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Introduction

Context

Classically, most people envision radars as they are often represented in cin-
ema: a small round screen, circularly swept by a cone, displaying blinking
points and beeping whenever a target is detected. That vision, which might
have been true in the past, is no longer an accurate representation.

In the last decades, radar systems have become increasingly complex but
also more versatile. Their missions have extended alongside their capabili-
ties. This evolution was greatly favoured by the electronic and digital revo-
lution in the industry. Modern radars are faster, adaptable and rely heavily
on electronic systems. They can now dynamically and freely sweep their
surroundings using electronic panels as antennas, freeing them from the me-
chanical limitations of rotating antennas and sequential scanning. Modern
radars incorporate digital high-rate receptors, with high-performance numer-
ical processors relying on precise statistical estimators.

The paradigm shift brought by the digital era fundamentally changes
the mathematical models of radar engineering. Integration of this evolution
in the engineering methodology is a necessary step for harnessing the full
potential of modern radar systems.

And this evolution also impacts how radars are used; while older sys-
tems were each dedicated to a single task, modern radars are now multi-
function, using their new-found flexibility to alternate between scanning,
tracking, identification, communication, clutter mapping, etc. Each of those
tasks requires time for emission, reception and processing of the radar signal.
Radar time is the essential resource of radar task scheduling.

In modern warfare, increasingly intelligent systems compete against each
other, seeking reactivity in ever shorter time and managing ever more infor-
mation. In this context, optimizing radar efficiency is necessary to achieve
desired performances in due time and avoid overload.

5



INTRODUCTION

Motivation and Objectives
One the main challenges for modern radar engineering is to assimilate digi-
tal tools to efficiently exploit the available computing power: mathematical
modelling, algorithmics, operational research and optimization.

Those transformations will push the production of aided-design tools for
facilitating, improving and speeding up design and simulation of radar ar-
chitectures; as well as the development of real-time practical algorithms for
optimizing resource management and radar processing in operational situa-
tions.

One particular radar function, fundamental but costly is the searching
(or scanning) of yet-unknown targets. Radar search optimization is an im-
portant topic for radar resource management, and the subject of this thesis,
a joint project between THALES AIR SYSTEMS, the Direction Générale de
l’Armement (DGA) of the French Ministry of Defence and the Laboratory
of Digital Sciences of Nantes (LS2N). The thesis main objectives are:

• to define the theoretical framework and mathematical model of radar
search optimization for tridimensional scanning radars.

• to identify, implement and test the appropriate approaches and algo-
rithms for solving radar search optimization problems.

The work accomplished during the thesis in pursuit of those objectives in-
cludes:

• a general problem formulation for radar search pattern optimization of
scanning radars. This formulation can also be extended to any radar
capable of dynamical beamforming, i.e. electronic control of the an-
tenna radiation pattern.

• a procedure for approximating this problem as a combinatorial cover
problem, and solving it using integer programming methods. Dynamic
programming based algorithms have also been designed and can solve
to optimality certain specific cases.

• a classification of the theoretical complexity of radar cover problems.
Each case is proved to be either computationally easy (polynomial com-
plexity) or hard (NP-hard).

• extensions of the initial formulation accounting for localized clutter,
terrain masking, localized scan update rates and multi-mission con-
straints.

6
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• computational improvements based on reduction methods for decreas-
ing the number of variables and/or constraints, and thus the size, of
the combinatorial problem.

• exploration and theoretical work on future research leads, such as how
to exploit overlaps in the radar search pattern, formulated as a proba-
bility cover problem.

• implementation of a software framework for optimization of radar search
patterns, identification of short-term applications in aided-design and
performance simulations, and long-term applications in real-time radar
resource management.

Thesis outline
The contents are organized in four chapters:

• Chapter 1 presents the basic principles of radar theory and builds the
mathematical radar model which will be considered in the rest of the
thesis.

• Chapter 2 focuses on optimization and complexity theory, presents the
theoretical framework for solving combinatorial cover problems as well
as results on the computational complexity of radar cover problems.

• Chapter 3 defines the general formulation for radar search optimiza-
tion, and describes a procedure for its approximation and solving as a
combinatorial cover problem.

• Chapter 4 presents extensions for integrating localized multi-mission
constraints, computational improvements for faster computation and
multiple solutions generation and representation. It also explores and
presents the theoretical work on future research leads of interests.

The thesis concludes on synthesis of the work achieved, the possible applica-
tions and the continuation of this research.
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Résumé français

Contexte

Les radars modernes sont des systèmes de plus en plus complexes mais aussi
de plus en plus autonomes. Les missions des radars modernes se sont éten-
dues conjointement avec leurs capacités, dont l’évolution a profité du déve-
loppement de l’électronique et du numérique à travers toute l’industrie. Ces
nouveaux radars sont plus rapides, plus flexibles et entièrement électroniques.
Ils sont capables de balayer dynamiquement et librement l’espace grâce à des
panneaux numériques, libérés des limitations mécaniques des antennes tour-
nantes qui parcourent l’espace de manière séquentielle. Les nouveaux radars
intègrent des chaînes de réception haut débit et des calculateurs numériques
intensifs afin d’implémenter des traitements statistiques complexes.

Ces nouvelles caractéristiques changent fondamentalement les modèles
mathématiques sous-jacents de l’ingénierie radar. Afin d’en exploiter pleine-
ment les possibilités, il devient nécessaire d’intégrer ces évolutions à la mé-
thodologie et développer en conséquences de nouvelles solutions d’ingénierie
adaptées aux spécificités de ces nouveaux radars.

Ces évolutions changent également la façon d’utiliser les radars. Tandis
que les anciens radars avait généralement une seule fonction, les radars mo-
dernes, de par leur plus grande flexibilité, sont généralement pensés pour
gérer plusieurs tâches à la fois : surveillance (aussi appelée veille radar),
poursuite de cibles, identification, communication, analyse et estimation du
fouillis ambiant, etc. Chacune de ces fonctions radars nécessite du temps afin
d’émettre, de réceptionner puis de traiter les signaux radar. Le temps-radar
est donc la ressource fondamentale dans le cadre de la gestion des fonctions
radar.

Dans le contexte de la guerre électronique moderne, où des systèmes de
plus en plus intelligents doivent rivaliser sur des temps de réaction toujours
plus courts en prenant en charge de plus en plus de tâches, il devient pri-
mordial d’optimiser l’utilisation du temps radar, sous peine de voir le radar
dépassé par sa charge et à échouer à atteindre ses objectifs.
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Motivation et Objectifs

L’un des challenges principaux dans l’ingénierie radar moderne est donc de
mettre à profit les outils récents et les puissances de calcul de l’ère numérique :
la modélisation mathématique, les statistiques, l’algorithmie, la recherche
opérationnelle et l’optimisation.

L’utilisation conjointe de ces domaines a deux objectifs à terme : la pro-
duction d’outils d’aide à l’ingénierie, afin de faciliter, améliorer et accélérer la
conception et la simulation des architectures de radars ; et le développement
d’algorithmes utilisables en temps-réel pour l’optimisation des ressources et
l’adaptation des traitements radars en situation opérationnelle.

En particulier, une tâche prépondérante du radar, mais coûteuse en res-
sources temporelles est la veille radar : la recherche des cibles qui n’ont pas
encore été détectées. L’optimisation de la veille radar est une question impor-
tante de la gestion des ressources radar. C’est le sujet de cette thèse, réalisée
dans le cadre des activités de recherche de THALES AIR SYSTEMS, en par-
tenariat avec la Direction Générale de l’Armement (DGA) et le Laboratoire
des Sciences du Numérique de Nantes (LS2N). Les objectifs principaux de la
thèse sont :

• de définir et modéliser le problème d’optimisation de la surveillance
radar, plus précisément dumaillage de veille, pour des radars à balayage
électronique.

• d’identifier la théorie et les méthodes d’optimisation adaptées à la ré-
solution de ce problème.

Les travaux réalisées durant cette thèse ont été :

• la formalisation théorique du problème générale d’optimisation de la
veille pour le modèle radar à balayage électronique utilisant une antenne
réseau à contrôle de phase et d’amplitude. Cette formulation générale
du problème peut s’éteindre à d’autres modèles d’antennes, tant que
ces dernières permettent un contrôle électronique du diagramme de
rayonnement.

• l’approximation de ce problème général par le recouvrement d’ensemble,
un des problèmes fondamentaux de l’optimisation combinatoire. Et sa
résolution par des méthodes basées sur la programmation dynamique
dans certains cas, ou la programmation linéaire en nombres entiers dans
le cas général.
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• la classification théorique des problèmes de couverture radar selon leur
complexité algorithmique, chaque problème étant soit solvable en temps
polynomial, soit NP-difficile.

• l’extension de la méthode de résolution pour intégrer de nouvelles contraintes :
fouillis localisé, masques de terrain, cadences adaptatives, et pour gérer
des situations avec plusieurs types de cible.

• l’implémentation et la simulation des outils théoriques conçus pour l’op-
timisation de la veille radar.

• une formulation probabiliste du problème, permettant d’exploiter les
recouvrements de la veille radar, c’est-à-dire les zones scannées plu-
sieurs fois durant la veille.

• l’identification d’applications industrielles potentielles à court terme et
à long terme.

Plan de la thèse

Le contenu de la thèse est organisé en quatre chapitres. Les deux premiers
chapitres se concentrent donc sur les aspects théoriques, et les deux suivants
sur les applications :

• Le Chapitre 1 introduit la théorie du radar et construit un modèle
mathématique d’un radar tridimensionnel à balayage électronique, qui
sera utilisé dans le reste de la thèse.

• Le Chapitre 2 décrit les concepts provenant de la théorie de l’optimi-
sation et la complexité algorithmique qui serviront de base théorique à
la formalisation et la classification des problèmes de couverture radar.
Ces outils serviront ensuite à la conception d’algorithmes pour résoudre
les problèmes de couverture radar.

• Le Chapitre 3 définit le problème d’optimisation du maillage de la veille
radar, et décrit une procédure pour son approximation et sa résolution
sous forme de problème combinatoire.

• Le Chapitre 4 présente les améliorations que cette approche fructueuse
a permis de développer. Le problème d’optimisation du maillage de
la veille radar a pu être étendu à des cas plus généraux, prenant en
compte des contraintes de fouillis localisé ou de cadences adaptatives.
La géométrie du problème peut être exploitée par des méthodes de ré-
duction de contraintes et/ou de variables pour accélérer l’optimisation.

11
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Une résolution rapide du problème permet la génération itérative de
solutions multiples et l’analyse de l’ensemble des solutions optimales.
Le chapitre conclut par des travaux théoriques sur des pistes futures.

La conclusion fait une synthèse des travaux effectués, des possibilités d’ap-
plications et des pistes de recherche ouvertes par la thèse.

Théorie et modèle mathématique du radar

Historique

Le terme RADAR est la contraction de l’expression anglaise “RAdio Detec-
tion And Ranging”, qui peut se traduire par « détection et estimation de
la distance par ondes radio ». Ce terme désigne de façon très générale tout
système utilisant des ondes électromagnétiques pour détecter et analyser des
objets à distance.

Le concept du radar est apparu dès la fin du 19e siècle avec la naissance
des télécommunications, et la technologie radar s’est beaucoup développée
durant les dernières décennies. Les radars sont des outils essentiels pour la
défense militaire, en particulier avec la présence prépondérante de la guerre
électronique dans les conflits modernes. Ils jouent également un rôle vital
dans de nombreux domaines civils, comme le trafic aérien, la météorologie
et la cartographie. La recherche prolifique sur le sujet a donné naissance à
divers systèmes durant la seconde moitié du 20e siècle.

Fonctionnement d’un radar

Les systèmes radar utilisent les ondes électromagnétiques pour détecter la
présence et estimer la position de cibles distantes. Leur fonctionnement phy-
sique peut être décrit par trois étapes : l’émission d’une onde électroma-
gnétique dans une direction d’intérêt, sa réflexion par une cible, et enfin sa
réception et son analyse par la radar afin d’estimer la présence et les carac-
téristiques de la cible.

L’écho renvoyé vers le radar est cependant pollué par le bruit ambiant.
Qualitativement, plus l’objet est éloigné, plus l’écho renvoyé est faible, et donc
difficile à distinguer du bruit ambiant. Améliorer la détection peut être fait
en augmentant la puissance du radar, en concentrant le faisceau d’émission
de l’antenne, ou rallongeant la durée du signal émis. La première option a
souvent un cout matériel important, et est donc généralement évitée. On
préfèrera plutôt les deux dernières options, en cherchant un compromis entre
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la taille de la zone de surveillance et la durée disponible pour effectuer la
surveillance.

Les performances du radar peuvent être calculées à partir de l’équation
radar, qui quantifie la relation entre les caractéristiques du radar et sa per-
formances de détection. Elle peut être interprétée comme la mise en équation
des phénomènes de propagation et de dispersion qui ont lieu entre l’émission
du signal et sa réception après réflexion par une cible.

Diagramme de rayonnement

L’antenne radar est modélisée par un réseau bidimensionnel à commande de
phase et d’amplitude. Chaque élément rayonnant correspond à une source
électromagnétique isotrope de fréquence pure dont la phase et l’amplitude
peuvent être contrôlées indépendamment. L’ensemble des amplitudes et phases
des éléments du réseau forment la loi d’illumination de l’antenne.

Le diagramme de rayonnement de l’antenne est la transformée de Fourier
de sa loi d’illumination. Contrôler les phase et amplitudes des éléments du
réseau permet donc de contrôler la forme du diagramme de rayonnement, via
des techniques communes en traitement du signal :

• L’amplitude permet de contrôler la forme du diagramme de rayonne-
ment, entre autres la largeur du lobe principal et la hauteur des lobes
secondaires, via un fenêtrage.

• La phase permet de translater le diagramme de rayonnement et de
changer la direction d’émission du lobe principal, via un déphasage
linéaire.

Forme d’onde

On appelle forme d’onde le signal émis par l’antenne radar. Ce dernier a
une forme caractéristique que l’on va rechercher dans le signal reçu par le
radar, afin de retrouver l’écho du signal émis réfléchi par une cible, validant
la présence de cette dernière.

Le modèle considéré dans cette thèse est celui d’un radar mono-statique
Doppler pulsé, donc utilisant des formes d’ondes qui sont des séries d’impul-
sions courtes (émission) entrecoupées de silences d’écoute (réception). Ces sé-
ries d’impulsions sont combinées afin d’améliorer le rapport signal sur bruit,
cette technique s’appelle l’intégration.

Les performances de détection de formes d’ondes radar peuvent venir de
mesures réelles, ou peuvent avoir été simulées par un modèle énergétique de
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la forme d’onde. Ce dernier ne détaille pas la structure interne de la forme
d’onde, mais suffit à en représenter les performances “moyennes”.

Pointages

La combinaison d’un diagramme de rayonnement et d’une forme d’onde
constitue un pointage. Qualitativement, un pointage définit à la fois une
direction d’observation, « où le radar regarde », et une forme du signal émis,
« comment le radar écoute ». Les paramètres du pointages, intégrés dans
l’équation radar, permettent de calculer la portée de détection de ce dernier
quand il « joue » le pointage.

La veille radar consiste à utiliser des pointages pour assurer la détec-
tion dans l’espace de surveillance jusqu’à la portée souhaitée. L’ensemble des
pointages utilisés pour assurer cette surveillance forment le maillage de veille.

Théorie de l’optimisation et complexité algorith-
mique

Introduction

L’optimisation est une branche de mathématiques s’intéressant à la résolution
efficace de problèmes rencontrés dans la vie réelle. Elle englobe plusieurs as-
pects, entre autres la modélisation mathématique de ces problèmes, l’analyse
de leur complexité et le développement de procédures, appelées algorithmes,
permettant leur résolution systématique.

Qualitativement, l’optimisation de la veille radar consiste à chercher d’un
maillage de veille performant, capable d’assurer la détection sur l’espace de
surveillance en prenant le moins de temps possible. Cela revient à utiliser
un nombre « minimal » de pointages, à une pondération près. Le problème
d’optimisation de la veille radar peut être relié à la classe des problèmes
de recouvrement combinatoire, dont l’objectif est de couvrir un ensemble,
appelé univers, en utilisant le moins d’éléments possible parmi un ensemble de
couvertures disponibles, ces dernières étant des sous-ensembles de l’univers.

Problème de couverture par ensembles

Le problème de couverture par ensembles est la forme la plus générale de
recouvrement combinatoire, et est NP-complet, faisant partie des problèmes
les plus durs de la classe NP. Qualitativement, un problème NP-complet a
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des solutions faciles à tester (complexité polynomiale pour vérifier la vali-
dité et le cout d’une solution) mais ses solutions optimales sont difficiles à
trouver (complexité exponentielle pour tester toutes les solutions) dans l’état
de l’art de la recherche informatique. Les problèmes industriels difficiles sont
généralement NP-complets.

Un problème de couverture radar peut être transformé en problème de
couverture par ensembles, avec différentes propriétés selon le modèle du ra-
dar. De manière générale, un problème de couverture radar s’écrira comme le
recouvrement d’une grille de surveillance par des pointages. Les radar bidi-
mensionnels (pas de dépointage en élévation) correspondent aux problèmes de
recouvrement de grilles unidimensionnelles alors que les radars tridimension-
nels correspondent au problème de recouvrement de grille bidimensionnelle.
Un cas intéressant de ce dernier pour la modélisation des radars tridimen-
sionnels est le problème de recouvrement de grille rectangulaire, où les zones
de détection des pointage sont représentées par des rectangles. Ce modèle
offre un bon compromis entre choix et complexité du nombre de pointages
candidats pour former le maillage de veille.

Classification de problèmes de recouvrement de grille

Sous forme générale, le problème de couverture par ensembles est NP-complet,
mais certains cas particuliers de ce problème ne le sont pas nécessairement.
Ainsi, les restrictions géométriques des problèmes de recouvrement de grilles
unidimensionnelles permettent une résolution efficace de ces derniers, en
temps (fortement) polynomiale, par des algorithmes de programmation dy-
namique. Certains sous-cas du problème unidimensionnel peuvent aussi être
résolus par méthode gloutonne ou programmation linéaire, mais la program-
mation dynamique reste néanmoins l’approche la plus simple à implémenter
et la plus efficace.

A l’inverse, le problème de recouvrement de grille rectangulaire est NP-
complet. La démonstration est faite par réduction depuis le problème de
couverture par sommets de la théorie des graphes, l’un des 21 problèmes
NP-complets originels de Karp. De façon plus générale, tous les problèmes
de recouvrement modélisant des radars tridimensionnels sont NP-difficile à
résoudre.

Méthode par séparation et évaluation

Il se peut qu’on ne trouve jamais d’algorithmes garantis en complexité théo-
rique de résoudre efficacement les problèmes de recouvrement de grille bidi-
mensionnelle, si P6=NP. Il reste cependant possible de résoudre ces problèmes
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efficacement en pratique. La méthode par séparation et évaluation, qui ex-
plore l’espace des solutions possibles, obtient généralement de bonnes perfor-
mances en pratique, en évitant certaines portions de l’espace de décision via
des méthodes d’évaluation, d’où son nom.

Cette méthode offre de plus de nombreux avantages d’un point de vue
opérationnel, déjà la possibilité de stopper à n’importe quel moment l’explo-
ration pour récupérer la meilleure solution trouvée, mais aussi la connaissance
des bornes d’évaluation sur le reste de l’espace à explorer, qui permettent de
quantifier le gain potentiel de la poursuite de l’optimisation. Ces avantages
sont particulièrement pertinents pour les systèmes radars qui fonctionnent en
temps critique et ont besoin d’une solution, même sous-optimale, dans un dé-
lai limité. La connaissance du gain potentiel permet de choisir si la poursuite
de l’optimisation en vaut la peine, où si la puissance de calcul sera mieux uti-
lisée à d’autres tâches. D’autant plus que pour les problèmes de couverture,
les solutions sont très rapidement de très bonne qualité, arrivant en quelques
secondes à moins d’une dizaine de pourcents de l’optimale, alors que combler
ces derniers pourcents pour arriver à l’optimalité peut être difficile.

Optimisation du maillage de la veille radar

Formulation générale du problème

Le problème d’optimisation de la veille radar est défini à partir des besoins
opérationnels. Le cahier des charges de la mission confiée au radar est décrit
comme la contrainte de détection d’une cible ayant une taille apparente et
suivant un modèle (Swerling) connus, à une portée souhaitée qui dépend de la
direction d’observation, avec une probabilité de détection minimum garantie
et une probabilité de fausse alarme (détection en l’absence de cible réelle,
généralement causée par du bruit) maximum garantie.

Pour accomplir cette mission, le radar a à disposition une base de données
de formes d’ondes, chacune ayant ses propres paramètres. Les performances
des formes d’ondes, en terme de probabilités de détection/fausse alarme à
rapport signal-sur-bruit donné, sont soit connues par mesures réelles, soit
simulées à l’aide du modèle énergétique du Chapitre 1.

Sous sa forme initiale, l’optimisation du maillage de la veille est un pro-
blème d’optimisation difficile à résoudre, même d’un point de vue pratique.
Ce dernier mélange variables continues (lois d’illuminations des pointages) et
variables discrètes (choix des formes d’ondes). De plus la taille du maillage de
veille n’est pas nécessairement fixée, et est une « méta-variable » qui condi-
tionne le nombre des précédentes variables dans le problème. De surcroît les
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fonctions dans la contrainte de détection peuvent être non-convexes. Toutes
ces caractéristiques rendent la résolution directe du problème difficile.

Approximation discrète

Il est cependant possible d’approcher ce problème sous une forme combina-
toire, qui peut être résolue, en faisant les deux approximations suivantes :

• la discrétisation de la contrainte de détection sur une grille finie de
surveillance.

• la restriction des diagrammes de rayonnement des pointages candidats
à des formes rectangulaires.

La résolution du problème sur la base de ces approximations peut être divisée
en trois étapes :

• la quantification sur la grille représentant l’espace de surveillance.

• la synthèse de diagrammes de rayonnement faisables à partie des be-
soins énergétiques de la mission.

• l’écriture du problème sous forme de recouvrement combinatoire et sa
résolution par séparation et évaluation.

Synthèse de diagrammes de rayonnement

Le diagramme de rayonnement idéal assurant la détection sur une partie
de l’espace de surveillance, ici une zone rectangulaire, est une fonction avec
une discontinuité, car le diagramme doit émettre parfaitement et uniquement
dans la zone rectangulaire, et pas en-dehors. Le diagramme de rayonnement
étant la transformée de Fourier de la loi illumination du réseau de l’antenne,
il faudrait une loi d’illumination de taille infinie pour émettre un diagramme
discontinu. Une antenne réelle de taille finie n’est donc pas capable d’émettre
un tel diagramme.

Il est cependant possible d’approcher ces diagrammes idéaux via la mé-
thode d’échantillonnage de Woodward-Lawson, qui approxime un faisceau à
partir d’une formule très similaire à une transformée de Fourier inverse. Les
diagrammes synthétisés sont ensuite filtrés par une fenêtre de Taylor, souvent
utilisée en traitement radar.

Il est cependant possible d’utiliser d’autres méthodes de synthèse pour
générer des diagrammes de rayonnement faisables à partir des diagrammes
idéaux.
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Formulation combinatoire

L’ensemble des pointages candidats est le produit Cartésien de l’ensemble
des diagrammes synthétisés à l’étape précédente, avec l’ensemble des formes
d’ondes disponibles sur le radar. Pour chacun de ces pointages candidats,
la couverture discrète du pointage est calculée comme une matrice binaire
indiquant la détection sur la grille de surveillance.

Plusieurs schémas sont possibles pour l’échantillonnage de la détection :
sur les coins de chaque case, au centre de chaque case, ou sur une sous-grille.
Pour chacun de ces points, la portée de détection du pointage est calculée
par l’équation radar. À chaque couverture discrète est associé un coût, qui
correspond à la durée de la forme d’onde du pointage.

À ce stade, le problème peut s’écrire sous forme combinatoire, où l’on
cherche à trouver un maillage, un sous-ensemble de couvertures discrètes
couvrant chaque case de la grille, avec un coût total en budget-temps ra-
dar minimum. On reconnaît le problème de recouvrement de grille décrit au
Chapitre 2, qui peut être résolu par séparation et évaluation.

Extensions et améliorations algorithmiques

L’une des grandes forces de l’optimisation du maillage de la veille radar par
approximation combinatoire est le découplage que ce dernière effectue entre le
modèle radar et le problème de recouvrement combinatoire. Ainsi, le modèle
radar peut intégrer des contraintes locales à chaque case de la grille de sur-
veillance, comme du fouillis ou des masques de terrain, ou gérer des missions
multiples sans que cela impacte la structure du problème combinatoire.

