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1
Introduction

Recent advances in wireless communications and micro electro-mechanical system
(MEMS) technologies have enabled the development of low-cost, low-power and small
size wireless sensor nodes. Wireless sensor networks (WSNs) which are composed of
a large number of sensor nodes, have become a current hot spot of networking area and
have been used for various applications, such as oceanic resource exploration, pollution
monitoring, tsunami warnings and mine reconnaissance. For all these applications, it is
essential to know the locations of the sensor nodes. Localization algorithms for wire-
less sensor networks (WSNs) have been designed to find location information of every
sensor node, which is a key requirement in many applications of WSNs [1].

In this dissertation, we focus on the indoor localization techniques in the wireless
sensor networks (WSNs). Firstly, it is necessary to define the main characteristics of
WSNs, including its principles, characteristics and applications. In the second part, we
will summarize the localization techniques which can be applied to WSNs, and finally,
we will describe the thesis contributions and the structure of the dissertation.
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12 CHAPTER 1. INTRODUCTION

1.1 Wireless sensor networks

Wireless sensor networks (WSNs) are novel and interdisciplinary research field,
closely associated with modern sensor technology, microelectronics and communica-
tions technology, embedded computing system and distributed information processing
technology [2]. In the following subsections, we will revisit the principles, main char-
acteristics and applications of WSNs.

1.1.1 Principles of WSNs

Sink Node

Satellite or GSM/3G
Networks

Remote Data
Monitoring Center

Sensor Nodes

Monitored Region

Figure 1.1: Architecture of a typical wireless sensor networks.

Typically, as illustrated in Figure 1.1, a traditional wireless sensor network consists
of the following four parts: sensor nodes, sink node, satellite or wireless communication
base station, and remote monitoring center [3]. The sensor nodes are scattered randomly
or deployed artificially in the area to be monitored. A wide variety of information in
the monitored environment, such as temperature, illumination, soil moisture content,
hazardous gases, soil internal pressure and so on, can be perceived by the sensor nodes.
Thereafter, the acquired data will be forwarded to the sink node through a single hop or
multihop. Consequently, by means of satellite or cellular network, such as GSM/3G/4G
communication infrastructure, the sensor data are transmitted to the remote data moni-
toring center, where the collected data will be processed and analyzed comprehensively.
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Inversely, the monitoring center can send the special control message to the bottom
nodes in a reverse transmission path.

1.1.2 Development and applications of WSNs

Wireless sensor networks, initiated by American scholars in the 1970s, were soon
afterwards applied in the military and civilian fields successfully [4]. In the light of
potentially enormous military significance and business benefits, the wireless sensor
networks draw great attention all over the world. As a result, many countries funded the
research and application on this emerging areas. After entering the twenty-first century,
there have been considerable progress in the wireless sensor networks, aided with the
developments of the microelectronics and cloud computing technologies. Consequently,
WSNs have been introduced into many aspects of social life.

In a taxonomic manner, the utilization of WSNs can be mainly classified into two
categories: target tracking and event monitoring [5]. As described in Figure 1.2, tar-
get tracking involves object movement tracking, observation of human behavior, animal
activity tracking, motion displacement calculation and so on. Similarly, the event mon-
itoring comprises the following points: military situation surveillance, species habit
observation, health status monitoring, industrial process control, commercial operation
supervision, environmental changes perception etc.

1.1.3 Characteristics and focuses of WSNs

Promoted by the development of microelectronics, embedded systems and telecom-
munication technologies, WSNs have gained increasing popularity in the humanity lives
for numerous applications. For example, sensors nodes can be integrated into a wire-
less body area network (WBAN), a new enabling technology for health monitoring [6].
Furthermore, the Internet of things (IOT), which is based on wireless sensor networks,
makes it possible to access remote sensor data and to control the physical world from a
distance [7].

The advance in technology enables miniaturization, low power consumption, low
cost, easy deployment and so on. Even if the technology is well developed, some issues
related to network topology, routing protocol, energy optimization, localization, clock
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Figure 1.2: Application classification for WSNs

synchronization and network security etc [8, 9] are still important research topics.

– Routing. In some application scenarios, the sink and certain nodes can alter
its position autonomously or will be moved by external forces from the environ-
ment, contributing to the transformation of the network architecture. Simultane-
ously, routing difficulties appear. Indeed, to fulfill the objectives of reliable data
transmission, timeliness of data delivery, sharing the resources fairly, utilizing the
energy efficiently, and maximizing the lifetime of network, it is vital to design op-
timal routing strategy for WSNs. Currently, there are many routing algorithms in
the scientific community introduced by the researchers, to name only a few, flood-
ing protocol [10], gossip protocol [11], direct diffusion protocol [12], SPIN [13],
GPSR [14], LEACH [15], SAR [16]. Based on the aforementioned fundamental
routing protocols, a multiple types of routing strategies have been presented in the
past years.

– Clock synchronization. In some time sensitive application, for instance, in forest
fire monitoring, a forest fire can be detected by different sensors at different points
in time. Sensor readings and timestamps are recorded to find time elapsed since
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the fire was first spotted and its direction [17]. It is essential to maintain rigorous
and uniform time schedule in these disaster monitoring applications. Pursue the
time synchronization rapidly and accurately is the anticipated direction on this
issue.

– Security. For most applications, security of datas or communication must be guar-
anted. In a general way, no network can avoid this problem. In the state of the
art of WSNs, hardware protection and software encryption, or the combination of
the two methods, are employed. However, there are yet many challenging works
to be done on the security.

– Localization. In the previous section, we have seen that the localization of nodes
is essential for numerous applications. As it is the main subject of our work, this
topic will be discussed in detail in the following sections.

In summary, there are still many issues in this field, that must be deep investigated
and are waiting scholars to further study.

1.2 Localization in WSNs

Wireless sensor networks have been applied in many military and civilian applica-
tions to monitor environmental change and detect abnormal events [18]. Specifically,
the node position information is essential to some localization sensitive applications.
Determining the positions of sensor nodes precisely is a vital issue as the collected data
are closely related with the location information.

Researchers have made much efforts to solve the localization problem by adopting
other positioning systems into the WSNs. To sum up, the following means can be
employed:

– GPS
– Cellular network
– Infrared device
– Ultrasonic wave
– Micro inertial navigation
A common feature shared in the above positioning strategies is that extra modules

are integrated in sensor nodes, which leads to increase the power consumption and com-
munication overhead but also the deployment cost. To solve this problem, scholars tried
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to acquire the location without additional devices by using only received signal infor-
mation which can be available in the radio transceiver used for the communication. This
information can be time of arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA) and received signal strength indicator (RSSI) [19].

The advantages and disadvantages of these methods will be discussed in Chapter 2.
The RSSI is the most common information, available in every transceiver. In this thesis,
we have worked on solving indoor localization problems by using algorithms based on
the RSSI. As the RSSI is not an accurate parameter to determine distances, we have
worked on improving the localization accuracy of the proposed algorithms.

1.3 Thesis Contribution

In this dissertation, we focus on RSSI based localization algorithms for indoor ap-
plications. The main contributions of this thesis involve the following three aspects.

1. Firstly, an experimental localization system has been built to get real RSSI data.
From the measurements, a RSSI channel model has been deduced, which is con-
sistent with the popular lognormal shadowing path loss model. Much more data
have been acquired to observe the relationship between the variance of noise and
distance. Based on the obtained data, it has been showed that the standard de-
viation of the noise increases with the distance. To confirm this tendency, a ray
tracing system for an environment similar to the experimental environment, has
been used to simulate the receive and transmit process of RSSI data.

2. Secondly, we have proposed three novel indoor localization algorithms based
on multilateration and averaged RSSI, called Three minimum Distances Method
(TDM), Weighted Three minimum distances Method (WTM) and Weight values
Adjustment Method (WAM). These algorithms deal with the poor accuracy of the
distances deduced from RSSI. Using the experimental channel model deduced
from measurements, the performance of the proposed algorithms has been veri-
fied and compared in realistic conditions.

3. Finally, a RSSI based parameter tracking strategy for constrained position local-
ization has been proposed. To estimate channel model parameters, Least Mean
Squares method (LMS) has been associated with the trilateration method. In the
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context of applications where the positions are constrained on a grid, a novel
tracking strategy has been proposed to determine the real position and obtain the
actual parameters in the monitored region. The proposed tracking strategy has
also been evaluated using the channel model deduced from the experimentations.

1.4 Dissertation structure

The dissertation is composed of 6 Chapters.

In Chapter 2, we introduce the state of the art of localization techniques in WSNs,
including the extra modules aided and extra modules free approaches. Some impor-
tant methods for our work such as linear least squares (LLS), non linear least squares
(NLS), projection onto convex sets (POCS) and semidefinite programming (SDP) are
particularly detailed.

Chapter 3 deals with channel model which is a fundamental part of RSSI based
localization algorithms. An experimental channel model is deduced from RSSI data
acquired by a real localization system developed during this PhD work.

In Chapter 4, three localization methods: TDM, WTM and WAM are presented. The
accuracy and calculation time of the proposed methods are compared with LLS, NLS
and POCS.

The accuracy of the channel model is fundamental for the proposed RSSI based
localization algorithms. A parameter tracking strategy is proposed in Chapter 5 which
can be applied to applications where the mobile positions are constrained to a grid.
Quantitative criteria are provided to guarantee the efficiency of the proposed tracking
strategy by providing a tradeoff between the grid resolution and parameter variations.

Finally, the conclusion and future work directions are discussed in Chapter 6.

1.5 Conclusion

In this Chapter, we have firstly presented the main principles and applications of
WSNs and the induced research topics that remain important in that field. Then we
have introduced the problem of localization in WSNs. Finally, we have summarized the
main contributions of our work and described structure of the thesis.
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The following Chapter is dedicated to the state of the art of localization strategies
and particularly to the techniques which can be applied to WSNs.



2
Localization strategies in WSNs

As mentioned in the previous chapter, for numerous applications of WSN, the local-
ization of the nodes is a fundamental information which must be associated to the sensor
measurements. As a bridge between the physical world and the digital world, WSNs
are widely used to deal with sensitive information in many fields. Application scenar-
ios of WSNs include military, industrial, household, medical, marine and other fields,
especially in natural disasters monitoring, early warning, rescuing and other emergency
situations. For example, by a smart dust network, suspended nodes in the air space
can detect pressure, temperature and other information of different positions to monitor
the quality of the atmosphere. Sensor nodes buried under the bed at different depths
can collect temperature, pressure and other data to observe the activity of the glacier
[20]. Sensor nodes in birds’ nests can help users to further research the living habits of
birds [21]. In above mentioned applications, all collected information is based on the
accurate location of sensor nodes. Therefore, localization is one of the basic and core
technologies in WSNs [22].

In this chapter, the localization principle and process are discussed. A classification
of localization strategies in WSNs is provided, and some typical approaches are revisited
and detailed.

19



20 CHAPTER 2. LOCALIZATION STRATEGIES IN WSNS

2.1 Localization process

The objective of a localization process is to determine the position of an object of
interest through a specific system. According to the application specific requirements,
appropriate algorithms can be chosen among existing localization techniques.

For applications which require only coarse localization, the position is obtained di-
rectly, by determining the proximity to an anchor or by using hop count methods or
finger printing [23]. It should be noticed that coarse localization methods are simple
means to provide an initial estimate for a more accurate localization method.

For applications requiring a better accuracy, the localization methods include two
steps: distance measurement and position calculation. As illustrated in Figure 2.1, the
first block estimates distance or angles of arrival (AOA) from the received signal in-
formation: time of arrival (TOA), time difference of arrival (TDOA), received signal
strength indication (RSSI) and other available features. The second stage processes the
distance and angular information and estimates the position through several positioning
methods associated with optimization approaches.

All the relevant measurement techniques mentioned above: TOA, TDOA, DOA,
RSSI, and localization algorithms: Triangulation, Trilateration, Multilateration will be
described further.

 

Measurement 

Techniques 

Location 

Calculation 

Signal 

Information 

Measured Distances  

Angles of Arrival 
Estimated 

Position  

Figure 2.1: Two steps of localization process

2.2 Localization strategies overview in WSNs

Numerous methods have been proposed for localization in WSNs. From a hardware
perspective, the positioning strategies can be divided into two categories: extra modules
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aided approaches and extra modules free approaches, as illustrated in Figure 2.2.
A detailed explanation of the two strategies will be addressed in the subsequent

section.  

 

 

 

 

 

 

Localization 

Strategies 

Extra Modules  

Aided Approaches 

Extra Modules  

Free Approaches 

GPS Method 

 

Cellular Network Method 

 

Infrared Method 

 

Ultrasonic Method 

 

Micro Inertial Navigation Method 

Range Based 

Methods 

 

Range Free 

Methods 

 

Connectivity 

Geometry 

Energy 

AOA 

TOA/TDOA 

RSSI 

Figure 2.2: Application classification for WSNs

2.3 Extra modules aided approaches

For this class of methods, a specific hardware is dedicated to the localization. This
approach includes GPS method, cellular network method, infrared method, ultrasonic
wave method, micro inertial navigation method, to name just a few [24]. In the follow-
ing, we will briefly address the above-mentioned localization techniques and discuss the
combination of these techniques and WSNs from a practical perspective.
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2.3.1 GPS method

The Global Positioning System, abbreviated as GPS, is a satellite based positioning
system developed by the American military authorities in the 1970s. In the following
four decades, GPS has been widely used in both military and civilian fields for naviga-
tion, communications and monitoring. Similarly, the European Union and Russia have
build their position systems, named Galileo and Glonass Systems respectively. In re-
cent years, China has establishing the BeiDou Navigation Satellite System for pursuing
a higher precision and extensive applications [25].

In order to accomplish the task of tracking the displacement of a sensor, GPS mod-
ules can be integrated into the nodes. However, there exist some drawbacks and limita-
tions in it. In some environments, like underground parking, underwater sites or indoor
environments, GPS receiver can not communicate with the satellites [26]. Consequently,
it is unfeasible to use GPS in these environments. Besides, high energy consumption is
also a drawback in employing GPS modules. Therefore, using GPS for localization in
WSNs has some fundamental limitations, which make us steering to other techniques.

