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Introduction

Context

Classically, most people envision radars as they are often represented in cin-
ema: a small round screen, circularly swept by a cone, displaying blinking
points and beeping whenever a target is detected. That vision, which might
have been true in the past, is no longer an accurate representation.

In the last decades, radar systems have become increasingly complex but
also more versatile. Their tasks have extended accordingly with their capabil-
ities. This evolution was greatly favoured by the development of electronics
and digital processing throughout the modern industry. Modern radars are
faster, adaptable and rely heavily on electronic systems. They can now dy-
namically sweep in random order their surroundings using electronic panel
antennas, free from limitations of rotating antennas and sequential scanning.
Modern radars incorporate digital high-rate reception processing chains, with
high-performance numerical processors relying on advanced statistical esti-
mators.

This paradigm shift results in a fundamentally different underlying math-
ematical model for radar engineering. The integration of this evolution to the
engineering methodology will permit to harness the full potential of modern
radar systems.

And this evolution also impact how radar are used; while traditional
radars were each dedicated to a single task, modern radars are now multi-
function as they use their new-found flexibility to perform multiple tasks in
parallel: scanning, tracking, identification, communication, clutter mapping,
etc. Each of those tasks requires time for emission, propagation, reception
and treatment of the radar signal. Radar time is the essential resource in
radar tasks management.

In modern warfare, increasingly intelligent and adaptable systems com-
pete against each other, seeking reactivity in increasingly shorter time and
managing ever more information. In this context, optimizing radar efficiency
is necessary to achieve desired performances in due time and avoid overload.
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INTRODUCION

Motivation and Objectives

One the main challenges for radar engineering is to appropriate modern tools
to make proficient use the increased computational power of the digital era:
mathematical modelling, algorithmics, operational research and optimiza-
tion.

Those techniques are used with two objectives in mind: the production of
aided-design tools, to facilitate, improve and speed up design and simulation
of radar architectures; and the development of real-time practical algorithm
for optimizing resource management and radar processing in operational sit-
uation.

One particular radar task, fundamental but costly is searching (or scan-
ning), of yet-unknown targets. Radar search optimization is a main topic for
radar resource management, and the subject of this thesis, a joint project
between THALES AIR SYSTEMS, the Direction Générale de l’Armement
(DGA) of the French Ministry of Defence and the Laboratory of Digital Sci-
ences of Nantes (Laboratoire des Sciences du Numérique de Nantes). The
thesis main objectives are:

• to define the theoretical framework and mathematical model of radar
search optimization for three-dimensional scanning radars.

• to identify, implements and test the appropriate approaches and algo-
rithms for solving radar search optimization problems.

The work accomplished during the thesis is:

• a general problem formulation for radar search pattern optimization of
phased-array antenna radar. This formulation can also be extended to
any radar capable of dynamical beamforming, i.e. electronic control of
the antenna radiation pattern.

• a procedure for approximating this problem as a combinatorial cover
problem, and solving the problem using integer programming methods.

• extensions of the initial formulation accounting for localized clutter, ter-
rain masking, localized scan update rate and multi-mission constraints.

• computational improvements based on reduction methods for decreas-
ing the number of variables and/or constraints, and thus the size, of
the combinatorial problem.

2



INTRODUCION

• explore and formulate future research leads, such as how to exploit
overlaps in the radar search pattern, formulated as a probability cover
problem.

• implementation of a software framework for optimization of radar search
patterns, identification of short-term applications in aided-design and
performance simulations; and long-term applications in real-time radar
resource management.

Thesis outline
This thesis contents are organized as follows. Chapter 1 presents the basic
principles of radar theory and builds the mathematical radar model which
will be considered in the rest of the thesis. Chapter 2 focuses on optimization
and complexity theory, presents the theoretical framework for solving com-
binatorial cover problems as well as results on the computational complexity
of radar cover problems. Chapter 3 defines the general formulation for radar
search optimization, and describes a procedure for its approximation and
solving as a combinatorial cover problem. Chapter 4 presents extensions for
integrating localized multi-mission constraints, computational improvements
for faster computation, and explore future research leads of interests.

The thesis concludes on synthesis of the work achieved, the possible ap-
plications and the continuation of this research.

3
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Chapter 1

Radar theory and mathematical
model

1.1 History

The term RADAR is the contraction of “RAdio Detection And Ranging”.
It encompasses all systems and techniques for detecting and analysing dis-
tant objects through the use of radio waves, which usually refers to electro-
magnetic waves with frequencies between a few kilohertz to several hundred
gigahertz.

The first radar experiments were pioneered by German physicist Heinrich
Hertz in the late 19th century, applying James Maxwell’s ideas. However,
radar technology has most significantly developed during the last decades,
principally for military use and defence applications.

Radars are nowadays essential assets in modern warfare and military de-
fense, ever since WWII. They also play an important role in civilian appli-
cations, most notably in flight control with the ever increasing traffic, but
also in weather forecasting, topography and geology. Radar research has
been prolific in the latter part of the 20th century during which many radar
systems and technological improvements have been made.

Radar theory covers a wide variety of fields, from antenna design, focusing
on the electromagnetic properties of radiating elements; to signal processing,
studying the structure and efficiency of transmitted signals; to statistics for
extracting reliable information for target detection and analysis.

5



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL

1.2 Radar basic principle

A radar system detects an object by propagating electromagnetic waves, from
which it can also infer information regarding the object. This process can be
divided into three steps :

• The radar first sends an electromagnetic wave in the direction of ob-
servation.

• Upon encountering an object, the wave is reflected and partially prop-
agates back to the radar antenna.

• The radar receives and processes the reflected wave to detect an object
and estimate its characteristics, for example position or speed.

Figure 1.1: Radar emission and reception

Unfortunately, the received signal is polluted with environmental noise.
The further the object is, the weaker the echo is and the harder it becomes
to distinguish the echo from noise. Detection of weak echo signals can be
improved through different parameters:

• The emitter antenna power. The most straightforward solution, but
with significant material, logistic and energetic costs. A more powerful
antenna will be bigger, and use more energy, thus producing more heat
and requiring a better cooling system. This is usually not the preferred
solution, rather used as a last resort.

• The antenna gain, i.e. the radar capacity to focus most of its energy
in the same direction rather than dissipate it in all directions. Concen-
trating the radiating power decreases the detection angular area but
improves the detection range. Modern radars rely on electronics to nu-
merically control and dynamically generate a desired radiation pattern.

6



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL

• The radar signal waveform, i.e. the shape of the emitted signal. After
reflection, a longer echo is easier to extract from noise, as the echo
has a consistent temporal structure. The longer it is, and the more it
contrasts with the randomness of noise, typically assumed white (i.e.
incoherent between any two instants). A longer signal means sending
more energy on the target. Time integration of the signal summed this
energy. Integration is constructive for echoes but destructive for noise.

The formal mathematical relation between those parameters and the detec-
tion range is called the radar equation.

1.3 Radar equation

1.3.1 Definition

One way to express the radar equation is the relationship between the energy
reflected by a target to the radar and characteristics of the radar (average
emitted power, antenna gain), of the target (radar cross-section, distance to
the radar) and various losses (system, scanned).

There are however numerous formulations for the radar equation, depend-
ing on configuration and model, which are all mathematically equivalent. The
formulation depends on the setting: to design and size the required system
and parameters to achieve desired detection (for given target at given range,
etc.), or conversely to compute the performances of a given radar architec-
ture. The equation always models the same phenomenon and quantify the
propagation and dispersion of radar waves travelling forth and back between
the radar and a target:

Er =
P T gt gr λ

2 σ

(4π)3R4 Lt
(1.1)

with :

• P the antenna average power (W),

• gt (gr) the antenna emission (reception) gain in the target direction
(dB),

• T the emitted signal time duration (s),

• λ the signal wavelength (m),

• σ the target radar cross-section, its “visibility” to the radar (m2),

7



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL

Figure 1.2: Isotropic antenna (left) and directive antenna (right)

• R the radar-target distance (m),

• Lt the total losses (encompassing propagation, scanned and internal
losses) (dB).

1.3.2 Energetic dispersion interpretation

The radar equation can be explained by a relatively simple physical interpre-
tation of waves propagation. Consider the radar antenna as a point source in
the far-field hypothesis (i.e. “seen from far away”). The antenna is isotropic
if it emits the same power in all directions, and has a constant gain. It is
directive if the antenna focuses the power in certain directions, and has a
variable gain. Both cases are showcased in Figure 1.2.

An isotropic antenna radiates its power P uniformly emitting spherical
waves at far-field. At a distance R from the radar, its power is distributed
evenly on a sphere with a surface 4πR2, as shown in Figure 1.3. For a directive
antenna, the power distribution is proportionate to the antenna gain. The
power flux density radiating from the antenna is

Pgt
4πR2

A target with radar cross-section σ at range R will partially intercept and
reflect this power. The target can be viewed as a point source, re-emitting
spherical waves. The reflected power at a distance R from the target is
similarly distributed on the sphere with radius R, as shown in Figure 1.3.
The reflected power flux density intercepted by the radar antenna is

Pgt
4πR2

σ

4πR2

and will be intercepted by the antenna effective reception area Ae = grλ
2/4π

[1], during the entire duration T of the signal. The total energy reflected to

8



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL

σ

R2
1

Ae

σ

R2
1

Figure 1.3: Energetic propagation and reflection of a radar signal

the radar is
Pgt

4πR2

σ

4πR2

grλ
2

4π
T

accounting for losses L, which results in the radar equation (1.1).

1.4 Radiation pattern model

1.4.1 Phased array

The radar antenna model is a bi-dimensional phased-array of K-by-L evenly
spaced radiating elements, shown in Figure 1.4, with horizontal spacing dx
and vertical spacing dz. In the array local Cartesian coordinates system
Oxyz, the position of radiating element (k, l) is given by

~pk,l = (x, y, z) = (−ldh, 0, kdv)xyz

Each radiating element is an isotropic electromagnetic source, whose
phase and amplitude can be freely controlled

sk,l(t) = Ak,l e
jφk,l s(t)

with the amplitude Ak,l ∈ [0, 1] and the phase φk,l ∈ [0, 2π[ of radiating
element (k, l) ∈ {0, ..., K − 1} × {0, ..., L − 1}, and the emission signal s(t)
feed in the antenna.

A phase-amplitude illumination law of the antenna array is defined by a
set of values {ak,l} in the complex open unit disk D:

{ak,l = Ak,l e
jφk,l ∈ D : 0 ≤ k < K, 0 ≤ l < L}

9



CHAPTER 1. RADAR THEORY AND MATHEMATICAL MODEL

k=0

k=1

...
k=K-1

l=0 l=1 l=2 ... l=L-1

dz

dx
y

z
x

Figure 1.4: Phased array local coordinates system. Green dots are geometric
centers of radiating elements

A direction of observation is defined by the antenna local spherical co-
ordinates (φ, θ) ∈ [0, π]2, see Figure 1.5. The associated unitary direction
vector is defined in Cartesian coordinates

~u = (u, v, w) = (cos(θ) sin(φ), sin(θ), cos(θ) cos(φ))uvw (1.2)

known as direction cosines. It is common in practice to use only (u, v), as w
is immediately deduced by u2 + v2 + w2 = 1 and w ≥ 0. Remark that the
array local coordinates (x, y, z) and direction cosines coordinates (u, v, w) are
different coordinate systems, related by the following relations

u = −x
v = z
w = y

or

uv
w

 =

−1 0 0
0 0 1
0 1 0

 ·
xy
z


and the radiating element (k, l) position can be written in direction cosines
coordinates as

~pk,l = (ldh, kdv, 0)uvw

1.4.2 Beamforming emission

For a far-field target in direction ~u, the array antenna can be approximated
as a sum of point sources. The emitted signal is the aggregation of each
source signal on a wavefront, which is perpendicular to the direction ~u.

When the wavefront is not coplanar to the antenna plane, a phase shift
appear among the signals. The phase shift between element (k, l) and a
reference element (0, 0) can be geometrically expressed as an optical pathway
shift

δk,l = ~pk,l · ~u = ldhu+ kdvv

10
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dz

w

v

y
z

x
y

z
x

pk,l
w

u

δk,l

dz

dx

θ
φ

uv
θ

u
u

wavefront

δk,l

Figure 1.5: Wavefront propagation and direction cosines coordinates

as shown in Figure 1.5. The total emitted signal can be expressed as
K−1∑
k=0

L−1∑
l=0

ak,l s(t) e
j2π

δk,l
λ =

(
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π

ldhu+kdvv

λ

)
s(t) = ge(u, v) s(t)

with λ the signal carrier wavelength, and ge(u, v) the emission gain of the
antenna in direction ~u, also called array factor [2, 3]:

ge(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π

ldxu+kdyv

λ =
K−1∑
k=0

L−1∑
l=0

Ak,l e
jφk,l ej2π

ldxu+kdyv

λ (1.3)

Remark the origin choice only impacts the global phase of the radiation
pattern, but not the phase shifts between elements, nor the absolute value
of the radiation pattern.

In Equation (1.3), the emission gain corresponds to the discrete bi-dimensional
Fourier transform of the phased-array illumination law {ak,l} with substitu-
tion (ν, µ) = (dx

λ
u, dy

λ
v)

ge(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π(lν+kµ) = DFT ({ak,l})(ν, µ)

Control of phases and amplitudes of the array elements can be used to shape
the radiation pattern, relying on known principles of spectral signal pro-
cessing. Windowing of the illumination law amplitude controls the pattern
beam-shape, whereas a (u, v)-linear phase term added in the illumination law
translates the radiation pattern in direction cosines spaces. This technique
for controlling the radiation pattern is called beamforming. When used for
translating the radiation pattern main lobe through phase shifts, this tech-
nique is also called beam-steering. Beamforming is showcased in Figures 1.6
and 1.7.

11
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azimuth

elevation

tilt

Figure 1.6: Centered narrow beam radiation pattern (middle, right) obtained
with null-phase constant-amplitude illumination law (left) for the phased
array

azimuth

elevation

tilt

Figure 1.7: Steered widened beam radiation pattern (middle, right) obtained
with linear-phased windowed-amplitude illumination law (left) for the phased
array.
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clutter
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el

ev
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azimuth terrain mask

Figure 1.8: Operational situation with clutter (rain) and terrains masks,
represented in azimuth-elevation coordinates.

1.4.3 Operational coordinates system and scanned losses

In operational situation, as shown in Figure 1.8, constraints and detection
requirements are usually defined in a spherical coordinate systems bound
to the local tangent plane of the Earth: the azimuth-elevation coordinates
system with (az, el) ∈ [0, π]2.

In the case where the antenna perpendicular Ox is co-linear the azimuth-
elevation origin, the operational coordinates and the local antenna spherical
coordinates are fused: (az, el) = (φ, θ).

In practice, the antenna normal is tilted upwards by a tilt angle t ∈ [0, π
2
]

as shown in Figure 1.6, to better center the radar emission space, the half-
space y > 0, with the surveillance space, for which elevation is often positive,
as there is often no point in emitting below the horizon.

Tilting the radar geometrically correspond to applying a rotation matrix
with axis Ox and angle t to the antenna coordinates system, yielding the fol-
lowing relations between operational coordinates and antenna local direction
cosines

u = cos(el) sin(az)
v = sin(el) cos(t)− sin(t) cos(az) cos(el)
w = sin(el) sin(t) + cos(t) cos(az) cos(el)

(1.4)

Reciprocal formulas can be obtained by inverting the previous equations

az = atan2 (u, cos(t)w − sin(t)v)
el = asin (sin(t)w + cos(t)v)

(1.5)

Substitution between coordinates systems is easily done using Equations (1.4)
and (1.5). In the following, all functions can indiscriminately switch between
parameters (az, el) and (u, v).

13
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translation

Figure 1.9: Distortion between direction cosines (top) and operational coor-
dinates (bottom) after translation of the beam

In the more general setting, where the two coordinates systems are com-
pletely unbound, three rotations are required to switch between them, with
two additional angles known as bearing and queer. Equations (1.4) and (1.5)
can be generalized to account the three rotations, see Annexe 1.

A peculiar property of those coordinate substitutions is that they do not
preserve areas. Informally, substitution of direction cosines by operational
coordinates “spreads” surfaces in a non-uniform fashion [4]. So while trans-
lating a beam-shaped radiation away from the array perpendicular direction
(via a linear phase term in the array illumination law) preserves its area
in direction cosines space, the same beam becomes distorted in operational
coordinates, see Figure 1.9. It cover a larger solid angle but with weaker
angular power density, resulting in anisotropic scanned losses :

Ls = cos(δ)−1

where δ is the angle between the antenna array perpendicular direction and
the direction of observation.

Mathematically, the scanned loss factor is the dilatation ratio between an
infinitesimal solid angle element in operational coordinates

dΩ = cos(el) daz del

and an infinitesimal surface element in direction cosines space

du dv

14
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S

S cos(δ)

δ

Figure 1.10: Physical interpretation of scanned losses

The scanned loss factor can be computed from the Jacobian matrix JF of
function F : (az, el)→ (u, v) defined by Equation (1.4):

du dv = | det (JF (az, el)) | daz del

= | sin(el) sin(t) + cos(az) cos(el) cos(t)| cos(el) daz del

= | sin(el) sin(t) + cos(az) cos(el) cos(t)|dΩ

= w dΩ

and the scanned loss is equal to the third direct cosine coordinate w ∈ [0, 1]:

Ls =
dΩ

du dv
=

1

w
=

1

cos(δ)
=

1

sin(el) sin(t) + cos(az) cos(el) cos(t)
(1.6)

with δ between vector ~u pointing the direction of observation and the array
antenna normal unit vector ~n. Scanned losses do not occur in the direction
perpendicular to the antenna, and increase as the direction of observation
from the antenna perpendicular. Scanned losses also occur twice, at emission
and at reception, and are squared in the radar equation.

A physical interpretation of scanned losses is shown in Figure 1.10: w =
~u · ~n = cos(δ) is also the ratio between the apparent surface of the antenna
and its real surface, from a target in direction ~u. At emission, the target
“sees” a smaller antenna, and receives a proportionally decreased angular
power density. Similarly at reception, the “effective” area of the antenna
receiving the reflected energy is smaller.
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Figure 1.11: Wavefront reception

1.4.4 Digital beamforming reception

According to Fermat’s principle of light least travel time, optical pathways are
reversed between emission and reception. A reception phased-array antenna
model (which may be the same antenna used for emission) has similarities
with the emission antenna model described previously.

If the antenna is receiving a signal r(t) from a far-field source, for example
a reflecting target, located in direction pointed by u, then the wavefront of
the received signal is orthogonal to u as shown in 1.11. The signal received
by each source is

rk,l = r(t)ej2π
δk,l
λ

with an optical path shift δk,l = ~pk,l · ~u.
By controlling phase φk,l and amplitude Ak,l of the received signals and

aggregating their values, the target signal can be amplified:

K−1∑
k=0

L−1∑
l=0

ak,l

(
r(t) ej2π

δk,l
λ

)
=

(
K−1∑
k=0

L−1∑
l=0

ak,l e
j2π

ldhu+kdvv

λ

)
r(t) = gr(u, v) r(t)

with λ the signal carrier wavelength, and gr(u, v) the reception gain of the
antenna in direction ~u

gr(u, v) =
K−1∑
k=0

L−1∑
l=0

Ak,l e
jφk,l ej2π

ldxu+kdyv

λ

which is, as expected, the same formula than the emission gain. A physical
interpretation of this result is to view the reception gain as beamforming a
reception pattern, with similar properties than radiation pattern for emission.
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Figure 1.12: Emission beamforming (left) and reception digital beamforming
(right)

A key difference between emission and reception is that choice of amplitude-
phase reception law {ak,l} does not have to be the same than the illumination
law at emission. In fact, since the radar directly receives the signals rk,l in
each element, it is possible to immediately digitize those signals out of the
array and compute multiple digital reception patterns in parallel. This tech-
nique is called digital beamforming and is illustrated in Figure 1.12.

With this approach, it is possible to scan a wide area using multiple
narrow (thus more energetically powerful) beam. The limit of digital beam-
forming depends on two parameters:

• the narrow beam width of the radar, which is inversely proportional to
its antenna surface area.

• the digital processor capacity, which limits how many beam-forming
computations can be performed in parallel.

