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RÉSUMÉ I

Résumé

Ce travail est consacré à l'étude numérique de l'interaction entre un �uide compressible et une

structure indéformable, en adaptant une famille récente de schémas d'ordre très élevé à la prise

en compte de conditions aux bords particulières entre le �uide et la structure. Plus précisément,

on évalue l'apport de schémas d'ordre strictement supérieur à 3 par rapport à des stratégies plus

classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu'il est

possible de réaliser le couplage à tout ordre et qu'il existe des con�gurations pour lesquelles on

observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant

les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées

dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions

aux bords. Un schéma sur grilles cartésiennes décalées et d'ordre très élevé est proposé pour la

résolution des équations d'Euler en 1D et 2D. Ce schéma est basé sur le formalisme Lagrange-

projection et bien que formulé en énergie interne assure conservation et consistance faible grâce

à un correctif en énergie interne. Parallèlement, l'étude pour les systèmes hyperboliques linéaires

de discrétisation à l'ordre très élevé des conditions aux bords est faite. Elle met en évidence la

nécessité pour l'ordre élevé de s'intéresser à la stabilité des schémas ainsi obtenus. À partir de ces

travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour

les équations d'Euler en 1D et 2D. En�n, une procédure de couplage entre �uide compressible et

structure indéformable est proposée.

Mots-clé :

Équations d'Euler, volumes �nis, Lagrange-projection, grilles décalées, ordre très élevé, conditions

aux bords, couplage �uide-structure, stabilité.
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ABSTRACT V

Abstract

This work is devoted to the construction of stable and high-order numerical methods in order

to simulate �uid - rigid body interactions. In this manuscript, a bibliographic overview is done,

which highlights theoretical results about hyperbolic system of conservation laws, as well as

the methods available in the literature for the hydrodynamics simulation and the numerical

boundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids

to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-

remap formalism, and although formulated in internal energy, ensures both conservation and

weak consistency thanks to an internal energy corrector. In the same time, the study of high-

order numerical boundary treatment for linear hyperbolic system is done. It highlights the

necessity to focus especially on the linear stability of the e�ective scheme. Starting from the

linear results, the numerical boundary treatment with imposed normal velocity is done for Euler

equations in 1D and 2D. Last, the coupling between a compressible �uid and a rigid body is

realized, using the designed procedure for numerical boundary treatment.

Keywords:

Euler equations, �nite volume, Lagrange-remap, staggered grids, high-order accuracy, numerical

boundary treatment, �uid-structure coupling, stability.





Contents

Introduction 1

I Hyperbolic systems of conservation laws and �uid-structure interaction 9

I-1 Hyperbolic systems of conservation laws and their numerical approximations . . 10

I-1.1 Hyperbolic system of conservation laws in one dimension . . . . . . . . . 10

I-1.1.1 Smooth solutions of conservation laws . . . . . . . . . . . . . . 11

I-1.1.2 Weak solutions of conservation laws . . . . . . . . . . . . . . . 12

I-1.1.3 Entropic solutions of conservation laws . . . . . . . . . . . . . 13

I-1.1.4 The initial boundary value problem . . . . . . . . . . . . . . . 15

I-1.2 Numerical methods for conservation laws and their properties . . . . . . 17

I-1.2.1 Space discretization for conservation laws . . . . . . . . . . . . 17

I-1.2.2 Convergence and consistency of numerical schemes . . . . . . . 20

I-1.2.3 Linear stability analysis of numerical schemes . . . . . . . . . 22

I-1.2.4 Convergence toward a weak solution . . . . . . . . . . . . . . . 26

I-1.2.5 Convergence toward the entropic solution for scalar conserva-

tion laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I-2 Numerical methods for compressible hydrodynamics . . . . . . . . . . . . . . . 28

I-2.1 Euler and Lagrange equations for compressible hydrodynamics . . . . . 28

I-2.1.1 Euler and Lagrange systems in 1D . . . . . . . . . . . . . . . . 28

I-2.1.2 Entropic relations for the 1D Lagrange system . . . . . . . . . 30

I-2.1.3 General Lagrangian formulation for multi-dimensional problem 31

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics . . . . . 32

I-2.2.1 Natural derivation of staggered grids for hydrodynamics . . . . 32

I-2.2.2 Internal energy formulated numerical schemes . . . . . . . . . 33

I-2.2.3 Total energy Lagrangian methods for compressible hydrody-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



VIII CONTENTS

I-2.2.4 ALE formalism for compressible hydrodynamics . . . . . . . . 35

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes . . . 36

I-2.3.1 High-order space interpolation on Cartesian grids and spurious

oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

I-2.3.2 High-order integration in time . . . . . . . . . . . . . . . . . . 38

I-2.4 Arti�cial viscosities and hyperviscosities . . . . . . . . . . . . . . . . . . 39

I-2.4.1 Internal energy weak formulation . . . . . . . . . . . . . . . . 39

I-2.4.2 Standard expressions of viscosities . . . . . . . . . . . . . . . . 40

I-2.4.3 Hyperviscosities . . . . . . . . . . . . . . . . . . . . . . . . . . 41

I-3 Numerical methods for �uid-structure interaction . . . . . . . . . . . . . . . . . 41

I-3.1 Time coupling method for �uid-structure interaction . . . . . . . . . . . 42

I-3.1.1 Loose coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

I-3.1.2 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 44

I-3.1.3 Semi-strong coupling . . . . . . . . . . . . . . . . . . . . . . . 44

I-3.2 Space coupling method for �uid-structure interaction . . . . . . . . . . . 45

I-3.2.1 Mixed cells methods . . . . . . . . . . . . . . . . . . . . . . . . 45

I-3.2.2 Body-�tted methods . . . . . . . . . . . . . . . . . . . . . . . . 45

I-3.2.3 Fictitious domain methods . . . . . . . . . . . . . . . . . . . . 47

II High order 2D �nite volume conservative Lagrange-Remap schemes for

compressible hydrodynamics on staggered Cartesian grids 55

II-1 Structure of schemes on Arakawa C-type grids . . . . . . . . . . . . . . . . . . . 57

II-1.1 Example of the BBC scheme . . . . . . . . . . . . . . . . . . . . . . . . 57

II-1.2 Discretized variables on Arakawa C-type grid . . . . . . . . . . . . . . . 59

II-1.3 De�nition of average and pointwise values . . . . . . . . . . . . . . . . . 60

II-2 High order 1D Lagrange-Remap schemes on staggered Cartesian grids . . . . . 60

II-2.1 Formulation of Runge�Kutta based Lagrangian �nite volume schemes . 61

II-2.1.1 Semi-discrete formulation of the Lagrangian �nite volume schemes 61

II-2.1.2 High-order in spatial reconstruction of pointwise values from

averages ones and vice versa and of space derivatives . . . . . 62

II-2.1.3 Runge�Kutta based time discretization . . . . . . . . . . . . . 62

II-2.1.4 Properties of the staggered schemes (II.13)-(II.14) . . . . . . . 64

II-2.2 A new local internal energy corrector . . . . . . . . . . . . . . . . . . . . 72

II-2.2.1 Internal energy corrector . . . . . . . . . . . . . . . . . . . . . 73



CONTENTS IX

II-2.2.2 Properties of the internal energy corrector . . . . . . . . . . . 74

II-2.3 The remapping stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

II-2.3.1 Lagrange polynomials based conservative projection . . . . . . 82

II-2.3.2 Properties of the remap step . . . . . . . . . . . . . . . . . . . 83

II-2.4 Numerical validation of the 1D conservative Lagrange-Remap schemes

on staggered Cartesian grids . . . . . . . . . . . . . . . . . . . . . . . . . 84

II-2.4.1 Cook�Cabot breaking wave test-case [28] . . . . . . . . . . . . 84

II-2.4.2 Non-perfect gas breaking wave test-case . . . . . . . . . . . . . 85

II-2.4.3 Acoustic propagation test-case . . . . . . . . . . . . . . . . . . 86

II-2.4.4 Sod test-case [146] . . . . . . . . . . . . . . . . . . . . . . . . . 87

II-2.4.5 Noh test-case [127] . . . . . . . . . . . . . . . . . . . . . . . . 89

II-2.4.6 Shu-Osher test-case [144] . . . . . . . . . . . . . . . . . . . . . 89

II-2.4.7 Interacting blast-waves test-case [171] . . . . . . . . . . . . . . 90

II-3 Extension to 2D Lagrange-remap schemes on staggered Cartesian grids . . . . . 91

II-3.1 Derivation of the subsystems using the operator splitting technique . . . 92

II-3.2 Modi�cations of the 1D schemes for the 2D �nite volume case . . . . . . 93

II-3.2.1 nD distribution of variables on the modi�ed Arakawa C-type

grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II-3.2.2 Derivation of a procedure to apply the 1D schemes in one di-

rection using the 2D �nite volume formalism . . . . . . . . . . 93

II-3.2.3 Properties of the 2D schemes . . . . . . . . . . . . . . . . . . . 95

II-3.3 Numerical validation of the 2D conservative Lagrange-Remap schemes

on staggered Cartesian grids . . . . . . . . . . . . . . . . . . . . . . . . . 96

II-3.3.1 Isentropic vortex advection [174] . . . . . . . . . . . . . . . . . 96

II-3.3.2 Vortex-pairing test-case [166] . . . . . . . . . . . . . . . . . . . 97

II-3.3.3 Five states Riemann problems [139, 104, 108] . . . . . . . . . . 98

II-3.3.4 Sedov test-case [140] . . . . . . . . . . . . . . . . . . . . . . . . 105

II-3.3.5 Noh test-case [127] . . . . . . . . . . . . . . . . . . . . . . . . 106

II-3.3.6 Attenborough test-case [8] . . . . . . . . . . . . . . . . . . . . 107

II-4 Extension to the 2D compressible Navier�Stokes equations with gravity . . . . . 110

II-4.1 Distribution of viscous terms on the modi�ed Arakawa grid . . . . . . . 110

II-4.1.1 Space distribution and discretization of the viscosity and grav-

ity terms in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . 111



X CONTENTS

II-4.1.2 Space distribution and discretization of the viscosity and grav-

ity terms in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . 112

II-4.2 2D viscous staggered Lagrange-Remap schemes with gravity force . . . . 113

II-4.2.1 1D staggered Lagrange-Remap scheme to the compressible Navier-

Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . 114

II-4.2.2 2D Extension of the 1D staggered Lagrange-remap schemes . . 116

II-4.2.3 Gravity source terms integration . . . . . . . . . . . . . . . . . 116

II-4.3 Numerical validation of the 2D staggered Lagrange-Remap schemes . . . 117

II-4.3.1 1D atmosphere at rest [92] . . . . . . . . . . . . . . . . . . . . 117

II-4.3.2 Taylor�Green vortex [160] . . . . . . . . . . . . . . . . . . . . 118

II-4.3.3 Rayleigh�Taylor instability [151, 159, 108] . . . . . . . . . . . 119

III Stable high-order methods for linear hyperbolic systems with arbitrary

boundary conditions 123

III-1 Inverse Lax�Wendro� procedure for linear hyperbolic systems . . . . . . . . . . 125

III-1.1 Derivation of high-order reconstruction operators for the advection problem126

III-1.1.1 Derivation of high-order reconstruction operators for the �nite

volume approximation . . . . . . . . . . . . . . . . . . . . . . . 127

III-1.1.2 Experimental order of accuracy of the procedure . . . . . . . . 130

III-1.2 Derivation of high-order reconstruction operators for the wave equations 131

