonable while offering enough choice for producing good quality radar search patterns.

The corresponding combinatorial problem amounts to rectangular grid covering, and an example instance is presented in Figure 2.2.

Dynamic programming approach

Considering the algorithms presented in the previous section 2.4, a natural attempt to solve rectangular grid covering would be to generalize the dynamic programming approach used on unidimensional grids to bidimensional grids. Consider an optimal solution for the rectangular grid cover problem. It is combination of a rectangular cover C over the bottom-right corner and an optimal sub-solution covering the remaining "top-left" cells. By iterating the decomposition process, the covering sub-problems are to "cover the top-left part of the grid", see Figure 2.16.

The number of sub-problems is equal to the number of ways of cutting the grid into two sets: a top-left part and a bottom-right part. Equivalently, formula:

N + M N ≥ 2N N ≃ √ 2π2N (2N ) 2N e 2N e N √ 2πN N N 2 = 2 2N √ πN
Thus, the number of sub-problems to solve grows exponentially with the grid size: an increase by 10 of the grid size increases the number of subproblems by approximately 2 2•10 ≈ 10 6 . Even for small values, the number of sub-problems explodes: So while theoretically usable for rectangular grid covering, dynamic programming has an exponential complexity for this problem, making the approach rather inefficient. This hints that bidimensional grid covering is computationally harder than previous unidimensional problems.

N = M 10 
Note that straightforward linear programming fares no better, as the matrix formulation of rectangular grid covering can also yield a non-totally unimodular matrix A, see Figure 2.2 for an example, with optimal relaxed cost 11 2 , one optimal relaxed solution being x L = (0

1 2 1 2 1 2 1 2 1 2 1 2 1 
2 ) T .

NP-hardness

All problems presented in this chapter can be reduced to general set covering (2.1), or to integer programming (2.3), and are thus in NP. Furthermore, some grid cover problems can be shown to be NP-hard, meaning that any NP problem can be reduced to those problems by a polynomial transformation, also called Karp reduction [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF].

The classical way for proving NP-hardness is to find a Karp reduction from an already known NP-hard decision problem to the considered problem. In other words, by showing that there is a polynomial algorithm to turn any instance of the former problem into an instance of the latter. This proves by transitivity that any problem in NP can be reduced to the studied problem.

A common candidate for NP-hardness proofs is the vertex cover problem, which is known to be NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF] and is defined as follow: let (V, E) be a graph, let K ∈ N. Is there a subset U ⊂ V with cardinal |U| ≤ K such that ∀v ∈ V, ∃v ′ ∈ U with (v, v ′ ) ∈ E ? In other words, for a given integer K, is there a subset of less than K selected vertices, such that any vertex in the graph has a common edge with a selected vertex ? An instance of the vertex cover problem is defined by the system (V, E, K).

g 0,0 g 0,1 g 0,2 v 0 v i e 0 e |E|-1 v |V|-1 e k g k,3i g k,3i+1 g k,3i+2 g 0,N-1 g M-1,N-1 g M-1,0 N=3|V| M=|E| Figure 2.

18: Reduction grid of vertex covering into rectangular grid covering

The decision version of the rectangular grid cover problem is defined as: let G be a M -by-N rectangular grid, let C = {C 1 , . . . , C D } be a collection of rectangular-shaped discrete covers on G, and let F ∈ N. Is there a valid pattern S ⊂ C covering the grid, with |S| ≤ F ? An instance of the decision rectangular grid cover problem is defined by the system (G, C, F ) and can be encoded by the N M D boolean values in the cover matrix and D integer values in the cost vector of the matrix formulation (2.3).

The following polynomial reduction transforms a vertex cover instance (V, E, K) into a decision rectangular grid cover instance (G, C, F ):

Let the graph vertices and edges be ordered as V = {v 0 , . . . , v |V|-1 } and E = {e 0 , . . . , e |E|-1 }. Each edge is described by a pair of distinct vertices e m = (v i , v j ) with i < j.

Let G be a |E|-by-3|V| rectangular grid. Each row represents an edge, and each block of three columns represents a vertex, see Figure 2.18. Three types of rectangular covers are defined on the grid, see Figure 2.24 for an example:

• Column covers: for each vertex v i , the column cover representing said vertex is the central column of the block column

V i = {g m,3i+1 : 0 ≤ m < M } see Figure 2.
19. The set of column covers is

C V = {V i : v i ∈ V}

Approximability

There is currently no known methods for solving efficiently NP-hard problems, and there might never be. Thus an important field in optimization is the design of polynomial approximation algorithms, which return in polynomial time a valid non-optimal solution, however guaranteed to be within a given ratio of the optimal cost. For a minimization problem, an algorithm is said to be an α-approximation if it returns a solution with cost F apx such that F apx ≤ αF opt with F opt the cost of an optimal solution. Unfortunately, set covering is generally not easy to approximate. It is logapproximable [START_REF]A greedy heuristic for the set-covering problem[END_REF] by the greedy method which return a solution with value at most log(|G|) times the optimal cost, but also log-APX-complete [START_REF] Escoffier | Completeness in approximation classes beyond apx[END_REF], so at least as hard to approximate than all other log-approximable problems.

Specific cases of set covering can achieve better approximations. Vertex covering has a 2-approximation algorithm [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF]. In fact, all cover problems with a constant frequency parameter f can be f -approximated using a primaldual algorithm [START_REF] Williamson | The Design of Approximation Algorithms[END_REF]. The frequency factor is defined as

f = max i |{C ∈ C : g i ∈ C}|
and represents the maximum number of covers sharing a common element, or using radar terminology the maximum number of overlaps of dwells discrete cover. This value is however not bound for grid covering, and thus the primal-dual approach does not guarantee constant approximation ratio.

Vertex covering is also APX-complete [START_REF] Ausiello | Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties[END_REF], meaning at least as hard as all problems approximable in constant ratio. While the previous reduction of vertex covering to rectangular grid covering is polynomial, it is not an approximation-preserving reduction:

Consider a graph (V, E), for which a minimum vertex cover has optimal cardinal K opt . The decision vertex cover instance (V, E, K opt ) is true and the decision instance (V, E, K opt -1) is false. The grid cover problem (G, C) obtained via the reduction presented previously has thus an optimal solution with cost

F opt = 3|E| + K opt .
Suppose there is an α-approximation algorithm for the grid cover problem, which returns a solution with cost F apx ≤ αF opt = α(3|E| + K opt ). From this solution, a vertex cover for (V, E) can be computed by replacing and removing center-row and side-row covers, as has been done in 2.5.1. The vertex cover has a cost

K apx = F apx -3|E| ≤ α(3|E| + K opt ) -3|E| = αK opt + (α -1)3|E|
which can be arbitrarily high as a graph with a size-bounded optimal vertex cover can have an arbitrarily high number of edges, for example the star • Bounding: The current problem is relaxed into a linear program, whose solution is a lower bound of the current problem best solution. Depending on the lower bound value, the node sub-tree will be explored next (if it is the most promising branch), later (if there is a more promising branch), or never (if a better solution has already be found in another branch).