The narrow beam radiation pattern is generate by a constant amplitude
illumination law (i.e ∀(k, l), |ak,l| = 1), like the centered narrow beam dis-
played in Figure 1.6. Any narrow beam is a translation of the centered
narrow beam by using a linear phase term in illumination law, and has the
same width in direction cosines coordinates, but not in operational coordi-
nates, where scanned distortions occur. The absolute value of the reception
gain of the centered narrow beam is

|gr(u, v)| =
sin
(
πKdx
λ
u
)

sin
(
πdx
λ
u
) sin

(
πLdz
λ
v
)

sin
(
πdz
λ
v
)

with its maximum value at the center being |gr(0, 0)| = KL. The half-power
beam-width of the radiation pattern can be approximated as an ellipse with
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semi axis ∆u3dB = 2u0 and ∆v3dB = 2v0, where u0 and v0 are solutions of
the system

sin(πKdxλ u)
sin(πdxλ u)

=
√

1
2
K ⇔

√
2 sin

(
πKdx
λ
u
)

= K sin
(
πdx
λ
u
)
, 0 < u < λ

2Kdx

sin(πLdzλ v)
sin(πdzλ v)

=
√

1
2
L ⇔

√
2 sin

(
πLdz
λ
v
)

= L sin
(
πdz
λ
v
)
, 0 < v < λ

2Ldz

which can numerically be solved by using root-finding line search, such as
the popular Brent’s method [5] (implemented in MATLAB by fsolve, and
in SciPy by scipy.optimize.brentq). The half-power narrow beamwidth
can also be approximated using{

∆u3dB ≈ 0.89 λ
πKdx

if K � 1

∆v3dB ≈ 0.89 λ
πLdz

if L� 1

which are the formulas for a continuous rectangular electromagnetic source.
Physically, a discrete array with enough elements can be viewed as a contin-
uous source.

The half-power beamwidth of the centered narrow beam is approximately
the area A3db = 2π∆u3dB∆v3dB of the ellipse with semi axis ∆u3dB and
∆v3dB.

Considering the number of parallel beamforming computations the digital
processor can perform is a known system value NDBF ∈ N, the maximum
area in direction cosines which can be scanned at reception is

Amax = NDBF A3db = NDBF 2π∆u3dB∆v3dB

and the minimum reception gain of digital beamforming is at most 3 decibels
below the maximum gain of the antenna array

gDBF =

√
1

2
KL

1.5 Waveform model

1.5.1 Waveform definition and detection principle

The waveform is the shape along time of the signal emitted by the radar.
The principle of radar detection is to “search” and try to “recognize” the
waveform, the emitted signal shape, inside the received signal to find an echo
reflected by a target, see Figure 1.13 for a simplified example.

The radar model in this thesis is a mono-static pulse-Doppler radar. A
mono-static radar uses the same antenna for emission and reception, and
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radar signal waveform

target delayed echo without noise

received signal: target delayed echo with noise

search of waveform echo by correlation
detection threshold

Figure 1.13: Research of a target echo of the waveform in the received signal

thus cannot receive while emitting. The waveform model is a series of short
pulses (emission) alternating with silences (for reception). Those series of
pulses are combined to increase the signal-to-noise ratio. This technique,
used for improving detection, is called integration.

The waveform model presented in this thesis is energetic, and does not
details the signal processing aspects of waveform design: pulse modulation,
spectral occupation, ambiguity function, encoding, etc., nor the associated
processing chain: demodulation, matched/mismatched filtering, etc.

Inside a waveform, series of pulses with similar characteristics are grouped
together, such a group is called a burst. A waveform is thus a series of
bursts, and each burst is a series of pulses, as shown in Figure 1.14. The
signal parameters are different from burst-to-burst inside a waveform, but
are constant inside a burst:

• τ : pulse width (s).

• Tp : pulse repetition interval, the period between the start of two suc-
cessive pulses (s), thus Tp − τ is the silence duration between a pulse
end and the next pulse start.

• Np : number of pulses in the burst, with the burst duration being NpTp

• f : duty cycle, ratio between the pulse width and the pulse repetition
interval

f =
τ

Tp
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Figure 1.14: Waveform structure decomposition

which also relates the radar average power Pm to the radar peak power
Pm

Pm = Ppf

and the total energy emitted during the waveform is PmT where T is
the waveform total duration.

In presence of target, the emitted signal is reflected back toward the radar.
A target at range R results in a pulse echo with a time delay

∆t =
2R

c

where c the speed of light, since the signal takes ∆t to travel the radar-target
distance R forth and back at speed c. If the target has a radial speed v, then
between two pulses the target gets closer by 2vTp � R and the received
signal has a phase shift

∆φ = 2π
2vTp
λ

=
4πvTp
λ

with λ the signal carrier wavelength. Both distance are shown on Figure
1.15.

Each pulse is individually too weak to allow detection. However, under
the assumption of white noise, which implies that noise is independent be-
tween any two instants along the time axis, it is possible to combine several
impulsions to improve detection. This approach is called integration.

Most integration schemes fall under two categories: coherent integration,
which makes use of amplitude and phase information of the signal, and inco-
herent integration where only amplitude is used, whereas phase is considered
to be random (and thus “incoherent”) between impulsions. In the case of
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R

vTp

Figure 1.15: First pulse propagation (top) and second pulse propagation
(bottom)

coherent integration, using Doppler filter-bank permits estimation of target
radial speed, in addition to distance.

The principle of radar detection is to perform a hypothesis test on whether
the received signal contains a waveform echo from a target at a given range
with a given radial speed. For each range-speed hypothesis, an estimator
is computed from the received signal, testing the presence of an echo with
time delay ∆t and phase shift ∆φ. The detection hypothesis (i.e. “a target
is present at given range with given speed”) is validated if the estimator is
above a chosen detection threshold and rejected if it is below, see Figure 1.13.
The radar system tests multiple combinations of range-speed hypotheses for
which a target must detected. The number of tests depends on the limits
and resolution of range and speed.

The detection probability that a target is correctly detected is Pd and the
probability that a target is missed is 1 − Pd (type II error, known as “false
negative”). The false alarm probability that a target is incorrectly detected
from pure noise, when there is in fact no target, is Pfa (type I error, known
as “false positive”). Obviously, a higher signal-to-noise ratio (i.e. power of
a target echo relatively to noise level) improves estimation and diminishes
missed targets and false alarms.

In practice, the detection threshold is set to ensure a certain false alarm
rate, as too frequent false alarms will mask true targets. The detection
threshold depends only on noise parameters, and not on the target charac-
teristics. For a square law detector, the normalized detection threshold is
given by a formula [6, 7]

t = − ln(Pfa)

In performance measurements, Swerling models are often used to statis-
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tically represent reflecting properties and variability of generic targets [8].
For each Swerling model, the detection probability Pd can be computed de-
pending on signal-to-noise ratio s and desired false alarm probability Pfa
[6, 9]:

Swerling I/II : Pd = Pfa
1

1+s

Swerling III/IV : Pd = Pfa
2

2+s

(
1− 2s ln(Pfa)

(2+s)2

)
Swerling 0 (V) : Pd =

∫ +∞
− ln(Pfa)

e−(x+s) 1
2π

∫ 2π

0
e2
√
sx cos θdθdx

(1.7)

Reciprocally, knowing the desired detection and false alarm probabilities for
a given target model, it is possible to numerically compute the minimum
signal-to-noise ratio for achieving detection requirements.

1.5.2 Energetic model

Since a waveform is formally defined as a collection of bursts, its parameters
are the aggregation of all its bursts parameters. A signal processing model
of waveform and the corresponding radar processing chain fall outside the
scope of this thesis. But a simpler energetic model of the waveform can be
defined using fewer parameters, such that for a waveform w:

• Tw : the waveform total duration (s)

• fw: the (average) dutycycle in the waveform.

• sw(Pd, Pfa): the required signal-to-noise ratio in order to achieve de-
tection and false alarm probabilities Pd, Pfa.

For a real system, the required signal-to-noise ratio sw can be measured and
stored in a database. With this approach, a system database of available
waveforms with known performances in various scenarios can be computed.
Another approach is to simulate waveform performances. A simple energetic
model for doing so is described below.

The model uses Doppler filtering for pulse integration inside each burst;
then performs double threshold detection to aggregate multiple bursts inside
a waveform:

• Pulse integration: Doppler filtering is coherent integration, and Np co-
herently integrated pulses can be viewed as one virtual pulse with an
Np-times stronger signal-to-noise ratio. Sterling mono-pulse Formulas
(1.7) can be used to compute the required signal-to-noise ratio sw for
achieving burst detection probability Pd,b and burst false alarm proba-
bility Pfa,b.
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Figure 1.16: range-Doppler map with eclipses for a given burst (left) and its
visible and occulted areas (right)

• Burst integration: In double threshold detection, a detection is vali-
dated if and only if there are at least “Kb out of Nb” detections among
the bursts, with Kb a chosen threshold. Considering each burst de-
tection as statistically independent, the waveform detection and false
alarm probabilities Pd and Pfa are related to the burst detection and
false alarm probabilities Pd,b and Pfa,b by the following relations

Pd =

Nb∑
k=Kb

(
Nb

k

)
Pd,b

k(1− Pd,b)Nb−k

Pfa =

Nb∑
k=Kb

(
Nb

k

)
Pfa,b

k(1− Pfa,b)Nb−k
(1.8)

1.5.3 Radar eclipses and clutter

A radar in operation usually has blind areas, also called eclipses, shown in
Figure 1.16 :

• Range eclipses : Along the distance axis, a mono-static radar cannot
receive while emitting. Either the same antenna is used for both emis-
sion and reception, or different antennas are used but will interfere with
each other. Thus there is a blind interval during each pulse emission,
see Figure 1.17. Since a burst is a sequence of pulses, this blind interval
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time

time
emission signal

echo detection

? ?

Figure 1.17: Range eclipses and ambiguity on which pulse the echo originates
from

is replicated during each pulse emission. Distance eclipse are located
at ranges kRa, k ∈ N with Ra = c Tp

2
.

Ra is called the range ambiguity : if a target is located at R > Ra,
further than the ambiguity range, then a reflected pulse is received
only after the next pulse has been emitted, leading to an ambiguity on
which of the two pulses reflection has actually been received, see Figure
1.17. Range measurements from a burst are only known “modulo Ra”.

• Doppler eclipses : the target radial speed can be estimated using Doppler
filtering. In general, the entire surrounding environment (ground, sea,
trees, etc.) also reflects back the radar signal with no (or little) radial
speed. The zero speed estimation is polluted by the entire environ-
ment. In practice, it is impossible to discriminate a non-moving target
of interest from the rest of the environment. Because Doppler filter-
ing is essentially a form of “speed sampling”, aliasing occurs for speeds
over a certain value va, known as the Doppler ambiguity, and target
faster than va appears to be slower (or even moving away). Because of
aliasing, the zero-speed blind area is also replicated along the Doppler
axis.

• Clutter eclipses : environmental elements hindering detection are called
clutter. The zero-speed Doppler eclipse is usually due to ground or sea
clutter, which are immobile. However, certain elements, such as rain,
can be moving due to wind, and occult areas on the clutter map which
are beyond the zero speed.

The eclipse coefficient α is defined as the ratio of all eclipsed areas over
the total area of the range-Doppler map

α =
Ae

Av + Ae

as represented in Figure 1.16.
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Figure 1.18: Total eclipse on range-Doppler map for different bursts, and
(bottom right) waveform double threshold visibility

Positions of Doppler eclipses and distance eclipses beyond the first oc-
currence can be controlled by changing the pulse repetition interval and the
number of pulses inside a burst. Those parameters usually vary from burst
to burst, to ensure that for most speed-range positions on the map, a rea-
sonable number of bursts inside the waveform can still detect the target, see
Figure 1.18.

In an approximative statistical model, the detection location on the range-
Doppler map can be considered uniformly random and independent between
bursts, with a probability (1− α) to be visible and a probability α to be oc-
culted in an eclipsed area. So the probability that “n among Nb” bursts are
visible is

(
Nb
n

)
(1−α)nαNb−n. Considering that each burst has the same detec-

tion probability Pd,b, then the probability of having Kb successful detections
out of n visible bursts is

∑n
k=Kb

(
n
k

)
Pd,b

k(1 − Pd,b)n−k. The waveform detec-
tion probability, and by similar reasoning false alarm probability, accounting
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for eclipse coefficient α are

Pd =

Nb∑
n=Nb

(
Nb

n

)
(1− α)nαN−n

n∑
k=Kb

(
n

k

)
Pd,b

k(1− Pd,b)n−k

Pfa =

Nb∑
n=Nb

(
Nb

n

)
(1− α)nαN−n

n∑
k=Kb

(
n

k

)
Pfa,b

k(1− Pfa,b)n−k
(1.9)

This model requires the assumption that burst detections are independent
for the same target position on the range-Doppler map, which in practice is
unlikely to be accurate, especially for target close to the range-Doppler map
origin, i.e. slow targets close to the radar location. However it can be used
as a simple method to approximate the energetic impact of clutter.

Within this model, the waveform required signal-to-noise ratio to achieve
desired detection and false alarm probabilities also depends on the eclipse
coefficient α and is noted sw(Pd, Pfa, α).

1.6 Dwell model and range computation
Radar detection depends on both the radiation pattern defined by the spatial
model and the waveform defined by the time model. The electromagnetic sig-
nal emitted by each radiating elements is the product of the signal waveform
“spatially” modulated by the illumination law.

To achieve detection of a given target, one must modulate the phased
array radiating elements with an adequate illumination law, and then feed an
adequate waveform signal in the radiating elements. In terms of optimization,
the illumination law and the signal waveform can be viewed as “variables”,
meaning they are the physical values through which radar detection can be
controlled. Informally, the illumination law controls “where the radar looks”
and the waveform controls “how the radar listens in that direction”.

The combination of a given illumination law and a given waveform is
called a dwell

d = ({ak,l}, w)

Computing the detection range of a given dwell at desired detection and
false alarm probabilities Pd and Pfa in direction (az, el) can be done using
the radar equation with the model described in this chapter. The radar
Equation 1.1 can be reformulated to express the detection range in function
of the other parameters

R4 =
Pp fw Tw ge gr λw

2 σ

(4π)3 sw Lu Ls
2 (1.10)
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which can be further simplified:

• The radar peak emission power Pp, the reception gain of digital beam-
forming gr = gDBF and the uniform losses Lu are constants of the
system by design and can be computed as a unique term

Kr = Pp gr (4π)−3 Lu
−1

• The dutycycle fw, duration Tw, carrier wavelength λw are constants1
of the waveform can be computed as a unique term

Kw = fw Tw λw
2

The simplification reduces the equation to

R4 = Kr Kw ge σ sw
−1 Ls

−2 (1.11)

The scanning direction cosines coordinates can be expressed from the
direction operational coordinates and the radar tilt angle t using Equation
1.4

u = cos(el) sin(az)
v = sin(el) cos(t)− sin(t) cos(az) cos(el)
w = sin(el) sin(t) + cos(t) cos(az) cos(el)

which can then be used to compute

• The emission gain from Equation 1.3, knowing the waveform carrier
wavelength

ge(u, v) =
K−1∑
k=0

L−1∑
l=0

ak,l e
jφk,l ej2π

ldxu+kdyv

λw

• The scanned losses as Ls−2 = w2

The waveform required signal-to-noise ratio sw for achieving desired de-
tection and false alarm probabilities can be computed through measurements
or simulations. In our experiments, we used the waveform model presented
in the previous section for computing this signal-to-noise ratio.

1In practice, the carrier wavelength can changes between bursts, due to frequency
agility, impacting the antenna gain. Corrections in the illumination law can somehow
compensate those changes. The present model makes the simplifying assumption that the
carrier does not change
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To achieve detection and false alarm probabilities Pd and Pfa out of the
double threshold detector, each burst detection and false alarm probabilities
must be the solutions Pd,b = x and Pfa,b = y of the system{ ∑Nb

n=Kb

(
Nb
n

)
(1− α)nαNb−n

∑n
k=Kb

(
n
k

)
xk(1− x)n−k −Pd = 0∑Nb

n=Kb

(
Nb
n

)
(1− α)nαNb−n

∑n
k=Kb

(
n
k

)
yk(1− y)n−k −Pfa = 0

with Nb the number of bursts in the waveform, Kb the detections threshold,
and α the eclipse ratio. Analytically, the solutions are the roots of high-degree
polynomials which in general might not have a closed form. Numerically, the
solutions can be find by root-finding line search [5]. The required signal-
to-noise ratio by burst sb can be deduced from the Swerling formulas (1.7),
either analytically or by numerical root-finding, and so the waveform required
signal-to-noise ratio is

sw = Nb sB

Knowing all terms of Equation 1.11, the detection range of dwell d can be
computed.
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Chapter 2

Optimization theory and
computational complexity

2.1 Introduction and literature
Optimization theory is the area of mathematics which focus on efficiently
finding solutions of good-quality respectively to a certain metric to a formally
defined problem. The topics in optimization theory are broad, encompassing:

• Modelling : “how to formalize a real life problem in mathematical terms”,

• Complexity theory : “how to consistently define the difficulty of a math-
ematical problem”

• Algorithmics : the art of designing systematic procedures to solve math-
ematical problems.

The first step when applying optimization to a real-life problem is to grasp
the problem true nature, its underlying mathematical structure. From this
knowledge the problem can be linked to known classical problems in the
literature, and knowing the problem properties will lead to practical design
of balanced algorithm between efficiency, usability and accuracy.

Optimizing radar scanning can be informally described as the research
of an efficient radar search pattern, a collection of dwells achieving certain
detection requirements. Since multi-functions radar must deal with other
tasks in addition to scanning, being able to perform scanning as efficiently
as possible is desirable. Quantitatively, an efficient search pattern should
achieve detection with minimal radar time-budget. This problem is thus
structurally a covering problem, finding a “smallest” subset of elements which
covers a space.

29



CHAPTER 2. OPTIMIZATION THEORY AND COMPLEXITY

In optimization, the most general form of covering problems is known
as set covering, a classical problem in combinatorial optimization. The ob-
jective is to cover a set of elements, called the universe, using a minimum
number of available covers. The theoretical problem is known to be generally
NP-hard to solve [10], and is often encountered in industrial processes and
real-life problems. It has been extensively studied since its description as one
of Karp’s 21 classical NP-complete problems [11], which is the common class
for difficult industrial problems. The set cover problem is also hard to ap-
proximate: while the greedy heuristic has a logarithmic approximation ratio
in the number of constraints in both weighed and unweighed cases [12, 13],
the problem cannot really be more efficiently approximated unless P=NP
[14, 15, 16]. Alternate approximation bounds have also been found using
randomized rounding algorithms [17].

Due to its theoretical hardness, a part of the research has focused on find-
ing empirically efficient methods, even with exponential worst-case theoret-
ical complexity. Branch-and-bound approaches based integer programming
can be rather efficient [18, 19], and most exact methods are variation of the
branch-and-bound scheme. Various metaheuristics have also been applied to
the problem [20, 21]. Certain covering problems which can be viewed as spe-
cific geometric cases and weaker formulations of the set cover problem can
have stronger properties, even be solvable or approximated in polynomial
time [22, 23, 24, 25].

In the case of radar covering, combinatorial problems modelling bi-dimensional
radars have strongly polynomial complexity, meanwhile three-dimensional
radars models are NP-hard to optimize, as will be shown in this chapter.

2.1.1 Decision problems and complexity classes

For each optimization problem, there is a corresponding decision problem,
which puts the optimization problem into the form of a “yes/no” question.
The question is usually, for a given value K ∈ Z: “is there is solution to
the minimization (maximization) problem whose value is smaller (higher)
than K ?”. Decision problem are one of the fundamental concepts in com-
putational complexity theory and are used to define complexity classes. The
most common classes for real-life problems are P and NP, for which informal
definitions are given below (see [10, 26] for formal definitions).

P is the class of all decision problems which can be solved in polynomial
time on a deterministic computer machine. That is, for any problem, there
is an deterministic algorithm which can solve any instance of the problem in
polynomial time and answer to the question “is there a solution with better
value than a given K ?”.
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NP stands for non-deterministic polynomial, and is the class of all prob-
lems which can be solved in polynomial time on a non-deterministic machine,
a machine in which multiple choices can be explored in parallel. A more sen-
sible definition is that for the same problem, a deterministic machine would
take polynomial time to check one given solution and answer the question
“does this solution has better value than K ?”. A non-deterministic machine
can use the same algorithm to check all solutions in parallel in the same time.
NP is often described as the class of problems for which a solution is easy to
check (polynomial time), but hard to find (exponential time) in the current
state of the art.

Furthermore, a problem is said to be NP-hard, if any problem in NP
can be reduced to said problem through a polynomial reduction. A NP-
hard problem is thus at least as hard as the hardest problems in NP (but
could be harder, as there are NP-hard problems not in NP). A polynomial
algorithm for any NP-hard problem could be used to solve any NP problem
in polynomial time. A problem that is both in NP and NP-hard is called
NP-complete.

By extension, an optimization problem is said to be in P/NP (sometimes
in PO/NPO), if its decision version is in P/NP.

2.2 Problem statement and modelling

2.2.1 Set cover problem

Let G = {gi} be a set of elements, called the universe set. Let C = {Cj ⊂ G}
be a collection of subsets in G, a set cover is a sub-collection S ⊂ C whose
union covers the universe:

⋃
C∈S C = G.