III-1.2.1 Runge�Kutta based staggered schemes for the wave equations 132

III-1.2.2 Reconstruction operators for the wave equations with boundary

conditions on velocity . . . . . . . . . . . . . . . . . . . . . . . 136

III-1.2.3 Reconstruction operators for the wave equations with mixed

boundary conditions on both velocity and pressure . . . . . . . 138

III-1.2.4 Experimental order of accuracy for a wave problem . . . . . . 141

III-1.3 High-order reconstruction operator for general linear system . . . . . . . 143

III-2 Stability of the inverse Lax�Wendro� procedure . . . . . . . . . . . . . . . . . . 144

III-2.1 GKS stability for IBVP using second order reconstruction for the Lax�

Wendro� scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

III-2.2 Reduced stability for IBVP discretization . . . . . . . . . . . . . . . . . 146

III-2.2.1 Analytic reduced stability of the Beam�Warming scheme . . . 147

III-2.2.2 Numerical reduced stability results for the high-order Strang

projection schemes . . . . . . . . . . . . . . . . . . . . . . . . . 148

III-2.2.3 Numerical reduced stability results for the Runge�Kutta based

staggered scheme for the wave equations . . . . . . . . . . . . 149



CONTENTS XI

IV Discretization of boundary conditions for compressible hydrodynamics 155

IV-1 ILW procedure for the 1D Lagrangian system . . . . . . . . . . . . . . . . . . . 157

IV-1.1 An instructive second-order boundary treatment . . . . . . . . . . . . . 158

IV-1.1.1 First method: the spatially isentropic �ow hypothesis . . . . . 159

IV-1.1.2 Second method: the larger stencil reconstruction . . . . . . . . 162

IV-1.2 General procedure, and characterization of the solution for the system

at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IV-1.2.1 Well-posedness at the boundary for spatially isentropic �ow

hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

IV-1.2.2 Well-posedness at the boundary for enlarged stencil . . . . . . 166

IV-1.3 Stabilization procedure for shocks and very high-order reconstruction . . 167

IV-1.3.1 MOOD procedure . . . . . . . . . . . . . . . . . . . . . . . . . 167

IV-1.3.2 Least-square methods for very high-order methods . . . . . . . 167

IV-1.4 1D validation and comparisons . . . . . . . . . . . . . . . . . . . . . . . 168

IV-1.4.1 Kidder isentropic compression test-case [95] . . . . . . . . . . . 169

IV-1.4.2 Harmonic piston test-case . . . . . . . . . . . . . . . . . . . . . 169

IV-1.4.3 Sod piston test-case [146] . . . . . . . . . . . . . . . . . . . . . 171

IV-2 Extension of the ILW procedure to the 2D Euler system . . . . . . . . . . . . . 171

IV-2.1 Formulation of the ILW procedure using directionnal splitting . . . . . . 173

IV-2.1.1 Dimensional splitting technique . . . . . . . . . . . . . . . . . 174

IV-2.1.2 Methodology for a given sweep . . . . . . . . . . . . . . . . . . 175

IV-2.2 2D numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

IV-2.2.1 2D isentropic vortex test-case [174] . . . . . . . . . . . . . . . 177

IV-2.2.2 Acoustic di�raction of a plane wave around a cylinder [15] . . 178

IV-2.2.3 Re�ected shock wave . . . . . . . . . . . . . . . . . . . . . . . 179

IV-2.2.4 Double Mach Re�ection [171] . . . . . . . . . . . . . . . . . . . 180

IV-2.2.5 Mach shock on a cylinder � Whitham test-case [23] . . . . . . 180

IV-2.2.6 Mach shock on a prism � Schardin test-case [23] . . . . . . . . 180

IV-2.2.7 Mach shock on a NACA0018 pro�le [88] . . . . . . . . . . . . . 181

V Extension to �uid-rigid body interaction 191

V-1 Rigid body motion and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 192

V-1.1 Description of a rigid body . . . . . . . . . . . . . . . . . . . . . . . . . 193

V-1.1.1 Invariant of rigid body motion . . . . . . . . . . . . . . . . . . 193



XII CONTENTS

V-1.1.2 De�nition of physical quantities . . . . . . . . . . . . . . . . . 194

V-1.2 Immersed rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . 194

V-2 High-order Lagrangian schemes for rigid body dynamics . . . . . . . . . . . . . 195

V-2.1 High-order schemes for rigid body dynamics in 1D . . . . . . . . . . . . 195

V-2.1.1 Runge�Kutta based approach . . . . . . . . . . . . . . . . . . 195

V-2.1.2 Cauchy�Kovalevskaya based approach . . . . . . . . . . . . . . 196

V-2.2 High-order schemes for rigid body dynamics in 2D . . . . . . . . . . . . 196

V-2.2.1 Rigid body space discretization . . . . . . . . . . . . . . . . . . 196

V-2.2.2 Irrotational rigid body semi-discrete scheme . . . . . . . . . . 199

V-2.2.3 General rigid body semi-discrete scheme . . . . . . . . . . . . 200

V-2.2.4 Runge�Kutta based approach . . . . . . . . . . . . . . . . . . 201

V-2.2.5 Cauchy�Kovalevskaya based approach . . . . . . . . . . . . . . 202

V-3 Fluid - Rigid body coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

V-3.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 203

V-3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

V-3.2.1 Pressure motion driven piston in 1D [120] . . . . . . . . . . . . 204

V-3.2.2 Lift-O� of a cylinder [6, 88, 120] . . . . . . . . . . . . . . . . . 205

V-3.2.3 Lift-O� of an ellipse . . . . . . . . . . . . . . . . . . . . . . . . 207

V-3.2.4 Lift-O� of a rhombus . . . . . . . . . . . . . . . . . . . . . . . 207

Conclusions and perspectives 211

A Butcher tables and weights for directional splitting methods 217

A.1 Butcher table for usual Runge�Kutta sequences . . . . . . . . . . . . . . . . . . 218

A.2 Directional splitting weights sequences . . . . . . . . . . . . . . . . . . . . . . . 220

References 223



List of Figures

I Hyperbolic systems of conservation laws and �uid-structure interaction 9

I.1 Space discretization for centered �nite di�erence schemes . . . . . . . . . . . 18

I.2 Space discretization for �nite volume schemes on a Cartesian grid . . . . . . . 19

I.3 Space discretization for �nite volume schemes on an unstructured grid . . . . 20

I.4 Arakawa grid system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I.5 A fully explicit �uid-structure coupling algorithm on same time discretization 43

I.6 A fully explicit �uid-structure coupling algorithm on staggered time discretiza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

I.7 A fully implicit �uid-structure coupling algorithm on same time discretization 44

I.8 Direct forcing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

I.9 Embedded boundary method . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I.10 Embedded boundary method - Cell merging . . . . . . . . . . . . . . . . . . . 51

I.11 Mirroring techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II High order 2D �nite volume conservative Lagrange-Remap schemes for

compressible hydrodynamics on staggered Cartesian grids 55

II.1 Staggered �nite volume space discretization on Cartesian grids . . . . . . . . 60

II.2 Illustration of the interest and importance of the internal energy corrector. . 81

II.3 Non-convex equation of state for a breaking-wave test-case . . . . . . . . . . . 86

II.4 Acoustic wave with harmonic source - Di�erence between the cell-centered

GoHy [50] (blue, cross) and GAD schemes [84] (gray, �lled triangle), the stag-

gered BBC scheme [171] (orange, triangle) and the new staggered schemes

denoted here YHORK (black, �lled circle). Analytic solution is represented

by the red curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

II.5 Density and internal energy pro�les for the Sod test-case problem [146] at time

t = 0.2 with 100 cells for the 3rd, 4th and 6th order staggered schemes. . . . . 88



XIV LIST OF FIGURES

II.6 Density and pressure pro�les for the Noh test-case problem [127] at time t =

0.6 with 400 cells for the 3rd, 4th and 6th order staggered schemes. . . . . . . 90

II.7 Density and pressure pro�les for the Shu-Osher test-case problem [144] at time

t = 1.8 with 200 cells for the 3rd, 4th and 6th order staggered schemes. . . . . 90

II.8 Density and pressure pro�les for the Woodward test-case problem [171] at

time t = 0.038 with 300 cells for the 3rd, 4th and 6th order staggered schemes. 91

II.9 Staggered �nite volume space discretization on Cartesian grids . . . . . . . . 94

II.10 Flow chart for the 2D scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

II.11 Pro�les of density by colors and φ using 6 contours from 0 to 1 for the Vortex-

Pairing test-case, CFL=0.7, for times t = 1, t = 2, t = 3, t = 4 and t = 5, 128

cells in each direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

II.12 Results at time t = 0.3 for the �rst Riemann problem with the �rst and second

order cell-centered scheme (top, CFL=0.5) as well as the third and fourth

order staggered schemes (bottom, CFL=0.7) with 200 cells in each direction.

Pressure is displayed by colors, and density using 32 contours from 0.16 to 1.71.100

II.13 Results at time t = 0.3 for the second Riemann problem with the �rst and

second order cell-centered scheme (top, CFL=0.5) as well as the third and

fourth order staggered schemes (bottom, CFL=0.7) with 200 cells in each

direction. Pressure is displayed by colors, and density using 29 contours from

0.25 to 3.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II.14 Results at time t = 0.25 for the third Riemann problem with the �rst and

second order cell-centered scheme (top, CFL=0.5) as well as the third and

fourth order staggered schemes (bottom, CFL=0.7) with 200 cells in each

direction. Pressure is displayed by colors, and density using 30 contours from

0.54 to 1.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

II.15 Results at time t = 0.25 for the fourth Riemann problem with the �rst and

second order cell-centered scheme (top, CFL=0.5) as well as the third and

fourth order staggered schemes (bottom, CFL=0.7) with 200 cells in each

direction. Pressure is displayed by colors, and density using 29 contours from

0.43 to 0.99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

II.16 Results at time t = 0.25 for the �fth Riemann problem with the �rst and

second order cell-centered scheme (top, CFL=0.5) as well as the third and

fourth order staggered schemes (bottom, CFL=0.7) with 200 cells in each

direction. Pressure is displayed by colors, and density using 30 contours from

0.53 to 1.98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

II.17 Scatter plot of density pro�les for the Sedov blast-wave test-case using the

third, fourth and sixth order staggered schemes (CFL=0.7) and the �rst and

second order cell-centered schemes (CFL=0.5) at t = 1.0; 100 cells in each

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



LIST OF FIGURES XV

II.18 Scatter plot of density pro�les for the 2D Noh compression test-case using the

third, fourth order staggered schemes (CFL=0.7) and for the �rst and second

order cell-centered schemes (CFL=0.5) at t = 0.6, 400 cells in each direction.

