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Human Behavior Understanding by Shape Analysis of Human Motion and Pose dirigée conjointement par

Keywords: RGB-D data, 3D human behavior recognition, temporal modeling, shape analysis, Riemannian manifold, online detection. i Sommario dati RGB-D, riconoscimento di comportamenti umani 3D, modellazione temporale, analisi della forma, Riemannian manifold, rilevamento online

The emergence of RGB-D sensors providing the 3D structure of both the scene and the human body offers new opportunities for studying human motion and understanding human behaviors. However, the design and development of models for behavior recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, the complexity of human motion and possible interactions with the environment. In this thesis, we address this issue in two main phases by differentiating behaviors according to their complexity. We first focus on the action recognition problem by representing human action as the trajectory of 3D coordinates of human body joints over the time, thus capturing simultaneously the body shape and the dynamics of the motion. The action recognition problem is then formulated as the problem of computing the similarity between shape of trajectories in a Riemannian framework.

Experiments carried out on four representative benchmarks demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Second, we extend the study to activities by analyzing the evolution of the human pose shape to decompose the motion stream into short motion units. Each motion unit is then characterized by the motion trajectory and depth appearance around hand joints, so as to describe the human motion and interaction with objects. Finally, the sequence of temporal segments is modeled through a Dynamic Naive Bayesian Classifier. Experiments on four representative datasets evaluate the potential of the proposed approach in different contexts, including gesture or activity recognition and online activity detection.

Résumé

Compréhension de comportements humains 3D par l'analyse de forme de la posture et du mouvement L'émergence de capteurs de profondeur capturant la structure 3D de la scène et du corps humain offre de nouvelles possibilités pour l'étude du mouvement et la compréhension des comportements humains. Cependant, la conception et le développement de modules de reconnaissance de comportements à la fois précis et efficaces est une tâche difficile en raison de la variabilité de la posture humaine, la complexité du mouvement et les interactions avec l'environnement. Dans cette thèse, nous abordons cette question en deux étapes principales en différenciant les comportements en fonction de leur complexité. Nous nous concentrons d'abord sur le problème de la reconnaissance d'actions en représentant la trajectoire du corps humain au cours du temps, capturant ainsi simultanément la forme du corps et la dynamique du mouvement. Le problème de la reconnaissance d'actions est alors formulé comme le calcul de similitude entre la forme des trajectoires dans un cadre Riemannien. Les expériences menées sur quatre bases de données démontrent le potentiel de la solution en termes de précision/temps de latence de la reconnaissance d'actions. Deuxièmement, nous étendons l'étude aux activités en analysant l'évolution de la forme de la posture pour décomposer la séquence en unités de mouvement. Chaque unité de mouvement est alors caractérisée par la trajectoire de mouvement et l'apparence autour des mains, de manière à décrire le mouvement humain et l'interaction avec les objets. Enfin, la séquence de segments temporels est modélisée par un classifieur Bayésien naif dynamique. Les expériences menées sur quatre bases de données évaluent le potentiel de l'approche dans différents contextes comme la reconnaissance de gestes ou d'activités et la détection en ligne d'activités.

Mots-clés: Données de profondeur, reconnaissance de comportement humain 3D, modélisation temporelle, analyse de forme, variété Riemannienne, détection en ligne. So as to communicate or interact with real world environments, motion is one of the main manner employed by human people. Hence, analyzing and understanding such human motion is appreciated in many domains of application, like entertainment, medicine, sport, video surveillance, human-machine interfaces, kinesiology and ambient assisted living. This wide spectrum of potential applications encouraged computer vision society to address the issue of human behavior understanding trough vision-based analysis of the human motion. Human motion analysis in computer vision can be divided into three categories: human motion tracking, analysis of body or body parts movement and human behavior recognition.

Human motion tracking is mainly employed in video surveillance. It relates to the human motion detection in video sequences as well as its tracking over the sequence. In most of the cases, the global motion of the entire body is considered. The analysis of the resulted motions can be used to identify areas of interest in a scene or to determine global attitude of people in the crowd.

Differently, analysis of body movement focus on how the motion is performed. Such analysis are particularly useful in medical domain for detection of abnormal movements or rehabilitation, but also in sport for quality evaluation or statistical assessment of performances. It often considers local motion of certain body parts of interest, so as to achieve more accurate measures of the movement.

Human behavior recognition relates to the local or global analysis of the human motion in order to recognize it and understand its meaning.

Such recognition methods rely on similarity computation between a studied behavior and a set of known or learned behaviors, so as to identify to which class of behaviors the query sequence is closer. Human behavior recognition offers a larger panel of application domains than the two previous categories. During this thesis, we focus our study on human behavior recognition and understanding.

Recently, new effective and low-cost depth cameras have been released. These range sensors offer, in addition to RGB images in standard cameras, a depth map providing for each pixel its corresponding distances with respect to the sensor. The infra-red technology behind these sensors allows them to work in complete darkness and to be robust to light and illumination variation, a common issue in 2D videos analysis. Moreover, the depth information allows the reconstruction of the 3D structural information of the scene, thus facilitating the discernment of objects in the environment as well as the background subtraction. These advantages motivated researchers to investigate depth and resulted 3D data for the task of human behavior recognition by considering both the spatial configuration of the human pose and the dynamic of its motion characterizing the human behavior. While some methods employ extended features from 2D images literature on depth maps, other approaches consider the depth sequence as a 4D spatio-temporal space.

In addition, recent research makes available the real-time estimation of 3D humanoid skeletons from depth images. Such skeletons including a set of 3D connected joints representing various human body parts facilitate the analysis of the human pose and its motion over the time.

The effectiveness of skeleton data has been proven for the analysis and recognition of relatively simple behaviors, like human gestures or actions.

However, more complex behaviors like activities involve manipulation of objects. So as to characterize such human-object interactions, hybrid approaches combining description of both human motion and objects are appreciated. Such activities also involve more complex human motions.

Hence, a temporally local analysis of the motion is often required.

Nevertheless, even if these new depth data provided by RGB-D sensors considerably facilitate the issue of human behavior understanding over 2D videos, important challenges, related to the nature of human motion and its analysis, remain. Indeed, so as to guarantee an effective and robust human behavior recognition system, the analysis should be invariant to geometric transformations of the subject as well as the execution speed of the behavior. Additional challenges appear when a fast recognition is needed or when several behaviors are performed successively in a long sequence. In these contexts, an online analysis of the motion stream is necessary.

Besides euclidean methods, non-Euclidean like Riemannian methods have also been investigated by modeling human poses and motions on analytic manifolds. Their effectiveness over Euclidean methods have been demonstrated for the task of human behavior recognition from 2D videos.

Thesis contributions

All considerations stated before motivate us to investigate the issue of human behavior understanding from depth data. So as to face the main challenges, we first propose to recast the problem of human action recognition as a problem of shape analysis of motion trajectories through a Riemannian shape space. We then extend the study to activities by segmenting the motion into short motion units and considering both human movement and depth appearance to characterize human-object interactions. The main contribution of this PhD thesis can be summarized as follows:

• Human action recognition: We propose an original translation and rotation invariant representation of an action sequence as a trajectory in a high dimensional space. By concatenating the 3D coordinates of skeleton joints, data representation encodes the shape of the human posture at each frame. By modeling the sequence of frame features along the action as a trajectory, we capture the dynamics of human motion. The analysis and comparison of such trajectories is achieved through the shape analysis framework. Shapes of trajectories are interpreted within a Riemannian manifold and an elastic metric is employed for computing shape similarity, thus improving robustness to the execution speed of actions;

• Motion unit decomposition of RGB-D sequences: We extend the study to more complex behaviors, like activities. In so doing, we propose a segmentation method based on the analysis of human pose variation along the sequence. First, the skeleton of each pose is represented as a 3D curve, which is mapped as a point on a Riemannian manifold. Then, using statistical tools on the manifold permits the decomposition of the sequence into elementary motion units. Then, we combine elastic shape analysis of motion trajectories on a Riemannian manifold, and description of depth appearance around subject hands to temporally describe each motion unit. Finally, using a codebook of motion units to represent a sequence permits capturing the dynamics and recognize the human behavior with a Dynamic Naive Bayesian classifier.

Thesis organization

The thesis is organized as follows: In Chapter 2, we lay out the issue of human behavior understanding from RGB-D data as well as existing solutions proposed in the state-of-the-art. Chapter 3 introduces the shape analysis framework that we employ to analyze and compare both shape of human pose and motion. Chapter 4, presents the method that we employ for the task of human action recognition and its evaluation in comparison with state-of-the-art on several benchmark action datasets. In Chapter 5, we propose a different method capable of handling identified failure cases and investigate more complex behaviors, like activities. Finally, we conclude this manuscript in Chapter 6 by summarizing contributions of the thesis and proposing directions of future research.

Chapter 2. State-of-the-art

Introduction

In computer vision, the problems of human motion analysis and behavior understanding exist since many years and has attracted many researchers notably because of its large panel of potential applications.

In this Chapter, we first define the problem of human behavior understanding with its terminology and its potential applications. Then, we introduce the depth sensor technology as well as RGB-D data provided by such cameras. Benchmark datasets of such data collected for the task of human motion analysis are then presented. Finally, we review the main existing approaches in the state-of-the-art, which provide methodology to face the problem of human behavior understanding.

Human behavior understanding problem

The problem of human behavior understanding can be initially defined as follows: given a set of known sequences of different human behaviors, which of them is performed during an observed test sequence? The problem can then be extended to the analysis of a long unknown motion sequence, where different behaviors are performed successively and should be recognized and localized in the time by the system. Before the release of new depth sensors, human behavior understand-ing has been widely investigated in computer vision from 2D images or 2D videos taken from standard RGB cameras ( [START_REF] Salah | Challenges of human behavior understanding[END_REF][START_REF] Liu | Learning discriminative key poses for action recognition[END_REF][START_REF] Tian | Hierarchical filtered motion for action recognition in crowded videos[END_REF][START_REF] Shao | Spatio-temporal laplacian pyramid coding for action recognition[END_REF]). However, most of these methods suffer from some limitations coming from 2D videos, like the sensitivity to color and illumination changes, background clutter and occlusions.

Since the recent release of RGB-D sensors, like Microsoft Kinect [START_REF]Microsoft Kinect[END_REF] or Asus Xtion PRO LIVE [START_REF]ASUS Xtion PRO LIVE[END_REF], new opportunities have emerged in the field of human motion analysis and understanding. Hence, many research groups investigated data provided by such cameras in order to benefit from some advantages with respect to RGB cameras. Indeed, depth data allow better considering the 3D structure of the scene and thus easily perform background substraction and detect people in the scene. In addition, the technology behind such depth sensors allows more robustness to light variations as well as working in complete darkness.

However, the task of understanding human behaviors is still difficult due to the complex nature of the human motion. What further complicates the task is the necessity of being robust to execution speed and geometric transformations, like the size of the subject, its position in the scene and its orientation with respect to the sensor. Additionally, in some contexts, human behaviors imply interactions with objects. While such interactions can help to differentiate similar human motions, they also add challenges, like occlusions of body parts.

Moreover, the main challenge of human behavior understanding systems is the online capability. Indeed, a system able to analyze the human motion in an online way is very important for two main reasons. First, it allows a low latency making the interaction with the system more natural. Second, it allows the processing of very long motion sequences of different behaviors performed successively.

Behavior terminology

Before going more in detail, an initial definition of behavior terminology is necessary. During this thesis, we identify three main types of human behaviors: human gestures, human actions and human activities. Each type of behaviors is characterized by a different degree of motion complexity, degree of human-object interaction and duration of the behavior. This is summarized in Table 2.1. However, we note that in the state-of-the-art, the boundaries between these three terminologies are often smooth as on behavior can lie between two behavior types. For instance, a simple action performed with one arm can be assimilated as a gesture. Conversely, an action performed with an object can be viewed as an activity.

Table 2.1 -Terminology of human behaviors according to motion complexity, human-object interaction and movement duration.

Gesture

A gesture is characterized by a simple motion of only one part of the human body (often the arm). Although, due to the low level of complexity, the notion of dynamic may not be necessary and a gesture can often be characterized by a single or very few relevant human poses. The duration of a gesture does not exceed few seconds. In addition, a gesture is performed without any object. For instance gestures can be: raising the arm up, bending the arm or pointing toward.

Action

An action is defined as a slightly more complex movement, which can also be a combination of several gestures. Most of the time, actions are characterized by motion of several parts of the body. The duration of an action varies from few seconds to one minute approximately. In addition, some actions can be performed with an object, but in these cases, objects are held by the subject in the beginning of the action. Example of actions are: run, jump, drink or phone call.

Activity

Activities are characterized by a high level of motion complexity, where several movements or actions are performed successively. The duration of activities are of the order of minutes. In addition, what makes the activities more complex is the interaction with objects. For instance, an activity can be: microwaving food, which consists of the combination of take food, put food into the microwave and take food from microwave.

Applications

The main motivation behind the interest in such understanding of human behaviors, whether using standard cameras or RGB-D sensors, is the large range of applications that it offers in various fields, like entertainment, surveillance, security, motion learning and health care.

Entertainment and learning

One of the main domain in which human motion understanding approaches can be applied is the gaming/entertainment field [4,[START_REF] Tong | Research on skeleton animation motion data based on kinect[END_REF][START_REF] Hadjiminas | Be the controller: A kinect tool kit for video game control -recognition of human motion using skeletal relational angles[END_REF].

Moreover, that is why the Microsoft Kinect was released as a gaming device of the video game console Microsoft Xbox.

Indeed, understanding human motions offers a new way of playing video games or interacting with the system without intermediate devices, like joysticks. In order to guarantee natural interaction with the system, the human motion analysis should be performed in real-time and also provide an effective latency by understanding the human motion before the end of its execution.

In addition, human motion analysis can be applied in motion learning system [START_REF]Virtual Sensei[END_REF] in order to help the user to learn or improve a particular gesture, like sport gestures or first aid gestures. In that case, recognizing the human motion is not sufficient, but a deeper analysis is needed. The system should be able to locally detect movement mistakes, so as to provide relevant feedback to the user on how and where improving the gesture.

Surveillance and security

The field of surveillance and security has attracted many researchers in the last decades. In 2D videos, a main challenge widely investigated is the tracking of people in the scene. Thanks to RGB-D sensors, this tracking is facilitated, thus the analysis can be focused on the understanding of the scene and human behaviors [START_REF] Bondi | Real-time people counting from depth imagery of crowded environments[END_REF][START_REF] Elangovan | Team activity analysis and recognition based on kinect depth map and optical imagery techniques[END_REF].

The goal of such surveillance systems is to observe people and detect when suspicious activities are performed. Hence, by providing an efficient human behavior understanding method, such surveillance systems are able to differentiate normal and irregular behaviors. In addition, robustness to illumination changes of RGB-D sensors, as well as their capability to work in complete darkness are very important advantages in this context with respect to standard RGB cameras.

Health care

Finally, such human behaviors analysis method can be very helpful in medical domain for both doctors and patients [START_REF] Paiement | Online quality assessment of human movement from skeleton data[END_REF]. First, it facilitates detection and diagnosis of possible deficiency in the human motion. In addition, a deep analysis of the human motion provides to health workers accurate and relevant information, so as to observe the deficiency evolution as well as the efficiency of the treatment.

Then, it can be applied in a monitoring system, so as to detect abnormal behaviors, like falls of patients in their room [START_REF] Bian | Cross-domain human action recognition[END_REF][START_REF] Mastorakis | Fall detection system using kinects infrared sensor[END_REF]. Hence, it allows the health workers to faster intervene in case of need.

Last, human motion analysis can also be helpful for patients. For instance, it can be applied in a rehabilitation system [START_REF] Abdur Rahman | Multimedia interactive therapy environment for children having physical disabilities[END_REF][START_REF] Chang | Towards pervasive physical rehabilitation using microsoft kinect[END_REF][START_REF] Saini | A lowcost game framework for a home-based stroke rehabilitation system[END_REF], so as to help the patient to perform the right rehabilitation exercises without the presence of a doctor. Such system can also compute some statistics in order to evaluate the progress of the patient in the rehabilitation task. Moreover, understanding human activity can be beneficial in robotic for helping disabled patients to achieve daily life tasks, and thus improving their quality of life.

RGB-D and 3D data

Analyzing and understanding a real-world scene observed by an acquisition system is the main goal of many computer vision systems. However, standard cameras only provide 2D information about the scene. The lack of the third dimension results in some limitations while analyzing and understanding the 3D scene. Hence, having the full 3D information about the observed scene became an important challenge in computer vision.

In order to face this challenge, research groups tried to imitate the human vision. The human perception of the scene relief is formed in the brain, which interprets the two plane images from two eyes, so as to build one single image in three dimensions. This process of reproducing relief perception from two plane images is called stereoscopic vision. It has been widely investigated in computer vision, so as to obtain the 3D information of a scene. By using two cameras observing the same scene from slightly different points of view, a computer can compare the two images to develop a disparity image and estimate the relief of the scene.

For instance, this technique is currently used to create 3D movies.

For the task of human motion analysis, having 3D information about the human pose is also a challenge, which has attracted many researchers.

Motion capture systems, like those from Vicon [START_REF]Vicon Motion Systems[END_REF] are able of accurately capturing human pose, and track it along the time resulting in high resolution data, which include markers representing the human pose. Motion capture data have been widely used in industry, like in animation and video games. In addition, many datasets have been released providing such data for different human actions in different contexts, like the Carnegie Mellon University Motion Capture database [18]. However, these systems present some disadvantages. First, the cost of such technology may limit its use. Second, it implies that the subject wears some physical markers so as to estimate the 3D pose. As a result, this technology is not convenient for the general public.

More recently, new depth sensors have been released, like Microsoft Kinect [START_REF]Microsoft Kinect[END_REF] or Asus Xtion PRO LIVE [START_REF]ASUS Xtion PRO LIVE[END_REF]. Figure 2.2 shows pictures of these devices. In addition to standard RGB images, a depth map is also provided giving for each pixel the corresponding distance with respect to the sensor.

As a result, the 3D scene can be estimated from such depth maps. Behind these depth sensors, two types of technology exist:

• Structured light: A known pattern is projected in the scene. Then, a sensor analyzes the distortion of the pattern in contact with object, and thus estimates the distance of each point of the pattern;

• Time of flight: A light signal is emitted in the scene. Knowing the speed of light, a receptor then computes the distance of the object based on the time elapsed between the emission of the signal and its reception.

Depth sensors, like Microsoft Kinect 1 or Asus Xtion PRO LIVE employ the structured light technique, while the new Microsoft Kinect 2 employs the time of light technology. In both cases, an invisible light system is used (infra-red projector and sensor).

These new acquisition devices have stimulated the development of various promising applications, including human pose reconstruction and estimation [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], scene flow estimation [START_REF] Hadfield | Kinecting the dots: Particle based scene flow from depth sensors[END_REF], hand gesture recognition [START_REF] Ren | Robust hand gesture recognition based on finger-earth mover's distance with a commodity depth camera[END_REF],

and face super-resolution [START_REF] Berretti | Superfaces: A super-resolution model for 3D faces[END_REF]. A recent review of kinect-based computer vision applications can be found in [START_REF] Han | Enhanced computer vision with microsoft kinect sensor: A review[END_REF]. The encouraging results shown in these works take advantage of the combination of RGB and depth data enabling simplified foreground/background segmentation and increased robustness to changes of lighting conditions. As a result, several software libraries make it possible to fit RGB and depth models to the data. The two main software libraries are Microsoft Kinect SDK [START_REF]Microsoft Kinect Software Development Toolkit[END_REF] and OpenNI SDK [START_REF]OpenNI 2 Software Development Toolkit[END_REF].

Additionnaly, Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] proposed a new real-time method to accurately predict the 3D positions of body joints in individual depth maps, without using any temporal information. As a result, the human pose can be represented as a 3D humanoid skeleton with a certain number of joints. In [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], results report the prediction accuracy for 16 joints, 

Datasets

The emergence of RGB-D data has encouraged research groups to build new datasets for the task of human motion analysis. As a result, numerous RGB-D datasets are currently publicly available presenting various challenges and contexts. Table 2.2 summarizes the most popular RGB-D datasets publicly available for the task of human motion analysis. As shown in Table 2.2 these datasets have been collected for different contexts:

• Single Person Recognition: The goal is to recognize the behavior performed by one subject in front of the camera;

• Two Persons Recognition: In this context, the objective is to recognize the interaction between two subjects in front of the camera;

• Robot-centric Recognition: These recent context proposes to recognize the interaction between a subject and a robot from the point of view of the robot;

• Multi-view: The aim of this context is to evaluate the robustness of recognition methods to different point of views. Generally, behaviors from one point of view are used for training and the same behaviors from a different point of view are used for testing the approach;

• Online detection: Instead of only one behavior performed in a sequence, this more realistic context provides long sequences, where a subject is performing different behaviors successively. The goal is to recognize as well as localize in the time the performed behaviors;

• Person re-identification: The goal is to recognize a known person in a new sequence;

• Fall detection: In this context, a subject is performing some daily activities and suddenly falls down. The purpose is to detect these falls as fast as possible.

Additionally, Table 2.2 provides for each dataset its size (number of subjects and classes and total number of sequences), the type of provided data and the type of behaviors performed by the subjects. Figure 2.5 shows example frames of some datasets collected for different contexts.

