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RÉSUMÉ

I

Résumé

Ce travail est consacré à l'étude numérique de l'interaction entre un uide compressible et une structure indéformable, en adaptant une famille récente de schémas d'ordre très élevé à la prise en compte de conditions aux bords particulières entre le uide et la structure. Plus précisément, on évalue l'apport de schémas d'ordre strictement supérieur à 3 par rapport à des stratégies plus classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu'il est possible de réaliser le couplage à tout ordre et qu'il existe des congurations pour lesquelles on observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions aux bords. Un schéma sur grilles cartésiennes décalées et d'ordre très élevé est proposé pour la résolution des équations d'Euler en 1D et 2D. Ce schéma est basé sur le formalisme Lagrangeprojection et bien que formulé en énergie interne assure conservation et consistance faible grâce à un correctif en énergie interne. Parallèlement, l'étude pour les systèmes hyperboliques linéaires de discrétisation à l'ordre très élevé des conditions aux bords est faite. Elle met en évidence la nécessité pour l'ordre élevé de s'intéresser à la stabilité des schémas ainsi obtenus. À partir de ces travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour les équations d'Euler en 1D et 2D. Enn, une procédure de couplage entre uide compressible et structure indéformable est proposée.
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Introduction En français

Les phénomènes d'interactions uide-structure sont cruciaux pour les problèmes multi-physiques. Deux matériaux, de lois de comportement diérentes, interagissent entre eux. Ici, un uide compressible et un corps rigide sont considérés. L'écoulement du uide est fortement conditionné par la forme de la structure ainsi que par son déplacement, tandis que le déplacement du solide est régi par les forces et moments de pression exercés à sa surface par le uide. C'est un problème fortement couplé. Le couplage impacte directement la stabilité et la précision de la méthode numérique employée. En outre, l'utilisation de méthodes numériques sur grilles cartésiennes ajoute de la complexité à la discrétisation liée au fait que l'interface entre le uide et la structure coupe arbitrairement la grille cartésienne.

INTRODUCTION

fractions volumiques de présence [START_REF] Colella | A Cartesian grid embedded boundary method for hyperbolic conservation laws[END_REF]. Contrairement à Noh, cette méthode permet de réduire considérablement les eets de marche à l'interface et reste conservative. Conjointement à l'utilisation du h-algorithme, il n'y a pas d'impact sur la condition CFL. Néanmoins, la reconstruction faite des interfaces ne permet pas d'excéder l'ordre 2 en espace.

Plus récemment, Tan et Shu proposent une méthode basée sur une procédure de LaxWendro inverse pour les conditions aux bords [START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF]. Cette méthode est a priori sans restriction CFL et sans limitation quand à l'ordre de convergence de la méthode. Néanmoins, l'algèbre impliquée dans la méthode est extrêmement lourde et devient prépondérante en terme de coût de calcul. Elle n'est appliquée dans le cadre de leurs études qu'au cas du gaz parfait et aux schémas eulériens. De plus, certaines instabilités apparaissent et, sans contrôle, empêchent la convergence des schémas utilisés. Contrairement aux méthodes précédemment citées, il n'y a pas de preuve de conservation de la masse, quantité de mouvement et de l'énergie totale à l'interface. Dans le cas des géométries non-lipschitziennes, il est impossible, sans modication et détérioration, d'appliquer la méthode.

Partant de considérations générales concernant les systèmes hyperboliques de lois de conservation, une étude est faite d'un ensemble de méthodes numériques pour simuler les équations d'un uide non-visqueux et compressible. L'accent est mis durant cette étude sur les schémas formulés en énergie interne et sur maillages décalés. Enn, une revue bibliographique fait apparaître qu'il existe une multitude de méthodes permettant de simuler l'interaction entre un uide compressible et un corps rigide indéformable de manière stable. Cette revue est présentée dans le chapitre I. Des méthodes d'ordre 2, stables et conservatives ont été créées. Des algorithmes géométriques de fusion de mailles permettent d'éviter toute contrainte sur la CFL liée à la taille des mailles tronquées. En outre, la procédure de LaxWendro inverse permet de prendre en compte n'importe quelle condition aux bords à l'ordre élevé. Néanmoins la diculté principale réside dans la discrétisation de la géométrie de l'interface qui impacte la montée en ordre ainsi que dans la stabilité de la méthode. Les méthodes de type ordre élevé proposé par Tan et Shu s'impliquent dans le cadre de schéma eulérien pur uniquement pour un gaz parfait. Elles sont en outre particulièrement onéreuses algébriquement. Enn, cette méthode n'est pas toujours stable et peut être inapplicable dans le cas de certaines congurations géométriques. C'est dans ce contexte que s'inscrit l'étude proposée ici. Elle consiste à développer une méthode numérique stable, d'ordre arbitrairement élevé capable de modéliser et simuler les interactions entre un uide compressible et un corps rigide indéformable pour des schémas de type Volumes Finis Lagrange-Projection d'ordre très élevé et conservatifs sur grilles cartésiennes ainsi qu'à évaluer les gains en précision apportés par cette stratégie de couplage numérique. INTRODUCTION 3 des chocs, pour la première fois, un correctif en énergie interne conservatif et d'ordre très élevé est proposé. Ce correctif est rendu possible par l'idée nouvelle de discrétiser l'équation d'évolution de l'énergie cinétique. La projection est basée sur l'intégration analytique par polynomes de Lagrange et est adaptée ici aux particularités des grilles cartésiennes décalées. Ainsi un schéma 1D conservatif et d'ordre élevé est obtenu. Son extension dans un cadre multi-dimensionnel par l'utilisation de séquences de balayage directionnel d'ordre élevé est faite. L'ordre très élevé est atteint expérimentalement (cf table 1). Enn une extension aux uides visqueux compressibles est proposée. Ce travail est présenté dans le chapitre II et a fait l'objet d'une publication [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF].

La démarche a consisté dans un second temps à prendre en compte dans le cas des systèmes linéaires n'importe quelles conditions aux bords. Pour cela, on a développé une famille de méthodes d'ordre très élevé et stable pour des conditions aux bords sur frontières quelconques. Partant d'un système linéaire simplié qu'est l'advection à vitesse constante, on développe la construction des opérateurs dits de reconstruction permettant de prendre en compte la condition aux bords imposée. Ces opérateurs de reconstruction sont d'ordre arbitrairement élevé et leur stabilité est étudiée. Dans l'idée de pouvoir déterminer a priori la stabilité d'opérateurs pour des systèmes plus complexes que l'advection, on crée la notion de stabilité réduite. Cette notion est ensuite utilisée dans le cas des systèmes linéaires hyperboliques. En particulier, une étude numérique est faite pour déterminer la stabilité réduite des opérateurs de reconstruction pour le cas du systèmes des équations des ondes. Ce travail est présenté dans le chapitre III et a fait l'objet d'une publication [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF].

À partir des caractéristiques de stabilité des opérateurs de reconstruction dans le cas linéaire, la démarche a consisté dans un troisième temps à étendre les méthodes stables au cas non-linéaire des équations d'Euler 1D. Le caractère sous-déterminé du système obtenu conduit à prendre en compte une équation supplémentaire. Deux choix sont eectués. Le premier choix est basé sur une hypothèse faite sur le jeu d'équations aux dérivées partielles. Le second choix est lui basé sur l'utilisation d'un stencil plus large, an d'éviter toute hypothèse sur les propriétés de l'écoulement. Enn, on a étendu la méthode 1D au cas multi-dimensionnel, en se basant sur une méthode de balayage directionnel. La méthode ainsi développée permet de prendre en compte les conditions aux bords imposées en vitesse. En particulier, on a montré que c'était équivalent à réaliser le couplage entre un uide compressible et un corps rigide indéformable de masse innie. Ce travail est présenté dans le chapitre IV et a fait l'objet d'une publication [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF].

Enn, à partir de la discrétisation des conditions aux bords pour les équations d'Euler, le couplage entre un uide compressible et un corps rigide de masse nie est réalisé. La méthode précédemment développée permet de calculer à l'ordre élevé les intégrales des moments et forces exercés sur le solide. Par conséquent, le couplage en temps comme en espace entre le uide compressible et le corps rigide est naturel du fait de la discrétisation spatiale choisie pour l'interface. Pour ce faire, deux nouveaux schémas sont proposés, un premier basé sur une procédure de type CauchyKovalevski et un second basé sur une procédure de type RungeKutta. Les propriétés de mouvement de corps rigides sont vériées. Enn, on illustre numériquement la consistance, la convergence et la stabilité de la méthode. Ce travail est présenté dans le chapitre V.
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Au terme de cette étude, on arrive à la conclusion que le couplage proposé est possible à l'ordre élevé (cf gure 2) et qu'il existe des congurations pour lesquelles un gain en précision est obtenu (cf gure 1). INTRODUCTION 5 In english Fluid-structure interaction phenomena are important in multi-physics problems. It involves two materials that have dierent behaviours, dierent constitutive laws, but that are coupled one to another. Here, a compressible uid and a rigid body are considered. The uid ow is strongly conditioned by the shape of the solid but also by its displacement, and the solid motion is triggered by pressure forces and torques exerted on its boundary. This is a strongly coupled problem, which can be a predicament for the stability and accuracy of numerical methods. Indeed, for the development of numerical methods for uid-structure interaction, the main diculty is to obtain, without further CFL restriction, a stable and high-order accurate coupling between uid and structure solvers. An additional diculty is that for general problems, it is quite impossible to determine a priori how the coupling behaves, if the uid forces and torques are predominant or if it is rather the displacement of the rigid body. This diculty increases furthermore if one considers that the uid solver is based on Cartesian grids. Indeed, the boundary intersects in an arbitrary fashion the grids. Increasing the order of accuracy leads to unstable methods, which prevent most uses of the coupling algorithm, as the schemes do not converge.

In 1964, Noh builds the rst explicit Lagrangian and Eulerian scheme for the uid-structure interaction in [125]. The structure is considered motionless and without deformations. As the scheme is based on directional splitting, he proposes a conservative treatment of the interface, considering that the boundary of the structure is always orthogonal or parallel to the cells interfaces.

The numerical treatment detailed by Noh enables, for the rst time, to recover using simulations, the eects of an obstacle on a uid ow. However, the obstacle boundary is discretized abruptly, which induces "step eects" on reected shocks. Moreover, the CFL restriction is directly impacted by the discretization proposed by Noh. Indeed, cells near interfaces are considered to be cut and then, the smaller the cut-cells, the stronger the CFL restriction. Note also that due to the geometrical approximation, the method is at most rst order accurate. In 2003, Berger and al. propose a technique in order to mix cells near the boundary, called the h-algorithm [START_REF] Berger | H-box methods for the approximation of hyperbolic conservation laws on irregular grids[END_REF]. This work relies on purely geometrical criteria to mix adjacent cells, if their size lead to CFL restriction. This work tends to reduce drastically the impact of small cut-cells on the time-step given by the CFL restriction. Nonetheless, the cut-cells mixing is at most second order accurate. For moving obstacles, special procedure must be developed to dispatch quantities inside mix-cells into the neighbourhood. Moreover, and especially in 3D, the complexity of the rigid body geometric shape induces large errors (and eventually prevent the scheme from converging).

The more complex the geometric shape, the more dicult it is to deal with their numerical treatment. In 2006, Colella and al. in [START_REF] Colella | A Cartesian grid embedded boundary method for hyperbolic conservation laws[END_REF] develop an innovative way of tracking the interface based on volume fractions. As a contrary to Noh, this method reduces considerably the "step eects" due to the geometrical approximations and it is still conservative. However, due to the geometric approximation of the interface, the scheme is at most second order accurate in space.

More recently, Tan and Shu propose a method based on the inverse LaxWendro procedure for numerical boundary treatment in [START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF]. This method is a priori without any CFL restriction and can be very high-order accurate. However, the algebra used to design the method is extremely INTRODUCTION heavy and the method in itself is only applied for perfect gases and for Eulerian schemes. As a contrary to the previous method, the procedure is not conservative in mass, momentum and total energy. For non-Lipschitz geometrical shapes, it is impossible to maintain high-order accuracy without modication of the procedure.

Starting from general considerations on hyperbolic systems of conservation laws, a review is done concerning the numerical methods available in the literature to approximate the compressible Euler equations. The emphasis is laid on schemes formulated in internal energy and on staggered grids. Last, an overview of the numerical methods available in the literature for uid-structure interaction is done. Fictitious domain methods are extensively detailed. This work is presented in chapter I. Stable, conservative and second order accurate numerical methods have been designed to tackle uid-structure interaction. Most are based on geometric approximations of the interface, as well as physical considerations concerning the behaviour of the uid near the boundary. A focus is especially done on the possible CFL restriction induced by the chosen numerical boundary treatment.

It is in this very context that lies the work proposed in this manuscript. It consists in developing a stable and high-order accurate numerical method for uid-structure interactions. The method is designed for conservative and high-order accurate nite volume schemes based on the Lagrangeremap formalism for Cartesian grids.

Firstly, the extension to high-order accuracy in both time and space of a hydrodynamics scheme on staggered Cartesian grids is done. The scheme is based on a Lagrange-remap formalism and is formulated in internal energy. Starting from the Arakawa grids system, variables are distributed on the staggered grids to ease the resolution of the Lagrangian system. The 1D scheme is based on a RungeKutta for the time integration and uses nite volume formalism.

The scheme is conservative in mass, momentum and total energy (see lemmas II.2 and II.8) and weakly consistent for the compressible Euler equations (see theorem II.9). An internal energy corrector is developed and is the key for both conservation and weak consistency. Such a corrector derives from the discretization of the kinetic energy, independently of the momentum. The remapping phase is based on standard polynomial projection, but adapted here to the special case of staggered grids. The extension to multi-dimensions is made possible thanks to highorder accurate directional splitting methods. Results concerning the accuracy and the order of convergence are displayed in table 1. Then, an extension of the scheme for compressible Navier Stokes equations is proposed. A part of this works has been published in "Comptes Rendus Mathématique" [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] and is extensively detailed in chapter II.

Secondly, for linear hyperbolic system of conservation laws, a numerical boundary treatment is developed. For any well-posed boundary conditions, a stable and high-order accurate discretization of boundary condition is proposed. Starting from the advection equation problem, a generic way of building operators to take into account the boundary condition is detailed. Those operators, called reconstruction operators, enable to build ghost-cells values outside the uid domain without impacting CFL restriction. In order to determine if a scheme with a given numerical boundary treatment is stable, the notion of reduced stability is introduced in denition III. [START_REF] Abgrall | A comment on the computation of non-conservative products[END_REF] 1 Illustration of the high-order accuracy of the staggered schemes: l 1 -error in density and experimental order of convergence for the 2D Lagrange-remap staggered scheme taken on the isentropic vortex advection test problem [START_REF] Yee | Low dissipative high-order shock-capturing methods using characteristics-based lters[END_REF], until t = 20, CFL=0.9.

indicates machine precision reached.

This notion provides practical informations about the scheme stability and is used to determine a priori if a scheme is stable or not. It is then applied on the wave equations problem and later to generic linear hyperbolic systems. This work is presented in chapter III and has been submitted to a journal [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF].

Thirdly, using results obtained in chapter III for the linear case, the method is extended for the numerical boundary treatment of Euler equations. Works are rst performed in 1D case, considering the boundary condition to be imposed on the normal velocity. Interest of highorder boundary treatment is highlighted in g. 1. For this special case, the global accuracy is mostly due to the numerical boundary treatment accuracy. It highlights the interest of having a high order discretization of boundary conditions, particularly for high order uid solver.

The procedure is rst detailed for a simple second order accurate example. One identies that the non-inversibility of the Lagrangian system Jacobian matrix requires another equation to be added. Two methods are derived. The rst one consists in adding an equation that describes a peculiar feature of the ow. The ow is considered to be spatially isentropic near the boundary. A theoretical result is given in lemma IV.1 which characterizes conditions for existence and uniqueness of the reconstruction near the boundary. The second method consists in enlarging the stencil on which the reconstruction is based without any hypothesis on the ow structure near the boundary. Theoretical results are available in lemmas IV.2 and IV.3. They characterize once again conditions for existence and uniqueness of the reconstruction. Then, the method is extended to the multidimensional case, using directional splitting method. To prevent any numerical instabilities from occuring, a least-square procedure is developed, as well as a MOOD one in case of strong shocks. This is explained and illustrated in chapter IV and has also been submitted to a journal [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF].

Fourthly and lastly, using the reconstruction method proposed in chapter IV, the coupling between a compressible uid and a rigid body is done. A semi-discrete scheme for rigid body dynamics is derived to compute with high-order accuracy the forces and torques resultants exerted on the rigid body boundary. The coupling is straightforward using the reconstruction method. The time integration is done to match the one of the interior scheme, whether with a RungeKutta one or with a CauchyKovalevskaya one. For multidimensional problems, directional splitting method is applied. As illustrated in g. 2, the proposed coupling is able to Chapter I Hyperbolic systems of conservation laws and uid-structure interaction Ce chapitre est une introduction aux méthodes numériques pour l'approximation de problèmes multiphysiques complexes. Le mode de présentation consiste à réunir dans un cadre commun des éléments classiques de la littérature, mais qui sont souvent présentés dans des contextes très diérents. Dans un premier temps, des considérations générales sur les systèmes hyperboliques de lois de conservations sont rappelées. Dans un second temps, la présentation de diérentes méthodes pour approcher numériquement la solution de ce type de système est faite : le cas du système hydrodynamique compressible ou des équations d'Euler est plus particulièrement étudié. Ces méthodes seront rangées dans deux familles distinctes. La première famille recense les méthodes basées sur un maillage d'éléments permettant d'approcher au mieux la déformation et/ou les bords du domaine. La seconde famille rassemble les méthodes d'ordre élevé, qu'elles soient sur grilles cartésiennes ou sur grilles non-structurées. Enn, dans un troisième temps, une revue sera faite des diérentes méthodes numériques présentes dans la littérature concernant le problème de la discrétisation et de l'approximation pour l'interaction uide-structure. L'accent sera particulièrement mis sur le couplage en espace comme en temps de la méthode numérique pour le uide avec celle pour la structure. Le couplage en espace portera essentiellement sur l'utilisation de méthodes de type domaine ctif.

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

This chapter is dedicated to an overview of numerical methods for the approximation of complex multi-physics problems. First, general considerations on hyperbolic systems of conservation laws are given. Second, the emphasis is laid on numerical approximations of such problems, with a special focus and care for the compressible hydrodynamics system. Numerical methods are classied into two families. The rst family is for mesh-based method to approximate the deformation and/or the boundary with geometric elements. The second one is for the high-order accurate Direct Eulerian or Lagrange-remap methods on Cartesian grids as well as unstructured ones. Third, a focus is made on discretizations and approximations methods for the uidstructure interaction problem. A special interest is made in the time and space coupling between the numerical method for the uid part and the one for the structure part. A focus for the space coupling is made on ctitious domain methods.
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I

I-1 Hyperbolic systems of conservation laws and their numerical approximations

This section is dedicated to the study of hyperbolic systems of conservation laws in one dimension and to their numerical approximations. First, mathematical properties of such systems are detailed. Second, a short overview of numerical approximations for such problems is depicted.

Last, stability, consistency and convergence properties of the numerical schemes are presented as well as the analytic tools to analyze those properties for a given scheme.

I-1.1 Hyperbolic system of conservation laws in one dimension

For general non-linear conservation laws, assuming the data to be smooth over time, one may use the method of characteristics to determine smooth solutions to the hyperbolic system. But, the non-linearity introduces generally discontinuity in a nite time, even for smooth initial data.

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 11 Using the concept of weak solutions for conservation laws [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Lax | Systems of conservation laws[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Serre | Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF][START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF] and especially the Rankine-Hugoniot jump conditions, one may still dene solutions to the hyperbolic system. However, uniqueness for the Cauchy problem is lost in the process. Adding the concept of entropic solutions, uniqueness for the Cauchy problem is proven in the special case of scalar conservation laws. In the special case of uid dynamics, the thermodynamics yield a natural mathematical entropy.

Consider an hyperbolic system of conservation laws in one space dimension under the form

∂ t U + ∂ x f (U ) = 0, x ∈ Ω, t > 0. (I.1)
Assuming that Ω is a bounded domain of R, one gets

∂ t Ω U + ∂Ω f (U ) = 0, t > 0. (I.2)
For special condition of no-exchange with the exterior, i.e. f (U ) is null along the boundary of Ω, using eq. (I.2) one gets the global conservation of U ∂ t Ω U = 0, t > 0.

(I.3) Using eq. (I.3), the average value of U over Ω dened as 

U := 1 |Ω| Ω U (x, t)dx
f : U -→ R N U -→ f (U )
Less constrictive hypothesis of regularity on the ux function f are possible [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], but not detailed hereafter. In the peculiar case, where N = 1, one gets a scalar conservation law. For a scalar conservation law, one drops the vectorial notation and use u instead of U and f rather than f .

I-1.1.1 Smooth solutions of conservation laws

First, consider that U ∈ C 1 (R × R +, * , U ) and U satises eq. (I.1). Then U is said to be a classical solution. In peculiar as U ∈ C 1 (R × R +, * , U ), it yields that ∂ t U and ∂ x f (U ) are well-dened for any point (x, t) ∈ R × R +, * .

For a scalar conservation law, let a(u) = f (u) then the Cauchy problem written in nonconservative form writes

∂ t u + a(u)∂ x u = 0, x ∈ R, t > 0, u(x, 0) = u 0 (x) (I.4)
Theorem I.1 (Classical solution to the Cauchy problem [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]). Let f ∈ C 2 (R), u 0 ∈ C 1 (R), and a ∈ C 1 (R). Assume D dened as

D = inf x∈R {∂ x (a(u 0 (x))} (I.5) is real. Let T = +∞, for D ≥ 0 -1 D , otherwise. (I.6)
If T is not zero, then the Cauchy problem in eq. (I.4) has a unique solution u ∈ C 1 (R×[0, T [ , R).

The theorem I.1 gives the existence of a smooth solution for 0 < t < T . If D is positive, then it yields the existence for all time t > 0. But otherwise, it is all but natural to want to dene u for time greater than T . In fact, for a non-positive value of D, as t increases toward T , the prole of u is going steeper until it reaches a discontinuity. At this point, the solution is no-longer in C 1 . Then the denition of classical solution as introduced previously is too narrow. For such cases, the weak solutions are introduced in order to allow discontinuities.

I-1.1.2 Weak solutions of conservation laws

Assume that U satises the initial conditions U (x, 0) = U 0 (x), x ∈ R.

(I.7)

The following denition extends the denition of classical solution presented in the theorem I.1

to the case of functions with discontinuities.

Denition I.1 (Weak solution to the Cauchy problem [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Let U 0 ∈ L ∞ loc (R) N . A function U is a weak solution of eqs. (I.1) and (I.7) if U (x, t) ∈ U almost everywhere and if for any Proposition I.2 (A smooth weak solution is a classical solution [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Let U be a weak solution in the sense of denition I.1.

φ ∈ C 1 0 (R × R +, * ) N compactly supported R ∞ 0 (U (x, t)∂ t φ + f (U (x, t))∂ x φ) dxdt + R U 0 (x)φ(x, 0)dx = 0 (I.
Assume U ∈ C 1 (R × R +, * , U ).
Then U is a classical solution to the Cauchy problem stated in eqs. (I.1) and (I.7).
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For physical states of U , it is interesting to focus on piecewise continuous functions. Those are functions that contains a nite number of discontinuities and are otherwise continuous on intervals. A very important result is the theorem I.3.

Theorem I.3 (RankineHugoniot conditions [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]). Let initial condition U 0 be piecewise ii) U satises the RankineHugoniot jump conditions on the discontinuity points

C 1 . U ∈ L ∞ loc (R × R +, * ) N a piecewise C 1 function
x c f (U (x r c , t)) -f (U (x l c , t)) = σ(U (x r c , t) -U (x l c , t)) (I.9)
where σ is the discontinuity velocity, i.e. σ = dxc dt .

So far, we have exposed the notion of weak solutions to the Cauchy problem dened in eqs. (I.1) and (I.7). Using the RankineHugoniot conditions dened in theorem I.3, one may build discontinuous solutions. However, it occurs that both solutions may coexist. The uniqueness of the Cauchy problem is then not satised. To get uniqueness back, and only in the special case of scalar conservation laws, the concepts of mathematical entropy and therefore entropic solutions are introduced.

I-1.1.3 Entropic solutions of conservation laws

For physical systems, the second law of the thermodynamics states that the entropy of a system increases over time or stays constant for an isolated system. The increase of entropy is synonym of irreversibility of processes. On the partial dierential system, it yields another equation, eg.

for smooth ows satisfying the Euler equations the entropy is advected.

Denition I.2 (Mathematical entropy [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]).

Let Ω a open bounded subset of R N . Consider a ux function f of the form

f : Ω -→ R N U -→ f (U ).
A strictly convex function η such that 

η : Ω -→ R U -→ η(U )
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The denition of the entropy ux based on eq. (I.10) gives immediately the following propriety.

Proposition I.4 (Hyperbolicity in 1D [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Assume there exist an entropy and an entropy ux (η, ζ) for eq. (I.1). Then the system is hyperbolic. Especially the matrix df (U ) is diagonalizable over the reals.

Proposition I.4 can be extended to multidimensional systems. The following proposition gives hyperbolicity results for 2D systems.

Proposition I.5 (Hyperbolicity in 2D [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Assume there exist an entropy and entropy uxes (η, ζ, ξ) for the 2D conservation laws system

∂ t U + ∂ x f (U ) + ∂ y g(U ) = 0.
(I.12)

Then the system is hyperbolic. Especially for any vector n = (n x , n y ) ∈ R 2 such that n = 1, the matrix A = df (U ) • n x + dg(U ) • n y is diagonalizable over the reals.

Remark I.1. Propositions I.4 and I.5 hold for three space dimensions systems.

Propositions I.4 and I.5 are particularly useful for the nite volume schemes that will be presented later on. Now, the emphasis is laid on scalar conservation law. Indeed, for such a law, any strictly convex function η is a mathematical entropy function.

Theorem I.6 (Viscous limit of a scalar conservation law [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Let η be a mathematical entropy for the scalar conservation law eq. (I.1) with the associated entropy ux

ζ. Let (u ) >0 a C 2
family of solution of

∂ t u + ∂ x f (u ) = ∂ xx u , x ∈ R, t > 0. (I.13) Assume that (u ) is uniformedly bounded in L ∞ (R × ]0 : ∞[) such that ∃C > 0, ∀ > 0, u L ∞ (R × ]0 : ∞[) ≤ C. (I.14) Assume that (u ) >0 converges almost everywhere to u ∈ L ∞ (R × ]0 : ∞[).
Then u is solution in the sense of distributions to eq. (I.1) and satises the entropic inequality in the sense of distribution Theorem I.7 (Existence and uniqueness of an entropic solution to the Cauchy problem [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]).

∂ t η(u) + ∂ x ζ(u) ≤ 0 in the sense of distribution, (I.15) which is equivalent to, for any φ ∈ C ∞ (R × ]0 : ∞[) compactly supported and φ ≥ 0 R×]0:∞[ (η(u)∂ t φ + ζ(u)∂ x φ)dxdt ≥ 0.
Suppose that f is a C 1 function and that the initial condition u 0 lies in L ∞ (R). Then the Cauchy problem with initial condition u 0 has a unique entropic solution to the scalar conservation law eq. (I.1) which satises the following conditions

i) u ∈ L ∞ (R × ]0 : ∞[), ii) u L ∞ (R×]0:∞[) ≤ u 0 L ∞ (R)
iii) Moreover, if u 0 satises a bounded inequality, s.t.

∃ (α, β) ∈ R 2 , α ≤ u 0 (x) ≤ β, for almost every x ∈ R then α ≤ u ≤ β, for almost every x ∈ R, ∀t > 0
Previous theorem only applies for the Cauchy problem with initial condition. For most cases, boundary conditions have to be prescribed. In some cases, physical considerations give natural boundary conditions, but it is not always the case, and thus, taking into account boundary conditions is both tricky and a hard problem to tackle. To understand the boundary conditions mechanism, the initial boundary value problem is introduced.

I-1.1.4 The initial boundary value problem

Consider the classical initial boundary value problem in the domain x > 0, t > 0 which writes

     ∂ t U + ∂ x f (U ) = 0, x > 0, t > 0 U (x, 0) = U 0 (x), x > 0 U (0, t) = g(t), t > 0 (I.17)
The problem depicted in eq. (I.17) is generally ill-posed. Boundary conditions must be prescribed accordingly to the eigenvalues of ∇ U f and not arbitrarily. The study presented here only concerns linear hyperbolic systems.

One-dimensional advection equation

The one-dimensional advection problem with prescribed boundary conditions writes as

     ∂ t u + a∂ x u = 0, x > 0, t > 0 u(x, 0) = u 0 (x), x > 0 u(0, t) = g(t), t > 0 (I.18)
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The problem is well-posed in the sense of Kreiss [START_REF] Kreiss | Stability theory for dierence approximations of mixed initial boundary value problems. I[END_REF] if a > 0. For a negative a, no boundary conditions are required at x = 0, and the solution is trivially u(x, t) = u 0 (x -at), x > 0, t > 0.

For a > 0, solution to eq. (I.18) writes u(x, t) = u 0 (x -at) for x > at g(t -x a )

for x < at

(I.19)
Proposition I.8 (Classical solution [START_REF] Kreiss | Stability theory for dierence approximations of mixed initial boundary value problems. I[END_REF]). u ∈ C 1 is a classical solution of eq. (I.18

) if i) u 0 ∈ C 1 ii) g ∈ C 1
iii) u 0 and g satisfy the compatibility relation

g(0) = u 0 (0), ∂ t g(0) = -a∂ x u 0 (0). (I.20)
Incrementally, u belongs to C p , p > 0 if u 0 and g belong to C p and if they satisfy the compatibility relation

∂ k t g(0) = (-a) k ∂ k x u 0 (0), for 0 ≤ k ≤ p. (I.21)
One-dimensional linear systems Consider a linear hyperbolic system. Let the matrix A satisfy A = ∇ U f (U ) which is independent of U . The initial boundary value problem for linear hyperbolic system writes

     ∂ t U + A∂ x U = 0, x > 0, t > 0 U (x, 0) = U 0 (x), x > 0 BU (0, t) = Bg(t), t > 0 (I.22)
The following theorem gives conditions for the well-posedness of eq. (I.22).

Theorem I.9 (Uniform Kreiss Condition for well-posedness [START_REF] Kreiss | Stability theory for dierence approximations of mixed initial boundary value problems. I[END_REF]). Consider the problem depicted in eq. (I.22). Let q be the number of strictly positive eigenvalues of the matrix A ∈ R p×p . Denote the matrix T ∈ R p×q formed by the q eigenvectors of A whose eigenvalues are strictly positive as columns. The initial boundary value problem is said well-posed if the matrix B ∈ R q×p is such that the matrix BT ∈ R q×q is invertible.

Remark I.2. In order to obtain a classical solution U to eq. (I.22), initial conditions and boundary conditions must belong to C 1 and satisfy a compatibility relation, which writes as

BU 0 (0) = Bg(0), B∂ t g(0) = -B • A∂ x U 0 (0). (I.23)
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The extension of theorem I.9 to multiple space-dimensions problem is known as the Uniform Kreiss-Lopantiskii Condition [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]. Non-linear hyperbolic system are not detailed here. Often one uses a quasi-linear form, assuming the matrix A to be independent of U and applying the same theory as for linear systems. Much more can be said and proven for hyperbolic systems of conservation laws and initial boundary value problems. One may extend some of the previous denition and theorems to multiple space dimensions. Only a short overview of the main results concerning hyperbolic systems of conservation laws has been given. One may refer to [START_REF] Lax | Hyperbolic systems of conservation laws II[END_REF][START_REF] Lax | Systems of conservation laws[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Després | Lagrangian gas dynamics in two dimensions and Lagrangian systems[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for more details on the subject. The problem of numerical approximations for hyperbolic system of conservation laws is now focused on.

I-1.2 Numerical methods for conservation laws and their properties

Two numerical methods for conservation laws are presented. General system of conservation laws in two dimensions on a bounded domain Ω takes the following form

∂ t U + ∂ x F (U ) + ∂ y G(U ) = 0, t > 0, (x, y) ∈ Ω (I.24)
Assume that there exists one entropy triplet (η, ζ, ξ) for the conservation laws in eq. (I.24). Two main numerical methods to solve conservation laws as in eq. (I.24) are distinguished in this part:

nite dierence schemes and nite volume schemes.

It is of great interest to check if a scheme satises a certain number of properties: i) consistency of the scheme ii) linear stability for the Cauchy problem, iii) linear stability for the initial boundary value problem, iv) discrete conservation of U , v) discrete entropy inequalities.

These properties are detailed later on.

I-1.2.1 Space discretization for conservation laws

Two space discretizations for conservation laws, commonly used in the literature [START_REF] Godunov | A dierence method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF][START_REF] Lax | Systems of conservation laws[END_REF][START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] are considered. The nite dierence formalism consists in a regular Cartesian repartition of points to discretize the bounded domain. With such a repartition of points, it is particularly convenient to use equally-spaced polynomial reconstruction. The name originates from the fact that space derivatives are computed using nite dierences of the variables placed on the nodes. A possible extension of nite dierence schemes is to consider nite volume schemes on regular Cartesian grids. For this kind of schemes, the control volumes are regular, equally spaced and of same size. More generally, the nite volume formalism consists in integrating the system of partial derivatives equation on control volumes. For conservation laws, the presence of the divergence greatly simplies the numerical computation, transforming it into a numerical computation of uxes on the control volumes boundaries.
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Finite dierence schemes

First, a uniform grid {x i , y j } is considered in space such that

x i+1 -x i =∆x, ∀ i ∈ [0 : N x [ , y j+1 -y j =∆y, ∀ j ∈ [0 : N y [ . (I.25)
We use the notation U n i,j for an approximation of U at time t = t n and at position (x = x i , y = y j ). Such a discretization of the space is depicted on g. I.1 with the variables U n i,j positionned at each grid nodes (x i , y j ). 

U n i,j U n i-1,j U n i+1,j U n i,j-1 U n i,j+1
U n+1 i,j = U n i,j - t n+1 -t n ∆x D x • f (U n ) - t n+1 -t n ∆y D y • g(U n ) (I.26)
where D x and D y are discrete approximations of respectively the xand y-space derivatives.

Considering hyperbolic systems of conservation laws, it is convenient to have a discrete conservation form of eq. (I.26). Indeed, for some discretization of space derivatives, one may rewrite eq. (I.26) under a conservative form as

U n+1 i,j = U n i,j - t n+1 -t n ∆x f i+ 1 2 ,j -f i-1 2 ,j - t n+1 -t n ∆y g i,j+ 1 2 -g i,j- 1 2 . 
(I.27)

Remark I.3. Any formulation as depicted in eq. (I.27) may be rewritten as in eq. (I.26). The reverse is untrue. Examples of (i, j)-dependent discretization of the space derivatives may yield to a non-conservative discretization.

Finite volume schemes on Cartesian grids

Keeping the notations for the grid, one denes a control volume with as a degree of freedom HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 19 the average value of U inside this control volume. This way, one rewrites any central dierence schemes as a nite volume scheme on Cartesian grids. Finite volume schemes are based on an integration of eq. (I.24) over a control volume K. It yields

∂ t K U dV + ∂K (f (U ) • n x + g(U ) • n y )dS = 0. (I.28)
For nite volume schemes on Cartesian grids, one uses the following denition of the control

volume denoted K i+ 1 2 ,j+ 1 2 K i+ 1 2 ,j+ 1 2 = ]x i , x i+1 [ × ]y j , y j+1 [ . (I.29)
Denoting the average value of U over a control volume K i+ 1 2 ,j+ 

U n+1 i+ 1 2 ,j+ 1 2 = U n i+ 1 2 ,j+ 1 2 - t n+1 -t n ∆x f i+1,j+ 1 2 -f i,j+ 1 2 - t n+1 -t n ∆y g i+ 1 2 ,j+1 -g i+ 1 2 ,j (I.30)
where f and g are the numerical uxes at the boundary. Under this peculiar form, and considering vanishing uxes at the boundary or periodic boundary conditions, by summing on every i and j, one immediately gets the conservation of U . 

Finite volume schemes on unstructured grids

Let T be a tessellation of the bounded domain in which eq. (I.24) is solved. The idea for nite volume on unstructured grids is to consider the control volumes as members of T . An example of control volumes is depicted in g. I.3. Using proposition I.5 and assuming that the normal outward the control volume is dened, a generic numerical conservative scheme writes

U n+1 K = U n K - t n+1 -t n |K| ∂Kq |∂K q | f ∂Kq , g ∂Kq • n ∂Kq (I.31)
where f and g are the numerical uxes at the boundary and n ∂Kq the normal to ∂K q outward K. Under this peculiar form, and considering vanishing uxes at the boundary or periodic boundary conditions, by summing for every K in T , one immediately gets the conservation of U . 

U n

K

Convergence and consistency of numerical schemes

Convergence of a numerical scheme is a most desired property for a given scheme. Briey, convergence means that as the time step and mesh size tend toward zero, the approximated solution gets closer to the real solution. A denition of convergence is introduced as follows Denition I.4 (Convergence of a nite dierence approximation [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]). A nite dierence scheme approximating a partial dierential system is convergent if for any solution to the partial dierential equation U (x, t) and solutions to the nite dierence schemes U n i such that U 0 i converges to the initial condition U (x, 0) = U 0 (x), U n i converges to U (x, t) as (i∆x, n∆t) converges toward (x, t) as ∆t, ∆x tend to 0.

In order to get convergence of a numerical scheme, two important properties are consistency and stability. Briey, the consistency property stands for saying that as the mesh in space and time is rened, the error between the solution to the continuous system and the approximated solution goes to zero. Consistency is dened as Denition I.5 (Consistency of a nite dierence approximation [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]). Let PU = 0 be a partial dierential system approximated by a nite dierence scheme denoted P ∆x,∆t . The nite dierence scheme is consistent with the partial dierential system if for any smooth function φ, lim ∆x,∆t→0

Pφ -P ∆x,∆t φ = 0, (I.32)

The norm (uniform convergence) is precised in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].
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Remark I.4. In order to show consistency of a numerical scheme, one often shows, using a Taylor expansion of a smooth function φ, that Pφ -P ∆x,∆t φ = O(∆t α + ∆x β ), α > 0, β > 0.

(I.33)

It gives both the consistency and the accuracy of a numerical scheme.

Denition I.6 (Consistency of a ux in a nite volume approximation [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]). Assume a nite volume scheme which writes under the form

U n+1 i -U n i + t n+1 -t n ∆x f i+ 1 2 -f i-1 2 = 0. (I.34) Let f i+ 1 2 ,j
write as a vector valued function Φ, with (r, p) ∈ N 2 such that

f i+ 1 2 = Φ(U n i-p+1 , ..., U n i+r ), ∀i ∈ Z, ∀n ∈ N. (I.35) Then if Φ satises Φ(U , ..., U ) = f (U ), (I.36)
the ux is said consistent.

Denition I.7 (Weak consistency [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF]). Consider a given numerical scheme for the discretization of eqs. (I.1) and (I.7). Assume that the numerical solution, denoted U ∆x is bounded in (L ∞ ) N .

Moreover assume that there exists U ∈ (L ∞ ) N such that U ∆x converges toward U in (L 1 loc ) N . If U is a weak solution in the sense of denition I.1 to eqs. (I.1) and (I.7), then the scheme is weakly consistent.

Remark I.5. A practical criterion for weak consistency is to show that the ux is consistent [START_REF] Lax | Systems of conservation laws[END_REF].

See also [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF].

Proving only consistency of a numerical scheme does not prove its convergence. As will be shown in section I-1.2.4, consistency alone is not enough. The concept of stability is needed to ensure convergence for linear systems. Although a scheme may be consistent, truncation error may stack over time and induce larger and larger errors. Stability is closely related to the property of the numerical schemes to deal with numerical errors. If a scheme has a tendency to increase at each time step the numerical errors made on the previous ones, then it is unstable. In a nite time, the numerical errors become preponderant over the approximation and the computations are not relevant anymore. As a contrary, if the numerical errors stay constant or even better if they are damped out by the nite dierence schemes, it is then stable. In 1928, Courant, Frierichs and Lewy [START_REF] Courant | Über die partiellen Dierenzengleichungen der mathematischen Physik[END_REF] formulated the fundamental CFL condition, that strongly links the time step to the mesh width to ensure quadratic stability. In order to dene the notion of quadratic stability, the denition of the quadratic norms are rst introduced Denition I.8 (Discrete l 2 norms). For a given sequence φ = (φ i ) i∈Z on an innite grid, the l 2 norm in space is dened as

φ 2 l 2 (Z) = i∈Z ∆x|φ i | 2 .
(I.37)
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For φ = (φ n ) n∈N = (φ n i ) i∈Z,n∈N , the l 2 norm in space and time is dened as

φ 2 l 2 (Z),l 2 (N) = n∈N ∆t i∈Z ∆x|φ n i | 2 .
(I.38) Denition I.9 (Quadratic stability [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]). A nite dierence scheme P ∆x,∆t is stable for the quadratic norm and for numerical parameters (∆x, ∆t) ∈ Λ ⊂ R 2 , if there exists an integer N such that for any non-negative time T , there exists a constant C T which depends only on T such that for φ ∈ l 2 (l 2 (Z), N) satisfying P ∆x,∆t φ = 0

φ n l 2 (Z) ≤ C T N k=0 φ k l 2 (Z) , ∀(∆x, ∆t) ∈ Λ, 0 ≤ n∆t ≤ T (I.39)
is satised.

Often, the stability criteria used for numerical scheme is stronger than the one proposed in denition I.9. Indeed, the previous stability criteria is quite dicult to prove, in general. Instead one would rather use the following one.

Denition I.10 (Von Neumann's stability [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]). A nite dierence scheme P ∆x,∆t is stable in the sense of Von Neumann for numerical parameters (∆x, ∆t) [START_REF] Crank | A practical method for numerical evaluation of solutions of partial dierential equations of the heat-conduction type[END_REF]. It was then extended in a more theoretical way in [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF]. One may also refer to the textbook by Allaire [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

∈ Λ ⊂ R 2 , if for any non-negative time T such that for φ ∈ l 2 (l 2 (Z), N) satisfying P ∆x,∆t φ = 0 φ l 2 (Z) ≤ φ 0 l 2 (Z) , ∀(∆x, ∆t) ∈ Λ, 0 ≤ n∆t ≤ T, (I.
Consider a nite dierence scheme P ∆x,∆t . The approximated solution (u n i ) i∈Z,n∈N satises P ∆x,∆t u = 0. Considering periodic boundary conditions, one may decompose (u n i ) as a Fourier serie in space. Up to a change of variables, one may estimate that the space interval of periodicity has a length equal to 1. Moreover, one makes the assumptions that u has an exponential growth or decay in time dened by a constant α ∈ C. It yields that u(x, t) = e αt k∈Z ψ k e ikπx , ψ ∈ l 2 (Z).

(I.42)

Let us dene the sequence ( k ) as k (x, t) = e αt e ikπx , k ∈ Z.

(I.43)
It is sucient to consider the growth of k for any k to get the growth of u, as the series behave as its terms. To alleviate the notation, the index k is dropped. The notation j is used for the space index in order not to introduce any confusion with the complex number i. One may notice the following relations for the discretized version of k denoted n k,j . Denition I.11 (Amplication factor and stability [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF] ). A nite dierence scheme P ∆x,∆t with constant coecients is stable for numerical parameters (∆x, ∆t) ∈ Λ ⊂ R 2 if and only if there exists a constant C which is independent of θ, ∆x, ∆t such that its amplication factor satises C m e imθ .

     n k,j = k (j∆x, n∆t) =e αn∆t e ikπj∆x
|G(θ, ∆x, ∆t)| ≤ 1 + C∆t, ∀θ ∈ [0 : 2π] .
One checks analytically or numerically that G(θ, ∆x, λ∆x) ≤ 1, θ ∈ [0 : 2π] to determine Von Neumann's stability for a given λ as for this example G is independent of ∆x.

Stability analysis for the initial value boundary problem

The normal mode analysis for linear hyperbolic equation was devised and introduced in [START_REF] Godunov | Spectral stability criteria for boundary-value problems for non-self-adjoint dierence equations[END_REF] and extended in [START_REF] Kreiss | Stability theory for dierence approximations of mixed initial boundary value problems. I[END_REF] and [START_REF] Osher | Systems of dierence equations with general homogeneous boundary conditions[END_REF]. The condition called the Godunov-Ryabenkii gives necessary condition for stability, and so not always sucient. Works presented in [START_REF] Gustafsson | Stability theory of dierence approximations for mixed initial boundary value problems[END_REF] develop sucient conditions for stability, called the GKS theory in a fully discrete version (the semi-discrete case was dealt later with [START_REF] Strikwerda | Initial boundary value problems for the method of lines[END_REF]). The essence of their work is presented in the following propositions.

Consider the problem depicted in eq. (I.22) with appropriate boundary conditions according to the uniform Kreiss condition. First, semi-discrete case for linear hyperbolic equation is considered and later extended to the fully discrete case.

Consider a semi-discrete nite dierence approximation Q ∆x and a boundary operator D such that

∂ t u j = Q ∆x u n j , j ≥ 1, Du j = g j , -r ≤ j ≤ 0. (I.48)
Performing a Laplace transform (u(x, t) = e st φ(x)) in the time variable on eq. (I.48), multiplying by ∆x and using s = s∆x yield s u j = ∆xQ ∆x u j , j ≥ 1, D u j = g j , -r ≤ j ≤ 0.

(I.49)

The Godunov-Ryabenkii condition writes Lemma I.10 (GodunovRyabenkii condition [START_REF] Godunov | A dierence method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF]). Consider eq. (I.48) with a zero boundary condition. A necessary condition for stability is that there exists no nontrivial eigenvector u associated to an eigenvalue s with ( s) > 0 of eq. (I.49). INTERACTION 25 In order to introduce the GKS theory in both semi-discrete and fully discrte form, the denition of generalized eigenvector if rstly given.
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Denition I.12 (Generalized eigenvector for the semi-discrete problem [START_REF] Vilar | Development and stability analysis of the inverse lax-wendro boundary treatment for central compact schemes[END_REF]). The sequence { u j ( s)} is an eigenvector if:

1. it is not identically 0, 2. It satises eq. (I.49),

3.

( s) ≥ 0 and for ( s) > 0, the corresponding solution satises lim j→∞ u j ( s) = 0,

for ( s) = 0, let s 0 = lim →0 + s + . Then { u j ( s 0 )} is an eigenvector.
The GKS theory provides the following results concerning semi-discrete schemes.

Lemma I.11 (Semi-discrete GKS condition [START_REF] Strikwerda | Initial boundary value problems for the method of lines[END_REF]). Consider eq. (I.49) with a zero boundary condition. A sucient condition for stability of eq. (I.48) is that there exists no generalized eigenvector u for ( s) ≥ 0 in the sense of denition I.12.

For fully discrete case, consider a nite dierence approximation Q ν , with ν = ∆t ∆x and a boundary operator

D such that u n+1 j -u n j = Q ν u n j , j ≥ 1, Du n j = g j , -r ≤ j ≤ 0. (I.50)
Then, taking the discrete Laplace as u n j = z n u j , one gets the fully discrete problem with Laplace transform as

(z -1) u j = Q ν u j , j ≥ 1, D u j = g j , -r ≤ j ≤ 0. (I.51)
We introduce the denition of generalized eigenvector for the fully discrete problems.

Denition I.13 (Generalized eigenvector for the fully discrete problem [START_REF] Wu | The semigroup stability of the dierence approximations for initial-boundary value problems[END_REF]). Let |z| ≥ 1. The sequence { u j (z)} is an eigenvector if 1. it is non identically 0, 2. it satises eq. (I.51),

3

.

u(z) l 2 < ∞ for |z| > 1.
The sequence { u j (z)} is a generalized eigenvector if 1. it is non identically 0, 2. it satises eq. (I.51),

3

.

u(z) l 2 = ∞. Furthermore, u(z) = lim θ→z,|θ|>1 u(θ) and u(θ) satises (θ-1) u j (θ) = Q ν u j (θ).
It yields in peculiar the following GKS condition for fully discrete scheme.