2.3.2 Cellular network method

A cellular network is a communication network where the last link is wireless and
used for mobile communication. In that case it is an extra module free method because
the cellular modem is also used for communication.

The Global System for Mobile Communication is abbreviated as GSM, is a standard
developed by the European Telecommunications Standards Institute (ETSI) to describe
the protocols for second-generation digital cellular networks [27]. In the recent years,
with the advent of third-generation and fourth-generation (4G) technologies, mobile
communications went up to a higher level [28]. In cellular wireless location systems,
a plurality of base stations receive signals from a mobile terminal simultaneously, and
then the cellular network accomplishes the localization process based on the measured
parameters.

In WSNs, the sensor nodes can be equipped with the relevant modules and localized
by cellular network . However, there are many limitations and drawbacks in this method.
Most importantly, it provides an unsatisfactory localization precision, ranging from the
order of tens of meters to hundreds of meters. In addition, the cellular network module
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is energy consuming, which contradicts the low cost objectives in WSNs. Therefore,
there are still many multi-aspects and challenging issues in this direction to be fixed.

2.3.3 Infrared method

Infrared ray is another kind of electromagnetic wave, whose wavelength ranges from
the microwave to the visible light wavelength. Due to its thermal effect and highly
penetrating ability, infrared ray is extensively used in medical treatment and industrial
detection and control. With the advance of microelectronics and optical fiber communi-
cation, infrared transducer became a low cost device which can be employed for object
detection and vehicle tracking [29].

When propagating in the space, the infrared ray would undergo deviations like re-
flection, refraction, scattering, interference and absorption [30]. Due to these effects,
it is nearly impossible to use infrared transducer into WSNs for localization when the
environment is complex. On the contrary, the sensor nodes with infrared transducer in
WSNs can be used with success for detection. To sum up, the use of infrared technology
for localisation in WSNs remains an open issue.

2.3.4 Ultrasonic wave method

Ultrasonic wave is a part of sound waves, whose frequency is beyond 20kHz [31].
Distinctly different from the ordinary sound waves, the ultrasonic wave has the follow-
ing characteristics: superior directionality, longer transmission range, strong reflectivity
and penetrability [32]. Due to the above-described features, the ultrasonic wave is in-
troduced successfully into engineering and health-care fields.

The principle of ultrasonic wave based localization can be addressed concisely as
follows. The receiver estimates the time of arrival or the difference of time of arrival
and measures the propagation time t. The distance between the sender and receiver can
be estimated as (2.1):

s = vwt (2.1)

where vw is the velocity of the ultrasonic wave in the relevant transmission medium.

Since the ultrasonic wave suffers from interference and distortion in harsh environ-
ment with a variety of obstructions, it is impractical to estimate displacement by means
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of ultrasonic wave based localization techniques extensively [32]. On the contrary, the
ultrasonic wave can propagate steadily in the water, which enables the ultrasonic wave
based localization techniques to some specific application fields. In the marine envi-
ronment monitoring, ultrasonic wave based localization technique is considered as an
advisable method. Many researchers are trying to integrate ultrasonic module into sen-
sor nodes and exploring the application in marine monitoring and navigation.

2.3.5 Micro inertial navigation method

Mainly based upon the acceleration sensor, direction sensor and gyroscope sensor,
micro inertial navigation is identified as an accurate navigation system estimating the
movement parameters from the data sensed by the above mentioned devices. A distinct
feature is its independent estimation, namely, the localization process uses only inter-
nal equipment without the help of outside systems [33]. This technique is originally
employed for missile guidance, and then aircraft and submarine navigation.

To overcome the limitations in GPS system and improve the localization accuracy,
the researchers introduced the micro inertial navigation method into WSNs. In the pro-
cess of movement, the acceleration sensor obtains the acceleration of the node move-
ment and the orientation sensor obtains the node posture instantaneously. After the
acceleration data and the direction angles of the node are acquired, the displacement
of the node’s movement can be calculated through integral calculation. Micro inertial
navigation system provides a satisfying accuracy in short term but can exhibit deviation
in long period. So, it can be used in addition to other localization systems (GPS or cel-
lular networks) when they become periodically unavailable. Despite that micro inertial
navigation can gain a higher precision in short range, a heavy energy consumption is
inevitable. Therefore, it is imperative to make a trade-off in practical applications to
meet the diverse requirements [34].

2.4 Extra modules free approaches

Compared to the extra modules aided approaches, extra modules free approaches
require no additional components to assist the localization process. Namely, rather than
supported by external localization systems and internal mounted components, the ex-



2.4. EXTRA MODULES FREE APPROACHES 25

tra modules free approaches carry out the localization task merely by its own network
parameters.

Extra modules free approaches are typically divided into two aspects: range free
methods and range based methods [35]. Compared to range-free localization, range-
based localization provides higher precision. There are many range-based localization
techniques, such as those based on the measurement of TOA [36, 37], AOA [38, 39],
TDOA [40, 41], RSSI [42] and so on.

RSSI-based algorithms have the following characteristics: low power consumption,
simple hardware but high sensitivity to environment. RSSI value heavily depends on
the propagation channel. Signal reflection, multipath propagation, noise and signal scat-
tering have great influence on the received RSSI. Therefore, in practical applications,
establishing an accurate channel model to deduce the distance from the received RSSI
value is crucial to the performance of localization algorithms.

An in depth explanation for the two types of methods will be addressed in the fol-
lowing section.

2.4.1 Range free methods

Contrary to range-based algorithms, range-free algorithms accomplish localization
through network and devices features, such as network connectivity graph, device power
consumption and conservation, geometric relationship and many more, instead of rang-
ing the distance between target and anchor nodes. In the sequel, several classical local-
ization algorithms: distance vector hop (DV hop) [43], approximate point-in-triangulation
test (APIT) [44] and centroid algorithm [45], will be revisited.

2.4.1.1 DV hop

Inspired by the classical distance vector routing scheme, DV-Hop algorithm is pro-
posed in [46]. It involves three steps in the localization process as follows:

1. In the initial step, an information table is built for each node according to the land-
mark broadcast location and hop data. The data package is exchanged between
node and its neighbors. The table is denoted as (xi, yi, hi), where (xi, yi) is the
coordinates of the ith landmark and hi is the minimum hop count value from the
ith landmark to the target node who maintains this table.
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Figure 2.3: Error analysis on DV hop count measurement

2. Secondly, the averaged size for one hop is estimated based on the distance cal-
culated between a landmark and other landmarks. The averaged size is estimated
by:

Sizei =

∑√
(xi − xj)2 + (yi − yj)2∑

hi
, i 6= j (2.2)

where (xj, yj) is the position of landmark j. In this step, the target node calculates
the distance based on the hop size value and the hop count number from at least
three landmarks.

3. Finally, when the distance values are obtained, the relevant positioning method,
such as mutilateration, trilateration, linear least squares (LLS), non-linear least
squares (NLS) and so on [47], can be employed to find the position.

As shown in Figure 2.3, the dotted line denotes the actual distance between two nodes,
and the solid line indicates the hop direction and estimated distance by DV hop algo-
rithm. Obviously, the DV-hop algorithm provides a low accuracy due to the imprecise
distance estimation.
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A high density nodes deployment can provide a better accuracy. However, owing to
its simplicity, this method can be applied into some rough localization.

2.4.1.2 APIT

APIT is a range free localization algorithm, presented in [48]. The core idea of
this method is to associate Point-In-Triangulation Test (PIT) with area-based scheme
to search the most likely target position. PIT is adopted for narrowing the possible
region where the target is located. We assume that many anchor nodes, whose location
is known by other means, are scattered in a wireless sensor networks. As illustrated
in Figure 2.4, in every trial, three anchors are selected to form a triangle and whether
the position of the target is in this triangle or not is decided. This process is repeated
until all the triangles are considered. After finishing all the tests, the center point of
intersection area will be regarded as the estimated position. The localization accuracy
of APIT depends on the test number which is directly related with the anchor number.
Unavoidably, the power and time consumptions increase with number of anchors [49].

Figure 2.4: Principle of APIT algorithm
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2.4.1.3 Centroid algorithm

Centroid localization algorithms estimate the position via geometric relationship be-
tween the landmarks and the unknown nodes, instead of calculating the corresponding
distance. These algorithms are suitable for the wireless sensor networks with a certain
number of landmarks whose positions are recognized by other complementary schemes.
Periodical packets containing position information are broadcasted among the networks.
When the number of received packets exceed a predefined threshold value, a stable
transmission link is established between a node and a landmark. An unknown node
will be connected with many landmarks. Assuming that the number of landmarks is
more than 3, a polygon is formed by these landmarks. Then, the centroid position is
considered as the unknown node location.

As illustrated in Figure 2.5, scholars presented centroid localization algorithm based
on tetrahedron. A tetrahedron is limited by four anchor nodes L1, L2, L3, L4, which
are connected with the target to be localized. Then, the centroid of this tetrahedron
is considered as the coordinates of the target. In [50], simulations were performed to
compare this method and the classical centroid algorithm. The results indicate that the
tetrahedron algorithm gives a higher accuracy than the traditional method in spite that
larger calculation time is required due to many estimation rounds. Other researchers in
[51, 52, 53, 54] tried to improve the centroid algorithm by assigning weighted factors to
each anchors or associating correction schemes to reduce the localization error.

2.4.2 Range based methods

Contrary to the previous methods, range based methods perform position computa-
tion after distance estimation. These methods involves two stages: distance measure-
ment and position calculation.

Many techniques have been employed for distance measurement, for example, the
techniques based on time of arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA) and received signal strength indicator (RSSI) [55]. After acquiring the
distance measurement, geometric relationship is used to compute the node position by
triangulation, multilateration, trilateration, hyperbolic and so on.

In the next section, these techniques are discussed in detail.
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Figure 2.5: Diagram of tetrahedron algorithm

2.4.2.1 Distance measurement techniques

Firstly, we will present the methods that can be used for the distance measurement
step. These methods are based on the measurement of the angle or distance, including
TOA, TDOA, RSSI and AOA.

TOA

In TOA and TDOA methods, the distance is ranged from the transmission time be-
tween the transmitter and the receiver [56]. The time of flight (TOF) recorded between
two terminals can be is used to estimate the distance by a simple multiplication by the
transmitting velocity. The schemes for measuring elapsed time are classified into two
categories: one-way scheme and two-way scheme.

In one-way scheme, the transmitter sends signal to the receiver and the time delay
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for this transmission is measured. The transmitter sends message at time t1 and the
receiver gets the message at time t2. Then a decoding delay or synchronization time tc
is required to accomplish the time record.

Therefore, the time delay τ can be written:

τ = (t2 + tc)− t1 (2.3)

The one-way scheme is simpler, but it is essential to synchronize the two termi-
nal clocks to reduce the errors. High accurate clock synchronization is a challenging
task and clock bias results in measurement errors. This remark explains why two-way
scheme is generally privileged.

In two-way scheme, the transmission time between two nodes is measured. The
distance is one-half of the measured time multiplied by the propagation velocity. The
timing process of the two-way scheme is shown in Figure 2.6.
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Figure 2.6: Timing process of the two-way scheme

The sender sends message to the responder at time ts1. The responder receives
the message at time tr1. After knowing the processing time Tr, the responder gives a
feedback at time tr2 which is received by the sender at time ts2. A clock bias ∆t exists
between the sender and responder of two nodes. The propagation time is denoted as Tp
[57]. From the Figure 2.6 we can write:

tr1 = ts1 + Tp + ∆t (2.4)

tr2 = tr1 + Tr (2.5)
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Finally,
ts2 = tr2 + Tp −∆t (2.6)

Then by subtracting ts2 and ts1, we get the result

ts2 − ts1 = 2Tp + Tr. (2.7)

Then time Tp can be calculated by

Tp =
ts2 − ts1 − Tr

2
. (2.8)

As shown in the previous equation, the clock bias ∆t is eliminated by this process.

In two-way scheme, the transmission time is obtained by recording packet receiving
and sending times. In spite that this two-way scheme does not need clock synchroniza-
tion, inaccurate packet processing time in terminals results in measurement errors.

An alternative method called TDOA is proposed to measure time difference between
two propagation processes [58]. A typical TDOA system will be discussed in detail in
the following.

TDOA

The key concept of TDOA-based localization technique is to determine the location
of the source by evaluating the difference in arrival time of the signal at spatially sepa-
rated base stations [59]. As shown in Figure 2.7, there are three signal receivers: RX1,
RX2, and RX3, whose coordinates are known as (x1, y1), (x2, y2) and (x3, y3). The ob-
jective is to determine the position of the transmitter with unknown coordinates (x, y).
The reception times in RX1, RX2 and RX3 are respectively t1, t2 and t3. This values
can be combined to obtain the following equation [60]:

√
(x− x2)2 + (y − y2)2 −

√
(x− x1)2 + (y − y1)2 = c× (t2 − t1)√

(x− x3)2 + (y − y3)2 −
√

(x− x1)2 + (y − y1)2 = c× (t3 − t1)
(2.9)

where c is the speed of light.

By solving the above nonlinear equations, the position of TX can be determined.
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Figure 2.7: Terminals deployment of TDOA method

The main drawback of the TDOA technique is that the reception time difference can
be fairly small, especially in short distance measurement, and the distance estimation
is not precise [61]. To overcome this problem, the electromagnetic waves can be re-
placed by acoustic waves. The propagation velocity is much smaller and thus the time
differences are largely increased.

As seen in Figure 2.8, ultrasound/acoustic and RF modules are simultaneously used
in transmitter and receiver. The principle is to measure the time difference between the
propagation times of the acoustic and radio signals [62].

In the initial localization step, the transmitter sends at time t0 the radio signal which
is received by the receiver at time tradio. After a fixed time delay tdelay, the transmitter
sends the acoustic signal which is received at time tsound. Figure 2.9 shows the time
delay computation model for this type of TDOA [63]. The two received times can be
written :

tradio = t0 +
d

vradio
(2.10)

and
tsound = t0 + tdelay +

d

vsound
(2.11)

where d is the distance between the transmitter and the receiver and vradio and vsound
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Figure 2.8: Hardware configuration of TDOA

are respectively the transmission velocity of the radio and acoustic signals. Using these
two equations, the distance between the transmitter and receiver can be calculated by:

d =
vradiovsound
vradio − vsound

(tsound − tradio − tdelay) (2.12)

It must be noticed that the transmitter time to is not present in this equation. More-
over, the two times tradio and tsound are measured in the receiver, and accurate synchro-
nization between the transmitter and receiver is no more needed.