In this thesis, we focus our study on human behavior recognition and understanding. In order to evaluate and compare our work for gesture recognition, we use the MSRC-12 dataset [START_REF] Fothergill | Instructing people for training gestural interactive systems[END_REF]. For action recognition, we employ the Florence 3D Action [START_REF]Florence 3D Action dataset[END_REF], MSR Action 3D [START_REF] Li | Action recognition based on a bag of 3D points[END_REF], UTKinect [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF] and UCF Kinect [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF] datasets. For the more complex context of activity recognition, evaluations are conducted on Cornell Activity 120 [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] and

Online RGBD [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] datasets. Finally, so as to analyze the online capability of our method, we adopt the Online RGBD [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] and MAD [START_REF] Huang | Sequential maxmargin event detectors[END_REF] datasets.

Related work

Due to the high number of potential applications and publicly available datasets, many works have been proposed in the literature to address the problem of human behavior understanding from RGB-D data. Recent surveys summarize these works [START_REF] Chaaraoui | A review on vision techniques applied to human behaviour analysis for ambient-assisted living[END_REF][START_REF] Chen | Skeleton-based action recognition with extreme learning machines[END_REF][START_REF] Ye | A survey on human motion analysis from depth data[END_REF]. These RGB-D based approaches benefit from the large number of works published in the last two decades on human activity recognition in 2D video sequences (see for example the recent surveys in [START_REF] Weinland | A survey of vision-based methods for action representation, segmentation and recognition[END_REF][START_REF] Turaga | Machine recognition of human activities: A survey[END_REF][START_REF] Bian | Cross-domain human action recognition[END_REF][START_REF] Poppe | A survey on vision-based human action recognition[END_REF]).

While some works focus on relatively simple behaviors, like gestures or actions, other methods tackle more complex behaviors, like activities.

More recently, researchers also address the issue of online detection of human behaviors. 

Action recognition

In recent years, recognition of human actions from the analysis of data provided by RGB-D cameras has attracted the interest of several research groups. The approaches proposed so far can be grouped into three main categories, according to the way they use the depth channel: skeleton-based, depth map-based and hybrid approaches. Skeleton based approaches, model the human pose in subsequent frames of the sequence using the 3D position of skeleton joints. Depth map based approaches extract appearance and temporal features directly from the overall set of points of the depth maps in the sequence. In addition to these approaches, there are also some hybrid methods that exploit the combination of depth, skeleton or color information to improve results. Following this categorization, existing methods for human action recognition using depth information are shortly reviewed below. The approach in [START_REF] Li | Action recognition based on a bag of 3D points[END_REF] proposes to project depth maps onto three orthogonal Cartesian planes (X-Y, Y-Z and X-Z) representing the front view, the side view and the top view respectively. Then, 2D contours of such projection are computed for each view and used to retrieve the corresponding 3D human silhouette for each frame of the sequence. By employing the bag-of-word paradigm on these 3D silhouettes, they can identify a set of salient postures, which are used as nodes in an action graph modeling the dynamics of the actions. Figure 2.6 illustrates the idea of 3D silhouettes.

Depth map-based approaches

Methods

However, this representation is view dependent as different orientation of the subject would result in different projections onto the three Cartesian planes.

Figure 2.6 -Computation of 3D silhouette in [START_REF] Li | Action recognition based on a bag of 3D points[END_REF]. The depth map is projected onto three Cartesian planes to then build a 3D silhouette from 2D contours.

The idea of projecting each depth map onto these three orthogonal planes is also employed in [START_REF] Yang | Recognizing actions using depth motion maps-based histograms of oriented gradients[END_REF]. Then, the motion energy is obtained by computing and thresholding the difference between two successive maps.

Such motion energy is then stacked through all the video sequence resulting in a Depth Motion Map (DMM) for each view. Such DMM highlights areas where main motion takes place during the action. Histogram of Oriented Gradients (HOG) is then applied to DMM maps to extract features for each view. The three HOG features are concatenated to build a single feature for each sequence. A SVM classifier is trained on this feature to perform action recognition. The process of computing this final HOG feature is displayed in Figure 2.7. Similarly to [START_REF] Li | Action recognition based on a bag of 3D points[END_REF], this methods suffers from its view dependency.

Other works propose to extend the idea of spatio-temporal interest points (STIPs) to depth data. Indeed, its capability to handle clutter background and partial occlusions has been proven in RGB video. Hence, the work in [START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF] proposes to apply this idea to depth maps by extract- ing STIPs from depth video called DSTIPs. Then, the 3D cuboid around each DSTIP is considered to compute the depth cuboid similarity feature (DCSF) describing the local depth appearance within each cuboid. Finally, the bag-of-words approach is employed to identify a cuboid codebook and represent the actions. Figure 2.8 illustrates the process of DCSF computation. In [START_REF] Zhao | 3d sparse quantization for feature learning in action recognition[END_REF], a novel formulation of the cuboid descriptor is proposed based on its sparsification and its quantization. This feature called 3D sparse quantization (3DSQ) is then employed in a spatial temporal pyramid (STP) [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF] for hierarchically describing the action. A similar idea of STIP is proposed by Rahmani et al. [START_REF] Rahmani | Hopc: Histogram of oriented principal components of 3d pointclouds for action recognition[END_REF], where key-points are detected from the 3D point cloud. Each point is then described using the Histogram of Principal Components (HOPC). The main advantage of this method is its robustness to viewpoint, scale and speed variations.

Such robustness are important challenges investigated by many researchers. For instance, a binary depth feature called range-sample depth feature is proposed by Lu and Tang [START_REF] Lu | Range-sample depth feature for action recognition[END_REF]. This feature describing both shape geometry and motion is robust to occlusion as well as possible changes in scale, viewpoint and background.

Instead of directly working on depth maps, other methods propose to consider a depth sequence as a 4D space (3D+t) divided into spatiotemporal boxes to extract features representing the depth appearance in each box. For instance, Vieira et al. [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF] propose to divide the 4D space into a grid containing a certain number of 4D cells. Then the spatiotemporal occupancy pattern (STOP) is computed within each 4D cell. Such feature counts the number of points that fall into the spatio-temporal grid. The 4D space is also investigated in [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF]. As shown in Figure 2.10, 4D normals over the 4D space are first computed. Then, the depth sequence is partitionned into spatio-temporal cells. Within each cell the orientation of 4D normals are quantified using 4D projectors to build a 4D histogram.

This feature, called histogram of oriented 4D normals (HON4D), captures the distribution of the normal vectors for each cell. The idea of computing surface normals within spatio-temporal cells is also used by Yang and Figure 2.9 -Illustration of the STOP feature proposed in [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF].The spatio-temporal space is divided into 4D cells where motionless (red) and motion (green) regions are identifiable [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF].

Tian [START_REF] Yang | Super normal vector for activity recognition using depth sequences[END_REF] to describe both local motion and shape information characterizing human action. However, a limitation of such normal methods is that they assume correspondence between cells across the sequence. Hence, these methods may fail when the subject significantly changes his spatial position during the performance of the action.

Figure 2.10 -Overview of the approach proposed in [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF] to compute the HON4D feature.

Skeleton-based approaches

Skeleton based approaches have become popular thanks to the work of Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF] that makes available a representative 3D humanoid skeleton for each frame. These methods exploit such skeleton data instead of the whole depth map to describe the human pose and the action dynamics.

In [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF], three features for each joint are extracted based on pair-wise differences of joint positions: in the current frame representing human posture ( f cc ); between the current frame and the previous frame representing instantaneous motion ( f cp ); and between the current frame and the initial frame of the sequence representing global motion ( f ci ). This latter is assumed to correspond to the neutral posture at the beginning of the action. Since the number of these differences results in a high dimensional feature vector, principal component analysis (PCA) is used to reduce re- Xia et al. [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF] propose to quantify the 3D space into bins using a spherical coordinate system centered at the hip joint, as shown in Figure 2.12.

Then, each 3D joint is voted into the corresponding 3D bin to build the histogram of oriented joints 3D (HOJ3D) feature for each frame. Then, the resulted histograms are clustered to identify posture words representing prototypical poses of human actions. Finally, the temporal evolution of these visual words is modeled by discrete Hidden Markov Models to describe action dynamics. Such bag-of-poses idea is also employed in [START_REF] Seidenari | Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[END_REF],

but differently as the prototypical poses are the set of poses belonging to training sequences. A different pose description is employed by using kinematic chains. As shown in Figure 2.13a, a basis is built from torso joints and serves as the root of the kinematic tree. Then, each of the remaining joints is expressed relatively to its parent joint. Similarly to [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF],

a Naïve-Bayes nearest-neighbor classifier is finally employed for action classification.

In Ofli et al. [START_REF] Ofli | Sequence of the most informative joints (smij): A new representation for human skeletal action recognition[END_REF][START_REF] Ofli | Sequence of the most informative joints (smij): A new representation for human skeletal action recognition[END_REF], they propose to highlight physical meaning of Other methods, like [START_REF] Luo | Group sparsity and geometry constrained dictionary learning for action recognition from depth maps[END_REF] and [START_REF] Zhou | Discriminative key pose extraction using extended lc-ksvd for action recognition[END_REF] propose deeper sequence representations by employing the sparse coding and dictionary learning (DL) techniques, which have been successfully applied to many computer vision problems [2,[START_REF] Zhang | Discriminative k-svd for dictionary learning in face recognition[END_REF][START_REF] Jiang | Learning a discriminative dictionary for sparse coding via label consistent k-svd[END_REF]. The idea behind dictionary learning is that data can be represented by a linear combination of few atoms from a learned dictionary. Existing skeletal features, like the one proposed in [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF] or [START_REF] Zanfir | The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection[END_REF] are used in the dictionary learning algorithms to quantize the skeleton features and identify discriminative key poses for each action class. Temporal pyramid [START_REF] Xu | Visual event recognition in news video using kernel methods with multi-level temporal alignment[END_REF] is used for modeling temporal dynamics of actions and a SVM classifier is employed for action recognition.

Other approaches use differential geometry to represent skeleton data, so as to consider the non-linear nature of human motion. In [START_REF] Vemulapalli | Human action recognition by representing 3d skeletons as points in a lie group[END_REF], the authors represent each skeleton as one element on the Lie-group, and the sequence corresponds to a curve on this manifold, as shown in Fig- Recent works address more complex challenges in real-time action recognition systems, where a trade-off between accuracy and latency becomes an important goal. For example, Ellis et al. [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF] 

Hybrid approaches

Instead of focusing on one single channel provided by RGB-D sensors, some methods investigate the combination of these different flows, so as to benefit from their respective strengths. For instance, the work in [START_REF] Ni | Rgbd-hudaact: A colordepth video database for human daily activity recognition[END_REF] introduces two extended methods for fusing color and depth information.

First, an extension of STIPs called Depth-Layered Multi-Channel STIPs (DLMC-STIPs) is employed by dividing such STIPs into several depth layers resulting in a multiple depth channel histogram representation. Second, the Three-Dimensional Motion History Images (3D-MHIs) approach, which equips the (MHIs) [START_REF] Davis | The representation and recognition of action using temporal templates[END_REF] with motion history in the depth channel is introduced. The same channels are also used in [START_REF] Liu | Learning discriminative representations from RGB-D video data[END_REF], where authors propose a learning method to simultaneously extract and fuse features from RGB and depth data.

Differently, the method proposed in [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF] combines depth data and skeleton data to improve the action recognition accuracy. As skeleton features, similarity distances between joint angles are employed to build the joint angle similarities (JAS) feature. For depth features, HOG features are computed around each joint from each depth frame and concatenated over the time resulting in a matrix. HOG features are computed a second time on this matrix to obtain the HOG 2 feature. Finally, both features are combined and linear SVM is used for classification. This process is illustrated in Figure 2.15. 

Activity recognition

As described previously, activities are mainly characterized by humanobject interaction and more complex motions. In the state-of-the-art, these properties are handled differently.

In order to simultaneously represent the human motion and the interaction with objects, hybrid approaches are often employed. For instance, Ni et al. [START_REF] Ni | Multi-level depth and image fusion for human activity detection[END_REF] propose to fuse gray-scale data with depth data to improve the detection of human-object interaction. Indeed, spatial and temporal contextual information, like relative distance or relative speed are important cues for representing human-object or human-surrounding interactions. However, due to perspective projection, extracting these information from 2D data may be inaccurate. To overcome this limitations, depth data providing 3D information about the scene is employed in addition to gray-scale data.

Other methods propose to combine depth information and skeleton data to detect and describe such manipulation of objects. Indeed, when activities mainly differ due to these manipulations, using only skeleton data is not sufficient to guarantee an effective recognition of activities.

However, skeleton data provide accurate position of body parts, thus it facilitates the detection of such interaction. Indeed, it reduces the number of possibilities where human-object interaction may take place. For instance, Wang et al. [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF] propose to describe the depth appearance around each skeleton joint in addition to its position in the space. To this end, they consider the local region using a 3D spatial grid centered at the joint.

Then the local point cloud is computed from depth map and the occupancy pattern feature called local occupancy pattern (LOP) is computed.

This feature, similar to [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF][START_REF] Wang | Robust 3D action recognition with random occupancy patterns[END_REF], The same feature is also employed in [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] in addition to a set of skeleton features, like joints locations pairwise differences and temporal variations. To detect human-interaction, the authors consider the potential object positions by learning the distance between hands (both left and right) and object center from training sequences. The LOP feature is then employed to describe depth appearance in each potential object position.

represents
For classification, both skeleton and depth features are used to build middle level features called orderlets, which are robust to noise and missing joints. Similarly, Oreifej et al. [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF] extend their method by computing their proposed feature HON4D, described previously, in local regions around joints to characterize manipulation of objects and recognize activities.

So as to handle the high complexity of human motion characterizing activities, methods proposed in the state-of-the-art consider the sequence more locally at the level of pose or short temporal segments.

In [START_REF] Lillo | Discriminative hierarchical modeling of spatio-temporally composable human activities[END_REF] ral and spatial compositions of actions into complex human activities. In addition, the authors also divide each pose into different spatial regions to capture regions that are relevant for each activity.

Figure 2.17 -The hierarchical model proposed in [START_REF] Lillo | Discriminative hierarchical modeling of spatio-temporally composable human activities[END_REF] with three levels of semantic corresponding to human pose, action and activity.

Koppula et al. [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] propose to combine both temporally local analysis of the motion and detection of possible objects to handle simultaneously the two main challenges characterizing activities. In so doing, they consider short time interval, where they describe human poses through skeleton features, like joints positions and displacements, and objects through RGB features. In order to explicitly model the human-object interaction as well as the evolution of the temporal segments, they define a Markov Random Field (MRF). In this Markov model, nodes represent objects and human motion, and edges represent the relationships between object affordances, their relations with sub-activities, and their evolution over time, as shown in Figure 2.18. A structural SVM is employed to formulate the learning problem. An extended graphical model called Conditional Random Field (CRF) is proposed in [START_REF] Koppula | Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation[END_REF], so as to detect past activities, but also anticipate which activity will happen in the future. A graphical model is also employed by Wei et al. [START_REF] Wei | Modeling 4d human-object interactions for event and object recognition[END_REF] to hierarchically define activities as combination of sub-events or atomic events including description of the human pose, the object and interaction between them.

To describe human pose, differences between 3D joints coordinates of two successive frames are employed. To detect and describe possible objects in the scene, a sliding window strategy is employed with a combination of HOG features computed from both RGB and depth data. Finally, to characterize the interaction between the human and detected objects a geometric compatibility measure is computed to define if the detected objects are close enough to human arms. Figure 2.19 shows an example of a hierarchical model of an activity event.

Online detection

Some of the works reviewed above [START_REF] Wei | Modeling 4d human-object interactions for event and object recognition[END_REF][START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF], have also online action recognition capabilities, as they compute their features within a short sliding window along the sequence. This more complex challenge has recently been investigated on RGB-D videos. Indeed, in addition to provide fast recognition of the behavior without observing the whole sequence, such online capabilities also allow the processing of long continuous sequences, where several actions or activities are performed successively. This corresponds to a more realistic scenario.

For instance, Wei et al. [START_REF] Wei | Concurrent action detection with structural prediction[END_REF] combine wavelet features for each body joint and a sequential window search algorithm, so as to detect actions in long videos in an online manner.

Huang et al. [START_REF] Huang | Sequential maxmargin event detectors[END_REF] proposed and applied the sequential max-margin event detector algorithm (SMMED) on long sequences comprising many actions in order to perform online detection. So as to reduce the number of possible candidates and improve computational efficiency, the proposed method allows the sequential discarding of non corresponding action classes.

Conclusion

The many advantages of RGB-D sensors over standard RGB cameras encourage researchers to investigate the new provided data for the task of human behavior recognition. Skeleton-based methods benefit from the 3D humanoid skeleton, which can be estimated from depth images. Such data provide accurate position of several body parts and thus allow focusing on the human motion, which mainly characterizes human behaviors. Experiments conducted in the literature demonstrated that these skeleton data are sufficient to characterize human motion and efficient for recognition of relatively simple behaviors, like gestures and actions.

However, considering the human motion may not be sufficient for more complex behaviors, like activities. Indeed, such activities are also characterized by interactions with objects. Thus, skeleton data are not suitable for describing these interactions. In this context, hybrid approaches combining strengths of skeleton and depth features are appreciated. In addition, activities also involve combinations of short movements resulting in more complex human motions. Hence, temporally local analysis of human movement is required to handle such motion complexity. In a second time, we extend the method by segmenting the whole human motion into shorter motion units by analyzing the human pose shape deformation. In addition to human motion, we also consider the depth appearance around subject hands to characterize possible manipulations of objects. The sequences of motion units are modeled and classified through a Dynamic Naive Bayesian classifier. This allows us to handle more complex behaviors, like activities.

Finally, we also focus on online detection of behaviors, so as to process long sequences of several behaviors and thus meet this recent and realistic challenge.

Shape Analysis Sommaire 

Introduction

Over the last decades, shape analysis has been widely investigated in computer vision for different application domains, like object recognition in a scene, evolution of illness in medical imaging or face recognition in security. In the context of human motion, the effectiveness of shape information for representing human activity has been demonstrated in several state-of-the-art works, like [START_REF] Lui | Tangent bundles on special manifolds for action recognition[END_REF][START_REF] Shirazi | Clustering on Grassmann manifolds via kernel embedding with application to action analysis[END_REF][START_REF] Turaga | Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition[END_REF][START_REF] Abdelkader | Silhouette-based gesture and action recognition via modeling trajectories on Riemannian shape manifolds[END_REF].

In this work, we investigate such shape information, so as to carry out our study on human behavior understanding.

Motivation of shape analysis

In order to face the issue of human behavior understanding, we focus our work on the analysis of both the human pose and the human motion that characterize such behaviors. The combination of these two analysis provides information about the human body at each time as well as its evolution along a time interval. So as to achieve such analysis, we believe that the shape cue is very important due to the geometric nature of human pose and motion.

First, a human pose can be characterized by the spatial configuration of different body parts with respect to the others in the scene. An intuitive way to capture the geometry of the human body is to consider its shape.

Hence we propose to analyze the shape of such spatial configuration of body parts for human pose analysis.

Second, human motion is characterized by the evolution of the human pose along the time. In order to capture the geometric deformation of the pose along the time as well as the dynamic of the movement, we propose to consider the human motion as a trajectory of the human pose and analyze its shape.

As a result, we recast the problem of human pose and human motion analysis to a problem of shape analysis.

Riemannian shape analysis framework

However, in order to guarantee a robust shape analysis, the representation should be invariant to geometrical shape transformations, as well as to elastic transformation of the shape. In the case of human pose and motion analysis, these transformations are characterized by the position and the orientation of the subject in the scene, the variability of size among human people and the diverse speeds of execution of movements.

So as to analyze shape of human body and human motion while facing the constraints stated above, we employ a Riemannian Shape Analysis framework. Such framework allows us to capture and interpret shapes of curves in R n within a Riemannian manifold and provides an elastic metric to measure the similarity between such shapes. In addition, using such manifold offers a wide variety of statistical and modeling tools that can be used to improve and deepen the analysis of human behaviors.

Mathematical framework

In the following, we introduce the mathematical framework, proposed by Joshi et al. [START_REF] Joshi | A novel representation for Riemannian analysis of elastic curves in R n[END_REF], that we employ to represent, analyze and compare the shape of human poses and motion trajectories.

Note that, as explained in the following Section, human poses and motion trajectories are not lying in a same Euclidean space. Indeed, while human poses stand in the 3D space, motion trajectories are represented in a higher dimensional space. Hence, two distinct shape analysis are achieved for human pose and human motion. In the following, the generic terminology 'curve' is employed. It refers to both human poses and human motion trajectories.

Representation of shapes

Beforehand, in order to carry out shape analysis of a curve, we need to define it. Let β : I → R n be a n-dimensional curve, normalized in the interval I = [0,1]. Then, we represent the shape of β using the Square-root Velocity Function (SRVF) defined as:

q(t) . = β(t) β(t) , (3.1) 
being . the L 2 norm. The quantity q(t) is the square-root of the norm of curve derivative at time t, i.e. the square-root of the instantaneous speed. The ratio

q(t)
q(t) is the instantaneous direction along the curve. Thus, from a SRV function q representing the shape of β, we can retrieve the initial curve β (up to a translation) using:

β(t) = t 0 q(s) q(s) ds . (3.2)
This is particularly useful to visualize effects of shape transformation on curve in R n .

The SRVF was formerly introduced in [START_REF] Joshi | A novel representation for Riemannian analysis of elastic curves in R n[END_REF] to enable shape analysis.

As described in [START_REF] Joshi | A novel representation for Riemannian analysis of elastic curves in R n[END_REF], such representation captures the shape of a curve β and presents some advantages. First, it uses a single function to represent the curve. Then, as described later, the computation of the elastic distance between two curves is reduced to a simple L 2 norm (equivalent to inner product in the case of functions), which simplifies the implementation and the analysis. Finally, re-parametrization of the curves acts as an isometry.