Lemma I.12 (Fully discrete GKS condition [START_REF] Gustafsson | Stability theory of dierence approximations for mixed initial boundary value problems[END_REF][START_REF] Wu | The semigroup stability of the dierence approximations for initial-boundary value problems[END_REF]). Consider eq. (I.51) with a zero boundary conditions. A sucient condition for stability of eq. (I.50) is that there exists no generalized eigenvector u for |z| ≥ 1 in the sense of denition I.13.

Further works by Wu and later by Coulombel [START_REF] Wu | The semigroup stability of the dierence approximations for initial-boundary value problems[END_REF][START_REF] Coulombel | Semigroup stability of nite dierence schemes for multidimensional hyperbolic initial-boundary value problems[END_REF][START_REF] Coulombel | The Leray-Gårding method for nite dierence schemes[END_REF][START_REF] Coulombel | Fully discrete hyperbolic initial boundary value problems with nonzero initial data[END_REF] have been done in order to change the resolvent estimates into semi-groupe stability estimates. Goldberg and Tadmor introduced stability criteria for a particular class of numerical schemes [START_REF] Goldberg | On a boundary extrapolation theorem by Kreiss[END_REF][START_REF] Goldberg | Scheme-independent stability criteria for dierence approximations of hyperbolic initial-boundary value problems. I[END_REF][START_REF] Goldberg | Scheme-independent stability criteria for dierence approximations of hyperbolic initial-boundary value problems[END_REF][START_REF] Goldberg | Simple stability criteria for dierence approximations of hyperbolic initial-boundary value problems[END_REF]. See also [START_REF] Gustafsson | The Godunov-Ryabenkii condition: The beginning of a new stability theory[END_REF] for a special link between the Godunov-Ryabenkii conditions for stability and the GKS theory. Last, the summation by part technique introduced by Olsson give energy estimates and hence stability using special structure of operator at the boundary [START_REF] Olsson | Summation by parts, projections, and stability. I[END_REF][START_REF] Olsson | Summation by parts, projections, and stability[END_REF].

I-1.2.4 Convergence toward a weak solution

Convergence for linear systems using nite dierence methods

The LaxRichtmyer equivalence theorem is from [START_REF] Lax | Survey of the stability of linear nite dierence equations[END_REF]. Its applicability is restricted to the special case of linear numerical methods for well-posed linear partial dierential equations. It states that Theorem I.13 (LaxRichtmyer equivalence theorem [START_REF] Lax | Survey of the stability of linear nite dierence equations[END_REF]). A consistent nite dierence method for a well-posed linear initial value problem is convergent if and only if it is stable.

One can easily summarized the theorem with linear, consistency + stability ⇐⇒ convergence.

However, as indicated, the scope of applications of this theorem is restricted to linear partial differential equation systems. Stability and consistency are often not enough to imply convergence for a non-linear system. To deal with non-linearity, the LaxWendro theorem for non-linear hyperbolic systems of conservation laws is introduced.

Convergence for a non-linear hyperbolic system of conservation laws

The LaxWendro theorem has been presented and proved in [START_REF] Lax | Systems of conservation laws[END_REF]. It may be seen as an extension of the LaxRichtmyer equivalence theorem for the non-linear hyperbolic system of conservation laws. It states about sucient conditions to ensure convergence of the numerical scheme toward a weak solution. If a consistent, stable and conservative numerical scheme for eq. (I.1) converges toward a solution, then it converges toward a weak solution of eq. (I.1).

Consider a consistent nite volume scheme in the sense of denition I.6. Consider that (U 0 j ) j∈Z satises the initial condition prescribed in eq. (I.7). Then as ∆t and ∆x tend to zero, under certain hypothesis, the limit U is a weak solution of eq. (I.1) for the initial conditions U 0 . Theorem I.14 (LaxWendro theorem [START_REF] Lax | Systems of conservation laws[END_REF]). Let U ∆x (x, t) be a numerical solution obtained on a given grid whose width is ∆x.

If i) U ∆x is uniformly bounded in ∆x in L ∞ , ii) lim ∆x→0 U ∆x -U L 1 ,
iii) U ∆x is obtained using the formulation presented in eq. (I.34) and Φ satisfying eq. (I.36).
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The theorem can be summarized as convergence + consistency + stability + conservation =⇒ U is a weak solution.

As a contrary to the LaxRichtmyer equivalence theorem, there is no equivalence in the Lax Wendro theorem, only an implication. A non-linear scheme which converges toward a weak solution may not be conservative or stable. Furthermore, the LaxRichtmyer theorem gives convergence results for linear problem using stability and consistency. Whereas the LaxWendro theorem assumes convergence, stability, consistency and conservation to yield convergence toward a weak solution. Theorem I.14 can be extended to unstructured grid based nite volume scheme (see [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]).

I-1.2.5 Convergence toward the entropic solution for scalar conservation laws

For scalar conservation laws, one can prove that the numerical scheme under the LaxWendro hypothesis and a consistency with the entropic condition converges toward the entropic solution.

The proof is done in [START_REF] Szepessy | Convergence of a streamline diusion nite element method for scalar conservation laws with boundary conditions[END_REF]. The theorem states that if the scheme satises a discrete entropy inequality, then the limit solution u is the entropic solution of the scalar conservation law.

Denition I.14 (Entropy condition consistency [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). A nite dierence or nite volume scheme is consistent with the entropy inequality if for any entropic pair (η, ζ) there exists an entropic ux function Ξ satisfying Ξ(u, ..., u) = ζ(u), u ∈ U .

such that for a scheme which writes as eq. (I.34), the discrete entropic inequality η(u n+1 j )-η(u n j )+ ∆t ∆x Ξ(u n j-p+1 , ..., u n j+r ) -Ξ(u n j-p , ..., u n j+r-1 ) ≤ 0, ∀j ∈ Z, ∀n ∈ N (I.52) holds.

This denition gives a completion to the LaxWendro theorem for and only for scalar conservation laws. Under entropic condition consistency, a scalar numerical scheme satisfying the hypothesis of the LaxWendro theorem converges toward the entropic solution.

Theorem I.15 (Existence and uniqueness of the entropic solution [START_REF] Després | Systèmes hyperboliques de lois de conservation: Application à la dynamique des gaz[END_REF]). Let U ∆x (x, t) be a numerical solution obtained on a given grid whose width is ∆x satisfying the aforementioned hypothesis of theorem I. 

= e -1 2 u 2 τ = 1 ρ (I.53)
The Euler system writes in the absence of any source terms in R d

∂ t    ρ ρu ρe    + ∇ •    ρu ρu ⊗ u + pI (ρe + p)u    = 0. (I.54)
The convex set of states U writes [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] 

U = {(ρ, q = ρu, E = ρe) s.t. ρ > 0, q ∈ R d , E - q 2 2ρ > 0},
which means that the density is non-negative as well as the internal energy. The system is closed with an equation of state which links pressure, internal energy and specic volume as p = EOS(τ, ).

(I.55)

I-2.1.1 Euler and Lagrange systems in 1D

In one space dimension, the Euler system writes

∂ t    ρ ρu ρe    + ∂ x •    ρu ρu 2 + p (ρe + p)u    = 0.
(I.56)

The Lagrangian system is deduced from eq. (I.56) with an appropriate change of variables.
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Introducing a change of variables (x, t) → (X, t) dened as dx(X, t) = J(X, t)dX + u(X, t)dt,

(I.57)
where J is the Jacobian of the deformation and satises J = ∂ X x(X, t). One gets the following result concerning the material derivative of J D t J(X, t) = J(x, t)∂ x u(x, t).

(I.58)

Then for any smooth enough function φ, one gets the following derivatives rules 

     D t φ(X, t) = ∂ t φ(x, t) + u(x, t)∂ x φ(x, t), ∂ X φ(X, t) = J(x, t)∂ x φ(x, t), D t (Jφ)(X, t) = [J∂ t φ + u∂ x φu] (x,
[D t (Jφ) + ∂ X ψ] (X, t) = [J∂ t φ + ∂ x (φu + ψ)] (x, t).
Then using lemma I.16 in eq. (I.56), one gets the 1D Lagrange equations. It writes

D t    ρ 0 τ ρ 0 u ρ 0 e    + ∂ X    -u p pu    = 0. (I.60)
Using the denition of internal energy as the dierence between the total energy and the kinetic energy, it yields an hyperbolic system with a non-conservative form as

     D t ρ 0 τ -∂ X u = 0 D t ρ 0 u + ∂ X p = 0 D t ρ 0 + p∂ X u = 0 (I.61)
Note that eq. (I.60) is well dened in the sense of distribution for any (τ, u, e) ∈ L ∞ R×]0:T [ . As a contrary, eq. (I.61) is not. The term p∂ X u is well-dened for smooth enough functions, but is not in general in the sense of distributions. In [START_REF] Maso | Denition and weak stability of nonconservative products[END_REF], the authors introduced a generalization of the notion of weak solution in the sense of distributions despite non-conservative products. The generalization is based on the integration along a conservative path. However, in [START_REF] Abgrall | A comment on the computation of non-conservative products[END_REF], the authors produced a comment on the computation of non-conservative products. Despite the integration along the conservative path, numerical results thus obtained are not conclusive. Discretization of non-conservative products has tremendous consequences for schemes solving eq. (I.61). It is shown later for the special case of hydrodynamics.
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Let us focus on the entropy introduced by the second principle of the thermodynamics presented in theorem I.17.

Theorem I.17 (Second principle of thermodynamics). For a closed system, without any exchange with the exterior, the entropy of a system increases over time or stays constant.

Remark I.6. The entropy stays constant for reversible processes. In particular, for smooth ows, the entropy is conserved.

Introducing the concave entropy function S, the temperature T , the second principle of thermodynamics writes for the compressible hydrodynamics T dS = d + pdτ.

(I.62)

In particular, one gets for smooth quadruplet ( , p, τ, u) that

T D t S = D t + pD t τ = -p∂ X u + p(∂ X u) = 0 (I.63)
meaning that for smooth ows and non-zero temperature, the entropy indeed stays constant in time.

More generally, for any ows which may include discontinuities, the entropy satises T D t S ≥ 0.

(I.64)

A rst point of view, that will be detailed later on, to ensure increasing of entropy is the use of pseudo-viscous forces. On the continuous level, it forces the evolution of internal energy to satisfy D t ρ 0 + (p + q)∂ X u = 0, where q is called the pseudo-viscosity or articial viscosity. Then, if one assumes that q = -φ∂ X u, φ ≥ 0, then eq. (I.63) becomes formally

T D t S = D t + pD t τ = -(p + q)∂ X u + p(∂ X u) = -q∂ X u = φ|∂ X u| 2 ≥ 0. (I.65)
The choice of articial viscosity is detailed in section I-2.4. Note that this result is based on formal computations at the continuous level, and does not imply results on the discretized one.

In [START_REF] Després | Lagrangian systems of conservation laws[END_REF], Després derived a canonical formulation for Lagrangian systems of conservation laws, assuming a zero entropy ux, Galilean invariance and isentropy for smooth solutions.

Equation (I.64) often yields a natural CFL condition for the numerical scheme, in order to satisfy a correct increase of entropy. Moreover, one challenging problem for numerical simulation HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 31 containing shocks is to control the increase of entropy, but also to ensure that the entropy does not increase on smooth ows. Assuming that the function S is concave. Using similar computations as in [START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF], for U ∈ U , let g(α) = S(U n j + α(U n+1 j -U n j )). Then, there exists θ ∈ ]0 : 1[ such that g(1) = g(0) + g (1) -1 2 g (θ).

By denition of g, one has that

g (1) = ∇ U S(U n+1 j ) • (U n+1 j -U n j ), g (θ) = (U n+1 j -U n j ) • ∇ 2 U S(U n+1 j (U n+1 j -U n j ) . (I.66)
Using the concavity of S, it gives that -1 2 g (θ) ≥ 0. Then, it leads to

S(U n+1 j ) = S(U n j ) + ∇ U S(U n+1 j ) • (U n+1 j -U n j ) - 1 2 (U n+1 j -U n j ) • ∇ 2 U S(U n+1 j (U n+1 j -U n j ) (I.67)
Assume (as for the example detailed in [START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF]) that previous equation rewrites under the form

S(U n+1 j ) = S(U n j ) + (A - ∆t ∆X B), (I.68)
where A is a quadratic positive form evaluated on (U n+1 j -U n j ), whereas B is also a positive quadratic form evaluated on (ψ n+1 j -ψ n j ). Then assuming that the function U → ψ is continuous, there exists a constant c > 0 such that

ψ n+1 j -ψ n j ≤ c U n+1 j -U n j .
Then for ν = ∆t ∆X small enough, one has (A -νB) ≥ 0, and hence

S(U n+1 j ) ≥ S(U n j ).
In practice, conditions on ν to get S(U n+1 j ) ≥ S(U n j ) is not easy to obtain. And, more often that not, there is no conditions on ν that gives entropic behaviour of the scheme. One should refer to [START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF] for further informations concerning the entropic behaviour of some numerical Lagrangian schemes.

I-2.1.3 General Lagrangian formulation for multi-dimensional problem

The multi-dimensional formulation of Lagrangian hydrodynamics [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] writes in integral form for a bounded domain K(t)

NUMERICAL METHODS FOR COMPRESSIBLE HYDRODYNAMICS            D t K(t) ρdV =0, D t K(t) ρudV =-∂K(t) pndS, D t K(t) ρedV =-∂K(t) pu • ndS, D t K(t) dV = ∂K(t) u • ndS. (I.69)
Here the domain K(t) may be displaced or deformed in time. D t denotes for the material derivative, meaning D t = ∂ t + u • ∇. The rst three equations in system (I.69) are respectively the conservation of mass, momentum and total energy. The last one is a geometric conservation law. It links the deformation and displacement of the bounded domain K(t) to the normal velocity at its boundary.

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics

In this section, a brief overview of Lagrangian and ALE methods for compressible hydrodynamics is given. Traditionally, Lagrangian hydrodynamics are solved using staggered schemes (see section I-2.2.1). Thermodynamics quantities and kinematic ones are not colocated. This tradition is issued from the Richtmyer and Von Neumann Richtmyer formulation for solving Lagrangian hydrodynamics. Staggered schemes were among the rst to be used in uid dynamics computation. Indeed, in the late 1940s, the rst shock capturing hydrodynamic scheme by Richtmyer [START_REF] Richtmyer | Proposed numerical method for calculation of shocks[END_REF] and von Neumann and Richtmyer [START_REF] Neumann | A method for numerical calculation of hydrodynamic shocks[END_REF] was a time-space staggered 1D Lagrange explicit scheme, formulated in internal energy with articial viscosity and 2 nd order accuracy in space and time on smooth ows. The scheme is usually called vNR (for Von NeumannRichtmyer). Use of articial viscosities is required to capture correctly shocks. Articial viscosities and models of hyperviscosities are discussed later. Compatible formulations of compressible Lagrangian hydrodynamics are an improvement to such methods in which the schemes naturally preserve total energy and are consistent although being formulated in internal energy. Starting from localisation of variables on a given grid, formulation in internal energy is rst extensively described as it is somehow the classical way of solving Lagrangian hydrodynamics system. Then, compatible and entropic Lagrangian methods are introduced. Last, pointing out some arising diculties in Lagrangian simulations, ALE formalism is then introduced and detailed.

I-2.2.1 Natural derivation of staggered grids for hydrodynamics

Before addressing time and space discretizations, the localisation of the variables are important enough to be pointed out. Indeed, the disposition of the variables on a given grid can alter signicantly precision and robustness of the numerical schemes. Staggered grids can be used to compute with a narrower centered stencil the spatial derivatives or pointwise values from average ones. This increases the spatial resolution. Indeed, eg. for wave propagation, it is known that staggered (grids based) schemes require less points per wavelength than cell-centered schemes. However, due to the fact that the grids are staggered, the CFL condition is often reduced compared to cell-centered schemes. There exist multiple denitions of the staggering of variables.

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 33 These denitions are gathered in [START_REF] Arakawa | Computational design of the basic dynamical processes of the UCLA general circulation model[END_REF] for the simulation of meteorology and oceanography and depicted in g. I.4. The rst one called cell-centered or A-type staggering is to consider that both velocity-and mass-related variables are located at the same position on the grid. The variables are placed at the cell center, or exclusively at the node delimiting the cell. Sometimes cell-centered schemes are also known as colocated ones. The second one called node-staggering or B-type staggering is to consider that velocity-related variables are at the nodes and the massrelated variables are at the cell centers. Equivalently velocity may be dened at the cell centers, and mass-related variables at the nodes. These kind of staggering is used for instance in [START_REF] Neumann | A method for numerical calculation of hydrodynamic shocks[END_REF][START_REF] Youngs | The Lagrangian Remap Method[END_REF][START_REF] Thornber | Large-eddy simulation of multi-component compressible turbulent ows using high resolution methods[END_REF][START_REF] Llor | Energy preservation and entropy in Lagrangian space-and time-staggered hydrodynamic schemes[END_REF]. The third one called face staggering or C-type staggering consists in locating the x-velocity (resp y-velocity) related variables along the faces whose normals are colinear to the

x-direction (resp. y-direction). The mass-related variables are positionned at cell-centers. This staggering is used in [START_REF] Sutclie | BBC Hydrodynamics[END_REF][START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF] for the BBC scheme, and by extension to unstructured grids for the MAC schemes developed in [START_REF] Gallouët | Kinetic energy control in explicit nite volume discretizations of the incompressible and compressible Navier-Stokes equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF]. The natural extension to unstructured grids is made by positioning the normal velocity at the face on each faces of the grid's cell. This is often mostly convenient for conservation laws like Euler equations. The fourth one known as D-type is but a 90 • rotation of the C-type staggering. This staggering enables both circulation and vorticity to be dened at the same location as mass-related variables. For most conservation laws, integration of the divergence is less convenient using this staggering of variables. Furthermore studies also proved that such a grid is more dispersive compared to a B-or C-type staggering. The E-type staggering is but a 45 • rotation of the B-type staggering. The adjacency is no longer made on horizontal or vertical path for regular grids, but rather on a diagonal path.

I-2.2.2 Internal energy formulated numerical schemes

As aforementioned, the original vNR scheme, based on a B-type staggering is not conservative in total energy. Furthermore, without any articial viscosity, the scheme is unable to correctly capture strong shocks. This lack of conservation is due to the choice of discretized variables made by Richtmyer. He chose to discretize the internal energy and its evolution equation. As a contrary, discretization of total energy yields naturally conservation of the discretized total energy. The main diculty for schemes formulated in internal energy is that this is not any longer a conservation law. On a mathematical continuous level, the term appearing in the internal energy evolution is not dened in the sense of distributions, for velocity and pressure as bounded functions ((u, p) ∈ L ∞ ). The use of articial viscosities solves this problem by smoothing the pressure. With an appropriate denition of articial viscosities terms, the internal energy evolution term becomes well-dened. The default of total energy conservation was highlighted in 1961 by Trulio and Trigger [165]. For non-constant time-steps, the vNR scheme is not conservative in total energy. They therefore proposed an implicit conservative version of the vNR scheme, still formulated in internal energy. They kept the spatial staggering of variables but without the temporal one. Similarly, works done by Popov and Samarskii [START_REF] Popov | Completely conservative dierence schemes[END_REF] developed a similar staggered scheme with implicitation in time. In the early 1970s, DeBar used a Lagrange-remap formalism for the TrulioTrigger scheme [START_REF] Debar | Fundamentals of the KRAKEN code[END_REF][START_REF] Debar | Method in two-D Eulerian hydrodynamics[END_REF]. At the end of each Lagrangian phase, the variables were Strang splitting. The splitting was made to consider rst a 1D Lagrange-remap scheme in the xdirection, and then in the y-direction. This kind of splitting, known as directional splitting, yields the advantage of an easy extension from one dimensional problems to multi-dimensional ones.

NUMERICAL METHODS FOR COMPRESSIBLE HYDRODYNAMICS r (u, v, p) i,j (a) Cell-centered r p i,j r (u, v) i-1 2 ,j-1 2 r (u, v) i+ 1 2 ,j+ 1 2 r (u, v) i-1 2 ,j+ 1 2 r (u, v) i+ 1 2 ,j-1 2 (b) Node staggering r p i,j ru i-1 2 ,j r v i,j-1 2 r v i,j+ 1 2 ru i+ 1 2 ,j (c) Face staggering r p i,j rv i-1 2 ,j r u i,j-1 2 r u i,j+ 1 2 rv i+ 1 2 ,j (d) 90 • rotated face staggering r (u, v) i,j rp i-1 2 ,j r p i,j-1 2 r p i,j+ 1 2 rp i+ 1 2 ,j r (u, v) i-1 2 ,j-1 2 r (u, v) i+ 1 2 ,j+ 1 2 r (u, v) i-1 2 ,j+ 1 2 r (u, v) i+ 1 2 ,j-1 2 (e)
HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 35 Later, a strictly explicit predictor-corrector conservative version of the Trulio-Trigger scheme was reported by Woodward and Colella in [171]. This version was called the BBC scheme. It is a 2D Lagrange-remap scheme on staggered Cartesian grids based on a 1D Lagrange-remap setting with Strang dimensional splitting. The total energy conservation result has been credited to Noh [START_REF] Noh | Numerical methods in hydrodynamic calculations[END_REF]. The retained staggering of variables is the C-type one, based on Arakawa classication system. Caramana in 1998 [START_REF] Caramana | The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[END_REF] introduced the so-called compatible Lagrangian hydrodynamics for node-staggering schemes. The idea of compatible Lagrangian method is to discretize properly the internal energy evolution in order to automatically satisfy the conservation of total energy.

In [START_REF] Bauer | The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics[END_REF], the authors highlight the properties of such discretization. Mainly, the emphasis is laid on accuracy, consistency and stability of the compatible Lagrangian scheme. Simultaneously, on the other side of the Atlantic, Youngs developed B-type staggered schemes in which the velocity components were based on the node of the grids [START_REF] Youngs | The Lagrangian Remap Method[END_REF][START_REF] Thornber | Large-eddy simulation of multi-component compressible turbulent ows using high resolution methods[END_REF][START_REF] Shanmuganathan | Accuracy of high-order density-based compressible methods in low Mach vortical ows[END_REF]. He proved his schemes, although formulated in internal energy, to be conservative in total energy, using a similar internal energy corrector as DeBar during the remapping phase. Similarly for unstructured grids, Herbin, Gallouet and al. [START_REF] Herbin | Kinetic energy control in the MAC discretization of the compressible Navier-Stokes equations[END_REF][START_REF] Gallouët | Kinetic energy control in explicit nite volume discretizations of the incompressible and compressible Navier-Stokes equations[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF] 

I-2.2.3 Total energy Lagrangian methods for compressible hydrodynamics

As a contrary to staggered scheme, the cell-centered ones naturally conserve total energy and satisfy naturally the denition of consistency for nite volume schemes as dened in denition I.6. [START_REF] Després | Lagrangian gas dynamics in two dimensions and Lagrangian systems[END_REF] developed a framework in which one may easily build any cell-centered scheme to solve Lagrangian hydrodynamics. The main cell-centered total energy formulated Lagrangian schemes are Eucclhyd developed by Maire and al. in [START_REF] Maire | A high-order cell-centered Lagrangian scheme for two-dimensional compressible uid ows on unstructured meshes[END_REF] and Glace developed by Després and al. [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF][START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF]. Those schemes are based on unstructured grids. Glace builds uxes at the boundary of each cell using an acoustic Riemann solver at each nodes in the direction given by nodes normals. Eucclhyd builds similar uxes but using the average of acoustic uxes on each face around a node.

Initial work by Després and Mazeran in

I-2.2.4 ALE formalism for compressible hydrodynamics

The Lagrangian approach can be limited due to very large deformations of the Lagrangian mesh.

Indeed, the mesh deformation forces to remesh a part or the entirety of the domain, with an interface tracking in case of multi-materials simulation. For some complex and strong ows, the vorticity induced by the ows forces the remeshing regularly, which is onerous and discards partly the interest of the Lagrangian approach. A possible way to reduce this limitation is the Arbitrary Lagrangian Eulerian (or ALE) approach (see [START_REF] Kenamond | Compatible, total energy conserving and symmetry preserving arbitrary LagrangianEulerian hydrodynamics in 2D rzCylindrical coordinates[END_REF]). Fluid ows are computed on a domain which is deformed by a given velocity eld U mesh . This velocity eld can be chosen such that the interface between two materials is perfectly followed by the deformation of the mesh,
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or such that the entire solution is smoothed by the deformation of the mesh. If one considers U mesh = 0, one gets back the Eulerian formulation of the scheme. And if U mesh = u uid , one gets back the Lagrangian formulation of the scheme.

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes

In this section, an extended overview of high-order nite dierence and nite volume schemes on xed mesh for compressible hydrodynamics is given. First, the high-order space interpolation of data is presented, as well as some procedures to limit spurious oscillations in the vicinity of discontinuities. Then, multiple methods to achieve high-order integration in time are presented. 

∂ x φ i = r k=0 d k (φ i+k+1 -φ i-k-1 ), i ∈ Z. (I.70)
For example, for r = 0, d 0 = 1 2 and it yields rst order of accuracy. In practice, the stencil is shifted in space in order to change the set of points on which the polynomial interpolation is performed. It yields

∂ x φ i,l = r+l k=-r+l c k,l φ i+k+l , l ∈ {-p, . . . , p}, i ∈ Z. (I.71)
Each ∂ x φ i,l gives an approximation of the rst space derivative of φ at x = x i but with a dierent stencil. Last, it requires to select the stencil which gives the less oscillatory interpolation. By HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 37 doing so, the interpolation thus obtained is less oscillatory than the classical one. Later, based on the ENO interpolation, the weighted essentially non-oscillatory (aka WENO) schemes were developed by Shu and Osher in [START_REF] Shu | Ecient Implementation of Essentially Non-oscillatory Shockcapturing Schemes, II[END_REF]. The modication of the method is due to the presence of weights that tend to reduce furthermore oscillations due to the interpolation. It gives

∂ x φ i = p l=-p ω l (∂ x φ i,l ), ω l ≥ 0, l ω l = 1, i ∈ Z. (I.72)
One disadvantage of the WENO approach was that it was quite onerous to compute weights and smoothness indicators. Improvements of both have been developed in [START_REF] Jiang | Ecient Implementation of Weighted ENO Schemes[END_REF]. Last, in [START_REF] Shu | High-order nite dierence and nite volume WENO schemes and discontinuous Galerkin methods for CFD[END_REF], Shu drew an analysis of the ENO/WENO schemes, as well as their evolution since the late eighties.

As a contrary, the compact schemes are based on a reduced stencil reconstruction. A simple example of compact scheme is the resolution of the following system

α∂ x φ i-1 + ∂ x φ i + α∂ x φ i+1 = r k=-r b k φ i+k , l ∈ {-p, . . . , p}, i ∈ Z. (I.73)
Compact schemes have been presented by Lele in [START_REF] Nagarajan | A robust high-order compact method for large eddy simulation[END_REF]. Within this approach, the width of a stencil is reduced at the cost of a non-diagonal matrix to invert. With α = 0, one recovers the original interpolation. A reduction of the stencil width tends to reduce interpolation oscillations. Similar procedures can be developed on unstructured grids but are more onerous than on Cartesian ones.

Discontinuous Galerkin space interpolations

Discontinuous Galerkin methods [START_REF] Cockburn | The development of discontinuous Galerkin methods[END_REF] assume that the discrete solution U h lies in the nite element space of discontinuous function

W h = {V ∈ (L ∞ (Ω)) p , ∀K ∈ T h , V | K ∈ (P(K)) p }
where T h is a tessellation of Ω whose characteristic size is h and P(K) is the local polynomial space on K. When computing uxes between two members of T , one has a discrepancy at the interface. A possible way is to solve a Riemann problem at the interface (see the ADER schemes presented in section I-2.3.2) or an interpolation between the two computed values at the interface.

Non-polynomial space interpolations

Classical interpolations are based on the assumption that locally the function is polynomial, using Taylor expansion. Another possible interpolation method is the Padé interpolation method which considers that the function is rational. Using this assumption, Padé interpolations usually reduce oscillations in the vicinity of discontinuities.

NUMERICAL METHODS FOR COMPRESSIBLE HYDRODYNAMICS Let us consider rst an integration in time based on RungeKutta sequences [START_REF] Kutta | Beitrag zur näherungweisen Integration totaler Dierentialgleichungen[END_REF]. A primary study of RungeKutta sequences has been done by Butcher [START_REF] Butcher | Coecients for the study of Runge-Kutta integration processes[END_REF][START_REF] Butcher | On Runge-Kutta processes of high order[END_REF]. Later, multiple authors proposed up to 5 th -order accurate RungeKutta sequences in [START_REF] Fehlberg | Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems[END_REF][START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF]. More recently, study of total variational diminishing RungeKutta sequences has been performed by Gottlieb and al. in [70,[START_REF] Gottlieb | Strong stability-preserving high-order time discretization methods[END_REF][START_REF] Gottlieb | High order strong stability preserving time discretizations[END_REF]. Moreover, RungeKutta sequences up to 9

α 1 a 1,0 0 0 0 • • • α 2 a 2,0 a 2,1 0 0 • • • . . . . . . . . . . . . • • • • • • α s-1 a s-1,0 • • • • • • a s-1,s-2 0 1 θ 0 θ 1 • • • θ s-2 θ s-1
th -order accurate are available in [START_REF] Verner | Jim Verner's Refuge for Runge-Kutta Pairs[END_REF]. RungeKutta sequences present the interest of an easy integration in time, once the semi-discretized in space form is obtained. Assume that the semi-discretized scheme writes

∂ t U i = (P ∆x U ) i , i ∈ Z (I.74)
Assuming an explicit RungeKutta sequence whose Butcher table takes the form presented in table I.1, the integrated in time scheme writes

U n+α l i = U n i + ∆t l-1 m=0 a l,m (P ∆x U n+αm ) i , i ∈ Z, U n+1 i = U n i + ∆t s-1 m=0 θ m (P ∆x U n+αm ) i , i ∈ Z. (I.75)

LaxWendro or CauchyKovalevskaya time integration

Very high-order LaxWendro or CauchyKovalevskaya based schemes have been presented in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF] and are used in a CEA hydrodynamics simulation platform [91]. Originally, works have been performed for the linear case, and especially the advection and wave equations as presented in [START_REF] Pino | Arbitrary high-order schemes for the linear advection and wave equations : application to hydrodynamics and aeroacoustics[END_REF]. Consider an hyperbolic system of the form

∂ t U + ∂ x F (U ) = 0.
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K i = x i-1 2 : x i+ 1 2 , it yields U n+1 -U n = - t n +∆t t n (F (U (x i+ 1 2 , θ)) -F (U (x i-1 2 , θ)))
U n+1 -U n = - k≥0 ∂ k t (F (U (x i+ 1 2 , t n )) -F (U (x i-1 2 , t n ))) ∆t k+1 (k + 1)!
The idea is then to use the system of PDEs to replace time derivatives of F by spatial ones at time t n . Thus, a high-order in time scheme is obtained. If one considers that space derivatives are computed with high-order accuracy in space, then it yields a high-order accurate scheme in both time and space.

ADER time integration

Arbitrary Derivative Riemann (also known as ADER) problem has been developed by Titarev and Toro in [START_REF] Titarev | ADER: Arbitrary high order Godunov approach[END_REF]. It is a high-order accurate in both time and space nite volume scheme. It uses Godunov's upwind approach and the LaxWendro (or CauchyKovalevskaya) procedure.

For hyperbolic problem as depicted in eq. (I.56), the idea is to dierentiate in time eq. (I.56) and to solve Riemann problems on each of the derivatives. Solving Riemann problems on each of the derivatives is called solving the generalized Riemann problem. Thus, it yields a high-order nite volume scheme.

I-2.4 Articial viscosities and hyperviscosities

Articial viscosities and hyperviscosities are a mean to damp spurious oscillations due to highorder polynomial interpolations. The main idea is to add a viscous term to prevent oscillations for occurring. The main drawback is that viscosity are tuned with user-xed parameters, and the choice of parameters is not obvious.

I-2.4.1 Internal energy weak formulation

As aforementioned, the internal energy evolution equation has no sense for non-smooth pressure.

A way to deal with this problem is to add a viscosity term such that the Lagrangian system formulated in internal energy, initially depicted in eq. (I.61), now writes

     D t ρ 0 τ -∂ X u = 0, D t ρ 0 u + ∂ X (p + q) = 0, D t ρ 0 + (p + q)∂ X u = 0. (I.77)
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If q is chosen and built such that p + q is smooth and non-zero then the internal energy evolution equation is dened in the sense of distributions. Moreover, from the physical point of view, q can be seen originally as the viscosity produced by the inelastic collisions between particles [START_REF] Richtmyer | Dierence methods for Initial Value problems[END_REF]. This can be seen as an enrichment of Euler equations. Usually articial viscosities are used for high-order schemes and/or for schemes formulated in internal energy. Mainly, the very essence of the articial viscosity is to reduce the Gibbs phenomenon which occurs at shocks and discontinuities due to the reconstruction of uxes. One may refer to the paper by Benson [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] for more informations on the expression of the articial viscosity q.

I-2.4.2 Standard expressions of viscosities

Originally in [START_REF] Neumann | A method for numerical calculation of hydrodynamic shocks[END_REF], the viscosity q takes the form

q i = -c q ρ i ∆u i |∆u i | with ∆u i = u i+ 1 2 -u i-1 2
. This viscosity is usually called the vNR articial viscosity or pseudoviscosity. In [START_REF] Richtmyer | Dierence methods for Initial Value problems[END_REF], the Rosenbluth viscosity is proposed. It is somehow similar to the original vNR pseudo-viscosity but only activated where ∆u i < 0. Indeed, for a perfect gas, ∆u i < 0 stands for a compression, where a shock may appear. This is not the case for a non-perfect gas with a more complex EOS. The Rosenbluth viscosity writes

q i = -c q ρ i ∆u i |∆u i |χ {∆u i <0} .
Another legacy viscosity is denoted Landsho pseudo-viscosity [START_REF] Landsho | A numerical method for treating uid ow in the presence of shocks[END_REF]. It is similar to the Rosenbluth one, with an additional linear dissipative term. It writes

q i = -(c q ρ i ∆u i |∆u i | + c l ρc i ∆u i )χ {∆u i <0} .
For these viscosities, the parameters c q and c l are user-chosen. Many works have been performed

in the literature to study the impact of viscosity as well as a way to determine a priori values for c q and c l . Wilkins developed an extension to the original von Neumann-Richtmyer viscosity to the multidimensional case in [START_REF] Wilkins | Use of articial viscosity in multidimensional uid dynamic calculations[END_REF]. Noh in [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF] showed the very limits of the use of articial viscosity. Indeed, he showed that articial viscosity can induce strong errors in the computation, instead of damping oscillations and smoothing pressure proles. Caramana, Shashkov and Whalen presented in [START_REF] Caramana | Formulations of articial viscosity for multi-dimensional shock wave computations[END_REF] a new formulation for the articial viscosity terms. They based their works considering that the articial viscosity should follow a certain number of conditions to be considered physically acceptable. The articial viscosity should among other be galilean invariant and always transfer kinetic energy into internal energy. Moreover, for isentropic compressions, the articial viscosity must not create too much dissipation or entropy. Heuzé, Jaouen and Jourdren investigated the eect of articial viscosities for discontinuities on a non-convex EOS in [START_REF] Heuzé | Dissipative issue of high-order shock capturing schemes with non-convex equations of state[END_REF]. More recently, Guermond and al. proposed the construction of an entropic viscosity in [START_REF] Guermond | Viscous regularization of the Euler equations and entropy principles[END_REF]. Last but not least, the reader may refer to the paper by Mattsson and Rider [START_REF] Mattsson | Articial viscosity: back to the basics[END_REF] about the origins of articial viscosity terms, and the very bedrocks of pseudo-viscosities expressions and properties.

I-2.4.3 Hyperviscosities

As said previously, the use of articial viscosities can be seen as a necessary enrichment of Euler equations. This use enables to match better, on a physical point of view, the complex structure of ows. An idea presented by Cook and Cabot in [START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF] and later in [START_REF] Cook | Hyperviscosity for Shock-turbulence Interactions[END_REF] is to consider the compressible Navier-Stokes equations, which is nothing else but the Euler equation with a viscous term. Then the underlying viscosity coecients in the compressible Navier-Stokes equations are set accordingly to the smoothness of the ows. For perfectly smooth ows, there is no physical, mathematical or even numerical reason to add dissipation, and thus the coecients are set to 0. However at a discontinuity or a shock, to avoid Gibbs phenomenon, one wishes for more dissipation and thus the coecients are no longer null.

The model is described in eq. (I.78),

∂ t    ρ ρu ρe    + ∇ •    ρu ρu ⊗ u + pI -σ (ρe + p)u -σ • u    = 0. (I.78)
where the viscous stress tensor is denoted by σ and satises

σ = 2µS(u) + (β - 2 3 µ)(∇ • u)I (I.79)
where β is the bulk viscosity, µ is the shear viscosity, and S is the symmetric strain rate tensor S = 1 2 (∇u + ∇u t ). The coecients µ and β are to be set accordingly to the smoothness of the ow. In practice, they are set as

β = C β η r , µ = C µ η r , η r = ρh r+2 G(∇ r S ), r ∈ 2N, (I.80)
where C β and C µ are user-specied, h is technically the typical space grid, and S 2 = S : S.

Last G denotes for the application of a truncated Gaussian lter. The use of G is to smear out oscillation introduced by the dierentiation of the tensor norm. This viscosity presents the advantages of maintaining high-order accuracy for smooth ows, but can be rather expensive numerically due to the dierentiation of the tensor norm. Extensions and improvements of the hyperviscosity model have been presented in [START_REF] Bhagatwala | A modied articial viscosity approach for compressible turbulence simulations[END_REF] and [START_REF] Kawai | Assessment of localized articial diusivity scheme for large-eddy simulation of compressible turbulent ows[END_REF]. Essentially the authors proposed to modify the computation of η r to yield a steeper prole for the viscosity, and so avoid undesirable dissipation in smooth areas.

I-3 Numerical methods for uid-structure interaction

In this section, an extended review of numerical methods for uid-structure interaction is made and especially concerning the coupling in time and space chosen for the continuity relations at 

Ω = Ω f ∪ Ω s and Ω f ∩ Ω s = ∅. The boundary ∂Ω s ∩ ∂Ω f
is denoted Γ in the following, and the normal to the boundary Γ going from Ω s to Ω f is denoted n Γ . The uid (respectively structure) velocity is denoted u f (respectively u s ), and the uid (respectively structure) stress tensor is denoted σ f (respectively σ s ).

For a viscous uid, continuity relations are called the no-slip boundary conditions. The velocity and the normal stress are continuous through the boundary. It yields

u f = u s , σ f • n Γ = σ s • n Γ , on Γ. (I.81)
In particular, eq. (I.81) means that the displacement and velocity at the boundary are continuous. This yields in particular that the interface between uid and solid is easier to track. For moving meshes methods (ALE) presented in the previous section, the space discretization follows perfectly the interface.

For a non-viscous uid, the continuity relations are called slip boundary condition. It allows the uid to slip perfectly along the structure boundary without any kind of boundary layer. It writes

u f • n Γ = u s • n Γ , σ f • n Γ = σ s • n Γ , on Γ. (I.82)
As a contrary to the no-slip boundary conditions, eq. (I.82) means that the tangential displacement is not continuous at the boundary as uid particles may slip freely along the tangential direction of the boundary. Other models for boundary conditions may be used but in this work, the emphasis is laid on eq. (I.82). Considering two numerical methods, the coupling must be realized at the boundary in order to satisfy boundary conditions, in space as well as in time. In order to achieve that, time-coupling is rst detailed. Then an overview is made on space coupling numerical methods found in the literature.

I-3.1 Time coupling method for uid-structure interaction

There are two ways to see a uid-structure numerical method : a partitioned domain approach or a monolithic one (see [START_REF] Michler | A monolithic approach to uidstructure interaction[END_REF] for further details). The monolithic is not prone to change. Any modication in the uid or the structure part, eg. change in the numerical ux, results in change for the whole approach. It also means that the hydrocode and structure-code must be entirely known, and may not be used as a black box. Although it gives the advantage to overview every part of the code, it is also a strong inconvenient. The partitioned/domain approach yields the advantage to perfectly decouple uid and structure part. As an example, it allows a hydro-code to be coupled with a commercial code for structural deformations computation. The uid and structure solver are perfectly independent and do not necessarily rely on the same space and time discretizations. Depending on the space and time coupling, boundary conditions presented in eqs. (I.81) and (I.82) are more or less satised at the boundary. If those conditions are perfectly satised at the boundary at any discrete time, the term strong coupling is used. However, if not, the term loose coupling is used for boundary conditions that are only weakly imposed. The HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 43 strong coupling often relies on a time-implicitation of terms around the boundary. This reveals quite onerous since a non-linear system is solved all along the boundary in order to perfectly satisfy the boundary conditions. Fully explicit schemes are generally considered as loosely coupled and may introduce large instabilities, especially when the ratio between both material masses (uid and structure) is high. Semi-implicit coupling is a computationally compromise between implicit and explicit coupling. It is not as onerous as a full implicit one, and moreover it prevents certain instabilities present in the explicit coupling to occur. In the following, the three coupling are detailed. One may refer to [START_REF] Fernández | Coupling schemes for incompressible uid-structure interaction: implicit, semi-implicit and explicit[END_REF] for an overview of the dierent time coupling methods for incompressible viscous ows.

I-3.1.1 Loose coupling

Loose coupling is certainly the most intuitive one in order to deal with uid-structure interaction.

The uid and structure system of partial derivatives equations are solved in a decoupled way, with a regular exchange of information at the boundary. Mostly, one considers that the uid part exerts a stress constraint on the structure part, and reciprocally the structure part exerts a velocity constraint on the uid part. Velocity and stress boundary conditions are not necessarily satised, especially if the time discretization is not the same for both solvers. An example of loose 
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Strong coupling

Strong coupling is done in order to ensure strongly the boundary conditions. At a given time t = t n , it builds boundary conditions in order to enforce that the prescribed boundary conditions hold at time t = t n+1 . The strong enforcement of boundary conditions ensures correct mass, momentum and total energy conservation at the boundary. Conservation is ensured to the limit of the convergence criteria used in system inversion algorithms. At each time-step, a non-linear system is solved to nd the solution at time t = t n+1 . One uses an iterative algorithm among which xed-point, conjugate gradient, Newton or Gauss-Seidel. A strongly coupled scheme is much more onerous than an explicit one, as the problem is solved at each iteration of the algorithm used to inverse the system. However, stability conditions on time-step are much less severe than for full explicit schemes. But in practice, the time-step must be restricted or the algorithm must use relaxation terms in order to ensure convergence. The numerical cost of such a procedure is sometimes prohibitive, and hence another class of coupling has been derived: the semi-strong coupling.
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Semi-strong coupling

The semi-strong coupling has been derived to correct the weaknesses of both loose and strong coupling. The loose coupling is sometimes unstable and unable to track eectively the conservation of mass, momentum and total energy at the boundary. On the other hand, the implicit HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 45 coupling ensures those conservations, but is numerically onerous and the convergence is not ensured. Relaxation terms can be added to correct these defaults but to an additional numerical cost. For these reasons, semi-strong coupling has been derived. Non-oscillatory or stable terms are treated in an explicit way, whereas unstable and/or oscillatory terms are treated in an implicit way. Often, the pressure terms are treated in an implicit way, whereas advection and diusion terms are treated in a fully explicit way. Conservation results rely strongly on the algorithm and hypothesis made previously. In [START_REF] Puscas | A time semiimplicit scheme for the energy-balanced coupling of a shocked uid ow with a deformable structure[END_REF], Puscas and al. derived a semi-implicit scheme that ensures conservation of quantities up to the algorithm precision.

I-3.2 Space coupling method for uid-structure interaction Independently to the time-coupling, space-coupling methods allow to spatially couple forces and torques at the boundary in order to enforce boundary conditions presented in eqs. (I.81) and (I.82). Three families of space coupling are distinguished and sorted as follows. First, the mixed cells methods which somehow average the dierent materials over a cell. Second, the body-tted method which ensures a deformation and displacement of the mesh such that cells remain pure. Third and last, the ctitious domain method which uses overlapping domains to enforce boundary conditions.

I-3.2.1 Mixed cells methods

One natural way of dealing with uid-structure interaction is to consider that a control volume for a nite volume scheme may contain both materials. A detector is then used to determine which constitutive laws are to be used. In [START_REF] Demirdºi¢ | Numerical method for coupled uid ow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology[END_REF], the authors proposed a unied framework to treat both solid and uid simulations on unstructured grid. The proposed schemes can be used in a fully Lagrangian formalism or in an ALE one. The constitutive laws are then selected considering to which material the cells interfaces belong (the case of mixed interfaces is also treated). In [START_REF] Gorsse | A simple second order cartesian scheme for compressible Euler ows[END_REF], they proposed a denition of an ad hoc Riemann problem at solid boundaries which is formally second order accurate. Thanks to a level set method, they detect the proximity of a wall and modify the Riemann problem to take into account the boundary conditions. Although the resulting scheme is not conservative, shocks seem to be correctly captured. The scheme is based on Cartesian grids. Last, [START_REF] He | A full-Eulerian solid level set method for simulation of uidstructure interactions[END_REF] introduced a full-Eulerian solid level set method in order to treat uid-structure interaction problems for incompressible viscous ows. The method is derived by adding a solid body force and a solid-uid interaction term for cells near the boundary. The interface tracking is realized thanks to the solid level set method. It also applies for uid schemes based on Cartesian grids.

I-3.2.2 Body-tted methods

The Lagrangian and ALE approaches for solving the compressible hydrodynamics system have been presented in section I-2.2. For viscous uid, the deformation of the mesh is continuous along the boundary. It means that technically, if initially the meshes for the uid and structure
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are coincident at the boundary, then they stay coincident for any time of the simulation. It leads to an easier interface tracking as no mixed cells appear. However for inviscid ows, the deformation is no longer continuous along the boundary, only the normal deformation is. Two choices are presented in the literature. Either one uses Lagrange multipliers to transfer the forces and torques between the two meshes, either one uses the ALE formalism with a velocity of the mesh prescribed by boundary conditions.

Wall boundary conditions

For wall boundary conditions, the prescribed normal velocity at the boundary is set to 0. In [START_REF] Krivodonova | High-order accurate implementation of solid wall boundary conditions in curved geometries[END_REF],

the author described a body-tted discontinuous Galerkin scheme to approximate the solution to the Euler equations with solid wall boundary conditions for curved geometry. An important feature in this paper is that the boundary conditions should be prescribed on the real continuous geometry, rather that on the approximated discretized geometry obtained with the mesh. Doing so, the error due to the discretization of the geometry does not reduce the overall accuracy of the scheme. Moreover in some cases, with conditions imposed on the discretized geometry, steady ows are not reached by the schemes. The asymmetry introduced by the discretization may indeed introduce vortices or wakes that are irrelevant considering the Euler equations system.

Remeshing constrained by structure motion

The ALE method (see section I-2.2.4) relies on a periodic or cycle-based displacement of the mesh. The displacement is based on a prescribed mesh velocity eld denoted u mesh . To ensure that the structure and uid meshes stay coincident one may just provide the following condition on the velocity eld u mesh = u s , on Γ.

(I.83)

The Jacobian is then deduced. However, the presence of too much distorted elements or nonconformal ones, forces the algorithm to remesh partly the uid domain and to project conservatively quantities on the new mesh. This re-meshing phase may prove quite expensive. Indeed, in 1D or 2D, the re-meshing is not problematic, but in 3D the numerical cost sometimes becomes preponderant over the cost of the uid and structure solvers. In [START_REF] Hu | Direct simulation of uid particle motions[END_REF], Hu and al. presented an ALE method to couple a Navier-stokes solver with a particle one, showing in particular that an explicit coupling is not stable. Later in [START_REF] Hu | Direct numerical simulations of uidsolid systems using the arbitrary LagrangianEulerian technique[END_REF], they assessed the evolution of the ALE methods for uid-structure coupling. The structural displacement is dealt with using eq. (I.83). The update of the meshes displacement is done in an explicit way, whereas the update of the meshes velocity is implicit, resulting in a stable scheme. Extension to visco-elastic uid is made. In [START_REF] Tallec | Fluid structure interaction with large structural displacements[END_REF], Le Tallec and Mouro proposed to consider the whole space as a physical continuum. The resulting problem is then split into a uid and a structural part, enforcing kinematic acceptable states between the two. Their method uses a Lagrangian approach for the structure and an ALE HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 47 formulation for the uid. Mesh velocity is then imposed according to eq. (I.83) so that interfaces between uid and structure stay coincident.