Certaines extensions du problème, telles que les contraintes de cadences
de mise à jour localisées ou l’utilisation des recouvrements entre pointages
nécessitent cependant des formulations plus générales de recouvrement com-
binatoire :

• problème de multiples recouvrements : chaque élément doit être cou-
vert un certain de nombre de fois, choisi de manière indépendante
pour chaque élément, représentant ainsi les différentes contraintes de
cadences.

• problème de recouvrement probabiliste : les couvertures discrètes ne re-
présente plus une détection binaire, mais une probabilité de détection,
permettant de combiner plusieurs pointages sous-énergétiques pour as-
surer une probabilité de détection globale.
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Dans une autre direction, l’amélioration des puissances de calcul des ordi-
nateurs et des performances des solveurs combinatoires permet d’envisa-
ger la génération de solutions multiples. La particularité géométrique du
problème de recouvrement de grille rectangulaire permet aussi de réduire
très efficacement la taille du problème par des méthode de réduction de va-
riables/contraintes.

Contraintes localisées de fouillis, de masque et de cadence

En situation opérationnelle, l’environnement du radar est souvent inhomo-
gène, avec :

• du fouillis localisé dans certaines zones de l’espace de surveillance.

• des reliefs qui peuvent limiter la portée de détection.

• des zones de danger à scanner de façon plus régulière, car avec un fort
risque de voir une cible y apparaître.

Ces contraintes peuvent être quantifiées sur la grille de surveillance, chaque
case de la grille ayant un fouillis, un masque de terrain et une contrainte
de cadence propres. L’équation radar est calculée pour chaque case de sur-
veillance avec les paramètres de fouillis et terrain spécifiques à cette case. Le
fouillis et les masques de terrain sont donc transparents dans la formulation
combinatoire et pour l’algorithme de séparation et évaluation.

Les contraintes de cadences sont cependant différentes, car ce ne sont pas
des contraintes à valeurs binaires avec une détection validée ou non, mais
à valeurs entières avec un nombre minimum de détections à assurer. Cette
formulation correspond à un problème de multiple recouvrements, qui néan-
moins peut lui aussi être résolu par séparation et évaluation, avec cependant
un coût algorithmique plus élevé.

Gestion des missions multiples

Les radars en situation opérationnelle ont souvent pour tâches de détecter
plusieurs types de cible à la fois : missiles, chasseurs, avions, etc. Chaque tâche
correspond à une mission avec un modèle de cible et une portée souhaitée
différents. Les missions peuvent aussi avoir des objectifs de probabilité de
détection et de fausse alarme différents. Les différents besoins énergétiques
sont combinés lors de la synthèse de faisceaux.
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Le problème combinatoire peut ensuite être approximé pour les différentes
missions, chaque pointage candidat ayant une couverture discrète de détec-
tion pour chaque mission. Les contraintes de détection des différentes mis-
sions peuvent être combinées sous une seule forme matricielle, pour former un
problème de détection globale. Ainsi le maillage sera optimisé globalement,
pour accomplir toutes les missions à la fois en utilisant un budget temps
radar minimal.

Méthodes de réduction

La complexité de l’optimisation, en particulier pour la méthode par sépa-
ration et évaluation, est fortement dépendante du nombre de variables et
de contraintes, qui augmente avec la résolution de la grille de surveillance.
Dans le cas d’une grille rectangulaire, le nombre de contraintes évolue linéai-
rement, et le nombre de variables quadratiquement, avec la résolution de la
grille. Le nombre de variables peut rapidement devenir le facteur limitant de
l’optimisation.

Il est cependant possible de réduire considérablement le nombre de va-
riables dans le cas d’un problème de recouvrement de grille rectangulaire.
Car en pratique, un certain nombre de couvertures rectangulaires sont do-
minées par d’autre couvertures, au sens où une couverture domine un autre
si elle couvre au moins la même zone en temps égal ou plus court. Les cou-
vertures dominées peuvent être éliminées du problème sans changer le coût
optimal du problème. Dans le cas général, cela nécessite de comparer toutes
les couvertures deux à deux, ce qui peut être couteux en calcul. Dans le cas
rectangulaire, il est possible d’exploiter la structure géométrique du problème
pour éliminer en une seule passe toutes les couvertures dominées, en parcou-
rant l’ensemble des rectangles de la grille par ordre décroissant de taille. La
méthode exploite la propriété que pour toute couverture dominée, il existe
une séquence de rectangles de taille décroissante depuis une couverture do-
minante.

De manière similaire, il est possible d’éliminer des contraintes superflues
pour réduire la taille du problème. Une contrainte de détection est superflue
si elle est impliquée par une autre contrainte, dans le sens où si la seconde
est vraie, alors la première l’est forcément aussi. Une méthode de réduction,
exploitant elle aussi la structure rectangulaire du problème, permet de sup-
primer les contraintes superflues en une seule passe.

Le gain le plus spectaculaire en pratique reste cependant celui de la ré-
duction de variables, capable de réduire par dix la taille du problème. La
raison étant qu’il y a généralement beaucoup plus de variables (croissance
quadratique) que de contraintes (croissance linéaire).
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Génération et représentation de solutions multiples

La génération de multiples solutions est faisable en poursuivant la phase
d’exploration de la méthode par séparation et évaluation même après avoir
trouvé une solution optimale. L’obtention de plusieurs solutions optimales
est intéressante d’un point de vue de l’ingénierie à la fois pour offrir du choix
aux ingénieurs, mais aussi pour raffiner la fonction de coût et la modélisation
du problème à partir de leur choix.

Il se peut cependant qu’il y ait un nombre trop grand de solutions op-
timales différentes pour que leur ensemble puisse être généré. De plus une
forte redondance entre solutions optimales diminue l’intérêt d’une recherche
exhaustive, car beaucoup des nouvelles solutions trouvées seront des combi-
naisons de solutions déjà connues.

Une approche possible pour éviter cette redondance d’information est de
résoudre de manière itérative des problèmes de maximisation de distance
entre solutions. Le coût optimal étant connue à partir de la première solu-
tion optimale, on peut l’intégrer sous forme de contrainte au problème, et
choisir comme fonction de coût le nombre de couvertures de la solution qui
ne sont pas déjà présentes dans les solutions précédentes. Cette méthode
itérative permet de construire l’ensemble des couvertures optimales, les cou-
vertures qui sont utilisées par au moins une solution optimale. Parallèlement,
il est possible de calculer l’invariant d’optimalité, qui correspond à la partie
constante commune à toutes les solutions optimales, c’est à dire l’ensemble
des couvertures utilisées par toute solution optimale. Ces outils permettent
d’analyser la structure type d’une solution optimale, qui sera généralement
une combinaison de l’invariant d’optimalité avec des couvertures optimales
optionnelles.

Grille adaptative

La conception de grilles adaptatives fait partie des pistes de recherche fu-
tures. Pour l’instant, les cases de la grille de surveillance sont délimitées par
des valeurs uniformément réparties, de telle sorte que chaque case recouvre
la même surface. Il est cependant possible de travailler sur une grille avec
des valeurs non uniformes, dont les cases seraient plus ou moins grande de
manière à refléter les besoins énergétiques de la détection. La précision de la
grille varierait donc localement sur l’espace de surveillance.

Des méthodes de calcul numérique reposant sur la médiane ou la moyenne,
comme l’algorithme de Max-Lloyd, permettent d’adapter la grille aux besoins
énergétiques.
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Problème de recouvrement probabiliste

Une autre piste de recherche est la représentation probabiliste des couvertures
discrètes des pointages, où pour chaque case la couverture ne représente
plus une détection binaire, mais la probabilité de détection du pointage sur
cette case. Ainsi, deux pointages qui n’atteignent pas une probabilité de
détection suffisante séparément, par exemple 70% < 90%, peuvent l’atteindre
conjointement, la probabilité qu’au moins un des deux pointages détecte la
cible étant 1− (1− 70%)2 = 91% > 90%.

Le problème de recouvrement probabiliste peut se réécrire sous forme
matricielle en utilisant la fonction anti-log probabilité x → log(1 − x), et
correspond à un programme linéaire en nombres entiers qui peut être résolu
par séparation et évaluation.

Conclusions et perspectives

Les nouvelles capacités numériques des radars modernes à balayage électro-
nique offrent des larges possibilités pour l’optimisation du maillage de la veille
radar. Une utilisation efficace et flexible des ressources en budget-temps peut
permettre aux radars de gérer des situations complexes même sous des délais
très courts.

Le principal objectif de la thèse était d’identifier les approches mathé-
matiques adaptées à la représentation du problème du maillage de la veille
radar, et de formaliser sur la base de ces outils un canevas théorique pour
la résolution de ce problème. L’approximation du maillage de la veille radar
sous forme de problème de recouvrement combinatoire s’est révélée être un
outil puissant et flexible, pouvant être généralisé à des situations complexes
avec plusieurs missions et des contraintes localisées.

Les contributions théoriques de la thèse ont permis la classification des
problèmes de couverture radar, selon le type de radar, entre la classe des pro-
blèmes solvable en temps fortement polynomial ou la classe des problèmes
NP-difficiles. Les contributions incluent également la conception de méthodes
de réduction exploitant la géométrie du problème pour accélérer l’optimisa-
tion, et des travaux sur la génération et la représentation de solutions mul-
tiples.

Les applications possibles de ces travaux portent sur l’aide à la conception
de maillage de veille par des ingénieurs pour des radars existants, et la simu-
lation des performances d’architectures de futurs radars. Sur le long terme,
les algorithmes présentés dans cette thèse pourraient être inclus directement
dans le radar, afin d’optimiser en temps réel le maillage de veille en situation
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opérationnelle.
Ces travaux ont également ouvert la voie vers de nouvelles pistes de re-

cherche, par exemple l’utilisation les recouvrements entre pointages ou les
grille de surveillance adaptées aux besoins énergétiques de mission. D’autres
pistes sont également envisagées, portant notamment sur l’utilisation de
grilles multidimensionnelles. Ainsi la grille couvrirait les axes azimut et éléva-
tion, mais aussi les axes portée et vitesse de la détection des cibles, permettant
l’optimisation des formes d’ondes. Le temps pourrait aussi être ajouté comme
axe supplémentaire, afin d’inclure l’ordonnancement dans l’optimisation du
maillage de la veille et de compenser les mouvements de radars mobiles.

À la vue de ces possibilités, le principal résultat de la thèse est d’avoir
montré la pertinence de l’utilisation du recouvrement combinatoire comme
un outil pour l’optimisation du maillage de la veille radar.
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Chapter 1

Radar theory and mathematical
model

1.1 History

The term RADAR is the contraction of “RAdio Detection And Ranging”. It
encompasses all systems and techniques for detecting and analysing distant
objects through the use of radio waves, which usually refer to electromagnetic
waves with frequencies between a few kilohertz to several hundred gigahertz.

The first radar experiments were pioneered by German physicist Heinrich
Hertz in the late 19th century, applying James Maxwell’s ideas. However,
radar technology has most significantly developed during the last decades,
principally for military use and defence applications.

Radars are nowadays essential assets in modern warfare and military de-
fence, ever since World War II. They also play an important role in civilian
applications, most notably in flight control with the ever increasing traffic,
but also in weather forecasting, topography and geology. Radar research has
been prolific in the latter part of the 20th century during which many radar
systems and technological improvements have been made.

Radar theory covers a wide variety of fields: from antenna design focusing
on the electromagnetic properties of radiating elements, to signal processing
studying the structure and efficiency of transmitted signals, and statistics for
extracting reliable information for target detection and analysis.

1.2 Radar basic principle

A radar system detects an object by propagating electromagnetic waves, from
which it can also infer information regarding the object. This process can be
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Figure 1.1: Radar emission and reception

divided into three steps:

• The radar first sends an electromagnetic wave in the scanning direction.

• Upon encountering an object, the wave is reflected and partially prop-
agates back to the radar antenna.

• The radar receives and processes the reflected wave to detect an object
and estimate its characteristics, usually position and radial speed.

Unfortunately, the received signal is polluted with ambient noise. The
further the object is, the weaker the echo is and the harder it becomes to dis-
tinguish the echo from noise. Detection of weak echo signals can be improved
through different approaches:

• Increasing the emitter antenna power. This is the most straightforward
solution, but has significant material, logistic and energetic costs. A
more powerful antenna will be bigger, and use more energy, thus pro-
ducing more heat and requiring a better cooling system. This is usually
not the preferred solution, rather used as a last resort.

• Focusing the antenna radiation pattern in a unique direction rather
than dispersing it uniformly in all directions. Concentrating the ra-
diating power decreases the angular width of the detection area but
improves the detection range. Modern radars rely on electronics to nu-
merically control and dynamically generate a desired radiation pattern.

• Increasing the emitted signal duration. After reflection, a longer echo
is easier to extract from noise, as the echo has a consistent temporal
structure. The longer the echo, and the more it contrasts with the ran-
domness of noise, typically assumed white (thus incoherent between any
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two instants). A longer signal means sending more energy on the tar-
get. Time integration of the received signal increases the echo strength
comparatively to the ambient noise power.

The formal mathematical relation between those parameters and the detec-
tion range is called the radar equation.

1.3 Radar equation

1.3.1 Definition

The radar equation expresses the relationship between the energy reflected
by a target towards the radar, the radar characteristics (emission power,
antenna gain), the target characteristics (radar cross-section, distance to the
radar) and various losses.

The radar equation sometimes appear under different forms, depending on
the situation and radar model, which are all mathematically equivalent how-
ever. Formulas used for radar design and sizing under detection constraints
(for given target at given range, etc.) may look different than formulas for
computing performances of a known radar architecture. Though the equa-
tion always models the same phenomenon and quantify the propagation and
dispersion of radar waves travelling forth and back between the radar and a
target [1]:

Er =
P T gt gr λ

2 σ

(4π)3R4 L
(1.1)

with :

• Er the reflected energy received on the antenna (J),

• P the antenna average power (W),

• gt the antenna emission gain in the target direction (dB),

• gr the antenna reception gain in the target direction (dB),

• T the emitted signal time duration (s),

• λ the signal wavelength (m),

• σ the target radar cross-section, its “visibility” to the radar (m2),

• R the radar↔target distance (m),

• L the energetic losses (dB).
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Figure 1.2: Isotropic antenna (left) and directive antenna (right)

1.3.2 Energetic dispersion interpretation

The radar equation models the physical phenomenon of energy propagation.
Under the far-field hypothesis, an antenna can be modelled as a point source
“seen from far away”. The antenna is isotropic if it emits the same power in
all directions, and has a constant gain. It is directive if the antenna focuses
the power in certain directions, and has a variable gain. Both cases are shown
in Figure 1.2.

An isotropic antenna radiates its power P uniformly, emitting spherical
waves at far-field. At a distance R from the radar, its power is distributed
evenly on a sphere with a surface 4πR2, see Figure 1.3. For a directive
antenna, the power distribution is proportional to the antenna gain. The
power flux density radiating from the antenna is

Pgt
4πR2

A target with radar cross-section σ at range R will partially intercept and
reflect this power. Under the far-field hypothesis, the target is far away from
the radar, and can be viewed as a point source dispersing spherical waves.
The reflected power at a distance R from the target is distributed on the
sphere with radius R, see Figure 1.3, and the reflected power flux density is

Pgt
4πR2

σ

4πR2

and is intercepted by the antenna effective reception area Ae = grλ2

4π
[1].

The total energy received by the radar is the power multiplied by the signal
duration T :

Pgt
4πR2

σ

4πR2

grλ
2

4π
T

and including losses L, this corresponds to the radar equation (1.1).
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Figure 1.3: Energetic propagation and reflection of a radar signal

1.4 Radiation pattern model

1.4.1 Phased array

The radar antenna model is a bidimensional phased-array of K-by-L evenly
spaced radiating elements, shown in Figure 1.4, with horizontal spacing dx
and vertical spacing dz. In the array local Cartesian coordinates system
Oxyz, the position of radiating element (k, l) is given by

~pk,l = (x, y, z) = (−ldx, 0, kdz)xyz

Each radiating element is an isotropic electromagnetic source, whose
phase and amplitude can be freely controlled

sk,l(t) = Ak,l e
jφk,l s(t)

with the amplitude Ak,l ∈ [0, 1] and the phase φk,l ∈ [0, 2π[ of the radiating
element indexed by (k, l) ∈ {0, ..., K − 1} × {0, ..., L − 1}, and the emission
signal s(t) feed in the antenna.

A phase-amplitude illumination law of the antenna array is defined by a
set of values {ak,l} in the complex open unit disk D:

{ak,l = Ak,l e
jφk,l ∈ D : 0 ≤ k < K, 0 ≤ l < L}

A scanning direction is defined by the antenna local spherical coordinates
(ϕ, θ) ∈ [0, π]2, see Figure 1.5. The associated unit vector is defined in
Cartesian coordinates

~u = (u, v, w) = (cos(θ) sin(ϕ), sin(θ), cos(θ) cos(ϕ))uvw (1.2)
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k=0

k=1

...
k=K-1

l=0 l=1 l=2 ... l=L-1

dz

dxy

z
x

Figure 1.4: Phased array local coordinates system. Green dots are geometric
centers of radiating elements

known as direction cosines. In practice, only (u, v) are used, as w is immedi-
ately deduced by u2 + v2 + w2 = 1 and w ≥ 0. Remark that the array local
coordinates (x, y, z) and direction cosines coordinates (u, v, w) are different
coordinate systems, related by the following relations

u = −x
v = z
w = y

or

uv
w

 =

−1 0 0
0 0 1
0 1 0

 ·
xy
z


and the radiating element (k, l) position can be written in direction cosines
coordinates as

~pk,l = (ldx, kdz, 0)uvw

1.4.2 Beamforming emission

For a far-field target in direction ~u, the antenna array can be approximated
as a sum of point sources. The emitted signal is the aggregation of each
source signal on a wavefront perpendicular to the direction ~u.

When the wavefront is not coplanar to the antenna array plane, a phase
shift appears among the signals. The phase shift between element (k, l) and a
reference element (0, 0) can be geometrically expressed as an optical pathway
shift

δk,l = ~pk,l · ~u = ldxu+ kdzv

see Figure 1.5. The total emitted signal can be expressed as

K−1∑
k=0

L−1∑
l=0

ak,l s(t) e
j2π

δk,l
λ =

(
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π ldxu+kdzv

λ

)
s(t) = gt(u, v) s(t)
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Figure 1.5: Wavefront propagation and direction cosines coordinates

with λ the carrier wavelength of signal s(t), and gt(u, v) the emission gain
of the antenna in direction ~u, also called array factor [2, 3]:

gt(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π

ldxu+kdyv

λ =
K−1∑
k=0

L−1∑
l=0

Ak,l e
jφk,l ej2π

ldxu+kdyv

λ (1.3)

Remark the origin choice only impacts the global phase of the radiation
pattern, but not the phase shifts between elements, nor the absolute value
of the radiation pattern.

In (1.3), the emission gain corresponds to the discrete bidimensional
Fourier transform of the phased-array illumination law {ak,l} with substi-
tution (dx

λ
u, dy

λ
v)← (ν, µ)

gt(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π(lν+kµ) = DFT ({ak,l})(ν, µ)

Control of phases and amplitudes of the array elements can be used to shape
the radiation pattern, relying on known principles of signal processing:

• the amplitude controls the shape of the pattern, and thus the main-lobe
beam-width and the side-lobes level, through windowing.

• the phase translates the radiation pattern in direction cosines space,
controlling the main-lobe direction, through a linear phase shift.

This technique for controlling the radiation pattern is called beamforming,
also called beam-steering when used only for translating the radiation pattern.
Beamforming is showcased in Figures 1.6 and 1.7.
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Figure 1.6: Centered narrow beam radiation pattern (middle, right) obtained
with null-phase constant-amplitude illumination law (left) for the phased
array
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Figure 1.7: Steered widened beam radiation pattern (middle, right) obtained
with linear-phased windowed-amplitude illumination law (left) for the phased
array.
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Figure 1.8: Operational situation with clutter (rain) and terrain masks, rep-
resented in azimuth-elevation coordinates.

1.4.3 Operational coordinates system and scanned losses

In operational situation, constraints and detection requirements are usually
defined in a spherical coordinate system bound to the local tangent plane of
the Earth: the azimuth-elevation coordinates system with (az, el) ∈ [0, π]2,
see Figure 1.8.

In the case where the antenna perpendicular direction is colinear with the
azimuth-elevation origin, the operational coordinates and the local antenna
spherical coordinates are fused: (az, el) = (ϕ, θ).

In practice, the antenna is tilted upwards by an angle t ∈ [0, π
2
] as shown

in Figure 1.6, to better center the radar emission space, the half-space y > 0,
with the surveillance space, for which elevation is often positive, as there is
often no point in emitting below the horizon.

Tilting the radar mathematically corresponds to applying a rotation ma-
trix with axis Ox and angle t to the antenna coordinates system, yielding
the following relations between operational coordinates and antenna local
direction cosines

u = cos(el) sin(az)
v = sin(el) cos(t)− sin(t) cos(az) cos(el)
w = sin(el) sin(t) + cos(t) cos(az) cos(el)

(1.4)

Reciprocal formulas can be obtained by inverting the previous equations

az = atan2 (u, cos(t)w − sin(t)v)
el = asin (sin(t)w + cos(t)v)

(1.5)

Substitution between coordinates systems is easily done using (1.4) and (1.5).
In the following, all functions can indiscriminately switch between parameters
(az, el) and (u, v).
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translation

Figure 1.9: Distortion between direction cosines (top) and operational coor-
dinates (bottom) after translation of the beam

A peculiar property of those coordinate transformations is that they do
not preserve areas. Informally, substitution of direction cosines by opera-
tional coordinates “spreads” surfaces in a non-uniform fashion [4]. So while
translating a beam-shaped radiation away from the array perpendicular di-
rection (via a linear phase term in the array illumination law) preserves its
area in direction cosines space, the same beam becomes distorted in oper-
ational coordinates, see Figure 1.9. It cover a larger solid angle but with
weaker angular power density, resulting in anisotropic scanned losses :

Ls = cos(δ)−1

where δ is the angle between the antenna array perpendicular direction and
the scanning direction.

Mathematically, the scanned loss factor is the dilatation ratio between an
infinitesimal solid angle element in operational coordinates

dΩ = cos(el) daz del

and an infinitesimal surface element in direction cosines space

du dv

The scanned loss factor can be computed from the Jacobian matrix JF of
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Figure 1.10: Physical interpretation of scanned losses

function F : (az, el)→ (u, v) defined by (1.4):

du dv = | det (JF (az, el)) | daz del

= | sin(el) sin(t) + cos(az) cos(el) cos(t)| cos(el) daz del

= | sin(el) sin(t) + cos(az) cos(el) cos(t)|dΩ

= w dΩ

the scanned loss is equal to the third direction cosine coordinate w ∈ [0, 1]:

Ls =
dΩ

du dv
=

1

w
=

1

cos(δ)
=

1

sin(el) sin(t) + cos(az) cos(el) cos(t)
(1.6)

with δ the angle between vector ~u pointing the scanning direction and the
antenna array normal unit vector ~n. Scanned losses do not occur in the
direction perpendicular to the antenna, and increase as the scanning direction
deviates from the antenna perpendicular. Scanned losses also occur twice, at
emission and at reception, and are squared in the radar equation.

A physical interpretation of scanned losses is shown in Figure 1.10, as the
ratio between the apparent surface of the antenna and its real surface, from
a target in direction ~u. At emission, the target “sees” a smaller antenna,
and receives a proportionally decreased angular power density. Similarly at
reception, the “effective” area of the antenna receiving the reflected energy is
smaller.

1.4.4 Digital beamforming reception

According to Fermat’s principle of light least travel time, optical pathways are
reversed between emission and reception. A reception phased-array antenna
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Figure 1.11: Wavefront reception

model (which can be the same antenna used for emission) has similarities
with the emission antenna model described previously.

If the antenna is receiving a signal r(t) from a far-field source, for example
a reflecting target, located in direction pointed by ~u, then the wavefront of
the received signal is orthogonal to the incoming direction ~u, see 1.11. The
signal received by each source is

rk,l = r(t)ej2π
δk,l
λ

with an optical path shift δk,l = ~pk,l · ~u.
By controlling phase φk,l and amplitude Ak,l of the received signals and

aggregating their values, the target signal can be amplified:

K−1∑
k=0

L−1∑
l=0

ak,l

(
r(t) ej2π

δk,l
λ

)
=

(
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π ldxu+kdzv

λ

)
r(t) = gr(u, v) r(t)

with λ the signal carrier wavelength, and gr(u, v) the reception gain of the
antenna in direction ~u

gr(u, v) =
K−1∑
k=0

L−1∑
l=0

Ak,l e
jφk,l ej2π

ldxu+kdyv

λ

which is, as expected, the same formula than the emission gain. A physical
interpretation of this result is to view the reception gain as beamforming a
reception pattern, with similar properties than radiation pattern for emission.

