Study of of the distribution and the kinematic of the galaxies in the universe
Etude de la distribution et de la cinématique des galaxies dans l'univers
Résumé
If we assume that our universe is homogeneous and isotropic at large scale, its dynamic is fully described by the three cosmological parameters $H_0$, $q_0$ and $\Omega_0$. The hierarchy of observed structures at "small" scale (typically smaller than 50 Mpc) is studied within the framework of the Newtownian approximation as a local fluctuation of the density of matter dwelling our universe. The dynamic of these fluctuations is investigated on one hand by analyzing the spatial distribution of the observed galaxies and complementary by studying the peculiar velocity field created by the fluctuations of the total density of matter (dark and luminous). The study of the kinematic of large scale structures is the subject of the present thesis.
In part B of the thesis, we explain how to obtain the peculiar velocity field from the available observational data. Assuming a value for the Hubble's constant, the peculiar velocity of a galaxy can be inferred if the distance of the galaxy is known. However in practice the measurement of the galaxy distance is achieved through statistical method known as distance indicators. Such a statistical estimators are generally plagued with statistical biases which remain difficult to correct by using standard statistical techniques. We introduce herein a convenient statistical formalism which allows to solve these problems of biases in the galaxy distance estimate as well as in the determination of $H_0$. It is shown that after an appropriate treatment of bias the individual uncertainty on a galaxy radial peculiar velocity estimate is about 20%.
The study of velocity correlation tensor is proposed part C. The components of this tensor are directly linked to the power spectrum fluctuation of the total mass density. Therefore a comparison of these quantities with the galaxy correlation function would shed light on the behavior of the dark matter of the universe. The estimate of the components of the velocity correlation tensor is performed by assuming that the galaxy velocity field is homogeneous and isotropic at the scale covered by the sample under study. We show part D that this requirement is not fulfilled by the today available kinematic galaxies sample and that the uncertainties on peculiar velocity measurements will forbid in practice a sound estimate of the cosmic velocity correlation tensor.
Part D is devoted to the "Great Attractor", a convergent large scale (60 Mpc) velocity flow which dominates the velocity field of the redshift-distance samples currently available. Because such a large scale flow is hardly explained by standard structure formation theory, some authors have questioned the statistical robustness of Lynden-Bell et al. (1988) study on the Great Attractor. We propose herein some simple geometrical tests based on the invariant properties of convergent flows which allows to detect Great Attractor like flows and which are insensitive to the rest frame of the analysis. Assuming that the sample of Faber et al. (1989) is valid, our result confirm the presence of the Great Attractor and suggests that the Great Attractor itself as well as the overall galaxies of the sample have a bulk motion in the Cosmic Microwave Background rest frame.
In part E, we propose an alternative method to POTENT of Bertschinger&Dekel (1989) allowing a 3D reconstruction of an irrotational velocity field from its radial component only. Our alternative method is based on the wavelet analysis and inherits of the powerful properties associated with this mathematical transformation. Our reconstruction method which is linear with respect to the radial velocity field is well suited for treating the noisy measurements of the radial velocity field. Moreover wavelet transform offers us a natural control of the smoothing procedure entering the reconstruction of the velocity potential or other quantities of interest. The application of our method to available distance-redshift samples is in progress.
In part B of the thesis, we explain how to obtain the peculiar velocity field from the available observational data. Assuming a value for the Hubble's constant, the peculiar velocity of a galaxy can be inferred if the distance of the galaxy is known. However in practice the measurement of the galaxy distance is achieved through statistical method known as distance indicators. Such a statistical estimators are generally plagued with statistical biases which remain difficult to correct by using standard statistical techniques. We introduce herein a convenient statistical formalism which allows to solve these problems of biases in the galaxy distance estimate as well as in the determination of $H_0$. It is shown that after an appropriate treatment of bias the individual uncertainty on a galaxy radial peculiar velocity estimate is about 20%.
The study of velocity correlation tensor is proposed part C. The components of this tensor are directly linked to the power spectrum fluctuation of the total mass density. Therefore a comparison of these quantities with the galaxy correlation function would shed light on the behavior of the dark matter of the universe. The estimate of the components of the velocity correlation tensor is performed by assuming that the galaxy velocity field is homogeneous and isotropic at the scale covered by the sample under study. We show part D that this requirement is not fulfilled by the today available kinematic galaxies sample and that the uncertainties on peculiar velocity measurements will forbid in practice a sound estimate of the cosmic velocity correlation tensor.
Part D is devoted to the "Great Attractor", a convergent large scale (60 Mpc) velocity flow which dominates the velocity field of the redshift-distance samples currently available. Because such a large scale flow is hardly explained by standard structure formation theory, some authors have questioned the statistical robustness of Lynden-Bell et al. (1988) study on the Great Attractor. We propose herein some simple geometrical tests based on the invariant properties of convergent flows which allows to detect Great Attractor like flows and which are insensitive to the rest frame of the analysis. Assuming that the sample of Faber et al. (1989) is valid, our result confirm the presence of the Great Attractor and suggests that the Great Attractor itself as well as the overall galaxies of the sample have a bulk motion in the Cosmic Microwave Background rest frame.