The decision form of the set cover problem asks whether for a givenK ∈ N
there exists a set cover S ⊂ C with cardinality inferior to K, i.e. |S| ≤ K.
An instance of the set cover problem is described by the system (G, C, K).
The optimization form, called minimum set cover problem, consists in finding
a minimum-size set cover:

min |S|
s.t. ∀gi ∈ G,∃C ∈ S, gi ∈ C

S ⊂ C
(2.1)

If each element Cj ∈ C has an associated cost Tj ∈ N∗, the problem of finding
a set cover with minimal aggregate cost

∑
Cj∈S Tj is called the weighted set

cover problem. The previous cases correspond to ∀j, Tj = 1, and are said to
be unweighted.
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Figure 2.1: Dwell radiation pattern (left), detection grid G and detection
discrete cover C (right)
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Figure 2.2: Collection C of available discrete covers in the radar database for
a covering problem

From now on we will use a different, radar-based, terminology. The uni-
verse set G = {gm,n} usually represents a finite bi-dimensional M -by-N reg-
ular grid, called the detection grid, see Figure 2.1, on which:

• each element gm,n represents a detection cell indexed by (m,n) ∈
[0,M [×[0, N [ ⊂ N2. The grid contains MN detection cells, and corre-
sponds to a certain direction of observation for the radar.

• each node (m,n) represents the intersection of the m-th horizontal line
and the n-th vertical line with (m,n) ∈ [0,M ]× [0, N ] ⊂ N2. The grid
has (M + 1)(N + 1) nodes.

A subset C ∈ C represents the detection area of a radar dwell, as presented
in Figure 2.1, and is the (dwell) discrete cover. The associated cost Tj of a
discrete cover Cj is the associated dwell waveform duration. The collection of
all available discrete covers forms the radar dwell cover database, representing
all the discrete covers the radar can emit. A sub-collection of dwell discrete
covers, in the radar database, ensuring detection over the entire surveillance
space, is called a radar search pattern. It corresponds to a set cover of
the combinatorial problem. The cost of a radar search pattern is the time
required to emit all its dwells in sequential order, and is the aggregate cost
of its discrete covers.
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Figure 2.3: Two-dimensional radar (top-left), three-dimensional stacked
radar (top-center) and three dimensional radar (top-right), are modelled ei-
ther as one-dimensional covering problems (bottom-left) or as bi-dimensional
covering problem (bottom-right)

2.2.2 Grid dimension

For cover problems in radar applications, the universe set is a grid whose
geometry models how the radar scans the environment. Modern antennas
can control the direction of emission using beamforming, for which a math-
ematical model in the case of a bi-dimensional linear phased array antenna
was presented in Chapter 1.

Many modern radar systems can perform bi-dimensional beam-steering
in azimuth and elevation, such radars are said to be three-dimensional, as
they work in with three coordinates: azimuth, elevation and range.

There exists radars performing only azimuthal beam-steering, working
only with the two dimensions of azimuth and range, either because the radar
beam covers the entire elevation at once, or either because the surveillance
is very narrow on the horizon. Such radars are said to be two-dimensional.
There also three-dimensional radars stacking multiple beams in elevation,
which can be viewed as two-dimensional radars from a modelling point of
view. An example of each of those radar is displayed in Figure 2.3.

Figure 2.3 also presents the two possibilities for modelling the detection
grid in radar covering problems:

• in two-dimensional models, the detection grid has only one dimension.
This corresponds to a particular case where M = 1 and N ∈ N.

• in three-dimensional models, the detection grid has two dimensions.
This is the general case where (M,N) ∈ N2.
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Figure 2.4: Set of neighbours {g0,1, g2,1, g1,0, g1,2} for a given cell g1,1 (left),
connected shape (center) and disconnected shape (right)

2.2.3 Connected and disconnected dwells

Usually, a radiation pattern will form a single beam and have a connected
shape, which are simpler to manipulate from an engineering point of view.
It also minimize the energy lost in side-lobes.

Single-beam dwells result in connected discrete covers for the associated
grid cover problem. The definition of a connected subset on grid G is based
on cell neighbourhood: let ga,b ∈ G and gc,d ∈ G, then ga,b and gc,d are
neighbours if and only if:

(a = c) ∧ (|b− d| ≤ 1)
∨

(|a− c| ≤ 1) ∧ (b = d)

In other words, the neighbours to an element g ∈ G are its four adjacent
cells, as presented in Figure 2.4.

A subset on the grid is connected if for any two cells in the subset, there is
path between them moving from neighbour to neighbour. A subset which is
not connected is said to be disconnected. Both cases are displayed in Figure
2.4.

An interesting case of connected covers are rectangular-shaped covers. In
radar engineering, a feasible radiation pattern is synthesized to fill as closely
as possible a desired shape. Rectangular shapes are usually good candidates.

On the grid, a rectangular-shaped cover is a subset of elements included
in a rectangle, uniquely defined by its upper left corner node (m0, n0) and
its lower right corner node (m1, n1), such that 0 ≤ m0 < m1 ≤ M and
0 ≤ n0 < n1 ≤ N . The set representation of a cover defined by corners
(m0, n0) and (m1, n1) is:

C = {gm,n, (m,n) ∈ [m0,m1[×[n0, n1[}

Figure 2.2 presents an example, cover C7, where corners are (m0, n0) = (0, 1)
and (m1, n1) = (1, 2).
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Figure 2.5: Radars with bounded azimuthal range (left) and with full az-
imuthal range (left)

Rectangles are also more easily synthesized with a bi-linear phased-array
antenna, for which the radiation pattern can be separated into an horizontal
and a vertical component.

Furthermore, in term of combinatorial complexity, the number of possible
rectangles on M -by-N grid(

M + 1

2

)(
N + 1

2

)
=
MN(M + 1)(N + 1)

4
= O(M2N2)

gives a broad choice of available discrete covers for computing the pattern,
while avoiding exponential explosion when increasing the grid resolution.

2.2.4 Azimuthal range and circular grid cover problems

In operational situations, the surveillance space of the radar can be bounded
to a certain azimuthal range, for example a fixed panel radar. But the radar
can also be required to scan the surrounding space in all directions and have
full azimuthal range, using for example a rotating-panel system or multiple
fixed-panel system. Limited azimuthal range is modelled by planar grids,
while full azimuthal range is modelled by circular grids, as represented in
Figure 2.5.

2.3 Integer programming

2.3.1 Matrix formulation

Set cover problems can be written as integer programs by using matrix for-
mulations. Each cover C ∈ C can be represented as a binary M -by-N matrix
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Figure 2.6: Dwell discrete cover (left), its binary matrix representation (cen-
ter) and its binary vector representation (right)

noted C, or as a binary vector of length MN noted c, as shown in Figure
2.6:

C(m,n) = c(m+Mn) =

{
1 if gm,n ∈ C
0 otherwise

For each cover Ci ∈ C, let xi ∈ {0, 1} be the binary selection variable
of cover Ci, such that the vector x = (x1, . . . , xD) ∈ {0, 1}D represents the
sub-collection S = {Ci ∈ C s.t. xi = 1}, containing the chosen covers.

Let T = (T1 · · ·TD)T be the cost vector and let

A =
(
c1 · · · cD

)
=


C1(0, 0) · · · CD(0, 0)
C1(1, 0) · · · CD(1, 0)

... . . . ...
C1(m,n) · · · CD(m,n)

...
...

...



be the cover matrix.
Then the set cover problem can be written as the following integer pro-

gram:

min TT .x
s.t. A · x ≥ 1

x ∈ {0, 1}D
(2.2)

where 1 is the all-ones vector (1 · · · 1)T of lengthMN . For example, the cover
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problem represented in Figure 2.2 can described by the following system:

A =



0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0


, T =

(
2 2 2 2 2 1 1 1

)T , x =



x1

x2

x3

x4

x5

x6

x7

x8


(2.3)

2.3.2 Linear relaxation

Integer programming is NP-hard to solve [11]. Replacing integer variables
by continuous variables transforms the problem into a linear program

min TT .x
s.t. A · x ≥ 1

0 ≤ x ≤ 1
(2.4)

which is called the linear relaxation of (2.2). Linear programs can be solved
in polynomial time [27]. Any valid solution of the integer program is also
a valid solution of its linear relaxation, but the reverse is false. An optimal
solution of the linear relaxation is not a valid integer solution in general, and
only gives a lower bound for the integer program. Note that the constraint
x ≤ 1 is in fact unnecessary, since the problem

min TT .x
s.t. A · x ≥ 1

0 ≤ x
(2.5)

has the same optimal solutions as (2.4). Intuitively, for the linear relaxation,
a cell is going to be covered by a sum of “fractional” covers (with xi < 1), or
as at least one integer cover (with xi = 1) and thus has no need for covers
with xi > 1. Any solution with some xi > 1 can be strictly improved by
reducing xi ← 1 while remaining valid and an optimal solution necessarily
verifies x ≤ 1.

Furthermore, the positivity constraints 0 ≤ x can be integrated in the
matrix formulation with

R =

(
A
I

)
and d =

(
1
0

)
by rewriting the linear program as

min TT .x
s.t. R · x ≥ d

(2.6)
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The three formulations of the linear relaxation (2.4), (2.5) and (2.6) are
equivalent.

The integer program representing our set cover problem and its linear
relaxation have two more interesting properties:

• Easily-checked feasibility: an integer program is feasible if there is at
least one solution validating all constraints. It is possible that no valid
solution exists if some constraints are conflicting, or if one constraint is
impossible. In our case, feasibility is easy to check: the integer program
as well as its linear relaxation are feasible if and only if xF = (1 · · · 1)
is a feasible solution, i.e. A · xF =

∑D
i=1 ci ≥ 1:

– if xF is a valid solution, then the problem is feasible by definition.
– if xF is an invalid solution, then there is an invalidated constraint

for xF :

∃(m,n) s.t.
D∑
i=1

Ci(m,n) < 1

and since ∀(i,m, n), Ci(m,n) ∈ {0, 1}:

∃(m,n) s.t. ∀i,Ci(m,n) = 0

In other words, A has its (m + Mn)-th row filled with zeros,
corresponding to a constraint which can be satisfied by no solution.
Intuitively, xF represents C, the collection of all available covers
itself, and if it is an invalid solution, then there is a cell which
cannot be covered. This can happen in a real system if there is a
cell which cannot be scanned, because of an obstacle or because
the radar has not enough power to achieve the desired detection
range.

• Boundedness: a recurring question for linear programs is whether they
are bounded, that is whether the cost function is bounded (below for
minimization) for valid solutions. For the set cover problem, the cost
function is positive and thus always bounded below by 0.

2.3.3 Linear programming

There are three important geometrical aspects describing the decision space
of the integer and linear programs, shown in Figure 2.7:

• T is the cost function gradient. The cost function is linear and its
gradient is constant. −~T is the direction vector of maximum decrease
of the cost function.
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Figure 2.7: Convex polyhedron representing decision space of linear and
integer programs (2D example)

• A is the cover matrix. Each row of A correspond to a detection con-
straint on a cell of G. In the decision space, each constraint corresponds
to an hyperplane, the limit between the halfspace of solutions validating
the constraint and the halfspace of solutions violating the constraint.
The intersection of those halfspace forms the convex polyhedron defined
by

{x : A · x ≥ 1}

• The positivity constraint of the linear relaxation 0 ≤ x bounds the
values of the valid solutions in the positive orthant RD

+ .

The set of valid solutions for the linear relaxation is the intersection of
the valid halfspaces for all constraints, and the orthant RD

+ . Geometrically,
it is a convex polyhedron defined by

{x : (A · x ≥ 1) ∧ (0 ≤ x)}

Each vertex (or “corner”) of this polyhedron is a point where at least D
hyperfaces of the polyhedron intersect, in other words, a point where D
constraints are tight.

Such a point is called a basic solution (or basic vertex) of the linear
program. If a linear program is bounded and feasible, then it has a basic
optimal solution [27]. Consider a basic optimal solution x for the reduced
linear program in (2.5). This solution has D tight constraints. Let B ≤MN
be the number of tight detection constraints. If B < D then there are
Z = D − B tight bound constraints, which are of the form xi ≤ 0, and thus
xi = 0. The corresponding Z variables are called non-basic variables and are
zeros. The other D − Z = B variables are called basic variables and can be
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Figure 2.8: Illustration of exterior and interior methods for solving linear
programs

non-zero values. Let xB be the sub-vector of basic variables. The B tight
detection constraints in A can be written as

ABxB = 1 (2.7)

where AB is the square B-by-B submatrix of A linking the basic variables
xB to the tight detection constraints. Furthermore, AB is necessarily non-
singular: since the hyperplanes of all constraints intersect into a single point,
the constraints are linearly independent.

Efficient optimization methods for linear programs generally exploits the
feasible polyhedron convexity, and can be viewed as descent methods. Two
principal families of algorithms, represented in Figure 2.8, dominate linear
programming:

• Exterior descent methods, based on Dantzig’s simplex method, which
moves from vertex to vertex on the feasible polyhedron until it reaches
a basic optimal solution, i.e. a vertex with no decreasing neighbor.

• Interior descent methods, based on Karmarkar’s algorithm, which fol-
low a central path. This path is defined by a variable weighing of the
cost function and constraint functions, trying to improves the solution
values while remaining away from the constraint barriers.

However, descent methods generally cannot be used to solve integer pro-
grams, which are not convex since valid integer solutions are isolated points.

2.4 Polynomial-solvable grid cover problems
The general set cover problem and its integer program formulation are both
NP-hard to solve. However not all grid cover problems are NP-hard. Certain
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specific cases of grid cover problem can be solved in polynomial-time. All
such problems are one-dimensional (M = 1). Interestingly, greedy method or
linear programming can solve to optimality certain but not all cases, despite
the fact that all problems presented in this section can be solved by a strongly
polynomial algorithm based on dynamic programming.

2.4.1 Line cover problem

Consider a two-dimensional radar model, with bounded azimuthal range,
using only connected radiation patterns. This model corresponds to two-
dimensional fixed radars or three-dimensional fixed radars using stacked-
beam. In the associated combinatorial problem, the detection grid has only
one dimension and all discrete covers are connected sets. A one-dimension
grid can be viewed as a line segment, and since the discrete cover are con-
nected sets in this line segment, they represent intervals (see Fig. 2.9). In
this case, finding an optimal radar search pattern can be called a line cover
problem.

Greedy method

For unweighed line covering, where all covers have the same cost Tj = 1, a
straightforward algorithm to solve this problem is the greedy method: among
intervals covering the first not-yet-covered detection cell, choose an interval
covering the furthest cell, and iterate until the line is covered. This method
is detailed in Algorithm 1.

The worst case complexity of Algorithm 1 is O(|C|2). It can be improved
to perform in O(|C| log(|C|)) by sorting in advance the available discrete cov-
ers in increasing order of their starting point, in which the “while” and “for”
loops can be combined in a single loop.

The solution returned by the greedy method is optimal: consider an op-
timal solution pattern S of the problem, and Ca ∈ S the discrete cover over
the first cell, replace Ca by the largest cover Cb which includes the first cell,
and pattern (S \ {Ca})

⋃
{Cb} still yields an optimal solution. Iterating the

process on the rest of the original optimal solution turns it into the greedy

,{                                                       }T4=1
,

C =
T1=1

,
T2=1

,
T5=1 T6=1

,
T3=1

Figure 2.9: Available covers for an example of line cover problem
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Algorithm 1 Greedy method
n← 0 . index of first not-covered cell
S ← ∅ . start with empty pattern

while n < N do . loop as long as not all cells are covered
lbest ← n− 1 . index of last covered cell
for Cj ∈ {C ∈ C : gn ∈ C} do . loop on all covers containing the next cell

l← index of last cell in Cj

if lbest ≤ l then . Keep the cover of the furthest cell
C ← Cj

lbest ← l
end if

end for
S ← S

⋃
{C} . add cover to solution

C ← C \ {C} . remove cover from candidates
n← lbest + 1 . compute next cell to cover

end while

{                                                         }C =
T1=3

,
T2=2

,
T3=3

,
T4=3

ratio=2/3 ratio=1/2 ratio=2/3 ratio=2/3

Figure 2.10: Example for sub-optimality of the greedy method in the
weighted case

method solution while keeping the same cost. Thus the greedy method re-
turns an optimal solution.

However, the greedy method is sub-optimal for weighted problems. In
that case, the logic of the greedy method would be to add at each iteration
the cover maximizing the improvement/cost ratio, i.e. the number of newly
covered cells over the discrete cover cost. In the unweighed case, a larger
discrete cover is strictly better than smaller one, since the former can replace
the latter while preserving optimality of the solution. This is no longer true
with weighed costs, where a discrete cover with a better improvement/cost
ratio (best local choice) can results in sub-optimal solution because of the
general structure of the problem (bad global choice), see Figure 2.10 where
C3 has better ratio than C2 whereas the latter must be used to construct an
optimal solution. The greedy method returns the solution {C1, C3, C4} with
cost 9, whereas the optimal solution {C1, C2, C4} has cost 8.

Dynamic programming

The reason why the greedy method is optimal in the unweighed case is be-
cause the problem possessed an optimal substructure, which means that an
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optimal solution can be constructed by combining solutions of substructures
in the original problem. This type of structure is generally exploited in
dynamic programming. This approach is particularly efficient if the problem
substructure can be broken down into a polynomial number of sub-problems.

Dynamic programming generalizes the iterative approach of the greedy
method, and unlike the latter, returns an optimal solution even for weighed
line covering. In dynamic programming, an optimal pattern covering for the
first n cells is built from an optimal pattern covering the first k (< n) cells.
The n-th sub-problem is defined as “covering {gi : 0 ≤ i < n}, i.e. the first
n cells”. Iterating the process on n yields a valid solution. The method is
detailed in Algorithm 2.

Algorithm 2 Dynamic programming for line cover
S0 ← ∅ . the solution for covering no cells is the empty set

for n ∈ {1, . . . , N} do . loop on all sub-problems
Tbest ← +∞
for C ∈ {C ∈ C : gn−1 ∈ C} do . loop on all covers containing next cell

k ← index of first cell in C
S ← Sk

⋃
{C} . construct candidate solution

TS ←
∑

Cj∈S Tj . compute candidate cost
if (TS ≤ Tbest) then
Sn ← S . keep best valid solution for the n-th sub-problem
Tbest ← TS

end if
end for

end for

The algorithm requires O(N |C|) computational steps. The returned so-
lution pattern is optimal: consider an optimal pattern Sn for the n-th sub-
problem, then Sn contains a discrete cover C including cell gn−1 which starts
at some cell gk. Thus Sn \ {C} is a valid pattern for the k-th sub-problem.
Let Sk be an optimal pattern for the k-th sub-problem. Then Sk ∪ {C} is a
valid pattern for the n-th sub-problem. By optimality of Sn∑

Cj∈Sn

Tj ≤
∑

Cj∈Sk∪{C}

Tj

by optimality of Sk ∑
Cj∈Sn\{C}

Tj ≥
∑
Cj∈Sk

Tj

and by combining the two equations∑
Cj∈Sn\{C}

Tj =
∑
Cj∈Sk

Tj
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= ⋃ } }optimal sub-solution Sk for k cells cover for cells gk through gn-1

gk gn-1...g0 ... gk-1

}optimal solution Sn for n cells

...g0 ... gk-1 gk gn-1... ...... ...

Figure 2.11: Line covering optimal substructure of the n-th sub-problem

so Sn \ {C} is an optimal pattern for the k-th sub-problem and Sk ∪ {C} is
an optimal pattern for the n-th sub-problem.

Any optimal pattern for a given sub-problem is the union of an optimal
pattern for a smaller sub-problem and a cover, as shown in Figure 2.11.
By testing each combination of a cover and its complementary optimal sub-
pattern, dynamic programming sequentially solves all the sub-problems to
optimality.

Unlike the greedy method, the complexity of dynamic programming de-
pends on the grid size N . This will be discussed in more details in 2.4.3.

Linear program integrality

Another approach for solving line cover problems is based on the integer
program linear relaxation. There are some cases when linear programming
can be used to solve exactly integer programs.

The matrix A is called unimodular if it is invertible and detA ∈ {−1, 1}.
A direct consequence of Laplace’s formula A−1 = (detA)−1 comAT , with
comA being the cofactor matrix of A, is that both A and its inverse A−1

have integer coefficients.
The matrix A is said to be totally unimodular if any square regular sub-

matrix AB in A is unimodular. So any basic solution xB = AB
−1 · 1 of

Equation (2.7) has integral values. In such cases, all the vertices of the
convex polyhedron represented in Figure 2.7 are integral points, and a basic
optimal solution of the linear program is also a valid optimal solution of the
integer program. Integer programming is reduced to linear programming,
which has polynomial complexity, as finding a basic optimal solution to a
linear program can be done in polynomial time [28].