Defining what a promising branch is a difficult question, a lower bound is not necessarily better since deeper nodes may have higher bounds while being closer to optimal solutions. Integer programming solvers usually rely on various heuristics to define the exploration strategy and improve bound estimations.

Algorithm

A description of the branch-and-bound method is given below. Algorithm 5 details the corresponding pseudo-code. Each node in the tree can be described by the sequence of choices leading to this node from the root node

N = (x 1 , x 2 , . . . , x d )
and each node has two children N 0 = (x 1 , . . . , x d , 0) and N 1 = (x 1 , . . . , x d , 1). At each node N explored, the first d variables (x 1 , x 2 , . . . , x d ) are set, and a linear relaxation of the problem is solved with respect to the remaining free variables (x d+1 , . . . , x D ), then add N to the list of nodes to explore.

The algorithm can be summarized by the following steps:

Initialization:

Initialize the list of node to explore with the root node.

Exploration:

Pop next node to explore from the list of nodes and solve its linear relaxation.

Bounding:

If the current node relaxation value is less than the current best solution found, proceed to Step 3, otherwise, drop current node and go back to

Step 1.

Update:

If the current node relaxation is an integral solution, then its an improving solution (note that an end leaf always yield an integral solution). Update best current solution and proceed to Step 1. Otherwise:

Branching:

Compute the current node children. For each child, check if the descendants contains a valid solution (this can be done by summing covers already used by the parent, the cover of the child node if used, and covers available to the descendants). If the child node is valid, add it to the list of node to explore. Proceed to Step 1.

This very generic description is just a presentation of the general idea of the method. Efficient implementations of the branch-and-method usually combined several techniques such as cutting planes, diving heuristics and local branching to improve bounds estimation and speed.

Example

The branch-and-bound method is applied on the example from Figure 2.2, described by the integer program (2.4), see Figure 2.28:

• N = {}, x best = (1 1 1 1 1 1 1 1), f best = T T • x best = 13 :
Solving the root relaxation yields the linear solution (0

) with cost 11 2 ≤ 13. Root node children (0) and (1) are feasible, and thus added to the exploration list N := {(0), (1)}

• N = {(0), (1)}, x best = (1 1 1 1 1 1 1 1), f best = T T • x best = 13 :
Relaxation of (0) yields the same linear solution (0

1 2 1 2 1 2 1 2 1 2 1 2 1 
2 ) with cost 11 2 . We add the children (0, 0) and (0, 1) to the exploration list N := {(1), (0, 0), (0, 1)}

• N = {(1), (0, 0), (0, 1)}, x best = (1 1 1 1 1 1 1 1), f best = T T •x best = 13 :
Relaxation of (1) yields the linear optimal solution x L = (1 0 1 1

1 2 1 2 1 2 1 
2 ) with cost 15 2 < 13. We add the children (0, 0) and (0, 1) to the exploration list N := {(1, 0), (1, 1)}

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, x best = (1 1 1 1 1 1 1 1), f best = T T • x best = 13 :
Relaxation of (0, 0) yields the linear optimal solution x L = (0 0 1 1 0 0 1 1) with cost 6 < 13. x L is an integral solution, thus we update the best current solution x best := x L ; f best := 6.

At this point, it can be deduced that x best is an integer optimal solution. The root relaxation has linear optimal cost 11 2 . By bounding, any integer solution has an integer cost greater than the linear optimal cost 11 2 , so greater than 6 = ⌈ 11 2 ⌉. This suffices to prove the optimality of x best = (0 0 1 1 0 0 1 1) for the integer program (2.4).

Chapter 3 Radar search pattern optimization

Multi-function radars usually perform multiple tasks simultaneously, such as scanning, target tracking and identification, clutter mapping, etc. [START_REF] Barbaresco | Intelligent m3r radar time resources management: Advanced cognition, agility & autonomy capabilities[END_REF][START_REF] Jimenez | Design of task scheduling process for a multifunction radar[END_REF][START_REF] Miranda | Comparison of scheduling algorithms for multifunction radar[END_REF][START_REF] Moo | Scheduling for multifunction radar via two-slope benefit functions[END_REF]. Electronic scanning and numerical processing allow dynamical use of beam-steering, beam-forming, dwell scheduling and waveform processing to adapt to operational requirements. As complex situations can result in system overload, multi-function radars must optimize resources allocation to ensure robust detection. Optimization of the radar search pattern minimizes the required time-budget for radar scanning, thus freeing resources for other tasks.

In the past, several works have explored various approaches for optimization of the radar search pattern: [START_REF] Hahn | Beam shape loss and surveillance optimization for pencil beam arrays[END_REF][START_REF] Jang | Search optimization for minimum load under detection performance constraints in multi-function phased array radars[END_REF] optimized scanning by tiling identical pencil beams over the surveillance space, [START_REF] Torres | A demonstration of adaptive weather surveillance and multifunction capabilities on the National Weather Radar Testbed Phased Array Radar[END_REF] developed adaptive activation strategies on a pre-designed radar search pattern. Those approaches however do not fully use active radars capabilities to dynamically perform beam-forming. A similar problem is wireless network covering: for a given base station and given clients, ensure connection for all clients using a minimal numbers of directive antenna [START_REF] Berman | Packing to angles and sectors[END_REF][START_REF] Chin | Variable-size rectangle covering[END_REF]. Radar search covering and wireless network covering have similar underlying mathematical structures with both being cover problems.

General optimization problem

A radar search pattern is a collection of dwells ensuring detection over the surveillance space. An optimal radar search pattern achieves detection using a minimum time-budget. The surveillance space A S defines the azimuth-• Its carrier wavelength λ ω

• Its detectability factor s ω , which can either come from measurements or simulations, or either be computed using the waveform model described in 1.5, knowing the number of bursts N b and the detection threshold K b in the waveform.