A key difference between emission and reception is that choice of am-
plitude/phase reception law {ak,l} does not have to be the same than the
emission illumination law. In fact, since the radar directly receives the sig-
nals rk,l in each element, it is possible to immediately digitize those signals
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Figure 1.12: Emission beamforming (left) and reception digital beamforming
(right)

out of the array and compute multiple digital reception patterns in parallel.
This technique is called digital beamforming and is illustrated in Figure 1.12.

With this approach, it is possible to scan a wide area using multiple
narrow (thus more energetically powerful) beams. The limit of digital beam-
forming depends on two parameters:

• the narrow beam width of the radar, which is inversely proportional to
its antenna surface area.

• the digital processor capacity, which limits how many beam-forming
computations can be performed in parallel.

The narrow beam radiation pattern is generate by a constant amplitude
illumination law

∀(k, l), |ak,l| = 1

like the centered narrow beam displayed in Figure 1.6, for which there is no
phase ∀(k, l), ak,l = 1.

Any narrow beam is a translation of the centered narrow beam by using
a linear phase term in illumination law, and has the same width in direc-
tion cosines coordinates, but not in operational coordinates, where scanned
distortions occur. The absolute value of the reception gain of the centered
narrow beam is

|gr(u, v)| =

∣∣∣∣∣
K−1∑
k=0

L−1∑
l=0

ej2π
ldxu+kdyv

λ

∣∣∣∣∣ =
sin
(
πKdx
λ
u
)

sin
(
πdx
λ
u
) sin

(
πLdz
λ
v
)

sin
(
πdz
λ
v
)

with its maximum value at the center being |gr(0, 0)| = KL. The half-power
beam-width of the radiation pattern can be approximated as an ellipse with
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Δu3dB

Figure 1.13: Narrow beam half-power width (left), along the u axis (right)

semi axis ∆u3dB = 2u0 and ∆v3dB = 2v0, see Figure 1.13, where u0 and v0
are solutions of the system

sin(πKdxλ u)
sin(πdxλ u)

=
√

1
2
K ⇔

√
2 sin

(
πKdx
λ
u
)

= K sin
(
πdx
λ
u
)
, 0 < u < λ

2Kdx

sin(πLdzλ v)
sin(πdzλ v)

=
√

1
2
L ⇔

√
2 sin

(
πLdz
λ
v
)

= L sin
(
πdz
λ
v
)
, 0 < v < λ

2Ldz

which can numerically be solved by using root-finding line search, such as
the popular Brent’s method [5] (implemented in MATLAB by fsolve, and
in SciPy by scipy.optimize.brentq). The half-power narrow beamwidth
can also be approximated using{

∆u3dB ≈ 0.89 λ
Kdx

if K � 1

∆v3dB ≈ 0.89 λ
Ldz

if L� 1

which are the formulas for a continuous rectangular electromagnetic source.
Physically, a discrete array with enough elements can be viewed as a contin-
uous source.

The half-power beamwidth of the centered narrow beam is approximately
the area A3db = πu0v0 = π

4
∆u3dB∆v3dB of the ellipse with axis ∆u3dB and

∆v3dB. Considering the number of parallel beamforming computations the
digital processor can perform is a known system value NDBF ∈ N, the maxi-
mum area in direction cosines which can be scanned at reception is

Amax = NDBF A3db = NDBF 2π∆u3dB∆v3dB

and the minimum reception gain of digital beamforming is at most 3 decibels
below the maximum gain of the antenna array

gDBF =

√
1

2
KL

38



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL
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Figure 1.14: Research of a target echo of the waveform in the received signal

1.5 Waveform model

1.5.1 Waveform definition and detection principle

The waveform is the shape along time of the signal emitted by the radar.
The principle of radar detection is to “search” and try to “recognize” the
waveform, the emitted signal shape, inside the received signal to find an echo
reflected by a target, see Figure 1.14 for a simplified example.

The radar model in this thesis is a mono-static pulse-Doppler radar. A
mono-static radar uses the same antenna for emission and reception, and
thus cannot receive while emitting. The complete waveform is a series of
short pulses (emission) alternating with silences (for reception). Those series
of pulses are combined to increase the signal-to-noise ratio. This technique,
used for improving detection, is called integration.

This thesis presents an energetic waveform model, which does not detail
the signal processing aspects of waveform design: pulse modulation, spectral
occupation, ambiguity function, encoding, etc., nor the associated processing
chain: demodulation, matched/mismatched filtering, etc.

Inside a waveform, series of pulses with similar characteristics are grouped
together, such a group is called a burst. A waveform is thus a series of bursts,
and each burst is a series of pulses, see Figure 1.15. The signal parameters
are different from burst-to-burst inside a waveform, but are constant inside
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Figure 1.15: Waveform structure decomposition

a burst:

• τ : pulse width (s).

• Tp : pulse repetition interval, the period between the start of two suc-
cessive pulses (s), thus Tp − τ is the silence duration between a pulse
end and the next pulse start.

• Np : number of pulses in the burst, with the burst duration being NpTp

• f : duty cycle, ratio between the pulse width and the pulse repetition
interval

f =
τ

Tp

which also relates the radar average power Pm to the radar peak power
Pp

Pm = Ppf

and the total energy emitted during the waveform is PmT where T is
the waveform total duration.

In presence of target, the emitted signal is reflected back toward the radar.
A target at range R reflects a pulse echo with a time delay

∆t =
2R

c

where c the speed of light, since the signal takes ∆t to travel the radar-target
distance R forth and back at speed c. If the target has a radial speed v, then
between two pulses the target gets closer by 2vTp � R. In practice, this
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R

vTp

Figure 1.16: First pulse propagation (top) and second pulse propagation
(bottom)

variation is too small to be measured by time of arrival difference, and is
measured through the phase shift of the received signal

∆φ = 2π
2vTp
λ

=
4πvTp
λ

with λ the signal carrier wavelength. Both distance are shown on Figure
1.16.

Each pulse is individually too weak to allow detection. However, under
the assumption of white noise, which implies that noise is independent be-
tween any two instants along the time axis, it is possible to combine several
impulsions to improve detection. This approach is called integration. Most
integration schemes fall under two categories:

• Coherent integration, which makes use of amplitude and phase informa-
tion of the signal, but is only possible when the phase variation between
successive pulses is consistent. Doppler filter-bank permits estimation
of target radial speed, in addition to distance.

• Incoherent integration, where only amplitude is used, whereas phase is
considered to be random, thus “incoherent”, between impulsions.

Different integration schemes can be combined inside the same waveform, for
example using pulse coherent integration inside each burst, and the incoher-
ent integration among bursts, see Figure 1.17.

The principle of radar detection is to perform a hypothesis test on whether
the received signal contains a waveform echo from a target at a given range
with a given radial speed. For each range-speed hypothesis, an estimator
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Figure 1.17: Pulse coherent integration (green) and burst incoherent integra-
tion (red)

is computed from the received signal, testing the presence of an echo with
time delay ∆t and phase shift ∆φ. The detection hypothesis (i.e. “a target is
present at given range with given speed”) is validated if the estimator is above
a chosen detection threshold and rejected if it is below, see Figure 1.14. The
radar system tests multiple combinations of range-speed hypotheses within
the value ranges of its requirements. The number of tests depends on the
limits and resolution on range and speed.

The waveform detection probability that a target is correctly detected is
Pd and the probability that a target is missed is 1−Pd (type II error, known
as “false negative”). The waveform false alarm probability that a target is
incorrectly detected from pure noise, when there is in fact no target, is Pfa
(type I error, known as “false positive”). Obviously, a higher signal-to-noise
ratio (i.e. power of a target echo relatively to noise level) improves estimation
and diminishes missed targets and false alarms.

In practice, the detection threshold is set to ensure a certain false alarm
rate, as too frequent false alarms will mask true targets. The detection
threshold depends only on noise parameters, and not on the target charac-
teristics. For a square law detector, the normalized detection threshold is
given by a formula [6, 7]

t = − ln(pfa)

where pfa is the false alarm probability on a single pulse.
In performance measurements, Swerling models are often used to statisti-

cally represent reflecting properties and variability of generic targets [8]. For
each Swerling model, the detection probability pd of a single pulse, can be
computed depending on signal-to-noise ratio s and the false alarm probability
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of a single pulse pfa [6, 9]:

Swerling I/II : pd = pfa
1

1+s

Swerling III/IV : pd = pfa
2

2+s

(
1− 2s

(2+s)2
ln(pfa)

)
Swerling 0 (V) : pd =

∫ +∞
− ln(pfa)

e−(x+s) 1
π

∫ π
0
e2
√
sx cos θdθdx

(1.7)

Reciprocally, knowing the desired detection and false alarm probabilities for
a given target model, it is possible to numerically compute the minimum
signal-to-noise ratio required for achieving desired detection and false alarm
probability, also called detectability factor.

1.5.2 Energetic model

Since a waveform is formally defined as a collection of bursts, its parameters
are the aggregation of all its bursts parameters. A signal processing model
of waveform and the corresponding radar processing chain fall outside the
scope of this thesis. But a simpler energetic model of the waveform can be
defined using fewer parameters, such that for a waveform ω:

• Nb : the number of bursts inside the waveform.

• Tω : the waveform total duration (s)

• fω: the (average) dutycycle in the waveform.

• sω(Pd, Pfa): the waveform detectability factor for detection and false
alarm probabilities Pd, Pfa.

For a real system, the detectability factor sω can be measured for each wave-
form and stored in a database. With this approach, a system database of
available waveforms with known performances in various scenarios can be
computed. Another approach is to simulate waveform performances. A sim-
ple energetic model for doing so is described below.

The model uses Doppler filtering for pulse integration inside each burst;
then performs double threshold detection to aggregate multiple bursts inside
a waveform:

• Pulse integration: Doppler filtering is coherent integration, and Np co-
herently integrated pulses can be viewed as one virtual pulse with an
Np-times stronger signal-to-noise ratio. Sterling mono-pulse formulas
(1.7) can be used to compute the detectability factor sω for burst de-
tection probability pd and burst false alarm probability pfa.
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Figure 1.18: range-Doppler map with eclipses for a given burst (left) and its
visible and occulted areas (right)

• Burst integration: In double threshold detection, a detection is vali-
dated if and only if there are at least “Kb out of Nb” detections among
the bursts, with Kb a chosen threshold. Considering each burst de-
tection as statistically independent, the waveform detection and false
alarm probabilities Pd and Pfa are related to the burst detection and
false alarm probabilities pd and pfa by the following relations

Pd =

Nb∑
k=Kb

(
Nb

k

)
pd
k(1− pd)Nb−k

Pfa =

Nb∑
k=Kb

(
Nb

k

)
pfa

k(1− pfa)Nb−k
(1.8)

1.5.3 Radar eclipses and clutter

A radar in operation usually has blind areas, also called eclipses, see Figure
1.18 :

• Range eclipses : Along the distance axis, a mono-static radar cannot
receive while emitting. Either the same antenna is used for both emis-
sion and reception, or different antennas are used but will interfere with
each other. Thus there is a blind interval during each pulse emission,
see Figure 1.19. Since a burst is a sequence of pulses, this blind interval
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time
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Figure 1.19: Range eclipses and ambiguity on which pulse the echo originates
from

is replicated during each pulse emission. Distance eclipse are located
at each range kRa, k ∈ N with Ra = c Tp

2
.

Ra is called the range ambiguity : if a target is located at R > Ra,
further than the ambiguity range, then a reflected pulse is received
only after the next pulse has been emitted, leading to an ambiguity on
which of the two pulses reflection has actually been received, see Figure
1.19. Range measurements from a burst are only known “modulo Ra”.

• Doppler eclipses : the target radial speed can be estimated using Doppler
filtering. In general, the entire surrounding environment (ground, sea,
trees, etc.) also reflects back the radar signal with no (or little) radial
speed. The zero speed estimation is polluted by the entire environ-
ment. In practice, it is impossible to discriminate a non-moving target
of interest from the rest of the environment. Because Doppler filter-
ing is essentially a form of “speed sampling”, aliasing occurs for speeds
over a certain value va, known as the Doppler ambiguity, and target
faster than va appears to be slower (or even moving away). Because of
aliasing, the zero-speed blind area is also replicated along the Doppler
axis.

• Clutter eclipses : environmental elements hindering detection are called
clutter. The zero-speed Doppler eclipse is usually due to ground or sea
clutter, which are immobile. However, certain elements, such as rain,
can be moving due to wind, and occult areas on the clutter map which
are beyond the zero speed. Doppler aliasing replicates clutter eclipses
as well along the Doppler axis. They are also replicated on the range
axis, since an echo of the i-th pulse reflected by a target at kRa + Rc

arrives at the same time than the clutter echo of the (i+ k)-th pulse.

The eclipse coefficient α is defined as the ratio of all eclipsed areas over
the total area of the range-Doppler map

α =
Ae

Av + Ae
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Figure 1.20: Total eclipse on range-Doppler map for different bursts, and
(bottom right) waveform double threshold visibility

as represented in Figure 1.18.
Positions of Doppler eclipses and distance eclipses beyond the first oc-

currence can be controlled by changing the pulse repetition interval and the
number of pulses inside a burst. Those parameters usually vary from burst
to burst, to ensure that for most speed-range positions on the map, a rea-
sonable number of bursts inside the waveform can still detect the target, see
Figure 1.20.

In an approximative statistical model, the detection location on the range-
Doppler map can be considered uniformly random and independent between
bursts, with a probability (1 − α) to be visible and a probability α to be
occulted in an eclipsed area. So the probability that “n among Nb” bursts
are visible is (

Nb

n

)
(1− α)nαNb−n
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Considering that each burst has the same detection probability pd, then the
probability of having Kb successful detections out of n visible bursts is

n∑
k=Kb

(
n

k

)
pd
k(1− pd)n−k

The waveform detection probability, and by similar reasoning false alarm
probability, accounting for eclipse coefficient α are

Pd =

Nb∑
n=Kb

(
Nb

n

)
(1− α)nαN−n

n∑
k=Kb

(
n

k

)
pd
k(1− pd)n−k

Pfa =

Nb∑
n=Kb

(
Nb

n

)
(1− α)nαN−n

n∑
k=Kb

(
n

k

)
pfa

k(1− pfa)n−k
(1.9)

This model requires the assumption that burst detections are independent
for the same target position on the range-Doppler map, which in practice is
unlikely to be accurate, especially for target close to the range-Doppler map
origin, i.e. slow targets close to the radar location. However it can be used
as a simple method to approximate the energetic impact of clutter.

Within this model, the waveform detectability factor also depends on the
eclipse coefficient α and is noted sω(Pd, Pfa, α).

1.6 Dwell model and range computation
Radar detection depends on both the radiation pattern and the waveform.
The electromagnetic signal emitted by each radiating element is the signal
waveform weighed by the illumination law phase and amplitude.

To achieve detection of a given target, one must feed the phased array
radiating elements with an adequate illumination law, and then feed an ad-
equate waveform signal in the radiating elements. In terms of optimization,
the illumination law and the signal waveform can be viewed as “variables”,
meaning they are the physical values through which radar detection can be
controlled. Informally, the illumination law controls “where the radar looks”
and the waveform controls “how the radar listens in that direction”.

The combination of a given illumination law and a given waveform is
called a dwell

d = ({ak,l}, ω)

Computing the detection range of a given dwell at desired detection and
false alarm probabilities Pd and Pfa in direction (az, el) can be done using
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the radar equation with the model described in this chapter. The radar
equation (1.1) can be reformulated to express the detection range in function
of the other parameters

R4 =
Pp fω Tω gt gr λω

2 σ

(4π)3 sω Lu Ls
2 (1.10)

which can be further simplified:

• The radar peak emission power Pp, the reception gain of digital beam-
forming gr = gDBF and the uniform losses Lu are constants of the
system by design and can be computed as a unique term

Kr = Pp gr (4π)−3 Lu
−1

• The dutycycle fω, duration Tω, carrier wavelength λω are constants1 of
the waveform can be computed as a unique term

Kω = fω Tω λω
2

The simplification reduces the equation to

R4 = Kr Kω gt σ sω
−1 Ls

−2 (1.11)

The scanning direction cosines coordinates can be expressed from the
direction operational coordinates and the radar tilt angle t using (1.4)

u = cos(el) sin(az)
v = sin(el) cos(t)− sin(t) cos(az) cos(el)
w = sin(el) sin(t) + cos(t) cos(az) cos(el)

which can then be used to compute

• The emission gain from (1.3), knowing the waveform carrier wavelength

gt(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
jφk,l ej2π

ldxu+kdyv

λω

• The scanned losses as Ls−2 = w2

1In practice, the carrier wavelength can changes between bursts, due to frequency
agility, impacting the antenna gain. Corrections in the illumination law can somehow
compensate those changes. The present model makes the simplifying assumption that the
carrier does not change
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The waveform detectability factor sω can be computed through measure-
ments or simulations. In our experiments, we used the waveform model
presented in the previous section for computing this signal-to-noise ratio.

To achieve waveform detection and false alarm probabilities Pd and Pfa
out of the double threshold detector, each burst detection and false alarm
probabilities must be the solutions pd = x and pfa = y of the system{ ∑Nb

n=Kb

(
Nb
n

)
(1− α)nαNb−n

∑n
k=Kb

(
n
k

)
xk(1− x)n−k −Pd = 0∑Nb

n=Kb

(
Nb
n

)
(1− α)nαNb−n

∑n
k=Kb

(
n
k

)
yk(1− y)n−k −Pfa = 0

with Nb the number of bursts in the waveform, Kb the detections threshold,
and α the eclipse ratio. Analytically, the solutions are the roots of high-degree
polynomials which in general might not have a closed form. Numerically,
the solutions can be found by root-finding line search [5]. The detectability
factor sb of each burst can be deduced from the Swerling formulas (1.7), either
analytically or by numerical root-finding, and so the waveform detectability
factor is

sω = Nb sb

Knowing all terms of (1.11), the detection range of dwell d can be computed.
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Chapter 2

Optimization theory and
computational complexity

2.1 Introduction and literature
Optimization theory is defined as the search of a mathematical function ex-
trema (minima or maxima) within a given domain. One of its main applica-
tions in the industry is the generation of good-quality solutions respectively
to a certain metric to a formally defined problem. The topics in optimization
theory are broad, encompassing:

• Modelling : “how to formalize a real life problem in mathematical terms”,

• Complexity theory : “how to consistently define the difficulty of a math-
ematical problem”

• Algorithmics : the art of designing systematic procedures to solve math-
ematical problems.

The first step when applying optimization to a real-life problem is to grasp
the problem true nature, its underlying mathematical structure. From this
knowledge the problem can be linked to known classical problems in the
literature, and knowing the problem properties will lead to practical design
of balanced algorithm between efficiency, usability and accuracy.

Optimizing radar scanning can be informally described as the search of an
efficient radar search pattern, a collection of dwells achieving desired detection
requirements. Since multi-functions radar must deal with other tasks in
addition to scanning, being able to perform scanning as fast as possible is
desirable. Thus an efficient search pattern should achieve detection with
minimal radar time-budget. This problem falls in the class of cover problems,
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whose objective is to cover a space using the “least” elements from a set of
available covers.

The most general form of cover problems in optimization is set cover-
ing, a classical problem of combinatorial optimization. The objective is to
cover a set of elements, called the universe, using a minimum number of
available covers. The theoretical problem is known to be generally NP-hard
to solve [10], and is often encountered in industrial processes and real-life
problems. It has been extensively studied since its description as one of
Karp’s 21 classical NP-complete problems [11], which is the common class
for difficult industrial problems. The set cover problem is also hard to ap-
proximate: while the greedy heuristic has a logarithmic approximation ratio
in the number of constraints in both weighed and unweighed cases [12, 13],
the problem cannot really be more efficiently approximated unless P=NP
[14, 15, 16]. Alternate approximation bounds have also been found using
randomized rounding algorithms [17].

Due to its theoretical hardness, a part of the research has focused on find-
ing empirically efficient methods, even with exponential worst-case theoret-
ical complexity. Branch-and-bound approaches based integer programming
can be rather efficient [18, 19], and most exact methods are variation of the
branch-and-bound scheme. Various metaheuristics have also been applied to
the problem [20, 21]. Certain cover problems which can be viewed as specific
geometric cases and weaker formulations of the set cover problem can have
stronger properties, even be solvable or approximated in polynomial time
[22, 23, 24, 25].

In the case of radar covering, combinatorial problems modelling bidimen-
sional radars have strongly polynomial complexity, meanwhile tridimensional
radars models are NP-hard to optimize, as will be shown in this chapter.

2.1.1 Decision problems and complexity classes

For each optimization problem, there is a corresponding decision problem,
which puts the optimization problem into the form of a “yes/no” question.
The question is usually, for a given value K ∈ Z: “is there a solution to
the minimization (maximization) problem whose value is smaller (higher)
than K ?”. Decision problems are a fundamental concept in computational
complexity theory, used to define complexity classes. The most common
classes for real-life problems are P and NP, for which informal definitions are
given below (see [10, 26] for formal definitions).

P is the class of all decision problems which can be solved in polynomial
time on a deterministic computer machine. For any problem in P, there is
a deterministic algorithm which can solve any instance of the problem in
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polynomial time and answer to the question “is there a solution with better
value than a given K ?”.

NP stands for non-deterministic polynomial, and is the class of all prob-
lems which can be solved in polynomial time on a non-deterministic machine,
a machine in which multiple choices can be explored in parallel. A more sen-
sible definition is that for the same problem, a deterministic machine would
take polynomial time to check one given solution and answer the question
“does this solution has better value than K ?”. A non-deterministic machine
can use the same algorithm to check all solutions in parallel in the same time.
NP is often described as the class of problems for which a solution is easy to
check (polynomial time), but hard to find (exponential time) in the current
state of the art.

Furthermore, a problem is said to be NP-hard, if any problem in NP
can be reduced to said problem through a polynomial reduction. A NP-
hard problem is thus at least as hard as the hardest problems in NP (but
could be harder, as there are NP-hard problems not in NP). A polynomial
algorithm for any NP-hard problem could be used to solve any NP problem
in polynomial time. A problem that is both in NP and NP-hard is called
NP-complete.

By extension, an optimization problem is said to be in P/NP (more for-
mally in PO/NPO), if its decision version is in P/NP.

2.2 Problem statement and modelling

2.2.1 Set cover problem

Let G = {gi} be a set of elements, called the universe set. Let C = {Cj ⊂ G}
be a collection of subsets in G, a set cover is a sub-collection S ⊂ C whose
union covers the universe:

⋃
C∈S C = G.

The decision form of the set cover problem asks whether for a given integer
value K ∈ N there exists a set cover S ⊂ C with cardinality inferior to K,
i.e. |S| ≤ K. An instance of the set cover problem is described by the
system (G, C, K). The optimization form, sometimes called minimum set
cover problem, consists in finding a minimum-size set cover:

min |S|
s.t. ∀gi ∈ G,∃C ∈ S, gi ∈ C

S ⊂ C
(2.1)

If each element Cj ∈ C has an associated cost Tj ∈ N∗, the problem of finding
a set cover with minimal aggregate cost

∑
Cj∈S Tj is called the weighted set
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Figure 2.1: Dwell radiation pattern (left), detection grid G and detection
discrete cover C (right)
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Figure 2.2: Collection C of available discrete covers in a radar database

cover problem. The previous cases correspond to ∀j, Tj = 1, and are said to
be unweighted.

From now on we will use a different, radar-based, terminology. The uni-
verse set G = {gm,n} usually represents a finite bidimensional M -by-N reg-
ular grid, called the detection grid, see Figure 2.1, on which:

• each element gm,n represents a detection cell indexed by (m,n) ∈
[0,M [×[0, N [ ⊂ N2. The grid contains MN detection cells, each corre-
sponding to a certain scanning direction for the radar.

• each node (m,n) represents the intersection of the m-th horizontal line
with the n-th vertical line, indexed by (m,n) ∈ [0,M ] × [0, N ] ⊂ N2.
The grid has (M + 1)(N + 1) nodes.