We define the set of all SRVF functions as:

C = {q : I → R n | q = 1} ⊂ L 2 (I, R n ) . (3.3)
By restricting the length of β to 1, the space C becomes an infinite dimensional unit-sphere in the Hilbert space L 2 (I, R n ), representing the pre-shape space of all curves invariant to translation and uniform scaling.

Each SRVF associated to a curve is viewed as an element of C. In addition, this makes the representation invariant to the length of the trajectory.

Considering the L 2 metric on its tangent space, C becomes a Riemannian manifold, as demonstrated in [START_REF] Joshi | A novel representation for Riemannian analysis of elastic curves in R n[END_REF]. The tangent space at a point q is given by:

T q (C) = {v ∈ L 2 (I, R n )| v, q = 0} . (3.4)
Here, v, q denotes the inner product in L 2 (I, R n ).

Elastic distance

To compare two curves, a distance between their corresponding shape on C can be defined as the length of the geodesic connecting them on C. As C is a hyper-sphere, the geodesic length between two elements q 1 and q 2 is defined as:

θ = d C (q 1 , q 2 ) = cos -1 ( q 1 , q 2 ) , (3.5) 
with the corresponding geodesic path between these two elements given by:

α(τ) = 1 sin(θ) (sin((1 -τ)θ)q 1 + sin(θτ)q 2 ) . (3.6)
Such a geodesic path represents the elastic deformation of the shape q 2 to correspond to q 1 . In particular, τ ∈ [0, 1] in Eq. (3.6) allows us to parameterize the displacement along the geodesic path α: τ = 0 and τ = 1 corresponding to the shapes q 1 and q 2 , respectively; an intermediate value of τ corresponding, instead, to an intermediate deformed shape between q 1 and q 2 . Thus, in addition to provide a distance for measuring the similarity between two shapes, such a framework also provides the sequence of intermediate shapes that represents the optimal-in terms of minimum energy-elastic deformation between the two shapes. Note that if q 1 = q 2 , the distance between q 1 and q 2 is equal to 0, then sin(θ) = 0. In that case α(τ) = q 1 = q 2 for each τ.

However, shape analysis usually requires invariance to different transformations, such as translation, scale, rotation and re-parametrization.

Representation of a curve using the SRVF yields invariance to translation and scaling. However, the representation is not invariant to rotation and re-parametrization. Indeed, if a curve is rotated or re-parameterized, its SRVF changes although its shape is unchanged. To cope with this, we 

of β = O(β • γ) is given by γ(t)O(q • γ)(t).
Another advantage of the SRVF is that the action of the product group SO(n) × Γ on C is on isometries, as proven in [START_REF] Joshi | A novel representation for Riemannian analysis of elastic curves in R n[END_REF]. This means that the distance between two SRVF is preserved after rotation and re-parametrization have been applied. Thus,

We define the equivalence class of q as:

[q] = { γ(t)O(q • γ)(t)|O ∈ SO(3), γ ∈ Γ} , (3.7) 
where each element of [q] is equivalent up to a rotation and a reparametrization. The set of all equivalence classes is called the shape space denoted as S. To compute the geodesic distance between [q 1 ] and [q 2 ] on S, we first need to find the optimal rotation O * and re-parametrization γ * that best register the element q 2 with respect to q 1 . In practice, Singular

Value Decomposition is used to find the optimal rotation, and Dynamic

Programming [START_REF] Bellman | Applied dynamic programming[END_REF] is used to find the optimal re-parametrization. Let q * 2 be the element associated with O * and γ * , then the distance between [q 1 ] and [q 2 ] is defined as:

d S ([q 1 ], [q 2 ]) = d C (q 1 , q * 2 ), (3.8) 
and the corresponding geodesic between [q 1 ] and [q 2 ] becomes:

α(τ) = 1 sin(θ) (sin((1 -τ)θ)q 1 + sin(θτ)q * 2 ) , (3.9) 
where

θ is now d S ([q 1 ], [q 2 ]).
In this way, the distance between the shape of two curves in R n is invariant to their translation, scale, rotation and re-parametrization. It should be noticed that, as explained in the following Sections, not all these invariances are necessary and some of them are handled differently in the context of shape analysis of human poses and human motion. Figure 3.1 illustrates the shape space S where the distance d S ([q 1 ], [q 2 ]) is computed between two shapes q 1 and q * 2 .

Figure 3.1 -Schema of the shape space S where two shapes q 1 and q * 2 are represented. The distance d S ([q 1 ], [q 2 ]) corresponds to the length of the geodesic path connecting the two shapes.

Tangent space

One interesting property of such Riemannian manifold is that such space is locally similar to a linear space. One way to benefit from this property is to consider tangent spaces as defined in equation 3.4. Such tangent space is a linear vector space where more conventional statistics applies.

Hence, as explained below, considering tangent space of the shape space facilitates the calculus of statistics on shapes providing deeper analysis of shapes.

So as to move from the manifold to the tangent space and vice versa, it exists interesting tools called logarithmic map and exponential map operators.

Let q 1 and q * 2 ∈ S being two shapes belonging to the shape space with q * 2 representing the optimal shape (associated with optimal orientation and re-parametrization) with respect to q 1 . The logarithmic map also called inverse exponential map, exp -1 q 1 : S → T q 1 (S), allows to project q * 2 into the tangent space of q 1 denoted T q 1 (S). It results in a tangent vector v * 2 ∈ T q 1 (S) called velocity vector. The computation of such velocity vector using the inverse exponential map is defined as:

v * 2 = exp -1 q 1 (q * 2 ) = θ sinθ (q * 2 -cos(θ)q 1 ) , (3.10) 
where θ = d S ([q 1 ], [q 2 ]).

Such velocity vector captures the shape difference between q 1 and q * 2 . By locally analyzing v * 2 (t) for each parameterized t, we obtain the local deformation needed to go from a point q 1 (t) of the shape q 1 to the corresponding point q * 2 (t) of the shape q * 2 Conversely, the exponential map, exp q 1 : T q 1 (S) → S, allows to transfer a tangent vector v 2 ∈ S into the shape space S, resulting in the shape q 2 . The exponential map operator is defined as: Figure 3.2 -Illustration of the mapping between a shape q 2 ∈ S and a velocity vector v 2 ∈ T q 1 (S) using the exponential map and inverse exponential map operators.

exp q 1 (v 2 ) = cos( v 2 )q 1 + sin( v 2 ) v 2 v 2 . ( 3 

Statistics on the shape space

So as to provide a deep shape analysis, it is often required to compute some statistics. Fortunately, such Riemannian manifold offers methods to compute statistical information, like the computation of mean shapes, standard deviation among a set of shapes or the learning of distribution of shapes.

In the following, we show how we compute these tools using different notion defined previously, like the elastic distance (Equation 3.8) and the inverse exponential map operator (Equation 3.10).

Mean shape

In any data analysis, the computation of a mean is very important as it allows to represent a set of data by a single representative template.

In Riemannian geometry, one way to compute the geometric mean of a set of data sufficiently close to each other is to minimize a cost function computed from the data.

A common algorithm for such mean computation on Riemannian manifold is called the Riemannian center of mass [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] and employs as cost function the sum of squared geodesic distances between a given data and all other data. Here we propose to use this algorithm to identify a mean shape. For a given set of shapes q 1 , . . . , q n ∈ S, their Riemannian center of mass can be defined as:

µ = argmin [q] n ∑ i=1 d s ([q], [q i ]) 2 .
(3.12)

So as to minimize such cost function, the algorithm employs both the exponential map and logarithm map operators in an iterative process to update the Riemannian center of mass until convergence. More specifically, at each iteration i, shapes are first projected into the tangent space at the current mean shape µ i using the inverse exponential map.

Based on the resulted velocity vectors, the average direction is computed and the mean shape is slightly moved in that direction. The exponential map is finally used to transfer the updated mean shape µ i+1 back on the shape space.

This process is summarized in Algorithm 1 and illustrated in At each iteration i, two steps are performed: (a) Each shape q i is projected to the tangent space of µ i and the average direction v is computed from the set {v i }. (b) The mean shape µ i is moved along v by and mapped back to S to obtain the updated mean shape µ i+1 .

Algorithm 1: Computation of Riemannian center of mass on S Require: Set of shapes {q 1 , q 2 , . . . , q N }; = 0.5; Threshold τ for stopping criterion Ensure: The mean shape µ i Select an initial mean shape µ 1 among the set of shapes repeat

for n = 1 to N do Compute v n = exp -1 µ i (q n ) end for Compute the average direction v = 1 n ∑ N n=1 v n Update µ i+1 by moving µ i in the direction of v by : µ i+1 = exp µ i ( v) i = i + 1 until v <

Standard deviation on the shape space

Once the mean shape is computed for a set of shapes, one can use the provided elastic distance (Equation 3.8) to compute the standard deviation so as to quantify the variation among shapes with respect to the mean. This allows evaluating the overall similarity of shapes within the set. For a given set of shapes q 1 , . . . , q n ∈ S with corresponding mean µ, the standard deviation between this mean shape and all the shapes within the set is defined as:

σ = 1 n n ∑ i=1 d S ([µ], [q i ]) 2 .
(3.13)

K-means on the shape space

In addition, we propose to also use the notion of mean shape in order to perform unsupervised learning such as clustering of shapes. Based on the provided tools described above, we propose to adapt the k-means algorithm to estimate k clusters of shapes represented by their corresponding Riemannian center of mass.

Similarly to standard k-means algorithm, the clustering problem is solved using an Expectation-Maximization (EM) approach. At the initial step, we randomly select k shapes as the cluster representatives µ k .

In the E-step, each shape q i is assigned to a cluster based on nearest rule applied on elastic distances computed between the shape q i and all representative shapes µ k . Then in the M-step, the representative shapes µ k are updated by applying the Riemannian center of mass algorithm on shapes belonging to the cluster k, as described in Algorithm 1. These two steps are repeated until convergence.

This intrinsic k-means clustering algorithm on the shape space is summarized in Algorithm 2.

Algorithm 2: K-means clustering algorithm on S Require: Set of shapes {q 1 , q 2 , . . . , q N }; Number of clusters k; Maximum number of iterationsI max ; Threshold τ for stopping criterion Ensure: The set of k cluster representatives{µ 1 , µ 2 , . . . , µ k }

Initialize cluster representatives randomly (µ 0 1 , µ 0 2 , . . . , µ 0 k ) while i < I max &c > τ do Compute distances from each q n to all µ i k using d S ([µ i k ], [q n ]) Assign each shape q n to the nearest cluster representative µ i k Update new cluster representatives (µ i+1 1 , µ i+1 2 , . . . , µ i+1 k ) using Algorithm 1 compute the amount of change as c = ∑ k j=1 d S ([µ i k ], [µ i+1 k ]) i = i + 1 end while

Learning distribution on the shape space

Finally, so as to expand the shape analysis, we propose to analyze the distribution within a set of shapes by learning a density function. In addition to a mean shape previously computed, these density functions also capture the variability between shapes and provide a deeper modeling of such set of shapes.

In so doing, we assume the distribution of shapes within a cluster follows a multivariate normal model. Unfortunately, learning such density functions on the shape space is not straightforward, mainly due to the non-linearity and infinite-dimensionality of such manifold. Despite of this, different methods have been proposed to deal with these two challenges [START_REF] Srivastava | Shape analysis of elastic curves in euclidean spaces[END_REF][START_REF] Srivastava | Statistical shape analysis: Clustering, learning, and testing[END_REF].

As explained above, a common way to circumvent the non-linearity of the manifold is to consider the tangent space to the manifold at the mean shape which is a linear vector space where conventional statistics applies.

We denote T µ (S) the tangent space at the mean shape. For each shape q i ∈ S, we compute its corresponding velocity vector v i ∈ T µ (S) using the inverse exponential map.

Then, so as to deal with the problem of infinite-dimensionality, we as-sume the variations in tangent vectors are restricted to a m-dimensional subspace. Using tangent vectors v i ∈ T µ (S), we can apply Principal Component Analysis (PCA) to identify eigenvectors denoted w i . We then select m principal eigenvectors to build the principal subspace B = {w 1 , w 2 , . . . , w m }. Tangent vectors v i are then projected into the learned subspace B resulting in ṽi , and the covariance matrix Σ ∈ R m×m is computed. For a set of N projected vectors ṽi , the covariance matrix Σ is defined as:

Σ = N ∑ i=1 ṽi ṽT i . (3.14)
Finally, we use the resulting covariance matrix Σ to learn a multivariate normal distribution of shapes around the mean shape µ. Its corresponding probability density function is defined as:

f ( ṽ) = 1 (2π) m/2 |Σ| 1/2 e -1 2 ṽT Σ -1 ṽ . ( 3.15) 
The process of learning the distribution on the shape space is illustrated in Figure 3.4 and summarized in Algorithm 3.

Algorithm 3: Learning distribution on the shape space

Require: Set of shapes {q i }; N, the number of shapes Ensure: The covariance matrix Σ used to compute the density probability function Compute the mean shape µ from {q i } using Eq. (3.12) for i = 1 to N do Compute the tangent vector v i ∈ T µ using Eq. 3.10 end for Apply PCA on the set of tangent vectors {v i } to learn a principal subspace B for i = 1 to N do Compute the projected vector ṽi into the subspace end for Compute the covariance matrix Σ from the set { ṽi }, using 3.14

Conclusion

In this Chapter, we have introduced the shape analysis framework that we employ for shape analysis of human pose and motion. Within this framework, the shape of a curve is captured using a single representation called the square-root velocity function and interpreted in a Riemannian Figure 3.4 -Learning distribution of shapes belonging to the same cluster on the shape space S. For each cluster, the mean shape µ is computed (red) from shapes q i belonging to the same cluster. Then, the shapes q i (black) are projected on the corresponding tangent space T µ S. Such tangent vectors v i (blue) are used to compute the covariance matrix and learn the multivariate normal distribution (red ellipse) for each cluster.

manifold called shape space. In order to compare shapes on such space, we exploit an elastic distance representing similarity between shapes independently to their size, location, orientation and elasticity. In addition, such Riemannian framework offers a variety of statistical tools. This is particularly useful to carry out an accurate shape analysis. As demonstrated in the following, this established shape analysis framework is the core of our study on human behavior understanding.

Introduction

Recognizing human actions in video sequences is an important open problem that is currently at the heart of many research domains, including surveillance, natural interfaces and rehabilitation. The recent release of depth sensors, like Microsoft Kinect has allowed a rapid advancement in these domains. Indeed, the depth information provided in addition to RGB data allows facing important challenges in 2D videos, like the invariance to illumination changes. Moreover, depth data facilitate the segmentation of objects in the scene (like humans) as well as the background subtraction. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance.

In the state-of-the-art, different methods have been proposed for the problem of human action recognition using depth data, thus benefiting of advantages enunciated before. These methods rely on the extraction of meaningful descriptors from the entire set of points of depth images in order to describe the human pose, like 3D human silhouettes [START_REF] Li | Action recognition based on a bag of 3D points[END_REF] or Histogram of Oriented Gradient (HOG) features computed on the depth image [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF].

Another advantage of using depth data is that it becomes easier to obtain meaningful information about the human pose. Indeed, thanks to the work of Shotton et al. [START_REF] Shotton | Real-time human pose recognition in parts from single depth images[END_REF], the 3D positions of body joints can be easily and accurately extracted in real-time from individual depth images, without using any temporal information. This set of 3D joints forming a humanoid provides useful information about the subject pose. As a result, several methods have been proposed to compute representative features based on these 3D joints, like pairwise distances [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF][START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF] or histogram of joints position [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF].

Nevertheless, a human action is naturally characterized by the evolution of the pose of the human body over the time. Hence, only describing the human pose may not be sufficient and a relevant spatio-temporal representation of the dynamic that defines the human action is necessary.

So as to model dynamic of actions, various approaches have been investi-gated, like discrete Hidden Markov Models [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF], Depth Motion Maps [START_REF] Yang | Recognizing actions using depth motion maps-based histograms of oriented gradients[END_REF] highlighting spatio-temporal areas where motion happens. Other methods consider the video sequence as a 4D space [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF][START_REF] Wang | Robust 3D action recognition with random occupancy patterns[END_REF][START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF].

Additionally, some emerging and interesting techniques reformulate computer vision problems, like action recognition, over non-linear spaces [START_REF] Veeraraghavan | Matching shape sequences in video with applications in human movement Bibliography analysis[END_REF][START_REF] Harandi | Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures[END_REF][START_REF] Lui | Tangent bundles on special manifolds for action recognition[END_REF], so as to better characterize and analyze the nonlinearity of the problem. Their effectiveness in 2D videos motivated us to investigate such non-linear spaces, like Riemannian manifolds, for action recognition from 3D videos.

Constraints

Even if depth data significantly reduce certain difficulties affecting action recognition performance in 2D videos, some important challenges directly related to the human action recognition problem remain.

First, an effective action recognition approach should be robust to any geometric variability among the subjects. Particularly, the various possible size of subjects performing action should not affect the effectiveness of the method. In addition, in a real-world and non cooperative context like surveillance, actions may not specifically be performed in the center of the scene and in front of the sensor. Hence, the method should be able to recognize human action independently to the position and orientation of the subject.

Second, actions can be performed at different speed among the subject. While such speed or acceleration information may be meaningful to a deeper analysis of human motion like intention recognition, it should not be considered for the case of action recognition. Indeed, actions are mainly characterized by a certain motion of the human body and not related to any speed of execution. Hence, an approach robust to the speed of execution of actions is necessary.

These constraints can be handled in two distinct ways. The first way is to propose a robust representation of actions so that a same representation is employed to describe the same actions with all possible variations.

Conversely, the second manner employs an invariant metric that compare two actions independently to the possible variations stated before. As explained later, in order to face these challenges, we use a different manner according to the constraints.

However, what further complicates the task of human action recognition is the high variability human motion. Indeed, if we ask to a subject to perform several time the same action, he will not perform it exactly in the same way as previous attempts. Such variability may be increased when analyzing the same action performed by different subjects. Hence an efficient action recognition method need to be robust to such motion variations.

Overview of our approach

In this Chapter, we propose an original approach to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition .

Our proposed method is a skeleton-based approach since we only use skeleton features to represent the human pose. Indeed, we consider that skeleton data containing the 3D positions of different parts of the body are sufficient to provide an accurate representation of the human pose. In addition, these skeleton features are directly provided by depth sensors and also provide local information about the human body. This makes it possible to analyze only some parts of the human body instead of the global pose. However, even if accurate 3D joint positions are available, the action recognition task is still difficult due to significant spatial and temporal variations in the way of performing an action.

In order to enable our method to be invariant to geometric transformation of the subject and thus to face one of the main constraints stated before, we propose a translation and rotation invariant representation of the skeleton sequences.

So as to capture the dynamics of human motion characterizing the action, we model the sequence of frame features as trajectory representing the evolution of the human body along the time. To this end, the full skeleton is modeled as a multi-dimensional vector obtained by concate-nating the three-dimensional coordinates of its joints. Then, the trajectory described by this vector in the multi-dimensional space is regarded as a signature of the temporal dynamics of the movements of all the joints.

These trajectories are then interpreted in a Riemannian manifold, so as to model and compare their shapes using elastic registration and matching in the shape space. In so doing, we recast the action recognition problem as a statistical analysis on the shape space manifold. Furthermore, by using an elastic metric to compare the similarity between trajectories, robustness of action recognition to the execution speed of the action is improved. Figure 4.1 summarizes the proposed approach.

Motivation

The main considerations that motivated our solution are:

• The fact that many feature descriptors typically adopted in computer vision applications lie on curved spaces due to the geometric nature of the problems;

• The shape and dynamic cues are very important for modeling human action, and their effectiveness have been demonstrated in several state-of-the-art works [51, 78, 87, 1];

• Using such manifold offers a wide variety of statistical and modeling tools that can be used to improve the accuracy of action recognition.

Shape analysis of motion trajectories

In this section, we first describe our representation of action sequences using skeleton data provided by depth sensors. Then, we present how we analyze these sequences so as to guarantee future robust action recognition.

Spatio-temporal representation of human motion

Using RGB-D cameras, such as the Microsoft Kinect, a 3D humanoid skeleton can be extracted from depth images in real-time by following the ap- For each frame t of a sequence, the real-world 3D position of each joint i of the skeleton is represented by three coordinates expressed in the camera reference system p i (t) = (x i (t), y i (t), z i (t)). Let N j be the number of joints the skeleton is composed of, the posture of the skeleton at frame t is represented by a 3N j dimensional tuple:

v(t) = [x 1 (t) y 1 (t) z 1 (t) . . . x N j (t) y N j (t) z N j (t)] T . (4.1)
For an action sequence composed of N f frames, N f feature vectors are extracted and arranged in columns to build a feature matrix M describing the whole sequence:

M = v(1) v(2) . . . v(N f ) . (4.2)
This feature matrix represents the evolution of the skeleton pose over the time. Each column vector v is regarded as a sample of a continuous trajectory in R 3N j representing the action in a 3N j dimensional space called action space. The size of such feature matrix is 3N j × N f . To reduce the effect of noise that may affect the coordinates of skeleton joints, a smoothing filter is applied to each sequence. This filter weights the coordinates of each joint with the coordinates of the same joint in the neighboring frames. In particular, the amount of smoothing is controlled by a parameter σ that defines the size W s = 1 + 2 × σ of a temporal window centered at the current frame. For each joint i = 1, . . . , N j at frame t = 1 + σ, . . . , N fσ the new x coordinate is:

x i (t) = 1 W s t+σ ∑ τ=t-σ x i (τ) . (4.
3)

The same applies to y and z. The value of σ is selected by performing experiments on a set of training sequences. The best accuracy is obtained for σ = 1, corresponding to a window size of 3 frames. We note that such smoothing of motion trajectories also allows to decrease the variability among several performances of a same action by a same subject.