Since the radio signal propagates far faster than the acoustic wave in free space, the
value of vradio − vsound is approaching to vradio, and tradio is also much smaller than
tsound for short distances (i.e. indoor applications). For that reason, we can write [64]:

t0 ' tradio (2.13)

and

d ' vsound(tsound − tradio − tdelay) (2.14)
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where tsound and tradio are measured at the receiver. There is no need to synchronize the
transmitter and receiver.
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Figure 2.9: Time delay computation model for TDOA

RSSI

The RSSI, which denotes the Received signal strength indicator, is a measurement of
the receiver signal power. It is available in most of receivers and can be used for distance
measurement as it can be expected that its value decreases with the distance [65]. Many
RSSI based algorithms have been presented for unknown target localization in wireless
sensor networks. To characterize the relationship between the received signal strength
and transmission distance, several path loss models are built based on experimental data.
In free space propagation, the relationship between signal strength and transmission
distance is expressed by Friis equation as [66]:

Pr(d) =
PtGtGrλ

2

4π2dηL
, (2.15)

where
– Pr and Pt are respectively the received and transmit powers,
– Gt and Gr are the antenna gains of the transmitter and receiver,
– L is the system loss,
– d is the radio transmission distance,
– η is the path loss exponent equal to 2 for free space,
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– λ is the radio wavelength defined by

λ =
c

f
(2.16)

where c is the light speed and f is the signal frequency.

For simplicity, the values of Gt, Gr and L are set to 1. Equation (2.15) is simplified
to:

Pr(d) =
Ptλ

2

4π2dη
(2.17)

From the relationship between the transmitted and received powers, we can define
the path loss PL which denotes the power attenuation during the propagation [67]:

PL =
Pt
Pr

= (
2π

λ
)2dη (2.18)

Substituting (2.16) into (2.18), we get:

PL =
Pt
Pr

= (
2π

c
)2f 2dη (2.19)

This equation indicates that the pass loss is determined by two factors: radio fre-
quency f and transmission distance d. Path loss increases with frequency f and distance
d.

The path loss exponent η is determined by the transmission environment. In usual
environments, the free space assumption is no longer verified. Multi-path and shadow-
ing have great impact on factor η. A large number of experiments indicate that the value
of η is generally between 2 and 4 [68].

A simplified formula for RSSI computation is proposed in [69]:

Pr =
Pt(d0)

dη
(2.20)

where d0 is a reference distance usually equals to one meter. On the study of the received
power in the receiver, the relation between RSSI and distance is interpreted as [70]:

Pr(d) = Pr(d0) + 10ηlog(
d

d0
) +Xσ (2.21)
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where the powers are expressed in dBm and Xσ is zero mean Gaussian distributed ran-
dom variable whose mean value is zero. This variable reflects the local variations of the
received power due to fading and shadowing [71].

From the above equations, a popular RSSI channel model is presented as [72]:

Pr(dBm) = A(dBm)− 10ηlog(d) +Xσ (2.22)

where Pr is the received signal power, A is the signal power at a distance of one me-
ter. Many RSSI based localization algorithms are based on this channel model. These
algorithms will be presented latter in this chapter.

AOA

Angle of arrival (AOA), which is also called as direction of arrival (DOA), can be
used for location estimation [73]. The AOA technique was firstly designed to estimate
the location of objects in radar system, which is widely applied in military and civilian
fields. The receiver with multiple directional antennas measure the angle from the signal
reflected by the target 1. Generally, the angle information is extracted by two means [74].

(1) On receiving the signal, the antenna arrays in the reference station have different
phase informations. The angle of arrival can be calculated from the phase difference.

(2) The angle of arrival can also be estimated by calculating the signal amplitude at
the main beam.

Algorithms developed by many authors make the direction of arrival estimation to
become highly accurate and able to provide very high resolution results. The first at-
tempt to automatically localize signal sources using an antenna array was proposed by
Bartlett, which is referred to in the literature as the shift and sum beamforming method
or Bartlett method. It is based on calculating the power of the beamforming output for
all the possible directions [75]. The other conventional method is known as the Capon
algorithm, which adds the constraint of making the gain of the array unity in the looking
direction of arrival and then minimizing the output power in the other directions [76].

1. In classical radar systems the angle of arrival is determined by a rotary antenna.
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2.4.2.2 Location calculation

In the previous section, the methods to estimate the angle or distance, have been
discussed. However, these informations need to be further processed by positioning
algorithms to find the coordinates of the object.

The objective of the following sections is to present the algorithms that can be used
to calculate the position, such as Triangulation, Multilateration, Trilateration, linear
least squares (LLS), non linear least squares (NLS), projection onto convex sets (POCS)
and semidefinite programming (SDP) [77].

Triangulation      

T 

(x, y) 

BS 

θ𝑖 

X 

Y 

(x𝑖 , y𝑖) 

Figure 2.10: Angle of arrival measurement.

When the angle of arrival is obtained, triangulation algorithm can be used for loca-
tion estimation. As illustrated in Figure 2.10, the transmitter T sends signal to the base
station i. The angle of arrival θi is given by:

tanθi = (
y − yi
x− xi

) (2.23)

where (xi, yi) is the coordinates of the base station i; (x, y) is the coordinates of trans-
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mitter T.

In triangulation, at least two base stations are needed for two-dimensional localiza-
tion. The principle of triangulation is shown in Figure 2.11. The location of transmitter
T can be computed from the two angles θ1 and θ2 by:      

T 

(x, y) 

BS1 

θ1 

X 

Y 

(x1, y1) BS2 (x2, y2) 

θ2 

Figure 2.11: Triangulation

x =
L tan(θ2)

tan(θ2)− tan(θ1)

y =
L tan(θ1)tan(θ2)

tan(θ2)− tan(θ1)

(2.24)

where L is the distance between the two base stations, which can be calculated by:

L =
√

(x1 − x2)2 + (y1 − y2)2 (2.25)

The accuracy of triangulation relies heavily on the measured angle of arrival. Im-
proving the measurement precision on arrived direction is a way to guarantee a higher
accuracy. Meanwhile, employing more base stations can also enhance the localization
performance.
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Compared to TOA method, AOA method has the following advantages. Time syn-
chronization is not required for measuring angle of arrival. The error caused by time
measurement inaccuracy is avoidable. Less base stations are needed to estimate the po-
sition in triangulation method. To find the position of one target, AOA needs two base
stations but TOA needs at least three base stations with known position. Moreover, base
stations can measure the arrived angle from the target without the cooperation of the
target, which reduces the communication overhead and makes the localization process
less complex.

However, the drawback in AOA method may cause some limitations when it is ap-
plied in practical localization process. When the distance between the target and base
station is large, the measured angle value is not accurate due to the varying transmission
characteristics in long path. It is hard to overcome this problem and the localization
performance is reduced. Meanwhile, directional antennas or antenna array in base sta-
tions will bring additional cost for localization system. In view of these features, AOA
method is more applicable in radar localization system.

Multilateration

Multilateration is a popular method for finding the position of a target. In this
method, at least three anchor nodes are needed for 2-D space localization. The equations
for multilateration is expressed as:

(x− x1)2 + (y − y1)2 = d21

(x− x2)2 + (y − y2)2 = d22
...

...
...

(x− xN)2 + (y − yN)2 = d2N

(2.26)

where (x, y) is the coordinates of the reference or unknown nodes, (x1, y1), (x2, y2),
· · · , (xN , yN) are the coordinates of the N anchors. Then, this non-linear system of
equations must be solved by adequate methods to obtain the unknowns x and y.

In real environment, the distance measured from signal information is inaccurate due
to multi-path, reflection, shadowing and noise impact. Consequently, the position of the
target can not be calculated exactly by multilateration. To find an optimal position,
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LLS, NLS and POCS methods have been employed and associated with multilateration.
These methods will be elaborated in the following sections.

Trilateration
      

Anchor nodes 

(x1, y1) 

Unknown node 

(x2, y2) 

(x3, y3) 
(x, y) 

Figure 2.12: Trilateration

As shown in Figure 2.12, when the number of anchors is 3, the multilateration is also
called trilateration. Under minimum anchor configuration, the position can be found
from three anchors, if they are not deployed in straight line. The relationship between
the unknown node and three anchor nodes is written by [78]:

(x− x1)2 + (y − y1)2 = d21

(x− x2)2 + (y − y2)2 = d22

(x− x3)2 + (y − y3)2 = d23

(2.27)

where (x, y) are the coordinates of the reference or unknown nodes, (x1, y1), (x2, y2),
(x3, y3) are the coordinates of the three anchors. By subtracting the first equation to
the others, the system of equations (2.27) can be transformed into the following matrix
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form:
Qx = b (2.28)

where Q is a matrix of dimension 2 × 2, x is the coordinate vector, b is a vector of
dimension 2.

Q =

[
2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

]
(2.29)

x =

[
x

y

]
(2.30)

b =

[
b1

b2

]
=

[
x21 − x22 + y21 − y22 + d22 − d21
x21 − x23 + y21 − y23 + d23 − d21

]
(2.31)

By an adequate choice of the anchor position, we can make sure that matrix Q is invert-
ible. So, the calculated position is:

x = Q−1b where x =

[
x

y

]
(2.32)

This solution for trilateration can also be written as:

[
x

y

]
= M

[
x21 − x22 + y21 − y22 + d22 − d21
x21 − x23 + y21 − y23 + d23 − d21

]
, (2.33)

where M is a matrix of dimension 2× 2, with the elements defined as follows.

M(1, 1) =
1

2
(y1 − y3)/C (2.34)

M(1, 2) =
1

2
(y2 − y1)/C (2.35)

M(2, 1) =
1

2
(x3 − x1)/C (2.36)

M(2, 2) =
1

2
(x1 − x2)/C (2.37)

C = x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2 (2.38)
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Hyperbolic method

When the distances from the base stations to the target are obtained, the hyperbolic
method can also be used to calculate the position of the target by mathematical relation-
ship [79]. In geometry, there is a condition that the distance difference from one point
to other two predefined points is a constant. All points meeting this condition will form
a hyperbola. On the basis of hyperbola principle, two base stations can be set on two
foci and the target is contained in the hyperbola.
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Figure 2.13: Hyperbolic method

As shown in Figure 2.13, two base stations are on two foci of hyperbola. Their
coordinates are (x1, y1) and (x2, y2). The position of the transmitter to be localized is
denoted as (x, y). The relationship among the related positions are listed as follows:

x2

a2
− y2

b2
= 1 (2.39)

a2 = (
∆d

2
)2 (2.40)

b2 = (
D

2
)2 − a2 (2.41)

where a and b are two parameters for hyperbola equation, which can be provided by the
measured distances. D is the distance between the two base stations. ∆d is the distance
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difference between the two distances d1 and d2 from the transmitter to the two base
stations:

∆d = d2 − d1 (2.42)

where d1 and d2 are distances measured by other techniques.

It is obvious that at least three distances are needed for 2-D localization. The target
position is the intersection point of two hyperbolas [80].

In the previous methods, the number of equations is equal to the number of un-
knowns. As the measurements of distances or angle of arrival can be inaccurate, it can
be interesting to increase the number of equations (by increasing the number of anchors)
in order to deal with these uncertainty of the measures.

Using this idea, other methods have been developed to increase the localization ac-
curacy, namely, linear least squares (LLS), non linear least squares (NLS) and projection
onto convex sets (POCS). As said before, the price of using these methods is the increase
of the number of anchors. In the next sections, these approaches will be detailed.

LLS

Assuming that in the localization process, the unknown node is ranged by N anchor
nodes. The position of the unknown node is defined as (x, y) and the coordinates of
all anchor nodes are denoted as (xk, yk), k = 1, 2, ...N . The measured distance from
anchor node k to the unknown node is d̂k. Owing to noise influence, d̂k is inaccurate,
which can be expressed as [81]:

d̂k = dk + nk (2.43)

where nk is an additive measurement error and dk is the real distance between the un-
known node and anchor node k which is written by:

dk =
√

(x̂− xk)2 + (ŷ − yk)2 (2.44)

Using d̂k instead of dk and according to the principle of multilateration, the estimated
distances between N anchor nodes and the unknown can be written as [82]:
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(x̂− x1)2 + (ŷ − y1)2 = d̂21 (2.45)

(x̂− x2)2 + (ŷ − y2)2 = d̂22 (2.46)

.

.

.

(x̂− xN)2 + (ŷ − yN)2 = d̂2N (2.47)

where (x̂, ŷ) is the estimated position and d̂1, d̂2, ..., d̂N are the measured distances.

Similarly to the trilateration method, these equations are rewritten as [83]:

x21 − x22 − 2(x1 − x2)x̂+ y21 − y22 − 2(y1 − y2)ŷ = d̂21 − d̂22 (2.48)

x21 − x23 − 2(x1 − x3)x̂+ y21 − y23 − 2(y1 − y3)ŷ = d̂21 − d̂23 (2.49)

.

.

.

x21 − x2N − 2(x1 − xN)x̂+ y21 − y2N − 2(y1 − yN)ŷ = d̂21 − d̂2N (2.50)

These equations can be transformed into the following matrix form [84]:

Q1x̂ = b (2.51)

where Q1 is a matrix of dimension (N − 1)× 2, x̂ is the coordinate vector, b is a vector
of dimension (N − 1).
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Q1 =


2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

...
...

2(x1 − xN) 2(y1 − yN)

 (2.52)

x̂ =

[
x̂

ŷ

]
(2.53)

b =


x21 − x22 + y21 − y22 + d̂22 − d̂21
x21 − x23 + y21 − y23 + d̂23 − d̂21

...
x21 − x2N + y21 − y2N + d̂2N − d̂21

 (2.54)

We obtain an overdetermined system (N−1) equations and two unknowns with N > 3.
Equation (2.51) can be solved by the following linear least squared problem [85]:

Min‖Q1x− b‖2 (2.55)

The solution is given by:

x = (QT
1 Q1)

−1QT
1 b where x =

[
x̂

ŷ

]
(2.56)

(x̂, ŷ) is the best position obtained by LLS.