Axis e�ect are present for the �rst and second order cell-centered schemes . . 107

II.19 Di�erence between pressure and atmospheric pressure patm following x at y =

1, for the third order scheme, with circa 10 cells per wavelength . . . . . . . . 108

II.20 Absorption (dB) of the pressure following x at y = 1, without recti�cation,

for the third order scheme, with circa 10 cells per wavelength . . . . . . . . . 109

II.21 Absorption (dB) of the pressure following x at y = 1, with geometric corrector,

for the third order scheme, with circa 10 cells per wavelength . . . . . . . . . 109

II.22 Arakawa C-type like grid for the compressible Navier�Stokes equation . . . . 113

II.23 Density pro�les on the Rayleigh�Taylor mono-mode instability for the Euler

equations (top) and for the Compressible Navier�Stokes (CNS) equations with

µ = 10−4 and λ = −2
3µ (bottom) using third, fourth and sixth order schemes,

at time t = 9.5 (left) and t = 12.75 (right) with 200 cells in the x-direction

and 600 in the y-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

II.24 Density pro�les on the Rayleigh�Taylor multi-mode instability for the Euler

equations (top) and for the Compressible Navier�Stokes (CNS) equations with

µ = 10−4 and λ = −2
3µ (bottom) using third, fourth and sixth order schemes,

at time t = 6, t = 9, t = 12, t = 15 from left to right and top to bottom, with

200 cells in the x-direction and 300 in the y-direction . . . . . . . . . . . . . . 122

III Stable high-order methods for linear hyperbolic systems with arbitrary

boundary conditions 123

III.1 1D Boundary between outside and inside computational domain . . . . . . . 124

III.2 Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Lax�Wendro� (second

order) scheme with nc = 20 for the R2,0 (left), R2,1 (right) reconstruction

operators. The whole domain is stable. . . . . . . . . . . . . . . . . . . . . . . 149

III.3 Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Beam�Warming (second

order) scheme with nc = 20 for the R2,0 (left), R2,1 (right) reconstruction

operators. The whole domain is stable. . . . . . . . . . . . . . . . . . . . . . . 150

III.4 Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order projection

scheme with nc = 20 for the R3,0 (top, left), R3,1 (top, right) and R3,2 (bottom)

reconstruction operators. As a contrary to �gs. III.2 and III.3, one notices a

region of numerical instability for R3,0. . . . . . . . . . . . . . . . . . . . . . . 151



XVI LIST OF FIGURES

III.5 Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the fourth-order projection

scheme with nc = 30 for the R4,0 (top, left), R4,1 (top, right), R4,2 (bottom,

left), R4,3 (bottom, right) reconstruction operators. An additional behaviour

is observed w.r.t. �g. III.4 which is that the domain of instability contains a

layer for small value of ν (R4,0 and R4,2) . . . . . . . . . . . . . . . . . . . . . 152

III.6 Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order staggered

scheme for the wave equations with nc = 40 for the R3,0 (top, left), R3,1 (top,

right) and R3,2 (bottom) reconstruction operators. . . . . . . . . . . . . . . . 153

IV Discretization of boundary conditions for compressible hydrodynamics 155

IV.1 Discretization Γ∆s of Γ(t) and decomposition of the whole domain between

Ω− (ghost-cells) and Ω+ (�uid cells). Ω is the domain outside the ellipse. . . 157

IV.2 Graph of x → f(τ+1x) using di�erent value of ∆X for a positive Dtg on the

left, and a negative one on the right. . . . . . . . . . . . . . . . . . . . . . . . 161

IV.3 Flow chart for the MOOD procedure applied at the boundary . . . . . . . . . 168

IV.4 Velocity pro�les with 10 cells per wavelength for the 2nd, 3rd, 4th and 6th-order

GoHy schemes for the harmonic piston problem at T = 9. . . . . . . . . . . . 170

IV.5 Velocity pro�les with 10 cells per wavelength for the 3rd, 4th and 6th-order

GoHy schemes for the harmonic piston problem at T = 9. On the left, results

with appropriate order of reconstruction is depicted, whereas on the right

results are shown with second order reconstruction. . . . . . . . . . . . . . . . 171

IV.6 Density pro�les with initially 100 cells for the 2nd, 3rd, 4th and 6th-order GoHy

schemes for the Sod piston problem. . . . . . . . . . . . . . . . . . . . . . . . 172

IV.7 Zoom on a point Ps on the discretized boundary with local coordinate system.

The colored zone corresponds to a six points stencil for 3rd order reconstruction.173

IV.8 Zoom on a point Ps on the discretized boundary with local coordinate system.

The color zone corresponds to a least-squares stencil for 3rd order reconstruction.177

IV.9 Pressure variations |p− p0| around the cylinder as a function of θ for f = 0.5

(top), f = 1.0 (middle), f = 2.0 (bottom) for 1st, 2nd and 3rd-order accurate

schemes with ∆x = ∆y = 1
20 (left) and ∆x = ∆y = 1

40 (right). . . . . . . . . 182

IV.10 Pressure variations |p− p0| around the cylinder as a function of θ for f = 0.5

(top), f = 1.0 (middle), f = 2.0 (bottom) for the GoHy-3 interior scheme and

1st, 2nd and 3rd-order accurate ILW methods with ∆x = ∆y = 1
20 (left) and

∆x = ∆y = 1
40 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

IV.11 Density colors of a re�ected shock wave on a wedge at CFL=0.5 with 100 cells

in each direction. The expected angle of the oblique shock, depicted by the

white line, is recovered by the schemes. . . . . . . . . . . . . . . . . . . . . . 184



LIST OF FIGURES XVII

IV.12 Density contours of double Mach re�ection for 1st (top), 2nd (middle) and 3rd-

order (bottom) ILW-GoHy schemes with ∆x = ∆y = 1
200 ; 30 contours from

1.731 to 20.92 as in [155]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

IV.13 Density contours of Mach 2.81 �ow past a cylinder for 1st (top), 2nd (middle)

and 3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at t =

3.10−5 (left) and = 6.10−5 (right); 30 contours from 0.3 to 8. . . . . . . . . . 186

IV.14 Density contours of Mach 1.3 �ow past a prism for 1st (top, left), 2nd (top,

right) and 3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at

t = 1.5.10−4, CFL=0.5; 30 contours from 0.5 to 1.8 . . . . . . . . . . . . . . 187

IV.15 Pressure contours of a Mach shock on a NACA0018 for 1st (top, left), 2nd

(top, right) and 3rd-order (bottom) ILW-GoHy schemes with 400 cells in each

direction, CFL=0.5; 35 contours from 0.0 to 3.5 . . . . . . . . . . . . . . . . . 188

IV.16 Lift and drag coe�cients as a function of time for the Mach shock on the

NACA0018 pro�le considering 100, 200 and 400 cells in each direction for 1st

(top, left), 2nd (top, right) and 3rd-order (bottom) ILW-GoHy schemes. . . . 189

IV.17 Pressure variations |p− p0| around the cylinder as a function of θ for f = 0.5

(top), f = 1.0 (middle), f = 2.0 (bottom) for the third order cell-centered

scheme (GoHy-3, blue) and for the third order staggered scheme (STAG-3,

black) with ∆x = ∆y = 1
20 (left) and ∆x = ∆y = 1

40 (right). . . . . . . . . . . 190

V Extension to �uid-rigid body interaction 191

V.1 Regular curvilinear discretization of an ellipse with Γ : s→ (5 cos(2πs), sin(2πs))t

using 20 pearls (blue dots) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

V.2 Using the Inverse Lax�Wendro� procedure as a time and space coupling for

rigid body interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

V.3 Pressure pro�les at time t=3 ms with 800 cells for the pressure motion driven

piston in 1D for second, third, fourth and sixth order ILW-GoHy schemes. . . 205

V.4 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 206

V.5 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 207

V.6 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 208

V.7 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 209

V.8 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 209



XVIII LIST OF FIGURES

V.9 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255

(bottom) for the third order scheme, ∆x = ∆y = 6.25× 10−4. . . . . . . . . . 210



List of Tables

I Hyperbolic systems of conservation laws and �uid-structure interaction 9

I.1 A Butcher table for an explicit Runge�Kutta sequence . . . . . . . . . . . . . 38

II High order 2D �nite volume conservative Lagrange-Remap schemes for

compressible hydrodynamics on staggered Cartesian grids 55

II.1 Coe�cients for the �nite volume computation of point-wise values from cell-

average ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II.2 Coe�cients for the �nite volume computation of average values from point-

wise ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II.3 Coe�cients for the δ operator. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II.4 Coe�cients for the interpolation of cell-centered values from staggered ones

and vice-versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II.5 Example of Butcher table for explicit Runge�Kutta sequence with s sub-cycles. 64

II.6 CFL conditions for linear stability of the staggered schemes . . . . . . . . . . 72

II.7 Illustration of the interest and importance of the internal energy corrector.

Without the internal energy corrector, the term ‖ρ0ekin − (1
2ρ0u

2)‖l1([0:T ]×Ω)

does not tend to 0 as ∆X and ∆t tends to zero. . . . . . . . . . . . . . . . . 81

II.8 l1-error in momentum and experimental order of convergence for the Lagrange-

remap staggered scheme taken on the Cook-Cabot breaking wave test problem

[28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

II.9 l1-error in momentum and experimental order of convergence for the Lagrange-

remap staggered scheme taken on the modi�ed breaking wave test problem . 86

II.10 l1-error in density for the Lagrange-remap staggered scheme taken on the Sod

test problem [146] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

II.11 l1-error in density and experimental order of convergence for the Lagrange-

remap staggered scheme taken on the 2D isentropic vortex advection test

problem [174] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



XX LIST OF TABLES

II.12 Initial states for the four quadrants of 2D Riemann problem for density, pres-

sure and x and y velocity u and v. . . . . . . . . . . . . . . . . . . . . . . . . 105

II.13 l1-error in density and experimental order of convergence for the Lagrange-

remap staggered scheme with gravity forces taken on the atmosphere at hy-

drostatic equilibrium [92] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

II.14 l1-error in momentum and experimental order of convergence for the compress-

ible Navier�Stokes Lagrange-remap staggered scheme for the Taylor�Green

vortex [160] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

III Stable high-order methods for linear hyperbolic systems with arbitrary

boundary conditions 123

III.1 l1-error and experimental order of convergence for the 3rd-order scheme to-

gether with the R3,n �nite-volume reconstruction polynomial at t = 1.5. . . . 131

III.2 l1-error and experimental order of convergence for the 4th-order scheme to-

gether with the R4,n �nite-volume reconstruction polynomial at t = 1.5. . . . 131

III.3 Example of Butcher table for explicit Runge�Kutta sequence with p sub-cycles.133

III.4 l1-error and experimental order of convergence for the 3rd-order scheme to-

gether with the R3,n �nite-volume reconstruction polynomial at t = 0.3 for

boundary condition on the velocity. ? are indications of unstable behaviour of

the scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

III.5 l1-error and experimental order of convergence for the 3rd-order scheme to-

gether with the R3,n �nite-volume reconstruction polynomial at t = 0.3 for

mixed boundary condition (λ = 1747). ? are indications of unstable behaviour

of the scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

IV Discretization of boundary conditions for compressible hydrodynamics 155

IV.1 l1-error and experimental order of convergence (EOC) for ILW-GoHy schemes

at t = 0.01 with a CFL of 0.9. EOC indexed with ? are reduced due to double

precision. For stability issues, least-squares method is used for 4th, 5th and

6th-order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

IV.2 l1-error on density in both time and space, experimental order of convergence

and cost in % of the ILW procedure for GoHy schemes on the 2D isentropic

vortex at t = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

V Extension to �uid-rigid body interaction 191

V.1 Number of variables for rigid body motion as a function of given space dimensions193



LIST OF TABLES XXI

V.2 Comparisons of the position of the cylinder's center at t = 0.255. ? denotes

results for ∆x = ∆y = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

V.3 Conservation on mass and total energy at t = 0.255 for the lift-o� cylinder

test-case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A Butcher tables and weights for directional splitting methods 217

A.1 Generic second order Runge�Kutta sequence . . . . . . . . . . . . . . . . . . 218

A.2 Third order TVD Runge�Kutta sequence [70] . . . . . . . . . . . . . . . . . . 218

A.3 Original Kutta sequence [99] . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A.4 The 3
8 -Kutta sequence [99] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

A.5 Dormand�Prince Runge�Kutta sequence [49] . . . . . . . . . . . . . . . . . . 219

A.6 First order Godunov splitting weights ωk . . . . . . . . . . . . . . . . . . . . 220

A.7 Second order Strang splitting weights ωk . . . . . . . . . . . . . . . . . . . . . 220

A.8 Third order directional splitting weights ωk . . . . . . . . . . . . . . . . . . . 220

A.9 Fourth order directional splitting weights ωk . . . . . . . . . . . . . . . . . . . 220

A.10 Sixth order directional splitting weights ωk [175] . . . . . . . . . . . . . . . . 221

A.11 Eighth order directional splitting weights ωk [175] . . . . . . . . . . . . . . . 222





Introduction

En français

Les phénomènes d'interactions �uide-structure sont cruciaux pour les problèmes multi-physi-

ques. Deux matériaux, de lois de comportement di�érentes, interagissent entre eux. Ici, un �uide

compressible et un corps rigide sont considérés. L'écoulement du �uide est fortement conditionné

par la forme de la structure ainsi que par son déplacement, tandis que le déplacement du solide

est régi par les forces et moments de pression exercés à sa surface par le �uide. C'est un problème

fortement couplé. Le couplage impacte directement la stabilité et la précision de la méthode nu-

mérique employée. En outre, l'utilisation de méthodes numériques sur grilles cartésiennes ajoute

de la complexité à la discrétisation liée au fait que l'interface entre le �uide et la structure coupe

arbitrairement la grille cartésienne.