Digital beamforming processing limit

A dwell d ensures detection over the surveillance space subset

A d = {(az, el) ∈ A S : R d (az, el) ≥ R c (az, el)} (3.1)
whose area is limited by the radar maximum digital beamforming scanning area A max

A d = A d dudv ≤ A max

Problem statement

Finding a radar search pattern S opt ensuring the detection constraint over the surveillance space with minimal time-budget is a minimization problem under constraints:

min 0≤j≤J T w j (3.2a) s.t. S = {d j , 0 ≤ j ≤ J}, J ∈ N (3.2b) A S ⊂ d∈S A d (3.2c) ∀d ∈ S, A d = A d dudv ≤ A max (3.2d) 
The problem amounts to finding a radar search pattern S containing a finite number of dwells (3.2b), validating detection constraint over the entire surveillance space for the given mission (3.2c), with each dwell processable at reception (3.2d), and using minimal radar time-budget (3.2a).

Problem discrete approximation

The general optimization problem is difficult to solve for several reasons:

L K ′ = 2⌊ K 2 ⌋ + 1, v k = 2k+1-K ′ K (3.5) 
The number of sampling points along one dimension is the closest roundedup odd number to the number of radiating elements on the same axis. The feeds of the feasible pattern are computed using the ideal pattern values at the sampling points:

âk,l = 1 KL K ′ k ′ =0 L ′ l ′ =0 g H (u l ′ , v k ′ )e -jπ(kdyv k ′ +ldxu l ′ )/λ
The feeds are normalized: âk,l ← âk,l / max k,l {â k,l } and Taylor filtering is used for decreasing sidelobes and Gibbs oscillations. From the feeds, the feasible pattern can be computed using (1.3). Applying this synthesis procedure to all possible rectangles on grid G, with area A H inferior to the maximum digital beamforming scanning area 

T = {ĝ H : H ⊂ G ∧ A H ≤ A max }
Other synthesis methods based on least square optimization [START_REF] Carlson | Antenna pattern synthesis using weighted least squares[END_REF], genetic algorithms [START_REF] Mahanti | Phase-only and amplitudephase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms[END_REF] and alternating projections [START_REF] Han | Scalable Alternating Projection and Proximal Splitting for Array Pattern Synthesis[END_REF] are also compatible with this approach.

Set cover problem formulation

The set of candidate dwells D can be computed as the Cartesian product of T , the set of synthesized radiation patterns, and W, the set of available waveforms :

D = T × W = {(g t , w), g t ∈ T , w ∈ W} = {d 1 , • • • , d p }

Discrete cover computation

The discrete cover of each dwell is a boolean representation of the dwell detection on the grid. It indicates the cells on which the dwell validates the detection constraint, see Figure 3.8.

The discrete cover correspond to a "sampling" of the dwell detection on the grid. Various sampling schemes can be used for computing the discrete cover C j of a dwell d j ∈ D, see Figure 3.9:

• sampling of the cell corners (which are the grid nodes): The integer program is computed using Python, and optimization is done with CPLEX [START_REF]IBM ILOG CPLEX Optimization Studio[END_REF]. Total computation time for finding one optimal solution is 24 seconds on an i7-3770@3.4GHz processor with a random-access memory (RAM) usage of 450 megabytes.

C j (m, n) = (u,v)∈{un,u n+1 }×{vm,v m+1 } (R j (u, v) ≥ R c (u, v)) x 1 =1 x 4 =0 x 7 =0 x 2 =1 x 5 =1 x 8 =0 x 3 =0 x 6 =1 x 9 =0
The obtained solution uses 16 dwells to cover the surveillance area, as shown in Figure 3.12. Dwells covering low elevations have long waveforms (in red), as they must achieve a higher detection range, and thus require more energy, while dwells at high elevations use the short waveform (in blue). The emission gain is higher far from the antenna array perpendicular direction, in order to compensate scanned losses. The detection range, displayed in Figure 3.13, shows that the radar pattern is over-energetic at high elevation. This can be explained by the reception digital beamforming processing constraint, which limits the area scanned by one dwell.

Chapter 4

Extended formulations and computational improvements

The approximation of radar search pattern optimization as a set cover problem and its integer program formulation has various advantages. Integer programs are flexible tools, and can be extended to more powerful formulations of set covering, which can represent more complex problems in radar covering and account for additional operational requirements. Certain constraints, such as localized clutter and multiple missions can be integrated into the approximation model itself, with virtual no changes in the combinatorial cover problem structure. Other constraints, to be represented, need more general set covering formulations:

• Set multicovering: the problem where universe elements must be covered multiple times, which can represent scan update rate constraints in the context of radar optimization.

• Probabilistic covering: the problem where covers represent detection probabilities over the universe rather than its subsets. In the context of radar optimization, this approach can exploits dwell overlays and combine sub-energetic dwells to ensure global detection probability constraints.

As a major problem of combinatorial optimization, computational and practical aspects of the set cover problem have also been extensively studied [START_REF] Beasley | An algorithm for set covering problem[END_REF][START_REF] Umetani | Relaxation heuristics for the set covering problem[END_REF][START_REF] Caprara | A Heuristic Method for the Set Covering Problem[END_REF]. Efficient, general-purpose integer programming solvers have been implemented and improved over the last decades [START_REF] Caprara | Algorithms for the set covering problem[END_REF][START_REF] Koch | Miplib 2010[END_REF]. Those improvements offer now possibilities for research of multiple solutions [START_REF] Danna | Generating Multiple Solutions for Mixed Integer Programming Problems[END_REF][START_REF] Danna | How to select a small set of diverse solutions to mixed integer programming problems[END_REF], and representation of the structure of the optimal set of a given problem, the set of optimal solutions to said problem.

On the other hand, the geometric characteristics of certain radar cover problems presented in this thesis can be exploited to implement efficient reduction methods. Those methods can reduce the number of variables and constraints in the problem, improving computational optimization but also representation of multiple solutions.

Additional constraints in radar operational optimization

Modern warfare requires from multi-function radars to ensures multiple tasks in complex situations [START_REF] Barbaresco | Intelligent m3r radar time resources management: Advanced cognition, agility & autonomy capabilities[END_REF].

In operational situation, the radar environment may not be uniform, and certain regions might have different properties in terms of clutter and terrain masking. Furthermore, the radar may receive informations from collaborating agents about incoming targets of interest. In such case, the radar could be required to increase its scan update rate in the targets incoming directions. An advantage of using a discrete grid for quantifying the surveillance area is the capacity for specifying those properties and constraints locally to the grid.

The radar might also have to search not one type of target, but multiple types (missiles, planes, etc.). While multiple search missions can sometimes be "combined" into a single mission, this may not always be the case, in particular for very different target types. An advantage of integer programming is that those multiple missions can be integrated by defining one detection constraint for each grid cell and each mission. All while using the same dwells to cover the surveillance space, and taking into account that each dwell might perform differently for each mission.

Localized constraints

Having localized constraints requires additional local information about the radar environment, see Figure 1.8, where for each direction:

• α : A S → [0, 1[ is the clutter eclipse coefficient. It represents the ratio of eclipsed area on the range-Doppler map in a given direction.