And fortunately, in the case of line covering, the constraint matrix A
has the consecutive-ones property, i.e. in a column of A, all values are
zeros or ones, and more importantly all the ones are consecutive. This type
of matrices are also called interval matrices and are known to be totally
unimodular [29]. Using linear programming, line covering can be solved in
polynomial time.
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2.4.2 Circle cover problem

In the case of two-dimensional radar model with full azimuthal range, the
detection grid is no longer bounded and can be represented as a circle, with
no beginning and no end, as displayed in Figure 2.5. Dynamic programming
can still be used to achieve polynomial-time resolution.

The problem still has an optimal substructure. Consider the detection
cells as being numbered in clockwise order starting from any cell: G =
{g0, . . . , gN−1} with cell gN−1 and g0 being neighbours. The (n,w)-th sub-
problem is defined as “covering {gk : k = n + i mod N, 0 ≤ i < w}, i.e the
w cells in clockwise order starting with gn”. A sub-problem can be described
by its (starting) index n ∈ {0, . . . , N−1} and its width w ∈ {1, . . . , N}. The
substructure of circle covering can be viewed as splitting the problem into
all possibles segments on the circle.

Algorithm 3 Dynamic programming for circle cover
for n ∈ {0, . . . , N − 1} do
Sn,0 ← ∅ . the solution for covering no cells is the empty set

end for

for n ∈ {0, . . . , N − 1} do . loop on all sub-problems
for w ∈ {1, . . . , N} do

Tbest ← +∞
l← n+ w − 1 mod N . compute index of the next cell to cover
for C ∈ {C ∈ C : gl ∈ C} do . loop on all covers containing next cell

k ← index of clockwise left-most cell in C

if k − n mod N ≤ l − n mod N then . check if “n ≤ k ≤ l” clockwise
s← k − n mod N . complementary sub-pattern width
S ← Sn,s

⋃
{C} . construct candidate solution

else . otherwise “k < n ≤ l” clockwise
S ← {C} . C suffices to solve current problem

end if

TS ←
∑

Cj∈S Tj . compute candidate cost
if (TS ≤ Tbest) then
Sn,w ← S . keep best valid solution for (n,w)-th sub-problem
Tbest ← TS

end if
end for

end for
end for

Algorithm 3 requires O(N2|C|) computational steps and returns an op-
timal solution pattern: consider an optimal pattern Sn,w for the (n,w)-th
sub-problem with w ≥ 1, then Sn,w contains a discrete cover C starting at
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cell gk (in clockwise order) and including cell gl with l = n+w− 1 mod N .
There are two possible situations:

• “k < n ≤ l” clockwise:
{C} covers the cells {gn, . . . , gl} and is an optimal solution of the (n,w)-
th sub-problem, so Sn,w = {C}.

• “n ≤ k ≤ l” clockwise:
Let s = k − n mod N , then Sn,w \ {C} is a valid pattern for the
(n, s)-th sub-problem. Let Sn,s be an optimal pattern for the (n, s)-
th sub-problem. Then Sn,s ∪ {C} is a valid pattern for the (n,w)-th
sub-problem. By optimality of Sn,w∑

Cj∈Sn,w

Tj ≤
∑

Cj∈Sn,s∪{C}

Tj

by optimality of Sn,s ∑
Cj∈Sn,w\{C}

Tj ≥
∑

Cj∈Sn,s

Tj

and by combining the two equations∑
Cj∈Sn,w\{C}

Tj =
∑

Cj∈Sn,s

Tj

so Sn,w \ {C} is an optimal pattern for the (n, s)-th sub-problem.

Any optimal pattern for a given sub-problem is either a unique cover, or the
union of an optimal pattern for a smaller sub-problem and a cover, see Figure
2.12.

Informally, Algorithm 3 can be viewed as applying N times Algorithm
2, each time taking a different cell as the starting cell of the “line to cover”.
Another approach could be to start with an initial solution S = {C} and
apply Algorithm 2 for covering the rest of the circle G \ C, which can be
laid out as a line; doing this for each available cover C ∈ C and taking the
best solution overall will produce an optimal solution. This approach would
require O(N |C|2). An improved algorithm is presented at the end of the
section.

Integrality gap

Linear programming, however, cannot be used to solve circle covering. In this
problem, the matrix constraint A encoding the discrete covers can be non-
unimodular. The simplest problem instance for which this situation appears
is displayed in Figure 2.13.
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gn

gn+s-1

gl gn} }
optimal subsolution Sk;ssome cover for cell gloptimal subsolution Sn;w

}= ⋃ 
...
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... ...
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gk-1

gl

...

gk...

...

Figure 2.12: Circle covering optimal substructure of the (n,w)-th sub-
problem
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g1

g2 g0

g1
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Figure 2.13: Example of non-integral circle cover problem

The relaxed linear program has constraint matrix

A =

1 0 1
1 1 0
0 1 1


with det(A) = 2 and yields the unique fractional optimal solution xL =
(1
2

1
2

1
2
)T , which combines a weighing of all three covers to produce the optimal

fractional pattern, and is strictly better than an integral optimal solution,
say xI = (1 1 0)T . The difference of cost between both solutions is called the
integrality gap, here TT · (xI − xL) = 1

2
.

xL is the optimal solution to the corresponding fractional set cover prob-
lem, where pattern solutions can contains fractions of discrete covers. This
situation is not dependant on the integer program encoding (i.e. how the
problem is transformed into matrix formulation). Problems with a non-null
integrality gap are thus non-integral, and are intrinsically unsolvable by linear
relaxation.

Interestingly, despite being non-integral, the circle cover problem can be
solved in polynomial time through dynamic programming. This gives a prac-
tical case of a non-integral problem which is still polynomially solvable.
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C = g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13

c =(                                )T0 10 0 0 0 0 0 01 1 1 1 1

compressed

uncompressed

C = (     ) = (     ) 8 3

= =

b
b

Figure 2.14: Uncompressed boolean vector (top) and compressed logarithmic
encoding (bottom)

2.4.3 Logarithmic encoding

All problems presented in this section can be solved in polynomial time us-
ing dynamic programming. However, the computational complexity of the
corresponding algorithms is polynomial in N , the “grid size”. If the problem
input is given in matrix formulation, i.e. c and A, then the encoding size of
the input is |C|N , and the algorithm is truly polynomial.

But with interval covers, this encoding scheme is obviously suboptimal,
since an interval can be described using only two integers, its starting index
a and its ending index b, see Figure 2.14. The number of bits required to
encode indexes in {0, . . . , N − 1} is p = dlog2(N)e, and the encoding size
of a compressed input is |C|2p. For this input size, Algorithm 2 complexity
is O(|C|2p) and Algorithm 3 complexity is O(|C|4p), thus polynomial in the
number of input values, but exponential in the number of bits used to encode
the values. Such algorithms are said to be pseudo-polynomial.

Problems with pseudo-polynomial algorithm can be NP-complete when
considering the logarithmic cost, i.e. the computational cost on a determinis-
tic machine using bits to encode values. Such problems are said to be weakly
NP-complete. An example of a weakly NP-complete problem is the knapsack
problem, which also possesses a dynamic programming pseudo-polynomial
algorithm [10].

2.4.4 Input reduction

For the cover problems presented in this section, however, it is possible to
design a true polynomial algorithm, by using a reduction method before
dynamic programming. This method, called input reduction is detailed in
Algorithm 4 and graphically represented in Figure 2.15.

Input reduction modifies the problem instance by keeping only cells which
corresponds to a cover starting index or a post-ending index (cover ending
index “plus one”), represented in blue in Figure 2.15. In other words, it only
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Algorithm 4 Input reduction
Input : C = {(aj , bj)}1≤j≤D with aj , bj integers encoded with p bits

G′ ←
⋃

(a,b)∈C{a, b+ 1}}
Sort G′ and remove duplicates

C′ ← ∅
for (a, b) ∈ C do

a′ ← index of a in G′

b′ ← ( index of b+ 1 in G′)− 1
C′ ← C′ ∪ (a′, b′)

end for

Output : C′ = {(f ′j , l′j)}1≤j≤D with f ′j , l′j integers encoded with p bits

{                 }{                              }C =

,
,
,
,
,

C' =

,
,
,
,
,

G =

redundant cell
non-redundant cell

G'= g0 g3 g4 g5 g7 g8 g11g0 g3 g4 g5 g7 g8 g11

Figure 2.15: Input reduction of the original problem instance (top-left) into
a reduced instance (right) by removing redundant detection cells, from the
grid (bottom-left)
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keeps a cell if it has different candidate covers than the previous cell.
Let gn be a detection cell which is neither the start nor the post-end cell

of a cover. Since n is not a cover starting index, any cover over gn also covers
gn−1. Since n is not the post-ending index of a cover, then n − 1 is not the
ending index of a cover, and any cover over gn−1 also covers gn. So gn−1
and gn have the same covers, i.e. ∀C ∈ C, gn−1 ∈ C ⇔ gn ∈ C, and the
detection constraint over gn is redundant to the detection constraint over
gn−1. Removing the former does not change the problem instance structure,
nor the optimal solutions. By induction, it is possible to remove all such
detection cells, without changing the instance structure, such that (G, C)
and (G′, C ′) have the same solutions with the same costs.

This approach can be viewed as a form of constraint reduction, as it
removes redundant constraints. A redundant constraint corresponds to a
detection cell in which “there is no change” relatively to the previous cell,
represented in red in Figure 2.15. The constraint reduction implemented
in Algorithm 4 is specific to one-dimensional problems. A more general
constraint reduction method, suitable for some bi-dimensional problems, is
presented in 4.2.2.

Computing and sorting G′ takes O (|C| log |C|) steps or O (p|C| log |C|) bit
operations, with the new grid G′ containing at most 2|C| elements. For each
cover, finding the new start and end indexes by dichotomic search takes
O (log |C|) steps or O (p log |C|) bit operations. Thus the logarithmic cost of
input reduction is O (p|C| log |C|). Each new index can be encoded using

dlog2(2|C|)e = 1 + dlog2 |C|e

bits. The output C ′ is encoded using at most 2|C| (1 + dlog2 |C|e) bits.
Applying Algorithm 3 on the reduced input takes O(|C|2|C|) = O(|C|3)

steps. Taking into account the values encoding in 1 + dlog2 |C|e bits, each
step has logarithmic cost O(log |C|), so the logarithmic cost of Algorithm 3
is O (|C|3 log |C|). By similar reasoning, the logarithmic cost of Algorithm 2
is O (|C|2 log |C|).

The overall logarithmic cost of input reduction followed by circle dynamic
programming is

O
(
(|C|2 + p)|C| log |C|

)
and by similar reasoning, the overall logarithmic cost for input reduction
followed by line dynamic programming is

O ((|C|+ p)|C| log |C|)

and both line covering and circle covering can be solved in true polynomial
time.
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Strongly polynomial algorithms

They can in fact be solved in strongly polynomial time, a stronger property.
An algorithm is said to be strongly polynomial if its arithmetic cost, i.e. the
cost when considering arithmetic operations as single computational steps
regardless of encoding size, is polynomial in the number of input values. This
usually indicates than the number of steps in the algorithm does not depend
on the input size and the algorithm performances do not deteriorate too
much when inputting large values. A counter-example is Euclid’s algorithm
for computing the greatest common divisor, whose input is only two numbers,
but whose performances decreases when their values grow.

The arithmetic cost of input reduction is O (|C| log |C|), obtained by re-
placing O(p) by O(1) in the logarithmic cost, since the p factor only appear
as the logarithmic cost of comparisons, and the arithmetic cost of Algorithm
2 is O (|C|2), making the overall cost of input reduction followed by circle
dynamic programming

O (|C|(1 + log |C|))

and similarly the arithmetic cost of Algorithm 3 isO (|C|3), making the overall
cost of input reduction followed by circle dynamic programming

O
(
|C|2(1 + log |C|)

)
proving that all radar cover problems presented in this section are solvable
in strongly polynomial time.

2.5 NP-hard grid cover problems
In this section are presented the remaining grid cover problems, which are
all NP-complete in their decision form. This includes problems on a bi-
dimensional grid, and problems using disconnected discrete covers, even on
a one-dimensional grid. This means that three-dimensional radar models
produce NP-hard optimization problems.

2.5.1 Rectangular grid cover problem

In practice, it is reasonable to approximate the grid cover problem associated
to a three-dimensional radar by considering only rectangular-shaped covers
[30]. The corresponding radiation patterns are simpler to synthesize, and
the number of rectangles on the grid grows in O(M2N2) keeping the avail-
able discrete covers database size reasonable while offering enough choice
for producing good quality radar patterns. The corresponding combinatorial

51



CHAPTER 2. OPTIMIZATION THEORY AND COMPLEXITY

= ⋃ }
optimal structure solution

}
optimal substructure solution

}
additional cover

= ⋃ }
optimal solution

}
optimal substructure solution

}
last cover...

C C

Figure 2.16: Optimal solution decomposition (top), and substructure after
multiple decompositions (bottom)

problem amounts to rectangular grid covering, and an example instance is
presented in Figure 2.2.

Dynamic programming approach

Considering the algorithms presented in the previous section 2.4, a natural
attempt to solve rectangular grid covering would be to generalize the dynamic
programming approach used on one-dimensional grids to bi-dimensional grids.

Consider an optimal solution for the rectangular grid cover problem. It
can be viewed as a combination of a rectangular cover C including the last
bottom-right cell and an optimal sub-pattern covering the remaining “top-
left” cells. By iterating the decomposition process, the grid cover sub-problem
is the cover problem of a “top-left” part of the grid G, see Figure 2.16.

The number of sub-problems is equal to the number of way of cutting
G into two sets: a top-left part and a bottom-right part. Equivalently, this
is equal to the number of paths between the top-right corner cell and the
bottom-left corner cell of G, see 2.17.

A cut is constituted by N +M edges on the grid, with M vertical edges
and N horizontal edges. Any cut can be defined uniquely by choosing the
N vertical edges (or equivalently M horizontal edges) among the N + M
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first substructure
second substructure
substructure cut

Figure 2.17: Substructure decomposition of line cover problem (left), circle
cover problem (center) and grid cover problem (right)

edges. So the number of possible paths between two opposite corners of G,
and thus the number of cover sub-problems on G is

(
N+M
N

)
=
(
N+M
M

)
. This

term grows much faster than for line covering, which has N possible cuts, or
circle covering, which has

(
N
2

)
possible cuts, see Figure 2.16.

Let K = min{N,M}, then the number of possible cuts can be bound
below by the following approximation using Stirling’s formula(

N +M

N

)
≥
(

2K

K

)
'
√

2π2K(2K)2K

e2K

(
eK√

2πKKK

)2

=
22K

√
πK

Thus, the number of sub-problems to solve grows exponentially with the
grid size: an increase by 10 of the grid size increases the number of sub-
problems by approximately 22·10 ≈ 106. Even for small values, the number
of sub-problems explodes:

N = M 10 20 30 40 50(
2N
N

)
' 105 ' 1011 ' 1017 ' 1023 ' 1029

Table 2.1: Number of sub-problems

So while theoretically usable for rectangular grid covering, dynamic pro-
gramming has an exponential complexity for this problem, making the ap-
proach rather inefficient. This hints that bi-dimensional grid cover problems
are computationally harder than than previous one-dimensional problems.

Note that straightforward linear programming fares no better, as the
matrix formulation of a rectangular grid cover problem can also yield a non-
totally unimodular matrix A, such as the example given in Figure 2.2, for
which the optimal cost is 11

2
, one optimal solution being xL = (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
)T .

NP-hardness

All problems presented in this chapter can be reduced to the general set
cover problem (as formulated in Equation 2.1), or can be reduced to integer
programming (as formulated in Equation 2.2), and are thus in NP. However,
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not all of them are necessary NP-hard, with polynomial counter-examples
given in the previous section 2.4.

The classical way for proving NP-hardness is to find a polynomial re-
duction from an already known NP-hard decision problem to the considered
problem. In other words, by showing that there is a polynomial algorithm to
turn any instance of the former problem into an instance of the latter. This
is called a Karp reduction [26], and by transitivity proves that any problem
in NP can be polynomially reduced to the studied problem.

A common candidate for NP-hardness proofs is the vertex cover problem,
which is known to be NP-complete [11] and is defined as follow: let (V , E) be
a graph, let K ∈ N. Is there a subset U ⊂ V with cardinal |U| ≤ K such that
∀v ∈ V , ∃v′ ∈ U with (v, v′) ∈ E ? In other words, is there a subset of less
than K selected vertices, such that any vertex in the graph has a common
edge with a selected vertex ? An instance of the vertex cover problem is
defined by the system (V , E , K).

The decision version of the rectangular grid cover problem is defined as:
let G be a M -by-N rectangular grid, let C = {C1, . . . , CD} be a collection
of rectangular-shaped discrete covers on G, and let F ∈ N. Is there a valid
pattern S ⊂ C covering the grid, with |S| ≤ F ? An instance of the decision
rectangular grid cover problem is defined by the system (G, C, F ) and can be
encoded by a NMD boolean array using the matrix formulation (2.2).

Below is described a procedure for reducing a vertex cover problem in-
stance (V , E , K) into a decision rectangular grid cover problem instance
(G, C, F ).

Let the vertices and edges of the graph be ordered as V = {v0, . . . , v|V|−1}
and E = {e0, . . . , e|E|−1}. Each edge is described by a pair of distinct vertices
em = (vi, vj) with i < j.

Let G be a |E|-by-3|V| rectangular grid. Each row of the grid can be
viewed as representing an edge, and each block of three columns represent a
vertex, see Figure 2.18. A practical example is shown in Figure 2.24. Three
types of rectangular covers are defined on the grid:

• Column covers: for each vertex vi, the column cover representing
said vertex is the central column of the block column

Vi = {gm,3i+1 : 0 ≤ m < M}

see Figure 2.19. Formally, the set of column covers is

CV = {Vi : vi ∈ V}
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g0,0 g0,1 g0,2

v0 vi
e0

e|E|-1

v|V|-1

ek gk,3i gk,3i+1 gk,3i+2

g0,N-1

gM-1,N-1gM-1,0

N=3|V|

M=|E|

Figure 2.18: Reduction grid of vertex covering into rectangular grid covering

Vi =

vivi-1 vi+1

Figure 2.19: Column cover

• Side-row covers: for each edge ek = (vi, vj), the left side-row cover
includes the beginning of the edge row, up to the left column of the vi
block-column

Lk = {gk,n : 0 ≤ n ≤ 3i}

and similarly the right side-row cover includes the end of the edge row,
starting from the right column of the vj block-column

Rk = {gk,n : 3j + 2 ≤ n < N}

see Figure 2.20. Formally, the set of side-row covers is

CS = {Lk : ek = (vi, vj) ∈ E} ∪ {Rk : ek = (vi, vj) ∈ E}

Side-row covers are all required to be in a valid pattern, since each is
the only cover for either the first or last cell of the row. Thus only the
“central part”, i.e. Hk = {gk,n : 3i + 1 ≤ n ≤ 3j + 1}, of each row still
has to be covered.

• Center-row covers: for each edge ek = (vi, vj), the “central part” Hk

of the edge row is partially covered if the pattern contains a column
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Lk =

Rk =

ek

ek

gk,3i gk,3i+1 gk,3i+2gk,0

gk,3j gk,3j+1 gk,3j+2 gk,M-1

vi vj

vjvi

Figure 2.20: Side-row covers

ek gk,3i gk,3i+1 gk,3i+2gk,0 gk,3j gk,3j+1 gk,3j+2 gk,M-1

vi vj{
Hk

Figure 2.21: The “central part” Hk

cover. The remaining uncovered cells can be covered by the left center-
row cover

Ak = {gk,n : 3i+ 1 ≤ n ≤ 3j}

to complement the column cover Vj, or by the right center-row cover

Bk = {gk,n : 3i+ 2 ≤ n ≤ 3j + 1}

to complement the column cover Vi. Thus either combination can cover
the row “central part” since Hk ⊂ Ak ∪Vj and Hk ⊂ Vi∪Bk. Note that
Hk can also be covered by Ak∪Bk, but covering Hk requires two covers
in any case. The three possibles configurations are shown in Figure
2.23. The set of all center-row covers is

CH = {Ak : ek =∈ E} ∪ {Bk : ek =∈ E}

While center-row covers are not all compulsory, for each row one of
the two center-row covers must be in the pattern, as they are the only
rectangular covers for cells {gk,n : 3i+ 2 ≤ n ≤ 3j} which are between
the two columns Vi and Vj.
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Ak =

Bk =
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ek

gk,3i gk,3i+1 gk,3i+2
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Figure 2.22: Center-row covers

{

Ak Vj

{
BkVi

{
Ak

{Bk

Figure 2.23: The three configurations for covering Hk

So for each row on the grid, the two side-row covers are required. And at
least one of the two center-row covers is also required. Thus a valid pattern
contains at least 3|E| covers.