En 1964, Noh crée le premier schéma explicite lagrangien et eulérien pour l'interaction entre

un �uide et un corps rigide immobile [125]. Il propose un traitement conservatif de l'interface

par plan orthogonal à la direction de balayage. Ce traitement a permis pour la première fois de

retrouver par la simulation les e�ets d'un obstacle sur un écoulement compressible. Néanmoins,

la géométrie est discrétisée de manière peu précise, ce qui induit des e�ets de marche sur les

chocs ré�échis. En outre, ces e�ets de marche entraînent des erreurs d'ordre 1 qui deviennent

prépondérantes pour des écoulements complexes, et nuisent conséquemment à la �abilité de la

méthode. De plus, sa discrétisation particulière de l'interface impacte directement sur la CFL,

les pas de temps peuvent être in�niment petit en fonction de la position de l'interface dans la

maille, ce qui peut provoquer l'intractabilité des calculs.

En 2003, Berger et al. proposent une technique de recombinaisons des mailles tronquées le

long de la frontière, dénommée le h-algorithme [12]. Ce travail est basé sur des critères purement

géométriques et fusionne des mailles adjacentes dans le cas où elles impacteraient la CFL. Ce

travail a permis de réduire fortement l'impact des mailles tronquées sur le calcul du pas de temps.

Néanmoins, la recombinaison des mailles tronquées est au plus d'ordre 2, et ne permet pas de

suivre e�cacement les quantités conservatives à l'intérieur de ces mailles, particulièrement dans

le cas d'interfaces mobiles. La complexité de la forme de l'interface peut aussi induire des erreurs

importantes voire même empêcher la convergence de l'algorithme proposé. En 3D, le coût du

h-algorithme devient prohibitif et ne permet donc pas de gérer les frontières quelconques.

En 2006, Colella et al. proposent une nouvelle façon de reconstruire l'interface basée sur les
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fractions volumiques de présence [26]. Contrairement à Noh, cette méthode permet de réduire

considérablement les e�ets de marche à l'interface et reste conservative. Conjointement à l'utili-

sation du h-algorithme, il n'y a pas d'impact sur la condition CFL. Néanmoins, la reconstruction

faite des interfaces ne permet pas d'excéder l'ordre 2 en espace.

Plus récemment, Tan et Shu proposent une méthode basée sur une procédure de Lax�Wendro�

inverse pour les conditions aux bords [155]. Cette méthode est a priori sans restriction CFL et

sans limitation quand à l'ordre de convergence de la méthode. Néanmoins, l'algèbre impliquée

dans la méthode est extrêmement lourde et devient prépondérante en terme de coût de calcul. Elle

n'est appliquée dans le cadre de leurs études qu'au cas du gaz parfait et aux schémas eulériens. De

plus, certaines instabilités apparaissent et, sans contrôle, empêchent la convergence des schémas

utilisés. Contrairement aux méthodes précédemment citées, il n'y a pas de preuve de conservation

de la masse, quantité de mouvement et de l'énergie totale à l'interface. Dans le cas des géométries

non-lipschitziennes, il est impossible, sans modi�cation et détérioration, d'appliquer la méthode.

Partant de considérations générales concernant les systèmes hyperboliques de lois de conser-

vation, une étude est faite d'un ensemble de méthodes numériques pour simuler les équations d'un

�uide non-visqueux et compressible. L'accent est mis durant cette étude sur les schémas formulés

en énergie interne et sur maillages décalés. En�n, une revue bibliographique fait apparaître qu'il

existe une multitude de méthodes permettant de simuler l'interaction entre un �uide compressible

et un corps rigide indéformable de manière stable. Cette revue est présentée dans le chapitre I.

Des méthodes d'ordre 2, stables et conservatives ont été créées. Des algorithmes géométriques

de fusion de mailles permettent d'éviter toute contrainte sur la CFL liée à la taille des mailles

tronquées. En outre, la procédure de Lax�Wendro� inverse permet de prendre en compte n'im-

porte quelle condition aux bords à l'ordre élevé. Néanmoins la di�culté principale réside dans

la discrétisation de la géométrie de l'interface qui impacte la montée en ordre ainsi que dans la

stabilité de la méthode. Les méthodes de type ordre élevé proposé par Tan et Shu s'impliquent

dans le cadre de schéma eulérien pur uniquement pour un gaz parfait. Elles sont en outre parti-

culièrement onéreuses algébriquement. En�n, cette méthode n'est pas toujours stable et peut être

inapplicable dans le cas de certaines con�gurations géométriques.

C'est dans ce contexte que s'inscrit l'étude proposée ici. Elle consiste à développer une mé-

thode numérique stable, d'ordre arbitrairement élevé capable de modéliser et simuler les inter-

actions entre un �uide compressible et un corps rigide indéformable pour des schémas de type

Volumes Finis Lagrange-Projection d'ordre très élevé et conservatifs sur grilles cartésiennes ainsi

qu'à évaluer les gains en précision apportés par cette stratégie de couplage numérique.

La démarche a consisté dans un premier temps à étendre à l'ordre très élevé un schéma 2D

Lagrange-Projection conservatif pour l'hydrodynamique compressible sur grilles cartésiennes dé-

calées. En se basant sur le système des grilles Arakawa, les variables ont été redistribuées a�n de

faciliter l'intégration lagrangienne. Pour la première fois, la variable de masse est dédoublée sur

la grille décalée a�n d'assurer conservation, robustesse et consistance. Le schéma 1D d'ordre élevé

Lagrange-projection sur grille décalée est basé sur une intégration en temps de type Runge�Kutta

et en espace de type Volumes Finis pour la phase lagrangienne. A�n d'assurer la capture correcte
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des chocs, pour la première fois, un correctif en énergie interne conservatif et d'ordre très élevé

est proposé. Ce correctif est rendu possible par l'idée nouvelle de discrétiser l'équation d'évolu-

tion de l'énergie cinétique. La projection est basée sur l'intégration analytique par polynomes de

Lagrange et est adaptée ici aux particularités des grilles cartésiennes décalées. Ainsi un schéma

1D conservatif et d'ordre élevé est obtenu. Son extension dans un cadre multi-dimensionnel par

l'utilisation de séquences de balayage directionnel d'ordre élevé est faite. L'ordre très élevé est

atteint expérimentalement (cf table 1). En�n une extension aux �uides visqueux compressibles

est proposée. Ce travail est présenté dans le chapitre II et a fait l'objet d'une publication [35].

La démarche a consisté dans un second temps à prendre en compte dans le cas des systèmes

linéaires n'importe quelles conditions aux bords. Pour cela, on a développé une famille de méthodes

d'ordre très élevé et stable pour des conditions aux bords sur frontières quelconques. Partant d'un

système linéaire simpli�é qu'est l'advection à vitesse constante, on développe la construction

des opérateurs dits de reconstruction permettant de prendre en compte la condition aux bords

imposée. Ces opérateurs de reconstruction sont d'ordre arbitrairement élevé et leur stabilité est

étudiée. Dans l'idée de pouvoir déterminer a priori la stabilité d'opérateurs pour des systèmes plus

complexes que l'advection, on crée la notion de stabilité réduite. Cette notion est ensuite utilisée

dans le cas des systèmes linéaires hyperboliques. En particulier, une étude numérique est faite

pour déterminer la stabilité réduite des opérateurs de reconstruction pour le cas du systèmes des

équations des ondes. Ce travail est présenté dans le chapitre III et a fait l'objet d'une publication

[34].

À partir des caractéristiques de stabilité des opérateurs de reconstruction dans le cas linéaire,

la démarche a consisté dans un troisième temps à étendre les méthodes stables au cas non-linéaire

des équations d'Euler 1D. Le caractère sous-déterminé du système obtenu conduit à prendre en

compte une équation supplémentaire. Deux choix sont e�ectués. Le premier choix est basé sur

une hypothèse faite sur le jeu d'équations aux dérivées partielles. Le second choix est lui basé sur

l'utilisation d'un stencil plus large, a�n d'éviter toute hypothèse sur les propriétés de l'écoulement.

En�n, on a étendu la méthode 1D au cas multi-dimensionnel, en se basant sur une méthode de

balayage directionnel. La méthode ainsi développée permet de prendre en compte les conditions

aux bords imposées en vitesse. En particulier, on a montré que c'était équivalent à réaliser le

couplage entre un �uide compressible et un corps rigide indéformable de masse in�nie. Ce travail

est présenté dans le chapitre IV et a fait l'objet d'une publication [34].

En�n, à partir de la discrétisation des conditions aux bords pour les équations d'Euler, le

couplage entre un �uide compressible et un corps rigide de masse �nie est réalisé. La méthode

précédemment développée permet de calculer à l'ordre élevé les intégrales des moments et forces

exercés sur le solide. Par conséquent, le couplage en temps comme en espace entre le �uide com-

pressible et le corps rigide est naturel du fait de la discrétisation spatiale choisie pour l'interface.

Pour ce faire, deux nouveaux schémas sont proposés, un premier basé sur une procédure de type

Cauchy�Kovalevski et un second basé sur une procédure de type Runge�Kutta. Les propriétés de

mouvement de corps rigides sont véri�ées. En�n, on illustre numériquement la consistance, la

convergence et la stabilité de la méthode. Ce travail est présenté dans le chapitre V.
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Au terme de cette étude, on arrive à la conclusion que le couplage proposé est possible à

l'ordre élevé (cf �gure 2) et qu'il existe des con�gurations pour lesquelles un gain en précision est

obtenu (cf �gure 1).
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In english

Fluid-structure interaction phenomena are important in multi-physics problems. It involves two

materials that have di�erent behaviours, di�erent constitutive laws, but that are coupled one to

another. Here, a compressible �uid and a rigid body are considered. The �uid �ow is strongly

conditioned by the shape of the solid but also by its displacement, and the solid motion is trig-

gered by pressure forces and torques exerted on its boundary. This is a strongly coupled problem,

which can be a predicament for the stability and accuracy of numerical methods. Indeed, for

the development of numerical methods for �uid-structure interaction, the main di�culty is to

obtain, without further CFL restriction, a stable and high-order accurate coupling between �uid

and structure solvers. An additional di�culty is that for general problems, it is quite impossible

to determine a priori how the coupling behaves, if the �uid forces and torques are predominant

or if it is rather the displacement of the rigid body. This di�culty increases furthermore if one

considers that the �uid solver is based on Cartesian grids. Indeed, the boundary intersects in an

arbitrary fashion the grids. Increasing the order of accuracy leads to unstable methods, which

prevent most uses of the coupling algorithm, as the schemes do not converge.

In 1964, Noh builds the �rst explicit Lagrangian and Eulerian scheme for the �uid-structure inter-

action in [125]. The structure is considered motionless and without deformations. As the scheme

is based on directional splitting, he proposes a conservative treatment of the interface, consid-

ering that the boundary of the structure is always orthogonal or parallel to the cells interfaces.