• µ : A S → R + is the terrain masking distance, i.e. the maximum detection range in a given direction before terrain masks block detection.

Furthermore, the radar can be required to perform:

• S c : A S → N a minimum number of detection dwells ensuring that a desired scan update rate in a given direction is achieved. The local scan update rate is the number of detection dwells in the direction of interest over the total duration of the radar search pattern.

Taking into accounts those new parameters, the radar search pattern ensures detection if for each direction (az, el) ∈ A S , it contains at least S c,i (az, el) dwells, each capable of detecting a target with radar cross-section σ at range min{µ(az, el), R c (az, el)} with at least detection probability P d and at most false alarm probability P f a in clutter eclipse coefficient α(az, el).

Clutter and terrain masking

Localized clutter and terrain masking can be directly integrated into the computation of the dwell detection range. Taking into account terrain masking computationally simply requires to replace the desired detection by the terrain mask distance range, see Figure 4.1, since the radar cannot detect past the mask: R c (az, el) ← min{µ(az, el), R c (az, el)}

In the combinatorial problem, clutter must be defined per cell, and thus has to be quantified over the grid. In other words, the clutter α(m, n) is local to and constant within the grid cell G m,n ∈ G, but can vary between grid cells. Various quantification scheme can be defined, with some examples shown in Figure 4.2:

• erosion: a grid cell contains a given clutter if it covers the entire cell.

• dominant: a grid cell contains a given clutter if it covers more than half the area in the cell.

• dilatation: a grid cell contains a given clutter if it covers a part of the cell, no matter how small.

When computing the detection range in a given cell (m, n) using the procedure in 1.6, the clutter is taken into account by using the waveform model described in 1.5 to compute the waveform detectability factor

s ω (P d , P f a , α(m, n))
Clutter is integrated during the approximation procedure in 3.3.1 and is virtually transparent to the combinatorial formulation in 3.3.3. Branch-andbound optimization is thus not impacted by clutter.

( ) From the combinatorial optimization perspective, each mission has a set of discrete covers of available discrete covers, and can be viewed as a set cover problem. Each mission i ∈ I has thus its own cover matrix and scan constraint vector such that minimization of the radar search pattern timebudget under detection constraints for all missions is

C d,1 = R d,1 ≥ R c,1 R d,1 < R c,1 ( ) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
min T T .x s.t. ∀i ∈ I, A i • x ≥ s i x ∈ {0, • • • , s max } p ⊂ N p
where s max is the maximum value in all vectors s i . Each mission has different constraints but all missions use the same variables, and by combining all missions cover matrices in a unique matrix, and similarly all missions scan constraint vectors 

A =        A 1 . . . A i . . . A I        and s =        s 1 . . . s i . . . s I        C b C a T a ≤T b

Column reduction

Removal of dominated covers is equivalent to column reduction, a common technique in integer programming, often used before resolution to reduce the instance size [START_REF] Beasley | An algorithm for set covering problem[END_REF][START_REF] Mecke | Solving Geometric Covering Problems by Data Reduction[END_REF][START_REF] Umetani | Relaxation heuristics for the set covering problem[END_REF]. The computational cost of a naive implementation for column reduction is O(|C| 2 |G|). In rectangular grid covering for radar applications, where the number of candidates dwells grows with grid resolution in O(|C|) = O(M 2 N 2 ), naive column reduction requires O(M 5 N 5 ) steps. However, using the geometric characteristics of rectangular covers, column reduction can be performed in O(M 2 N 2 ) steps using O(M 2 N 2 ) space:

Loop through all possibles rectangles in decreasing size. For each rectangle H, check if it corresponds to an available cover C a . Then check if any of the four rectangles obtained by increasing the width or height of H by 1, see Figure 4.12, can be covered by a cover C b dominating C a for a better cost. In that case, C b covers H, and thus cover C a can be removed from available covers. Algorithm 7 describes a pseudo-code of the procedure.

Column reduction "propagates" the domination relation among covers by 

(M -h + 1)(M -h)(N + 1)N 4 + (M -h + 1)(N -w + 1)(N -w) 2 + m(N -w + 1) + n (4.3)
which maps each subrectangle in G to a unique index in [0, M (M + 1)N (N + 1)/4[. In radar search patterns, domination relation between covers is common and due to narrow over-energetic radiation patterns, which performs less efficient covering than widened radiation patterns. In numerical simulations, column reduction is rather efficient in decreasing the number of variables in the integer program.

Row reduction

Another common method for decreasing the instance size of integer program is row reduction, which removes redundant constraints. In the context of cover problems, a cell is redundant respectfully to another cell if the detection constraint of the former is necessarily validated by the detection constraint of the latter, see In radar design and operational use, multiple solutions are a desirable feature. For decades, search patterns have been hand-designed by engineers, who have a strong expertise on the subject and prefer to use optimization as an aid-design tool. Similarly, radar operators preferred to have choice and flexibility between multiple modes in operational situations. Criteria such as bandwidth occupation, range resolution, system overheat, etc. can vary between different solutions, and their importance is usually dependant on the radar system characteristics and on the operational situation.

This choice in turn can be analysed to define preferences, to add secondary selection criterion to the method or even refined the model into a multiobjective optimization problem.

Multiple solutions enumeration can be done by slightly modifying steps 2. and 3. of the branch-and-bound method:

Bounding:

If the current node relaxation value is less than or equal to the current best solution found, proceed to Step 3, otherwise, drop current node and go back to Step 1.

Update and Enumerate:

If the current node relaxation is an integral solution, then its an improving solution. If it is strictly better than the current solution, empty the set of best solutions and update best current solution. Otherwise, update the set of best solutions. Proceed to Step 4 (as there could be other optimal solutions among the children of the current node). 

{ }
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Exhaustive enumeration redundancy

In radar applications practical cases, there is usually a broad choice of possibility for cover problems, and therefore a large number of possible goodquality solutions. However, straightforward branch-and-bound enumeration can produce a lot of redundancy among solutions. Figure 4.18 displays a problem instance example for which there is many redundant optimal solutions. Whereas all discrete covers are used by the union of pattern S 1 and pattern S 2 , making this pair of solutions enough to represent "all covering possibilities". There are however 14 supplementary possible optimal solutions, which can be viewed as recombinations of covers in S 1 ∪ S 2 . These solutions bring no new information on which covers can be used to produce a new solution pattern, and many have significantly similar structure up to a vertical or horizontal symmetry. This phenomenon is caused by the presence of optimal sub-structures in the covering, i.e. different ways to cover the same area. The number of possible optimal solutions grows exponentially with the number of alternatives sub-structures. In Figure 4.18, there are four 4-by-4 sub-structures, one in each corner; and each has 2 alternatives optimal covering, horizontal or vertical, resulting in the 16 possibles solutions.