Let the set of all rectangular covers be

C = CV ∪ CS ∪ CH
The grid cover instance (G, C, 3|E| + K) has a solution if and only if the
vertex cover problem instance (V , E , K) has a solution. Figure 2.25 present
a pair of solutions for the reduction example in Figure 2.24.

Suppose there is a valid solution U with |U| ≤ K for problem (V , E , K).
Let SU = {Vi : vi ∈ U} ⊂ CV , thus being the set of column covers corre-
sponding to the vertices in vertex cover U .

For each edge ek = (vi, vj), either Vi ∈ SU or Vj ∈ SU . Let Ek be the
center-row cover complementing the “central part”:

Ek =

{
Ak if Vj ∈ U
Bk otherwise

and the corresponding row is covered by Lk ∪Ek ∪ Vi ∪Rk for some Vi ∈ SU .
So S = SU∪{Ek : ek ∈ E}∪CS is a valid pattern containing K+ |E|+2|E| ele-
ments and thus a solution for the grid cover problem instance (G, C, 3|E|+K).
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Figure 2.24: Example of a vertex cover reduction to rectangular grid cover,
with the input graph (top-left), reduction grid (top-right) and rectangular
covers (bottom)
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L0

L1

L2

R0

B1

B2
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Figure 2.25: Solution for vertex cover problem (left) and corresponding so-
lution for grid cover reduction (right)

Conversely, suppose there is a valid solution S with |S| ≤ 3|E| + K for
the grid cover problem instance (G, C, 3|E|+K).

For each row, there is at least one center-row cover. Suppose there is an
edge ek = (vi, vj) whose row is covered by the two center-row covers. Then
one of the two covers can be replaced by a column cover: (S ← S∪{Vi})\{Bk}
without changing the cardinality of the solution: |S| ≤ |E| + 3K. Iterating
this process produces a pattern for which there is exactly one center-row
cover per row.

Thus the “central part” Hk of each row is covered by a combination of a
center-row cover and a column cover: either Ak ∪ Vj or Bm ∪ Vi. So for each
edge ek = (vi, vj), the pattern S contains a column cover of one its vertex:
Vi or Vj, and U = {vi : Vi ∈ S ∩ CV} is a valid vertex cover. Furthermore

|U| = |S ∩ CV | = |(S \ CH) \ CS| = |S| − |E| − 2|E| = |S| − 3|E| ≤ K

since S contains one cover from CH per row and all covers in CS. U is thus a
valid solution for vertex cover problem (V , E , K).

So there is a solution for the graph problem (V , E , K) if and only if there
is a solution for grid problem (G, C, 3|E|+K). All that is left is to check that
the reduction is polynomial. Suppose the reduced grid problem is encoded
using binary matrices. Each rectangular cover has 3|V||E| boolean elements,
and C contains |V| + 4|E| rectangular covers. Generating all covers takes
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at O (3|V|2|E|+ 12|V||E|2) operations and the problem instance is encoded
using 3|V|2|E|+12|V||E|2 bits. So the reduction is polynomial and rectangular
grid covering is NP-hard.

Note that it is possible to compress the problem encoding, similarly to the
interval cover problem, since rectangles on a M -by-N grid can be described
by four integer values defining the top-left and bottom-right corner. So the
problem can be encoded in 2(log2(3|V|) + log2 |E|)(|V|+ 4|E|) bits. Since the
“uncompressed” problem is already NP-hard, the “compressed” problem is
said to be strongly NP-hard, i.e. it has a pseudo-polynomial algorithm only
if P=NP.

Approximability

There is currently no known methods for solving efficiently NP-hard prob-
lems, and there might never be. Thus an important field in optimization is
the research of polynomial approximation algorithms, which returns in poly-
nomial time a valid non-optimal solution, however guaranteed to be within
a certain ratio of the optimal cost for the problem. For a minimization prob-
lem, an algorithm is said to be an α-approximation algorithm if it returns
a solution with cost Fapx such that Fapx ≤ αFopt with Fopt the cost of an
optimal solution.

Unfortunately, covering problems are not easy to approximate in general.
The general set cover problem is known to be log-approximable [13], using the
greedy method which return a solution whose value is at most log(|G|) times
the optimal cost. But it is also log-APX-complete [16], meaning set cover
problem is at least as hard as all other problems which are log-approximable.

Specific cases of the set cover problem can achieved better approximations
however. The minimum vertex cover problem has a 2-approximation algo-
rithm [26]. In fact, all covers problem with a constant frequency parameter
f can be f -approximated using a primal-dual algorithm [31]. The frequency
factor is defined as

f = max
i
|{j : gi ∈ Cj ∧ Cj ∈ C}|

and represents the maximum number of times an element appears in the
collection of available sets, or using radar terminology the maximum num-
ber of overlaps of dwells discrete cover. This value is however not bound
in general, and thus the primal-dual approach does not guarantee constant
approximation ratio in all cases.

The minimum vertex cover problem is also known to be APX-complete,
meaning at least as hard as all problems approximable in constant ratio.
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While the previous reduction of vertex covering to rectangular grid covering
is polynomial, it is not an approximation-preserving reduction:

Consider a graph (V , E), for which a minimum vertex cover has optimal
cardinal Kopt. The decision vertex cover instance (V , E , Kopt) is true and
the decision instance (V , E , Kopt − 1) is false. The grid cover problem (G, C)
obtained via the reduction presented previously has thus an optimal solution
with cost Fopt = 3|E|+Kopt.

Suppose there is an α-approximation algorithm for the grid cover problem,
which returns an approximated solution with cost Fapx ≤ αFopt = α(3|E| +
Kopt). From this solution, an approximation vertex cover for the original
problem can be computed by replacing and removing center-row and side-
row covers, as has been done at the end of the NP-hardness proof. The
approximation vertex cover has a cost

Kapx = Fapx − 3|E| ≤ α(3|E|+Kopt)− 3|E| = αKopt + (α− 1)3|E|

But this cost can be arbitrarily high since a graph with a size-bounded opti-
mal vertex cover can have an arbitrarily high number of edges, for example
a star graph Sk. So there is no ratio β such that (α − 1)3|E| ≤ βKopt, and
the reduction is not approximation-preserving. The exact approximability of
the rectangular grid covering remains an open question, though the problem
is at worst log-approximable.

2.5.2 Connected grid cover problem

The radar model with connected dwell discrete covers is a more general case
of the previous problem where the set of available discrete covers can contains
any kind of connected shape, according to the definition given in 2.2.3. Since
rectangular shapes are valid connected shape, the problem is immediately
NP-hard, as any problem instance of rectangular grid covering is a valid
instance of connected grid covering. However, an alternate reduction from
the general set cover problem can be made.

Let (G, C, K) be an instance for the general set cover problem. Let G′ be
a 2-by-|G|. For each cover Cj ∈ C, let

C ′j = {g′0,i ∈ G′ : gi ∈ Cj} ∪ {g1,0, . . . , g1,|G|}

such that the first line of cover C ′j replicates Cj, while the second line of C ′j
contains all elements on the second line of G′, see Figure 2.26, ensuring that
C ′j is a connected set. Let C ′ = {C ′j : Cj ∈ C}.

Suppose S ∈ C is a solution for set cover problem instance (G, C, K) and
let S ′ = {C ′j : Cj ∈ S}. For any detection cell gi ∈ G, there is Cj ∈ S such
that gi ∈ Cj and thus g′0,i ∈ Cj, furthermore g′1,i ∈ C ′j.
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Figure 2.26: Reduction from general set covering to connected grid covering

So S ′ is valid solution with |S ′| = |S| = K for the connected grid cover
problem instance (G′, C ′, K). In a similar manner, it is straightforward to
show that if S ′ ⊂ C ′ is valid solution for a problem instance (G′, C ′, K), then
S = {Cj : C ′j ∈ S ′} is a valid solution for (G,C,K).

Thus S is a solution for (G,C,K) if and only if S ′ is a solution for
(G′, C ′, K) and the two problems are computationally equivalent. This re-
duction keeps the same cost function for both problems, and is stronger than
for the previous reduction of vertex covering to rectangular grid covering,
as it preserves approximation properties. Thus connected grid covering is
NP-hard, and also log-APX-complete, like general set covering [16].

2.6 Branch-and-bound

In practice, NP-hard optimization problems such as general set covering en-
countered in industrial settings are often solved by branch-and-bound, a com-
binatorial optimization paradigm whose principle is to explore the decision
space searching for a good solution. Its key feature is to avoid exhaustive
enumeration of entire branches of the space by bound estimation, hence its
name [32]. Despite lacking provably good worst-case theoretical complexity,
branch-and-bound generally performs efficiently on practical cases.

2.6.1 Description

The decision space of all possible solutions can be represented as a finite
binary tree with depth p, each node representing the value choice of an integer
variable, see Figure 2.27. Each end leaf represents a solution for the integer
program. The number of possible solutions is finite, but grows exponentially
and is usually huge: in the case of a cover problem with D candidate covers,
there is 2D possible pattern solutions.

Exploring the entire tree is computationally infeasible in reasonable time.
However it is possible at each node to estimate a lower bound of the node
sub-tree best solution, by solving its linear relaxation with methods previ-
ously described in 2.3.3. Knowing their lower bound, it is possible to avoid
exploring certain subsets:
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Figure 2.27: Finite tree of solutions (left) and branch-and-bound method
(right)

• Branching: Each branch at the current node (with depth i− 1) corre-
spond to a chosen value, 0 or 1, for the next variable xi. In each branch,
xi is no longer a variable but a parameter. The current problem is thus
divided into 2 smaller sub-problems, each considering a different value
for xi and each having one less variable.

• Bounding: The current problem is relaxed into a linear program, whose
solution is a lower bound of the current problem best solution. Depend-
ing on the lower bound value, the node sub-tree will be explored next
(if it is the most promising branch), later (if there is a more promising
branch), or never (if a better solution has already be found in another
branch).

Defining what a promising branch is a difficult question, a lower bound
is not necessarily better since deeper nodes may have higher bounds while
being closer to optimal solutions. Integer programming solvers usually rely
on various heuristics to define the exploration strategy and improve bound
estimations.

2.6.2 Algorithm

A description of the branch-and-bound method is given below. Algorithm
5 details the corresponding pseudo-code. Each node in the tree can be de-
scribed by the sequence of choices leading to this node from the root node

N = (x1, x2, . . . , xd)

and each node has two children N0 = (x1, . . . , xd, 0) and N1 = (x1, . . . , xd, 1).
At each node N explored, the first d variables (x1, x2, . . . , xd) are set, and a
linear relaxation of the problem is solved with respect to the remaining free
variables (xd+1, . . . , xD), then add N to the list of nodes to explore.
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The algorithm can be summarized by the following steps:

0. Initialization:
Initialize the list of node to explore with the root node.

1. Exploration:
Pop next node to explore from the list of nodes and solve its linear
relaxation.

2. Bounding:
If the current node relaxation value is less than the current best solution
found, proceed to Step 3, otherwise, drop current node and go back to
Step 1.

3. Update:
If the current node relaxation is an integral solution, then its an improv-
ing solution (note that an end leaf always yield an integral solution).
Update best current solution and proceed to Step 1.
Otherwise:

4. Branching:
Compute the current node children. For each child, check if the descen-
dants contains a valid solution (this can be done by summing covers
already used by the parent, the cover of the child node if used, and
covers available to the descendants). If the child node is valid, add it
to the list of node to explore. Proceed to Step 1.

This very generic description is just a presentation of the general idea
of the method. Efficient implementations of the branch-and-method usually
combined several techniques such as cutting planes, diving heuristics and
local branching to improve bounds estimation and speed.

2.6.3 Example

The branch-and-bound method is applied on the example from Figure 2.2,
described by the integer program (2.3), see Figure 2.28:

• N = {}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Solving the root relaxation yields the linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
)

with cost 11
2
≤ 13. Root node children (0) and (1) are feasible, and

thus added to the exploration list N := {(0), (1)}
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Algorithm 5 Branch-and-bound
% lp_solve is the relaxation subroutine called during branching
function lp_solve(N)

(x1, . . . , xd−1) := N . node N sets first d− 1 variables
(xd, . . . , xD) := argmin{

∑D
j=d Tjxj : A · x ≥ 1} . optimize free variables

return xL := (x1, . . . , xd, xd+1, . . . , xD)
end function

% Initialization
Nroot = ()
N := {Nroot} . start with root node
xbest := xF = (1 · · · 1) . best current solution (default is xF )

% Exploration
while N is not empty do

N := pop(N ) . take next node in N
xL := lp_solve(N) . solve node relaxation

% Bounding
if TT · xL < TT · xbest then . explore node N if improvement is possible

% Update
if xL ∈ {0, 1}D then . check if xL is an integral solution

xbest := xL

else
(x1, . . . , xd) := N

% Branching
for x ∈ {0, 1} do . compute children of node N

Nc := (x1, . . . , xd, x)
if A · (x1 · · · xd x 1 · · · 1)T ≥ 1 then . check child feasibility
N := N ∪ {Nc} . add child to candidate list

end if
end for

end if
end if

end while
return xbest
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Figure 2.28: Branch-and-bound application example

• N = {(0), (1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (0) yields the same linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
) with

cost 11
2
. We add the children (0, 0) and (0, 1) to the exploration list

N := {(1), (0, 0), (0, 1)}

• N = {(1), (0, 0), (0, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT ·xbest = 13 :
Relaxation of (1) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
)

with cost 15
2
< 13. We add the children (0, 0) and (0, 1) to the explo-

ration list N := {(1, 0), (1, 1)}

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest =
TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1)
with cost 6 < 13. xL is an integral solution, thus we update the best
current solution xbest := xL; fbest := 6.

At this point, it can be deduced that xbest is an integer optimal solution.
The root relaxation has linear optimal cost 11

2
. By bounding, any integer

solution has an integer cost greater than the linear optimal cost 11
2
, so greater

than 6 = d11
2
e. This suffices to prove the optimality of xbest = (0 0 1 1 0 0 1 1)

for the integer program (2.3).

2.6.4 Just-in-time criteria

One of the most interesting features of the branch-and-bound method from
an operational point of view is the possibility to use a “just-in-time” criteria.
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For example, a radar system with an embedded computer must optimize its
cover just before a mission start. However, it only has five minutes to perform
the optimization. A “just-in-time” criteria impose a time limit ensuring that
even if the optimum has not been reached, the algorithm will return the best
solution it found in the available lapse of time. Another advantage is the
lower bound of the optimal cost provided by linear relaxation:

BN = min{TT · xL : xL = LP_SOLVE(N), N ∈ N}

thus during the computation, the method always has an confidence interval
for the optimal solution value, above the lower bound but below the current
best value:

BN ≤ T · xopt ≤ T · xbest
Knowing the lower bound, the (worst-case) relative optimality gap is:

∆opt =
T · xbest −BN

BN

which give as a percentage the best possible gain for an optimal solution rel-
atively to the current best solution. The pseudo-code modifications required
to account for a time limit and provide the current lower bound are described
in Algorithm 6.

Algorithm 6 Just-in-time branch-and-bound
% Exploration
current_time := time() . Get current time
while N is not empty AND current_time ≤ time_limit do

...
end while
return Xbest, BN

In practice, if the algorithm has a broad choice of available covers, it
will find very quickly a good quality solution. Typically within ≤ 10% of
relative optimality gap. However closing those last percents to reach the
optimal solution can be difficult. Because the decision space is often huge,
the algorithm spends a long time crossing out possibilities. In some case
even, the algorithm finds quickly the optimal solution, and spends a long
time proving its optimality.
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Chapter 3

Radar search pattern
optimization

Multi-function radars usually perform multiple tasks simultaneously, such as
scanning, target tracking and identification, clutter mapping, etc. [33, 34,
35, 36]. Electronic scanning and numerical processing allow dynamical use
of beam-steering, beam-forming, dwell scheduling and waveform processing
to adapt to operational requirements. As complex situations can result in
system overload, multi-function radars must optimize resources allocation to
ensure robust detection. Optimization of the radar search pattern minimizes
the required time-budget for radar scanning, thus freeing resources for other
tasks.

In the past several works have explored various approaches for optimiza-
tion of the radar search pattern: [37, 38] optimized scanning by tiling iden-
tical pencil beams over the surveillance space, [39] developed adaptive acti-
vation strategies on a pre-designed radar search pattern. Those approaches
however do not fully use active radars capabilities to dynamically perform
beam-forming. A similar problem is wireless network covering: for a given
base station and given clients, ensure connection for all clients using a mini-
mal numbers of directive antenna [40, 41]. Radar search covering and wireless
network covering have similar underlying mathematical structures with both
being covering problems.

3.1 General optimization problem

A radar search pattern is a collection of dwells ensuring detection over the
surveillance space. An optimal radar search pattern achieves detection using
a minimum time-budget. The surveillance space AS defines the azimuth-
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Figure 3.1: Surveillance space in 3D (left), in azimuth/elevation (center), in
direction cosines (right)

elevation scanning range, see Figure 3.1:

AS = [azmin, azmax]× [elmin, elmax] ∈⊂ [−π
2
,
π

2
]× [0,

π

2
]

where az and el are respectively the azimuth and elevation angles in radians.

3.1.1 Detection constraint

The radar search pattern must ensure detection for a given mission with
requirements defined by several parameters:

• σ is the radar cross-section of the target type.

• Rc : AS → R+ is the desired detection range. In general, the desired
detection range is defined by height Hmin and distance Dmin, see Figure
3.2:

Rc(az, el) =

{
Dmin if el ≤ asin

(
Hmin

Dmin

)
Hmin

sin(el)
otherwise

• i ∈ {0, · · · , 4} is the Swerling model [8].

• Pd ∈]0, 1[ is the desired detection probability and Pfa ∈]0, 1[ is the
desired false alarm probability.

The radar search pattern ensures detection if for each direction (az, el) ∈
AS, the radar search pattern contains at least one dwell capable of detecting
a target with radar cross-section σ at range Rc(az, el) with at least detection
probability Pd and at most false alarm probability Pfa.

Each dwell has a processing time, the time duration of its associated wave-
form, during which the radar cannot perform other action, whether emitting
another dwell or accomplishing tracking tasks. The radar search pattern
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el

az

el=0

Figure 3.2: Desired detection range (top), azimuth cut (bottom-left), eleva-
tion cut (bottom-right)

time-budget is the sum of all its dwells associated waveform duration, thus
the time taken to perform the entire radar search pattern. The optimization
problem is to find a radar search pattern ensuring the detection constraint
for a minimal time-budget.

3.1.2 Radar system parameters

To achieve the detection requirements described previously, an available
radar system is described by the following parameters:

• Radar peak power : Pp

• Phased array dimensions parameters : M, N, dx, dz

and this system has access to database of waveforms

W = {w1, . . . , wP}

each waveform w ∈ W being described by:

• Its duration Tw

• Its average dutycycle fw
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• Its carrier wavelength λw

• Its required signal-to-noise ratio sw for desired detection and false alarm
probabilities, which can either come from measurements or simula-
tions, or either be computed using the waveform model described in
1.5, knowing the number of bursts Nb and the detection threshold Kb

in the waveform.

3.1.3 Digital beamforming processing limit

A dwell d ensures detection over the surveillance space subset

Ad = {(az, el) ∈ AS : Rd(az, el) ≥ Rc(az, el)} (3.1)

whose area is limited by the radar maximum digital beamforming scanning
area Amax

Ad =

∫∫
Ad
dudv ≤ Amax

3.1.4 Problem statement

Finding a radar search pattern Sopt ensuring the detection constraint over
the surveillance space with minimal time-budget is a minimization problem
under constraints:

min
∑

0≤j≤J

Twj (3.2a)

s.t. S = {dj, 0 ≤ j ≤ J}, J ∈ N (3.2b)

AS ⊂
⋃
d∈S

Ad (3.2c)

∀d ∈ S, Ad =

∫∫
Ad
dudv ≤ Amax (3.2d)

The problem amounts to finding a radar search pattern S containing a fi-
nite number of dwells (3.2b), validating detection constraint over the entire
surveillance space for the given mission (3.2c), with each dwell processable
at reception (3.2d), and using minimal radar time-budget (3.2a).

3.2 Problem discrete approximation
The general optimization problem is difficult to solve for several reasons:
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• continuous variables in the phase-amplitude illumination law of each
dwell radiation pattern mixed with discrete variables for each dwell
waveform choice.

• the number of variables is not set, as it depends on the number of
dwells, introducing a “meta-variable”.

• the desired detection range Rc is not generally a convex function.

It is thus a non-convex mixed optimization problem, with potentially a large
varying number of variables. A more sensible way to tackle this problem is
to approximate it as a combinatorial set cover problem, since it intuitively
possesses a similar structure as a covering problem.

The approximation turning the general problem into a combinatorial set
cover problem relies on two assumptions:

• The use of discrete grid representing the surveillance space. In the
original problem, there is no quantification of the surveillance space,
which is a continuous set.