The numerical treatment detailed by Noh enables, for the �rst time, to recover using simulations,

the e�ects of an obstacle on a �uid �ow. However, the obstacle boundary is discretized abruptly,

which induces "step e�ects" on re�ected shocks. Moreover, the CFL restriction is directly im-

pacted by the discretization proposed by Noh. Indeed, cells near interfaces are considered to

be cut and then, the smaller the cut-cells, the stronger the CFL restriction. Note also that due

to the geometrical approximation, the method is at most �rst order accurate. In 2003, Berger

and al. propose a technique in order to mix cells near the boundary, called the h-algorithm [12].

This work relies on purely geometrical criteria to mix adjacent cells, if their size lead to CFL

restriction. This work tends to reduce drastically the impact of small cut-cells on the time-step

given by the CFL restriction. Nonetheless, the cut-cells mixing is at most second order accu-

rate. For moving obstacles, special procedure must be developed to dispatch quantities inside

mix-cells into the neighbourhood. Moreover, and especially in 3D, the complexity of the rigid

body geometric shape induces large errors (and eventually prevent the scheme from converging).

The more complex the geometric shape, the more di�cult it is to deal with their numerical

treatment. In 2006, Colella and al. in [26] develop an innovative way of tracking the interface

based on volume fractions. As a contrary to Noh, this method reduces considerably the "step

e�ects" due to the geometrical approximations and it is still conservative. However, due to the

geometric approximation of the interface, the scheme is at most second order accurate in space.

More recently, Tan and Shu propose a method based on the inverse Lax�Wendro� procedure for

numerical boundary treatment in [155]. This method is a priori without any CFL restriction and

can be very high-order accurate. However, the algebra used to design the method is extremely
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heavy and the method in itself is only applied for perfect gases and for Eulerian schemes. As a

contrary to the previous method, the procedure is not conservative in mass, momentum and total

energy. For non-Lipschitz geometrical shapes, it is impossible to maintain high-order accuracy

without modi�cation of the procedure.

Starting from general considerations on hyperbolic systems of conservation laws, a review is done

concerning the numerical methods available in the literature to approximate the compressible

Euler equations. The emphasis is laid on schemes formulated in internal energy and on staggered

grids. Last, an overview of the numerical methods available in the literature for �uid-structure

interaction is done. Fictitious domain methods are extensively detailed. This work is presented in

chapter I. Stable, conservative and second order accurate numerical methods have been designed

to tackle �uid-structure interaction. Most are based on geometric approximations of the interface,

as well as physical considerations concerning the behaviour of the �uid near the boundary. A

focus is especially done on the possible CFL restriction induced by the chosen numerical boundary

treatment.

It is in this very context that lies the work proposed in this manuscript. It consists in developing a

stable and high-order accurate numerical method for �uid-structure interactions. The method is

designed for conservative and high-order accurate �nite volume schemes based on the Lagrange-

remap formalism for Cartesian grids.

Firstly, the extension to high-order accuracy in both time and space of a hydrodynamics scheme

on staggered Cartesian grids is done. The scheme is based on a Lagrange-remap formalism

and is formulated in internal energy. Starting from the Arakawa grids system, variables are

distributed on the staggered grids to ease the resolution of the Lagrangian system. The 1D

scheme is based on a Runge�Kutta for the time integration and uses �nite volume formalism.

The scheme is conservative in mass, momentum and total energy (see lemmas II.2 and II.8) and

weakly consistent for the compressible Euler equations (see theorem II.9). An internal energy

corrector is developed and is the key for both conservation and weak consistency. Such a corrector

derives from the discretization of the kinetic energy, independently of the momentum. The

remapping phase is based on standard polynomial projection, but adapted here to the special

case of staggered grids. The extension to multi-dimensions is made possible thanks to high-

order accurate directional splitting methods. Results concerning the accuracy and the order of

convergence are displayed in table 1. Then, an extension of the scheme for compressible Navier�

Stokes equations is proposed. A part of this works has been published in "Comptes Rendus

Mathématique" [35] and is extensively detailed in chapter II.

Secondly, for linear hyperbolic system of conservation laws, a numerical boundary treatment is

developed. For any well-posed boundary conditions, a stable and high-order accurate discretiza-

tion of boundary condition is proposed. Starting from the advection equation problem, a generic

way of building operators to take into account the boundary condition is detailed. Those opera-

tors, called reconstruction operators, enable to build ghost-cells values outside the �uid domain

without impacting CFL restriction. In order to determine if a scheme with a given numerical

boundary treatment is stable, the notion of reduced stability is introduced in de�nition III.1.
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Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

50 3.3e-1 · 1.5e-1 · 2.6e-1 · 1.7e-1 · 1.5e-1 · 1.1e-1 ·
100 9.5e-2 1.79 1.9e-2 3.01 4.9e-2 2.41 8.9e-3 4.27 1.2e-2 3.70 2.0e-3 5.83
200 1.6e-2 2.54 1.0e-3 4.19 1.9e-3 4.68 6.5e-5 7.10 8.0e-5 7.20 5.2e-6 8.59
400 2.2e-3 2.89 6.1e-5 4.06 6.1e-5 4.96 7.2e-7 6.48 6.3e-7 7.00 1.6e-8 8.37
800 2.8e-4 2.97 3.9e-6 3.99 1.9e-6 4.98 9.9e-9 6.18 5.0e-9 6.97 1.1e-10 7.17
1600 3.5e-5 2.99 2.4e-7 3.99 5.98e-8 4.99 1.5e-10 6.02 3.9e-11 6.99 3.4e-12 ?

Table 1 � Illustration of the high-order accuracy of the staggered schemes: l1-error in density
and experimental order of convergence for the 2D Lagrange-remap staggered scheme
taken on the isentropic vortex advection test problem [174], until t = 20, CFL=0.9. ?
indicates machine precision reached.

This notion provides practical informations about the scheme stability and is used to determine a

priori if a scheme is stable or not. It is then applied on the wave equations problem and later to

generic linear hyperbolic systems. This work is presented in chapter III and has been submitted

to a journal [34].

Thirdly, using results obtained in chapter III for the linear case, the method is extended for

the numerical boundary treatment of Euler equations. Works are �rst performed in 1D case,

considering the boundary condition to be imposed on the normal velocity. Interest of high-

order boundary treatment is highlighted in �g. 1. For this special case, the global accuracy is

mostly due to the numerical boundary treatment accuracy. It highlights the interest of hav-

ing a high order discretization of boundary conditions, particularly for high order �uid solver.

The procedure is �rst detailed for a simple second order accurate example. One identi�es that

the non-inversibility of the Lagrangian system Jacobian matrix requires another equation to be

added. Two methods are derived. The �rst one consists in adding an equation that describes

a peculiar feature of the �ow. The �ow is considered to be spatially isentropic near the bound-

ary. A theoretical result is given in lemma IV.1 which characterizes conditions for existence and

uniqueness of the reconstruction near the boundary. The second method consists in enlarging

the stencil on which the reconstruction is based without any hypothesis on the �ow structure

near the boundary. Theoretical results are available in lemmas IV.2 and IV.3. They characterize

once again conditions for existence and uniqueness of the reconstruction. Then, the method

is extended to the multidimensional case, using directional splitting method. To prevent any

numerical instabilities from occuring, a least-square procedure is developed, as well as a MOOD

one in case of strong shocks. This is explained and illustrated in chapter IV and has also been

submitted to a journal [34].

Fourthly and lastly, using the reconstruction method proposed in chapter IV, the coupling be-

tween a compressible �uid and a rigid body is done. A semi-discrete scheme for rigid body

dynamics is derived to compute with high-order accuracy the forces and torques resultants ex-

erted on the rigid body boundary. The coupling is straightforward using the reconstruction

method. The time integration is done to match the one of the interior scheme, whether with

a Runge�Kutta one or with a Cauchy�Kovalevskaya one. For multidimensional problems, di-

rectional splitting method is applied. As illustrated in �g. 2, the proposed coupling is able to
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(a) High-order reconstruction (b) 2ndorder reconstruction

Figure 1 � An oscillating boundary conditions is prescribed on the left boundary. It highlights
the impact of high-order accurate numerical boundary treatment for the restitution of
physical oscillations. Velocity pro�les are depicted with 10 cells per wavelength at T =
9, for 3rd, 4th and 6th-order inner schemes, with a 2nd-order (left) or with respectively
the same orders (right) boundary reconstructions. High-order accurate boundary
treatment outperforms 2nd-order accurate ones in the whole domain, because the
gain of accuracy propagates in the domain (we expect this kind of behaviour to occur
when considering �uid / vibrating structures interactions.).

recover complex �uid �ow structures.

Figure 2 � Rigid-body and compressible �uid coupling. The cylinder is lift o� by an incoming
shock wave. In return, the shock wave is re�ected on the cylinder, and the �uid is
displaced by the structure. Complex structures are developed due to the re�ection on
the top and bottom channel as well as the rigid cylinder. 60 contours are displayed
representing �uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.



Chapter I

Hyperbolic systems of conservation

laws and �uid-structure interaction

Ce chapitre est une introduction aux méthodes numériques pour l'approximation de problèmes

multiphysiques complexes. Le mode de présentation consiste à réunir dans un cadre commun des

éléments classiques de la littérature, mais qui sont souvent présentés dans des contextes très

di�érents. Dans un premier temps, des considérations générales sur les systèmes hyperboliques

de lois de conservations sont rappelées. Dans un second temps, la présentation de di�érentes

méthodes pour approcher numériquement la solution de ce type de système est faite : le cas du

système hydrodynamique compressible ou des équations d'Euler est plus particulièrement étudié.

Ces méthodes seront rangées dans deux familles distinctes. La première famille recense les mé-

thodes basées sur un maillage d'éléments permettant d'approcher au mieux la déformation et/ou

les bords du domaine. La seconde famille rassemble les méthodes d'ordre élevé, qu'elles soient

sur grilles cartésiennes ou sur grilles non-structurées. En�n, dans un troisième temps, une revue

sera faite des di�érentes méthodes numériques présentes dans la littérature concernant le pro-

blème de la discrétisation et de l'approximation pour l'interaction �uide-structure. L'accent sera

particulièrement mis sur le couplage en espace comme en temps de la méthode numérique pour le

�uide avec celle pour la structure. Le couplage en espace portera essentiellement sur l'utilisation

de méthodes de type domaine �ctif.
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This chapter is dedicated to an overview of numerical methods for the approximation of complex

multi-physics problems. First, general considerations on hyperbolic systems of conservation

laws are given. Second, the emphasis is laid on numerical approximations of such problems,

with a special focus and care for the compressible hydrodynamics system. Numerical methods

are classi�ed into two families. The �rst family is for mesh-based method to approximate the

deformation and/or the boundary with geometric elements. The second one is for the high-order

accurate Direct Eulerian or Lagrange-remap methods on Cartesian grids as well as unstructured

ones. Third, a focus is made on discretizations and approximations methods for the �uid-

structure interaction problem. A special interest is made in the time and space coupling between

the numerical method for the �uid part and the one for the structure part. A focus for the space

coupling is made on �ctitious domain methods.

I-1 Hyperbolic systems of conservation laws and their numerical approximations . . 10

I-1.1 Hyperbolic system of conservation laws in one dimension . . . . . . . . . 10

I-1.2 Numerical methods for conservation laws and their properties . . . . . . 17

I-2 Numerical methods for compressible hydrodynamics . . . . . . . . . . . . . . . 28

I-2.1 Euler and Lagrange equations for compressible hydrodynamics . . . . . 28

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics . . . . . 32

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes . . . 36

I-2.4 Arti�cial viscosities and hyperviscosities . . . . . . . . . . . . . . . . . . 39

I-3 Numerical methods for �uid-structure interaction . . . . . . . . . . . . . . . . . 41

I-3.1 Time coupling method for �uid-structure interaction . . . . . . . . . . . 42

I-3.2 Space coupling method for �uid-structure interaction . . . . . . . . . . . 45

I-1 Hyperbolic systems of conservation laws and their numerical

approximations

This section is dedicated to the study of hyperbolic systems of conservation laws in one dimension

and to their numerical approximations. First, mathematical properties of such systems are

detailed. Second, a short overview of numerical approximations for such problems is depicted.