In part E, we propose an alternative method to POTENT of Bertschinger&Dekel (1989) allowing a 3D reconstruction of an irrotational velocity field from its radial component only. Our alternative method is based on the wavelet analysis and inherits of the powerful properties associated with this mathematical transformation. Our reconstruction method which is linear with respect to the radial velocity field is well suited for treating the noisy measurements of the radial velocity field. Moreover wavelet transform offers us a natural control of the smoothing procedure entering the reconstruction of the velocity potential or other quantities of interest. The application of our method to available distance-redshift samples is in progress.
Cette thèse est composée de 5 parties.
Dans la partie A, je replace le sujet de ma thèse dans son contexte. Si l'univers est réellement homogène et isotrope à très grande échelle, sa dynamique est complétement caractérisée par les trois paramètres d'univers $H_0$, $q_0$ et $\Omega_0$. La hiérarchie de structures actuellement observée à "petite" échelle (typiquement inférieure à 50 Mpc) est alors étudiée dans l'approximation newtonienne comme une perturbation locale de la densité moyenne de matière présente dans l'univers. La dynamique de ces fluctuations peut être en partie étudiée par l'analyse de la distribution des galaxies dans l'espace, et complémentairement par l'étude du champ des vitesses propres associé aux perturbations locales de la densité totale de matière. L'étude cinématique des grandes structures de l'univers fait l'objet de cette thèse.
Dans la partie B, nous montrons comment déterminer le champ des vitesses propres de notre entourage à partir des données observationnelles disponibles. On n'a accès en pratique qu'à la composante radiale de la vitesse propre d'une galaxie, si on est capable d'estimer sa distance ainsi que la constante de Hubble $H_0$. On ne possède en fait que des indicateurs statistiques de la distance d'une galaxie lointaine. Ces estimateurs sont souvent soumis à des biais difficiles à corriger à l'aide des techniques usuelles. Nous introduisons dans cette partie une formalisation statistique adéquate qui nous permet de traiter ces problèmes de biais qui interviennent également dans l'évaluation de $H_0$. La valeur estimée de la vitesse radiale propre d'une galaxie, aprés un traitement correct des biais, comporte encore une incertitude intrinsèque d'environ 20%.
L'étude du tenseur de corrélation des vitesses est abordée dans la partie C. L'évaluation des composantes de ce tenseur permet en théorie d'accéder au spectre des fluctuations de la densité de matière totale présente dans l'univers. La comparaison de ce spectre avec la fonction de corrélation spatiale de la matière lumineuse (les galaxies) dévoile alors le comportement de la masse non visible. L'estimation des composantes du tenseur à partir du champ des vitesses radiales seulement est impossible si on ne postule pas que le champ des vitesses observé est statistiquement homogène et isotrope, c'est-à-dire que l'échantillon étudié est représentatif de la cinématique de l'univers dans sa globalité. Nous montrons dans la partie D que les échantillons disponibles ne vérifient pas cette hypothèse. Pour cette raison, l'évaluation du tenseur de corrélation des vitesses est actuellement impossible. De plus, la présence d'incertitudes sur l'estimation du champ des vitesses radiales propres interdit en pratique l'obtention des composantes de ce tenseur.
La partie D est consacrée au "Grand Attracteur", un flot de vitesses convergent, cohérent à une échelle d'au moins 60 Mpc, qui domine la cinématique des catalogues de redshift-distance actuellement disponibles. Les difficultés rencontrées par les théories classiques de formation de structures afin d'expliquer l'existence d'un tel flot ont poussées certains auteurs à douter de la fiabilité de l'étude statistique de Lynden-Bell et al. (1988) ayant mis en évidence le "Grand Attracteur". Nous proposons dans cette partie des tests géométriques simples basés sur les propriétés d'invariance du champ des vitesses qui nous permettent de détecter la présence d'un flot convergent, ceci indépendamment du repère de référence dans lequel est effectuée l'analyse. Si le catalogue de Faber et al. (1989) est fiable, nos résultats confirment l'existence du "Grand Attracteur" et indiquent de plus que cet attracteur ainsi que toutes les galaxies de l'échantillon possèdent un mouvement d'ensemble par rapport au repère absolu défini par le fond diffus cosmologique.
Dans la partie E, nous proposons une méthode alternative à la méthode POTENT proposée par E. Bertschinger et A. Dekel (1989) qui permet de reconstruire totalement un champ de vitesses si il est irrotationnel (c'est à dire dérivant d'un potentiel) à partir de sa composante radiale seulement. Notre méthode est basée sur l'utilisation de la transformée en ondelettes et hérite à ce titre des propriétés puissantes dont jouie cette transformation. Notre procédure de reconstruction est ainsi linéaire (vis-à-vis du champ des vitesses radiales), ce qui est une propriété appréciable lorsqu'il s'agit de traiter le champ de vitesses radiales propres observé, bruité par les incertitudes inhérentes à sa détermination. De plus l'utilisation de la transformée en ondelettes nous offre un contrôle naturel du lissage des données intervenant obligatoirement lors de la reconstruction du potentiel des vitesses ou d'autres quantités. L'application de notre méthode aux échantillons actuellement disponibles est en cours.