Solution redundancy is a recurring problem in multiple solution generation which has already been discussed in [START_REF] Danna | Generating Multiple Solutions for Mixed Integer Programming Problems[END_REF][START_REF] Danna | How to select a small set of diverse solutions to mixed integer programming problems[END_REF][START_REF] Greistorfer | Experiments concerning sequential versus simultaneous maximization of objective function and distance[END_REF][START_REF] Tsai | Finding multiple solutions to general integer linear programs[END_REF], against which the most common solution is to use diversity measures, for example based on string distances such as the Hamming distance.

Another way to avoid redundancy is to search for solutions which are not recombinations of previously known solutions. This can be done by maximizing an innovation metric, which would measures how different a new solution compared to all known previous solutions.

Innovation metric

Having multiple optimal solution gives alternative ways to solve cover problems, but it also gives information about which covers are used in optimal solutions, in other words, which covers can be used to construct an optimal solution. Let O = {y ∈ {0, 1} D } be a set of known optimal solutions, the cover indicator of O can be defined as the vector o = (o j ) j∈ [1,D] with o j = max y∈O {y j } and thus o = y∈O y where is the logical bitwise OR operator applied to all solution vectors y as if they were bit vectors. The cover indicator represents the covers used in at least one solution of O. Finding new optimal solutions, which use different covers compared to known solutions, will brings diversity to the set of solutions. More importantly it will increases the number of covers which can be used to construct optimal solutions. The number of "new covers" used by a solution x is measured by the innovation metric of O

d(x, O) = D j=1 x j (1 -o j ) = (1 -o) T • x = d T • x
where d = (1o) is the cost vector of the metric. The metric can thus be written as a linear cost function. Informally, this metric counts how many covers used in solution x are not used by any solution y ∈ O. Diversity stringbased metrics have already been used in generation of multiple solution in The difference with previous Hamming-like metrics is that the innovation metric does not penalize re-use of covers already used by solutions in O. It only quantifies how many "not-previously-used" covers the new solution brings in O. By extension, any discrete cover used in at least one optimal solution is defined as an "optimal candidate cover".

Innovation maximization problem

Sequential optimization is a common approach for generate multiple solutions [START_REF] Danna | Generating Multiple Solutions for Mixed Integer Programming Problems[END_REF]. The original problem is first solved, returning a first solution, from which the optimal cost value can be computed. The original cost function can then be reformulated as an equality constraint. This opens the possibility to use another metric as the cost function, like a diversity distance, or the innovation metric described above.

Conceptually, generating multiple solutions is no longer a minimization problem, as there is no need to search the optimal value since it is known. Whereas maximizing the innovation metric will produce more information on alternative ways to solve the problem. Since the innovation metric is a linear function, the maximization problem for finding a new solution x is an integer program

max d T .x s.t. A • x ≥ 1 T T .x = f opt x ∈ {0, 1} D (4.4)
where O is the set of known previous optimal solution, and f opt is the optimal cost value.

Iterative enumeration

After solving the original problem once, multiple new solutions can be generated by solving sequential instances of integer programs (4.4). At each iteration, the innovation metric is updated with the information received from the new solution, see Figure 4.19. Algorithm 10 details the iterative enumeration, where represents the logical bitwise AND operator. Algorithm 10 has two useful features. Let d k be the value of innovation cost vector d during the k-th step of the while loop:

• Monotony: by optimality of the k-th maximization problem solution

d k T • x k ≥ d k T • x k+1
and step d ← d (1x k ) in the algorithm "removes 1s from d and turn them in 0s", so {j :

d k+1 (j) = 1} ⊂ {j : d k (j) = 1} which implies ∀x ∈ {0, 1} D , d k T • x = j:d k (j)=1
x j ≥ j:d k+1 (j)=1

x j = d k+1 T • x and combining both inequalities yields

d k T • x k ≥ d k+1 T • x k+1
which means that the value of d max = d k • x k decreases (usually nonstrictly) when k increases. So the most different solutions from previously known solutions are computed at the beginning of the loop. More importantly, at any step the value d max = d k • x k indicates how many new covers each additional step can add at most.

• Linearly bounded termination: if an iteration returns a null maximum innovation d T •x k = 0, then by optimality there is no "yet-unused" optimal cover left to find. By monotony, the sequence (d l • x l ) l≥k is null for all subsequent searches anyway. Thus any optimal solution of integer program (2.3) will only use variables in the cover indicator o = 1-d. "d T •x k = 0" is an enumeration certificate, which guarantees that any optimal solution can be constructed from known solutions.

Furthermore, at each step where d k • x k > 0, at least one new "yetunused" optimal cover is found, so necessarily d has "at least a 1 removed", and since d is of length D, the while loop cannot perform more than D steps. The number of steps in Algorithm 10 is bounded by the number of variables, whereas a generic sequential algorithm for generating different solution may have an exponential number of steps, as some problem instances can yield an exponential number of different optimal solutions.

Optimal set structure

Using iterative enumeration provides multiple different solutions, see Figure 4.20, while ensuring solution diversity by maximizing a metric distance between solutions. However, Algorithm 10 main advantage is the computation of the complete optimal cover indicator o = 1-d, containing all covers which can be used to produce an optimal solution. Whereas the set of all possible optimal solutions O is usually too big to be computed in practice, the complete optimal cover indicator o can still be used to analyse and exploit the structure of O.

Optimal column reduction

Knowing which covers are used in at least one optimal solution also implies by complementarity knowing which covers are not used by any optimal solution. Removing those covers from the set of available covers does not impact the set of optimal solutions: let C o = {C j ∈ C : o j = 1}. The reduced problem obtained by replacing C ← C o yields the same set of optimal solutions, as any

The concept of "invariant set" can be generalized to any set of optimal of solutions O ⊂ O, for which the invariant set contains the covers who are part of all solutions in O: I = y∈O {C j : y j = 1} with its associated invariant vector being i = y∈O y.

The optimality invariant can be viewed as the smallest invariant set

I ⊂ I
since O does not contain all optimal solutions, its invariant set I may contains cover which are not part of the optimality invariant, because an optimal solution not using them has not been found yet. As an example, for a set of optimal solution with only one solution, the invariant is the solution itself

O = {x} ⇒ I = {C j : x j = 1} ⇔ i = x
as there is no information on other alternative solutions, and thus on which covers are obligatory, and which are not. While the complete optimal set O is not computable in general, computing the optimality invariant I can be done by iterative reduction of a known invariant set I, where each step optimizes an integer program

min i T .x s.t. A • x ≥ 1 T T .x = f opt x ∈ {0, 1} D (4.5)
which searches an optimal solution using the fewest possible number of covers from the current invariant. Iterative reduction is described in Algorithm 11. Note that if only one optimal solution x is known at initialization, the algorithm essentially starts with i ← x.