I-3.2.3 Fictitious domain methods

In order to avoid any kind of remeshing, the ctitious domain methods have been introduced

for xed mesh methods (see section I-2.3). The uid mesh overlaps the structure and the uid values in the overlapping cells are completely ctitious. The main problem consists in imposing the values in these overlapping cells. The main issue is how to impose these values in order to satisfy the boundary conditions. For body-tted methods, the meshes are not overlapping, and there is no need to dene such values. Many methods have been derived to tackle this problem.

They gather into seven families which are listed below and described in the following: One may refer to [START_REF] Mittal | Immersed boundary methods[END_REF] or [START_REF] Sotiropoulos | Immersed boundary methods for simulating uidstructure interaction[END_REF] for an extended review of the ctitious domain methods.

Immersed boundary method

The immersed boundary method (IBM) has been rst proposed by Peskin [START_REF] Peskin | Flow patterns around heart valves: a numerical method[END_REF] and later extended by Lai and Peskin [START_REF] Lai | An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[END_REF][START_REF] Peskin | The immersed boundary method[END_REF]. Originally, the method has been developed for the simulation of cardiac blood ows. The physical model used is the incompressible NavierStokes equations coupled with very thin elastic structures, with equivalent density. This is a very peculiar model, where for once the structural displacement is imposed by the uid one. The method consists in forcing the movement of the structure using the uid displacement and to weakly impose a discontinuity in the uid constraint at the boundary. To do so, additional forces are added to the uid near the interface. For such a uid, one writes

ρ (∂ t u + u • ∇u) + ∇p=µ∆u + f , ∇ • u =0, (I.84)
where the variables ρ, u, p denote for the density (assumed constant), the velocity vector and the pressure. The additional force f is introduced to satisfy weakly the boundary conditions and writes

f (x, t) = Ω F (y, t)δ 0 (x -X(y, t))dy. (I.85)
where X is the Lagrangian position of the elastic structure and F is the Fréchet derivative of the internal energy with respect to the Lagrangian position X. δ 0 symbolizes the Dirac function.

The discretization of the Dirac function is made in order to ensure mass, momentum and total energy conservation, as well as Galilean invariance. Note in particular that on the continuous level, eq. (I.85) reduces to f = F . Reciprocally, the structure part is solved thanks to the following equation

∂ t X(x, t) = Ω u(y, t)δ 0 (y -X(y, t))dy. (I.86)
which yields on the continuous levels that ∂ t X = u. The uid velocity imposes the displacement of the structure. This method is forged to deal with very thin structures, whose density is similar to the uid one. Order of accuracy has been studied for smooth problems in [START_REF] Grith | On the order of accuracy of the immersed boundary method: Higher order convergence rates for suciently smooth problems[END_REF]. The method has been modied for adapted renement in [START_REF] Grith | An adaptive, formally second order accurate version of the immersed boundary method[END_REF] to reach second order of accuracy. For thick structure, it is rather the structure velocity that imposes the displacement of the uid. To deal with thicker structures, direct forcing methods have been developed.

Direct forcing methods

As for the immersed boundary method, the direct forcing method consists in adding an external force in order to satisfy boundary conditions. Consider an incompressible viscous uid ow with boundary conditions provided by eq. (I.81). A possible consistent discretization of boundary conditions is to impose near the interface the uid velocity to be equal to the structure velocity.

It is equivalent to set f such that f = 1 ∆t

t n+1 t n (u • ∇u + ∇p -µ∆u) dt + 1 ∆t (v n+1 -u n ), (I.87)
with v n+1 being the structure velocity at time t n+1 . Indeed substituting eq. (I.87) in eq. (I.84) integrated in time between t n and t n+1 , it immediately yields that u n+1 = v n+1 . In the numerical schemes, f is not used, and the velocity directly satises u n+1 = v n+1 . Geometrically, the interface neighbourhood is dened as the mixed cells (partly uid, partly solid) in addition with the cells inside the solid part. See g. I.8 as a representative example.

The wider the stencil used by the numerical scheme, the wider the interface neighbourhood.

Only mixed and fully solid cells values are to be imposed. With f dened as in eq. (I.87), the order of accuracy of the method is at most one. The method developed by Mohd-Yusof in [118] and [START_REF] Fadlun | Combined immersed-boundary nite-dierence methods for three-dimensional complex ow simulations[END_REF] consists in doing an interpolation of the velocity relative to the interface, around the boundary. Then a antisymmetry of the relative velocity is used inside the mixed/full solid part of the domain. This method is second order accurate and a priori more accurate than doing a direct forcing without any kind of interpolation. It is mostly used for incompressible viscous ows but has been extended for compressible viscous ows. It is obviously not conservative in mass, momentum and total energy. In [START_REF] Yang | A simple and ecient direct forcing immersed boundary framework for uidstructure interactions[END_REF], the authors proposed a simplied, ecient and accurate direct forcing method for incompressible ows. where velocity values are imposed to match the structure velocity any call to the uid solver during the coupling, which alleviates greatly the computation. In [START_REF] Belliard | An analysis and an aordable regularization technique for the spurious force oscillations in the context of direct-forcing immersed boundary methods[END_REF],

the author proposed a regularization technique for the direct forcing methods. This regularization prevents spurious force oscillations from occurring. The extension to compressible inviscid ows is presented later as the reection and mirroring ghost-cells methods.

No-penetration and volume penalization methods

For uid-structure interaction, considering non-porous media for the structure, the uid mass must remain outside the structure. There is no uid penetration inside the structure. For example, the direct forcing method does not satisfy the no-penetration condition. One possible approach to deal with this problem is to penalize any kind of uid penetration in the structure. This is the penalization method. The method was rst introduced by Arquis and Caltagirone [START_REF] Arquis | Sur les conditions hydrodynamiques au voisinage d'une interface milieu uide-milieu poreux: application à la convection naturelle[END_REF] for incompressible viscous ows, with a Brinkman porosity model for the solid. It is equivalent to simulating a uid-structure interaction with a porous media whose porosity is dened by a very small parameter. The smaller the parameter, the less porous the media is, till impermeability.

In [START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous ows[END_REF], Angot and al. proposed a L 2 -penalization. Let η be a parameter and consider Ω s as the solid part, it yields for incompressible viscous ows

∂ t u η + u η • ∇u η + ∇p η = 1 Re ∆u η -1 η u η χ Ωs , t > 0, x ∈ R 2 ∇ • u η = 0, t > 0, x ∈ R 2 (I.88)
χ denotes for the indicator function. They showed convergence when η → 0 toward the solution of the Navier Stokes with zero-velocity boundary conditions provided on ∂Ω s . The accuracy has been proven to be at worst of order 3 4 in η, but in practice 1 st order of accuracy is recovered.

However, the CFL conditions is largely impacted due to the relaxation term 1 η u η χ Ωs . Using a fully-explicit scheme yield a CFL condition as ∆t ≤ Cη which is a constrain as η should tend to zero. However, an implicit treatment of the relaxation terms entirely withdraws this condition.

As the relaxation term is local, the implicit treatment is not as onerous as the implicit treatment NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTION of complex numerical uxes. The penalization is not generally conservative in mass, momentum and total energy. Depending on the value of η, the boundary treatment may introduce undesirable boundary layers for compressible inviscid ows. Moreover correct capture of shocks is impacted due to this special treatment. In [START_REF] Engels | Numerical simulation of uidstructure interaction with the volume penalization method[END_REF], the extension to deformable obstacles is realized.

Lagrange multipliers

Fictitious domain based on Lagrange multipliers for incompressible viscous ows have been rst developed by Glowinski and al. in [START_REF] Glowinski | A distributed Lagrange multiplier/ctitious domain method for particulate ows[END_REF]. The solid domain is lled with a ctitious uid state.

Lagrange multipliers are used to ensure rigid body motion in the Navier-Stokes variational formulation. Studies and improvements have been done to develop the method, increase robustness and alleviate the computations in [START_REF] Patankar | A new formulation of the distributed Lagrange multiplier/ctitious domain method for particulate ows[END_REF] and [START_REF] Glowinski | A distributed Lagrange multiplier/ctitious domain method for the simulation of ow around moving rigid bodies: application to particulate ow[END_REF]. Extension to visco-elastic particles/bodies has been realized in [START_REF] Singh | A distributed Lagrange multiplier/ctitious domain method for viscoelastic particulate ows[END_REF]. Solid and uid problems are coupled thanks to the Lagrange multipliers. Those multipliers are seen as pseudo-forces that are exerted on both parts. A full explicit procedure is possible. As a contrary to the immersed boundary method which relies on approximate Dirac function to enforce the correct exchange of forces, here, the procedure relies on the Lagrange multipliers to exchange forces.

Embedded cut-cells methods

The rst embedded cut-cells method has been introduced by Noh, while working on the coupling between a Lagrangian method for the structure part and an Eulerian nite volume method for the uid part [125]. The proposed embedded cut-cells method provides naturally conservation of mass, momentum and total energy due to the special space discretization. The method relies on the following observation: cutting the cells near the interface and integrating forces and torque on the interface yield immediately conservation of the desired quantities. However due to the possible very small cells, the CFL condition is highly impacted. Indeed, denote by α n the volume fraction of the structure inside a cell at time t n , it writes

(1 -α n+1 )U n+1 = (1 -α n )U n - t n+1 -t n h ∆U (I.89)
where ∆U is the ux at the boundary of the cell. Immediately, the CFL condition becomes ∆t < (1 -α) h c , which can be arbitrarily small as α tends to 1. This is the main drawback of the method. The CFL condition is proportional to the volume of a cell divided by its perimeter.

Therefore one gets very small time-steps near the boundary due to the presence of cut-cells. The general principle of cut-cells methods is presented in g. I.9. Numerical uxes for cells around the boundary need to be modied to ensure correct boundary conditions enforcement. Two main approaches have been considered in the literature. The rst one presented in [START_REF] Pember | An adaptive Cartesian grid method for unsteady compressible ow in irregular regions[END_REF] and [START_REF] Colella | A Cartesian grid embedded boundary method for hyperbolic conservation laws[END_REF] consists in evaluating the numerical uxes as if there were no structure in cut-cells. Then, identifying the lack of conservation of mass, momentum and total energy, to redistribute the lacking quantities partly in the cut-cells and partly in the adjacent ones. The redistribution is The second one presented in [START_REF] Falcovitz | A two-dimensional conservation laws scheme for compressible ows with moving boundaries[END_REF] and [START_REF] Hu | A conservative interface method for compressible ows[END_REF] consists directly in drawing a conservative balance on each cut-cell. In order to avoid very small cells and so CFL restrictions, [START_REF] Falcovitz | A two-dimensional conservation laws scheme for compressible ows with moving boundaries[END_REF] made the suggestion to merge the small cells with fully uid adjacent ones. As to [START_REF] Hu | A conservative interface method for compressible ows[END_REF],

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 51

they proposed to mix the cells with cells aligned in the normal direction outward the solid/uid boundary. Last [START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF] proposed to mix too small cells 1 with an adjacent one. This mixing is illustrated in g. I.10. The main known limitations of cut-cells methods is that it is impossible to consider a very thin structure present in a uid. The thickness of the structure must be at least greater that the characteristic length of the mesh. The mixing procedure can only apply if a large enough adjacent cell is found. This becomes problematic for some 3D problems. Some geometric congurations are also tricky. If two solid elements are present in the same cell, then there is no natural denition for a global outward normal. Using a ner mesh or adaptive mesh renement (AMR) and three dimensional problems, on adaptive grids. The method is proved to be conservative in mass, momentum and total energy, and numerical experiments demonstrated second order of accuracy. A particularity of their method is that they considered viscous compressible ows.

They used a mixing algorithm near the boundary to merge very small cells with a master cell in order not to damp the CFL condition. Muralidharan developed in [START_REF] Muralidharan | A high-order adaptive Cartesian cut-cell method for simulation of compressible viscous ow over immersed bodies[END_REF], a new adaptive nite volume conservative cut-cell method which is third order accurate for the compressible Navier-Stokes equation. Despite a high-order geometric approximation, the robustness of their schemes is proved for viscous ows. An extension to three dimensions is proposed.

Reection and mirroring ghost-cells methods

The reection and mirroring ghost-cells is but an extension to the compressible hydrodynamics of the direct forcing methods using interpolation techniques. The underlying idea is that any smooth enough surface can be locally approximated by a plane. And that at the crossing of a plane, the normal velocity is anti-symmetrized whereas density, pressure, internal, kinetic and total energies are symmetrized. The mirroring method has been described by Forrer and Berger in [START_REF] Forrer | Flow simulations on Cartesian grids involving complex moving geometries[END_REF]. The main idea resides in the fact that the wall acts as a mirror on the variables for a constant wall velocity. Introducing t and n as the tangential and normal vectors outward the boundary and x s a point on the boundary, it yields for a small parameter λ that

           ρ(x s + λn) = ρ(x s -λn) p(x s + λn) = p(x s -λn) u(x s + λn) • t = u(x s -λn) • t u(x s + λn) • n = 2D t x s -u(x s + λn) • n (I.90)
The method is second order accurate at the boundary. Using a stencil inside the uid domain, values of ρ, p and u are reconstructed on the blue points depicted in g. I.11. Then, the value at the black points inside the solid domain are imposed using eq. (I.90). The uid solver is then applied normally on the whole domain.

Similar methods have been introduced in [START_REF] Arienti | A level set approach to Eulerian Lagrangian coupling[END_REF], [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF], [START_REF] Zeng | A systematic approach for constructing higher-order immersed boundary and ghost uid methods for uidstructure interaction problems[END_REF]. As a contrary to the previously introduced cut-cells methods, the resulting scheme is not conservative in mass, momentum and total energy.

Inverse LaxWendro procedure for boundary conditions sions in space of the primitive variables. In [START_REF] Tan | A high order moving boundary treatment for compressible inviscid ows[END_REF], the authors extended their previous results

to the case of a moving boundary whose motion is triggered by the uid state. This is a rst step toward a uid-structure interaction solver using Inverse LaxWendro boundary treatment.

The main diculty in their articles is that the structure, considered as a rigid body, is described in a Lagrangian framework whereas the uid solver follows an Eulerian approach. In [START_REF] Tan | Ecient implementation of high order inverse laxwendro boundary treatment for conservation laws[END_REF], the authors attempted to reduce the numerical cost of their procedure by reducing the number of normal space derivatives changed into time and tangential space derivatives. Numerical experiments show that a certain number of normal space derivatives changes is enough to ensure a priori the stability of the eective scheme. In [START_REF] Tan | Inverse LaxWendro Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments[END_REF], the authors proposed a condensed review of their method, including applicability of the procedure. Last, Vilar and Shu in [START_REF] Vilar | Development and stability analysis of the inverse lax-wendro boundary treatment for central compact schemes[END_REF] developed a linear analysis of the scheme stability using the Inverse LaxWendro procedure. They used the GKS theory (see lemma I.11) to analyse theoretically the stability of the eective schemes. They drew comparisons with the standard computation of the eigenvalues of the operator matrices.

Similar results of required changed normal space derivatives as in [START_REF] Tan | Ecient implementation of high order inverse laxwendro boundary treatment for conservation laws[END_REF] have been recovered.

Moreover, for the considered schemes, GKS theory and the study of the eigenspectrum of the On présente comment construire une famille de schémas volumes nis Lagrange-projection sur maillage décalé à l'ordre élevé. Ces schémas ont fait l'objet d'une note au comptes-rendus de l'Académie des Sciences [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF]. Pour cela, la distribution originelle des variables sur la grille décalée Arakawa de type C est altérée pour des questions de robustesse et de conservation, tout d'abord en 1D puis en multi-dimensionnel. Pour l'extension en 1D à l'ordre élevé de ces schémas, des séquences de RungeKutta ont été choisies pour l'intégration en temps du système lagrangien, basé sur une formulation en énergies interne et cinétique. Une procédure conservative est développée à l'ordre élevé an de corriger l'énergie interne et d'assurer la capture correcte des chocs. Le résultat principal de cette partie est le théorème II.9 qui prouve la consistance faible du schéma pour les équations d'Euler en référentiel lagrangien. Enn, la projection conservative classique basée sur l'intégration analytique de polynômes de Lagrange est adaptée au cas des grilles décalées. Une extension en multidimensionnel est réalisée par l'utilisation de séquences d'ordre élevé de balayage directionnel. Enn, la dérivation de ces schémas dans le cas des équations de Navier Stokes compressibles, avec une distribution particulière des termes du tenseur visqueux, est faite. Des résultats numériques sont proposés tout au long du chapitre an d'illustrer la précision et la robustesse de cette nouvelle famille de schémas.

We propose in this chapter a new class of nite volume numerical schemes on staggered Cartesian grids for solving the compressible hydrodynamics system of equations

∂ t    ρ ρu ρe    + ∇ •    ρu ρu ⊗ u + pI (ρe + p)u    = 0. (II.1)
The density, velocity, specic total energy and pressure are respectively denoted by ρ, u, e and p. The schemes are based on 1D Lagrange-remap formalism used with directional splitting. The Lagrangian approach as well as the Lagrange-remap approach is the usual formalism used in the laboratory where my PhD thesis has taken place, as much for historical reasons as for robustness issues. They are high-order accurate in both time and space for any equation of states and are conservative in mass, momentum and total energy. The outline of the chapter is the following.

First, using the Arakawa system of grids, a new grid is derived to ensure face-staggering of variables and robustness in case of shocks (section II-1). Second, the one-dimensional conservative Lagrange-remap schemes formulated in internal and kinetic energies are extended to higher order of accuracy (section II-2). The schemes may be decomposed into three steps that are detailed.

The Lagrangian phase based on high-order reconstruction and interpolation of data to maintain high-order accuracy in space, and a RungeKutta time-integration to ensure the high-order accuracy in time. A new conservative and high-order accurate internal energy correction is proposed to ensure the correct capture of shocks. The main result of this chapter is theorem II.9

where the weak consistency of the scheme is proved. Conservative remapping phase is adapted to the staggered grids. It is based as for the cell-centered case on Lagrange polynomials. Third, the extension to two-dimensional systems is made using high-order directional splitting methods (section II-3). The 2D Lagrange-remap schemes on staggered Cartesian grids have been published in [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF]. Fourth, a natural extension of the schemes in the case of NavierStokes compressible equation is made with gravity source terms. It is based on a special distribution of viscous terms to ensure robustness and high-order of accuracy (section II-4). Numerical results all along the chapter illustrate both the accuracy and the robustness of the schemes.

II-1

Structure of schemes 

II-1 Structure of schemes on Arakawa C-type grids

In section I-2.2.1, the Arakawa system of classication for staggered grids has been presented.

The BBC scheme which has been proposed in 1984 in [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF] by Woodward and Collela will be extended to higher-order of accuracy in both time and space. The BBC scheme is based on a C-type Arakawa grid or face staggering. It means that the velocity are located on the face of the cells: an analysis of the space and time discretization is proposed.

II-1.1 Example of the BBC scheme

The scheme solves the Lagrange system (I.60) formulated in internal energy. On cell centers, the discretized variables are the cell mass ∆m, the specic volume τ and the internal energy . On cell interfaces, the velocity u is discretized. The pressure is denoted p and articial viscosities or bulk hyperviscosities (see section I-2.4) are denoted q. The interface mass ∆m i+ 1 2 is dened by

∆m i+ 1 2 = 1 2 (∆m i+1 + ∆m i ).
(II.2)

The Lagrangian scheme writes in three steps:

Prediction at t = t n+ 1 4 u n+ 1 4 i+ 1 2 = u n i+ 1 2 - ∆t 4∆m i+ 1 2 (p n i+1 + q n i+1 -p n i -q n i ). (II.3) STRUCTURE OF SCHEMES ON ARAKAWA C-TYPE GRIDS Prediction at t = t n+ 1 2                  τ n+ 1 2 i =τ n i + ∆t 2∆m i (u n+ 1 4 i+ 1 2 -u n+ 1 4 i-1 2 ), n+ 1 2 i = n i -∆t 2∆m i (p n i + q n i )(u n+ 1 4 i+ 1 2 -u n+ 1 4 i-1 2 ), p n+ 1 2 i =EOS(τ n+ 1 2 i , n+ 1 2 i ), u n+ 1 2 i+ 1 2 =u n i+ 1 2 -∆t 2∆m i+ 1 2 (p n+ 1 2 i+1 + q n i+1 -p n+ 1 2 i -q n i ).
(II.4)

Prediction at t = t n+1                        τ n+1 i =τ n i + ∆t ∆m i (u n+ 1 2 i+ 1 2 -u n+ 1 2 i-1 2 ), n+ 1 2 i = n i -∆t ∆m i (p n+ 1 2 i + q n i )(u n+ 1 2 i+ 1 2 -u n+ 1 2 i-1 2
),

p n+1 i =EOS(τ n+1 i , n+1 i ), u n+1 i+ 1 2 =2u n+ 1 2 i+ 1 2 -u n i+ 1 2 , x n+1 i+ 1 2 =x n i+ 1 2 + ∆tu n+ 1 2 i+ 1 2 .
(II.5)

The rst prediction done in eq. (II.3) is used to stabilize the scheme. Using Arakawa C-type grids, 2 nd order RungeKutta sequences are not stable for the wave equations, as it will be shown later on. The choice to made the rst predictor at t = t n+ 1 4 on the velocity rather that on the pressure allows to reduce the number of call to the equation of state. Another interesting choice is the velocity obtained at t n+1 . This choice is made to obtain a compatible discretization of the kinetic energy in the sense of Caramana [START_REF] Caramana | The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[END_REF]. Doing so, it allows to get the following results

Lemma II.1 (Conservation properties of the BBC scheme). The BBC scheme (II.2)-(II.3)-(II.4)-(II.5) is conservative in mass, momentum and total energy for any choice of articial viscosities or hyperviscosities. The total energy of a cell is dened here as

∆m i e n i = ∆m i n i + 1 2 ∆m i+ 1 2 e kin n i+ 1 2 + ∆m i-1 2 e kin n i-1 2 ,
with the kinetic energy dened as e kin i+ 1 2

= 1 2 (u i+ 1 2 ) 2 .
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Proof. Mass and momentum conservation are obvious. Only total energy conservation is detailed.

∆m i (e i n+1 -e i n ) = ∆m i ( i n+1 -i n ) + 1 2 ∆m i+ 1 2 (e kin n+1 i+ 1 2 -e kin n i+ 1 
2

) + ∆m i-1 2 (e kin n+1 i-1 2 -e kin n i-1 2 ) = -∆t(p n+ 1 2 i + q n i )(u i+ 1 2 n+ 1 2 -u i-1 2 n+ 1 2 ) + 1 4 ∆m i+ 1 2 (u n+1 i+ 1 2 -u n i+ 1 2 )(u n+1 i+ 1 2 + u n i+ 1 2 ) + ∆m i-1 2 (u n+1 i-1 2 -u n i-1 2 )(u n+1 i-1 2 + u n i-1 2 ) = -∆t(p n+ 1 2 i + q n i )(u n+ 1 2 i+ 1 2 -u n+ 1 2 i-1 2 ) -∆t 2 (p n+ 1 2 i+1 + q n i+1 -p n+ 1 2 i -q n i )u n+ 1 2 i+ 1 2 -∆t 2 (p n+ 1 2 i + q n i -p n+ 1 2 i-1 -q n i-1 )u n+ 1 2 i-1 2 = -∆t   p n+ 1 2 i+1 + p n+ 1 2 i + q n i+1 + q n i 2 u n+ 1 2 i+ 1 2 - p n+ 1 2 i + p n+ 1 2 i-1 + q n i + q n i-1 2 u n+ 1 2 i-1 2  
Hence total energy conservation is obtained due to the ux form of ∆m i (e i n+1 -e i n ).

Remark II.1. The proof for total energy conservation uses special features of the BBC scheme,

especially that u n+1 i+ 1 2 = 2u n+ 1 2 i+ 1 2 -u n i+ 1 2
. Without this special relation between the velocities at dierent time steps, total energy conservation does not hold.

Remark II.2. In recent works by Herbin, Latché and al. [START_REF] Herbin | Consistent explicit staggered schemes for compressible ows Part II: the Euler equation[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Herbin | Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations[END_REF], they propose an a priori internal energy corrector. This corrector is based on the computation of a residual term obtained using the discretization of the kinetic energy. Here, for the BBC scheme, the residual term obtained is exactly 0. Then, no special energy balance is to be performed in the Lagrangian phase.

In other words, it means that changing the time integration has a strong impact on the total energy conservation property of the scheme. The idea to be able to deal with any time-integration sequences is to discretize the kinetic energy and to evolve it using its evolution equation. This way conservation of total energy will be ensured.

II-1.2 Discretized variables on Arakawa C-type grid

In order to extend the BBC scheme at high-order in both time and space, the method used in this work is based on the analysis of the kinetic energy equation, in a way that ensures total energy conservation which appears more as a compatibility relation. The kinetic energy evolution equation writes formally

∂ t ρ 0 e kin + u∂ X p = 0 (II.6)
To form the total energy equation, it is sucient to combine with the internal energy one which writes as

∂ t ρ 0 + p∂ X u = 0 (II.7)
The use of the Lagrangian kinetic energy eq. (II.6) is unusual with respect to the literature.
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Another dierence with the BBC scheme is that the masses will be decoupled between the centered and staggered grids, meaning that eq. (II.2) will not be satised. The discretization is summarized in g. II.1. For example in 1D, two mass variables are considered, one located at the center of each cells, and one at the center of each staggered cells. To our knowledge, such a choice is also not usual in the literature. 

  ρ 0 ρ 0 τ ρ 0   i   ρ 0 ρ 0 u ρ 0 e kin  
} with ∆X = x i+ 1 2 -x i-1 2 and a dual grid {x i } with x i = 1 2 (x i+ 1 2 + x i- 1 2 
). As presented in eq. (II.8), φ and φ will respectively denote the space averaged value of φ and its point-wise value.

                   φ n i = 1 ∆X x i+ 1 2 x i-1 2 φ(x, t n )dx, φ n i+ 1 2 = 1 ∆X x i+1 x i φ(x, t n )dx, φ n i = φ(x i , t n ), φ n i+ 1 2 = φ(x i+ 1 2 , t n ).
(II. the object of a publication [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] in the "Comptes-Rendus Mathématique".

II-2.1 Formulation of RungeKutta based Lagrangian nite volume schemes

The Lagrangian system formulated in kinetic and internal energies is reminded hereafter, using q as the articial viscosity as detailed in section I-2.4.

               D t ρ 0 τ -∂ X u = 0, D t ρ 0 u + ∂ X (p + q) = 0, D t ρ 0 + (p + q)∂ X u = 0, D t ρ 0 e kin + u∂ X (p + q) = 0, p = EOS(τ, ).
(II.9)

II-2.1.1 Semi-discrete formulation of the Lagrangian nite volume schemes

To get the semi-discrete formulation of the Lagrangian nite volume schemes, system depicted in eq. (II.9) is integrated in time between t n and t n+1 over a cell x i-

1 2 , x i+ 1 2
for the thermodynamics variables ρ 0 τ and ρ 0 and over a cell [x i , x i+1 ] for the ρ 0 u and ρe kin . It yields

                     ∆X(ρ 0 τ n+1 i -ρ 0 τ n i ) = t n+1 t n u i+ 1 2 (θ) -u i-1 2 (θ)dθ, ∆X(ρ 0 u n+1 i+ 1 2 -ρ 0 u n i+ 1 2 ) = t n+1 t n (p + q) i+1 (θ) -(p + q) i (θ)dθ, ∆X(ρ 0 n+1 i -ρ 0 n i ) = t n+1 t n x i+ 1 2 x i-1 2 ((p + q)∂ X u)(y, θ)dydθ, ∆X(ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 
2

) = t n+1 t n x i+1 x i (u∂ X (p + q))(y, θ)dydθ, p i = EOS(τ i , i ).
(II.10)

Notations (p + q)δu i and uδ(p + q) i+ 1 2 are introduced as

(p + q)δu i = x i+ 1 2 x i-1 2 ((p + q)∂ X u)(y, θ)dy, uδ(p + q) i+ 1 2 = x i+1
x i (u∂ X (p + q))(y, θ)dy.

So that eq. (II.11) rewrites

                   ∆X(ρ 0 τ n+1 i -ρ 0 τ n i ) = t n+1 t n u i+ 1 2 (θ) -u i-1 2 (θ)dθ, ∆X(ρ 0 u n+1 i+ 1 2 -ρ 0 u n i+ 1 2 ) = t n+1 t n (p + q) i+1 (θ) -(p + q) i (θ)dθ, ∆X(ρ 0 n+1 i -ρ 0 n i ) = t n+1 t n (p + q)δu i (θ)dθ, ∆X(ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 
2

) = t n+1 t n uδ(p + q) i+ 1 2 (θ)dθ, p i = EOS(τ i , i ).
(II.11) Before performing any kind of time integration, one must rst address the issue of computing with high-order accuracy the point-wise values of p, u, τ and .

HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES II-2.1.2 High-order in spatial reconstruction of pointwise values from averages ones and vice versa and of space derivatives

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average) values from the average (resp. point-wise) ones with high-order accuracy. Table II.1 gives the coecients for centered, symmetric and polynomial reconstructions using eq. (II.12). Although other reconstructions may be used, centered and symmetric ones are retained here and are sucient for uniform Cartesian grids.

                               φ ξ(i) = k C k φ ξ(i)+k , φ ξ(i) = k C k φ ξ(i)+k , δφ ξ(i) = k≥0 d k φ ξ(i)+k+ 1 2 -φ ξ(i)-k-1 2 , φ ξ(i) = k r k (φ ξ(i)+k+ 1 2 + φ ξ(i)-k-1 2 ), φ ξ(i) = (ρ 0 φ) ξ(i) (ρ 0 ) ξ(i) , with ξ(i) = i on primal grid, i + 1
2 on dual grid, (II.12)

The non-conservative terms ψδφ of eq. (II.11) are computed by:

1. Applying the δ operator to point-wise values of φ using coecients in table II.3 and third equation of (II.12).

2. Multiplying by point-wise values of ψ, then reconstructing average values using coecients in table II.2 and second equation of (II.12).

Order 

C 0 C ±1 C ±2 C ±3 C ±4 2 nd

II-2.1.3 RungeKutta based time discretization

We consider N th order explicit schemes with s sub-cycles with the following notations for Runge-Kutta sequences: α m is the time step for the mth sub-cycle, a m,l the m, l term of the Butcher sum of articial viscosity and pressure as Π = p + q. The system (II.13) details one Runge-Kutta sub-cycle at time t n+αm and (II.14) details the nal step at time t n+1 :

                           ρ 0 τ n+αm i =ρ 0 τ n i + ∆t ∆X m-1 l=0 a m,l du n+α l i , ρ 0 u n+αm i+ 1 2 =ρ 0 u n i+ 1 2 -∆t ∆X m-1 l=0 a m,l dΠ n+α l i+ 1 2 , ρ 0 n+αm i =ρ 0 n i -∆t ∆X m-1 l=0 a m,l Πδu n+α l , i p n+αm i =EOS(τ n+αm i , n+αm i ), (II.13)
Here, dφ is the dierence between two consecutive point-wise values: Table II. [START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous ows[END_REF] Coecients for the interpolation of cell-centered values from staggered ones and vice-versa. 

dφ i = φ i+ 1 2 -φ i-
α 1 a 1,0 0 0 0 • • • α 2 a 2,0 a 2,1 0 0 • • • . . . . . . . . . . . . • • • • • • α s a s,0 • • • • • • a s,s-1 0 1 θ 0 θ 1 • • • θ s-1 θ s Table II.
                                             ρ 0 τ n+1 i =ρ 0 τ n i + ∆t ∆X s l=0 θ l du n+α l i , ρ 0 u n+1 i+ 1 2 =ρ 0 u n i+ 1 2 -∆t ∆X s l=0 θ l dΠ n+α l i+ 1 2 , ρ 0 n+1 i =ρ 0 n i -∆t ∆X s l=0 θ l Πδu n+α l , i ρ 0 e kin n+1 i+ 1 2 =ρ 0 e kin n i+ 1 2 -∆t ∆X s l=0 θ l uδΠ n+α l , i+ 1 2 x n+1 i+ 1 2 =x n i+ 1 2 + ∆t s l=0 θ l u n+α l i+ 1 2 , p n+1 i =EOS(τ n+1 i , n+1 i ). 
(II. Two denitions of total energies are introduced in order to study the schemes properties concerning the conservation of total energy.

Denition II.1. The total energy, based on the kinetic energy reconstructed from the momentum, of the system at time t = t n , denoted E n , is dened as Proof. Conservation of mass and momentum is straightforward. We only prove the conservation of total energy.

E n = ∆X i ρ 0 n i + i ρ 0 u 2 n
E n+1 -E n = i ρ 0 n+1 i -ρ 0 n i + i ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 2 = - ∆t ∆X i s l=1 θ l Πδu n+α l i + uδΠ n+α l i+ 1 2 = - ∆t ∆X i s l=1 k k θ l C k d k (Π n+α l i+k u n+α l i+k+k + 1 2 + u n+α l i+k+ 1 2 Π n+α l i+k+k +1 -Π n+α l i+k u n+α l i+k-k -1 2 -u n+α l i+k+ 1 2 Π n+α l i+k-k ).
Making the change of index i ← i + k in the rst term and i ← i + k + 1 in the second term of the RHS we get the result for wall (with non-trivial denitions of ghost-cell values) or periodic boundary conditions.

E n+1 -E n = - ∆t ∆X i s l=1 k k θ l C k d k ( Π n+α l i+k-k u n+α l i+k+ 1 2 + u n+α l i+k-k -1 2 Π n+α l i+k - Π n+α l i+k u n+α l i+k-k -1 2 -u n+α l i+k+ 1 2 Π n+α l i+k-k ) = 0.
We introduce the barotropic version of the staggered schemes: the intermediate stages write

HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES                  ρ 0 τ n+αm i =ρ 0 τ n i + ∆t ∆X m-1 l=0 a m,l (u n+α l i+ 1 2 -u n+α l i-1 2 ), ρ 0 u n+αm i+ 1 2 =ρ 0 u n i+ 1 2 -∆t ∆X m-1 l=0 a m,l (p n+α l i+1 -p n+α l i ), p n+αm i =EOS(τ n+αm i ),
(II.17)

and the nal stage writes

                         ρ 0 τ n+1 i =ρ 0 τ n i + ∆t ∆X s l=0 θ l (u n+α l i+ 1 2 -u n+α l i-1 2
),

ρ 0 u n+1 i+ 1 2 =ρ 0 u n i+ 1 2 -∆t ∆X s l=0 θ l (p n+α l i+1 -p n+α l i ), x n+1 i+ 1 2 =x n i+ 1 2 + ∆t s l=0 θ l u n+α l i+ 1 2 , p n+1 i =EOS(τ n+1 i
).

(II.18)

Lemma II.3 (Weak consistency of the barotropic Lagrangian staggered schemes (II.17)-(II.18)).

For all explicit RungeKutta sequences, all consistent spatial reconstructions, the schemes (II.17)-(II.18) are weakly consistent.

Proof. Here we use the fact that a scheme whose ux is consistent (denition I.6) is weakly consistent (denition I.7). This is why we have to verify that the scheme can be rewritten under the form (I.34)-(I.35)-(I.36).

From equation (II.18), one can dene the natural ux

f i+ 1 2 = s l=0 θ l -u n+α l i+ 1 2 p n+α l i+1
, and the intermediate uxes are dened from (II.17)

f αm i+ 1 2 = m-1 l=0 a m,l -u n+α l i+ 1 2 p n+α l i+1 .
The proof is done by induction on the intermediate time-steps. First one proves that the intermediate (resp. natural) ux can be written as Φ m (U i-mr+1 , ..., U i+mr+1 ) (resp. Φ (U i-(s+1)r+1 , ..., U i+(s+1)r+1 ))
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. Second, one proves that Φ m (resp. Φ ) satises for constant state (ρ 0 τ , ρ 0 , ρ 0 u, ρ 0

) t                                Φ m (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = α m -u p , Φ (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = -u p .
We start the proof considering the rst intermediate time-step. One has

f α 1 i+ 1 2 = a 1,0 -u n i+ 1 2 p n i+1 , α 1 = a 1,0 where                                  u n i+ 1 2 = r k=-r C k ρ 0 u n i+ 1 2 +k r k=-r C k ρ 0 i+ 1 2 +k , p n i = p       r k=-r C k ρ 0 τ n i+k r k=-r C k ρ 0i+k      
.

Hence, one can write f α 1 i+ 1 2 as a function Φ 1 with

f α 1 i+ 1 2 = Φ 1 (       ρ 0 τ n i-r+1 ρ 0i-r+1 ρ 0 u n i+ 1 2 -r ρ 0 i+ 1 2 -r       , ...,       ρ 0 τ n i+r+1 ρ 0i+r+1 ρ 0 u n i+ 1 2 +r ρ 0 i+ 1 2 +r      
).

The function Φ 1 writes

Φ 1 (       ρ 0 τ n i-r+1 ρ 0i-r+1 ρ 0 u n i+ 1 2 -r ρ 0 i+ 1 2 -r       , ...,       ρ 0 τ n i+r+1 ρ 0i+r+1 ρ 0 u n i+ 1 2 +r ρ 0 i+ 1 2 +r       ) = a 1,0                  - r k=-r C k ρ 0 u n i+ 1 2 +k r k=-r C k ρ 0 i+ 1 2 +k p       r k=-r C k ρ 0 τ n i+k r k=-r C k ρ 0i+k                       
.
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Hence, for constant state (ρ 0 τ , ρ 0 , ρ 0 u, ρ 0 ) t

Φ 1 (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = a 1,0                  - r k=-r C k ρ 0 u r k=-r C k ρ 0 p       r k=-r C k ρ 0 τ r k=-r C k ρ 0                        , using the fact that k C k = 1, it leads to Φ 1 (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = a 1,0 -ρ 0 u ρ 0 p( ρ 0 τ ρ 0 ) = a 1,0 -u p(τ ) .
In particular, still for constant states (ρ 0 τ , ρ 0 , ρ 0 u, ρ 0 ) t , one obtains that 

ρ 0 τ n+α 1 i = ρ 0 τ n i = ρ 0 τ, ρ 0 u n+α 1 i+ 1 2 = ρ 0 u n i+ 1 2 = ρ 0 u.
f αm i+ 1 2 = Φ m (       ρ 0 τ n i-mr+1 ρ 0i-mr+1 ρ 0 u n i+ 1 2 -mr ρ 0 i+ 1 2 -mr       , ...,       ρ 0 τ n i+mr+1 ρ 0i+mr+1 ρ 0 u n i+ 1 2 +mr ρ 0 i+ 1 2 +mr      
).

The function Φ m writes

Φ m (       ρ 0 τ n i-mr+1 ρ 0i-mr+1 ρ 0 u n i+ 1 2 -mr ρ 0 i+ 1 2 -mr       , ...,       ρ 0 τ n i+mr+1 ρ 0i+mr+1 ρ 0 u n i+ 1 2 +mr ρ 0 i+ 1 2 +mr       ) = m-1 l=0 a m,l                  - r k=-r C k ρ 0 u n+α l i+ 1 2 +k r k=-r C k ρ 0 i+ 1 2 +k p       r k=-r C k ρ 0 τ n+α l i+k r k=-r C k ρ 0i+k                       
Then for constant state (ρ 0 τ , ρ 0 , ρ 0 u, ρ 0 ) t and by induction on the previous intermediate time-

2D STAGGERED LAGRANGE-REMAP SCHEMES 69 steps Φ m (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = m-1 l=0 a m,l -ρ 0 u ρ 0 p( ρ 0 τ ρ 0 ) = m-1 l=0 a m,l -u p(τ ) = α m -u p(τ ) .
And in particular, still for constant states, one obtains that

ρ 0 τ n+αm i = ρ 0 τ n i = ρ 0 τ, ρ 0 u n+αm i+ 1 2 = ρ 0 u n i+ 1 2 = ρ 0 u.
Therefore, by induction, the natural ux f i+ 1 2 writes as a vector values function Φ as

f i+ 1 2 = Φ (        ρ 0 τ n i-(s+1)r+1 ρ 0i-(s+1)r+1 ρ 0 u n i+ 1 2 -(s+1)r ρ 0 i+ 1 2 -(s+1)r        , ...,        ρ 0 τ n i+(s+1)r+1 ρ 0i+(s+1)r+1 ρ 0 u n i+ 1 2 +(s+1)r ρ 0 i+ 1 2 +(s+1)r        ),
where Φ satises

Φ (        ρ 0 τ n i-(s+1)r+1 ρ 0i-(s+1)r+1 ρ 0 u n i+ 1 2 -(s+1)r ρ 0 i+ 1 2 -(s+1)r        , ...,        ρ 0 τ n i+(s+1)r+1 ρ 0i+(s+1)r+1 ρ 0 u n i+ 1 2 +(s+1)r ρ 0 i+ 1 2 +(s+1)r        ) = s l=0 θ l                  - r k=-r C k ρ 0 u n+α l i+ 1 2 +k r k=-r C k ρ 0 i+ 1 2 +k p       r k=-r C k ρ 0 τ n+α l i+k r k=-r C k ρ 0i+k                        . Thus for constant states, it leads to Φ (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = s l=0 θ l -ρ 0 u ρ 0 p( ρ 0 τ ρ 0 ) = s l=0 θ l -u p(τ ) .
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Using the fact that

s l=0 θ l = 1, it leads to Φ (       ρ 0 τ ρ 0 ρ 0 u ρ 0       , ...,       ρ 0 τ ρ 0 ρ 0 u ρ 0       ) = -u p(τ )
Hence, the scheme is weakly consistent for the barotropic equations in the sense of denition I.6.

Another important property of a scheme is its linear stability. To study such a property, one considers the scheme for the linearized system of equation, which is nothing but the wave equation

∂ t u + ∂ x p = 0 ∂ t p + ∂ x u = 0 (II.19)
For such a linear system, the staggered scheme writes

           p n+αm i = p n i -∆t ∆X m-1 l=0 a m,l du n+α l i , u n+αm i+ 1 2 = u n i+ 1 2 -∆t ∆X m-1 l=0 a m,l dp n+α l i+ 1 2 ,            p n+1 i = p n i -∆t ∆X s-1 l=0 θ l du n+α l i , u n+1 i+ 1 2 = u n i+ 1 2 -∆t ∆X s-1 l=0 θ l dp n+α l i+ 1 2 , (II.20)
with a CFL condition of the form ∆t < λ∆X.

Using the amplication factor presented in section I-1.2.3, one deduces a CFL condition which yields linear stability for the schemes. Lemmas II.4 and II.5 give results concerning the linear stability of the staggered schemes.

Lemma II.4 (Linear instability of the second order staggered schemes). The two-steps secondorder in time and space explicit RungeKutta schemes (II.20) are linearly unstable for any CFL condition.

Remark II.3. For this reason, second order RungeKutta schemes are discarded. Instead the BBC scheme is used for second order accuracy in time.

Proof. A two-steps second-order explicit RungeKutta sequences can be parametrized using a non-zero α which leads to the following Butcher table

α α 0 1 1 -1 2α 1 2α
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For second-order accuracy, average and pointwise values are equivalent. The index j is used in order not to introduce confusion with the complex number i. Denoting ν = ∆t ∆X , it writes for u u n+1

j+ 1 2 = u n j+ 1 2 -ν (1 - 1 2α )(p n j+1 -p n j ) + 1 2α (p n+α j+1 -p n+α j
) .

Then plugging the terms for p n+α j and p n+α j+1 in the previous equation, it yields

u n+1 j+ 1 2 = u n j+ 1 2 -ν (1 - 1 2α )(p n j+1 -p n j ) + 1 2α (p n j+1 -p n j -αν(u n j+ 3 2 -2u n j+ 1 2 + u n j-1 2 
)) ,

which can be simplied into

u n+1 j+ 1 2 = u n j+ 1 2 -ν (p n j+1 -p n j ) - 1 2 (ν(u n j+ 3 2 -2u n j+ 1 2 + u n j-1 2 
)) .

The above expression is completely independent of α and thus the resulting CFL condition is as well independent of α. It writes

u n+1 j+ 1 2 = (1 -ν 2 )u n j+ 1 2 -ν p n j+1 -p n j + ν 2 2 u n j+ 3 2 + u n j-1 2
.

Denoting j and j+ 1 2 the numerical errors as introduced in section I-1.2.3, it yields

n+1 j+ 1 2 = (1 -ν 2 ) n j+ 1 2 -ν n j+1 -n j + ν 2 2 n j+ 3 2 + n j-1 2 .
Now assuming that for any n, and for any j, n j = e βn∆t e ikπj∆X with k an integer, one gets

e β∆t = (1 -ν 2 ) -ν e ikπ∆X 2 -e -ikπ∆X 2 + ν 2 2 e ikπ∆X + e -ikπ∆X .
Using trigonometric identities, it yields

e β∆t = (1 -ν 2 ) -2iν sin( kπ∆X 2 ) + ν 2 cos(kπ∆X).
Introducing θ = kπ∆X and g(θ, ν) = e β∆t , one gets the following equation for the amplication factor

g(θ, ν) = (1 -ν 2 ) -2iν sin( θ 2 ) + ν 2 cos(θ).
Then the square of the modulus of g(θ, ν)

writes |g(θ, ν)| 2 = 1 -ν 2 + ν 2 cos(θ) 2 + 4ν 2 sin 2 ( θ 2 
).

Using the fact that cos(θ) = 1 -2 sin 2 ( θ 2 ) and after simplication one gets

|g(θ, ν)| 2 = 1 + 4ν 4 sin 4 ( θ 2 
).
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Then, the amplication factor satises for ν = 0 max

θ∈[0:2π] |g(θ, ν)| 2 > 1.
And thus the scheme is not stable in the sense of denition I.11.

Similar calculations have been performed for higher-order staggered schemes. The RungeKutta sequences used in the following are described in section I-1.2.3. The third order RungeKutta sequence selected is the SSPRK3 [START_REF] Gottlieb | Total variation diminishing Runge-Kutta schemes[END_REF][START_REF] Gottlieb | Strong stability-preserving high-order time discretization methods[END_REF]. The fourth order RungeKutta sequence is the

3 8 -
Kutta sequence [START_REF] Kutta | Beitrag zur näherungweisen Integration totaler Dierentialgleichungen[END_REF]. The fth order RungeKutta sequence is the DormandPrince sequence [START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF]. Last, the sixth, seventh and eighth order RungeKutta sequence are the robust Verner sequences available in [START_REF] Verner | Jim Verner's Refuge for Runge-Kutta Pairs[END_REF]. Due to the complexity of the amplication factor, results of stability are numerical. One checks for a given value of ν that for all θ, |g(θ, ν)| ≤ 1. The results are summarized in the following lemma.

Lemma II.5 (Linear stability of the staggered schemes 

II-2.2 A new local internal energy corrector

Compared to the barotropic schemes, an additional theoretical diculty shows up for the hydrodynamics case (II.13)-(II.14) with the energy equation. It is related to the fact that, even if the total energy E is preserved by construction, it is not the case for the total energy E. Experimentally, we also observe that the schemes (II.13)-(II.14) are unable to capture the shocks correctly, in the sense that the RankineHugoniot jump relations are not recovered.