Dans la partie A, je replace le sujet de ma thèse dans son contexte. Si l'univers est réellement homogène et isotrope à très grande échelle, sa dynamique est complétement caractérisée par les trois paramètres d'univers $H_0$, $q_0$ et $\Omega_0$. La hiérarchie de structures actuellement observée à "petite" échelle (typiquement inférieure à 50 Mpc) est alors étudiée dans l'approximation newtonienne comme une perturbation locale de la densité moyenne de matière présente dans l'univers. La dynamique de ces fluctuations peut être en partie étudiée par l'analyse de la distribution des galaxies dans l'espace, et complémentairement par l'étude du champ des vitesses propres associé aux perturbations locales de la densité totale de matière. L'étude cinématique des grandes structures de l'univers fait l'objet de cette thèse.
Dans la partie B, nous montrons comment déterminer le champ des vitesses propres de notre entourage à partir des données observationnelles disponibles. On n'a accès en pratique qu'à la composante radiale de la vitesse propre d'une galaxie, si on est capable d'estimer sa distance ainsi que la constante de Hubble $H_0$. On ne possède en fait que des indicateurs statistiques de la distance d'une galaxie lointaine. Ces estimateurs sont souvent soumis à des biais difficiles à corriger à l'aide des techniques usuelles. Nous introduisons dans cette partie une formalisation statistique adéquate qui nous permet de traiter ces problèmes de biais qui interviennent également dans l'évaluation de $H_0$. La valeur estimée de la vitesse radiale propre d'une galaxie, aprés un traitement correct des biais, comporte encore une incertitude intrinsèque d'environ 20%.
L'étude du tenseur de corrélation des vitesses est abordée dans la partie C. L'évaluation des composantes de ce tenseur permet en théorie d'accéder au spectre des fluctuations de la densité de matière totale présente dans l'univers. La comparaison de ce spectre avec la fonction de corrélation spatiale de la matière lumineuse (les galaxies) dévoile alors le comportement de la masse non visible. L'estimation des composantes du tenseur à partir du champ des vitesses radiales seulement est impossible si on ne postule pas que le champ des vitesses observé est statistiquement homogène et isotrope, c'est-à-dire que l'échantillon étudié est représentatif de la cinématique de l'univers dans sa globalité. Nous montrons dans la partie D que les échantillons disponibles ne vérifient pas cette hypothèse. Pour cette raison, l'évaluation du tenseur de corrélation des vitesses est actuellement impossible. De plus, la présence d'incertitudes sur l'estimation du champ des vitesses radiales propres interdit en pratique l'obtention des composantes de ce tenseur.
La partie D est consacrée au "Grand Attracteur", un flot de vitesses convergent, cohérent à une échelle d'au moins 60 Mpc, qui domine la cinématique des catalogues de redshift-distance actuellement disponibles. Les difficultés rencontrées par les théories classiques de formation de structures afin d'expliquer l'existence d'un tel flot ont poussées certains auteurs à douter de la fiabilité de l'étude statistique de Lynden-Bell et al. (1988) ayant mis en évidence le "Grand Attracteur". Nous proposons dans cette partie des tests géométriques simples basés sur les propriétés d'invariance du champ des vitesses qui nous permettent de détecter la présence d'un flot convergent, ceci indépendamment du repère de référence dans lequel est effectuée l'analyse. Si le catalogue de Faber et al. (1989) est fiable, nos résultats confirment l'existence du "Grand Attracteur" et indiquent de plus que cet attracteur ainsi que toutes les galaxies de l'échantillon possèdent un mouvement d'ensemble par rapport au repère absolu défini par le fond diffus cosmologique.
Dans la partie E, nous proposons une méthode alternative à la méthode POTENT proposée par E. Bertschinger et A. Dekel (1989) qui permet de reconstruire totalement un champ de vitesses si il est irrotationnel (c'est à dire dérivant d'un potentiel) à partir de sa composante radiale seulement. Notre méthode est basée sur l'utilisation de la transformée en ondelettes et hérite à ce titre des propriétés puissantes dont jouie cette transformation. Notre procédure de reconstruction est ainsi linéaire (vis-à-vis du champ des vitesses radiales), ce qui est une propriété appréciable lorsqu'il s'agit de traiter le champ de vitesses radiales propres observé, bruité par les incertitudes inhérentes à sa détermination. De plus l'utilisation de la transformée en ondelettes nous offre un contrôle naturel du lissage des données intervenant obligatoirement lors de la reconstruction du potentiel des vitesses ou d'autres quantités. L'application de notre méthode aux échantillons actuellement disponibles est en cours.
Origine | Fichiers produits par l'(les) auteur(s) |
---|