A subset C ∈ C represents the detection area of a radar dwell, as presented
in Figure 2.1, and is the (dwell) discrete cover. The associated cost Tj of a
discrete cover Cj is the associated dwell waveform duration. The collection of
all available discrete covers forms the radar dwell cover database, representing
all the discrete covers the radar can emit. A sub-collection of dwell discrete
covers, in the radar database, ensuring detection over the entire surveillance
space, is called a radar search pattern. It corresponds to a set cover of
the combinatorial problem. The cost of a radar search pattern is the time
required to emit all its dwells in sequential order, and is the aggregate cost
of its discrete covers.
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Figure 2.3: Bidimensional radar (top-left), tridimensional stacked radar (top-
center) and three dimensional radar (top-right), are modelled by either uni-
dimensional cover problems (bottom-left) or a bidimensional cover problem
(bottom-right)

2.2.2 Grid dimension

For cover problems in radar applications, the universe set is a grid whose
geometry models how the radar scans the environment. Modern antennas
can control the direction of emission using beamforming, for which a math-
ematical model in the case of a bidimensional linear phased-array antenna
was presented in Chapter 1.

Many modern radar systems can perform bidimensional beam-steering in
azimuth and elevation, such radars are said to be tridimensional, as they
work with three coordinates: azimuth, elevation and range.

There exists radars performing only azimuthal beam-steering, working
only with the two dimensions of azimuth and range, either because the radar
beam covers the entire elevation at once, or either because the surveillance is
very narrow on the horizon. Such radars are said to be bidimensional. There
also tridimensional radars stacking multiple beams in elevation, which can be
viewed as bidimensional radars from a modelling perspective. An example
of each of those radar is displayed in Figure 2.3.

Figure 2.3 also presents the two possibilities for modelling the detection
grid in radar cover problems:

• in bidimensional models, the detection grid has only one dimension.
This corresponds to a particular case where M = 1 and N ∈ N.

• in tridimensional models, the detection grid has two dimensions. This
is the general case where (M,N) ∈ N2.
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Figure 2.4: Set of neighbours {g0,1, g2,1, g1,0, g1,2} for a given cell g1,1 (left),
connected shape (center) and disconnected shape (right)

2.2.3 Dwell shape

A radiation pattern with a single main lobe has a connected shape, and
results in a connected discrete cover for the associated grid cover problem.
The definition of a connected subset on gridG is based on cell neighbourhood,
see Figure 2.4, which contains the four adjacent cells for a given cell ga,b:

{ ga+1,b , ga−1,b , ga,b+1 , ga,b−1}

a subset on the grid is connected if for any two cells in the subset, there is a
path between them moving from neighbour to neighbour. A subset which is
not connected is said to be disconnected, see Figure 2.4.

Interesting cases of connected covers are rectangular-shaped covers. In
radar engineering, a feasible radiation pattern is synthesized to fit as closely
as possible a desired shape. Rectangular shapes are usually good candidates.

On the grid, a rectangular-shaped cover is a subset of elements included
in a rectangle, uniquely defined by its upper left corner node (m0, n0) and
its lower right corner node (m1, n1), such that 0 ≤ m0 < m1 ≤ M and
0 ≤ n0 < n1 ≤ N . The set representation of a cover defined by corners
(m0, n0) and (m1, n1) is:

C = {gm,n, (m,n) ∈ [m0,m1[×[n0, n1[}

See Figure 2.2 for example, cover C7, with corners (m0, n0) = (0, 1) and
(m1, n1) = (1, 2).

Rectangles are also easier to synthesize with a bi-linear phased-array an-
tenna, for which the radiation pattern can be separated into an horizontal
and a vertical component.

Furthermore, in term of combinatorial complexity, the number of possible
rectangles on an M -by-N grid(

M + 1

2

)(
N + 1

2

)
=
MN(M + 1)(N + 1)

4
= O(M2N2)
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Figure 2.5: Radars with bounded azimuthal range (left) and with full az-
imuthal range (left)

gives a broad choice of available discrete covers for computing the pattern,
while avoiding exponential explosion when increasing the grid resolution.

2.2.4 Azimuthal range and circular grid cover problems

The surveillance space of a fixed-panel radar has a limited azimuthal range.
Radar systems can achieve full azimuthal range and scan in all directions
by using a rotating-panel or multiple fixed-panels. Limited azimuthal range
is modelled by rectangular grids, while full azimuthal range is modelled by
circular grids, see Figure 2.5.

2.3 Integer programming

2.3.1 Matrix formulation

Set cover problems can be written as integer programs by using matrix for-
mulations. Each cover C ∈ C can be represented as a binary M -by-N matrix
noted C, or as a binary vector of length MN noted c, as shown in Figure
2.6:

C(m,n) = c(m+Mn) =

{
1 if gm,n ∈ C
0 otherwise

For each cover Cj ∈ C, let xj ∈ {0, 1} be the binary selection variable
of cover Cj, such that the vector x = (x1, . . . , xD) ∈ {0, 1}D represents the
sub-collection S = {Cj ∈ C s.t. xj = 1}, containing the chosen covers.
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Figure 2.6: Dwell discrete cover (left), its binary matrix representation (cen-
ter) and its binary vector representation (right)

Let T = (T1 · · ·TD)T be the cost vector and let

A =
(
c1 · · · cD

)
=


C1(0, 0) · · · CD(0, 0)
C1(1, 0) · · · CD(1, 0)

... . . . ...
C1(m,n) · · · CD(m,n)

...
...

...

 (2.2)

be the cover matrix.
Then the set cover problem can be written as the following integer pro-

gram:

min TT .x
s.t. A · x ≥ 1

x ∈ {0, 1}D
(2.3)

where 1 is the all-ones vector (1 · · · 1)T of lengthMN . For example, the cover
problem represented in Figure 2.2 can described by the following system:

A =



0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0


, T =

(
2 2 2 2 2 1 1 1

)T , x =



x1

x2

x3

x4

x5

x6

x7

x8


(2.4)
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2.3.2 Linear relaxation

Integer programming is NP-hard to solve [11]. Replacing integer variables
by continuous variables transforms the problem into a linear program

min TT .x
s.t. A · x ≥ 1

0 ≤ x ≤ 1
(2.5)

which is called the linear relaxation of (2.3). Linear programs can be solved
in polynomial time [27]. Any valid solution of the integer program is also
a valid solution of its linear relaxation, but the reverse is false. An optimal
solution of the linear relaxation is not a valid integer solution in general, and
only gives a lower bound for the integer program. Note that the constraint
x ≤ 1 is in fact unnecessary, since the problem

min TT .x
s.t. A · x ≥ 1

0 ≤ x
(2.6)

has the same optimal solutions as (2.5). Intuitively, for the linear relaxation,
a cell is going to be covered by a sum of “fractional” covers (with xj < 1), or
as at least one integer cover (with xj = 1) and thus has no need for covers
with xj > 1. Any solution with some xj > 1 can be strictly improved by
reducing xj ← 1 while remaining valid and an optimal solution necessarily
verifies x ≤ 1.

Furthermore, the positivity constraints 0 ≤ x can be integrated in the
matrix formulation with

R =

(
A
I

)
and d =

(
1
0

)
by rewriting the linear program as

min TT .x
s.t. R · x ≥ d

(2.7)

The three formulations of the linear relaxation (2.5), (2.6) and (2.7) are
equivalent.

The integer program representing our set cover problem and its linear
relaxation have two more interesting properties:

• Easily-checked feasibility: an integer program is feasible if there is at
least one solution validating all constraints. It is possible that no valid
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solution exists if some constraints are conflicting, or if one constraint is
impossible. In our case, feasibility is easy to check: the integer program
as well as its linear relaxation are feasible if and only if xF = (1 · · · 1)
is a feasible solution, i.e. A · xF =

∑D
j=1 cj ≥ 1:

– if xF is a valid solution, then the problem is feasible by definition.

– if xF is an invalid solution, then there is an invalidated constraint
for xF :

∃(m,n) s.t.
D∑
j=1

Cj(m,n) < 1

and since ∀(j,m, n), Cj(m,n) ∈ {0, 1}:

∃(m,n) s.t. ∀j,Cj(m,n) = 0

In other words, A has its (m + Mn)-th row filled with zeros,
corresponding to a constraint which can be satisfied by no solution.
Intuitively, xF represents C, the collection of all available covers,
and if it is an invalid solution, then there is a cell which cannot be
covered. This can happen in a real system if there is a cell which
cannot be scanned, because of an obstacle or because the radar
has not enough power to achieve the desired detection range.

• Boundedness: a recurring question for linear programs is whether they
are bounded, that is whether the cost function is bounded (below for
minimization) for valid solutions. For the set cover problem, the cost
function is positive and thus always bounded below by 0.

2.3.3 Linear programming

There are three important geometrical aspects describing the decision space
of the integer and linear programs, shown in Figure 2.7:

• T is the cost function gradient. The cost function is linear and its
gradient is constant. −~T is the direction vector of maximum decrease
of the cost function.

• A is the cover matrix. Each row of A correspond to a detection con-
straint on a cell of G. In the decision space, each constraint corresponds
to an hyperplane, the limit between the halfspace of solutions validating
the constraint and the halfspace of solutions violating the constraint.
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Figure 2.7: Convex polyhedron representing decision space of linear and
integer programs (2D example)

The intersection of those halfspaces forms the convex polyhedron de-
fined by

{x : A · x ≥ 1}

• The positivity constraint of the linear relaxation 0 ≤ x bounds the
values of the valid solutions in the positive orthant RD

+ .

The set of valid solutions for the linear relaxation is the intersection of
the valid halfspaces for all constraints, and the orthant RD

+ . Geometrically,
it is a convex polyhedron defined by

{x : (A · x ≥ 1) ∧ (0 ≤ x)}

Each vertex (or “corner”) of this polyhedron is a point where at least D
hyperfaces of the polyhedron intersect, in other words, a point where D
constraints are tight.

Such a point is called a basic solution (or basic vertex) of the linear
program. If a linear program is bounded and feasible, then it has a basic
optimal solution [27]. Consider a basic optimal solution x for the reduced
linear program in (2.6). This solution has D tight constraints. Let B ≤MN
be the number of tight detection constraints. If B < D then there are
Z = D −B tight bound constraints, which are of the form xj ≤ 0, and thus
xj = 0. The corresponding Z variables are called non-basic variables and are
zeros. The other D − Z = B variables are called basic variables and can be
non-zero values. Let xB be the sub-vector of basic variables. The B tight
detection constraints in A can be written as

ABxB = 1 (2.8)
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linear optimal solution
integer optimal solution

exterior method (simplex)
interior method

Figure 2.8: Illustration of exterior and interior methods for solving linear
programs

where AB is the square B-by-B submatrix of A linking the basic variables
xB to the tight detection constraints. Furthermore, AB is necessarily non-
singular: since the hyperplanes of all constraints intersect into a single point,
the constraints are linearly independent.

Efficient optimization methods for linear programs generally exploit the
feasible polyhedron convexity, and can be viewed as descent methods. Two
principal families of algorithms, represented in Figure 2.8, dominate linear
programming:

• Exterior descent methods, based on Dantzig’s simplex method, which
moves from vertex to vertex on the feasible polyhedron until it reaches
a basic optimal solution, i.e. a vertex with no decreasing neighbor.

• Interior descent methods, based on Karmarkar’s algorithm, which fol-
low a central path. This path is defined by a variable weighing of the
cost function and constraint functions, trying to improve the solution
values while remaining away from the constraint barriers.

However, descent methods generally cannot be used to solve integer pro-
grams, which are not convex since valid integer solutions are isolated points.

2.4 Unidimensional grid covering

The general set cover problem and its integer program formulation are both
NP-hard to solve. However not all grid cover problems are NP-hard. Certain
specific cases, among which unidimensional grid cover problems (M = 1),
can be solved in polynomial time. Interestingly, greedy methods or linear
programming can solve to optimality certain but not all cases, despite the
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Figure 2.9: Available covers for an example of line cover problem

fact that all problems presented in this section can be solved by a polynomial
algorithm based on dynamic programming.

2.4.1 Line cover problem

Consider a bidimensional radar model, with bounded azimuthal range, using
only connected radiation patterns. This model corresponds to bidimensional
radars or tridimensional stacked-beam radars, see Figure 2.3. In the associ-
ated combinatorial problem, the detection grid has only one dimension and
all discrete covers are connected sets. A unidimensional grid can be viewed
as a line segment, on which discrete covers represent intervals, see Figure 2.9.
In this case, finding an optimal radar search pattern is a line cover problem.

Greedy method

For unweighed line covering, where all covers have the same cost Tj = 1, a
straightforward algorithm to solve this problem is the greedy method: among
intervals covering the first not-yet-covered detection cell, choose an interval
covering the furthest cell, and iterate until the line is covered, see Algorithm
1 for a detailed description.

The worst case complexity of Algorithm 1 is O(|C|2). It can be improved
to perform in O(|C| log(|C|)) by sorting in advance the available discrete cov-
ers in increasing order of their starting point, and combining the “while” and
“for” loops in a single pass.

The greedy method solution is optimal: consider an optimal solution S
of the problem, and Ca ∈ S the discrete cover over the first cell, replace Ca
by the largest cover Cb which includes the first cell, and solution

S ← (S \ {Ca})
⋃
{Cb}

remains optimal. Iterating the process on the next cells transforms S into
the greedy method solution while keeping an optimal cost.

The greedy method is however sub-optimal for weighted problems. In
that case, the logic of the greedy method would be to add at each iteration
the cover maximizing the improvement/cost ratio, i.e. the number of newly
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Algorithm 1 Greedy method
n← 0 . index of first not-covered cell
S ← ∅ . start with empty solution

while n < N do . loop as long as not all cells are covered
lbest ← n− 1 . index of last covered cell
for Cj ∈ {C ∈ C : gn ∈ C} do . loop on all covers containing the next cell

l← index of last cell in Cj

if lbest ≤ l then . Keep the cover of the furthest cell
C ← Cj

lbest ← l
end if

end for
S ← S

⋃
{C} . add cover to solution

C ← C \ {C} . remove cover from candidates
n← lbest + 1 . compute next cell to cover

end while

{                                                         }C =
T1=3

,
T2=2

,
T3=3

,
T4=3

ratio=2/3 ratio=1/2 ratio=2/3 ratio=2/3

Figure 2.10: Example for sub-optimality of the greedy method in the
weighted case

covered cells over the discrete cover cost. In the unweighed case, a larger dis-
crete cover is strictly better than a smaller one, since the former can replace
the latter while preserving optimality of the solution. This is no longer true
with weighed costs, where a discrete cover with a better improvement/cost
ratio (best local choice) can result in a sub-optimal solution because of the
general structure of the problem (bad global choice), see Figure 2.10 where
C3 has better ratio than C2 whereas the latter must be used to construct an
optimal solution. The greedy method returns the solution {C1, C3, C4} with
cost 9, whereas the optimal solution {C1, C2, C4} has cost 8.

Dynamic programming

In the unweighed case, the greedy method reaches optimality by exploiting
the problem optimal substructure, meaning that an optimal solution can be
constructed by combining solutions of substructures in the original problem.
This type of structure is generally exploited in dynamic programming, which
is particularly efficient if the problem substructure can be broken down into
a polynomial number of sub-problems.

Dynamic programming generalizes the iterative approach of the greedy
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= ⋃ } }optimal sub-solution Sk for k cells cover for cells gk through gn-1

gk gn-1...g0 ... gk-1

}optimal solution Sn for n cells

...g0 ... gk-1 gk gn-1... ...... ...

Figure 2.11: Line covering optimal substructure of the n-th sub-problem

method, and unlike the latter, returns an optimal solution even for weighed
line covering. An optimal solution covering the first n cells is built from an
optimal solution covering some first k (< n) cells. The n-th sub-problem is
“to cover {gi : 0 ≤ i < n}, i.e. the first n cells”. Iterating the process on n
yields a valid solution. See Algorithm 2 for a detailed description.

Algorithm 2 Dynamic programming for line cover
S0 ← ∅ . the solution for covering no cells is the empty set

for n ∈ {1, . . . , N} do . loop on all sub-problems
Tbest ← +∞
for C ∈ {C ∈ C : gn−1 ∈ C} do . loop on all covers containing next cell

k ← index of first cell in C
S ← Sk

⋃
{C} . construct candidate solution

TS ←
∑

Cj∈S Tj . compute candidate cost
if (TS ≤ Tbest) then
Sn ← S . keep best valid solution for the n-th sub-problem
Tbest ← TS

end if
end for

end for

The algorithm requires O(N |C|) computational steps. The returned so-
lution is optimal: consider an optimal solution Sn for the n-th sub-problem,
then Sn contains a discrete cover C starting at some cell gk and including
cell gn−1, and Sn \ {C} is a valid solution for the k-th sub-problem. Let Sk
be an optimal solution for the k-th sub-problem, then Sk ∪ {C} is a valid
solution for the n-th sub-problem:
- by optimality of Sn:

∑
Cj∈Sn Tj ≤

∑
Cj∈Sk∪{C} Tj

- by optimality of Sk:
∑

Cj∈Sn\{C} Tj ≥
∑

Cj∈Sk Tj
and by combining the two equations∑

Cj∈Sn

Tj =
∑

Cj∈Sk∪{C}

Tj

so Sn \ {C} is an optimal solution for the k-th sub-problem and Sk ∪ {C} is
an optimal solution for the n-th sub-problem.

Any optimal solution for a given sub-problem is the union of an optimal
solution for a smaller sub-problem and a cover, see Figure 2.11. By testing
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each combination of a cover and its complementary optimal sub-solution,
dynamic programming sequentially solves all the sub-problems to optimality.

Unlike the greedy method, the complexity of dynamic programming de-
pends on the grid size N . This will be discussed in more details in 2.4.3.

Linear program integrality

Another approach for solving line cover problems is based on the linear relax-
ation of the integer program. There are some cases when linear programming
methods can be used to solve exactly integer programs:

An integer matrix A is unimodular if it is invertible and detA ∈ {−1, 1}.
A direct consequence of Laplace’s formula A−1 = (detA)−1 comAT , with
comA the cofactor matrix of A, is that A−1 is integer if A is unimodular.

An integer matrix A is totally unimodular if any square regular sub-
matrix AB in A is unimodular. So any basic solution xB = AB

−1 ·1 of (2.8)
has integral values. In such cases, all the vertices of the convex polyhedron
represented in Figure 2.7 are integral points, and a basic optimal solution of
the linear program is also a valid optimal solution of the integer program.
Integer programming is reduced to linear programming, which has polyno-
mial complexity, as finding a basic optimal solution to a linear program can
be done in polynomial time [28].

In the case of line covering, the cover matrix A has the consecutive-ones
property, i.e. in a column of A, all values are zeros or ones, and all the
ones are consecutive. This type of matrix is called an interval matrix and is
totally unimodular [29]. So line covering can be solved in polynomial time
by linear programming methods.

2.4.2 Circle cover problem

For a bidimensional radar model with full azimuthal range, the detection
grid is no longer bounded and represents a full circle, with no beginning nor
end, see Figure 2.5. Dynamic programming can still be used to compute an
optimal solution in polynomial-time.

The problem still has an optimal substructure. Let the cells be numbered
in clockwise order starting from an arbitrary first cell: G = {g0, . . . , gN−1}
with cell gN−1 and g0 being neighbours, see Figure 2.5. The (n,w)-th sub-
problem is “to cover {gk : k = n + i mod N, 0 ≤ i < w}, i.e. the w cells
in clockwise order starting by gn". A sub-problem can be described by its
(starting) index n ∈ {0, . . . , N − 1} and its width w ∈ {1, . . . , N}. The
substructure of circle covering can be viewed as splitting the problem into
all possibles arc segments on the circle.
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Algorithm 3 Dynamic programming for circle cover
for n ∈ {0, . . . , N − 1} do
Sn,0 ← ∅ . the solution for covering no cells is the empty set

end for

for n ∈ {0, . . . , N − 1} do . loop on all sub-problems
for w ∈ {1, . . . , N} do

Tbest ← +∞
l← n+ w − 1 mod N . compute index of the next cell to cover
for C ∈ {C ∈ C : gl ∈ C} do . loop on all covers containing next cell

k ← index of clockwise-leftmost cell in C

if k − n mod N ≤ l − n mod N then . check if “n ≤ k ≤ l” clockwise
s← k − n mod N . complementary sub-solution width
S ← Sn,s

⋃
{C} . construct candidate solution

else . otherwise “k < n ≤ l” clockwise
S ← {C} . C suffices to solve current problem

end if

TS ←
∑

Cj∈S Tj . compute candidate cost
if TS ≤ Tbest then
Sn,w ← S . keep best valid solution for (n,w)-th sub-problem
Tbest ← TS

end if
end for

end for
end for

Algorithm 3 requires O(N2|C|) steps and returns an optimal solution:
consider an optimal solution Sn,w for the (n,w)-th sub-problem with w ≥ 1,
then Sn,w contains a discrete cover C starting (clockwise) at cell gk and
including cell gl with l = n+w−1 mod N . There are two possible situations:

• “k < n ≤ l” clockwise:
{C} suffices to cover the cells {gn, . . . , gl} and is an optimal solution of
the (n,w)-th sub-problem: Sn,w = {C}.

• “n ≤ k ≤ l” clockwise:
Let s = k − n mod N , then Sn,w \ {C} is a valid solution for the
(n, s)-th sub-problem. Let Sn,s be an optimal solution for the (n, s)-th
sub-problem, then Sn,s ∪ {C} is a valid solution for the (n,w)-th sub-
problem:
- by optimality of Sn,w:

∑
Cj∈Sn,w Tj ≤

∑
Cj∈Sn,s∪{C} Tj

- by optimality of Sn,s:
∑

Cj∈Sn,w\{C} Tj ≥
∑

Cj∈Sn,s Tj
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Figure 2.12: Circle covering optimal substructure of the (n,w)-th sub-
problem

and by combining the two equations∑
Cj∈Sn,w\{C}

Tj =
∑

Cj∈Sn,s

Tj

so Sn,w \ {C} is an optimal solution for the (n, s)-th sub-problem.

Any optimal solution for a given sub-problem is either a unique cover, or the
union of a smaller sub-problem optimal solution and a cover, see Figure 2.12.

Informally, Algorithm 3 can be viewed as “applying N times Algorithm
2”, each time taking a different cell as the starting cell of the “line to cover”.
Another approach could be to

• start with an initial solution S = {C}.

• apply Algorithm 2 for covering the rest of the circle G \ C.

• repeat the first two steps for each cover C ∈ C; keep the best solution.

which would require O(N |C|2). An improved algorithm is presented at the
end of the section.

Integrality gap

Linear programming, however, cannot be used to solve circle covering, be-
cause the cover matrixA encoding the discrete covers can be non-unimodular.
The simplest problem instance for which this situation appears is displayed
in Figure 2.13.

The relaxed linear program has the cover matrix

A =

1 0 1
1 1 0
0 1 1
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Figure 2.13: Example of non-integral circle cover problem

with det(A) = 2 and yields the unique fractional optimal solution xL =
(1
2

1
2

1
2
)T , which combines a weighing of all three covers to produce the optimal

fractional solution, and is strictly better than an integral optimal solution,
say xI = (1 1 0)T . The difference of cost between both solutions is called the
integrality gap, here TT · (xI − xL) = 1

2
.

xL is the optimal solution to the corresponding fractional set cover prob-
lem, where solutions can contain fractions of discrete covers. This situation
is not dependant on the integer program encoding (i.e. how the problem is
transformed into matrix formulation). Problems with a non-null integrality
gap are thus non-integral, and are intrinsically unsolvable by straightforward
linear relaxation.

Interestingly, despite being non-integral, the circle cover problem can be
solved in polynomial time through dynamic programming. This gives a prac-
tical case of a non-integral problem which is still polynomially solvable.

2.4.3 Logarithmic encoding

All problems presented in this section can be solved in polynomial time us-
ing dynamic programming. However, the computational complexity of the
corresponding algorithms is polynomial in N , the “grid size”. If the problem
input is given in matrix formulation, i.e. c and A, then the encoding size of
the input is |C|N , and the algorithm is truly polynomial.

But for interval covers, this encoding scheme is obviously suboptimal,
since an interval can be described using only two integers, its starting index
a and its ending index b, see Figure 2.14. The number of bits required to
encode indices in {0, . . . , N − 1} is p = dlog2(N)e, and the encoding size of
a compressed input is |C|2p. For this input size, Algorithm 2 complexity is
O(|C|2p) and Algorithm 3 complexity is O(|C|4p). While those algorithms
are polynomial in the size and the values of the input, they are exponential
in the number of bits used to encode those values. Such algorithms are said
to be pseudo-polynomial.

Problems with pseudo-polynomial algorithm can be NP-complete when
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Figure 2.14: Uncompressed boolean vector (top) and compressed logarithmic
encoding (bottom)

considering the logarithmic cost, i.e. the computational cost on a determinis-
tic machine using bits to encode values. Such problems are said to be weakly
NP-complete. An example of a weakly NP-complete problem is the knapsack
problem, which also possesses a dynamic programming pseudo-polynomial
algorithm [10].