NLS

This localization issue can be also settled by nonlinear least squares (NLS) approach
[86]. Considering that the N anchors are included in the networks and their positions
are known as xk = (xk, yk), the cost function of the NLS method is expressed as:

x̂ = arg min
x∈R2

N∑
k=1

[‖x− xk‖ − d̂k]2 (2.57)
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Figure 2.14: Projection onto Convex Sets

where (xk, yk) is the center position of each circle and d̂k is the estimated distance
corresponding to each circle.

The meaning of this optimization problem is that we want to minimize the square
error between the estimated distances and the distances between anchors and node. To
solve this minimization function defined by (2.57), interior point method, sequential
quadratic programming method (SQP), trust region reflective method, active set method
and so on can be selected and employed [87].

POCS

A shortcoming of NLS method is the possible inaccuracy caused by the existence of
saddle points and local minimums [88]. To search the optimal position in the possible
areas, an alternative called projection onto convex sets (POCS) method is applied into
target localization .
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According to the previous assumption, the N anchor nodes estimate the distance
to the target. N circles with center (xk, yk) are generated by anchor nodes. For each
measured distance, a disc can be defined as:

Dk = {x ∈ R2 ‖x− xk‖ ≤ d̂k k = 1, 2..., N} (2.58)

Generally, the target is located in the intersection region of the N discs. The inter-
section region is defined by:

x̂ ∈ D =
⋂

k=1,2...,N

Dk (2.59)

The localization problem is searching a position in this intersection region, which
is denoted as D, as shown in Figure 2.14. As for this set D, in the presence of mea-
surement noise, set D is equal to ∅. Considering this possible condition, the optimal
position estimated by POCS minimizes the sum distances to sets Dk. The minimization
formulation is expressed as [89]:

x̂ = arg min
x∈R2

N∑
k=1

‖x− PDk(x)‖ (2.60)

where PDk(x) is the orthogonal projection of x onto sets Dk, defined as:

PDk(x) = arg min
yk∈R2

N∑
k=1

‖x− yk‖ (2.61)

where yk denotes all the points determined by the estimated distance dk.

Similarly, to solve the minimization function defined by (2.60), interior point method,
sequential quadratic programming method (SQP), trust region reflective method, active
set method and so on can be selected and employed.

SDP

SDP relaxation can also be applied to solve the localization problem in wireless sen-
sor works [90]. In the localization problem, non-convex constraints will give difficulties
in optimization and reduce the localization accuracy. These constraints can be relaxed
into semidefinite program which can approximate the position efficiently. According to
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the above definition, the relationship between the unknown node position x and anchor
nodes position xk is expressed as [91]:

‖ x− xk ‖2= d2k k = 1, 2..., N (2.62)

where x and xk are denoted as:

x =

[
x

y

]
(2.63)

xk =

[
xk

yk

]
(2.64)

The minimization formulation is expressed as:

x̂ = arg min
x∈R2

N∑
k=1

[‖x− xk‖ − d̂k]2 (2.65)

The constraints defined by (2.62) can also be written as matrix form:

(
−xk

1

)T( I2 x
xT g

)(
−xk

1

)
= d2k (2.66)

where I2 is an identity matrix with dimension 2× 2, which is written as:

I2 =

(
1 0

0 1

)
(2.67)

and g is defined as:
g = xTx = x2 + y2 (2.68)

Relax the above equations into a semidefinite program: change the constraint g =

xTx in (2.68) to g � xTx. This expression can be also modified as:

Z =

(
I2 x
xT g

)
� 0 (2.69)

Equation (2.69) means matrix Z is a positive semidefinite matrix. Then the con-
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straints can also be written as its standard form:(
−xk

1

)T
Z
(
−xk

1

)
= d2k (2.70)

The minimization formulation in (2.65) is modified as:

Ẑ = arg min
Z∈R2

N∑
k=1

{(
−xk

1

)T
Z
(
−xk

1

)
− d̂2k

}
(2.71)

Similarly, to solve the minimization function defined by (2.71), interior point method,
sequential quadratic programming method (SQP), trust region reflective method, active
set method and so on can be selected and employed.

2.5 RSSI-based localization algorithms

RSSI is a measurement of the power of the radio frequency signal received by a
node, an access point or a router. This information is useful for determining if there
is enough signal to get a good wireless connection. RSSI is a term used to measure
the relative quality of a received signal to a client device, but has no absolute value.
The IEEE 802.11 standard specifies that RSSI is quantified using a scale from 0 to 255
and that each chipset manufacturer can define their own maximum RSSI value. RSSI
is available in most communication system: WiFi, Zigbee, Bluetooth etc. A detailed
explanation of RSSI will be presented in Chapter 3.

In RSSI-based localization algorithm, accurately estimating the distance from the
received signal strength value is significant to the localization precision. There exist
mainly two types of RSSI based methods in the open literature. One is calibrating
the channel model by RSSI value, with the help of some reference nodes. The other
is building a RSSI fingerprint database for the localization area. Both methods have
advantages and disadvantages. In order to calibrate the channel model, the algorithm
requires multiple iterative computations, so large amount of energy is consumed. On
the other hand, pre-established RSSI fingerprint does not need a large number of on-
line operations. Therefore the localization efficiency is better. In the following section,
several RSSI based localization algorithms will be presented.
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2.5.1 Channel model based methods

RongHou Wu et al. [92] analyzed the main impact factors on RSSI value. Their
study indicates that the multipath fading and complex environments have a significant
impact on RSSI value. Through many experiments, they got the following conclusions.
RSSI value has nothing to do with the measurement time. When enlarging the distance
between the receive and the transmitter, the RSSI value is changed drastically. When
placing some objects in the transmission path, the RSSI will decrease. The RSSI value
has no regularity features in frequency domain. There is no relationship between the
variance of RSSI and the transmission power. The variance is mainly determined by the
environment complexity.

In [93], Li proposed an algorithm based on least square estimator to find RSSI chan-
nel model parameters. The simulation results indicate that the proposed algorithm can
perform localization in variable environments.

A. Bahillo et al. [94] proposed a hybrid localization method which employs RSSI
value and round-trip time (RTT) simultaneously. The RSSI value is used to estimate the
distance and RTT is a complementary information for channel refinement. To increase
the localization accuracy, the median filter is adopted for removing some outliers [95].
Simulation results show that this hybrid localization algorithm is superior over some
RSSI based methods.

In [96], B. Mukhopadhyay, S. Sarangi and S. Kar adopted three different estimators
to calculate and predict the position of the unknown node. Besides static nodes, they
also attempted to determine the position of mobile sensor nodes. From their localization
results, the proposed estimators are efficient and have the least RMSE value.

To obtain a better localization performance, scholars proposed many algorithms to
improve the distance estimation. F. Subhan, S. Ahmed and K. Ashraf [97] proposed a
gradient based RSSI filter to acquire smooth value for increasing the localization ac-
curacy. In their simulation, they compare the proposed gradient filter and the Kalman
filter. Y. Tian, Z. Tang and Y. Yu [98] developed a third-order polynomial RSSI model
for distance estimation. F. Yaghoubi and B. Maham [99] presented a new metric to esti-
mate localization error bound in WSNs. They use an experimental lognormal path loss
channel model to evaluate their approach. In [100], the authors proposed to associate
Non linear Least Squares (NLS) and multilateration to find optimal position.
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2.5.2 Fingerprint based methods

B. Turgut and R. P. Martin [101] proposed a novel method based on RSSI value
acquired from many anchor nodes in indoor environment. They draw RSSI surface for
each anchor node from a large number of training data. After completing the whole
RSSI surface, they extract the line with same RSSI value for each anchor nodes. They
deduce from this study an indoor RSSI map data for the area of interest. In the localiza-
tion process, the device measures the RSSI value from all the anchor nodes and get the
corresponding same RSSI line from the map. Among all the lines, the most likely in-
tersection point is found. They also presented a recursive method to search the optimal
position of the unknown device. Based on experiments data, this method gives a better
localization performance than some current localization methods.

Yin, J et al. [102] presented a method to draw the relationship between the radio
map and the time dimension to weaken the influence of the external environment vari-
ability. Instead of updating the signal maps continuously, they deploy specific devices
in the location area which can be treated as reference nodes. On the basis of the analysis
and calculation of the reference nodes, a signal map is built for the location estimation
of the unknown node within this region. In their approach, a signal map together with
the signal characteristics from both the reference nodes and the unknown target is con-
structed. During the localization stage, regression models are used to forecast the most
likely coordinates of the mobile nodes.

According to the required accuracy, time constraints and complex environmental
conditions, some tradeoff should be made. In [103], De Morqes et al. proposed a system
for detecting and localizing unknown wireless devices, without additional assistance
from human beings or other remote clients. They build an architecture based on wireless
sniffers which can be used for measuring the signal feature, such as the wireless signal
average energy, the received signal strength indicator (RSSI), signal propagation delay
and so on. In this way, with the help of the existing WLAN or GSM infrastructure in the
vicinity of the deployed networks, some special equipment is no longer a must and the
monitoring costs are reduced. In [104], they presented a new RSSI fingerprint model.
The developed model is applied to indoor WIFI localization system. The simulation
results show that this model is superior over the traditional map models.
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2.6 Conclusion

In this chapter, the localization principle and main algorithms have been discussed.
A classification of localization strategies in WSNs has been provided, and some typical
approaches have been detailed.

The localization means, such as, GPS method, cellular network method, infrared
device method, ultrasonic wave method, and micro inertial navigation method have
been introduced. The methods for measuring the angle or distance, including TOA,
TDOA, RSSI and AOA, have been presented in detail. In addition, the positioning algo-
rithms such as Triangulation, Multilateration, Trilateration, linear least squares (LLS),
non linear least squares (NLS), projection onto convex sets (POCS) and semidefinite
programming (SDP) have been introduced.

Finally, the state of the art of RSSI based methods has been presented, including the
channel model based methods and the fingerprint based methods.

In our study, we focus on indoor localization algorithm based on RSSI channel
model. So the first step is to characterize and model the RSSI. This is the main ob-
jective of the next chapter.



3
RSSI channel model

In this thesis, we have chosen the RSSI based localization methods due to the fol-
lowing reasons:

(1) Most of the wireless communications networks provide a straightforward ac-
cess to the RSSI values, which has made the RSSI-based localization one of the most
attractive network-based localization approaches.

(2) The advantage of the RSSI-based localization is that it can be implemented eas-
ily on low-cost, battery-powered nodes with small memory size and low processing
capabilities.

As seen in the previous chapter, some localization algorithms estimate the distances
based on RSSI channel model. It is essential to construct an accurate RSSI channel
model in practical application. In this chapter, the theoretical channel model for distance
estimation will be discussed. To characterize RSSI channel model, an experimental
localization system is designed. Based on the acquired RSSI data, an experimental
channel model is deduced.

53
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3.1 Theoretical channel model

Model-based RSSI localization techniques have been proposed in the literature for
different radio technologies [105]. Among the number of channel models proposed for
outdoor and indoor environments (Nakagami, Rayleigh, Ricean, etc.), the most popular
channel model for RSSI-based localization, thanks to its simplicity, is the lognormal
shadowing path loss model [106], which expresses the following relation between the
received power and the transmitter-receiver distance:

RSSI(dBm) = A(dBm)− 10ηlog(d) + v (3.1)

where A is a constant term which accounts for the transmission power of the node to be
localized, d is the distance between transmitter and receiver, η is the path loss exponent
and v is a zero-mean Gaussian random variable.

Suppose that the distance estimation is based on M samples of RSSI(k,i), which
represents the ith RSSI sample measured by the kth anchor node. Then, according to
(3.1), we have:

RSSI(k,i) = Ak − 10ηklog(dk) + v(k,i) (3.2)

where dk is the distance from the unknown node to the kth anchor node, Ak and ηk are
the model parameters of the kth anchor, v(k,i) is a zero-mean white Gaussian random
variable with standard deviation σk.

In the channel model, the noise is assumed to be Gaussian distributed. When a
variable is Gaussian distributed, its mean value is equal to its median value. However,
in practical condition, where some outliers may exist, it is better to use the median value
to estimate the distance since it is more robust to outliers.

For getting a good performance, the median value of RSSI(k,i) is used to obtain the
distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (3.3)

where RSSIk, the median RSSI value measured by the kth anchor, is given by:

RSSIk = Median{RSSI(k,i), i = 1, · · · ,M} (3.4)



3.2. EXPERIMENT SETUP 55

Finally, the estimated position is calculated by the multilateration method.

3.2 Experiment setup
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Figure 3.1: Typical sensor node architecture

Generally, many sensor nodes are deployed as a part of WSNs in a monitored region
for collecting specific information. As illustrated in Figure 3.1, a typical sensor node
includes four modules: sensing unit, processing unit, communication unit and power
unit [107]. Sensing unit includes two parts: sensors and analog-to-digital converter
(ADC). A variety of sensors, for example, light sensor, temperature sensor, humidity
sensor, pressure sensor and so on, are included in the sensor nodes for acquiring relevant
information. The analog signal is transformed into digital signal by an ADC before
being processed and stored. Processing unit consists of processor and memory. After
measured by sensor module, the related data are processed in the processor and saved
in the memory if needed. Data transmission is performed by the transceiver. The power
unit supplies energy to the other three units. These four parts work cooperatively to
accomplish data collection, processing and transmission.

At present, there exist many sensor node platforms, such as Raspberry Pi, MicaZ,
TelosB, Iris, Cricket, Lotus and so on. The main features of these sensor node platforms
are illustrated in Table 3.1.
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Figure 3.2: Raspberry Pi model A

Table 3.1: Comparison of sensor node platforms

Name Processor RAM Operating system Cost ($)

Raspberry Pi
ARM

BCM2835
256-512

M
RASPBIAN 25-35

MicaZ ATMEGA128 4 K
TINY OS,

MOTE RUNNER
99

TelosB TI MSP430 10 K
TINY OS,

MANTISOS
99

Iris ATMEGA1281 8K
TINY OS,

MOTE RUNNER
115

Cricket ATMEGA128L 4 K TINY OS 225

Lotus
ARM NXP
LPC1758

64 K RTOS, TINY OS 300
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Figure 3.3: Raspberry Pi model B

Compared to other platforms, the superiority of Raspberry Pi lies in the following
aspects [108]:

– The Raspberry Pi processor is ARM BCM2835, which provides powerful pro-
cessing capability and large RAM making it possible to store large amounts of
data.