Invariance to geometric transformation

A key feature of action recognition systems is the invariance to the trans- For this purpose, we first define the spine joint of the initial skeleton as the center of the skeleton (root joint). Then, a new base B is defined with origin in the root joint: it includes the left-hip joint vector -→ h l , the right-hip joint vector -→ h r , and their cross product -→

n B = -→ h l × -→ h r .
This new base is then translated and rotated, so as to be aligned with a reference base B 0 computed from a reference skeleton (selected as the neutral pose of the sequence). The calculation of the optimal rotation between the two bases B and B 0 is performed using Singular Value Decomposition (SVD). For each sequence, once the translation and the rotation of the first skeleton is computed with respect to the reference skeleton, we apply the same transformations to all other skeletons of the sequence.

This makes the representation invariant to the position and orientation of the subject in the scene. 

Body part representation

In addition to enable the representation of the action using the whole body, the proposed solution also supports the representation of individual body parts, such as the legs and the arms.

There are several motivations for focusing on parts of the body. First of all, many actions involve motion of only some parts of the body. For example, when subjects answer a phone call, they only use one of their arms. In this case, analyzing the dynamics of the arm rather than the dynamics of the entire body is expected to be less sensitive to the noise originated by the involuntary motion of the parts of the body indirectly involved in the action.

Furthermore, during the actions some parts of the body can be out of the field of view of the camera or occluded by objects or other parts of the body. This can make the estimation of the coordinates of some joints inaccurate, compromising the accuracy of action recognition. In all the cases, N j p < N j and the body parts are disjoint (i.e., they do not share any joint). As a result, the sequence is represented by four trajectories in R 12 . 

Trajectory shape representation

An action is a sequence of poses which can be regarded as the result of sampling a continuous trajectory in the 3N j -dimensional action space.

The trajectory is defined by the motion over the time of the feature point encoding the 3D coordinates of all the joints of the skeleton (or by all the feature points coding the body parts separately). According to this, two instances of the same action are associated with two trajectories with similar shape in the action space.

Hence, action recognition can be regarded and formulated as a shape matching task. 

Trajectory shape analysis

Once the actions executed during the sequences are represented as spatiotemporal trajectories in R n , we propose to perform shape analysis of such trajectories in order to compare them and perform action recognition. In so doing, the shape of a trajectory is captured using the square-root velocity function (Equation 3.1 defined in Chapter 3). Then, we employ the elastic metric provided by the Riemannian shape analysis framework so as to compute similarity between shapes.

As demonstrated in Chapter 3, such shape analysis of trajectories is carried out independently to geometric transformation and reparameterization of trajectories. Thus, it allows us to face the main challenges previously stated for the task of action recognition.

Nonetheless, as explained in Section 4.2.2, the spatio-temporal representation of sequences that we propose is invariant to the subject position in the scene as well as its orientation with respect to the camera. Hence, a shape analysis invariant to the rotation is not necessary. More particularly, we do not need to find the optimal rotation between two shapes before the computation of the distance.

As a result, by representing action sequences by spatio-temporal trajectories and by using an elastic distance to compare shapes of trajectories, we propose to address the issue of human action recognition as a problem of shape analysis.

Action recognition

Once a metric to compare two action sequences is defined, we propose to employ it for the task of human action recognition. The proposed action recognition approach is based on the K-Nearest Neighbors (kNN) algorithm applied both to full-body and separate body parts.

KNN classification

Let {(X i ,y i )}, i = 1, . . . , N, be the training set with respect to the class labels, The action recognition problem is reduced to nearest neighbor classifier in the Riemannian space. More precisely, given a set of training trajectories X i : i = 1, . . . , N, they are represented by the underlying points q i : i = 1, . . . , N, which map trajectories on the shape space manifold (see Figure 4.1). Then, any new trajectory X n is represented by its SRVF q n . Finally, a geodesic-based classifier is used to find the K-closest trajectories to q n using the elastic metric given by Equation (3.5).

Average trajectories

An important advantage of using such Riemannian approach is that it provides tools for the computation of statistics of the trajectories. For example, we can use the notion of Riemannian Center of Mass [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] to compute an average trajectory from several trajectories. The average trajectory among a set of different trajectories can be computed to represent the intermediate one, or between similar trajectories obtained from several subjects to represent a template, which can be viewed as a good representative of a set of trajectories.

To classify an action trajectory, represented as a point on the manifold, we need to compute the total warping geodesic distances to all points from training data. For a large number of training data this can be associated to a high computational cost. This can be reduced by using the notion of "mean" of class action, and computing the mean of a set of points on the manifold.

As a result, for each action class we obtain an average trajectory, which is representative of all the actions within the class. According to this, the mean can be used to perform action classification by comparing the new action with all the cluster means using the elastic metric defined in equation (3.5). For a given set of training trajectories q 1 , . . . , q n on the shape space, their Riemannian center of mass is obtained using Algorithm 1.

As an example, Figure 4.6 shows the skeleton representation of three actions sequences as well as the resulting average trajectory in the action space. From shapes in the shape space, the corresponding trajectories can be retrieved using Equation 3.2. Then, as trajectories are built from joint coordinates, we can easily obtain the entire skeleton sequence corresponding to a trajectory. Figure 4.6 shows ten skeletons for each sequence. 

Body part-based classification

In the classification step, we compute distances between corresponding parts of the training sequence and the new sequence. As a result, we obtain four distances, one for each body part. The mean distance is computed to obtain a global distance representing the similarity between the training sequence and the new sequence.

We keep only the k smallest global distances and corresponding labels to take the decision and associate the most frequent label to the new sequence. Note that in the case where some labels are equally frequent, we apply a weighted decision based on the ranking of the distances. In that particular case, the selected label corresponds to the smallest distance.

However, one main motivation for considering the body parts separately is to analyze the moving parts only.

To do this, we quantify the total motion of each part over the sequence.

We cumulate the Euclidian distances between corresponding joints in two consecutive frames for all the frames of the sequence. The total motion of a body part is the cumulated motion of the joints forming this part. We compute this total motion on the re-sampled sequences, so that it is not necessary to normalize it. Let j k : k = 1, . . . , N j p , be a joint of the body part, and N f be the frame number of the sequence, then the total motion m of a body part for this sequence is given by:

m = N jp ∑ k=1 N f -1 ∑ i=1 d Euc (j k i , j k i+1 ) , (4.4) 
where d Euc (j 1 , j 2 ) is the Euclidian distance between the 3D joints j 1 and j 2 , and N j p is the number of joints per body part (i.e., this number can change from a dataset to another according to the SDK used for the skeleton estimation).

Once the total motion for each part of the body is computed, we define a threshold m 0 to separate moving and still parts. We assume that if the total motion of a body part is below this threshold, the part is considered to be motionless during the action.

In We finally select the threshold that yields the decision closest to the ground truth. In the experiments, we notice that defining two different thresholds for the upper parts and lower parts slightly improves the accuracy in some cases.

Experimental evaluation

The proposed action recognition approach is evaluated in comparison to state-of-the-art methods using three public benchmark datasets. We also propose to deeply analyze the effect of different skeletal representations as well as the robustness of the method regarding different invariances. In addition, we measure the capability of our approach to reduce the latency of recognition by evaluating the trade-off between accuracy and latency over a varying number of actions.

Action recognition analysis

The three benchmark datasets that we use to evaluate the accuracy of action recognition differ in the characteristics and difficulties of the included sequences. This allows an in depth investigation of the strengths and weaknesses of our solution. For each dataset, we compare our approach to state-of-the-art methods.

MSR Action 3D dataset

This public dataset was collected at Microsoft research [START_REF] Li | Action recognition based on a bag of 3D points[END_REF] These game-oriented actions cover different variations of the motion of arms, legs, torso and their combinations. Each subject is facing the camera and positioned in the center of the scene. Subjects were also advised to use their right arm or leg when actions are performed with a single arm or leg. All the actions are performed without any interaction with objects.

Two main challenges are identified: the high similarity between different group of actions and the changes of the execution speed of actions.

For each sequence, the dataset provides depth, color and skeleton information. In our case, we only use the skeleton data. As reported in [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF],

missing or too erroneous. For our experiments, we use 557 sequences.

For this experiment, we test our approach with the variations mentioned in Section 4.3 related to the body parts and Riemannian center of mass. As the subjects in this dataset are always facing the camera, the normalization of subjects orientation before computing features is not necessary. The results are reported in Table 4.1.

First, it can be noted that the best accuracy is obtained using the full skeleton and the Riemannian center of mass algorithm applied per action and per subject (92.1%). In this case, we use k = 4 in the kNN classification process. Note that this improvement of the accuracy using the Riemannian center of mass is not expected. Indeed, the computation of average trajectories can be viewed as an indexing of available sequences and should not add information facilitating the classification task. An explanation of accuracy improvement can be given for the case of two similar action classes. In that case, a sequence belonging to a first class can be very similar to sequences belonging to a second class, and thus selected as false positive during classification. Computing average trajectories can increase the inter-class distance and thus improve the classification accuracy. For instance, the first two actions (high arm wave and horizontal high arm wave) are very similar. Using such average trajectories reduces the confusion between these two actions, thus improving the accuracy.

Second, these results also show that the analysis of body parts sepa-rately improves the accuracy from 88.3% to 91.1%, in the case where only the kNN classifier is used. When the Riemannian center of mass algorithm is used in addition to kNN, the values of the accuracy obtained by analyzing body parts separately or analyzing the full skeleton are very similar.

Table 4.2 reports results of the comparison of our approach to some representative state-of-the-art methods. As demonstrated in [START_REF] Padilla-Lopez | A discussion on the validation tests employed to compare human action recognition methods using the msr action3D dataset[END_REF], various protocols have been proposed in the state-of-the-art to evaluate effectiveness of methods on MSR Action 3D dataset. Hence the comparison between methods is not always fair. Here, we followed the same experimental setup as in Oreifej et al. [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF] and Wang et al. [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF], where the actions of five actors are used for training and the remaining actions for test. This protocol is more realistic as a same subject is not in both training and testing sets. Our approach outperforms the other methods except the one proposed in [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF]. However, this approach uses both skeleton and depth information. They reported that using only skeleton features, an accuracy of 83.5% is obtained, which is lower than our approach. Compared to the work in [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF], where the mean accuracy is also computed for all the possible combinations, we outperform their result (82.15 ± 4.18%). In addition, the small value of the standard deviation in our experiments shows that our method has a low dependency on the training data.

In order to show the accuracy of the approach on individual actions, the confusion matrix is also computed. It can be noted that for all variations of our approach, we obtained very low accuracies for the actions hammer and hand catch. This can be explained by the fact that these actions are very similar to some others. In addition, the way of performing these two actions varies a lot depending on the subject. For example, for the action hammer, subjects in the training set perform it only once, while some subjects in the test set perform it more than once (cyclically). In this case, the shape of the trajectories is very different. Our method does not deal with this kind of variations. Results obtained for this dataset are reported in Table 4.3. It can be observed that the proposed approach outperforms the results obtained in [START_REF] Seidenari | Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[END_REF] using the same protocol (leave-one-subject-out cross validation), even if we do not use the body parts variation. By analyzing the confusion matrix of our method using body parts separately (see Figure 4.10), we can notice that the proposed approach obtains very high accuracies for most of the actions.

However, we can also observe some confusion between similar actions using the same group of joints. This can be observed in the case of read watch and clap hands, and also in the case of arm wave, drink and answer phone. For these two groups of actions, the trajectories of the arms are very similar. For the first group of actions, in most of the cases, read watch is performed using the two arms, which is very similar to the action clap hands. For the second group of actions, the main difference between the three actions is the object held by the subject (no object, a bottle, a mobile phone). As we use only skeleton features, we cannot detect and differentiate these objects.

As an example, Figure 4.11 shows two different actions, drink and phone call, that in term of skeleton are similar and difficult to distinguish.

UTKinect dataset

In this dataset, 10 subjects perform 10 different actions two times, for a total of 200 sequences [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF]. The actions include: walk, sit-down, stand-up, pick-up, carry, throw, push, pull, wave and clap-hand. Skeleton data are gathered using Kinect for Windows SDK. The actions included in this dataset are similar to those from MSR Action 3D and Florence 3D Action, but they present some additional challenges: they are registered from different views; and there are occlusions caused by human-object interaction or by the absence of some body parts in the sensor field of view.

In order to compare to the work in [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF], we follow the same experimental protocol (leave one sequence out cross validation method). For each iteration, one sequence is used as test and all the other sequences are used as training. The operation is repeated such that each sequence is used once as testing. We obtained an accuracy of 91.5%, which improves the accuracy of 90.9% reported in [START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF]. This shows that our method is robust to different points of view and also to occlusions of some parts of the body.

However, by analyzing the confusion matrix in Figure 4.12, we can notice that lower accuracies are obtained for those actions that include the interaction with some object, for instance the carry and throw actions.

These actions are not always distinguished from actions that are similar in terms of dynamics yet not including the interaction with some object, like walk and push, respectively. This result is due to the fact that our approach does not take into account any informative description of objects. 

Discussion

Results on different datasets show that our approach outperforms most of the state-of-the-art methods.

First, some skeleton based methods like [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF] use skeleton features based on pairwise distances between joints. However, results obtained on MSR Action 3D dataset show that analyzing how the whole skeleton evolves during the sequence is more discriminative than taking into consideration the joints separately. In addition, the method proposed in [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF] is not invariant to the execution speed. To deal with the execution speed, in [START_REF] Seidenari | Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[END_REF] a pose-based method is proposed. However, the lack of information about temporal dynamics of the action makes the recognition less effective compared to our method, as shown in Table 4.3.

Second, the comparison with depth-map based methods shows that skeleton joints extracted from depth-maps are effective descriptors to model the motion of the human body along the time. However, results also show that using strength of both depth and skeleton data may be a good solution as proposed in [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF]. The combination of both data can be very helpful especially for the case of human-object interaction, where skeleton based methods are not sufficient as shown by the experiments on UTKinect dataset.

Representation and invariance analysis

In the following, we analyze the results obtained by our method with different representation of the humanoid skeleton. Then, we also evaluate the robustness of the method regarding different invariances as geometric transformation and execution speed of actions.

Body parts analysis

The experiments above show that using only the moving parts of the body yields an improvement of the recognition accuracy. In addition, it allows the reduction of the dimensionality of the trajectories and thus the computational costs for their comparison. As we do not use the spine joints of the skeleton, the dimensionality is reduced at least to 48D instead of 60D.

Furthermore, for the actions that are performed with only one part of the body, the dimensionality is reduced to only 12D (in the case of skeletons with four joints per limb).

Invariance to geometric transformations

To demonstrate the effectiveness of our invariant representation against translation and rotation, we analyze the distance between sequences representing the same action class, but acquired from different viewpoints.

To this end, we select two samples from the UTKinect dataset corresponding to the action wave, and compute the distance between them with and without our invariant representation.

We can see in 

Rate invariance

One main challenge in action recognition is robustness to variations in the execution speed of the action. Without this invariance, two instances of the same action performed at different velocities can be miss-classified.

That is why temporal matching between two trajectories is decisive before computing their distance.

The Dynamic Time Warping algorithm is usually employed to solve this problem. It is a popular technique in temporal data analysis, which is used in several applications, including activity recognition by video comparison [START_REF] Veeraraghavan | Matching shape sequences in video with applications in human movement Bibliography analysis[END_REF]. In our case, a special version of this algorithm is used to warp similar poses of two sequences at different time instants.

Before computing the distance between two trajectories, we search for the optimal re-parametrization of the second trajectory with respect to the first one. This registration allows us to compare the shape of two trajectories regardless of the execution speed of the action. In practice, we use Dynamic Programming [START_REF] Bellman | Applied dynamic programming[END_REF] in the shape space to find the optimal reparametrization and perform registration. The key idea behind dynamic programming is to solve a given problem by considering a collection of simpler sub-problems. As many of these sub-problems are often the same, the dynamic programming approach seeks to solve each sub-problem only once, thus saving a lot of computation. This is especially useful when the number of repeating sub-problems is exponentially large.

To show the importance of this step, we performed the same experiments presented above for two datasets, but without considering the registration step before comparison. The obtained results are presented in Table 4.5. We can notice that skipping the registration step makes the accuracy much lower, especially for the MSR Action 3D dataset, where the accuracy drops of about 20%. In this dataset, actions are performed at very different speed. 

Latency analysis

The latency is defined as the time lapse between the instant when a subject starts an action and the instant when the system recognizes the performed action. The latency can be separated into two main components: the computational latency and the observational latency. The computational latency is the time the system takes to compute the recognition task from an observation. The observational latency represents the amount of time an action sequence needs to be observed in order to gather enough information for its recognition.

Computational latency

We evaluate the computational latency of our approach on the MSR Action 3D dataset. Using a Matlab implementation with an Intel Core i-5

2.6GHz CPU and a 8GB RAM, the average time required to compare two sequences is 50 msec (including trajectories representation in shape space, trajectories registration, distance computation between trajectories, and sequence labeling using kNN).

For a given new sequence, the total computational time depends on the number of training sequences. Indeed, distances between the new sequence and all other training sequences have to be computed, and the k shortest distances are used to label the new sequence.

For example, using the 50-50 cross subject protocol on the MSR Action 3D dataset, and using only the kNN approach, classification of an unknown sequence requires comparison to 266 training sequences. Thus, with our approach, the system takes 266 * 0.05 = 13.3 sec to label a new sequence. This computational time is large and thus not suitable for realtime processing.

If we use the Riemannian center of mass per class to have only one representative sequence per class, the number of training sequences is reduced to 20 and the computational time decreases to 1 sec, which is more adequate for real-time applications.

As shown in Table 4.1, we obtain our best accuracy for this dataset using riemannian center of mass per action per subject. In that case, the resulted number of training trajectories is 91. Thus, the computational latency becomes 91 * 0.05 = 4.55 sec. 

Observational latency

To analyze the observational latency of our approach, we show how the accuracy depends on the duration of observation of the action sequence.

In the first experiment, the observational latency is analyzed on the MSR Action 3D dataset, where the accuracy is computed by processing only a fraction of the sequence. In each case, we cut the training sequences into shorter ones to create a new training set. During the classification step, we also cut test sequences to the corresponding length and apply our method.

We performed experiments using only kNN and also using Riemannian center of mass per action and per subject.

In Figure 4.15, we can see that an accuracy closed to the maximum one is obtained even if we use only half of the sequences. This shows that the computational latency can be masked by the observational latency in the cases where sequences are longer than twice the computational latency. In these cases, the action recognition task can be performed in real-time. This is particularly convenient for applications like video games that require fast response of the system before the end of the performed action to support real-time interaction.

We also note that the approach using only kNN results in slightly higher accuracies when small portions of the sequences are used, with respect to the method also using Riemannian center of mass per action and per subject. This can be explained by the fact that in some cases, subjects do not start the action in the beginning of the sequence but later. Thus, short parts of the sequences may correspond to different parts of the action and even to motionless parts. Hence, the resulted average trajectories may not be very representative of the action. .15 -Latency analysis on MSR Action 3D: Our approach is performed using only the kNN (blue curve), and then using the Karcher mean (red curve). The accuracy at each point of the curves is obtained by processing only the number of frames shown in the x-axis.

To compare the observational latency of our approach, we perform experiments on the UCF-Kinect dataset [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF], where the observational latency of other methods is also evaluated. We compare our results with those reported in [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF], including their proposed approach Latency Aware Learning (LAL), and two baseline solutions: Bag of Words (BoW) and Conditional Random Field (CRF). The observational latency on this dataset is also evaluated in [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF], but following a different evaluation protocol (i.e., a 70/30 split protocol instead of the 4-fold cross validation proposed in [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF]), so their results are not reported here.

The curves in Figure 4.16 and the corresponding numerical results in Table 4.7 show that our approach clearly outperforms all the baseline approaches reported in [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF]. This significant improvement is achieved either using a small or a large number of frames (see the red curve in Fig- Values of the accuracy obtained by our approach using only the kNN, compared to those reported in [START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF]. The accuracy at each point of the curves is obtained by processing only the number of frames shown in the x-axis.

We can also notice that only 25 frames are sufficient to guarantee an accuracy over 90%, while BoW and CRF show a recognition rate below 68%, and LAL achieves 81.65%. It is also interesting to notice that using the whole sequences, we obtain an accuracy of 99.15%, and the same accuracy can be obtained by processing just 45 frames of the sequence.

Conclusion

In this Chapter, an effective human action recognition approach is proposed using a spatio-temporal modeling of motion trajectories in a Riemannian manifold. The evolution of the 3D position of each skeleton joint along the sequence is represented as a motion trajectory in the action space. The shape of each motion trajectory is then expressed as a point in the shape space. Thanks to the Riemannian geometry of this manifold, action classification is solved using the nearest neighbor rule, by warping all the training points to the new query trajectory and computing an elastic metric between the shape of trajectories.

The experimental results on the MSR Action 3D, Florence 3D Action and UTKinect datasets demonstrate that our approach outperforms the existing state-of-the-art methods in most of the cases.

Furthermore, the evaluation in terms of latency clearly demonstrates the efficiency of our approach for a rapid recognition. In fact, 90% action recognition accuracy is achieved by processing just 25 frames of the sequence. Thereby, our approach could be used for applications of human action recognition in interactive systems, where a robust real-time recognition at low latency is required.

However, experiments also demonstrated some limits of our approach.