Last, stability, consistency and convergence properties of the numerical schemes are presented

as well as the analytic tools to analyze those properties for a given scheme.

I-1.1 Hyperbolic system of conservation laws in one dimension

For general non-linear conservation laws, assuming the data to be smooth over time, one may

use the method of characteristics to determine smooth solutions to the hyperbolic system. But,

the non-linearity introduces generally discontinuity in a �nite time, even for smooth initial data.
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Using the concept of weak solutions for conservation laws [102, 106, 103, 141, 61, 47, 45] and

especially the Rankine-Hugoniot jump conditions, one may still de�ne solutions to the hyperbolic

system. However, uniqueness for the Cauchy problem is lost in the process. Adding the concept

of entropic solutions, uniqueness for the Cauchy problem is proven in the special case of scalar

conservation laws. In the special case of �uid dynamics, the thermodynamics yield a natural

mathematical entropy.

Consider an hyperbolic system of conservation laws in one space dimension under the form

∂tU + ∂xf(U) = 0, x ∈ Ω, t > 0. (I.1)

Assuming that Ω is a bounded domain of R, one gets

∂t

∫
Ω
U +

∫
∂Ω
f(U) = 0, t > 0. (I.2)

For special condition of no-exchange with the exterior, i.e. f(U) is null along the boundary of

Ω, using eq. (I.2) one gets the global conservation of U

∂t

∫
Ω
U = 0, t > 0. (I.3)

Using eq. (I.3), the average value of U over Ω de�ned as

U :=
1

|Ω|

∫
Ω
U(x, t)dx

is constant in time for no-exchange boundary conditions. It is usual to consider that the unknown

U(x, t) belongs to a convex open set U ⊂ RN . The �ux function f is de�ned as a smooth enough

function, typically f ∈ C 1

f : U −→ RN

U 7−→ f(U)

Less constrictive hypothesis of regularity on the �ux function f are possible [61], but not detailed

hereafter. In the peculiar case, where N = 1, one gets a scalar conservation law. For a scalar

conservation law, one drops the vectorial notation and use u instead of U and f rather than f .

I-1.1.1 Smooth solutions of conservation laws

First, consider that U ∈ C 1(R × R+,∗,U ) and U satis�es eq. (I.1). Then U is said to be a

classical solution. In peculiar as U ∈ C 1(R × R+,∗,U ), it yields that ∂tU and ∂xf(U) are

well-de�ned for any point (x, t) ∈ R× R+,∗.

For a scalar conservation law, let a(u) = f ′(u) then the Cauchy problem written in non-

conservative form writes
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{
∂tu+ a(u)∂xu = 0, x ∈ R, t > 0,

u(x, 0) = u0(x)
(I.4)

Theorem I.1 (Classical solution to the Cauchy problem [61]). Let f ∈ C 2(R), u0 ∈ C 1(R), and

a ∈ C 1(R). Assume D de�ned as

D = inf
x∈R
{∂x(a(u0(x))} (I.5)

is real. Let

T ? =

{
+∞, for D ≥ 0

− 1
D , otherwise.

(I.6)

If T ? is not zero, then the Cauchy problem in eq. (I.4) has a unique solution u ∈ C 1(R×[0, T ?[ ,R).

The theorem I.1 gives the existence of a smooth solution for 0 < t < T ?. If D is positive, then it

yields the existence for all time t > 0. But otherwise, it is all but natural to want to de�ne u for

time greater than T ?. In fact, for a non-positive value of D, as t increases toward T ?, the pro�le

of u is going steeper until it reaches a discontinuity. At this point, the solution is no-longer in

C 1. Then the de�nition of classical solution as introduced previously is too narrow. For such

cases, the weak solutions are introduced in order to allow discontinuities.

I-1.1.2 Weak solutions of conservation laws

Assume that U satis�es the initial conditions

U(x, 0) = U0(x), x ∈ R. (I.7)

The following de�nition extends the de�nition of classical solution presented in the theorem I.1

to the case of functions with discontinuities.

De�nition I.1 (Weak solution to the Cauchy problem [47]). Let U0 ∈ L∞loc(R)N . A function

U is a weak solution of eqs. (I.1) and (I.7) if U(x, t) ∈ U almost everywhere and if for any

φ ∈ C 1
0 (R× R+,∗)N compactly supported∫

R

∫ ∞
0

(U(x, t)∂tφ+ f(U(x, t))∂xφ) dxdt+

∫
R
U0(x)φ(x, 0)dx = 0 (I.8)

As a contrary to the original writing of eqs. (I.1) and (I.7), eq. (I.8) does not require the de�nition

of the terms ∂tU and ∂xf(U). Moreover it contains intrinsically the initial conditions U0. In

practice, a weak solution U in the sense of de�nition I.1 is said to satisfy eq. (I.1) in the sense

of distributions. Moreover if a function U is a weak solution and is smooth, then it is a classical

solution. It is stated in proposition I.2.

Proposition I.2 (A smooth weak solution is a classical solution [47]). Let U be a weak solution

in the sense of de�nition I.1. Assume U ∈ C 1(R× R+,∗,U ). Then U is a classical solution to

the Cauchy problem stated in eqs. (I.1) and (I.7).
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For physical states of U , it is interesting to focus on piecewise continuous functions. Those

are functions that contains a �nite number of discontinuities and are otherwise continuous on

intervals. A very important result is the theorem I.3.

Theorem I.3 (Rankine�Hugoniot conditions [61]). Let initial condition U0 be piecewise C 1.

U ∈ L∞
loc

(R × R+,∗)N a piecewise C 1 function is a weak solution of eqs. (I.1) and (I.7) if and

only if

i) U is a classical solution of eqs. (I.1) and (I.7) on intervals where U is smooth.

ii) U satis�es the Rankine�Hugoniot jump conditions on the discontinuity points xc

f(U(xrc, t))− f(U(xlc, t)) = σ(U(xrc, t)−U(xlc, t)) (I.9)

where σ is the discontinuity velocity, i.e. σ = dxc
dt .

So far, we have exposed the notion of weak solutions to the Cauchy problem de�ned in eqs. (I.1)

and (I.7). Using the Rankine�Hugoniot conditions de�ned in theorem I.3, one may build discon-

tinuous solutions. However, it occurs that both solutions may coexist. The uniqueness of the

Cauchy problem is then not satis�ed. To get uniqueness back, and only in the special case of

scalar conservation laws, the concepts of mathematical entropy and therefore entropic solutions

are introduced.

I-1.1.3 Entropic solutions of conservation laws

For physical systems, the second law of the thermodynamics states that the entropy of a system

increases over time or stays constant for an isolated system. The increase of entropy is synonym

of irreversibility of processes. On the partial di�erential system, it yields another equation, eg.

for smooth �ows satisfying the Euler equations the entropy is advected.

De�nition I.2 (Mathematical entropy [47]). Let Ω a open bounded subset of RN . Consider a
�ux function f of the form

f : Ω −→ RN

U 7−→ f(U).

A strictly convex function η such that

η : Ω −→ R
U 7−→ η(U)

is a mathematical entropy for the conservation laws presented in eq. (I.1) if and only if there is

an entropy �ux ζ satisfying

dζ(U) = dη(U) · df(U). (I.10)

Any classical solution of eq. (I.1) satis�es

∂tη(U) + ∂xζ(U) = 0 (I.11)
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The de�nition of the entropy �ux based on eq. (I.10) gives immediately the following propriety.

Proposition I.4 (Hyperbolicity in 1D [47]). Assume there exist an entropy and an entropy �ux

(η, ζ) for eq. (I.1). Then the system is hyperbolic. Especially the matrix df(U) is diagonalizable

over the reals.

Proposition I.4 can be extended to multidimensional systems. The following proposition gives

hyperbolicity results for 2D systems.

Proposition I.5 (Hyperbolicity in 2D [47]). Assume there exist an entropy and entropy �uxes

(η, ζ, ξ) for the 2D conservation laws system

∂tU + ∂xf(U) + ∂yg(U) = 0. (I.12)

Then the system is hyperbolic. Especially for any vector n = (nx, ny) ∈ R2 such that ‖n‖ = 1,

the matrix A = df(U) · nx + dg(U) · ny is diagonalizable over the reals.

Remark I.1. Propositions I.4 and I.5 hold for three space dimensions systems.

Propositions I.4 and I.5 are particularly useful for the �nite volume schemes that will be presented

later on. Now, the emphasis is laid on scalar conservation law. Indeed, for such a law, any strictly

convex function η is a mathematical entropy function.

Theorem I.6 (Viscous limit of a scalar conservation law [47]). Let η be a mathematical entropy

for the scalar conservation law eq. (I.1) with the associated entropy �ux ζ. Let (uε)ε>0 a C 2

family of solution of

∂tu
ε + ∂xf(uε) = ε∂xxu

ε, x ∈ R, t > 0. (I.13)

Assume that (uε) is uniformedly bounded in L∞(R× ]0 :∞[) such that

∃C > 0,∀ε > 0, ‖uε‖L∞(R× ]0 :∞[) ≤ C. (I.14)

Assume that (uε)ε>0 converges almost everywhere to u ∈ L∞(R × ]0 :∞[). Then u is solution

in the sense of distributions to eq. (I.1) and satis�es the entropic inequality in the sense of

distribution

∂tη(u) + ∂xζ(u) ≤ 0 in the sense of distribution, (I.15)

which is equivalent to, for any φ ∈ C∞(R× ]0 :∞[) compactly supported and φ ≥ 0∫
R×]0:∞[

(η(u)∂tφ+ ζ(u)∂xφ)dxdt ≥ 0. (I.16)

The theorem I.6 gives a characterization of a solution in the sense of distributions to eq. (I.1)

which satis�es the entropy inequality (I.16). It seems all the more natural now, to de�ne what

is an entropic solution of a conservation law, and to determine conditions to get existence and

uniqueness of such a solution.
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De�nition I.3 (Entropic solution of a conservation law). Let u0 ∈ L∞(R). Let u ∈ L∞(R ×
]0 :∞[) a weak solution to the scalar conservation law eq. (I.1) with the initial condition u0.

The function u is said to be an entropic solution of the Cauchy problem if for any mathematical

entropy pair (η, ζ), it satis�es eq. (I.16).

Theorem I.7 (Existence and uniqueness of an entropic solution to the Cauchy problem [61]).

Suppose that f is a C 1 function and that the initial condition u0 lies in L∞(R). Then the Cauchy

problem with initial condition u0 has a unique entropic solution to the scalar conservation law

eq. (I.1) which satis�es the following conditions

i) u ∈ L∞(R× ]0 :∞[),

ii) ‖u‖L∞(R×]0:∞[) ≤ ‖u0‖L∞(R)

iii) Moreover, if u0 satis�es a bounded inequality, s.t.

∃ (α, β) ∈ R2, α ≤ u0(x) ≤ β, for almost every x ∈ R

then

α ≤ u ≤ β, for almost every x ∈ R, ∀t > 0

Previous theorem only applies for the Cauchy problem with initial condition. For most cases,

boundary conditions have to be prescribed. In some cases, physical considerations give natural

boundary conditions, but it is not always the case, and thus, taking into account boundary

conditions is both tricky and a hard problem to tackle. To understand the boundary conditions

mechanism, the initial boundary value problem is introduced.