– The Raspberry Pi platform provides various interfaces for connecting needed sen-
sors and other communication devices.

– Similar to several microcomputer, a Linux based system (RASPIAN), is used as
an operating system. The open source characteristic makes this platform more
flexible for writing code for various applications.

– This platform is cheaper than others. The price of Raspberry Pi model A is 25$
and model B is 35$ [109]. Owing to its low cost, it has been used all over the
world especially for education field.

– Network connection is easy in Ethernet and WIFI.

There are also some drawbacks like high power consumption which is not compatible
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Figure 3.4: Measurement scenario

Server 

Client 1 

Client 3 Client 2 

Figure 3.5: Diagram of the testing localization system
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with energy efficient sensor nodes.
In our experiment, the Raspberry Pi is adopted to build the localization system.

Raspberry Pi model A is shown in Figure 3.2, which is configured as an access point
in our localization system and Raspberry Pi model B is shown in Figure 3.3, which is
defined as a mobile node. The experiment has been done in a large hall. The testing
scene is shown in Figure 3.4. The experimental testbed has been build using three wifi
access points (AP) and a mobile wifi point. The three wifi access points represent the
three anchor nodes and the mobile wifi point is considered as the unknown node.

Table 3.2: Convertion relationship between percentage value and dBm by Cisco
(%) dBm (%) dBm (%) dBm (%) dBm (%) dBm
0 -113 21 -91 42 -68 63 -44 84 -22
1 -112 22 -90 43 -67 64 -44 85 -20
2 -111 23 -89 44 -65 65 -43 86 -19
3 -110 24 -88 45 -64 66 -42 87 -18
4 -109 25 -87 46 -63 67 -42 88 -17
5 -108 26 -86 47 -62 68 -41 89 -16
6 -107 27 -85 48 -60 69 -40 90 -15
7 -106 28 -84 49 -59 70 -39 91 -14
8 -105 29 -83 50 -58 71 -38 92 -13
9 -104 30 -82 51 -56 72 -37 93 -12
10 -103 31 -81 52 -55 73 -35 94 -10
11 -102 32 -80 53 -53 74 -34 95 -10
11 -101 33 -79 54 -52 75 -33 96 -10
13 -99 34 -78 55 -50 76 -32 97 -10
14 -98 35 -77 56 -50 77 -30 98 -10
15 -97 36 -75 57 -49 78 -29 99 -10
16 -96 37 -74 58 -48 79 -28 100 -10
17 -95 38 -73 59 -48 80 -27
18 -94 39 -72 60 -47 81 -25
19 -93 40 -70 61 -46 82 -24
20 -92 41 -69 62 -45 83 -23

The schematic diagram of the testing localization system is shown in Figure 3.5. In
this diagram, the mobile point can be considered as a server and three access points can
be regarded as three clients.

The RSSI data acquisition process can be divided into the following procedures:
(1) Server initialization: the server starts up and waits clients to join.
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(2) Three clients start up and try to connect to the access point.

(3) Connection is set up between server and three clients.

(4) Server sends signal to each client. After receiving the signal, all clients measure
the received signal level and send related packet back to the server.

(5) Server accepts all the received signal levels and transforms them into RSSI val-
ues.

(6) Repeating procedures (1) - (5), a large number of RSSI values are collected.

In the following, an explanation of RSSI and how to acquire the RSSI value from
the localization system are discussed. Generally, the received signal strength is not
expressed in milliwatts (mW), dBm but in percentage value.

0 10 20 30 40 50 60 70 80 90 100
−120

−100

−80

−60

−40

−20

0

Quality level percentage (%) 

R
S

S
I(

dB
m

)

 

 

Granular relationship
Linearization curve

Figure 3.6: Fitting relationship between percentage values and dBm

In the testing, the acquired percentage value is converted to dBm by the Cisco lookup
table, shown in Table 3.2. In this lookup table, the percentage values, from 0% to 100%,
are changed to a set of negative values in dBm, from -113 to -10. To simplify this
transformation, in the measurement we adopt a fitting relationship, which is shown in
Figure 3.6. This relationship can be approximated by:
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P (dBm) = 108.42
percentage

100
− 113.41 (3.5)

Table 3.3: Packet read from interface wlan0
Interface Status link level noise

wlan0 0000 80 70% -256

To acquire RSSI values, we have created a python program to read the quality level
value. The data packets are illustrated in the Table 3.3. Among these data, the signal
level can be extracted and converted to values in dBm.

3.3 Experimental channel model

To characterize the RSSI model in an indoor environment, measurements have been
realized. The experiment has been done in a large hall. The testing scene is shown
in Figure 3.4. The experimental testbed has been build using three wifi access points
(AP) and a mobile wifi device. To establish the practical channel model in this hall,
many measurements have been performed on different positions. To acquire a larger
number of RSSI values, for each distance, the direction of the mobile point is changed
30 times. Repeating this measurement process, a large number of RSSI data are obtained
by changing the distance from 1 meter to 10 meters with interval of 0.5 meters.

Based on the measured RSSI data, the median RSSI is calculated for one distance.
Figure 3.7 presents the measured mean RSSI as function of the distance. As expected,
we can find that the mean RSSI value decreases with the distance. From these results
we can deduce the following channel model:

RSSIk = −9.40− 22.7log(dk) + vk (3.6)

with vk a zero-mean random variable with standard deviation σk. Therefore, based on
the measured data,Ak = −9.40, ηk = 2.27 can be deduced for the experimental channel
model.

Meanwhile, the standard deviation of the noise for each distance can be estimated
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Figure 3.7: Relationship of the measured RSSI values and distance

by:

σ̂k =

√√√√ 1

M

M∑
i=1

[RSSI(k,i) −RSSIk]2 (3.7)

where RSSIk is the mean value of RSSI(k,i), given by:

RSSIk =
1

M

M∑
i=1

RSSI(k,i) (3.8)

The obtained results are shown in Figure 3.8. From the experimental results, the
standard deviation of the noise, in terms of the distance from 1 to 10 m, can be expressed
as:

σ(d) = −0.11d2 + 2.18d− 0.38 (3.9)

This expression will be used in the following study to provide the RSSI values using
model (3.6) and to evaluate the localization algorithms. The variance model defined
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Figure 3.8: Relationship of the noise standard deviation and distance for measured data

by (3.9) is of course specific to our measurement condition but indicates that the RSSI
variance tends to increase with distance which has been already observed in some works
[110]. It is worth noting that the relationship between the noise variance and distance
depends on the environment size and complexity.

Table 3.4: Environment information for four cases

Case Length(m) Width(m) Height(m)
Obstacle
number

Case1 15 8 5 0
Case2 30 10 5.5 0
Case3 15 8 5 2
Case4 30 10 5.5 2

To confirm this trend, simulation is done using a ray tracing system for an environ-
ment similar to the experimental environment. We have designed a ray tracing system
whose simulation scenario is shown in Figure 3.9. As illustrated in this simulation sce-
nario, there is a simulated workshop with two obstacles in it. A transmitter denoted by
TX , sends signal to a mobile receiver denoted by RX , which moves from position 1
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Figure 3.9: Simulation scenario of ray tracing system

to position 2. In the simulation, the median RSSI value is calculated based on these
simulated data. The relationship between the distance and standard deviation of noise
for four cases are observed.

In this simulation, four cases are considered to observe different environment con-
ditions. In the first two cases, we observe the relationship between the RSSI values and
distance with no obstacle in the room. In others cases, we change the room size or put
two obstacles in it. The detailed information for these four cases is illustrated in Table
3.4. In the simulation, for one position, 30 different RSSI values are measured and 180
positions are considered by changing the distance from 1 meter to 10 meters with inter-
val of 0.05 meters. Similarly, the median RSSI is calculated for one distance and the
relationship between the distance and RSSI is plotted for four cases. These results are
shown in Figure 3.10, Figure 3.11, Figure 3.12 and Figure 3.13.

Moreover, the linear approximation for the four cases is plotted in Figure 3.14.
Based on these simulated RSSI data, the values of parameters A and η for all cases
are estimated and given in Table 3.5.

From these results, we can compare the parameters for four cases. In the first and
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Figure 3.10: Relationship of the simulated RSSI values and distance for case 1
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Figure 3.11: Relationship of the simulated RSSI values and distance for case 2
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Figure 3.12: Relationship of the simulated RSSI values and distance for case 3
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Figure 3.13: Relationship of the simulated RSSI values and distance for case 4
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Figure 3.14: Comparison of the linearizion curves for four cases

Table 3.5: Different parameter values for four cases

Case A(dBm) η

Case1 -100.20 1.95
Case2 -99.99 1.99
Case3 -99.92 2.01
Case4 -99.70 2.04
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second cases, there is no obstacle in the workshop. In the second case, we enlarge the
room size. By comparing the parameters of case 1 and 2, we can find that A value
increases from -100.20 to -99.99, which represents a very small evolution. Similarly, η
value decreases from 1.95 to 1.99. This is because the reflected signal strength weakens
when the room size is enlarged. In the third and fourth cases, we put two obstacles in the
room, as shown in Figure 3.9. It indicates that η increases when obstacles are putting
in the measurement space. This is because signal attenuates when there are obstacles
between the transmitter and receiver. Besides, all η values based on measured data are
larger than that based on the simulated data. The reason for this difference is firstly that
the simulation scenario is simpler than the real measurement environment, and secondly
that the simulator simplifies the physical phenomena of propagation.
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Figure 3.15: Relationship of the noise standard deviation and distance based on simu-
lated data for case 1

The relationship between the standard deviation of noise and distance for four cases
are plotted in Figure 3.15, Figure 3.16, Figure 3.17 and Figure 3.18. The standard
deviation of the noise, in terms of the distance from 1 to 10 m, can be expressed by
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Figure 3.16: Relationship between the noise standard deviation and distance based on
simulated data for case 2
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Figure 3.17: Relationship between the noise standard deviation and distance based on
simulated data for case 3
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Figure 3.18: Relationship between the noise standard deviation and distance based on
simulated data for case 4
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Figure 3.19: Comparison between Relationship between the noise standard deviation
and distance based on simulated data for four cases
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(3.10) for case 1, (3.11) for case 2, (3.12) for case 3 and (3.13) for case 4 respectively.

σ(d) = −0.13d2 + 1.66d− 0.29 (3.10)

σ(d) = −0.13d2 + 1.78d− 0.27 (3.11)

σ(d) = −0.13d2 + 1.89d− 0.30 (3.12)

σ(d) = −0.15d2 + 1.96d− 0.31 (3.13)

From the above analysis on the simulated RSSI data, it can be observed that the
real and simulated data have a similar tendency in terms of the relationship between
the noise standard deviation and distance. The noise standard deviation increases with
distance. However, due to the complex environment, the standard deviation based on
real data is larger than the simulated data.

3.4 Conclusion

In this chapter, the lognormal shadowing path loss model which is employed as the
theoretical channel model for distance estimation has been introduced. In the experi-
ment, the Raspberry Pi is adopted to build the localization system. The experiment has
been done in a large hall. To establish the practical channel model in this hall, many
measurements have been performed on different positions. Based on the acquired RSSI
data, an experimental channel model has been constructed. To confirm this trend, simu-
lation has done using a ray tracing system for an environment similar to the experimental
environment.

In the following chapter, three proposed localization algorithms: Three minimum
Distances Method (TDM), Weighted Three minimum distances Method (WTM) and
Weight values Adjustment Method (WAM) based on NLS and multilateration will be
developed. The comparison of TDM, WTM, WAM, LLS, NLS and POCS in terms of
the localization accuracy and calculation time will be presented.





4
Localization algorithms

The last chapter has shown that the relationship between the RSSI value and distance
can be written as:

RSSI(dBm) = A(dBm)− 10ηlog(d) + v (4.1)

where A and η are channel parameters whose values change with the environment and
v is a noise whose variance is also largely variable. So the RSSI is not a reliable infor-
mation to deduce the distance. The objective of this chapter is to propose and evaluate
some localization algorithms by taking into account the low accuracy of distances de-
duced from RSSI measurements. Three approaches called three minimum distances
method (TDM), weighted three minimum distances method (WTM) and weight values
adjustment method (WAM) are proposed. Using the testbed described in Chapter 3, ex-
perimental channel model is deduced in order to verify the performance of the proposed
algorithms in realistic conditions. In the following parts, the proposed localization al-
gorithms are detailed and performance comparison is presented.
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4.1 Distance estimation from RSSI

All the proposed algorithms are based on the distance estimated from RSSI. So the
first step of the study is to define a method to do this estimation and to evaluate the
distance accuracy.

Suppose that the distance estimation is based on M samples of RSSI(k,i), which
represents the ith RSSI sample measured by the kth anchor node.

For getting a good performance, the mean value of RSSI(k,i) is used to obtain the
distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (4.2)

where RSSIk, the mean RSSI value measured by the kth anchor, is given by:

RSSIk =
1

M

M∑
i=1

RSSI(k,i) (4.3)

It should be noticed that the mean value can be replaced by the median value in
practical situations with the advantage that the median value is less sensitive to outlets.
In our model, because the RSSI(k,i) are Gaussian distributed, the mean value is equal
to the median value.

Using channel model defined by (3.2) and substituting (4.3) to (4.2), we can deduce
the estimated distance as:

d̂k = dk10
− 1

10ηk

1
M

M∑
i=1

v(k,i)
(4.4)

If the noise is small or the number of samples M is large, the estimated d̂k can be
approximated by:

d̂k ' dk[1−
ln10

10ηk

1

M

M∑
i=1

v(k,i)] (4.5)

Then the measurement error can be evaluated by the following additive noise:

ne = −dk
ln10

10ηk

1

M

M∑
i=1

v(k,i) (4.6)
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Its variance is given by :

σ2
e = d2kσ

2
k(
ln10

10ηk
)2

1

M
(4.7)

To confirm this theoretical derivation, simulations are performed to observe the re-
lationship between the distance variance σ2

e and the sample number M . In Figure 4.1,
a distance value dk is given to be 5 and the relationship between the distance variance
σ2
e and the sample number is plotted. These results indicate that the simulation results

match well with the deduced expression although there exists error caused by noise.
With the increase of the sample number M , the error between the measured distance
variance and theoretical value becomes smaller. When the distance value is set to 8,
a similar result can be obtained which is illustrated in Figure 4.2. As expected, the
distance variance becomes larger when the distance increases.
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Figure 4.1: Relationship between σ2
e and M for dk = 5.