The idea is to recouple E and E using a correction of the internal energy at the end of the Lagrangian phase (II.13)-(II.14). The dierence between the computed kinetic energy and the 2D STAGGERED LAGRANGE-REMAP SCHEMES 73 kinetic energy reconstructed from the velocity is reversed in the internal energy. This is very similar to what is done in works by Herbin, Latché and al. [START_REF] Herbin | Consistent explicit staggered schemes for compressible ows Part II: the Euler equation[END_REF][START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF][START_REF] Herbin | Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations[END_REF]. The main dierence is that they perform the correction a priori, whereas here in our case the correction is applied a posteriori.

II-2.2.1 Internal energy corrector

As an additional comment, the internal energy evolution equation in (II.9) is undened classically in the sense of distributions. So, in the absence of any articial viscosity, one expects wrong discontinuities computations. The idea of the internal energy corrector is to really solve the Lagrangian system formulated in total energy rather that in internal one.

The dierence between the computed kinetic energy and the kinetic energy reconstructed from the velocity is computed. As the scheme is high-order accurate, the result is not so straightforward. It follows the steps described hereafter. First the point-wise kinetic energy reconstructed from the velocity is

( 1 2 ρ 0 u 2 ) n+1 i+ 1 2 = 1 2 k C k ρ 0 u n+1 i+k+ 1 2 2 k C k ρ 0 n i+k+ 1 2 .
Second it is averaged over a cell using the coecients C k presented in table II.1

( 1 2 ρ 0 u 2 ) n+1 i+ 1 2 = k C k ( 1 2 ρ 0 u 2 ) n+1 i+k+ 1 2 .
The dierence denoted ∆K n+1 i+ 1 2 between the two kinetic energies is

∆K n+1 i+ 1 2 = ρ 0 e kin n+1 i+ 1 2 -( 1 2 ρ 0 u 2 ) n+1 i+ 1 2 .
Third, linear interpolation is made to compute ∆K n+1 i

∆K n+1 i = 1 2 (∆K n+1 i+ 1 2 + ∆K n+1 i- 1 2 
).

Last, the dierence ∆K n+1 i is added to the internal energy ρ 0

n+1 i whereas ∆K n+1 i+ 1 2 is subtracted
to the kinetic ones. It writes as an a posteriori correction

ρ 0 n+1, i = ρ 0 n+1 i + ∆K n+1 i ρ 0 e kin n+1, i+ 1 2 = ρ 0 e kin n+1 i+ 1 2 -∆K n+1 i+ 1 2 = ( 1 2 ρ 0 u 2 ) n+1 i+ 1 2 (II.21)
The internal energy corrector can be applied at the end of each RungeKutta sub-cycle or only at the end of the time-step. Commonly, the internal energy corrector is performed only at the end of the time-step, hence the a posteriori correction.

HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES II-2.2.2 Properties of the internal energy corrector Lemma II.6 (High-order accuracy of the internal energy corrector). The internal energy corrector is high-order accurate in both time and space.

Proof. Assume that the solution is smooth enough. Assume that the coecients C k and C k yield N th order of accuracy in space, and that the Lagrange phase is also of order N in both time and space. Then in particular, one has

∆K n+1 i+ 1 2 = ρ 0 e kin n+1 i+ 1 2 -( 1 2 ρ 0 u 2 ) n+1 i+ 1 2 = O(∆X N ).
And then trivially, one gets that

∆K n+1 i = 1 2 (∆K n+1 i+ 1 2 + ∆K n+1 i-1 2 ) = O(∆X N ).
As the Lagrange phase is assumed to be high-order accurate, one has that

ρ 0 n+1 i = ρ 0 (x i , t n+1 ) + O(∆X N ),
And then, one gets

ρ 0 n+1, i = ρ 0 n+1 i + ∆K i = ρ 0 (x i , t n+1 ) + O(∆X N ),
which concludes the proof, yielding high-order accuracy for the internal energy.

Moreover the following lemma gives conservation of total energy when applying the internal energy corrector.

Lemma II.7 (Conservation of the internal energy corrector). The internal energy corrector

satises E n+1, = E n+1 .
Proof. The internal energy corrector is conservative in E if and only if we have

E n+1, -E n+1 = ∆X i ∆K i - ∆K i+ 1 2 = 0. As ∆K i = 1 2 (∆K i+ 1 2 + ∆K i-1 2 
), it leads to the following computations

E n+1, -E n+1 = ∆X i ∆K i - ∆K i+ 1 2 = ∆X i 1 2 (∆K i+ 1 2 + ∆K i-1 2 ) - ∆K i+ 1 2 .
Performing change of discrete variables in the rst summation, and assuming wall or periodic boundary conditions, it yields Proof. We have

i ∆K i - ∆K i+ 1 2 = 0.
E n+1, -E n = ∆X i ρ 0 n+1, i -ρ 0 n i + ∆X i ρ 0 u 2 n+1, i+ 1 2 -ρ 0 u 2 n i+ 1 2 (II.22)
Introducing the term at time t = t n+1 , it becomes

= ∆X i ρ 0 n+1, i -ρ 0 n+1 i + ρ 0 n+1 i -ρ 0 n i + ∆X i ρ 0 u 2 n+1, i+ 1 2 -ρ 0 e kin,u n+1 i+ 1 2 + ρ 0 e kin,u n+1 i+ 1 2 -ρ 0 u 2 n i+ 1 2 = ∆X i ρ 0 n+1, i -ρ 0 n+1 i -∆X i ρ 0 u 2 n+1, i+ 1 2 -ρ 0 e kin,u n+1 i+ 1 2 + E n+1 -E n
Using the fact that ρ 0 u 2 n+1,

i+ 1 2 = ρ 0 e kin,u n+1, i+ 1 2 
, it leads to

= E n+1, -E n+1 + E n+1 -E n = 0.
Thus, applying the internal corrector gives conservation of the energy E between time t = t n+1, and time t = t n . Proof. The assumptions presented in denition I.7 for weak consistency are done. We rst detail the proof for a forward Euler, second order in space scheme because it highlights the key elements of the method. The general case with a forward Euler and any order in space will be dealt with in a second stage. The most general case with any explicit RungeKutta sequences will not be detailed because it would add no new technical ideas and the notations are too heavy. For the HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES sake of simplicity, in the following the time step t n+1, is denoted by t n+1 .

First stage

For a forward Euler, second order in space scheme, the internal and kinetic energies discrete equations write

   ρ 0 n+1 i -ρ 0 n i = -∆t ∆X p n i (u n i+ 1 2 -u n i-1 2 ) + ∆K n+1 i , ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 2 = -∆t ∆X u n i+ 1 2 (p n i+1 -p n i ) -∆K n+1 i+ 1 2 ,
The idea is to take a test function φ ∈ C ∞ 0 with compact support. Denote 

φ n i = φ(i∆X, t n ) and φ n i+ 1 2 ((i + 1 2 )∆X, t n ).
n i ∆X (ρ 0 n+1 i -ρ 0 n i )φ n+1 i + (ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 
2

)φ n+1 i+ 1 2 + n i ∆t p n i φ n+1 i (u n i+ 1 2 -u n i-1 2 ) + u n i+ 1 2 φ n+1 i+ 1 2 (p n i+1 -p n i ) - n i ∆X ∆K n+1 i φ n+1 i -∆K n+1 i+ 1 2 φ n+1 i+ 1 2 = 0. (II.23)
Denote h a parameter proportional to ∆X and ∆t. Introducing the notation

                 T h 1 = n i ∆X (ρ 0 n+1 i -ρ 0 n i )φ n+1 i + (ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 
2

)φ n+1 i+ 1 2 , T h 2 = n i ∆t p n i φ n+1 i (u n i+ 1 2 -u n i-1 2 ) + u n i+ 1 2 φ n+1 i+ 1 2 (p n i+1 -p n i ) , T h 3 = - n i ∆X ∆K n+1 i φ n+1 i -∆K n+1 i+ 1 2 φ n+1 i+ 1 2 , (II.24)
eq. (II.23) rewrites simply under the form T h

1 + T h 2 + T h 3 = 0. Terms T h 1 are reordered into T h 1 = - n ∆t i ∆X   ρ 0 n i φ n+1 i -φ n i ∆t + ρ 0 e kin n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   .
We will use the natural denition/notation for staircase functions

ψ h (x, t) = i n χ ]t n ,t n+1 [ (t)χ ]x i-1/2 ,x i+1/2 [ (x)ψ n i , ψ h,stag (x, t) = i n χ ]t n ,t n+1 [ (t)χ ]x i ,x i+1 [ (x)ψ n i+ 1 2 .
Then, using the internal corrector, it yields that ρ 0 e kin

n i+ 1 2 = 1 2 (ρ 0 u 2 ) n i+ 1 2
and so

T h 1 = - T 0 Ω (ρ 0 ) h ∂ t φ h dxdt - T 0 Ω ( 1 2 ρ 0 u 2 ) h,stag ∂ t φ h,stag dxdt + Ω (ρ 0 ) 0 h φ 0 h dx + Ω ( 1 2 ρ 0 u 2 ) 0 h,stag φ 0 h,stag dx.
Using the convergence hypothesis of denition I.7 and the regularity of the test function φ, one can pass to the limit as ∆X and ∆t tend to 0. It leads to

lim h→0 T h 1 = - T 0 Ω ρ 0 ∂ t φdxdt - T 0 Ω 1 2 ρ 0 u 2 ∂ t φdxdt + Ω ρ 0 (x, 0)φ(x, 0)dx + Ω 1 2 ρ 0 u 2 (x, 0)φ(x, 0)dx.
Using the denition of the total energy as ρ 0 e = ρ 0 + 1 2 ρ 0 u 2 , one gets

lim h→0 T h 1 = - T 0 Ω ρ 0 e∂ t φdxdt + Ω ρ 0 e(x, 0)φ(x, 0)dx.

Now, focus on T h

3 which writes

T h 3 = - n i ∆X ∆K n+1 i φ n+1 i -∆K n+1 i+ 1 2 φ n+1 i+ 1 2 , which leads using ∆K n+1 i = 1 2 (∆K n+1 i+ 1 2 + ∆K n+1 i- 1 
2

) to T h 3 = - n i ∆X 1 2 (∆K n+1 i+ 1 2 + ∆K n+1 i-1 2 )φ n+1 i -∆K n+1 i+ 1 2 φ n+1 i+ 1 2
, which gives after reordering the terms

T h 3 = - n i ∆X∆K n+1 i+ 1 2 φ n+1 i+1 + φ n+1 i 2 -φ n+1 i+ 1 2 . Using the boundedness in L ∞ of ∆K n+1 i+ 1 2
and regularity of φ, it leads to

|T h 3 | ≤ C φ ∆X (∆K) h L ∞ , which gives immediately lim h→0 |T h 3 | = 0. The term T h 2 writes T h 2 = n i ∆t p n i φ n+1 i (u n i+ 1 2 -u n i-1 2 ) + u n i+ 1 2 φ n+1 i+ 1 2 (p n i+1 -p n i ) ,
HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES which, once the terms reordered, writes as

T h 2 = n ∆t i p n i u n i+ 1 2 φ n+1 i -p n i+1 u n i+ 1 2 φ n+1 i+1 + u n i+ 1 2 φ n+1 i+ 1 2 (p n i+1 -p n i ) = n ∆t i u n i+ 1 2 p n i (φ n+1 i -φ n+1 i+ 1 2 ) + u n i+ 1 2 p n i+1 (φ n+1 i+ 1 2 -φ n+1 i+1 ) = - n ∆t∆X i u n i+ 1 2    1 2 p n i φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + 1 2 p n i+1 φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    = - n ∆t∆X i u n i+ 1 2    p n i + p n i+1 4 φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + p n i + p n i+1 4 φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    - n ∆t∆X i u n i+ 1 2    p n i -p n i+1 4 φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + p n i+1 -p n i 4 φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    .
The previous expression is decomposed into two terms denoted T h 2,1 and

T h 2,2 with                    T h 2,1 = - n ∆t∆X i u n i+ 1 2    p n i + p n i+1 4 φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + p n i + p n i+1 4 φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    , T h 2,2 = - n ∆t∆X i u n i+ 1 2    p n i -p n i+1 4 φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + p n i+1 -p n i 4 φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    .
The T h 2,2 is dealt with assuming that p h is in BV , u h is bounded in L ∞ , and φ is in C 1 which gives

|T h 2,2 | ≤ ∆XC φ u h L ∞ p h BV .
Hence, passing to the limit, it leads to

lim h→0 |T h 2,2 | = 0. (II.25)
On the other hand, one easily notices that T h 2,1 rewrites as

T h 2,1 = - n ∆t∆X i u n i+ 1 2 p n i + p n i+1 2    1 2 φ n+1 i+ 1 2 -φ n+1 i ∆X 2 + 1 2 
φ n+1 i+1 -φ n+1 i+ 1 2 ∆X 2    , = - T 0 Ω (pu) h ∂ X φ h dxdt 2D STAGGERED LAGRANGE-REMAP SCHEMES 79 
Using the regularity of φ it leads, passing to the limit, to

lim h→0 T h 2,1 = - T 0 Ω p u∂ X φdxdt.
Reassembling all the terms, it yields that

lim h→0 T h 1 + T h 2 + T h 3 = - T 0 Ω ρ 0 e∂ t φdxdt - T 0 Ω p u∂ X φdxdt + Ω ρ 0 e(x, 0)φ(x, 0)dx.
And, hence, it leads to

T 0 Ω ρ 0 e∂ t φdxdt + T 0 Ω p u∂ X φdxdt = Ω ρ 0 e(x, 0)φ(x, 0)dx.
Previous equation gives weak consistency for the second order in space, forward Euler staggered scheme with internal energy corrector.

Second stage

Now, the problem of high-order in space is tackled. It does not yield to any diculty for the terms T h 1 and T h 3 , but this is not the case for T h 2 , where the desired results is not obvious. For the sake of simplicity here, we consider that C 0 = 1, C k = 0, ∀|k| > 0. The results does not change, if k C k = 1 but it greatly alleviates the algebra of the proof.

One has that

T h 2 = - n ∆t i k≥0 d k p n i φ n+1 i (u n i+k+ 1 2 -u n i-k-1 2 ) + u n i+ 1 2 φ n+1 i+ 1 2 (p n i+k+1 -p n i-k ) .
Reordering the terms, so that only u n i+ 1 2 shows up, leads to

T h 2 = - n ∆t i u n i+ 1 2 k≥0 d k p n i-k (φ n+1 i-k -φ n+1 i+ 1 2 ) + p n i+k+1 (φ n+1 i+ 1 2 -φ n+1 i+k+1 ) .
Highlighting the space derivatives of φ gives

T h 2 = + n ∆t i ∆Xu n i+ 1 2 k≥0 (k + 1 2 )d k   p n i-k φ n+1 i+ 1 2 -φ n+1 i-k ∆X(k + 1 2 ) + p n i+k+1 φ n+1 i+k+1 -φ n+1 i+ 1 2 ∆X(k + 1 2 )    . Noticing that (k + 1 2 )d k = r k , k ≥ 0, it yields T h 2 = + n ∆t i ∆Xu n i+ 1 2 k≥0 r k   p n i-k φ n+1 i+ 1 2 -φ n+1 i-k ∆X(k + 1 2 ) + p n i+k+1 φ n+1 i+k+1 -φ n+1 i+ 1 2 ∆X(k + 1 2 )    .
As previously for the case of second order in space accuracy, the conclusion is reached using the

assumption that p h is in BV , u h is bounded in L ∞ , φ is in C 1 and k r k = 1. One has lim h→0 T h 2,1 = - T 0 Ω p u∂ X φdxdt.
And, hence, it leads to Remark II.5. Without internal energy corrector, for a forward Euler second order in space scheme, the rst term writes

T 0 Ω ρ 0 e∂ t φdxdt + T 0 Ω p u∂ X φdxdt = Ω ρ 0 e(x,
T h 1 = - n ∆t i ∆X   ρ 0 n i φ n+1 i -φ n i ∆t + ρ 0 e kin n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   = - n ∆t i ∆X   ρ 0 n i φ n+1 i -φ n i ∆t + ( 1 2 ρ 0 u 2 ) n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   - n ∆t i ∆X   ρ 0 e kin n i+ 1 2 -( 1 2 ρ 0 u 2 ) n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   = T h 1,1 + T h 1,2 .
where T h 1,1 and T h 1,2 are dened by

(II.26)                T h 1,1 = - n ∆t i ∆X   ρ 0 n i φ n+1 i -φ n i ∆t + ( 1 2 ρ 0 u 2 ) n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   , T h 1,2 = - n ∆t i ∆X   ρ 0 e kin n i+ 1 2 -( 1 2 ρ 0 u 2 ) n i+ 1 2 φ n+1 i+ 1 2 -φ n i+ 1 2 ∆t   .
The term T h 1,1 has been dealt with as it is equal to the term T h 1 of the proof. Now, consider the term T h 1,2 . Then under regularity hypothesis on the test function, one obtains something of the form Experimentally, one observes that without internal energy corrector, ρ 0 e kin -( 1 2 ρ 0 u 2 ) l 1 ([0:T ]×Ω) does not tend to 0 as ∆X and ∆t tend to 0. Indeed, here we present a short example where the internal energy corrector is most wanted to ensure correct capture of shocks. This example called the Sod shock tube [START_REF] Sod | A Survey of Several Finite Dierence Methods for Systems of Nonlinear Hyperbolic Conservation Laws[END_REF] is presented later on. It is run with and without the energy corrector.

|T h 1,2 | ≤ C φ ρ 0 e kin -( 1 2 ρ 0 u 2 ) l 1 ([0:T ]×Ω) .
Results are displayed in g. II.2. On the left picture, we show that the scheme does not converge toward the analytical solution without the internal energy corrector. On the right one, we show that adding the internal energy corrector, the prole obtained in internal energy is much more satisfactory. In table II.7, we present the values of ρ 0 e kin -( 1 2 ρ 0 u 2 ) l 1 ([0:T ]×Ω) , for the scheme without internal energy corrector, to assess that it does not tend to 0 experimentally. Further studies on the Sod shock tube are presented later on.

II-2.3 The remapping stage

The remapping is the algorithm designed to project the Lagrangian quantities on the original Cartesian grids, so that one gets a Cartesian Euler scheme. The quantities to be remapped at the end of the Lagrangian phase (II.13)-(II.14)-(II.21) are ρ 0 , ρ 0 on the primal grid {x i+ 1 2 } and ρ 0 , ρ 0 u, ρ 0 e kin on the dual one {x i }. The projection detailed hereafter is equal to the one proposed in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF] but adapted here to the staggered grids. } is known. In order to be able to project the staggered variables ρ 0 , ρ 0 u, ρ 0 e kin , one must be able to deduce the deformation of the dual grid {x n+1 i }. This is done by using the coecients r k presented in table II.4, and using

x n+1 i = k r k (x i+k+ 1 2 + x i-k-1 2 
),

which leads to locations of cell centers at high-order accuracy provided {x n+1

i+ 1 2
} is also known at high-order accuracy. We consider any function φ ∈ L ∞ , then the nite volume of (ρ 0 φ)

n+1 ξ(i) leads to ∆X(ρ 0 φ) n+1 ξ(i) = X ξ(i)+ 1 2 X ξ(i)-1 2 (ρ 0 φ)(Y, t n+1 )dX + O(∆X N ).
Using the denition of the change of variables (x, t) → (X, t), the integral computation yields

∆X(ρ 0 φ) n+1 ξ(i) = x n+1 ξ(i)+ 1 2 x n+1 ξ(i)- 1 2 
(ρφ)(y, t n+1 )dy + O(∆X N ).

(II.27)

Then, on the other hand, one has the following identity

∆X(ρφ) n+1 ξ(i) = x ξ(i)+ 1 2 x ξ(i)-1 2
(ρφ)(y, t n+1 )dy + O(∆X N ).

Using the integral linearity, it gives

∆X(ρφ) n+1 ξ(i) = x n+1 ξ(i)-1 2 x ξ(i)-1 2 (ρφ)(y, t n+1 )dy + x n+1 ξ(i)+ 1 2 x n+1 ξ(i)- 1 2 
(ρφ)(y, t n+1 )dy

+ x ξ(i)+ 1 2 x n+1 ξ(i)+ 1 2
(ρφ)(y, t n+1 )dy + O(∆X N ).

Plugging eq. (II.27) into the previous equation, it yields

∆X(ρφ) n+1 ξ(i) = x n+1 ξ(i)-1 2 x ξ(i)-1 2 (ρφ)(y, t n+1 )dy + ∆X(ρ 0 φ) n+1 ξ(i) + x ξ(i)+ 1 2 x n+1 ξ(i)+ 1 2 (ρφ)(y, t n+1 )dy + O(∆X N ),
which written under conservative form, dropping the O(∆X N ), gives

(ρφ) n+1 ξ(i) = (ρ 0 φ) n+1 ξ(i) -   x n+1 ξ(i)+ 1 2 -x ξ(i)+ 1 2 ∆X (ρ 0 φ) ξ(i)+ 1 2 - x n+1 ξ(i)-1 2 -x ξ(i)-1 2 ∆X (ρ 0 φ) ξ(i)-1 2   , (II.28) 2D STAGGERED LAGRANGE-REMAP SCHEMES 83 
where (ρ 0 φ)

ξ(i)+ 1 2 satises (ρ 0 φ) ξ(i)+ 1 2 = 1 x n+1 ξ(i)+ 1 2 -x ξ(i)+ 1 2 x n+1 ξ(i)-1 2
x ξ(i)-1 2

(ρφ)(y, t n+1 )dy.

(II.29)

One easily notices that (ρ 0 φ) ξ(i)+ 1 2 can be written as

(ρ 0 φ) ξ(i)+ 1 2 = 1 x n+1 ξ(i)+ 1 2 -x ξ(i)+ 1 2   x n+1 ξ(i)-1 2
x ξ(i )-1 2

(ρφ)(y, t n+1 )dy -

x ξ(i)-1 2 x ξ(i )-1 2 (ρφ)(y, t n+1 )dy  
with i an integer still to be determined to ensure both accuracy and stability. Then introducing

the function H ρφ ξ(i ) (x) = x x ξ(i )-1 2 
(ρφ)(y, t n+1 )dy, one gets

(ρ 0 φ) ξ(i)+ 1 2 = 1 x n+1 ξ(i)+ 1 2 -x ξ(i)+ 1 2 H ρφ ξ(i ) (x n+1 ξ(i)-1 2 ) -H ρφ ξ(i ) (x ξ(i)- 1 2 
) .

(II.30)

Here, upwinded centered Lagrange polynomials are used to interpolate value of H ρφ ξ(i ) . The upwinding is done in function of sign of x n+1

ξ(i)+ 1 2 -x ξ(i)+ 1 2
. It yields natural value for i as a function of the upwinding and the order of the scheme N . In practice, one has

i = i -1 -N 2 if x n+1 ξ(i)+ 1 2 > x ξ(i)+ 1 2 , i -N -1 2 otherwise. 
(II.31)

II-2.3.2 Properties of the remap step

Lemma II.10. The remap step (II.28) is conservative in mass, momentum, internal and kinetic energies. It conserves in particular the total energy E dened in denition II.2.

Proof. The proof is straightforward. Indeed due to the conservative form depicted in eq. (II.28), the projection is conservative in mass, momentum, internal and kinetic energies. Thus, as E is the sum of both internal and kinetic energies, it is also conserved.

For the same motives mentioned in section II-2.2, the conservation of E is a desired feature.

The dissipation of total energy during the remap phase is mentionned in the early literature.

Indeed, as pointed out by DeBar [START_REF] Debar | Fundamentals of the KRAKEN code[END_REF][START_REF] Debar | Method in two-D Eulerian hydrodynamics[END_REF] "kinetic energy disappears in the momentum advection process, and must be compensated for in the internal energy if total energy conservation is to be maintained". It was also formulated similarly later by Youngs [START_REF] Youngs | The Lagrangian Remap Method[END_REF][START_REF] Thornber | Large-eddy simulation of multi-component compressible turbulent ows using high resolution methods[END_REF].

Using the conservation of E, the internal energy corrector eq. (II. 

| .

This CFL condition comes directly from the stability of the Strang schemes derived in [START_REF] Després | Finite volume transport schemes[END_REF][START_REF] Després | Uniform asymptotic stability of Strang's explicit compact schemes for linear advection[END_REF].

A possible modication of the projection is to use monotonicity limiters in order to ensure the monotonic behaviour of the projection. In practice, one may apply the monotonicity preserving limiters [START_REF] Suresh | Accurate Monotonicity-Preserving Schemes with Runge-Kutta Stepping[END_REF] for more robustness during the remap phase. If not mentioned in numerical examples, limiters are not activated.

II-2.4 Numerical validation of the 1D conservative Lagrange-Remap schemes on staggered Cartesian grids

The numerical test-suite for validation contains among others three smooth test-problems which are the CookCabot breaking wave test-case proposed in 2004 [START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF], a slight modication of the breaking wave using a non-convex equation of state and last an acoustic propagation which highlights the advantages concerning staggered grids schemes over cell-centered ones concerning the propagation of waves. Then, four shock test-problems are shown to illustrate the correct capture of shocks, among which the Sod test-case, the WoodwardColella double blast wave and the Noh compression. The idea is to validate the schemes on a very large variety of test-cases to assess both accuracy and robustness. This is the real diculty of the proposed test-suite.

Recall that for all shock problems, additional articial viscosities or hyperviscosities are never used. The dissipation induced by the time and space discretization is enough for the proposed test-suite.

II-2.4.1 CookCabot breaking wave test-case [28]

The CookCabot test-case is designed to assess numerically the order of accuracy of the schemes as the variables proles are smooth until a given time T shock where a discontinuity occurs. The breaking wave [START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF] initial data are set as follows:

             ρ = ρ 0 (1 + α sin(2πx)), p = p 0 ρ ρ 0 γ , c = c 0 ρ ρ 0 (γ-1)/2 , u = 2 γ-1 (c 0 -c),
for -0.5 ≤ x ≤ 0.5

(II.32)
2D STAGGERED LAGRANGE-REMAP SCHEMES 85 with the constants dened as ρ 0 = 10 -3 , p 0 = 10 6 , γ = 5 3 and α = 0.1. T shock is dened as

T shock = 1 (γ + 1)παc 0 .
The uid is supposed to be a perfect gas. "For this set of initial conditions, two of the three caracteristics are initially constant, with the third satisfying a Burgers-like equation" [START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF]. The exact solution until T shock is the initial prole advected with velocity u -c. 

II-2.4.2 Non-perfect gas breaking wave test-case

The previous test-case is designed for a perfect gas. A similar test-case but for arbitrary EOS gas can be dened. This time, the EOS is not convex and the initial data are set in such a way that the inexion point is present in the computational domain. The initial data are

               ρ = ρ 0 (1 + α sin(2πx)), c(ρ) = √ γρ (γ-1)/2 + β 1 ρ β 2 , p(ρ) = c(ρ) 2 dρ, u(ρ) = c(ρ) ρ dρ, with                α = 0.7, β 1 = 0.03 √ γρ (γ-1)/2-β 2 ) 0 , β 2 = -4, ρ 0 = 1.4, p 0 = 10 3 .
(II.33)

The exact solution until T shock is the initial prole advected with velocity u -c. The velocity error in l 1 -norm as well as the experimental order of convergence are displayed in table II.9.

Although the equation of state is not convex, expected order of convergence are reached by the staggered schemes. 

II-2.4.3 Acoustic propagation test-case

This test-case is an acoustic oscillator. It is similar to a plate acting as a pressure harmonic source at x = 1. The mesh is chosen such that there are 7 cells by wavelength. The sound speed is set to 1. Slight modications of pressure are imposed by the plate, such that the system of equations can be linearised. Comparisons between cell-centered schemes (GAD [START_REF] Heuzé | Dissipative issue of high-order shock capturing schemes with non-convex equations of state[END_REF] and GoHy [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF]) with the presented staggered schemes and the BBC schemes are drawn. Pressure proles are depicted in g. II.4 with a zoom on the wave front. As expected when the order of accuracy is increased, signal phase and amplitude are better restored by the schemes. Moreover, at equivalent order, the staggered schemes demonstrate a better restitution of both phase and amplitude of the signal.

This one of the main advantages of B-type and C-type staggered schemes as pointed out in [START_REF] Arakawa | Computational design of the basic dynamical processes of the UCLA general circulation model[END_REF]. 

II-2.4.4 Sod test-case [146]

The Sod shock tube [START_REF] Sod | A Survey of Several Finite Dierence Methods for Systems of Nonlinear Hyperbolic Conservation Laws[END_REF] is very common in the literature as a simple Riemann problem for the Euler equations. This test-case proves useful to determine the ability of the scheme to handle The Noh test-case [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF] is a compression with a complete conversion of kinetic energy into internal energy. The domain is xed at [0 : 1]. A continuous incoming ux of gas at x = 1 is entering the computational domain with a constant speed and compress the gas located around x = 0. We consider an incoming constant state of gas at x = 1 and a wall boundary at x = 0. The initial data are

           ρ 0 = 1.0, u 0 = -1.0, p 0 = 10 -8 , γ = 5 3 .
(II.36)

The analytical solution writes

       ρ(x, t) = 4.0χ {x< t 3 } + 1.0χ {x> t 3 } , u = -1.0χ {x> t 3 } , p = 4 3 χ {x< t 3 } + 10 -8 χ {x> t 3 } , (II.37)
which gives an innite shock intensity. This is a real diculty for most schemes as highlighted in [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF]. With this test-case, the robustness of the schemes is studied, without any artical viscosity or hyperviscosity. In g. II.6, proles of density and pressure are depicted with the analytic solution for a mesh containing 400 cells over [0 : 1]. Zoom is made on [0 : 0.25]. The higher the order, the more oscillatory the prole is. This is due to the high-order approximations done in the scheme. Adding articial viscosity with appropriate coecients should smear out these oscillations. The important point is that even without articial viscosity, the schemes even at very high-order are able to handle such a dicult test-case with an innite shock intensity.

II-2.4.6 Shu-Osher test-case [144]

The Shu-Osher test-case [START_REF] Shu | Ecient Implementation of Essentially Non-oscillatory Shockcapturing Schemes, II[END_REF] 

           ρ 0 (x) = 27 7 χ {x<-4} + (1 + sin(5x) 5 )χ {x>-4} , p 0 (x) = 31 3 χ {x<-4} + 1χ {x>-4} , u 0 (x) = 4 √ 35 9 χ {x<-4} , γ = 1.4. (II.38)
Reference solution is obtained using the GAD scheme with CFL=0.5 and 50000 cells. 

II-2.4.7 Interacting blast-waves test-case [171]

The interacting blast-waves test-case was proposed in [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF]. It is a three states shock tube.

The left blast will propagate to the right and the right one to the left till interaction between both. This test-case highlights the robustness of the schemes. The initial data are depicted in eq. (II.39). The domain is set to 

II-3 Extension to 2D Lagrange-remap schemes on staggered Cartesian grids

As presented in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF], the extension to the multidimensional case is realized using directional splitting. The Euler system in 2D writes 

           ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) =0, ∂ t (ρu)+ ∂ x (ρu 2 + p) + ∂ y (ρuv) =0, ∂ t (ρv)+ ∂ x (ρuv) + ∂ y (ρv 2 + p) =0, ∂ t (
∂ t (U ) + A(U ) = 0, (II.41) using U =       ρ ρu ρv ρe      
. The idea of the operator splitting is to nd two operators A 1 and A 2 such that A(U ) = A 1 (U )+A 2 (U ). For directional splitting, which is a peculiar class of operator splitting, the idea is to split A such that all x-derivative are contained in A 1 , and all y-derivatives are contained in A 2 . First, derivation of the subsystems using the directional splitting method is made. Then, special distribution of variables is detailed for the staggered grids in 2D and 3D.

This distribution allows then to apply the derived 1D staggered schemes to the nD cases. The schemes properties derived for the 1D case are then extended to the nD case. A numerical test suite is proposed to assess both accuracy and robustness of the schemes.

II-3.1 Derivation of the subsystems using the operator splitting technique

The main idea is to split system presented in eq. (II.40) according to the xand y-direction.

It writes

           ∂ t ρ + ∂ x (ρu) =0 ∂ t (ρu)+ ∂ x (ρu 2 + p) =0 ∂ t (ρv)+ ∂ x (ρuv) =0 ∂ t (ρe)+∂ x (ρue + pu)=0            ∂ t ρ + ∂ y (ρv) =0 ∂ t (ρu)+ ∂ y (ρuv) =0 ∂ t (ρv)+ ∂ y (ρv 2 + p) =0
∂ t (ρe)+∂ y (ρve + pv)=0

(II.42)

The above system in eq. (II.42) can be rewritten under a similar form as in eq. (II.41)

∂ t (U ) + A 1 (U ) = 0, ∂ t (U ) + A 2 (U ) = 0. (II.43)
Splitting techniques relies on solving alternatively rst and second equation of eq. (II.43) with weighted time-steps in order to reach high-order accuracy. For ∆t small enough, one can write where (ω k ) k∈[1:q] is a sequence of parameters which are set to reach high-order accuracy in time.

U (t + ∆t) = e(∆t(A 1 + A 2 ))(U )(t
The theory of operator splitting and especially of high-order splitting sequences are extensively detailed by McLachlan in [START_REF] Mclachlan | The accuracy of symplectic integrators[END_REF][START_REF] Mclachlan | On the numerical integration of ordinary dierential equations by symmetric composition methods[END_REF][START_REF] Mclachlan | Splitting methods[END_REF] and very high-order splitting methods are described by Yoshida in [START_REF] Yoshida | Construction of higher order symplectic integrators[END_REF]. The weights ω k are available in appendix, section A.2. Using directionnal splitting methods, each subsystems of eq. (II.43) is solved using the 1D schemes proposed in section II-2. However, slight modications must be rst performed. Indeed, as one wishes for global conservation of mass, momentum and total energy, use of values averaged in both directions is required, using rectangle control volumes. This is explained hereafter.

II-3.2 Modications of the 1D schemes for the 2D nite volume case

The rst important point to mention is the special distribution of variables on the staggered grids in both 2D and 3D. The extension of the internal energy corrector proposed for the 1D schemes is straightforward for multidimensional case.

II-3.2.1 nD distribution of variables on the modied Arakawa C-type grids

The distribution of variables on the modied Arakawa C-type grids is very similar to the one for the 1D case. The x-velocity u is staggered along the x-direction as well as the density and the kinetic energy related to the x-velocity u. It will be denoted in the following by e kin,u . Then similarly, the y-velocity is staggered along the y-direction as well as the density and the kinetic energy e kin,v related to the y-velocity v. If one wishes to extend the schemes to the 3D case, then the z-velocity denoted w should be staggered along the z-direction along with the density and the kinetic energy e kin,w . Distribution of variables is depicted on g. II.9.

Then, for such a choice of variables, the total energy is the sum of the internal energy and the kinetic energies in each direction. This a key ingredient to yield conservation as will be shown hereafter.

II-3.2.2 Derivation of a procedure to apply the 1D schemes in one direction using the 2D nite volume formalism

The aim here is to apply with slight modications the 1D schemes for two dimensions problem using directional splitting method. For two dimensions problem, the degree of freedom are the 2D-average value inside a cell. Thus it is mandatory at the beginning of a sweep, to deduce from the 2D average values the values average in only one direction. The procedure originates from [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF] and is extended here to staggered grids. A sweep along the x-direction proceeds as follows:
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  ρ 0 ρ 0 τ ρ 0   i,j   ρ 0 ρ 0 u ρ 0 e kin,u   i+ 1 2 ,j   ρ 0 ρ 0 v ρ 0 e kin,v   i,
U n i,j = k C k U n i,j+k .
This way, we only get 1D-cell-average values along the x-direction. This is exactly the values needed to use the 1D scheme.

2. Compute the 1D Lagrange evolution terms using U . Note that the velocity in the ydirection as well as its related kinetic energy do not change. The Lagrange evolution step gives values of the deformed grid {x i+ 1 2 ,j }. Interpolation gives value for the {x i,j } and {x i+ 1 2 ,j+ 1 2 } grids. The rst grid is used to compute remap uxes of the centered variables (ρ 0 , ρ 0 τ, ρ 0 ), the second for the variables (ρ 0 , ρ 0 u, ρ 0 e kin,u ) staggered along the x-direction, and the third one for the variables (ρ 0 , ρ 0 v, ρ 0 e kin,v ) staggered along the y-direction.

3. Denote by ∆U the evolution terms (see g. II.10). Reconstruct the average values of ∆U in the y-direction using eq. (II.12) denoted ∆U . It writes for cell-centered variables 

∆U n i,j = k C k ∆U n i,j+k .
U n+1 i,j = U n i,j + ∆U n i,j .
The procedure is summarized in g. II.10.
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and A 2 under the condition

∆t < ∆Y min( λ Stag max (i,j) c i,j , 1 max (i,j) |v i,j+ 1 2 | ) .
Using the special structure of the operator splitting, one trivially gets the result.

II-3.3 Numerical validation of the 2D conservative Lagrange-Remap schemes on staggered Cartesian grids

A test-suite is proposed to assess both accuracy and robustness of the 2D staggered schemes.

Once again, the wide range of problems is a high diculty for numerical schemes. The idea here is to demonstrate the eectiveness of such schemes for such a variety of problems. First, numerical order of convergence of the method is assessed using the isentropic vortex advection [START_REF] Yee | Low dissipative high-order shock-capturing methods using characteristics-based lters[END_REF]. Then, further vortex dynamics is studied with the vortex pairing problem [START_REF] Tsoutsanis | Comparison of structured-and unstructured-grid, compressible and incompressible methods using the vortex pairing problem[END_REF]. Considering classical problems with strong discontinuities, ve 2D Riemann problems are studied [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF][START_REF] Lax | Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[END_REF][START_REF] Liska | Comparison of several dierence schemes on 1D and 2D test problems for the Euler equations[END_REF] to assess robustness and respect toward symmetry of the staggered schemes. Then two strong shocks problems are proposed: a strong blast-wave [START_REF] Sedov | Propagation of strong shock waves[END_REF] and the 2D Noh compression problem [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF]. Last, an extension of the 1D acoustic propagation problem is proposed with a 2D set up of acoustic propagation with a sound speed gradient in the vertical direction. It is derived from the works by Attenborough and al. [START_REF] Attenborough | Benchmark cases for outdoor sound propagation models[END_REF].

II-3.3.1 Isentropic vortex advection [174]

We assess high-order accuracy on the 2D vortex test [START_REF] Yee | Low dissipative high-order shock-capturing methods using characteristics-based lters[END_REF] whose initial data are given by (with

r 2 = x 2 + y 2 )                      ρ 0 (x, y) = 1 - (γ -1)β 2 8γπ 2 e 1-r 2 1 γ-1 , u 0 (x, y) = (2, 1) t + β 2π e 1-r 2 2
• (-y, x) t , p 0 (x, y) = ρ 0 (x, y) γ , γ = 1.4

(II.47) with γ = 1.4 and β = 5. Computations are performed till t = 20 with a CFL number of 0.9

on the computational domain Ω = [-10, 10] 2 . Periodic boundary conditions are imposed. The l 1 -error in both space and time is computed as

Err l 1 = n (t n+1 -t n ) • ∆x • ∆y i,j ||ρ n i,j -ρ exact i,j (t n )||.
The l We assess here the ability of the staggered schemes to handle vortex dynamics with the vortex pairing test-case [START_REF] Tsoutsanis | Comparison of structured-and unstructured-grid, compressible and incompressible methods using the vortex pairing problem[END_REF]. We rst introduce the equation satised by a function φ advected by the velocity eld u,

∂ t φ + ∇ • (φu) = 0
In order to dene the initial states, a perturbation function ψ is introduced as the sum of two KelvinHelmotz instability eigenmodes as

ψ(x, y) = A 1 (y) ν 1 k 1 cos(k 1 x) e -k 1 |y| +A 2 (y) ν 2 k 2 cos(k 2 x) e -k 2 |y| with A i (y) = 1 -e -2k i ( L 2 -|y|)
1 -e -k i L , i ∈ {1, 2}.

Last, the initial data are given by

                           ρ 0 (x, y) = 1.0, u 0 (x, y) = -1 2 ∆U tanh( y 2θ 0 ) -∂ y ψ ∂ x ψ , p 0 (x, y) = ρ 0 (x, y) γ , γ = 5 3 , φ 0 (x, y) = χ {y>0} . (II.48) Parameters are k 1 = 2π L , k 2 = 4π L , ν 1 = 0.025∆U , ν 2 = 0.05∆U , ∆U = 2.
62, θ 0 = 0.03. Computations are performed till t = 6.0 with a CFL number of 0.9 on the computational domain Ω = [0, 6] × [-3, 3]. Periodic boundary conditions are imposed on left and right boundaries, and wall boundary conditions are imposed on top and bottom boundaries. In g. II.11, the prole of density is depicted as well as 6 contours of φ from 0 to 1 on a coarse mesh with 128 cells along each direction. We present results using a rst and second order cell-centered schemes and the proposed third order staggered scheme. First order scheme, as expected, struggles to restitute EXTENSION TO 2D LAGRANGE-REMAP SCHEMES ON STAGGERED CARTESIAN GRIDS the vortex dynamics. The second order scheme is more dissipative on the prole, but is still able to recover the vortex dynamics. Using high-order schemes gives a steeper prole for both the density and φ and hence yields a better restitution of vortex dynamics. II-3.3.3 Five states Riemann problems [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF][START_REF] Lax | Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[END_REF][START_REF] Liska | Comparison of several dierence schemes on 1D and 2D test problems for the Euler equations[END_REF] We assess the robustness of the staggered schemes for 5 dierent 2D Riemann problems. The domain Ω = [0 : 1] 2 is divided into four quadrants formed with the line x = 1/2 and y = 1/2.

The Riemann problems are dened by constant states in each quadrant, with a perfect gas with γ = 1.4. These initial states in each quadrants are the density ρ 0 , the pressure p 0 , the x and y velocity u 0 and v 0 . The selected Riemann problems are such that the solutions of all four 1D Riemann problems between quadrants have exactly one wave, which are whether a shock-wave (S), a rarefaction one (R) or a contact-slip (J) (see [START_REF] Lax | Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[END_REF]). All initial data are gathered in table II.12 with the initial values of (ρ, p, u, v) t as well as the structure between two consecutive quadrants. Constant inow boundary conditions are imposed. Computations are run with CFL=0.7 for the staggered schemes and with CFL=0.5 for the cell-centered ones (GAD available in [START_REF] Heuzé | Dissipative issue of high-order shock capturing schemes with non-convex equations of state[END_REF], GoHy-2 available in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]). Monotonicity limiters are applied during the remap phase. No articial viscosities are used. Results are depicted in gs. II.12 to II.16 with pressure proles displayed using colors, and density using contours. Proles are in accordance with those found in the literature [START_REF] Schulz-Rinne | Numerical solution of the Riemann problem for two-dimensional gas dynamics[END_REF][START_REF] Lax | Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[END_REF][START_REF] Liska | Comparison of several dierence schemes on 1D and 2D test problems for the Euler equations[END_REF] for all Riemann problems. In g. II.12, some artefacts are present on two segments of the initial discontinuities between upper left, upper right and lower right quadrants. Moreover, oscillations are present due to the lack of articial viscosities and dissipation. The symmetry along the axis x = y is better recovered using the third order scheme than for the fourth order one. In g. II.13, the main dierence between results is that, as expected, the higher the order, the more oscillatory it is, but also the steeper is the prole concerning the contact-slip. This is expected due to high-order polynomial integration. A small density artefact is present in the lower right quadrant, but is also present in the literature.

Pressure artefacts are present in the high-pressure areas, certainly due to the non-aligned grids.

In g. II.14, discontinuities are steeper as the order of accuracy is higher. The symmetry along the axis x = y is quite well recovered. The stationary contacts bordering the lower left quadrant are well recovered. In g. II.15, the stress is laid on the resolution of slowly moving contact discontinuities bordering the lower left quadrant. Vortex dynamics is already recovered with a coarse mesh using third and fourth order schemes. However, the second order cell-centered scheme shows a peculiar behaviour between the bottom quadrants with the formation of a small vortex. This is so far still unexplained. In g. II.16, contact discontinuities are recovered on the line x = 1 2 . Moreover, the vortex induced by the interacting states is well recovered by high-order staggered methods, not so for the low order ones. Some artefacts are present in the right bottom quadrants, certainly due to boundary conditions that induce oscillations. II.12 Initial states for the four quadrants of 2D Riemann problem for density, pressure and x and y velocity u and v. II-3.3.4 Sedov test-case [START_REF] Sedov | Propagation of strong shock waves[END_REF] With the Sedov test-case, we assess the robustness of the staggered schemes as well as the ability to restitue correct cylindrical symmetry. Let r Sedov = 1 where Sedov = 0.851072. A scatter plot is realized to display proles of density along each radius in g. II.17 using 100 cells in each direction. Even without the use of articial viscosities, the density prole is quite smooth for each scheme. The higher the order of the staggered schemes, II-3.3.5 Noh test-case [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF] Exactly as in the 1D case, the kinetic energy is transformed into internal energy, giving a compression of the gas by a factor 16. Denote r = x 2 + y 2 , initial data are

    S     1.5 1.5 0 0     S     0.5323 0.3 0 1.206     S     0.138 0.029 1.206 1.206     S 2     2 1 0.75 0.5     J     1 1 0.75 -0.5     J     3 1 -0.75 -0.5     J     1 1 -0.75 0.5     J 3     1 1 0.7276 0     J     0.5343 0.4 0 0     S     1 1 0 0.7276     S     0.8 1.0 0 0     J 4     0.5197 0.4 -0.6259 -0.3     J     1 1 0.1 -0.3     R     0.5313 0.4 0.1 0.4276     S     0.8 0.4 0.1 -0.3     J 5     2 1 0 -0.3     S     1 1 0 -0.4     J     0.5197 0.4 0 -1.1259     R     1.0625 0.4 0 0.2145     J Table
√ 2 √ ∆X 2 + ∆Y 2 . Initial data are                    ρ 0 (x, y) = 1, u 0 (x, y) = 0, p 0 (x, y) = (γ -1)
                       ρ 0 (x, y) = 1, u 0 (x, y) = 1 r -x -y , p 0 (x, y) = 10 -8 , γ = 5 3 . 
(II.50)

Considering free inow boundary conditions the analytic solution writes, with r s (t) = γ-1 2 t,

                         ρ(x, y, t) = γ + 1 γ -1 2 χ r<rs(t) + (1 + t r )χ r>rs(t) , u 0 (x, y, t) = 1 r -x -y χ r>rs(t) , p 0 (x, y, t) = 1 2 (γ + 1) 2 γ -1 χ r<rs(t) + 10 -8 χ r>rs(t) , γ = 5 3 . 
(II.51)

A scatter plot is realized to display proles of density along each radius in g. II.18 using 400 cells in each direction. Without articial viscosities, the sixth order scheme fails, and therefore is not Axis eect are present for the rst and second order cell-centered schemes presented in the results. Obviously, the fourth order scheme is much more oscillatory than the third order one. Otherwise, even without the use of articial dissipation, the compression by a factor 16 is recovered by the staggered schemes, except near the point (0, 0) due to wall heating.

The artefacts present for the rst and second order cell-centered schemes are not present with the staggered ones. Those are certainly due to wall boundary conditions (as highlighted by Noh in [START_REF] Noh | Errors for calculations of strong shocks using an articial viscosity and an articial heat ux[END_REF]). However, due to high-order polynomial interpolation, results are more oscillatory.

II-3.3.6 Attenborough test-case [8]

We assess here the ability of the staggered schemes to recover correctly long-range acoustic propagation with the Attenborough test-case [START_REF] Attenborough | Benchmark cases for outdoor sound propagation models[END_REF][START_REF] Del Pino | 3D Finite Volume simulation of acoustic waves in the earth atmosphere[END_REF] which has been designed by the geoacoustic community. In 1D, it has been highlighted during numerical experiments that the high-order staggered schemes require less cells per wavelength compared to same order cell-centered schemes.

