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Seul l’inconnu épouvante les hommes. Mais, pour quiconque
l’affronte, il n’est déjà plus l’inconnu.

Terre des hommes — Antoine de Saint-Exupéry





A B S T R A C T

Biological organisms have evolved diverse immune mechanisms to defend
themselves against pathogens. Here we build mathematical models of immune
systems optimally tuned to the statistics of pathogens.

Beyond molecular details, different immune mechanisms differ in how pro-
tection is acquired, processed and passed on to subsequent generations – dif-
ferences that may be essential to long-term survival. To explain the observed
diversity of strategies we compare the long-term adaptation of populations
as a function of the pathogen dynamics that they experience and of the im-
mune strategy that they adopt. We find that the two key determinants of an
optimal immune strategy are the frequency and the characteristic timescale
of the pathogens. Depending on these two parameters, we identify distinct
modes of immunity, including adaptive, innate, bet-hedging and CRISPR-like
immunities, which recapitulate the diversity of natural immune systems. Our
results carry over to the general question of evolution in fluctuating environ-
ments, for which we provide novel analytical results in temporally correlated
environments.

The adaptive immune system provides protection through a broad reper-
toire of cells specific to different pathogens. To predict statistical features of
well-adapted repertoires we analyze which repertoire minimizes cost of infec-
tion for a given distribution of pathogens. The theory predicts that the immune
system has more receptors for rare antigens than expected from the frequency
of encounters; and individuals exposed to the same infections have sparse
repertoires that are largely different, but nevertheless exploit cross-reactivity
to provide the same coverage of antigens. Our results follow from a tension
between the statistics of pathogen detection, which favor a broader receptor
distribution, and the effects of cross-reactivity, which tend to concentrate the
optimal repertoire onto a few highly abundant clones. These predictions can
be tested in high throughput surveys of receptor and pathogen diversity. We
then explicitly consider how the adaptive immune system can learn the statis-
tics of the environments from its past infection history in a Bayesian manner.
We show that optimal repertoires can be reached by keeping memory of an
infection through the selective proliferation of stimulated cells. The Bayesian
perspective on repertoire dynamics provides an unifying conceptual frame-
work to explain a number of features of immunological memory and suggests
further experiments.
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R E S U M É

Les organismes biologiques ont développé divers mécanismes immunitaires
afin de se protéger des pathogènes. Nous développons ici des modèles math-
ématiques de systèmes immunitaires, adaptés de façon optimale aux statis-
tiques des pathogènes.

Au delà des détails moléculaires, ces mécanismes immunitaires diffèrent
dans la manière d’acquérir, de réguler et de transmettre une protection immu-
nitaire; différences qui pourraient s’avérer essentielles pour la survie à long
terme. Afin d’expliquer la diversité des stratégies qui sont observées, nous
comparons l’adaptation à long terme de populations en fonction de la dy-
namique des pathogènes à laquelle elles sont confrontées et de la stratégie
immunitaire qu’elles adoptent. Nous démontrons que la fréquence et l’échelle
de temps caractéristique des pathogènes sont les deux déterminants clés d’une
stratégie immunitaire optimale. En fonction de ces deux paramètres, nous iden-
tifions des modes d’immunité distincts, comprenant immunités innées, adap-
tatives, ou ressemblant au système CRISPR, qui récapitulent la diversité de
systèmes immunitaires naturels. Nos résultats viennent s’étendre à la ques-
tion générale de l’évolution dans des environnements variables pour laquelle
nous apportons de nouveaux résultats analytiques au sein d’environnements
temporairement corrélés.

Le système immunitaire adaptatif assure une protection à partir d’un large
répertoire de cellules spécifiques à différents pathogènes. Pour prédire des
propriétés statistiques de répertoires adaptés, nous étudions quel répertoire
minimise au mieux le risque d’infections pour une distribution de pathogènes
donnée. La théorie prédit que les cellules spécifiques contre les antigènes rares
sont surreprésentées par rapport à la fréquence de leurs rencontres et que
les individus, exposés aux mêmes infections, possèdent des répertoires avec
des récepteurs largement différents mais exploitent la réactivité croisée afin
de parvenir à la même couverture d’antigènes. Nos résultats sont issus d’une
opposition entre les statistiques de détection des pathogènes, qui soutiennent
l’idée d’une plus large distribution de récepteurs, et les effets de la réactivité
croisée, qui tend à concentrer le répertoire optimal sur un petit nombre de
clones. Nos prédictions peuvent être testées à partir des données à haut débit
sur la diversité des récepteurs et de pathogènes. Par la suite, nous examinons
explicitement comment le système immunitaire adaptatif peut apprendre de
manière bayésienne les statistiques de l’environnement à partir de l’historique
des infections précédentes. Nous montrons que les répertoires optimaux peu-
vent être atteints par prolifération sélective des cellules spécifiques. La perspec-
tive bayésienne sur la dynamique des répertoires fournit un cadre conceptuel
unificateur qui explique un certain nombre de caractéristiques de la mémoire
immunitaire et appelle à des expériences complémentaires.
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1
I N T R O D U C T I O N

The availability of increasingly large data sets gathered in a (semi-)automated
fashion holds the promise to change many fields. In biology, methods for such
facilitated data generation, known as high-throughput methods, have become
increasingly powerful and affordable over the last two decades. A prime ex-
ample is sequencing, whose cost in monetary terms and in terms of effort has
dropped massively: the sequencing of a human genome, which just 20 years
ago took a large internationally coordinated effort to establish, has now be-
come a routine analysis [1].

These massive data sets coupled to computational algorithms allow one to
extract patterns and correlations based on which one can make predictions.
This has prompted some to declare the end of theory [2]. There certainly is
a need for purely data-driven work in biology but on its own this approach
can suffer from issues of interpretability and generalizability. Therefore such
work should rather be seen as complementary to hypothesis-driven research
and theoretical work.

What the availability of abundant quantitative data calls for in my view
is the advent of more quantitative and mathematical theory. The importance
of mathematical modelling in this data-rich era stems from its unique ability
to connect simple hypotheses to the kind of statistical signatures that can be
checked against the large-scale, quantitative data characteristic of modern bio-
logical experiments. What has been especially called for in biology is not only
modelling aimed at fitting already obtained experimental data but theory that
turns conceptual ideas into testable predictions informing future experiments
[3]. The paradigm of hypothesis-driven theory development takes inspiration
from how theoretical physics has proceeded in its tremendously successful de-
scription of non-animate matter [4]. While biological systems operate within
the confines of the same physical laws, "more is different" [5] and the kind
of theory we are discussing here should aim to provide relevant mescoscopic
descriptions of the emergent complexity of biological phenomena.

The work presented within this thesis applies this paradigm to the study of
how organisms protect themselves against pathogens. Immunology is a field of
research of obvious practical importance to public health and moreover a field
where many exciting developments have taken place in the last decade from
discoveries of previously unknown immune mechanisms [6, 7, 8] to the op-
portunities created by new experimental techniques such as high-throughput
sequencing [9, 10, 11]. The new questions posed by these discoveries and the
older ones now within better experimental reach, have kept me fascinated dur-
ing the last four years that I have been thinking about immunology.

This thesis aims to contribute to answering two such questions in partic-
ular. First, what explains the diversity and convergent evolution of adaptive
strategies used by different organisms in their immune defense? Second, what

1



2 introduction

determines the statistical properties of the repertoire of receptors of the cells
of the adaptive immune system? The former question is posed by discoveries
of hitherto unknown immune mechanisms such as of an adaptive immune sys-
tem of non-jawed vertebrates [6] or the CRISPR-Cas system of bacteria [7] that
have substantially expanded our view of how pathogen defense is organized.
Renewed interest into the latter question has been sparked by new data com-
ing from high-throughput sequencing applied to cells of the adaptive immune
system [9, 10, 11].

The central hypothesis around which my work has been structured is that
immune systems are well-adapted to the statistical structure of pathogenic en-
vironments. As we will see this hypothesis leads to a number of interesting
and potentially experimentally testable predictions when applied to concrete
questions such as "how should immune repertoires be organized to minimize
harm from infection?" or "how should a population of organisms adapt its im-
mune defense over generations?". To answer these questions we build simple
mathematical models of immunity and ask what would be the optimal organi-
zation or dynamics of immune protection in a given pathogenic environment.

A basic property of immune defense is that it aims to provide protection
against stochastic events, – infections. The importance of stochasticity is thus
a common thread throughout the different models. This thesis thus heavily re-
lies on concepts and tools from the theory of stochastic processes and statistical
physics. A large part of my work has been devoted to model development, and
to finding adequate mathematical descriptions that capture the relevant biol-
ogy. To obtain insights from the models we then determined optimal strategies
by either analytical or numerical optimization of parameters within biological
constraints.

Eloquent critiques of the use of optimality principles in biology have been
made, among which Gould and Lewontin [12] is a classic example. While we
investigate how immune systems might operate optimally for a specific task,
we certainly do not claim that immune systems are precisely optimized. We
rather use the assumption of optimality to have a mathematically well-posed
way of asking the question of what general consequences arise from the need
to perform a certain function well [13]. The use of optimality theory in biol-
ogy can be compared to the use of the equilibrium assumption in statistical
mechanics [14] or to the use of maximizing principles in classical economic
theory [15]. The dynamics of a many-body system – the evolutionary dynam-
ics of species adaptation, the non-equilibrium processes preceding relaxation
to equilibrium, or the dynamical interplay of economic players, respectively –
is replaced by a static picture by the appeal to an optimizing principle. One
should not forget and potentially question the strong assumptions leading
there but such an idealization can allow for progress in our understanding.
Numerous examples of the fruitfulness of such thinking in other biological
contexts from neuroscience [16, 17, 18] to cellular biology [19, 20] hint at the
possibility that something interesting is to be learned in this way about im-
mune systems too.

Marvelling at the complexity of biological systems working on much simpli-
fied models sometimes feels ultimately wrong-headed, or even futile. Never-



introduction 3

thesless, to gain understanding with our limited intellects needs simplification.
In this sense "models in biology [are] accurate descriptions of our pathetic
thinking" [21]. This is especially true of the kind conceptual theory presented
in this thesis. In the words of the biophysicist Rob Phillips such "theory [...]
is about living dangerously by turning our thinking into formal mathemati-
cal predictions and confronting that math with experiments that have not yet
been done." The future will hopefully see such a confrontation of the predic-
tions arising from thinking about optimal immune systems with experimental
data. It is then that we will know whether ultimately anything useful will have
been learned. What has motivated me during this thesis is the hope that the
answer will be positive. As the reader will hopefully see in the following the
approach we have taken at the very least leads to intellectually stimulating
and potentially general theoretical questions.

The rest of this dissertation is structured into four parts the first three of
which are further subdivided into two chapters each. The chapters in parts ii
and iii are self-contained and can be read independently.

Part i provides an introduction to some basic concepts in immunology, evo-
lution, and mathematics relevant to the work presented in this thesis. In Chap-
ter 2, I give a brief introduction to immunology leading up to a discussion of
some open questions concerning the adaptive immune repertoires and the evo-
lution of immune systems. In Chapter 3, I introduce some of the mathematical
theory used in this work from optimization, via stochastic processes, to some
elements of evolutionary theory.

Part ii presents results about the structure and dynamics of immune reper-
toires in adaptive immunity. In Chapter 4 we derive optimal distributions of
immune receptors in a fixed, known antigenic environment and discuss how
statistical features of those optimal repertoires might help explain some puz-
zling experimental results. In Chapter 5 we relax the assumption that the envi-
ronment is fixed and known. This leads to a Bayesian view of a well-adapting
repertoire dynamics, in which the adaptive immune system combines prior be-
liefs about pathogenic variation with the past pathogen exposure to estimate
the current pathogen statistics. This provides a novel perspective on immuno-
logical memory that makes a number of experimentally testable predictions.

Part iii presents results about the evolution of diverse immune strategies
understood as a question of optimizing population growth in fluctuating envi-
ronments. In Chapter 6 we show how the diversity of immune strategies across
the tree of life might be explained as an adaptation to differing pathogen statis-
tics. In Chapter 7 we present a number of analytical and numerical results on
transitions between strategies maximizing long-term growth rate in fluctuating
environments. We use some of these results to obtain a deeper understanding
of the phase diagram of immune strategies obtained in the previous chapter.

Chapter 8 concludes this thesis by summarizing the major contributions of
this thesis and sketching some ideas for future research.





Part I

B A C K G R O U N D , C O N C E P T S A N D T O O L S

In this part of the thesis I introduce some of the immunological
background, theoretical concepts, and mathematical tools that are
used throughout the remainder of the thesis. Without trying to be
exhaustive I will give a brief exposition of some core ideas.

Side notes are used to explicitely link concepts and tools to where
they are used in the rest of the thesis.





2
P R I N C I P L E S O F I M M U N E D E F E N S E

2.1 introduction

Biological organisms facing the threat of infections by pathogens have evolved
a multi-layered system of protective mechanisms [22, 23]. The ensemble of
these immune defense mechanisms serves to protect the organism from dis-
ease. Defense mechanisms in humans range from simple mechanical barriers
to pathogen entry such as provided by our skin, to the highly specialized cells
of the adaptive immune system that patrol our body to detect and combat
foreign intruders. The importance of an intact immune system is underlined
by the problems arising from its failures in the elderly or in patients with im-
munodeficiency [22]. For instance, patients afflicted with the human immun-
odeficiency virus (HIV), which targets cells of the immune system, often suffer
from life-threatening opportunistic infections.

As infectious diseases are one of the leading causes of human mortality
much effort has gone into studying the immune system. The development of
antibiotics, vaccinations, and other therapeutics has dramatically reduced the
death toll of infectious diseases. A particular striking success story of immuno-
logical research is eradication of pathogens all-together through coordinated
world-wide vaccination programs, such as achieved for small pox in the 1970s
[22].

Recently cancer immunotherapy has received a lot of attention [24, 25]. This
emerging field aims at engineering the immune system to combat cancer. The
somatic mutations leading to the growth of cancer cells can also lead cancerous
cells presenting different surface molecules. These neoantigens are potential
targets for recognition by T cells of the adaptive immune system. To enhance
immune responses drugs can be used to block a checkpoint inhibiting pro-
longed activation of the cells. Additionally the number of T cells specific to
the neoantigens can be enhanced by administering a synthetic vaccine or by
expanding them ex-vivo.

The clinical advancements in immunology went hand in hand with and were
enabled by fundamental research into the mechanisms of immune protection.
This research has furthered our understanding of the constituents of the dif-
ferent defense systems and of how they are interconnected. On a conceptual
level there are a few recurring themes. An immune defense mechanism needs
to distinguish what is harmful from what is not. Especially an immune system
should not react to an organisms’ "self", i.e. its own healthy cells, proteins, etc.
Failures of such self/non-self recognition lead to autoimmune diseases. Fur-
thermore immune defense mechanisms need to deal with the stochasticity of
infections and the (co-)evolutionary dynamics of pathogens.
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8 principles of immune defense

The remainder of this chapter focuses on a selection of aspects of immunol-
ogy that are particularly relevant to the work presented in the remainder of
this thesis.

2.2 the adaptive immune system

used in particular in
Ch. 4,5 2.2.1 Life and death of lymphocytes

The adaptive immune system recognizes pathogens through specific biophys-
ical binding. Lymphocytes are the cells that make up the adaptive immune
system. There a two arms of adaptive immunity, relying on T cells and B cells
respectively. B cells are important for combating pathogens in extracellular
fluids by the production of antibodies (humoral immunity), whereas T cells
co-ordinate the immune response of other immune cell types and kill infected
cells (cellular immunity). Lymphocytes bind to pathogen-derived peptides –
called antigens – with a particular receptor protein – called T cell receptor
(TCR) or B cell receptor (BCR). Every lymphocyte has a unique receptor, but
there is large diversity of receptors across cells. The diversity allows for pro-
tection against diverse and mutating pathogens. The multiset of all the re-
ceptors is known as the immune repertoire. Its composition in an individual
determines the breadth and speed of the response of the adaptive immune
system to pathogens [26]. The immune repertoire composition in terms of
the sequences of the receptors is now directly experimentally accessible by
sequencing (Sec. 2.2.3). According to clonal selection theory lymphocytes spe-
cific to the pathogen proliferate and differentiate into effector cells during an
infection [27]. After an infection most of the effector cells die, but some remain
in a memory state to provide long-lasting protection against reinfection by the
same pathogen.

Both B cells and T cells can be subdivided into subsets with different char-
acteristics and functions as assessed experimentally by the determination of
molecular markers expressed on the surface of the cells. An example is the dis-
tinction between T cells expressing the CD4 glycoprotein on their surface from
those expressing the CD8 glycoprotein. The glycoproteins are co-receptors in-
volved in the interaction of T cells with the cells presenting antigen. The former
are known as T helper cells as they have the role of co-ordinating the immune
response by the secretion of signaling molecules, whereas the latter are known
as Cytotoxic T cells as they kill cells infected by viruses or bacteria [22].

A diverse set of receptors is generated by a genetic recombination mech-
anism. The recombination machinery creates a genetic sequence coding for
the variable region of the receptor protein by a fuzzy joining of genomic tem-
plates. This process creates an enormous diversity of possible sequences by
the combinatorial diversity of template choice as well as through the random
insertions and deletions in the joining of templates. Not all recombinations
are equally likely [28] and the same sequence can be generated by different
recombination scenarios [29]. Different receptors are thus not generated with
the same frequency resulting in a biased repertoire. These biases might explain
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Figure 2.1: Infectious disease hospitalization rates and median percentage of T cells
showing memory markers as a function of age. Own work following idea
from [35]. Data on infectious disease hospitalization rate from [36]. T cell
data from [37] and [38] (early CD4 data).

why, despite the enormous number of potential receptors, sometimes different
individuals respond with the same receptor to an antigen [30].

Given the diversity of receptors the immune system has to make sure to elim-
inate the receptors that recognize benign peptides belonging to its own body.
Negative selection of newly generated lymphocytes that interact too strongly
with self-molecules is one key step to avoid auto-immunity [22]. There are fur-
ther peripheral mechanisms including regulatory T cells to suppress unwanted
responses.

The composition of the lymphocyte repertoire in the productive repertoire
is determined by the population dynamics of lymphocytes. As a lymphocyte
keeps its rearranged receptor during proliferation all cells emanating from the
same initial cell form a clone with the same specificity to antigen. The survival
of lymphocytes in the periphery depends on various stimuli ranging from
cytokines (signaling molecules of the immune system) to interaction with self-
and foreign-antigens [31, 32]. Lymphocyte survival and homeostasis has been
argued to resemble an ecological system of species competing for resources [33,
31]. Antigens have been shown experimentally to be part of these resources [34,
31]
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Figure 2.2: (A) Structure of a T cell receptor (TCR) and a major histocompatibility
complex (MHC). The MHC binds short peptides in a groove between two
α-helices. The TCR normally binds loosely to the MHC and is only acti-
vated if its interaction with the peptide provides additional stabilization.
(B) Close-up view of the binding site showing the spatial localization of
different regions of the TCR relative to the peptide. From: [44] under cc-by
License

Immunological memory is a key feature of the adaptive immune system.
Let us review some of the details of how memory is built and maintained for
CD8+ T cells [39]. Upon primary infection there is a large proliferation that
amplifies the number of specific lymphocytes by several orders of magnitude
from which a relatively fixed 5-10% has been shown to survive after infection.
The naive precursor frequency has been shown to correlate with the immune
response magnitude in primary infection [40, 41]. This leads to an about 100-
1000 fold increase in antigen-specific T cells [42]. The determinants of the cell
fate descision are starting to be elucidated but a precise mechanistic under-
standing of how a fixed fraction of memory cells is produced remains lacking.
Secondary memory responses differ markedly from primary responses. The
build up of immunological memory contributes to large decreases in path-
ogen susceptibility during the first years of life (Fig. 2.1) [35, 43]. Infants are
highly susceptible as they do not yet have formed sufficient protective immune
memory.

2.2.2 Molecular basis of pathogen recognition

T cells recognize peptides presented on so-called major histocompatibility com-
plexes (MHC) (Fig. 2.2A) [45]. The MHC molecule has a groove to which
peptides can bind stably. Inside so-called antigen presenting cells MHCs are
loaded with antigenic peptides and then shuttled to their surface. To trigger
activation the T cell receptor (TCR) must bind to the MHC-peptide complex.
The binding of TCR to MHC in general has insufficient affinity to trigger T cell
activation. Further stabilization of the binding through interactions between
the TCR and the peptide are thus needed. Structural studies of TCRs bound to
an MHC-peptide complex have revealed some of the geometry of the binding
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[46, 47]. The complementarity determining region 3 (CDR3) is the region of
the TCR that is closest to the peptide (Fig. 2.2. Thanks to the genetic recombi-
nation mechanism described in the previous section it is highly variable. The
matching between the diverse CDR3s and the MHC-bound peptide explains
much of the specificity of T cell to diverse pathogens.

B cells do not require antigen presentation as they bind directly to surface
markers of pathogens [22]. As in the case of T cells this binding involves a
surface receptor, the B cell receptor (BCR), which provides specificity to the
recognition. The antibodies produced by B cells are basically soluble versions
of the BCR and thus share the same specificity.

For both T and B cells the recognition process is known to be degenerate
[48, 30, 49, 50], i.e. receptors are cross-reactive and recognize a number of dif-
ferent antigens. Cross-reactivity predominantly occurs between closely related
antigens, although exceptions have also been observed [51, 50]. The conforma-
tional flexibility of the TCR-MHC binding site gives a structural explanation
for cross-reactivity [50]

Cross-reactivity is currently studied by a number of complementary ap-
proaches from structural biology [52] to mutation-experiments [53]. Cross-
reactivity is believed to be an essential feature of T cell receptor based patho-
gen recognition [48, 49]. As the number of possible antigenic peptides by far
exceeds the number of cells, full protection can only be achieved if every re-
ceptor binds many peptides. Cross-reactivity is thought to be limited by the
need to avoid autoimmunity, i.e. receptors that bind too broadly would also
bind benign molecules.

2.2.3 Repertoire sequencing and characteristics

used in Sec. 8.2.1
Modern high-throughput sequencing has greatly expanded the experimental
ability to study immune repertoire composition [9, 54, 55, 11, 26]. With se-
quencing it is possible to obtain the nucleotide sequences on either the DNA
or mRNA level of all T cell or B cell receptors from a biological sample. With
unique barcoding – the insertion of random tags before sequencing – reliable
counts of the number of times a sequence was in the sample can now addition-
ally be obtained [56, 57].

Repertoire sequencing holds the promise to provide signatures of past path-
ogen exposure by the enhanced presence of pathogen-specific receptors. Large-
scale sequencing efforts have for example helped identify a set of TCRs over-
represented in repertoires of individuals chronically infected with cytomegalo-
virus [58]. It remains however often difficult to find specific signatures in a
given individual due to the statistical nature of the adaptive immune response.
The precise receptors that respond differ between individuals and only few
are shared as "public" responses across individuals [58, 59]. To think about
repertoires on a functional-level thus involves thinking about them as statis-
ticial ensembles [26]. It is on such a statistical level that robust signatures
of antigen-driven selection might be expected. Broader features than the full
CDR3 sequence have been shown to allow to better distinguish betwen pre-
and post-immunization repertoires bioinformatically [60, 61].
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The recombination process does not always produce productive sequences.
If the recombination succeeds on the second try then the first attempt is si-
lenced and a functional cell is created. Due to the silencing there is no selection
of cells based on their unproductive sequence. The statistics of unproductive
sequences thus provides a window into the recombination process isolated
from forces later acting on the repertoire. By learning statistical models of the
VDJ-recombination process from such unproductive sequences, a quantative
description of the biases in the generation process can be obtained [29]. Statis-
tical models of selection have then been inferred on productive sequences by
using the generation model to normalize [62].

An interesting feature recurrently found in sequencing studies is the exis-
tence of a very broad clone-size distribution. Such long-tailed distributions of
clone-sizes might be explained by a temporally fluctuating fitness of clones
[63].

2.3 diverse immune strategies across the tree of life

used in Ch. 6
The question of how to defend against pathogens is present across all of bi-
ology. Here I review some of the mechanisms used in different organisms –
from bacteria to vertebrates – for immune defense. I also discuss the evolution
of the different defense mechanism and discuss how beyond their mechanis-
tic divergences they show diverse adaptive strategies in coping with changing
pathogenic environments.

Even bacteria, some of which are pathogens themselves for higher organ-
isms, need to defend themselves from other pathogens. Specifically, they face
the threat of getting infected by bacteriophages. Bacteriophages are viruses
that infect bacteria. Given the common threat of phage infection bacteria have
evolved a range of resistance mechanisms [64, 65]. Bacteriophages infect the
bacteria by adsorption which relies on recognition of host-specific surface
markers. Infection probability is thus reduced when the surface structure rele-
vant to phage adsorption is either modified or masked. Two other modes of de-
fense are based on cutting the phage DNA: the restriction-modification system
and the CRISPR-Cas system. Restriction-modification systems cleave incoming
unmethylated phage DNA using restriction enzymes [64]. To protect the host
DNA from also being cut another set of proteins methylates it. The CRISPR-
Cas system works by incorporating short stretches (30-70 basepairs) of phage
DNA, called spacers, into the bacterial genome [7, 66, 67]. These spacers are
then expressed as RNA, which serves as a guide to effector proteins cleaving
the cognate virus nucleic acids. To distinguish self from non-self the incorpo-
ration of spacers from DNA is contingent on a preceding motif absent in the
host’s CRISPR array. The CRISPR-Cas system provides sequence-specific de-
fense in contrast to the restriction-modification system. The incorporated spac-
ers are heritable so that the offspring are also protected against the same phage.
Expression of the acquired spacers is thought to be constitutive [7]. Outside of
their role in bacterial immune defense both the restriction-modification system
and the more recently discovered CRISPR-Cas system have found important
applications in genetic engineering.
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In multicellular organism immune defense is more complicated than in uni-
cellular bacteria and often involves specialized cells [68]. In vertebrates immu-
nity is divided into two branches: the innate immune system, which provides
an immediate but largely unspecific response to infections, and the evolution-
ary more recent adaptive immune system, which mounts more targeted re-
sponses.

Adaptive immunity was thought to exist only in jawed vertebrates. More re-
cently a similar defense system has been discovered in jawless vertebrates (e.g.
lampreys). This newly discovered immune system shares many of the charac-
teristics of the jawed-vertebrate adaptive immune systems such as the expres-
sion of somatically-diversified receptors and immunological memory [6]. On
a molecular level the machinery used for defense is different but the adaptive
strategy of how to deal with changing pathogens is remarkably similar, in an
interesting example of convergent evolution.

Innate immunity is evolutionary older than adaptive immunity and also ex-
ists in invertebrates. It consists of various defense mechanisms such as macro-
phages which remove unwanted cells and bacteria by phagocytosis. They are
directed against pathogen by pattern recognition receptors (PRRs) which tar-
get pathogen-associated molecular patterns. An example of these pattern recog-
nition receptors are Toll-like receptors. They target conserved patterns of path-
ogens such as lipopolysaccharides, which are found in the outer membrane of
Gram-negative bacteria. PRRs are less versatile and less specific then the so-
matically diversified receptors of the adaptive immune system and thus need
to rely on more highly conserved pathogen signatures. Memory which has
been thought to be a defining feature of adaptive immunity has been shown
recently to also exist in some innate mechanisms [8].

Taking a large view of different immune defense mechanisms, it is interest-
ing to observe that they differ beyond the molecular details in the evolution-
ary strategies they employ to adapt to changing pathogenic environments [68,
69]. The immune systems differ in how they process information about the
environment and how they employ defense. The adaptive immune system is
highly adaptable during the lifetime but does not pass on specificities to the
next generation. This is in contrast with innate mechanisms which provide
a more constitutive defense and where specificities are transmitted through
the germline. The CRISPR-Cas system also transmits specific protection but
in contrast to the other immune systems acquires protection actively and not
by random mutation. The diversity of these adaptive strategies on the one
hand and the convergent evolution of some types of strategies on the other
hand pose the question of whether there are some common evolutionary de-
terminants explaining the evolution of the adaptive strategies. We provide a
proposal in terms of the adaptive value of different strategies in temporally
fluctuating pathogenic environments in Chapter 6

2.4 theoretical approaches

The population dynamics of clones of B- and T-cells can be modelled as an
ecological process where the clones are treated as different species [70]. One of
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Figure 2.3: Cartoon of how to model cross-reactive binding of receptors to antigens
by an effective recognition space, called shape space. Detection probabilty
decays with distance (blue and red curve), such that a receptor detects
antigens within a certain distance of its position in the space. Close-by
receptors have overlapping detection regions and thus detect some of the
same antigens (purple antigen).

Figure 2.4: Cartoon of a population dynamics of lymphocytes based on competition
for antigenic stimulation.

the first such models was introduced by de Boer and Perelson and developed
in a series of papers which models competition between clones for antigens
using deterministic equations [71, 33, 72, 73]. In more recent works the models
have been extended to include the stochasticity arising from the finite number
of lymphocytes [74, 75, 76, 63].

In the absence of a precise structural understanding or quantitative data
cross-reactivity has mainly been modelled by simple conceptual representa-
tions of the receptor-pathogen interaction. In the classical shape space picture it
is assumed that pathogens and receptors are described by coordinates in a com-
mon generally high-dimensional space [77, 51, 78, 30]. The coordinates are an
abstract representation of the receptor features that determine antigen recogni-
tion. Cross-reactivity is then modeled as a dependence of recognition probabil-
ity on the distance between receptor and antigen in this space (Fig. 2.3). Short
distances in shape space correspond to a good fit between the two molecules,
leading to strong recognition, while large distances translate into weak inter-
actions and no or poor recognition.

Let us now more precisely define a population dynamics model of compet-
ing lymphocyte clones. The repertoire is described by a set of K clones with
abundances Nr(t), 1 6 r 6 K, and the environment by a set of L antigens with
concentrations ca(t), 1 6 a 6 L. The binding probabilities between antigens
and clones are encoded in an K× L interaction matrix f, where fr,a is the prob-
ability of receptor r to trigger a response upon encounter with antigen a. The
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dynamics of each clone are governed by division b and death rates d (Fig. 2.4)

∂tNr = [b(Sr) − d(Sr)]Nr, (2.1)

where Sr is a clone-specific antigenic stimulus. It is defined as the sum of the
stimuli provided by all antigens

Sr =

L∑
a=1

fr,aAa(Ña)ca, (2.2)

where Aa is an antigen-specific factor that decreases with increasing coverage
of the antigen by the repertoire

Ña =

K∑
r=1

fr,aNr. (2.3)

The factor can be given an interpretation in terms of the availability for binding
of antigens given competing receptors [71, 33], which gives rise to a forms of
Aa of

Aa = 1/(1+ εÑa), (2.4)

where ε sets the strength of competition. More generally the model can be seen
as an effective model of competition, which might arise through other mech-
anisms such as faster clearing of antigens for higher coverage. In Chapter 4

we consider a variant of this model with successive infections during which
antigen a is present (ca = 1) for a period of time. The infections happen with
a probability that is drawn from a probability distribution Qa. In a mean-field
description this reduces to the kind of model we have just described as we will
see there.

These models have shown that competition for antigenic stimulation is a
sufficient mechanism to maintain a diverse repertoire of lymphocyte receptors
[71]. Such competition can furthermore assure a low degree of commonality
between the antigens recognized by different receptors [74, 75]. A heavy-tailed
distribution of clone sizes can be explained by such models if antigens change
over time which gives rise to a fluctuating fitness of clones [63].

Theoretical work in immunology has provided insights into a range of other
questions some of which are reviewed in [79, 80]. A major effort of early math-
ematical work on the immune system has been to understand which mecha-
nisms allow self and non-self to be distinguished [81, 82, 83, 51]. Outside of
biology, these studies had a major impact by sparking the field of artificial im-
mune systems, which designs algorithms inspired by the biological tolerance
mechanisms [84]. In a series of more recent studies, Kosrmlj and co-workers
[85, 86] have used ideas from statistical physics to analyze the effects of thymic
selection on the properties of T-cell repertoires. Going beyond the effective de-
scriptions of the recognition process in the population dynamics models, more
detailed models have investigated how different trafficking strategies within
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lymph nodes impact the efficiency of the adaptive immune system [87]. Finally,
the field of ecological immunology has searched an understanding for the evo-
lution of immunity in terms of its benefits and costs [88, 89, 90]. These stud-
ies have analyzed how the optimal investment in immune defense depends
on trade-offs between immune protection and other traits, on epidemiological
factors, and the co-evolutionary dynamics of pathogens.
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M AT H E M AT I C A L A N D C O M P U TAT I O N A L T E C H N I Q U E S

3.1 optimization

Mathematical optimization is an ubiquitous tool across many fields. To give
just two examples: in physics many physical laws can be formulated as opti-
mization problems using extremality principles; in computer science machine
learning is about finding descriptions of data to minimize some suitably con-
structed loss function. In this thesis we use optimization techniques to find
parameters for which models of biological systems perform best according to
some biologically relevant metric. We thus review some definitions, results,
and algorithms from the vast literature on optimization problems.

3.1.1 Classes of optimization problems

To start let us introduce some basic notation. Consider the problem of min-
imizing a function f0(x) over parameters x. Not all parameter values x are
generally attainable – we call those that are feasible. Feasibility is expressed by
m inequality and p equality constraints involving functions of the parameters
x, fi(x) and hi(x) :

Minimize f0(x) (3.1)

subject to fi(x) 6 0, i = 1, . . . ,m (3.2)

hi(x) = 0, i = 1, . . . ,p. (3.3)

Note that we have followed the commonly used convention of formulating
optimization problems as minimization. Maximization can be reduced to this
standard form as it is equivalent to minimizing −f0(x).

It is useful – especially for the choice of a numerical optimization algorithm
– to classify optimization problems into classes. Unconstrained optimization con-
siders the case where the parameters x can take arbitrary values, i.e. there are
no constraints, m = p = 0. The class of constrained optimization can further be
subdivided by whether the problem only has equality constraints m = 0 or
also inequality constraints m > 0. Note that optimization problems can often
be reformulated in equivalent ways, some of which might be more convenient
to analyze than others [91]. Equality constraints can for example sometimes
be eliminated by redefining the variables of the optimization problem: for ex-
ample, the constrained problem of optimizing over (x1, x2, · · · , xn) subject to∑
x = 1 can be turned into an unconstrained problem by introducing the vari-

ables (y1,y2, · · · ,yn−1) with xi = yi for i < n and xn = 1−
∑n−1
i=1 yi. Further

classification is often based on specific problem structure: from least-squares
problems arising in data fitting (where f0 is a sum of squares) to linear pro-
gramming (where f0 and the constraints are linear functions).

17
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In the following subsections we review three types of optimization prob-
lems of practical relevance to the work presented in this thesis in some more
detail. First, we review convex optimization in Sec. 3.1.1.1, which is a broad
and particularly important class of optimization problems. Second, we review
noisy optimization in Sec. 3.1.1.2, where the goal is to minimize the expectation
value of a function based on noisy samples. Third, we review multi-objective
optimization in Sec. 3.1.1.3, where there instead of a single objective there are
multiple objectives to optimize at the same time.

3.1.1.1 Convex optimization
used in Ch. 4

The convexity of an optimization problem is a useful mathematical property.
To lay the ground we review some basic definitions and results from convex
analysis [91].

A convex set is a set which contains any line segment between two of its
points, i.e.

C convex⇔ ∀x,y ∈ C ∀θ ∈ [0, 1] : θx+ (1− θ)y ∈ C. (3.4)

A function f : C → R defined on a convex domain C is a convex function
if the line segment between any two points on the graph of the function lies
above the graph, i.e.

f convex⇔ ∀x,y ∈ C ∀θ ∈ [0, 1] : f(θx+ (1− θ)y) 6 θf(x) + (1− θ)f(y).
(3.5)

In other words a function is convex if its epigraph (the set of points above
or on its graph) is a convex set. For a differentiable function to be convex it
necessarily has to verify the first-order condition

∀x,y ∈ C : f(x) +∇f(x)T · (y− x) 6 f(y) (3.6)

as follows directly from the definition of a convex function. Here ∇ denotes
taking the gradient, and x · y denotes the inner dot product between x and
y. If the function is twice differentiable it also has to verify the second-order
condition

∀x,y ∈ C : (y− x)T ·∇2f(x) · (y− x) > 0, (3.7)

i.e. its Hessian needs to be positive semi-definite. To establish convexity of a
function instead of verifying these conditions it is often more convenient to
show that the function can be composed from elementary convex functions by
convexity-preserving operations [91].

Convex optimization is the minimization of a convex function over a convex
set. It includes many practical important problems such as linear least-squares
regression and quadratic programming. Research during the last two decades
has provided a relatively complete theory of and efficient algorithms for con-
vex optimization problems [91]. The same are still lacking for more general
optimization problems. An important property of convex optimization prob-
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Figure 3.1: A function with multiple distinct minima cannot be convex. In the vicinity
of a minimum the function can be approximated by a parabola (solid blue
lines). Convexity requires every line connecting two point on the graph
of the function to lie completely within the epigraph (light blue shaded
region) of the function, i.e. above or on the graph. A line connecting two
local minima (solid green line) cannot fulfill this requirement.

lems is the absence of distinct local optima: every locally optimal solution of
such a problem is also globally optimal (Fig. 3.1).