Using the same reasoning as for Algorithm 10, each step of iterative reduction "removes at least a 1 from i". The stopping criteria r decreases monotonously and reaches 0 in a number of steps bounded by, D, the number of candidates covers and the size of i. When r = 0, then there is no optimal solution not using all covers in the "current" invariant.

In practice, even with few optimal solutions resulting from a premature stop of Algorithm 10, the initial invariant is the optimality invariant, and (4.5) is only solved once to ensure that there is no cover in the invariant unused by an optimal solution. Algorithm 11 Iterative reduction for computing optimality invariant % Start from a set of known set of optimal solution O i ← x∈O x r ← 1 % Search a solution not using all "candidate" invariant covers while r > 0 do

x k ← argmin{i T • x : A • x ≥ 1 ∧ T T • x = f opt ∧ x ∈ {0, 1} D } % Update parameters r ← i T • (1 -x k )
% stopping criteria: number of removed covers in this iteration i ← i x k end while

Choice metrics

The optimality invariant i and the complete optimal cover indicator o are the extreme descriptors of the optimal set structure • o describes the set of covers used in at least one optimal solution.

• i describes the set of covers used in all optimal solutions. The optimality invariant is the set of covers which cannot be replaced when modifying an optimal solution. This intuits the idea of hierarchy among covers, in terms of how many alternatives there is for an optimal cover.

A straightforward generalization would be to count the number of solutions using a given cover. This criteria is however impractical, as it would require to exhaustively enumerate all solutions, which is infeasible in practice. However, it is possible to derive simpler metrics from the complete optimal indicator.

Constraint covering count

For each detection cell (i.e. constraint), the number of covers (i.e. variables) covering the cell give an indication of "how many alternate ways" to cover said cell exist:

#g m,n = |{C ∈ C O : g m,n ∈ C}| In practice, this classifies which cells gives less options in covering. Evidently, a cell with covering count of 1 has only one "possible choice", and the associated cover is part of the optimality invariant. Usually the grid side areas The grid resolution can be uniform, as has been done so far, such that every cell on the grid covers an equal area. Another possibility is to take irregular quantification step, with more precision in area more likely to require finer tuning of the search pattern.

Qualitatively, the total emitted power of a radiation pattern is constant, and the radar emits the same total power summing all directions. Spreading out the radiation pattern causes a proportionate decrease in angular power density. Radar covering can be viewed as using "energy shapes", with each shape having the same total "energy", to cover a space with energetic requirements. This space is anisotropic though, and different areas requires different powers, see Intuitively, a more adequate to quantify this space would be to somehow follow the required energy distribution, with smaller cells where requirements are higher, such that each cell contains the same energetic requirement, see which can still be solved by branch-and-bound approach. This formulation can still integrate localized clutter, terrain masks and multi-mission constraints but cannot be combined with scan update rates. Probabilistic scan update rates would require to compute the probability of having at least s(m, n) dwell detections in cell (m, n) which is written as a sum of products. Unlike single detection probability which is a single product, sum of products cannot be linearised using logarithm or anti-logarithm.

Conclusion and futures leads

Results and fallouts of the thesis

The paradigm shift of the digital era favoured the production of highly flexible radars, thanks to electronic scanning and digital processing. Dynamical beam-forming and beam-steering increase the degrees of freedom in designing radar search patterns, which can quickly shift between different beam-shaped radiation patterns. Exploitation of those novel possibilities and efficient resource allocations are necessary as modern systems compete over shorter and shorter time frame in the context of electronic warfare. So far, little work has been done previously on the optimization of radar search patterns. Previous approaches limited the beam-shape or steering directions of dwell candidates for the radar search pattern. In the industry, the state of art are hand-designed patterns, requiring working time from engineers, and lacking situational adaptability.

The main challenge of this thesis was the identification of an appropriate theory for modelling radar scanning problems. This reflection has lead to the choice of combinatorial cover problems as a fitting basis for mathematical modelling. The reformulation of radar scanning from the perspective of combinatorial optimization provided a powerful theoretical framework for optimizing radar search patterns. It also proved to be a flexible tool, which has been extended to model complex situations with multiple mission requirements under localized constraints.

The thesis theoretical contributions to combinatorial optimization are the classification of radar cover problems with respect to complexity theory as either strongly polynomial-solvable or NP-hard problems, and the development and identification of optimization algorithms for solving those problems. More practical contributions also include the design of reduction methods for improving computational efficiency in solving radar cover problems, and the research on tools for generation and representation of multiple optimal solutions.

Beyond its academic possibilities, the present work also has potential industrial applications in computer-aided design of radar search patterns, where it can be used to generate first solutions for an existing radar which engineers could refine using their expertise. The automatic nature of the optimization algorithms presented in this thesis is also well-suited for simulation of future radar systems. The radar search pattern of different radar architectures could be optimized in parallel to compare their respective performances. Short term applications focus on aided-design, but in the longer term, radar search optimization could be performed directly in operation, adapting the radar scanning mode to the situation parameters. Branch-and-bound is a practical method for generating just-in-time solutions, which can be stopped at any time to return the best current solution. Knowing a lower bound on the optimal solution, thus having an estimation of the potential gain of pursuing optimization, is a useful feature for efficient radar resource management.

Futures objectives

The various advances made during this thesis have also brought questions and open the path for future research leads. The computational cost of the problem could be improved by modifying the grid quantification values, and thus the overall shape of the grid. A basic approach would be grid adaptation to the mission energetic requirements. More generally, this problematic falls into finite element analysis, a research field focused on discretization of smooth manifolds ("continuous spaces") and their representation as finite meshes of elements. The discrete detection grid could in fact take any form, and does not require to be regular, or even rectangular. This is another strength of the proposed framework: it separates the radar model from the combinatorial cover problem. The branch-and-bound method is very generic, and can be used regardless of the grid geometry. Informally, the algorithm only receives a discrete space, and a set of covers over this space to select, but is impervious to what the space actually represents. This gain in computational efficiency could be used to extend the discretized space to higher dimensions. The detection grid presented in this work has only two dimensions, azimuth and elevation. However, radar detection is often considered in four dimensions: azimuth, elevation, range and Doppler. A four-dimensional grid would thus be able to account for clutter not only from an energetic point view, but from a signal processing perspective, as it would discretize the spatial location of clutter, but also the speed range it pollutes, see Figure 4 So there are two main approaches to search pattern optimization of dynamically moving radars: a deterministic model of the radar movement or a statistical model. In fact both models could be combined: the radar movement could have a deterministic component, its average movements, to which a random part is added. This model could be solved on a fifth-dimensional grid with probabilistic covering, see Figure 4.30, where the detection probability on a cell would combine the waveform detection probability with the dwell presence probability under the radar random movement. Currently, those promising ideas are still being studied as directions for the future work succeeding this thesis.