• The restriction to rectangular radiation patterns. A phased array an-
tenna can theoretically produce all sorts of beam-shaped radiation pat-
terns, and the set of possible patterns is in fact continuous. This is
impractical for a combinatorial formulation, which requires a finite set
sampled amongst all possibilities. Choosing this set as the collection of
all possible rectangular patterns offers a broad choice of covering while
avoiding combinatorial explosion of oversampling.

Under those assumptions, the procedure for approximating a solution to
the general problem can be divided into three steps:

• space quantification: the definition of finite bi-dimensional grid cover-
ing and representing the surveillance space.

• pattern synthesis: the generation of a collection of rectangular candi-
date dwells ont the grid.

• combinatorial optimization: the selection of an optimal subset among
the rectangular candidate dwells.

3.2.1 Detection grid

The surveillance space in direction cosines coordinates is approximated by
a finite bi-dimensional M -by-N regular grid, see Figure 3.3. On this grid,
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Figure 3.3: Detection grid G and a rectangle H in 3D (left), in az-
imuth/elevation (middle), in direction cosines (right)

the detection constraint is considered on each cell, with a finite number of
cells, instead of working on the continuous set of possible azimuth-elevation
directions.

Let [umin, umax] ⊂ [0, 1] and [vmin, vmax] ⊂ [0, 1] be the radar scanning
range in direction cosines coordinates on the surveillance space. Let M ∈ N∗
and N ∈ N∗ define the desired grid resolution. Then the grid nodes are
computed by :

u0 = umin, uN = umax un = u0 + n
(
uN−u0
N

)
v0 = vmin, vM = vmax vm = v0 +m

(
vM−v0
M

) (3.3)

Any rectangle H on grid G can be characterized by its upper left corner
(un, vm) and its lower right corner (uq, vr) on the grid, such that 0 ≤ n < q ≤
N and 0 ≤ m < r ≤ M , see Figure 3.3. The number of possible rectangles
on G is bounded by

MN(M + 1)(N + 1)

4

3.2.2 Pattern synthesis

Let H be a rectangle on grid G, characterized by nodes (un, vm) and (uq, vr).
The ideal radiation pattern covering H is

gH(u, v) ∝

{
Ls(u, v)2

{
Rc(u,v)

4sw
σ

}
if un ≤ u ≤ uq and vm ≤ v ≤ vr

0 otherwise
(3.4)

up to a constant factor, as the array antenna feeds are normalized. This
radiation pattern fits the maximum of ideal energetic distributions for all
mission detection constraints. This type of ideal pattern is usually infeasible
on a real antenna, because it features discontinuities on the rectangle edges,
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Figure 3.4: Ideal radiation pattern (top-left), synthesized radiation pattern
(top-right) and synthesized radiation pattern after Taylor filtering (bottom),
with synthesis sampling points in red.

see Figure 3.4. The radiation pattern is the Fourier transform of the antenna
illumination law, see (1.3). A discontinuous radiation pattern would require
an infinitely large array antenna, for the same mathematical reasons that a
discontinuous time signal has an infinite spectrum.

A feasible radiation pattern ĝH can be synthesized by applying a bi-
dimensional Woodward-Lawson sampling method to the ideal pattern gH ,
adapted from the one-dimensional method described in [2, 3]. Using sampled
values of the desired pattern at evenly-spaced sampling points (in red), the
method synthesizes a feasible pattern that is guaranteed to hold the same
values at the sampling points, see Figure 3.4. The sampling points form a
K ′-by-L′ grid with nodes (ul, vk), 0 ≤ l < L′, 0 ≤ k < K ′ (note that this
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... ...
Figure 3.5: Pattern synthesis applied to a database of ideal rectangular ra-
diation patterns

grid has no relation to detection grid G) with:

L′ = 2bL
2
c+ 1, ul = 2l+1−L′

L

K ′ = 2bK
2
c+ 1, vk = 2k+1−K′

K

(3.5)

The number of sampling points along one dimension is the closest rounded-
up odd number to the number of radiating elements on the same axis. The
feeds of the feasible pattern are computed using the ideal pattern values at
the sampling points:

âk,l =
1

KL

K′∑
k′=0

L′∑
l′=0

gH(ul′ , vk′)e
−jπ(kdyvk′+ldxul′ )/λ

The feeds are normalized: âk,l ← âk,l/maxk,l{âk,l} and Taylor filtering is used
for decreasing sidelobes and Gibbs oscillations. From the feeds, the feasible
pattern can be computed using (1.3).

Applying this synthesis procedure to all possible rectangles on grid G,
with area AH inferior to the maximum digital beamforming scanning area
Amax described in 3.1.3, generates a collection of processable radiation pat-
terns, as shown in Figure 3.5:

T = {ĝH : H ⊂ G ∧ AH ≤ Amax}
Other synthesis methods based on least square optimization [42], genetic

algorithms [43] and alternating projections [44] are also compatible with this
approach.

3.3 Set cover problem formulation
The set of candidate dwells D can be computed as the Cartesian product
of T , the set of synthesized radiation patterns, and W , the set of available
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Figure 3.6: Computation of discrete covers for one dwell on two scanning
missions

GS

Figure 3.7: Corner sampling (left), center sampling (middle), subgrid over-
sampling (right), with sampling points in red

waveforms :

D = T ×W = {(gt, w), gt ∈ T , w ∈ W} = {d1, · · · , dp}

3.3.1 Discrete cover computation

The discrete cover of each dwell is a boolean representation of the dwell
detection on the grid. It indicates the cells on which the dwell validates the
detection constraint, see Figure 3.6.

The discrete cover correspond to a “sampling” of the dwell detection on
the grid. Various sampling schemes can be used for computing the discrete
cover Cj of a dwell dj ∈ D, see Figure 3.7:

• sampling of the cell corners (which are the grid nodes):

Cj(m,n) =
∧

(u,v)∈{un,un+1}×{vm,vm+1}

(Rj(u, v) ≥ Rc(u, v))

with
∧

the boolean AND operator.

• sampling the cell center:

Cj(m,n) =

(
Rj

(
un + un+1

2
,
vn + vm+1

2

)
≥
(
un + un+1

2
,
vn + vm+1

2

))
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T1 T2 T3

detection : ✔ detection : ✔detection : ✘

Rd < Rc 

≤ ≤ 

Rd ≥ Rc Rd ≥ Rc 

dA={gH,w1} dB={gH,w2} dC={gH,w3}

Figure 3.8: Waveform selection, with dwell dB achieving detection in shortest
time with selected waveform w2

• oversampling a smaller subgrid GS inside the cell:

Cj(m,n) =
∧

(u,v)∈GS

(Rj(u, v) ≥ Rc(u, v))

where Rc is the desired detection range, and Rj is dwell dj detection range,
computed by the radar equation as described in 1.6.

Subgrid oversampling is the most accurate scheme for ensuring that the
cell is entirely covered but has a higher computational cost, since each sam-
pling point requires the computation of radar equation with the dwell param-
eters. In practice, corner sampling usually offers a good compromise between
accuracy and computational cost.

3.3.2 Waveform selection

Two dwells using the same pattern but different waveforms may cover the
same area, and thus result in the same discrete cover, but with different costs,
see Figure 3.8. Quantitatively, one the two dwells dominates the other on
the mission, as it validates the same constraint in shorter time. In such case,
the costlier dwell can be removed from the set of candidate dwells, because
any solution using that dwell could be improved by replacing by the less
expensive dwell. This is a form of variable elimination, also called column
reduction. A more general column reduction method is presented in 4.2.1.

3.3.3 Combinatorial cover problem

Finding a radar search pattern validating the detection constraint over the
surveillance space amounts to finding a subset among candidate dwells whose
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Figure 3.9: The set of available discrete covers with the chosen number of
scan for each cover (left), the sum of the chosen discrete covers (middle) and
the desired scan update rate for each cell (right)

sum of discrete covers cover the entire grid G, with each cell G(m,n) being
covered by at least one dwells, see Figure 3.9. And each discrete cover has an
associated cost Tw, also noted Tj in the following, which is its dwell waveform
duration.

This covering problem corresponding exactly to the rectangular grid cover
problem from 2.5.1, and can be solved by the branch-and-bound method
described in 2.6.

3.4 Simulation example

The approximation procedure described previously was applied to a study
case. The radar array antenna has 20×20 half-spaced radiating elements.
The grid G is laid on a 20×20 lattice. The radar has two available waveforms
W = {w1, w2}, with a long waveform w1 and a short waveform w2. The
approximation procedure produced 32810 feasible dwells. The detection grid
contains 326 detection cells. The corresponding integer program has 32810
variables and 326 detection constraints.

The integer program is computed using Python, and optimization is done
with CPLEX [45]. Total computation time for finding one optimal solution
is 24 seconds on an i7-3770@3.4GHz processor with a random-access memory
(RAM) usage of 450 megabytes.

The obtained solution uses 16 dwells to cover the surveillance area, as
shown in Figure 3.10. Dwells covering low elevations have long waveforms
(in red), as they must achieve a higher detection range, and thus require more
energy, while dwells at high elevations use the short waveform (in blue). The
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Figure 3.10: Radar search pattern obtained by branch-and-bound with long
waveform in red and short waveform in blue (left), and total emission pattern
(right)

emission gain is higher far from the antenna array normal direction, in order
to compensate scanned losses. The detection range, displayed in Figure 3.11,
shows that the radar pattern is over-energetic at high elevation. This can be
explained by the reception digital beamforming processing constraint, which
limits the area scanned by one dwell.
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Figure 3.11: Detection range achieved by the solution in 3D (top), azimuth
cut (bottom-left) and elevation cut (bottom-right)
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Chapter 4

Extended formulations and
computational improvements

The approximation of radar search pattern optimization as a set cover prob-
lem and its integer program formulation has various advantages. Integer
programs are flexible tools, and can be extended to more powerful formula-
tions of set covering, which can represent more complex problems in radar
covering and account for additional operational requirements. Certain con-
straints, such as localized clutter and multiple missions can be integrated into
the approximation model itself, with virtual no changes in the combinatorial
cover problem structure. Other constraints, to be represented, need more
general set covering formulations:

• Set multicovering : the problem where universe elements must be cov-
ered multiple times, which can represent scan update rate constraints
in the context of radar optimization.

• Probabilistic covering : the problem where covers represent detection
probabilities over the universe rather than its subsets. In the con-
text of radar optimization, this approach can exploits dwell overlays
and combine sub-energetic dwells to ensure global detection probabil-
ity constraints.

As a major problem of combinatorial optimization, computational and
practical aspects of the set cover problem have also been extensively stud-
ied [19, 46, 47]. Efficient, general-purpose integer programming solvers have
been implemented and improved over the last decades [48, 18]. Those im-
provements offer now possibilities for research of multiple solutions [49, 50],
and representation of the structure of the optimal set of a given problem, the
set of optimal solutions to said problem.
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On the other hand, the geometric characteristics of certain radar cover
problems presented in this thesis can be exploited to implement efficient
reduction methods. Those methods can reduce the number of variables and
constraints in the problem, improving computational optimization but also
representation of multiple solutions.

4.1 Additional constraints in radar operational
optimization

Modern warfare requires from multi-function radars to ensures multiple tasks
in complex situations [33].

In operational situation, the radar environment may not be uniform, and
certain regions might have different properties in terms of clutter and terrain
masking. Furthermore, the radar may receive informations from collaborat-
ing agents about incoming targets of interest. In such case, the radar could
be required to increase its scan update rate in the targets incoming direc-
tions. An advantage of using a discrete grid for quantifying the surveillance
area is the capacity for specifying those properties and constraints locally to
the grid.

The radar might also have to search not one type of target, but multiple
types (missiles, planes, etc.). While multiple search missions can sometimes
be “combined” into a single mission, this may not always be the case, in par-
ticular for very different target types. An advantage of integer programming
is that those multiple missions can be integrated by defining one detection
constraint for each grid cell and each mission. All while using the same dwells
to cover the surveillance space, and taking into account that each dwell might
perform differently for each mission.

4.1.1 Localized constraints

Having localized constraints requires additional local information about the
radar environment, see Figure 1.8, where for each direction:

• α : AS → [0, 1[ is the clutter eclipse coefficient. It represents the ratio
of eclipsed area on the range-Doppler map in a given direction.

• µ : AS → R+ is the terrain masking distance, i.e. the maximum detec-
tion range in a given direction before terrain masks block detection.

Furthermore, the radar can be required to perform:
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• Sc : AS → N a minimum number of detection dwells ensuring that a
desired scan update rate in a given direction is achieved. The local
scan update rate is the number of detection dwells in the direction of
interest over the total duration of the radar search pattern.

Taking into accounts those new parameters, the radar search pattern
ensures detection if for each direction (az, el) ∈ AS, it contains at least
Sc,i(az, el) dwells, each capable of detecting a target with radar cross-section
σ at range min{µ(az, el), Rc(az, el)} with at least detection probability Pd
and at most false alarm probability Pfa in clutter eclipse coefficient α(az, el).

4.1.2 Clutter and terrain masking

Localized clutter and terrain masking can be directly integrated into the
computation of the dwell detection range. Taking into account terrain mask-
ing computationally simply requires to replace the desired detection by the
terrain mask distance range, see Figure 4.1, since the radar cannot detect
past the mask:

Rc(az, el)← min{µ(az, el), Rc(az, el)}

In the combinatorial problem, clutter must be defined per cell, and thus
has to be quantified over the grid. In other words, the clutter α(m,n) is
local to and constant within the grid cell Gm,n ∈ G, but can vary between
grid cells. Various quantification scheme can be defined, with some examples
shown in Figure 4.2:

• erosion: a grid cell contains a given clutter if it covers the entire cell.

• dominant : a grid cell contains a given clutter if it covers more than
half the area in the cell.

• dilatation: a grid cell contains a given clutter if it covers a part of the
cell, no matter how small.

When computing the detection range in a given cell (m,n) using the proce-
dure in 1.6, the clutter is taken into account by using the waveform model
described in 1.5 to compute the waveform required signal-to-noise ratio

sw(Pd, Pfa,α(m,n))

Clutter is integrated during the approximation procedure in 3.3.1 and is
virtually transparent to the combinatorial formulation in 3.3.3. Branch-and-
bound optimization is thus not impacted by clutter.
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el

az

el=0

terrain mask

Figure 4.1: Masked desired detection range (top), azimuth cut (bottom-left),
elevation cut (bottom-right)

erosion dominant dilatation

Figure 4.2: Quantification scheme for localized constraints

86



CHAPTER 4. EXTENSIONS AND IMPROVEMENTS

. . .
= ≥

0
0

0
0

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3
3
3

3 3 3 3 3 3 3 3
3
3

3
3

1 11 11 1 11 11
1 11 11 1 11 11
1 11 11 1 11 11
1 11 11 1 11 11

x1=1

x4=0

x7=2

x2=1

x5=1

x8=0

x3=0

x6=3

x9=0

Figure 4.3: The set of available discrete covers with the chosen number of
scan for each cover (left), the sum of the chosen discrete covers (middle) and
the desired scan update rate for each cell (right)

4.1.3 Scan update rates

Similarly to clutter, the desired scan update rate must be quantified on the
grid, using the same quantification schemes from Figure 4.2. The required
number of scans s(m,n) covering grid cell (m,n) is defined locally on the
grid. But unlike local clutter, scan update rates constraints modify the com-
binatorial structure of the cover problem, as they requires an element to be
covered multiple times, see Figure 4.3.

The generalized problem where the elements of the universe set must
be covered multiple times is called the set multicover problem. The integer
vector representation of the required number of scans is

s(m+Mn) = s(m,n)⇔ s =


s(0, 0)
s(0, 1)

...
s(m,n)
· · ·


and the corresponding integer program is

min TT .x
s.t. A · x ≥ s

x ∈ {0, · · · , smax}p ⊂ Np

(4.1)

with smax be the maximum value of vector s. The principal differences with
integer program (2.2) are the right-handed side of the detection constraint
being now the discrete required number of scans s, and the variable vector x
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Figure 4.4: Mission constraints in azimuth-elevation (left), direction cosines
(center) and discrete mission constraints (right)

now taking integer values. Branch-and-bound can by design optimize integer
values with each branching representing the choice between multiple values,
however with an increase in computational cost, because each node has smax

possible children.

Simulation example

The approximation procedure described previously was applied to a study
case with 3 scan updates constraints, above a terrain mask, and with local-
ized clutter. Constraints quantification followed the dominant scheme. Both
original and quantified constraints are shown in Figure 4.4.

The PAR has 30×30 half-spaced radiating elements. The grid G is laid on
a 20×20 lattice. We used a set with two possible waveforms W = {w1, w2},
with a long waveform w1 and a short waveform w2. The approximation
procedure produced 10943 feasible dwells. The detection grid contains 326
detection cells. The corresponding integer program has 10943 variables and
326 detection constraints.

The computation of the integer program is done in Python, and its opti-
mization is done using CPLEX. The total time required to find the solution
is 17 seconds on an i7-3770@3.4GHz processor with a random-access mem-
ory (RAM) usage of 420 megabytes. The solution, shown in Figures 4.5 and
4.6, uses 22 dwells to cover the surveillance area with 3 scan updates for
certain dwells, but also combines slower scan update rates (1 or 2 updates)
of overlapping dwells to achieve the desired global scan update rate.

4.1.4 Multiple missions model

In the case where the radar is tasked with multiple detection missions, its
radar search pattern must ensure detection for a set of I missions. Parameters
for each mission i ∈ I = {1, . . . , I} are given:
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Figure 4.5: Radar search pattern obtained by branch-and-bound with long
waveform in red and short waveform in blue (left), and total emission pattern
(right)

R/Rmax

R/Rmax

Figure 4.6: Detection range achieved by the solution in 3D (top), azimuth
cut (bottom-left) and elevation cut (bottom-right)
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• σi be the radar cross-section of the target type.

• Rc,i : AS → R+ be the desired detection range.

• Sc,i : AS → N be the desired scan update rate, which is the minimum
number of scans to perform in a given direction during one radar search
pattern.

• SWi be the Swerling model [8].

• Pd ∈]0, 1[ is the desired detection probability and Pfa ∈]0, 1[ is the
desired false alarm probability.

The radar search pattern ensures the required detection if for each mis-
sion i and each direction (az, el) ∈ AS, the radar search pattern contains
at least Sc,i(az, el) dwells, each capable of detecting a target with radar
cross-section σi at range min{µ(az, el), Rc,i(az, el)} with µ(az, el) the terrain
masking range, with at least detection probability Pd and at most false alarm
probability Pfa in clutter eclipse coefficient α(az, el).

Muli-mission pattern synthesis

Multiple missions have different energetic requirements. For each rectangle
on the detection grid, the ideal radiation pattern for coveringH for all mission
at once is the maximum of each mission ideal radiation pattern is

gH(u, v) ∝

 Ls(u, v)2 maxi

{
Rc,i(u,v)

4sw(i,α)

σi

}
if
{
un ≤ u ≤ uq
vm ≤ v ≤ vr

0 otherwise

up to a constant factor, as the array antenna feeds are normalized. Another
possible approach is to consider a pattern for each rectangle and each mission.

Dwell discrete cover

For each dwell dj in D and each mission i, the discrete cover Cj,i of dwell dj
for mission i is computed through the same sampling methods presented in
3.3.1, using the dwell detection range Rj,i and the mission desired detection
range Rc,i. The discrete cover Cj,i represents the cells on which dwell dj
validates mission i detection constraint.

So each dwell has multiple covers, one for each mission representing its
detection performances on said mission, as shown in Figure 4.7 for two de-
tection missions. A dwell cover can differ between missions, as each mission
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Figure 4.7: Computation of discrete covers for one dwell on two detection
missions

has different energetic requirements and target type. Furthermore, some
waveforms might be more efficient and suited for some missions.

From the combinatorial optimization perspective, each mission has a set
of discrete covers of available discrete covers, and can be viewed as a set
cover problem. Each mission i ∈ I has thus its own cover matrix and scan
constraint vector such that minimization of the radar search pattern time-
budget under detection constraints for all missions is

min TT .x
s.t. ∀i ∈ I,Ai · x ≥ si

x ∈ {0, · · · , smax}p ⊂ Np

where smax is the maximum value in all vectors si. Each mission has different
constraints but all missions use the same variables, and by combining all
missions cover matrices in a unique matrix, and similarly all missions scan
constraint vectors

A =


A1
...
Ai
...
AI

 and s =


s1
...
si
...
sI


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Figure 4.8: Two-missions combined covers

then the problem can be written as an integer program

min TT .x
s.t. A · x ≥ s

x ∈ {0, · · · , smax}p ⊂ Np

(4.2)

which virtually amounts to viewing each mission on a different grid and
combining all those grids in one, as shown in Figure 4.8.

Simulation result

The multi-missions approximation procedure described above was applied to
a study case with two scanning missions.