3.1.1.2 Noisy optimization
used in Ch. 6,7

Sometimes a precise evaluation of the objective function is either impossible
or exceedingly computationally expensive. Examples are optimization based
on a complex simulation, or the evaluation of loss function over large data sets
in machine learning. How to optimize a function given noisy evaluations is
thus an important problem. Such a noisy optimization problem can be stated
as finding the minimum over a bounded domain Ω of a function f(y)

min
x∈Ω

f(x) = min
x∈Ω

E[F(x,ω)], (3.8)

which is not known explicitly, but needs to be approximated by evaluating a
function F(x,ω) dependent on a random variableω. The optimization problem
Eq. 3.8 is an example of a stochastic programming problem [92].

3.1.1.3 Multi-objective optimization
used in Ch. 7

Multi-objective optimization searches for optimal parameters x within a do-
main Ω to minimize a vector of objective functions f [91]:

min
x∈Ω

f(x) (3.9)

For nontrivial multi-objective optimization problems there is no single solution
minimizing all objectives simultaneously. To define what optimality means for
a multi-objective problem we can use the minimal requirement that a solution
x should not be worse for all objectives than what is achievable for any other
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feasible x ′. This criterion is known as Pareto optimality. The family of solutions
which are Pareto optimality is called the Pareto frontier.

To go beyond Pareto optimality needs additional information about the rel-
ative importance of objectives. Multi-objective optimization problems can be
turned into a scalar optimization problem given weights w assigned to differ-
ent objective functions:

min
x∈Ω

wT f(x) (3.10)

Pareto optimality is a necessary condition for optimality in this scalarized prob-
lem (if all weights are strictly positive).

3.1.2 Optimality conditions

As the solution to an optimization problem is an extremal point a variational
principle holds: the optimization criterion is stationary with respect to all in-
finitesimal changes allowed by the constraints. This yields a set of conditions
– called Karush-Kuhn-Tucker conditions – that need to hold at the optimum
[93, 91]. They provide a generalization of the method of Lagrange multipliers
to problems involving inequality constraints. Analytical solutions to optimiza-
tion problems can sometimes be obtained by solving the equations defining
these conditions. For convex optimization problems these conditions are not
just necessary but also sufficient for optimality.

To begin we write down the Lagrangian of the optimization problem defined
in Eqs. 3.1-3.3

L(x,λ,ν) = f0(x) +
p∑
i=1

λihi(x) +

m∑
i=1

νifi(x), (3.11)

where λ is a p-dimensional vector of Lagrange multipliers enforcing the equal-
ity constraints and ν is a m-dimensional vector of Lagrange multipliers en-
forcing the inequality constraints. The optimal x? is an extremum of this La-
grangian, so the stationarity condition

∇f0(x?) +
p∑
i=1

λ?i∇hi(x?) +
m∑
i=1

νi∇fi(x?) = 0 (3.12)

holds at the optimum for associated λ? and ν?. x? further needs to be feasible,
i.e. it must not violate any of the constraints

fi(x) 6 0, (3.13)

hi(x) = 0. (3.14)

If an inequality constraint fi(x?) > 0 is satisfied as a strict inequality at
the optimum then the inequality does not restrict the allowed infinitesimal
changes. Therefore the constraint should not have an influence on the La-
grangian. This so called complementary slackness condition, requires the La-
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grange multipliers associated with the inequality constraint to be zero unless
the constraint is active,

ν?i fi(x
?) = 0. (3.15)

Lastly, even if an inequality constraint is active only changes pointing out-
wards of the constraint set are prohibited. Therefore the sign of Lagrange mul-
tipliers for inequality constraints needs to be non-negative

ν?i > 0. (3.16)

3.1.3 Numerical techniques

A plethora of algorithms has been developed to numerically solve optimization
problems [94, 93, 91]. I do not review the full breadth of such algorithms here,
but introduce some common ideas before discussing two particular algorithms
I have used during this thesis.

One strategy to find a minimum is to start somewhere and then go down
the hill. The simplest implementation of this idea is gradient descent, which
follows the direction of steepest descent. Gradient descent is slow to converge
and can suffer from issues of ill-conditioning of the objective function. One
can choose better descent directions by using curvature information about the
objective function. Newton methods are based on the exact curvature obtained
from the Hessian whereas Quasi-Newton methods iteratively approximate the
Hessian from gradient information only. Newton methods have better conver-
gence properties then gradient methods and so are generally preferred. For
large scale optimization involving many parameters the computational de-
mand of every iteration can be prohibitively high so that one needs to fall
back to gradient methods.

To go down the hill you need to know not just where you are but how the
height of the hill changes around you. If the objective function has an explicit
expression it is best to analytically take its derivatives needed for the methods
discussed in the previous section. What if the function is not known explicitly?
This is a problem known as black-box optimization. Sometimes the deriva-
tives can be approximated using finite differences, which allows to use the
algorithms described above. This is not always possible though, for example
the function might not be differentiable everywhere. Derivative-free optimization
algorithms then find their use [95, 96]. We use and extend such an algorithm
to optimize a function based only on noisy function evaluations in Sec. 3.1.3.2.

To terminate iterative optimization algorithms one needs to define a stop-
ping criterion. Stopping criteria are designed to be quantitative measures of
convergence. A frequently used measure is that the norm of the gradient falls
below some predefined threshold. For convex problems a lower bound for the
cost can be established by solving a linear programming problem as follows:

flb = f
(
xk
)
+ min
x∈C

[(
x− xk

)
· ∇f

(
xk
)]

6 f (x∗) . (3.17)
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The linear programming problem x̄k = argminx∈C∇f
(
xk
)T (

x− xk
)

is solved
explicitly [93] by

x̄k = ei∗ , i∗ = argmin
i

(
∇f
(
xk
))
i

, (3.18)

in the case where C is the probability simplex and where ei denotes the ith
unit vector. We can use this lower bound to define a stopping criterion for the
numerical optimization that ensures convergence up to a tolerance ε:

f
(
xk
)
− flb

flb
< ε (3.19)

3.1.3.1 Projected gradient method
used in Ch. 4

In constrained optimization simply taking a step in a descent direction might
violate the constraints. The idea of the projected gradient method is to project
the iterates back onto the constraint set [97]. The projection of a point y onto
a set C is defined as the point within the set closest to y

P(y) = argmin
x∈C

1

2
‖x−y‖2, (3.20)

where ‖x‖ denotes the Euclidean norm of x. Projection is a quadratic program-
ming problem, the solution of which generally can be time-consuming. The
practical feasibility of optimization methods involving projections relies on the
existence of efficient algorithms for solving this problem for some practically
important constraints such as for bound or simplex constraints [98].

A projected gradient algorithm iterates according to

xk+1 = P
(
xk − sk∇g

(
xk
))

, (3.21)

where P denotes the projection onto C as defined above, and sk is the step
size taken in the direction of the gradient. The projected gradient method is
conceptually simple, but slow to converge, g

(
xk
)
− g (x?) ' O(1/k) [99].

Recently there has been an increasing interest in optimal first-order meth-
ods that increase the theoretical bound on the rate of convergence to O(1/k2)

[99, 97]. These methods only use function and gradient information and re-
tain the simplicity of ordinary first order methods. They achieve accelerated
convergence by adding a momentum term to ordinary gradient descent. An
accelerated projected gradient method follows

yk+1 = xk +ωk
(
xk − xk−1

)
(3.22)

xk+1 = P
(
yk+1 − sk∇g

(
yk+1

))
(3.23)

with a suitably chosen sequence ωk. Following [97] we use ωk = k
k+3 .

The step size s is determined by backtracking [99]: we iteratively decrease s
by multiplication by β < 1 until g(z) 6 g

(
yk
)
+
(
z−yk

)
· ∇g

(
yk
)
+ 1
2s(z−

yk)2, where x · y denotes the inner dot product between x and y, and z =
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P
(
yk − s∇g

(
yk
))

. In practice we determine s in this way at the first step of
the optimization and then keep it fixed based on this initial estimate.

3.1.3.2 Noisy optimization
used in Ch. 6,7

Given N samples of the function for independently drawn ω (see Eq. 3.8) we
can approximate

f(y) ≈ 1

N

∑
i=1

F(y,ωi), (3.24)

which will converge by the law of large numbers as N → ∞. By considering
this so-called sample average approximation [92] as a deterministic function
to be optimized, classical deterministic optimization methods can be used.

Here we adapt a pattern search algorithm to solve a noisy optimization
problem with bound constraints. The algorithm combines compass search, a
simple pattern search algorithm which allows to easily incorporate bound con-
straints [95], with the idea of adapting the number of evaluations of F dynami-
cally to control the noise in the approximation [100, 101]. An advantage of the
algorithm over alternative methods for noisy optimization such as stochastic
approximation [102] is that it allows one to define stopping criteria in terms
of parameter convergence instead of relying on more indirect stopping criteria
such as decrease conditions.

Let us define the set of search directions considered at each iteration as
D = {±ei|i = 1, ...,n}, where ei is the i-th unit vector; and let us further
define PΩ(y) = argminy ′∈Ω |y ′ − y|2 as the projection of a point y onto Ω
[91]. The projection onto box constraints considered here is particularly simple
and computationally efficient as it just sets coordinate entries outside of the
bounds to the bound value. Given an initial guess for the parameter vector y0,
an initial step size ∆0, and an initial number of times F should be sampled
N0 the algorithm proceeds as follows to find the optimal parameter vector to
within a tolerance of ∆tol:

1. Initialize the parameter vector y ← y0, step size ∆ ← ∆0, and number
of samples N← N0.

2. While (∆ > ∆tol) or (y or N updated during last iteration):

a) For each step ∆d along the positive and negative coordinate direc-
tions d ∈ D:

i. If f(y ′) < f(y) (as judged from N samples of F at both points),
where y ′ = PΩ(y+∆d), then update parameter vector:

y← y ′

ii. Else If new point y + ∆d is feasible, i.e. y + ∆d ∈ Ω, and if
f(y+∆d) = f(y) can not be ruled out based on N samples of
F at both points (criterion below), then either one oversteps the
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Figure 3.2: Sketch of a two-state Markov chain. The process switches stochastically
between states with switching rates that only depend on the current state
(Markov property).

minimum or statistical power is insufficient. Therefore first try
half-step in the same direction, and if it fails increase sampling:

A. If f(y+ ∆
2d) < f(y) (as judged from N samples of F at both

points), then update the parameter vector and reduce the
step size:

y← y+
∆

2
d

∆← ∆/2

B. Else increase sampling:

N← 2N

b) If no updates during preceding loop then contract pattern size:

∆← ∆/2

For the comparisons between objective function values, we use hypothesis test-
ing on N paired samples of F, i.e. we evaluate F(y,ωi), F(y,ωi) for ωi, i =

1, ...,N and calculate pairwise differences. The hypothesis testing uses a con-
fidence level α, which indirectly controls how much the function is sampled.
To correct for the multiple tests performed for different directions, we use a
Bonferroni correction by using a confidence level α/(2n) for individual tests,
where 2n is the number of search directions.

3.2 stochastic processes

3.2.1 Markov chains

used in Ch. 6,7
Markov chains describe stochastic processes that transitions between discrete
states without memory (Fig. 3.2). The Markov property that the probability of
moving to a new state only depends only on the current state means that a
Markov chain is fully defined by its transition matrix T . In discrete time the
distribution over states pt changes in time according to the Master equation

pt+1 = ptT . (3.25)
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If the chain is irreducible and all of its states are positive recurrent then a
unique steady state distribution xs exists. As it is unchanged by the dynamics
it is a left eigenvector of the transition matrix with eigenvalue 1. The other
eigenvalues of P determine the speed of convergence to the steady-state distri-
bution.

To illustrate these points consider the simple example of a two-state Markov
chain (Fig. 3.2). The transition matrix is

T =

[
1−α α

β 1−β

]
. (3.26)

Solving for the left eigenvector corresponding to eigenvalue 1 gives the steady-
state distribution

π =
(
β
α+β , α

α+β

)
(3.27)

The second eigenvalue is λ = 1− α− β. It is related to the convergence speed
of the distribution against the stationary distribution with the time constant of
this approach given by τ = −1/ ln(λ).

3.2.2 Fokker-Planck and Langevin formalism

used in Ch. 5
Expanding on the preceding discussion of Markov chains we now consider
Markov processes with continuous states and in continuous time. A Markov
jump process is defined by the rates W(x ′|x)dx ′ of jumps from state x to
[x ′, x ′ + dx ′) in a small time interval dt. The temporal evolution of the proba-
bility of being in state x follows the Master equation

∂tp(x, t) =
∫

dx ′
[
W(x|x ′)p(x ′, t) −W(x ′|x)p(x, t)

]
, (3.28)

which can be understood as a continuity equation for probability flux.
The Fokker-Planck equation is an approximation of this Master equation in

the limit where W(x ′|x) is highly peaked around x [103]. Such a limit of small
jumps is relevant in many physical situations. For example, a grain of pollen
diffuses in water due to many random interactions with the surrounding wa-
ter molecules, every one of which only has a very small effect. To derive the
Fokker-Planck equation we express the transition probability as a function of
the size r = x− x ′ of the jump

W(x|x ′) =W(x ′, r). (3.29)

The Master equation (Eq. 3.28) in this notation reads

∂tp(x, t) =
∫

drW(x− r, r)p(x− r, t) −
∫

drW(x,−r)p(x, t). (3.30)
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The shift from x to x− r in the first term is small by assumption so we can
Taylor expand up to second order, which yields the Fokker-Planck equation

∂tp(x, t) = −∂x [a1(x)p(x, t)] +
1

2
∂2y [a2(x)p(x, t)] , (3.31)

where the coefficients are the first and second moment of the jump rates

an(x) =

∫
drW(x, r)rn. (3.32)

The Fokker-Planck equation describes a diffusion process. We write a1 = µ for
the drift coefficient and a2 = D for the Diffusion coefficient.

Instead of describing the temporal evolution of the probability density with
the Fokker-Planck equation, it is sometimes more intuitive to think about indi-
vidual trajectories of the stochastic process. Still assuming that the jumps are
small we can think of them as a stochastic force added to the deterministic
dynamics of the system. This gives rise to the Langevin equation

∂tx(t) = µ(x) + σ(x)ξ(t), (3.33)

where ξ(t) is Gaussian white noise with correlation function 〈ξ(t)ξ(t ′)〉 =

δ(t − t ′). Langevin equations are known in the mathematical literature as
stochastic differential equations, where they are defined in terms of Wiener
processes. The Langevin equation is equivalent to a Fokker-Planck equation
with µ(x) = µ(x), and D(x) = σ2(x) in the Ito formalism (see [104] for more
details).

Numerically the simplest scheme for simulating trajectories according to a
Langevin equation is the Euler-Maruyama algorithm [104]. In Ito formalism
given a time step ∆t it calculates the next position as

x(t+∆t) = x(t) + µ(x(t))∆t+ σ(x(t))∆ξ, (3.34)

where ∆ξ is a Gaussian variable with mean 0 and variance ∆t. As the Gaussian
noise has variations of the order of

√
∆t this algorithm has the lower conver-

gence order of 1/2 compared to the Euler algorithm for deterministic systems.
Higher order schemes have been developed, see e.g. Kloeden and Platen [105]
for an in-depth treatment of numerical methods for solving stochastic differ-
ential equations.

The formalisms can be extended to multiple dimensions, where the multidi-
mensional Langevin equation is given by

∂tx(t) = µ(x(t), t) +σ(x(t), t)ξ(t) (3.35)

with 〈ξi(t)ξj(t ′)〉 = δi,jδ(t − t
′). The corresponding Fokker-Planck equation

for the probability density p(x, t) is [104]

∂p(x, t)
∂t

= −
∑
i

∂

∂xi
[µi(x, t)p(x, t)] +

1

2

∑
i,j

∂2

∂xi∂xj
[Dij(x, t)p(x, t)], (3.36)
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Figure 3.3: Steady-state distribution of allele frequency for neutral Wright-Fisher dif-
fusion with recurrent mutation. The distribution is single-peaked distribu-
tion for θ > 1 and bimodal for θ < 1.

with µ defined as before and a diffusion tensor

Dij(x, t) =
∑
k

σik(x, t)σjk(x, t). (3.37)

3.3 elements of evolutionary theory

3.3.1 Genetic drift

In finite populations the frequency of alleles changes over time even in the ab-
sence of selection. Genetic drift can be understood within the Wright-Fisher
model, which considers a population of N individuals reproducing at dis-
crete non-overlapping generations. It assumes that offspring sample alleles
randomly from the parent generation.

We consider more explicitly the case of two alleles (A and a) in a haploid
population. Assume that in the parent generation there are n individuals with
allele A. In the next generation the number of offspring with allele A follows
a binomial distribution with N draws and success probability q = n/N. On
average the fraction q of A alleles remains unchanged but there are stochas-
tic changes due to the variance of the fraction of q(1− q)/N. These stochastic
changes accumulate overtime, which leads to one of the alleles eventually be-
coming fixed in the population. After fixation the whole population is homo-
geneous and there is no further change in the absence of new mutations. used in Ch. 5

The strength of genetic drift depends on the population size and vanishes in
infinitely large populations. In large populations the relative changes in pop-
ulation composition between generations are small. In this limit the dynamics
can be approximated by treating q as a continuous variable. Also taking a con-
tinous limit in time rescaled by 1/N allows applying the reasoning outlined in
Sec. 3.2.2 to obtain a Fokker-Planck description,

∂tρ =
1

2
∂2q(ρq(1− q)), (3.38)
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of genetic drift for the conditional probability distribution function ρ(q, t).
This diffusion approximation is widely applied in population genetics [106,
107]. Note the differing terminology between evolutionary theory and diffu-
sion processes: genetic drift gives rise to a diffusion term, while drift in the
diffusion-sense describes deterministic changes.

If there are recurrent mutations between the alleles then fixation is no longer
an absorbing boundary condition. The Fokker-Planck equation for such neu-
tral drift with recurrent mutations is

∂tρ = −
1

2
∂q(ρ(α(1− q) −βq)) +

1

2
∂2q(ρq(1− q)), (3.39)

given population scaled mutation rates α = 2Nu (β = 2Nv), where u (v) is
the probability of a mutation producing allele A (a) per individual and per
generation. Instead of recurrent mutations immigration into the population
can also be considered as a source of continued variation. Immigration with
rate m from an external population leads to a drift term m(q̄− q), where q̄
is the mean of the external population [108]. This reduces to Eq. 3.39 with
α = mq̄ and β = m(1− q).

The stationary solution ρ(α,β)
s (q) of Eq. 3.39 is defined by ∂tρ

(α,β)
s (q) = 0.

Integrating once we obtain

∂q(ρ
(α,β)
s (q)q(1− q)) = −ρ

(α,β)
s (q)(βq−α(1− q)), (3.40)

which is a separable differential equation with solution

ρ
(α,β)
s (q) =

1

Zq(1− q)
exp

[
−

∫
dq
βq−α(1− q)

q(1− q)

]
, (3.41)

where Z is set by normalization. Expanding the integrand in partial fractions
we obtain∫

dq
βq−α(1− q)

q(1− q)
=

∫
dq
[
β

1− q
−
α

q

]
= −β ln(1− q) −α ln(q), (3.42)

which leads to

ρ
(α,β)
s (q) =

1

Z
qα−1(1− q)β−1. (3.43)

This distribution is known as the Beta distribution and its normalization Z =

B(α,β) = Γ(α)Γ(β)/Γ(α+β) is the Beta function.
To understand the result consider the case of symmetric mutation rates α =

β =: θ. For θ > 1 the steady-state distribution is unimodal (Fig. 3.3): mutations
dominate genetic drift and q only fluctuates little around the mean frequency
for balanced mutations. For θ < 1 the steady-state distribution is bimodal:
mutations are more rare and often one of the two alleles is close to fixation
with occassional switches.

The model can be extended to more than two alleles. The particular case of
parent-independent mutation is notable as it remains analytically solvable. We
use θi = 2Nui to denote the population-scaled mutation rate towards allele i,
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where ui is the probability of a mutation producing allele i per individual and
per generation. The dynamics is described by the Fokker-Planck equation

∂tρ = −
1

2

K−1∑
i=1

∂qi [(θi − |θ|xi)ρ] +
1

2

K−1∑
i,j=1

∂qi∂qj
[
qi(δi,j − qj)ρ

]
, (3.44)

where θ = (θ1, ..., θK) and |θ| =
∑K
i=1 θi.

3.3.2 Evolutionary strategies in fluctuating environments

used in Ch. 6,7
The question of which evolutionary strategies allow populations to best cope
with environmental fluctuations is a long-standing question in evolutionary
biology [109, 110, 111, 112, 113]. On a theoretical level, there are connections of
this question to information theory [111, 114], and non-equilibrium statistical
physics [115, 116].

The dynamics of a population of organisms reproducing at discrete times
t in a fluctuating environment can be described by keeping track of the dis-
tribution of phenotypes [117] (see Fig. 7.1). At each generation, an individual
produces a stochastic number of offspring, whose distribution depends on the
phenotype σ of that individual, and the state of the environment xt. We de-
note the mean of the number of offspring by f(σ, xt). To adapt its phenotype
a population can use different sources of information about the environment
[114]: it can actively sense the environmental state, or it can passively adapt
by switching stochastically and using the inherited information about pheno-
types selected in the past. The value of these sources of information depends
on sensing costs and the statistics of the environment [111].

Let Nt(σ|xt ′<t+1) be the mean number of organisms in the population
at time t with protection σ, for a given environment history (xt ′<t+1). The
change in population composition from one generation to the next is governed
by the reproductive success of individuals in each state σ, modified by stochas-
tic phenotype switches from parents to offspring:

Nt+1(σ|xt ′<t+1) = f(σ, xt)
∑
σ ′
π(σ|σ ′, xt)Nt(σ ′|xt ′<t), (3.45)

where π(σ|σ ′, xt) is the switching probability from phenotype σ ′ to phenotype
σ. Note that the protection phenotype switching probability might depend on
the state xt of the environment. To simplify notations, we omit the condition
on the environment (·|xt ′<t) when referring to conditional means in the fol-
lowing.

Population growth is an inherently multiplicative process. The total popu-
lation size at time T is given by the product NT = N0

∏T
t=0 ZT , where Zt is

the relative increase of the population size at generation t. The success of an
adaptive strategy can be measured in term of its long-term growth rate,

Λ = lim
T→∞ 1T lnNT/N0 = lim

T→∞ 1T
T∑
t=0

ln(Zt). (3.46)
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The strategy with maximal long-term population growth rate outperforms any
other strategy in the long run for almost every sequence of environments in
populations of infinite size. It thus provides a measure of long-term fitness
[117].

A particular class of strategies are so-called bet-hedging strategies which in-
crease long-term growth rate by reducing the variability of Zt at the expense of
its mean [118, 113]. By Jensen’s inequality decreasing the variability increases
the long-term growth rate in Eq. 3.46 as it is a concave function of Zt. More
concretely, setting Zt = 〈Z〉+ δt we can develop lnZt around the mean 〈lnZ〉
up to second order in δt as lnZt ≈ ln〈Z〉 + δt/〈Z〉 − δ2t/〈Z〉2. By definition
〈δt〉 = 0 so 〈lnZt〉 = ln〈Z〉− 〈δ2t〉/〈Z〉2, which shows that to optimize long-
term growth a balance needs to be struck between increasing the arithmetic
mean of Zt and reducing its variance across environmental conditions.

3.4 bayesian inference and decision theory

used in Ch. 5
Assume you observe data x with a probability P(x|θ) (called likelihood) that
depends on parameters θ of a statistical model. The task of statistical inference
is to deduce something about θ from observations. Bayesian inference is based
on a subjective view of probabilities: probabilities describe degrees of belief.
This is opposed to the frequentist interpretation of probability as the limit of
the relative frequency of an event in a large number of repetitions. Even before
having seen any data we already have some beliefs about sensible values of
θ which we summarize in a prior distribution P(θ) on θ. To update our belief
upon seeing the data we use Bayes theorem as follows:

P(θ|x) =
P(x|θ)P(θ)

Z
, (3.47)

where Z = P(x) is a normalizing constant The posterior distribution P(θ|x) con-
tains everything there is to know about θ.

As we have seen Bayesian inference is conceptually straightforward. In prac-
tice, however, it can sometimes be computationally difficult to apply Eq. 3.47.
A common trick to make the calculations tractable is to use special prior distri-
butions. These priors are conjugate with respect to the likelihood in the sense
that the posterior stays in the same functional family as the prior. Then the
Bayesian update can be done simply in terms of the parameters of the family
of functions.

We can extend Bayesian inference to recursive inferences about an only par-
tially observed Markov process [119]. The observation x(t) at time t is de-
pendent on the current state of the stochastic process θ(t). Assume that from
previous measurements we have a prior distribution P(θ, t−) then we update
our belief about the state of the stochastic process simply according to Eq. 3.47

to the posterior distribution P(θ, t+). Until the next measurement the stochas-
tic process evolves further, which should be reflected in our beliefs about θ.
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We can write the probability distribution of θ at time t as an integral of the
product of the distribution at an earlier time t and a conditional probability,

P(θ, t) =
∫

dθ ′ P(θ, t|θ ′, t ′)P(θ ′, t ′). (3.48)

Given a stochastic process with a Fokker-Planck operator A (see Sec. 3.2.2) this
leads to the equation,

dP(θ, t)
dt

= AP(θ, t), (3.49)

which needs to be solved starting from P(θ, t+) as the initial condition. This
represents using the model of the stochastic process to predict the future. The
prediction then serves as a prior for the next encounter, which makes the proce-
dure recursive. The procedure we just outlined is variably known as recursive
Bayesian estimation of sequential Bayesian filtering [119].

Consider that a decision needs to made with respect to the choice of an ac-
tion a out of a set A of admissible actions. The outcome of the action depends
on the state of the world encoded by a parameter θ ∈ Θ. How should we The optimist reader might

prefer to think in terms of
gains instead of losses and
equivalently define a utility
function as the negative of
the loss function.

choose among actions in the presence of statistical information related to their
probable outcomes? Answering this question is the aim of statistical decision
theory [120, 121]. We define a loss function L : Θ×A → R that associates
a loss experienced by the decision maker to every action a in every state θ.
The statistical information about outcomes is given in the form of the probabil-
ity distribution P(θ) of states θ. Bayesian decision theory means choosing the
action that minimizes the Bayesian expected loss∫

Θ

dθL(θ,a)P(θ). (3.50)

A common problem in statistics is to choose a point estimate θ̂ to summarize
our knowledge P(θ|x). We can see this problem as a special case of the theory
we have just developed. In this case, the set of actions is the choice of estimates
θ̂. For the simple quadratic loss function L(θ, θ̂) = (θ̂ − θ)2, simple algebra
shows that the optimal estimate is the posterior mean, θ̂ =

∫
dθθP(θ|x). Other

loss functions lead to other estimators among which the maximum a posteriori
estimate θ̂MAP = argmaxθ P(θ|x) deserves special mention due to its wide
usage.

3.5 dynamical systems

The temporal evolution of the state x of a dynamical system in continuous
times is described by a system of ordinary differential equations (ODEs),

dx
dt

= f(x, t). (3.51)

If f is not explicitly dependent on t then the dynamical system is called au-
tonomous.
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Given an initial condition x0 an ODE can be integrated to obtain an trajec-
tory of the dynamical system. Initial value problems can sometimes be solved
analytically. For example linear systems f(x) = Ax have a formal solution
x(t) = x0e

At in terms of a matrix exponential. Generally one has to revert to
numerical solutions using classical algorithms ranging from the simple Euler
algorithm to more refined schemes such as Runge-Kutta integration [122].

To learn something about generic features of the dynamics one can turn to
the study of attractors of the dynamics [123, 124]. An attractor governs the
dynamics after an initial transient starting from all initial conditions within its
basin of attraction. We present two tools related to establishing the properties
of the simplest attractors, fixed points, in the following: linear stability analysis
and Lyapunov functions.

3.5.1 Linear stability analysis

used in Ch. 4
A fixed point x? of an autonomous dynamical system is defined by

f(x?) = 0. (3.52)

Local stability of such a fixed point means that any slight perturbation around
the fixed point decays with time. A small perturbation δ(t) = x(t)− x? follows
the linearized dynamical equation

dδ
dt

= J (x?)δ, (3.53)

where the Jacobian matrix J(x) is defined as

Ji,j =
∂fi(x)

∂xj
. (3.54)

Perturbations along a direction corresponding to a right eigenvector of J grow
exponentially with a rate given by the corresponding eigenvalue. Stability re-
quires limt→∞‖δ(t)‖ = 0 for all small perturbations δ, which implies that all
real parts of the eigenvalues of the Jacobian at the fixed point need to be nega-
tive at a stable fixed point. The Hartmann-Grobman theorem [124] ensures that
the higher order nonlinear terms do not change the stability as determined by
linearization except for the degenerate case, where one of the eigenvalues of J
is zero.

3.5.2 Lyapunov functions

used in Ch. 4
Even if a dynamical system has a single stable fixed point x? it does not nec-
essarily always converge to this point. There might be other attractors such as
limit cycles so that not all initial conditions are within the basin of attraction of
the fixed point. One way to ensure that the fixed point is eventually reached is
to demonstrate the existence of a Lyapunov function. A Lyapunov function is
a real valued, positive definite function, that decreases along all trajectories of
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the dynamical system. More precisely a continuously differentiable function
V(x) is a Lyapunov function, if [124]

1. V(x) > V(x?), i.e. V is positive definite,

2. dV(x)
dt = ∇V(x) · dx

dt = ∇V(x) · f(x) < 0.

In contrast to local stability the existence of such a Lyapunov function shows
asymptotic stability of the fixed point.

3.6 measures of spatial order

used in Ch. 4
In Chapter 4 we analyze optimal distributions of immune receptors in shape
space. To analyze spatial order in these distributions we rely on two tools
from statistical physics. Namely, we calculate radial distribution functions and
a normalized power spectral density similar to the structure factor which we
define below. This allows us to get insight into the nature of the tiling patterns,
that emerge as optimal distributions.

Let us denote the probability of finding a particle (in our case immune recep-
tor) at position r in space by P(r). The radial distribution function measures
correlations between particle numbers as a function of their distance R in space.
It is defined as [125]

g(R) =
〈
P(r)P(r ′)

〉
‖r−r ′‖=R , (3.55)

where the average is over all pairs of positions with a distance R. Absence of
correlations (as in the case of an ideal gas in physics) leads to a flat radial dis-
tribution function equal to one everywhere. If receptor placement is correlated
the radial distribution function shows characteristic peaks. The normalized
power spectral density of a spatial distribution is defined as

S(q) =

∣∣∣∣∫
r

dr P(r)eiq·r
∣∣∣∣2 /∫

r

dr P(r)2, (3.56)

in terms of the wave vector q. For isotropic distribution one can average over
all directions of q to obtain a quantity that only depends on its modulus q =

‖q‖. Large (small) q correspond to short (long) distances in space. The value
of S(q) indicates the relative power of fluctuations at the spatial scale 2π/q.

The normalized power spectral density coincides with the structure factor fa-
miliar in physics [126, 125] if P(r) consists of a sum of Dirac Delta peaks. Let us
assume that the distribution P(r) consists of N peaks of the same shape φ(x)
at positions Rl, P(r) =

∑N
l=1φ(r− Rl). The numerator of Eq. 3.56 can then

be rewritten as |φ(q)|2I(q) in terms of a quantity I(q) =
∣∣∣∑Nl=1 eiq·Rl

∣∣∣2 that

depends only on the peak positions and of a quantity φ(q) =
∫
r drφ(r)eiqr

that depends only on the peak shape. A quantity similar to φ(q) arises also
in condensed matter physics where it is called atomic form factor. The normal-
ization of S(q) is chosen such that it coincides with the structure factor for
Dirac delta peaks of uniform heights. For Dirac delta peaks φ(q) = 1, and
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∫
r dr P(r)2 = 1/N, so that S(q) = I(q)/N, which is the definition of the struc-

ture factor of a point pattern.
For patterns for which the precise local position of the points is random,

the absence of structure at the smallest scales translates into a structure factor
that approaches one for large q. The q → 0 limit of S(q) indicates how uni-
formly space is covered at large scales. In the small q limit the structure factor
is equal to the relative variance in the number of peaks contained within large
areas [127]. For random point patterns the number of peaks in a given area
is Poisson distributed and the variance of the number of peaks grows as the
volume of the area. The constant relative variance implies S(q→ 0) > 0. There
is an interesting class of patterns for which the variance grows sublinearly
with volume, implying vanishing variation at the largest scales S(q → 0) = 0.
Such patterns are called hyperuniform [127, 128]. A trivial example are regular
patterns. More interestingly one can also construct disordered hyperuniform
patterns that combine local randomness S(q → ∞) = 1 with large scale uni-
form space coverage (S(q→ 0)) [127, 129, 130, 128].

3.7 implementation and computational reproduciblity

The numerical work reported in this thesis was performed using the scien-
tific Python stack including the Numpy [131], Scipy [132], and Matplotlib [133]
packages. Time-sensitive parts of the code were accelerated using Cython [134],
which is a tool that allows to combine the ease of Python programming with
the speed of C where it matters.

Science proceeds as a collective endeavour with studies building onto each
other. Scientific truth emerges from cycles of independent replication and re-
finement of results. In practice, however, it is often already difficult to repro-
duce published research, that is to obtain the same results using the same
methods. There currently is thus a big movement in science towards improv-
ing reproducibility [135, 136]. For computational science a minimal require-
ment for reproducibility is the public availability of the source code. All source
code associated with the published papers is thus available online: for ease of
use on Github, and for persistent storage on Zenodo. If a problem is common
enough it might be worth the effort to go beyond reproducibility and enable
reusability. This means to provide a well-documented, and generic solution in
the form of a software tool/package. In this spirit I have released the Python
package Noisyopt to provide implementations of common algorithms to solve
noisy optimization problems in the Python programming language [137].

The following table gives the relevant references:

Work Github Link Zenodo Link

[138] http://github.com/andim/optimmune http://dx.doi.org/10.5281/zenodo.16796

[139] http://github.com/andim/evolimmune http://doi.org/10.5281/zenodo.495494

[140] http://github.com/andim/transitions-paper http://doi.org/10.5281/zenodo.495495

[137] http://github.com/andim/noisyopt http://doi.org/10.5281/zenodo.596660

http://github.com/andim/optimmune
http://dx.doi.org/10.5281/zenodo.16796
http://github.com/andim/evolimmune
http://doi.org/10.5281/zenodo.495494
http://github.com/andim/transitions-paper
http://doi.org/10.5281/zenodo.495495
http://github.com/andim/noisyopt
http://doi.org/10.5281/zenodo.596660


Part II

I M M U N E R E P E RT O I R E S

This part of the thesis takes a look at immune repertoires from a
perspective of how they allocate resources relative to their knowl-
edge of the pathogenic environment. Specifically we ask:

How is a well-adapted immune system organized? And how should
a well-adapting immune system remember?





4
H O W A W E L L - A D A P T E D I M M U N E S Y S T E M I S
O R G A N I Z E D

This chapter was previously published in Ref. [138].

4.1 introduction

The adaptive immune system protects organisms from a great variety of path-
ogens by maintaining a population of specialized cells, each specific to par-
ticular challenges. Together these cells cover the array of potential threats. To
recognize pathogens, the immune system relies on receptor proteins expressed
on the surface of its main constituents, the B and T lymphocytes. These recep-
tors interact with antigens (small molecular elements making up pathogens),
recognize them through specific binding, and initiate the immune response.
Each lymphocyte expresses a unique receptor formed from random combina-
tions encoded in the genome. The receptors later undergo selection through
the death and division of the lymphocytes that express them, as well as mu-
tations in the case of B lymphocytes. The diversity of the receptor repertoire
determines the range of threats that the adaptive immune system can target.

The detailed composition of the immune receptor repertoire, and not just
its breadth, is important for conferring effective protection against infections.
Broadly speaking, a diverse population of receptors will confer wider immu-
nity, and a larger clonal population of a particular receptor will confer more
effective immunity against the pathogens to which it is specific. However, there
is a tradeoff between diversity and clone sizes because the number of recep-
tors is limited. By selectively proliferating some receptors at the expense of
others, the immune system retains a memory of past infections [27], facilitat-
ing subsequent immune responses. Furthermore, while infections increase the
populations of receptors with the greatest specificity, they can also lead to a
reorganization of the immune repertoire as a whole [60].