Firstly, we identify a failure case when actions can be characterized by a different number of repetitions of a single gesture. In that case the shape of the resulted motion trajectories may differ and the recognition effectiveness can be affected.

Secondly, as we are using only skeleton data, we only have information about the human pose and its evolution along the time. The analysis of obtained results on benchmark action dataset shown that some different actions may be very similar in term of human motion. What differentiate such similar actions is the object held by the subject. By only using skeleton data, we are unable to describe such interaction with objects and thus to differentiate these similar actions.

Finally, our proposed method is a sequence-based approach: we analyze and classify a full delimited sequence. Indeed, during experiments, we consider that each sequence contains only one action starting in the beginning of the sequence and finishing at its end. However, this consideration does not reflect a real-world context in which a camera is continuously observing a scene. Hence, the subject may perform different actions successively as well as remain still during a certain time interval. Thus our method is not appropriate for this real-world context.

In the following Chapter, we investigate a way to deal with these limits and thus we propose a method suitable for more complex cases.

Introduction

In this Chapter, we propose to extend our analysis so as to define a method suitable for not only human actions, but all kind of human motions that we define as human behaviors.

In recent years, recognition and understanding of human behaviors by analyzing data provided by depth cameras has attracted the interest of several research groups (see [START_REF] Ye | A survey on human motion analysis from depth data[END_REF] for a recent review). While some methods focus on the analysis of human motion in order to recognize human gestures or actions, other approaches try to also model interactions with objects, so as to analyze more complex behaviors, like activities.

Hybrid solutions are often proposed, which use depth maps for modeling scene objects, and body skeleton for modeling the human motion. For example, Wang et al. [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF] used Local Occupancy Patterns to represent the observed depth values in correspondence to skeleton joints. Other methods propose to describe and model spatio-temporal interactions between human and objects characterizing the activities, using Markov Random Field (MRF) [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] or Conditional Random Field (CRF) [START_REF] Koppula | Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation[END_REF].

Whereas these solutions study short sequences, where one single behavior is performed along the sequence, additional challenges appear when several different behaviors are executed sequentially over a long sequence. In order to face these challenges, methods based on online detection are proposed. Such methods can recognize behaviors before the end of their execution by analyzing short parts of the observed sequence.

Thus, these methods are able to recognize multiple behaviors within a long sequence, which may not be the case for methods analyzing the entire sequence directly.

Challenges

While constraints defined in Chapter 4 for action recognition, like robustness to geometric transformations remain, some additional challenges appear when it comes to study more complex human motions, like activities.

Indeed, the high complexity of human motions and the variability of gesture combinations that can characterize the human behavior signifi-cantly complicate the task. Local (over time) analysis of the human motion is often necessary in order to have a more accurate and thorough understanding of what the subject is doing.

In addition, human behaviors often involve interactions with the realworld environment and manipulations of objects in the scene. While such information about the context may help the understanding of what the subject is doing, it also involves possible occlusions of parts of the human body, resulting in missing or noisy data.

Finally, as mentioned above, an interesting challenge relates to the online capability of methods favoring not only to perform real-time analysis but also to detect successive human behaviors in a long motion sequence.

In sum, such online feature allows to answer to a more realistic need.

Overview of the approach

So as to face the challenges stated above, we propose a framework based on a local analysis of motion sequences and a combination of skeleton and depth features to describe both human motion and interaction with objects.

First, we represent the skeleton of each frame by a 3D curve describing the human pose. These curves are then interpreted in a Riemannian manifold, which defines a shape space where shapes of the curves can be modeled and compared using elastic registration and matching. Such shape analysis allows the identification and grouping of the human poses belonging to a same elementary motion. As a result, a motion sequence is temporally segmented into a set of successive sub-sequences of elementary motions, called Motion Units (MU).

A MU is thus characterized by a sequence of skeletons, each of which is in turn modeled as a multi-dimensional vector by concatenating the threedimensional coordinates of its joints. Then, the trajectory described by this vector in the multi-dimensional space is regarded as a signature of the temporal dynamics of the movements of all the joints. Similarly to action trajectories in Chapter 4, the shapes of such motion trajectories are studied and compared in a Riemannian shape space. The elastic metric provided in this framework allows us to compare motion trajectories independently to their elasticity, i.e., the execution speed of motions. A statistical analysis on this manifold allows us to identify representative shapes characterizing a set of MUs.

However, skeleton data are not sufficient to describe human behaviors, when objects are manipulated. This motivated us to describe, in each MU, the depth appearance around subject hands providing information about possible human-object interactions.

Finally, the sequence of MUs is modeled through a Dynamic Naive

Bayesian classifier, in order to combine both skeleton and depth features and captures the dynamics of the human behavior. Figure 5.1 summarizes the proposed solution.

Figure 5.1 -Overview of our approach. Shape analysis of human poses allows us to identify temporal segments of elementary motions (i.e., MU). Each MU is described using the trajectory of the joints of the skeleton regarded as a multidimensional vector, and the depth appearance around subject hands. A Dynamic Naive Bayesian classifier is then used to model the sequence of temporal segments and recognize the human behavior.

Motivations

The main factors that motivate us to extend our study and to propose this solution are:

• Experiments in Chapter 4 highlighted some limits when the complexity of the human action is increased, like the repetition of gestures;

• Experiments also demonstrated a limitation of skeleton data which are insufficient to model human-object interactions;

• Local (over time) analysis of the human motion is often necessary in order to have a more accurate and thorough understanding of what the subject is doing;

• Online capability is an important aspect in order to fit to more realistic scenarios.

Segmentation of motion sequences

Due to the complexity of the human motion characterizing activities, we propose to decompose the problem by segmenting the full motion into shorter MU, which are easier to analyze. This process is based on the analysis of the human pose at each frame of the sequence.

Pose representation

The human body is represented by a set of 3D joints, which are located in correspondence to the different body parts. Thus, a human pose is characterized by a certain spatial configuration of these 3D joints. In order to describe human poses, we propose to analyze the shape of the spatial configuration of 3D joints. By connecting the 3D joints, the human pose can be viewed as a 3D curve representing the shape of the human body.

As shown in Figure 5.2, in order to keep natural information about the human shape represented by the limbs, we keep a coherent structure linking together joints belonging to the same limb. Thus, a 3D curve representing the human pose connects successively the spine's joints, then the arms's joints (left/right) and finally the legs's joints (left/right). This is illustrated in Figure 5.2.

In this way, a human pose is represented by a 3D curve instead of a 3D skeleton. We can now perform shape analysis of curves using the shape analysis framework and the provided distance, as described in Chapter 3, for n = 3, as each joint is represented by three coordinates x, y and z.

Note that, as explained later, we need to compare successive human poses from a same sequence (same subject). Hence, we can assume that the scale of skeletons is unchanged during a sequence as well as the orientation of the subject between two successive poses. Likewise, as a 3D curve connects joints in a predefined order, the parametrization of curves remains the same along a single sequence. Since it is not necessary to find the optimal re-parametrization between two shapes, the analysis of the shape of the 3D curves is simplified. 

Motion segmentation

Once a distance measuring the similarity between the shape of two poses is defined, we can use it to analyze the deformation of the human body along an activity sequence. Hence, in order to divide the continuous sequence into segments exhibiting elementary motion, i.e., MUs, we detect when the motion is changing.

We consider that when a human is performing two successive motions, its speed is higher during the performance of motions. Conversely, its speed becomes slower at the end of the first motion and at the beginning of the second one. Hence, we identify MU by breaking the sequence in correspondence to points where the speed of change of the 3D curve has a local minimum. Such considerations are motivated by similar and efficient assumptions employed in [START_REF] Kang | Temporal segmentation of tasks from human hand motion[END_REF][START_REF] Kang | Determination of motion breakpoints in a task sequence from human hand motion[END_REF] on the speed of human hands for task segmentation.

The notion of speed of motion can be viewed as the similarity or dissimilarity among human poses within a short time interval. A time interval where motion happens corresponds to different poses within the time interval. Conversely, similar poses in the time interval correspond to the transition between the two motions. Our goal is to detect such transitions in an activity sequence in order to decompose it into elementary motions.

For that, we propose to analyze the human pose shape within a sliding window along the sequence and take advantage of the shape analysis framework that enables the computation of statistics, like the mean and the standard deviation, on the manifold. Hence, given the poses p 1 , . . . , p n observed over a temporal window of predefined duration, the average pose shape µ is computed as the Riemannian center of mass [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] of the pose shapes q 1 , . . . , q n on the shape space (see Algorithm 1 in Chapter 3 for more details). For this purpose, the distance d S described in Chapter. 3 is used according to the Riemannian center of mass following expression:

µ = arg min [q] n ∑ i=1 d S ([q], [q i ]) 2 . ( 5.1) 
Once the mean pose shape is computed, the standard deviation be-tween this mean shape and all the shapes within the window is estimated using the distance between the mean shape and the sample shapes (see Equation 3.13 in Chapter 3). Such standard deviation value, denoted σ, represents the amount of dissimilarity or motion among human poses within the window. As an example, Figure 5.4 shows the evolution of the standard deviation σ along a sequence and the different MUs identified by breaking the sequence in correspondence to local minima of σ.

Segment description

Once an activity sequence is segmented, we propose to analyze the resulting MUs in order to describe the whole sequence. First, we propose to explore the motion performed by the subject during each MU. Secondly, we consider depth appearance around hands in order to characterize possible objects held by the subject. Additionally, we investigate a bag-ofword paradigm so as to describe a complex motion sequence by a set of exemplar MUs. 

Human motion description

First, we propose to describe the human movement during a MU by interpreting the motion of the pose along the time interval corresponding to a MU. We proceed similarly to human motion in the whole sequence in Chapter 4. For each frame included in the MU, we concatenate the three real world coordinates of each joint to build a feature vector. Let N j be the number of joints the skeleton is composed of, the posture of the skeleton at frame t is represented by a 3N j dimensional tuple:

v(t) = [x 1 (t) y 1 (t) z 1 (t), . . . , x N j (t) y N j (t) z N j (t)] T . ( 5.2) 
For a MU composed of N f frames, N f feature vectors are extracted and arranged in columns to build a feature matrix M describing the whole segment:

M = v(1) v(2) . . . v(N f ) . (5.3) 
This feature matrix represents the evolution of the skeleton pose over the time. Hence, it can be viewed as a continuous trajectory in R 3N j representing the motion in a 3N j dimensional space. The size of such feature matrix is 3N j × N f .

Note that, in order to guarantee the analysis of MU to be invariant to translation and rotation, we normalize the position and the orientation of the subject before extracting the features. We use the same method described in Chapter 4. This makes the representation invariant to the position and orientation of the subject in the scene.

With this representation, an activity sequence can be viewed as a set of short spatio-temporal trajectories in R 3N j representing MUs, as illustrated in Figure 5.5. as elements on the shape space and the similarity measure between two shapes is the elastic metric d S (Equation 3.8 on this shape space.

Depth appearance

In order to perform robust and discriminant recognition of human activity, descriptors of the motion of the body skeleton should be complemented with descriptors of the objects the user is interacting with, if any. Combination of motion and object descriptors not only improves the robustness of the activity recognition scheme, but is also necessary to discriminate between actions that would be almost identical in terms of motion patterns.

For instance, discriminating activities like Drink and Phone call based on the analysis of the sole motion patterns would require a description framework capable of accurately distinguishing whether the user hand (i.e., the joint of the skeleton corresponding to the user hand) is closer to the mouth than to the ear. This level of accuracy is generally beyond the capability of commercial low-cost scanners, unless the user is very close to the sensor. Differently, two such actions can be much more easily discriminated by considering the objects the user is interacting with.

Based on these premises, we propose to describe the depth appearance around subject hands in addition to their motion. To this end, we use the Local Occupancy Pattern (LOP) [START_REF] Wang | Robust 3D action recognition with random occupancy patterns[END_REF] feature around the two hands of the subject and adapt it to our method.

This feature represents the distribution of depth pixels within a local region. As depth images can be viewed as 3D point clouds, the local regions are represented by 3D bounding boxes centered at the hand joints.

Each bounding box is partitioned into a grid with non overlapping 3D cells. The number of cells is N c = N x × N y × N z , where N x , N y and N z are the number of divisions in the corresponding dimension. The number of 3D points that fall in each cell is counted.

Let P i be the number of points within a cell i, a sigmoid normalization is employed to obtain the occupancy information O i of the cell [START_REF] Wang | Robust 3D action recognition with random occupancy patterns[END_REF]:

O i = 1 1 + exp(-λP i ) , (5.4) 
where λ is used to parametrize the slope of the sigmoid function. The LOP feature l for the local region is the concatenation of occupancy information of all cells:

l = [O 1 , O 2 , . . . , O N c ].
As shown in Figure 5.6, the LOP feature can be viewed as a histogram representing the distribution of depth pixels in the local region around hand joint, thus describing the depth appearance of the object held by the subject.

In order to guarantee compatibility with motion description presented above, we keep the representation of an activity as a sequence of successive segments representing MUs.

For each frame of a MU, we compute the LOP feature for each hand joint (l l and l r ) and concatenate them to form one global LOP feature vector L f = [l l , l r ] for the frame f . The length of such feature vector is 2 × N c . The same is repeated for all frames of the MU, in order to describe the depth appearance during the whole MU. As a result, each The bounding box can be viewed as a 3D cuboid divided into 3D cells. Here N x = N y = N z = 2. (c) The number of 3D points within each 3D cell is counted. As a result, the LOP feature can be viewed as a histogram, where each bin represents a 3D cell.

MU is described by a set of N f LOP features, N f being the number of frames of the MU.

However, MU segments can have different duration N f . As a result, MU are described with a different number of LOP features, which is not convenient to compare them. To deal with duration variability, we propose a compact representation of the depth appearance, which is independent of its duration.

First, we assume the object held by the subject during the time interval corresponding to a MU does not change considerably. Thus, we consider that the distribution of depth pixels around hand joint is stable and we compute the mean of the LOP features among frames of a MU. As a result, we have one single feature describing average depth appearance during a MU, that we call Mean LOP feature (MLOP).

Then, we consider the manipulation of the object during MU can change the depth appearance around hand joint. For instance, for the activity Drink, a MU would consist of bringing the container to the mouth.

In that case, the support where the object is located may appear in the local region around the hand, in the first part of the MU, but at the end of the MU, the face of the subject may be present in this local region. This variability of depth appearance may add useful information compared to the average depth appearance along the MU.

To represent this depth variation, we adopt an extension of LOP fea-ture in four dimensions called 4DLOP. The spatio-temporal volume representing the evolution of the local region around hands along the MU is also partitioned in the time dimension. As a result, the number of cells of this 4D volume is now

N c = N x × N y × N z × N t
, where N t is the number of divisions in the temporal dimension. The occupancy information is computed for each 4D cell using Eq. (5.4) to build the 4DLOP feature.

Note that, differently to [START_REF] Vieira | STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences[END_REF], which analyzes depth variation in fixed 4D boxes, we consider depth variation in a moving spatio-temporal region following the motion of human hands. This idea is illustrated in As final result, each MU segment is represented by a feature vector describing the depth appearance along the interval independently to its duration (either MLOP or 4DLOP).

Vocabulary of exemplar MUs

Additionally, we propose to investigate the bag-of-word paradigm so as to identify codebook of exemplar MUs (symbols) to be used as a reference dictionary to describe human behaviors. As usual, such codebook is learned from training sequences. Then our idea is that unknown complex motion sequences can be represented as a set of generic MUs from the learn codebook, thus facilitating their analysis and understanding.

As each MU is described by two types of features representing human motion and depth appearance, we identify two distinct codebooks for each of the feature.

Human motion codebook

For the case of human motion, each MU is represented by the shape of the corresponding motion trajectory in the shape space. To learn the codebook of exemplar shapes, we perform clustering of shapes using the k-means clustering algorithm (Algorithm 2) described in Chapter 3 on the shape space. Such clustering provides a mapping between trajectory shapes represented on the shape space and a finite set of symbols corresponding to clusters.

In order to describe each cluster by using only its corresponding exemplar shape, we propose to learn a density function for each cluster. These density functions capture the variability between shapes belonging to the same cluster and provide a deeper modeling of each cluster. In so doing, we assume the distribution of shapes within a cluster follows a multivariate normal model.

The process of learning such multivariate distribution on the shape space is described in Algorithm 3 in Chapter 3. We learn a distribution for each cluster k by considering the tangent space at the cluster mean µ k .

This approximation is valid because samples belong to the same cluster.

Thus, we can assume that they lie in a small neighborhood around the mean shape µ k .

As a result, each cluster of shapes is represented by a probability density function defined as:

f ( ṽ) = 1 (2π) n/2 |Σ| 1/2 e -1 2
ṽT Σ -1 ṽ .

(5.5)

where Σ corresponds to the covariance matrix computed on the learned principal subspace (see Algorithm 3 in Chapter 3 for more details).

The process of learning the distribution on the shape space is illustrated in Figure 5.8.

Figure 5.8 -Learning distribution of shapes belonging to the same cluster on the shape space S. For each cluster, the mean shape µ is computed (red) from shapes q i belonging to the same cluster. Then, the shapes q i (black) are projected on the corresponding tangent space T µ S. Such tangent vectors v i (blue) are used to compute the covariance matrix and learn the multivariate distribution for each cluster.

As mentioned above, the codebook is learned only from MUs belonging to training sequences. Such learned codebook is used to label a MU of a test sequence, characterized by its trajectory shape on the shape space.

The test shape is first projected into the learned subspace of a cluster k.

Then, using the corresponding covariance matrix, we can compute the probability that the test shape has been generated by the learned density function corresponding to the cluster k. We do the same for each cluster and assign the test shape to the cluster giving the highest probability.

To compute such probability, a common way is to use the log probability. Let ṽk being a test shape q projected in the principal subspace of the cluster k with a corresponding covariance matrix Σ k . Then the log probability that the shape q belongs to the cluster k is defined as:

L = - 1 2 ln(|Σ k |) - 1 2 ṽT k Σ -1 k ṽk - n 2 ln(2π) (5.6)

Depth appearance codebook

For the case of depth appearance, each MU is described by a LOP feature representing depth appearance around subject hands. Similarly to motion trajectories, we use the k-means algorithm to cluster LOP features and build a codebook of exemplar LOP. The distance d l that we use to compare two LOP feature vectors l A and l B is the l 2 -norm:

d l = l A -l B 2 N c = N c ∑ i=1 (a i -b i ) 2 , ( 5.7) 
where a i and b i are the i-th components of l A and l B , respectively. Such clustering provides a mapping between LOP feature vectors and a finite set of LOP symbols represented by the cluster centroids.

Similarly to human motion, the codebook is learned from MU segments of training sequences. For MU segments of test sequences, we first compute the distance d l between the corresponding LOP feature and all the exemplar LOP. Finally, the labeling is done using the nearest rule.

Detection of repetitions and cycles

In a first step, we propose to use the decomposition of a sequence into MUs to detect some repeated gestures or cyclic motion within the sequence. This is achieved by analyzing and comparing shapes of MU trajectories. Such detection provides deeper analysis of a motion sequence and thus facilitates the human behavior understanding.

For instance, detecting cyclic movement allows to group them in the same cluster and thus segment a long sequence in distinct clusters representing different actions. In addition, we observed in the Chapter 4 that actions characterized by repetitions of a single gesture may not be easily recognized. As a result, detecting such repetitions may facilitate the recognition task.

Detection of periodic movement

In order to analyze MUs and detect periodic movement, we employ the human motion description introduced in Section 5.3.1. Hence, the elastic distance d S is used to compare two MUs.

As MUs are not necessarily repeated successively, but instead periodically, we search for different length of periodicity. Let MU i be the i-th MU of a sequence and q i its corresponding shape on the shape space. We define P(ω, i) the periodicity value of length ω for the i-th MU as:

P(ω, i) = 1 ω i ∑ f =i-ω+1 φ(MU f , MU f -ω ) , (5.8) 
where:

φ(MU i , MU j ) =      1 if d S ([q i ], [q j ]) < threshold 0 otherwise . ( 5.9) 
If P(ω, i) = 1, a periodicity of length ω is detected at the i-th MU. The threshold is used to separate similar MUs from dissimilar MUs.

In the following, we employs this periodic detection for two different tasks:

• Grouping periodic movements to segment a long sequence into distinct cyclic actions;

• Removing repeated gestures to facilitate the action recognition of the whole sequence.

Action segmentation

In the first case, a sequence contains successive periodic actions, such as walking, running, boxing, etc. The periodicity of the action is an important characteristic that allows us to perform segmentation. For instance, the action walking is a succession of left step and right step.

Our method described in Section 5. 

Repetitions removal

In the second case, a sequence contains one single action possibly characterized by repetitions of a single gesture.

In Chapter 4, results demonstrated that the proposed approach is unable to manage repetitions within a sequence when only sequences with one gesture instance are learned.

The method described above allows us to detect such repetitions. During the analysis of the sequence, if repetitions are detected, only the first instance is kept to represent the sequence. As a result, every sequence from the training or test set contains only one instance of the gesture.

However, when repetitions are removed, we may loose the continuity of the action between the two remaining extreme parts of the sequence.

In order to keep continuity, we consider the shape of the two extreme poses (ending pose of the first part, and starting pose of the second part), represented in the shape space for n = 3. Then, we estimate the deformation between these two poses using the geodesic path (Equation. 3.9).

We discretize the path with a small number of steps representing the deformation between the two extreme poses. This process is illustrated in Figure 5.10. Note that, the removed part of the sequence is a repetition of a previously observed MU. Thus, the ending poses should not differ a lot. 