The radar array antenna has 30×30 half-spaced radiating elements. The
grid G is laid on a 20×20 lattice. The radar has two available waveforms
W = {w1, w2}, with a long waveform w1 and a short waveform w2. The
approximation procedure produced 30442 feasible dwells. The detection grid
contains 326 cells for both scanning missions. The corresponding integer
program has 30442 variables and 652 inequality constraints.
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Figure 4.9: Radar search pattern obtained by branch-and-bound for two-
missions case study
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M ×2
N ×2

number of constraints
MN ×4

number of variables
D ~ M2N2 ×16

constraint matrix size
MND ~ M3N3 ×64

Figure 4.10: Effects of increasing the grid resolution by a 2-factor

The integer program is computed using Python, and optimization is done
with CPLEX [45]. Total computation time for finding one optimal solution is
36 seconds on an i7-3770@3.4GHz processor with a memory usage of 450MB.

4.2 Pre-optimization reduction methods
The computational cost of optimization depends on the number of variables
and constraints in the problem, especially for exploration methods such as
branch-and-bound. The problem size is directly related to the detection grid
size, i.e. the quantification resolution for the combinatorial problem. In-
creasing the resolution improves accuracy of the discrete approximation, and
can improve the solution quality, but at the cost of increasing the number
of variables and constraints, see Figure 4.10. In other words, having smaller
detection cells and having more candidates dwells tends to improve the mod-
elling but requires more computational time.

In rectangular grid covering, the number of constraints, or detection cells,
is O(MN). While the number of variables, or candidates dwells, increases in
O(M2N2), which is quadratically faster. The number of variables can quickly
become a limiting factor for computational optimization of the radar search
pattern.

A large number of those variables might not be required however. Certain
dwell discrete covers might be redundant to each other. A cover is redundant
if another cover can cover a wider area for an inferior cost. Reciprocally the
latter cover is said to dominate the former. Formally, for (Ca, Cb) ∈ C2, Ca
dominates Cb if:

• ∀(m,n) ,Ca(m,n) ≥ Cb(m,n), i.e. Ca covers all cells covered by Cb.

• Ta ≤ Tb, i.e. Ca costs less than Cb.

Transitivity, reflexivity and antisymmetry of domination are easily shown,
and thus domination defines a partial order relation. Any solution using a
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Cb

Ca

Ta≤Tb

Figure 4.11: Cover domination of Cb by Ca

H
U

HL H R H
D

Figure 4.12: The four direct candidates rectangles L, R, U , D for finding a
domination cover over rectangle H

dominated cover can be maintained or even improved by replacing the dom-
inated cover by one of its dominating covers. Thus removing all dominated
covers before branch-and-bound optimization does not change the optimal
value of the problem instance, while diminishing the problem complexity.

4.2.1 Column reduction

Removal of dominated covers is equivalent to column reduction, a common
technique in integer programming, often used before resolution to reduce the
instance size [19, 51, 46]. The computational cost of a naive implementation
for column reduction is O(|C|2|G|). In rectangular grid covering for radar ap-
plications, where the number of candidates dwells grows with grid resolution
in O(|C|) = O(M2N2), naive column reduction requires O(M5N5) steps.

However, using the geometric characteristics of rectangular covers, col-
umn reduction can be performed in O(M2N2) steps using O(M2N2) space:

Loop through all possibles rectangles in decreasing size. For each rectan-
gle H, check if it corresponds to an available cover Ca. Then check if any of
the four rectangles obtained by increasing the width or height of H by 1, see
Figure 4.12, can be covered by a cover Cb dominating Ca for a better cost.
In that case, Cb covers H, and thus cover Ca can be removed from available
covers. Algorithm 7 describes a pseudo-code of the procedure.

Column reduction “propagates” the domination relation among covers by
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Algorithm 7 Column reduction

% Initialization and allocation of array of pointers to covers
Allocate an M ×N ×M ×N pointer array p
for C ∈ C do

m,n← coordinates of top-left corner of C
h,w ← height and width of C
Assign pointer p[m,n, h, w] to cover C

end for

% Loop through all possible rectangles by decreasing size
for (h,w) ∈ {M, . . . , 1} × {N, . . . , 1} do

for (m,n) ∈ {0, . . . ,M − h} × {0, . . . , N − w} do
if p[m,n, h, w] is a cover then

Ca ← p[m,n, h, w]

% Get the dominating cover candidates, see Figure 4.12
L← p[m,n− 1, h, w + 1] (if it exists)
R← p[m,n, h, w + 1] (if it exists)
U ← p[m− 1, n, h+ 1, w] (if it exists)
D ← p[m,n, h+ 1, w] (if it exists)
Get cover Cb with minimum cost among {L,R, U,D}

% Update best cover for rectangle defined by [m,n,h,w]
if Ta ≥ Tb then .

Delete Ca, assign pointer p[m,n, h, w] to cover Cb
end if

end if
end for

end for

decreasing size, and ensure that all dominated covers are removed. Indeed,
for any pair of covers (Ca, Cb) such that Ca dominates Cb, there is a sequence
of rectangles from Ca to Cb, where each step of the sequence amounts to
decreasing the height or width of the rectangle by 1, see Figure 4.13.

For each possible rectangle, the procedure search a minimum among 4
possibles values. Since there are M(M + 1)N(N + 1)/4 possible rectangles
on grid G, Algorithm 7 requires O(M2N2) steps. It also requires an array
of size M2N2. However, only M(M + 1)N(N + 1)/4 entries in the array
represent valid rectangles, so almost 75% of the array is not used. If memory
usage is an issue, a more compact array can use instead the custom hash
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Cb

Ca

Figure 4.13: Sequence of dominating covers between two covers Cb and Ca

function

(m,n, h, w)→ (M − h+ 1)(M − h)(N + 1)N

4
+

(M − h+ 1)(N − w + 1)(N − w)

2
+m(N − w + 1) + n (4.3)

which maps each subrectangle in G to a unique index in [0,M(M+1)N(N+
1)/4[, see Appendix A for more details.

In radar search patterns, domination relation between covers is common
and due to narrow over-energetic radiation patterns, which performs less
efficient covering than widened radiation patterns. In numerical simulations,
column reduction is rather efficient in decreasing the number of variables in
the integer program.

4.2.2 Row reduction

Another common method for decreasing the instance size of integer program
is row reduction, which removes redundant constraints. In the context of cov-
ering problems, a cell is redundant respectfully to another cell if the detection
constraint of the former is necessarily validated by the detection constraint
of the latter, see Figure 4.14

Formally, ∀(ga, gb) ∈ G2, gb is redundant in respect to ga if and only if
∀C ∈ C ,C(mb, nb) ≥ C(ma,ma), where (ma, na) are the coordinates of cell
ga and (mb, nb) the coordinates of gb. Thus any cover including ga also cover
gb. Reciprocally, ga is said to imply gb.

Removing redundant cells does not impact the optimal value of the prob-
lem instance. Similarly than for column reduction, naive row reduction re-
quires O(|G|2|C|) = O(M2N2|C|), but can be reduced to O(MN |C|) exploit-
ing the geometrical properties of rectangular covers.
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{                                }
C3C2C1

C       = gb
ga *

, ,

Figure 4.14: Cell ga implies gb, or reciprocally gb is redundant to ga (right)
for given problem instance (left)

Ra
ga

Figure 4.15: Rectangle Ra as the intersection of all covers including ga (right)
for problem instance of Figure 4.14

Let ga be a cell. Let Ra be the intersection of all covers of C which includes
ga, see Figure 4.15:

Ra =
⋂

C∈C:ga∈C

C

and Ra is an intersection of parallel rectangles, and is not the null set since it
contains at least ga, so Ra is rectangle itself. The top-left (bottom-right) cor-
ner of Ra can be computed by taking the maximum (minimum) coordinates
among top-left (bottom-right) corners of covers in {C ∈ C : ga ∈ C}.

It is straightforward from the definition of redundancy that all cells in
Ra are redundant to ga, since any cover including ga also covers Ra. This
property remains true in the general set cover problem. The advantage with
rectangular covers is that intersections of rectangles are much easier to com-
pute by using the convexity of rectangles.

By transitivity of redundancy, Algorithm 8 always keep for each removed
cell at least one cell which implies the removed cell, directly or indirectly. On
the other hand, for any pair of cells ga, gb such that ga implies gb, all covers
including ga covers gb, thus gb ∈ Ra, and Ra contains the rectangle formed
using ga and gb as corners. So all redundant cells are removed.

Each cell is looped through at most twice, once in the main loop, and
once when it is removed. For each cell, each cover is looped through twice,
once to check if it contains the cell and once for computing intersection.The
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Algorithm 8 Row reduction

% Loop through all cells
for ga ∈ G do

Allocate list of covers containing ga: Ca = ∅
for C ∈ C do

if ga ∈ C then
Add cover: Ca ← Ca ∪ {C}

end if
Compute intersection of covers: Ra ←

⋂
C∈C:ga∈C C

for gb ∈ Ra \ {ga} do
Remove redundant cells: G← G \ {gb}

end for
end for

end for

gain over the general set cover case is in computation of the intersection of
covers, which takes O(|C||G|) in general, but can performed in 4|C| steps
with rectangular covers, with two maximum and two minimum searches of
the corners of Ra.

Simulation results

The reduction gain for problems with various square grid size (M = N) is
shown in Figure 4.16, where column reduction is shown to be highly effective
in decreasing the number of variables and the memory usage, almost by a
factor 10. Row reduction, while still relatively efficient in reducing the num-
ber of constraints, intrinsically operates on a smaller number of constraints,
and has a negligible impact on memory performances.

4.3 Multiple-solution generation and represen-
tation

4.3.1 Branch-and-bound enumeration

While the branch-and-bound exploration could terminate once an optimal
(or sufficiently near-optimal) solution is found, it is possible to expand and
pursue the exploration of the search tree in order to enumerate alterna-
tive optimal solutions [49], but there is a trade-off between the computa-
tional/memory cost and exhaustiveness of the enumeration.
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Figure 4.16: Number of columns and rows (left) and RAM usage (right)
depending on reduction method(s) used.

In radar design and operational use, multiple solutions are a desirable
feature. Search patterns have been hand-designed by engineers for decades,
who have a strong expertise on the subject and prefer to use optimization as
an aid-design tool. Similarly, radar operators preferred to have choice and
flexibility between multiple modes in operational situations. Criterion such
as bandwidth occupation, range resolution, system overheat, etc. can vary
between different solutions, and their importance is usually dependant on
the radar system characteristics and on the operational situation.

This choice in turn can be analysed to define preferences, to add secondary
selection criterion to the method or even refined the model into a multi-
objective optimization problem.

Multiple solutions enumeration can be done by slightly modifying steps
2. and 3. of the branch-and-bound method:

2. Bounding:
If the current node relaxation value is less than or equal to the current
best solution found, proceed to Step 3, otherwise, drop current node
and go back to Step 1.

3. Update and Enumerate:
If the current node relaxation is an integral solution, then its an im-
proving solution. If it is strictly better than the current solution, empty
the set of best solutions and update best current solution. Otherwise,
update the set of best solutions. Proceed to Step 4 (as there could be
other optimal solutions among the children of the current node).
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This result in modifications to Algorithm 5 pseudo-code as described in
Algorithm 9.

Algorithm 9 Branch-and-bound enumeration
% Initialization
...
xbest := xF = (1 · · · 1) . Best solution found so far (by default, xF is a
valid solution)
Xbest := {xF} . Set of best solutions found so far

% Exploration
while N is not empty do

...

% Bounding
if TT · xL ≤ TT · xbest then . Explore N if its relaxation is at least

as good as xbest

% Update and Enumerate
if xL ∈ {0, 1}D then . Check if xL is an integral solution

if TT · xL < TT · xbest then
xbest := xL
Xbest := {xL}

else
Xbest := Xbest ∪ {xL}

end if
end if

% Branching
for x ∈ {0, 1} do

...
end for

end if
end while
return Xbest

4.3.2 Example

The branch-and-bound enumeration applied to the example given in 2.6.3
would keep searching after finding the solution, and would follow the steps
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optimization
enumeration
rejection

first optimum
second optimum

(0) (1)

(0,0) (0,1) (1,0) (1,1)

(0,0,0)

fL=11/2

fL=11/2 fL=15/2

fL=6 fL=6 fL=15/2 fL=8

Figure 4.17: Enumeration branch-and-bound application example

below, see Figure 4.17:

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest =
TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1)
with cost 6 ≤ 13. xL is an integral solution, thus we update the best
current solution xbest := xL; fbest := 6.
We add the children (0, 0, 0) and (0, 0, 1) to the exploration list N .

• N = {(0, 1), (1, 0), (1, 1), (0, 0, 0), (0, 0, 1)}, xbest = (0 0 1 1 0 0 1 1),
fbest = TT · xbest = 6 :
Relaxation of (0, 1) yields the linear optimal solution x1 = (0 1 1 0 0 1 1 0)
with cost 6 ≤ 6. x1 is an integral solution, thus added to Xbest :=
{xbest,x1}. We add the children (0, 1, 0) and (0, 1, 1) to the exploration
list N .

• N = {(1, 0), (1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest =
TT · xbest = 6 :
Relaxation of (1, 0) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
)

with cost 15
2
> 6. We drop node (1, 0) and proceed with the next node.

• N = {(1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest = TT ·xbest = 6 :
Relaxation of (1, 1) yields the linear optimal solution xL = (1 1 1 0 0 0 1 1)
with cost 8 > 6. We drop node (1, 1) and proceed with the next node.
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{                                                            }C = , , , , , , , ,
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, , , , , , ,
Figure 4.18: Collection of available covers (top), set of optimal solutions for
the associated cover problem (bottom)

4.3.3 Exhaustive enumeration redundancy

In radar applications practical cases, there is usually a broad choice of pos-
sibility for cover problems, and therefore a large number of possible good-
quality solutions. However, straightforward branch-and-bound enumeration
can produce a lot of redundancy among solutions.

Figure 4.18 displays a problem instance example for which there is many
redundant optimal solutions. Whereas all discrete covers are used by the
union of pattern S1 and pattern S2, making this pair of solutions enough to
represent “all covering possibilities”. There are however 14 supplementary
possible optimal solutions, which can be viewed as recombinations of covers
in S1 ∪ S2. These solutions bring no new information on which covers can
be used to produce a new solution pattern, and many have significantly
similar structure up to a vertical or horizontal symmetry. This phenomenon is
caused by the presence of optimal sub-structures in the covering, i.e. different
ways to cover the same area. The number of possible optimal solutions
grows exponentially with the number of alternatives sub-structures. In Figure
4.18, there are four 4-by-4 sub-structures, one in each corner; and each has
2 alternatives optimal covering, horizontal or vertical, resulting in the 16
possibles solutions.

Solution redundancy is recurring problem in multiple solution generation
which has already been discussed in [49, 50, 52, 53], against which the most
common solution is to use diversity measures, for example based on string
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distances such as the Hamming distance.
Another way to avoid redundancy is to search for solutions which are

not recombinations of previously known solutions. This can be done by
maximizing an innovation metric, which would measures how different a new
solution compared to all known previous solutions.

4.3.4 Innovation metric

Having multiple optimal solution gives alternative ways to solve the covering
problems, but it also gives information about which covers are used in optimal
solutions, in other words, which covers can be used to construct an optimal
solution. Let O = {y ∈ {0, 1}D} be a set of known optimal solutions, the
cover indicator of O can be defined as the vector o = (oi)i∈[1,D] with

oi = max
y∈O
{yi}

and thus o =
∨

y∈O y where
∨

is the logical bitwise OR operator applied to all
solution vectors y as if they were bit vectors. The cover indicator represents
the covers used in at least one solution of O. Finding new optimal solutions,
which use different covers compared to known solutions, will brings diversity
to the set of solutions. More importantly it will increases the number of
covers which can be used to construct optimal solutions. The number of
“new covers” used by a solution x is measured by the innovation metric of O

d(x,O) =
D∑
i=1

xi(1− oi) = (1− o)T · x = dT · x

where d = (1 − o) is the cost vector of the metric. The metric can thus be
written as a linear cost function. Informally, this metric counts how many
covers used in solution x are not used by any solution y ∈ O. Diversity string-
based metrics have already been used in generation of multiple solution in
The difference with previous Hamming-like metrics is that the innovation
metric does not penalize re-use of covers already used by solutions in O.
It only quantifies how many “not-previously-used” covers the new solution
brings in O. By extension, any discrete cover used in at least one optimal
solution is defined as an “optimal candidate cover”.

4.3.5 Innovation maximization problem

Sequential optimization is a common approach for generate multiple solutions
[49]. The original problem is first solved, returning a first solution, from
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which the optimal cost value can be computed. The original cost function
can then be reformulated as an equality constraint. This opens the possibility
to use another metric as the cost function, like a diversity distance, or the
innovation metric described above.

Conceptually, generating multiple solutions is no longer a minimization
problem, as there is no need to search the optimal value since it is known.
Whereas maximizing the innovation metric will produce more information
on alternative ways to solve the problem. Since the innovation metric is a
linear function, the maximization problem for finding a new solution x is an
integer program

max dT .x
s.t. A · x ≥ 1

TT .x = fopt
x ∈ {0, 1}D

(4.4)

where O is the set of known previous optimal solution, and fopt is the optimal
cost value.

4.3.6 Iterative enumeration

After solving the original problem once, multiple new solutions can be gen-
erated by solving sequential instances of integer programs (4.4). At each it-
eration, the innovation metric is updated with the information received from
the new solution. Algorithm 10 details the iterative enumeration, where

∧
represents the logical bitwise AND operator.

Algorithm 10 has two useful features. Let dk be the value of innovation
cost vector d during the k-th step of the while loop:

• Monotony: by optimality of the k-th maximization problem solution

dk
T · xk ≥ dk

T · xk+1

while each step d ← d
∧

(1 − xi) in the algorithm “removes 1s from
d and turn them in 0s”, so {i : dk+1(i) = 1} ⊂ {i : dk(i) = 1} which
implies

∀x ∈ {0, 1}D, dkT · x =
∑

i:dk(i)=1

xi ≥
∑

i:dk+1(i)=1

xi = dk+1
T · x

and combining both inequalities yields

dk
T · xk ≥ dk+1

T · xk+1
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Algorithm 10 Iterative enumeration

% Solve the original problem and initialize parameters
x0 ← argmin{TT · x : A · x ≥ 1 ∧ x ∈ {0, 1}D}
O ← {x0}
dmax ← +∞
d← 1− x0

% Keep searching new solutions as long as they use yet-unused covers
while dmax > 0 do

xk ← argmax{dT · x : A · x ≥ 1 ∧TT · x = fopt ∧ x ∈ {0, 1}D}

% Update parameters
dmax ← dT · xk
O ← O ∪ {xk}
d← d

∧
(1− xk)

end while

which means that the value of dmax = dk · xk decreases (usually non-
strictly) when k increases. So the most different solution from previ-
ously known solutions are computed at the beginning of the loop. More
importantly, at any step the value dmax = dk · xk indicates how many
new covers each additional step can add at most.

• Linearly bounded termination: if an iteration returns a null maxi-
mum innovation dT ·xk = 0, then by optimality there is no “yet-unused”
optimal cover left to find. By monotony, the sequence (dl · xl)l≥k is
null for all subsequent searches anyway. Thus any optimal solution
of integer program (2.2) will only use variables in the cover indicator
o = 1−d. “dT ·xk = 0” is an enumeration certificate, which guarantees
that any optimal solution can be constructed from known solutions.

Furthermore, at each step where dk · xk > 0, at least one new “yet-
unused” optimal cover is found, so necessarily d has “at least a 1 re-
moved”, and since d is of length D, the while loop cannot perform more
than D steps. The number of steps in Algorithm 10 is bounded by the
number of variables, whereas a generic sequential algorithm for gener-
ating different solution may have an exponential number of steps, as
some problem instances can yield an exponential number of different
optimal solutions.
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...
Figure 4.19: Multiple optimal solutions found by iterative enumeration

4.3.7 Optimal set structure

Using iterative enumeration provides multiple different solutions, see Figure
4.19, while ensuring solution diversity by maximizing a metric distance be-
tween solutions. However, Algorithm 10 main advantage is the computation
of the complete optimal cover indicator o = 1−d, containing all covers which
can be used to produce an optimal solution. Whereas the set of all possible
optimal solutions O is usually too big to be computed in practice, the com-
plete optimal cover indicator o can still be used to analyse and exploit the
structure of O.
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+ ...
Figure 4.20: Any optimal solution is a combination of th optimality invariant
(left) and selection of optional optimal covers (left)

Optimal column reduction

Knowing which covers are used in at least one optimal solution also implies by
complementarity knowing which covers are not used by any optimal solution.
Removing those covers from the set of available covers does not impact the
set of optimal solutions: let Co = {Ci ∈ C : oi = 1}. The reduced problem
obtained by replacing C ← Co yields the same set of optimal solutions, as any
optimal solution to the original problem is a solution to the reduced problem
and vice-versa.