How should the repertoire be organized to minimize the cost of infections?
We develop a framework for answering this question by abstracting key gen-
eral features of the adaptive immune system: the receptor repertoire is bounded
in size, receptors are “cross-reactive” (each antigen binds many receptors; each
receptor binds many antigens), and the cost of an infection increases with time.
Given these general assumptions, we consider a simplified landscape of patho-
gens, where infections are drawn from a fixed distribution. By simplifying the
setting in this way, and independently of the detailed dynamics of immune
responses, we arrive at broad insights about the composition of immune reper-
toires that are optimal for their pathogenic environments. Our framework is
not meant to give a complete account of immunity. To do so we would need to
include several other components of the immune system, such as interaction
between its innate and adaptive arms and avoidance of auto-immunity. The
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latter problem —the challenge of discriminating self from non-self— has been
the focus of many theoretical studies of the immune system [77, 83]. This pa-
per primarily investigates the relation between the adaptive repertoire and the
pathogenic environment, but we will also discuss how other components and
constraints of the immune system can be incorporated into our model.

The theory predicts, counter-intuitively, that the number of receptors specific
to rare pathogens will be amplified relative to the probability of encounter, at
the expense of receptors for common infections. We also find that two organ-
isms responding to a pathogen distribution will display unique populations
of immune receptors, even though their coverage of pathogens will be similar.
How can the immune system achieve these sorts of optima? Surprisingly, we
find that simple competition between receptor clones can drive the population
to the optimal composition for minimizing the cost of infections.

New high throughput methods are making it possible to survey B-cell and
T-cell receptor diversity in fish [10, 141], in mice [28, 60] and humans [54, 142,
29, 11]. As methods are developed to better characterize pathogenic landscapes
and receptor cross-reactivity, predictions for the composition of optimal reper-
toires derived from our framework can be directly compared with experiments.
To arrive at our results we ask how the immune system should be organized to
perform its function well, rather than starting with the detailed dynamics of its
components. We are proposing that the universal features of the adaptive im-
mune system follow simply from general statistical considerations, while the
detailed dynamical implementation arises from the historical contingencies of
evolution.

4.2 definition of the problem

To find the optimal repertoire distribution we must consider the nature of
antigen-receptor interactions, and a penalty that the immune system pays for
not recognizing antigens. This penalty must reflect the facts that recognition
should happen within reasonable time, before the pathogen colony can signif-
icantly increase its size; the interactions between the immune receptors and
antigen are probabilistic; and not all antigens are equally frequent. We assume
that, although the immune system cannot predict precisely which antigens
it will encounter and when, it incorporates an estimate of the probabilities of
their occurrences. We also take these probabilities to be constant in time. This
is an idealization grounded in a separation of timescales, which assumes the
distribution of antigens remains constant on timescales on which the immune
system adapts.

The above ideas are the basis for our cost function, which reflects the penalty
of non-recognition, for a given repertoire and antigenic environment. In Fig. 4.1
we introduce a quantification of the problem. Given Qa, the probability that
the next infection will be caused by antigen a, we model the immune repertoire
by a distribution of receptors Pr, from which lymphocytes with the receptor r
are drawn at random.

An antigen a and a receptor r interact with a certain strength set by the
binding affinity between the two molecules. This is described by the prob-
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✔  fr,a

λa(t)

ar

Qa

antigens

Pr

receptors

Figure 4.1: Schematic of a statistical model of antigen recognition by the adaptive im-
mune system. After infection, antigen a encounters immune receptor r at
random with a rate λa(t). An encounter leads to a successful recognition
with a probability fr,a that reflects the matching between a given antigen–
receptor pair.

ability fr,a (which we call the “cross-reactivity function”) that an antigen a
encountering a receptor r results in a recognition event, leading to the activa-
tion of the lymphocyte expressing that receptor. Each encounter of the antigen
a with a random receptor has a probability P̃a =

∑
r fr,aPr to lead to recogni-

tion and trigger an immune response. Thus, P̃a can be viewed as the coverage
of antigen a by the repertoire.

Given this coverage, we consider F̄a – the average harm caused by antigen a.
We will show below that, consistent with intuition, F̄a is a decreasing function
of the coverage P̃a. The overall expected cost is then just the harm averaged
over the antigen distribution:

Cost({Pr}) = 〈F〉 =
∑
a

QaF̄a(P̃a). (4.1)

The need to defend against many antigens at the same time with a limited
number of receptors introduces a trade-off. If more receptors recognize an
antigen, there are less to protect against other threats.

Lastly, we derive an expression for the average harm F̄a caused by antigen a.
During its time in the periphery, an antigen a will encounter and possibly in-
teract with receptors at a rate λa(t) which increases with time as the pathogen
population grows. Each encounter will occur with a different receptor r drawn
from Pr. The mean number of encounters between antigens and receptors af-
ter a time t, which we will call effective time, is defined as ma(t) =

∫t
0 dτλa(τ),

where t = 0 is set by the introduction of the antigen. The time t to the first
recognition event, or response time, is random and depends on the coverage
P̃a.

The longer the system fails to detect the antigen, the more likely the in-
fection is to become harmful. We assume that the integrated harm caused
by an antigen since the beginning of an infection is an increasing function
Fa(t) of the time of first recognition. How exactly Fa grows with time may
strongly depend on the type of infection and receptors [79, 143, 40]. The mean
harm inflicted to the organism by the attack of an antigen a is then given
by this quantity averaged over the distribution of possible response times:
F̄a = P̃a

∫+∞
0 dmFa[ta(m)] e−mP̃a , where ta(m), the inverse function ofma(t),
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is the amount of time it takes for m encounters to occur between the receptors
and pathogen a (see App. A.1 for a derivation). The result depends on the cost
expressed as a function of the effective time m, Fa[ta(m)], which we denote
Fa(m) to simplify notation. We will consider several specific choices of this
effective cost function in Results.

Our aim here is to propose a general framework for thinking about the
repertoire. Thus, we do not explicitly model intracellular communication, cell
differentiation, activation of co-factors, coordination of different cell types, the
interaction with the innate immune system, and the full complexity of the
recognition process. The idea is that Fa(m) implicitly summarizes all of these
factors in terms of an effective cost.

In general the cost function Fa(m) depends on the antigen a, reflecting the
various virulences of different pathogens. To simplify, we can assume that the
cost function takes the factorized form: Fa(m) = µaF(m), where µa is the
pathogen-dependent virulence factor, and F(m) describes how all threats de-
velop with time. The cost will then take the form:

∑
a µaQaP̃a

∫∞
0 dmF(m)e−mP̃a .

In this expression, the virulence factor µa of a pathogen plays the same role
as its likelihood Qa. Some pathogens are rare but very virulent (like anthrax),
while others may be common but not very virulent (like the common cold),
and an ideal immune system should be able to cope with both. In our model
the overall “threat” of a pathogen is expressed as the product of the two, µaQa.
In practice µa can be absorbed into the definition of Qa, and will be omitted
in the rest of the paper.

Given such a model of the recognition process, there exists an optimal adap-
tive immune system, characterized by the choice of the receptor distribution
Pr, that minimizes the expected cost in a given antigenic environment Qa. The
optimal repertoire is found by minimizing the expected cost in Eq. 4.1 with re-
spect to Pr, subject to constraints of non-negativity (Pr > 0) and normalization
(
∑
r Pr = 1). Simple local extremality conditions are sufficient for optimality

because our problem can be shown to be convex (see App. A.2). The condition∑
r Pr = 1 is a normalized version of the constraint that the total number of

receptors is limited.

4.3 results

4.3.1 The optimal repertoire is more uniform than the pathogen distribution

We can now ask how best to distribute the receptors to minimize the cost
(Eq. 4.1) for a given antigenic environment. To begin, we neglect cross-reactivity
(later we will see that this is equivalent to looking at the structure of the reper-
toire at scales larger than the cross-reactivity). In this case antigens and recep-
tors can be associated one by one by a cross-reactivity function fr,a = 1 if
r = a and 0 otherwise. In this case we can analytically determine the optimal
distribution (App. A.4.2) P∗r = max

[
F̄ ′(−1)(−λ/Qr), 0

]
, where F̄ ′(−1) denotes

the inverse function of the derivative of F̄a = F̄(P̃a) expressed as a function of
P̃a, and λ is a positive constant fixed by the normalization

∑
r P
∗
r = 1. Table 4.1

presents results for several representative cost functions.
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A simple scenario occurs when the pathogen population grows exponen-
tially in time, as do the cost and the encounter rate—reflecting the proliferative
nature of pathogens. In this case the cost grows linearly in the number of en-
counters, i.e. F(m) = m (see App. A.3). Then we find that the optimal fraction
of the repertoire taken up by a given receptor is proportional to the square root
of the threat (combination of frequency and virulence) of the corresponding
antigen P∗r ∝

√
Qr. Intuitively, we expect that the optimal repertoire should

focus its resources on receptors recognizing the most common or virulent anti-
gens. However this enhanced protection against frequent or virulent antigens
comes at the cost of a slower response against the uncommon and harmless
antigens, and this bias toward more threatening antigens must remain limited.
The square root dependence reflects a particular trade-off between these two
opposing constraints, by directing more resources toward more threatening
antigens while uniformizing the distribution compared to a linear dependence.
Intriguingly, the same square root dependence has been found as an optimal
solution for the size of tRNA pools as a function of codon usage [144], and in
a model for the screening of suspicious individuals [145].

The extent to which more resources are directed toward more threatening
antigens depends on the relative gains and losses of earlier and later recog-
nition events, which are captured in our model by the effective cost function
F(m). In general, steeper cost functions imply more flattened distributions of
receptors. The cost function F(m) = mα, and its associated optimal distribu-
tion P∗r ∝ Q

1/(1+α)
r , help illustrate this point. Such cost functions can arise

when both m(t) and F(t) increase exponentially as a function of time, but with
different exponents (see App. A.3). When α is large, the cost of non-recognition
increases very quickly with time, calling for an urgent response. Consequently
the optimal immune system tends to cover the space uniformly to get all po-
tential threats, even the unlikely ones, under control. Conversely, when α is
low, the harm caused by pathogens does not explode with time, permitting
the system to recognize the rarer pathogens late, and focus its resources on
the common ones.

In some situations, there may be little or even no difference between a late
response, or no response at all, because the total harm caused by an infection
stabilizes. For example, consider the cost F(m) = 1 − e−βm which saturates
at large effective times. In this case, the optimal solution (Table 4.1) relates
receptor and antigen through a square root as for linear cost, but with a cut-off
at low Qa. This cut-off occurs because there is little benefit to having receptors
recognizing rare or harmless antigens, whose recognition is likely to happen
late, when differences in recognition times do not matter anymore. This result
is consistent with the observation that the immune system may sometimes
ignore infections if the harm they cause is too small, as in e.g. the case of
Simian immunodeficiency virus infection of sooty mangabeys [146].

Real harm may occur only when the effective time m crosses a threshold.
This situation can be modeled by taking F(m) = Θ(m −m0) = 0 for m <

m0, and 1 otherwise. In this case the receptor distribution is organized to
maximize the chance of detection before m0. The optimal repertoire for this
cost (Table 4.1) has no receptors for the least threatening pathogens (cutoff at
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F(m) P∗r A(Ña)

mα CQ
1
1+α
r C ′(Nst/Ña)

1+α

lnm CQr C ′(Nst/Ña)

1− exp (−βm) max{C
√
Qr −β, 0} C ′/(β+ Ña/Nst)

2

Θ(m−m0) max{ln (Qr) /m0 −C, 0} C ′ exp(−m0Ña/Nst)

Table 4.1: The cost function F(m) measures the harm caused to an organism by the time
that immune receptors have had m encounters with a pathogen. The optimal
receptor distribution P∗ is determined by minimizing this cost, given a pathogen
distribution Q, and a cross-reactivity function fr,a specifying the probability that
receptor r binds to antigen a. The second column gives the form of P∗ over
scales larger than the cross-reactivity. The optimal P∗ can be reached as a steady-
state resulting from competitive binding between receptors and antigens (see last
section of Results) quanti�ed by an �availability function� A. Ña =

∑
rNr fr,a

represents the coverage of antigen a by the repertoire, Nst =
∑
rNr is the total

steady state population and C,C ′,β, andm0 are positive constants.

low probabilities) and a drastically flattened receptor distribution (logarithm
of the pathogen distribution).

Is there a cost function for which the receptor distribution is not flattened
relative to the pathogen distribution? This occurs in a special case where cost
increases very slowly (logarithmically) with effective time. However, in general,
cost is minimized by a receptor distribution that is flattened relative to the
pathogen distribution.

4.3.2 Cross-reactivity dramatically reduces diversity in the optimal repertoire

By allowing receptors to bind to a variety of antigens, cross-reactivity should
permit the immune system to reduce the number of receptor types required to
cover the whole range of possible threats. We will show that given sufficient
cross-reactivity, the optimal immune repertoire concentrates all its resources
on a few receptors, which together tile antigenic space.

Following Perelson and Oster [77], we think of receptors and antigens as
points in a common high dimensional shape space, whose coordinates are as-
sociated to unspecified physicochemical properties. For simplicity, we assume
that cross-reactivity only depends on the relative position of receptor and anti-
gen in shape space fr,a = f(r − a), where f is a decreasing function of the
distance between a and r. Short distances in shape space correspond to a good
fit between the two molecules, leading to strong recognition, while large dis-
tances translate into weak interactions and poor recognition.

To build intuition, we first consider an analytically solvable example (Fig. 4.2).
We describe the space of receptors and antigens by a single continuous num-
ber, and assume a Gaussian antigen distribution with variance σ2Q, and Gaus-
sian cross-reactivity of width σ, which sets the typical distance within which
a receptor and antigen interact. We derive the optimal receptor distributions
for costs of the form F(m) = mα (App. A.4.3.2). For narrow cross-reactivities
(σ < σc = σQ

√
1+α), the optimal receptor distribution is Gaussian with
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Figure 4.2: The optimal cost and receptor distributions for protecting against a one-
dimensional Gaussian antigenic landscape Q(a) of variance σ2Q, as a func-
tion of the cross-reactivity width σ. As σ increases, the optimal distribu-
tion P∗(r) becomes narrower and narrower (left and middle insets), until it
concentrates entirely onto a single point, for σ >

√
2σQ (right inset). The

minimal cost (multiplied by σ for a comparison at constant recognition ca-
pability) is constant below the transition point, but increases with σ past
it. The cross-reactivity function, which quantifies the affinity between re-
ceptor r and antigen a as a function of their distance in shape space, has
a Gaussian form: f(r− a) = exp[−(r− a)2/2σ2], and the cost function is
linear in the effective recognition time, F(m) = m.

variance (1+ α)σ2Q − σ2 and the optimal cost is independent of σ. For wide
cross-reactivities (σ > σc), the receptors are optimally of a single type with
reactivity centered on the pathogen distribution, while the optimal normal-
ized cost increases with σ since the receptor is unnecessarily broadly reactive.
These results arise from a tension between two opposing tendencies. As in
the non cross-reactive case, the need to cover rare pathogens broadens the
optimal receptor distribution relative to the pathogen distribution. However,
cross-reactivity has the opposite effect, favoring more concentrated distribu-
tions.

Does cross-reactivity generically drive the optimal receptor distribution to
cluster into peaks? We investigated this question numerically. For concreteness,
we consider a linear cost F(m) = m, and random pathogen environments in
one or two dimensions constructed by drawing each Qa from a log-normal
distribution characterized by a coefficient of variation κ. The shape space is
taken to be bounded and discretized, and we use accelerated gradient projec-
tion optimization (App. A.5). We find that the optimal repertoire P∗ is strongly
peaked on a discrete forest of receptors (Fig. 4.3A,B). The width of these peaks
decreases as numerical precision is increased, suggesting that in a continuous
limit the optimum consists of a weighted sum of Dirac delta functions, i.e.
distinct, discretely spaced receptors in different amounts (Fig. A.1).

By inspection, the peaks tend to repel each other and to organise into lo-
cal tiling patterns, as further evidenced by the damped oscillations in the ra-
dial distribution function [125] (App. A.6 and Fig. A.2A). This exclusion is a
sensible way to distribute resources, as it limits redundant protection against
the same pathogens. The spacing between peaks roughly follows the cross-
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Figure 4.3: Cross-reactivity plays an important role in shaping the optimal repertoire,
often leading to highly peaked repertoires. (A)-(B): The optimal receptor
distribution P∗r . for (A) one- and (B) two-dimensional random environ-
ments. Despite being peaked, the optimal distribution of receptors cov-
ers the antigenic space fairly uniformly, as shown by its coverage by the
receptors, P̃∗a =

∑
r fr,aP

∗
r , shown in the one-dimensional case (A). The

cross-reactivity and cost functions are the same as in Fig. 4.2. The anti-
genic landscape Qa is generated randomly from a log-normal distribution
with coefficient of variation κ = 1.

reactivity scale σ, suggesting that P∗ is smooth when viewed at scales larger
than σ. Confirming this, P̃∗ (i.e. the coverage of the antigenic space by the re-
ceptors) smoothly tracks the variations in the antigen distribution Q at a broad
scale (Fig. 4.3A). When viewed coarsely in this way, cross-reactivity is irrele-
vant and P∗ tends to the solutions of Table 4.1. Indeed, at these broad scales,
the distribution of peaks is uniform, as demonstrated by the very low power
in the spectrum of Pr at small wave vectors (App. A.6 and Fig. A.2B), indi-
cating that the number of receptors contained in any given large area of the
shape space is very reproducible. This phenomenon of small scale randomness
with large-scale regularity is called disordered hyperuniformity [127], and arises
in jammed packings as evidence of the incompressibility of the material. In bi-
ological terms, hyperuniformity means that the distribution of receptor peaks
provides a much more uniform coverage of the antigen space than if the peaks
were positioned randomly according to a Poisson distribution. For our optimal
repertoires small scale fluctuations get smoothed out by cross-reactivity and
can be tolerated, while at large scales the fluctuations track variations in the
antigenic landscape to provide smooth coverage (see Fig. A.3).

To test the generality of our findings we tested other choices of cross-reactivity
functions (App. A.7). We have so far assumed a unique scale σ for cross-
reactivity, consistent with recent reports that cross-reactivity is local in anti-
genic space [147]. However, receptor-antigen recognition can be very specific
and sensitive to single mutations [148, 85], or extremely degenerate across
very dissimilar antigens [149]. To account for these long-range effects, we
also tested fat-tailed cross-reactivity functions. We found that, for a variety of
non-Gaussian cross-reactivity functions, long tailed or not, the optimal reper-
toire remains strongly peaked, although the position, number and strength of
the peaks do change (Fig. A.4). Next, to relax the assumption that the cross-
reactivity width is uniform across receptors, we tested receptor-dependent
cross-reactivities σr drawn from a log-normal distribution. While the regu-
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Figure 4.4: Two individuals in the same environment Qa that see it with slightly dif-
ferent noises have similar coverages of the antigenic space, but achieve it
with different receptors. This results in largely non-overlapping repertoires.
Shown are the overlaps (normalized to be between 0 and 1) between the
experienced pathogen distributions Qa, the resulting optimal receptor dis-
tributions P∗r , and the corresponding coverages P̃a, as a function of the
noise ε with which individuals perceive the environment. The right plots
show an example of antigenic environments and optimal receptor distribu-
tions for ε = 0.2. We calculated the optimal receptor distributions for two
individuals 1 and 2 experiencing respective environments Qez1 and Qez2 ,
where Q is a random environment with fluctuations on scales larger than
the cross-reactivity σ (power spectrum ∝ 1/(1+ (10qσ)2)) normalized so
that its coefficient of variation is 0.5, and z1, z2 are Gaussian noises of mean
zero and variance ε2. The choice of cost and cross-reactivity functions are
the same as in Fig. 4.2.
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larity of the local tiling structure is affected by this additionnal heterogene-
ity (just as we expect in a packing of spheres of variable size) the large-scale
hyperuniformity is nonetheless preserved (see Fig. A.5). Next we considered
distributions of antigens with correlations across shape space (reflecting e.g.
phylogenic correlations between pathogens). Again we find peaked optimal
receptor distributions (Fig. A.6), similar to those for uncorrelated antigen land-
scapes. For computational reasons, we restricted our analysis to two dimen-
sional pathogen landscapes, but the analogy with random packing problems
that we discussed above allows us to expect that all of these results will hold
generally in higher dimensions. Lastly, we incorporated the avoidance of the
self by excluding from the optimization all receptors within distance σ of a
set of randomly positioned self-antigens (App. A.8 and Fig. A.7). We find that
receptors are likely to be found near the boundary of these exclusion zones,
but otherwise keep the same general tiling structure.

In summary, the optimal immune repertoire looks random at scales smaller
than the cross-reactivity, but has the structure of a disordered tiling at larger
scales so that, after accounting for cross-reactivity, the repertoire smoothly cov-
ers the pathogen landscape. These findings have an important consequence for
different individuals exposed to the same pathogenic environment. Each indi-
vidual will experience a slightly different spectrum of antigens because of the
statistics of encounters and other sources of variability. These slightly differ-
ent experiences of the same world lead to optimal repertoires with a striking
property – the receptor distributions are largely different, even though their
coverage of the pathogen landscape is similar after including cross-reactivity
(Fig. 4.4). This finding can be compared with surveys of “public” repertoires
of immune receptors [30, 60].

4.3.3 The optimal repertoire can be reached through competition for antigens

The results presented so far have established how repertoires should be struc-
tured to provide optimal protection. Given the complex interdependences be-
tween receptors arising from local and global trade-offs, one might think that
the globally optimal solution could only be reached via some biologically im-
plausible centralized mechanism distributing resources system-wide. In fact,
we will show that the optimal repertoire can be reached through self-organization,
via competitive evolution of receptor populations under antigen stimulation.

We consider a model that is similar to that introduced by de Boer, Perel-
son and collaborators for competitive dynamics of B and T cells [71, 73] (see
App. A.9). Its main assumptions are that division of receptor-expressing lym-
phocytes is driven by antigen stimulation, and that receptors compete for the
limited supply of antigens. At each time step, a random antigen a is drawn
from the distribution Qa. Each receptor type r responds to it by expand-
ing or shrinking its population Nr according to its specificity, by an amount
Nr∆t[A(

∑
r ′ Nr ′fr ′,a)fr,a − d], where ∆t is the time step: receptors prolifer-

ate upon successful recognition of antigens (first term ) and die with a con-
stant rate d (second term). In the absence of competition, the proliferation rate
should be proportional to fr,a, but the antigen amay also bind other receptors,
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reducing its availability for receptor r. The coverage of antigen a by the reper-
toire, Ña =

∑
rNrfr,a, quantifies the breadth of the receptor pool competing

to bind with a. The availability of antigen a for binding is assumed to be a
decreasing function A(Ña) of its coverage. The stimulation of r by a is thus
modified to A(Ña)fr,a in the equation for the growth rate. In the limit of fast
sampling of antigens, or mean-field limit (∆t→ 0), this stochastic dynamics is
well described by the deterministic differential equations:

dNr
dt

= Nr

[∑
a

QaA

(∑
r ′
Nr ′fr ′,a

)
fr,a − d

]
. (4.2)

For a given pathogenic environment, the total steady-state receptor population
size Nst will be set by the death rate d, which counter-balances growth at
steady state. Although in reality the ability of the system to re-organize itself
diminishes with age, for simplicity we take all rates to be constant.

The stable fixed points of the mean-field dynamics (Eq. 4.2) realize the op-
timal repertoires of the previous sections when the availability function A is
matched to the cost function F(m) through the relation

A
(
Ña
)
= −c ′F̄ ′

(
Ña/Nst

)
, (4.3)

where Nst is the total number of receptors
∑
rNr at steady state. Table 4.1

shows A(Ñ) for several cost functions. To understand this result, first note that
when binding is not cross-reactive the dynamical equations for each receptor
are independent, and read: dNr/dt = Nr(QrA(Nr) − d). The availability func-
tion now depends only on Nr, meaning that receptors only compete with their
own kind — they occupy their own antigenic niche. The steady state size of
clone r is thus set by the carrying capacity of that niche, Nr = A(−1)(d/Qr),
or zero if that capacity is negative. With the availability given by Eq. 4.3, this
reproduces the optimal repertoire. As seen in Table 4.1, fast growing cost func-
tions correspond to very load-sensitive availability functions. In these cases,
rare infections are almost as threatening as frequent ones; therefore the growth
of the receptors that are specific to frequent antigens is actively limited to leave
room for other receptors. The correspondance of Eq. 4.3 holds when recep-
tor binding is cross-reactive (App. A.10). Cross-reactivity leads to competition
amongst receptor types, effectively enforcing an exclusion between similar re-
ceptors. This phenomenon, known in ecology as competitive exclusion, is im-
portant for lymphocyte dynamics [71], and provides the mechanism by which
our dynamical model reproduces the discrete clustering found in the optimal
receptor distribution.

To check that the dynamics do converge to the optimum, we simulated nu-
merically the full stochastic dynamics, as well as their mean-field limit (Eq. 4.2),
for a random antigenic environment in two dimensions, with A(Ñ) = 1/(1+

Ñ/N0)
2. Fig. 4.5 shows the dynamics of the receptor distribution Pr(t) =

Nr(t)/
∑
r ′ Nr ′(t), as well as its cost relative to the optimal solution, as a func-

tion of time. Starting from a random distribution of receptors, the repertoire
reorganizes into localized peaks that become increasingly prominent and well-
separated with time. Three independent runs of the stochastic simulation all
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Figure 4.5: The immune repertoire can self-organize to a state that minimizes cost and
provides protection against infections via competitive evolution of receptor
populations stimulated by antigens. Numerical simulations of the popula-
tion dynamics, as well as its mean-field limit (Eq. 4.2), show how competi-
tion causes a random initial receptor distribution to fragment into a highly
peaked pattern (insets representing Pr(t) = Nr(t)/

∑
r ′ Nr ′(t)). The top-

right inset represents the antigenic environment Qa driving the dynamics
(generated from a lognormal noise of power spectrum ∝ 1/(1 + (5q)2)
and coefficient of variation 1). Departure from optimality, as measured by
the relative cost gap [〈F〉 (Pr(t)) − 〈F〉 (P∗r)]/ 〈F〉 (P∗r), decreases with time
and eventually reaches zero in the mean-field limit. The three indepen-
dent runs of the stochastic dynamics show reproducible results. We use
the availability function A(Ñ) = 1/(1+ Ñ/N0)

2 with N0 = 106, a death
rate d = 0.001 and a cost function F(m) = 1 − e−βm with β = 1/110.
The space size is 10σ. The initial condition was drawn from a lognormal
noise of power spectrum ∝ 1/(1 + (5q)2), with coefficient of variation 2
and

∑
rNr(0) = 1.1 · 108. In the stochastic simulations, the time between

antigen presentations is ∆t = 0.005d−1 (200 infections per cell lifetime).

converge approximately to the global minimum of the cost, with most of the
improvement achieved within a few cell lifetimes. Convergence is exact in the
mean-field limit, indicating that the steady-state solution is indeed optimal.

In summary, competitive dynamics can allow the immune repertoire to self-
organize into a state that confers high protection against infections. In the
special case when the availability A is scale invariant, the expected cost is a
Lyapunov function of the dynamics (App. A.11), implying that the optimum
is reached regardless of the initial condition. Note, however, that the dynamics
of Eq. 4.2 is expected to slow down with age, as the plasticity of the adaptive
system decreases due to the diminishing number of naive cells [150].

4.4 discussion

We introduced a general framework for predicting the optimal composition
of the immune repertoire to minimize the cost of infections contracted from
a given distribution of antigens. This framework can be extended in several
ways to be more biologically faithful, e.g. by accounting for antigen-dependent
infection dynamics, and evolution of the pathogenic landscape. Our predic-
tions can be tested in experiments that study how the environment influences
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the composition of immune repertoires, either via high-throughput sequencing
surveys of receptor populations [151, 60], or by sequencing receptors specific
to given antigens [40]. The comparison between theory and experiment will
provide insight into the functional constraints of antigen recognition by the
immune system.

There are many situations where living systems must respond to very di-
verse and often very high dimensional spaces of external influences using
strictly limited resources. To sense, internally represent, and then respond to
these influences, organisms often employ a large diversity of components, such
as cell types or genes [152], each sensitive to a small part of the space. For ex-
ample, the retina supports a diverse population of ganglion cell types, each
sensitive to a different visual feature, that collectively represent the behav-
iorally salient aspects of visual scenes [153]. Likewise, the mammalian olfac-
tory system contains some ∼1000 distinct receptors that each bind widely to
odorants, and collectively cover olfactory space [154]. In these cases, the lim-
ited repertoire of component types provides a key constraint on information
processing. Faced with such constraints, living systems must commit resources
wisely, adapting to the structure of the environment, and balancing breadth of
coverage against depth of resolution, in light of priorities, costs and constraints
[155]. We have shown that these elements also shape the optimal form of the
immune repertoire.

Our finding that cross-reactivity causes the optimal repertoire to fragment
is related to the concept of limiting similarity due to competitive exclusion in
ecological settings [156]. In this context, empty regions of phenotypic space re-
sult when competition is important on the scale at which resources vary, and
continuous coexistence of species only occurs in exceptional cases [157]. In gen-
eral, niche-space heterogeneity promotes species clustering [158], recalling our
finding that any heterogeneous antigen distribution leads to fragmentation of
the optimal repertoire. The conceptual connection between the immune reper-
toire and ecological organization is even clearer in our dynamical model where
species compete for an array of resources (the antigens), and grow in relation
to their success in securing resources.

Although this study relies on a simple abstraction of the adaptive immune
system, we expect that our framework and results will extend to other dis-
tributed protection systems where diverse threats are addressed by an array
of specific responses. For example, the immune system of bacteria, or CRISPR
system [7], for which population dynamics models have already been pro-
posed [159], could be studied within a similar framework to predict the rela-
tive abundance of CRISPR spacers and corresponding viruses in a co-evolving
population of bacteria and viruses.
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5
H O W A W E L L - A D A P T I N G I M M U N E S Y S T E M R E M E M B E R S

This chapter is currently being prepared for publication.

5.1 introduction

A defining feature of the adaptive immune system is its ability to learn from
pathogen exposure by building immunological memory [22, 81, 160, 51, 79, 35].
The importance of such memory is shown for example by the much higher rate
with which newborns contract infectious disease before having developed suf-
ficient immunological memory. Clinically, immunological memory forms the
basis of vaccination: exposure to attenuated pathogens or pathogen-derived
antigens builds memory which then protects against the disease.

The cells of the adaptive immune system (B and T lymphocytes) detect path-
ogen by specific binding of receptor proteins expressed on their surface to
pathogen markers (antigens). To fight off pathogens immune cells with the re-
quired specificity proliferate massively during an infection. After an infection
most of these cells die and the number of specific cells drops again, although it
remains much higher than before the infection [42]. This increased number of
specific cells after an infection is the basis of memory in the adaptive immune
system. Despite the relatively short life span of memory cells [161], constant
balanced turnover allows the elevated levels of protection to remain relatively
stable for decades after the infection in the absence of persistent antigens [162].
Memory helps the organism defend against recurring threats, but needs to be
balanced against broad protection from yet unseen threats. Furthermore spe-
cific memory might lose its usefulness over time as pathogens evolve away
from being detected.

How much benefit can immunological memory provide to the organism?
How much memory should be kept to minimize harm from infections? To
answer these questions we extend a framework for predicting optimal reper-
toires for given pathogen statistics [138] by explicitly considering the optimal
inference of pathogen frequencies as a sequential Bayesian forecasting prob-
lem [119]. We derive the optimal repertoire dynamics in a temporally vary-
ing environment and analyze its features. We show how biologically realistic
population dynamics can approximate the optimal repertoire dynamics. Fur-
thermore we analyze the conditions under which memory provides a bene-
fit. Comparing the predictions of our theory to signatures observed in real
immune systems, strongly argues for a view in which the adaptive immune
system is trying to learn a highly sparse distribution of antigens.

Our work provides a novel perspective on immunological memory from
a Bayesian viewpoint. Bayesian decision theory has been a useful theoretical
framework in other areas of biology from cellular sensing and response [163,
164, 165, 166] to neuroscience [167, 17, 168, 169]. A Bayesian view of adaptive
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Figure 5.1: Schematic of a model of repertoire dynamics in a changing antigenic envi-
ronment. An organism encounters antigens at time points {ti} according to
a Poisson process with rate λ . The probability of encountering antigen a at
time t depends on the antigen environment at that time Qa(t). Encounters
come at a cost that depends on the fraction Pa of the repertoire specific
to the antigen. The repertoire of receptor specificities changes over time as
the immune systems deals with encountered antigens. In this paper, we
ask what is the optimal repertoire dynamics to minimize expected harm
from infections.

immunity might similarly be useful to think about the dynamics of immune
repertoires. Concretely, we show how this view links the amount of memory
production to the variability of pathogenic environments and derive a num-
ber of further testable predictions about dynamical features of well-adapting
repertoires.

5.2 definition of the problem

5.2.1 Pathogen encounters in a changing environment

In our model the adaptive immune system encounters antigens following a
Poisson process with rate λ (Fig. 5.1). There are K different antigens a =

1, 2...,K against which the immune system provides protection through lym-
phocytes with a cognate receptor. An encounter at time t happens with a prob-
ability Qa(t) with an antigen a, which is equal to its relative frequency in the
pathogenic environment at that time point. We denote the vector of antigen
frequencies by Q = (Q1, ...,QK). Here and in the following we denote vectors
by bold symbols. How much harm the infection does depends on what frac-
tion Pa(t) of the repertoire is specific to antigen a. The repertoire composition
is described by the vector of receptor frequencies P = (P1, ...PK). Given the his-
tory of the antigens a1,a2, ...,an encountered at times t1 < t2 < ... < tn < t,
we ask how to optimally choose P(t) to minimize harm from infections. The
question of which repertoire dynamics a well-adapting immune system should
use, is the question of how the past experience should best be used to prepare
for future infections.

We consider that the pathogenic environment follows a stochastic dynamics,
which we write generically as a Fokker-Planck equation for the conditional
probability distribution ρ(Q, t)

∂ρ(Q, t)
∂t

= Aρ(Q, t), (5.1)
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where A is a differential operator pertaining to the dynamics.
For concreteness, we consider the stochastic dynamics of pathogen frequen-

cies in a finite population that changes due to immigration from an exter-
nal reservoir with scaled rates θ0 and genetic drift, which using a diffusion-
approximation leads to (see Sec. 3.3.1)

τ
∂ρ(Q, t)
∂t

= −
1

2

K−1∑
a=1

∂

∂Qa

[
(θ0a − |θ0|Qa)ρ(Q, t)

]
+
1

2

K−1∑
a,b=1

∂2

∂Qa∂Qb
[Qa(δa,b −Qb)ρ(Q, t)] ,

(5.2)

where τ sets the time scale of the pathogen dynamics, θ0 is a K-length vector,
and δa,b is the Kronecker delta, which is 1 if a = b and 0 otherwise. Here
and in the following we denote the norm of a vector x by |x| =

∑
i xi. This

dynamics while clearly simplified reproduces some of the main features of
real pathogen environments (Fig. B.2). First, at a fixed point in time different
pathogens are present but with large differences in their relative frequencies.
Second, the dominant pathogens change over time, such as is the case for e.g.
the flu where the dominant strain changes every few years.

5.2.2 Minimizing the cost of infection

As the immune system encounters pathogens the immune repertoire – in a
statistical language – samples the pathogen distribution. From these samples
it can learn something about the pathogen distribution to inform its repertoire
choice. For tractability, we consider a limit in which repertoire changes in re-
sponse to infections are fast compared to the time between infections and, in
which costs of repertoire remodelling are secondary to the costs of immune
defense. At every point in time the optimal repertoire is then chosen indepen-
dently based on the current knowledge about the pathogen environment. We
have thus split the problem of the optimal repertoire dynamics into two: how
to allocate resources, and how to infer pathogen frequencies.

The choice of the repertoire P is determined by the mean cost of the next
infection c(Q,P) given the pathogen frequenciesQ. We summarize the knowl-
edge the immune system has at time t about the pathogen frequencies by a
belief distribution B(Q, t), which gives the subjective probabilities that the en-
vironment is Q. According to Bayesian decision theory the optimal repertoire
P? should then minimize the expected cost

P?(t) = argmin
P

〈c(Q,P)〉B(Q,t), (5.3)

where the average is over the belief distribution.
The cost of an infection depends on how well an organism is protected

against a particular pathogen: the larger the number of lymphocytes in the
repertoire specific to the pathogen, the lower is the infection cost on average.
The immune system samples the antigen at random until a cell with the cog-
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nate receptor recognizes the pathogen and declenches the immune reaction.
The cost of infection depends on the time to recognition. Given a function
Fa(m) defining how quickly an infection with pathogen a becomes more harm-
ful with the effective time to its recognition, we can derive the mean cost of an
infection, F̄a, which is a decreasing function of the fraction Pa of cells in the
repertoire specific to that pathogen (see Chapter 4). To obtain the mean cost of
the next infection we need to average over the probabilities Q of encountering
different pathogens,

c(Q,P) =
∑
a

QaF̄a(Pa). (5.4)

The expected cost of the next infection for a repertoire P averaged over the
belief distribution thus reduces to

〈c(Q,P)〉B(Q,t) = c(Q̂(t),P), (5.5)

where Q̂(t) = 〈Q〉B(Q,t). Eq. 5.5 reduces the choice of an optimal repertoire
given a belief distribution (Eq. 5.3) to the choice of an repertoire in a fixed
distribution with the estimated frequencies Q̂(t). The latter problem has a
unique solution as shown in Chapter 4, so knowing Q̂(t) gives us the optimal
repertoire P?(t)

P?(t) = G(Q̂(t)), (5.6)

where the function G depends on the scaling of costs with effective time Fa(m)

(Ch. 4).