2.4.4 Input reduction

For the cover problems presented in this section, however, it is possible to
design a true polynomial algorithm, by removing redundant cells from the
input before dynamic programming. This method, called input reduction is
detailed in Algorithm 4 and graphically represented in Figure 2.15.

Algorithm 4 Input reduction
Input : C = {(aj , bj)}1≤j≤D with aj , bj integers encoded with p bits

G′ ←
⋃

(a,b)∈C{a, b+ 1}
Sort G′ and remove duplicates

C′ ← ∅
for (a, b) ∈ C do

a′ ← index of a in G′

b′ ← ( index of b+ 1 in G′)− 1
C′ ← C′ ∪ (a′, b′)

end for

Output : C′ = {(a′j , b′j)}1≤j≤D with a′j , b′j integers encoded with p bits

Input reduction modifies the problem instance by keeping only cells which
corresponds to a cover starting index or a post-ending index (cover ending
index “plus one”), represented in blue in Figure 2.15. In other words, it only
keeps a cell if it has different candidate covers than the previous cell, so the
removed cells correspond to redundant constraints: let gn be a detection cell
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Figure 2.15: Input reduction of the original problem instance (left) into a
reduced instance (right) by removing redundant detection cells (i.e. cells
corresponding to “repeating columns” in the figure)

which is neither the start nor the post-end cell of a cover. Since n is not a
cover starting index, any cover over gn also covers gn−1. Since n is not the
post-ending index of a cover, then n − 1 is not the ending index of a cover,
and any cover over gn−1 also covers gn. So gn−1 and gn have the same covers,
i.e. ∀C ∈ C, gn−1 ∈ C ⇔ gn ∈ C, and the detection constraint over gn is
redundant to the detection constraint over gn−1.

Removing gn does not change the problem instance structure, nor the
optimal solutions: Consider a valid solution S ′ ⊂ C ′ of the reduced problems,
and let S ⊂ C be its counterpart for the original problem, then for any cell
gn ∈ G there is a cell gm ∈ G′ which shares the same covers, and since S ′ has
a cover C ′ over gm (i.e. gm ∈ C ′), then the cover counterpart includes gn,
and thus S covers G. By induction, it is possible to remove all such detection
cells, without changing the instance structure, such that (G, C) and (G′, C ′)
have the same solutions with the same costs.

A more intuitive interpretation is that the method removes repeating rows
from the cover matrix (2.2), with those rows corresponding to redundant
constraints in the problem. Input reduction can viewed as a row reduction
method. A redundant constraint (or row) corresponds to a detection cell in
which “there is no change” relatively to the previous cell, crossed in red in
Figure 2.15. The row reduction implemented in Algorithm 4 is specific to
unidimensional problems. A more general row reduction method, suitable
for some bidimensional problems, is presented in 4.2.2.

The computational cost of input reduction is detailed in Table 2.1. The re-
duced gridG′, the set of cover starting or ending indices, contains at most 2|C|
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elements. The indices of the reduced covers C ′ are obtained by dichotomic
search in G′. Each new index is encoded using dlog2(2|C|)e = 1+dlog2 |C|e =
O(log |C|) bits. C ′ is encoded using 2|C| ·O(log |C|) = O(|C| log |C|) bits.

Instruction arithmetic cost logarithmic cost
Sort G′ O (|C| log |C|) O (p|C| log |C|)
Search indices a′, b′ 2|C| ·O (log |C|) 2|C| ·O (p log |C|)
Total O (|C| log |C|) O (p|C| log |C|)

Table 2.1: Computational cost of input reduction

Problem Line covering Circle covering
Input reduction O (p|C| log |C|)

Dynamic programming O (N |C|) ·O (logN)
= O (|C|2 log |C|)

O (N2|C|) ·O (logN)
= O (|C|3 log |C|)

Total O ((|C|+ p)|C| log |C|) O ((|C|2 + p)|C| log |C|)

Table 2.2: Logarithmic cost of dynamic programming and input reduction

The logarithmic cost of dynamic programming is the product of its num-
ber of steps, O(N |C|) or O(N2|C|), multiplied by the logarithmic cost of an
arithmetic operation: O(logN). And for the reduced input, the grid size be-
comes N = |G′| ≤ 2|C| = O(|C|). The cost of input reduction and dynamic
programming combined is given in Table 2.2. Both line covering and circle
covering can be solved in true polynomial time.

Strongly polynomial algorithms

Those algorithms are actually strongly polynomial. An algorithm is strongly
polynomial if its arithmetic cost, i.e. the cost considering arithmetic opera-
tions as single computational steps regardless of encoding size, is polynomial
in the number of input values. This indicates than the number of steps in
the algorithm does not depend on the input size and that performances do
not deteriorate too much when inputting large values. A counter-example is
Euclid’s algorithm for computing the greatest common divisor, whose input
is only two numbers, but whose number of steps increases when the numbers
values grow.

The arithmetic cost of input reduction is O (|C| log |C|), obtained by re-
placing O(p) by O(1) in the logarithmic cost, since the p factor only appear
as the logarithmic cost of comparisons. The overall cost of input reduction
and dynamic programming combined is in Table 2.3, and unidimensional grid
cover problems are solvable in strongly polynomial time.
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Problem Line covering Circle covering
Input reduction O (|C| log |C|)
Dynamic programming O (N |C|) = O (|C|2) O (N2|C|) = O (|C|3)
Total O (|C|2) O (|C|3)

Table 2.3: Arithmetic cost of dynamic programming and input reduction

2.5 Bidimensional grid covering

Some grid cover problems remains NP-hard to solve. This includes problems
on a bidimensional grid, and problems using disconnected discrete covers,
even on a unidimensional grid. This means that tridimensional radar models
produce NP-hard optimization problems.

2.5.1 Rectangular grid cover problem

In practice, optimization of search patterns for tridimensional radars can
be efficiently modelled by bidimensional covering using rectangular-shaped
covers [30]:

• Rectangular radiation patterns are simpler to synthesize than more
irregular shapes, since the phased-array is rectangular itself.

• The number of rectangles on the grid grows in O(M2N2) keeping the
available discrete covers database size reasonable while offering enough
choice for producing good quality radar search patterns.

The corresponding combinatorial problem amounts to rectangular grid cov-
ering, and an example instance is presented in Figure 2.2.

Dynamic programming approach

Considering the algorithms presented in the previous section 2.4, a natural
attempt to solve rectangular grid covering would be to generalize the dynamic
programming approach used on unidimensional grids to bidimensional grids.

Consider an optimal solution for the rectangular grid cover problem. It
is combination of a rectangular cover C over the bottom-right corner and an
optimal sub-solution covering the remaining “top-left” cells. By iterating the
decomposition process, the covering sub-problems are to “cover the top-left
part of the grid”, see Figure 2.16.

The number of sub-problems is equal to the number of ways of cutting
the grid into two sets: a top-left part and a bottom-right part. Equivalently,
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Figure 2.16: Optimal solution decomposition (top), and substructure after
multiple decompositions (bottom)
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Figure 2.17: Substructure decomposition of line cover problem (left), circle
cover problem (center) and grid cover problem (right)

this is equal to the number of paths between the top-right corner cell and
the bottom-left corner cell of the grid, see 2.17.

A cut is constituted by N +M edges on the grid, with M vertical edges
and N horizontal edges. Any cut can be defined uniquely by choosing the N
vertical edges (or equivalently M horizontal edges) among the N +M edges.
So the number of possible paths between two opposite corners of the grid,
and thus the number of cover sub-problems on the grid is

(
N+M
N

)
=
(
N+M
M

)
.

This term grows much faster than for line covering, which has N possible
cuts, or circle covering, which has

(
N
2

)
possible cuts, see Figure 2.16.

Assume without loss of generality that N ≤ M , then the number of
possible cuts can be bound below by the following expression using Stirling’s
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formula:(
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)
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=
22N
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Thus, the number of sub-problems to solve grows exponentially with the
grid size: an increase by 10 of the grid size increases the number of sub-
problems by approximately 22·10 ≈ 106. Even for small values, the number
of sub-problems explodes:

N = M 10 20 30 40 50(
2N
N

)
' 105 ' 1011 ' 1017 ' 1023 ' 1029

Table 2.4: Number of sub-problems

So while theoretically usable for rectangular grid covering, dynamic pro-
gramming has an exponential complexity for this problem, making the ap-
proach rather inefficient. This hints that bidimensional grid covering is com-
putationally harder than previous unidimensional problems.

Note that straightforward linear programming fares no better, as the
matrix formulation of rectangular grid covering can also yield a non-totally
unimodular matrix A, see Figure 2.2 for an example, with optimal relaxed
cost 11

2
, one optimal relaxed solution being xL = (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
)T .

NP-hardness

All problems presented in this chapter can be reduced to general set covering
(2.1), or to integer programming (2.3), and are thus in NP. Furthermore,
some grid cover problems can be shown to be NP-hard, meaning that any NP
problem can be reduced to those problems by a polynomial transformation,
also called Karp reduction [26].

The classical way for proving NP-hardness is to find a Karp reduction
from an already known NP-hard decision problem to the considered problem.
In other words, by showing that there is a polynomial algorithm to turn any
instance of the former problem into an instance of the latter. This proves by
transitivity that any problem in NP can be reduced to the studied problem.

A common candidate for NP-hardness proofs is the vertex cover problem,
which is known to be NP-complete [11] and is defined as follow: let (V , E)
be a graph, let K ∈ N. Is there a subset U ⊂ V with cardinal |U| ≤ K such
that ∀v ∈ V ,∃v′ ∈ U with (v, v′) ∈ E ? In other words, for a given integer
K, is there a subset of less than K selected vertices, such that any vertex in
the graph has a common edge with a selected vertex ? An instance of the
vertex cover problem is defined by the system (V , E , K).
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Figure 2.18: Reduction grid of vertex covering into rectangular grid covering

The decision version of the rectangular grid cover problem is defined as:
let G be a M -by-N rectangular grid, let C = {C1, . . . , CD} be a collection
of rectangular-shaped discrete covers on G, and let F ∈ N. Is there a valid
pattern S ⊂ C covering the grid, with |S| ≤ F ? An instance of the decision
rectangular grid cover problem is defined by the system (G, C, F ) and can
be encoded by the NMD boolean values in the cover matrix and D integer
values in the cost vector of the matrix formulation (2.3).

The following polynomial reduction transforms a vertex cover instance
(V , E , K) into a decision rectangular grid cover instance (G, C, F ):

Let the graph vertices and edges be ordered as V = {v0, . . . , v|V|−1} and
E = {e0, . . . , e|E|−1}. Each edge is described by a pair of distinct vertices
em = (vi, vj) with i < j.

Let G be a |E|-by-3|V| rectangular grid. Each row represents an edge,
and each block of three columns represents a vertex, see Figure 2.18. Three
types of rectangular covers are defined on the grid, see Figure 2.24 for an
example:

• Column covers: for each vertex vi, the column cover representing
said vertex is the central column of the block column

Vi = {gm,3i+1 : 0 ≤ m < M}

see Figure 2.19. The set of column covers is

CV = {Vi : vi ∈ V}
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Vi =

vivi-1 vi+1

Figure 2.19: Column cover

• Side-row covers: for each edge ek = (vi, vj), the left side-row cover
includes the beginning of the edge row, up to the left column of the vi
block-column

Lk = {gk,n : 0 ≤ n ≤ 3i}

and similarly the right side-row cover includes the end of the edge row,
starting from the right column of the vj block-column

Rk = {gk,n : 3j + 2 ≤ n < N}

see Figure 2.20. The set of side-row covers is

CS = {Lk : ek = (vi, vj) ∈ E} ∪ {Rk : ek = (vi, vj) ∈ E}

Lk =

Rk =

ek

ek

gk,3i gk,3i+1 gk,3i+2gk,0

gk,3j gk,3j+1 gk,3j+2 gk,M-1

vi vj

vjvi

Figure 2.20: Side-row covers

Side-row covers are all required in a valid pattern, since each is the only
cover for either the first or last cell of the row. Thus only the “central
part” of the row

Hk = {gk,n : 3i+ 1 ≤ n ≤ 3j + 1}

remains to be covered.
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ek gk,3i gk,3i+1 gk,3i+2gk,0 gk,3j gk,3j+1 gk,3j+2 gk,M-1

vi vj{
Hk

Figure 2.21: The “central part” Hk

• Center-row covers: for each edge ek = (vi, vj), the row “central part”
Hk can be partially covered by a column cover, and the remaining
uncovered cells can be covered by either the left center-row cover

Ak = {gk,n : 3i+ 1 ≤ n ≤ 3j}

to complement the column cover Vj, or by the right center-row cover

Bk = {gk,n : 3i+ 2 ≤ n ≤ 3j + 1}

to complement the column cover Vi, see Figure 2.22. Either com-
bination can cover the row “central part” since Hk ⊂ Ak ∪ Vj and
Hk ⊂ Vi ∪ Bk. Note that Hk can also be covered by Ak ∪ Bk, but cov-
ering Hk requires two covers in any case, see Figure 2.23 for the three
possibles configurations. The set of all center-row covers is

CH = {Ak : ek =∈ E} ∪ {Bk : ek =∈ E}

While center-row covers are not all compulsory, for each row one of the
two center-row covers must be in the pattern, being the only covers for
cells {gk,n : 3i + 2 ≤ n ≤ 3j} which are between the two columns Vi
and Vj.

So for each row on the grid, the two side-row covers are required. And at
least one of the two center-row covers is also required. Thus a valid pattern
contains at least 3|E| covers. Let the set of all rectangular covers be

C = CV ∪ CS ∪ CH

The grid cover instance (G, C, 3|E|+K) has a solution if and only if the ver-
tex cover instance (V , E , K) has a solution. See Figure 2.25 for an optimal
solution of the reduction example in Figure 2.24.
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Figure 2.22: Center-row covers

{

Ak Vj

{
BkVi

{
Ak

{Bk

Figure 2.23: The three configurations for covering Hk

Suppose there is a valid solution U with |U| ≤ K for problem (V , E , K).
Let SU = {Vi : vi ∈ U} ⊂ CV , the set of column covers corresponding to the
vertices in vertex cover U .

For each edge ek = (vi, vj), either Vi ∈ SU or Vj ∈ SU . Let Ek be the
center-row cover complementing the “central part”:

Ek =

{
Ak if Vj ∈ U
Bk otherwise

and the corresponding row is covered by Lk ∪Ek ∪ Vi ∪Rk for some Vi ∈ SU .
So S = SU ∪ {Ek : ek ∈ E} ∪ CS is a valid pattern containing K + |E|+ 2|E|
elements and thus a solution for the grid cover instance (G, C, 3|E|+K).

Conversely, suppose there is a valid solution S with |S| ≤ 3|E| + K for
the grid cover instance (G, C, 3|E|+K).

For each row, there is at least one center-row cover. Suppose there is an
edge ek = (vi, vj) whose row is covered by the two center-row covers. Then
one of the two covers can be replaced by a column cover: S ← S∪{Vi}\{Bk}
without changing the cardinality of the solution: |S| ≤ |E| + 3K. Iterating
this process produces a pattern for which there is exactly one center-row
cover per row.

Thus the “central part” Hk of each row is covered by a combination of a
center-row cover and a column cover: either Ak ∪ Vj or Bk ∪ Vi. So for each
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Figure 2.24: Reduction of vertex covering to rectangular grid covering for the
complete graphK3, with the input graph (top-left), reduction grid (top-right)
and rectangular covers (bottom)

80



CHAPTER 2. OPTIMIZATION THEORY AND COMPLEXITY

v0

v1 v2

e0 e1

e2

U={v0,v1}

S ={V0, V1,  L0, A0, R0,  L1, B1, R1,  L2 ,B2 ,R2}

= ⋃V0 V1

L0

L1

L2

R0

B1

B2

R1

R2

A0

Figure 2.25: Solution for vertex cover problem (left) and corresponding so-
lution for grid cover reduction (right)

edge ek = (vi, vj), the pattern S contains a column cover of one its vertex:
Vi or Vj, and U = {vi : Vi ∈ S ∩ CV} is a valid vertex cover. Furthermore

|U| = |S ∩ CV | = |S \ CH \ CS| = |S| − |E| − 2|E| = |S| − 3|E| ≤ K

since S contains one cover from CH per row and all covers in CS. U is thus a
valid solution for vertex cover instance (V , E , K).

So there is a solution for the vertex cover instance (V , E , K) if and only
if there is a solution for grid cover instance (G, C, 3|E| + K). All that is
left is to check that the reduction is polynomial. Suppose the reduced grid
problem is encoded using binary matrices. Each rectangular cover has 3|V||E|
boolean elements, and C contains |V|+4|E| rectangular covers. Generating all
covers takes at O (3|V|2|E|+ 12|V||E|2) operations and the problem instance
is encoded using 3|V|2|E|+12|V||E|2 bits. So the reduction is polynomial and
rectangular grid covering is NP-hard.

Note that it is possible to compress the problem using a similar encoding
scheme than in 2.4.3, since rectangles on a M -by-N grid can be described by
four integer values defining the top-left and bottom-right corner. So a prob-
lem instance can be encoded in 2(log2(3|V|) + log2 |E|)(|V|+ 4|E|) bits. Since
the “uncompressed” problem is already NP-hard, the “compressed” problem
is said to be strongly NP-hard, i.e. it has a pseudo-polynomial algorithm only
if P=NP.
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Approximability

There is currently no known methods for solving efficiently NP-hard prob-
lems, and there might never be. Thus an important field in optimization is
the design of polynomial approximation algorithms, which return in polyno-
mial time a valid non-optimal solution, however guaranteed to be within a
given ratio of the optimal cost. For a minimization problem, an algorithm
is said to be an α-approximation if it returns a solution with cost Fapx such
that Fapx ≤ αFopt with Fopt the cost of an optimal solution.

Unfortunately, set covering is generally not easy to approximate. It is log-
approximable [13] by the greedy method which return a solution with value
at most log(|G|) times the optimal cost, but also log-APX-complete [16], so
at least as hard to approximate than all other log-approximable problems.

Specific cases of set covering can achieve better approximations. Vertex
covering has a 2-approximation algorithm [26]. In fact, all cover problems
with a constant frequency parameter f can be f -approximated using a primal-
dual algorithm [31]. The frequency factor is defined as

f = max
i
|{C ∈ C : gi ∈ C}|

and represents the maximum number of covers sharing a common element, or
using radar terminology the maximum number of overlaps of dwells discrete
cover. This value is however not bound for grid covering, and thus the
primal-dual approach does not guarantee constant approximation ratio.

Vertex covering is also APX-complete [26], meaning at least as hard as
all problems approximable in constant ratio. While the previous reduction
of vertex covering to rectangular grid covering is polynomial, it is not an
approximation-preserving reduction:

Consider a graph (V , E), for which a minimum vertex cover has optimal
cardinal Kopt. The decision vertex cover instance (V , E , Kopt) is true and
the decision instance (V , E , Kopt − 1) is false. The grid cover problem (G, C)
obtained via the reduction presented previously has thus an optimal solution
with cost Fopt = 3|E|+Kopt.

Suppose there is an α-approximation algorithm for the grid cover problem,
which returns a solution with cost Fapx ≤ αFopt = α(3|E|+Kopt). From this
solution, a vertex cover for (V , E) can be computed by replacing and removing
center-row and side-row covers, as has been done in 2.5.1. The vertex cover
has a cost

Kapx = Fapx − 3|E| ≤ α(3|E|+Kopt)− 3|E| = αKopt + (α− 1)3|E|

which can be arbitrarily high as a graph with a size-bounded optimal vertex
cover can have an arbitrarily high number of edges, for example the star
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Figure 2.26: Reduction from general set covering to connected grid covering

graph Sn. So there is no ratio β such that (α − 1)3|E| ≤ βKopt, and the
reduction is not approximation-preserving. The exact approximability of the
rectangular grid covering remains an open question, though the problem is
at worst log-approximable.

2.5.2 Connected grid cover problem

The radar model with connected dwell shapes is a generalization of the rect-
angular case: the set of available dwell covers can contain any connected
shape, as defined in 2.2.3. Since rectangular shapes are valid connected
shapes, the problem is immediately NP-hard, since any problem instance of
rectangular grid covering is a valid instance of connected grid covering. An
alternate reduction from general set covering is also possible.

Let (G, C, K) be an instance of the set cover problem. Let G′ be a 2-by-|G|
grid. For each cover C ∈ C, let

C ′ = {g′0,i ∈ G′ : gi ∈ C} ∪ {g1,0, . . . , g1,|G|}

such that the first line of cover C ′ replicates C, while the second line of C ′
contains all elements on the second line of G′, see Figure 2.26, ensuring that
C ′ is a connected set. Let C ′ = {C ′ : C ∈ C}.

Suppose S ⊂ C is a solution for set cover instance (G, C, K) and let
S ′ = {C ′ : C ∈ S}, then

|S| = K ⇔ |S ′| = K

and

G ⊂
⋃
C∈S C ⇔ ∀i, ∃C ∈ S : gi ∈ C

⇔ ∀i, ∃C ′ ∈ S ′ : {g′0,i, g′1,i} ⊂ C ′ ⇔ G′ ⊂
⋃
C′∈S′ C

′

Thus S is a solution for (G,C,K) if and only if S ′ is a solution for
(G′, C ′, K) and the two problems are computationally equivalent. This re-
duction keeps the same cost function for both problems, and is stronger than
for the previous reduction of vertex covering to rectangular grid covering,
as it preserves approximation properties. Thus connected grid covering is
NP-hard, and also log-APX-complete, like general set covering [16].
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Figure 2.27: Finite tree of solutions (left) and branch-and-bound method
(right)

2.6 Branch-and-bound

In practice, NP-hard optimization problems such as general set covering en-
countered in industrial settings are often solved by branch-and-bound, a com-
binatorial optimization paradigm whose principle is to explore the decision
space searching for a good solution. Its key feature is to avoid exhaustive
enumeration of entire branches of the space by bound estimation, hence its
name [32]. Despite lacking provably good worst-case theoretical complexity,
branch-and-bound generally performs efficiently on practical cases.

2.6.1 Description

The decision space of all possible solutions can be represented as a finite
binary tree with depth p, each node representing the value choice of an integer
variable, see Figure 2.27. Each end leaf represents a solution for the integer
program. The number of possible solutions is finite, but grows exponentially
and is usually huge: in the case of a cover problem with D candidate covers,
there is 2D possible pattern solutions.

Exploring the entire tree is computationally infeasible in reasonable time.
However it is possible at each node to estimate a lower bound of the node
sub-tree best solution, by solving its linear relaxation with methods previ-
ously described in 2.3.3. Knowing their lower bound, it is possible to avoid
exploring certain subsets:

• Branching: Each branch at the current node (with depth j − 1) corre-
spond to a chosen value, 0 or 1, for the next variable xj. In each branch,
xj is no longer a variable but a parameter. The current problem is thus
divided into 2 smaller sub-problems, each considering a different value
for xj and each having one less variable.
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• Bounding: The current problem is relaxed into a linear program, whose
solution is a lower bound of the current problem best solution. Depend-
ing on the lower bound value, the node sub-tree will be explored next
(if it is the most promising branch), later (if there is a more promising
branch), or never (if a better solution has already be found in another
branch).

Defining what a promising branch is a difficult question, a lower bound
is not necessarily better since deeper nodes may have higher bounds while
being closer to optimal solutions. Integer programming solvers usually rely
on various heuristics to define the exploration strategy and improve bound
estimations.

2.6.2 Algorithm

A description of the branch-and-bound method is given below. Algorithm
5 details the corresponding pseudo-code. Each node in the tree can be de-
scribed by the sequence of choices leading to this node from the root node

N = (x1, x2, . . . , xd)

and each node has two children N0 = (x1, . . . , xd, 0) and N1 = (x1, . . . , xd, 1).
At each node N explored, the first d variables (x1, x2, . . . , xd) are set, and a
linear relaxation of the problem is solved with respect to the remaining free
variables (xd+1, . . . , xD), then add N to the list of nodes to explore.

The algorithm can be summarized by the following steps:

0. Initialization:
Initialize the list of node to explore with the root node.

1. Exploration:
Pop next node to explore from the list of nodes and solve its linear
relaxation.

2. Bounding:
If the current node relaxation value is less than the current best solution
found, proceed to Step 3, otherwise, drop current node and go back to
Step 1.