Action segmentation

We evaluate the performance of our approach for the task of action segmentation using samples of the CMU dataset and compare it with the method proposed in [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF] called HACA. Similarly to [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF], we use 14 sequences performed by the subject #86.

We evaluate the resulted segmentation in comparison with the ground truth by computing the confusion matrix between the segmentation obtained with our method and the ground truth. Then, we use the same metric used in [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF] to compute the segmentation accuracy. Figure 5.11

shows the segmentation accuracy for the 14 sequences compared to [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF].

It can be observed that we obtain competitive accuracies compared to HACA. Note that, a single sequence can include the same action several times at several time intervals, like walking. With our method, if a second instance of the same action happens, we view it as a new cluster. In order to handle this characteristic and be comparable with HACA, we assign the same label to similar clusters using the distance d S . Indeed, each cluster can be viewed as a longer motion trajectory. The distance d S is computed between shapes of two cluster trajectories. If the distance is below a threshold, the same label is assigned to the two clusters.

We note that without this constraint, our approach segments a sequence in an online way parcouring only once the sequence with the sliding window method. In comparison, the offline method proposed in [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF] needs a first initialization of the segmentation and then performs optimization in several iterations.

Trial Index Accuracy (%) Figure 5.12 -Segmentation results obtained for a sequence. 1 st row corresponds to ground truth, 2 nd row to HACA [START_REF] Zhou | Hierarchical aligned cluster analysis for temporal clustering of human motion[END_REF] and 3 rd row to our approach.

Table 5.1 -MSR Action 3D: Comparison of the proposed approach with the most relevant state-of-the-art methods. Our previous method described in Chapter 4 is refereed as Devanne et al. [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF].

Method Accuracy (%) Actionlet [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF] 88.2 DCSF [START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF] 89.3 JAS & HOG 2 [START_REF] Ohn-Bar | Joint angles similarities and HOG 2 for action recognition[END_REF] 94.8 HON4D [START_REF] Oreifej | HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[END_REF] 88.9 Moving Pose [START_REF] Zanfir | The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection[END_REF] 91.7 Devanne et al. [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF] 92.1 Our 94.3

Action recognition

We demonstrate the usefulness of our approach to improve the action recognition of our previous method, described in Chapter 4, evaluated on the MSR Action 3D dataset. We observed that if an action is repeated more than once within a sequence, it affects the shape of the corresponding trajectory, and thus the accuracy of the action recognition.

We use the proposed segmentation approach to detect and remove such repetitions within a sequence. The overall accuracy is increased from 92.1% to 94.3%. However the experiments in Chapter 4 demonstrated that only one action class among 20 was mainly affected by this repetition variability (hammer). Table 5.1 shows that compared to state-of-the-art's method, such improvement allows us to obtain competitive accuracy.

In addition, the confusion matrix in Figure 5.13 shows that, in comparison with the previous approach, the proposed method allows us to improve the recognition of the action hammer without affecting the recognition of the other classes. Nevertheless, this improvement is not as high as expected (33.3%). This shows that even if only one instance of the gesture is kept, this action remains similar to other like high throw or draw tick.

Figure 5.13 -Confusion matrix obtained by removing repeated gestures on MSR Action 3D. We can notice a higher accuracy for the action hammer without affecting accuracy of other action classes.

Modeling complex motion sequences

So as to deepen the analysis and understanding of human behavior, we propose in a second step to represent and model complex motion sequences as a set of exemplar MUs using bag-of-words paradigm so as to identify codebooks of MUs.

As explained in Section 5. To this end, we propose to use the Dynamic Naive Bayesian classifier (DNBC) [START_REF] Martinez | Learning dynamic naive bayesian classifiers[END_REF] as statistical model.

Dynamic naive bayesian classifier

In the literature, Hidden Markov Models (HMM) have been widely used to statistically represent the dynamics of a process [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF][START_REF] Karaman | Hierarchical hidden markov model in detecting activities of daily living in wearable videos for studies of dementia[END_REF]. Their effectiveness has been proved for human behavior recognition from RGB videos [START_REF] Starner | Real-time american sign language recognition using desk and wearable computer-based video[END_REF][START_REF] Ahmad | Human action recognition using shape and clg-motion flow from multi-view image sequences[END_REF] or depth data [START_REF] Dubois | Human activities recognition with rgbdepth camera using hmm[END_REF][START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF], where the human poses or human motion are represented by only one single observation of attributes. In our case, sequences are represented by two channels of attributes. Several works have been proposed to deal with multiple attributes by mixing them. As a result, one observation is the conjunction of several attributes and thus implies conditional dependence among attributes given the state.

In order to face this issue, we propose to use DNBC, which can be viewed as an extension of HMMs. The main difference is that the observation node is decomposed into several attributes that can be considered as independent given the state. This independence assumption is particularly suitable for our problem, where we have two different attributes describing one MU. Different strategies of fusing multiple features from three different modalities have also been studied in [START_REF] Pinquier | Strategies for multiple feature fusion with hierarchical hmm: application to activity recognition from wearable audiovisual sensors[END_REF] where a hierarchical HMM is employed. Experiments carried out in [START_REF] Pinquier | Strategies for multiple feature fusion with hierarchical hmm: application to activity recognition from wearable audiovisual sensors[END_REF] demonstrated that the intermediate fusion gives better results. Such fusion strategy is similar to DNBC as it considers each modality separately. As a result, an observation is a set of modalities, similarly to our DNBC model where each observation is a set of attributes. For each time interval t, the process is at state S t and emits the two attributes X 1 t and X 2 t . In our case, the two attributes X 1 and X 2 correspond to human motion and depth appearance, respectively.

In order to model the dynamics of the process describing activity sequences with T MU (time intervals), we first consider a realization of the states of this process as S = {S t |t = 1, . . . , T}. Let N s be the number of possible states of the process, 1 ≤ S t ≤ N s . The sequence of observations is denoted as X = {X a t | t = 1, . . . , T , 1 ≤ a ≤ A}, where A is the number of attributes. In our case A = 2, with a = 1 and a = 2 corresponding to the human motion and depth appearance attribute, respectively. Each attribute X a t takes a finite discrete value k with 1 ≤ k ≤ K a , from its corresponding learned codebook V a of size K a . Hence, the joint probability function of the DNBC is:

P(X, S) = P(S 1 ) T-1 ∏ t=1 P(S t+1 |S t ) T ∏ t=1 A ∏ a=1 P(X a t |S t ) , (5.10) 
where P(S 1 ) is the prior probability specifying the probability distribution over the initial state (at t = 1); P(S t+1 |S t ) is the transition probability between states S t and S t+1 defined by a transition matrix of size N s × N s ; P(X a t |S t ) is the emission probability corresponding to the probability function of the observed attribute a at time t in the state S t defined by an observation matrix of size N s × K a .

The main difference between DNBC and HMM is the product A ∏ a=1 P(X a t |S t ) representing independence among attributes given the state. If A = 1, the resulted joint probability function is the same as for HMM.

In addition, as usual with HMM, we assume that our DNBC follows two standard properties: the Markov property and the stationary property: The first one establishes that future states of the process only depend on the current states, not on past states; The second one defines the transition probabilities among states are unchanged along the time.

Learning

Like in HMM applications, we only know X, while S is not available.

Thus, for estimating the model parameters, i.e, the prior, transition and emission probabilities, some tools are desirable.

The prior probability represents the initial state of the process. The transition probability is the probability to transit from one state to another state of the process. The emission probability represents, for each state, the probability of generating each attribute.

Similarly to HMM, a common way to learn such parameters from training sequences of observed symbols is to use the Baum-Welch algorithm [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF]. For the case of DNBC, the process of estimating parameters is slightly modified due to the model setting allowing the emission of several attributes per state (more details on this can be found in [START_REF] Avilés-Arriaga | A comparison of dynamic naive bayesian classifiers and hidden markov models for gesture recognition[END_REF]).

For our task of activity recognition, we assume each activity class is modeled with a different DNBC. Let the activity class c ∈ {1, . . . , C} with C being the number of activity classes, we learn one DNBC denoted λ c for each class c using the training sequences belonging to the class c.

Classification

Offline classification

The classification process of an observation sequence X is the following.

First, the sequence is presented to each of the trained DNBC λ c modeling different activity classes. Then, the likelihood P(X|λ c ) that the sequence X has been generated by the DNBC λ c is computed using the Forward algorithm.

Finally, the sequence is classified as the activity whose corresponding DNBC gives the highest log-likelihood: activity(X) = argmax c log(P(X|λ c )) .

(5.11)

Online classification

The classification process is then extended to be able of working in an online manner. In that case, we do not need to wait for the end of the sequence to give a classification decision. This is particularly convenient for real-time purpose, so as to guarantee natural interaction with the system. In addition, it allows us to process a sequence as a continuous stream where several activities can be performed successively, which is often the case in a real-world context.

As shown in Section 5.2.2, the segmentation process is based on a sliding window technique. Hence, it can also be applied in an online manner, so as to detect MU segments from a continuous stream. Each new frame of the sequence is given as input to the segmentation process.

When a MU is detected, we compute the corresponding human motion and depth appearance features and assign a symbol to each, as described in Section 5.3.3. The resulted observation sequence of length-1 is then presented to each trained DNBC in order to compute the corresponding log-likelihoods.

For each new detected MU, the same is performed. Thus, the length of the observation sequence is increased by one, and the log-likelihoods are updated. If the log-likelihood of a class falls below a threshold, we discard the activity class. This allows us to gradually reduce the set of possible classes. The process is repeated until all classes are discarded.

Then, among the remaining classes in the previous iteration, we keep the class with the highest log-probability as the detected activity.

Transitions between activities are often smooth. Thus, when an activity is finished, its corresponding log-probability may not considerably decrease and directly fall below the threshold. In order to take into account this smooth transition, we select as the ending boundary of the activity the time step when its corresponding log-probability starts to decrease instead of the time step when it falls below the threshold.

Finally, we restart the detection process from the successive time step using all the classes. This is repeated until the end of the sequence. As a result, we obtain the set of detected activities along the sequence with corresponding starting and ending boundaries. This online activity detection is illustrated in Figure 5.15. 

Experimental evaluation of modeling for recognition

We evaluate the proposed approach in comparison with state-of-the-art methods using four public benchmark datasets, each of which allows testing different tasks: human gesture recognition with repetitions; activity recognition; online detection of successive simple actions; and activities involving interactions with objects.

Gesture recognition

In a first time, we evaluate our method in the task of human gesture recognition. The main goal of this experiment is to show how the proposed method deals with actions characterized by repetitions of a single gesture.

In particular, we want to highlight that the proposed decomposition of a sequence into a set of MUs allows to handle such variability.

We perform this experiment on the Microsoft Research MSRC-12 [START_REF] Fothergill | Instructing people for training gestural interactive systems[END_REF] dataset, which includes sequences of subjects performing 12 gestures. Following the same protocol as in Lehrmann et al. [START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF], only six gestures are considered: Duck, Goggles, Shoot, Throw, Change weapon and Kick.

Each action is performed several times by 30 subjects, for a total of about 50 sequences per class. This results in 296 sequences of about 1000 frames each, where a single gesture is performed several times (10 times in most of the cases, but this number may vary from 2 to 15). This variability is indeed important to show how it can affect the recognition accuracy.

Only skeleton data are provided in this dataset, so we only use the motion features to describe each segment. As a consequence, the DNBC which models the sequences has only one attribute, thus becoming equivalent to a HMM.

In order to fairly compare our method to [START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF], we follow the same protocol and employ a 5-fold leave-one-person-out cross validation, where each fold consists of 24 persons for training and 6 persons for test. Results are reported in Table 5.2 as average accuracy of each fold in comparison to [START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF], and our previous method described in Chapter 4 (Devanne et al. [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF]). From Table 5.2, we can notice that the proposed approach outperforms the work in [START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF] for all gesture classes except one (Shoot), with an overall accuracy of 92.8%, compared to 90.9% reported in [START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF].

In addition, we can see that in comparison with our previous method [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF], the overall accuracy is increased by about 4%. Analyzing the failure cases, we notice that the different number of repetitions in the sequences affects the accuracy of the previous method. This is for instance the case of similar actions, like Goggles and Shoot. If a test Shoot sequence includes a number of repetitions, which is not frequent in the training Shoot sequences, but frequent in the training Goggles sequences, it may be assigned to a Goggles sequence and thus poorly classified. Hence, the effectiveness of our previous method [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF] is related to the number of gesture instances.

To emphasize this latter aspect, we run an experiment on the sequences that belong to the Goggles and Shoot classes only. In the training set, we include Goggles sequences with exactly 10 repetitions of the gesture, plus all Shoot sequences except those with exactly 10 repetitions of the gesture (this latter sequences are included in the test set).

We then evaluate the recognition accuracy of our previous method [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF],

and the approach presented in this Chapter. We observe that the recognition accuracy of the class Shoot is increased from 39.4% to 80.2%. This shows that our method allows us to improve the recognition accuracy when the number of repetitions of a single gesture can vary within a sequence.

Indeed, as we use DNBC to model the sequences, repetitions of gestures are characterized by repetitions of the process without changing the structure of the model. The same model is used to generate a sequence with any number of gesture instances, thus allowing robustness to repetition variability.

Activity recognition

In a second time, we propose to evaluate the approach for the recognition of more complex motion sequences like activities. The evaluation is per-formed on two different datasets: Cornell Activity dataset 120 [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] and Online RGB-D dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF].

Cornell Activity 120 dataset

We use the Cornell Activity dataset 120 [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] (CAD120) to test our approach in the context of human activity recognition. This dataset contains 120 RGB-D sequences of ten high-level activities performed by four different subjects three times each. Activities involving objects manipulation are:

making cereal, taking medicine, stacking objects, unstacking objects, microwaving food, picking objects, cleaning objects, taking food, arranging objects and having a meal. Activities belonging to the same class may be performed with different types of objects. For instance, the activity stacking objects may be executed with either pizza boxes, plates or bowls.

Three main challenges are identified for this dataset: 1) the variability in performing activities among subjects; 2) the orientation of the subjects in the scene: while subjects are always in the field of view of the camera, they are not always facing the camera; 3) manipulation with the environment results in occlusions of part of the body. This is especially the case for legs, which are often occluded by the table where activities are executed (to better face this problem, we use only the upper body skeleton to represent the human pose). Figure 5.16 illustrates these challenges by showing example frames of three sequences.

For a fair comparison with state-of-the-art methods, the leave-oneperson-out cross protocol is used where, for each fold, one subject is used for test and the three remaining for training. The average accuracy among the four folds is finally computed. respectively. Further, our method is evaluated using both the MLOP and LOP4D depth appearance features. From the results, we can first notice that our method significantly outperforms the other approaches when only skeleton data are used. More specifically, in comparison with our previous method described in Chapter 4 [START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF], which represents each activity by spatio-temporal trajectory only, the recognition accuracy is improved by more than 20%. This shows that when activities involve complex motions, it is not sufficient to analyze the global motion. Indeed, local analysis and decomposition of the activity into MUs provides a better representation of activities, thus allowing a better understanding of the human behavior.

In addition, the accuracy of 69.4% obtained by our method using only skeleton data shows that the decomposition of the sequence allows us to quite well recognize activity sequences involving objects manipulation, even without describing any explicit information about objects held by the subject.

However, results show that using the skeleton only is not sufficient to be competitive with state-of-the-art methods. As we can see in Table 5.3, using depth appearance features in addition to skeleton in our DNBC allows us to improve the recognition by about 13%. As a result, we obtain competitive accuracy in comparison with other approaches. Indeed, only [START_REF] Koppula | Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation[END_REF] is above by less than 1%. Note that methods in [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] and [START_REF] Koppula | Learning spatio-temporal structure from rgb-d videos for human activity detection and anticipation[END_REF] use ground truth object bounding box in the training process. In our case, we do not need this information.

Finally, by comparing the results obtained with our two different depth appearance features, we can notice that analyzing depth appearance evolution along short intervals allows us to better characterize interactions with objects. This analysis is strengthened by analyzing confusion matrices in Figure 5.17. We compute the confusion matrices obtained by our method for both depth appearance features.

It can be noticed that our method scores a lot of confusion for the pair of activities stacking objects and unstacking objects. As these activities are opposite, they may be represented by the same sequence of MUs.

The variation of depth appearance around subject hands may differentiate these activities. Indeed, when a subject takes an object or puts an object, its motion is similar but the depth appearance around joints may be different. We can see that using the LOP4D feature results in less confusion between the two activities than using the MLOP feature. Indeed, in this particular case, the average depth appearance of putting the object and taking the object may be very similar and represented by the same symbol from the codebook. The 4DLOP feature capturing the variation of depth appearance is more suitable to discriminate the two elementary motions, and thus the two activities.

Additionally, we can see the activities cleaning objects, microwaving food and taking food are confused. These three activities are very similar as they involve similar elementary motion, like open the microwave, take or put an object and close the microwave. Using our method, we are not accurately able of differentiating when the subject put the food or take it from microwave and when s/he is cleaning the microwave.

On this dataset, we also evaluate and analyze the effectiveness of our method when the value of parameters (size of the codebook and number of states used in DNBC) is changed. The evolution of the accuracy with respect to both parameters is displayed in Figure 5.18 for both MLOP and LOP4D features.

First, it can be observed the proposed method obtains the best accuracy using both features, when a DNBC with 10 states is trained. It can be also observed the accuracy is relatively independent from the number of states (except when only three states are used).

Second, we can notice the best accuracy is obtained with a codebook of size 50 for the MLOP feature, and a codebook of size 100 for the LOP4D feature. In addition, if too much exemplar features (i.e., 200) are used, we observe the accuracy falls down. Indeed, learning a codebook with too much symbols may result in similar activities represented by different symbols. Hence, sequences only represent a particular sequence performed by one subject, rather than a generic template of one activity class.

Online RGB-D dataset

The Online RGB-D dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] is interesting because it proposes different types of sequences, which allow evaluation in different contexts, like activity recognition and online activity detection. The dataset contains RGB-D sequences of seven activities: drinking, eating, using laptop, picking up phone, reading phone (sending SMS), reading book and using remote.

On this dataset, we first evaluate the effectiveness of our method for activity recognition. To this end, we use a first set of sequences, where one single activity is performed by sixteen different subjects. For a fair comparison, we follow the same procedure as in [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF]. Half of the subjects are used for training and the other half for test. Then, a 2-fold cross validation is used and the mean accuracy of the two folds is computed.

We propose to compare our approach with state-of-the-art methods and differentiate between approaches that use skeleton features only or depth features only, and approaches that use both skeleton and depth features.

We model the activities by DNBC with one or two attributes according to the number of features we use. When we use depth features within our method, we use the 4DLOP feature and learn a codebook of size 100.

Results are reported in Table 5.4. We note that the dataset also provides object location used for training in the work [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF]. In our method, we do not need such information. 71.4 Our 80.9

By analyzing Table 5.4, it can be noticed that the proposed approach outperforms the state-of-the-art methods for every combination of features.

It should be also noted, in the case only depth features are used, our method is not fairly comparable to the others. In fact, our approach is based on a decomposition of activities into MUs, but this decomposition is computed using skeleton information. Thus, even if we only use depth features to describe MUs, our method still needs skeleton data in order to identify MUs. Hence, we are not only using depth features, like the method in [START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF]. Nevertheless, we can see that our segmentation approach allows a good recognition of activities when each segment is only described by depth appearance feature.

Compared to skeleton-based methods, our proposed approach significantly outperforms other solutions. This shows that our segmentation approach combined with shape analysis of the human motion allows us to efficiently recognize activities involving manipulation of objects. Even without considering any information about objects held by the subject, we are able to recognize 71.8% of the activities. This accuracy is higher than for methods in [START_REF] Wang | Mining actionlet ensemble for action recognition with depth cameras[END_REF] and [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF], which combine both skeleton and depth features.

Finally, if we add depth features to the skeleton, the recognition accuracy is significantly increased to 80.9%, which is almost 10% above the best state-of-the-art method [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF].

We evaluate also the latency of our approach in comparison to statof-the-art methods. The latency measures the ability of recognizing the activity without observing the whole sequence. Hence, the average recognition accuracy is computed on different observed portions of the activity sequence. The evolution of accuracy is reported in Figure 5.19 in comparison to state-of-the-art methods.

It can be noticed that the proposed approach outperforms the two methods in [START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF] and [START_REF] Zanfir | The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection[END_REF] for every observation sequence. However, we can see that the accuracy of our method exceeds the method [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] only from 40% of observation. Indeed, when we only observe 10%, 20% or 30%

of the sequence and we apply our segmentation method, it often results in activity sequences represented by one or two temporal segments. In these cases, the dynamic of the activity is null (one observation) or very small (two observations). Hence, the use of statistical models, like DNBC is not appropriate and efficient for modeling short portions of the activity sequence. This is the main reason motivating lower accuracy of our approach with respect to [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF]. When more information is available, we are able to capture and model the dynamic of the activity.

Finally, we can see that our method allows efficient recognition (accuracy of 75.6%) when only half of the sequence is observed. When 60% of the sequences is observed, we obtain an accuracy of 79.5%, which is close to the accuracy of 80.9% obtained for the whole sequence. This shows that even if our method is not suitable for very early detection of activities (less than 30% of observation), we are able of guaranteeing a good recognition accuracy when only half of the sequence is observed. 

Online detection of actions/activities

In a last time, we propose to evaluate the capability of our approach for online detection of human behaviors in a long motion sequence. The evaluation is performed on the Multi-Modal Action Detection dataset [START_REF] Huang | Sequential maxmargin event detectors[END_REF] for action detection and on an extended version of the Online RGB-D dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] for activity detection.