5.3 results

5.3.1 Optimal repertoire dynamics

We consider here how to optimally learn the pathogen frequencies from past
encounters assuming the immune system knows A, i.e. the dynamics the path-
ogen frequencies follow.

To infer the pathogen frequencies in a Bayesian manner the immune system
starts from a prior belief B(Q, 0) about the probability of having a particular
set of pathogen frequenciesQ, which should be equal to the steady-state distri-
bution of the dynamics. The belief is continously updated as time goes on and
pathogens are encountered. The problem is a sequential Bayesian prediction
problem [119], which can be decomposed into prediction steps that propagate
the belief forward in time according to the dynamical model of pathogen dy-
namics, and into update steps that incorporate the new evidence from patho-
gen encounters (Fig. 5.2. The prediction steps uses the Fokker-Planck operator
of the environmental dynamics A to project the belief B(Q, t) forwards in time

dB(Q, t)
dt

= AB(Q, t). (5.7)
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Figure 5.2: Sketch of an optimal repertoire dynamics in a changing antigenic environ-
ment. Upon encounters the expected frequency of the pathogen increases
and thus the coverage (red line) in the optimal repertoire goes up. This in-
crease in coverage can be biologically interpreted as memory produced by
a proliferation of the specific lymphocytes. In the absence encounters the
belief relaxes back to steady-state, which corresponds to a decay in mem-
ory. The decay of memory can arise from memory cells having a higher
death than homeostatic proliferation rate.

The update step combines the Likelihood Qa of observing the sampled patho-
gen a given a pathogen distribution Q with the prior belief about the distribu-
tion of pathogens B(Q, t−) before the eencounter to calculate the belief after
the encounter B(Q, t+),

B(Q, t+) = QaB(Q, t−)/Z (5.8)

where Z =
∫

dQ QaB(Q, t−).
The update step asks for a higher protection against the pathogen that was

just encountered. Such a higher protection can be achieved by proliferating the
immune cells specific to the pathogen and keeping some of these proliferated
cells around after the infection, which is the basis of immunological memory
in the adaptive immune system. The repertoire changes during the prediction
step depend on the pathogen dynamics A. The dynamics in Eq. 5.2 is mean-
reverting so the protection should decay back to a broad steady-state in the
absence of restimulation. This can be achieved by having memory of a finite
lifetime, which is a feature of immunological memory. A dynamics close to the
optimal Bayesian repertoire dynamics can hence conceivably be implemented
using biologically plausible mechanisms (Fig. 5.2).

5.3.2 Quasi-static limit

To start we derive the dynamics of the belief in the quasi-static limit, where
the sampling is fast compared to the relaxation time scale of the environmental
dynamics. In this case, the changes in the prediction phase can be neglected,
dB(Q,t)

dt ≈ 0, and the inference reduces to the iterative application of Eq. 5.8.
The steady-state distribution of the pathogen dynamics (Eq. 5.2) is a Dirich-

let distribution with the parameter vector θ0 [170]. The Dirichlet distribution
is a distribution over probability distributions x. It is parametrized by a param-
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eter vector θ of the same dimensionality as x, and has the probability density
ρ(x)

1

Z(θ)

∏
i

xθi−1i , (5.9)

where the normalizing constant is the multivariate Beta function, which can
be defined in terms of Gamma functions as Z(θ) =

∏
i Γ(θi)/Γ(|θ|).

Starting from an initial belief B(Q, 0) about pathogen frequencies equal to
the steady-state Dirichlet distribution the belief after the first pathogen en-
counter is

B(Q, t+1 ) =
∏
a

Q
θ0a+δa,a1−1
a /Z, (5.10)

which is a Dirichlet distribution with parameters θ,

θa = θ0a + δa,a1 , (5.11)

The update of the belief distribution corresponds to updating the parameters
of the Dirichlet distribution. This feature of the model makes the updating
fully analytically tractable. In the language of Bayesian statistics it stems from
the fact that the Dirichlet distribution, which is the steady-state distribution
of the pathogen dynamics, is a conjugate prior distribution to the categorical
Likelihood function of getting infected by a particular pathogen [171].

By the iterative application of Eq.5.11 we obtain the belief distribution after
the nth pathogen encounter as the Dirichlet distribution with parameters

θ(t) = θ0 +n(t), (5.12)

where na(t) =
∑n
i=1 δa,ai counts the number of times the immune system

has encountered pathogen a up to time tn. As θ is a sum of counts and the
prior parameters, the elements of θ0 are often called pseudocounts. To turn
this update of beliefs into the optimal repertoire dynamics we use Eq. 5.6 and
the formula

Q̂ = θ/|θ| (5.13)

for the mean of the Dirichlet distribution.
How much can the immune system lower the cost of protection by remem-

bering the past? Here we answer the question within the quasistatic limit and
show that the benefit of memory depends on the sampling rate and the spar-
sity of the environment (Fig. 5.3).

To do so we numerically simulate the optimal repertoire dynamics for path-
ogen distributions Q drawn from a symmetric Dirichlet distribution defined
by a parameter vector θ0 of all θ0. We consider environments with different
degrees of variability by varying θ0 (Fig. 5.3A-C). For small θ0 the antigenic
environment is effectively sparse with a small number of antigens predominat-
ing. We vary θ0 and the dimensionality of the antigenic space K and calculate
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Figure 5.3: Advantage of immunological memory depends on sufficient sampling. (A)-
(C): Distributions of K pathogens drawn from symmetric Dirichlet distribu-
tions (θ0 = (θ0, θ0..., θ0)), where θ0 controls the variability in frequencies.
(D,E): The cumulative cost of infections C using optimal Bayesian reper-
toire dynamics depends on time t, pathogen encounter rate λ, and features
of pathogen distribution K, θ0. (D) Cumulative cost normalized by the
baseline cost for a uniform repertoire as a function of the number of sam-
ples per dimension λt/K. (E) Relative cost gap as a function of number of
samples per reduced dimension λt/Kθ0. Parameters: Cost is measured as
time to recognition, Fa(m) = m.

the cumulative cost C =
∑j
i F̄ai(P

?
ai
(t−i )) of all infections up to a time t (sum

up to largest j for which tj < t). To reduce variance in this cost we average
over independent simulations.

The benefit of immunological memory relative to the baseline infection cost
of C0 for a uniform repertoire increases with the parameter θ0 (Fig. 5.3D),
i.e. memory pays off more if pathogenic frequencies are more variable. For
θ0 � 1 memory already provides a benefit even if the number of samples
(= pathogen encounter) is small compared to the dimensionality K of the
distribution to be learned, this is for λt/K < 1 We define the relative cost
gap as (C−C∞)/(C0 −C∞), where C0 is the cumulative cost for the uniform
repertoire and C∞ the cumulative cost for the optimal repertoire for precisely
known Q. The numerical results suggests that this relative cost gap scales as
a function of the sampling of the relevant pathogens λt/Kθ0 for large enough
K and short lifetimes (Fig. 5.3E). The more sparse environments are (= the
smaller θ0) the less pathogen encounters are needed for immunological mem-
ory to be beneficial.

If the immune system does not know precisely the variability of antigen
frequencies, i.e. when it assumes a wrong θ0, this leads to a suboptimal per-
formance (Fig. 5.4B). Even with a misspecified prior immunological memory
still reduces infection costs with better sampling (Fig. 5.4A). In fact, in the
limit of high sampling the prior does not matter and the repertoire eventually
converges to the correct distribution. The biggest difference is observed at in-
termediate sampling λt/K ∼ 1 where a misspecification of θ0 by a factor of ten
leads to an about 30% higher cost (Fig. 5.4C). This demonstrates a remarkable
robustness of immunological memory to misspecified priors of the variability
of the pathogen distribution.
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in protection ∆P?a(n) relative to change for first encounter ∆P?a(1) for linear
cost function in the quasistatic limit.
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How does the optimal level of protection against a particular pathogen
change upon encounters? We analyze this question by showing how the differ-
ential change in protection against pathogen a, ∆P?a(n), upon the nth encounter
depends on the variability of the pathogen distribution and the scaling of infec-
tion cost with effective time. We find that the more variable pathogen distribu-
tions are the more memory should be retained of infections (Fig. 5.5). To gain
intuition consider the simple (biologically unrealistic case) that cost increases
logarithmically with time to recognition, then the resource allocation is pro-
portional, P? = Q̂ [138]. The change of protection relative to the background
level P?a(0) = θ0a/|θ

0| is

∆P?a(1)/P
?
a(0) = 1/θ

0
a, (5.14)

i.e. the memory production is inversely proportional to θ0a. The smaller the
elements of θ0 are the quicker the repertoire adjusts.

We can use this relationship to estimate the parameter regime in which the
adaptive immune system functions. To explain a large memory production
upon infections, we can read off from Fig. 5.5 that the relevant antigens need
to be highly sparse in the overall antigen space: assuming a 100-fold increase
in protection [42] and a linear cost function leads to θ0 ∼ 10−4.

The theory also makes predictions about how much memory to produce
upon secondary infection. There are two effects. First, the nth reinfection with
the same pathogen starts from a higher baseline θ0 + n − 1, which for sub-
linear G leads to smaller relative updates for reinfections (Fig. 5.5B). Second,
the increase of the normalizing factor |θ(t)| with time, which after the law
of large numbers grows as |θ0| + λt, becomes noticeable after long times. A
unit increase of θa (Eq. 5.11) leads to a smaller increase in expected pathogen
frequency (Eq. 5.13).

We still miss an estimate of K. There is a large number of potential anti-
gens and receptors, but due to cross-reactivity not all of them are independent.
We can think of an abstract recognition space as a high-dimensional space,
where receptors are points surrounded by their recognition (cross-reactivity)
balls [77]. Antigens are then scattered in this space and will be recognized
by a receptor if they fall within its balls’ radius. We choose an effective num-
ber of categories K that lumps together those antigens that are recognized by
the same receptors. Given the probability p that a randomly chosen receptor
recognizes a given antigen, we can estimate an effective dimension K ∼ 1/p.

In the literature estimates of the precursor frequencies for common viruses
of the order ∼ 10−5 have been reported [50]. Given that this includes the
response to several antigens p should be somewhat smaller so we assume p ∼

10−6. The optimal repertoire dynamics with these parameters can reproduce
the observed rapid drop in infection susceptibility at young age assuming a
biologically reasonable encounter rate λ (Fig. 5.6). Interestingly the optimal
dynamics then also roughly reproduces the time-course of the fraction of cells
that are memory of previous infections observed experimentally (see Fig. 2.1).
In particular the saturation of memory production upon reinfections leads to
a slowing down of the memory compartment growth with age.
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Figure 5.6: Memory cell frequency and infection susceptibility in young age with a
repertoire following optimal Bayesian dynamics in a static environment.
Parameters where chosen, such that the percentage of the overall repertoire
taken up by memory cells and the infection susceptibility follow similar
time courses as observed in humans (see Fig. 2.1). Pathogen susceptibility
is assumed to be proportional to expected time to first recognition given
the repertoire. Parameter: encounter rate λ = 2000/year, antigen space
dimensionality K = 106, antigen variability θ0 = 10−4.

5.3.3 Dynamic case

Let us now consider the more general case where the prediction phase does
matter. As it turns out this problem is still analytically tractable as the eigen-
functions of the backward operator corresponding to Eq. 5.2 are known [172,
108, 173, 174, 175]. For simplicity we consider the case K = 2 here. This is with-
out loss of generality as the K− 1 dimensional dynamics is nested within the
K dimensional dynamics: the diffusion between K pathogens can be broken
down to the diffusion between one pathogen and the other K− 1 pathogens as
immigration is independent of the population composition.

Specializing Eq. 5.2 to K = 2 gives

τ∂tρ =
1

2
(β∂q(ρq) −α∂q(ρ(1− q))) +

1

2
∂2q(ρq(1− q)), (5.15)

where q is the probability of the chosen pathogen. (To map to the symmetric
K pathogen case consider α = θ0, β = (K− 1)θ0.) The steady-state distribution
specializes from the Dirichlet distribution to the Beta distribution

ρs(q) = q
α−1(1− q)β−1/Z, (5.16)

where Z = B(α,β) = Γ(α)Γ(β)/Γ(α+β) is the Beta function.
Using the known eigenfunction of the backward operator corresponding to

Eq. 5.15 [174] its general solution can be written as (see App. B.2)

ρ(q, t) = ρs(q)

(
1+

∞∑
n=1

dn(t)Fn(q)

)
, (5.17)
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Figure 5.7: Dynamics of the belief distribution in a variable environment. After the
pathogen encounter at time 0 it is more likely that the pathogen is currently
at high frequency but as time passes the belief distribution relaxes back
to its steady state value. The heatmap shows the belief distribution as a
function of time, the black line its mean. Parameters: scaled immigration
rates θ0 = 0.1.

in terms of coefficients dn, with eigenfunctions Fn(q), which are modified
Jacobi polynomials (defined in App. B.2). The coefficients follow a simple ex-
ponential decay

ddn(t)
dt

= −λn, (5.18)

with eigenvalues λn of which we give the first two,

λ1 = (α+β)/2τ, (5.19)

λ2 = (1+α+β)/τ. (5.20)

The Bayesian procedures (Eq. 5.8,5.7) are analytically tractable in terms of
the coefficients dn (for a derivation see App. B.2). In short, the update uses
that the Fn are related by a recursion formula (Eq. B.14), which leads to

dn(t
+) = χ−ndn−1(t

−) + χ0ndn(t
−) + χ+ndn+1(t

−), (5.21)

where χ−n ,χ0n,χ+n are constants (defined in App. B.2) that depend on which
pathogen was encountered. The prediction phase following the ith pathogen
encounters changes the coefficients according to Eq. 5.18 starting from the
initial condition dn(t

+
i ). In combination with the formula for the expected

frequency (App. B.2) this yields an analytical procedure for how to optimally
estimate the pathogen frequency,

q̂(t) = α/(α+β) (1+ d1(t)β/(α+β+ 1)) . (5.22)

Eq. 5.22 shows that the mean belief decays back to steady-state with simple
exponential decay with time constant τc = 1/λ1 = 2τ/(α+ β). This leads to a
similar relaxation of the optimal repertoire with the same characteristic time
scale.

For illustration we apply the formalism to an example with K = 2 and thus
α = β =: θ0 (Fig. 5.7). Before any encounters the belief distribution is equal
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to the steady-state distribution and thus in the eigendecomposition Eq. 5.17

none of the higher terms are present, dn = 0 for n > 1. The first encounter
with antigen by Eq. 5.21 leads to a non-zero value for the first eigenfunction,
d+1 = 1

θ . In the following the estimated frequency decays back to steady-state
according to 〈q〉(t) =

(
1+ e−t/τc/(2θ+ 1)

)
/2 as shown by the black line in

Fig. 5.7. Following Eq. 5.21 the second encounter with a pathogen leads to be-
lief distribution that also has a non-zero weight for the second eigenfunction,
d+2 6= 0, as long as d1 has not completely decayed back to zero. This contin-
ues with every encounter, which leads to increasingly higher eigenfunctions
arising in the decomposition of the belief distribution.

Let us now consider which mechanisms could allow the adaptive immune
system to follow the optimal dynamics in varying environments. Concretely,
we ask whether the information encoded in the repertoire composition is suf-
ficient to keep the relevant memory of past infections. We consider the case in
which the optimal repertoire P? uniquely determines Q̂. The dynamics of the
mean belief generally depends on the full belief distribution and not just on
the mean itself. As the repertoire encodes only the mean, we investigate when
the equations for the dynamics of the mean can be closed. For the specific path-
ogen dynamics we consider in this paper the dynamics of the mean during the
prediction step is in fact independent of higher-order moments (Eq. 5.22). The
update step, however is generally not fully determined by the mean prior be-
lief (Eq. 5.21): the mean frequency depends on the first coefficient d1 (Eq. 5.22)
only, but the recursion for the first coefficient depends also on the second co-
efficient d2. In the quasi-static environments discussed earlier d2 has a fixed
relationship to d1, which explains why the equations were closed. Another
limit in which memory production only depends on the mean prior belief is,
when pathogen sampling rates are much smaller than the decay constant of the
second eigenfunction λ2 (λτ � 1+ α+ β), so that the second coefficient is ap-
proximately zero, d2 ≈ 0. Outside of these two limits the immune system can
either employ additional memory mechanisms or use an only approximately
optimal dynamics.

5.4 discussion

In this chapter we have developed a Bayesian perspective on immunological
memory. We have shown that the optimal repertoire dynamics arising from
such a view can be well-approximated by biologically realistic population dy-
namics of lymphocyte clones. The optimal repertoire dynamics has a number
of interesting features with links to observed properties of adaptive immunity.
We have shown that the optimal dynamics strongly limits proliferation upon
recurrent infections. Mechanisms to achieve such a limitation might explain
the observed difficulty to generate big memory responses for booster vaccina-
tions. We also demonstrated the need to forget previous infections over time
while going back to a broad steady-state. One way to implement such a dy-
namics is to have an independently limited pools of cells for memory, which
might explain the existence of distinct memory and naive cells in the adaptive
immune system.
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Our results show that the benefit of immunological memory depends cru-
cially on the variability of the antigen distribution. For more variable distribu-
tions perfect adaptation provides more benefit. Furthermore for highly vari-
able distributions memory already provides a benefit in the undersampled
limit where the number of encountered pathogens λt is small compared to the
dimensionality K of the distribution. On a theoretical level, given the approxi-
mate sparsity of the Dirichlet distribution (Fig. 5.3C) for small θ0 there might
be an interesting connection with the literature on compressed sensing [176]
that merits further exploration. Biologically, our results imply that memory
can provide little benefit against viruses such as HIV which show a broad dis-
tribution compared to viruses which are in the low mutation limit and behave
as a quasispecies. The large increase in specific protection upon primary infec-
tion also hints at a highly sparse pathogen distribution. The relatively small
number of important regions of antigenic space might also explain how the im-
mune system can learn relevant features of the antigenic space quickly enough
to explain the observed rapid drop in infection susceptibility of children in the
first years of their life.

The environmental dynamics is simple enough to be tractable and allows
for analytical insight, but clearly the real dynamics is more complicated. An
interesting direction for further work is to consider more realistic dynamics.
A particularly interesting direction is to explicitly incorporate the mutational
dynamics of pathogens in antigenic space.

A similar analysis of the benefits of memory might be used to get a deeper
understanding of the evolutionary purpose of memory in innate immunity,
which has been a focus of much recent work [8].
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Part III

A D A P T I V E S T R AT E G I E S I N F L U C T U AT I N G
E N V I R O N M E N T S

In this part of the thesis we ask which adaptive strategies optimize
long-term growth rate in fluctuating environments. The first chap-
ter investigates with which immune strategy a population can best
defend itself against changing pathogens. In the second more tech-
nical chapter we show graphically and analytically how the best
evolutionary strategy in a fluctuating environment depends on the
fitness landscape and environmental statistics.

Note that there are some changes in notations between the two
chapters (notably πenv → p, τenv → tc).





6
I M M U N E S T R AT E G I E S A G A I N S T C H A N G I N G
PAT H O G E N S

This chapter was previously published in Ref. [139].

6.1 introduction

Immune systems have evolved to protect organisms against large and un-
predictable pathogenic environments. Yet immunity always comes at a cost
(metabolic and maintenance costs, auto-immune disorders, etc. [177]), and this
cost must be balanced by the benefits that protection confers [178, 179]. Faced
with the problem of evolving a suitable defense, different organisms, from ar-
chaea to humans, have developed different strategies to identify and target
pathogens, which have given rise to a diversity of mechanisms of immunity.

A large effort has been made to elucidate these mechanisms down to their
molecular details in a variety of species [22, 180, 181, 182, 64, 7]. Beyond many
differences, these studies have revealed many commonalities [6, 183], which
hint at a possible general understanding of the trade-offs that shape their de-
sign [178, 177]. For instance, independently of the well-known adaptive im-
mune systems of jawed vertebrates, jawless vertebrates (e.g. lampreys) have
developed an alternative adaptive system that uses a distinct molecular family
of receptors, but both systems function largely in the same way, relying on the
generation of a large number of diverse receptors expressed by two types of
lymphocytes (B or T-like cells). Likewise, the innate immune systems of inver-
tebrates and vertebrates, share many similarities, relying on the selected ex-
pression of germline Toll-like receptors upon infection. Some of the features of
vertebrate immunity are even shared with bacteria, who have developed their
own targeted immunity based on the CRISPR/Cas system [184, 7], which itself
bears strong resemblance with genome protection through interfering RNAs
in eukaryotes [185].

Independently of how they evolved and their particular molecular imple-
mentation, we may classify these diverse mechanisms into a few broad modes
of immunity: heritable but not adaptable within an individual’s lifetime, as
innate immune systems; heritable and adaptable within a lifetime but with
the benefits of adaptation being non heritable, as adaptive immune systems;
acquired from the environment and heritable, as the CRISPR/Cas system; and
mixed strategies combining several of these elements. These broad distinctions
call for general principles to characterize the conditions under which one or
another mode of immunity may be expected to evolve [6, 183, 177]. The diver-
sity and variability of threats from the pathogenic environment suggests that
different modes of immunity may offer better protection depending on the
patterns of occurrence and virulence of pathogens, or the effective population
size of the protected population. Here we apply a general theoretical frame-
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work for analyzing populations in a varying environment [186] to predict the
emergence of the basic forms of observed immunity.

6.2 model

Individuals reproduce in the presence of pathogens, which randomly appear,
may persist for several generations and disappear before possibly reappear-
ing at a latter time (Fig. 6.1A). In our framework, a given pathogen has a
probability α to appear and a probability β to disappear from one genera-
tion to the next (Fig. 6.1B). The pathogenic dynamics is quantified both by
the pathogen frequency πenv = α/(α+ β), which is the probability that it is
present at any given generation, and by the characteristic timescale τenv =

−1/ ln(1 − α− β), which sets how fast pathogens appear and disappear. Al-
though other parametrizations may be considered, this choice for τenv pre-
serves the symmetry between the presence and absence of the pathogen (Ap-
pendix C.1).

Pathogens reduce the fitness of the individuals in the population and the im-
mune system is designed to mitigate this effect. An individual’s fecundity, de-
fined as its expected number of descendants in the next generation ξ̄, depends
on the pathogenic environment and its ability to protect itself against it. Each
pathogen independently lowers the fecundity of an unprotected individual by
a relatively large cost factor cinfected > 0 (Fig. 6.1D). This cost is reduced to a
lower cost cdefense < cinfected when the individual is protected by its immune
system, however this protection comes at a basal cost cconstitutive < cdefense of
maintaining the immune defense in absence of the pathogen (Fig. 6.1E).

We explore the choices and tradeoffs underlying various modes of immu-
nity along three axes: adaptability, heritability, and mode of acquisition. The
first, adaptability axis concerns how much resources are invested in the protec-
tion for the return of an efficient response. This tradeoff imposes a relationship
between cdefense and cconstitutive (Fig. 6.1E): the more effective the defense (the
lower cdefense), the higher maintenance cost (the higher cconstitutive). For exam-
ple, having a large number of immune cells specialized against a specific path-
ogen allows for a quick and efficient response in case of invasion, but this en-
hanced protection comes at the cost of producing and maintaining these cells
in the absence of the pathogen. This strategy is adopted, for example, by much
of the innate immune systems of plants and animals [22]. On the contrary, the
adaptive immune system keeps a very small specialized pool of lymphocytes
for each potential antigen, and makes them proliferate only in case of infection
[6]. Having the machinery of adaptive immunity comes at some upfront invest-
ment cost, but the huge diversity of adaptive immune repertoires then allows
for a response against many pathogens at essentially no marginal constitutive
cost. It is this marginal constitutive cost that determines when to use a mode of
defense once an organism has the machinery (Appendix C.4). We assume that
the cost of defense grows faster at small constitutive costs than at large ones
(as reflected in the convexity in Fig. 6.1E). The second, heritability axis is de-
fined by the probability q that the protection is not transmitted to the offspring
(Fig. 6.1B). Finally, the third, acquisition axis specifies how individuals may ac-
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Figure 6.1: A model to explore the incidence of different modes of immunity on the
long-term growth of populations. (A) A population of organisms, each
possibly protected against no, one or several pathogens (no, one or several
colored dots) evolves in presence of a pathogenic environment that varies
from generation to generation. The mean number of individuals with pro-
tection σ at generation t, Nt(σ), is given by a recursion equation involving
the mean number of offspring ξ̄(σ ′, xt) for individuals with protection σ ′

and the probability π(σ|σ ′, xt) that each of their offspring inherits a pro-
tection σ; both of these quantities may depend on the current pathogenic
environment xt. The long-term growth rate of the population is given by
(1/t) lnNt at large t, with Nt =

∑
σNt(σ) the total population size. (B)

Dynamics of appearance and disappearance of pathogens xt and immune
protection σ. A pathogen appears with rate α and disappears with rate
β; these rates define the frequency πenv = α/(α + β) and characteristic
time τenv = −1/ ln(1− α− β) of the pathogen. Protection against a given
pathogen is acquired spontaneously with rate p, and lost from one gener-
ation to the next with rate q. Additionally, the presence of the pathogen
can increase the rate of acquisition of protection by puptake, as e.g. in the
CRISPR/Cas system of prokaryotes. (C) The ξ offspring produced by an
individual inherits the immune protections of their parent with rules spec-
ified in panel B. Each pathogen reduces the mean number of offspring
ξ̄(σ, xt) by a cost cstate that depends on whether the individual is in state
‘infected’, ‘defense’, or ‘constitutive’ relative to the pathogen, and by a cost
cuptake(puptake) that depends on the rate puptake at which protection is di-
rectly induced by the presence of the pathogen. (D) An unprotected organ-
ism pays a cost of infection cinfected if the pathogen is encountered, which
is reduced to cdefense if it is protected. A protected organism must, how-
ever, pay a constitutive cost cconstitutive even in the absence of the pathogen,
while an unprotected organism pays no cost. (E) We assume a trade-off
between the constitutive and defense costs: a more efficient defense (lower
cdefense) requires more resources (higher cconstitutive).
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quire the protection without inheriting it from their parent. This acquisition
may occur randomly independently of the environment, with probability p,
for instance by mutation or phenotypic switching, as is the case for antibiotic
resistance in bacteria [187]; or it can be induced by the presence of the patho-
gen with probability puptake, as in CRISPR-Cas immunity (Fig. 6.1B) [7]. This
mechanism comes at an extra cost cuptake(puptake) due to maintenance and the
risks of uptaking foreign genetic material (Fig. 6.1C), in addition to the state-
dependent cost cstate (Fig. 6.1D). To account for the dangers associated with
taking up foreign DNA we assume that cuptake increases superlinearly with
puptake.

6.3 results

Each choice of the parameters cconstitutive, q, p and puptake defines a specific im-
mune strategy. This strategy is optimal if a population that adopts it outgrows
in the long run any other population following a different strategy. Our goal
is to characterize this optimal strategy, in particular its dependency on the two
key properties of the pathogen, its frequency πenv and its characteristic time
τenv. We achieve this goal by maximizing the long-term growth rate of pop-
ulations, defined by (1/t) lnN(t), where N(t) is the total population size at
generation t (Fig. 6.1A) [117]. Conveniently, since the fecundity is affected in-
dependently by the different pathogens, each pathogen contributes additively
to the growth rate and can be studied separately (Fig. 6.1C and Materials and
Methods).

Remarkably, we obtain qualitatively different optimal solutions for different
values of πenv, τenv, with sharp transitions between these strategies as one
varies the parameters of the pathogen statistics, allowing us to define distinct
immune regimes (Fig. 6.2A). The emergence of these very distinct regimes is
not an assumption, but the result of the optimisation itself.

Fig. 6.2B describes these optimal strategies along the three axes of variation
outlined earlier. Along the first axis of variation, adaptability, we find that fre-
quent or persistent pathogens are best dealt with by constitutively expressed
immunity (cconstitutive = cdefense), and rare and transient pathogens by investing
minimally in the defense (cconstitutive = 0, in blue); between these two extremes,
only a limited form of adaptation is required (cconstitutive < cdefense, in green).
Along the second axis, heritability, we find that carrying the protection at all
times (q = 0) is beneficial against fast pathogens but that losing the protec-
tion with probability q > 0 is more advantageous for slow ones. Finally, along
the third axis, acquisition, we verify that there is no need to pay the price
of informed acquisition (puptake = 0) whenever protection is systematically
inherited (q = 0); when it is not the case (q > 0), we find that uptake is advan-
tageous for sufficiently infrequent pathogens (yellow and orange regions) but
that only for very infrequent pathogens does it becomes the exclusive mode of
acquisition of protection (p = 0, puptake > 0, in yellow).

Each of these distinct regimes, or phases, is instantiated by natural immune
systems (Table 6.1). For transient and rare pathogens (blue phase), the optimal
strategy is to inherit a defense with minimal constitutive cost. This strategy is
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Figure 6.2: Optimal immune strategies as a function of the frequency and characteris-
tic time of pathogens. (A) Distinct optimal immune strategies emerge for
different statistics of appearance of the pathogens. Each phase is charac-
terized by the value of parameters indicated in panel B and named af-
ter a known immune system that has similar characteristics (the name
’adaptive’ is after the vertebrate immune system). (B) The different phases
of immunity are defined by the values of parameters along three main
axes: adaptability (constitutive cost cconstitutive), heritability (1 − q) and
mode of acquisition (p and puptake). (C) and (D) Optimal parameters as
a function of πenv for τenv = 12 (C) and τenv = 0.8 (D). For slowly vary-
ing environments (C), rare pathogens are best targeted by CRISPR-like
uptake of protection, while frequent pathogens are best dealt with by
spontaneous acquisition of protection, with a crossover in-between where
both co-exist. For faster varying environments (D), the constitutive cost
invested in the protection goes from negligible to maximal as the path-
ogen frequency increases. When it is maximal, the best strategy transi-
tions from bet-hedging (q > 0) to a full protection of the population
(q = 0). (E) The correlation times of protection in absence of the pathogen,
τ = −1/ ln(1− p− q), and in its presence, τ = −1/ ln(1− p− puptake − q),
are shown for πenv = 0.7 as a function of τenv. Both increase with the cor-
relation time of the pathogen. In this figure, an infinite population size is
assumed and the following parameters are used: cinfection = 3; cconstitutive =
(1.8− cdefense) / (cdefense − 0.2) ; cuptake(puptake) = 0.1 × puptake + p2uptake
(see Fig. S2 for other choices).
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characteristic of the adaptive immune system in vertebrates, where an effec-
tive immune response is mounted from a small number of precursor cells, the
marginal cost of which is negligible [6]. For transient but frequent pathogens
(purple phase), the optimal strategy consists instead in inheriting a maximally
efficient protection that makes the individuals effectively insensitive to the
presence of the pathogen at the expense, however, of a large constitutive cost.
The recognition of pathogen-associated molecular patterns by pattern recog-
nition receptors, as for instance the recognition of lipopolysaccharide by Toll-
like receptors, is an example of such an innate strategy [22]. An intermediate
phase (in green) separates these two extremes, where adaptation is present
with a non-zero constitutive cost. This strategy, which we call proto-adaptive,
is represented by certain specialized cells of the innate immune system, such
as natural killer cells [188], whose abundance can vary as a function of ex-
perienced infections, effectively implementing an adaptive memory within a
single generation.

For slow and frequent pathogens (red phase), protection is acquired with
probability p > 0 and lost with probability q > 0 independently of the pres-
ence of the pathogen. This bet-hedging strategy is implemented in bacteria
that can switch on or off the expression of phage receptors [64]. For slow but
infrequent pathogens (yellow phase), a form of bet-hedging is again present,
but this time with a non-zero probability to acquire protection only in presence
of the pathogen. An example of such a Lamarckian strategy is the CRISPR-Cas
immune system in bacteria [7]. Finally, a mixed phase (in orange) is also pos-
sible where protection is randomly acquired at a rate that is increased by the
presence of the pathogen.

We can gain insight into the transitions between the different phases by con-
sidering three analytically solvable simplifications of the model, as detailed
in Appendix C.3. In the first of these simplified models, we can calculate the
transitions from a purely constitutive to a proto-adaptive to a purely adaptive
strategy as the pathogen frequency πenv decreases. The second model high-
lights the transition from a bet-hedging to a deterministic protection, while
the third one focuses on the transitions from a purely passive to a purely ac-
tive acquisition of the protection, with a mixed phase in between.

It is instructive to examine how the parameters of immunity vary within the
phases (Fig. 6.2C-D and C.1). As one may expect, the statistical properties of
the protection tend to track the pathogen statistics [138]. The more frequent
the pathogen, the more prevalent the protection in the population (Fig. 6.2C).
Likewise, the characteristic time of the protection, τ, grows with that of the
pathogen, τenv (Fig. 6.2E).

The assumptions that we made allow us to treat each pathogen-protection
pair independently of each other. However, there are a number of ways in
which this assumption may be questioned. We discuss several in Appendix C.4
and we find that these generalizations do not qualitatively affect our conclu-
sions. For example, infections could interact by inflicting more harm together
than the sum of the each alone, as e.g. HIV in conjunction with other diseases.
This case can be incorporated into our approach by considering a modified
effective cost including the extra cost of co-infection. Another way in which
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strategy defining characteristics biological examples
perfect

heritability acquisition mode adaptability
q = 0 p > 0 puptake > 0 cdefense

innate yes yes no minimal innate defense by recogni-
tion of pathogen-associated
molecular patterns by pat-
tern recognition receptors
[22]

protoadaptive yes yes no intermediate “trained” innate immunity
[8], especially defense by nat-
ural killer cells [188]; “sys-
temic acquired resistance” in
plants [189]

adaptive yes yes no maximal adaptive immune systems of
jawed and jawless vertebrates
[6]

innate bet hedging no yes no minimal mutation of phage receptors
by bacteria [64]

CRISPR-like no no yes minimal CRISPR-Cas system in bacte-
ria and archea [7]

mixed no yes yes minimal concurrent use of CRISPR-
Cas system and mutations of
surface molecules by bacte-
ria defending against phages
[65]

Table 6.1: Optimal strategies found in the phase diagram (Fig. 2), their definition in
terms of parameters of our framework, and biological examples.

pathogen-protection pairs could be correlated is through a non-additive cost
of protection, if the marginal cost of protection increases or decreases with the
number of protections. For example, if having protection against two patho-
gens is much more costly than twice the cost of having protection against just
one, then the optimal strategy may be to hedge bets by keeping a subpopula-
tion protected against one pathogen, and another subpopulation against the
other. Lastly, cross-reactivity, the widespread ability of protections to recog-
nize several pathogens, is another departure from independence, which can
be partly overcome by grouping together pathogens recognized by a common
protection.

6.4 discussion

The phase portrait of Fig. 2A rationalizes the salient differences between the
immune systems of prokaryotes and vertebrates. Bacterial and archeal organ-
isms evolve on timescales that are much closer to those of their pathogens
than vertebrates. From the viewpoint of microbes, the pathogenic environment
is relatively constant (τenv > 1), while for vertebrates a particular pathogenic
strain is unlikely to survive a single generation (τenv � 1). Consistent with
our results, vertebrates use fully heritable modes of immunity, and do not rely
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on bet-hedging. To deal with infrequent and fast evolving pathogens such as
viruses, they recourse to adaptive mechanisms by which they can upregulate
their protection in case of an invasion. The three predicted strategies – adap-
tive, proto-adaptive, and innate – correspond to the known modes of immu-
nity in vertebrates [22]. Prokaryotes, on the other hand, almost systematically
use bet-hedging strategies. They recourse to both the CRISPR-Cas system of
acquired immunity [7], and to innate immunity through e.g. restriction en-
donucleases [64], which correspond to the predicted Lamarckian and innate
bet-hedging strategies of the diagram, respectively. These results are robust to
changes of parameters, although increasing costs can make bet-hedging bene-
ficial even at short characteristic times (Fig. C.2).

Bacteria and vertebrates also have very different population sizes, which
influence their overall survival probability. To evaluate this impact, we ran
stochastic simulations competing different strategies for increasing population
sizes (see Sec. 6.5 and Fig. C.3). The phase diagram of Fig. 2A is recovered
for population sizes as small as a thousand, while for smaller population sizes
the boundaries between regimes are smeared. In small populations, adaptive
strategies are generally favored over CRISPR-like strategies, and the amount
of bet-hedging increases. In fact, for finite populations it is always beneficial
to recourse to some degree of bet-hedging in order to react quickly to environ-
mental changes and avoid extinction.