We here want to check that this result still holds in 2D and see if the signal is correctly recovered by the schemes. Comparisons are drawn with results available in the literature [START_REF] Del Pino | 3D Finite Volume simulation of acoustic waves in the earth atmosphere[END_REF]. The The compressible NavierStokes equations are similar to the Euler equations with an additive viscous stress tensor usually denoted by τ . In order to avoid any confusion with the specic volume already denoted τ , it will be denoted by the letter Υ in this manuscript. The system of equations in 2D writes in conservative form as

     ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u + pI -Υ) = 0, ∂ t ρe + ∇ • (((ρe + p)I -Υ) • u) = 0, (II.53)
where Υ = µ ∇u + (∇u) t + λ (∇ • u) I, µ and λ being two parameters which described the viscous properties of the considered uid. From now on, µ and λ are assumed constant. Adding a constant gravity source-term g, it yields

     ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u + pI -Υ) = g, ∂ t ρe + ∇ • (((ρe + p)I -Υ) • u) = g • u.
(II.54)

In the following, a discretization of the viscous terms is proposed on the staggered grids, as well as the discretization of the gravity terms.

II-4.1 Distribution of viscous terms on the modied Arakawa grid

In section II-1.2, an C-type Arakawa grid designed expressly for a diagonal stress tensor has been derived. Due to the presence of the viscous stress tensor, it is necessary to address non-diagonal terms. System without gravity presented in eq. (II.53) rewrites

           ∂ t ρ +∂ x ρu +∂ y ρv = 0, ∂ t ρu +∂ x (ρu 2 + p -Υ 1,1 ) +∂ y (ρuv -Υ 2,1 ) = 0, ∂ t ρv +∂ x (ρuv -Υ 1,2 ) +∂ y (ρv 2 + p -Υ 2,2 ) = 0, ∂ t ρe +∂ x (ρue + (p -Υ 1,1 )u -Υ 1,2 v) +∂ y (ρve + (p -Υ 2,2 )v -Υ 2,1 u) = 0, (II.55)
where the Υ is a symmetric viscous stress tensor which satises Let address rst the discretization of viscous stress and gravitiy terms in one space dimension.

           Υ 1,1 = 2µ∂ x u + λ (∂ x u + ∂ y v) , Υ 2,1 = µ (∂ y u + ∂ x v), Υ 1,2 = Υ 2,1 , Υ 2,2 = 2µ∂ y v + λ (∂ x u + ∂ y v) .
The 1D problem ignoring the y-velocity v, and for now the gravity terms writes

     ∂ t ρ + ∂ x ρu = 0, ∂ t ρu + ∂ x (ρu 2 + p -Υ 1,1 ) = 0, ∂ t ρe + ∂ x (ρue + (p -Υ 1,1 )u) = 0, (II.57)
which rewrites in Lagrangian form as

     D t ρ 0 τ -∂ x u = 0, D t ρ 0 u + ∂ x (p -Υ 1,1 ) = 0, D t ρe + ∂ x ((p -Υ 1,1 )u) = 0, (II.58)
then, using the formulation in both kinetic and internal energies, it yields formally

           D t ρ 0 τ -∂ x u = 0, D t ρ 0 u + ∂ x (p -Υ 1,1 ) = 0, D t ρ + (p -Υ 1,1 )∂ x u = 0, D t ρe kin + u∂ x (p -Υ 1,1 ) = 0.
(II.59)

The choice has been made to discretize Υ 1,1 in the same location as the pressure. It yields that Υ 1,1 lies on the primal grid. As Υ 1,1 = (2µ + λ)∂ x u, and as the velocity is staggered, it yields a centered discretization of the space derivative in x of u. Such a discretization is exactly the one obtained by the δ operator dened in the third equation of (II.12).

Υ 1,1i = (2µ + λ) 1 ∆X δu i .
Consider now a uniform gravity eld g such that now, eq. (II.59) writes

           D t ρ 0 τ -∂ x u = 0, D t ρ 0 u + ∂ x (p -Υ 1,1 ) = gρ 0 , D t ρ + (p -Υ 1,1 )∂ x u = 0, D t ρe kin + u∂ x (p -Υ 1,1 ) = gρ 0 u. (II.60)
Integrating in space over a dual cell equations for momentum and kinetic energy leads to

D t ρ 0 u i+ 1 2 = gρ 0 i+ 1 2 -((p -Υ 1,1 ) i+1 -(p -Υ 1,1 ) i ) , D t ρ 0 e kin i+ 1 2 = gρ 0 u i+ 1 2 -1 ∆X x i+1 x i u∂ x (p -Υ 1,1
).

(II.61)

The formulation in both kinetic and internal energies yields a simple computation for the gravity terms. This is in particular due to the choice to discretize the average density ρ 0 on both the EXTENSION TO THE 2D COMPRESSIBLE NAVIERSTOKES EQUATIONS WITH GRAVITY primal and dual mesh, initially for robustness issues. Moreover, it does not alter either the internal energy corrector nor the remapping phase. The extension in two dimensions is now discussed.

II-4.1.2 Space distribution and discretization of the viscosity and gravity terms in 2D

The 2D staggered hydrodynamics schemes are based on directional splitting. Here, the choice of splitting, mainly due to memory alignment is the following for the x-direction

           ∂ t ρ +∂ x (ρu) =0, ∂ t (ρu)+∂ x (ρu 2 + p -Υ 1,1 ) =0, ∂ t (ρv)+∂ x (ρuv -Υ 2,1 ) =0, ∂ t (ρe) +∂ x (ρue + (p -Υ 1,1 )u -Υ 2,1 v)=0, (II.62)
and in the y-direction

           ∂ t ρ +∂ y (ρv) =0, ∂ t (ρu)+∂ y (ρuv -Υ 1,2 ) =0, ∂ t (ρv)+∂ y (ρv 2 + p -Υ 2,2 ) =0, ∂ t (ρe) +∂ y (ρve + (p -Υ 2,2 )v -Υ 1,2 u)=0. (II.63)
As aforementioned, the term Υ 1,1 is discretized on the same position as the pressure, meaning at the center of each primal cell. Symmetrically, it also holds for Υ 2,2 . Consider now eq. (II.62) which formally writes in Lagrangian form

           D t (ρ 0 τ )+∂ X u =0, D t (ρ 0 u)+∂ X (p -Υ 1,1 ) =0, D t (ρ 0 v)+∂ X (-Υ 2,1 ) =0, D t (ρ 0 e) +∂ X ((p -Υ 1,1 )u -Υ 2,1 v)=0.
(II.64)

Reminding that Υ 1,1 = (2µ + λ)∂ x u + λ∂ y v, the choice has been made to discretize ∂ x u and ∂ y v at each cell centers. Since u and v are staggered respectively in the xand y-directions, centered discretizations of space derivatives give the desired results. Once again, the use of the δ operator yields high-order accuracy in space for the terms Υ 1,1 and Υ 2,2 . Furthermore, reminding that the momentum ρ 0 v lies on the third grid, and is formally indexed ρ 0 v i,j+ 1 2 and integrating over a dual cells in the x-direction it yields

D t ρ 0 v i,j+ 1 2 = 1 ∆X Υ 2,1 i+ 1 2 ,j+ 1 2 -Υ 2,1 i-1 2 ,j+ 1 2 . 
(II.65)

The choice has been made to discretize the non-diagonal terms of the viscous stress tensor on a grid staggered in both directions. Similar analysis performed on eq. (II.63) gives the same 

results for Υ 1,2 . Reminding that Υ 1,2 = Υ 2,1 = µ (∂ y u + ∂ x v) ,
             Υ 1,1i,j = 2µ+λ ∆X δ x u i,j + λ ∆Y δ y v i,j , Υ 2,1 i+ 1 2 ,j+ 1 2 = µ 1 ∆Y δ y u i+ 1 2 ,j+ 1 2 + 1 ∆X δ x v i+ 1 2 ,j+ 1 2 , Υ 1,2 i+ 1 2 ,j+ 1 2 = µ 1 ∆Y δ y u i+ 1 2 ,j+ 1 2 + 1 ∆X δ x v i+ 1 2 ,j+ 1 2 , Υ 2,2i,j = 2µ+λ ∆Y δ y v i,j + λ ∆X δ x u i,j .
(II.66)

That way, a natural distribution of the viscous terms is summarized in g. II.22. This discretization holds for non-symmetric tensor Υ. The gravity terms are not explicited here, as this is very similar to the 1D case considering a constant gravity eld g = (g x , g y ) t .

t   p Υ 1,1 Υ 2,2   i,j t u i-1 2 ,j t v i,j-1 2 t v i,j+ 1 2 t u i+ 1 2 ,j t Υ 1,2 Υ 2,1 i+ 1 2 ,j+ 1 2 t Υ 1,2 Υ 2,1 i-1 2 ,j+ 1 2 t Υ 1,2 Υ 2,1 i-1 2 ,j-1 2 t Υ 1,2 Υ 2,1 i+ 1 2 ,j-

II-4.2 2D viscous staggered Lagrange-Remap schemes with gravity force

First, the 1D staggered scheme is derived using explicit RungeKutta time-integration. Then the extension to the multidimensional case is detailed using directional splitting. Gravity terms are then introduced. 

                     D t (ρ 0 τ ) -∂ X u =0, D t (ρ 0 u) + ∂ X (p -Υ 1,1 ) =0, D t (ρ 0 v) + ∂ X (-Υ 2,1 ) =0, D t (ρ 0 ) + (p -Υ 1,1 )∂ X u -Υ 2,1 ∂ X v=0, D t (ρ 0 e kin,u ) + u∂ X (p -Υ 1,1 ) =0, D t (ρ 0 e kin,v ) + v∂ X (-Υ 2,1 ) =0.
(II.67)

The intermediate steps for the staggered scheme write for the compressible NavierStokes

                                     ρ 0 τ n+αm i,j =ρ 0 τ n i,j + ∆t ∆X m-1 l=0 a m,l du n+α l i,j , ρ 0 u n+αm i+ 1 2 ,j =ρ 0 u n i+ 1 2 ,j -∆t ∆X m-1 l=0 a m,l (dp -dΥ 1,1 ) n+α l i+ 1 2 ,j , ρ 0 v n+αm i,j+ 1 2 =ρ 0 v n i,j+ 1 2 -∆t ∆X m-1 l=0 a m,l (-dΥ 2,1 ) n+α l i,j+ 1 2 , ρ 0 n+αm i,j =ρ 0 n i,j -∆t ∆X m-1 l=0 a m,l (p -Υ 1,1 )δu n+α l i,j + (-Υ 2,1 )δv n+α l i,j , p n+αm i,j =EOS(τ n+αm i,j , n+αm i,j
),

(II.68)
and the nal step writes

2D STAGGERED LAGRANGE-REMAP SCHEMES 115                                                                      ρ 0 τ n+1 i,j =ρ 0 τ n i,j + ∆t ∆X s-1 l=0 θ l du n+α l i,j , ρ 0 u n+1 i+ 1 2 ,j =ρ 0 u n i+ 1 2 ,j -∆t ∆X s-1 l=0 θ l (dp -dΥ 1,1 ) n+α l i+ 1 2 ,j , ρ 0 v n+1 i,j+ 1 2 =ρ 0 v n i,j+ 1 2 -∆t ∆X s-1 l=0 θ l (-dΥ 2,1 ) n+α l i,j+ 1 2 , ρ 0 n+1 i,j =ρ 0 n i,j -∆t ∆X s-1 l=0 θ l (p -Υ 1,1 )δu n+α l i,j + (-Υ 2,1 )δv n+α l i,j , ρ 0 e kin,u n+1 i+ 1 2 ,j =ρ 0 e kin,u n i+ 1 2 ,j -∆t ∆X s-1 l=0 θ l uδ(p -Υ 1,1 ) n+α l , i+ 1 2 ,j ρ 0 e kin,v n+1 i,j+ 1 2 =ρ 0 e kin,v n i,j+ 1 2 -∆t ∆X s-1 l=0 θ l vδ(-Υ 2,1 ) n+α l , i,j+ 1 2 x n+1 i+ 1 2 =x n i+ 1 2 + ∆t s-1 l=0 θ l u n+α l i+ 1 2 , p n+1 i =EOS(τ n+1 i , n+1 i
).

(II.69)

As for the 1D Euler staggered schemes, the kinetic energies need only to be updated at the end of the Lagrangian phase. Conservation properties of the staggered schemes for the compressible NavierStokes formulated in both internal and kinetic energies are summarized in the following lemma.

Lemma II.13 (Conservation of the staggered schemes (II.68)-(II.69)). For all explicit Runge-Kutta sequences and all consistent spatial reconstructions, the schemes (II.68)-(II.69) are conservative in mass, momentum and total energy E denition II.2.

Proof. The proof is identical to the one for (II.13)-(II.14) schemes.

As for the 1D Euler scheme, the scheme does not conserve the total energy E. Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.10 and II.14 direction by direction and are therefore globally conservative in mass, momentum and total energy for any dimensional splitting sequence.

∂ t       ρ ρu ρv ρe       + B 1       ρ ρu ρv ρe       = 0, ∂ t       ρ ρu ρv ρe       + B 2       ρ ρu ρv ρe       = 0.

II-4.2.3 Gravity source terms integration

In this part, the 2D schemes with gravity source terms are proposed. There is no special modications for the gravity source terms integration compared to the 1D case. Consider a constant gravity eld g = (g x , g y ) t . Then the proposed integration of gravity source terms writes in the x-direction as

                                     ρ 0 τ n+αm i,j =ρ 0 τ n i,j + ∆t ∆X m-1 l=0 a m,l du n+α l i,j , ρ 0 u n+αm i+ 1 2 ,j =ρ 0 u n i+ 1 2 ,j -∆t ∆X m-1 l=0 a m,l (dp -dΥ 1,1 ) n+α l i+ 1 2 ,j + α m ∆tg x ρ 0 n i+ 1 2 ,j , ρ 0 v n+αm i,j+ 1 2 =ρ 0 v n i,j+ 1 2 -∆t ∆X m-1 l=0 a m,l (-dΥ 2,1 ) n+α l i,j+ 1 2 , ρ 0 n+αm i,j =ρ 0 n i,j -∆t ∆X m-1 l=0 a m,l (p -Υ 1,1 )δu n+α l i,j + (-Υ 2,1 )δv n+α l i,j , p n+αm i,j =EOS(τ n+αm i,j , n+αm i,j
),

(II.71) 2D STAGGERED LAGRANGE-REMAP SCHEMES 117                                                                      ρ 0 τ n+1 i,j =ρ 0 τ n i,j + ∆t ∆X s-1 l=0 θ l du n+α l i,j , ρ 0 u n+1 i+ 1 2 ,j =ρ 0 u n i+ 1 2 ,j -∆t ∆X s-1 l=0 θ l (dp -dΥ 1,1 ) n+α l i+ 1 2 ,j + ∆tg x ρ 0 n i+ 1 2 ,j , ρ 0 v n+1 i,j+ 1 2 =ρ 0 v n i,j+ 1 2 -∆t ∆X s-1 l=0 θ l (-dΥ 2,1 ) n+α l i,j+ 1 2 , ρ 0 n+1 i,j =ρ 0 n i,j -∆t ∆X s-1 l=0 θ l (p -Υ 1,1 )δu n+α l i,j + (-Υ 2,1 )δv n+α l i,j , ρ 0 e kin,u n+1 i+ 1 2 ,j =ρ 0 e kin,u n i+ 1 2 ,j -∆t ∆X s-1 l=0 θ l uδ(p -Υ 1,1 ) n+α l i+ 1 2 ,j + g x ρ 0 u n+α l i+ 1 2 ,j , ρ 0 e kin,v n+1 i,j+ 1 2 =ρ 0 e kin,v n i,j+ 1 2 -∆t ∆X s-1 l=0 θ l vδ(-Υ 2,1 ) n+α l , i,j+ 1 2 x n+1 i+ 1 2 =x n i+ 1 2 + ∆t s-1 l=0 θ l u n+α l i+ 1 2 , p n+1 i =EOS(τ n+1 i , n+1 i
).

(II.72)

II-4.3 Numerical validation of the 2D staggered Lagrange-Remap schemes

Three test-cases are proposed to assess the accuracy and robustness of the 2D staggered schemes for the compressible NavierStokes equations. The rst test-case is in 1D, with no viscous terms, which assesses schemes ability to recover hydrostatic equilibrium. Then, a 2D test-case without gravity forces, the TaylorGreen vortex, is presented. Last, a RayleighTaylor instability is studied with and without viscous terms.

II-4.3.1 1D atmosphere at rest [START_REF] Käppeli | Well-balanced schemes for the Euler equations with gravitation[END_REF] This test-case has been proposed in [START_REF] Käppeli | Well-balanced schemes for the Euler equations with gravitation[END_REF] by Mishra and Kappeli. It consists of a hydrostatic equilibrium between pressure and gravitational forces. Initial conditions are Table II.13 l 1 -error in density and experimental order of convergence for the Lagrange-remap staggered scheme with gravity forces taken on the atmosphere at hydrostatic equilibrium [START_REF] Käppeli | Well-balanced schemes for the Euler equations with gravitation[END_REF], until t = 20, CFL=0.7. indicates machine precision reached.

                     ρ 0 (x) = ρ γ-1 0 + K 0 γ -1 γ gx 1 γ-1 , p 0 (x) = K 0 ρ 0 (x) γ , u 0 (x) = 0, γ = 5 3 , (II.73) with here K 0 = 1 ρ 0 γ , ρ 0 = 1, g = -1.

II-4.3.2 TaylorGreen vortex [160]

The TaylorGreen vortex is used to assess the accuracy of the proposed schemes. It is usually studied by the incompressible NavierStokes community. Here, enforcing a very high sound speed, the compressible NavierStokes equations are in near incompressible regime. (II.74)

           ρ 0 (x, y) = 1,
The analytical solution for incompressible ows writes

           ρ(x, y, t) = 1,
u(x, y, t) = sin(x) cos(y) e -2µt , v(x, y, t) = cos(x) sin(y) e -2µt , p(x, y, t) = p 0 -1 4 (cos(2x) + sin(2y)) e -4µt , (II. [START_REF] Gustafsson | The Godunov-Ryabenkii condition: The beginning of a new stability theory[END_REF] with p 0 = 10. The pressure is set such that the regime is nearly incompressible, using a stiened gas EOS which writes p = (γ -1)ρ -γp .

Here p = 10 8 . The viscosity parameters are set to µ = 10, λ = 0. Computations are performed till t = 10 -3 with a CFL set to 0.9 on the computational domain Ω = [-π, π] The RayleighTaylor instability is used to assess the ability of the schemes to handle instability, and if those instabilities are accentuated by the high-order accuracy. The initial data for the single perturbation mode are Since the hydrostatic equilibrium is not perfectly recovered, additional noise is added, but still small compared to the perturbations inducing the instability.

           ρ 0 (x, y) = 2χ {y>0} + 1χ {y<0} , u 0 (x, y) = 0, v 0 (x, y) = 0.25a(1 + cos(4πx))(1 + cos(3πy))χ{|y| < 1/6}, p 0 (x, y) = K 0 + ρ 0 (x,
Results are depicted in g. II.23. Without viscous stress tensor, the higher the order, the more modes develop. As a contrary, using even a small coecient of viscosity prevents such modes from developing, and leads to the expected results. Without dissipation, Euler schemes are unable to recover correctly the RayleighTaylor expected proles, and do not seem to converge. This is not a new result since it has been highlighted among others in [START_REF] Liska | Comparison of several dierence schemes on 1D and 2D test problems for the Euler equations[END_REF].
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For the multi-mode perturbation, the initialization is slightly modied as 

           ρ 0 (x, y) = 2χ {y>0} + 1χ {y<0} , u 0 (x, y) = 0, v 0 (x, y) = A(x)(1 + cos(3πy))χ{|y| < 1/6}, p 0 (x, y) = K 0 + ρ 0 (x,

Chapter III

Stable high-order methods for linear hyperbolic systems with arbitrary boundary conditions L'étude d'une nouvelle famille de schémas numériques pour des systèmes linéaires hyperboliques avec conditions aux bords est réalisée au cours de ce chapitre. On présente dans un premier temps la procédure an de construire les opérateurs d'intégration des conditions aux bords dans le cas de l'équation de l'advection pour des approximations de type diérences nies et volumes nis. Ensuite, cette procédure est étendue au cas du système des équations des ondes avec deux conditions aux bords diérentes. La méthode est alors étendue au cas général des systèmes hyperboliques linéaires avec conditions aux bords. An de pouvoir caractériser la stabilité des schémas ainsi obtenus par l'ajout de ces opérateurs, une étude de type GKS est proposée. An de permettre de disposer d'un aperçu de la stabilité du schéma eectif, une dénition de stabilité dite réduite est introduite. Des résultats numériques sont proposés tout au long du chapitre an d'illustrer la précision ainsi que la pertinence de la dénition de stabilité réduite introduite. Une partie de ce travail a été soumise à une revue scientique [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF]. In this chapter, a way to impose boundary conditions building ghost-cells values for linear conservation laws is proposed and studied. It is very close to the method developed in [START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF][START_REF] Tan | A high order moving boundary treatment for compressible inviscid ows[END_REF][START_REF] Tan | Ecient implementation of high order inverse laxwendro boundary treatment for conservation laws[END_REF][START_REF] Tan | Inverse LaxWendro Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments[END_REF][START_REF] Vilar | Development and stability analysis of the inverse lax-wendro boundary treatment for central compact schemes[END_REF]. In order to deal with the discretization of boundary conditions in the special case of Lagrange-remap schemes, the case of a simplied linear 1D hyperbolic system of conservation

laws on Ω = {x ∈ R, x > x s } is studied as      ∂ t U + A∂ x U = 0, t > 0, x > x s , U (x, t) ∈ R p BU (x s , t) = BG(t), t > 0, U (x, 0) = U 0 (x), x > x s . (III.1)
The geometry is depicted in g. III.1. Put aside temporarily the peculiar shape of Ω = [x s , ∞[ and consider the whole domain. The 1D domain is discretized in regular cells

I j = [x j-1 2 , x j+ 1 2
],

with ∆x = x j+ 1 2 -x j-1 2
the constant space between two consecutive cell interfaces. Only nitedierences and nite-volume-type schemes will be considered (see section I-1.2.1). At time t n , the discrete solution writes U n = (U n j ) j∈Z . Consider now that Ω = {x ∈ R, x > x s } and that boundary conditions are specied at x = x s = σ∆x ∈ I 0 with σ ∈ [- 1 2 , 1 2 [. The most interesting case is when the boundary location does not coincide with the discretized grid (see g. III.1).

Only fully interior cells (depicted in blue in the gure) are considered to be part of the "interior" computational domain denoted Ω + ⊂ Ω. Cells in gray are considered as part of the "ghost" computational domain denoted Ω -. In practice, one has Ω ⊂ Ω + ∪ Ω -⊂ R. The algorithm proposed in this work builds ghost values in Ω -such that the resulting scheme is both high-order accurate and stable. For this peculiar value of x s , one has that

Ω + = {x ∈ R, x ≥ x 1 2 }. It implies
that only interior values U + = (U n j ) j≥1 are known at the beginning of the time-step. Boundary conditions specied at x = x s are provided according to the incoming/outgoing characteristics of A = ∇ U F (U ). Moreover, the matrix B satises the condition of theorem I.9. In the whole chapter, the matrix A is assumed invertible to alleviate computations. To build ghost values, which is ultimately the real problem, one has in hands the boundary conditions and any kind of extrapolation technique to reconstruct U -= (U j ) j≤0 from U + = (U j ) j≥1 . Therefore the problem discussed hereafter can be formulated as follows
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and such that the coupling with the internal scheme (in Ω + ) is stable and a high-order approximation of eq. (III.1).

To numerically solve the initial boundary value problem (III.1), it remains to build averaged ghost-cell values U -= (U n j ) j≤0 from U + , on a stencil which depends on the interior scheme. In this chapter, rst the focus is made on the scalar advection problem, and a method is derived to reach high-order accuracy. Then, a generalization is made to linear hyperbolic system of conservation laws, and especially for the wave equations. Numerical results illustrate the accuracy of the method all along the chapter. Our ndings highlight the need to tackle stability issues due to the reconstruction. Hence, stability results are rst obtained using the GKS theory (using lemma I.11), and then the concept of reduced stability is introduced to alleviate part of the computation to obtain stability. The practical interest of the reduced stability denition is conrmed by numerical results. This work is part of a submitted publication [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF]. 

III-1 Inverse LaxWendro procedure for linear hyperbolic systems

The Inverse LaxWendro (ILW) method is rst detailed for the special case of the scalar advection equation. It is used to build high-order accurate values U -using U + and the boundary conditions. Numerical experiments illustrate the accuracy of the method. Later on, the procedure is extended to the wave equations, considering two dierent boundary conditions satisfying the Kreiss condition. At last, a generic procedure is introduced to deal with general linear hyperbolic system with boundary conditions.
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III-1.1 Derivation of high-order reconstruction operators for the advection problem

Guiding lines of the method are rst explained on the scalar version of (III.1), ie the advection equation. Let a > 0, the model is

     ∂ t u + a∂ x u = 0, t ≥ 0, x > x s , u(t, x s ) = g(t), t ≥ 0, u(0, x) = u 0 (x), x > x s . (III.3)
As a > 0 a boundary condition must be provided at the left boundary. Obviously (III.3) satises the Uniform Kreiss conditions (theorem I.9). Using either a nite dierence or a nite volume formalism and denoting ν = a ∆t ∆x , numerical schemes under conservative form to solve (III.3) write

u n+1 j = u n j -ν u * j+ 1 2 -u * j-1 2 . (III.4)
Since u is constant along characteristics x = at it is straightforward to show that the numerical ux rewrites

u * j+ 1 2 = 1 ∆t t n+1 t n u(x j+ 1 2 , θ)dθ = 1 ∆t t n+1 t n u(x j+ 1 2 -a (θ -t n ), t n ) dθ, = 1 ν∆x x j+ 1 2 x j+ 1 2 -ν∆x
u n (y)dy.

A possible way to compute the uxes u * -ν∆x, j) .

(III.5)

Let m be the order of the scheme. Let also r and p be two positive integers such that r + p = m.

Interpolating polynomials write

P (x, j) = p k=-r    p i=-r i =k x -x j+i+ 1 2 x j+k+ 1 2 -x j+i+ 1 2    k l=-r u j+l ∆x. (III.6)
As examples, for (p, r) = (1, 1) we get the LaxWendro scheme

u * j+ 1 2 = 1 2 (u j + u j+1 ) + ν 2 (u j -u j+1 ), (III.7)
for (p, r) = (0, 2) the BeamWarming scheme

u * j+ 1 2 = 1 3 (3u j -u j-1 ) - ν 2 (u j -u j-1 ), (III.8) 
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u * j+ 1 2 = 1 6 (5u n j + 2u n j+1 -u n j-1 ) + ν 2 (u n j -u n j-1 ) + ν 2 6 (u n j+1 -2u n j + u n j-1
).

(III.9)

The three aforementioned schemes are used in the sequel, whether as examples or for numerical experiments. Such schemes, also described in [START_REF] Strang | Trigonometric polynomials and dierence methods of maximum accuracy[END_REF][START_REF] Strang | On the construction and comparison of dierence schemes[END_REF][START_REF] Després | Uniform asymptotic stability of Strang's explicit compact schemes for linear advection[END_REF] are very close to those that will be used to solve Euler equations during the remapping phase as in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF][START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] and in section II-2.3.

Introducing the oor and the ceil functions

x = m ∈ Z, where m is the largest integer less than or equal to x,

x = m ∈ Z, where m is the smallest integer greater than or equal to x, it is proved in [START_REF] Després | Uniform asymptotic stability of Strang's explicit compact schemes for linear advection[END_REF] that for ν ≤ 1 these schemes are stable for p = m 2 and r = m 2 .

The main idea in the Inverse LaxWendro is to use the system of partial dierential equations to change space derivatives into time derivatives in Taylor expansions. For the scalar advection problem, it writes

∂ t u = -a∂ x u,
and since a is assumed to be non-negative, it becomes

∂ x u = (-a) -1 ∂ t u.
Dierentiating in time an arbitrary number of times the previous equation, and changing time derivatives into space derivatives, it writes

∂ k x u = (-a) -k ∂ k t u, k ∈ N.
We present hereafter the formal computations to introduce the previous equality in Taylor expansions. The emphasis is laid on the construction of high-order reconstruction operators for the nite volume approximation.

III-1.1.1 Derivation of high-order reconstruction operators for the nite volume approximation

Ghost-cell methods rely on the determination of the U -= (u 0 , u -1 , ...) values that are to be set from the boundary condition g(t) and the interior values U + = (u 1 , u 2 , u 3 , ...). For x in a INVERSE LAXWENDROFF PROCEDURE FOR LINEAR HYPERBOLIC SYSTEMS neighborhood of x s , a formal Taylor expansion leads to u(x, t) = 1 ∆x

x+ ∆x 2 x-∆x 2 u(y, t)dy = 1 ∆x x+ ∆x 2 x-∆x 2 k≥0 ∂ k x u(x s , t) (y -x s ) k k! dy = 1 ∆x k≥0 ∂ k x u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    Reminding that for a = 0 one has ∂ k x u = (-a) -k ∂ k t u for the advection equation (III.3) = 1 ∆x 0≤k≤n (-a) -k ∂ k t u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    + 1 ∆x k≥n+1 ∂ k x u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    .
Truncating up to order m, previous equation leads to

u(x, t) = 1 ∆x 0≤k≤n (-a) -k ∂ k t u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    + 1 ∆x n+1≤k<m ∂ k x u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    + O(∆x m ).
Consider a m th -order scheme, and consider we only use the n rst time derivatives of g, with n < m. Using u(x s , t) = g(t), one therefore gets

u(x, t) = 1 ∆x 0≤k≤n (-a) -k ∂ k t g(t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    + 1 ∆x n+1≤k<m ∂ k x u(x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    + O(∆x m ).
(III.10)

Consider a scheme that requires n g ghost-cell values. We introduce two set of points x -= {x 0 , x -1 , ..., x -ng+1 } and x + = {x 1 , x 2 , ..., x m-n-1 } which are nite sets of points respectively included in Ω -and in Ω + . Using the identity (III.10) and dropping the O(∆x m ) for x ∈ x + , one builds a system of unknowns ∂ k x u(x s , t) with n + 1 ≤ k < m. Solving this system allows then to build averaged ghost-cell values u(x, t) for x ∈ x -.

As an example we consider the O3 scheme (m = 3) whose ux is given by (III.9) and whose total BOUNDARY TREATMENT FOR LINEAR HYPERBOLIC SYSTEMS 129 stencil is S j = {j -2, j -1, j, j + 1}. It therefore requires n g = 2 ghost-cells (x -= {x 0 , x -1 }).

For this example and for the sake of simplicity, we assume g = 0 and we take n = 1 (ie g(t) and ∂ t g(t) are known at the boundary). We therefore get x + = {x 1 } and relation (III.10) writes

u(x, t) = 1 ∆x ∂ 2 x u(x s , t)    (x + ∆x 2 -x s ) 3 3! - (x - ∆x 2 -x s ) 3 3!    + O(∆x 3 ) = ∂ 2 x u(x s , t) 12x 2 -24xσ∆x + 12∆x 2 σ 2 + ∆x 2 24 + O(∆x 3 ). (III.11)
Dropping the O(∆x 3 ) and using the rst interior cell u 1 = u(∆x, t) allows to compute the

unknown ∂ 2 x u(x s , t) ∂ 2 x u(x s , t) = 24 12∆x 2 σ 2 -24σ∆x 2 + 13∆x 2 u 1 .
(III.12)

Ghost-cell values u 0 = u(0, t) and u -1 = u(-∆x, t) can now be explicitely computed from (III.11-III.12)

     u 0 = 12∆x 2 σ 2 +∆x 2 24 ∂ 2 x u(x s , t), u -1 = 12∆x 2 σ 2 +24σ∆x 2 +13∆x 2 24 ∂ 2 x u(x s , t), ie    u 0 = 12σ 2 +1 12σ 2 -24σ+13 u 1 , u -1 = 12σ 2 +24σ+13 12σ 2 -24σ+13 u 1 .
These staightforward computations can be formalized by introducing the Taylor coecients ma-

trices Y + ∈ R 1×1 and Y -∈ R 2×1 , Y + = 12∆x 2 σ 2 -24σ∆x 2 + 13∆x 2 24 and Y -=   12∆x 2 σ 2 + ∆x 2 24 12∆x 2 σ 2 + 24σ∆x 2 + 13∆x 2 24   . (III.13)
Note that for any σ, Y + ≥ 0. Then, under the assumption that ∆x = 0, Y + is invertible. We

set R = Y -(Y + ) -1 and get U -= R(U + ), ie u 0 u -1 =   12σ 2 +1 12σ 2 -24σ+13 12σ 2 +24σ+13 12σ 2 -24σ+13   u 1 . (III.14)
We now extend this procedure to the general case. Let m be the order of the reconstruction. Let n denote the number of time derivatives of the boundary condition used in the reconstruction and assume the numerical scheme requires n g ghost-cells. We build matrices Y m,n

- ∈ R ng×(m-n-1) and Y m,n + ∈ R (m-n-1)×(m-n-1)              (Y m,n -) i,j = (x 1-i + ∆x 2 -x s ) n+j+1 -(x 1-i - ∆x 2 -x s ) n+j+1 ∆x(n + j + 1)! , (Y m,n + ) i,j = (x i + ∆x 2 -x s ) n+j+1 -(x i - ∆x 2 -x s ) n+j+1
∆x(n + j + 1)! .

(III.15)
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The boundary condition g, previously assumed to be zero is reintroduced in S n -∈ R ng and S n + ∈ R (m-n-1) dened as

               (S n -) i = n k=0 (-a) k ∂ k t g(t) (x 1-i + ∆x 2 -x s ) k+1 -(x 1-i - ∆x 2 -x s ) k+1 ∆x(k + 1)! , (S n + ) i = n k=0 (-a) k ∂ k t g(t) (x i + ∆x 2 -x s ) k+1 -(x i - ∆x 2 -x s ) k+1 ∆x(k + 1)! . (III.16) Let Θ = (∂ n+1 x u, ..., ∂ m-1
x u) t . Relation (III.10) can be rewritten

U -= S n -+ Y m,n -• Θ, U + = S n + + Y m,n + • Θ.
(III.17)

A similar proof as for Vandermonde matrices shows that Y m,n

+ is invertible for any (m, n) if 0 ≤ n < m. Elimination of Θ in (III.17) leads to U -= S n -+ Y m,n -• (Y m,n + ) -1 • (U + -S n + ). (III.18)
This relation gives a reconstruction up to m th -order of u outside the computational domain using the n rst time derivatives of g. It denes the so-called R m,n reconstruction operator

R m,n = Y m,n -• (Y m,n + ) -1 . (III .19) 
Remark III.1. The previous formal computations also apply straightforwardly in the case of nite dierence schemes. Terms of the form

   (x + ∆x 2 -x s ) k+1 ∆x(k + 1)! - (x - ∆x 2 -x s ) k+1 ∆x(k + 1)!    become (x -x s ) k k!
in the nite dierence case.

III-1.1.2 Experimental order of accuracy of the procedure

Previous computations yield high-order accurate numerical methods to solve eq. (III.3). Consider the initial boundary value problem (III.3) with a = 1 and the following

C ∞ data u(0, x) = u 0 (x) = 0, u(t, x s ) = g(t) = e -0.1 t 2 sin(4πt).
(III.20)

Equation (III.3) is solved on Ω = {x ∈ R, x s < x < 2}
, with a classical outow boundary condition in x = 2 and the high-order accurate boundary treatment previously proposed at x = x s = √ 3 2 10 -3 . The computational domain, discretized in N x cells, is [0, 2] so that the left boundary lies in the rst cell. The CFL is set to 0.8. Computations are done in order to assess the accuracy of the proposed methods. In Table III.1, we present the l 1 -error with respect to the number of cells for the R 3,0 ,R 3,1 , and R 3,2 reconstructions using the 3 rd -order interior Table III.1 l 1 -error and experimental order of convergence for the 3 rd -order scheme together with the R 3,n nite-volume reconstruction polynomial at t = 1.5. III.2 l 1 -error and experimental order of convergence for the 4 th -order scheme together with the R 4,n nite-volume reconstruction polynomial at t = 1.5.

N x R 3,0 R 3,1 R 3,2 20 
N x R 4,0 R 4,1 R 4,2 R 4,3 20 2.0e-2 • 1.9e-2 • 2.0e-2 • 2.1e-2
scheme (III.4), (III.9). In Table III.2, we present the l 1 -error with respect to the number of cells for the R 4,0 ,R 4,1 , R 4,2 , and R 4,3 reconstructions using the 4 th -order interior scheme (III.4). The expected order of convergence for both schemes is reached for all reconstructions. We also have checked that modifying x s does not alter the order of accuracy but slightly changes the initial error level (for N x = 20). Similar experimental orders of convergence for nite dierence reconstruction operators have been recovered. An important feature of the reconstruction operator is its impact on the nal scheme stability. This will be discussed hereafter in section III-2.1.

III-1.2 Derivation of high-order reconstruction operators for the wave equations

The wave equations have already been detailed for the linear stability analysis of the staggered schemes in section II-2. The system of equations is

∂ t u + ∂ x p = 0, ∂ t p + ∂ x u = 0, (III.21)
which can be written, for U = (u, p) t ∈ R 2 as

∂ t U + 0 1 1 0 ∂ x U = 0. (III.22)
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In the following, we introduce the matrix A = 0 1 1 0

, and obviously previous equation rewrites

∂ t U + A∂ x U = 0. (III.23)
The initial value boundary problem that we are interested in therefore writes

∂ t U + A∂ x U = 0, t > 0, x > x s BU = BG, t > 0, x = x s (III.24)
Lemma III.1. The initial value boundary problem (III.24) is well-posed in the sense of theorem I.9 if

B ∈ R 1×2 and satises B = b 1 b 2 with b 1 + b 2 = 0.
Proof. Trivially, one has that the spectrum of A satises Sp(A) = {-1, 1} and the eigenvectors are

v + = 1 
1 and v -= -1
1 .

Using the notation introduced in theorem I.9, it yields that T = 1 1

. Then, we get that

B ∈ R 1×2 with B = b 1 b 2 . Thus BT = b 1 + b 2 .
To ensure invertibility of BT , one requires that b 1 + b 2 = 0, which concludes the proof.

In the following, two dierent matrices B are proposed which satisfy lemma III.1. The emphasis is laid on how the boundary condition impacts the reconstruction operator. Before studying specically the boundary condition, the interior schemes are introduce to solve eq. (III.21).

Those schemes are the linear version of the one proposed for the Euler system introduced and detailed in section II-2.

III-1.2.1 RungeKutta based staggered schemes for the wave equations

The RungeKutta based staggered schemes for the wave equations (already introduced in section II-2) are eq. (III.25

), denoting ν = ∆t ∆X ,            p n+αm i = p n i -ν m-1 l=0 a m,l du n+α l i , u n+αm i+ 1 2 = u n i+ 1 2 -ν m-1 l=0 a m,l dp n+α l i+ 1 2 ,            p n+1 i = p n i -ν s-1 l=0 θ l du n+α l i , u n+1 i+ 1 2 = u n i+ 1 2 -ν s-1 l=0 θ l dp n+α l i+ 1 2 , (III.25)
The explicit RungeKutta coecients are given in table III.3. A possible way would be to build the reconstruction operator only at time t = t n , exactly as for the advection case with one-step schemes. However, considering as an example that there are 3 ghost-cells values to be built at each sub-cycle, and that the scheme requires 6 RungeKutta sub-cycles, then one must build 18 ghost-cells values at time t = t n . This will probably be a predicament for the stability of the eective schemes. Thus, the choice has been made here to build ghost-cells values at each RungeKutta sub-cycles. However, as explained and illustrated by Carpenter and al. in [START_REF] Carpenter | The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error[END_REF],

α 1 a 1,0 0 0 0 • • • α 2 a 2,0 a 2,1 0 0 • • • . . . . . . . . . . . . • • • • • • α p a p,0 • • • • • • a p,p-1 0 1 θ 0 θ 1 • • • θ p-1 θ p
prescribing "naively" boundary conditions at each RungeKutta sub-cycle yields only second order of accuracy. Lemma III.2 gives results concerning a way to impose high-order accurate values of a given function at intermediary ctitous time-step.

Lemma III.2 (High-order accurate in time for function values at intermediary ctitious time).

Consider a q th -order explicit RungeKutta sequences whose coecients are given by a Butcher table as table III.3. In order to impose high-order accurate values of a function g : t → g(t) at intermediary ctitious time, one sets

g n+α l = g(t n ) + q r=1 β r l ∂ r t g(t n )∆t r ,
where the β coecients satisfy

                     β 1 l = l-1 m=0 a l,m , β r l = l-1 m=0 a l,m β r-1 m , β r p+1 = p m=0 θ m β r-1 m .
Proof. To build high-order accurate boundary conditions, we consider the following system (III.26):

             ∂ t g 0 (t) = g 1 (t) . . . ∂ t g q (t) = g q+1 (t) . . . (III.26)
System (III.26) needs closure to be well posed. We close the system considering that for a xed q ∈ N (linked to the order of the RungeKutta sequence), we have ∂ t g q+1 (t) = 0. This way, we INVERSE LAXWENDROFF PROCEDURE FOR LINEAR HYPERBOLIC SYSTEMS get the following system (III.27).

           ∂ t g 0 (t) = g 1 (t) . . . ∂ t g q (t) = g q+1 (t) ∂ t g q+1 (t) = 0 (III.27)
We consider q th order explicit RungeKutta schemes with the following notations for Runge Kutta sequences: α l is the time step for the l th sub-cycle, a l,m the l, m term of the Butcher table

and θ m the m th reconstruction coecient for the last step. We consider p sub-cycles schemes (see table III.3).

Using RungeKutta integration in time with time-step ∆t and considering that g n k = d k g dt k (t n ) we will get the following schemes, for l ∈ {1, ..., p + 1}

                       g n+α l 0 =g n 0 + ∆t l-1 m=0 a l,m g n+αm 1 g n+α l 1 =g n 1 + ∆t l-1 m=0 a l,m g n+αm 2 . . . = . . . g n+α l q =g n q ,
(III.28)

Developing system (III.28) to keep only terms with g n 0 , g n 1 , ..., g n q , we get for k ∈ {0, ..., q}

g n+α l k = g n k + r+k≤q r=1 β r l g n k+r ∆t r , (III.29)
where the β m l coecients satisfy the following equation:

                     β 1 l = l-1 m=0 a l,m , β r l = l-1 m=0 a l,m β r-1 m , β r p+1 = p m=0 θ m β r-1 m .
(III.30) which concludes the proof using k = 0 into eq. (III.29).

Once the Butcher table of a RungeKutta sequence is given, the β r l can easily be computed once and for all. Then, it allows to impose the value of the g n+α l function only of ∆t and of the values of g and its time-derivatives at time t = t n . Let us prove that the "time matching" method which consists of imposing g n+αl = g(t n + α l ∆t) is only second order accurate in time.

Lemma III.3 (Low order accuracy of the "time matching" method). For general Butcher coef-BOUNDARY TREATMENT FOR LINEAR HYPERBOLIC SYSTEMS 135 cients, the "time matching" method is only second order accurate. It satises

g(t n + α l ∆t) = g n+α l + O(∆t 2 ).
Remark III.2. This is a generalization to any RungeKutta sequences of the results given by Carpenter and al. in [START_REF] Carpenter | The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error[END_REF].

Proof. Recall that

g n+α l = g(t n ) + q r=1 β r l ∂ r t g(t n )∆t r .
The Taylor expansion in ∆t of g(t n + α l ∆t) writes

g(t n + α l ∆t) = g(t n ) + q r=1 ∂ r t g(t n ) (α l ∆t) r r! + O(∆t q+1 )
Then it leads to

g n+α l -g(t n + α l ∆t) = q r=1 ∂ r t g(t n )∆t r β r l - (α l ) r r! + O(∆t q+1 ) Introducing the notations γ r = β r l - (α l ) r r!
, one gets that

γ 1 = β 1 l -α l = l-1 m=0 a l,m -α l = 0, since α l = l-1 m=0
a l,m for any Butcher table. Now, let us consider γ 2 , it writes

γ 2 = β 2 l - 1 2 α 2 l = l-1 m=0 a l,m β 1 m - 1 2 α 2 l = l-1 m=0 a l,m α m - 1 2 α 2 l ,
which is not equal to zero for general coecients a l,m . Hence, it yields that

g n+α l -g(t n + α l ∆t) = O(∆t 2 ).
Using the β coecients, let us now deal with building appropriate reconstruction operators depending on the boundary condition. A method has been devised to deal with such a problem,
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and then to build high-order boundary conditions for any explicit RungeKutta sequences. It has been done for the RungeKutta sequences presented in appendix, section A.1.

III-1.2.2 Reconstruction operators for the wave equations with boundary conditions on velocity

First, we consider that the matrix B takes the simple form B = 1 0 , which obviously satises lemma III.1. The system rewrites as

     ∂ t u + ∂ x p = 0, x ≥ x s , t > 0, ∂ t p + ∂ x u = 0, x ≥ x s , t > 0, u(x s , t) = g(t), t > 0. 
(III.31)

Then using the eq. (III.31), one gets in particular that for any q ∈ N

∂ 2q+1 t u = -∂ 2q+1 x p, ∂ 2q t u = ∂ 2q x u, (III.32) which yields ∂ 2q+1 x p(x s , t) = -∂ 2q+1 t g(t), ∂ 2q x u(x s , t) = ∂ 2q t g(t). (III.33)
For x in a neighborhood of x s , a formal Taylor expansion leads to u p (x, t) = 1 ∆x

x+ ∆x 2 x-∆x 2 u p (y, t)dy = 1 ∆x x+ ∆x 2 x-∆x 2 k≥0 ∂ k x u p (x s , t) (y -x s ) k k! dy = 1 ∆x k≥0 ∂ k x u p (x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    .
Introducing the notation

ψ k (x) =    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    , it rewrites as u p (x, t) = 1 ∆x k≥0 ∂ k x u ∂ k x p (x s , t)ψ k (x), = 1 ∆x   n 2 k≥0 ∂ 2k x u ∂ 2k x p (x s , t)ψ 2k (x) + n-1 2 k≥0 ∂ 2k+1 x u ∂ 2k+1 x p (x s , t)ψ 2k+1 (x)   + 1 ∆x k≥n+1 ∂ k x u ∂ k x p (x s , t)ψ k (x). Reminding that ∂ 2k x u = ∂ 2k t u and that ∂ 2k+1 x p = -∂ 2k+1 t u u p (x, t) = 1 ∆x   n 2 k≥0 ∂ 2k t u ∂ 2k x p (x s , t)ψ 2k (x) + n-1 2 k≥0 ∂ 2k+1 x u -∂ 2k+1 t u (x s , t)ψ 2k+1 (x)   + 1 ∆x k≥n+1 ∂ k x u ∂ k x p (x s , t)ψ k (x).
Truncating up to order m, previous equation gives

u p (x, t) = 1 ∆x   n 2 k≥0 ∂ 2k t u ∂ 2k x p (x s , t)ψ 2k (x) + n-1 2 k≥0 ∂ 2k+1 x u -∂ 2k+1 t u (x s , t)ψ 2k+1 (x)   + 1 ∆x m-1 k=n+1 ∂ k x u ∂ k x p (x s , t)ψ k (x) + O(∆x m ).
Inserting boundary condition and dropping the O(∆x m ), one gets

u p (x, t) = 1 ∆x   n 2 k≥0 ∂ 2k t g(t) ∂ 2k
x p(x s , t)

ψ 2k (x) + n-1 2 k≥0 ∂ 2k+1 x u(x s , t) -∂ 2k+1 t g(t) ψ 2k+1 (x)   + 1 ∆x m-1 k≥n+1 ∂ k x u(x s , t) ∂ k x p(x s , t) ψ k (x).
Getting the terms in g in the left hand side, it rewrites as

               u(x, t) -1 ∆x n 2 k≥0 ∂ 2k t g(t)ψ 2k (x) = 1 ∆x   n-1 2 k≥0 ∂ 2k+1 x u(x s , t)ψ 2k+1 (x) + m-1 k≥n+1 ∂ k x u(x s , t)ψ k (x)   , p(x, t) + 1 ∆x n-1 2 k≥0 ∂ 2k+1 t g(t)ψ 2k+1 (x) = 1 ∆x   n 2 k≥0 ∂ 2k x p(x s , t)ψ 2k (x) + m-1 k≥n+1 ∂ k x p(x s , t)ψ k (x)   .
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Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes

U --S n -= Y m,n -• Θ, U + -S n + = Y m,n + • Θ, (III.34) 
A similar proof as for Vandermonde matrices shows that Y m,n + is invertible for any (m, n) with 0 ≤ n < m. Then eq. (III.34) gives after elimination of Θ formed with spatial derivatives of u and p,

U -= S n -+ Y m,n -• (Y m,n + ) -1 • (U + -S n + ). (III.35)
Here again, the reconstruction operator writes R

m,n = Y m,n -• (Y m,n + ) -1 .
Remark III.3. Straightforwardly, as u and p play a symetric role, one deduces the reconstruction operator for the following IBVP problem

     ∂ t u + ∂ x p = 0, x ≥ x s , t > 0, ∂ t p + ∂ x u = 0, x ≥ x s , t > 0, p(x s , t) = g(t), t > 0.