From equation (4.7) we can deduce that the variance of the estimated distance de-
pends on the distance and on the measurement noise variance. Form the previous study,
we also know that the noise variance increases with the distance. It is clear that a large
distance corresponds to a stronger estimation variance, giving a less precise estimation
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Figure 4.2: Relationship between σ2
e and M for dk = 8.

of the distance. Expression (4.7) provides some guidances to reduce the localization
error, such as using the smallest distance from the unknown node to anchor nodes or
increasing the sample number M . Another strategy is to exploit this property in the def-
inition of the localization algorithms, which will be described in the following sections.

4.2 Localization methods

4.2.1 Multilateration

The multilateration algorithm is a basic positioning method, widely used in many
localization systems [111]. In this algorithm, at least three anchor nodes are needed for
two dimension localization. The position of the anchor nodes is assumed to be known.
The relationship between the unknown node position and N anchor nodes positions can
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(a) Ideal condition (b) Real condition

Figure 4.3: Location relationships of three circles in ideal and real conditions

be expressed as: 

(x− x1)2 + (y − y1)2 = d21

(x− x2)2 + (y − y2)2 = d22
...

...
...

(x− xN)2 + (y − yN)2 = d2N

(4.8)

where (x, y) is the coordinates of the reference or unknown nodes, (x1, y1), (x2, y2),
· · · , (xN , yN) are the coordinates of the N anchors.

In ideal conditions, in the absence of fading, noise and channel model error, the
above equations represent N circles that will intersect at only one position. This inter-
sected point is the actual position. Unfortunately, in practical condition, theN circles do
not intersect at one position due to the fading and noise impact. For example, when the
number of anchor is equal to 3, Figure 4.3 shows the three circles in ideal condition and
in real condition. In the case of real condition, we need to find the most likely position
in other ways.

4.3 Proposed methods

To approximate the most likely position, non-linear least square (NLS) has been
proposed. This algorithm has been described in Chapter 2. The nonlinear optimization
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problem can be solved by using the sequence quadratic programming algorithm [112].

In this thesis, we propose three novel methods based on NLS, called TDM, WTM
and WAM. For these proposed methods, the objective minimization function is modified
and the best position is given by:

(x, y) = argmin
N∑
k=1

αk[(x− xk)2 + (y − yk)2 − (d̂k)
2]2 (4.9)

where N is the number of anchors, (xk, yk) is the coordinates of the kth anchor and d̂k
the estimated distance from the median RSSI value at the kth anchor. We introduce a
weight αk used for each estimated distance d̂k.

The weights are introduced to deal with the fact that the distance estimation variance
increases with the distance. The weights values differ with different proposed methods.

In TDM, the three smallest estimated distances are selected from the N available
distances. Thus, the weights are defined by:

αk =

1 k = m1,m2,m3

0 k 6= m1,m2,m3

(4.10)

where m1, m2 and m3 are the index of three selected minimum distances.

For WTM, firstly, the three smallest estimated distances are selected from the N
available distances. Then, different weight values are assigned for the three selected
distances. Therefore, the weight values αk are modified as:

αk =


1

d̂2kσ̂
2
k

k = m1,m2,m3

0 k 6= m1,m2,m3

(4.11)

where m1, m2 and m3 are also the indices of the three smallest distances.

For WAM, all the distances are selected and the weight values in (4.9) are defined
by:

αk =
1

d̂2kσ̂
2
k

(4.12)

In the previous paragraph, we have determined the variance of d̂k that measures
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the dispersion of the estimated distance around the true distance. The values of the
weights are chosen to be proportional to the inverse of this variance in (4.7). Hence,
the uncertainty of the measured distances can be taken into account in the objective
function.

The six different methods based on multilateration: TDM, WTM, WAM, LLS, NLS
and POCS will be evaluated in the following section. Furthermore, the accuracy and
calculation time of these six methods will be compared.

4.4 Simulation and localization performance

Figure 4.4: Grid defining the intersection positions and anchor nodes positions

After acquiring the channel model from the experimental data, the whole localiza-
tion process can be evaluated in a given region. As shown in Figure 4.4, eight anchor
nodes are set in the predefined positions with coordinates A(0, 6), B(0, 0), C(6, 0),
D(6, 6), E(0, 3), F (3, 0), G(6, 3), H(3, 6). In the coordinate scale, 1 denotes 1 meter.
When the number of anchors is three, the anchor nodes are located at A, B, and C.
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When this number is four, the fourth node is located at D. In a similar letter order, more
anchors positions can be determined.

In the simulation, the unknown node position is randomly selected from the inter-
section points of the grid, as shown in Figure 4.4. Then, for each position we calculate
the root mean square error (RMSE) value defined as:

RMSE =
1

T

T∑
t=1

√
(x̂(t)− x(t))2 + (ŷ(t)− y(t))2 (4.13)

where (x(t), y(t)) is the real selected position. (x̂(t), ŷ(t)) is the position estimated by
the compared localization methods. T is the number of randomly chosen positions. In
the simulation, T is equal to 500.
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Figure 4.5: Localization results for three methods

To increase the accuracy of the localization methods, we need to acquire a large
number of RSSI values for the proposed algorithms. Using simulation results based on
the experimental channel model, M different samples of RSSI are acquired for each
selected position. Then the median RSSI value is calculated from M sampled values
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and the coordinates of the position are estimated. In this simulation, the number of
samples M is equal to 30.

It should be noted that the sequence quadratic programming is used in NLS, POCS,
TDM, WTM and WAM to search the optimal position in the possible region. In this
special simulation scenario, the possible searched region is defined by the square area
limited by A, B, C and D. As illustrated in Figure 4.5, when the number of anchors
is 3, TDM and NLS are equivalent, so the accuracy of the two methods is identical.
Similarly, a same accuracy is obtained by WTM and WAM as they have no difference
when the number of anchors is 3. When the number of anchors is 4, 5, 6, 7, or 8, the
RMSE value of TDM is smaller than that of LSM, which indicates that the accuracy of
the proposed TDM is superior to that of LSM. Besides, WTM gives a higher localization
accuracy than TDM and NLS. Among all the compared methods, WAM is the best one
in terms of estimation accuracy.

Meanwhile, the simulation times (ST) for each method implemented in MATLAB
software on a computer with processor unit (CPU) of 2.6 GHz and 16 GB of RAM are
observed. As shown in Table 4.1, the influence of the number of anchors on simulation
time is negligible. This time is almost the same for NLS, TDM, WTM and WAM. The
calculation time for one single localization process of NLS, TDM, WTM and WAM is
around 22ms. The calculation times of a single localization for LLS and POCS are 3ms
and 36ms respectively.

Table 4.1: Simulation time for one localization process in milliseconds
Anchor number 3 4 5 6 7 8

LLS_ST 3 3 3 3 3 3
NLS_ST 22 22 22 22 22 22
POCS_ST 36 36 36 36 36 36
TDM_ST 22 22 22 22 22 22
WTM_ST 22 22 22 22 22 22
WAM_ST 22 22 22 22 22 22
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4.5 Conclusion

In this chapter, three proposed localization algorithms: Three minimum Distances
Method (TDM), Weighted Three minimum distances Method (WTM) and Weight val-
ues Adjustment Method (WAM) based on NLS and multilateration have been described.
For getting a good performance, the median RSSI value is used to obtain the distance
estimate. Multilateration is adopted in the position process. The comparison of TDM,
WTM, WAM, LLS, NLS and POCS in terms of localization accuracy and calculation
time has been presented.

In this chapter, we have assumed that the channel parameters (A and η) are perfectly
known. The error in distance estimation is due to the noise v. In a real application, these
parameters will change with time. Therefore, it is necessary to learn these parameters.
In the next chapter, we will develop methods to acquire and track the evolution of the
channel model.



5
Tracking strategy

In our work, we consider the localization of the target when the environment changes
frequently and RSSI channel model parameters have variation. Different from the ex-
isting channel model based algorithms, we reduce the localization error caused from
parameter variation by a grid based learning and tracking strategy. In the context of
applications where the positions are constrained on a grid, a novel tracking strategy is
proposed to determine the real position and obtain the actual parameters in the moni-
tored region. Based on practical data acquired from the testbed described in Chapter
3, an experimental channel model is constructed to provide RSSI values and verify the
proposed tracking strategy. The simulation results show a good behavior of the pro-
posed tracking strategy in presence of space-time variation of the propagation channel.
Compared with the existing RSSI based algorithms, the proposed tracking strategy ex-
hibits better localization accuracy but consumes more calculation time. In addition, a
tracking test is performed to validate the effectiveness of the proposed tracking strategy.

In the next sections, the proposed parameter tracking strategy and localization algo-
rithm will be described. Localization and tracking results for assessing the performance
of the proposed technique and analyzing its limitation will be provided. Furthermore,
the localization performance comparison and tracking test will be presented.
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5.1 An example of localization scenario

Moving robot (wire guided trolley or robot) 

Figure 5.1: An application scenario about indoor environment with a set of devices in it

In some industrial production applications, such as in an indoor workshop, a set of
devices is arranged in the indoor space, as shown in Figure 5.1. The position of each
device is precisely defined, and generally, these devices are regularly deployed on the
ground following a certain rule. A robot is moving along the predefined lines in this
working space and will stop at one of the predefined positions to check each device.
This scenario can be modeled as a grid as shown in Figure 5.2, where we suppose
that the mobile robot can only stop at one of the intersection dots of a grid. So the
localization problem consists only in making a choice between the intersection points.
The proposed technique, exploiting the a prior knowledge of the possible locations of
the devices, allows localizing the robot in one of the intersection dots and tracking the
trajectory of the robot and the variation of the channel parameters due to the changement
of the environment. RSSI based localization method is a good option for this specific
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application but we have to check that

(1) errors due to the channel model inaccuracy are less than the grid resolution,

(2) small position error correction is possible and can be used to track in real time
the channel variations.

These two conditions will be developed later in the following section. Without loss
of generality, we consider in this study that the size of the grid is 10m× 10m. Anchors
are placed on three dots, whose coordinates are (0, 0), (0, 10), (10, 0), respectively. In
the coordinate scale, 1 denotes 1 meter. There exists a reference node in the center of
this region, whose position is (5, 5).
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Figure 5.2: Grid defining the possible positions
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5.2 Distance estimation

Suppose that the distance estimation is based on M samples of RSSI(k,i), which
represents the ith RSSI sample measured by the kth anchor node. For getting a good
performance, the median value of RSSI(k,i) is used to obtain the distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (5.1)

where RSSIk, the median RSSI value measured by the kth anchor, is given by:

RSSIk = Median{RSSI(k,i), i = 1, · · · ,M} (5.2)

5.3 Trilateration algorithm

In Chapter 2, many positioning methods have been described. Compared to other
optimization methods, trilateration algorithm can compute the position directly and
quickly on condition that three anchors are non-linearly placed. Therefore, in the pro-
posed tracking strategy, to reduce the calculation time, the trilateration algorithm is
employed to calculate the position. The trilateration algorithm is a basic positioning
method, widely used in many localization systems [113]. In this algorithm, at least
three anchor nodes are needed for positioning the target. The position of the anchor
nodes is assumed to be known. As presented in Chapter 2, the relationship between the
unknown node position and three anchor node positions can be expressed as [114]:

(x− x1)2 + (y − y1)2 + (z − z1)2 = d21

(x− x2)2 + (y − y2)2 + (z − z2)2 = d22

(x− x3)2 + (y − y3)2 + (z − z3)2 = d23

(5.3)

where (x, y, z) are the coordinates of the reference or unknown node, (x1, y1, z1), (x2, y2, z2),
(x3, y3, z3) are the coordinates of the three anchors. Equations (5.3) can be written into
the following matrix form:

Qx = b (5.4)



5.4. CHANNEL MODEL IDENTIFICATION 87

where Q is a matrix of dimension r × r, x is the coordinate vector, b is a vector of
dimension r, r is the dimension of position coordinates.

For two dimensional problem considered in this study, Q with dimension 2× 2 and
b with dimension 2 are written respectively as:

Q =

[
2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

]
(5.5)

b =

[
x21 − x22 + y21 − y22 + d22 − d21
x21 − x23 + y21 − y23 + d23 − d21

]
(5.6)

Whether Q is invertible or not will depend on the determinant value of Q. Making a
good choice of the anchor positions can guarantee that the matrix is invertible. In our
localization scenario, three anchor nodes are placed at (0, 0), (0, 10), (10, 0), respec-
tively. Under this deployment, it is easy to show that |Q| 6= 0, then Q is invertible.
Consequently, the estimated position is given by:

x = Q−1b = Pb where x =

[
x̂

ŷ

]
(5.7)

where (x̂, ŷ) is the estimated position obtained by the trilateration method.

5.4 Channel model identification

To identify the channel model, LMS algorithm is employed in the tracking strat-
egy. LMS algorithm can be considered as a basic machine learning algorithm, widely
used for parameter estimation [115]. LMS allows finding the values of parameters of
a function after several iterative calculations in a computationally efficient way [116].
It is based on approximating the true gradient of the squared error of estimation by its
instantaneous estimate. In the proposed tracking strategy, the error is minimized by re-
cursively modifying A and η of the channel model. As illustrated in Figure 5.3, RSSI
values related to the three anchor nodes are acquired by the reference or target node. At
each iteration t, the related distances are measured by (5.1) with A(t− 1) and η(t− 1)

estimated at iteration (t − 1). Then, the trilateration algorithm calculates the estimated
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position (x̂(t), ŷ(t)). With the known real position of reference point (x, y), the local-
ization error is formulated as:

ε(t) =
√

(x̂(t)− x(t))2 + (ŷ(t)− y(t))2 (5.8)

where t denotes the iteration number.