Here, we consider the case of a common environment experienced by all in-
dividuals. Having different parts of the population experience different micro-
environments that are not persistent over generations does not change the pop-
ulation dynamics on evolutionary time scales (Materials and Methods). These
micro-environments can result from differing infection probabilities for differ-
ent subsets of the population, e.g. arising from spatial niches, or other non-
pathogenic factors such as nutrient availability that influence the capability of
individuals to cope with pathogens. If there are micro-environments that per-
sist over many generations then our results hold in each micro-environment.
An optimal strategy might then exploit the additional predictability stemming
from knowing the statistical properties of the micro-environments and use the
micro-environment diversity as a means of bet-hedging.

Our results also suggest that plants and some invertebrates, which also have
long generation times compared to the variation time of pathogens, should
be endowed with adaptive and proto-adaptive immune systems, in addition
to innate protection mechanisms [181]. Consistent with this prediction, the
innate branch of the plant immune system is able to increase protection in the
entire plant following a local infection through “systemic acquired resistance”
[189], providing the mechanistic basis of an inducible, proto-adaptive immune
system. In addition, virus-derived small interfering RNAs, which accumulate
during infections, are portrayed as likely candidate of adaptive immunity in
plants and invertebrates – they are induced by the virus, and keep a memory
of past infections [190, 191, 192]. Interestingly, small RNA-based immunity has
been shown to be inheritable in C. elegans [193], an invertebrate with a short
generation time of around 4 days, in agreement with our result that CRISPR-
like immunity is desirable in this case.
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By analyzing the long-term fate of populations under minimal assumptions
concerning the rules governing adaptability, heritability and acquisition of im-
mune protections, we have recovered the basic known modes of immunity.
Remarkably our results hold even for a single pathogen. The key determi-
nants of optimal immune strategies are found to be the statistical features of
pathogen occurrence: its frequency and its characteristic timescale. As an im-
plication, a diverse pathogenic environment, with varying statistics, will favor
mixed solutions, consistently with the observation of multiple immune sys-
tems within a same organism – such as adaptive and innate immune systems
in vertebrates, or CRISPR and innate defense in bacteria. Naturally, the molec-
ular implementation of these general principles differs greatly even between
organisms sharing the same type of immunity. Yet an evolutionary perspective
that accounts for the costs and benefits of protection is enough to explain the
most salient features of immunity. It will be interesting to extend our frame-
work to account for other essential features of immunity, e.g. the acquisition
of protection by horizontal transfer or the coevolutionary dynamics between
pathogens and their hosts. In view of our analysis, it is already less surprising
that complex forms of immunity such as the adaptive immune system have
evolved separately in jawed and non-jawed vertebrates, with the same general
features but different molecular encodings.

6.5 materials and methods

6.5.1 Population dynamics

The pathogenic environment is described by an L-dimensional vector x (bold
symbols refer to vectors), where xi = 1 if pathogen i is present, 0 otherwise.
Protection of an organism against these pathogens is also described by an L-
dimensional vector σ, where σi = 1 if the protection (antibody, TCR, CRISPR
spacer) against pathogen i is present, and 0 otherwise.

We consider the dynamics of a population of organisms reproducing at dis-
crete times t. At each generation, each individual produces a stochastic num-
ber ξ of offspring, whose distribution depends on the state σ of that individual,
and the environment xt. We denote its mean by ξ̄(σ, xt).

Let Nt(σ|xt ′<t+1) be the mean number of organisms in the population at
time t with protection σ, for a given environment history (xt ′<t+1) [117]. The
change in population composition from one generation to the next is governed
by the reproductive success of individuals in each state σ, modified by stochas-
tic state switching from parents to offspring:

Nt+1(σ|xt ′<t+1) =
∑
σ ′
Nt(σ

′|xt ′<t)ξ̄(σ
′, xt)π(σ|σ ′, xt), (6.1)

where π(σ|σ ′, xt) is the switching probability from protection state σ ′ to state
σ. Note that the protection state switching probability, which represents to
what extent protection is inherited, acquired or lost, generally depends on the
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state xt of the environment. For ease of notation, we omit in the following the
condition on the environment (·|xt ′<t) when referring to conditional means.

A similar recursion to Eq. 6.1 can be written for the fraction of the population
in each state, nt(σ) = Nt(σ)/Nt, with Nt =

∑
σNt(σ) the total population

size:

nt+1(σ) =
1

Zt

∑
σ ′
nt(σ

′)ξ̄(σ ′, xt)π(σ|σ ′, xt), (6.2)

where Zt is a normalization constant enforcing
∑
σ nt(σ) = 1. The population

size is given by Nt = N0
∏t−1
t ′=0 Zt ′ , so that the long-term growth rate, Λ =

limT→∞ 1
T lnNT , is given by:

Λ = lim
T→∞ 1T

T∑
t=0

ln(Zt). (6.3)

The strategy with maximal long-term population growth rate outperforms in
the long run any other strategy for almost every sequence of environments in
populations of infinite size. This rate thus provides a measure of long-term
fitness [117].

We assume that the mutation and inheritance probabilities of different pathogen-
protection pairs are independent of each other, i.e. that π(σ|σ ′, xt) factorizes
over the pathogens,

π(σ|σ ′, xt) =
∏
i

πi(σi|σ
′
i, xi;t). (6.4)

The entries of πi(σi|σ ′i, xi;t) are given by Fig. 1B: πi(1|0, x) = p+ xpuptake and
πi(0|1, x) = q.

In addition, the effects of different pathogen-protection pairs on the growth
rate are taken to be additive (Fig. 1C), so that:

ln ξ̄ = Rmax −

L∑
i=1

[
cinfection,i (1− σi)xi

+ cconstitutive,i σi(1− xi) + cdefense,i σixi

+ cuptake(puptake,i)
] (6.5)

where Rmax is the growth rate in absence of any immune cost. With these
assumptions, the distribution nt(σ) also factorizes over i:

nt(σ) =

L∏
i=1

(rtiσi + (1− rti)(1− σi)), (6.6)
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where rti is the fraction of the population having protection i at time t. Plug-
ging this Ansatz into Eq. 6.2 with Eqs. 6.4 and 6.5 yields the following recur-
sion for rti :

rt+1i = [(1− rti)e
−cinfection,ix

t
i
(
pi + puptake,ix

t
i

)
+ rtie

−cdefense,ix
t
i−cconstitutive,i(1−x

t
i)(1− qi)]

/ [
(
1− rti

)
e−cinfection,ix

t
i

+ rtie
−cdefense,ix

t
i−cconstitutive,i(1−x

t
i)].

(6.7)

The recursion depends on the sequence of xti , which is a stochastic binary
process switching from 0 to 1 with probability α, and from 1 to 0 with prob-
ability β (Fig. 1B). Note that the sequence xti is the same for the whole popu-
lation (a quenched variable in the statistical mechanics sense). We have Zt =

eRmax
∏L
i=1 z

t
i , with

zti = e
−cuptake(puptake,i)[

(
1− rti

)
e−cinfection,ix

t
i

+ rtie
−cdefense,ix

t
i−cconstitutive,i(1−x

t
i)]

(6.8)

From Eq. 6.3, it then follows that

Λ = Rmax +

L∑
i=1

(
lim
T→∞ 1T

T∑
t=1

ln zti

)
. (6.9)

The long-term growth rate is a sum of independent terms for each pathogen-
protection pair, which allows us to treat the problem of maximizing long-term
growth rate one pathogen at a time.

6.5.2 Numerical solution

The cost function of the optimization, Λ, can be approximated by solving
the recursion equation describing the relative frequency of organisms with
different protection states in the population for a large enough number of gen-
erations (we used at least 106 generations). Our goal is to optimize Λ over the
four parameters p,q,puptake, cconstitutive (or over the subset of free parameters
for a given strategy) constrained to their domain of definition. For numerical
purposes, all four parameters are first mapped onto the unit interval [0, 1]. The
noise in the evaluation of Λ arising from its approximation from finite time
data makes the optimization challenging. Since the process is ergodic, aver-
aging over very long periods is equivalent to repeating the process multiple
times. The noise can therefore be reduced by both prolonged simulation or
repeated sampling at the expense of a higher computational cost per function
evaluation. To find the global optimum of this noisy function under the bound
constraints on the parameters we use a two-phase algorithm. In the first phase
the direct algorithm [194] provides us with a rough, but global optimization
for which we use a relatively low quality approximation. The results of this
first phase are then refined by a pattern search algorithm with an adaptive
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sampling of the function (described in detail in Appendix C.2) using the pa-
rameters ∆tol = 0.0005 (for Fig. S1 ∆tol = 0.005), α = 0.005.

To obtain a phase diagram such as the one shown in Fig. 6.2A we first
performed a global optimization over all four parameter values as described
above, for every environment condition (πenv, τenv) (Fig. S1). Based on the op-
timal parameters found in this step, we defined the features of the emerging
phases (Table I). All phases are defined by a subset of the variables lying at a
constraint boundary. In order to calculate precise phase boundaries, we find
the frequency of pathogens πenv at a given characteristic time τenv for which
the difference in long-term growth rates between a given pair of strategies van-
ishes. To obtain the root of the difference function, we use a bisection algorithm.
To decrease noise, the difference is calculated across pairs of simulations using
the same sequence of pathogens {xt} and the function is sampled adaptively
to ascertain statistical significance. The bisection algorithm is run up to a tol-
erance of 0.025 in πenv and then the precise position of the root is interpolated
assuming linearity of the difference function within the interval. To prevent
e.g. the mixed strategy to reduce to a CRISPR-like strategy, we impose that the
parameters which are not set to a fixed value in a particular strategy are not
closer than a tolerance 0.005 (0.0005 for q) of the boundary.

6.5.3 Simulations with finite populations sizes.

To study the influence of the effects of finite population size we perform direct
agent-based simulations of a population of adapting individuals with strate-
gies evolving on a slow timescale. The population has a finite size N that re-
mains fixed over the course of the simulation. At every generation the parents
of the N individuals are drawn from the individuals making up the previous
generation with probabilities proportional to the mean number of offspring ξ̄
of these individuals. The offspring’s state σ is determined from the state of
its parent σ ′ according to the switching rates π(σ|σ ′, xt) defined previously.
Along with the state σ, the switching rates themselves, π(σ|σ ′, x), as well as
the degree of adaptability, cconstitutive – in other words, the parameters defin-
ing the immune strategy – are also transmitted to the offspring. They also
change from parent to offspring, although at a much slower rate than the state
to preserve a clear separation of timescales between short-term and long-term
adaptations. In this setup, selection acts on the strategies. After an equilibra-
tion phase, we collect statistics on the strategies adopted by individuals in
the population. To get rid of the effect of deleterious mutations that do not
eventually fix in the populations the mutation rate and size were scaled down
exponentially with time. As population size is finite deleterious mutations can
fix in the population, which means that even in the limit of zero mutation rate
there remains a spread in the distribution of strategies. Hence we do not only
represent the median as a measure of the central tendency of a parameter, but
also the interquartile range as a measure of its spread.
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7
T R A N S I T I O N S I N O P T I M A L A D A P T I V E S T R AT E G I E S

This chapter was previously published in Ref. [140].

7.1 introduction

Nothing is as constant as change. This age-old adage applies to biological
populations, which may respond by evolving mechanisms to mitigate the con-
sequences of environmental fluctuations [109, 110, 111, 112, 113]. This adapta-
tion can be implemented at different levels. At an individual level, the simplest
strategy consists in adopting a generalist phenotype that does reasonably well
across environments. At a population-level, another strategy is to constantly
generate a phenotypically diverse mixture of individuals, each specialized to
a different environmental condition. Which strategy provides the largest se-
lective advantage in the long run depends on the nature of environmental
fluctuations and on the fitness costs and trade-offs limiting the range of acces-
sible phenotypes. For instance, although tracking the environment to adopt a
phenotype specialized to each current condition may seem optimal, this strat-
egy is often precluded by the costs of constantly monitoring environmental
changes and of frequently switching between phenotypes.

Which strategies to deal with environmental fluctuations may be selected
is a long-standing question in evolutionary biology. Interest in this question
has recently been rekindled by novel laboratory experiments with populations
growing in controlled fluctuating environments [195, 196, 197], new theoretical
developments providing links to ideas from information theory and stochas-
tic thermodynamics [115, 116, 114], and its relevance to understanding non-
genetic modes of inheritance [198, 186] and how biological populations might
respond to climate change [112, 199].

Here, we study this question in a model of population growth in a randomly
fluctuating environment. The model considers a large population of organisms
characterized by their phenotype and replicating at discrete generations. An
optimal adaptive strategy is defined by the choice of phenotypes and switching
rates between them that ensures the largest long-term population growth rate.
We analyze how this optimal strategy depends on the environmental statistics
and the replication rates. The analysis reveals transitions between qualitatively
different strategies: non-switching or single-phenotype strategies, where all
of the population is of the same phenotype; and switching or bet-hedging
strategies, where the population diversifies. Further transitions arise between
strategies where the population adopts a phenotype specialized in a single
environment, and strategies relying on a generalist phenotype.

Our work extends the growing literature investigating transitions between
optimal adaptive strategies [200, 201, 186, 202, 203] and generalizes some of
our previous results on the adaptation of immune strategies to pathogen statis-
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Figure 7.1: Model of population growth in a fluctuating environment. (A) A popula-
tion composed of individuals of different phenotypes σ grows in a chang-
ing environment xt. Between each discrete generation, the phenotype of
each individual may switch. (B) The environment follows a stochastic dy-
namics described by a Markov chain with transition rates p(x|x ′). The
population composition changes between generations due to the effects
of selection (an individual with phenotype σ in environment x produces
in average f(σ, x) offspring) and phenotype switching (an individual with
phenotype σ ′ has probability π(σ|σ ′) to have an offspring with phenotype
σ).

tics [139]. In particular, we derive exact expressions for the transitions between
different modes of immunity in memoryless environments when the strategy
includes an adjustable investment into immunity. We also calculate analyti-
cally the transitions between switching and non-switching strategies between
two phenotypes in temporally correlated environments. After briefly introduc-
ing the mathematical framework (Sec. 7.2), we present a graphical method for
studying transitions in optimal adaptive strategies in temporally uncorrelated
environments (Sec. 7.3), and apply it to the case of an immune system with ad-
justable investment (Sec. 7.4). We then turn to the case of temporally correlated
environments and provide new analytical and numerical results on transitions
in this more general setting (Sec. 7.5).

7.2 population growth in fluctuating environments

We are interested in describing the evolution of a possibly phenotypically het-
erogeneous biological population (of cells, organisms, etc.) in a fluctuating
environment. We describe the population at generation t by the number Nt(σ)
of individuals with a given phenotype σ. Phenotypes differ by their replication
rate f(σ, x), which give the mean number of offspring produced by an individ-
ual of phenotype σ in environmental condition x (see Fig. 7.1). The environ-
ment is described as a discrete Markov chain with a transition matrix p(x|x ′),
which we assume to be stationary and ergodic. The population changes under
the influence of the selective pressures generated by the differences in replica-
tion rates between phenotypes, and through phenotype switches described by
a transition matrix π(σ|σ ′). In the limit of infinitely large population size, the
population composition follows the recursion [117]

Nt+1(σ) = f(σ, xt)
∑
σ ′
π(σ|σ ′)Nt(σ ′). (7.1)
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An alternative formulation in which multiplication precedes mutation can be
defined by mapping Nt(σ) → Nt(σ)/f(σ, xt−1) [139]. The two formalisms are
equivalent as long as the switching rates do not depend on the environmental
state. Eq. 7.1 can also be written in a compact matrix notation as

Nt+1 = A
(xt)Nt, with A

(xt)
σ,σ ′ = f(σ, xt)π(σ|σ ′). (7.2)

Here and in the following, we write vectors and matrices in bold notation.
The different modalities by which populations might cope with fluctuating

environmental conditions correspond to different properties of the switching
matrix π(σ|σ ′). For non-switching strategies, the whole population has the same
phenotype σ̃ and the switching matrix consists in a row of ones, π(σ|σ ′) = 1 if
σ = σ̃ and 0 otherwise. If the chosen phenotype is a better all-rounder doing
intermediately well across environments, this corresponds to an individual-
level generalist strategy. For switching strategies, we may distinguish those with
and without memory. In a switching strategy without memory, the probabil-
ity of switching to a phenotype does not depend on the parental phenotype,
π(σ|σ ′) = π(σ). Such strategies implement population-level bet-hedging, i.e.,
diversification of the population into phenotypes that may each be special-
ized to one of the environmental conditions to come. Switching with memory,
where π(σ|σ ′) does depend on σ ′, provides the basic ingredients, variation
and heritability, to enable adaptive tracking of the environment through Dar-
winian evolution. In the limit where switching is very rare, π(σ|σ ′)� π(σ ′|σ ′)
for σ 6= σ ′, the phenotypic dynamics is equivalent to the strong-selection weak-
mutation limit of population genetics [186]. The model thus integrates in a
common mathematical framework a range of different modes of response to
environmental variations.

Over long evolutionary time scales, selection might act on the adaptive mech-
anisms to adjust them to the statistics of environmental fluctuations. Explicit
models of the evolution of the switching rates π(σ|σ ′) show that variation in
switching rates can indeed be selected upon [201, 204, 186]. Transgenerational
feedback reinforcing the production of successfull phenotypes provides an al-
ternative mechanism to learn a good strategy [205]. Which adaptive strategy
do we expect to evolve in the long run? Here, we focus on the optimal strategy
representing the optimal possible end-product of this evolution. In our model,
the optimal switching rates maximize long-term growth rate, defined as

Λ = lim
T→∞ 1T lnNT/N0, (7.3)

where NT =
∑
σNT (σ) is the total population size. To understand why this

is the relevant measure of evolutionary success in the long run, consider a
population with two subpopulations following different strategies. Then in the
long run the population following the strategy with highest long-term growth
rate almost surely outnumbers the one following the other strategy for almost
every sequence of environments [206]. The question of which adaptive strategy
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π∗(σ|σ ′) has the largest selective advantage is thus recast as the problem of
maximizing the long-term growth rate over possible strategies:

π∗(σ|σ ′) = argmax
π(σ|σ ′)

Λ, (7.4)

for given replication rates f(σ, x) and given environmental dynamics p(x|x ′).
This is the problem that we address in this paper.

7.3 when and how to be a generalist in uncorrelated environ-
ments

7.3.1 Extended fitness set and Pareto optimality

The simplest environmental fluctuations to consider are memoryless fluctua-
tions, where the state of the environment is independent of its state in the
previous generation, p(x|x ′) = p(x). In this case, no gain can be expected from
keeping a memory of past phenotypic states, and the optimal adaptive strat-
egy is also memoryless, π(σ|σ ′) = π(σ). Since the population composition is
constant over generations, the number of offspring depends only on the state
of the environment and Eq. 7.1 reduces to a recursion for the total population
size Nt =

∑
σNt(σ):

Nt+1 = Ntf(xt), (7.5)

where

f(x) =
∑
σ

f(σ, x)π(σ) (7.6)

is the average population fitness. Graphically, it is convenient to represent
each possible phenotype σ as a point in the space of environmental condi-
tions x (where each environment x defines a dimension), with coordinates
given by the replication rates f(σ, x) (orange dots in Fig. 7.2A). The set Df =

{
∑
σ f(σ, x)π(σ)|

∑
σ π(σ) = 1,π(σ) > 0} of achievable f(x) when switching

rates π(σ) are varied then corresponds to the convex hull of these points (or-
ange area in Fig. 7.2B). In the ecological literature, this set of achievable strate-
gies is known as the extended fitness set and was introduced by Levins [109].

The recursion for the total population size (7.5) is solved byNT = N0
∏
t f(xt).

Taking logarithms, we have lnNT/N0 =
∑T
t=1 ln f(xt) and we can apply the

law of large numbers to write the long-term growth rate (7.3) as a weighted
average of log-fitnesses:

Λ =
∑
x

p(x) ln f(x), (7.7)

with weights given by the frequency of each environment.
Finding the optimal strategy π∗(σ) that maximizesΛ =

∑
x p(x) ln

∑
σ f(σ, x)π(σ)

over the domain allowed by the rules of probabilities is a convex optimization
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Figure 7.2: Illustration of the steps of a graphical method of finding the best adapta-
tion strategy in uncorrelated environments. (A) Fitness values of pheno-
types across environments (orange dots). (B) Fitness values achievable by
switching strategies (orange area) are those inside the convex hull of the
fitness values of the different phenotypes. A necessary condition for opti-
mality is to lie on the Pareto frontier (blue line). (C, D) The optimal strat-
egy has the fitnesses (red/green star) at which the isolines of the long-term
growth rate for given environmental frequencies (red lines for p(2) = 0.7,
green lines for p(2) = 0.3) are tangential to the Pareto frontier. (C) In fit-
ness space the isolines are curved. (D) To determine the optimal strategy
it is more convenient to work in log-fitness space, where the isolines are
straight lines.

problem whose solution is well known [118, 109, 207, 206, 117, 200]. It is use-
ful to rephrase the problem as the optimization of Λ =

∑
x p(x) ln f(x) over

the fitnesses f constrained to belong to the extended fitness set Df introduced
above. One can go further and equivalently optimize Λ =

∑
x p(x)m(x) over

the log-fitnesses m(x) = ln f(x) contrained to belong to ln(Df). Going from π

to f to m simplifies the expression of the objective function Λ but makes the
domain of optimization more complex.

Eq. (7.7) shows that the long-term growth rate is an increasing function of
each environment fitness f(x). Increasing fitness in one environment is always
desirable if this can be done without impairing fitness in any other environ-
ment. Thus, any optimal solution must lie on the set of fitnesses f for which
no improvement can be made in one environment without impairing perfor-
mance in another, called the Pareto frontier. Usually, no phenotype provides
the best fitness for all environments due to trade-offs between performance un-
der different conditions. Thus the Pareto frontier is generally not a single point
but a line when the environment alternates between two conditions (blue line
in Fig. 7.2B), and a hyper-surface of dimension n− 1 when the environment
alternates between n conditions. To find the overall optimum along the Pareto
front requires to consider the explicit way in which performances for different
objectives combine into a scalar measure, which is determined in our case by
the frequency of the different environments (7.7).

7.3.2 Graphical method for finding the optimal strategy

The various views of the optimization problem discussed in the previous sub-
section imply a graphical method to determine the optimal strategy. For sim-
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plicity, we illustrate it by considering switching between only two environ-
ments (Fig. 7.2). Starting from the graphical representation of the Pareto front
for the set of achievable fitnesses (Fig. 7.2B), we need to find the point of this
frontier with the highest growth rate: this is done graphically by represent-
ing the growth rate isolines Λ[f(1), f(2)] = K (red and green lines in Fig. 7.2C
where the two colors corresponds to different environmental statistics) given
by (7.7):

f(2) =
eK/p(2)

f(1)p(1)/p(2)
. (7.8)

By plotting the isolines for different K we can find the isoline for the largest
K that still intersects with the Pareto frontier, called supporting line. The in-
tersection point defines the optimal adaptive strategy the population should
adopt (red and green stars in Fig. 7.2C). This construction was first proposed
by Levins [109].

Here, we propose to go one step further and work in log-fitness space to
circumvent the difficulty of handling curved isolines. In log-fitness space, the
isolines are linear and normal to the vector p:

p(1)m(1) + p(2)m(2) = K. (7.9)

If the Pareto front has a tangent of slope −p(1)/p(2), the tangent point thus
defines the optimal strategy for the environment p (Fig. 7.2D). More generally,
the supporting isoline corresponding to the optimal growth rate shares at least
one point with the Pareto frontier but is otherwise entirely above that frontier.

The graphical method generalizes to d environments by studying the ex-
tended fitness set in a space of d dimension, according to the following pro-
cedure. First, represent the phenotypes’ fitnesses as points in the space of dif-
ferent environments, each environment defining a dimension (orange dots in
Fig. 7.2A). Second, construct the convex hull of these points to find the fit-
nesses achievable by switching strategies Df (orange area in Fig. 7.2B), and
find the Pareto-optimal frontier of that set (blue line in Fig. 7.2B). Third, plot
this Pareto surface in log-fitness space (blue line in Fig. 7.2D). Finally, find the
hyperplane normal to p that is a supporting hyperplane of the Pareto frontier
(red and green lines in Fig. 7.2D), and read off the optimal strategy as the inter-
section point between that hyperplane and the Pareto frontier (red and green
stars in Fig. 7.2D).

When the Pareto frontier is contained in a hyperplane, fitnesses can be
rescaled onto the unit simplex,

∑
x f(x) = 1, with no loss of generality [200].

In this case the optimal strategy is given in terms of the rescaled fitnesses
as f∗ = p, making the graphical construction even simpler (Fig. D.1 and
App. D.1).

7.3.3 Transitions between switching, non-switching, and generalist strategies

The graphical method provides a visual approach to classify the different pos-
sible adaptive strategies. For the sake of simplicity, we start again with the
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Figure 7.3: Transitions of the optimal strategy as a function of environmental fre-
quencies without (A-C) and with (D-F) a generalist phenotype. (A,D)
Pareto frontier of achievable fitness vectors by phenotypes (dots) and
their mixtures (lines). (B,E) In log-fitness space a tangent construction
(grey lines) yields the optimal strategy (grey crosses) for different envi-
ronments (from dark to light grey for p1 = 1 → p1 = 0 in 0.2 steps).
(C,F) Transitions between switching and non-switching strategies as a func-
tion of the probability of encountering environment 1. Parameters: (A-C)
f(σ = 1) = (1, 0.3), f(σ = 2) = (0.4, 1), (D-F) f(σ = 1) = (1, 0.2), f(σ = 2) =
(0.3, 1.0), f(σ = 3) = (0.8, 0.7).

case of a two-state environment and first assume that only two phenotypes
are accessible: a blue phenotype (σ = 1) best suited to environment 1 and an
orange phenotype (σ = 2) best suited to environment 2 (Fig. 7.3A-C). In this
case, the Pareto front is a segment joining the two phenotypes. In log-fitness
space, this segment is curved and concave, implying that ∂m(2)/∂m(1) is a de-
creasing function of m(1). Different environmental statistics are characterized
by the frequencies p(1) and p(2) = 1− p(1) of the two environmental states.
The value of p(1) sets the slope −p(1)/p(2) of the isolines of growth rate that
we should consider Eq. 7.9.

Depending on the value of p(1), different cases arise. First, if p(1) is too high
or too low, there is no tangent to the Pareto front of slope −p(1)/p(2) and the
support point lies at one of the two extremities of the Pareto front. In these
cases, the optimal strategy (crosses in Fig. 7.3B) is to adopt a constant pheno-
type – the phenotype optimal for the most frequent environmental state. When
p(1) takes an intermediate value, the isoline is tangent to the Pareto frontier at
an intermediate support point, indicating an optimal strategy involving switch-
ing between the two possible phenotypes. As a function of the frequency of
encountering different environments, there are thus two transitions, from non-
switching to switching and to non-switching again. This succession of optimal
strategies is read off as a function of the environmental frequency from the
Pareto line (Fig. 7.3C).

One can make the problem more interesting by adding a third “generalist”
phenotype, which does relatively well across both environments (Fig. 7.3D-F,
green dot). This generalist creates a kink in the Pareto frontier, meaning that
it will be optimal as a constant phenotype for a certain range of environmen-
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tal conditions. Thus, depending on the frequencies of the two environmental
states, the optimal strategy consists either of having a constant specialized phe-
notypes (blue or orange) when one environment is much more frequent than
the other, a constant generalist phenotype (green) when the two environments
have similar frequencies, or switching between a specialized phenotype and
the generalist phenotype in intermediate situations (Fig. 7.3F). The transition
from specialist to generalist was studied in a similar model in [200], but in the
slightly different context of a continuous choice of strategies.

These conclusions generalize to an arbitrary number d of environmental
states. It follows from the graphical construction that for a given statistics of
the environment, the number of discrete phenotypes between which the pop-
ulation may switch in optimal strategies is at most equal to the number of
different environmental conditions, d: the subset of the extended fitness set
corresponding to this switching is the polytope of dimension d− 1 whose ver-
tices are these d phenotypes (a segment for d = 2, a triangle for d = 3). This
observation may be viewed as extending to changing environments the prin-
ciple of competitive exclusion stating that a single niche cannot support more
than one species.

We complement the graphical analysis by analytical results in the simplest
case of two environments and two phenotypes illustrated by Fig. 7.4A-C. Since
only the relative fitnesses in each environment is relevant for the dynamics, we
set without restriction of generality the replication rate of each phenotype in its
preferred environment to 1. The other phenotype has a selective disadvantage,
with replication rate wx < 1:

f(σ, x) =

1 σ = x,

wx σ 6= x.
(7.10)

The parameter wx can be interpreted as the degree of specialization: wx = 1

means no specialization, while wx = 0 means extreme specialization. Since
p(1) = 1− p(2) and π(1) = 1− π(2), there are just two free parameters p2 ≡
p(2) and π2 ≡ π(2). In these variables the long-term growth rate (7.7) is written
as

Λ =p2 log[(1− π2)w2 + π2]

+ (1− p2) log[1− π2 + π2w1)].
(7.11)

To find the optimal fraction of the population with phenotype 2, π?2, Eq. (7.11)
is to be maximized over π2 ∈ [0, 1]. The optimization yields

π?2 =


0 if p2 6 plb

2 ,
p2−p

lb
2

pub
2 −plb

2

if plb
2 < p2 < p

ub
2 ,

1 if p2 > pub
2

(7.12)
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Figure 7.4: Transitions between switching and non-switching strategies depend on en-
vironmental selectivity and environmental frequencies. In a temporally un-
correlated environment changing randomly between two states, 1 and 2,
a population of organisms is adapted optimally by either being in a sin-
gle phenotypic state or by having a mixture of phenotypes (bet-hedging)
depending on the statistics of the environment and the degree to which
the phenotypes are specialized. In environment x = 1 (2) phenotype 2
(1) has replication rate wx relative to the other phenotype. (A) Transitions
as a function of specialization level and environmental frequency in the
symmetric case, w1 = w2 = w. The black lines mark the transition from
single-phenotype to bet-hedging strategies: above the upper (lower) line
the entire population optimally has phenotype 2 (1), between the two lines
phenotypic diversification provides an advantage. The optimal fraction of
phenotype 2 in the bet-hedging region is shown by the colored lines. (B)
Regions of selection factors in which bet-hedging is the preferred strategy
(shaded areas) for environments with different frequencies of being in state
2. Either strong selection or a precise mapping between the relative selec-
tion factors and the relative environmental frequencies are needed to make
bet-hedging optimal.
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with lower and upper bounds

plb
2 =

w2
1+ (1−w2)w1/(1−w1)

(7.13)

pub
2 =

1

1+ (1−w2)w1/(1−w1)
(7.14)

on the environmental frequencies for which diversification is optimal. The cal-
culation recapitulates the conclusions from the graphical method (Fig. 7.4C).
In the limit were selection is very stringent, w1 → 0 and w2 → 0, the tran-
sitions disappear, plb

2 → 0 and pub
2 → 1 and the optimal strategy reduces to

proportional betting,

π?2 = p2. (7.15)

In the context of biological bet-hedging, this result was already noted by Cohen
[118]; it was also derived earlier in the context of gambling by Kelly [206].

The range of environmental frequencies for which bet-hedging is favored
over the non-switching strategies depends strongly on the selectivity of the en-
vironments (Fig. 7.4A). Consider for simplicity the symmetric case w1 = w2 =
w, then non-switching strategies are favored for |p2 − 1/2| > (1−w)/[2(1+w)].
In the limit,w→ 0, the strategy tends to proportional bet-hedging as discussed
earlier. The larger w, the smaller the region of environmental frequencies for
which switching strategies are optimal. As there is smaller variability in fitness
across generations for the same phenotype, switching is less needed to hedge
against environmental fluctuations.

Instead of considering transitions in optimal strategies as environmental fre-
quencies are varied, we can also consider transitions as selection pressures are
varied at fixed environmental frequencies (Fig. 7.4B). As selection pressures
are decreased there are transitions to a non-switching strategy (white areas in
Fig. 7.4B). The optimality of bet-hedging (shaded areas in Fig. 7.4B) for weak
selection pressures depends on a precise matching between the asymmetry
in selection pressures and environmental frequencies. This conclusion gener-
alizes the results of [201], which considered numerically asymmetric fitness
landscapes, w1 6= w2, but only with a symmetric environment, p1 = p2 = 1/2.

7.4 transitions between optimal immune strategies

Fitnesses achievable by single phenotypes (orange dots in Fig. 7.2) can fill a
set delimited by a continuous line, called trade-off function, which is the Pareto
frontier of non-switching strategies. It is common to consider such a contin-
uous set of phenotypes with all possible switching strategies between them
[109, 200]. The Pareto frontier of switching strategies defined in the previous
section then delimits the convex hull of that continuous set. The two Pareto
frontiers (of switching and non-switching strategies) coincide if the trade-off
function is concave, i.e. if the set of achievable phenotypes is convex; in that
case non-switching strategies are optimal everywhere. Otherwise, similar tran-
sitions as in the previous section will arise [200]. In some biological situations



7.4 transitions between optimal immune strategies 89

Fitness vectors of Pareto optimal strategies

fit
ne

ss
 in

 p
re

se
nc

e 
of

 p
at

ho
ge

n

fitness in absence of pathogen

BA

fit
ne

ss
 in

 p
re

se
nc

e 
of

 p
at

ho
ge

n

fitness in absence of pathogen

C

fit
ne

ss
 in

 p
re

se
nc

e 
of

 p
at

ho
ge

n

fitness in absence of pathogen

D

fit
ne

ss
 in

 p
re

se
nc

e 
of

 p
at

ho
ge

n

fitness in absence of pathogen

unprotected
innate switching

protoadaptive switching

adaptive switchingtolerance

innate

protoadaptive

adaptive

Fitness vectors of individuals

protected

adaptive

innate

xx
x

x

Figure 7.5: Strength of trade-offs between constitutive and defense cost of protection
determine adaptation strategy in a fluctuating pathogenic environment. In
the model, unprotected individuals have a fixed fitness profile (grey dot).
Protection comes in various degrees of adaptability (dashed purple line)
between maximal (blue dot) and minimal (red dot) level of constitutive in-
vestement in defense. Switching strategies are possible where only parts
of the population are protected. They have fitnesses that are a linear com-
bination of the fitness of unprotected and protected indviduals for a given
level of adaptability. The optimal strategy needs to lie along the Pareto
frontier of the possible fitnesses. The strategies that lie on the Pareto sur-
face allow reading off the succession of optimal strategies as the probabil-
ity of encountering the pathogen is decreased. (A) Strong trade-offs lead to
switching strategies being better then adaptable protection. (B) For shallow
trade-offs the Pareto frontier is achieved by adaptable defenses. (C) A com-
bination of shallow and steep trade-offs can lead to only some degree of
adaptability being used. (D) A concave trade-off function can lead to first
order transitions in strategy and potential co-existence of locally optimal
solutions.

however, only some combinations of phenotypes along a trade-off function
may be accessible at the same time, meaning that one cannot switch between
all phenotypes on the trade-off line. Such a constraint on switching rates can
induce discontinuous transitions, or cause the co-existence of multiple locally
optimal solutions, as we now illustrate in a simple model of evolution of im-
munity.

Our illustrative example is a model that we proposed to explain the diver-
sity of immune strategies observed across the tree of life [139]. The purpose is
to show how different strategies are associated with different statistics of path-
ogen dynamics. In its simplest form, the model has two environmental states,
presence (x = 1) or absence (x = 0) of a pathogen. In a given strategy, it has
two accessible phenotypes, protected (σ = 1) or unprotected (σ = 0). Strategies
are represented by f = (f(x = 0), f(x = 1)) as before.

The unprotected phenotype is fixed in fitness space: f = (fbase, finf) (grey dot
in Fig. 7.5), where finf < fbase is the reduced fitness in infected unprotected
individuals. By constrast, the protected phenotype lies on a trade-off function:
f = (fcon, fdef(fcon)), with fcon ∈ [fmin

con , fmax
con ] (dashed purple line delimited by

red and blue dots in Fig. 7.5). fcon < fbase represents the reduced fitness due to
the investment into the protection, while fdef > finf is the fitness of protected
individuals in presence of the pathogen.
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The choice of fcon along the trade-off function sets the investment into the
protection, and is part of the strategy: once this strategy is fixed, it is possible to
switch between protected and unprotected phenotypes, but not between differ-
ent points of the trade-off function. This constraint can be justified biologically
by the high cost of plasticity that such switches would incur.

The function fdef(fcon) encodes the trade-off between the efficiency of the
protection and its cost. By analogy with immune mechanisms in vertebrates,
we interpret it in terms of adaptivity of the response within the lifetime of the
organism, with higher adaptivity enabling lower cost at the expense of lower
protective efficiency [139]. We therefore refer to the maximally protective and
costly strategy with fcon = fmax

con as innate immunity and to the minimally pro-
tective and costly strategy with fcon = fmin

con as adaptive immunity. Intermediate
strategies with fmin

con < fcon < f
max
con are referred to as protoadaptive.