III-1.2.3 Reconstruction operators for the wave equations with mixed boundary conditions on both velocity and pressure

First, we consider that the matrix B takes the form B = 1 λ , where λ is chosen in order to satisfy lemma III.1. It yields a condition on λ which writes λ = -1. The special case where λ = 0 has been dealt with previously. The system rewrites as

     ∂ t u + ∂ x p = 0, x ≥ x s , t > 0, ∂ t p + ∂ x u = 0, x ≥ x s , t > 0, u(x s , t) + λp(x s , t) = g(t), t > 0. 
(III.36)

In particular, one has

∂ q t u p = (-A) q ∂ q x u p , (III.37)
and since A is invertible, it leads to

∂ q x u p = (-A) -q ∂ q t u p .
(III.38)

The matrix B ∈ R p×p is introduced as

B = B 0 .
Keeping the notation previously introduced, for x in a neighborhood of x s , a formal Taylor

expansion gives u p (x, t) = 1 ∆x k≥0 ∂ k x u ∂ k x p (x s , t)ψ k (x), which is split into two terms u p (x, t) = 1 ∆x 0≤k≤n (-1) k ψ k (x)(A k ) -1 ∂ k t u p (x s , t) + 1 ∆x n+1≤k ψ k (x)∂ k x u p (x s , t),
Decomposing along B and I -B, it leads to

u p (x, t) = 1 ∆x 0≤k≤n ψ k (x)(A k ) -1 (-1) k B∂ k t u p (x s , t) + 1 ∆x 0≤k≤n ψ k (x)A -k (I -B)A k ∂ k x u p (x s , t) + 1 ∆x n+1≤k ψ k (x)∂ k x u p (x s , t).
Truncating up to m th -order, dropping the O(∆x m ) and using

B u p (x s , t) = BG(t), we get u p (x, t) = 1 ∆x 0≤k≤n ψ k (x)A -k (-1) k B∂ k t G(t) + 1 ∆x 0≤k≤n ψ k (x)A -k (I -B)A k ∂ k x u p (x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x u p (x s , t).
Noticing in particular that A 2 = I, thus A -1 = A, one gets

u p (x, t) = - 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x)A B∂ 2k+1 t G(t) + 1 ∆x 0≤k≤ n 2 ψ 2k (x) B∂ 2k t G(t) + 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x)A(I -B)A∂ 2k+1 x u p (x s , t) + 1 ∆x 0≤k≤ n 2 ψ 2k (x)(I -B)∂ 2k x u p (x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x u p (x s , t).
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Then, computing the values of (I -B),A(I -B)A and A B, one gets the following results

                     I -B = 0 -λ 0 1 , A B = λ 1 0 0 , A(I -B)A = 1 0 -λ 0 ,
which leads to, denoting g = BG and inserting in the previous expression

u p (x, t) = - 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x) 0 ∂ 2k+1 t g(t) + 1 ∆x 0≤k≤ n 2 ψ 2k (x) ∂ 2k t g(t) 0 + 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x) ∂ 2k+1 x u(x s , t) -λ∂ 2k+1 x u(x s , t) + 1 ∆x 0≤k≤ n 2 ψ 2k (x) -λ∂ 2k x p(x s , t) ∂ 2k
x p(x s , t)

+ 1 ∆x n+1≤k<m ψ k (x)∂ k x u p (x s , t).
Getting the terms in g in the left side, one gets

                                             u(x, t) -1 ∆x 0≤k≤ n 2 ψ 2k (x)∂ 2k t g(t) = 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x)∂ 2k+1 x u(x s , t) -1 ∆x 0≤k≤ n 2 λψ 2k (x)∂ 2k x p(x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x u(x s , t), p(x, t) + 1 ∆x 0≤k≤ n-1 2 ψ 2k+1 (x)∂ 2k+1 t g(t) = 1 ∆x 0≤k≤ n 2 ψ 2k (x)∂ 2k x p(x s , t) -1 ∆x 0≤k≤ n-1 2 λψ 2k+1 (x)∂ 2k+1 x u(x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x p(x s , t).
Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes

U --S n -= Y m,n -• Θ, U + -S n + = Y m,n + • Θ, (III.39)
A similar proof as for Vandermonde matrices shows that Y m,n + is invertible for any (m, n) with 0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of u and p,

U -= S n -+ Y m,n -• (Y m,n + ) -1 • (U + -S n + ).
(III.40)

The reconstruction operator writes R m,n = Y m,n -• (Y m,n + ) -1 . One notices several dierences compared with the previous example. For a velocity based boundary condition, the problem could be decoupled between solving a problem on p and later on u (or vice versa). Here, due to the particular boundary condition coupling both u and p, the obtained problem is solved simultaneously on both u and p and their derivatives.

Remark III.4. Straightforwardly, one deduces the reconstruction operator for boundary conditions imposed as λu + p = g, or conditions imposed as µu + λp = g with λ + µ = 0.

III-1.2.4 Experimental order of accuracy for a wave problem

We consider a C ∞ data solution to eq. (III.21) as u(t, x) = a sin(ω(t + x)) + b sin(ω(t -x)), p(t, x) = -a sin(ω(t + x)) + b sin(ω(t -x)).

(III.41)

where arbitrarily, a = 1, b = -1, ω = 2π. We consider a domain Ω = {x ∈ R, x s < x < 10}

where the boundary conditions on the right are imposed using the exact solution presented in eq. (III.41), and on the left, using the high-order accurate boundary treatment (according to the boundary condition) for x = x s = √ 3 2 10 -3 , so that the left boundary lies in the rst cell. The CFL is set to 0.5. Computations are done in order to assess the accuracy of the proposed methods. First, the boundary treatment for boundary conditions on velocity is detailed, and its accuracy assessed with numerical experiments. Second, the boundary treatment for mixed boundary conditions is detailed, and the error as well as experimental order of convergence are presented.

Using boundary conditions on velocity

We consider here the initial data and boundary conditions on velocity for the IBVP as

     u(x, 0) = 2 sin(ωx), p(x, 0) = 0, u(x s , t) = 2 sin(ωx s ) cos(ωt).
(III. [START_REF] Després | Lagrangian systems of conservation laws[END_REF] In Table III.4, we present the l 1 -error with respect to the number of cells for the R 3,0 ,R 3,1 , and R 3,2 reconstructions using the 3 rd -order interior scheme presented in section II-2. The expected order of convergence for the third order staggered scheme is reached for the R 3,1 and R 3,2 reconstructions. Indeed, one can see that using R 3,0 leads to an unstable eective scheme. We also have checked that modifying x s does not alter the order of accuracy but slightly changes the INVERSE LAXWENDROFF PROCEDURE FOR LINEAR HYPERBOLIC SYSTEMS 

N x R 3,0 R 3,1 R 3,2 20 
N x R 3,0 R 3,1 R 3,2 20 

Using mixed boundary conditions

The initial data and mixed boundary conditions for the IBVP are

     u(x, 0) = 2 sin(ωx), p(x, 0) = 0 u(x s , t) + λp(x s , t) = (1 -λ) sin(ω(t + x s )) -(1 + λ) sin(ω(t -x s )), (III.43)
with arbitrarily x the parameter λ to λ = 1747. In Table III.5, we present the l 1 -error with respect to the number of cells for the R 3,0 ,R 3,1 , and R 3,2 reconstructions using the 3 rd -order interior scheme presented in section II-2. The expected order of convergence for the third order staggered scheme is reached for the R 3,1 and R 3,2 reconstructions. Indeed, one can see that using R 3,0 leads to an unstable eective scheme. We also have checked that modifying x s does not alter the order of accuracy but slightly changes the initial error level (for N x = 20).

Similar experimental orders of convergence for nite dierence reconstruction operator have been recovered.

III-1.3 High-order reconstruction operator for general linear system

We extend the previous case to general hyperbolic linear system with boundary conditions. For linear hyperbolic system (III.1), one gets the following equality, assuming that A is invertible, Taylor expansion of U for x in a neighborhood of x s leads to U (x, t) = 1 ∆x

∂ k t U = (-1) k A k ∂ k x U , ∂ k x U =(-1) k A -k ∂ k t U .
x+ ∆x 2 x-∆x 2 U (y, t)dy = 1 ∆x x+ ∆x 2 x-∆x 2 k≥0 ∂ k x U (x s , t) (y -x s ) k k! dy, = 1 ∆x k≥0 ∂ k x U (x s , t)    (x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)!    .
To alleviate the notations, let us introduce ψ k (x) =

(x + ∆x 2 -x s ) k+1 (k + 1)! - (x - ∆x 2 -x s ) k+1 (k + 1)! . We have U (x, t) = 1 ∆x 0≤k≤n (-1) k ψ k (x)(A k ) -1 ∂ k t U (x s , t) + 1 ∆x n+1≤k ψ k (x)∂ k x U (x s , t), = 1 ∆x 0≤k≤n ψ k (x)(A k ) -1 (-1) k B∂ k t U (x s , t) + 1 ∆x 0≤k≤n ψ k (x)A -k (I -B)A k ∂ k x U (x s , t) + 1 ∆x n+1≤k ψ k (x)∂ k x U (x s , t).
Truncating up to m th -order, dropping the O(∆x m ) and using BU (x s , t) = BG(t), we get

U (x, t) = 1 ∆x 0≤k≤n ψ k (x)(A k ) -1 (-1) k B∂ k t G(t) + 1 ∆x 0≤k≤n ψ k (x)A -k (I -B)A k ∂ k x U (x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x U (x s , t).
that is rewritten the following way

U (x, t) - 1 ∆x 0≤k≤n ψ k (x)(A k ) -1 (-1) k B∂ k t G(t) = 1 ∆x 0≤k≤n ψ k (x)A -k (I -B)A k ∂ k x U (x s , t) + 1 ∆x n+1≤k<m ψ k (x)∂ k x U (x s , t),
to establish a similar procedure to the one presented in section III-1.1. It writes

U --S n -= Y m,n -• Θ, U + -S n + = Y m,n + • Θ, (III.45)
A similar proof as for Vandermonde matrices shows that Y m,n + is invertible for any (m, n) with 0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of U ,

U -= S n -+ Y m,n -• (Y m,n + ) -1 • (U + -S n + ).
(III.46)

Here again, the reconstruction operator writes R

m,n = Y m,n -• (Y m,n + ) -1 .

III-2 Stability of the inverse LaxWendro procedure

We have seen in tables III.4 and III.5 that the third order scheme for the wave equation with the R 3,0 is unstable, at least for the set of parameters used during the computations. Our purpose in this section is to establish the stable or unstable behaviour of the eective schemes.

In this section a procedure to study the stability of the reconstruction operator is developed. For any matrix M , ρ(M ) denotes the spectral radius of M . Let Z denote the interior numerical scheme operator such that U n+1 = ZU n solves (III.1). Let R denote the reconstruction operator such that U -= RU + . The scheme writes

U + U - n+1 = Z 1,1 Z 1,2 Z 2,1 Z 2,2 • U + U - n = Z 1,1 + Z 1,2 R U n + Z 2,1 + Z 2,2 R U n + . (III.47)
The reduced version where only U n+1 + shows up writes

U n+1 + = Z 1,1 + Z 1,2 R U n + = N U n + , (III.48)
where N = Z 1,1 + Z 1,2 R is called the eective operator. The purpose of this section is rst to study the stability of such an eective scheme, and later on to design a special criteria to characterize in a reduced sense the stability of this scheme.

III-2.1 GKS stability for IBVP using second order reconstruction for the LaxWendro scheme

For this section, we consider the special case of the advection problem with boundary conditions written in eq. (III.3). As presented in section I-1.2.3, considering IBVP, an important feature of the eective scheme is its stability. The Cauchy stability analysis has already been mentioned for the interior schemes. To perform the GKS stability [START_REF] Gustafsson | Stability theory of dierence approximations for mixed initial boundary value problems[END_REF] analysis of a scheme, we rst consider the second-order LaxWendro projection scheme (presented in in eq. (III.7)) with the two proposed second-order reconstructions. We consider also that g = 0 which does not impact the linear stability analysis. The LaxWendro scheme requires only one ghost-cell value to the left of the boundary. The reconstructions are

R 2,0 = R 0 = σ σ + 1 and R 2,1 = R 1 = 0. (III.49)
Proposition III.4 (GKS stability of the LaxWendro scheme). The LaxWendro scheme is stable in the sense of lemma I.12 using R 0 or R 1 dened in eq. (III.49) for ν ∈ [0 : 1],

σ ∈ -1 2 , 1 2 .
Proof. From linear stability analysis, one gets the characteristic equation for the LaxWendro equation which is

zκ = ν 2 + ν 2 + (1 -ν 2 )κ + ν 2 -ν 2 κ 2 .
(III.50)

Let f (κ) dened as

f (κ) = ν 2 + ν 2 + (1 -ν 2 -z)κ + ν 2 -ν 2 κ 2 .
(III.51)

One gets from linear stability analysis of the interior scheme that for κ satisfying f (κ) = 0 and |κ| = 1 that |z| ≤ 1 for ν ∈ [0 : 1]. Then, the number of roots with |K| < 1 of the characteristics equation is independent of the value of z. Thus, one may choose any z such that |z| > 1 to determine the number of roots κ such that |κ| < 1. Arbitrarily we set z = 2, it yields that

f (κ) = ν 2 + ν 2 + (-1 -ν 2 )κ + ν 2 -ν 2 κ 2 ,
from which one deduces that

       κ 1 (ν) = 1 + ν 2 - √ 1 + 3ν 2 ν 2 -ν , κ 2 (ν) = 1 + ν 2 + √ 1 + 3ν 2 ν 2 -ν . (III.52)
In particular, one gets that for

ν ∈ [0 : 1] κ 1 (ν) ∈ 0 : 1 2 , κ 2 (ν) ∈ [-1 : 1] . (III.53)
It thus implies that trivially the roots are distinct. If one consider now that z = e ik with k ∈ R, III-2.2.1 Analytic reduced stability of the BeamWarming scheme

The BeamWarming scheme presented in eq. (III.8), linearly stable for ν ∈ [0 : 2] writes as

u n+1 i = (1 + ν 2 -3ν 2 )u n i + (2ν -ν 2 )u n i-1 + ν 2 -ν 2 u n i-2 , i ∈ Z.
Considering that the boundary condition g satises g = 0, and taking m = 2, n = 0, it yields that

R =   σ σ -1 σ + 1 σ -1   .
Then, the eective scheme writes

             u n+1 1 = σ + ν -1 σ -1 u n 1 , u n+1 2 = 3σν -σν 2 -4ν + 2ν 2 2σ -2 u n 1 + (1 + ν 2 -3ν 2 )u n 2 , u n+1 i = (1 + ν 2 -3ν 2 )u n i + (2ν -ν 2 )u n i-1 + ν 2 -ν 2 u n i-2 , i > 2.
(III.55)

It is possible to rewrite the previous system under the form U n+1

+ = N U n
+ where the operator Let the matrix N p = P p N Q p ∈ R p×p . The spectrum of the matrix N p writes

N satises N =       σ+ν-1 σ-1 0 0 . . . 3σν-σν 2 -4ν+2ν 2 2σ-2 (1 + ν 2 -3ν 2 ) 0 . . . ν 2 -ν 2 (2ν -ν 2 ) (1 + ν 2 -
Sp(N p ) = {1 + ν 2 -3ν 2 , σ + ν -1 σ -1 }. R 1,1 = 12σ 2 + 1 12σ 2 -24σ + 13
, R 2,1 = 12σ 2 + 24σ + 13 12σ 2 -24σ + 13 .

To alleviate notations and since the interior operator is a band matrix, we denote C j = Z i,i+j for any j ∈ Z. Combining both, operator N writes

N =       C -2 R 2,1 + C -1 R 1,1 + C 0 C 1 0 0 0 C -2 R 1,1 + C -1 C 0 C 1 0 0 C -2 C -1 C 0 C 1 0 0 . . . . . . . . . . . .       . (III.57)
One then checks numerically if the spectral radius of N nc is less or equal to one. Remind that R m,n denotes the m th -order reconstruction operator that takes into account the n rst time derivatives of the boundary condition. Results for the LaxWendro (g. III.2), the Beam Warming (g. III.3), the third order projection (g. III.4) and the fourth order one (g. III.5) are depicted. Those results highlight the areas of reduced stabilities. Parts of the considered space (ν, σ) where the scheme is stable in a reduced sense are in white and in black otherwise.

In particular, it means that second order reconstruction are unconditionally stable (in the sense of denition III.1) for the LaxWendro and the BeamWarming scheme. As a contrary, third order reconstruction, with n = 0 does not satisfy the reduced stability condition for certain values of ν and σ. As a matter of fact, for such values of ν and σ, a fully discrete GKS stability analysis proves the existence of generalized eigensolution. Moreover numerical experiments using values of ν and σ in this area highlight the unstable behaviour of the eective scheme.

Notice that on g. III.2, the reduced stability results and the results obtained for the fully discrete GKS analysis presented in proposition III.4 are identical. As well, on g. III.3, the reduced stability and the results presented in proposition III.5 are the same. It assesses the practical relevance of the reduced stability criterion.

Furthermore, an interesting feature is shown in g. III.5, where one notices that for the R 4,0 , the bottom left corner of the (ν, σ)-space is unstable. It means in peculiar that the whole space (ν, σ) must be treated in order to get a complete idea of the eective scheme stability. Indeed, one may not consider that if a scheme is stable for ν = ν 1 , then for any ν < ν 1 the scheme is also stable.

Drawing comparisons between reduced stability results and results obtained by performing a numerical fully discrete GKS analysis for the advection problem using inverse LaxWendro procedure and projection scheme gives very similar results. As we use the reduced stability denition to choose which reconstruction operator to obtain a stable eective scheme, this is, to our opinion, a sucient criteria. Therefore in the following for the wave equations, only reduced stability is studied, and the complete fully discrete GKS analysis is not performed. The whole domain is stable.

R 2,0 R 2,1
In g. III.6, parts of the considered space (ν, σ) where the scheme is stable in a reduced sense are depicted in white and in black otherwise. One notices that using only g yields an eective scheme that does not satisfy the reduced stability denition. It has already been numerically checked on an example in Table III.4. As a contrary, considering more derivatives of g, the eective schemes fully satisfy the reduced stability denition.

The reduce stability study for the wave equations determines that until third order of accuracy, g, D t g are required for linear stability of the initial boundary value problem. The next chapter is dedicated to the study in the case of the Lagrange-remap hydrodynamics system. Using the previous results, only g and D t g are going to be used in the Inverse LaxWendro procedure.
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R 3,0 R 3,1 R 3,2

Discretization of boundary conditions for compressible hydrodynamics

En partant de la méthode de LaxWendro inverse développée au chapitre précédent pour des systèmes linéaires, on propose dans ce chapitre une extension au système non linéaire de l'hydrodynamique compressible, en traitant la diculté majeure qui est que la jacobienne du système Lagrangien possède une valeur propre nulle. Des schémas centrés sont considérés pour la résolution de l'hydrodynamique an de simplier la présentation et la construction de la méthode. Après une courte introduction concernant la particularité du système lagrangien 1D des équations de l'hydrodynamique compressible, un problème à l'ordre 2 et à masse constante est isolé et traité de deux façons diérentes. Dans un premier temps, une hypothèse est faite sur la nature des écoulements proches de la frontière an de se rapprocher le plus possible du cas linéaire de l'équation des ondes. Dans un second temps, aucune hypothèse n'est faite sur la nature des écoulements et l'impact sur la stabilité linéaire est étudiée numériquement. Puis, la détermination de la structure de l'opérateur de reconstruction aux bords est étendue au cas de problèmes à masse variable et à l'ordre élevé. Les résultats principaux se situent dans les lemmes IV.4, IV.5 et IV.6 qui caractérisent les conditions d'existence et d'unicité de l'opérateur de reconstruction. Une procédure de type MOOD est établie an de garantir la robustesse de la reconstruction dans le cas de chocs forts. Enn, une extension 2D des opérateurs de reconstruction est proposée. Des résultats numériques sont proposés tout au long du chapitre an d'illustrer la précision, la stabilité et la robustesse de la méthode décrite. Une partie des résultats obtenus a été soumise à une revue scientique [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF]. Une dernière section est consacrée à l'adaptation de la procédure de discrétisation des conditions aux bords pour les schémas décalés.

New high-order accurate methods to take into account boundary conditions for hyperbolic equations, based on the so-called inverse Lax-Wendro (ILW) procedure (see section I-3.2.3) have been recently published. The study addressed in this work aims at extending these methods to the Lagrange-remap discretization of the model 2D Euler system (IV.1) involving complex (eventually moving) boundaries

           ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) =0, ∂ t (ρu) + ∂ x (ρu 2 + p) + ∂ y (ρuv) =0, ∂ t (ρv) + ∂ x (ρuv) + ∂ y (ρv 2 + p) =0, ∂ t (ρe) + ∂ x (ρue + pu) + ∂ y (ρve + pv)=0. (IV.1)
Variables ρ, τ = 1 ρ , e, p, u, v respectively denote the density, specic volume, total energy, pressure, x-velocity and y-velocity and eq. (IV.1) is closed with an arbitrary equation of state p = EOS(τ = 1/ρ, e, u, v). Introducing U = (ρ, ρu, ρv, ρe) t , system (IV.1) rewrites as a general hyperbolic system of conservation laws

∂ t U + ∂ x F (U ) + ∂ y G(U ) = 0, t ≥ 0, (x, y) ∈ Ω. (IV.2)
Let Ω ⊂ R 2 be the "uid domain". Boundary conditions are added along a curve Γ(t), t ≥ 0.

In this paper we focus on imposed velocity boundary conditions for inviscid ows, so that only the normal velocity on Γ(t) is prescribed

(u, v) • - → n (t, s) = g(t, s), t ≥ 0, (x, y) ∈ Γ(t), (IV.3)
where s is the curvilinear coordinate along the boundary Γ(t), and -→ n (t, s) denotes the normal to the curve at coordinate s and time t. The domain Ω is dened as the outside of the volume delimited by Γ. In numerical algorithms, Γ(t) is approximated by Γ ∆s as depicted in gure IV.1.

In this work, we will consider that Γ ∆s is formed as a necklace of pearls P s without any hypothesis on how to link two consecutive pearls. Only full uid cells are considered to be part of the "uid" computational domain denoted Ω + ⊂ Ω. Cells in gray are considered as part of the "ghost" computational domain denoted Ω -. In practice, one has Ω ⊂ Ω + ∪ Ω -⊂ R 2 . The algorithm proposed in this work builds ghost values in Ω -such that the resulting scheme is both high-order accurate and stable.

To build ghost values, which is ultimately the real problem, one has in hands the boundary conditions and any kind of extrapolation technique to reconstruct U -= (U j ) j∈Ω -from U + = (U j ) j∈Ω + . Therefore the problem discussed hereafter can be formulated as follows Problem IV.1. Build an operator R R : R

4 card(Ω + ) -→ R 4 card(Ω -) U + -→ U -, (IV.4)
such that the coupling with the internal scheme (in Ω + ) is stable and a high-order approximation of (IV.2-IV.3). IV-1 ILW procedure for the 1D Lagrangian system So far, the reconstruction method has been described in section III-1.3 for linear hyperbolic system with A invertible. Our interest now lies in its derivation and application for non-linear systems, and especially the 1D Euler system. We recall that ρ, τ , u, p and e respectively describe the density, specic volume, velocity, pressure and total energy. The 1D Euler system writes
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     ∂ t ρ + ∂ x (ρu) =0, ∂ t (ρu) + ∂ x ρu 2 + p =0, ∂ t (ρe) + ∂ x (ρue + pu)=0, (IV.5)
closed with the equation of state (EOS) p = EOS(τ = 1/ρ, e, u). System (IV.5) is solved with a Lagrange-remap scheme. Let ρ 0 denote the initial mass density. Introducing the (x, t) → (X, t)

variable change such that ρdx = ρ 0 dX, (IV.5) rewrites

     D t (ρ 0 τ ) -∂ X u = 0, D t (ρ 0 u) + ∂ X p = 0, D t (ρ 0 e) + ∂ X pu = 0, (IV.6)
in Lagrangian coordinates. The Lagrange-remap method consists in the following two steps for integrating (IV.5). Let ρ 0 (x) = ρ(x, t n ), ie the regular Eulerian and Lagrangian grids x i+ (IV.7)

The matrix A admits three eigenvalues λ 1 > 0, λ 2 = 0, λ 3 = -λ 1 and is therefore non-invertible.

Due to the sign of the eigenvalues, only one boundary condition is to be set in x = x s and we choose to prescribe the normal velocity as in eq. (IV.3). It writes u(x s (t), t) = g(t) or, in Lagrangian coordinates u(X s , t) = g(t).

(IV.8)

We present in the following two methods that are based on two dierent point of views. The rst point of view is to include in the system of partial derivative equations another equation which is the entropy equation. The second one is to focus on the set of data inside the computation. But rst, the emphasis is laid on a simplied second order problem at the boundary, which highlights both point of views.

IV-1.1 An instructive second-order boundary treatment

To give insights into existence of a solution and explain how we proceed, we here focus on a sample problem in which we assume a constant initial mass density ρ 0 = 1, a perfect gas EOS and a second-order treatment of the boundary condition. We drop the time variable to alleviate notations. Dropping also the O((X -X s ) 2 ) term, the truncated Taylor expansions of (τ, u, e) at second order writes

     τ (X s ) + ∂ X τ (X s )(X -X s ) = τ (X), u(X s ) + ∂ X u(X s )(X -X s ) = u(X), e(X s ) + ∂ X e(X s )(X -X s ) = e(X).
(IV.9)

In order to apply the previously described method, variables in X s must be known. The boundary conditions writes u(X s ) = g and the equation of state writes p = p(τ, e, u). 

ρ 0 D t u = -∂ x p,
which rewrites inserting the equation of state, and using ρ 0 = 1 as D t u = -∂ X p(τ, e, u).

Using the chain rule, it leads to D t u = -∂ X τ ∂ τ p(τ, e, u) -∂ X e∂ e p(τ, e, u) -∂ X u∂ u p(τ, e, u), thus inserting the boundary condition D t u(X s ) = D t g,

D t g = -∂ X τ (X s )∂ τ p(X s ) -∂ X e(X s )∂ e p(X s ) -∂ X u(X s )∂ u p(X s ).
(IV.10)

Then, we get the following system

               τ (X s ) + ∂ X τ (X s )(X -X s ) = τ (X), u(X s ) + ∂ X u(X s )(X -X s ) = u(X), e(X s ) + ∂ X e(X s )(X -X s ) = e(X), u(X s ) = g, ∂ X τ (X s )∂ τ p(X s ) + ∂ X e(X s )∂ e p(X s ) + ∂ X u(X s )∂ u p(X s ) = -D t g, (IV.11) 
whose unknowns are τ (X s ), ∂ X τ (X s ), u(X s ), ∂ X u(X s ), e(X s ), ∂ X e(X s ).

IV-1.1.1 First method: the spatially isentropic ow hypothesis

The system (IV.11) needs one more equation, to get 6 equations for 6 unknowns. The rst method is based on the choice of an hypothesis on the ow structure near the boundary. A spatially isentropic ow near the boundary is assumed. We use the second law of thermodynamics T dS = de -udu + pdτ.

(IV.12)

From (IV.12) we get using space derivation that T ∂ X S = ∂ X e -u∂ X u + p∂ X τ.

(IV.13)

Assuming in (IV.13) that the ow is locally isentropic ∂ X S = 0 and that p depends only on τ and S it yields that

∂ X τ = ∂τ ∂p S ∂ X p = - ∂τ ∂p S ρ 0 D t u. (IV.14)
ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM Then using (IV.14) in (IV.12), it writes ∂ X e = u∂ X u + p ∂τ ∂p S ρ 0 D t u.

(IV.15)

The hypothesis of locally spatial isentropic ow is strong, it couples the space variation of total energy with the variation of both velocity and specic volume. For the sake of simplicity, we focus on perfect gas EOS and recall that ρ 0 = 1. But the study may be performed for any analytic EOS. Therefore we set p = (γ -1)

e - u 2 2 τ and it yields        ∂ X τ = τ 2 γ(γ -1)(e - u 2 2 ) D t u, ∂ X e= u∂ X u -τ γ D t u.
(IV.16)

The non-linear system using (IV. [START_REF] Butcher | Coecients for the study of Runge-Kutta integration processes[END_REF]) and (IV.8) writes for a perfect gas

             τ (X s ) + τ (X s ) 2 γ(γ -1)(e(X s ) - g 2 2 ) D t g(X -X s )=τ (X), g + ∂ X u(X s )(X -X s ) =u(X), e(X s ) + (g∂ X u(X s ) - τ (X s ) γ D t g)(X -X s ) =e(X).
(IV.17)

Considering all values known at X = ∆X with U (X) = U +1 and that X s = σ∆X, (IV.17) writes

             τ (X s ) + τ (X s ) 2 γ(γ -1)(e(X s ) - g 2 2 ) D t g(1 -σ)∆X=τ +1 , g + ∂ X u(X s )(1 -σ)∆X =u +1 , e(X s ) + (g∂ X u(X s ) - τ (X s ) γ D t g)(1 -σ)∆X =e +1 .
(IV.18)

From second equation of (IV.18), one easily gets ∂ X u(X s ) = du = u +1 -g

(1-σ)∆X . Then (IV.18) writes

         τ (X s ) + τ (X s ) 2 γ(γ -1)(e(X s ) - g 2 2 ) D t g(1 -σ)∆X=τ +1 , e(X s ) + (gdu - τ (X s ) γ D t g)(1 -σ)∆X =e +1 . (IV.19)
Using second equation of (IV. [START_REF] Caramana | The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[END_REF]) in the rst one, and using y = (1 -σ)∆X to alleviate the notations, it yields

(τ +1 -τ (X s )) e +1 - g 2 2 -(gdu - τ (X s ) γ D t g)y = τ (X s ) 2 D t g γ(γ -1)
y.

(IV.20)
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One obtains the polynomial equation (for a non-perfect gas, the equation may not be polynomial, but procedures still work)

f (τ (X s )) = τ (X s ) 2 ( D t g γ -1 y) -τ (X s ) ( D t gτ +1 γ + gdu)y -e +1 + g 2 2 +τ +1 (gdu)y -e +1 + g 2 2 = 0. (IV.21)
where f is a second order polynomial.

If D t g = 0 then f becomes ane and the solution is τ (X s ) = τ +1 .

Assume ∆X = 0 then f becomes also an ane function and the solution is τ (X s ) = τ +1 .

Otherwise, f has two roots β 1 , β 2 with β 2 going to the innity as ∆X goes to zero.

Assume D t g > 0, then the roots are always real.

Assume D t g < 0, then for ∆X small enough, the roots are real. For D t g < 0, we can see on the graph the non-existence of solution to f (τ +1 x) = 0 as some curves do not cross the X-axis. But for smaller values of ∆X, real solution to f (τ +1 x) = 0 exists.

Lemma IV.1 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such that the EOS function F (τ, ) = ∂τ ∂p S is a Lipschitz function of (τ, ) and such that p(τ, ) is locally bounded, then for ∆X small enough, the solution of eq. (IV.17) is unique, and a xed point algorithm converges toward such a solution.

Proof. Consider that u s satises u s = g. Denoting that s = e s -1 2 u 2 s , +1 = e +1 -1 2 u 2 +1 , one writes the system as

τ s = τ +1 -F (τ s , s )(1 -σ)∆X, s = +1 -1 2 (u 2 s -u 2 +1 ) -p(τ s , s )F (τ s , s )(1 -σ)∆X, (IV.22)
ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM which can be easily rewritten under the form τ s s = ψ(τ s , s ).

(IV.23)

If one shows in peculiar that the application ψ is a contraction mapping, thus using the Banach xed point theorem, the result is proved. Using the Lipschitz hypothesis concerning F and using that p is locally bounded, and denoting α = τ one gets immediately that

ψ(α 1 ) -ψ(α 2 ) ≤ C(1 -σ)∆X α 1 -α 2 .
(IV.24)

Then there exists β such that ∆X = β C(1-σ) , and so

ψ(α 1 ) -ψ(α 2 ) ≤ β α 1 -α 2 , (IV.25)
and for ∆X small enough, β < 1, which yields that ψ is a contraction mapping. Hence, the result.

Remark IV.1. The strong hypothesis ∂ X S = 0 is made for stabilization of the procedure. It yields high-order accuracy for smooth and isentropic ows, and gives rst-order accuracy for non-isentropic ows.

Remark IV.2. One could change the procedure to compute rst ∂ X S doing an extrapolation of the entropy near the boundary. Then it gives high-order accuracy for smooth isentropic ows, but also for smooth non-isentropic ows.

IV-1.1.2 Second method: the larger stencil reconstruction

Here, the choice is made to use system (IV.11) written in the rst cell of the computational domain (X = X 1 ) and to add a Taylor expansion of τ written in the second cell (X = X 2 ).

Denoting ϕ s = ϕ(X s ) for simplicity, this leads to 

                     τ s + (X 1 -X s )∂ X τ s = τ 1 , τ s + (X 2 -X s )∂ X τ s = τ 2 , u s + (X 1 -X s )∂ X u s = u 1 , e s + (X 1 -X s )∂ X e s = e 1 , u s = g, ∂ X τ s ∂ τ p s + ∂ X e s ∂ e p s + ∂ X u s ∂ u p s = -D t g, ( 
                       τ s = τ 1 (X 2 -X s ) -τ 2 (X 1 -X s ) X 2 -X 1 , ∂ X τ s = τ 2 -τ 1 X 2 -X 1 , ∂ X u s = u 1 -g X 1 -X s , e s + (X 1 -X s )∂ X e s = e 1 , u s = g, ∂ X τ s ∂ τ p s + ∂ X e s ∂ e p s + ∂ X u s ∂ u p s = -D t g, (IV.27)
Indeed, since p = (γ -1)ρ(e -u 2 /2) for a perfect gas EOS, straightforward computations lead to

∂ X e = u∂ X u + τ γ -1 ∂ X p + e - u 2 2 τ ∂ X τ.
(IV.28)

Using the second equation of (IV.6) which here writes D t u + ∂ X p = 0 together with the boundary condition, this rewrites, in X = X s

∂ X e s = g∂ X u s - τ s γ -1 D t g + e s - g 2 2 τ s ∂ X τ s . (IV.29)
Combining this equation with (IV.27) we get a linear equation for e s and the whole system is solved if invertible. In peculiar, here, it yields τ 1 = 0. Once quantities are known in X = X s , averaged ghost-cell values are computed as described in the preceding section. Results can be extended to -ane EOS as follows.

Lemma IV.2 (Linear system and -ane EOS). If the EOS is anely dependent on , ie p( , τ ) = a(τ ) + b(τ ), then for X 1 = X 2 , a(τ s ) = (X 1 -X s )a (τ s )∂ X τ s and a(τ s ) = 0, there exists a unique solution to (IV.26).

Proof. Assume the EOS takes the form p( , τ ) = a(τ ) + b(τ ). Then using that

∂ X e = u∂ X u + ∂p ∂ |τ -1 ∂ X p - ∂p ∂τ | ∂ X τ ,
it yields at the boundary that for a(τ s ) = 0

∂ X e s = g∂ X u s - 1 a(τ s ) D t g + a (τ s )(e s - g 2 2 ) + b (τ s ) ∂ X τ s .
Inserting the previous equation in the Taylor expansion of e s , one gets

e s 1 -(X 1 -X s ) a (τ s ) a(τ s ) ∂ X τ s = e 1 -(X 1 -X s ) g∂ X u s - 1 a(τ s ) D t g + -a (τ s ) g 2 2 + b (τ s ) ∂ X τ s .

ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM

Then the linear equation is solvable if

a(τ s ) = (X 1 -X s )a (τ s )∂ X τ s .
In the literature, many -ane EOS are presented. A non-exhaustive list of such EOS is presented hereafter.

Perfect gas: p( , τ ) = (γ -1) τ , Stiened gas: p( , τ ) = (γ -1) τ -p , Mie-Grüneisen gas [START_REF] Holzapfel | Equations of state and thermophysical properties of solids under pressure[END_REF]: p( , τ ) = p (τ ) + Γ(τ ) τ ( -(τ )).

For non -ane EOS, the following lemma gives result concerning existence and uniqueness of the solution Lemma IV.3. For any EOS such that the EOS function

F 1 ( ) = ∂p ∂ |τ -1
is a Lipschitz function of and that the function F 2 ( ) = ∂p ∂τ | is locally bounded, then for ∆X small enough, the solution is unique, and a xed point algorithm converges toward such a solution.

Proof. The proof is very similar and uses the same argument as the one for lemma IV.1. The coecient ∆X gives the contraction mapping using the Lipschitz hypothesis of F 1 , and the locally boundedness of F 2 .

The aim of the work is now to see if lemmas IV.1 to IV.3 still holds for arbitrary orders of accuracy and non-constant masses.

IV-1.2 General procedure, and characterization of the solution for the system at the boundary

The previous study has been made for the special case of a second order boundary treatment, with constant mass. For spatially isentropic ow hypothesis, lemma IV.1 gives existence and uniqueness of the solution under Lipschitz hypothesis concerning the EOS for ∆X small enough.

Similar results hold for the second approach removing the ∂ x S = 0 hypothesis and using an enlarged stencil and we morever get existence and uniqueness without any restriction for -ane EOS. We now study the general case.

The procedure is now extended without any restriction on the initial density prole. In the following we will set n = 1, meaning that only g and D t g are known at the boundary (in practice, more material derivatives of g could be taken into account but it would lead to heavier algebra). To alleviate notations, we also introduce

ψ i,k = 1 ∆X    (X i + ∆X 2 -X s ) k+1 -(X i - ∆X 2 -X s ) k+1 (k + 1)!    .
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Considering a m th -order scheme and dropping the O(∆X m ), spatial Taylor expansions of conservative variables write

                           ρ 0i = k<m ∂ k X ρ 0 x=xs ψ i,k , ρ 0 u i = k<m l≤k k l ∂ l X ρ 0 x=xs ∂ k-l X u x=xs ψ i,k , ρ 0 τ i = k<m l≤k k l ∂ l X ρ 0 x=xs ∂ k-l X τ x=xs ψ i,k , ρ 0 e i = k<m l≤k k l ∂ l X ρ 0 x=xs ∂ k-l X e x=xs ψ i,k . (IV.30)
IV-1.2.1 Well-posedness at the boundary for spatially isentropic ow hypothesis Boundary condition and isentropic ow hypothesis provide the following informations :

       u| x=xs = g(t), ∂ X τ | x=xs =-∂τ ∂p x=xs ρ 0 | x=xs D t g, ∂ X e = u∂ X u -p∂ X τ, (IV.31)
It yields three subsystems to be solved at each boundary in the following order:

The rst system is built using the rst equation of (IV.30). It is a linear system whose size is m × m. It allows then to build ghost cells values of ρ 0 .

The second system is built using the second equation of (IV.30) and the boundary condition on the velocity. It is also a linear system whose size is (m -1) × (m -1). It allows then to build ghost cells values of ρ 0 u.

The third and last system is built using the third and fourth equations of (IV.30) and system (IV.31). The non-linearity of the system is explained by the non-linearity of (IV.31). The size of the system is (2m -2) × (2m -2). It allows then to build ghost cells values of ρ 0 τ and ρ 0 e.

Once the three systems are solved, ghost-cells values of all quantities are built by Taylor expansions.

Lemma IV.4 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such that the EOS function F (τ, ) = ∂τ ∂p S is a Lipschitz function of (τ, ) and such that p(τ, ) is locally bounded, then for ∆X small enough, the solution is unique, and a xed point algorithm converges toward such a solution.

Proof. The proof is identical to the one proposed for lemma IV.1.

Remark IV.3. One could use repeated space derivation of the third equation of eq. (IV.31), to substitute space derivatives in e into functions of (e, τ, ∂ X τ, ...), yielding a m × m system to be solved. But for such a choice, theoretical results concerning existence and uniqueness of solution are not accessible, and requires stronger regularity hypothesis on the EOS.

IV-1.2.2 Well-posedness at the boundary for enlarged stencil

We have shown existence in lemmas IV.2 and IV.3 of a 2 nd -order solution to the prescribed velocity boundary problem for Lagrangian hydrodynamics when initial mass density is uniform using the larger stencil based reconstruction. The boundary condition and the equation of state provide the following informations

   u| X=Xs =g(t), ∂ X e =u∂ X u - ∂p ∂ |τ -1 (ρ 0 D t g + ∂p ∂τ | ∂ X τ ) in X = X s . (IV.32)
Considering (IV.30-IV.32) we therefore have four subsystems to solve at each boundary. This is done the following way:

The rst system is built using the rst equation of (IV.30), considering m interior cells. It leads to a m × m linear system. It allows then to build ghost-cell values of ρ 0 .

The second system is built using the second equation of (IV.30), considering m -1 interior cells and the boundary condition on the velocity. It leads to a (m -1) × (m -1) linear system. It allows then to build ghost-cell values of ρ 0 u.

The third system is built using the third equation of (IV.30), considering m interior cells.

It leads to a m × m linear system. It allows then to build ghost-cell values of ρ 0 τ .

The fourth system is built using the fourth equation of (IV.30), considering m -1 interior cells and system (IV.32). This system is linear for perfect and stiened gases EOS but may be non-linear for some EOS, thus requiring xed-point algorithms to be solved. The size of the system is (m -1) × (m -1). Once the solution is known, it allows to build ghost-cell values of ρ 0 e.

We extend lemma IV.2 to arbitrary orders and non-constant ρ 0 as Lemma IV.5 (Linear system and -ane EOS). If the EOS is anely dependent on , ie p( , τ ) = a(τ ) + b(τ ), then the system eqs. (IV.30) and (IV.32) is linear.

Proof. Assume the EOS writes p( , τ ) = a(τ ) + b(τ ), then using

∂ X e = u∂ X u + ∂p ∂ |τ -1 ∂ X p - ∂p ∂τ | ∂ X τ , it yields at the boundary that ∂ X e s = g∂ X u s - 1 a(τ s ) ρ 0s D t g + a (τ s )(e s - g 2 2 ) + b (τ s ) ∂ X τ s .
Therefore ∂ X e s is a linear function of e s , and thus the system is linear.

For non -ane EOS, the following lemma gives existence and uniqueness of the solution.

Lemma IV.6 (Uniqueness of solution for Lipschitz hypothesis on the EOS). For any EOS such that the EOS function F 1 ( ) = ∂p ∂ |τ accuracy (using the MOOD procedure) for any non-spatially isentropic ow, as expected.

IV-1.4.1 Kidder isentropic compression test-case [95]

Kidder's test problem represents the isentropic compression of an ideal volume of gas initially at rest. For this test, the computational domain [0, 1] is discretized in N x regular cells. Let (p i , ρ i )

and (p e , ρ e ) denote initial pressures and mass densities at x = 0 and x = 1 respectively. Initial proles are dened by Table IV.1 l 1 -error and experimental order of convergence (EOC) for ILW-GoHy schemes at t = 0.01 with a CFL of 0.9. EOC indexed with are reduced due to double precision.

           ρ 0 (x) = x 2 ρ γ-1 e + (1 -x 2 )ρ γ-1 i 1 γ-1 , u 0 (x) = 0, p 0 (x) = p e ρ ( 
(t) = 1 -(t/t c ) 2 , it is given by ρ(x, t) = ρ 0 x h(t) • h(t) 2 γ-1 , u(x, t) = - xt t 2 c h(t)
For stability issues, least-squares method is used for 4 th , 5 th and 6 th -order.

Results concerning the l 1 -errors and experimental orders of convergence are given in table IV.1

for GoHy schemes up to 6 th -order. For each scheme the expected order of accuracy is reached.

IV-1.4.2 Harmonic piston test-case

The harmonic piston test-case is used to assess the ability of the reconstruction to recover correct phase/amplitude proles using a harmonic source. The initial data are those of a perfect gas The blue dotted line represents the Sod's shock tube solution computed as a Riemann problem using both left and right initial states with the GoHy solver and the black dotted line represents the solution obtained with the present ILW method. Shock positions and density levels are in good agreement with the analytical solution for both methods. The contact continuity is even slightly better recovered with the ILW procedure than for the complete Riemann problem. Note that the MOOD procedure presented in section IV-1.3.1 is not used here.

IV-2 Extension of the ILW procedure to the 2D Euler system

The procedure designed for the 1D Euler system is now used with a high-order accurate dimensional splitting method on the 2D Euler system (IV.1-IV.3), as it is described in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF][START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF].

EXTENSION OF THE ILW PROCEDURE TO THE 2D EULER SYSTEM IV-2.1.

Dimensional splitting technique

The DSM consists in alternatively applying the previous method in the x-and y-direction with appropriate weighted-time increments ω k ∆t. To reach high-order accuracy in time, splitting sequences beyond the well-known 2 nd -order Strang DSM must be used. Such weights, up to 8 th -order, can be found in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF][START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] and are reported in appendix, section A.2. During these sequences, prescribing time-dependent boundary conditions at intermediary time-steps can reveal quite tricky. The naive way yields only at most second order of accuracy. This is somehow similar to results found by Carpenter in [START_REF] Carpenter | The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error[END_REF]. To achieve this, the boundary condition is also rewritten as a 2D evolution system that is also split as explained now. Let us denote n = (n 1 , n 2 ) t , i 1 = (1, 0) t , and i 2 = (0, 1) t . We introduce g(t, s) = g(t, s) n(t, s) and in the sequel we also assume that D t n = 0 and that g(t, s) is known analytically. Letting g 1 = D t g we therefore can write

D t g = (g 1 n 1 ) i 1 + (g 1 n 2 ) i 2 .
(IV.43)

As for Euler equations, system (IV.43) is then split into the following two equations that will be alternatively solved according to the splitting sequence used for the inner scheme

D t g = (g 1 n 1 ) i 1 , and D t g = (g 1 n 2 ) i 2 .
(IV.44)

Assume that time weights ω 2k-1 and ω 2k are respectively used for the x-and y-sweeps respectively and let us denote t n+ω k the ctitious time for the k th sweep (with ω 0 = 0). We therefore get for

any l ≥ 1            g n+ω 2l-1 = g n+ω 2l-2 + t n + l k=1 ω 2k-1 ∆t t n + l-1 k=1 ω 2k-1 ∆t (g 1 n 1 ) i 1 dθ, g n+ω 2l = g n+ω 2l-1 + t n + l k=1 ω 2k ∆t t n + l-1 k=1 ω 2k ∆t (g 1 n 2 ) i 2 dθ,
which rewrites by induction, for any l ≥ 1

         g n+ω 2l-1 = g n + t n + l k=1 ω 2k-1 ∆t t n (g 1 n 1 ) i 1 dθ + t n + l-1 k=1 ω 2k ∆t t n (g 1 n 2 ) i 2 dθ, g n+ω 2l = g n + t n + l k=1 ω 2k-1 ∆t t n (g 1 n 1 ) i 1 dθ + t n + l k=1 ω 2k ∆t t n (g 1 n 2 ) i 2 dθ.
Since g 1 = D t g and D t n = 0, exact integration therefore yields, for any l ≥ 1

           g(t n+ω 2l-1 ) = g(t n + ∆t l k=1 ω 2k-1 ) n 1 i 1 + g(t n + ∆t l-1 k=1 ω 2k ) n 2 i 2 . g(t n+ω 2l ) = g(t n + ∆t l k=1 ω 2k-1 ) n 1 i 1 + g(t n + ∆t l k=1 ω 2k ) n 2 i 2 ,
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that is to say, performing the scalar product with n,

           g(t n+ω 2l-1 ) = g t n + ∆t l k=1 ω 2k-1 n 2 1 + g t n + ∆t l-1 k=1 ω 2k n 2 2 , g(t n+ω 2l ) = g t n + ∆t l k=1 ω 2k-1 n 2 1 + g t n + ∆t l k=1 ω 2k n 2 2 .
(IV.45)

These relations are used at the beginning of each dimensional sweep to prescribe boundary conditions.