This error serves as the input to the LMS algorithm, by adaptively minimizing the
localization error, we obtain η as follows:

η(t) = η(t− 1)− µη
∂ε(t)2

∂η
(5.9)

The derivative of ε(t)2 with respect to η is:

∂ε(t)2

∂η
=
∂[(x̂(t)− x(t))2 + (ŷ(t)− y(t))2]

∂η

= 2[x̂(t)− x(t)]
∂x̂(t)

∂η
+ 2[ŷ(t)− y(t)]

∂ŷ(t)

∂η

(5.10)

The derivatives of the estimated position x̂(t) and ŷ(t) with respect to η are given by:

∂x̂(t)

∂η
= −2P(1, 1)d̂1

∂d̂1
∂η

+ 2P(1, 1)d̂2
∂d̂2
∂η

−2P(1, 2)d̂1
∂d̂1
∂η

+ 2P(1, 2)d̂3
∂d̂3
∂η

(5.11)

∂ŷ(t)

∂η
= −2P(2, 1)d̂1

∂d̂1
∂η

+ 2P(2, 1)d̂2
∂d̂2
∂η

−2P(2, 2)d̂1
∂d̂1
∂η

+ 2P(2, 2)d̂3
∂d̂3
∂η

(5.12)

∂d̂k
∂η

= −ln(10)10
A−RSSIk

10η
A−RSSIk

10

1

η2
(5.13)

Similarly, we can get A from the following equation:

A(t) = A(t− 1)− µA
∂ε(t)2

∂A
(5.14)
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The derivative of ε(t)2 with respect to A is:

∂ε(t)2

∂A
=
∂[(x̂(t)− x(t))2 + (ŷ(t)− y(t))2]

∂A

= 2[x̂(t)− x(t)]
∂x̂(t)

∂A
+ 2[ŷ(t)− y(t)]

∂ŷ(t)

∂A

(5.15)

The derivatives of the estimated position x̂(t) and ŷ(t) with respect to A are given
by:

∂x̂(t)

∂A
= −2P(1, 1)d̂1

∂d̂1
∂A

+ 2P(1, 1)d̂2
∂d̂2
∂A

−2P(1, 2)d̂1
∂d̂1
∂A

+ 2P(1, 2)d̂3
∂d̂3
∂A

(5.16)

∂ŷ(t)

∂A
= −2P(2, 1)d̂1

∂d̂1
∂A

+ 2P(2, 1)d̂2
∂d̂2
∂A

−2P(2, 2)d̂1
∂d̂1
∂A

+ 2P(2, 2)d̂3
∂d̂3
∂A

(5.17)

∂d̂k
∂A

= ln(10)10
A−RSSIk

10η
1

10η
(5.18)

where µη and µA are the adaptation step size, which can be adjusted experimentally.

5.5 Tracking strategy

The whole proposed tracking strategy and localization process are illustrated in Fig-
ure 5.3. In the proposed algorithm, this task is done in two steps: an initial channel
estimation using a reference node followed by a tracking procedure using a grid correc-
tion based on the constrained positions.

In the first step, the mobile robot is positioned at a reference point whose position
is known. Then the trilateration algorithm is used to estimate the location and LMS is
employed to find the channel parameters Â and η̂ which minimize the positioning error.

After the acquisition step, a grid correction strategy is adopted for the localization
and channel variation tracking. We subdivide this step into the following procedures.

1. Based on Â and η̂ obtained in the acquisition step, we estimate the unknown node
position denoted by (x̂, ŷ).
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2. After getting (x̂, ŷ), we calculate all the distance values between (x̂, ŷ) and the
intersection points in the grid. The nearest intersection point will be selected as the most
likely position, whose coordinates are (ẋ, ẏ).

3. Knowing the most likely position (ẋ, ẏ), we use LMS to track the space and time
evolution of the channel parameters, the tracked parameters are denoted by Ȧ and η̇.

4. These procedures can be repeated in real time.
The process can be easily extended to a scenario where there are also non-anchor

nodes in fixed positions that first localize themselves and then contribute to the tracking.

Figure 5.3: Diagram of tracking principle

5.6 Localization results

After acquiring the channel model from the experimental data, we can evaluate the
localization process using simulation. As shown in Figure 5.2, we set three anchor
nodes in the three predefined positions with coordinates A(0, 10), B(0, 0), C(10, 0),
respectively. In the simulation, the unknown node position is randomly selected from
the intersection points of the grid. Then, for each position we calculate the RMSE value
defined as [117]:

RMSE =
1

T

T∑
t=1

√
(x̂(t)− x(t))2 + (ŷ(t)− y(t))2 (5.19)

where (x(t), y(t)) is the actual selected position. (x̂(t), ŷ(t)) is the position estimated
by the trilateration method. T is the number of randomly chosen positions. In the
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simulation, T is equal to 500.

Table 5.1: Localization accuracy
Sample number M 30 50 200 300 500 1000

RMSE (m) 0.78 0.56 0.33 0.25 0.14 0.10

As illustrated in Table 5.1, with the increase of sample numberM , the RMSE values
of localization algorithm decrease, which indicates that the accuracy of localization gets
better. To guarantee the efficiency of the tracking strategy, in the following tracking step
and simulations, the sample number M is set to 300.

5.7 Parameter convergence
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Figure 5.4: Convergence process of η.

In the acquisition step, the actual values of A and η are −10dBm and 2.24 respec-
tively, and the initial values are −9dBm and 2.28. As illustrated in Figure 5.4 and
Figure 5.5, after the acquisition step, with the help of trilateration and LMS methods,
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Figure 5.5: Convergence process of A

we can obtain A value very close to −10dBm. Similarly, the obtained η value is very
close to 2.24. Furthermore, in the tracking step, we suppose that the true value of A is
−11dBm and the true value of η is 2.20. In the same manner, we can get A value very
close to −11dBm and η value very close to 2.20. So, the proposed strategy can track
the variation of the parameters in the monitored region.

5.8 Limitation analysis

However, there exists a limitation in the grid correction. If the localization error is
larger than the grid step size, it is no more guaranteed that the correction strategy will
be efficient. Therefore, we need to analyse the relationship between the step size and
parameter variation which gives us a criterion to choose an appropriate step size value.
The localization error is defined as [118]:

ε(t) =
√

(x̂(t)− x(t))2 + (ŷ(t)− y(t))2 (5.20)
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where (x(t), y(t)) is the real position, (x̂(t), ŷ(t)) is the estimated position.

Figure 5.6: Relationship of step size and localization error

As shown in Figure 5.6, the real position (x(t), y(t)) is located in the center. The
distance from (x(t), y(t)) to its four possible nearest positions is equal to the grid step
size s. If the estimated position (x̂(t), ŷ(t)) is located in the dark region, we can get a
right correction. This region is defined by the following relationships:(x̂(t)− x(t))2 < s2

4

(ŷ(t)− y(t))2 < s2

4

(5.21)

where s is the step size.
If ε(t) < s

2
, the estimated position (x̂(t), ŷ(t)) is located inside the circle in Figure

5.6. We are sure that the grid correction strategy is effective and it guarantees a satis-
factory position correction. In the simulation, we perform 1000 estimation iterations in
the predefined region and find gird step size s which meets the following probability
relationship:

P (ε(t) <
s

2
) > 0.95 (5.22)
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Figure 5.7: Relationship between ∆η and s

We define the parameters variation: ∆η and ∆A between the acquisition step and
tracking step as follows:

∆η = |η̇ − η̂| ∆A = |Ȧ− Â| (5.23)

In the simulation, η̂ is set to be 2.27 and ∆η increases from 0.02 to 0.22 with interval
0.02. Similarly, Â is set to be -9.39 and ∆A increases from 0.5dB to 4dB with interval
0.5dB. The relationship between s and ∆η is shown in Figure 5.7. With the increase
of ∆η, the needed step size becomes larger and larger. According to these simulation
results for three different η̂ values, for a same ∆η value, the needed step size increases
inversely with η̂. When the value of ∆η is determined, we can find a threshold value of
step size sthreshold. As long as s is larger than sthreshold, we can get a right correction.
Similarly, the relationship of step size s and ∆A is shown in Figure 5.8. These results
provide a criteria to guarantee that the proposed tracking strategy is effective by making
the tradeoff between grid step size s and parameter variation. In practice, the grid step
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Figure 5.8: Relationship between ∆A and s

size is fixed by the application, this calculation could give us a mean to make an alarm
on the possible failure of the tracking strategy by estimating the variation of parameters
∆η and ∆A in the monitored region.

5.9 Performance comparison

In this part, the localization performance of the proposed tracking strategy is com-
pared with SDP [119] and WLS [120] in terms of accuracy and computational complex-
ity. The channel model parameters in (3.2) and the standard deviation of noise in (3.9)
deduced from the experimental data are used to provide RSSI values for assessing the
compared algorithms. In the simulation, we suppose that the channel parameters are
varying between the acquisition step and tracking step. In the proposed tracking strat-
egy, the positioning is performed by trilateration after obtaining the tracked parameters
Ȧ and η̇. The number of iterations is set to be 50 for the proposed tracking strategy in
these accuracy comparisons. In the simulation, the unknown node position is randomly
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selected from the intersection points of the grid, as illustrated in Figure 5.2.

In the simulation, ∆η varies from 0.004 to 0.04 with interval 0.004. As shown in
Figure 5.9, the RMSE value of the proposed method is noticeably smaller than that of
SDP and WLS. When ∆A varies from 0.1dB to 1.0dB with interval 0.1dB, the simu-
lation results are shown in Figure 5.10. Similarly, the proposed method exhibits better
performance than SDP and WLS. The simulation results show that SDP and WLS give
low localization accuracy in case of parameter variation. In fact, the localization error
increases with ∆η and ∆A, due to the increase in the estimated distance error. By in-
versing the channel model, the distance is estimated from (4.2). We can find that the
estimated distance error increases with the increase of the variation of model param-
eters. So, the localization error also increases with ∆η and ∆A. Therefore, the SDP
and WLS can not provide good localization accuracy when the model parameters are
changed. On the contrary, the proposed tracking strategy can track the parameters firstly
and then perform the localization by trilateration. Therefore, the proposed method can
give a higher accuracy.
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Figure 5.9: Localization accuracy for three compared methods when ∆η varies from
0.004 to 0.04.

In order to compare the computational complexity of the three methods, the execu-
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Figure 5.10: Localization accuracy for three compared methods when ∆A varies from
0.1dB to 1.0dB.

tion time is evaluated by a computer with a processor unit (CPU) of 2.6 GHz and 16
GB of RAM. In the proposed method, the position is calculated by trilateration directly.
So, the computational overhead is mainly due to the number of iterations in the tracking
step. A larger iteration number will give a higher accuracy but more localization time.
The relation between the tracking time and number of iterations is given in Table 5.2. It
indicates that the tracking time increases with the number of iterations.

Table 5.2: Relationship between tracking time and number of iterations
Number of iterations 30 50 80 100 150 200 300

Tracking time (s) 0.205 0.382 0.617 0.846 1.287 2.133 2.907

Based on the observation of parameters convergence process, the number of itera-
tions in the tracking step is set to 50 in the performance comparison. The calculation
time for three compared methods is shown in Table 5.3. The average time for a single
localization of the proposed method is 0.384s, while the corresponding values for SDP
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and WLS are 0.032s and 0.024s respectively. We can find that the proposed method
requires more calculation time than SDP and WLS, due to the tracking step. More
tracking iterations will cause more calculation time. The tradeoff between the local-
ization accuracy and the calculation time can be made according to the performance
requirement.

Table 5.3: Calculation time for three compared methods
Method Proposed method SDP WLS

Average time (s) 0.384 0.032 0.024

5.10 Tracking test

In the tracking test, a large number of measurements have been done in the indoor
hall as shown in Figure 3.4. Firstly, the mobile point is placed at (5, 5). Position
(5, 5) is considered as a reference point and 300 RSSI samples are acquired in this
position. Based on these RSSI data, the acquired parameter values are Â = −9.39 and
η̂ = 2.27. Hereafter, we placed the mobile point at positions (6, 5), (7, 5) and (8, 5) and
300 RSSI values are acquired for each position. In the data collecting process, signal
transmission path is changed by modifying the device direction or putting obstacles in
the measurement scenario.

Table 5.4: Localization results and tracked parameters

Real position Estimated position Ȧ η̇

(6, 5) (6.12, 5.26) -9.35 2.26
(7, 5) (6.98, 5.13) -9.41 2.28
(8, 5) (8.20, 5.08) -9.32 2.25

Based on the acquired RSSI data for each position, the estimated positions and
tracked parameters by the proposed method are given in Table 5.4. As shown in Table
5.4, for position (6, 5), the estimated position is (6.12, 5.26). This estimated position
meets the grid correction and tracking condition. By using LMS method, the tracked
parameters are Ȧ = −9.35 and η̇ = 2.26. Furthermore, similar results are obtained for



5.11. CONCLUSION 99

positions (7, 5) and (8, 5). These results show that the proposed tracking strategy can
be effective. When the mobile point is moving from position (6, 5) to position (8, 5),
parameters A and η are changing. In this specific tracking test, the parameters variation
is not very large. If the parameters are changing largely, the grid step size should be
increased to guarantee the effectiveness of the proposed tracking strategy, as shown in
section 5.5.

5.11 Conclusion

In this chapter, a localization scenario with predefined constrained positions has
been described to show the applications of the proposed tracking strategy. To track the
variation of channel parameters, a novel tracking strategy with grid correction based on
LMS has been developed to obtain the actual parameters in the monitored indoor re-
gion. The experimental RSSI channel model has been used to provide the RSSI values
and evaluate the tracking strategy. The localization algorithm based on the trilateration
algorithm and LMS has been presented. The relationship between the localization ac-
curacy and sample number of RSSI has been discussed. The simulation results show
the good behavior of the proposed tracking strategy in presence of space-time variation
of the propagation channel. To deal with the limitation of the proposed grid correction,
the relationship between the grid step size and parameter variation has been analyzed.
Compared with the existing SDP and WLS, the proposed tracking strategy exhibits bet-
ter localization accuracy but higher computational complexity. Moreover, the tracking
test allows validating the effectiveness of the proposed tracking strategy. In the follow-
ing chapter, the thesis will be concluded and future works will be presented.





6
Conclusions and perspectives

In this thesis, we focus on RSSI based localization algorithms for indoor applica-
tions.