I-1.1.4 The initial boundary value problem

Consider the classical initial boundary value problem in the domain x > 0, t > 0 which writes
∂tU + ∂xf(U) = 0, x > 0, t > 0

U(x, 0) = U0(x), x > 0

U(0, t) = g(t), t > 0

(I.17)

The problem depicted in eq. (I.17) is generally ill-posed. Boundary conditions must be prescribed

accordingly to the eigenvalues of ∇Uf and not arbitrarily. The study presented here only

concerns linear hyperbolic systems.

One-dimensional advection equation

The one-dimensional advection problem with prescribed boundary conditions writes as


∂tu+ a∂xu = 0, x > 0, t > 0

u(x, 0) = u0(x), x > 0

u(0, t) = g(t), t > 0

(I.18)
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The problem is well-posed in the sense of Kreiss [96] if a > 0. For a negative a, no boundary

conditions are required at x = 0, and the solution is trivially

u(x, t) = u0(x− at), x > 0, t > 0.

For a > 0, solution to eq. (I.18) writes

u(x, t) =

{
u0(x− at) for x > at

g(t− x
a ) for x < at

(I.19)

Proposition I.8 (Classical solution [96]). u ∈ C 1 is a classical solution of eq. (I.18) if

i) u0 ∈ C 1

ii) g ∈ C 1

iii) u0 and g satisfy the compatibility relation

g(0) = u0(0), ∂tg(0) = −a∂xu0(0). (I.20)

Incrementally, u belongs to C p, p > 0 if u0 and g belong to C p and if they satisfy the compatibility

relation

∂kt g(0) = (−a)k∂kxu0(0), for 0 ≤ k ≤ p. (I.21)

One-dimensional linear systems

Consider a linear hyperbolic system. Let the matrix A satisfy A = ∇Uf(U) which is indepen-

dent of U . The initial boundary value problem for linear hyperbolic system writes


∂tU +A∂xU = 0, x > 0, t > 0

U(x, 0) = U0(x), x > 0

BU(0, t) = Bg(t), t > 0

(I.22)

The following theorem gives conditions for the well-posedness of eq. (I.22).

Theorem I.9 (Uniform Kreiss Condition for well-posedness [96]). Consider the problem depicted

in eq. (I.22). Let q be the number of strictly positive eigenvalues of the matrix A ∈ Rp×p. Denote
the matrix T ∈ Rp×q formed by the q eigenvectors of A whose eigenvalues are strictly positive as

columns. The initial boundary value problem is said well-posed if the matrix B ∈ Rq×p is such

that the matrix BT ∈ Rq×q is invertible.

Remark I.2. In order to obtain a classical solution U to eq. (I.22), initial conditions and boundary

conditions must belong to C 1 and satisfy a compatibility relation, which writes as

BU0(0) = Bg(0), B∂tg(0) = −B ·A∂xU0(0). (I.23)
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The extension of theorem I.9 to multiple space-dimensions problem is known as the Uniform

Kreiss-Lopantiskii Condition [97]. Non-linear hyperbolic system are not detailed here. Often

one uses a quasi-linear form, assuming the matrix A to be independent of U and applying the

same theory as for linear systems. Much more can be said and proven for hyperbolic systems of

conservation laws and initial boundary value problems. One may extend some of the previous

de�nition and theorems to multiple space dimensions. Only a short overview of the main results

concerning hyperbolic systems of conservation laws has been given. One may refer to [102,

106, 103, 48, 61] for more details on the subject. The problem of numerical approximations for

hyperbolic system of conservation laws is now focused on.

I-1.2 Numerical methods for conservation laws and their properties

Two numerical methods for conservation laws are presented. General system of conservation laws

in two dimensions on a bounded domain Ω takes the following form

∂tU + ∂xF (U) + ∂yG(U) = 0, t > 0, (x, y) ∈ Ω (I.24)

Assume that there exists one entropy triplet (η, ζ, ξ) for the conservation laws in eq. (I.24). Two

main numerical methods to solve conservation laws as in eq. (I.24) are distinguished in this part:

�nite di�erence schemes and �nite volume schemes.

It is of great interest to check if a scheme satis�es a certain number of properties:

i) consistency of the scheme

ii) linear stability for the Cauchy problem,

iii) linear stability for the initial boundary value problem,

iv) discrete conservation of U ,

v) discrete entropy inequalities.

These properties are detailed later on.

I-1.2.1 Space discretization for conservation laws

Two space discretizations for conservation laws, commonly used in the literature [62, 106, 47, 61]

are considered. The �nite di�erence formalism consists in a regular Cartesian repartition of points

to discretize the bounded domain. With such a repartition of points, it is particularly convenient

to use equally-spaced polynomial reconstruction. The name originates from the fact that space

derivatives are computed using �nite di�erences of the variables placed on the nodes. A possible

extension of �nite di�erence schemes is to consider �nite volume schemes on regular Cartesian

grids. For this kind of schemes, the control volumes are regular, equally spaced and of same

size. More generally, the �nite volume formalism consists in integrating the system of partial

derivatives equation on control volumes. For conservation laws, the presence of the divergence

greatly simpli�es the numerical computation, transforming it into a numerical computation of

�uxes on the control volumes boundaries.
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Finite di�erence schemes

First, a uniform grid {xi, yj} is considered in space such that

xi+1 − xi=∆x, ∀ i ∈ [0 : Nx[ ,

yj+1 − yj=∆y, ∀ j ∈ [0 : Ny[ .
(I.25)

We use the notation Un
i,j for an approximation of U at time t = tn and at position (x = xi, y =

yj). Such a discretization of the space is depicted on �g. I.1 with the variables Un
i,j positionned

at each grid nodes (xi, yj).

Un
i,jUn

i−1,j Un
i+1,j

Un
i,j−1

Un
i,j+1

Figure I.1 � Space discretization for centered �nite di�erence schemes on a Cartesian grid

Two kind of di�erence schemes are possible. The �rst one is based really on �nite di�erences

and the approximation of spatial derivative of f(U) and g(U). Those kind of schemes writes

Un+1
i,j = Un

i,j −
tn+1 − tn

∆x
Dx · f(Un)− tn+1 − tn

∆y
Dy · g(Un) (I.26)

where Dx and Dy are discrete approximations of respectively the x- and y-space derivatives.

Considering hyperbolic systems of conservation laws, it is convenient to have a discrete conser-

vation form of eq. (I.26). Indeed, for some discretization of space derivatives, one may rewrite

eq. (I.26) under a conservative form as

Un+1
i,j = Un

i,j −
tn+1 − tn

∆x

(
f?
i+ 1

2
,j
− f?

i− 1
2
,j

)
− tn+1 − tn

∆y

(
g?
i,j+ 1

2

− g?
i,j− 1

2

)
. (I.27)

Remark I.3. Any formulation as depicted in eq. (I.27) may be rewritten as in eq. (I.26). The

reverse is untrue. Examples of (i, j)-dependent discretization of the space derivatives may yield

to a non-conservative discretization.

Finite volume schemes on Cartesian grids

Keeping the notations for the grid, one de�nes a control volume with as a degree of freedom
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the average value of U inside this control volume. This way, one rewrites any central di�erence

schemes as a �nite volume scheme on Cartesian grids. Finite volume schemes are based on an

integration of eq. (I.24) over a control volume K. It yields

∂t

∫
K
UdV +

∫
∂K

(f(U) · nx + g(U) · ny)dS = 0. (I.28)

For �nite volume schemes on Cartesian grids, one uses the following de�nition of the control

volume denoted Ki+ 1
2
,j+ 1

2

Ki+ 1
2
,j+ 1

2
= ]xi, xi+1[× ]yj , yj+1[ . (I.29)

Denoting the average value of U over a control volume Ki+ 1
2
,j+ 1

2
as U i+ 1

2
,j+ 1

2
(see �g. I.2), it

yields the following scheme for Cartesian grids

U
n+1
i+ 1

2
,j+ 1

2
= U

n
i+ 1

2
,j+ 1

2
− tn+1 − tn

∆x

(
f?
i+1,j+ 1

2

− f?
i,j+ 1

2

)
− tn+1 − tn

∆y

(
g?
i+ 1

2
,j+1
− g?

i+ 1
2
,j

)
(I.30)

where f? and g? are the numerical �uxes at the boundary. Under this peculiar form, and

considering vanishing �uxes at the boundary or periodic boundary conditions, by summing on

every i and j, one immediately gets the conservation of U .

U
n
i+ 1

2
,j+ 1

2

Figure I.2 � Space discretization for centered �nite volume schemes on a Cartesian grid

Finite volume schemes on unstructured grids

Let T be a tessellation of the bounded domain in which eq. (I.24) is solved. The idea for �nite

volume on unstructured grids is to consider the control volumes as members of T . An example

of control volumes is depicted in �g. I.3. Using proposition I.5 and assuming that the normal

outward the control volume is de�ned, a generic numerical conservative scheme writes

U
n+1
K = U

n
K −

tn+1 − tn

|K|
∑
∂Kq

|∂Kq|
(
f?∂Kq , g

?
∂Kq

)
· n∂Kq (I.31)
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where f? and g? are the numerical �uxes at the boundary and n∂Kq the normal to ∂Kq outward
K. Under this peculiar form, and considering vanishing �uxes at the boundary or periodic

boundary conditions, by summing for every K in T , one immediately gets the conservation of

U .

Un
K

Figure I.3 � Space discretization for �nite volume schemes on an unstructured grid

I-1.2.2 Convergence and consistency of numerical schemes

Convergence of a numerical scheme is a most desired property for a given scheme. Brie�y,

convergence means that as the time step and mesh size tend toward zero, the approximated

solution gets closer to the real solution. A de�nition of convergence is introduced as follows

De�nition I.4 (Convergence of a �nite di�erence approximation [2]). A �nite di�erence scheme

approximating a partial di�erential system is convergent if for any solution to the partial

di�erential equation U(x, t) and solutions to the �nite di�erence schemes Un
i such that U0

i

converges to the initial condition U(x, 0) = U0(x), Un
i converges to U(x, t) as (i∆x, n∆t)

converges toward (x, t) as ∆t,∆x tend to 0.

In order to get convergence of a numerical scheme, two important properties are consistency and

stability. Brie�y, the consistency property stands for saying that as the mesh in space and time is

re�ned, the error between the solution to the continuous system and the approximated solution

goes to zero. Consistency is de�ned as

De�nition I.5 (Consistency of a �nite di�erence approximation [2]). Let PU = 0 be a par-

tial di�erential system approximated by a �nite di�erence scheme denoted P∆x,∆t. The �nite

di�erence scheme is consistent with the partial di�erential system if for any smooth function

φ,

lim
∆x,∆t→0

Pφ−P∆x,∆tφ = 0, (I.32)

The norm (uniform convergence) is precised in [2].
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Remark I.4. In order to show consistency of a numerical scheme, one often shows, using a Taylor

expansion of a smooth function φ, that

Pφ−P∆x,∆tφ = O(∆tα + ∆xβ), α > 0, β > 0. (I.33)

It gives both the consistency and the accuracy of a numerical scheme.

De�nition I.6 (Consistency of a �ux in a �nite volume approximation [61]). Assume a �nite

volume scheme which writes under the form

Un+1
i −Un

i +
tn+1 − tn

∆x

[
f?
i+ 1

2

− f?
i− 1

2

]
= 0. (I.34)

Let f?
i+ 1

2
,j
write as a vector valued function Φ, with (r, p) ∈ N2 such that

f?
i+ 1

2

= Φ(Un
i−p+1, ...,U

n
i+r), ∀i ∈ Z, ∀n ∈ N. (I.35)

Then if Φ satis�es

Φ(U , ...,U) = f(U), (I.36)

the �ux is said consistent.