Within this model, the equation for long-term growth rate in an uncorrelated
environment (7.7) becomes

Λ =p ln[πfdef + (1− π)finf]

+ (1− p) ln[πfcon + (1− π)fbase],
(7.16)

where p ≡ p(x = 1) is the probability of the presence of the pathogen and
π ≡ π(x = 1) the probability of being protected. Here, the problem is not only
to find the optimal switching probability π?, but also to find the optimal pro-
tection adaptability, f?con. To summarize, the problem is as follows: for a given
p, finf, fbase and fdef(fcon), find f?con and π? that maximize long-term growth
rate in Eq. 7.16.

We are particularly interested in transitions between f?con,π? taking inter-
mediate or extremal values within their respective ranges. Given that each of
these two variables can either reach its lower or upper bound or take an in-
termediate value, nine different cases may arise. However, since the level of
adaptability of the response is inconsequential if none of the population is pro-
tected (π? = 0), only seven qualitatively different immune defense strategies
are relevant: tolerance (π? = 0, grey dot in Fig. 7.5), innate (π? = 1, fcon = fmax

con ,
blue dot in Fig. 7.5), adaptive (π? = 1, fcon = fmin

con , red crossed dot in Fig. 7.5),
protoadaptive (π? = 1, fmin

con < fcon < f
max
con , light blue line with purple dashes in

Fig. 7.5), innate switching (0 < π? < 1, fcon = fmax
con , blue line in Fig. 7.5), adap-

tive switching (0 < π? < 1, fcon = fmin
con , red line in Fig. 7.5), and protoadaptive

switching (0 < π? < 1, fmin
con < fcon < f

max
con , light-blue line in Fig. 7.5).

Which of these strategies is optimal in a given environment? And what is the
nature of the transitions between strategies as the frequency of encountering
the pathogen is varied? Here, we apply the graphical method to answer these
questions and show how the answers depend critically on the shape of the
trade-off function. Our conclusions, summarized in Fig. 7.5, are supported by
analytical results derived in Appendix D.2.

The simplest case is when adaptability comes at an excessive cost, as de-
picted in Fig. 7.5A: an innate switching strategy is then always preferable to
an adaptive strategy. In this case, as the probability of encountering the path-
ogen increases, the optimal strategy transitions from tolerance (grey dot in
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Fig. 7.5A) to an innate defense strategy (blue dot in Fig. 7.5A) via an innate
switching (blue line in Fig. 7.5A). When adaptability of the defense does not
impair its effectiveness as severely, as in Fig. 7.5B, two new transitions occur.
As the probability of encountering the pathogen increases, the optimal strategy
now transitions from tolerance to, successively, adaptive switching, adaptive,
protoadaptive and finally innate defense strategy. In other cases, a switching
protoadaptive defense strategy may also be optimal, as in the case of the trade-
off function of Fig. 7.5C. In this case, as the probability of encountering the
pathogen increases, the optimal strategy transitions from tolerance to, succes-
sively, protoadaptive switching, protoadaptive and finally innate defense strat-
egy. Finally, we may consider a case where the trade-off line is not convex as
in Fig. 7.5D. The Pareto frontier is then not necessarily concave, and we might
have first order transitions between strategies. For the trade-off shape shown
in Fig. 7.5D, there is a transition from protoadaptive switching (blue line with
purple dashes) directly to innate switching (blue line), with a discontinuity in
the level of adaptability of the response.

7.5 when and how to use memory in temporally correlated en-
vironments

In temporally correlated environments, the past phenotypes of an individual
carry information about the next environmental state. The optimal switching
strategy may thus involve memory, i.e. it may be advantageous for π(σ|σ ′) to
depend on σ ′. Stochastic switching with memory serves an additional purpose
relative to the memoryless switching strategies considered so far: in addition
to providing a bet-hedging mechanism against the uncertainty of the environ-
ment, it provides the variation and heritability needed for tracking the envi-
ronmental state. Here, we extend the previous analysis to characterize the con-
ditions under which temporal correlations in environmental fluctuations favor
switching strategies with memory over non-switching strategies. The graphi-
cal method does not extend to correlated environments but we show that the
transitions between switching and non-switching strategies can be character-
ized analytically.

7.5.1 Insights from the adiabatic limit

It is instructive to start with long correlation times, when the duration of each
environmental state is much longer than the time that it takes for the popu-
lation to reach its steady state composition. In this adiabatic limit, the model
is analytically solvable [111, 117]. We present the solution for the case where
switching takes place between a number of different phenotypes, with each
phenotype σ being best in one environment x, which we denote by the same
symbol σ = x (other cases can in fact always be reduced to this one [117]). A
calculation based on a series of eigendecompositions of the growth matrix in
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different environments (see Appendix D.3 for derivation) leads to an expres-
sion of the long-term growth rate as [117]

Λ =
∑
x

p(x) ln f(x, x)

+
∑
x,x ′

p(x|x ′)p(x ′) ln[π(x|x ′)Γ(x, x ′)],
(7.17)

which involves the overlap Γ(x, x ′) between steady-state population composi-
tions in environments x, x ′, given by

Γ(x, x ′) =
f(x, x ′)

f(x ′, x ′) − f(x, x ′)
+

f(x, x)
f(x, x) − f(x ′, x)

, (7.18)

if the environment changes, x 6= x ′, and 1 otherwise.
Optimizing Eq. 7.17 over π(x|x ′) subject to the normalization constraint

leads to π?(x|x ′) = p(x|x ′). Within the adiabatic limit, the optimal strategy is
therefore always to diversify, with switching rates equal to the environmental
switching rates. This generalizes the result that proportional betting is optimal
in the limit of strong selection, Eq. 7.15, to the case where reaching steady state
takes longer but environmental switches are rarer. In contrast to the results in
the previous section, switching is always favored in the adiabatic limit, even
when selection is weak.

We can use the expression of Eq. 7.17 to ask how much each phenotype σ
should be specialized to its environement x = σ. Being more specialized means
higher fitnesses of the adapted phenotypes, f(x, x), at the expense of lower
fitnesses for the maladapted phenotypes, f(x, x ′ 6= x), assuming a trade-off
between the two. More specialized phenotypes have lower relative replication
rate w(x, x ′) = f(x, x ′)/f(x ′, x ′) [w(x, x ′) reduces to wx ′ of Eq. 7.10 in the case
of two environmental states]. Rewriting

Γ(x, x ′) =
w(x, x ′)

1−w(x, x ′)
+

1

1−w(x ′, x)
, (7.19)

we see that specialization also implies lower overlaps Γ(x, x ′), and thus lower
values for the second term in the long-term growth rate Eq. 7.17. On the other
hand, the first term in Eq. 7.17 grows with f(x, x), i.e. with higher specialization.
Because of these contradictory terms, the optimal strategy along the trade-off
between f(x, x) and f(x, x ′) will depend on the details of trade-off function and
of the environmental statistics. However, as environment fluctuations become
slower, p(x|x ′ 6= x) → 0, the second term in Eq. 7.17 vanishes for x 6= x ′,
letting the first term dominate. In that limit, highly specialized phenotypes
become more and more advantageous. This observation is again in contrast
with the results of the preceding section (Fig. 7.3D-F), which have shown that
generalists are optimal under certain environmental conditions.
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Figure 7.6: Switching strategies are favored over a larger range of conditions if envi-
ronmental states are temporally autocorrelated. Here we generalize the re-
sults of Fig. 7.3A-C about transitions between switching and non-switching
strategies by considering the influence of environmental correlation. The
numerically obtained optimal switching rate π?(σ = 2) is plotted as a
function of tc, the characteristic time scale of environmental changes, and
p(x = 2), the fraction of the time the environment is in state 2. The range
of environmental frequencies in which there is switching (0 < π? < 1)
increases with temporal correlations. As a comparison we also show the
analytical transition lines obtained in Sec. 7.5.3, Eqs. (7.31)-(7.32).

7.5.2 Connecting the limit of uncorrelated and adiabatically switching environments
numerically

So far we have considered two opposite limits: temporally uncorrelated envi-
ronments in Sec. 7.3 and 7.4, and temporally correlated environment with long
correlation times in Sec. 7.5.1. These two limits give very different answers to
the questions of whether bet-hedging is desirable, or whether generalist phe-
notypes can be optimal. To study the intermediate regime between these two
extremes, we first start by presenting the results of a numerical study, based
on the recursion equation Eq. 7.1. We apply the numerical approach described
in Ref. [139]. In short, we approximate the long-term growth rate numerically
by simulating for a large number of generations, and then use a derivative-free
global optimization algorithm to roughly find the global optimum. In practice,
we focus on two-state environments, which we characterize by their character-
istic time scale, tc, defined by e−1/tc = 1− p(1|2) − p(2|1) and the probability
of being in state 2, p(x = 2). The numerical results show how the two limits
are connected for the case without (Fig. 7.6) and with a generalist phenotype
(Fig. 7.7). In temporally correlated strategies, phenotype frequencies vary with
the environmental history. To represent strategies in a simple way that gen-
eralizes the case of memoryless strategies, we define π(σ) as the steady-state
frequency of phenotype σ in a lineage,

∑
σ ′ π(σ|σ

′)π(σ ′) = π(σ). Consistent
with results in the adiabatic limit, for large tc switching strategies dominate
across the range of environmental frequencies (Figs. 7.6 and 7.7): ∀σ,π?(σ) < 1.
In the case where there is an intermediate, generalist phenotype (σ = 3) the
switching takes place primarily between the specialist types: π?(σ = 3) � 1
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Figure 7.7: Switching between specialists is the preferred adaptation strategy in highly
correlated environments even if a generalist phenotype is optimal in uncor-
related environments. Here we generalize the results of Fig. 7.3D-F about
transitions between switching, specialist, and single-phenotype generalist
strategies by considering the influence of environmental correlation. The
numerically determined optimal frequencies of different phenotypes π?(σ)
in a lineage are plotted as a function of tc, the characteristic time scale of
environmental changes, and p(x = 2), the fraction of the time the envi-
ronment is in state 2. As a comparison we also show the analytical transi-
tion lines between single-phenotype and switching strategies obtained in
Sec. 7.5.3, Eqs. (7.31)-(7.32) (solid lines) and the approximate transition line
above which switching takes place between the two specialist phenotypes
as obtained in Sec. 7.5.1 and App. D.3, Eq. (D.46) (dashed lines).

for large tc (Fig. 7.7), consistent with the argument that specialized pheno-
types are optimal in the adiabatic limit (Sec. 7.5.1). The transition to a regime
where non-switching strategies are optimal happens when the temporal cor-
relations of the environment are of the order of the generation time, tc ∼ 1.
In this regime, all three phenotypes (two specialists and one generalist) may
co-exist in the optimal strategy, ∀σ,π∗(σ) > 0. Recall that such mixtures in-
volving more phenotypes than distinct environments are suboptimal in mem-
oryless environments, tc = 0, as deduced from the graphical construction (see
Sec. 7.3.3).

7.5.3 An analytical result for intermediate timescales

We present here an approach to derive analytically the boundaries between
optimal switching and non-switching strategies in correlated environments.
The approach is based on an expansion at small switching rates of the Master
equation of the joint environmental and population switching process near the
transition boundary.

For notational convenience we assume replication precedes mutation and
rewrite the recursion equation for the fraction of the population in each state
nt(σ) = Nt(σ)/Nt with Nt =

∑
σNt(σ),

nt+1(σ) =
1

Zt

∑
σ ′
π(σ|σ ′)f(σ ′, xt)nt(σ ′), (7.20)
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where Zt is a normalization constant enforcing
∑
σ nt(σ) = 1. Since NT =

N0
∏T
t=0 Zt the long-term growth rate given by Eq. 7.3 becomes

Λ = lim
T→∞ 1T

T∑
t=0

lnZt. (7.21)

For simplicity, we consider a two-state model again. We introduce the sim-
plified notations π(1|2) = π12, π(2|1) = π21 for the type switching rates,
p(1|2) = p12, p(2|1) = p21 for the environment switching rates, and denote
nt(2) = nt, and redefine xt to be 1 if the environment is in state 2 and 0

otherwise. We use the same convention as in Eq. 7.10, f(1, 1) = f(2, 2) = 1,
w(2, 1) = w1 and w(1, 2) = w2. This allows us to rewrite the recursion equa-
tion as

nt+1 =
1

Zt

(
nt(1− π21)w

1−xt
1 + (1−nt)π12w

xt
2

)
(7.22)

with

Zt = ntw
1−xt
1 + (1−nt)w

xt
2 . (7.23)

To analyze the transition from an optimal strategy where all individuals
have phenotype 1 to a strategy with some switching to the other phenotype,
we need to know whether a small π12 is better than π12 = 0 – if that is the
case, then switching is advantageous. We thus consider π12 � 1 and nt � 1.
The recursion Eq. 7.22 becomes at leading order in nt and π12:

nt+1 = π12 + (1− π21)w
1−xt
1 w−xt

2 nt. (7.24)

lnZt can also be expanded:

lnZt = xt lnw2 −nt +ntw
1−xt
1 w−xt

2

= xt lnw2 +nt(w1 − 1) + xtnt(w−1
2 −w1).

(7.25)

Over long times the joint environmental-population process is ergodic. The
long-term growth rate is thus given as 〈lnZ〉, where 〈.〉 indicates an average
over the steady state distribution of x,n. No switching (n = 0) gives a long-
term growth rate of 〈x〉 lnw2 Thus the difference in long-term growth rate
between stochastic switching and the single-phenotype strategy is

∆Λ = 〈n〉(w−1
2 −w1)

(
〈xn〉
〈n〉

−
1−w1

w−1
2 −w1

)
, (7.26)

which shows that stochastic switching is advantageous if

〈xn〉
〈n〉

>
1−w1

w−1
2 −w1

. (7.27)

We can identify the right-hand side of this equation with the lower bound
environmental frequency plb

2 in uncorrelated environments defined in Eq. 7.13.
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When there is no memory, n and x are uncorrelated, the left-hand side reduces
to 〈x〉 = p(x = 2) and we recover the result of Eq. 7.12. If there is memory,
then n and x are positively correlated through the effects of selection on the
population composition, which increases the fraction on the left-hand side.
This leads us to a first important conclusion: switching is favored over non-
switching strategies under a wider range of environmental parameters in the
presence of temporal autocorrelation.

We go further and calculate analytically the left-hand side of Eq. 7.27 at
the transition. Some algebra shows that ρ1,t = 〈(1− xt)nt〉 and ρ2,t = 〈xtnt〉
satisfy the recursion

ρ1,t+1 =p21[π12p2 + (1− π21)w
−1
2 ρ2,t]

+(1− p12)[π12(1− p2) + (1− π21)w2ρ1,t], (7.28)

ρ2,t+1 =(1− p21)[π12p2 + (1− π21)w
−1
2 ρ2,t]

+p12[π12(1− p2) + (1− π21)w2ρ1,t], (7.29)

where we use the short-hand notation p2 = p21/(p12 + p21) = 〈x〉 for the av-
erage fraction of generations the environment is in state 2. Therefore at steady
state, ρσ,t = ρσ,t+1 = ρσ, we have

〈xn〉
〈n〉

=
ρ2

ρ2 + ρ1

=
p2
[
1− (1− π21)e

−1/tcw1
]

1− (1− π21)e−1/tcw1 [(1− p2)w1w2 + p2]
,

(7.30)

where we recall that e−1/tc = 1 − p(1|2) − p(2|1) quantifies memory in the
environment. The expression in (7.30) is a decreasing function of π21 so its
maximum is achieved in the limit of π21 going to zero. Setting π21 = 0 in
Eq. 7.30 and plugging the result into Eq. 7.27, we obtain the condition needed
for optimal switching to outperform always being in state σ = 1:

p2 >
(1−w1)(1− e

−1/tcw−1
2 )

(w−1
2 −w1)(1− e−1/tc)

. (7.31)

The second transition, between optimal switching and always being in state
σ = 2, is given by the replacements w1 → w2, w2 → w1, p2 → 1−p2, yielding
the condition:

p2 <
(w−1
1 − 1)(1− e−1/tcw2)

(w−1
1 −w2)(1− e−1/tc)

. (7.32)

These transitions reduce to (7.12) in the limit of no environment memory,
tc = 0. The transition curves reach p2 = 0 and p2 = 1 at tc = −1/ ln(w2) and
tc = −1/ ln(w1), respectively. The resulting phase diagram is shown in Fig. 7.6
along with a numerical optimization, which confirms the results.

The analytical results show that temporal correlations in the environment
favor the evolution of stochastic switching. We can compare to the case of
uncorrelated environments considered in Fig. 7.4. While switching is only op-
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Figure 7.8: Environmental correlations increase the range of fitness landscapes for
which switching strategies are optimal. Region where switching is opti-
mal (in between colored lines) as a function of environmental correlation
time. Two state environment as in Fig. 7.4 with symmetric environmental
frequencies, p2 = p1 = 0.5. Selection coefficient s(x) quantifies how much
the best adapted phenotype to environment x outperforms the suboptimal
phenotype for that environment.

timal in uncorrelated environments if selection is strong in both environments
(blue line in Fig. 7.8), temporally-correlated environments make it optimal for
smaller or asymmetric selection (e.g. red line in Fig. 7.8). We may interpret
this broadening of the range where switching is optimal by noting that, in cor-
related environments, switching does not just contribute to bed-hedging but
also to adaptively tracking the state of the environment.

7.5.4 Continuous time limit

Lastly, we discuss the continuous time limit of Eq. 7.1 where our results take
a simple form. The limit is obtained by rescaling the switching rates, growth
rates, and times by δt, p(x|x ′) → p(x|x ′)δt for x 6= x ′, π(σ|σ ′) → π(σ|σ ′)δt for
σ 6= σ ′, and ln[f(σ, x)] → m(σ, x)δt, t → t/δt, tc → tc/δt, lnwx → lnwx/δt,
Λ→ Λ/δt and sending δt→ 0, which yields

dN
dt

= Ax(t)N(t), (7.33)

where Ax(t)σ,σ ′ = m(σ, x(t))δσ,σ ′ + π(σ|σ
′).

We can take the limit of the results obtained in Sec. 7.5.3 to see how temporal
autocorrelation influences the results in this case. From Eq. 7.31 we obtain

p2 >
1+ tc lnw2

1+ lnw2/ lnw1
, (7.34)
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the left of the blue line, the optimal solution is for the population to have
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is to have single phenotype σ = 2. In between the optimal solution is to
switch between both phenotypes. The blue transition line reaches p = 0 at
tc = −1/ lnw1, while the red transition reaches p = 1 at tc = −1/ lnw2.
The two transitions meet at p = lnw1/ ln(w1w2) (dashed line). Parameters:
lnw2 = −2 and lnw1 = −1.

and from Eq. 7.32

p2 <
1− tc lnw2

1+ lnw2/ lnw1
. (7.35)

The formulas are simpler and notably linear in the correlation time tc. The
range of environmental frequencies for which stochastic switching is opti-
mal thus grows linearly with the environmental correlation time scale tc, as
−2tc lnw1 lnw2/ ln(w1w2).

The point p2 = 0 is reached by the first transition Eq. 7.34 from the non-
switching to switching regime for tc = −1/ lnw2, and the point p2 = 1 reached
by the second transition for tc = −1/ lnw1 Eq. 7.35, as in the discrete time
case. In the limit of no environmental memory, tc = 0, the two transitions
are at the same point lnw1/ ln(w1w2): this means that bet-hedging is never
advantageous and the transition is from one single-phenotype strategy to the
other. This is in contrast with the solution in discrete time, where there always
is a window in which bet-hedging is favored, regardless of the environmental
memory. Since in any finite time interval, the environment cycles through all
its states, the population effectively only sees the mean environment. The long-
term growth rate in continuous time is thus given by

Λ =
∑
x

p(x)
∑
σ

f(σ, x)π(σ) (7.36)



7.6 discussion 99

which is a linear function in π(σ). Λ is optimized by putting all weight on the
phenotype σ with largest average fitness

∑
x p(x)f(σ, x). Thus no switching

strategies can be optimal and the optimal strategy always consists of a single
phenotype.

7.6 discussion

Our results provide a unified view of transitions between optimal adaptive
strategies in randomly fluctuating environments. By revisiting the fitness set
representation of Levins [109], valid for temporally uncorrelated environments,
we presented a graphical method, supplemented by analytical calculations, to
determine the transitions between bet-hedging and single-phenotype strate-
gies, as well as between specialist and generalist phenotypes (Fig. 7.3), gener-
alizing previous results [118, 109, 207, 206, 117, 200]. Extending the method
to phenotypes constrained by a trade-off function, we constructed graphically
and calculated analytically the transitions between optimal strategies of diver-
sification and adaptability in a simple model of evolution of immunity [139]
(Fig. 7.5).

As noticed in previous studies, temporal correlations in the environmental
conditions influences the choice of optimal adaptation strategies [208, 199, 203].
The intermediate timescale regime, where the environmental correlation time
is of the same order as the generation time, has been notoriously difficult to
handle analytically. Here, we presented an analytical approach to show how
temporal correlations in environments can be exploited by switching strategies
that keep some memory of previous phenotypes. Our results show that tempo-
ral correlations broaden the range of selective pressures for which a switching
strategy is better than a single-phenotype one. Everything else being equal,
switching strategies are thus more favorable in correlated environments than
in uncorrelated environments. To our knowledge, only one other analytical
approach is available to analyze optimal strategies in correlated environments
[203].

The results are independent of mechanisms, which may take different forms.
For instance, one mechanism to achieve a generalist phenotype is through plas-
ticity, i.e., a generalist phenotype may partly or totally be induced by the en-
vironmental condition. In our approach, however, only the value of the repli-
cation rate f(σ, x) in environmental condition x given the inherited type σ
matters, not the process by which it is achieved. Only when the induced phe-
notype may be transmitted to the next generation, as for instance with the
Lamarckian CRISPR-like strategy of [139], does the distinction between inher-
ited and induced phenotype, and therefore the concept of plasticity, become
relevant.

Possible extensions of our results include the influence of non-random en-
vironmental changes, such as periodic environments [209, 204, 199, 203], con-
straints on relative switching rates [201, 209, 202], active sensing mechanisms
[111] and heritable plasticity [186, 139], or finite population size effects [210].
Some of these factors are known to lead to transitions between adaptive strate-
gies, e.g. the variability of environmental durations [203], or cause the transi-
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tions to become discontinuous, e.g. when switching rates are constrained to be
independent of phenotype [201, 209, 202].
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8
C O N C L U S I O N S

8.1 main contributions of this thesis

As outlined in Ch. 1 this thesis has explored consequences of the hypothesis
that immune systems are well-adapted to the statistical structure of pathogenic
environments. This perspective has led us to a number of interesting results
about how optimal immune systems allocate resources and process informa-
tion with regard to the pathogenic environment.

The composition of immune repertoires determines the breadth and speed
of protection provided by the adaptive immune system. We have developed
a statistical model of pathogen recognition by the adaptive immune system
(Ch. 4,5). By analyzing optimal resource allocation within this model we pro-
vide a novel theoretical framework for understanding the organization and
dynamics of immune repertoires.

Our work on optimal resource allocation in a fixed pathogen environment
(Ch. 4) makes concrete testable prediction about statistical features of well-
adapted repertoires that can inform analysis of high-throughput repertoire
sequencing experiments. We have shown that optimal repertoires are biased
towards common pathogens but less than proportionally to the relative fre-
quency. This speeds up defense by providing efficient protection against com-
mon threats while leaving sufficient resources for combatting rare threats that
could become harmful if left unchecked. Considering resource allocation with
cross-reactivity of receptors we demonstrated that optimal repertoires focus
resources on a few clones that collectively tile the space of pathogens. The pre-
cise position of these peaks is ill-constrained so that a small difference in the
experienced antigen distribution can lead to large changes of the repertoire.
Repertoires that differ a lot on the sequence level can provide comparable pro-
tection once cross-reactivity is factored in. This cautions against measures of
immune protection based solely on the idea of "public" repertoires of specific
cells shared across individuals [30]. Our results argue for a view in which
protection should be defined on a broader level that takes into account cross-
reactivity. There are some encouraging hints coming from bioinformatic analy-
ses to sustain this view. For example, using the frequency of short stretches of
CDR3 amino acid sequences provides better discrimination of pre- and post-
immunization repertoires than using full sequence identity [60, 61].

We have also shown that optimal repertoires in a fixed environment can be
reached via a self-organized dynamics based on antigen-driven proliferation
and competition between clones cross-reactive to the same antigens (Ch. 4).
This result has prompted us to investigate in more generality optimal reper-
toire dynamics in changing pathogenic environments. We have derived the
optimal dynamics under the assumption of additive costs of infections in a
Bayesian framework (Ch. 5). In this framework the repertoire optimally infers
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the statistics of the pathogen environment from its infection history. The theory
predicts features of immunological memory in the adaptive immune system
and provides a way to quantify the benefit of memory as a function of the
relevant parameters. Our results link the amount of memory production upon
infection to the variability of the pathogenic environment, and the decay of
memory to the time scale of pathogens. We argue that the observed useful-
ness of immunological memory implies that the relevant features the immune
system is trying to learn are highly sparse in the space of possible antigens.

Biological organisms have evolved a wide range of immune mechanisms to
defend themselves against pathogens. Beyond molecular details, these mech-
anisms differ in how protection is acquired, processed and passed on to sub-
sequent generations – differences that may be essential to long-term survival.
We have extended a model for evolution in fluctuating environments [117]
to include features specific to immunity (Ch. 6). We analyzed which adap-
tive strategies maximize long-term growth rates in the model to get insights
into the evolution of diverse immune strategies. We find that the two key de-
terminants of an optimal immune strategy are the frequency and the charac-
teristic timescale of the pathogens. Depending on these two parameters, our
framework identifies distinct modes of immunity, including adaptive, innate,
bet-hedging and CRISPR-like immunities, which recapitulate the diversity of
natural immune systems. The resulting phase diagram of optimal immune
strategies might be used to guide future research into so-far unidentified or
underappreciated immune mechanisms.

Prompted by our results on the distinct optimal immune strategies we have
shown more generally the existence of transitions between adaptive strategies
in fluctuating environments as environmental frequencies and fitness land-
scapes are varied (Ch. 7). In particular, we provide novel analytical results for
transitions between switching and non-switching strategies in temporally cor-
related environments. Our results show that temporal correlations between en-
vironmental conditions favor evolutionary tracking of the environmental state
by specialist phenotypes over more generalist phenotypes.

8.2 ideas for future research

8.2.1 Detour: Analysis of repertoire data

A strong motivation of developing theoretical models of biological systems
is to inspire novel ways of analyzing data. Theory can help make progress
even without immediate direct tests if it helps sharpen intuition and provides
inspiration of novel ways of analyzing data. By turning verbal hypotheses into
precise mathematical models one is forced to make assumptions explicit and
develop tools to analyze these mathematical models. Method development is
often easier on the synthetic data coming from models, where there is full
control over the process that generates data. The analysis method might then
be adapted to the analysis of real data. To illustrate this assertion we present
some preliminary results of an analysis of immune repertoire sequencing data
based on ideas emanating from the work presented in Part ii.
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Figure 8.1: Radial distribution functions relative to the initial distribution for different
times t in a simulation of the competitive mean-field dynamics introduced
in Chapter 4 (t = ∞ from optimization). Parameters: A(x) = 1/(1+ x2),
death rates d = 0.001, discretization 0.5σ, two dimensional recognition
space of length 20σ with periodic boundary conditions. Pathogen (ini-
tial repertoire) frequencies correlated in shape space were generated as
in Fig. 4.4 with coefficient of variation 1.0 (0.2) and correlation length 5σ
(5σ).

Recall that in the adaptive immune system the composition of the reper-
toire of lymphocyte receptors determines immune protection against diverse
pathogens. The repertoire is shaped by the past population dynamics of lym-
phocytes. There is an interesting possibility to study lymphocyte dynamics
indirectly based on single time point sequencing data by looking for signa-
tures of a particular dynamics in the repertoire statistics. We have shown that
competitive proliferation upon antigenic stimulation is a candidate dynamical
principle that allows a repertoire to self-organize into a state of good antigenic
space coverage (see Part ii). Such a dynamics results in characteristic signatures
in the distribution of receptor sequences in recognition space. For large times
compared to the lifetime of lymphocytes competitive exclusion leads to a dip
in the radial distribution at a distance of the order of the typical cross-reactivity
width (Fig. 8.1). For small times the dominant effect is convergent selection by
the co-variation of stimulation by antigens rather than competition, leading to
an increased correlation in abundances for small distances. Such an effect was
previously observed e.g. in the context of microbiota species abundances [211].
Here, we take a first step towards constructing an analogous measure for real
data to determine whether any similar signatures of either co-stimulation or
competition are present.

We use human immune repertoire sequencing data from Pogorelyy et al.
[212]. In the study the hypervariable region of T cell receptors from peripheral
blood cells of healthy human adults were sequenced using the Illumina HiSeq
platform. In the experimental protocol randomly generated identifiers are in-
serted as barcodes before sequencing, to allow reliable determination of rela-
tive frequencies of different clones. The data were preprocessed as described in
Pogorelyy et al. [212]. The analysis was done on productive α-chain sequences
without separation into T cell subsets (CD4/CD8 or naive/memory).
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Figure 8.2: Normalized histogram of Levenshtein distances of randomly drawn pairs
of sequences of abundant vs. rare sequences in real data. Inset shows nor-
malized histogram of distances between abundant sequences between two
individuals vs. within the individuals. Abundant sequences were defined
as having at least three counts. Individuals starting with the same letter
are twins.

To test for an antigen-dependent competition effect we must define a proxy
for the functional distance of receptors. The sequence-to-function map is com-
plicated but we can try and use a simple metric capturing some of the relevant
features of cross-reactive binding. As a first step we here use the Levenshtein
distance between the CDR3 amino acid sequences. The Levenshtein distance is
defined as the minimal number of single-character edits (deletions, insertions,
and substitutions) required to change one sequence into another.

To overcome the issue of normalization we compare the correlations found
between abundant sequences relative to those in rarer sequences for which
we expect to see less effects of competition. The analysis shows an increase
in close-by abundant as compared to rare sequences and there is a hint of a
small dip in normalized frequency at a distance of around 4 edits (Fig. 8.2).
Abundant sequences are overall more similar to each other as shown by the
decreased frequency of the largest distances. No such difference is observed
when comparing distances of abundant sequences between individuals rela-
tive to within individuals (Fig. 8.2 inset). The data is compatible with a picture
of antigen-driven proliferation based not on the unique infection history but
on universal antigenic signatures shared accross individuals of e.g self or mi-
crobiotal origin. Convergent selection seems to be pre-dominant, although the
small dip might be a possible signature of some degree of competition. Note
that this is a preliminary analysis and that further checks are needed to rule
out an influence of confounding effects and to establish the robustness of the
analysis procedure. Possible confounding effects include the possible influ-
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ence of differing origins of abundant and rare sequences, sequencing errors,
and the preprocessing pipeline. If robust and strong signatures of competition
based on antigen-binding indeed exist there is an exciting possibility of learn-
ing something about what determines cross-reactivity by comparing different
proxies for functional distance.

8.2.2 Some other ideas

Our thinking about repertoires in this thesis has been informed by a view of
repertoires as statistical ensembles [26]. This view emphasizes that protection
is driven not by a core repertoire of receptors shared among most individuals
but emerges from the collection of specificities in a particular individual. In
this view it is natural to search for the effects of antigen-driven selection on
the level of statistical signatures such as proposed in the previous section. Such
statistical signatures might provide robust markers that transcend the stochas-
ticity of individual responses to antigens. There is an interesting expansion
of this view to the question of self/non-self recognition. Can we think of the
self and pathogen proteome as statistical ensembles and analyze self/non-self
discrimination as the statistical distinguishability of the ensembles? To answer This idea has emerged from

discussions with Quentin
Marcou.

this question we need to take into the account the rules of what fragments
of proteins can serve as antigens. Then using known information about self
and foreign proteomes it should be possible to map the two distributions in
antigenic space.

On the road towards a direct confrontation of the theoretical predictions
about immune repertoires (Part ii) with experiments a few major hurdles need
to be cleared. Specifically, in repertoire sequencing studies the knowledge of
the pathogen history often is lacking or incomplete, and despite much progress
our knowledge of the determinants of cross-reactive binding remains incom-
plete. I discuss some current developments and future ideas that might help
surmount these particular hurdles below.

Some partial information about the pathogen history is starting to become
available. This knowledge pertains to particular perturbations to the reper-
toire such as arising from immunization [60] or chronic infection with cy-
tomegalovirus [58]. Germ-free mice have long been studied in immunology,
but going forward an intermediate model system which is neither germ-free
nor has the full complexity of pathogenic history in uncontrolled settings
would be very useful. Studying the long-term immune repertoire dynamics
under controlled pathogen exposure might provide rich data to compare with
our theoretical predictions. Alternatively – although currently this remains
far-fetched – frequent longitudinal sequencing might in principle allow the
reconstruction of the infection history under natural conditions.

To work towards a functional view of the immune protection afforded by
different repertoires requires a better link between the simple shape space
picture and the underlying sequence space. Inspiration about how to make
progress on understanding cross-reactivity might be found in the approaches
used in other biological systems in which specific but cross-reactive binding
underlies biological function (Fig. 8.3): the nose differentiates odors by binding
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Figure 8.3: Specific recognition between molecules from two classes is necessary to
achieve various biological functions. There is no unique specificity in any
of these systems but some degree of cross-reactivity. Due to their shared
features inspiration for how to better describe cross-reactive binding be-
tween immune receptors and antigens might be found in these other sys-
tems.

of odorants by olfactory receptors, cells regulate gene expression by binding
of transcription factors to sites on the DNA, and so on. Across these biological
systems interaction patterns are significantly correlated, i.e. two elements from
the same class are likely to share more interaction partners than expected from
independent connections. The question of how to find relevant mesoscopic
descriptions of the interaction that reproduce these correlations is thus shared
across systems.

A particular promising avenue in immunology is to use data from new sin-
gle cell methods that enable sequencing lymphocyte receptors with known
affinity to particular epitopes [213] or to pair sequencing with affinity measure-
ments [214]. By inferring statistical physics based models of cross-reactivity
landscapes from this data deeper insights into the molecular determinants of
specific binding and the structure of the cross-reactivity network can be ob-
tained.

As a complementary avenue, progress may be made by connecting the geom-
etry of the cross-reactivity network to macroscopic experimental observables.
Concretely, this suggests extending the kind of analysis proposed in Sec. 8.2.1
to find signatures of the ecological dynamics of lymphocytes under different
assumptions on the geometry of cross-reactivity space in macroscopic observ-
ables such as clone size distributions and cross-correlations in abundances
of different receptors. Finally, insights might be obtained from an analysis of
the constraints functional requirements put on the patterns of cross-reactivity.
Cross-reactivity needs to both enable specificity (to avoid recognition of self)
and the ability to cover a large space of possible pathogens with a limited
number of cells. Which structures of cross-reactivity networks are well-suited
to fulfill these dual requirements may be analyzed by exploiting analogies to
high-dimensional packing problems. Furthermore one might analyze how the
features of cross-reactivity influence the efficiency of the (co-)evolution of re-
ceptors relative to pathogenic antigens.

Our results on transitions in adaptive strategies in fluctuating environment
may be tested by means of experimental evolution. Varying selection strengths
in experimental evolution studies like those performed by Beaumont et al.
[196] could provide a way to test the conditional optimality of switching strate-
gies. In the last years many studies have challenged old dogmas about the
evolution of immunity, from the discovery of an adaptive immune system
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in jawless vertebrates to the memory characteristics of many innate defense
mechanisms. Our phase diagram of optimal immune strategies (Ch. 6) could
help guide the discovery of further overlooked immune defense mechanisms.
To give an example, vertebrates have on average longer lifespans than other
organisms and thus according to our theory should be particularly prone to
use adaptive immunity. However, there are also non-vertebrate organisms with
long lifespans: Some molluscs for example, which are invertebrates, can live
for several centuries [215]. Based on our theoretical work we might hypoth-
esize that they have evolved alternative adaptive or proto-adaptive immune
defense mechanisms. While certainly much contingency is to be expected in
the evolution of a system so complex as immune defense, maybe thinking in
terms of adaptive strategies will provide a fruitful conceptual framework for
such exploration.