In Chapter 1, the concept and applications of WSNs are described, in addition the re-
search direction, the contribution and the organization of the dissertation are described.

In Chapter 2, the state of the art for localization strategies is introduced. The lo-
calization approaches in WSNs are classified into two categories: extra modules aided
approaches and extra modules free approaches. The localization means, such as, GPS
method cellular network method, infrared device method, ultrasonic wave method, and
micro inertial navigation method are introduced. The methods for measuring the angle
or distance, including TOA, TDOA, RSSI and AOA, have been discussed. In addition,
the positioning algorithms and optimization methods, such as Triangulation, Multilater-
ation, Trilateration, linear least squares (LLS) , non linear least squares (NLS), projec-
tion onto convex sets (POCS) and semidefinite programming (SDP) are presented.

Channel model is elaborated in Chapter 3. The experimental channel model is de-
duced from RSSI data acquired by real localization system. An experimental local-
ization system is built to get real RSSI data. From the observation of RSSI behavior,
an experimental RSSI channel model is deduced, which is consistent to the popular
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lognormal shadowing path loss model. Much more data are acquired to observe the
relationship between the noise variance and distance. Based on the obtained data, it is
indicated that the noise standard deviation increases with the distance. To confirm this
tendency, a ray tracing system for an environment similar to the experimental environ-
ment is designed to simulate the receiving and transmitting process of RSSI data.

In Chapter 4, three proposed localization algorithms: Three minimum Distances
Method (TDM), Weighted Three minimum distances Method (WTM) and Weight val-
ues Adjustment Method (WAM) based on NLS and multilateration are introduced. For
getting a good performance, the median value of RSSI is used to obtain the distance
estimate. Multilateration is adopted in the position process. The comparison of TDM,
WTM, WAM, LLS, NLS and POCS, in terms of localization accuracy and calculation
time, is presented.

To determine the real predefined position and obtain the actual parameters in the
monitored region, a RSSI based parameter tracking strategy for constrained position lo-
calization is proposed in Chapter 5. To estimate channel model parameters, Least Mean
Squares method (LMS) is associated with the trilateration method. Quantitative criteria
are provided to guarantee the efficiency of the proposed tracking strategy by adjusting
grid resolution according to parameter variation. The simulation results show a good
behavior of the proposed tracking strategy in presence of space-time variation of the
propagation channel. Compared with the existing SDP and WLS, the proposed track-
ing strategy exhibits better localization accuracy but higher computational complexity.
Moreover, the tracking test validates the effectiveness of the proposed tracking strategy.

Finally, future work directions are listed as follows:
– A real localization scenario, not very different from the experimental setup, will

be constructed to evaluate the proposed tracking strategy and localization algo-
rithms.

– In the tracking strategy, the grid can be replaced by other constraint, such as a
map.

– Joint techniques will be considered to increase the localization accuracy and re-
duce the calculation time. In the future, we will try to joint TOA, DOA and RSSI
techniques together, such as exploring joint TOA/RSSI-based algorithm or joint
DOA/RSSI-based algorithm, to get a better localization performance.



A
Résumé en français des travaux
présentés

A.1 Introduction

Avec l’essor des standards de communications et les progrès d’intégration des sys-
tèmes électronique, les réseaux de capteurs sans fils peuvent être couramment déployés
dans de nombreuses applications. Lorsque les nœuds du réseau sont mobiles, leur posi-
tion doit être estimée car la mesure d’une donnée physique est le plus souvent associée
à la localisation du capteur.

Pour répondre à cette problématique, cette thèse traite d’algorithmes de localisation
basés sur la mesure du RSSI (Received Signal Strength Indicator) dans le contexte des
réseaux de capteurs sans fil. L’étude des caractéristiques du RSSI à partir d’un système
de localisation expérimental permet de construire un modèle nécessaire à la définition
et à l’évaluation des algorithmes. Pour faire face à la faible précision des distances dé-
duites du RSSI, nous proposons trois nouveaux algorithmes de localisation basés sur la
multilatération et exploitant des mesures de RSSI moyennées. Ces algorithmes prennent
en compte les distances mesurées en fonction de leur fiabilité supposée. Nous dévelop-
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pons également une stratégie d’acquisition et de suivi des paramètres du canal pour la
localisation dans les applications où la position est contrainte.

A.2 Etat de l’art des méthodes de localisation pour les
réseaux de capteurs

L’objectif d’une méthode de localisation est de déterminer la position d’un objet
dans une zone d’intérêt. Les exigences en terme de précision dépendent de l’application.
Certaines ne nécessitent qu’une précision relativement faible (présence dans une pièce
par exemple). Dans ce cas il existe des méthodes de proximité, des approches utilisant
les relais du système de communication ou des méthodes par enregistrement d’empreintes
(finger printing).

Pour les applications nécessitant une meilleure précision, la figure A.2 propose une
classification des méthodes disponibles. Certaines approches sont basées sur des dis-
positifs spécifiques, d’autres utilisent des équipements déjà présents, comme les fonc-
tions de communication.

Dans le document complet, nous décrivons de façon succincte le principe de ces
méthodes. Celles exploitant le RSSI sont présentées en incluant les algorithmes basés
sur un modèle du canal et ceux utilisant des empreintes.

Le RSSI est disponible dans la plupart des modules de communications radio. Il est
donc intéressant d’exploiter cette information pour concevoir une méthode de localisa-
tion à moindre coût. C’est la raison pour laquelle nous avons basé nos travaux sur les
méthodes de localisation utilisant le RSSI.

A.3 Caractérisation et modélisation du RSSI

Les méthodes de localisation basées sur le RSSI (hors Fingerprint) nécessitent un
modèle permettant de déduire la distance de la puissance reçue. Le modèle couramment
proposé dans la littérature s’écrit :

RSSI(dBm) = A(dBm)− 10ηlog(d) + n (A.1)
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Figure A.1: Classification des méthodes de localisation

où A et ν sont des constantes, d est la distance et n est un bruit Gaussien de variance
σ2. L’estimation de la distance à partir du RSSI peut alors être obtenue en moyennant
plusieurs échantillons pour minimiser le bruit puis en inversant la formule. Nous avons
construit un système expérimental pour caractériser le RSSI et évaluer ce modèle. Le
système est basé sur des nœuds Raspberry communicant en WIFI. Le système permet
d’acquérir les valeurs du RSSI pour différentes distances et différentes configurations.

Il est possible d’identifier les paramètres du modèle (A.1) à partir des mesures
obtenues. Un résultat important est que la variance du bruit gaussien σ2 augmente
avec la distance. Cette caractéristique, déjà mise en évidence dans certains travaux, est
également obtenue en utilisant un programme de tracé de rayons.

Cette propriété du bruit a une conséquence sur l’estimation des distances: la pré-
cision a tendance à diminuer quand la distance augmente. Nous prendrons en compte
cette remarque dans la définition de nouveaux algorithmes de localisation exploitant le
RSSI.



106 APPENDIX A. RÉSUMÉ EN FRANÇAIS DES TRAVAUX PRÉSENTÉS

Figure A.2: Variance du bruit gaussien pour le modèle (A.1)

A.4 Algorithmes de localisation

La première étape des algorithmes de localisation basés sur le RSSI que nous pro-
posons d’étudier est une phase d’estimation de la distance. Un calcul permet d’estimer
la variance du bruit d’estimation par

σ2
e = d2σ2 ln10

10η

1

M
(A.2)

où M est le nombre d’échantillons du RSSI pris en compte. Cette équation indique
que l’erreur d’estimation augmente avec la distance d et avec la variance σ2, elle même
fonction croissante de la distance.

Les méthodes de localisation proposées sont basées sur la multilatération et prennent
la forme suivante:

(x, y) = Argmin

N∑
k=1

αk((x− xk)2 + (y − yk)2 − d̂k
2
)2 (A.3)

où xk, yk et d̂k sont les positions et la distance estimée de la base k, N est le nombre de
bases. Les pondérations αk sont différents en fonction de la méthode.
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– La méthode TDM, sélectionne les trois plus faibles distances estimées.
– La méthode WTM sélectionne les trois plus faibles distances estimées et leur

affecte des pondérations inversement proportionnelles au carré de la distance es-
timée et à la variance du bruit estimée.

– La méthode WAM pondère toutes les distances estimées avec des pondérations
identiques à la méthode WTM.

L’étude comparées des performances de ces méthodes et de méthodes concurrentes de
la littérature montre que la méthode WAM fournit les meilleures performances sans que
la complexité des calculs ne soit affectée.

A.5 Stratégie de poursuite

Dans les méthodes présentées, la précision du modèle liant le RSSI aux distances
est essentiel. Dans un environnement réel les paramètres de ce modèle vont varier de
façon importante en fonction de l’environnement. Dans cette partie nous proposons,
dans un premier temps, d’utiliser une technique d’estimation des paramètres du modèle
basée sur l’algorithme LMS et la présence de nœuds de référence (dont la position est
connue). Nous proposons ensuite de réaliser une poursuite du modèle en supposant que
la position du mobile est contrainte par exemple sur une grille.

Le principe est illustré à la figure A.3.
– Au départ l’acquisition du modèle est effectuée sur un nœud de référence en util-

isant un algorithme LMS
– Après cette phase d’acquisition, les distances sont estimées en utilisant le modèle

de RSSI courant.
– L’algorithme de trilatération permet d’estimer la position.
– Cette estimation est corrigée en tenant compte de la contrainte de la grille.
– L’estimation corrigée est utilisée à l’entrée de l’algorithme LMS pour corriger le

modèle de RSSI.
La correction de l’estimation de position n’est possible que si l’erreur d’estimation

initiale est inférieure à la résolution de la grille. Nous avons donc cherché la relation
entre la variation des paramètres du modèle et l’erreur de position. On peut en dé-
duire la résolution minimale de la grille admissible pour notre algorithme en fonction
de l’environnement.
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Figure A.3: Algorithme de localisation incluant l’estimation du modèle et la poursuite

Figure A.4: Résultats expérimentaux de l’algorithme de localisation incluant
l’estimation du modèle et la poursuite

Une comparaison avec d’autres algorithmes n’incluant pas la poursuite du modèle
montre que, lorsque le canal varie, seul notre algorithme permet de maintenir de bonnes
performances. L’algorithme a été testé en utilisant notre système expérimental. Sur
un espace de 10x10 m2, le point de référence est placé en (5m, 5m). Une première
acquisition du modèle est effectuée puis le nœud est déplacé. Le canal est modifié en
plaçant des obstacles dans la zone de mesure. La résolution de la grille est de 1 m. Le
tableau de la figure A.4 fournit quelques résultats qui montrent le bon fonctionnement
de notre algorithme avec des signaux réels.

A.6 Conclusion

L’objectif du travail présenté était d’étudier des techniques de localisation basées sur
la mesure du RSSI. Nous avons étudié expérimentalement les propriétés du RSSI et en
avons déduit un modèle mettant en évidence le fait que la variance du bruit de mesure
du RSSI augmente avec la distance. Nous avons montré que la variance de l’estimation
de la distance était inversement proportionnelle au carré de la distance et à la variance
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du bruit de mesure. Nous avons proposé des algorithmes basés sur la multilatération et
prenant en compte l’imprécision des distances déduites du RSSI. Nous nous sommes
intéressés à du modèle de canal et à sa poursuite pour des scénarios d’application où les
positions est contraintes. L’algorithme proposé a été testé sur des données réelles.
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Thèse de Doctorat

Jinze DU
Intérieur Techniques de localisation pour les réseaux de capteurs sans fil

Indoor localization techniques for wireless sensor networks

Résumé
Cette thèse traite d’algorithmes de localisation basés
sur la mesure du RSSI (Received Signal Strength
Indicator) pour des applications intérieures dans des
réseaux de capteurs sans fil. L’étude des
caractéristiques du RSSI à partir d’un système de
localisation expérimental, permet de construire un
modèle de canal RSSI de type atténuation lognormale.
Pour faire face à la faible précision des distances
déduites de RSSI, nous proposons trois nouveaux
algorithmes de localisation à l’intérieur des bâtiments
basés sur la multilatération et les mesures de RSSI
moyennées. Ces algorithmes pondèrent les distances
mesurées en fonction de leur fiabilité supposée. Nous
développons également, une stratégie d’acquisition et
de suivi des paramètres du canal pour la localisation
dans des applications où la position est contrainte.
Pour estimer les paramètres du modèle de canal, la
méthode des moindres carrés moyens (LMS) est
associée à une méthode de trilatération. Des critères
quantitatifs sont fournis pour garantir l’efficacité de la
stratégie de suivi en proposant un compromis entre la
résolution de la contrainte et la variation des
paramètres du modèle. Les résultats de simulation
montrent un bon comportement de la stratégie de
poursuite proposée en présence d’une variation
spatio-temporelle du canal de propagation. Par
rapport aux algorithmes existants, une meilleure
précision de localisation est obtenue au prix d’un peu
plus de temps de calcul. La stratégie proposée est
également testée expérimentalement.

Abstract
In this thesis, the author focused on RSSI based
localization algorithms for indoor applications in
wireless sensor networks. Firstly, from the observation
of RSSI behavior based on an experimental
localization system, an experimental RSSI channel
model is deduced, which is consistent to the popular
lognormal shadowing path loss model. Secondly, this
thesis proposes three indoor localization algorithms
based on multilateration and averaged RSSI. In these
algorithms, the measured distances are weighted
according to their assumed accuracy. Lastly, a RSSI
based parameter tracking strategy for constrained
position localization is proposed. To estimate channel
model parameters, least mean squares method (LMS)
is associated with the trilateration method.
Quantitative criteria are provided to guarantee the
efficiency of the proposed tracking strategy by
providing a tradeoff between the constraint resolution
and parameter variation. The simulation results show
a good behavior of the proposed tracking strategy in
presence of space-time variation of the propagation
channel. Compared with the existing RSSI based
algorithms, the proposed tracking strategy exhibits
better localization accuracy but consumes more
calculation time. In addition, experimental tracking test
is performed to validate the effectiveness of the
proposed tracking strategy.

Mots clés
Localisation, RSSI, Réseau de capteurs dans fils,
Trilatération, Poursuite.

Key Words
Localization, RSSI, WSNs, Trilateration, Tracking.
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