3. Update:
If the current node relaxation is an integral solution, then its an improv-
ing solution (note that an end leaf always yield an integral solution).
Update best current solution and proceed to Step 1.
Otherwise:
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4. Branching:
Compute the current node children. For each child, check if the descen-
dants contains a valid solution (this can be done by summing covers
already used by the parent, the cover of the child node if used, and
covers available to the descendants). If the child node is valid, add it
to the list of node to explore. Proceed to Step 1.

This very generic description is just a presentation of the general idea
of the method. Efficient implementations of the branch-and-method usually
combined several techniques such as cutting planes, diving heuristics and
local branching to improve bounds estimation and speed.

2.6.3 Example

The branch-and-bound method is applied on the example from Figure 2.2,
described by the integer program (2.4), see Figure 2.28:

• N = {}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Solving the root relaxation yields the linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
)

with cost 11
2
≤ 13. Root node children (0) and (1) are feasible, and

thus added to the exploration list N := {(0), (1)}

• N = {(0), (1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (0) yields the same linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
) with

cost 11
2
. We add the children (0, 0) and (0, 1) to the exploration list

N := {(1), (0, 0), (0, 1)}

• N = {(1), (0, 0), (0, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT ·xbest = 13 :
Relaxation of (1) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
)

with cost 15
2
< 13. We add the children (0, 0) and (0, 1) to the explo-

ration list N := {(1, 0), (1, 1)}

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest =
TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1)
with cost 6 < 13. xL is an integral solution, thus we update the best
current solution xbest := xL; fbest := 6.

At this point, it can be deduced that xbest is an integer optimal solution.
The root relaxation has linear optimal cost 11

2
. By bounding, any integer

solution has an integer cost greater than the linear optimal cost 11
2
, so greater

than 6 = d11
2
e. This suffices to prove the optimality of xbest = (0 0 1 1 0 0 1 1)

for the integer program (2.4).
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Algorithm 5 Branch-and-bound
% lp_solve is the relaxation subroutine called during branching
function lp_solve(N)

(x1, . . . , xd−1) := N . node N sets first d− 1 variables
(xd, . . . , xD) := argmin{

∑D
j=d Tjxj : A · x ≥ 1} . optimize free variables

return xL := (x1, . . . , xd, xd+1, . . . , xD)
end function

% Initialization
Nroot = ()
N := {Nroot} . start with root node
xbest := xF = (1 · · · 1) . best current solution (default is xF )

% Exploration
while N is not empty do

N := pop(N ) . take next node in N
xL := lp_solve(N) . solve node relaxation

% Bounding
if TT · xL < TT · xbest then . explore node N if improvement is possible

% Update
if xL ∈ {0, 1}D then . check if xL is an integral solution

xbest := xL

else
(x1, . . . , xd) := N

% Branching
for x ∈ {0, 1} do . compute children of node N

Nc := (x1, . . . , xd, x)
if A · (x1 · · · xd x 1 · · · 1)T ≥ 1 then . check child feasibility
N := N ∪ {Nc} . add child to candidate list

end if
end for

end if
end if

end while
return xbest
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Figure 2.28: Branch-and-bound application example

2.6.4 Just-in-time criteria

One of the most interesting features of the branch-and-bound method from
an operational viewpoint is the possibility to use a “just-in-time” criteria.
For example, a radar system with an embedded computer must optimize its
cover just before a mission start. However, it only has five minutes to perform
the optimization. A “just-in-time” criteria impose a time limit ensuring that
even if the optimum has not been reached, the algorithm will return the best
solution it found in the available lapse of time. Another advantage is the
lower bound of the optimal cost provided by linear relaxation:

BN = min{TT · xL : xL = LP_SOLVE(N), N ∈ N}

thus during the computation, the method always has an confidence interval
for the optimal solution value, above the lower bound but below the current
best value:

BN ≤ T · xopt ≤ T · xbest

Knowing the lower bound, the (worst-case) relative optimality gap is:

∆opt =
T · xbest −BN

BN

which give as a percentage the best possible gain for an optimal solution rel-
atively to the current best solution. The pseudo-code modifications required
to account for a time limit and provide the current lower bound are described
in Algorithm 6.
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Algorithm 6 Just-in-time branch-and-bound
% Exploration
current_time := time() . Get current time
while N is not empty AND current_time ≤ time_limit do

...
end while
return Xbest, BN

In practice, if the algorithm has a broad choice of available covers, it
will find very quickly a good quality solution. Typically within ≤ 10% of
relative optimality gap. However closing those last percents to reach the
optimal solution can be difficult. Because the decision space is often huge,
the algorithm spends a long time crossing out possibilities. In some case
even, the algorithm finds quickly the optimal solution, and spends a long
time proving its optimality.

89



CHAPTER 2. OPTIMIZATION THEORY AND COMPLEXITY

90



Chapter 3

Radar search pattern
optimization

Multi-function radars usually perform multiple tasks simultaneously, such as
scanning, target tracking and identification, clutter mapping, etc. [33, 34,
35, 36]. Electronic scanning and numerical processing allow dynamical use
of beam-steering, beam-forming, dwell scheduling and waveform processing
to adapt to operational requirements. As complex situations can result in
system overload, multi-function radars must optimize resources allocation to
ensure robust detection. Optimization of the radar search pattern minimizes
the required time-budget for radar scanning, thus freeing resources for other
tasks.

In the past, several works have explored various approaches for opti-
mization of the radar search pattern: [37, 38] optimized scanning by tiling
identical pencil beams over the surveillance space, [39] developed adaptive ac-
tivation strategies on a pre-designed radar search pattern. Those approaches
however do not fully use active radars capabilities to dynamically perform
beam-forming. A similar problem is wireless network covering: for a given
base station and given clients, ensure connection for all clients using a mini-
mal numbers of directive antenna [40, 41]. Radar search covering and wireless
network covering have similar underlying mathematical structures with both
being cover problems.

3.1 General optimization problem

A radar search pattern is a collection of dwells ensuring detection over the
surveillance space. An optimal radar search pattern achieves detection using
a minimum time-budget. The surveillance space AS defines the azimuth-
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Figure 3.1: Surveillance space in 3D (left), in azimuth/elevation (center), in
direction cosines (right)

elevation scanning range, see Figure 3.1:

AS = [azmin, azmax]× [elmin, elmax] ∈⊂ [−π
2
,
π

2
]× [0,

π

2
]

where az and el are respectively the azimuth and elevation angles in radians.

3.1.1 Detection constraint

The radar search pattern must ensure detection for a given mission with
requirements defined by several parameters:

• σ is the radar cross-section of the target type.

• Rc : AS → R+ is the desired detection range. In general, the desired
detection range is defined by height Hmin and distance Dmin, see Figure
3.2:

Rc(az, el) =

{
Dmin if el ≤ asin

(
Hmin

Dmin

)
Hmin

sin(el)
otherwise

• i ∈ {0, · · · , 4} is the Swerling model [8].

• Pd ∈]0, 1[ is the desired detection probability and Pfa ∈]0, 1[ is the
desired false alarm probability.

The radar search pattern ensures detection if for each direction (az, el) ∈
AS, the radar search pattern contains at least one dwell capable of detecting
a target with radar cross-section σ at range Rc(az, el) with at least detection
probability Pd and at most false alarm probability Pfa.

Each dwell has a processing time, the time duration of its associated wave-
form, during which the radar cannot perform other action, whether emitting
another dwell or accomplishing tracking tasks. The radar search pattern
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el

az

el=0

Figure 3.2: Desired detection range (top), azimuth cut (bottom-left), eleva-
tion cut (bottom-right)

time-budget is the sum of all its dwells associated waveform duration, thus
the time taken to perform the entire radar search pattern. The optimization
problem is to find a radar search pattern ensuring the detection constraint
for a minimal time-budget.

3.1.2 Radar system parameters

To achieve the detection requirements described previously, an available
radar system is described by the following parameters:

• Radar peak power : Pp

• Phased array dimensions parameters : M, N, dx, dz

and this system has access to database of waveforms

W = {ω1, . . . , ωP}

each waveform ω ∈ W being described by:

• Its duration Tω

• Its average dutycycle fω
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• Its carrier wavelength λω

• Its detectability factor sω, which can either come from measurements or
simulations, or either be computed using the waveform model described
in 1.5, knowing the number of bursts Nb and the detection threshold
Kb in the waveform.

3.1.3 Digital beamforming processing limit

A dwell d ensures detection over the surveillance space subset

Ad = {(az, el) ∈ AS : Rd(az, el) ≥ Rc(az, el)} (3.1)

whose area is limited by the radar maximum digital beamforming scanning
area Amax

Ad =

∫∫
Ad
dudv ≤ Amax

3.1.4 Problem statement

Finding a radar search pattern Sopt ensuring the detection constraint over
the surveillance space with minimal time-budget is a minimization problem
under constraints:

min
∑

0≤j≤J

Twj (3.2a)

s.t. S = {dj, 0 ≤ j ≤ J}, J ∈ N (3.2b)

AS ⊂
⋃
d∈S

Ad (3.2c)

∀d ∈ S, Ad =

∫∫
Ad
dudv ≤ Amax (3.2d)

The problem amounts to finding a radar search pattern S containing a fi-
nite number of dwells (3.2b), validating detection constraint over the entire
surveillance space for the given mission (3.2c), with each dwell processable
at reception (3.2d), and using minimal radar time-budget (3.2a).

3.2 Problem discrete approximation

The general optimization problem is difficult to solve for several reasons:
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continuous optimization
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radar
parameters

radar
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Figure 3.3: Continuous optimization framework

• continuous variables in the phase-amplitude illumination law of each
dwell radiation pattern mixed with discrete variables for each dwell
waveform choice.

• the number of variables is not set, as it depends on the number of
dwells, introducing a “meta-variable”.

• the desired detection range Rc is not generally a convex function.

It is thus a non-convex mixed optimization problem, with potentially a
large varying number of variables, in which the radar model and the covering
are intertwined in a complicate manner, see Figure 3.3. This problem could
be solved by:

• Heuristics, which try to achieve a good solution by following some sim-
ple rule. The greedy method usually falls into this category. Heuristics
are often sub-optimal methods, their performances lack robustness and
can significantly vary depending on the input problem instance.

• Metaheuristics, which try to balance exploration of the solution space
and convergence towards a local optimum. This balance is often achieved
by careful tuning of the algorithm parameters, so that good quality so-
lutions are found in the desired time. This tuning can be difficult
to perform, and may have to be done again if the problem structure
changes significantly, for example if a different radar technology is used.
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Figure 3.4: Discrete optimization framework

A different approach will be used hereafter. A more sensible way to tackle
this problem is to approximate it as a combinatorial set cover problem, since
it intuitively possesses a similar structure as a cover problem.

The approximation turning the general problem into a combinatorial set
cover problem relies on two assumptions:

• The use of discrete grid representing the surveillance space. In the
original problem, there is no quantification of the surveillance space,
which is a continuous set.

• The restriction to rectangular radiation patterns. A phased-array an-
tenna can theoretically produce all sorts of beam-shaped radiation pat-
terns, and the set of possible patterns is in fact continuous. This is
impractical for a combinatorial formulation, which requires a finite set
sampled amongst all possibilities. Choosing this set as the collection of
all possible rectangular patterns offers a broad choice of covering while
avoiding combinatorial explosion of oversampling.

Under those assumptions, the procedure for approximating a solution to
the general problem can be divided into three steps, see Figure 3.4:

• Space quantification: the definition of finite bidimensional grid covering
and representing the surveillance space.

• Pattern synthesis : the generation of a collection of rectangular radia-
tion pattern on the grid, based on the mission energetic requirements.

• Combinatorial optimization: the selection of an optimal subset among
the rectangular candidate dwells.

This combinatorial approximation framework have several advantages:
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Figure 3.5: Detection grid G and a rectangle H in 3D (left), in az-
imuth/elevation (middle), in direction cosines (right)

• Modular : those three steps are independent, meaning the specific algo-
rithm used for each step can be changed seamlessly.

• Generic: the radar model is separated from the covering problem. Thus
it would be possible to adapt the method to a different radar technology
by adapting the pattern synthesis method to the new radar model,
without the need to understand the intricacies of the combinatorial
optimization step.

• Scalable: the overall computational complexity is directly controlled by
the quantification resolution.

3.2.1 Detection grid

The surveillance space in direction cosines coordinates is approximated by
a finite bidimensional M -by-N regular grid, see Figure 3.5. On this grid,
the detection constraint is considered on each cell, with a finite number of
cells, instead of working on the continuous set of possible azimuth-elevation
directions.

Let [umin, umax] ⊂ [0, 1] and [vmin, vmax] ⊂ [0, 1] be the radar scanning
range in direction cosines coordinates on the surveillance space. Let M ∈ N∗
and N ∈ N∗ define the desired grid resolution. Then the grid nodes are
computed by :

u0 = umin, uN = umax un = u0 + n
(
uN−u0
N

)
v0 = vmin, vM = vmax vm = v0 +m

(
vM−v0
M

) (3.3)

Any rectangle H on grid G can be characterized by its upper left corner
(un, vm) and its lower right corner (uq, vr) on the grid, such that 0 ≤ n < q ≤
N and 0 ≤ m < r ≤ M , see Figure 3.5. The number of possible rectangles
on G is bounded by

MN(M + 1)(N + 1)

4
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3.2.2 Pattern synthesis

Let H be a rectangle on grid G, characterized by nodes (un, vm) and (uq, vr).
The ideal radiation pattern covering H is

gH(u, v) ∝

{
Ls(u, v)2

{
Rc(u,v)

4sω
σ

}
if un ≤ u ≤ uq and vm ≤ v ≤ vr

0 otherwise
(3.4)

up to a constant factor, as the antenna array feeds are normalized. This
radiation pattern fits the maximum of ideal energetic distributions for all
mission detection constraints. This type of ideal pattern is usually infeasible
on a real antenna, because it features discontinuities on the rectangle edges,
see Figure 3.6. The radiation pattern is the Fourier transform of the antenna
illumination law, see (1.3). A discontinuous radiation pattern would require
an infinitely large antenna array, for the same mathematical reasons that a
discontinuous time signal has an infinite spectrum.

A feasible radiation pattern ĝH can be synthesized by applying a bidimen-
sional Woodward-Lawson sampling method to the ideal pattern gH , adapted
from the unidimensional method described in [2, 3]. This method is very
similar in properties to an inverse Fourier transform. Using sampled values
of the desired pattern at evenly-spaced sampling points (in red), the method
synthesizes a feasible pattern that is guaranteed to hold the same values at
the sampling points, see Figure 3.6. The sampling points form a K ′-by-L′
grid with nodes (ul, vk), 0 ≤ l < L′, 0 ≤ k < K ′ (note that this grid has no
relation to detection grid G) with:

L′ = 2bL
2
c+ 1, ul = 2l+1−L′

L

K ′ = 2bK
2
c+ 1, vk = 2k+1−K′

K

(3.5)

The number of sampling points along one dimension is the closest rounded-
up odd number to the number of radiating elements on the same axis. The
feeds of the feasible pattern are computed using the ideal pattern values at
the sampling points:

âk,l =
1

KL

K′∑
k′=0

L′∑
l′=0

gH(ul′ , vk′)e
−jπ(kdyvk′+ldxul′ )/λ

The feeds are normalized: âk,l ← âk,l/maxk,l{âk,l} and Taylor filtering is used
for decreasing sidelobes and Gibbs oscillations. From the feeds, the feasible
pattern can be computed using (1.3).

Applying this synthesis procedure to all possible rectangles on grid G,
with area AH inferior to the maximum digital beamforming scanning area
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Figure 3.6: Ideal radiation pattern (top-left), synthesized radiation pattern
(top-right) and synthesized radiation pattern after Taylor filtering (bottom),
with synthesis sampling points in red.
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... ...
Figure 3.7: Pattern synthesis applied to a database of ideal rectangular ra-
diation patterns

Amax described in 3.1.3, generates a collection of processable radiation pat-
terns, as shown in Figure 3.7:

T = {ĝH : H ⊂ G ∧ AH ≤ Amax}

Other synthesis methods based on least square optimization [42], genetic
algorithms [43] and alternating projections [44] are also compatible with this
approach.

3.3 Set cover problem formulation
The set of candidate dwells D can be computed as the Cartesian product
of T , the set of synthesized radiation patterns, and W , the set of available
waveforms :

D = T ×W = {(gt, w), gt ∈ T , w ∈ W} = {d1, · · · , dp}

3.3.1 Discrete cover computation

The discrete cover of each dwell is a boolean representation of the dwell
detection on the grid. It indicates the cells on which the dwell validates the
detection constraint, see Figure 3.8.

The discrete cover correspond to a “sampling” of the dwell detection on
the grid. Various sampling schemes can be used for computing the discrete
cover Cj of a dwell dj ∈ D, see Figure 3.9:

• sampling of the cell corners (which are the grid nodes):

Cj(m,n) =
∧

(u,v)∈{un,un+1}×{vm,vm+1}

(Rj(u, v) ≥ Rc(u, v))
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Figure 3.8: Computation of discrete covers for one dwell on two scanning
missions

GS

Figure 3.9: Corner sampling (left), center sampling (middle), subgrid over-
sampling (right), with sampling points in red

with
∧

the boolean AND operator.

• sampling the cell center:

Cj(m,n) =

(
Rj

(
un + un+1

2
,
vn + vm+1

2

)
≥
(
un + un+1

2
,
vn + vm+1

2

))
• oversampling a smaller subgrid GS inside the cell:

Cj(m,n) =
∧

(u,v)∈GS

(Rj(u, v) ≥ Rc(u, v))

where Rc is the desired detection range, and Rj is dwell dj detection range,
computed by the radar equation as described in 1.6.

Subgrid oversampling is the most accurate scheme for ensuring that the
cell is entirely covered but has a higher computational cost, since each sam-
pling point requires the computation of radar equation with the dwell param-
eters. In practice, corner sampling usually offers a good compromise between
accuracy and computational cost.

3.3.2 Waveform selection

Two dwells using the same pattern but different waveforms may cover the
same area, and thus result in the same discrete cover, but with different costs,
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T1 T2 T3
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dA={gH,w1} dB={gH,w2} dC={gH,w3}

Figure 3.10: Waveform selection, with dwell dB achieving detection in short-
est time with selected waveform ω2

see Figure 3.10. Quantitatively, one the two dwells dominates the other on
the mission, as it validates the same constraint in shorter time. In such case,
the costlier dwell can be removed from the set of candidate dwells, because
any solution using that dwell could be improved by replacing by the less
expensive dwell. This is a form of variable elimination, also called column
reduction. A more general column reduction method is presented in 4.2.1.

3.3.3 Combinatorial cover problem

Finding a radar search pattern validating the detection constraint over the
surveillance space amounts to finding a subset among candidate dwells whose
sum of discrete covers cover the entire grid G, with each cell G(m,n) being
covered by at least one dwell, see Figure 3.11. And each discrete cover has an
associated cost Tω, also noted Tj in the following, which is its dwell waveform
duration.

This cover problem corresponds exactly to rectangular grid covering from
2.5.1, and can be solved by the branch-and-bound method described in 2.6.

3.4 Simulation example

The approximation procedure described previously was applied to a study
case. The radar antenna array has 20×20 half-spaced radiating elements.
The grid G is laid on a 20×20 lattice. The radar has two available waveforms
W = {ω1, ω2}, with a long waveform ω1 and a short waveform ω2. The
approximation procedure produced 32810 feasible dwells. The detection grid
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Figure 3.11: The set of available discrete covers with the chosen number of
scan for each cover (left), the sum of the chosen discrete covers (middle) and
the desired scan update rate for each cell (right)

contains 326 detection cells. The corresponding integer program has 32810
variables and 326 detection constraints.

The integer program is computed using Python, and optimization is done
with CPLEX [45]. Total computation time for finding one optimal solution
is 24 seconds on an i7-3770@3.4GHz processor with a random-access memory
(RAM) usage of 450 megabytes.

The obtained solution uses 16 dwells to cover the surveillance area, as
shown in Figure 3.12. Dwells covering low elevations have long waveforms
(in red), as they must achieve a higher detection range, and thus require more
energy, while dwells at high elevations use the short waveform (in blue). The
emission gain is higher far from the antenna array perpendicular direction, in
order to compensate scanned losses. The detection range, displayed in Figure
3.13, shows that the radar pattern is over-energetic at high elevation. This
can be explained by the reception digital beamforming processing constraint,
which limits the area scanned by one dwell.
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Figure 3.12: Radar search pattern obtained by branch-and-bound with long
waveform in red and short waveform in blue (left), and total emission pattern
(right)

Figure 3.13: Detection range achieved by the solution in 3D (top), azimuth
cut (bottom-left) and elevation cut (bottom-right)
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Chapter 4

Extended formulations and
computational improvements

The approximation of radar search pattern optimization as a set cover prob-
lem and its integer program formulation has various advantages. Integer
programs are flexible tools, and can be extended to more powerful formula-
tions of set covering, which can represent more complex problems in radar
covering and account for additional operational requirements. Certain con-
straints, such as localized clutter and multiple missions can be integrated into
the approximation model itself, with virtual no changes in the combinatorial
cover problem structure. Other constraints, to be represented, need more
general set covering formulations:

• Set multicovering : the problem where universe elements must be cov-
ered multiple times, which can represent scan update rate constraints
in the context of radar optimization.

• Probabilistic covering : the problem where covers represent detection
probabilities over the universe rather than its subsets. In the con-
text of radar optimization, this approach can exploits dwell overlays
and combine sub-energetic dwells to ensure global detection probabil-
ity constraints.

As a major problem of combinatorial optimization, computational and
practical aspects of the set cover problem have also been extensively stud-
ied [19, 46, 47]. Efficient, general-purpose integer programming solvers have
been implemented and improved over the last decades [48, 18]. Those im-
provements offer now possibilities for research of multiple solutions [49, 50],
and representation of the structure of the optimal set of a given problem, the
set of optimal solutions to said problem.
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On the other hand, the geometric characteristics of certain radar cover
problems presented in this thesis can be exploited to implement efficient
reduction methods. Those methods can reduce the number of variables and
constraints in the problem, improving computational optimization but also
representation of multiple solutions.

4.1 Additional constraints in radar operational
optimization

Modern warfare requires from multi-function radars to ensures multiple tasks
in complex situations [33].

In operational situation, the radar environment may not be uniform, and
certain regions might have different properties in terms of clutter and terrain
masking. Furthermore, the radar may receive informations from collaborat-
ing agents about incoming targets of interest. In such case, the radar could
be required to increase its scan update rate in the targets incoming direc-
tions. An advantage of using a discrete grid for quantifying the surveillance
area is the capacity for specifying those properties and constraints locally to
the grid.

The radar might also have to search not one type of target, but multiple
types (missiles, planes, etc.). While multiple search missions can sometimes
be “combined” into a single mission, this may not always be the case, in par-
ticular for very different target types. An advantage of integer programming
is that those multiple missions can be integrated by defining one detection
constraint for each grid cell and each mission. All while using the same dwells
to cover the surveillance space, and taking into account that each dwell might
perform differently for each mission.

4.1.1 Localized constraints

Having localized constraints requires additional local information about the
radar environment, see Figure 1.8, where for each direction:

• α : AS → [0, 1[ is the clutter eclipse coefficient. It represents the ratio
of eclipsed area on the range-Doppler map in a given direction.

• µ : AS → R+ is the terrain masking distance, i.e. the maximum detec-
tion range in a given direction before terrain masks block detection.

Furthermore, the radar can be required to perform:
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• Sc : AS → N a minimum number of detection dwells ensuring that a
desired scan update rate in a given direction is achieved. The local
scan update rate is the number of detection dwells in the direction of
interest over the total duration of the radar search pattern.

Taking into accounts those new parameters, the radar search pattern
ensures detection if for each direction (az, el) ∈ AS, it contains at least
Sc,i(az, el) dwells, each capable of detecting a target with radar cross-section
σ at range min{µ(az, el), Rc(az, el)} with at least detection probability Pd
and at most false alarm probability Pfa in clutter eclipse coefficient α(az, el).

4.1.2 Clutter and terrain masking

Localized clutter and terrain masking can be directly integrated into the
computation of the dwell detection range. Taking into account terrain mask-
ing computationally simply requires to replace the desired detection by the
terrain mask distance range, see Figure 4.1, since the radar cannot detect
past the mask:

Rc(az, el)← min{µ(az, el), Rc(az, el)}

In the combinatorial problem, clutter must be defined per cell, and thus
has to be quantified over the grid. In other words, the clutter α(m,n) is
local to and constant within the grid cell Gm,n ∈ G, but can vary between
grid cells. Various quantification scheme can be defined, with some examples
shown in Figure 4.2:

• erosion: a grid cell contains a given clutter if it covers the entire cell.

• dominant : a grid cell contains a given clutter if it covers more than
half the area in the cell.