In fact, C ← Co corresponds to the optimal column reduction of the
problem, i.e. the smallest subset of columns that preserves the set of optimal
solutions to the problem.

Optimality invariant

An obvious reduction for covering problems is the case where one constraint
can only be satisfied by one variable, in other words, a detection cell which
can be covered by only one dwell. Similarly, if a constraint has a unique
cover in the complete optimal cover indicator, then that cover is necessarily
in any optimal solution. This cover is part of the optimality invariant of the
problem, see Figure 4.20.

More generally, the optimality invariant I̊ can be defined as the largest
subset of covers which is contained in any optimal pattern

I̊ =
⋂
y∈O

{Ci : yi = 1}

an can be viewed as the “intersection” of all optimal solutions in O. Similarly
to the complete optimal cover indicator o, the optimal invariant is represented
by the optimal invariant vector

i =
∧
y∈O

y
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The variables in the optimality invariant can be set as constants when con-
structing or modifying an optimal solution x:

∀j ∈ {1, . . . , D}, ij = 1⇒ xj = 1

as the covers in the optimality invariant cannot be replaced to produce a
solution.

The concept of “invariant set” can be generalized to any set of optimal
of solutions O ⊂ O, for which the invariant set contains the covers who are
part of all solutions in O:

I =
⋂
y∈O

{Ci : yi = 1}

with its associated invariant vector being i =
∧

y∈O y.
The optimality invariant can be viewed as the smallest invariant set

I̊ ⊂ I

since O does not contain all optimal solutions, its invariant set I may contain
cover which are not part of the optimality invariant, because an optimal
solution not using them has not been found yet. As an example, for a set of
optimal solution with only one solution, the invariant is the solution itself

O = {x} ⇒ I = {Ci : xi = 1} ⇔ i = x

as there is no information on other alternative solutions, and thus on which
cover are obligatory, and which are not.

While the complete optimal set O is not computable in general, comput-
ing the optimality invariant I̊ can be done by iterative reduction of a known
invariant set I, where each step optimize an integer program

min iT .x
s.t. A · x ≥ 1

TT .x = fopt
x ∈ {0, 1}D

(4.5)

which search an optimal solution using the fewest possible number of covers
from the current invariant. Iterative reduction is described in Algorithm
11. Note that if only one optimal solution x is known at initialization, the
algorithm essentially starts with i← x.

Using the same reasoning than for Algorithm 10, each step of iterative
reduction “removes at least a 1 from i”. The stopping criteria r decreases
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Algorithm 11 Iterative reduction for computing optimality invariant

% Start from a set of known set of optimal solution O
i←

∧
x∈O x

r ← 1

% Search a solution not using all “candidate” invariant covers
while r > 0 do

xk ← argmin{iT · x : A · x ≥ 1 ∧TT · x = fopt ∧ x ∈ {0, 1}D}

% Update parameters
r ← iT · (1−xk) % stopping criteria: number of removed covers in this

iteration
i← i

∧
xk

end while

monotonously and reaches 0 in a number of steps bounded by, D, the number
of candidates covers and the size of i. When r = 0, then there is no optimal
solution not using all covers in the “current” invariant.

In practice, even with few optimal solutions resulting from a premature
stop of Algorithm 10, the initial invariant is the optimality invariant, and
(4.5) is only solved once to ensure that there is no cover in the invariant
unused by an optimal solution.

Choice metrics

The optimality invariant i and the complete optimal cover indicator o are
the extreme descriptors of the optimal set structure

• o describes the set of covers used in at least one optimal solution.

• i describes the set of covers used in all optimal solutions.

The optimality invariant is the set of covers which cannot be replaced when
modifying an optimal solution. This intuits the idea of hierarchy among
covers, in terms how many alternatives there is for an optimal cover.

A straightforward generalization would be to count the number of solu-
tions using a given cover. This criteria is however impractical, as it would
requires to exhaustively enumerate all solutions, which infeasible in practice.
However, it is possible to derive simpler metrics from the complete optimal
indicator.
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Figure 4.21: Constraint covering count: the number of optimal dwells cover-
ing each constraint

Constraint covering count

For each detection cell (i.e. constraint), the number of covers (i.e. variables)
covering the cell give an indication of “how many alternate ways” to cover
said cell exist:

#gm,n = |{C ∈ CO : gm,n ∈ C}|

In practice, this classifies which cells gives less options in covering. Evidently,
a cell with covering count of 1 has only one “possible choice”, and the asso-
ciated cover is part of the optimality invariant. Usually the grid side areas
have a low count, contrary to the grid central area where more choices are
available, see Figure 4.21.

Cover alternative count

From the previous metric, the cover alternative count of a given cover is the
minimum value of covering count among covered constraints, and gives an
indication of “how many alternatives” can replace the cover:

#C = min
g∈C
{#g}

A cover with an alternative count of 1 is in the optimality invariant, as there
is a cell which can only be covered by this cover.
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Figure 4.22: Continuous energy distribution e (left) and its quantification on
the detection grid (right)

4.4 Future research leads
This section presents the theoretical work on two future research leads: grid
adaptation, and probability covering for combining overlapping dwells.

4.4.1 Grid adaptation

Between the continuous general problem and its combinatorial approxima-
tion, quantification on the grid implies a lost of information. Optimal com-
binatorial solutions are possibly “sub-optimal” for the original continuous
problem, and their accuracy likely depends on the grid resolution.

The grid resolution can be uniform, as has been done so far, such that
every cell on the grid covers an equal area. Another possibility is to take ir-
regular quantification step, with more precision in area more likely to require
finer tuning of the search pattern.

Qualitatively, the total emitted power of a radiation pattern is constant,
and the radar emits the same total power summing all directions. Spreading
out the radiation pattern causes a proportionate decrease in angular power
density. From an energetic point of view, radar covering can be viewed as
using “energy shapes”, with each shape having the same total “energy”, to
cover a space with energy requirements. This space is anisotropic though,
and different areas requires different powers, see Figure 4.22.

Intuitively, a more adequate to quantify this space would be to somehow
follow the energy requirements distribution, with smaller cells where require-
ments are higher, such that each cell represent the same energy requirement,
see Figure 4.23.

Optimizing the grid to a certain energy density repartition e : AS → R+
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Figure 4.23: Optimization producing an irregular grid with a more even
energy distribution

can be done in iterative manner. Starting from a given grid, the quantifi-
cation values {u0, . . . , uN} × {v0, . . . , vM}, corresponding to the grid nodes
locations, are iteratively shifted, where at each step

• each value un, with 1 ≤ n ≤ N − 1 is shifted to the horizontal median
ûn of its two surroundings columns which is the solution of∫ ûn

un−1

∫ vM

v0

e(u, v)dudv =
1

2

∫ un+1

un−1

∫ vM

v0

e(u, v)dudv

which can be computed numerically by root-finding.

• each value vm, with 1 ≤ m ≤ M − 1 is shifted to the vertical median
v̂m of its two surroundings rows and is which solution of∫ uN

u0

∫ v̂m

vm−1

e(u, v)dudv =
1

2

∫ uN

u0

∫ vm+1

vm−1

e(u, v)dudv

which can be computed numerically by root-finding.

• the values u0, uN , v0 and vM remain unchanged, as those values defined
the boundaries of the grid.

see Figure 4.24. The method requires numerical resolution of N + M equa-
tions at each step, which might be computational costly. A more practi-
cal and conceptually close method is Lloyd’s algorithm, also known as the
Voronoi iteration, where at each step:

• each value un, 1 ≤ n ≤ N − 1 is shifted to the horizontal weighed
centroid of its two surroundings columns

un ←
∫ un+1

un−1

∫ vM

v0

ue(u, v)dudv
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Figure 4.24: Computation of horizontal shift (left) and vertical shift (right)
of a shift iteration

• each value vm, 1 ≤ m ≤ M − 1 is shifted to the vertical weighed
centroid of its two surroundings rows

vm ←
∫ uN

u0

∫ vm+1

vm−1

ve(u, v)dudv

The two methods differs by the fact that the first method computes medians
at each step, whereas the Voronoï iteration compute means.

The optimal quantification values {u∗1, . . . , u∗N−1} and {v∗1, . . . , v∗M−1} can
also be found by numerically solving the system where the energy integral
between each successive couple of values is equal:{

∀n ∈ {0, . . . , N − 1},
∫ un+1

un

∫ vM
v0

e(u, v)dudv = ET
N

∀m ∈ {0, . . . ,M − 1},
∫ uN
u0

∫ vm+1

vm
e(u, v)dudv = ET

M

where ET =
∫ uN
u0

∫ vM
v0

e(u, v)dudv is the total energy requirement over the
grid. This system can be solved by first computing ET through numerical
integration, then applying numerical root-finding to the series of functions

un →
∫ un

u0

∫ vM

v0

e(u, v)dudv − nET
N

to compute un. Similarly, numerical root-finding is used on the series of
functions

vm →
∫ uN

u0

∫ vm

v0

e(u, v)dudv −mET
M
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Figure 4.25: Overlay of two dwells and overall detection probability

to compute vm.
Note that all those methods might produce a highly irregular grid, and

thus may need to be constrained in practice, for example ensuring that a
cell size cannot go below or above certain bound values. Those values could
be derived from the radar narrow beam-width for the lower bound, and the
radar maximum scanning area for the upper bound.

4.4.2 Probability covering

So far, in all presented formulations, the desired detection probability is
achieved independently by each dwell. However, overlapping multiple dwells
can improve the overall detection probability, the probability that at least
one dwell achieve detection.

For example, if a target is covered by two dwells, each with 70% proba-
bility, the overall probability that at least one of the dwells detects the target
is 1 − (1 − 70%)2 = 91%. For a desired detection probability of 90%, both
dwells individually fail the requirement while the combination of both dwells
achieves it globally, see Figure 4.25.

Within this approach, a dwell is no longer represented by a discrete com-
binatorial cover, encoded in “0s” and “1s”, but by a quantified probability
cover, see Figure 4.26, representing the dwell detection probability inside
each grid detection cell.

A cell (m,n) local detection probability pj(m,n) of a dwell dj ∈ D can
be computed by inverting the radar equation (1.10) into

sw =
Pp fw Tw ge gr λw

2 σ

(4π)3 Rc
4 Lu Ls

2 (4.6)
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Figure 4.26: Overlay of two dwells and overall detection probability

with Rc the required detection range. From the signal-to-noise sw ratio for a
target echo at range Rc, the detection probability is either known for wave-
form measured performances, or can be computed using the waveform model
from 1.5, and equations (1.7), (1.8) and (1.9).

The detection constraint is no longer to have one dwell ensuring detec-
tion, but to ensure an overall minimum detection probability PD by combin-
ing multiple dwells. Equivalently, it can also be said the detection constraint
ensures that the probability of global failed detection must be below the
acceptable failure probability 1 − PD. If dwell detections are seen as inde-
pendent events, which is true for detection tests polluted by white noise, then
the global failure probability for a cell (m,n) is

D∏
j=1

(1− pj(m,n)) ≤ 1− PD(m,n)

which can be linearised by applying the logarithm function into

D∑
j=1

ln(1− pj(m,n)) ≤ ln(1− PD(m,n))

For cell (m,n), let

• lj(m,n) = ln(1− pj(m,n)) the anti-log dwell detection probability

• b(m,n) = ln(1− PD(m,n)) the anti-log desired detection probability

and the detection constraint becomes the linear inequality

D∑
j=1

lj(m,n) ≤ b(m,n)
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Let the anti-log dwells detection probability matrix L and anti-log desired
detection probability vector b be defined as

L =


l1(0, 0) · · · lD(0, 0)
l1(1, 0) · · · lD(1, 0)

... . . . ...
l1(m,n) · · · lD(m,n)

...
...

...

 , b =


b(0, 0)
b(0, 1)

...
b(m,n)
· · ·


then probability covering can be defined as the following integer program

min TT .x
s.t. L · x ≥ b

x ∈ {0, 1}D
(4.7)

which can still be solved by branch-and-bound approach. This formulation
can still integrate localized clutter, terrain masks and multi-mission con-
straints but cannot be combined with scan update rates. Probabilistic scan
update rates would require to compute the probability of having at least
s(m,n) dwell detections in cell (m,n) which is written as a sum of products.
Unlike single detection probability which is a single product, sum of products
cannot be linearised using logarithm or anti-logarithm.
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Conclusion and futures leads

Results and fallouts of the thesis

The paradigm shift of the digital era favoured the production of highly flex-
ible radars, thanks to electronic scanning and digital processing. Dynamical
beam-forming and beam-steering increase the degrees of freedom in designing
radar search patterns, which can quickly shift between different beam-shaped
radiation patterns.

Exploitation of those novel possibilities and efficient resource allocations
are necessary as modern systems compete over shorter and shorter time frame
in the context of electronic warfare. So far, little work has been done pre-
viously on the optimization of radar search patterns. Previous approaches
limited the beam-shape or steering directions of dwell candidates for the radar
search pattern. In the industry, the state of art are hand-designed patterns,
requiring working time from engineers, and lacking situational adaptability.

The main challenge of this thesis was the identification of an appropriate
theory for modelling radar scanning problems. This reflection has lead to
the choice of combinatorial cover problems as a fitting basis for mathemat-
ical modelling. The reformulation of radar scanning from the perspective
of combinatorial optimization provided a powerful theoretical framework for
optimizing radar search patterns. It also proved to be a flexible tool, which
has been extended to model complex situations with multiple mission re-
quirements under localized constraints.

The thesis theoretical contributions to combinatorial optimization are the
classification of radar cover problems in respect to complexity theory as either
strongly polynomial-solvable or NP-hard problems, and the development and
identification of optimization algorithms for solving those problems. More
practical contributions also include the design of reduction methods for im-
proving computational efficiency in solving radar cover problems, and the
research on tools for generation and representation of multiple optimal solu-
tions.

Under those considerations, the developed framework for optimization of
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radar search pattern has proven to be a powerful formulation, offering various
opportunities. Beyond the academic possibilities, the present work also has
potential industrial applications in computer-aided design of radar search
pattern, where it can be used to generate first solutions for an existing radar
which engineers could refine using their expertise. The automatic nature
of the optimization algorithms presented in this thesis is also well-suited
for simulation of future radar systems. The radar search pattern of different
radar architectures could be optimized in parallel to compare their respective
performances.

Short term applications focus on aided-design, but in the longer term,
radar search optimization could be perform directly in operation, adapting
the radar scanning mode to the situation parameters. Branch-and-bound is a
practical method for generating just-in-time solution, which can be stopped
at any time to return the best current solution. Knowing a lower bound on the
optimal solution, thus having an estimation of the potential gain of pursuing
optimization, is a useful feature for efficient radar resource management.

Futures objectives

The various advances made during this thesis have also brought questions
and open the path for future research leads. The computational cost of the
problem could be improve by modifying the grid quantification values, and
thus the overall shape of the grid. A basic approach would be grid adapta-
tion to the mission energetic requirements. More generally, this problematic
falls into finite element analysis, a research field focused on discretization
of smooth manifolds (“continuous spaces”) and their representation as finite
meshes of elements. The discrete detection grid could in fact take any form,
and does not require to be regular, or even rectangular. This is another
strength of the proposed the framework: it separates the radar model from
the combinatorial cover problem. The branch-and-bound method is very
generic, and can be used regardless of the grid geometry. Informally, the
algorithm only receives a discrete space, and a set of covers over this space
to select, but is impervious to what the space actually represents.

This gain in computational efficiency could be used to extend the dis-
cretized space to higher dimensions. The detection grid presented in this
work has only two dimensions, azimuth and elevation. However, radar de-
tection is often considered in four dimensions: azimuth, elevation, range and
Doppler. A four-dimensional grid would thus be able to account clutter not
only from an energetic point view, but from a signal processing perspective,
as it would discretize the spatial location of clutter, but also the speed range
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Figure 4.27: Spatial axis (left) and range-Doppler axis (right) of a four di-
mension M -by-N -by-R-by-S detection grid
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T

Figure 4.28: Time axis of a detection grid and dwell cover deformation due
to radar movements

it pollutes, see Figure 4.27. Waveforms could be optimized as well in a four-
dimensional detection grid model, by maximizing the waveform visibility,
i.e. minimum number of visible dwells, respectfully to its burst parameters:
period repetition interval, duty cycle, number of pulse, etc.

A fifth dimension could be added to account for time, see Figure 4.28, for
example in settings with a frigate radar moving due to the ship yaw, pitch
and roll. If the ship movement is regular enough and can be predicted, the
radar search pattern could be optimized to compensate the radar movements.
This would require to incorporate scheduling into the radar search pattern
optimization.

While if the ship movement is irregular and noisy, it can be represented
as a probability distribution. Probabilistic covering has been presented here
for exploiting dwell overlaps. It could also serve to optimize the radar search
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Figure 4.29: Dwell detection probability on the detection grid along the time
axis under random radar movement

pattern in case where the radiation pattern is not fixed, but is displaced by
a random shift due to the radar small erratic movements.

So there two main approaches to search pattern optimization of dynam-
ically moving radars: a deterministic model of the radar movement or a
statistical model. In fact both model could be combined: the radar move-
ment could have a deterministic component, its average movements, to which
a random part is added. This model could be solved on a fifth-dimensional
grid with probabilistic covering, see Figure 4.29, where the detection proba-
bility on a cell would combine the waveform detection probability with the
dwell presence probability under the radar random movement. Currently,
those promising ideas are still being studied as directions for the future work
succeeding this thesis.

In that aspect, the main, and most important result from this thesis is
that combinatorial covering is a rich, powerful and flexible tool for modelling
and optimizing radar search patterns.
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Résumé 

 
Les radars modernes sont des systèmes 

complexes. Leurs missions, incluant surveillance, suivi et 
identification, se sont étendues conjointement à leurs 
capacités, favorisées par le développement de 
l'électronique et du numérique. Ces radars peuvent 
balayer dynamiquement et librement l'espace grâce à 
des panneaux numériques, les libérant des limitations 
des moteurs mécaniques. La guerre électronique, où les 
temps de réaction sont toujours plus courts, nécessite 
néanmoins une gestion parcimonieuse du temps 
disponible au radar pour accomplir ces missions. 

Dans ce contexte, l'optimisation du temps utilisé 
pour la surveillance doit exploiter pleinement les 
capacités des nouveaux radars. Les travaux réalisés 
durant cette thèse ont été de formaliser 
mathématiquement ce problème, de déterminer et 
adapter les outils pertinents pour sa résolution, et d'en 
explorer les possibilités. Le problème de la surveillance 
radar se rapproche conceptuellement du recouvrement 
d'ensemble en optimisation combinatoire. Grâce à des 
algorithmes utilisant la programmation dynamique et la 
programmation linéaire en nombres entiers, ce problème 
a pu être résolu, et étendu à des situations plus 
complexes, incluant différentes contraintes 
opérationnelles.  

Cette approche fructueuse ouvre de nouvelles 
pistes pour l'amélioration des performances des radars, 
et offre de nombreuses possibilités d'applications. Entre 
autres l'aide à la conception des couvertures des radars 
actuels, la simulation des performances d'architectures 
de futurs radars et le développement de radars cognitifs, 
capables de s'adapter à leur environnement 
opérationnel. 
 
Mots clés 
gestion des ressources radar,  
radar à balayage électronique,  
antenne réseau à commande de phase,  
optimisation combinatoire,  
recouvrement d'ensemble,  
problème de recouvrement de grille rectangulaire 

Abstract 
 

Modern radars are complex systems, capable of 
multiple functions: scanning, tracking, identification, etc. 
With the advent of electronic and digital technologies, 
radars can dynamically and freely sweep their 
surroundings using fixed-panels, freeing them from the 
limitations of mechanical rotation. With increasingly 
intelligent and adaptable systems competing in modern 
warfare in ever shorter time, careful management of the 
radar available time-budget is required to achieve 
desired performances and ensure civilian and military 
safety. 

In this context, optimization of radar search 
pattern time-budget must exploit modern radars full 
potential. This thesis main accomplishments are the 
mathematical modelling of radar search pattern 
optimization, the identification and development of 
appropriate tools for its solving, and the exploration of 
the model possibilities. Radar search pattern design can 
be related to covering problems in combinatorial 
optimization. Radar covering can be solved using 
methods based on dynamic programming and integer 
programming, and can furthermore be extended to 
account for more complex situations with multiple 
operational constraints. 

The tools developed in this thesis provide a 
powerful and flexible framework for solving radar covers 
problems. This framework opens interesting research 
avenues for improving radar performances. It offers 
various possible applications for aided-design of radar 
search patterns, simulation of new radar architectures 
performances, and development of cognitive radar 
systems capable of adapting in real time to the 
operational environment. 
 
Key Words 
radar resource management, 
tridimensional radar, 
phased array antenna, 
combinatorial optimization, 
set covering, 
rectangular grid cover problem 
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