Multi-Modal Action Detection

We evaluate our method on the Multi-Modal Action Detection (MAD) database [START_REF] Huang | Sequential maxmargin event detectors[END_REF], for the task of online detection. This RGB-D dataset has the advantage over most available human action datasets of including not isolated clips.

Indeed, previous datasets provide only distinct sequences of actions.

As a consequence, the online detection capability in these datasets, can be evaluated only by manually concatenating isolated clips. This results in discontinuities between actions (i.e., transitions are not naturally smooth), which does not correspond to a real case. Thanks to the MAD dataset pro-viding long sequences of different actions, the online detection efficiency can be evaluated in a more realistic scenario.

In Our method is run in an online way as described in Section 5.6.3. As a result, we obtain a segmented sequence with an action label for each temporal segment corresponding to the action we detected. In order to evaluate the method and compare it with the state-of-the-art, we compute two measures:

• Precision, which corresponds to the percentage of correctly detected actions over all the detected actions;

• Recall, that is the percentage of correctly detected actions over all the ground truth actions.

A detected action is considered as correctly detected if it overlaps with 50% of the segments of the ground truth action. We compare these two measures with the SMMED and MSO-SVM methods, both proposed in [START_REF] Huang | Sequential maxmargin event detectors[END_REF]. The results are reported in Table 5.5. We can see that our method outperforms the state-of-the-art approaches for both the measures.

Table 5.5 -MAD. Comparison of the proposed online detection approach with SMMED [START_REF] Huang | Sequential maxmargin event detectors[END_REF] and MSO-SVM [START_REF] Huang | Sequential maxmargin event detectors[END_REF]. The precision and recall measures are computed with the assumption that a detected action is correct if it overlaps with 50% of the ground truth segment.

Measure (%) MSO-SVM [START_REF] Huang | Sequential maxmargin event detectors[END_REF] proposed in [START_REF] Huang | Sequential maxmargin event detectors[END_REF].

We can see that the duration of the detected actions by our method is more similar to the ground truth compared to [START_REF] Huang | Sequential maxmargin event detectors[END_REF]. While both our method and [START_REF] Huang | Sequential maxmargin event detectors[END_REF] are able to accurately detect actions along the time, our method detect more efficiently the end of actions resulting to duration of detected actions closer to the ground truth. With the approach proposed in [START_REF] Huang | Sequential maxmargin event detectors[END_REF], most of the actions are well detected, but in most of the cases these correspond to a shorter time interval than the real one. As an overlap of 50% with ground truth is considered as the criterion of good detection, our method obtains higher values of recall and precision.

Online RGB-D dataset

Finally, we propose to evaluate our approach for online activity detection on the Online RGB-D dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF]. The same set of activities as for activity recognition is used to train one DNBC for each activity class. In addition, we use a set of background activities provided by the dataset, so as to learn the null class.

We run our detection method on a new set of sequences. It includes The first row corresponds to the ground truth, the second row to the SMMED method [START_REF] Huang | Sequential maxmargin event detectors[END_REF], and the third row to the proposed method. We can see that our method provides segments whose duration is closer to ground truth compared to [START_REF] Huang | Sequential maxmargin event detectors[END_REF].

Differently to experiments on the MAD dataset, detection is evaluated using a frame-level accuracy as in [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF], which is computed by averaging the number of well classified frames out the all set of frames in the test sequences.

Results are reported in Table 5.6. Using this metric, a detected activity overlapping 50% with the ground truth has a score of 50% and is not considered as entirely well detected conversely to the metric used in experiments on MAD dataset. We can see that our method performs better than state-of-the-art approaches to detect activity in an online manner. 

Method Accuracy (%)

EigenJoints [START_REF] Yang | Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[END_REF] 23.6 DSTIP + DCSF [START_REF] Xia | Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera[END_REF] 32.1 Moving Pose [START_REF] Zanfir | The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection[END_REF] 50.0 DOM [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] 56.4 Our 60.9

Conclusion

In this Chapter, we propose an effective method for modeling and understanding different kind of human behaviors, like gestures, actions and activities.

We first propose a pose-based analysis in order to decompose a sequence into representative elementary motion units. In one hand, such temporal segments are represented as motion trajectories and interpreted in the shape space. Thanks to the Riemannian geometry of this manifold, shape analysis is performed, so as to identify representative shapes characterizing elementary motions. On another hand, we add depth appearance information in order to characterize possible object manipulation along temporal segments.

The combination of skeleton and depth data, as well as the modeling of the dynamic of the sequence of segments is done through a Dynamic Naive Bayesian Classifier.

Experiments on the MSRC-12 dataset [START_REF] Fothergill | Instructing people for training gestural interactive systems[END_REF] demonstrate that the proposed approach is capable of recognizing human gestures and improve our previous method described in Chapter 4 by handling gesture repetitions. Evaluations performed on the CAD-120 dataset [START_REF] Koppula | Learning human activities and object affordances from rgb-d videos[END_REF] and ORGBD dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] show that our method performs well for the task of human activity recognition.

Finally, we adapt our method to allow online detection in long sequences of several behaviors, which is an important challenge in realworld context. Evaluation on MAD dataset [START_REF] Huang | Sequential maxmargin event detectors[END_REF] and ORGB-D dataset [START_REF] Yu | Discriminative orderlet mining for real-time recognition of human-object interaction[END_REF] demonstrate that the proposed approach outperforms state-of-the-art methods for online action detection and online activity detection, respectively.

However, experiments also show that the online detection problem need to be more investigated and more specifically the early detection of behaviors. Indeed, our method is currently not able to detect human behaviors with a very short observation of the motion. Such early detection is an important challenge for real-world applications, so as to guarantee real-time and natural human-machine interaction. In this thesis, we addressed the issue of human behavior understanding from RGB-D data, a widely investigated topic due to its large panel of potential applications. We differentiate the study of behaviors according to their complexity.

In a first time, we focused on the recognition of relatively simple behaviors, like actions. To this end, we employed skeleton data provided by RGB-D sensors, which represent the human body pose as a set of connected 3D joints for each frame of the sequence. In order to analyze the action performed by the subject during the sequence, we proposed a rotation and translation invariant representation of the skeleton sequence as a spatio-temporal trajectory in a high dimensional space. This representation simultaneously encodes the human pose shape and captures the dynamics of the human motion.

In order to analyze and compare such trajectories, we considered their shape within a Riemannian framework. Each shape is interpreted on a Riemannian manifold and an elastic metric provided by the framework, corresponding to the geodesic length between two elements, is used to compute shape similarity independently to the elasticity of trajectories.

Hence, it allows the motion trajectory analysis to be robust to the execution speed of actions. Such elastic metric is employed within a kNN classifier to perform action recognition. The efficiency of the proposed method is verified on three benchmark datasets.

Experimental results demonstrated that we obtain competitive results in comparison with state-of-the-art approaches. In addition, we proposed to evaluate the latency of our solution on two datasets. Results shown that we are able to guarantee high action recognition accuracy by observing only half of the sequence. However, experiments also demonstrated that the proposed solution suffers from limitations when actions involve variable repetitions of a single gesture or manipulations of objects.

In a second time, we extended our study, so as to simultaneously handle these limitations and considered more complex behaviors, like activities. Hence, we proposed a segmentation method in order to decompose a motion sequence into a set of short elementary motion called motion units (Mus). In so doing, we represented each 3D skeleton as a curve representing the human body. The shape of curves is then analyzed within the Riemannian shape analysis framework. By combining a sliding window Finally, the challenge of online detection is addressed for long sequences where several behaviors are performed successively. Experimental results on two datasets demonstrated that the proposed model is able to efficiently detect behaviors in an online manner.

Limitations and future work

Experiments shown that the proposed solutions guarantee an acceptable behavior recognition rate from about 50% of observation of a sequence.

However, for applications requiring an earlier recognition by the analysis of very few observations, the proposed solutions present some limitations.

This challenge is very important for real-time purpose and constitute a future research direction that we would like to investigate.

In addition, our method employs a depth appearance description around hand joints to characterize human-object interactions. While it allows us to differentiate similar activities in terms of human motion, such method does not recognize the objects. Information about detected objects in the scene could add more useful knowledge about the context and the environment so as to achieve a deeper understanding of the behavior.

Finally, this study focus on the understanding and recognition of human behaviors. As future work, we would like to explore a deeper analysis of the human motion so has to obtain information on how two human movements are different in addition to how much. This could be particularly useful to asses the quality of a human motion with respect to a template motion. For instance, in a sport context, such quality assessment would allow a subject to train or improve a particular gesture using corresponding feedback of the system on where the gesture can be perfectible.

The motion analysis could also be useful in the medical or security domain in order to detect movement deficiency, like abnormal gait, or uncommon behavior, like fall of people.
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Figure 2 . 1 illustrates

 21 this problem.

Figure 2 . 1 -

 21 Figure 2.1 -Illustration of the human behavior understanding problem. Given a set of learned behaviors, the system is able to recognize and localize in the time which behaviors have been performed in an unknown sequence.

Figure 2 . 2 -

 22 Figure 2.2 -Example of RGB-D sensors. Left: Microsoft Kinect 2 [56]; Right: Asus Xtion PRO LIVE [7].

Figure 2 . 3 -

 23 Figure 2.3 -Three various skeletons with different number of joints obtained with Microsoft SDK 1.x (left), OpenNI SDK (middle) and Microsoft SDK 2.0 (right)

  although the tracking system developed on top of this approach by the different SDK provides different number of joints. While the OpenNI SDK provides a skeleton with 15 joints, the first version of the Microsoft Kinect SDK (1.x) was capable to estimate 3D positions of 20 joints. Recently, the new version of the Microsoft SDK (2.0) released with the Kinect 2 increased the number of estimated joints to 25 with notably 4 new joints representing two fingers per hand.Figure 2.3 shows example of the three types of skeleton. As a result, such RGB-D sensors provide for each frame the 2D color image of the scene, its corresponding depth map and a 3D humanoid skeleton representing the subject pose, as illustrated in Figure 2.4. The combination of such data offers new opportunities for analyzing the human motion and understanding human behaviors.

Figure 2 . 4 -

 24 Figure 2.4 -Example of data provided by RGB-D sensors like Microsoft Kinect 2: 2D color image (left), depth map (middle) and 3D skeleton (right).

Figure 2 . 5 -

 25 Figure 2.5 -Example frames of various datasets collected for different contexts: (a) UTKinect; (b) Cornell Activity 120; (c) MAD; (d) SBU.

  based on depth maps rely on the extraction of meaningful descriptors from the entire set of points of depth images. As depth map are like RGB images, but with a single channel, some work proposed to extend and adapt features or techniques existing in RGB images literature to depth map. Once the features are computed, different methods have been proposed to model the dynamics of the actions.
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 27 Figure 2.7 -Process of computed HOG features on Depth Motion Maps [104].

Figure 2 . 8 -

 28 Figure 2.8 -Illustration of the DCSF computation process [98].

Figure 2 . 9

 29 Figure 2.9 illustrates such 4D space divided into 4D cells. By applying a threshold on this feature, they are able to detect which 4D cells correspond to motionless (red in the figure) and which correspond to motion (green in the figure). The concatenation of such feature of each 4D cell is used to represent the depth sequences. A similar occupancy feature called random occupancy pattern (ROP) is also employed in [93]. Differently, the 4D subvolumes are extracted randomly at different locations and with different sizes.

Figure 2 . 11 .

 211 Figure 2.11. Finally, a Naïve-Bayes nearest-neighbor classifier is used for multi-class action classification.

Figure 2 . 11 -

 211 Figure 2.11 -Computation of the EigenJoints feature proposed in [102].

Figure 2 . 12 -

 212 Figure2.12 -Spherical coordinate system employed in[START_REF] Xia | View invariant human action recognition using histograms of 3D joints[END_REF] to compute he HOJ3D feature.

Figure 2 . 13 -

 213 Figure 2.13 -Example of skeletal representations used in (a) Seidenari et al. [76] and (b) Ofli et al. [60, 61].

ure 2 . 14 .

 214 To handle rate variability among curves, Dynamic Time Warping (DTW)[START_REF] Bellman | On adaptive control processes[END_REF] is employed to temporally align the curves. Finally, classification is performed using linear SVM. In[START_REF] Slama | Accurate 3d action recognition using learning on the grassmann manifold[END_REF], Slama et al. express the time serie of skeletons as one point on a Grassmann manifold, where the classification is performed benefiting from Riemannian geometry of this manifold.

Figure 2 . 14 -

 214 Figure 2.14 -Representation of a skeleton as one point on a Lie Group. As a result, the full sequence is viewed as a curve [89].

Figure 2 . 15 -

 215 Figure 2.15 -Illustration of the method proposed in [62] combining skeleton and depth features for action recognition.

  the spatial distribution of the point cloud in the local region. Furthermore, the temporal structure of each joint in the sequence is represented through a temporal pattern representation called Fourier Temporal Pyramid. This latter is insensitive to temporal misalignment and robust to noise, and also can characterize the temporal structure of the actions. The process is illustrated in Figure 2.16.
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 216 Figure 2.16 -Illustration of the method proposed in [94] to handle simultaneously human motion and human-object-interaction.

Figure 2 .

 2 Figure 2.18 -Pictorial representation of the different types of nodes and relationships modeled in [41].

Figure 2 . 19 -

 219 Figure 2.19 -Hierarchical graph model of the activity event fetch water from dispenser proposed in [95].

  Depth map-based methods propose to exploit depth images providing natural surfaces to describe the geometry of the scene and behaviors. Extension of existing features in RGB videos are often proposed for depth sequences. While some methods focus on the description of the global sequence, other approaches detect local key-points to then describe depth appearance in these local regions. Differently, other works use the depth information to explore the 3D point cloud of the scene or consider the sequence as a spatio-temporal 4D space.

Furthermore, some emerging

  and interesting techniques reformulating the action recognition problem over non-linear spaces have been investigated. Motivated by their effectiveness in the 2D videos literature, such methods propose to consider geometrical spaces, like Grassmannian manifolds to represent human motion features computed from depth or skeleton data. Due to the non-linearity of human motion, such non-linear manifolds are suitable to capture the dynamic of the motion. However, only few methods employing non-linear manifolds with RGB-D data have been proposed in the literature. Finally, the online detection challenge has been recently studied. First, such online capability allows recognizing the behavior before the end of its execution, thus it guarantees more natural interaction between the user and the system. Second, it favors the analysis of continuous sequences where several behaviors are performed successively. All these considerations motivate us to differently address the problem of human behavior understanding, according to the type of behavior and the context. Hence, in the following Chapters, we first investigate the human action recognition problem by employing skeleton data only. So as to be robust to geometric transformation of the human body, we propose a translation and rotation invariant representation of the human action as the trajectory of the skeleton joints along the time. In order to consider the non-linearity of such trajectory characterizing the human motion, we propose to consider its shape in a non-linear Riemannian manifold. The comparison and classification of trajectories is performed using an elastic metric allowing robustness to different speed of executions of actions.
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  define the rotation group SO(n) and the re-parametrization group Γ. Elements O ∈ SO(n) are rotation matrices of size n × n. Elements γ ∈ Γ are re-parametrization functions. As defined in [36], rotating a curve β by O ∈ SO(n) and re-parametrizing it with γ ∈ Γ yields a new curve β = O(β • γ) equivalent to β in terms of shape. The composition β • γ denotes the re-parametrization of the curve β. It follows the same sequence of points as β but at the evolution rate governed by γ. Hence, the SRVF

. 11 )Figure 3 . 2

 1132 Figure 3.2 illustrates the idea of the exponential map and the inverse exponential map operators to move from the shape space to the tangent space and inversely.

Figure 3 . 3 -

 33 Figure 3.3 -Illustration of the Riemannian center of mass computation. At each iteration i, two steps are performed: (a) Each shape q i is projected to the tangent space of µ i and the average direction v is computed from the set {v i }. (b) The mean shape µ i is moved along v by and mapped back to S to obtain the updated mean shape µ i+1 .
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 41 Figure 4.1 -Overview of our approach: First, skeleton sequences are represented as trajectories in a n-dimensional space; These trajectories are then interpreted in a Riemannian manifold (shape space); Recognition is finally performed using kNN classification on this manifold.

Figure 4 . 2

 42 Figure 4.2 illustrates the representation of a human action sequence as a spatio-temporal trajectory of skeleton coordinates in a 3N j -dimensional space.
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 42 Figure 4.2 -Spatio-temporal representation of human action. First row: Skeletal representation of the action along the time; Second row: Each skeleton is represented as a vector built from the three coordinates of the N j skeleton joints; Third row: The concatenation of such vectors along the time results in a spatio-temporal trajectory in R 3N j , representing the human motion during the sequence.

  lation and rotation of the subject in the scene. Two instances of the same action differing only by the position and orientation of the person with respect to the acquisition device should be recognized as belonging to the same action class. This goal can be achieved either by adopting a translation and rotation invariant representation of the action sequence or providing a suitable distance measure that copes with translation and rotation variations. We adopt the first approach by normalizing the position and the orientation of the subject in the scene before the extraction of the joint coordinates.

Figure 4 .Figure 4 . 3 -

 443 Figure 4.3 -Invariance to geometric transformations: (a) Two skeletons with different orientations. The skeleton on the left is the reference one. The skeleton on the right is the first skeleton of the sequence that should be aligned to the reference skeleton; (b) Bases B 0 and B are built from the two corresponding hip vectors and their cross product. The base B corresponds to B aligned with respect to B 0 ; (c) The resulting skeleton (right) is now aligned with respect to the first one (left). The transformations computed between these two bases are applied to all skeletons of the sequence.

Finally, due the

  symmetry of the body along the vertical axis, one same action can be performed using one part of the body or another. With reference to the action "answer phone call", the subject can use his left arm or right arm. By analyzing the whole body, we can not detect such variations. Differently, using body parts separately, simplifies the detection of this kind of symmetrical actions.To analyze each part of the body separately, we represent a skeleton sequence by four feature sets corresponding to the body parts. Each body part is associated with a feature set composed by the 3D normalized position of the joints that are included in that part of the body. Let N j p be the number of joints of a body part, the skeleton sequence is now represented by four trajectories in 3 × N j p dimensions instead of one trajectory in 3 × N j dimensions. The actual number of joints per body part can change from a dataset to another according to the SDK used for estimating the body skeleton.

Figure 4 . 4

 44 illustrates the representation of separated body parts where N j p = 4 for each body part representing the four limbs.

Figure 4 . 4 -

 44 Figure 4.4 -Spatio-temporal representation of each body part separately. First row: Skeletal representation of the action along the time where each limb is displayed in a different color; Second row: Each limb of each skeleton is represented as a vector built from the three coordinates of the corresponding joints; Third row: The concatenation of such vectors along the time results in four spatio-temporal trajectories in R 12 , representing the human motion of each body parts separately.

Figure 4 . 5

 45 provides a simplified example of action matching by shape comparison. The plot displays five trajectories corresponding to the coordinates of the left hand joint in five different actions. Three trajectories correspond to three instances of the action drawing circle. The remaining two trajectories correspond to the actions side boxing and side kick. This simplified case, in which each trajectory encodes the coordinates of just one joint, makes it clear that similar actions yield trajectories with similar shapes in the action space.
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 45 Figure 4.5 -Trajectories representing the coordinates of the left arm joint for five actions: From left to right, side kick, side boxing, and draw circle (three different instances). Points displayed in bold represent the sample frames along the trajectories.

Figure 4 . 5

 45 Figure 4.5 also highlights some critical aspects of representing actions by trajectories. Assuming the actions are sampled at the same frame rate, performing the same action at two different speeds yields two curves with a different number of samples. This is the case of the red and blue trajectories in Figure 4.5, where samples are highlighted by bold points along the trajectories. Furthermore, since the first and the last poses of an action

  where X i belongs to a Riemannian manifold S, and y i is the class label taking values in {1, . . . , N c }, with N c the number of classes. The objective is to find a function F(X) : S -→ {1, . . . , N c } for clustering data lying in different submanifolds of a Riemannian space, based on the training set of labeled items of the data. To this end, we propose a kNN classifier on the Riemannian manifold, learned by the points on the open curve shape space representing trajectories. Such learning method exploits geometric properties of the shape space, particularly its Riemannian metric. This relies on the computation of the geodesic distances to the nearest neighbors of each data point of the training set.
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 46 Figure 4.6 -Computation of the average trajectory between three action trajectories. Among shapes on the shape space, the corresponding mean shape is obtained by applying the Riemannian center of mass algorithm. The corresponding skeleton sequences in the action space are displayed. The fourth row correspond to the average trajectory of the three first sequences.

  the classification, we take into consideration a part of the body only if it is moving either in the training sequence or the test sequence. If one part of the body is motionless in both actions, this part is ignored and does not concur to compute the distance between the training and test sequences. For instance, if two actions are performed only using the two arms, the global distance between these two actions is equal to the mean of the distances corresponding to the arms only. We empirically select the threshold m 0 that best separates moving and still parts with respect to a labeled training set of ground truth sequences. To do that, we manually labeled a training set of sample sequences by assigning a motion binary value to each body part. The motion binary value is set to 1 if the body part is moving and set to 0 otherwise. We then compute the total motion m of each body part of the training sequences and give a motion decision according to a varying threshold.

Figure 4 . 7

 47 shows the confusion matrix when we use the kNN and the Riemannian center of mass per action and per subject with the full skeleton (Figure 4.7a) and with body parts (Figure 4.7b).