Part IV

A P P E N D I X





A
H O W A W E L L - A D A P T E D I M M U N E S Y S T E M I S
O R G A N I Z E D

a.1 probability distribution of the time of first recognition

In order to calculate the cost of not-recognizing an antigen a, we need to
find the distribution of times when a successful encounter takes place. The
probability of having the first recognition of antigen a by receptor r in the
time between t and t+ dt reads:

Ha(t)dt = λa(t)dt ·
∑
r

Prfr,a

× lim
N→∞

N∏
i=1

(
1− λa(ti)

t

N

∑
r

Prfr,a

)
,

where the first term is the probability of having an encounter between t and
t+ dt, the second the probability of this encounter being successful, and the
third the probability of there not being any prior recognition events. For the
calculation of the last term we have decomposed the time leading up to t into
N intervals of length t/N. Taking the N→∞ limit yields:

Ha(t) = λa(t)P̃ae
−
∫t
0 dt

′λa(t ′)P̃a , (A.1)

where we have used the short-hand notation P̃a =
∑
r Prfr,a for the probability

that a randomly chosen receptor recognizes antigen a.

a.2 convexity of the expected cost

In this Appendix we show that the cost function 〈F〉 is a convex function of its
argument {Pr} (the receptor distribution). We start by introducing an alterna-
tive expression of F̄a, obtained by integration by parts:

F̄a =

∫∞
0

dmF ′a(m)e−mP̃a + F(0). (A.2)

We calculate the derivatives of this average cost with respect to P̃a:

dF̄a
dP̃a

= −

∫∞
0

dmmF ′a(m)e−mP̃a (A.3)

d2F̄a
dP̃2a

=

∫∞
0

dmm2F ′a(m)e−mP̃a (A.4)

Since by assumption F ′a(m) is positive, the second derivative of F̄a with respect
to P̃a is positive. This establishes the convexity of F̄a as a function of P̃a. Since
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〈F〉 =
∑
aQaF̄a (with Qa > 0), it is a convex function of {P̃a}. Therefore it is

also a convex function of {Pr}, as {Pr} and {P̃a} are linearly related.

a.3 biological motivation of power-law cost functions

In the main text we have developed a general framework for discussing the
antigen-receptor recognition process. To fully specify the model we need to
choose an effective cost function Fa(m) = Fa(ta(m)). In the main text we
derive optimal receptor distributions for a number of effective cost functions,
including power-law functions F(m) = mα. Here we sketch plausible scenarios
motivating that choice.

Consider an organism being infected with a antigen a. As long as there is
no immune reaction, the antigens divide inside its host and thus increase its
population size. If the initial population size is small it is reasonable to assume
exponential growth.

The more antigens there are at the time of the immune reaction the more
damage they can potentially do. Likewise, the more antigens, the higher the
rate of encounters. These two quantities are also expected to grow exponen-
tially in time:

Fa(t) = Fa(0)e
νat, (A.5)

λa(t) = λa(0)e
ν ′at (A.6)

The two exponents may be different in general, because the number of pathogenic
agents that cause the harm may grow differently than the number of antigens
that can be recognized by the immune system. This difference could for ex-
ample stem from the fact that both the pathogen’s antigenic exposure and its
virulence are cooperative effects, and thus scale as a power of the number of
invading individuals. Usingma(t) = λa(0)(eν

′
at− 1)/ν ′a, and eliminating time

t ≈ ln[ma/λa(0)]/ν ′a (for t large compared to 1/ν ′a), we rewrite the effective
cost function in terms of the number of encounters:

Fa(m) = Fa(0)

(
m

λa(0)

)νa
ν ′a ∝ mα, (A.7)

with α = νa/ν
′
a.

a.4 analytical optimization

a.4.1 Optimality conditions

In the following we give optimality conditions for the optimization problem
defined in the main text, which will be used for the following analytical de-
termination of optimal receptor distributions. These conditions, called Karush-
Kuhn-Tucker conditions [91], are derived from a generalization of the method
of Lagrange multipliers to inequality as well as equality constraints.
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Figure A.1: Solving the optimization problem with a finer and finer discretization
step suggests that the peaks found in the optimal receptor distributions
converge to true Dirac delta functions. Starting from a problem with a
discretization step of ∆ = 0.1σ, we construct coarse-grained versions of
it by downsampling the antigen distribution two and four fold, yielding
∆ = 0.2σ and 0.4σ respectively. The resulting coarse-grained optimization
problems are then solved, and the optimal distributions P∗r/∆ represented
(after appropriate normalization by the step size). The random antigen
distribution is log-normal with coefficient of variation κ = 0.25.

The Lagrangian for the optimization problem is

L(P, λ,ν) = 〈F〉 (P) + λ

(∑
r

Pr − 1

)
−
∑
r

νrPr, (A.8)

with

〈F〉 =
∑
a

QaF̄a. (A.9)

λ is a Lagrange multiplier enforcing the normalization constraint and νr are
Lagrange multipliers enforcing the non-negativity constraint. The optimal P∗

is an extremum of this Lagrangian. Therefore the stationarity conditions:

∂ 〈F〉
∂Pr

∣∣∣∣
P∗

+ λ∗ − ν∗r = 0, (A.10)

with

∂ 〈F〉
∂Pr

=
∑
a

QaF̄
′
a(P̃a)fr,a, (A.11)

must hold for some value of λ∗ and ν∗r that enforce the constraints. The in-
equality constraint Pr > 0 further requires that:

ν∗r > 0 (A.12)

ν∗rP
∗
r = 0, (A.13)
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where the second condition is known as the complementary slackness condi-
tion. It requires the Lagrange multipliers associated with the non-negativity to
be zero unless the constraint is active, i.e. unless the corresponding receptor
probability is zero.

The three conditions may be reformulated as:

∂ 〈F〉
∂Pr

∣∣∣∣
P∗

+ λ∗ > 0 (A.14)(
∂ 〈F〉
∂Pr

∣∣∣∣
P∗

+ λ∗
)
Pr = 0 (A.15)

For all receptors that are present in the optimal repertoire (P∗r > 0) these con-
ditions imply

∂ 〈F〉
∂Pr

∣∣∣∣
P∗

= −λ∗. (A.16)

If a receptor is not present in the optimal repertoire (P∗r = 0) then the less
stringent condition holds:

∂ 〈F〉
∂Pr

∣∣∣∣
P∗

> −λ∗. (A.17)

We note here that ∂ 〈F〉/∂Pr 6 0 (because more receptors always yield a lower
cost), so that λ∗ > 0.

These two conditions can be explained as follows: if a repertoire is optimal,
all changes allowed by the constraints will lead to a higher cost, i.e. moving
receptors from one type to another will not yield an improvement. All partial
derivatives of the cost with respect to the receptor probabilities should thus be
equal to the same value (Eq. A.16). If there are already no receptors of a certain
type, i.e. Pr = 0, we get a less stringent condition. We can no longer remove
receptors away from this type r, but only add some to it, at the expense of
other receptor types. The increase in cost due to the depletion of these other
types should be higher than the gain of moving them to type r. The partial
derivatives of the cost with respect to the receptors that are not present in
the repertoire must thus be larger than the partial derivatives of the present
receptors, which are given by −λ∗ (Eq. A.17).

a.4.2 Solution for uniquely specific receptors

We now solve Eqs. A.16 and A.17 for a repertoire of uniquely specific receptors
(no cross-reactivity). Eq. A.11 becomes

∂ 〈F〉
∂Pr

= QrF̄
′
r (Pr) , (A.18)
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F(m) F̄(P̃a) h(x)

mα Γ(1+α)/P̃αa (−x/(αΓ(1+α)))
1
1+α

lnm γ− ln P̃a −1/x

1− exp (−βm) β/
(
β+ P̃a

) √
−β/x−β

Θ(m−m0) exp
(
−m0P̃a

)
− ln(−x/m0)/m0

Table A.1: Intermediate results in the derivation of the optimal solution. The first col-
umn shows several choices of the effective cost function, F(m). For these
cost functions the second column shows the average cost of a pathogenic
attack, F̄(P̃a), and the third column shows the inverse of its derivative,
h =

(
F̄ ′
)−1. Γ is the Gamma function, γ is Euler’s constant, β and m0

are positive constants.

where we have used the fact that in the absence of cross-reactivity P̃a = Pa. If
all optimal receptor probabilities are positive then we can insert this relation-
ship into Eq. A.16 to obtain

QrF̄
′
r (P
∗
r) = −λ∗. (A.19)

and thus:

P∗r = hr (−λ
∗/Qr) , (A.20)

where hr = F̄
′(−1)
r denotes the inverse function of F̄ ′r. Since that function F̄ ′r is

always negative, hr must take a negative argument.
For some cost functions, solving this equation may yield some negative re-

ceptor probabilities. In these cases some of the non-negativity constraints need
to be active. Setting Pr = 0 when Eq. A.20 is negative yields the correct opti-
mal distribution under the non-negativity constraint. We verify that for these
r, Eq. A.17 is satisfied by Pr = 0, because:

QrF̄
′
r (Pr = 0) > QrF̄

′
r[hr (−λ

∗/Qr)] = −λ∗, (A.21)

where we have used the fact that F̄ ′r is an increasing function of its argument
(due to the positivity of its derivative, cf. Eq. A.4), and hr (−λ∗/Qr) 6 0

In summary, the solution to the optimization problem is

P∗r = max{hr (−λ∗/Qr) , 0}, (A.22)

where the value of λ∗ is fixed by the normalization condition
∑
r Pr = 1.

In Table A.1 we give the explicit expressions of F̄a and ha, for the particular
choices of the cost function F(m) considered in the main text.

a.4.3 Solution for cross-reactive receptors

The previous results can be generalized to cross-reactive receptors in a contin-
uous space, using Fourier transforms. This generalization will lead up to the
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results presented in the Cross-reactivity dramatically limits optimal repertoire diver-
sity section of the main text, and notably the Gaussian case discussed therein.

a.4.3.1 Deconvoluting the optimality conditions in Fourier space

We consider a continuous receptor-antigen space and we assume a translation
invariant cross-reactivity function fr,a = f(r− a). We write the optimality con-
dition Eq. A.16∫

da Q(a)F̄ ′
[
P̃∗(a)

]
f(r− a) = −λ∗, (A.23)

where in continuous space the coverage is defined as:

P̃(a) =

∫
dr P(r)f(r− a). (A.24)

We notice that both expressions involve integrals, which are convolutions with
the cross-reactivity kernel. Since the convolution of a constant is also a con-
stant, a solution of

Q(a)F̄ ′
(
P̃∗(a)

)
= −λ ′, with λ ′ > 0, (A.25)

is also a solution of Eq. A.23. As in the case of uniquely specific receptors, we
can solve this equation for P̃∗(a):

P̃∗(a) = h
[
−λ ′/Q(a)

]
, (A.26)

where h = F̄ ′(−1) as in A.20. If there was no cross-reactivity, there would
be no difference between P and P̃, and we would be done. Here we need to
perform a deconvolution to obtain the optimal receptor distribution P from the
optimal coverage P̃. We do so in Fourier space, where the convolution turns
into a product. Deconvolution is therefore much simpler in Fourier space as it
corresponds to a division

F[P̃] = F[P]F[f] ⇔ F[P] = F[P̃]/F[f], (A.27)

where we have defined the Fourier transform of a function g(x) as F[g](k) =∫∞
−∞ dxg(x)eikx. To calculate the optimal receptor distribution we insert Eq.

A.26 into Eq. A.27 and perform an inverse Fourier transform F−1[g̃](x) =

(1/2π)
∫∞
−∞ dkg̃(k)e−ikx to obtain

P∗ = F−1
[
F[h

(
−λ ′/Q

)
]/F[f]

]
. (A.28)

This result is only valid as long as the above quantity is positive and normal-
izable, as we shall see below.

a.4.3.2 The Gaussian case

In this section we apply the general results of the previous section to a concrete
example. In order to find the optimal receptor distribution analytically we use
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Eq. A.28, we assume the antigen distribution and cross-reactivity function are
Gaussian

Q(a) =
1√
2πσ2Q

exp
(
−a2/2σ2Q

)
, (A.29)

f(r− a) = exp
[
−(r− a)2/2σ2

]
, (A.30)

and we take

F(m) = mα. (A.31)

Inserting h from Tab. A.1 into Eq. A.28 allows us to write

P∗ ∝ F−1
[
F[Q

1
1+α ]/F[f]

]
(A.32)

as an equivalent equation determining the optimal repertoire. We can calculate
the modified antigen distribution as

Q(a)
1
1+α ∝ exp

(
−

a2

2(1+α)σ2Q

)
. (A.33)

The Fourier transform of a Gaussian function of variance σ2 is a Gaussian
function of variance 1/σ2 [216]. Therefore we have

F[Q
1
1+α ](q) ∝ exp

[
−(1+α)σ2Qq

2/2
]

, (A.34)

F[f](q) ∝ exp
[
−σ2a2/2

]
, (A.35)

from which

F[Q
1
1+α ]/F[f] ∝ exp

{
−[(1+α)σ2Q − σ2]q2/2

}
(A.36)

follows. Taking the inverse Fourier transform and normalizing, we obtain

P∗(r) =
1√

2π[(1+α)σ2Q − σ2]
exp

(
−

r2

2[(1+α)σ2Q − σ2]

)
. (A.37)

Normalization is only possible for σ < σQ
√
1+α ≡ σc. In the limit σ →

σc the Gaussian converges to a Dirac delta function. Intuition suggests that
a Dirac delta function centered on the peak position should remain optimal
for further increases in σ. To prove this assertion we note that a Dirac delta
function is zero everywhere, except in one point. Since all but one receptor
probabilities are at the boundary defined by the non-negativity constraints,
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we only need to check Eq. A.17. We compute the left-hand side of Eq. A.23 as
a function of r∫

dp Q(a)F̄ ′[P̃∗(a)]f(r− a)

∝ − exp

{
−r2[σ2 − (1+α)σ2Q]

2σ2(σ2 −ασ2Q)

}
,

(A.38)

and note that it has a minimum for r = 0. This shows that the partial deriva-
tives of the expected cost at r 6= 0 are greater than at r = 0, implying that Eq.
A.17 holds.

The cost of the optimal repertoires as a function of the cross-reactivity width
σ is given by

〈F〉 (P∗) =
(σQ
σ

)α(1+α)
1+α
2 if σ < σc,

(σ/σQ)α√
1−α(σQ/σ)2

otherwise.
(A.39)

Both expressions give the same cost at the transition σ = σc. After multiplying
by (σ/σQ)

α to compare at constant recognition capability
∫
f =

√
2πσ, this

expression is constant for σ < σc, and grows for σ > σc.

a.4.3.3 General argument for peakedness

A simple argument can help understand why cross-reactivity generically leads
to peaked optimal solutions. The convolution with a kernel is a smoothen-
ing operation, represented by a low-pass filter in the Fourier domain. The
optimal solution in the absence of the non-negativity constraints requires that
P̃a = h(Qa). As P̃a is the low-passed filtered version of Pr, the high-frequency
components of h(Qa) will be magnified by the deconvolution. These high-
frequency wiggles can lead to negative values of F−1[h(Qa)], which are not
allowed, leading to set many values of P(r) to zero. This effects results in a
peaked solution. Because the size of the cross-reactivity kernel is inversely pro-
portional to the cutoff frequency in the Fourier domain, we expect the spacing
of the peaks to be related to the size of the cross-reactivity kernel.

a.5 numerical optimization

We numerically minimize the cost function subject to the normalization and
non-negativity constraints by using a fast projected gradient algorithm as
described in Sec. 3.1.3. For all reported numerical results we have chosen
ε = 10−8. To minimize finite size effects in the simulations we have used
periodic boundary conditions in the receptor/antigen space.

The discretization steps used in the figures are listed below:
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Figure A.2: Radial distribution function and normalized power spectral density of the
optimal receptor distribution P∗r for random environments in two dimen-
sions. (A) The radial distribution function of P∗r shows an exclusion zone
around each peak, followed by oscillations characteristic of a local tiling
pattern. (B) Normalized power spectral density S(q) of P∗r for different
values of the parameter κ quantifying the heterogeneity of the antigenic
landscape. The high suppression of fluctuations at large scales (small q)
indicates that the pattern has very little fluctuations in the number of re-
ceptors used to cover large surface areas.

Step Figure

0.5σ 5

0.1σ 3, A.3, A.4, A.6

0.05σ 4

a.6 tiling properties : radial distribution function and power

spectral density of the receptor distribution

In this appendix we analyse the tiling structure of the peaks in the optimal dis-
tribution P∗r found in Fig. 4.3 using the methods described in Sec. 3.6. Fig. A.2A
presents the radial distribution function g(R) for P∗ in two dimensions. The ini-
tial drop at small r indicates that peaks in P∗ are rarely close – i.e., peaks in
the optimal repertoire tend to repel each other. This exclusion, which oper-
ates over the range of strong cross-reactivity, is a sensible way to distribute
resources, as it limits redundant protection against the same pathogens. The
damped oscillation of the peaks of g(R) confirm that the receptors in P∗ are or-
ganized into a disordered tiling pattern. A similar radial distribution function
is seen in high density random packings of hard spheres where the spheres
must cover as much space as possible but exclude each other. In both cases,
the tiling ensures uniform coverage of space at large scales.

To quantify the regularity of the tiling, we calculate the normalized power
spectral density S(q) of the pattern. Fig. A.2B shows S(q) averaged over many
realizations of the antigen landscape, and over all directions of q so that it only
depends on its modulus |q|. S(q) approaches 1 for large q, showing that the
precise local positions of the peaks are random. (The small departure from 1 is
attributable to numerical discretization introducing a non-Dirac shape of the
peaks.) S(q) is very low for small q, indicating that the number of receptors
contained in any given large area of the shape space is very reproducible,
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Figure A.3: Power spectral density normalized by the squared antigenic environment
heterogeneity index κ: |

∑
r Pre

iqr|2/κ2. The data collapse for different κ
shows that the fluctuations at large scale are entirely attributable to those
of the antigenic environment, and scale with them. At these large scales,
the power spectrum of the receptor distribution is approximately given
by: exp[(qσ)2]κ2/4. The exponential term stems from the inverse of the
Fourier transform of f (see Eq. A.28). In other words, the coverage of the
antigenic space exactly tracks the distribution of antigens, with no addi-
tional fluctuations due to the random positioning of peaks (which would
be present if this positioning was Poisson distributed). This property is
called disordered hyperuniformity in the physics of jammed materials
[127, 129, 130]. Parameters are the same as in Fig. 4.3.

providing uniform coverage. This behavior might be compared to disordered
hyperuniform patterns which arise e.g. in the context of jammed materials
[127, 129, 130]. For our optimal repertoires small scale fluctuations (large q)
get smoothed out by cross-reactivity and can be tolerated, while at large scales
the fluctuations track variations in the antigenic landscape to provide smooth
coverage (see Fig. A.3).

a.7 non-gaussian, long-tailed, and non-uniform cross-reactivity

functions

To assess the impact of different assumptions about the nature of cross-reactivity
on the results we performed a number of simulations with different kernel
functions.

First, we investigated the family of kernel functions defined by f(r− a) =

exp[−(|r− a|/η)γ] (Fig. A.4 left). By changing the parameter γ we can go from
an exponential (γ = 1) via a Gaussian γ = 2 to a top-hat kernel (γ → ∞). Up
to γ = 2 all such kernels have positive Fourier transforms, whereas for γ >
2 the Fourier transforms also take negative values. The positive definiteness
has been shown to be an important property in a related problem in ecology
[157]. Second, we also investigated how long-tailed kernel functions change
the optimal repertoire by considering the functional form f(r − a) = 1/(1 +

(|r− a|/η)2) (Fig. A.4 right).
Dropping one further assumption we investigated the influence of varying

the width of the cross-reactivity function between receptors (Fig. A.5). The
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Figure A.4: Influence of the choice of the cross-reactivity kernel f(a − r) on the op-
timization problem. Regardless of the kernel choice the optimal reper-
toire is peaked for non-uniform antigen distributions. The details of dis-
tribution depend on the cross-reactivity kernel. (A): Kernel functions
used to describe cross-reactivity. First three column show exponential ker-
nels of the form f(r − a) = exp[−(|r − a|/η)γ] with different values of
the parameter γ. Last column shows a long-tailed kernel of the form
f(r − a) = 1/(1 + (|r − a|/η)2). (B): Examples of optimal receptor distri-
butions in two dimensions, for antigenic environments generated as in
Fig. 4.3B (with coefficient of variation κ = 0.25). (C) Radial distribution
function of the optimal distribution. (D) Structure factor of the optimal
distribution. The results in both (C) and (D) are averaged over 10 indepen-
dent runs. A linear effective cost function F(m) = m is assumed through-
out.
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Figure A.5: Influence of varying amounts of non-uniformity in the widths of the cross-
reactivity kernel on the optimization problem. (A): Examples of optimal
receptor distributions in one dimensions, for antigenic environments gen-
erated as in Fig. 4.3B (with coefficient of variation κ = 0.25). A linear effec-
tive cost function F(m) = m was assumed. (B) Radial distribution function
of the optimal distribution. (C) Structure factor of the optimal distribution.
The results in both (B) and (C) are averaged over 30 independent runs.
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Figure A.6: Adding correlations to the antigen distribution does not change the
peakedness of optimal receptor distributions. The result of the optimiza-
tion is shown for a random antigen landscape with correlations. The anti-
gen distribution is generated by Fourier filtering. First we generate an un-
correlated, normally distributed random series. This series is then filtered
to obtain a power spectrum ∝ 1/(1+ (10qσ)2). Finally, the filtered series
is exponentiated to ensure the non-negativity of the generated values.

width of the cross-reactivity was drawn randomly from a log-normal distribu-
tion with different coefficients of variation (corresponding to different amounts
of scatter in the width). Biologically, the overall stimulatory capacity of recep-
tors is constrained, we rescaled the cross-reactivity so that all receptors had
same overall stimulatory potency.

a.8 excluding strongly self-binding receptors

The presence of self-antigens that should not be recognized puts constraints
on which receptors the repertoire might contain. As a first step to understand
how such an requirement interacts with the tradeoff considered in this paper
we analyzed a simple model: a number of self-antigens are picked at random
positions. The repertoire is not allowed to have receptors that are to highly
reactive to any of the self-antigens. In practice this is assured by adding a
constraint to the optimization that none of the receptors in the repertoire can
have a distance smaller than σ to any self-antigen. Introducing this constraint
changes the optimal repertoire, but key features such as the fragmentation of
the repertoire and the tiling are conserved (Fig. A.7).

a.9 model for receptor dynamics

Here we describe our model for competitive receptor dynamics. We then show
how, in a mean-field limit where antigen encounters are very frequent, this
model reduces to a system of differential equations for the population dynam-
ics.
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Figure A.7: Effect of exclusion zones around self-antigens on the optimization prob-
lem. No receptors are allowed in exclusion regions around self-antigens
(shaded in blue). Parameters are the same as in Fig. 4.3B.

At every step we update the number of receptors according to

∆Nr = ∆t ·Nr

[
A

(∑
r ′
Nr ′fr ′,a

)
fr,a − d

]
(A.40)

where the antigen a is drawn randomly with probability Qa and ∆t is a pa-
rameter determining how much the repertoire changes per step.

In the limit where ∆t is small the dynamics cycle through different encoun-
tered pathogens so fast that they effectively become the following dynamics:

dNr
dt

= Nr

[∑
a

QaA

(∑
r ′
Nr ′fr ′,a

)
fr,a − d

]
(A.41)

This dynamics is of mean-field type, i.e it neglects the effect of the stochasticity
in the encounter of pathogens.

a.10 the stable fixed point of the mean-field population dy-
namics minimizes the cost function

In this section we show that the stable fixed point {N∗r} of the population dy-
namics, Eq. A.41, gives a probability distribution Pr = Nr/Ntot (with Ntot =∑
rNr) that minimizes the cost 〈F〉. For this correspondence to be exact, the

availability function of the dynamics and the effective cost function of the op-
timization must be related by:

A(Ña) = −c ′F̄ ′(Ña/Nst), (A.42)
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where Ña =
∑
Nrfr,a, and Nst is the total number of receptors Ntot at the

fixed point.
A fixed point is characterized by dNr/dt = 0. If Nr > 0, this translates into

∑
a

QaA

(∑
r ′
Nr ′fr ′,a

)
fr,a − d = 0. (A.43)

Using the correspondence between availability and cost function given by
Eq. A.42 we rewrite this condition as∑

a

QaF̄
′ (P̃a) fr,a = −c ′d, (A.44)

which is equivalent to the optimality condition Eq. A.16, with the identification
λ∗ = c ′d.

For Nr = 0 we need to work a bit harder to show that the optimality condi-
tion at the boundary Eq. A.17 is satisfied. Here the key assumption establishing
the minimization of the cost function is the stability of the fixed point. A fixed
point is stable if the real parts of the Jacobian’s eigenvalues are all negative.
The Jacobian reads:

Jr,r ′ =δr,r ′

(∑
a

QaA

(∑
r ′′
Nr ′′fr ′′,a

)
fr,a − d

)

+Nr
∑
a

QaA
′
(∑
r ′′
Nr ′′fr ′′,a

)
fr,afr ′,a.

(A.45)

We remark that for Nr = 0 the rth row of the Jacobian is non-zero only on the
diagonal. That value on the diagonal is an eigenvalue of the Jacobian and must
be negative:

∑
a

QaA

(∑
r ′
Nr ′fr ′,a

)
fr,a − d < 0, (A.46)

Again we replace A (
∑
rNrfr,a) by −F̄ ′a

(
P̃a
)

according to Eq. A.42 to obtain∑
a

QaF̄
′ (P̃a) fr,a > −c ′d, (A.47)

which is equivalent to the optimality condition at the boundary Eq. A.17, pro-
vided that λ∗ = c ′d.

a.11 cost function as a lyapunov function of the mean-field

dynamics

Here we show rigorously that, when the availability function is scale invariant,
as in the case for the simple cost function F(m) = mα, the dynamics must
converge towards a fixed point. This fixed point is unique and corresponds to
the optimal of the cost 〈F〉, as we have shown in the previous section.



126 how a well-adapted immune system is organized

A(x) is scale invariant if there exists a function v such that A(γx) = v(γ)A(x).
In this case we will see that the changes of relative frequencies Pr in the reper-
toire over time only depend on the total number of receptors through a pref-
actor. Below we derive the equations governing this dynamics and will then
prove that this dynamics is assured to converge to a stable fixed point. We do
so by showing that the dynamics admits the expected cost 〈F〉 as a Lyapunov
function, i.e., a function that continually decreases under the dynamics.

For ease of notation we rewrite Eq. A.41 as:

dNr
dt

= Nr[πr(N) − d], (A.48)

where N is a short-hand for {Nr}, and πr =
∑
aQaA (

∑
r ′ Nr ′fr ′,a) fr,a is the

growth rate of receptor type r. The relative frequencies Pr = Nr/Ntot evolve
according to:

dPr
dt

=
1

Ntot

dNr
dt

−
Nr

N2tot

dNtot

dt
(A.49)

= Pr

[
πr(N) −

∑
r ′
Pr ′πr ′(N)

]
. (A.50)

If A is scale invariant, so is πr and πr(N) = πr(NtotP) = v(Ntot)πr(P). Then the
equations further simplify to

dPr
dt

= v(Ntot)Pr

[
πr(P) −

∑
r ′
Pr ′πr ′(P)

]
, (A.51)

= v(Ntot)Pr (πr − π̄) , (A.52)

where π̄ =
∑
r Prπr.

We can now write how the expected cost 〈F〉 evolves in time:

d 〈F〉
dt

=
∑
r

∂ 〈F〉
∂Pr

dPr
dt

(A.53)

= v(Ntot)
∑
r

Pr

[∑
a

QaF̄
′
a(P̃a)fr,a

]
(πr − π̄) (A.54)

= −
v(Ntot)

c ′
∑
r

Pr

[∑
a

QaA(NstP̃a)fr,a

]
(πr − π̄) (A.55)

= −
v(Ntot)v(Nst)

c ′
∑
r

Prπr (πr − π̄) (A.56)

= −
v(Ntot)v(Nst)

c ′
∑
r

Pr (πr − π̄)
2 6 0. (A.57)

This proves that the cost always decreases with time, i.e. is a Lyapunov function
of the dynamics. Therefore the dynamics will reach a stable fixed point at
steady state, which is guaranteed to be the global minimum of the expected
cost 〈F〉.



B
H O W A W E L L - A D A P T I N G I M M U N E S Y S T E M R E M E M B E R S

b.1 numerical methods

To simulate trajectories according to a neutral symmetric Wright-Fisher model
in the diffusion-limit we use the Langevin equation [217]

dQa
dt

=
1

2τ
(θ0 −Kθ0Qa)dt+

K∑
b=1

√
Qa/τ

(
δab −

√
QaQb

)
ηb(t) (B.1)

with Gaussian white noise 〈ηa(t)ηb(t ′)〉 = δa,bδ(t − t
′). We simulate the

stochastic differential equation using the Euler-Maruyama algorithm [104]. To
ensure the solution stays within the probability simplex we project the results
of the iterations back onto the simplex at every iteration.

b.2 solving the diffusion pathogen dynamics

To simplify notations we absorb τ by rescaling time by 1/τ. To obtain a solution
to Eq. 5.15 we write ρ(q, t) as the product of the steady-state distribution with
a time-varying function f(q, t) [104]

ρ(q, t) = ρs(q)f(q, t). (B.2)

By substitution into Eq. 5.15 f(q, t) can be shown to obey the backward equa-
tion

∂tf(q, t) =
1

2
(−βq+α(1− q))∂qf(q, t) +

1

2
q(1− q)∂2qf(q, t). (B.3)
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Figure B.1: First few modified Jacobi polynomials Fn(q), which are the eigenfunctions
pathogen dynamics propagator.
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The backward equation is linear in f(q, t) so its solution can be written as a
superposition of eigenfunctions,

f(q, t) =
∞∑
n=0

dn(t)Fn(q) (B.4)

with dn(t) = dn(0)e−λnt. This leads to the equation

1

2
q(1− q)

d2Fn
dq2

(q) +
1

2
(−βq+α(1− q))

dFn
dq

(q) = −λnFn(q), (B.5)

which up to a rescaling is a Jacobi differential equation. Its eigenfunctions are
thus the modified Jacobi Polynomials (Fig. B.1)

Fn(q) = P
(β−1,α−1)
n (2q− 1), (B.6)

where P(a,b)
n (x) is the n-th Jacobi polynomial and its eigenvalues are

λn =
1

2
n(n+α+β− 1). (B.7)

As the backward equation is linear the general solution is a superposition of
the eigenfunctions

For the following discussion we recapitulate some of the properties of these
polynomials. The first three polynomials are

F0(q) = 1, (B.8)

F1(q) = α(q− 1) +βq, (B.9)

F2(q) =
1

2
(α(1+α) − 2(1+α)(1+α+β)q+ (1+α+β)(2+α+β)q2).

(B.10)

The polynomials form an orthogonal system with respect to the weight func-
tion qα−1(1− q)β−1, i.e.∫1

0

dqFn(q)Fm(q)qα−1(1− q)β−1 = δn,m∆n(α,β), (B.11)

where the normalization coefficients ∆n(α,β) are given by

∆n(α,β) =
Γ(n+α)Γ(n+β)

(2n+α+β− 1)Γ(n+α+β− 1)Γ(n+ 1)
. (B.12)

Combining Eq. B.8 with Eq. B.11 we obtain∫1
0

dqFn(q)ρs(q) = δn,0, (B.13)

where we have used the fact that the steady state distribution is a multiple
of the weight function. Normalization of the probability distribution implies
d0 = 1 always.
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For n > 1 the polynomials are related by the recursion formula [174]

qFn(q) = c
−
nFn−1(q) + c

0
nFn(q) + c

+
nFn+1(q). (B.14)

with the coefficients

c−n =
(n+α− 1)(n+β− 1)

(2n+α+β− 1)(2n+α+β− 2)
, (B.15)

c0n =
1

2
−

β2 −α2 − 2(β−α)

2(2n+α+β)(2n+α+β− 2)
, (B.16)

c+n =
(n+ 1)(n+α+β− 1)

(2n+α+β)(2n+α+β− 1)
, (B.17)

for n > 1 while for n = 0

qF0(q) =
α

α+β
F0(q) +

1

α+β
F1(q). (B.18)

To calculate first moments we combine the recursion formula Eq. B.14 with
the equation for the zeroth moments to obtain

〈q〉ρsFn =

∫1
0

dqFn(q)ρs(q)q =


c00 =

α
α+β for n = 0,

c−1 = αβ
(α+β+1)(α+β) for n = 1

0 for n > 2

(B.19)

The properties are useful for analyzing recursive Bayesian estimation. We
can write the prior belief as B(q, t−) = ρs(q)

∑
n d

−
nFn(q) and ask how it

should change if we encounter pathogen 1 at time t. (In the following we
suppress the explicit notation for the dependence of these function on α and
β.) Applying Bayes rule the update equation is

B(q, t+) =
qB(q, t−)

Z
=
ρs(q)

Z

∑
n

d−nqFn(q), (B.20)

which with the recursion formula Eq. B.14 yields

B(q, t+) =
ρs(q)

Z
{[c00 + d

−
1 c

−
1 ]F0(q) (B.21)

+

∞∑
n=1

[d−n−1c
+
n−1 + d

−
nc
0
n + d−n+1c

−
n+1]Fn(q)}. (B.22)

We can write the numerator as a multiplication of d with the triadiagonal
matrix which has c0n along the diagonal, c−n+1 above the diagonal, and c+n−1
below. Normalization requires d+0 = 1 so Z = c00 + d

−
1 c

−
1 . Finally, we define

the update coefficients for dn as

χxn = cxn/Z (B.23)
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for x in −, 0,+. If pathogen 2 instead of pathogen 1 is encountered one can
obtain a similar recursion equation.

The prediction equation is

B(q, t) = ρs(q){1+
∞∑
n=1

dn(0)e
−λntFn(q)} (B.24)

from which with Eq. B.19 it follows that

〈q〉(t) = α

α+β

[
1+ d1(0)e

−λ1t
β

α+β+ 1

]
. (B.25)

The prior evidence determines the value of d1(0), but the decay towards the
long-term average prediction always follows a simple exponential decay with
a time scale τ = 1/λ1 = 2/(α+β)
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b.3 supplementary figures
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Figure B.2: Antigenic environmental dynamics according to Eq. 5.2. Lines show the
frequencies Qa of different antigens over time. Simulations were based on
a Langevin description of the dynamics as described in Sec. B.1. Parame-
ters: K = 500, θ0 = 0.02, τ = 10.