In that aspect, the main, and most important result from this thesis is that combinatorial covering is a rich, powerful and flexible tool for modelling and optimizing radar search patterns.

Figure 1 . 1 :

 11 Figure 1.1: Radar emission and reception

Figure 1 . 2 :

 12 Figure 1.2: Isotropic antenna (left) and directive antenna (right)

Figure 1 . 13 :

 113 Figure 1.13: Narrow beam half-power width (left), along the u axis (right)

Figure 1 . 14 :

 114 Figure 1.14: Research of a target echo of the waveform in the received signal

Figure 1 . 15 :

 115 Figure 1.15: Waveform structure decomposition

Figure 1 .

 1 Figure 1.18: range-Doppler map with eclipses for a given burst (left) and its visible and occulted areas (right)

Figure 2 . 5 :

 25 Figure 2.5: Radars with bounded azimuthal range (left) and with full azimuthal range (left)

Figure 2 . 7 :•

 27 Figure 2.7: Convex polyhedron representing decision space of linear and integer programs (2D example)

g 0 ... g k- 1 }

 01 optimal solution S n for n cells ...

Figure 2 . 11 :

 211 Figure 2.11: Line covering optimal substructure of the n-th sub-problem

Figure 2 . 12 :

 212 Figure 2.12: Circle covering optimal substructure of the (n, w)-th subproblem

Figure 2 . 13 :

 213 Figure 2.13: Example of non-integral circle cover problem

≃ 10 5 ≃

 105 10 11 ≃ 10 17 ≃ 10 23 ≃ 10 29

Figure 3 . 6 :

 36 Figure 3.6: Ideal radiation pattern (top-left), synthesized radiation pattern (top-right) and synthesized radiation pattern after Taylor filtering (bottom), with synthesis sampling points in red.
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  Figure 4.14 Formally, ∀(g a , g b ) ∈ G 2 , g b is redundant in respect to g a if and only if ∀C ∈ C , C(m b , n b ) ≥ C(m a , m a ), where (m a , n a ) are the coordinates of cell g a and (m b , n b ) the coordinates of g b . Thus any cover including g a also cover g b . Reciprocally, g a is said to imply g b . Removing redundant cells does not impact the optimal value of the problem instance. Similarly than for column reduction, naive row reduction requires O(|G| 2 |C|) = O(M 2 N 2 |C|), but can be reduced to O(M N |C|) exploiting the geometrical properties of rectangular covers.
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 416 Figure 4.16: Number of columns and rows (left) and RAM usage (right) depending on reduction method(s) used.
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  24.Optimizing the grid to a certain energy density repartition e : A S → R + then probability covering can be defined as the following integer programmin T T .x s.t. L • x ≥ b x ∈ {0, 1} D (4.7)
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 430 Figure 4.30: Dwell detection probability on the detection grid along the time axis under random radar movement
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  .28. Waveforms could be optimized as well in a four-dimensional detection grid model, by maximizing the waveform
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Ces contraintes peuvent être quantifiées sur la grille de surveillance, chaque case de la grille ayant un fouillis, un masque de terrain et une contrainte de cadence propres. L'équation radar est calculée pour chaque case de surveillance avec les paramètres de fouillis et terrain spécifiques à cette case. Le fouillis et les masques de terrain sont donc transparents dans la formulation combinatoire et pour l'algorithme de séparation et évaluation.Les contraintes de cadences sont cependant différentes, car ce ne sont pas des contraintes à valeurs binaires avec une détection validée ou non, mais à valeurs entières avec un nombre minimum de détections à assurer. Cette formulation correspond à un problème de multiple recouvrements, qui néanmoins peut lui aussi être résolu par séparation et évaluation, avec cependant un coût algorithmique plus élevé.

In practice, the carrier wavelength can changes between bursts, due to frequency agility, impacting the antenna gain. Corrections in the illumination law can somehow compensate those changes. The present model makes the simplifying assumption that the carrier does not change
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C = {g 1 ,g 4 ,g 5 ,g 7 } = g 0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 0,0 g 1,0 g 0,1 g 1,1 g 0,2 g 1,2 g 0,3 So there is no ratio β such that (α -1)3|E| ≤ βK opt , and the reduction is not approximation-preserving. The exact approximability of the rectangular grid covering remains an open question, though the problem is at worst log-approximable.

Connected grid cover problem

The radar model with connected dwell shapes is a generalization of the rectangular case: the set of available dwell covers can contain any connected shape, as defined in 2.2.3. Since rectangular shapes are valid connected shapes, the problem is immediately NP-hard, since any problem instance of rectangular grid covering is a valid instance of connected grid covering. An alternate reduction from general set covering is also possible. Let (G, C, K) be an instance of the set cover problem. Let G ′ be a 2-by-|G| grid. For each cover C ∈ C, let

such that the first line of cover C ′ replicates C, while the second line of C ′ contains all elements on the second line of G ′ , see Figure 2.26, ensuring that

Suppose S ⊂ C is a solution for set cover instance (G, C, K) and let

Thus S is a solution for (G, C, K) if and only if S ′ is a solution for (G ′ , C ′ , K) and the two problems are computationally equivalent. This reduction keeps the same cost function for both problems, and is stronger than for the previous reduction of vertex covering to rectangular grid covering, as it preserves approximation properties. Thus connected grid covering is NP-hard, and also log-APX-complete, like general set covering [START_REF] Escoffier | Completeness in approximation classes beyond apx[END_REF].

Algorithm 5 Branch-and-bound % lp_solve is the relaxation subroutine called during branching

⊲ optimize free variables return x L := (x 1 , . . . , x d , x d+1 , . . . , x D ) end function In practice, if the algorithm has a broad choice of available covers, it will find very quickly a good quality solution. Typically within ≤ 10% of relative optimality gap. However closing those last percents to reach the optimal solution can be difficult. Because the decision space is often huge, the algorithm spends a long time crossing out possibilities. In some case even, the algorithm finds quickly the optimal solution, and spends a long time proving its optimality.