• dilatation: a grid cell contains a given clutter if it covers a part of the
cell, no matter how small.

When computing the detection range in a given cell (m,n) using the proce-
dure in 1.6, the clutter is taken into account by using the waveform model
described in 1.5 to compute the waveform detectability factor

sω(Pd, Pfa,α(m,n))

Clutter is integrated during the approximation procedure in 3.3.1 and is
virtually transparent to the combinatorial formulation in 3.3.3. Branch-and-
bound optimization is thus not impacted by clutter.
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Figure 4.1: Masked desired detection range (top), azimuth cut (bottom-left),
elevation cut (bottom-right)

erosion dominant dilatation

Figure 4.2: Quantification scheme for localized constraints
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Figure 4.3: The set of available discrete covers with the chosen number of
scan for each cover (left), the sum of the chosen discrete covers (middle) and
the desired scan update rate for each cell (right)

4.1.3 Scan update rates

Similarly to clutter, the desired scan update rate must be quantified on the
grid, using the same quantification schemes from Figure 4.2. The required
number of scans s(m,n) covering grid cell (m,n) is defined locally on the
grid. But unlike local clutter, scan update rates constraints modify the com-
binatorial structure of the cover problem, as they requires an element to be
covered multiple times, see Figure 4.3.

The generalized problem where the elements of the universe set must
be covered multiple times is called the set multicover problem. The integer
vector representation of the required number of scans is

s(m+Mn) = s(m,n)⇔ s =


s(0, 0)
s(0, 1)

...
s(m,n)
· · ·


and the corresponding integer program is

min TT .x
s.t. A · x ≥ s

x ∈ {0, · · · , smax}p ⊂ Np

(4.1)

with smax be the maximum value of vector s. The principal differences with
integer program (2.3) are the right-handed side of the detection constraint
being now the discrete required number of scans s, and the variable vector x
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Figure 4.4: Mission constraints in azimuth-elevation (left), direction cosines
(center) and discrete mission constraints (right)

now taking integer values. Branch-and-bound can by design optimize integer
values with each branching representing the choice between multiple values,
however with an increase in computational cost, because each node has smax

possible children.

Simulation example

The approximation procedure described previously was applied to a study
case with 3 scan updates constraints, above a terrain mask, and with local-
ized clutter. Constraints quantification followed the dominant scheme. Both
original and quantified constraints are shown in Figure 4.4.

The PAR has 30×30 half-spaced radiating elements. The grid G is laid on
a 20×20 lattice. We used a set with two possible waveforms W = {w1, w2},
with a long waveform w1 and a short waveform w2. The approximation
procedure produced 10943 feasible dwells. The detection grid contains 326
detection cells. The corresponding integer program has 10943 variables and
326 detection constraints.

The computation of the integer program is done in Python, and its opti-
mization is done using CPLEX. The total time required to find the solution
is 17 seconds on an i7-3770@3.4GHz processor with a random-access mem-
ory (RAM) usage of 420 megabytes. The solution, shown in Figures 4.5 and
4.6, uses 22 dwells to cover the surveillance area with 3 scan updates for
certain dwells, but also combines slower scan update rates (1 or 2 updates)
of overlapping dwells to achieve the desired global scan update rate.

4.1.4 Multiple missions model

In the case where the radar is tasked with multiple detection missions, its
radar search pattern must ensure detection for a set of I missions. Parameters
for each mission i ∈ I = {1, . . . , I} are given:
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Figure 4.5: Radar search pattern obtained by branch-and-bound with long
waveform in red and short waveform in blue (left), and total emission pattern
(right)

R/Rmax
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Figure 4.6: Detection range achieved by the solution in 3D (top), azimuth
cut (bottom-left) and elevation cut (bottom-right)
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• σi be the radar cross-section of the target type.

• Rc,i : AS → R+ be the desired detection range.

• Sc,i : AS → N be the desired scan update rate, which is the minimum
number of scans to perform in a given direction during one radar search
pattern.

• SWi be the Swerling model [8].

• Pd ∈]0, 1[ is the desired detection probability and Pfa ∈]0, 1[ is the
desired false alarm probability.

The radar search pattern ensures the required detection if for each mis-
sion i and each direction (az, el) ∈ AS, the radar search pattern contains
at least Sc,i(az, el) dwells, each capable of detecting a target with radar
cross-section σi at range min{µ(az, el), Rc,i(az, el)} with µ(az, el) the terrain
masking range, with at least detection probability Pd and at most false alarm
probability Pfa in clutter eclipse coefficient α(az, el).

Multi-mission pattern synthesis

Multiple missions have different energetic requirements. For each rectangle
on the detection grid, the ideal radiation pattern for covering H for all mis-
sions at once is the maximum of each mission ideal radiation pattern and
is

gH(u, v) ∝

 Ls(u, v)2 maxi

{
Rc,i(u,v)

4sω(i,α)

σi

}
if
{
un ≤ u ≤ uq
vm ≤ v ≤ vr

0 otherwise

up to a constant factor, as the antenna array feeds are normalized. Another
possible approach is to consider a pattern for each rectangle and each mission.

Dwell discrete cover

For each dwell dj in D and each mission i, the discrete cover Cj,i of dwell dj
for mission i is computed through the same sampling methods presented in
3.3.1, using the dwell detection range Rj,i and the mission desired detection
range Rc,i. The discrete cover Cj,i represents the cells on which dwell dj
validates mission i detection constraint.

So each dwell has multiple covers, one for each mission representing its
detection performances on said mission, as shown in Figure 4.7 for two de-
tection missions. A dwell cover can differ between missions, as each mission
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Figure 4.7: Computation of discrete covers for one dwell on two detection
missions

has different energetic requirements and target type. Furthermore, some
waveforms might be more efficient and suited for some missions.

From the combinatorial optimization perspective, each mission has a set
of discrete covers of available discrete covers, and can be viewed as a set
cover problem. Each mission i ∈ I has thus its own cover matrix and scan
constraint vector such that minimization of the radar search pattern time-
budget under detection constraints for all missions is

min TT .x
s.t. ∀i ∈ I,Ai · x ≥ si

x ∈ {0, · · · , smax}p ⊂ Np

where smax is the maximum value in all vectors si. Each mission has different
constraints but all missions use the same variables, and by combining all
missions cover matrices in a unique matrix, and similarly all missions scan
constraint vectors

A =


A1
...
Ai
...
AI

 and s =


s1
...
si
...
sI
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Figure 4.8: Two-missions combined covers

then the problem can be written as an integer program

min TT .x
s.t. A · x ≥ s

x ∈ {0, · · · , smax}p ⊂ Np

(4.2)

which virtually amounts to viewing each mission on a different grid and
combining all those grids in one, as shown in Figure 4.8.

Simulation result

The multi-missions approximation procedure described above was applied to
a study case with two scanning missions.

The radar antenna array has 30×30 half-spaced radiating elements. The
grid G is laid on a 20×20 lattice. The radar has two available waveforms
W = {w1, w2}, with a long waveform w1 and a short waveform w2. The
approximation procedure produced 30442 feasible dwells. The detection grid
contains 326 cells for both scanning missions. The corresponding integer
program has 30442 variables and 652 inequality constraints.
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u

v

u

v

Figure 4.9: Radar search pattern obtained by branch-and-bound for two-
missions case study
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M ×2
N ×2

number of constraints
MN ×4

number of variables
D ~ M2N2 ×16

constraint matrix size
MND ~ M3N3 ×64

Figure 4.10: Effects of increasing the grid resolution by a 2-factor

The integer program is computed using Python, and optimization is done
with CPLEX [45]. Total computation time for finding one optimal solution is
36 seconds on an i7-3770@3.4GHz processor with a memory usage of 450MB.

4.2 Pre-optimization reduction methods
The computational cost of optimization depends on the number of variables
and constraints in the problem, especially for exploration methods such as
branch-and-bound. The problem size is directly related to the detection grid
size, i.e. the quantification resolution for the combinatorial problem. In-
creasing the resolution improves accuracy of the discrete approximation, and
can improve the solution quality, but at the cost of increasing the number
of variables and constraints, see Figure 4.10. In other words, having smaller
detection cells and having more candidates dwells tends to improve the mod-
elling but requires more computational time.

In rectangular grid covering, the number of constraints, or detection cells,
is O(MN). While the number of variables, or candidates dwells, increases in
O(M2N2), which is quadratically faster. The number of variables can quickly
become a limiting factor for computational optimization of the radar search
pattern.

A large number of those variables might not be required however. Certain
dwell discrete covers might be redundant to each other. A cover is redundant
if another cover can cover a wider area for an inferior cost. Reciprocally the
latter cover is said to dominate the former. Formally, for (Ca, Cb) ∈ C2, Ca
dominates Cb if:

• ∀(m,n) ,Ca(m,n) ≥ Cb(m,n), i.e. Ca covers all cells covered by Cb.

• Ta ≤ Tb, i.e. Ca costs less than Cb.

Transitivity, reflexivity and antisymmetry of domination are easily shown,
and thus domination defines a partial order relation. Any solution using a
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Cb

Ca

Ta≤Tb

Figure 4.11: Cover domination of Cb by Ca

H
U

HL H R H
D

Figure 4.12: The four direct candidates rectangles L, R, U , D for finding a
domination cover over rectangle H

dominated cover can be maintained or even improved by replacing the dom-
inated cover by one of its dominating covers. Thus removing all dominated
covers before branch-and-bound optimization does not change the optimal
value of the problem instance, while diminishing the problem complexity.

4.2.1 Column reduction

Removal of dominated covers is equivalent to column reduction, a common
technique in integer programming, often used before resolution to reduce the
instance size [19, 51, 46]. The computational cost of a naive implementation
for column reduction is O(|C|2|G|). In rectangular grid covering for radar ap-
plications, where the number of candidates dwells grows with grid resolution
in O(|C|) = O(M2N2), naive column reduction requires O(M5N5) steps.

However, using the geometric characteristics of rectangular covers, col-
umn reduction can be performed in O(M2N2) steps using O(M2N2) space:

Loop through all possibles rectangles in decreasing size. For each rectan-
gle H, check if it corresponds to an available cover Ca. Then check if any of
the four rectangles obtained by increasing the width or height of H by 1, see
Figure 4.12, can be covered by a cover Cb dominating Ca for a better cost.
In that case, Cb covers H, and thus cover Ca can be removed from available
covers. Algorithm 7 describes a pseudo-code of the procedure.

Column reduction “propagates” the domination relation among covers by
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Algorithm 7 Column reduction

% Initialization and allocation of array of pointers to covers
Allocate an M ×N ×M ×N pointer array p
for C ∈ C do

m,n← coordinates of top-left corner of C
h,w ← height and width of C
Assign pointer p[m,n, h, w] to cover C

end for

% Loop through all possible rectangles by decreasing size
for (h,w) ∈ {M, . . . , 1} × {N, . . . , 1} do

for (m,n) ∈ {0, . . . ,M − h} × {0, . . . , N − w} do
if p[m,n, h, w] is a cover then

Ca ← p[m,n, h, w]

% Get the dominating cover candidates, see Figure 4.12
L← p[m,n− 1, h, w + 1] (if it exists)
R← p[m,n, h, w + 1] (if it exists)
U ← p[m− 1, n, h+ 1, w] (if it exists)
D ← p[m,n, h+ 1, w] (if it exists)
Get cover Cb with minimum cost among {L,R, U,D}

% Update best cover for rectangle defined by [m,n,h,w]
if Ta ≥ Tb then

Delete Ca, assign pointer p[m,n, h, w] to cover Cb
end if

end if
end for

end for

decreasing size, and ensure that all dominated covers are removed. Indeed,
for any pair of covers (Ca, Cb) such that Ca dominates Cb, there is a sequence
of rectangles from Ca to Cb, where each step of the sequence amounts to
decreasing the height or width of the rectangle by 1, see Figure 4.13.

For each possible rectangle, the procedure search a minimum among 4
possibles values. Since there are M(M + 1)N(N + 1)/4 possible rectangles
on grid G, Algorithm 7 requires O(M2N2) steps. It also requires an array
of size M2N2. However, only M(M + 1)N(N + 1)/4 entries in the array
represent valid rectangles, so almost 75% of the array is not used. If memory
usage is an issue, a more compact array can use instead the custom hash
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Cb

Ca

Figure 4.13: Sequence of dominating covers between two covers Cb and Ca

function

(m,n, h, w)→ (M − h+ 1)(M − h)(N + 1)N

4
+

(M − h+ 1)(N − w + 1)(N − w)

2
+m(N − w + 1) + n (4.3)

which maps each subrectangle in G to a unique index in [0,M(M+1)N(N+
1)/4[.

In radar search patterns, domination relation between covers is common
and due to narrow over-energetic radiation patterns, which performs less
efficient covering than widened radiation patterns. In numerical simulations,
column reduction is rather efficient in decreasing the number of variables in
the integer program.

4.2.2 Row reduction

Another common method for decreasing the instance size of integer program
is row reduction, which removes redundant constraints. In the context of
cover problems, a cell is redundant respectfully to another cell if the detection
constraint of the former is necessarily validated by the detection constraint
of the latter, see Figure 4.14

Formally, ∀(ga, gb) ∈ G2, gb is redundant in respect to ga if and only if
∀C ∈ C ,C(mb, nb) ≥ C(ma,ma), where (ma, na) are the coordinates of cell
ga and (mb, nb) the coordinates of gb. Thus any cover including ga also cover
gb. Reciprocally, ga is said to imply gb.

Removing redundant cells does not impact the optimal value of the prob-
lem instance. Similarly than for column reduction, naive row reduction re-
quires O(|G|2|C|) = O(M2N2|C|), but can be reduced to O(MN |C|) exploit-
ing the geometrical properties of rectangular covers.
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{                                }
C3C2C1

C       = gb
ga *

, ,

Figure 4.14: Cell ga implies gb, or reciprocally gb is redundant to ga (right)
for given problem instance (left)

Ra
ga

Figure 4.15: Rectangle Ra as the intersection of all covers including ga (right)
for problem instance of Figure 4.14

Let ga be a cell. Let Ra be the intersection of all covers of C which includes
ga, see Figure 4.15:

Ra =
⋂

C∈C:ga∈C

C

and Ra is an intersection of parallel rectangles, and is not the null set since it
contains at least ga, so Ra is rectangle itself. The top-left (bottom-right) cor-
ner of Ra can be computed by taking the maximum (minimum) coordinates
among top-left (bottom-right) corners of covers in {C ∈ C : ga ∈ C}.

It is straightforward from the definition of redundancy that all cells in
Ra are redundant to ga, since any cover including ga also covers Ra. This
property remains true in the general set cover problem. The advantage with
rectangular covers is that intersections of rectangles are much easier to com-
pute by using the convexity of rectangles.

By transitivity of redundancy, Algorithm 8 always keeps for each removed
cell at least one cell which implies the removed cell, directly or indirectly. On
the other hand, for any pair of cells ga, gb such that ga implies gb, all covers
including ga covers gb, thus gb ∈ Ra, and Ra contains the rectangle formed
using ga and gb as corners. So all redundant cells are removed.

Each cell is looped through at most twice, once in the main loop, and
once when it is removed. For each cell, each cover is looped through twice,
once to check if it contains the cell and once for computing intersection.The
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Algorithm 8 Row reduction

% Loop through all cells
for ga ∈ G do

Allocate list of covers containing ga: Ca = ∅
for C ∈ C do

if ga ∈ C then
Add cover: Ca ← Ca ∪ {C}

end if
Compute intersection of covers: Ra ←

⋂
C∈C:ga∈C C

for gb ∈ Ra \ {ga} do
Remove redundant cells: G← G \ {gb}

end for
end for

end for

gain over the general set cover case is in computation of the intersection of
covers, which takes O(|C||G|) in general, but can performed in 4|C| steps
with rectangular covers, with two maximum and two minimum searches of
the corners of Ra.

Simulation results

The reduction gain for problems with various square grid size (M = N) is
shown in Figure 4.16, where column reduction is shown to be highly effective
in decreasing the number of variables and the memory usage, almost by a
factor 10. Row reduction, while still relatively efficient in reducing the num-
ber of constraints, intrinsically operates on a smaller number of constraints,
and has a negligible impact on memory performances.

4.3 Multiple-solution generation and represen-
tation

4.3.1 Branch-and-bound enumeration

While the branch-and-bound exploration could terminate once an optimal
(or sufficiently near-optimal) solution is found, it is possible to expand and
pursue the exploration of the search tree in order to enumerate alterna-
tive optimal solutions [49], but there is a trade-off between the computa-
tional/memory cost and exhaustiveness of the enumeration.
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Figure 4.16: Number of columns and rows (left) and RAM usage (right)
depending on reduction method(s) used.

In radar design and operational use, multiple solutions are a desirable
feature. For decades, search patterns have been hand-designed by engineers,
who have a strong expertise on the subject and prefer to use optimization as
an aid-design tool. Similarly, radar operators preferred to have choice and
flexibility between multiple modes in operational situations. Criteria such
as bandwidth occupation, range resolution, system overheat, etc. can vary
between different solutions, and their importance is usually dependant on
the radar system characteristics and on the operational situation.

This choice in turn can be analysed to define preferences, to add secondary
selection criterion to the method or even refined the model into a multi-
objective optimization problem.

Multiple solutions enumeration can be done by slightly modifying steps
2. and 3. of the branch-and-bound method:

2. Bounding:
If the current node relaxation value is less than or equal to the current
best solution found, proceed to Step 3, otherwise, drop current node
and go back to Step 1.

3. Update and Enumerate:
If the current node relaxation is an integral solution, then its an im-
proving solution. If it is strictly better than the current solution, empty
the set of best solutions and update best current solution. Otherwise,
update the set of best solutions. Proceed to Step 4 (as there could be
other optimal solutions among the children of the current node).
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This result in modifications to Algorithm 5 pseudo-code as described in
Algorithm 9.

Algorithm 9 Branch-and-bound enumeration
% Initialization
...
xbest := xF = (1 · · · 1) . Best solution found so far (by default, xF is a
valid solution)
Xbest := {xF} . Set of best solutions found so far

% Exploration
while N is not empty do

...

% Bounding
if TT · xL ≤ TT · xbest then . Explore N if its relaxation is at least

as good as xbest

% Update and Enumerate
if xL ∈ {0, 1}D then . Check if xL is an integral solution

if TT · xL < TT · xbest then
xbest := xL
Xbest := {xL}

else
Xbest := Xbest ∪ {xL}

end if
end if

% Branching
for x ∈ {0, 1} do

...
end for

end if
end while
return Xbest

4.3.2 Example

The branch-and-bound enumeration applied to the example given in 2.6.3
would keep searching after finding the solution, and would follow the steps
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optimization
enumeration
rejection

first optimum
second optimum

(0) (1)

(0,0) (0,1) (1,0) (1,1)

(0,0,0)

fL=11/2

fL=11/2 fL=15/2

fL=6 fL=6 fL=15/2 fL=8

Figure 4.17: Enumeration branch-and-bound application example

below, see Figure 4.17:

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest =
TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1)
with cost 6 ≤ 13. xL is an integral solution, thus we update the best
current solution xbest := xL; fbest := 6.
We add the children (0, 0, 0) and (0, 0, 1) to the exploration list N .

• N = {(0, 1), (1, 0), (1, 1), (0, 0, 0), (0, 0, 1)}, xbest = (0 0 1 1 0 0 1 1),
fbest = TT · xbest = 6 :
Relaxation of (0, 1) yields the linear optimal solution x1 = (0 1 1 0 0 1 1 0)
with cost 6 ≤ 6. x1 is an integral solution, thus added to Xbest :=
{xbest,x1}. We add the children (0, 1, 0) and (0, 1, 1) to the exploration
list N .

• N = {(1, 0), (1, 1), (0, 0, 0), . . .}, xbest = (0 0 1 1 0 0 1 1), fbest =
TT · xbest = 6 :
Relaxation of (1, 0) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
)

with cost 15
2
> 6. We drop node (1, 0) and proceed with the next node.

• N = {(1, 1), (0, 0, 0), . . .}, xbest = (0 0 1 1 0 0 1 1), fbest = TT ·xbest = 6 :
Relaxation of (1, 1) yields the linear optimal solution xL = (1 1 1 0 0 0 1 1)
with cost 8 > 6. We drop node (1, 1) and proceed with the next node.
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{                                                            }C = , , , , , , , ,
, , , , , , ,

{                                                           }O =

S1 S3 S5 S7 S9 S11 S13 S15

S2 S4 S6 S8 S10 S12 S14 S16

, , , , , , , ,

, , , , , , ,
Figure 4.18: Collection of available covers (top), set of optimal solutions for
the associated cover problem (bottom)

4.3.3 Exhaustive enumeration redundancy

In radar applications practical cases, there is usually a broad choice of pos-
sibility for cover problems, and therefore a large number of possible good-
quality solutions. However, straightforward branch-and-bound enumeration
can produce a lot of redundancy among solutions.

Figure 4.18 displays a problem instance example for which there is many
redundant optimal solutions. Whereas all discrete covers are used by the
union of pattern S1 and pattern S2, making this pair of solutions enough to
represent “all covering possibilities”. There are however 14 supplementary
possible optimal solutions, which can be viewed as recombinations of covers
in S1 ∪ S2. These solutions bring no new information on which covers can
be used to produce a new solution pattern, and many have significantly
similar structure up to a vertical or horizontal symmetry. This phenomenon is
caused by the presence of optimal sub-structures in the covering, i.e. different
ways to cover the same area. The number of possible optimal solutions
grows exponentially with the number of alternatives sub-structures. In Figure
4.18, there are four 4-by-4 sub-structures, one in each corner; and each has
2 alternatives optimal covering, horizontal or vertical, resulting in the 16
possibles solutions.

Solution redundancy is a recurring problem in multiple solution genera-
tion which has already been discussed in [49, 50, 52, 53], against which the
most common solution is to use diversity measures, for example based on
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string distances such as the Hamming distance.
Another way to avoid redundancy is to search for solutions which are

not recombinations of previously known solutions. This can be done by
maximizing an innovation metric, which would measures how different a new
solution compared to all known previous solutions.

4.3.4 Innovation metric

Having multiple optimal solution gives alternative ways to solve cover prob-
lems, but it also gives information about which covers are used in optimal
solutions, in other words, which covers can be used to construct an optimal
solution. Let O = {y ∈ {0, 1}D} be a set of known optimal solutions, the
cover indicator of O can be defined as the vector o = (oj)j∈[1,D] with

oj = max
y∈O
{yj}

and thus o =
∨

y∈O y where
∨

is the logical bitwise OR operator applied to all
solution vectors y as if they were bit vectors. The cover indicator represents
the covers used in at least one solution of O. Finding new optimal solutions,
which use different covers compared to known solutions, will brings diversity
to the set of solutions. More importantly it will increases the number of
covers which can be used to construct optimal solutions. The number of
“new covers” used by a solution x is measured by the innovation metric of O

d(x,O) =
D∑
j=1

xj(1− oj) = (1− o)T · x = dT · x

where d = (1 − o) is the cost vector of the metric. The metric can thus be
written as a linear cost function. Informally, this metric counts how many
covers used in solution x are not used by any solution y ∈ O. Diversity string-
based metrics have already been used in generation of multiple solution in
The difference with previous Hamming-like metrics is that the innovation
metric does not penalize re-use of covers already used by solutions in O.
It only quantifies how many “not-previously-used” covers the new solution
brings in O. By extension, any discrete cover used in at least one optimal
solution is defined as an “optimal candidate cover”.

4.3.5 Innovation maximization problem

Sequential optimization is a common approach for generate multiple solutions
[49]. The original problem is first solved, returning a first solution, from
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which the optimal cost value can be computed. The original cost function
can then be reformulated as an equality constraint. This opens the possibility
to use another metric as the cost function, like a diversity distance, or the
innovation metric described above.

Conceptually, generating multiple solutions is no longer a minimization
problem, as there is no need to search the optimal value since it is known.
Whereas maximizing the innovation metric will produce more information
on alternative ways to solve the problem. Since the innovation metric is a
linear function, the maximization problem for finding a new solution x is an
integer program

max dT .x
s.t. A · x ≥ 1

TT .x = fopt
x ∈ {0, 1}D

(4.4)

where O is the set of known previous optimal solution, and fopt is the optimal
cost value.

4.3.6 Iterative enumeration

After solving the original problem once, multiple new solutions can be gen-
erated by solving sequential instances of integer programs (4.4). At each
iteration, the innovation metric is updated with the information received
from the new solution, see Figure 4.19. Algorithm 10 details the iterative
enumeration, where

∧
represents the logical bitwise AND operator.