C
I M M U N E S T R AT E G I E S A G A I N S T C H A N G I N G
PAT H O G E N S

c.1 parametrizing a two-state markov chain

The parametrization that we use is based on the average frequency with which
the chain is in one of its state and on a characteristic time scale of state
changes. Concretely, the first parameter is the fraction of generations dur-
ing which a pathogen is present πenv = 〈x〉 = α/(α+ β), and the second is
the autocorrelation time of the chain, defined from its auto-correlation func-
tion: 〈xtxt ′〉− 〈x〉2 = πenv(1− πenv)(1−α−β)|t−t

′| ≡ πenv(1− πenv) exp(−|t−

t ′|/τenv), or τenv ≡ −1/ ln(1 − α − β). We have chosen the autocorrelation
time over alternative time scales such as the persistence time of the patho-
gen τ̃env = −1/ ln(1−β), because the autocorrelation time is symmetric in the
switching rates: long stretches of continuous pathogen absence play a role in
the choice of a strategy as long stretches of continuous pathogen presence. Our
choice of characteristic time provides a measure for the degree of predictabil-
ity of the next state given the current state. For instance, for a characteristic
time of zero, 1− α = β, no information on the next state can be gained from
knowing the current state. The parametrization has the additional property
that all combinations πenv ∈ [0, 1] and τenv ∈ [0,∞) correspond to valid values
of α ∈ [0, 1],β ∈ [0, 1], which is not the case for all combinations of (πenv, τ̃env),
for example.

c.2 pattern-search based optimization for problems with noisy

function evaluations

The numerical optimization of the long-term growth rate considered in this
work falls into the class of noisy optimization problems described in Sec. 3.1.1.2.
The long-term growth rate can generally not be calculated explicitly but is ap-
proximated numerically from long but finite simulations of the population
dynamics. These simulations depend on the history of pathogen presence and
absence xt, which is a random variable. We solve this optimization problem
using the algorithm described in Sec. 3.1.3.2 The notations used there can be
mapped onto the problem of optimizing long-term population growth rates
through f ↔ −Λ,y ↔ (p,q,puptake, cconstitutive),ω ↔ xt. For the optimization
problem considered in this paper, this algorithm works reliably and efficiently
enough to allow for the many optimizations needed for a phase diagram such
as shown in Fig. 2.
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c.3 analytical insight into the transitions between strate-
gies

By analytically solving three simplified problems, we provide additional in-
sights into the choice of strategy. For brevity of notation, we set cdef = cdefense,
ccon = cconstitutive, and cinf = cinfected.

c.3.1 When to regulate the response

For pathogens changing with a small characteristic time scale, there is a tran-
sition from adaptive to protoadaptive to innate strategies for standard param-
eters (Fig. 2) as a function of πenv. For all three strategies considered here, the
complete population is always protected, q = 0, and there is no active acquisi-
tion, puptake = 0. The equation for the instantaneous growth rate at generation
t (Eq. 6.8 of the main text) thus simplifies to:

zt =

{
e−cdef if xt = 1

e−ccon if xt = 0
(C.1)

where growth only depends on the absence or presence of pathogen during the
current generation regardless of what happened at previous generations. The
optimal long-term growth rate can then be calculated analytically by weighting
the instantaneous growth rates in the presence and absence of pathogen by the
frequency of the two environmental states

Λ = −πenvcdef(ccon) − (1− πenv)ccon. (C.2)

This expression for the long-term growth rate directly gives us some insight
into how the frequency of pathogen affects how much the response should
be regulated. The more frequent the pathogen, the more often the defense is
actually used and thus the less it should be regulated. By maximizing Λ over
ccon ∈ [0, cmax

con ] for a given trade-off function cdef(ccon), we obtain analytical
expressions for the phase boundaries. One finds the following conditions for
local optimality of the three strategies:

πenv < π
(ap)
env π

(ap)
env 6 πenv 6 π(po)env π

(po)
env < πenv

ccon = 0 0 6 ccon 6 cmax
con ccon = cmax

con

with

π
(ap)
env =

(
1−

dcdef

dccon

∣∣∣∣
ccon=0

)−1

, (C.3)

π
(po)
env =

(
1−

dcdef

dccon

∣∣∣∣
ccon=cmax

con

)−1

. (C.4)

As we assume a convex trade-off shape, we have π(ap)env < π
(pi)
env , which implies

a succession of adaptive, protoadaptive and innate strategies for increasing
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πenv as seen in Fig. 6.2. If instead the trade-off function cdef(ccon) is concave,
then the protoadaptive phase vanishes.

c.3.2 When to hedge your bets

For the very frequent pathogens, the optimal strategy is to have protection at
all times, whereas for less frequent pathogens some bet-hedging is often fa-
vored (Fig. 6.2 and C.2). To understand the transition from bet hedging innate
to deterministic innate immunity, we compare the long-term growth rates of
populations using these strategies. For simplicity, we restrict the analysis to
strategies with no heritability, p = 1− q, and no regulation, cdef = ccon. The
fraction of protected individuals is constant across generations and the long-
term growth rate can be calculated analytically as

Λ = πenv ln[(1− p)e−cinf + pe−ccon ] + (1− πenv) ln[1− p+ pe−ccon ]. (C.5)

Optimizing the long-term growth rate over the fraction of protected organisms
p yields

πenv < π
(0i)
env π

(0i)
env 6 πenv 6 π(io)env π

(io)
env < πenv

p = 0 0 6 p 6 1 p = 1

with

π
(0i)
env =

eccon − 1

ecinf − 1
, (C.6)

π
(io)
env =

1− e−ccon

1− e−cinf
. (C.7)

This shows the existence of three regimes. For rare pathogens tolerance is opti-
mal (as we are only looking at unregulated strategies), for frequent pathogens
it is best to always protect, while in-between bet-hedging is favored. The exis-
tence of these different phases is a known result in the bet-hedging literature
when both phenotypes can survive in both environmental states [200], as is the
case here. The assumption p = 1− q makes the derivation of this result exact
when the environment itself is memoryless, α = 1−β. In the presence of tem-
poral correlations in pathogen occurrence, we expect bet-hedging strategies to
be favored for a larger range of pathogen frequencies, as they can exploit the
predictability of the environment.

c.3.3 When to acquire actively

For pathogens with large temporal correlations, the optimal strategy changes
from an active, to a mixed, to a passive mode of acquisition (Fig. 6.2). To under-
stand these transitions, we again turn to an analytical solvable limit. As these
strategies are favored in the presence of temporal correlations, the limit of tem-
porally uncorrelated strategies p = 1− q considered in the previous section is
not the most pertinent. We turn instead to another analytical solvable limit, in
which growth rate differences are very large compared to the generation time,
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ccon � 1, cinf − cdef � 1. In this limit, the fraction of protected individuals is
Markovian as all parents of individuals in the current generation were in the
favored state of the last environment (all maladapted individuals die). We note
that similar results can be obtained in the limit of large environmental corre-
lation times τenv without assuming completely specialized phenotypes [111].
The long-term growth rate can therefore be expressed analytically based on
the probabilities Qij of observing an environmental state i followed by state j
(Q00 = (1− πenv)(1− α),Q01 = (1− πenv)α,Q10 = πenvβ,Q11 = πenv(1− β))
as

Λ =Q00 ln(1− p) +Q10 lnq+Q01 ln((p+ puptake)e
cdef)

+Q11 ln((1− q)ecdef) − cuptake(puptake).
(C.8)

By comparing the terms in which p and puptake appear in this expression, the
strengths and weaknesses of the two acquisition modes become evident. Pas-
sive acquisition has a diversification cost due to unnecessary switching into
state 1 in the absence of pathogen (Q00 ln(1− p)). Active acquisition does not
have this penalty, but is more difficult to implement and comes with an ex-
tra cost cuptake(puptake) dependent on its uptake rate. As the probability Q00
is high for rare and temporally correlated pathogens, the relative cost of ran-
dom acquisition is especially high for these pathogens, where most of the time
mutations conferring gain of protection are deleterious. Optimizing the expres-
sion of the long-term growth rate over p,puptake ∈ [0, 1] we find the following
optimality conditions:

πenv < π
(cm)
env π

(cm)
env 6 πenv 6 π(mi)env π

(mi)
env < πenv

p = 0,puptake > 0 p > 0,puptake > 0 p > 0,puptake = 0

with

Q00(π
(cm)
env ) =

Q01(π
(cm)
env )

g−1(Q01(π
(cm)
env ))

, with g(puptake) = puptake
dcuptake

dpuptake
,

(C.9)

π
(mi)
env = 1−

dcuptake

dpuptake

∣∣∣∣
puptake=0

. (C.10)

Thus, in this limit, a CRISPR-like strategy is favored for rare pathogens, an
innate bet-hedging strategy for frequent pathogens, and mixed strategies in-
between, in agreement with the numerical results reported in Fig. 6.2 of the
main text.

c.4 non-independent pathogen-protection pairs

The factorization of the recursion relation defining the population dynam-
ics allows us to treat the problem one pathogen at a time. This makes the
problem mathematically tractable and the results easily interpretable. Differ-
ent protection-pathogen pairs can only be treated independently, however, if
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a number of assumptions are met: the costs must be additive, one protection
protects against only one pathogen and vice versa, and the dynamics of differ-
ent pathogens are independent. A full treatment of the general, non-factorized
problem is outside the scope of this work, but in the following we discuss
how relaxing some of these assumptions affects the optimal strategy. Specif-
ically, we consider simple cases with only two pathogen-protection pairs to
build intuition of where we expect qualitative changes in optimal strategies,
and where and how we can relate back to the results for the factorizing case.

c.4.1 Non-additive cost of infection

If the cost of an infection is amplified by co-infections by other pathogens,
then we expect the optimal strategies to be similar to the ones emerging for a
single pathogen, but with an higher effective cost of infection cinfection (for the
influence of a higher cost of infection on the phase diagram see Fig. C.2F). The
effective cost should take into account the extra cost incurred by the presence
of a co-infection weighted its probability of occurrence.

To test this intuition, we consider a simple case with two pathogens, where
we impose cconstitute = cdefense and puptake = 0. A completely unprotected or-
ganism pays a cost cinfection if it gets infected by one pathogen, and a cost
2cinfection +ν if it gets infected by both. Solving the problem numerically shows
that the optimal fraction of protection against the two pathogens increases with
ν (Fig. C.4) as expected. The Pearson correlation coefficient between being pro-
tected against one or the other pathogen remains small even for ν of the order
of cinfection, meaning that the optimal strategy remains close to the independent
case.

c.4.2 Non-additive cost of protection

As with the case of non-additive cost of infection, we expect non-additive costs
of protection to result in a modified effective cost of protection (for the influ-
ence of changing the cost of protection see Fig. C.2G). However, for a non-
independent cost of protection, an optimal immune strategy might differ sig-
nificantly from the factorizing case. In particular, the optimal strategy may
regulate the total number of protections at a given time to either exploit the
economies of scale (if protection against many pathogens is relatively cheaper)
or avoid an overburdening cost (if protection against many pathogens at the
same time is relatively more costly).

Some of the immune strategies that require a lot of machinery to function,
such as vertebrate adaptive immunity or CRISPR-Cas immunity, might come
at the expense of a large fixed investment cost, csystem, in addition to their
state dependent costs. This non-additive cost can be viewed as shared equally
between all pathogen-protection pairs concerned by the adaptive strategy. It
does not break the independence between them, but rather adds an offset cost
csystem/L, where L is the number of pathogen-protection pairs, which will shift
the transition at which adaptive immunity becomes favorable.
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c.4.3 Cross-reactive protection

In most biological defense systems, there is some degree of cross-reactivity,
i.e. defense against several pathogens can be achieved with the same protec-
tion. This feature can be incorporated in our framework by introducing a more
complicated form of the dependency of the number of offspring on the pro-
tection state σ. We expect the optimal strategy to exploit cross-reactivity by
having dissimilar protections that collectively tile the space of possible path-
ogens [138]. Then, the dynamics of pathogens can be effectively reduced to
the presence of absence of any of the pathogens within the scope of a given
protection.

To validate this intuition, we consider a single protection that is efficient
against two pathogens of frequencies πenv,1 and πenv,2. Assume that the cost
of defense is the same whether we defend against one or both pathogens, as
summarized by the costs in the table below:

σ\(x1, x2) (0, 0) (1, 0) (1, 0) (1, 1)

0 0 cinf cinf 2cinf

1 ccon cdef cdef cdef

where (x1, x2) indicates which of the two pathogens are present. If the pro-
tection strategy is memoryless (p = 1− q), then the long term growth rate is

Λ =(1− πenv,1)(1− πenv,2) ln r00 + πenv,1(1− πenv,2) ln r10
+ (1− πenv,1)πenv,2 ln r01 + πenv,1πenv,2 ln r11,

(C.11)

where rx1x2 is the average growth rate in environment (x1, x2): r00 = pe−ccon +

1−p, r01 = r10 = pe−cdef +(1−p)e−cinf , r11 = pe−cdef +(1−p)e−2cinf . The long
term growth rate can be alternatively expressed as

Λ = (1− πenv,eff) ln r00 + πenv,eff ln r10 + πenv,1πenv,2 ln
r11
r01

, (C.12)

with πenv,eff = πenv,1 + πenv,2 − πenv,1πenv,2. The last term in this expression is
small for either infrequent pathogens (πenv,1πenv,2 � πenv,eff) or if a large frac-
tion of the population is protected (1−p� 1 hence r01 ≈ r11). Neglecting this
second-order term, we are left with the expression corresponding to a single
pathogen with effective frequency πenv,eff, in agreement with our expectation.
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Figure C.1: Optimal parameters from a global optimization of long-term growth rate.
Regions where a parameter is unconstrained at the optimum are shown in
purple. Phase boundaries pertaining to the shown parameter in white. A
maximum number of 10000 function evaluations is used for the first phase
of the optimization. The second phase of the optimization is terminated at
a tolerance in the parameter values of 0.005. The same model parameters
as in Fig. 6.2 are used.
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Figure C.2: Influence of parameter choice on the phase diagram presented in Fig. 6.2.
For every panel the parameter choices are shown on the left and the
phase boundaries between adaptive, proto-adaptive, innate, innate bet
hedging, mixed and CRISPR-like strategies are shown on the right. As
a reference, lines in lighter color show trade-off and uptake cost for pa-
rameter set used in Fig. 2. (A) Phase diagram for parameters used in
Fig. 2. (B) More expensive active acquisition (cuptake multiplied by a fac-
tor of two). (C) Different functional form for cost of active acqusition:
cuptake = 0.05×puptake + 2×p2uptake. (D) More permissive state-dependent
costs (costs multiplied by a factor of 0.5). (E) Less permissive state-
dependent costs (costs multiplied by a factor of 1.5). (F) Higher cost of
infection. (G) Higher cost of immune protection. (H) Different functional
form for cost trade-off, cdefense = 1.4− 0.6× cconstitutive + 0.2× c2constitutive
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Figure C.3: Influence of finite population size on optimal immune strategies from an
agent-based simulation with evolving strategy parameters (switching rates
and degree of adaptability) as described in the text. For the infinite pop-
ulation, p is only shown for q > 0, because for q = 0 the value of p
is not constrained other than being positive. Subplots show the median
(solid line) and interquartile range (shaded area) of the strategy parame-
ters at the end of a simulation of 100000 generations length. Both are calcu-
lated from 500 independent simulations. In each simulation, the strategy
parameters evolve from a random initial distribution via mutation and
selection. Mutations take place with a rate 0.01 exp(−t/10000) per gener-
ation and are normally distributed with mean zero and standard devia-
tion 0.25 exp(−t/10000). The bound constraints on the parameters were
enforced by setting the strategy parameters to the boundary value if out-
side after a mutation. Costs of different immune states as in Fig. 6.2.
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Figure C.4: Optimal protection strategy against two equally frequent pathogens
πenv,1 = πenv,2 = 0.4 as a function of the degree of non-additivity of the
cost of infection ν. (A) Fraction of population protected against a particular
pathogen. (B) Pearson correlation coefficient between the protection states
against the two pathogens. As costs are non-additive, the problem no
longer factorizes and the optimal strategy no longer chooses protections
against different pathogens independently. However, here the optimal
strategy treats each pathogen almost indendently, as measured by the low
correlation coefficient. With an increasing cost of co-infection, more protec-
tion is needed, in agreement with our intuition that co-infection leads to
higher effective costs. Parameters: cinfection = 2, cdefense = cconstitutive = 1,
optimization of the distribution over protection states respecting the prob-
ability simplex constraints using an accelerated projected gradient algo-
rithm as described in [138].
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d.1 optimal strategies by mapping to unit simplex

If the sum of fitnesses of a phenotype over environments f(σ) =
∑
x f(σ, x) is

constant for all phenotypes, then any mixture will also have a constant sum of
fitnesses. The normalization constraint on π then translates into an equivalent
constraint on f. The solution of the optimization problem in its fitness form is
then particularly simple [207, 200]. Therefore, where possible, it is worthwhile
to map the optimization problem to this simpler case by a rescaling of fitnesses
in different environments. Here we show how to perform the rescaling and the
conditions under which it is possible. Fig. D.1 illustrates such a mapping in a
simple case with two environmental states.

The optimization problem is invariant with respect to additions of terms that
are constant with respect to the variables over which one optimizes. Specifi-
cally, we can add the term

∑
x p(x) log c(x) to Eq. (7.7) with all positive c(x),

which is constant with respect to π. This gives us a new optimization problem
with the objective function Λ̃ =

∑
x p(x) log[f(x)c(x)] =

∑
x p(x) log f̃(x), in

terms of the rescaled fitnesses f̃(x) =
∑
σ π(σ)f̃(σ, x) and f̃(σ, x) = f(σ, x)c(x).

The equivalence of these problems shows that a rescaling of the axes of fitness
space does not change the optimal adaptation strategy.

We can now try and use this rescaling to make the sum of scaled fitnesses a
constant, which we chose to be 1 without restriction of generality. This means
we aim to chose c(x), such that

∑
x f̃(σ, x) =

∑
x f(σ, x)c(x) = 1 holds for all σ.

In matrix-vector notation we can represent these conditions as the systems of
equation

Fc = 1, (D.1)

where 1 = (1, 1, ..., 1)T is the vector of all ones and F the matrix of phenotype
fitness profiles with entries Fσ,x = f(σ, x). Eq. (D.1) requires that the scalar
products of c with the row vectors of f (the phenotypes fitness profiles) are
equal to 1 for all rows. The vector c thus is a normal vector to the hyperplane
spanned by the fitness profiles. The mapping is therefore only possible if a
hyperplane passing through all fitness profiles exists. The intercept dx of the
hyperplane with the x axis is given by c(dxex) = 1⇔ dx = 1/cx, where ex is
the x-th unit vector. Eq. (D.1) thus specificies that we should rescale fitnesses by
dividing through these intercepts to achieve our goal of mapping the problem
to the unit simplex. The positivity of the scaling constants c(x) puts further
requirements on F for the mapping to work: geometrically, all intercepts need
to be positive, or algebraically, the inverse of the fitness matrix needs to have
all positive row sums. In the case where F is an invertible matrix fitnesses
should be rescaled using c = F−11. If the scaling is possible then in the scaled
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Figure D.1: Mapping of the problem to the unit simplex helps optimizing long-term
growth rate graphically. To determine the best strategy using two pheno-
types (blue/orange dots) and their mixtures (colored line) we rescale the
original fitnesses (A) such that the sum of fitnesses is constant (B). To do
so fitnesses are rescaled by dividing through the intercepts (red squares)
of the line passing through the two points with the axes (red line). In
the scaled fitnesses the optimal strategy has fitness vector f̃? = p (red
star), which can be be mapped back to the original problem by reverting
the rescaling. Where the so-determined fitnesses lie between the fitnesses
of the two phenotypes the optimal strategy switches between both phe-
notypes with frequencies relative to how far the optimum is from the
two phenotypes. If the optimal rescaled fitness lies outside the achievable
range of fitnesses using the closest phenotype is optimal. (C) Optimal mix-
ture of the two phenotypes as a function of the frequency of environmental
state 1.
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variables the normalization constraint on π leads to a normalization constraint
on f̃.

We can derive the optimal fitness profile using the Lagrange formalism. The
Lagrangian of the optimization problem is

L =
∑
x

p(x) ln f̃(x) − λ

(∑
x

f̃(x) − 1

)
, (D.2)

where we have assumed that the optimum is in the interior of Df̃, i.e. none of
the non-negativity constraints on elements π are active. Taking the derivative
with respect to f̃(x) and setting it to zero yields f̃?(x) = p(x)/λ. As we have
rescaled fitnesses such that the sum of fitnesses scale to 1 the Lagrange mul-
tiplier is λ = 1. In the rescaled variables the optimal strategy thus allocates
fitness to each environment proportional to its frequency:

f̃
?
= p. (D.3)

From the optimum in the rescaled variables the optimum in the original vari-
ables can be obtained by reversing the scaling f?i = f̃

?
i/ci.

Due to the non-negativity constraints on π(σ), which we have neglected so
far in the discussion, only a subset of the unit simplex is accessible if there
are no phenotypes that are not completely specialized to the different envi-
ronments. Where the unconstrained solution lies outside the feasible region a
value on the boundary of the fitness set is constrained optimum instead. The
fitness allocation among the remaining unconstrained directions still is propor-
tional to the frequency of the respective environments.

d.2 analytical results on optimal immune strategies in uncor-
related environments

d.2.1 Optimization problem

The cost function of the optimization problem is the long-term population
growth rate, which depends on the environmental statistics and the chosen
strategy. The long-term growth rate in uncorrelated environments for a given
p, fbase, finf, fdef(fcon) is given by Eq. 7.16, which we recall here

Λ(π, fcon) = p ln[πfdef + (1− π)finf]

+ (1− p) ln[πfcon + (1− π)fbase].
(D.4)

To find the optimal strategy we need to solve the following optimization prob-
lem

maximize
π,fcon

Λ(π, fcon)

subject to 0 6 π 6 1

fmincon 6 fcon 6 fmaxcon

. (D.5)
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The optimization consists in finding the (global) maximum of a two-variable
objective function subject to bound constraints on both variables. In the fol-
lowing derivations we make use of the ordering of the costs in the non-trivial
case fbase > fcon, fdef > finf and of the Pareto condition on the trade-off line
f ′def(fcon) < 0.

This problem can be solved numerically, but as is shown in the following a
lot of information is available from a purely analytical treatment of the opti-
mization problem. The Karush-Kuhn-Tucker conditions give necessary condi-
tions for local optimality of a point π?, f?con. For bound constrained problems
these conditions boil down to the statement that the partial derivative of the
objective function with respect to either variable needs to be [91]: zero if the
variable is in the interior of its feasible interval, negative if the variable is at
the lower end of its feasible domain, and positive if the variable is at the upper
end of its feasible domain. Expressed in equations the necessary conditions for
π?, f?con to be locally optimal is that

∂πΛ(π
?, f?con)


6 0, ifπ? = 0

> 0, ifπ? = 1

= 0, otherwise

(D.6)

and that

∂fconΛ(π
?, f?con)


6 0, f?con = 0

> 0, f?con = 1

= 0, otherwise

. (D.7)

The conditions provide only necessary but not sufficient conditions for local
optimality. A condition ensuring sufficiency is that the Hessian at the optimum
constricted to the feasible directions is negative definite.

d.2.2 Derivatives of the cost function

The optimality conditions derived in the previous subsection involve the deriva-
tives of the cost function, which can be obtained using simple algebra and
which we give below. The derivative of the cost function with respect to π is
given by

∂πΛ =
p(fdef − finf)

finf(1− π) + fdefπ
−

(1− p)(fbase − fcon)

fbase(1− π) + fconπ
(D.8)

∂fconΛ = π

[
pf ′def

finf(1− π) + fdefπ
+

(1− p)

fbase(1− π) + fconπ

]
. (D.9)
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For sufficiency we also need to consider the second derivatives of the cost
function:

∂2πΛ = −
p(fdef − finf)

2

(finf(1− π) + fdefπ)2
−

(1− p)(fbase − fcon)
2

(fbase(1− π) + fconπ)2
(D.10)

∂2fcon
Λ = −π

[
p(πf ′2def − (finf(1− π) + πfdef)f

′′
def)

(finf(1− π) + fdefπ)2
+

(1− p)π

(fbase(1− π) + fconπ)2

]
.

(D.11)

The second derivative with respect to π is always negative which shows that
the long-term growth rate is a concave function of π. For a fixed value of fcon

the optimization thus corresponds to a maximization of a concave function
and always yields a unique optimum. The second derivative of the long-term
growth rate with respect to fcon is also always negative, if f ′′def 6 0. This con-
dition on the trade-off function is fulfilled if individuals might bet hedge in
their degree of specialization in environment 1. Otherwise the second deriva-
tive might be positive for some p and there can thus exist more than one local
optimal in the full optimization problem.

A sufficient condition for having a local maximum is the negative definite-
ness of the Hessian. As one of its diagonal elements is always negative this
is equivalent to showing that the determinant of the Hessian is positive. The
determinant of the Hessian at an interior stationary point can be calculated to
be

det∇2Λ(π?, f?con) = −f ′′def(f
?
con)

(fbase − f
?
con)

2(f?def − finf)π

(fbasef
?
def − finff?con)(fbase(1− π) + f?conπ)(finf(1− π) + πf

?
def)

.

(D.12)

It follows that for f?con to be optimal for an intermediate π? the trade-off curve
needs to be locally concave f ′′def(f

?
con) < 0.

d.2.3 Regions of local optimality for different phases

The optimality conditions Eqs. (D.6) and (D.7) allow for three different cases
for π? and f?con each. This makes for a total of 3× 3 = 9 different combinations.
For the case π? = 0 the growth rate does not depend on f?con, so there exists up
to seven distinct phases. Under which conditions are these strategies locally
optimal? In the following we analytically derive the interval of p for which
these strategies are optimal.

d.2.3.1 Tolerance (π? = 0, arbitrary f?con)

The condition of local optimality is ∂πΛ(0, f?con) 6 0 (see Eq. (D.6)), which
needs to hold for all feasible f?con. This translates to the condition p 6 finf(fbase−f

?
con)

fbasef
?
def−finff

?
con

.
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The condition needs to hold for the f?con giving the strictest bound. Tolerance
thus is optimal for

p 6 min
fcon

finf(fbase − fcon)

fbasefdef − finffcon
=: p(0), (D.13)

i.e. for the rarest pathogens. If the adaptive strategy comes without constitutive
cost (fmincon = 0), then the tolerance phase disappears (p(0) = 0). Where the
phase exists it is followed by one of the bet hedging strategies.

d.2.3.2 Innate (π? = 1, f?con = fmincon )

From Eq. D.6 the condition of local optimality is ∂πΛ(1, fmincon ) > 0. This trans-
lates to the condition

p >
(fbase − f

min
con )fmaxdef

fbasef
max
def − finffmincon

=: p(iĩ). (D.14)

The second optimality condition Eq. D.7 is ∂fconΛ(1, f
min
con ) > 0, leading to

p >
fmaxdef

fmaxdef − fmincon f ′def(f
min
con )

=: p(ip). (D.15)

Both conditions need to hold at the same time for local optimality so an innate
strategy is optimal for

p > max(p(ip),p(iĩ)), (D.16)

i.e. for the most frequent pathogens. Depending on which of the two condi-
tions is more stringent it is followed either by a innate bet hedging strategy or
a protoadaptive phase.

d.2.3.3 Adaptive (π? = 1, f?con = fmaxcon )

Eq. (D.6) leads to

p >
(fbase − f

max
con )fmindef

fbasef
min
def − finffmaxcon

=: p(aã) (D.17)

and Eq. (D.7) to

p 6
fmindef

fmindef − fmaxcon f ′def(f
max
con )

=: p(ap). (D.18)

Taken together an adaptive strategy is optimal for

p(aã) 6 p 6 p(ap). (D.19)
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d.2.3.4 Protoadaptive (π? = 1, intermediate f?con)

Eq. (D.6) leads to p >
(fbase−f

?
con)f

?
def

fbasef
?
def−finff

?
con

and Eq. (D.7) to p =
f?def

f?def−f
?
conf

′
def(f

?
con)

. The
two conditions together lead to

f ′def(f
?
con) > −

fdef(f
?
con) − finf

fbase − f?con
, (D.20)

i.e. the derivative of the trade-off function needs to be more shallow then the
derivative of costs of a mixture with the current type. As we have an interme-
diate level of regulation we need to check the second derivative to assure the
extremum is a maximum. As shown in the main text this leads to the condition

d2 ln fdef
d(ln fcon)2

< 0. If the trade-off function is assumed to be fulfill both conditions
everywhere and to be smooth then by the intermediate value theorem there is
a f?con, which is optimal for a p in the region

p(ap) 6 p 6 p(ip) (D.21)

d.2.3.5 innate switching (intermediate π?, f?con = fmincon )

Eq. (D.6) leads to

p(0ĩ) 6 p 6 p(iĩ) (D.22)

with

p(0ĩ) =
finf(fbase − f

min
con )

fbasef
max
def − finffmincon

(D.23)

and Eq. (D.7) to

f ′def(f
min
con ) 6 −

fmaxdef − finf

fbase − fmincon
(D.24)

i.e. the derivative of the trade-off shape needs to be steeper then the line joining
the unprotected state.

d.2.3.6 adaptive switching (intermediate π?, f?con = fmaxcon )

Eq. (D.6) leads to

p(0ã) 6 p 6 p(aã) (D.25)

with

p(0ã) =
finf(fbase − f

max
con )

fbasef
min
def − finffmaxcon

(D.26)

and Eq. (D.7) to

f ′def(f
min
con ) 6 −

fmindef − finf

fbase − fmaxcon
. (D.27)
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d.2.3.7 protoadaptive switching (intermediate π?, f?con)

Eq. (D.6) leads to

p(0p̃) 6 p 6 p(pp̃) (D.28)

with

p(0p̃) =
finf(fbase − f

?
con)

fbasef
?
def − finff?con

(D.29)

and Eq. (D.7) to

f ′def(f
?
con) = −

fdef(f
?
con) − finf

fbase − f?con
. (D.30)

The derivative needs to be equal to the slope of the line connecting the fitness
profile to the non-protected type. The sufficiency condition detH(π?, f?con) > 0

leads to

f ′′def(f
?
con) < 0. (D.31)

d.3 derivation of long-term growth rate in the adiabatic limit

The study of the adiabatic limit in which the durations of environmental peri-
ods are large relative to the time scales of population composition change goes
back to [111]. Mathematically the long-term growth rate can be approximated
by an eigenvalue perturbation approach. In the following we give a derivation
following the notations of [117].

The transfer matrix connecting the population composition at successive
time points is 〈σ ′|A(x)|σ〉 = f(σ ′, x)π(σ ′|σ) (in bra-ket notation), which one
can decompose as A(x) = A

(x)
0 +A

(x)
1 with

〈σ ′|A(x)
0 |σ〉 =

f(σ, x) if σ ′ = σ

0 otherwise.
(D.32)

and

〈σ ′|A(x)
1 |σ〉 =

−f(σ, x)(1− π(σ|σ)) if σ ′ = σ

f(σ ′, x)π(σ ′|σ) otherwise.
(D.33)

Using this decomposition we treat A(x)
1 as a perturbation to A(x)

0 to approxi-
mately solve the eigenvalue problem of A(x). As A0 is diagonal its eigenvalues
are λ0,σ = f(σ, x) with corresponding eigenvectors |σ〉, which have all but the
σ-th element set to zero. Applying the formulas for the eigenvalues and eigen-
vectors of the perturbed problem we obtain

λσ = f(σ, x)π(σ|σ) (D.34)
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and the corresponding right eigenvectors

|ψ
(x)
σ 〉 = |σ〉+

∑
σ ′ 6=σ

〈σ ′|A(x)
1 |σ〉

f(σ, x) − f(σ ′, x)
|σ ′〉 (D.35)

= |σ〉+
∑
σ ′ 6=σ

f(σ ′, x)π(σ ′|σ)
f(σ, x) − f(σ ′, x)

|σ ′〉. (D.36)

In order to calculate overlaps we also need to calculate left eigenvectors. The
left eigenvectors of A(x)

0 are equal to its right eigenvectors as its a diagonal
matrix. The left eigenvectors of the perturbed problem are

〈ψ(x)
σ | = 〈σ|+

∑
σ ′ 6=σ

〈σ ′|(A(x)
1 )T |σ〉

f(σ, x) − f(σ ′, x)
〈σ ′| (D.37)

= 〈σ|+
∑
σ ′ 6=σ

〈σ|A(x)
1 |σ ′〉

f(σ, x) − f(σ ′, x)
〈σ ′| (D.38)

= 〈σ|+
∑
σ ′ 6=σ

f(σ, x)π(σ|σ ′)
f(σ, x) − f(σ ′, x)

〈σ ′|. (D.39)

Let us assume that for every environment x there is a type σ = x, which
provides optimal growth. The overlap between the largest eigenvectors in en-
vironments x and x ′ is given by

Q(x, x ′) := 〈ψ(x)
x |ψ

(x ′)
x ′ 〉 = π(x|x

′)Γ(x, x ′) (D.40)

with

Γ(x, x ′) =
f(x, x ′)

f(x ′, x ′) − f(x, x ′)
+

f(x, x)
f(x, x) − f(x ′, x)

(D.41)

In the adiabatic limit the long-term growth rate is given by

Λ =
∑
x

p(x) ln λx −
∑

x,x ′;x 6=x ′
p(x ′|x)p(x) ln

1

Q(x, x ′)
(D.42)

=
∑
x

p(x) ln f(x, x)

+
∑
x,x ′

p(x ′|x)p(x) ln[π(x|x ′)Γ(x, x ′)], (D.43)

where we have defined Γ(x, x) = 1.
We can write out the sums in the case of an environment switching between

two states as

Λ =p(1) ln f(1, 1) + p(2) ln f(2, 2)

+ p(1|2)p(2) ln[π(1|2)Γ(1, 2)]

+ p(2|1)p(1) ln[π(2|1)Γ(2, 1)]. (D.44)
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To compare the best switching strategies using phenotypes of fitness f or f̃ we
calculate the long-term growth rate difference

∆Λ =(1− p2) ln
f(1, 1)
f̃(1, 1)

+ p2
f(2, 2)
f̃(2, 2)

+ (1− e−1/tc)p2(1− p2) ln
Γ(1, 2)Γ(2, 1)
Γ̃(1, 2)Γ̃(2, 1)

, (D.45)

where we have used short-hand notations for the environmental switching
frequencies as introduced in the text. Setting ∆Λ = 0 we can solve for the
transition line between the two sets of phenotypes,

e−1/tc = 1−
(1− p2) ln f̃(1,1)

f(1,1) + p2 ln f̃(2,2)
f(2,2)

(1− p2)p2 ln Γ(1,2)Γ(2,1)
Γ̃(1,2)Γ̃(2,1)

. (D.46)

Such an analysis can be applied to the case where a generalist phenotype is
on the Pareto frontier to find when switching only uses specialists (Fig. 7.7).
To do so we compare the growth rate of switching between the specialist phe-
notypes σ = 1 and σ = 2 to the growth rates of switching between one of the
specialists and the generalist σ = 3. (D.46) then gives an approximate result
for the time scale of environmental correlations above which switching only
involves specialists.
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Abstract
Biological organisms have evolved diverse immune mech-
anisms to defend themselves against pathogens. Here
we build mathematical models of immune systems opti-
mally tuned to the statistics of pathogens.
Beyond molecular details, different immune mechanisms
differ in how protection is acquired, processed and passed
on to subsequent generations – differences that may be
essential to long-term survival. To explain the observed
diversity of strategies we compare the long-term adap-
tation of populations as a function of the pathogen dy-
namics that they experience and of the immune strategy
that they adopt. We find that the two key determinants
of an optimal immune strategy are the frequency and
the characteristic timescale of the pathogens. Depend-
ing on these two parameters, we identify distinct modes
of immunity, including adaptive, innate, bet-hedging and
CRISPR-like immunities, which recapitulate the diversity
of natural immune systems. Our results carry over to the
general question of evolution in fluctuating environments,
for which we provide novel analytical results in tempo-
rally correlated environments.
The adaptive immune system provides protection through
a broad repertoire of cells specific to different pathogens.
To predict statistical features of well-adapted repertoires
we analyze which repertoire minimizes cost of infection
for a given distribution of pathogens. The theory pre-
dicts that the immune system has more receptors for
rare antigens than expected from the frequency of en-
counters; and individuals exposed to the same infections
have sparse repertoires that are largely different, but nev-
ertheless exploit cross-reactivity to provide the same cov-
erage of antigens. Our results follow from a tension be-
tween the statistics of pathogen detection, which favor
a broader receptor distribution, and the effects of cross-
reactivity, which tend to concentrate the optimal reper-
toire onto a few highly abundant clones. These predic-
tions can be tested in high throughput surveys of re-
ceptor and pathogen diversity. We then explicitly con-
sider how the adaptive immune system can learn the
statistics of the environments from its past infection his-
tory in a Bayesian manner. We show that optimal reper-
toires can be reached by keeping memory of an infec-
tion through the selective proliferation of stimulated cells.
The Bayesian perspective on repertoire dynamics pro-
vides an unifying conceptual framework to explain a num-
ber of features of immunological memory and suggests
further experiments.

Keywords
biophysics, immunology, statistical physics, evolution

Résumé
Les organismes biologiques ont développé divers mé-
canismes immunitaires afin de se protéger des patho-
gènes. Nous développons ici des modèles mathématiques
de systèmes immunitaires, adaptés de façon optimale
aux statistiques des pathogènes.
Au delà des détails moléculaires, ces mécanismes im-
munitaires diffèrent dans la manière d’acquérir, de réguler
et de transmettre une protection immunitaire; différences
qui pourraient s’avérer essentielles pour la survie à long
terme. Afin d’expliquer la diversité des stratégies qui sont
observées, nous comparons l’adaptation à long terme
de populations en fonction de la dynamique des patho-
gènes à laquelle elles sont confrontées et de la stratégie
immunitaire qu’elles adoptent. Nous démontrons que la
fréquence et l’échelle de temps caractéristique des patho-
gènes sont les deux déterminants clés d’une stratégie
immunitaire optimale. En fonction de ces deux paramètres,
nous identifions des modes d’immunité distincts, com-
prenant immunités innées, adaptatives, ou ressemblant
au système CRISPR, qui récapitulent la diversité de sys-
tèmes immunitaires naturels. Nos résultats viennent s’éten-
dre à la question générale de l’évolution dans des envi-
ronnements variables pour laquelle nous apportons de
nouveaux résultats analytiques au sein d’environnements
temporairement corrélés.
Le système immunitaire adaptatif assure une protection
à partir d’un large répertoire de cellules spécifiques à
différents pathogènes. Pour prédire des propriétés statis-
tiques de répertoires adaptés, nous étudions quel réper-
toire minimise au mieux le risque d’infections pour une
distribution de pathogènes donnée. La théorie prédit que
les cellules spécifiques contre les antigènes rares sont
surreprésentées par rapport à la fréquence de leurs ren-
contres et que les individus, exposés aux mêmes infec-
tions, possèdent des répertoires avec des récepteurs
largement différents mais exploitent la réactivité croisée
afin de parvenir à la même couverture d’antigènes. Nos
résultats sont issus d’une opposition entre les statistiques
de détection des pathogènes, qui soutiennent l’idée d’une
plus large distribution de récepteurs, et les effets de la
réactivité croisée, qui tend à concentrer le répertoire op-
timal sur un petit nombre de clones. Nos prédictions peu-
vent être testées à partir des données à haut débit sur la
diversité des récepteurs et de pathogènes. Par la suite,
nous examinons explicitement comment le système im-
munitaire adaptatif peut apprendre de manière bayési-
enne les statistiques de l’environnement à partir de l’hist-
orique des infections précédentes. Nous montrons que
les répertoires optimaux peuvent être atteints par pro-
lifération sélective des cellules spécifiques. La perspec-
tive bayésienne sur la dynamique des répertoires fournit
un cadre conceptuel unificateur qui explique un certain
nombre de caractéristiques de la mémoire immunitaire
et appelle à des expériences complémentaires.
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