Pattern synthesis

Let H be a rectangle on grid G, characterized by nodes (u n , v m ) and (u q , v r ). The ideal radiation pattern covering H is

) up to a constant factor, as the antenna array feeds are normalized. This radiation pattern fits the maximum of ideal energetic distributions for all mission detection constraints. This type of ideal pattern is usually infeasible on a real antenna, because it features discontinuities on the rectangle edges, see Figure 3.6. The radiation pattern is the Fourier transform of the antenna illumination law, see (1.3). A discontinuous radiation pattern would require an infinitely large antenna array, for the same mathematical reasons that a discontinuous time signal has an infinite spectrum.

A feasible radiation pattern ĝH can be synthesized by applying a bidimensional Woodward-Lawson sampling method to the ideal pattern g H , adapted from the unidimensional method described in [START_REF] Stutzman | Antenna Theory and Design[END_REF][START_REF] Orfanidis | Electromagnetic Waves and Antennas[END_REF]. This method is very similar in properties to an inverse Fourier transform. Using sampled values of the desired pattern at evenly-spaced sampling points (in red), the method synthesizes a feasible pattern that is guaranteed to hold the same values at the sampling points, see Figure 3.6. The sampling points form a K ′ -by-L ′ grid with nodes (u l , v k ), 0 ≤ l < L ′ , 0 ≤ k < K ′ (note that this grid has no relation to detection grid G) with:

• σ i be the radar cross-section of the target type.

• R c,i : A S → R + be the desired detection range.

• S c,i : A S → N be the desired scan update rate, which is the minimum number of scans to perform in a given direction during one radar search pattern.

• SW i be the Swerling model [START_REF] Swerling | Probability of detection for fluctuating targets[END_REF].

• P d ∈]0, 1[ is the desired detection probability and P f a ∈]0, 1[ is the desired false alarm probability.

The radar search pattern ensures the required detection if for each mission i and each direction (az, el) ∈ A S , the radar search pattern contains at least S c,i (az, el) dwells, each capable of detecting a target with radar cross-section σ i at range min{µ(az, el), R c,i (az, el)} with µ(az, el) the terrain masking range, with at least detection probability P d and at most false alarm probability P f a in clutter eclipse coefficient α(az, el).

Multi-mission pattern synthesis

Multiple missions have different energetic requirements. For each rectangle on the detection grid, the ideal radiation pattern for covering H for all missions at once is the maximum of each mission ideal radiation pattern and is

up to a constant factor, as the antenna array feeds are normalized. Another possible approach is to consider a pattern for each rectangle and each mission.

Dwell discrete cover

For each dwell d j in D and each mission i, the discrete cover C j,i of dwell d j for mission i is computed through the same sampling methods presented in 3.3.1, using the dwell detection range R j,i and the mission desired detection range R c,i . The discrete cover C j,i represents the cells on which dwell d j validates mission i detection constraint.

So each dwell has multiple covers, one for each mission representing its detection performances on said mission, as shown in Figure 4.7 for two detection missions. A dwell cover can differ between missions, as each mission For each possible rectangle, the procedure search a minimum among 4 possibles values. Since there are M (M + 1)N (N + 1)/4 possible rectangles on grid G, Algorithm 7 requires O(M 2 N 2 ) steps. It also requires an array of size M 2 N 2 . However, only M (M + 1)N (N + 1)/4 entries in the array represent valid rectangles, so almost 75% of the array is not used. If memory usage is an issue, a more compact array can use instead the custom hash Algorithm 8 Row reduction % Loop through all cells for g a ∈ G do Allocate list of covers containing g a :

Remove redundant cells: G ← G \ {g b } end for end for end for gain over the general set cover case is in computation of the intersection of covers, which takes O(|C||G|) in general, but can performed in 4|C| steps with rectangular covers, with two maximum and two minimum searches of the corners of R a .

Simulation results

The reduction gain for problems with various square grid size (M = N ) is shown in Figure 4. [START_REF] Escoffier | Completeness in approximation classes beyond apx[END_REF], where column reduction is shown to be highly effective in decreasing the number of variables and the memory usage, almost by a factor 10. Row reduction, while still relatively efficient in reducing the number of constraints, intrinsically operates on a smaller number of constraints, and has a negligible impact on memory performances.

Multiple-solution generation and representation

Branch-and-bound enumeration

While the branch-and-bound exploration could terminate once an optimal (or sufficiently near-optimal) solution is found, it is possible to expand and pursue the exploration of the search tree in order to enumerate alternative optimal solutions [START_REF] Danna | Generating Multiple Solutions for Mixed Integer Programming Problems[END_REF], but there is a trade-off between the computational/memory cost and exhaustiveness of the enumeration.

This result in modifications to Algorithm 5 pseudo-code as described in Algorithm 9.

Algorithm 9 Branch-and-bound enumeration % Initialization ... 

Example

The branch-and-bound enumeration applied to the example given in 2.6.3 would keep searching after finding the solution, and would follow the steps constraint covering count 

Cover alternative count

From the previous metric, the cover alternative count of a given cover is the minimum value of covering count among covered constraints, and gives an indication of "how many alternatives" can replace the cover:

A cover with an alternative count of 1 is in the optimality invariant, as there is a cell which can only be covered by this cover.

Future research leads

This section presents the theoretical work on two future research leads: grid adaptation, and probability covering for combining overlapping dwells.

Grid adaptation

Between the continuous general problem and its combinatorial approximation, quantification on the grid implies a lost of information. Optimal combinatorial solutions are possibly "sub-optimal" for the original continuous problem, and their accuracy likely depends on the grid resolution. can be done in iterative manner. Starting from a given grid, the quantification values {u 0 , . . . , u N } × {v 0 , . . . , v M }, corresponding to the grid nodes locations, are iteratively shifted, where at each step • each value u n , with 1 ≤ n ≤ N -1 is shifted to the horizontal median ûn of its two surroundings columns which is the solution of

which can be computed numerically by root-finding.

• each value v m , with 1 ≤ m ≤ M -1 is shifted to the vertical median vm of its two surroundings rows and is which solution of

e(u, v)dudv which can be computed numerically by root-finding.

• the values u 0 , u N , v 0 and v M remain unchanged, as those values defined the boundaries of the grid.

see Figure 4.25. The method requires numerical resolution of N + M equations at each step, which might be computational costly. A more practical and conceptually close method is Lloyd's algorithm, also known as the Voronoi iteration, where at each step:

• each value u n , 1 ≤ n ≤ N -1 is shifted to the horizontal weighed centroid of its two surroundings columns

• each value v m , 1 ≤ m ≤ M -1 is shifted to the vertical weighed centroid of its two surroundings rows

The two methods differs by the fact that the first method computes medians at each step, whereas the Voronoï iteration compute means.