IV-2.1.2 Methodology for a given sweep

We now consider a sweep in the x-direction so that only the rst subsystem of (IV.41) is of interest methods for other sweeps are strictly identical modulo slight modications mentioned in section IV-2.1.1. In the following, we only use g and D x t g for building the non-linear problem.

As in the 1D case, more material derivatives could be used but it would lead to a heavier algebra.

To alleviate notations in 2D Taylor expansions we introduce

ψ i,j,k,l = 1 k!    (x i + ∆x 2 -x s ) l+1 -(x i - ∆x 2 -x s ) l+1 (l + 1)∆x       (y j + ∆y 2 -y s ) k-l+1 -(y j - ∆y 2 -y s ) k-l+1 (k -l + 1)∆y    .
Let us consider a m th -order scheme. Extending computations done in section IV-1 to the 2D case and performing the local change for velocity components, spatial Taylor expansions lead to

                                       ρ 0i,j = k<m l≤k k l ∂ l X ∂ k-l Y ρ 0 x=xs,y=ys ψ i,j,k,l , ρ 0 u i,j = k<m l≤k k l ∂ l X ∂ k-l Y (ρ 0 u) x=xs,y=ys ψ i,j,k,l , ρ 0 v i,j = k<m l≤k k l ∂ l X ∂ k-l Y (ρ 0 v) x=xs,y=ys ψ i,j,k,l , ρ 0 τ i,j = k<m l≤k k l ∂ l X ∂ k-l Y (ρ 0 τ ) x=xs,y=ys ψ i,j,k,l , ρ 0 e i,j = k<m l≤k k l ∂ l X ∂ k-l Y (ρ 0 e)
x=xs,y=ys ψ i,j,k,l .

(IV.46)

The boundary condition and the equation of state provide the following informations in P s

   u| P =Ps = g(t) ∂ X e • n 1 | P =Ps = ( u∂ X u + v∂ X v) • n 1 - ∂p ∂ |τ -1 ρ 0 D t g + ∂p ∂τ | ∂ X τ • n 1 , (IV.47)
Solving (IV.46) amounts to solve ve subsystems:

The rst system is built using the rst equation of (IV.46), considering EXTENSION OF THE ILW PROCEDURE TO THE 2D EULER SYSTEM conditions imposed at R = 3.5 are u • n = u 0 • n, with u 0 dened in eq. (IV.48). Table IV.2

shows that the expected order of accuracy is reached. In the third column we also have reported numerical costs due to the ILW procedure, computed as the ratio between CPU time for ILW procedure and total CPU time as was done in [START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF]. These should of course be analysed cautiously since they strongly depend on the inner scheme and optimization of the boundary treatment (as well as the number of considered pearls on Γ). However, these gures show that the cost slope for the 1 st -order ILW method is a bit less than one with respect to the number of cells per dimension.

Second order ILW procedure cost slope is around 0.75 and for third order ILW procedure, it is about 0.66. One may guess the cost to follow the rule ∼ m+1 2m .

N x

GoHy-1 GoHy-2 GoHy-3 50 4.96e-1 IV-2.2.2 Acoustic diraction of a plane wave around a cylinder [START_REF] Bowman | Electromagnetic and acoustic scattering by simple shapes[END_REF] Next test-case is a challenging problem coming from the electromagnetic and aeroacoustic communities. Here we wish to assess the interest of increasing the order of accuracy of boundaries treatments. A plane acoustic wave is propagating in a barotropic gas and is scattered by a rigid and motionless cylinder. The main interest of this test lies in the fact that an analytical solution is available, in particular the pressure eld on the cylinder.

The computational domain is [-5, 5] × [-5, 5] and the rigid wall boundary condition u • n = 0 is applied on the rigid body which is a cylinder of radius a = 0.5 whose center is located at (0, 0).

Let ω be the frequency of the acoustic signal and k = ω c the associated wave number, where c is the sound speed. The velocity potential of the incident wave is given by (IV.50)

φ 0 (t, x, y) = - k cos(k(x -x 0 ) -ωt)χ {x-ct<x 0 } , ( 
For this test we took = 10 -8 small enough so that Euler equations remain in the linear regime and approximate wave equations, p 0 = 1 γ , x 0 = 4.5, and ω = 2πf , f ∈ 0.1N (ie there exists b ∈ N such that f = 0.1b). Introducing x = r cos(θ) and y = r sin(θ), the harmonic solution for is well captured and less diused as the order of accuracy is increased. The MOOD procedure applies essentially on the shock front. The expected structure of the ow is recovered, especially the presence of vortices behind the prism. IV-2.2.7 Mach shock on a NACA0018 prole [START_REF] Hu | A conservative interface method for compressible ows[END_REF] We now consider a classical aerodynamics test-case which consists in a planar shock propagating in a perfect gas (γ = 1.4) which interacts with a rigid and motionless NACA0018 airfoil with a 30 • angle of attack (see [START_REF] Hu | A conservative interface method for compressible ows[END_REF] and included references). At t = 0, a 1.5 Mach shock coming from the left is located at x = 0.55. Ahead of the shock, the gas has a density of 1.4 and a pressure of 1. The airfoil's head is located at (0.6, 1) and the chord length is set to 1. The computational domain [-0.2, 1.8] × [0, 2] is discretized with 100, 200 and 400 cells in each direction.

Figure IV.15 shows the obtained results for the rst, second and third order schemes on a 400 × 400 grid at time t = 0.64. These results are in good agreement with the results provided in [START_REF] Hu | A conservative interface method for compressible ows[END_REF] concerning the shock structure. As the order is increased, the shock front is sharper but also more oscillatory, and ow structures near both tip and head of the airfoil are better recovered.

Imposing free stream velocity u ∞ and density ρ ∞ with the post-shock values, both lift C l and drag C d coecients are computed using

C d C l = - 2 ρ ∞ u 2 ∞ L Γ (p -p 0 )ndS. (IV.54)
where L is the chord of the airfoil, set here to 1. The computed lift and drag coecients are depicted in g. IV.16 as a function of time for dierent grid sizes. For both schemes, the convergence error in the drag coecient appears to be linear while more than quadratic convergence seems to be reached for the lift coecient.

How to adapt the method to the staggered schemes Considering again the acoustic diraction test-case presented in section IV-2.2.2, comparisons are drawn between the results obtained with the GoHy-3 scheme and the third order staggered scheme (STAG-3). Results are displayed in g. IV.17. Pressure variations are very close for all frequencies f for both schemes. In physics, a rigid body is considered as a body where no deformation can be induced in it.

Consider two points (or particles) belonging to the rigid body, denoted by the greek subscript α and β. Then, for any α and β, rigid body constraint writes

x α -x β = constant, (V.1)
meaning that the distance separating two abstract points α and β in a rigid body is always constant.

V-1.1.1 Invariant of rigid body motion

Using only eq. (V.1), one can prove that for any space dimension d, the rigid body motion can be reduced to solving d + ( 1 2 d(d -1)) equations [START_REF] Bisshopp | Note on rigid body motion[END_REF]. It implies in particular that the rigid body motion is described by a set of d + ( 12 d(d -1)) variables.

In particular rigid body motion can be described as

D t x α = D t x 0 + Q(t)x α , (V.2)
where x 0 is in the rigid body, Q is antisymmetric, meaning that Q(t) = -Q(t) t . In the following, only one and two space dimensions problems are considered. For one space dimension, eq. (V.2) is reduced to

D t x α = D t x 0 , (V.3)
since the only antisymmetric matrix in one space dimension is 0. Physically, it implies that the only possible motion for a rigid body in 1D is a translation. However, in two space dimensions, eq. (V.2) leads to

D t x α y α = D t x 0 y 0 + 0 -q q 0 x α y α , (V.4)
which leads to a translation and a rotation. More often than not, eq. (V.4) is written under the more convenient form

D t x α y α = D t x s y s + 0 -ω ω 0 x α -x s y α -y s . (V.5)
where the point x s is called the center of mass and is only translated. In addition to the description of the rigid body motion, some quantities must be dened to study the rigid body dynamics.

V-1.1.2 Denition of physical quantities

Consider a rigid body whose motion is prescribed by eq. (V.5), which is described by a bounded domain Ω s of R 2 . Given a positive bounded function ρ s which described the material density of the rigid body, then one denes the solid mass M s , the gravity center x s and the moment of inertia J s as

               M s = Ωs ρ s (x)dx x s = 1 M s Ωs ρ s (x)xdx J s = Ωs ρ s (x) x -x s 2 dx (V.6)
And at last, let u s = D t x s , one denes the kinetic energy of the rigid body as

E s = 1 2 M s u s 2 + 1 2 J s ω 2 . (V.7) V-1.

Immersed rigid body dynamics

Using the previously dened quantities, one writes the system of equations describing the rigid body dynamics, without any external forces, as

                   M s D t u s = ∂Ωs σ • ndS, J s D t ω = ∂Ωs σ • n • -y + y s x -x s dS, D t x = u s + ω -y + y s x -x s , (V.8)
where σ is the stress tensor. Considering that the rigid body is immersed in an inviscid uid, then σ = -pI. For a viscous one, it leads to σ = -pI + Υ. For inviscid uid, it writes

                   M s D t u s = - ∂Ωs pndS, J s D t ω = - ∂Ωs pn • -y + y s x -x s dS, D t x = u s + ω -y + y s x -x s . (V.9)
In the following, the emphasis is laid on solving system (V.9).

EXTENSION TO FLUID-RIGID BODY INTERACTION 195 V-2 High-order Lagrangian schemes for rigid body dynamics First, system (V.9) is considered in one dimensional space. A semi-discrete scheme is proposed to approximate its solution. Two dierent discretizations are then proposed. The rst one is based on a RungeKutta type integration in time, which is particularly adapted to schemes presented in chapter II. The second one, based on a CauchyKovalevskaya integration in time, as the GoHy schemes used in chapter IV is then proposed. The extension to two space dimensions of these schemes is then proposed using a directionnal splitting method. First, the case of the rigid homogeneous cylinder is detailed, and then it is extended to any kind of geometry and mass repartition.

V-2.1 High-order schemes for rigid body dynamics in 1D

In one dimensional, we consider a rigid body occupying the domain Ω s = [x l , x r ]. Then system (V.9) leads to the simplied 1D system

M s D t u s = -(p(x r ) -p(x l )) , D t x = u s , (V.10)
where p(x r ) and p(x l ) are respectively the pressure applied at x = x r and at x = x l . The semi-discrete scheme therefore writes

       D t u s = - p r -p l M s , D t x l = u s , D t x r = u s . (V.11)
The pressure values p r and p l are respectively the pressure applied on the right and the left boundaries of rigid body. In practice, they are given using the Inverse LaxWendro method proposed in chapter IV. Two approaches to realize the time integration of eq. (V.11) are proposed.

The rst one is based on a RungeKutta approach, the second one using a CauchyKovalevskaya approach.

V-2.1.1 RungeKutta based approach

Using notations of chapter II for RungeKutta sequences, the fully discrete scheme writes ) t . Considering that Γ is known analytically and that the pressure at point P i+ 1 2 can be computed with a m th order of accuracy, then the semi-discrete form is also of order m in space.

                    
HIGH-ORDER LAGRANGIAN SCHEMES FOR RIGID BODY DYNAMICS and for the nal time-step as 

                                                
                                                

V-2.2.5 CauchyKovalevskaya based approach

The CauchyKovalevskaya based approach is identical to the one used in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]. It relies on informations provided by the EOS, by the uid system of equations but also by the rigid body system of equations. Concerning uid and EOS, the equation 

                                             u n+1 s = u n s -
                                                 u n+1 s = u n s -∆t M s ∆s N -1 i=0 k D x,k t p n i+ 1 2 ∆t k (k + 1)! N n 1,i+ 1 2 , v n+1 s = v n s , ω n+1 = ω n -∆t J s ∆s N -1 i=0 k D x,k t p n i+ 1 2 ∆t k (k + 1)! N n 1,i+ 1 2 (y n i+ 1 2 -y n g )),
x n+1 The rigid body motion solver also adds a constraint on the time step ∆t. ) is the velocity of the pearl i + 1 2 .

V-3.2 Numerical results

A test-suite is proposed to assess both accuracy and robustness of the uid-rigid body schemes.

We begin with a 1D case problem consisting of a piston whose motion is triggered by a pressure dierential [START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF]. Then, the ability of the 2D schemes to handle strong shocks is assessed. The rst test concerns the lift-o of a cylinder proposed in [START_REF] Falcovitz | A two-dimensional conservation laws scheme for compressible ows with moving boundaries[END_REF][START_REF] Arienti | A level set approach to Eulerian Lagrangian coupling[END_REF][START_REF] Hu | A conservative interface method for compressible ows[END_REF][START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF]. The problem is then extended to more complex geometries with rst an ellipse and then a rhombus.

V-3.2.1 Pressure motion driven piston in 1D [START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF] This test-case has been proposed in [START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF] to study the coupling between uid and rigid body in V-3.2.2 Lift-O of a cylinder [START_REF] Arienti | A level set approach to Eulerian Lagrangian coupling[END_REF][START_REF] Hu | A conservative interface method for compressible ows[END_REF][START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF] The lift-o of a cylinder has been proposed in [START_REF] Falcovitz | A two-dimensional conservation laws scheme for compressible ows with moving boundaries[END_REF] to study the coupling between a uid solver 

V-3.2.3 Lift-O of an ellipse

This test-case is very similar to the previous one. The initial data are unchanged. However the form of the rigid body is changed. Indeed, for the cylinder test-case and in absence of any viscous forces, the rigid body motion is irrotational. In this test-case, we consider an ellipse lying at the bottom of the channel. The ellipse is dened by a semi-major axe in the x-direction of length 7 cm and a semi-minor axe of length 4 cm. Its density is set to ρ = 9.0 kg.m -2 . Initially, the ellipse lies at the bottom of a channel, and its center is at point (17.10 -2 , 4.10 -2 ). A Mach 3 shock enters the domain, and due to the asymmetry of the problem lifts the ellipse.

V-3.2.4 Lift-O of a rhombus

This test-case is very similar to the previous ones. The initial data are unchanged. However the form of the rigid body is changed. In this test-case, we consider a rhombus which as undened normals at each of its angles. The rhombus is dened by the following equation

       | x † b | + | y † h |= 1 
x † y † = cos(θ sin(θ)

-sin(θ cos(θ)

x -x 0 y -y 0 (V.37) 

Conclusions and perspectives

Dans ce manuscrit, nous nous sommes intéressés à des questions de simulation numériques pour l'interaction uide-structure. Le modèle considéré a été celui de l'interaction entre un uide compressible et une structure indéformable. Pour ce faire, une méthode de type LaxWendro inverse a été mise au point pour réaliser un schéma de couplage uide-structure explicite et stable. Ce couplage permet de faire communiquer un solveur de type Volumes Finis pour le uide compressible avec un solveur pour la dynamique des corps rigides.

Dans un tout premier temps, des résultats principaux liés aux systèmes hyperboliques de lois de conservation ont été présentés. Puis, l'accent a été mis sur les méthodes de résolution des équations d'Euler pour un uide compressible, ainsi que les diérents couplages en espace comme en temps trouvés dans la littérature. Du fait des grandes disparités physiques entre les matériaux, la méthode des cellules mixes a été mise de côté, tout comme les méthodes épousant les contours du corps rigide (body-tted) car non-adaptées aux schémas numériques sur grilles cartésiennes. Nous avons fait le choix de nous intéresser plus précisément aux méthodes de domaine ctif. Le dévolu a été jeté sur la méthode de frontières immergés (Immersed boundaries) en calculant les cellules fantômes par la procédure de LaxWendro inverse. En eet, bien que n'assurant pas la conservation de la masse, de la quantité de mouvement et de l'énergie totale, elle permet une reconstruction à l'ordre très élevé des valeurs fantômes et assure ainsi un schéma nal lui aussi d'ordre très élevé. Enn, le choix a été fait de considérer un couplage explicite en temps an d'éviter de devoir résoudre un problème non plus local, mais global autour de la frontière.

Ensuite, nous avons présenté la famille de schémas sur grilles cartésiennes décalées, potentiellement utilisée pour former le solveur uide compressible. Cette famille de schéma a été démontrée comme étant conservative en masse, quantité de mouvement et énergie totale, ainsi que faiblement consistante avec les équations d'Euler. Le passage en multidimensionnel se fait par l'utilisation de séquences de splitting directionnel d'ordre élevé. Puis, l'extension de cette famille de schémas pour les équations de NavierStokes compressibles a été réalisée, impliquant une distribution particulière sur les grilles décalées des termes visqueux non-diagonaux. Des résultats numériques sont venus illustrer tout autant la précision que la robustesse de cette famille de schémas.

Puis, notre étude s'est portée sur la discrétisation des conditions aux bords, sur la précision ainsi que sur la stabilité qui en découlent. An de pouvoir se référer à des résultats théoriques, le problème a d'abord été traité dans le cas des systèmes hyperboliques linéaires. La procédure de calcul des cellules fantômes a été développée dans le cas de l'équation de l'advection en 1D. Elle a été ensuite étendue au cas du système des équations des ondes, en considérant deux conditions aux bords diérentes. Une première forçant la vitesse au bord, tandis que la seconde forçant une relation entre vitesse et pression. L'extension générique pour un système hyperbolique linéaire de lois de conservation a ensuite été détaillée. Bien que permettant de construire une méthode d'ordre très élevé, la procédure de LaxWendro inverse n'assure pas pour autant la stabilité du schéma nal obtenu. Cela a été mis en évidence par des expériences numériques sur le système des équations des ondes. Outre une étude de type GKS sur un schéma donné, il a été proposé de dénir un critère de stabilité permettant en pratique de grandement simplier les calculs nécessaires pour déterminer la stabilité d'un schéma. Ce critère s'est avéré, dans de nombreux cas, en parfaite concordance avec l'analyse GKS. Ce travail a mis en évidence la nécessité de s'intéresser tout particulièrement à la stabilité du schéma nal obtenu et a permis de très largement simplier l'étude faite ensuite dans le cas du système des équations d'Euler.

Pour la discrétisation des conditions aux bords imposées en vitesse pour les équations d'Euler, une méthode est déduite de l'analyse linéaire pour construire des cellules fantômes stables et d'ordre très élevé. Plus particulièrement, considérant des schémas intérieurs de type Lagrangeprojection sur grilles cartésiennes, deux méthodes sont isolées pour l'imposition des valeurs fantômes. La première consiste à faire l'hypothèse d'isentropie spatiale locale proche de la frontière, tandis que la seconde consiste à élargir le stencil pour eectuer la reconstruction des valeurs fantômes. Des résultats théoriques permettent de caractériser les conditions d'existence et d'unicité de la reconstruction proposée par ces deux méthodes. Dans le but de traiter le cas de chocs forts impactant la frontière, une procédure de type MOOD a été développée. Enn, l'extension au cas 2D a été faite. L'extrapolation polynomiale 2D étant fortement oscillante et ayant tendance à être instable, une procédure de type moindre carré a été introduite an de lisser un tel comportement. Des résultats numériques sont venus illustrer tout autant la précision que la robustesse de la méthode proposée.

Enn, le couplage entre un uide compressible et une structure indéformable a été réalisé à partir de la procédure de LaxWendro inverse développée précédemment. Un schéma semi-discret permettant de calculer à l'ordre élevé en espace les forces et moments exercés sur la frontière du corps rigide a été proposé. Deux procédures d'intégrations en temps ont ensuite été développées, une de type RungeKutta et une seconde de type CauchyKowalevski. Ce choix d'intégration en temps a permis de faire correspondre sur la même échelle en temps les solveurs uide et corps rigide. Enn l'extension 2D de ces schémas a été faite via splitting directionnel. La procédure de LaxWendro inverse nous a permis de dénir naturellement les forces et moments de pression exercés sur la frontière du corps rigide. Ainsi le couplage fut immédiat et d'autant plus facile à implémenter. Quelques résultats numériques ont été proposés an de mettre en évidence la stabilité et la robustesse du couplage utilisé.

Plusieurs perspectives sont désormais possibles. Dans un premier temps, il apparaît important d'étendre la méthode à trois dimensions d'espace. Cela permettrait d'approcher des situations plus réalistes. La méthode proposée devrait s'appliquer directement, sans modications préalables, au In this manuscript, numerical simulation of uid-structure interaction was of most interest to us, considering a compressible uid interacting with a rigid body. In order to realize the coupling between the two, the inverse LaxWendro procedure has been developed for stability and explicit time-coupling purposes. This coupling is done in a stable way for a compressible hydrodynamics solver and a rigid body dynamics one.

Firstly, an overview of main theoretical results concerning hyperbolic systems of conservation laws has been made. The emphasis was then laid on numerical methods for the resolution of compressible Euler equations as well as for space and time coupling used for uid-structure interaction found in the literature. Due to tremendous materials physical discontinuities, the mixed-cells method was discarded. Methods based on body-tted meshes were also discarded as they were irrelevant for hydrodynamics solver on Cartesian grids. The choice has been made to focus on ctitious domain methods, and more precisely on the immersed boundary methods.

The selected method for the space coupling was to build high-order accurate ghost-cells values using the inverse LaxWendro procedure. Although, this method does not ensure conservation of mass, momentum and total energy, contrarily to the embedded boundary methods, it yields high-order accuracy which is of most use for high-order hydrodynamics solver. Last, an explicit coupling has been chosen, rather than implicit or semi-implicit ones, in order to solve a local problem instead of a global one.

Secondly, as a possible choice for the hydrodynamics solver, a scheme based on staggered Cartesian grids has been detailed. The scheme was proven to be conservative in mass, momentum and total energy and also weakly consistent with the Euler equations. The key for both conservation and weak consistency is the internal energy corrector that has been proposed. For multiple space dimensions, the scheme was used with a high-order directional splitting method. Then, the extension of the scheme for the resolution of the compressible NavierStokes equations was made. It relies on a peculiar distribution of non-diagonal viscous terms on a grid staggered in both directions. Numerical results have illustrated both the accuracy and the robustness of the scheme.

Afterwards, numerical boundary treatment was considered, with a special focus on both highorder accuracy and stability. In order to use theoretical results, especially concerning linear stability for initial boundary value problems, the problem was dealt with for linear hyperbolic systems of conservation laws. The ghost-values computation procedure, called in the manuscript "reconstruction operator", was rst developed for the special case of linear advection problems in 1D. Then, it was extended to the wave equations system considering two dierent but well-posed boundary conditions. The rst boundary condition imposed only the velocity at the boundary, whereas the second linked both velocity and pressure at the boundary. The extension was then realized for generic linear hyperbolic systems. Although giving high-order accuracy for ghost values in the ctitious domain, the inverse LaxWendro procedure does not ensure the stability of the eective scheme. It was pointed out by numerical experiments performed for the wave equations. Besides a GKS stability analysis done for a given scheme and reconstruction operator, a new stability criterion was proposed in order to ease greatly stability characterization for the discretization of the initial value boundary problem. Numerical experiments assess the pratical relevancy of such a criterion. Our ndings highlighted the need to focus particularly on linear stability of the eective scheme before tackling the case of non-linear problems. It alleviated greatly the study that was then performed for the Euler equations. For the extension of numerical boundary treatment to compressible Euler equations, the boundary conditions was considered to be imposed as a slip boundary condition, enforcing the normal velocity. A method has been deduced from the linear analysis of the inverse LaxWendro procedure to obtain high-order and stable eective schemes. More precisely, considering Lagrangeremap interior schemes based on Cartesian grids, the non-inversibility of the Jacobian matrix pointed out the need for another equation. Two methods were developed to build the reconstruction operator. The rst one consisted in considering that the ow near the boundary was spatially isentropic. Whereas the second one consisted in enlarging the stencil used to build the reconstruction operator. Theoretical results to characterize conditions for existence and uniqueness of the reconstruction operator were proved for both methods. In order to deal with strong incoming or outgoing shocks, a MOOD procedure was developed. Then the extension to two space dimensions problems was done. A special procedure of least-square was also developed in order to prevent 2D extrapolation instabilities from occurring. Numerical experiments have been performed to illustrate both accuracy and robustness of the method.

Last, the coupling between a compressible uid and a rigid body was made, starting from the previously introduced inverse LaxWendro procedure for Lagrange-remap schemes. A semidiscrete scheme was derived, computing with high-order accuracy in space the resultants of forces and torques exerted on the rigid body boundary. Two time-integrations were proposed: A RungeKutta one, and a CauchyKovalevskaya one. These time integration choices result from the hydrodynamics solver choices, and was done in order to maintain both solvers on the same time-scale, easing the coupling. Then, the two space dimensions extension was performed using directional splitting method. The inverse LaxWendro procedure yielded natural denitions for pressure forces and torques exerted on the rigid body boundary. Thereby the coupling was straightforward and easy to implement. Some numerical results have been presented to emphasize the stability and robustness of the coupling.

New perspectives seem now to be reachable. Firstly, extending the method to three space dimensions should be quite straightforward and of very high interest. It would allow to get closer to more realistic situations. The proposed method can be applied straightforwardly provided one can map the inverse LaxWendro pearls on the surface of a rigid body. Going from 2D to 3D should not induce large prohibitive numerical costs due to the procedure.

Then, considering a deformable structure instead of a rigid body one should be of great interest for the CEA needs. Many deformations models are available in the literature such as linear elasticity, hypo-elasticity, plasticity and fracturation. Once again, be given a set of pearls describing the structures boundaries, the ILW procedure should be applicable straightforwardly. The structure being described by a mesh, it seems all but natural to consider that the vertices on the boundary of the mesh are exactly the pearls used in the ILW procedure. The space and time coupling BUTCHER 
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Figure 1

 1 Figure 1 An oscillating boundary conditions is prescribed on the left boundary. It highlights the impact of high-order accurate numerical boundary treatment for the restitution of physical oscillations. Velocity proles are depicted with 10 cells per wavelength at T = 9, for 3 rd , 4 th and 6 th -order inner schemes, with a 2 nd -order (left) or with respectively the same orders (right) boundary reconstructions. High-order accurate boundary treatment outperforms 2 nd -order accurate ones in the whole domain, because the gain of accuracy propagates in the domain (we expect this kind of behaviour to occur when considering uid / vibrating structures interactions.).

Figure 2

 2 Figure 2 Rigid-body and compressible uid coupling. The cylinder is lift o by an incoming shock wave. In return, the shock wave is reected on the cylinder, and the uid is displaced by the structure. Complex structures are developed due to the reection on the top and bottom channel as well as the rigid cylinder. 60 contours are displayed representing uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom) for the third order scheme, ∆x = ∆y = 6.25 × 10 -4 .

  is constant in time for no-exchange boundary conditions. It is usual to consider that the unknown U (x, t) belongs to a convex open set U ⊂ R N . The ux function f is dened as a smooth enough function, typically f ∈ C 1

8 )

 8 As a contrary to the original writing of eqs. (I.1) and (I.7), eq. (I.8) does not require the denition of the terms ∂ t U and ∂ x f (U ). Moreover it contains intrinsically the initial conditions U 0 . In practice, a weak solution U in the sense of denition I.1 is said to satisfy eq. (I.1) in the sense of distributions. Moreover if a function U is a weak solution and is smooth, then it is a classical solution. It is stated in proposition I.2.

  is a mathematical entropy for the conservation laws presented in eq. (I.1) if and only if there is an entropy ux ζ satisfying dζ(U ) = dη(U ) • df (U ).

(I. 10 )

 10 Any classical solution of eq. (I.1) satises∂ t η(U ) + ∂ x ζ(U ) = 0 (I.[START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] 

(I. 16 )

 16 The theorem I.6 gives a characterization of a solution in the sense of distributions to eq. (I.1) which satises the entropy inequality (I.16). It seems all the more natural now, to dene what is an entropic solution of a conservation law, and to determine conditions to get existence and uniqueness of such a solution.HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND FLUID-STRUCTURE INTERACTION 15Denition I.3 (Entropic solution of a conservation law). Let u 0 ∈ L ∞ (R). Let u ∈ L ∞ (R × ]0 : ∞[) a weak solution to the scalar conservation law eq. (I.1) with the initial condition u 0 .The function u is said to be an entropic solution of the Cauchy problem if for any mathematical entropy pair (η, ζ), it satises eq. (I.16).

Figure I. 1

 1 Figure I.1 Space discretization for centered nite dierence schemes on a Cartesian grid

2 Figure I. 2

 22 Figure I.2 Space discretization for centered nite volume schemes on a Cartesian grid

Figure I. 3

 3 Figure I.3 Space discretization for nite volume schemes on an unstructured grid

  n+1 k,j =e α(n+1)∆t e ikπj∆x =e α∆t n k,j n k,j+m =e αn∆t e ikπ(j+m)∆x =e ikπm∆x n k,j (I.44) The amplication factor is introduced as a function of θ = kπ∆x, ∆x and ∆t as G(θ, ∆x, ∆t) = Values taken by the amplication factor G determine the stability of the schemes. Linear stability via amplication factor study is dened in denition I.11.

(I. 46 )C

 46 Furthermore, the restricted stability conditions yields |G(θ, ∆x, ∆t)| ≤ 1, ∀θ ∈ [0 : 2π] .(I.47) Let us take P ∆x,∆t a one-step nite dierence scheme for a scalar conservation laws. Assume it writes under the following form m e imθ Assuming that ∆t and ∆x are proportional with a given constant λ, it yields G(θ, ∆x, λ∆x) = 1 + λ r m=-p
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 56 Figure I.5 A fully explicit uid-structure coupling algorithm on same time discretization

Figure I. 7 A

 7 Figure I.7 A fully implicit uid-structure coupling algorithm on same time discretization

i)

  Immersed boundary methods; ii) Direct forcing methods; iii) Penalization methods; iv) Lagrange multipliers; v) Embedded cut-cells methods; vi) Reection and mirroring ghost-cells methods; vii) Inverse LaxWendro boundary treatment.

FluidSolidFigure I. 9

 9 Figure I.9 Embedded boundary methods: Double head arrows show numerical uxes needing modication to take into account the boundary

FluidSolidFigure I. 10

 10 Figure I.10 Merging of small cut-cells present along the boundary using the outward normal criteria: Arrows stand for conservative mixing of cells, red cells are mixed with the larger cells indicated by arrows

FluidSolidFigure I. 11

 11 Figure I.11 Ghost-cells values using the mirroring technique: black dots stand for the ghostcells

  Table II.1 Coecients for the nite volume computation of point-wise values from cell-average ones.

1 2and dφ i+ 1 2 = 2 .

 122 φ i+1 -φ i . Note that in (II.13), ie for intermediate RungeKutta time-step, there is no need to compute the evolution of the kinetic energy, nor the position of the cells face x i+ 1

1 2

 1 Then by straightforward induction on the intermediate time-steps, any f αm i+ writes as a function Φ m as

Theorem II. 9 (

 9 Weak consistency of the staggered schemes (II.13)-(II.14)-(II.21) ). For all explicit RungeKutta sequences, for coecients C k , C k , d k , r k dened in tables II.1 to II.4, the schemes (II.13)-(II.14)-(II.21) are weakly consistent with the Euler equations in Lagrangian coordinates.Remark II.4. The proof of the weak consistency of the two rst variables, specic volume and momentum, which show up in (II.13)-(II.14) is essentially similar to the one of lemma II.3 for the barotropic case, so is not detailed. Instead we focus on the energy equation. However, due to the very intricate structure of the discrete energy equation, no explicit natural uxes for total energy have been exhibited so far. It means that the energy equation is not rewritten using the form (I.34)-(I.35)-(I.36). That is the criterion of ux consistency of denition I.6 is unfortunately not applicable, this is why the proof is detailed hereafter in full length, starting directly from denition I.7.

Multiply the rst equation by ∆Xφ n+1 i and the second by ∆Xφ n+1 i+ 1 2 then

 2 to sum over the n and i and to combine both. It leads to

  0)φ(x, 0)dx. Previous equation gives weak consistency for forward Euler staggered scheme with internal energy corrector. Using RungeKutta sequences adds only more technical diculty in the algebra, but does not alter the weak consistency result. Idem for the use of the coecients C k . The key point for consistency is to use the same coecients d k and C k for both the internal and kinetic energies equations.

Figure II. 2

 2 Figure II.2 Illustration of the interest and importance of the internal energy corrector. Without the internal energy corrector (left), the scheme does not converge toward the weak solution for the Sod shock tube. Using the internal energy corrector (right), although oscillatory, the jump relations are recovered.

Figure II. 4

 4 Figure II.4 Acoustic wave with harmonic source -Dierence between the cell-centered GoHy[START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF] (blue, cross) and GAD schemes[START_REF] Heuzé | Dissipative issue of high-order shock capturing schemes with non-convex equations of state[END_REF] (gray, lled triangle), the staggered BBC scheme[START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF] (orange, triangle) and the new staggered schemes denoted here YHORK (black, lled circle). Analytic solution is represented by the red curve.

  Figure II.5 Density (top) and internal energy (bottom) proles on [0 : 1] for the Sod test-case problem [146] at time t = 0.2, CFL=0.7, 100 cells, monotonicity limiters used during the remap phase, no articial viscosities during the Lagrangian phase, for the 3 rd , 4 th and 6 th order staggered schemes.

(a) 3

 3 Figure II.6 Density (top) and pressure (bottom) proles on [0 : 0.25] for the Noh test-case problem [127] at time t = 0.6, CFL=0.7, 400 cells, monotonicity limiters used during the remap phase, no articial viscosities during the Lagrangian phase, for the 3 rd , 4 th and 6 th order staggered schemes.

91 x

 91 Figure II.8 Density (top) and pressure (bottom) proles on [0 : 1] for the Woodward test-case problem [171] at time t = 0.038, CFL=0.7, 300 cells, monotonicity limiters used during the remap phase, no articial viscosities during the Lagrangian phase, for the 3 rd , 4 th and 6 th order staggered schemes.

j+ 1 2 Figure II. 9

 29 Figure II.9 Staggered nite volume space discretization on Cartesian grids

4 .

 4 Apply the reconstructed 2D Lagrange-remap terms ∆U on the 2D-cell-average values. It leads for cell-centered variables to

(a) 1 Figure II. 15

 115 Figure II.11 Proles of density by colors and φ using 6 contours from 0 to 1 for the Vortex-Pairing test-case, CFL=0.7, for times t = 1, t = 2, t = 3, t = 4 and t = 5, 128 cells in each direction.

  Figure II.17 Scatter plot of density proles for the Sedov blast-wave test-case using the third, fourth and sixth order staggered schemes (CFL=0.7) and the rst and second order cell-centered schemes (CFL=0.5) at t = 1.0; 100 cells in each direction.

(a) 1

 1 Figure II.18 Scatter plot of density proles for the 2D Noh compression test-case using the third, fourth order staggered schemes (CFL=0.7) and for the rst and second order cell-centered schemes (CFL=0.5) at t = 0.6, 400 cells in each direction.

  Figure II.20 Absorption (dB) of the pressure following x at y = 1, without rectication, for the third order scheme, with circa 10 cells per wavelength
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 111411 Space distribution and discretization of the viscosity and gravity terms in 1D

1 2Figure

 1 Figure II.22 Arakawa C-type like grid for the compressible NavierStokes equation with a special distribution for the non-diagonal viscous terms

(II. 70 )

 70 Splitting techniques relies on solving alternatively rst and second equation of eq. (II.70) with weighted time-step in order to reach high-order accuracy. This procedure is identical as for the Euler equations. Lemma II.15 (Conservation of the 2D schemes (II.68)-(II.69)-(II.21)-(II.28)). The resulting 2D Cartesian grid schemes for the compressible NavierStokes equations are conservative in mass, momentum and total energy E (see denition II.1).

u 0

 0 (x, y) = sin(x) cos(y), v 0 (x, y) = cos(x) sin(y), p 0 (x, y) = p 0 -1 4 (cos(2x) + sin(2y)) .

  y)gy, (II.[START_REF] Gustafsson | Stability theory of dierence approximations for mixed initial boundary value problems[END_REF] where g = -0.1, K 0 = 2.5, a = 10 -2 . The viscous parameters are chosen very small with µ = 10 -4 and λ = -2 3 µ. In order to highlight the role of viscosity, computations are run rst with the Euler schemes and then with the Compressible NavierStokes (CNS) schemes. Periodic boundary conditions are set on the left and right boundaries, whereas wall boundary conditions are imposed on the top and bottom boundaries. The computation domain is set to [-0.25 : 0.25] × [-0.75 : 0.75].

  Figure II.23 Density proles on the RayleighTaylor mono-mode instability for the Euler equations (top) and for the Compressible NavierStokes (CNS) equations with µ = 10 -4 and λ = -2 3 µ (bottom) using third, fourth and sixth order schemes, at time t = 9.5 (left) and t = 12.75 (right) with 200 cells in the x-direction and 600 in the y-direction.

  Figure II.24 Density proles on the RayleighTaylor multi-mode instability for the Euler equations (top) and for the Compressible NavierStokes (CNS) equations with µ = 10 -4 and λ = -2 3 µ (bottom) using third, fourth and sixth order schemes, at time t = 6, t = 9, t = 12, t = 15 from left to right and top to bottom, with 200 cells in the x-direction and 300 in the y-direction
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 1 Figure III.1 1D Boundary between outside and inside computational domain
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j+ 1 2j+ 1 2 ,

 12 is to use polynomials P interpolating the primitive of u n ie u * j) -P (x j+ 1 2

(III. 44 )

 44 Consider a m th -order scheme in both time and space and consider we use only the rst n time derivatives of the boundary conditions G, with n < m. Relation (III.44) is used to change time derivatives into space derivatives and vice versa. The matrix B ∈ R p×p is introduced as B = B 0 .

Figure III. 2

 2 Figure III.2 Stability area {(ν, σ) / ρ(N nc ) ≤ 1} (in white) for the LaxWendro (second order) scheme with n c = 20 for the R 2,0 (left), R 2,1 (right) reconstruction operators. The whole domain is stable.

R 2,0 R 2 , 1 Figure III. 3

 213 Figure III.3 Stability area {(ν, σ) / ρ(N nc ) ≤ 1} (in white) for the BeamWarming (second order) scheme with n c = 20 for the R 2,0 (left), R 2,1 (right) reconstruction operators.

Figure III. 4 , 1 R 3 , 2 Figure III. 6

 41326 Figure III.4 Stability area {(ν, σ) / ρ(N nc ) ≤ 1} (in white) for the third-order projection scheme with n c = 20 for the R 3,0 (top, left), R 3,1 (top, right) and R 3,2 (bottom) reconstruction operators. As a contrary to gs. III.2 and III.3, one notices a region of numerical instability for R 3,0 .

Figure IV. 1

 1 Figure IV.1 Discretization Γ ∆s of Γ(t) and decomposition of the whole domain between Ω - (ghost-cells) and Ω + (uid cells). Ω is the domain outside the ellipse.

1 2 and X i+ 1 2

 21 coincide at time t n . First, system (IV.6) is time-integrated to give Lagrangian conservative variables at time t n+1 on a non-uniform grid. These variables are then remapped on the initial grid, leading to Eulerian conservative variables at time t n+1 . For the Lagrange system (IV.6), the ux is F (U ) = (-u, p, pu) t and its jacobian A = ∇ U F (U ) writes

Figure IV. 2

 2 Figure IV.2 Graph of x → f (τ +1 x) using dierent value of ∆X for a positive D t g on the left, and a negative one on the right.

γ = 3 1 γ 2 1 c 2 e -c 2 i

 31222 and here we will take p e = 100, p i = 1, ρ e = 1 and ρ i = ρ e (p i /p e ) . Introducing the sound speed c = γp/ρ, we dene the focalization time t c = γ-1 which allows to write the complete analytical solution. Dening h

Figure IV. 5 1 ,

 51 Figure IV.5 Velocity proles with 10 cells per wavelength for the 3 rd , 4 th and 6 th -order GoHy schemes for the harmonic piston problem at T = 9. On the left, results with appropriate order of reconstruction is depicted, whereas on the right results are shown with second order reconstruction.

m(m+1) 2 2 2

 22 interior cells. It leads to a m(m+1) linear system and allows to build ghost-cell values of ρ 0 .

IV. 49 ) 1 γ

 491 from which we deduce the velocity, the pressure and the density according to u = (∇φ), p = p 0 -(∂ t φ), ρ = γp with γ = 1.4.

(a) 1

 1 Figure IV.11 Density colors of a reected shock wave on a wedge at CFL=0.5 with 100 cells in each direction. The expected angle of the oblique shock, depicted by the white line, is recovered by the schemes.

(c) 3 1

 31 Figure IV.16 Lift and drag coecients as a function of time for the Mach shock on the NACA0018 prole considering 100, 200 and 400 cells in each direction for 1 st (top, left), 2 nd (top, right) and 3 rd -order (bottom) ILW-GoHy schemes.

Figure V. 1 s 1 2=

 11 Figure V.1 Regular curvilinear discretization of an ellipse with Γ : s → (5 cos(2πs), sin(2πs)) t using 20 pearls (blue dots)

(V. 16 )We dene also the staggered curvilinear abscissae as s i+ 1 2 = s i+1 -s i 2 , 1 2 are located as P i+ 1 2 = γ(s i+ 1 2 ) 1 i=0 Γ i+ 1 2 φ 2 = φ(γ(s i+ 1 2 )) γ (s i+ 1 2 ) 2 +

 1622122122222 Denote in particular that the two points of abscissa s 0 and s N are identical. One trivially gets that ∀i ∈ {0, ..., N -1}.The pearls P i+This discretization, which is depicted for an ellipse in g. V.1, is particularly appropriate to compute integrals of the formΓ φ(x)dx = Ns)) γ (s) ds (V.17)HIGH-ORDER LAGRANGIAN SCHEMES FOR RIGID BODY DYNAMICSThe following lemma gives an accuracy result on the spatial discretization concerning the computation of such an integral. It is a corollary of a result proved by Kurganov and Rauch in [kurganov2009order] about spectral accuracy of low order quadrature formulae for periodic function. It is proved here for smooth functions on a closed curve using the interpolation coecients C k which are central in this work. Lemma V.1. Assume that Γ is a closed curve. Let γ and φ smooth enough and m > 0. Assume the following approximation φ γ i+ 1 O(∆s m ).

Remark V. 1 .C k φ γ i+k+ 1 2 +i+ 1 2 )) γ (s i+ 1 2 ) 2 )) γ (s i+N + 1 2 ) 2 )) γ (s i-N + 1 2 )

 12222222 Lemma V.1 implies in particular that trapezoidal rule yields immediately spectral accuracy for the integral computation on a closed curve. Proof. Denoting φ (s)) γ (s) ds, one has in particular from chapter II, for r > 0 that φ O(∆s 2r+1 ) (V.18) where the coecients C k are available in table II.2, and φ ), i ∈ {0, ..., N -1}, φ(γ(s i+N + 1 , i ≤ -1, φ(γ(s i-N + 1 , i ≥ N.

(V. 19 ) 2 + 2 + 22 )P i+ 1 2 = (x i+ 1 2 , y i+ 1 2

 192222222 schemes in 2D are based on directional splitting, the choice has been made to apply the same strategy to eq. (V.21). Denoting u s = (u s , v s ) t , n = (n 1 , n 2 ) t , x = (x, y) t , it leads to

θ l ω n+α l N n 1 ,i+ 1 2 ,

 12 

ρ 0 D

 0 t p + (ρc) 2 ∂ x u = 0, (V.31)is derivated in time repetitively to transform time derivatives of p into space derivatives. More-

(V. 32 )

 32 Then starting from eq. (V.28) and integrating in time yield EXTENSION TO FLUID-RIGID BODY INTERACTION 203

3

 3 Fluid -Rigid body couplingAfter detailing the two proposed numerical schemes for the integration of forces and torques exerted on the boundary, we propose a simple and straightforward scheme to couple the uid and the rigid body solvers.V-3.1 Description of the algorithmSince the inverse LaxWendro procedure has been developed in a Lagrange-remap formalism and since the rigid body motion is described in a Lagrangian formalism, there is no further work to be done. The uid-rigid body coupling is depicted in Figure V.2. It follows a simple ow chart, where the space and time coupling is realized using our InverseLax Wendro boundary treatment. At time t = t n , one knows the value of U + which are the values inside the uid domain and also the rigid body state among which is the normal velocity. Using the normal velocity known at the boundary, one applies the ILW procedure, and deduces values inside U - FLUID -RIGID BODY COUPLING as well as the integral of forces and torques exerted on the rigid body boundary.

Figure V. 2

 2 Figure V.2 Using the Inverse LaxWendro procedure as a time and space coupling for rigid body interaction.

1D.

  The computational domain is [0 : 7]. Initially a rigid body of length 0.5m and of mass 1.0kgis centered at x = 2m. The uid initial state is x)=10χ {x<2,x>5} + 1χ {2<x<5} , u 0 (x)=0, p 0 (x)=10 6 χ {x<2,x>5} + 10 5 χ {2<x<5} , γ =1.4.

(V. 35 )Figure V. 3

 353 Figure V.3 Pressure proles at time t=3 ms with 800 cells for the pressure motion driven piston in 1D for second, third, fourth and sixth order ILW-GoHy schemes.

ρ 0

 0 and a rigid body motion one. It is a challenging problem coupling both a uid and a moving rigid body. The computational domain is [0.0 : 1.0] × [0.0 : 0.2]. A disk of radius 5 cm and of density ρ = 7.6 kg.m -2 lies at the bottom of a channel. Initially the center of the disk is at point (15.10 -2 , 5.10 -2 ). A Mach 3 shock enters the domain, and due to the asymmetry of the problem lifts the disk. Equivalent initial datas are presented in [6, 88, 120]: =1.0χ {x>0.08} + 3.8571429χ {x<0.08} , γ = 1.4.

(V. 36 )1. 25 × 3 Table V. 3

 362533 Figure V.5 60 contours of uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom) for the third order scheme, ∆x = ∆y = 6.25 × 10 -4 .

Figure V. 9

 9 Figure V.9 60 contours of uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom) for the third order scheme, ∆x = ∆y = 6.25 × 10 -4 .
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	INTRODUCTION										7
	N x	STAG-3	STAG-4	STAG-5	STAG-6	STAG-7	STAG-8
	50	3.3e-1	•	1.5e-1	•	2.6e-1	•	1.7e-1	•	1.5e-1	•	1.1e-1	•
	100	9.5e-2	1.79	1.9e-2	3.01	4.9e-2	2.41	8.9e-3	4.27	1.2e-2	3.70	2.0e-3	5.83
	200	1.6e-2	2.54	1.0e-3	4.19	1.9e-3	4.68	6.5e-5	7.10	8.0e-5	7.20	5.2e-6	8.59
	400	2.2e-3	2.89	6.1e-5	4.06	6.1e-5	4.96	7.2e-7	6.48	6.3e-7	7.00	1.6e-8	8.37
	800	2.8e-4	2.97	3.9e-6	3.99	1.9e-6	4.98	9.9e-9	6.18	5.0e-9	6.97	1.1e-10	7.17
	1600	3.5e-5	2.99	2.4e-7	3.99	5.98e-8	4.99	1.5e-10	6.02	3.9e-11	6.99	3.4e-12	
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  is a weak solution of eqs. (I.1) and (I.7) if and only if i) U is a classical solution of eqs. (I.1) and (I.7) on intervals where U is smooth.

  t).