Figure 4 . 9

 49 Figure 4.9 illustrates an example of this failure case. As action sequences are represented in high dimension space, trajectories corresponding to only one joint (the right hand joint) are plotted. Indeed, the trajectories of four different samples of the action hammer are illustrated, where only one hammer stroke or two hammer strokes are performed. Figures 4.8 shows example sequences of one of each case.It can be observed in Figure4.9 that the shape of the trajectories is different in the two cases. In order to visualize samples of three different classes in a two-dimensional space, the Multidimensional scaling (MDS) technique[START_REF] Borg | Modern Multidimensional Scaling: theory and applications[END_REF] is applied using distance matrix computed on the shape space. These classes are shown in the right part of the figure: horizontal arm wave (clear blue), hammer (dark blue) and draw tick (green). We can see that samples of the action hammer are split in two different clusters corre-
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 47 Figure 4.7 -MSR Action 3D. Confusion matrix for two variations of our approach: (a) Full skeleton with kNN and Karcher mean per action and per subject; (b) Body parts with kNN and Karcher mean per action and per subject.

Figure 4 . 8 -

 48 Figure 4.8 -Visualization of two hammer sequences. In the first sequence, one hammer strocke is performed (sample (a) in Figure 4.9). In the second sequence, two hammer strokes are performed (sample (d) in Figure 4.9).
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 49 Figure 4.9 -Visualization of a failure case for the action hammer. Sample trajectories of the right hand joint are shown on the left: (a-b) one hammer stroke; (c-d) two hammer strokes. On the right, clustering of action samples using MDS in a 2D space is reported for three different classes: horizontal arm wave (clear blue), hammer (dark blue) and draw tick (green). The samples of the action hammer are split in two clusters corresponding to the two different ways of performing the action. The distribution of data of the hammer cluster is partly overlapped to data of the draw tick cluster
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 410 Figure 4.10 -Confusion matrix obtained by our approach on Florence 3D Action. We can see that similar actions involving different objects are confused.
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 411 Figure 4.11 -Example of similar actions from Florence 3D Action dataset: First row corresponds to drink action where the subject holds a bottle; Second row corresponds to phone call action, where the subject holds a phone.
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 412 Figure 4.12 -Confusion matrix obtained by our approach on UTKinect. We can see that similar actions involving different objects are confused.

Figure 4 .

 4 Figure 4.13 shows the corresponding sequences with and without our invariant representation. We can see that the first (blue) and third (green) sequences belonging to classes wave and clap have similar orientation. Moreover, the two first sequences (blue and orange) belong to the same class wave but have different orientation. This shows that different orientation may affect the distance and thus the classification of sequences.

Figure 4 . 13 -

 413 Figure 4.13 -Illustration of orientation invariance. The first three sequences correspond to classes wave (blue and orange) and clap (green) without our invariant representation.The last three rows show the same sequences with our invariant representation.

Figure 4 .

 4 Figure 4.14 shows an example of the action high throw performed by two different subjects at different speed. The first row represents eight frames of a training sequence; The second row represents the same eight frames of a new sequence performed at different speed without registration; The third row represents the new sequence after registration with respect to the training sequence. In the reported case, the distance between sequences decreases from 1.31 (without registration) to 0.95 (with registration).

Figure 4 . 14 -

 414 Figure 4.14 -Temporal registration for actions (a) high arm wave and (b) high throw. From the top: the initial sequence; the sequence to be registered with respect to the initial sequence; the resulting registered sequence. Black lines connect corresponding poses showing how the sequence has been stretched and bent.

Figure 4

 4 Figure4.15 -Latency analysis on MSR Action 3D: Our approach is performed using only the kNN (blue curve), and then using the Karcher mean (red curve). The accuracy at each point of the curves is obtained by processing only the number of frames shown in the x-axis.

ure 4 .

 4 [START_REF] Bondi | Real-time people counting from depth imagery of crowded environments[END_REF]).

Figure 4 . 16 -

 416 Figure4.16 -Latency analysis on UCF-Kinect. Values of the accuracy obtained by our approach using only the kNN, compared to those reported in[START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF]. The accuracy at each point of the curves is obtained by processing only the number of frames shown in the x-axis.
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 5252 Figure 5.2 shows a geodesic path between two human poses represented by their 3D curve.

Figure 5 . 3

 53 Figure 5.3 illustrates the process of computing σ on the shape space. Higher values of σ correspond to faster motion, while lower values correspond to slower motion, i.e., transition intervals. By detecting local minima along the sequence, we are able of temporally localizing the motion transitions, and thus of decomposing the sequence into MUs.

Figure 5 . 3 -

 53 Figure 5.3 -Computation of the standard deviation on the shape space. The shapes of poses in a window are represented as elements on the shape space. The mean shape and standard deviation are computed in the shape space.

Figure 5 . 4 -

 54 Figure 5.4 -Segmentation of a sequence based on minima of the standard deviation σ. Different MUs are displayed with different colors. The corresponding poses are displayed under the plot of the standard deviation.

Figure 5 . 5 -

 55 Figure 5.5 -An activity sequence can be viewed as a set of successive spatio-temporal trajectories in R 3N j representing MUs performed by the subject.

Figure 5 . 6 -

 56 Figure 5.6 -LOP feature computation for one frame, where the subject is holding a bottle. (a) A bounding box is extracted from the depth image around the hand joint. (b)The bounding box can be viewed as a 3D cuboid divided into 3D cells. Here N x = N y = N z = 2. (c) The number of 3D points within each 3D cell is counted. As a result, the LOP feature can be viewed as a histogram, where each bin represents a 3D cell.

Figure 5

 5 Figure 5.7.
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 57 Figure 5.7 -Schema of the 4DLOP feature. Here, the duration of the MUs is 50 frames.The spatio-temporal volume along the time is divided in two intervals (N t = 2). As a result the 4DLOP feature vector represents the depth appearance evolution along the MU in two time steps.

2 . 2

 22 allows the segmentation of the sequence in MUs corresponding to left step and right step. Once the segmentation is performed, we detect periodic MUs in order to group them in the same action cluster, e.g., walking. Detecting such periodic MUs along the whole sequence and grouping them together result in a segmentation of the whole sequence into different clusters corresponding to distinct actions, as illustrated in Figure 5.9.
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 59 Figure 5.9 -Clustering of periodic MUs.

Figure 5 . 10 -

 510 Figure 5.10 -Removal of repeated MUs keeping continuity of the action sequence. Deformation between the two extreme poses Pose i and Pose j is estimated using the geodesic path on the shape space.
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 511 Figure 5.11 -CMU dataset: Segmentation accuracy for 14 sequences.

Figure 5 .

 5 Figure 5.12 shows the segmentation results of the fourth sequence obtained by HACA [111] (second row) and our method (third row), in comparison with ground truth segmentation (first row). Different colors correspond to different actions. The white bars within the same color represent the detected periodic movements. For instance, the first action in red (walking) is composed of five movements, each representing a walk cycle (one left step and one right step).
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 33 a sequence is decomposed into several MUs and each MU is described in terms of human motion and depth appearance around subject hands by its corresponding symbol from a learned codebook. As a result, each sequence can be viewed as a combination of two sequences of successive symbols, one corresponding to human motion extracted from skeleton data, and the other corresponding to depth appearance around hands. Such temporal evolution of symbols represents the dynamic of the action or activity. In so doing, we assume that actions or activities of the same class are represented with similar arrangements of MUs. Conversely, different sequences of symbols should represent actions or activities of different classes. Hence, we need a methodology allowing us to analyze the temporal evolution of symbols and recognize different arrangements of MUs representing different actions or activities.

Figure 5 .

 5 Figure 5.14 depicts an example of a DNBC with two attributes per state.
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 514 Figure 5.14 -Example of Dynamic Naive Bayesian Classifier with two time intervals (t and t + 1).For each time interval t, the process is at state S t and emits the two attributes X 1 t and X 2 t . In our case, the two attributes X 1 and X 2 correspond to human motion and depth appearance, respectively.
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 515 Figure 5.15 -Online detection method. The Activity-2 and Activity-3 are discarded after the fourth and second time interval, respectively, as their log-probability fall below -80. The remaining Activity-1 is discarded after the seventh time interval. As a result, the five first time intervals are classified as Activity-1, and a new detection is started from the sixth time step.
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 516 Figure 5.16 -Illustration of the challenges identified in CAD 120 dataset. We can observe that the two first activities (a) and (b), corresponding to the same class arranging object, are performed differently by the two subjects at different location and orientation with respect to the camera. In addition, the third activity (c) shows an example of legs occlusion resulting in a noisy skeleton.
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 517 Figure 5.17 -Confusion matrices obtained with our method on CAD-120 using MLOP (a), and 4DLOP (b).

Figure 5 . 18 -

 518 Figure 5.18 -Accuracy evolution of our method with respect to varying parameters: the number of states of DNBC (a), and the size of the codebooks (b).

Figure 5 . 19 -

 519 Figure 5.19 -Latency analysis on Online RGB-D dataset. Accuracy obtained for different portion of the sequences is compared for our approach and state of the art methods.

  particular, the MAD database contains 40 sequences of 20 subjects (2 sequences per subject) performing 35 actions in each sequence. The length of the sequences is from 2 to 4 minutes. The 35 actions include full-body motion (Running, Crouching), upper-body motion (Throw, Baseball swing), and lower-body motion (Kicking). Each subject performs the 35 actions continuously, and the segments between two actions are considered as the null class. Since actions are performed without objects, and for a fair comparison with state-of-the-art-methods, we use skeleton data only in these experiments. Hence, sequences are described only with human motion features and represented by models with one attribute. A five-fold-cross-validation over the 20 subjects (4 subjects per fold) is used as evaluation protocol. In each iteration, the labeled sequences of four folds are used to build the vocabulary of motion units and train the DNBCs. We used the ground truth segmentation in order to separate each action of the training sequences and learn one DNBC per action. One model corresponding to the null class is also learned from transition intervals when the human is standing.

36 long sequences from 30

 30 seconds to two minutes, where 12 new subjects are successively performing different activities. In total, 123 activities are performed during these 36 sequences, with an average percentage of background frames of about 30%. Manual labeling provided by the dataset is used as ground truth.

Figure 5 . 20 -

 520 Figure 5.20 -Action detection result for the sequence-1 of subject-1 from the MAD database. The full sequence is divided in two parts to guarantee a clearer visualization.The first row corresponds to the ground truth, the second row to the SMMED method[START_REF] Huang | Sequential maxmargin event detectors[END_REF], and the third row to the proposed method. We can see that our method provides segments whose duration is closer to ground truth compared to[START_REF] Huang | Sequential maxmargin event detectors[END_REF].

  technique and statistical tools on such manifold, we were able to analyze pose variations and thus identify different MUs. In order to describe and investigate these MUs, we employ the same idea used previously for action recognition by considering the shape of the spatio-temporal trajectory of each MU.In a first step, we applied this MU decomposition so as to detect cyclic movements. Experiments demonstrated the usefulness of the decomposition for the task of action segmentation and action recognition. Indeed, such cyclic MUs are either grouped together for the task of action segmentation of long sequences or conversely removed for improving action recognition efficiency.In a second step, we considered the sequence of such MUs for temporally modeling more complex behaviors, like activities. In order to also describe manipulation of objects characterizing activities, the depth appearance around subjects hands is considered in addition to human motion. Codebooks for both descriptors are then learned, so as to identify representative MUs. Finally, these exemplar MUs are used to represent a sequence, which is interpreted through a Dynamic Naive Bayesian classifier, so as to capture the dynamics and achieve human behavior recognition. Experiments on four representative datasets evaluated the potential of the proposed solution in different contexts including gesture or activity recognition. Competitive results in comparison with state-of-the-art methods are reported.

  

  

  

  

Table 2 . 2 -

 22 Summary of the most popular RGB-D datasets for human motion analysis.

	Dataset			Size	Data	Context	Behavior
	Composable	Activi-	14 subjects	RGB-D	Single person	Activity
	ties [47]			16 classes	Skeleton	Recognition	
				693 sequences		Online detection	
	Concurrent action [96]	12 classes	RGB-D	Single person	Activity
				61 long videos	Skeleton	Multi-view	
						Online detection	
	Cornell	Activity	4 subjects	RGB-D	Single person	Activity
	60 [83]			12 classes	Skeleton	Recognition	
				60 sequences			
	Cornell	Activity	4 subjects	RGB-D	Single person	Activity
	120 [41]			10 classes	Skeleton	Recognition	
				120 sequences			
	Florence	3D	Ac-	10 subjects	RGB-D	Single person	Action
	tion [22]			9 classes	Skeleton	Recognition	
				215 sequences			
	G3DI [15]			12 subjects	RGB-D	Two persons	Interaction
				15 classes	Skeleton	Recognition	
	MAD [34]			20 subjects	RGB-D	Single person	Action
				35 classes	Skeleton	Online detection	
				40 long videos			
	MSRC-12 [28]		30 subjects	Skeleton Single person	Gesture
				12 classes		Recognition	
				594 sequences			
	MSR Action 3D [46]	10 subjects	RGB-D	Single person	Action
				20 classes	Skeleton	Recognition	
				3 tries			
	MSR Daily Activ-	10 subjects	RGB-D	Single person	Activity
	ity [93]			16 classes	Skeleton	Recognition	
				2 tries			
	MSR Gesture 3D [5]	10 subjects	Depth	Single person	Gesture
				12 classes		Recognition	
				2-3 tries			
	Online RGBD [106]	36 subjects	RGB-D	Single person	Activity
				7 classes	Skeleton	Recognition	
				340 samples		Online detection	
				36 long videos			
	RGBD Person Re-	79 subjects	RGB-D	Single Person	Walking
	identification [9]		Skeleton	Re-identification	
	Robot-Centric Activ-	8 subjects	RGB-D	Robot-centric	Activity
	ity [100]			9 classes		Recognition	
				366 samples			
	SBU Kinect [107]	7 subjects	RGB-D	Two persons	Interaction
				8 classes	Skeleton	Recognition	
				300 sequences			
	TST Fall detection [29] 11 subjects	Depth	Fall detection	Activity
				240 sequences	Skeleton		
	UCF Kinect [27]	16 subjects	Skeleton Single person	Action
				16 classes		Recognition	
				5 tries			
	UR Fall Detection [43]	70 classes	RGB-D	Fall detection	Activity
	UTKinect [99]		10 subjects	RGB-D	Single person	Action
				10 classes	Skeleton	Recognition	
				2 tries			
	UWA3D	Multiview	10 subjects	Depth	Single person	Activity
	Activity II [71]		30 classes		Multi-view	
				4 tries		Recognition	
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Table 4 .

 4 1 -MSR Action 3D. We test our approach with its different variations (full skeleton, body parts without and with motion thresholding), and classification methods (kNN only, kNN and Riemannian center of mass (Rc) per action, kNN and Riemannian center of mass per action and per subject).

	Method

Table 4 .

 4 .28 ± 2.41% (mean ± std). In this case, the lowest and highest accuracy are, respectively, 81.31% and 93.04%.

	Method	Accuracy (%)
	EigenJoints [102]	82.3
	STOP [91]	84.8
	DMM & HOG [104]	85.5
	Random Occupancy Pattern [93]	86.5
	Actionlet [94]	88.2
	DCSF [98]	89.3
	JAS & HOG 2 [62]	94.8
	HON4D [64]	88.9
	Ours	92.1
	Furthermore, following a cross validation protocol, we perform the
	same experiments exploring all possible combinations of actions used for
	training and for test. For each combination, we first use only kNN on
	body parts separately. We obtain an average accuracy of 86.09% with
	standard deviation 2.99% (86.09 ± 2.99%). The minimum and maximum

2 -MSR Action 3D. Comparison of the proposed approach with the most relevant state-of-the-art methods.

values of the accuracy are, respectively, 77.16% and 93.44%. Then, we perform the same experiments using the full skeleton and the Riemannian center of mass per action and per subject, and obtain an average accuracy of 87

Table 4 .

 4 3 -Florence 3D Action. We compare our method with the one presented in[START_REF] Seidenari | Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[END_REF].

	Method	Accuracy (%)
	NBNN + parts + time [76]	82.0
	Our Full Skeleton	85.85
	Our Body part	87.04

Table 4

 4 

.4 that the distance drops from 1.1 to 0.6 if we use our invariant representation. We also compute the distance between actions belonging to similar classes, like wave and clap. It can be noticed that if we do not use the invariant representation, the nearest sample to the test sample belongs to the class clap; however, if the invariant representation is used, the nearest sample belongs to the class wave, the same as the test sample.

Table 4 .

 4 

		wave sample	clap sample	
		non-aligned aligned non-aligned aligned
	wave sample	1.1	0.6	1.0	0.9

4 

-Distances between a wave sample and two samples of the actions wave and clap acquired from different viewpoints. The columns 'aligned' and 'non-aligned' report the distance value computed with the invariant representation or without it, respectively.

Table 4 . 5 -

 45 Results of the proposed method in the case the registration step is considered (R) or not (NR).

	Method	MSR Act. 3D (%) Florence Act. 3D (%)
	kNN Full Skeleton -NR	73.9	82.1
	kNN Full Skeleton -R	88.3	85.9
	kNN Body parts -NR	73.5	84.7
	kNN Body parts -R	91.1	87.0

Table 4 . 6 -

 46 Average computational time to compare two sequences of the MSR Action 3D dataset (the average length of sequences in this dataset is 38 frames). It results that more than 60% of the time is spent in the registration step.

	Step	shape-space representation registration distance kNN labeling Total
	Time (s)	0.011	0.032	0.002	0.005	0.05

  This dataset consists of 16 different gaming actions performed by 16 subjects five times for a total of 1280 sequences[START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF]. All the actions are performed from a rest state, including The locations of and the PrimeSense NiTE. This dataset is mainly used to evaluate the ability of our approach in terms of accuracy/latency for a low-latency action recognition system. The same experimental setup as in Ellis et al.[START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF] is followed. To do that, we use only the kNN and a 4-fold cross validation protocol. Four subjects are selected for test and the others for training. This is repeated until each subject is used once. Actually, since there are 16 subjects, four different test folds are built and the mean accuracy of the four folds is reported. For a fair comparison to Ellis et al.[START_REF] Ellis | Exploring the trade-off between accuracy and observational latency in action recognition[END_REF], the obtained accuracy is reported with respect to the maximum number of frames (and not to a percentage of sequences). For each step, a new dataset is built cutting the sequences to a maximum number of frames. The length of the sequences varies from 27 to 269 frames with an average length equal to 66.1 ± 34

balance, climb up, climb ladder, duck, hop, vault, leap, run, kick, punch, twist left, twist right, step forward, step back, step left, step right.

frames. It should be noticed that, if the number of frames of a sequence is below the maximum number of frames used in experiments, the whole sequence is treated.

Table 4 . 7 -

 47 Numerical results at several points along the curves in Figure4.16. 

				#Frames			
	Method	10	15	20	25	30	40	60
	CRF	14.5 25.5 46.9 67.3 80.7 91.4 94.3
	BoW	10.7 21.2 43.5 67.6 83.2 91.9 94.1
	LAL	13.9 37.0 64.8 81.6 90.6 95.2 95.9
	Our	30.5						

60.9 79.9 91.1 95.1 97.8 99.2

  

Table 5 .

 5 2 -MSRC-12. Comparison of the proposed approach with DFM[START_REF] Lehrmann | Efficient nonlinear markov models for human motion[END_REF] and[START_REF] Devanne | 3D human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF]. Accuracies per class as well as mean accuracies are reported in percentage.

	Class	DFM [45] Devanne et al. [24] Our
	Duck	96.0	100	100
	Goggles	88.0	82.0	91.6
	Shoot	85.7	73.5	83.0
	Throw	90.0	88.0	90.0
	Change weapon	87.5	89.6	94.0
	Kick	98.0	98.0	98.2
	Mean	90.9	88.5	92.8

Table 5 .

 5 

	3 reports results obtained by our method in comparison to sev-
	eral state-of-the-art approaches. In particular, methods are compared by
	separating the case in which only the human skeleton is used, from the
	case in which both skeleton and depth data are considered. In our case,

this results to learn a DNBC for each activity class using only one attribute (human motion) or two attributes (human motion and depth appearance),

Table 5 .

 5 3 -Cornell Activity dataset 120. Comparison between our approach and state-of-the-art methods.

	Method	Accuracy (%)
	Skeleton Only	
	Koppula et al. [41]	27.4
	Devanne et al. [24]	48.3
	Our	69.4
	Skeleton + Depth
	Koppula et al. [41]	80.6
	Koppula and Saxena [42]	83.1
	Rybok et al. [73]	78.2
	Our (Skel + MLOP)	79.0
	Our (Skel + LOP4D)	82.3

Table 5 .

 5 4 -Online RGB-D dataset. Comparison of our approach with state of the art methods for the task of activity recognition

	Method	Accuracy (%)
	Depth Only
	DSTIP + DCSF [98].	61.7
	DOM [106]	46.4
	Our	64.5
	Skeleton Only
	EigenJoints [102]	49.1
	Moving Pose [108]	38.4
	DOM [106]	63.3
	Our	71.8
	Skeleton + Depth
	Actionlet [94]	66.0
	DOM [106]	

  Figure 5.20 also shows the detection results of one sequence in comparison with the ground truth and the best state of the art method, SMMED,

			SMMED [34] Our
	Recall	51.4	57.4	79.7
	Precision	28.6	59.2	72.1

Table 5 .

 5 [START_REF] Srivastava | Statistical shape analysis: Clustering, learning, and testing[END_REF] -Online RGB-D Dataset. Comparison of our approach with state of the art methods for the task of online activity detection.

  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.2 Limitations and future work . . . . . . . . . . . . . . . . . . 134

	Conclusion
	Sommaire
	6.1

131 6.1 Summary

(a) (b)

I am also particularly grateful to Prof. Alberto Del Bimbo for his welcome in his research group as well as his large contribution to make fea-