Algorithm 10 has two useful features. Let dk be the value of innovation
cost vector d during the k-th step of the while loop:

• Monotony: by optimality of the k-th maximization problem solution

dk
T · xk ≥ dk

T · xk+1

and step d ← d
∧

(1 − xk) in the algorithm “removes 1s from d and
turn them in 0s”, so {j : dk+1(j) = 1} ⊂ {j : dk(j) = 1} which implies

∀x ∈ {0, 1}D, dkT · x =
∑

j:dk(j)=1

xj ≥
∑

j:dk+1(j)=1

xj = dk+1
T · x

and combining both inequalities yields

dk
T · xk ≥ dk+1

T · xk+1
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maximization: number 
of "not yet used" dwells

maximization: number 
of "not yet used" dwells

...

maximization: number 
of "not yet used" dwells

Figure 4.19: Collection of available covers (top), set of optimal solutions for
the associated cover problem (bottom)

Algorithm 10 Iterative enumeration

% Solve the original problem and initialize parameters
x0 ← argmin{TT · x : A · x ≥ 1 ∧ x ∈ {0, 1}D}
O ← {x0}
dmax ← +∞
d← 1− x0

% Keep searching new solutions as long as they use yet-unused covers
while dmax > 0 do

xk ← argmax{dT · x : A · x ≥ 1 ∧TT · x = fopt ∧ x ∈ {0, 1}D}

% Update parameters
dmax ← dT · xk
O ← O ∪ {xk}
d← d

∧
(1− xk)

end while
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which means that the value of dmax = dk · xk decreases (usually non-
strictly) when k increases. So the most different solutions from previ-
ously known solutions are computed at the beginning of the loop. More
importantly, at any step the value dmax = dk · xk indicates how many
new covers each additional step can add at most.

• Linearly bounded termination: if an iteration returns a null maxi-
mum innovation dT ·xk = 0, then by optimality there is no “yet-unused”
optimal cover left to find. By monotony, the sequence (dl · xl)l≥k is
null for all subsequent searches anyway. Thus any optimal solution
of integer program (2.3) will only use variables in the cover indicator
o = 1−d. “dT ·xk = 0” is an enumeration certificate, which guarantees
that any optimal solution can be constructed from known solutions.

Furthermore, at each step where dk · xk > 0, at least one new “yet-
unused” optimal cover is found, so necessarily d has “at least a 1 re-
moved”, and since d is of length D, the while loop cannot perform more
than D steps. The number of steps in Algorithm 10 is bounded by the
number of variables, whereas a generic sequential algorithm for gener-
ating different solution may have an exponential number of steps, as
some problem instances can yield an exponential number of different
optimal solutions.

4.3.7 Optimal set structure

Using iterative enumeration provides multiple different solutions, see Figure
4.20, while ensuring solution diversity by maximizing a metric distance be-
tween solutions. However, Algorithm 10 main advantage is the computation
of the complete optimal cover indicator o = 1−d, containing all covers which
can be used to produce an optimal solution. Whereas the set of all possible
optimal solutions O is usually too big to be computed in practice, the com-
plete optimal cover indicator o can still be used to analyse and exploit the
structure of O.

Optimal column reduction

Knowing which covers are used in at least one optimal solution also implies by
complementarity knowing which covers are not used by any optimal solution.
Removing those covers from the set of available covers does not impact the
set of optimal solutions: let Co = {Cj ∈ C : oj = 1}. The reduced problem
obtained by replacing C ← Co yields the same set of optimal solutions, as any
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...
Figure 4.20: Multiple optimal solutions found by iterative enumeration
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+ ...
Figure 4.21: Any optimal solution is a combination of the optimality invariant
(left) and selection of optional optimal covers (left)

optimal solution to the original problem is a solution to the reduced problem
and vice-versa.

In fact, C ← Co corresponds to the optimal column reduction of the
problem, i.e. the smallest subset of columns that preserves the set of optimal
solutions to the problem.

Optimality invariant

An obvious reduction for cover problems is the case where one constraint
can only be satisfied by one variable, in other words, a detection cell which
can be covered by only one dwell. Similarly, if a constraint has a unique
cover in the complete optimal cover indicator, then that cover is necessarily
in any optimal solution. This cover is part of the optimality invariant of the
problem, see Figure 4.21.

More generally, the optimality invariant I̊ can be defined as the largest
subset of covers which is contained in any optimal pattern

I̊ =
⋂
y∈O

{Cj : yj = 1}

and can be viewed as the “intersection” of all optimal solutions inO. Similarly
to the complete optimal cover indicator o, the optimal invariant is represented
by the optimal invariant vector

i =
∧
y∈O

y

The variables in the optimality invariant can be set as constants when con-
structing or modifying an optimal solution x:

∀j ∈ {1, . . . , D}, ij = 1⇒ xj = 1

as the covers in the optimality invariant cannot be replaced to produce a
solution.
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The concept of “invariant set” can be generalized to any set of optimal
of solutions O ⊂ O, for which the invariant set contains the covers who are
part of all solutions in O:

I =
⋂
y∈O

{Cj : yj = 1}

with its associated invariant vector being i =
∧

y∈O y.
The optimality invariant can be viewed as the smallest invariant set

I̊ ⊂ I

sinceO does not contain all optimal solutions, its invariant set I may contains
cover which are not part of the optimality invariant, because an optimal
solution not using them has not been found yet. As an example, for a set of
optimal solution with only one solution, the invariant is the solution itself

O = {x} ⇒ I = {Cj : xj = 1} ⇔ i = x

as there is no information on other alternative solutions, and thus on which
covers are obligatory, and which are not.

While the complete optimal set O is not computable in general, comput-
ing the optimality invariant I̊ can be done by iterative reduction of a known
invariant set I, where each step optimizes an integer program

min iT .x
s.t. A · x ≥ 1

TT .x = fopt
x ∈ {0, 1}D

(4.5)

which searches an optimal solution using the fewest possible number of covers
from the current invariant. Iterative reduction is described in Algorithm
11. Note that if only one optimal solution x is known at initialization, the
algorithm essentially starts with i← x.

Using the same reasoning as for Algorithm 10, each step of iterative re-
duction “removes at least a 1 from i”. The stopping criteria r decreases
monotonously and reaches 0 in a number of steps bounded by, D, the num-
ber of candidates covers and the size of i. When r = 0, then there is no
optimal solution not using all covers in the “current” invariant.

In practice, even with few optimal solutions resulting from a premature
stop of Algorithm 10, the initial invariant is the optimality invariant, and
(4.5) is only solved once to ensure that there is no cover in the invariant
unused by an optimal solution.
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Algorithm 11 Iterative reduction for computing optimality invariant

% Start from a set of known set of optimal solution O
i←

∧
x∈O x

r ← 1

% Search a solution not using all “candidate” invariant covers
while r > 0 do

xk ← argmin{iT · x : A · x ≥ 1 ∧TT · x = fopt ∧ x ∈ {0, 1}D}

% Update parameters
r ← iT · (1−xk) % stopping criteria: number of removed covers in this

iteration
i← i

∧
xk

end while

Choice metrics

The optimality invariant i and the complete optimal cover indicator o are
the extreme descriptors of the optimal set structure

• o describes the set of covers used in at least one optimal solution.

• i describes the set of covers used in all optimal solutions.

The optimality invariant is the set of covers which cannot be replaced when
modifying an optimal solution. This intuits the idea of hierarchy among
covers, in terms of how many alternatives there is for an optimal cover.

A straightforward generalization would be to count the number of solu-
tions using a given cover. This criteria is however impractical, as it would
require to exhaustively enumerate all solutions, which is infeasible in practice.
However, it is possible to derive simpler metrics from the complete optimal
indicator.

Constraint covering count

For each detection cell (i.e. constraint), the number of covers (i.e. variables)
covering the cell give an indication of “how many alternate ways” to cover
said cell exist:

#gm,n = |{C ∈ CO : gm,n ∈ C}|
In practice, this classifies which cells gives less options in covering. Evidently,
a cell with covering count of 1 has only one “possible choice”, and the asso-
ciated cover is part of the optimality invariant. Usually the grid side areas

133



CHAPTER 4. EXTENSIONS AND IMPROVEMENTS

co
ns

tr
ai

nt
 c

ov
er

in
g 

co
un

t

Figure 4.22: Constraint covering count: the number of optimal dwells cover-
ing each constraint

have a low count, contrary to the grid central area where more choices are
available, see Figure 4.22.

Cover alternative count

From the previous metric, the cover alternative count of a given cover is the
minimum value of covering count among covered constraints, and gives an
indication of “how many alternatives” can replace the cover:

#C = min
g∈C
{#g}

A cover with an alternative count of 1 is in the optimality invariant, as there
is a cell which can only be covered by this cover.

4.4 Future research leads
This section presents the theoretical work on two future research leads: grid
adaptation, and probability covering for combining overlapping dwells.

4.4.1 Grid adaptation

Between the continuous general problem and its combinatorial approxima-
tion, quantification on the grid implies a lost of information. Optimal com-
binatorial solutions are possibly “sub-optimal” for the original continuous
problem, and their accuracy likely depends on the grid resolution.
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Figure 4.23: Continuous energy distribution e (left) and its quantification on
the detection grid (right)
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Figure 4.24: Optimization producing an irregular grid with a more even
energy distribution

The grid resolution can be uniform, as has been done so far, such that
every cell on the grid covers an equal area. Another possibility is to take ir-
regular quantification step, with more precision in area more likely to require
finer tuning of the search pattern.

Qualitatively, the total emitted power of a radiation pattern is constant,
and the radar emits the same total power summing all directions. Spreading
out the radiation pattern causes a proportionate decrease in angular power
density. Radar covering can be viewed as using “energy shapes”, with each
shape having the same total “energy”, to cover a space with energetic require-
ments. This space is anisotropic though, and different areas requires different
powers, see Figure 4.23.

Intuitively, a more adequate to quantify this space would be to somehow
follow the required energy distribution, with smaller cells where requirements
are higher, such that each cell contains the same energetic requirement, see
Figure 4.24.

Optimizing the grid to a certain energy density repartition e : AS → R+
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can be done in iterative manner. Starting from a given grid, the quantifi-
cation values {u0, . . . , uN} × {v0, . . . , vM}, corresponding to the grid nodes
locations, are iteratively shifted, where at each step

• each value un, with 1 ≤ n ≤ N − 1 is shifted to the horizontal median
ûn of its two surroundings columns which is the solution of∫ ûn

un−1

∫ vM

v0

e(u, v)dudv =
1

2

∫ un+1

un−1

∫ vM

v0

e(u, v)dudv

which can be computed numerically by root-finding.

• each value vm, with 1 ≤ m ≤ M − 1 is shifted to the vertical median
v̂m of its two surroundings rows and is which solution of∫ uN

u0

∫ v̂m

vm−1

e(u, v)dudv =
1

2

∫ uN

u0

∫ vm+1

vm−1

e(u, v)dudv

which can be computed numerically by root-finding.

• the values u0, uN , v0 and vM remain unchanged, as those values defined
the boundaries of the grid.

see Figure 4.25. The method requires numerical resolution of N + M equa-
tions at each step, which might be computational costly. A more practi-
cal and conceptually close method is Lloyd’s algorithm, also known as the
Voronoi iteration, where at each step:

• each value un, 1 ≤ n ≤ N − 1 is shifted to the horizontal weighed
centroid of its two surroundings columns

un ←
∫ un+1

un−1

∫ vM

v0

ue(u, v)dudv

• each value vm, 1 ≤ m ≤ M − 1 is shifted to the vertical weighed
centroid of its two surroundings rows

vm ←
∫ uN

u0

∫ vm+1

vm−1

ve(u, v)dudv

The two methods differs by the fact that the first method computes medians
at each step, whereas the Voronoï iteration compute means.
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Figure 4.25: Computation of horizontal shift (left) and vertical shift (right)
of a shift iteration

The optimal quantification values {u∗1, . . . , u∗N−1} and {v∗1, . . . , v∗M−1} can
also be found by numerically solving the system where the energy integral
between each successive couple of values is equal:{

∀n ∈ {0, . . . , N − 1},
∫ un+1

un

∫ vM
v0

e(u, v)dudv = ET
N

∀m ∈ {0, . . . ,M − 1},
∫ uN
u0

∫ vm+1

vm
e(u, v)dudv = ET

M

where ET =
∫ uN
u0

∫ vM
v0

e(u, v)dudv is the total required energy over the grid.
This system can be solved by first computing ET through numerical integra-
tion, then applying numerical root-finding to the series of functions

un →
∫ un

u0

∫ vM

v0

e(u, v)dudv − nET
N

to compute un. Similarly, numerical root-finding is used on the series of
functions

vm →
∫ uN

u0

∫ vm

v0

e(u, v)dudv −mET
M

to compute vm.
Note that all those methods might produce a highly irregular grid, and

thus may need to be constrained in practice, for example ensuring that a
cell size cannot go below or above certain bound values. Those values could
be derived from the radar narrow beam-width for the lower bound, and the
radar maximum scanning area for the upper bound.
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Figure 4.26: Overlay of two dwells and overall detection probability

4.4.2 Probability covering

So far, in all presented formulations, the desired detection probability is
achieved independently by each dwell. However, overlapping multiple dwells
can improve the overall detection probability, the probability that at least
one dwell achieve detection.

For example, if a target is covered by two dwells, each with 70% proba-
bility, the overall probability that at least one of the dwells detects the target
is 1 − (1 − 70%)2 = 91%. For a desired detection probability of 90%, both
dwells individually fail the requirement while the combination of both dwells
achieves it globally, see Figure 4.26.

Within this approach, a dwell is no longer represented by a discrete com-
binatorial cover, encoded in “0s” and “1s”, but by a quantified probability
cover, see Figure 4.27, representing the dwell detection probability inside
each grid detection cell.

A cell (m,n) local detection probability pj(m,n) of a dwell dj ∈ D can
be computed by inverting the radar equation (1.10) into

s =
Pp fω Tω gt gr λω

2 σ

(4π)3 Rc
4 Lu Ls

2 (4.6)

with Rc the required detection range. From the signal-to-noise s ratio for a
target echo at range Rc, the detection probability is either known for wave-
form measured performances, or can be computed using the waveform model
from 1.5, and equations (1.7), (1.8) and (1.9).

The detection constraint is no longer to have one dwell ensuring detec-
tion, but to ensure an overall minimum detection probability PD by combin-
ing multiple dwells. Equivalently, it can also be said the detection constraint
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Figure 4.27: Overlay of two dwells and overall detection probability

ensures that the probability of global failed detection must be below the
acceptable failure probability 1 − PD. If dwell detections are seen as inde-
pendent events, which is true for detection tests polluted by white noise, then
the global failure probability for a cell (m,n) is

D∏
j=1

(1− pj(m,n)) ≤ 1− PD(m,n)

which can be linearised by applying the logarithm function into
D∑
j=1

ln(1− pj(m,n)) ≤ ln(1− PD(m,n))

For cell (m,n), let

• lj(m,n) = ln(1− pj(m,n)) the anti-log dwell detection probability

• b(m,n) = ln(1− PD(m,n)) the anti-log desired detection probability

and the detection constraint becomes the linear inequality
D∑
j=1

lj(m,n) ≤ b(m,n)

Let the anti-log dwells detection probability matrix L and anti-log desired
detection probability vector b be defined as

L =


l1(0, 0) · · · lD(0, 0)
l1(1, 0) · · · lD(1, 0)

... . . . ...
l1(m,n) · · · lD(m,n)

...
...

...

 , b =


b(0, 0)
b(0, 1)

...
b(m,n)
· · ·
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then probability covering can be defined as the following integer program

min TT .x
s.t. L · x ≥ b

x ∈ {0, 1}D
(4.7)

which can still be solved by branch-and-bound approach. This formulation
can still integrate localized clutter, terrain masks and multi-mission con-
straints but cannot be combined with scan update rates. Probabilistic scan
update rates would require to compute the probability of having at least
s(m,n) dwell detections in cell (m,n) which is written as a sum of products.
Unlike single detection probability which is a single product, sum of products
cannot be linearised using logarithm or anti-logarithm.
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Conclusion and futures leads

Results and fallouts of the thesis

The paradigm shift of the digital era favoured the production of highly flex-
ible radars, thanks to electronic scanning and digital processing. Dynamical
beam-forming and beam-steering increase the degrees of freedom in designing
radar search patterns, which can quickly shift between different beam-shaped
radiation patterns.

Exploitation of those novel possibilities and efficient resource allocations
are necessary as modern systems compete over shorter and shorter time frame
in the context of electronic warfare. So far, little work has been done pre-
viously on the optimization of radar search patterns. Previous approaches
limited the beam-shape or steering directions of dwell candidates for the radar
search pattern. In the industry, the state of art are hand-designed patterns,
requiring working time from engineers, and lacking situational adaptability.

The main challenge of this thesis was the identification of an appropriate
theory for modelling radar scanning problems. This reflection has lead to
the choice of combinatorial cover problems as a fitting basis for mathemat-
ical modelling. The reformulation of radar scanning from the perspective
of combinatorial optimization provided a powerful theoretical framework for
optimizing radar search patterns. It also proved to be a flexible tool, which
has been extended to model complex situations with multiple mission re-
quirements under localized constraints.

The thesis theoretical contributions to combinatorial optimization are the
classification of radar cover problems with respect to complexity theory as
either strongly polynomial-solvable or NP-hard problems, and the develop-
ment and identification of optimization algorithms for solving those problems.
More practical contributions also include the design of reduction methods for
improving computational efficiency in solving radar cover problems, and the
research on tools for generation and representation of multiple optimal solu-
tions.

Beyond its academic possibilities, the present work also has potential
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industrial applications in computer-aided design of radar search patterns,
where it can be used to generate first solutions for an existing radar which
engineers could refine using their expertise. The automatic nature of the
optimization algorithms presented in this thesis is also well-suited for simu-
lation of future radar systems. The radar search pattern of different radar
architectures could be optimized in parallel to compare their respective per-
formances.

Short term applications focus on aided-design, but in the longer term,
radar search optimization could be performed directly in operation, adapting
the radar scanning mode to the situation parameters. Branch-and-bound is a
practical method for generating just-in-time solutions, which can be stopped
at any time to return the best current solution. Knowing a lower bound on the
optimal solution, thus having an estimation of the potential gain of pursuing
optimization, is a useful feature for efficient radar resource management.

Futures objectives

The various advances made during this thesis have also brought questions
and open the path for future research leads. The computational cost of the
problem could be improved by modifying the grid quantification values, and
thus the overall shape of the grid. A basic approach would be grid adapta-
tion to the mission energetic requirements. More generally, this problematic
falls into finite element analysis, a research field focused on discretization
of smooth manifolds (“continuous spaces”) and their representation as finite
meshes of elements. The discrete detection grid could in fact take any form,
and does not require to be regular, or even rectangular. This is another
strength of the proposed framework: it separates the radar model from the
combinatorial cover problem. The branch-and-bound method is very generic,
and can be used regardless of the grid geometry. Informally, the algorithm
only receives a discrete space, and a set of covers over this space to select,
but is impervious to what the space actually represents.

This gain in computational efficiency could be used to extend the dis-
cretized space to higher dimensions. The detection grid presented in this
work has only two dimensions, azimuth and elevation. However, radar de-
tection is often considered in four dimensions: azimuth, elevation, range and
Doppler. A four-dimensional grid would thus be able to account for clutter
not only from an energetic point view, but from a signal processing perspec-
tive, as it would discretize the spatial location of clutter, but also the speed
range it pollutes, see Figure 4.28. Waveforms could be optimized as well
in a four-dimensional detection grid model, by maximizing the waveform
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Figure 4.28: Spatial axis (left) and range-Doppler axis (right) of a four di-
mension M -by-N -by-R-by-S detection grid
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Figure 4.29: Time axis of a detection grid and dwell cover deformation due
to radar movements

visibility, i.e. minimum number of visible dwells, respectfully to its burst
parameters: period repetition interval, duty cycle, number of pulse, etc.

A fifth dimension could be added to account for time, see Figure 4.29, for
example in settings with a frigate radar moving due to the ship yaw, pitch
and roll. If the ship movement is regular enough and can be predicted, the
radar search pattern could be optimized to compensate the radar movements.
This would require to incorporate scheduling into the radar search pattern
optimization.

While if the ship movement is irregular and noisy, it can be represented
as a probability distribution. Probabilistic covering has been presented here
for exploiting dwell overlaps. It could also serve to optimize the radar search
pattern in case where the radiation pattern is not fixed, but is displaced by
a random shift due to the radar small erratic movements.
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Figure 4.30: Dwell detection probability on the detection grid along the time
axis under random radar movement

So there are two main approaches to search pattern optimization of dy-
namically moving radars: a deterministic model of the radar movement or a
statistical model. In fact both models could be combined: the radar move-
ment could have a deterministic component, its average movements, to which
a random part is added. This model could be solved on a fifth-dimensional
grid with probabilistic covering, see Figure 4.30, where the detection proba-
bility on a cell would combine the waveform detection probability with the
dwell presence probability under the radar random movement. Currently,
those promising ideas are still being studied as directions for the future work
succeeding this thesis.

In that aspect, the main, and most important result from this thesis is
that combinatorial covering is a rich, powerful and flexible tool for modelling
and optimizing radar search patterns.
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Optimisation du maillage de la veille sur radar à balayage 
électronique à panneau fixe 
 

Optimization of search patterns for fixed-panel tridimensional 
scanning radars 

ubtitle line 1 
Résumé 

 
Les radars modernes sont des systèmes 

complexes. Leurs missions, incluant surveillance, suivi et 
identification, se sont étendues conjointement à leurs 
capacités, favorisées par le développement de 
l'électronique et du numérique. Ces radars peuvent 
balayer dynamiquement et librement l'espace grâce à 
des panneaux numériques, les libérant des limitations 
des moteurs mécaniques. La guerre électronique, où les 
temps de réaction sont toujours plus courts, nécessite 
néanmoins une gestion parcimonieuse du temps 
disponible au radar pour accomplir ces missions. 

Dans ce contexte, l'optimisation du temps utilisé 
pour la surveillance doit exploiter pleinement les 
capacités des nouveaux radars. Les travaux réalisés 
durant cette thèse ont été de formaliser 
mathématiquement ce problème, de déterminer et 
adapter les outils pertinents pour sa résolution, et d'en 
explorer les possibilités. Le problème de la surveillance 
radar se rapproche conceptuellement du recouvrement 
d'ensemble en optimisation combinatoire. Grâce à des 
algorithmes utilisant la programmation dynamique et la 
programmation linéaire en nombres entiers, ce problème 
a pu être résolu, et étendu à des situations plus 
complexes, incluant différentes contraintes 
opérationnelles.  

Cette approche fructueuse ouvre de nouvelles 
pistes pour l'amélioration des performances des radars, 
et offre de nombreuses possibilités d'applications. Entre 
autres l'aide à la conception des couvertures des radars 
actuels, la simulation des performances d'architectures 
de futurs radars et le développement de radars cognitifs, 
capables de s'adapter à leur environnement 
opérationnel. 
 
Mots clés 
gestion des ressources radar,  
radar à balayage électronique,  
antenne réseau à commande de phase,  
optimisation combinatoire,  
recouvrement d'ensemble,  
problème de recouvrement de grille rectangulaire 

Abstract 
 

Modern radars are complex systems, capable of 
multiple functions: scanning, tracking, identification, etc. 
With the advent of electronic and digital technologies, 
radars can dynamically and freely sweep their 
surroundings using fixed-panels, freeing them from the 
limitations of mechanical rotation. With increasingly 
intelligent and adaptable systems competing in modern 
warfare in ever shorter time, careful management of the 
radar available time-budget is required to achieve 
desired performances and ensure civilian and military 
safety. 

In this context, optimization of radar search 
pattern time-budget must exploit modern radars full 
potential. This thesis main accomplishments are the 
mathematical modelling of radar search pattern 
optimization, the identification and development of 
appropriate tools for its solving, and the exploration of 
the model possibilities. Radar search pattern design can 
be related to covering problems in combinatorial 
optimization. Radar covering can be solved using 
methods based on dynamic programming and integer 
programming, and can furthermore be extended to 
account for more complex situations with multiple 
operational constraints. 

The tools developed in this thesis provide a 
powerful and flexible framework for solving radar covers 
problems. This framework opens interesting research 
avenues for improving radar performances. It offers 
various possible applications for aided-design of radar 
search patterns, simulation of new radar architectures 
performances, and development of cognitive radar 
systems capable of adapting in real time to the 
operational environment. 
 
Key Words 
radar resource management, 
tridimensional radar, 
phased array antenna, 
combinatorial optimization, 
set covering, 
rectangular grid cover problem 
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