	(I.59)
	Using eq. (I.59), one get the following lemma
	Lemma I.16 (Euler-Lagrange change of variables). For any couple of smooth enough function
	(φ, ψ), the change of variables (x, t) → (X, t) yields

  45 • rotated face staggering Figure I.4 Arakawa grid system displaying the placement of variables on the grid. u denotes for x-velocity related variables, v for the y-velocity related variables and p for the

	mass related variables
	projected on the original grids. He identied a lack of conservation due to this procedure. In
	fact, the projection of momentum highly dissipates kinetic energy, and so leads to a dissipation
	of the reconstructed total energy. He introduced a correction in internal energy to recover global
	total energy conservation and ensure correct shock capturing. Later, and using the earlier works
	by DeBar, several multiuid Eulerian hydrocodes with interface reconstruction on 2D Cartesian
	grids [153] were developed, based on a C-type staggering of variables. Those hydrocodes relied on
	the Trulio-Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with

Table I

 I 

	.1 A Butcher table for an explicit RungeKutta sequence
	I-2.3.2 High-order integration in time
	RungeKutta time integration

  the problem. In[START_REF] Meyer | A conservative immersed interface method for large-eddy simulation of incompressible ows[END_REF],Meyer and al. proposed a cut-cell embedded boundary method for Large-Eddy simulation of incompressible ows on staggered Cartesian grids. The interface geometry is described by a level-set method in 3D, and cells cut by this interface of small size are mixed with larger, neighbouring cells. They assessed second order of accuracy for their method. In[START_REF] Hartmann | A strictly conservative Cartesian cut-cell method for compressible viscous ows on adaptive grids[END_REF], Hartmann and al. proposed a cut-cell embedded boundary method for two

1. The criteria if xed to α > 0.5, where α is the structure presence volumic fraction NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTION solves

  NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTIONoperator matrix are similar. The method is detailed for linear systems in chapter III and then applied in the special case of Lagrange-Remap hydrodynamics schemes in chapter IV.

	Chapter II
	High order 2D nite volume
	conservative Lagrange-Remap schemes
	for compressible hydrodynamics on
	staggered Cartesian grids

table and θ

 and l the lth reconstruction coecient for the last step. It is represented by the table presented in table II.5. The sequences are available in appendix in section A.1. We denote the

	2D STAGGERED LAGRANGE-REMAP SCHEMES		63
	Order	C 0	C ±1	C ±2	C ±3	C ±4
	2 nd	1	0	0	0	
	3 rd	11 12	1 24	0	0	
	4 th and 5 th 863 960	77 1440	-17 5760	0	
	6 th and 7 th 215641 241920	6361 107520	-281 53760	367 967680	
	8 th and 9 th 41208059 46448640	3629953 58060800	-801973 116121600	49879 58060800	-27859 464486400
	Table II.2 Coecients for the nite volume computation of average values from point-wise
		ones.				
	Order	d 0	d 1	d 2	d 3	d
	2 nd	1	0	0	0	
	3 rd	9 8	-1 24	0	0	
	4 th and 5 th 75 64	-25 384	3 640	0	
	6 th and 7 th 1225 1024	-245 3072	49 5120	-5 7168	
	8 th and 9 th 19845 16384	-735 8192	567 40960	-405 229376	35 294912

Table II .

 II [START_REF] Allaire | [END_REF] Coecients for the δ operator.

  A desired feature is that the mass, momentum and the total energy E n dened in denition II.1 are conserved for periodic or wall boundary conditions, meaning that E n+1 -E n = 0. However using schemes (II.13)-(II.14), the total energy E is not conserved. Here, as mentioned in lemma II.2, the schemes conserve the total energy E n dened in denition II.2.Lemma II.2 (Conservation of the staggered schemes (II.13)-(II.14)). For all explicit Runge-Kutta sequences, all articial viscosities, all spatial reconstructions, the schemes (II.13)-(II.14) formulated in internal energy are conservative in mass, momentum and total energy E dened in denition II.2.

	i	ρ 0	n i +	i	ρ 0 e kin,u	n i+ 1 2	.	(II.16)
					i+ 1 2	.	(II.15)

Denition II.2. A total energy, based on the discretized kinetic energy, of the system at time 2D STAGGERED LAGRANGE-REMAP SCHEMES 65 t = t n , denoted E n , is dened as

E n = ∆X

Table II .

 II Stag ∆X max i c i where c i is the speed of sound in the cell i. The coecients λ Stag are listed in table II.6 with the aforementioned sequences. 6 CFL conditions for linear stability of the staggered schemes

	Schemes	λ Stag
	2 nd order BBC	0.6888
	3 rd order SSPRK3	0.7423
	4 th order 3 8 -Kutta	1.1390
	5 th order Dormand-Prince 0.4015
	6 th order robust Verner	1.0045
	7 th order robust Verner	0.0134
	8 th order robust Verner	0.9840

). Higher-order schemes are stable under CFL condition ∆t < λ

  Thus, the internal energy corrector conserve the quantity E, meaning that E n+1, -E n+1 = 0. Conservation of the staggered schemes (II.13)-(II.14)-(II.21)). The schemes (II.13)-(II.14) with the internal energy corrector (II.21) satisfy E n+1, = E n (cf denition II.1).

	2D STAGGERED LAGRANGE-REMAP SCHEMES	75
	Lemma II.8 (	

  21) is applied at the end of the remapping stage. It thus yields straightforwardly conservation of both E and E. Internal energy corrector → Remap phase → Internal energy corrector, 3. Lagrange phase → Remap phase → Internal energy corrector,The rst algorithm is used to solve the Euler equations in Lagrangian coordinates, whereas the other two are used for the standard Euler equations. One can show that 2. and 3. are equivalent.

	In the following, the third algorithm is used.	
	Moreover, another CFL condition is imposed on the scheme, where now the time-step must
	satisfy	
	∆t <	∆X max i |u i+ 1 2

Hence, three algorithms are available. 1. Lagrange phase → Internal energy corrector, HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES 2. Lagrange phase →

Table II

 II 

										The momentum error	
	in l 1 -norm as well as the experimental order of convergence are displayed in table II.8. Expected	
	order of convergence are almost reached. For very high-order methods, the machine precision is	
	already reached for 200 cells.									
	N x	STAG-3	STAG-4	STAG-5	STAG-6	STAG-7	STAG-8
	50	9.3e-5	•	6.4e-6	•	5.3e-7	•	1.0e-7	•	3.1e-8	•	5.6e-9	•
	100	1.2e-5	2.91	4.3e-7	3.89	2.0e-8	4.68	2.1e-9	5.64	2.6e-10	6.88	5.1e-11	6.79
	200	1.6e-6	2.95	3.0e-8	3.86	7.7e-10	4.73	4.1e-11	5.69	2.8e-12	6.59	5.4e-13	6.56
	400	2.0e-7	2.98	2.0e-9	3.93	2.6e-11	4.87	1.2e-12	5.1	8.2e-13		8.6e-13	
	800	2.6e-8	2.99	1.2e-10	3.96	1.8e-12	3.87	1.4e-12		1.7e-12		1.7e-12	
	1600	3.2e-9	2.99	8.7e-12	3.85	3.6e-12		1.5e-12		3.0e-12		2.8e-12	
	3200	4.0e-10	3.00	6.2e-12		3.8e-12		2.2e-12		3.3e-12		3.1e-12	

.8 l 1 -error in momentum and experimental order of convergence for the Lagrange-remap staggered scheme taken on the Cook-Cabot breaking wave test problem

[START_REF] Cook | A high-wavenumber viscosity for high-resolution numerical methods[END_REF]

, until t = 0.9T shock . indicates machine precision reached.

Table II

 II 

			HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES
			1002										
								Pressure on isentrope		
			1001										
			1000										
		p	999										
			998										
			997										
			996										
				0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	
								ρ 0 τ					
		Figure II.3 Non-convex equation of state for a breaking-wave test-case
	N x	STAG-3	STAG-4		STAG-5	STAG-6		STAG-7	STAG-8
	50	4.2e-4	•	6.5e-4	•	2.6e-4	•	3.4e-4	•		2.9e-4	•	2.3e-4	•
	100	1.9e-4	1.14	2.1e-4	1.64	5.7e-5	2.20	1.1e-4	1.67		4.4e-5	2.69	6.8e-5	1.73
	200	4.5e-5	2.07	4.3e-5	2.29	1.5e-5	1.90	1.4e-5	2.91		1.3e-5	1.80	9.8e-6	2.80
	400	9.3e-6	2.27	5.6e-6	2.94	1.7e-6	3.20	1.5e-6	3.25		6.5e-7	4.30	6.9e-7	3.83
	800	1.5e-6	2.66	4.8e-7	3.54	9.9e-8	4.07	5.9e-8	4.64		2.0e-8	5.04	1.5e-8	5.56
	1600	2.0e-7	2.89	3.1e-8	3.91	3.8e-9	4.69	1.3e-9	5.53	2.6e-10	6.24	1.2e-10	6.90
	3200	2.6e-8	2.96	2.0e-9	3.98	1.3e-10	4.84	2.5e-11	5.68	7.5e-12	5.12	5.7e-12	4.43

.9 l 1 -error in momentum and experimental order of convergence for the Lagrangeremap staggered scheme taken on the modied breaking wave test problem, until t = 0.9T shock . indicates machine precision reached.

  ).
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	at most rst order accuracy in time. The idea is then to set	
	q		
	U (t + ∆t) =	e(ω 2k ∆tA 2 ) e(ω 2k-1 ∆tA 1 )(U )(t),	(II.46)
	k=1		
			(II.44)
	Solving rst equation of eq. (II.43) then the second one, one gets that	
	U (t + ∆t) = e(∆tA 2 ) e(∆tA 1 )(U )(t).	

(II.

[START_REF] Després | Lois de conservations eulériennes, lagrangiennes et méthodes numériques[END_REF] 

Assuming that the operators A 1 and A 2 are commutative, the solution is then equivalent. If both are non commutative, then it is not. A simple Taylor expansion of both expressions yields

  Sedov χ {x 2 +y 2 <r 2 Sedov } + 10 -14 χ {x 2 +y 2 >r 2

		πr 2	Sedov	Sedov } ,
	γ	= 1.4,	

(II.

[START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF] 

  it remains to discretize the terms 2D STAGGERED LAGRANGE-REMAP SCHEMES 113 ∂ y u and ∂ x v. Since u and v are respectively staggered in the x-direction and in the y-directionn considering centered approximations of the derivatives naturally leads to approximations of ∂ y u and ∂ x v staggered in both directions as expected. Then, one can use the previsously introduced δ operator. It yields high-order accuracy in space for the terms Υ 2,1 and Υ 2,2 . Finally, using the δ operator, we have

  The idea is to recouple E and E using the internal energy corrector proposed in eq. (II.21). It leads to the following lemma. Lemma II.14 (Conservation of the staggered schemes (II.68)-(II.69)-(II.21)). For all explicit Runge-Kutta sequences and all spatial reconstructions, the schemes (II.68)-(II.69)-(II.21) are conservative in mass, momentum and total energy E (see denition II.1). (II.62) and (II.63) can be rewritten under a similar form as in eq. (II.41)

	EXTENSION TO THE 2D COMPRESSIBLE NAVIERSTOKES
	EQUATIONS WITH GRAVITY
	II-4.2.2 2D Extension of the 1D staggered Lagrange-remap schemes
	Proof. The proof is straightforward using lemmas II.7 and II.13.
	The remapping stage is identical to the one for the 1D Euler staggered schemes. Once again
	in practice, the Lagrangian phase is performed, then quantities are remapped and at last the
	internal energy corrector is applied.

Equations

  As the proposed schemes are not well-balanced, it challengingly assesses the ability of the schemes to recover hydrostatic equilibrium as well as to see if waves induced by numerical errors are amplied or dumped by the schemes. In table II.13, the l 1 error in density is displayed for the staggered schemes. The third order scheme reaches EXTENSION TO THE 2D COMPRESSIBLE NAVIERSTOKES EQUATIONS WITH GRAVITY machine-precision and so hydrostatic equilibrium using approximately 560 cells. Fourth and fth order schemes reach hydrostatic equilibrium at about 140 cells, and the higher-order schemes have already reached hydrostatic equilibrium with only 35 cells. In practice, it means that for such a problem, high-order accuracy is able to recover the smooth hydrostatic equilibrium up to a relatively small number of cells.

	N x	STAG-3	STAG-4	STAG-5	STAG-6	STAG-7	STAG-8
	35	2.2e-9	•	2.0e-11	•	2.0e-11	•	7.3e-13	• 7.2e-13 • 2.8e-14 •
	70	1.5e-10	3.88	3.2e-13	6.0	3.2e-13	6.0	5.1e-14	5.0e-14	1.1e-14
	140	9.8e-12	3.93	1.5e-14		1.9e-14		6.1e-14	6.4e-14	5.0e-14
	280	6.2e-13	3.98	2.8e-14		6.1e-14		7.2e-14	8.1e-14	7.4e-14
	560	1.1e-14	5.77	6.8e-14		9.1e-14		6.7e-14	9.6e-14	1.1e-13

  2 . Periodic boundary conditions are imposed. The limitation on the nal time is due to the use of explicit Runge Kutta sequences combined with the very high sound speed number. l 1 -error in momentum as well as experimental order of convergence are presented in table II.14. Machine precision is reached quickly on the every variables due to the large dierence existing between the numerical values of momentum, density, pressure with the values of internal energy. Indeed the error are not taken as relative errors but as absolute ones. Magnitude diers by a factor 10 8 . Hence, for relative errors, one should divide by at least 10 8 . We believe double precision is not sucient to reach smaller absolute error.TableII.14 l 1 -error in density and experimental order of convergence for the compressible NavierStokes Lagrange-remap staggered scheme for the TaylorGreen vortex[START_REF] Taylor | Mechanism of the production of small eddies from large ones[END_REF], until t = 2.10 -3 , CFL=0.9. Machine precision is reduced to 10 -5 as error are taken in absolute. For relative errors, one should divide by 10 8 . indicates machine pre-

	N x	STAG-3	STAG-4	STAG-5	STAG-6	STAG-7	STAG-8
	10	5.0e-1	•	1.8e-4	•	3.1e-3	•	1.5e-4	• 2.4e-4 • 6.1e-5 •
	20	7.6e-2	3.88	1.2e-5	6.0	1.0e-4	6.0	1.1e-5		1.1e-5	1.1e-5
	40	1.0e-2	3.93	1.1e-5		1.2e-5		1.3e-5		1.3e-5	1.3e-5
	80	1.4e-3	3.98	1.3e-5		1.1e-5		1.2e-5		1.2e-5	1.2e-5
	160	2.2e-4	5.77	1.4e-5		1.4e-5		1.3e-5		1.4e-5	1.2e-5
	320	3.1e-5	2.87	1.3e-5		1.5e-5		1.4e-5		1.6e-5	1.4e-5
		cision reached.						

 

RayleighTaylor instability

[START_REF] Strutt | Investigation of the character of the equilibrium of an incompressible heavy uid of variable density[END_REF][START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[END_REF][START_REF] Liska | Comparison of several dierence schemes on 1D and 2D test problems for the Euler equations[END_REF] 

  Table III.3 Example of Butcher table for explicit RungeKutta sequence with p sub-cycles.

Table III .

 III 4 l 1 -error and experimental order of convergence for the 3 rd -order scheme together with the R 3,n nite-volume reconstruction polynomial at t = 0.3 for boundary condition on the velocity. are indications of unstable behaviour of the scheme.

		1.3e-2	•	1.1e-3	•	1.5e-3	•
	40	7.9e-4	3.99	8.9e-5	3.66	1.5e-4	3.39
	80	4.9e-5	4.02	6.5e-6	3.78	1.3e-5	3.49
	160	1.1e-5	2.14	5.1e-7	3.65	1.2e-6	3.43
	320	8.5e-5		5.1e-8	3.32	1.2e-7	3.31
	640	1.1e-1		6.2e-9	3.05	1.4e-8	3.18
	1280	2.8e6		7.9e-10	2.97	1.6e-9	3.08

Table III .

 III 5 l 1 -error and experimental order of convergence for the 3 rd -order scheme together with the R 3,n nite-volume reconstruction polynomial at t = 0.3 for mixed boundary condition (λ = 1747). are indications of unstable behaviour of the scheme. initial error level (for N x = 20). Similar experimental orders of convergence for nite dierence reconstruction operators have been recovered.

		2.4e-2	•	1.4e-3	•	2.2e-3	•
	40	2.3e-3	3.40	9.9e-5	3.84	2.4e-4	3.17
	80	7.9e-5	4.88	8.6e-6	3.52	2.5e-5	3.24
	160	1.1e-4		8.3e-7	3.37	2.8e-6	3.16
	320	2.5e-3		8.1e-8	3.36	2.9e-7	3.27
	640	1.1e5		8.4e-9	3.28	3.0e-8	3.26
	1280			9.3e-10	3.18	3.3e-9	3.21

  The operator N given in eq. (III.56) is stable in the sense of the reduced stability dened in denition III.1.Proof. Let p be an integer. Let us introduce the operator P p such that ∀U ∈ l 2 , P p U = (u 1 , ..., u p ) t ∈ R p , and the operator Q p such that ∀(u 1 , ..., u p ) t ∈ R p , Q(u 1 , ..., u p ) t = (u 1 , ..., u p , 0, ...) t ∈ l 2 .

							
	0	. . .	. . .	3ν 2 ) 0 . . .	    	.	(III.56)
	It leads to the following proposition						
	Proposition III.5.						

Table IV .

 IV 2 l 1 -error on density in both time and space, experimental order of convergence and cost in % of the ILW procedure for GoHy schemes on the 2D isentropic vortex at

			•	35%	5.33e-2	•	47%	9.93e-2	•	49%
	100	2.52e-1	0.97	23%	1.40e-2	1.93	42%	2.04e-2	2.28	45%
	200	1.20e-1	1.07	12%	4.50e-3	1.63	27%	3.46e-3	2.56	35%
	400	5.66e-2	1.08	7%	1.28e-3	1.81	16%	6.43e-4	2.43	22%
	800	2.74e-2	1.05	3.7%	3.23e-4	1.99	9.7%	9.31e-5	2.79	14%
	1600	1.35e-2	1.03	1.9%	7.66e-5	2.08	6.2%	1.20e-5	2.95	9%
	3200	6.70e-3	1.01	1.0%	1.90e-5	2.01	3.7%	1.51e-6	2.99	5%

t = 1.0.

  To tackle the procedure for the discretization of boundary conditions in the case of staggered schemes, two key ingredients are required. The rst one is that the Taylor expansion of the total energy variable is replaced by the Taylor expansion of the internal energy. The second one is that

	Taylor expansions are performed on variables which are located on two (resp. three) dierent
	grids in 1D (resp. 2D). Lemma III.2 details how to build boundary conditions at intermediate
	RungeKutta time-steps.

  Performing Taylor expansion in the θ variable and using eq. (V.32) lead to

		1 M s	∆s	t n+1 t n	N -1 i=0 (pN 1 ) i+ 1 2	(θ)dθ,
	v n+1 s	= v n s ,				
	ω n+1 x n+1 i+ 1 2 i+ 1 2 y n+1	= ω n -1 J s i+ 1 2 + = y n 2 i+ 1 , = x n	N -1 (pN 1 (y -y g )) i+ 1 2 i=0 u s -ω(y i+ 1 t n+1 t n 2 -y g ) (θ)dθ, (θ)dθ, t n+1 ∆s t n	(V.33)
	N n+1 1,i+ 1 2	= N n 1,i+ 1 2	,		t n+1
	N n+1 2,i+ 1 2	= N n 2,i+ 1 2	+	t n	2 ωN 1,i+ 1	(θ)dθ.

  In addition to the classical CFL condition, in practice the time-step is asked to satisfy the constraint for one

	dimensional problem							
					∆t <	∆x |u s |	,		
	and for two dimension problems						
		∆t <	1 max k ω k	min	∆X max i |u i+ 1 2	|	),	∆Y max i |v i+ 1 2	|	) ,
	where (u i+ 1 2	, v i+ 1 2							

  TABLE FOR USUAL RUNGEKUTTA SEQUENCES A.1 Butcher table for usual RungeKutta sequences We remind here briey the Butcher table for a given explicit RungeKutta sequence.

Table A .

 A [START_REF] Bauer | The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics[END_REF] Fourth order directional splitting weights ω k

	BUTCHER TABLES AND WEIGHTS FOR DIRECTIONAL SPLITTING
	METHODS	221
	ω 1	0.3922568052387787
	ω 2	0.7845136104775573
	ω 3	0.5100434119184577
	ω 4	0.2355732133593581
	ω 5 -0.4710533854097564
	ω 6 -1.1776799841788710
	ω 7	0.0687531682525201
	ω 8	1.3151863206839112
	ω 9	0.0687531682525201
	ω 10 -1.1776799841788710
	ω 11 -0.4710533854097564
	ω 12 0.2355732133593581
	ω 13 0.5100434119184577
	ω 14 0.7845136104775573
	ω 15 0.3922568052387787

Table A .

 A [START_REF] Belliard | An analysis and an aordable regularization technique for the spurious force oscillations in the context of direct-forcing immersed boundary methods[END_REF] Sixth order directional splitting weights ω k[START_REF] Yoshida | Construction of higher order symplectic integrators[END_REF] 

	ω 1	0.3145153251052165
	ω 2	0.629030650210433
	ω 3	0.9991900571895715
	ω 4	1.36934946416871
	ω 5	0.152381158138440
	ω 6	-1.06458714789183
	ω 7	0.299385475870660
	ω 8	1.66335809963315
	ω 9	-0.007805591481625
	ω 10	-1.67896928259640
	ω 11 -1.619218660405435
	ω 12	-1.55946803821447
	ω 13 -0.6238386128980215
	ω 14	0.311790812418427
	ω 15 0.98539084848119350
	ω 16 1.6589908845439600
	ω 17 0.98539084848119350
	ω 18	0.311790812418427
	ω 19 -0.6238386128980215
	ω 20	-1.55946803821447
	ω 21 -1.619218660405435
	ω 22	-1.67896928259640
	ω 23 -0.007805591481625
	ω 24	1.66335809963315
	ω 25	0.299385475870660
	ω 26	-1.06458714789183
	ω 27	0.152381158138440
	ω 28	1.36934946416871
	ω 29 0.9991900571895715
	ω 30	0.629030650210433
	ω 31 0.3145153251052165

Table A .

 A [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] Eighth order directional splitting weights ω k[START_REF] Yoshida | Construction of higher order symplectic integrators[END_REF] 

En 1964, Noh crée le premier schéma explicite lagrangien et eulérien pour l'interaction entre un uide et un corps rigide immobile[125]. Il propose un traitement conservatif de l'interface par plan orthogonal à la direction de balayage. Ce traitement a permis pour la première fois de retrouver par la simulation les eets d'un obstacle sur un écoulement compressible. Néanmoins, la géométrie est discrétisée de manière peu précise, ce qui induit des eets de marche sur les chocs rééchis. En outre, ces eets de marche entraînent des erreurs d'ordre 1 qui deviennent prépondérantes pour des écoulements complexes, et nuisent conséquemment à la abilité de la méthode. De plus, sa discrétisation particulière de l'interface impacte directement sur la CFL, les pas de temps peuvent être inniment petit en fonction de la position de l'interface dans la maille, ce qui peut provoquer l'intractabilité des calculs.En 2003, Berger et al. proposent une technique de recombinaisons des mailles tronquées le long de la frontière, dénommée le h-algorithme[START_REF] Berger | H-box methods for the approximation of hyperbolic conservation laws on irregular grids[END_REF]. Ce travail est basé sur des critères purement géométriques et fusionne des mailles adjacentes dans le cas où elles impacteraient la CFL. Ce travail a permis de réduire fortement l'impact des mailles tronquées sur le calcul du pas de temps. Néanmoins, la recombinaison des mailles tronquées est au plus d'ordre 2, et ne permet pas de suivre ecacement les quantités conservatives à l'intérieur de ces mailles, particulièrement dans le cas d'interfaces mobiles. La complexité de la forme de l'interface peut aussi induire des erreurs importantes voire même empêcher la convergence de l'algorithme proposé. En 3D, le coût du h-algorithme devient prohibitif et ne permet donc pas de gérer les frontières quelconques. En 2006, Colella et al. proposent une nouvelle façon de reconstruire l'interface basée sur les

Remerciements

Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.2, II.8 and II.10 direction by direction and so are globally conservative in mass, momentum and total energy for any dimensional splitting sequences.

Remark II.6. Extension to the 3D case is straightforward.

Lemma II.12. For a given directionnal splitting sequence {ω k }, the resulting 2D Cartesian grid schemes are linearly stable under the condition

Proof. Using lemma II.5 and stability of the remapping phase, one gets that A 1 is linearly stable under the condition ∆t < ∆X min( λ Stag max (i,j) c i,j , 1 max (i,j) |u i+ (II.52)

Wall boundary conditions are imposed. A harmonic source is placed at point P source = (0, 5) t

and the pressure at this point is set such that p(P source , t) = p atm + sin(2πf t) with f = 10 Hz.

Computations are run until t = 10 s. In g. II. [START_REF] Caramana | The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[END_REF], the pressure prole is depicted along the line y = 1, x ∈ [0 : 3700] at t = 10 s. In g. II.20, the attenuation in dB of the pressure along the line y = 1, x ∈ [0 : 3700] is depicted. In order to recover a 2D-axisymmetric results, a geometric corrector is applied, which consists in dividing the normalized pressure prole by a factor √ r,

where r is the radius. Result is displayed in g. II.21 and is in good agreements with the one presented in the literature [START_REF] Attenborough | Benchmark cases for outdoor sound propagation models[END_REF][START_REF] Del Pino | 3D Finite Volume simulation of acoustic waves in the earth atmosphere[END_REF]. Indeed, the staggered schemes require less cells per wavelength (circa 8) compared to cell-centered ones (circa 12) to correctly recover phase and amplitude of the signal.

STABILITY OF THE INVERSE LAXWENDROFF PROCEDURE

one get two roots κ 1 , κ 2 , with for certain values of k that |κ 1 | = 1. A perturbation analysis is then performed. To illustrate the perturbation analysis, assume that z = 1, then one gets that κ 1 = 1, κ 2 = -1+ν 1-ν . Then the perturbation analysis consists of considering that now z = δ and κ = 1 + inside the characteristic equation (III.50). One obtains δ = 1 -ν( 2 + 2 ) -2 ν 2 2 + 2 , which leads to, performing a Taylor expansion at = 0,

which proves that κ = 1 is stable under perturbation as for small enough, δ < 1. Then to get the non-existence of generalized eigensolution, one must verify that there is no solution to

as dened in eq. (III.49) and κ satisfying the characteristic equation (III.50). The system has no solution. Thus, there is no generalized eigensolution and the scheme is linearly stable.

Similar studies can be perform for the BeamWarming scheme. Increasing the order of the scheme and of the reconstruction yields more and more complexity of the fully discrete GKS analysis. Thus, a criteria is introduced (very similar to the one proposed in [START_REF] Vilar | Development and stability analysis of the inverse lax-wendro boundary treatment for central compact schemes[END_REF]) to alleviate the algebra of the GKS stability. The cost of such a criteria is that it does not give strong results concerning the linear stability of the eective scheme.

III-2.2 Reduced stability for IBVP discretization

Let us consider now general linear hyperbolic system with appropriate boundary conditions written ineq. (III.1).

Here, we add an a priori requirement of this stability. We will set N nc ∈ R n 2 c , N nc = P nc N P t nc where P nc is the natural projection such that for X ∈ l 2 , P nc X = (X 1 , ..., X nc ) ∈ R nc . Denition III.1 (Reduced stability). Let Z be the interior scheme, and R the reconstruction

2. There exists n c ∈ N * such that ρ(N nc ) ≤ 1.

Remark III.5. Denition III.1 provides practical information concerning the stability of the nal scheme and is used to determine a priori if a reconstruction is unstable by taking n c large enough.

STABILITY OF THE INVERSE LAXWENDROFF PROCEDURE

Now, we wish to exhibit condition on ν depending on σ such that

As σ ∈ -1 2 : 1 2 , it yields that σ -1 < 0, and thus it writes

Taking the minimum over σ on the right hand side, it yields

Hence the result.

III-2.2.2 Numerical reduced stability results for the high-order Strang projection schemes

We illustrate this denition by taking the O3 scheme (III.9) with the reconstruction (III.14).

The interior operator Z writes as a band matrix whose coecients are for any i ∈ Z 

STABILITY OF THE INVERSE LAXWENDROFF PROCEDURE

is locally bounded, then for ∆X small enough, the solution exists and is unique, and a xed point algorithm converges toward such a solution.

Proof. The proof is essentially the same as for the case with constant mass and second order of accuracy.

Remark IV.4. In practice, ghost-cells values are imposed at the beginning of each time-step or sub-cycle eg. if the scheme is based on RungeKutta sequences.

IV-1.3 Stabilization procedure for shocks and very high-order reconstruction

Spurious oscillations or non-physical values may result with this high-order treatment in case of discontinuous solutions near the boundary. A MOOD procedure has been developed to improve robustness. Moreover for very high-order scheme, the linearized version is not stable using only g and D t g. Thus a least-square method also has been developed to enforce stability.

IV-1.3.1 MOOD procedure

A MOOD procedure [START_REF] Clain | A high-order nite volume method for systems of conservation lawsMulti-dimensional Optimal Order Detection (MOOD)[END_REF] has been added to automatically decrease the order of this inverse Lax Wendro method if some criteria are violated during the reconstruction of ghost cells values. It is done in order to improve stability in case of strong shocks ingoing towards the boundary. The ow chart of the procedure is depicted in g. IV.3. The idea is to set as a criteria, the positivity of the density and internal energy. While the reconstructed density or internal energy in Ω - are non-positive, the order of reconstruction is decreased until rst order accuracy or a positive internal energy and density are reached.

IV-1.3.2 Least-square methods for very high-order methods

The problem, linear or not, to be solved at the boundary can be rewritten under the form F (Θ) = X.

(IV.33)

If the system is linear, there exists a matrix A such that F (Θ) = AΘ, where A is a square matrix of size p × p and hence X ∈ R p , Θ ∈ R p . The idea of the least-square method is to add values in the interior domain such that the system writes AΘ = X (IV. [START_REF] Dakin | Inverse LaxWendro boundary treatment for compressible hydrodynamics Lagrange-remap schemes on Cartesian grids[END_REF] where A ∈ R q×p and X ∈ R q . Instead of solving directly eq. (IV.34), we introduce the functional J as

reduce order by one 

Such a procedure, called the least-square method (see [START_REF] Allaire | [END_REF]), is used to stabilize the reconstruction operator, especially for very high-order reconstructions where the classical reconstruction is proved to be linearly unstable. A classical GaussNewton algorithm is performed to solve eq. (IV.36). If the system is non-linear, then the solution Θ is dened as

IV-1.4 1D validation and comparisons

We assess in this part both the accuracy and the robustness of our method for the 1D Euler system. The study here is performed using the larger stencil based reconstruction applied to the GoHy schemes developed in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]. The spatially isentropic ow hypothesis based reconstruction gives similar results concerning isentropic test-cases, but dramatically reduces to rst order ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM (γ = 1.4) at rest, and the velocity at left boundary, initially located at x l = -1, is imposed.

t 2 sin(2πt).

(IV.39) such that the sound speed in initially set to 1, and a = 2.10 -2 .

Velocity proles are depicted on g. IV.4. The red plain line represents the reference solution computed with the rst order scheme (acoustic solver) and 100000 cells. The black dotted line represents results obtained with inner scheme and reconstruction xed to the same order of accuracy. The blue dotted line is for inner scheme at high-order accuracy but with only a second order reconstruction procedure. As expected as the order of accuracy is increased, so is the ability of the scheme concerning the recovering of both phase and amplitude of the signal. The most signicant feature lies in the dierence between the blue and black dotted lines. When the order of the reconstruction is xed to 2 nd order, both phase and amplitude are not so well recovered. On g. IV.5, one can see that with a second order reconstruction, results for third, fourth and sixth order inner schemes are equivalent. This is not the case with reconstruction whose order match the one of the inner scheme. 

EXTENSION OF THE ILW PROCEDURE TO THE 2D EULER SYSTEM
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IV-2.1 Formulation of the ILW procedure using directionnal splitting

Concerning the Lagrangian step, two subsystems will therefore be alternatively considered, depending on the sweep direction:

where D x t = ∂ t +u∂ x and D y t = ∂ t +v∂ y denote the Lagrangian derivatives in xand y-directions respectively. Note that Lagrangian subsystems are simpler than Eulerian ones since convective terms, which are missing here, will be treated during the projection step. When replacing space derivatives by temporal ones this will lead to a simpler algebra in the sequel and a very close approach to the one proposed in section IV-1 for the 1D case.

Denoting u = (u, v) 

(IV.42) 

EXTENSION OF THE ILW PROCEDURE TO THE 2D EULER SYSTEM

The second system is built using the second equation of (IV.46), considering

interior cells together with the boundary condition on the normal velocity. It leads to a m(m+1) 2

-1)

2 linear system and allows to build ghost-cell values of ρ 0 u.

The third system is built using the third equation of (IV. this system is linear for -ane EOS but may be non-linear for some EOS, thus requiring xed-point algorithms to be solved and the size of the system is Lemma IV.7 (Linear system for -ane EOS). For any -ane EOS, the system to inverse at the boundary is linear.

Proof. The proof is similar to the one in 1D.

The following owchart summarizes the algorithm we propose in order to compute ghost-cell values for a given dimensional sweep in the 2D case.

For each point/pearl P s :

1. Do the local change of velocity components in the basis (n s , t s ), 3. Build and solve the ve subsystems described above.

Then, for each ghost-cell:

1. Find the nearest pearl P s 0 , 2. Build ghost-cell values using Taylor expansions in the vicinity of P s 0 , 3. Return to physical coordinates.

Remark IV.5. Due to spurious oscillations and linear instabilities of the 2D extrapolations (phenomena already noticed in [START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF]), rather than solving exactly all subsystems, it proves useful to use least square methods for m ≥ 2, adding more points inside the stencil. In pratice the stencil is depicted in gure IV.8 and set as

Commonly, β is set to 0.9(2m -1) 
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IV-2.2 2D numerical validation

We assess in this part both the accuracy and the robustness of the method for the 2D Euler system. The study here is performed using the larger stencil based reconstruction applied to the GoHy schemes developed in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]. Similar results are obtained for the proposed staggered schemes introduced in [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] and detailed in chapter II, as well for smooth ows as for shock problems.

The discretization of the boundary Γ is always set such that the distance between two consecutive points does not exceed C Γ √ ∆x∆y. In the following we set C Γ = 1 which means that we have approximatively one pearl per cell. In practice, a large value of C Γ leads to instabilities (boundaries are under-resolved). A smaller value of C Γ is possible, increases accuracy but leads to heavier computations. The choice of this test-suite is made in order to ensure a large variety of test-cases, including continuous and isentropic ows, acoustic propagation around an obstacle, but also a large variety of shock impacting on innite motionless obstacles with shapes that may or may not be Lipschitz continuous.

IV-2.2.1 2D isentropic vortex test-case [START_REF] Yee | Low dissipative high-order shock-capturing methods using characteristics-based lters[END_REF] We assess high-order accuracy on the 2D vortex test (see [START_REF] Yee | Low dissipative high-order shock-capturing methods using characteristics-based lters[END_REF]) whose initial condition is reminded hereafter (with

• (-y, x) t , p 0 (x, y) = ρ 0 (x, y) γ , (IV.48) with γ = 1.4 and β = 5. Computations are performed on a disk of radius R = 3.5, centered at (0, 0) till t = 1 with a CFL number of 0.9 on the computational domain Ω = [-4, 4] 2 . Boundary the velocity potential is given by (see [START_REF] Bowman | Electromagnetic and acoustic scattering by simple shapes[END_REF])

where J n is the rst Bessel function, H n the rst Hankel function and e 0 = 1, e n = 2, n = 1, .., ∞.

From this potential, one gets harmonic velocity u and pressure p thanks to (IV.50).

To ensure a harmonic regime in a neighbourhood of the cylinder without generating interferences with the computational domain boundaries, the nal time is t = 8.4. We give on gure IV.9

pressure variations |p -p 0 | around the cylinder for 1 st , 2 nd and 3 rd -order ILW methods and schemes for two space discretizations (∆x = ∆y = 1 20 and 1 40 ) and three signal frequencies (f = 0.5, 1 and 2). As expected, it shows that high-order accurate methods lead to better results. But since interior schemes are also of dierent orders, it is hard to see benets given by ILW methods of increasing accuracy here. We therefore give on gure IV.10 pressure variations |p -p 0 | around the cylinder for 1 st , 2 nd and 3 rd -order ILW methods, but with the same 3 rdorder GoHy-3 interior scheme in all cases. Results indeed show the benets of formally 3 rd -order accurate ILW reconstruction procedures. (IV.52)

IV-2.2.3 Reected shock wave

which gives a static speed sound c = 1, and so a Mach number M = u c = 2.9.

Using eq. (IV.52), one nds that for such parameters, the angle formed by the oblique shock β is 30 • . In g. IV.11, the density prole is depicted at time t = 1, and the expected angle of the reected shock is depicted by the white line. The expected angle is reached by the rst, second and third order proposed eective schemes. Moreover, the uid perfectly slips along the boundary without any boundary eects.

EXTENSION OF THE ILW PROCEDURE TO THE 2D EULER SYSTEM

IV-2.2.4 Double Mach Reection [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF] The ILW procedure is again applied on solid wall boundaries that may be curved or unaligned with the grid. For inviscid ows this leads to the boundary condition u • n = 0. The rst shock example considered here is the double Mach reection problem [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF][START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF]. A solid wall is set at (0, 0) forming a 30 • angle with the x-axis and a horizontally moving Mach 10 shock, initially located at x = 0, is propagating in a perfect gas (γ = 1.4) at rest. Ahead of the shock, the gas has a density of 1.4 and a pressure of 1. The computational domain [-1, 3] × [0, 2] is discretized with a constant space step ∆x = ∆y = 1 200 . The choice of such a coarse mesh is done to easily point out dierences between the dierent orders of accuracy.

Results, depicted in Figure IV.12, are very close to those found in the literature [START_REF] Woodward | The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks[END_REF][START_REF] Tan | Inverse Lax-Wendro procedure for numerical boundary conditions of conservation laws[END_REF] and the jet propagates along the wall without any numerical friction. For this test we have used the MOOD procedure (see section IV-1.3.1) to decrease the order of accuracy wherever we encountered stability issues. In practice this only happens near the wall in the immediate vicinity of the Mach stem propagating perpendicularly to it.

IV-2.2.5 Mach shock on a cylinder Whitham test-case [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF] We now consider the Whitham test-case which consists in a planar shock propagating in a perfect gas (γ = 1.4) which interacts with a rigid and motionless circular cylinder (see [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF] and included references). At t = 0, a 2.81 Mach shock coming from the left is located at x = 0. Ahead of the shock, the gas has a density of 1 and a pressure of 5 10 4 . The cylinder's center, whose radius is 5.10 -3 , is located at (6.10 -3 , 0). The computational domain [-10.10 -3 , 70.10 -3 ] × [-40.10 -3 , 40.10 -3 ] is discretized with a constant space step ∆x = ∆y = 4.10 -4 .

Here again a MOOD method is used on the boundary to improve robustness. Combined with high-order accuracy this leads to a better restitution of the ow structure behind the cylinder as it can be seen in Figure IV.13 where 1 st , 2 nd and 3 rd -order results at t = 3.10-5 and = 6.10-5 are reported. The bow shock is well captured and less diused as the order of accuracy is increased.

The MOOD procedure applies essentially on the shock front.

IV-2.2.6 Mach shock on a prism Schardin test-case [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF] We now consider the Schardin test-case which consists in a planar shock propagating in a perfect gas (γ = 1.4) which interacts with a rigid and motionless prism (see [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF] and included references).

At t = 0, a 1.3 Mach shock coming from the left is located at x = 0. Ahead of the shock, the gas has a density of 1 and a pressure of 5. 

Chapter V Extension to uid-rigid body interaction

Partant de la procédure de LaxWendro inverse établie pour les équations d'Euler présentée dans le chapitre IV, un algorithme de couplage uide-corps rigide est déduit. Après une courte introduction concernant les caractéristiques physiques et mathématiques du mouvement de corps rigide, un schéma semi-discret permettant de calculer à l'ordre élevé en espace les forces et moments exercés sur la frontière du corps rigide est proposé. Deux procédures d'intégrations en temps sont ensuite développées. La première est basée, tout comme les schémas hydrodynamiques présentés dans le chapitre II, sur une intégration en temps de type RungeKutta. La seconde est basée sur une approche de type CauchyKowalevski comme dans [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]. Ce choix d'intégration en temps permet de faire correspondre sur la même échelle en temps les deux solveurs. Enn l'extension 2D de ces schémas est ensuite faite via splitting directionnel comme pour les schémas hydrodynamiques utilisés. La procédure de LaxWendro inverse donne une dénition naturelle des forces et moments de pression exercés sur la frontière du corps rigide. Ainsi le couplage est immédiat et d'autant plus facile à implémenter. Des résultats numériques sont proposés à la n du chapitre an d'illustrer la stabilité et la robustesse du couplage utilisé.

RIGID BODY MOTION AND DYNAMICS

In this chapter, we propose a simple and straightforward way for coupling rigid body and compressible uid dynamics. Considering rigid body dynamics, a semi-discrete scheme is rst proposed for 1D motion, then for 2D motion using directional splitting method. The computations of forces and torques is done considering a regular discretization of the boundary. Such a discretization enables for a high-order accurate way of computing the forces and torques integrals along the boundary. Two fully discrete version are then proposed. Mostly those versions strongly rely on the hydrodynamics schemes used. Indeed, using a one-step cell-centered schemes [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF], a one-step scheme is proposed for the integration of forces and torques exerted on the rigid body boundary. As a contrary, using the staggered schemes introduced in [START_REF] Dakin | High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids[END_REF] and extensively detailed in chapter II. The coupling between uid and solid is then straightforward using the ILW procedure developed in chapter IV.

The outline of the chapter is the following. First, an overview of rigid body motion and dynamics is proposed in section V-1. Then, starting from a semi-discrete high-order accurate in space scheme, two time integration are proposed in section V-2. The rst one is based on Runge Kutta sequences, whereas the second is based on CauchyKovalevskaya time-integration. The extension to 2D relies on directional splitting method. The choice has been made for both schemes to match the time-integration used for the hydrodynamics ones. This is done to avoid any loss of accuracy due to the time-coupling. Last the coupling between the uid and rigid body solvers is done using the Inverse LaxWendro procedure designed in chapter II. The procedure gives naturally denition of the pressure forces and torques exerted on the rigid body boundary. Thus, the coupling method is straightforward and quite easy to implement. Numerical examples are proposed then in 1D and 2D to assert the viability of the coupling.

HIGH-ORDER LAGRANGIAN SCHEMES FOR RIGID BODY DYNAMICS

where the pressure p n+αm r and p n+αm l are given in practice by the Inverse LaxWendro procedure using the values inside the uid domain and the velocity at the boundary.

CauchyKovalevskaya based approach

The CauchyKovalevskaya based approach is identical to the one used in [START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Wol | Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic eld terms[END_REF]. It relies on using the information provided by the EOS and also by the uid system of equations. In particular, one uses that

where c is the speed of sound. It yields without expliciting the time derivatives that

V-2.2 High-order schemes for rigid body dynamics in 2D

In order to study rigid body dynamics in 2D, a choice of space discretization must rst be made.

Indeed, contrarily to the 1D case, the rigid body is no longer described by only two points. We consider a rigid body which is described by a closed bounded domain Ω s ⊂ Ω ⊂ R 2 . We denote by Γ = ∂Ω s . As the external forces are exerted on the boundary Γ, it is all but natural to lay the emphasis on the discretization of Γ, then to devise a semi-discrete scheme and last to consider the fully discrete scheme for rigid body motion.

V-2.2.1 Rigid body space discretization

The choice has been made to consider a discretization of Γ instead of Ω s since the forces exerted on the rigid body are exerted on the boundary Γ. Γ is parametrized by a function γ :

HIGH-ORDER LAGRANGIAN SCHEMES FOR RIGID BODY DYNAMICS V-2.2.3 General rigid body semi-discrete scheme

Consider the system of equations (V.9) without any assumption on M s or J s . We introduce the notations T and N for the non-normalized tangent and normal. Meaning in particular that one has N = n γ .

The equation on N is immediately obtained using the laws of rigid body motion. Indeed,

and thus one gets that

and similarly the non-normalized vector satises

Using directional splitting method, the semi-discrete scheme for (V.9) and (V.25) writes

Considering rst system (in the x-direction) of eq. (V.26), its semi-discrete form using lemma V.1

(V.27)

The main dierences with the case of irrotational motion is obviously that the rigid body is rotating due to the torques exerted at the boundary, which implies also that the normals are rotating as well. Hence the equation on both N 1 and N 2 . In practice, one rewrites eq. (V.27)

substituting the term φ γ with respectively terms of the form (φN 1 ) for the x-direction and of the form (φN 2 ) for the y-direction.

(V.28)

Two integrations in time are know proposed. The rst one is based on RungeKutta time integration and the second one on a CauchyKovalevskaya one using repetitively time-derivatives of system (V.28) as well as information provided by the uid part.

V-2.2.4 RungeKutta based approach

We use the notation introduced in chapter II. The fully discrete scheme in the x-direction writes for the intermediary time-step FLUID -RIGID BODY COUPLING

.8 shows the pressure contours at t = 0.14 and t = 0.255 for a grid size ∆x = ∆y = 6.25×10 -4 using the third order scheme GoHy-3. Figure V.9 shows density contours at t = 0.255

for the same grid size and the same scheme. A MOOD method is used on the boundary. General proles are in accordance with results found in the literature. We also compare in table V.2 the nal position of the cylinder of [START_REF] Hu | A conservative interface method for compressible ows[END_REF] and the nal position obtained for the reection method presented in [START_REF] Arienti | A level set approach to Eulerian Lagrangian coupling[END_REF] for dierent grid sizes and order. Final positions are in good agreements with those found in the literature, especially with [START_REF] Arienti | A level set approach to Eulerian Lagrangian coupling[END_REF]. As presented in [START_REF] Monasse | A conservative coupling algorithm between a compressible ow and a rigid body using an Embedded Boundary method[END_REF], the presence of strong vortices are denoted under the cylinder which does not disappear as the mesh is rened. We assume that a highly dissipative scheme prevents such vortices from appearing. Here, high-order accuracy and reduced dissipation allow such mechanisms to appear and develop. Integration of forces and torques exerted on the cylinder depends on the number of points used to discretize the cylinder. Here, it is noticed that if one takes greater value of C Γ , the position is changed only at the fourth digit. We present in Table V.3, absolute errors made on conservation of mass and total energy which seem to converge with a slope of 0.7 -0.8 for the rst order scheme, and near unity for the second and third order ones.

∆x = ∆y

FLUID -RIGID BODY COUPLING should still hold for such a more complex multi-physics problem, provided the linear stability is also performed for the structure part.

Identically, the uid model could be made more complex. The ILW procedure was designed whether for internal energy ane equations of state or for equations of state such that the square of the sound speed is Lipschitz continuous but without any viscous components. Same analysis and works could be performed considering the uid to follow the compressible NavierStokes equations instead of the compressible Euler ones. Although a compressible NavierStokes solver was proposed in this manuscript, the linear analysis for initial boundary values problem was not performed, and the viscous uid rigid body coupling is still in its early stages. Moreover, the method could also be applied to realize a coupling between two immiscible uids with dierent constitutive laws or to consider more complex boundary conditions than just slip boundary conditions.

In conclusion, in a HPC context, the code that was implemented during this PhD is already running in parallel using MPI/OpenMP. Since every procedure is local, the parallel computing is straightforward for the uid part and for the discretization of boundary conditions. However the rigid body solver requires many synchronizations between the processes to get the values of forces and torques resultants and then to compute the displacement. Reducing the number of global communications, in a HPC context, is of the essence to enforce correct scalability of the method. As a last word, implementing such procedures inside the multiphysics AMR platform [91] would be of special interest to improve even more accuracy and computational cost, and so to run even more complex simulations.

Appendix A Butcher tables and weights for directional splitting methods L'annexe comprend l'ensemble des tableaux de coecients de grande taille an de fournir au lecteur la possibilité de reproduire les méthodes utilisées et décrites dans le manuscrit.