De�nition I.7 (Weak consistency [46]). Consider a given numerical scheme for the discretization

of eqs. (I.1) and (I.7). Assume that the numerical solution, denoted U∆x is bounded in (L∞)N .

Moreover assume that there exists Û ∈ (L∞)N such that U∆x converges toward Û in (L1
loc)

N .

If Û is a weak solution in the sense of de�nition I.1 to eqs. (I.1) and (I.7), then the scheme is

weakly consistent.

Remark I.5. A practical criterion for weak consistency is to show that the �ux is consistent [106].

See also [46, 61].

Proving only consistency of a numerical scheme does not prove its convergence. As will be shown

in section I-1.2.4, consistency alone is not enough. The concept of stability is needed to ensure

convergence for linear systems. Although a scheme may be consistent, truncation error may stack

over time and induce larger and larger errors. Stability is closely related to the property of the

numerical schemes to deal with numerical errors. If a scheme has a tendency to increase at each

time step the numerical errors made on the previous ones, then it is unstable. In a �nite time,

the numerical errors become preponderant over the approximation and the computations are not

relevant anymore. As a contrary, if the numerical errors stay constant or even better if they are

damped out by the �nite di�erence schemes, it is then stable. In 1928, Courant, Frierichs and

Lewy [32] formulated the fundamental CFL condition, that strongly links the time step to the

mesh width to ensure quadratic stability. In order to de�ne the notion of quadratic stability, the

de�nition of the quadratic norms are �rst introduced

De�nition I.8 (Discrete l2 norms). For a given sequence φ = (φi)i∈Z on an in�nite grid, the l2

norm in space is de�ned as

‖φ‖2l2(Z) =
∑
i∈Z

∆x|φi|2. (I.37)
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For φ = (φn)n∈N = (φni )i∈Z,n∈N, the l2 norm in space and time is de�ned as

‖φ‖2l2(Z),l2(N) =
∑
n∈N

∆t
∑
i∈Z

∆x|φni |2. (I.38)

De�nition I.9 (Quadratic stability [2]). A �nite di�erence scheme P∆x,∆t is stable for the

quadratic norm and for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2, if there exists an integer N

such that for any non-negative time T , there exists a constant CT which depends only on T such

that for φ ∈ l2(l2(Z),N) satisfying P∆x,∆tφ = 0

‖φn‖l2(Z) ≤ CT
N∑
k=0

‖φk‖l2(Z), ∀(∆x,∆t) ∈ Λ, 0 ≤ n∆t ≤ T (I.39)

is satis�ed.

Often, the stability criteria used for numerical scheme is stronger than the one proposed in

de�nition I.9. Indeed, the previous stability criteria is quite di�cult to prove, in general. Instead

one would rather use the following one.

De�nition I.10 (Von Neumann's stability [2]). A �nite di�erence scheme P∆x,∆t is stable in

the sense of Von Neumann for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2, if for any non-negative

time T such that for φ ∈ l2(l2(Z),N) satisfying P∆x,∆tφ = 0

‖φ‖l2(Z) ≤ ‖φ0‖l2(Z), ∀(∆x,∆t) ∈ Λ, 0 ≤ n∆t ≤ T, (I.40)

is satis�ed. It is equivalent to

|||P∆x,∆t||| ≤ 1, ∀(∆x,∆t) ∈ Λ. (I.41)

Analytic and numerical methods to check stability and determine stability regions are proposed

in the next section. Studies focus only on the Von Neumann's criteria.

I-1.2.3 Linear stability analysis of numerical schemes

The Von Neumann's stability analysis has been derived to check stability regions for linear �nite

di�erence schemes. First, a stability analysis for linear �nite di�erence schemes with periodic

boundary conditions is proposed. This is the so-called Von Neumann stability analysis (also

known as the Fourier stability analysis). Second, the analysis of stability for �nite di�erence

schemes with non-periodic boundary conditions is detailed.

Stability analysis for the Cauchy problem

Stability analysis for the Cauchy problem with linear partial di�erential equations is often per-

formed using the Von Neumann stability analysis. The analysis is based on the Fourier decom-
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position of the numerical error. It was developed by Von Neumann in the 40s, but only �rst

brie�y introduced in [33]. It was then extended in a more theoretical way in [22]. One may also

refer to the textbook by Allaire [2].

Consider a �nite di�erence scheme P∆x,∆t. The approximated solution (uni )i∈Z,n∈N satis�es

P∆x,∆tu = 0. Considering periodic boundary conditions, one may decompose (uni ) as a Fourier

serie in space. Up to a change of variables, one may estimate that the space interval of periodicity

has a length equal to 1. Moreover, one makes the assumptions that u has an exponential growth

or decay in time de�ned by a constant α ∈ C. It yields that

u(x, t) = eαt
∑
k∈Z

ψk eikπx, ψ ∈ l2(Z). (I.42)

Let us de�ne the sequence (εk) as

εk(x, t) = eαt eikπx, k ∈ Z. (I.43)

It is su�cient to consider the growth of εk for any k to get the growth of u, as the series behave

as its terms. To alleviate the notation, the index k is dropped. The notation j is used for the

space index in order not to introduce any confusion with the complex number i. One may notice

the following relations for the discretized version of εk denoted εnk,j .
εnk,j =εk(j∆x, n∆t) =eαn∆t eikπj∆x

εn+1
k,j =eα(n+1)∆t eikπj∆x =eα∆t εnk,j

εnk,j+m=eαn∆t eikπ(j+m)∆x=eikπm∆x εnk,j

(I.44)

The ampli�cation factor is introduced as a function of θ = kπ∆x, ∆x and ∆t as

G(θ,∆x,∆t) =
εn+1
k,j

εnk,j
= eα∆t . (I.45)

Values taken by the ampli�cation factor G determine the stability of the schemes. Linear stability

via ampli�cation factor study is de�ned in de�nition I.11.

De�nition I.11 (Ampli�cation factor and stability [2] ). A �nite di�erence scheme P∆x,∆t with

constant coe�cients is stable for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2 if and only if there

exists a constant C which is independent of θ, ∆x, ∆t such that its ampli�cation factor satis�es

|G(θ,∆x,∆t)| ≤ 1 + C∆t, ∀θ ∈ [0 : 2π] . (I.46)

Furthermore, the restricted stability conditions yields

|G(θ,∆x,∆t)| ≤ 1, ∀θ ∈ [0 : 2π] . (I.47)

Let us take P∆x,∆t a one-step �nite di�erence scheme for a scalar conservation laws. Assume it
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writes under the following form

un+1
j − unj −

∆t

∆x

r∑
m=−p

Cmu
n
j+m = 0.

which yields using eq. (I.44), that

G(θ,∆x,∆t) = 1 +
∆t

∆x

r∑
m=−p

Cm eimθ

Assuming that ∆t and ∆x are proportional with a given constant λ, it yields

G(θ,∆x, λ∆x) = 1 + λ
r∑

m=−p
Cm eimθ .

One checks analytically or numerically that G(θ,∆x, λ∆x) ≤ 1, θ ∈ [0 : 2π] to determine Von

Neumann's stability for a given λ as for this example G is independent of ∆x.

Stability analysis for the initial value boundary problem

The normal mode analysis for linear hyperbolic equation was devised and introduced in [63]

and extended in [96] and [130]. The condition called the Godunov-Ryabenkii gives necessary

condition for stability, and so not always su�cient. Works presented in [76] develop su�cient

conditions for stability, called the GKS theory in a fully discrete version (the semi-discrete case

was dealt later with [150]). The essence of their work is presented in the following propositions.

Consider the problem depicted in eq. (I.22) with appropriate boundary conditions according to

the uniform Kreiss condition. First, semi-discrete case for linear hyperbolic equation is considered

and later extended to the fully discrete case.

Consider a semi-discrete �nite di�erence approximation Q∆x and a boundary operator D such

that {
∂tuj = Q∆xu

n
j , j ≥ 1,

Duj = gj , −r ≤ j ≤ 0.
(I.48)

Performing a Laplace transform (u(x, t) = est φ(x)) in the time variable on eq. (I.48), multiplying

by ∆x and using ŝ = s∆x yield{
ŝûj = ∆xQ∆xûj , j ≥ 1,

D ûj = gj , −r ≤ j ≤ 0.
(I.49)

The Godunov-Ryabenkii condition writes

Lemma I.10 (Godunov�Ryabenkii condition [62]). Consider eq. (I.48) with a zero boundary

condition. A necessary condition for stability is that there exists no nontrivial eigenvector û

associated to an eigenvalue ŝ with <(ŝ) > 0 of eq. (I.49).



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 25

In order to introduce the GKS theory in both semi-discrete and fully discrte form, the de�nition

of generalized eigenvector if �rstly given.

De�nition I.12 (Generalized eigenvector for the semi-discrete problem [168]). The sequence

{ûj(ŝ)} is an eigenvector if:

1. it is not identically 0,

2. It satis�es eq. (I.49),

3. <(ŝ) ≥ 0 and

� for <(ŝ) > 0, the corresponding solution satis�es lim
j→∞

ûj(ŝ) = 0,

� for <(ŝ) = 0, let ŝ0 = lim
ε→0+

ŝ+ ε. Then {ûj(ŝ0)} is an eigenvector.

The GKS theory provides the following results concerning semi-discrete schemes.

Lemma I.11 (Semi-discrete GKS condition [150]). Consider eq. (I.49) with a zero boundary

condition. A su�cient condition for stability of eq. (I.48) is that there exists no generalized

eigenvector û for <(ŝ) ≥ 0 in the sense of de�nition I.12.

For fully discrete case, consider a �nite di�erence approximation Qν , with ν = ∆t
∆x and a boundary

operator D such that {
un+1
j − unj = Qνu

n
j , j ≥ 1,

Dunj = gj , −r ≤ j ≤ 0.
(I.50)

Then, taking the discrete Laplace as unj = znuj , one gets the fully discrete problem with Laplace

transform as {
(z − 1)ûj = Qν ûj , j ≥ 1,

D ûj = gj , −r ≤ j ≤ 0.
(I.51)

We introduce the de�nition of generalized eigenvector for the fully discrete problems.

De�nition I.13 (Generalized eigenvector for the fully discrete problem [172]). Let |z| ≥ 1. The

sequence {ûj(z)} is an eigenvector if

1. it is non identically 0,

2. it satis�es eq. (I.51),

3. ‖û(z)‖l2 <∞ for |z| > 1.

The sequence {ûj(z)} is a generalized eigenvector if

1. it is non identically 0,

2. it satis�es eq. (I.51),

3. ‖û(z)‖l2 =∞. Furthermore, û(z) = lim
θ→z,|θ|>1

û(θ) and û(θ) satis�es (θ−1)ûj(θ) = Qν ûj(θ).

It yields in peculiar the following GKS condition for fully discrete scheme.

Lemma I.12 (Fully discrete GKS condition [76, 172]). Consider eq. (I.51) with a zero boundary

conditions. A su�cient condition for stability of eq. (I.50) is that there exists no generalized

eigenvector û for |z| ≥ 1 in the sense of de�nition I.13.
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Further works by Wu and later by Coulombel [172, 31, 30, 29] have been done in order to change

the resolvent estimates into semi-groupe stability estimates. Goldberg and Tadmor introduced

stability criteria for a particular class of numerical schemes [64, 65, 66, 67]. See also [75] for a

special link between the Godunov-Ryabenkii conditions for stability and the GKS theory. Last,

the summation by part technique introduced by Olsson give energy estimates and hence stability

using special structure of operator at the boundary [128, 129].

I-1.2.4 Convergence toward a weak solution

Convergence for linear systems using �nite di�erence methods

The Lax�Richtmyer equivalence theorem is from [105]. Its applicability is restricted to the special

case of linear numerical methods for well-posed linear partial di�erential equations. It states that

Theorem I.13 (Lax�Richtmyer equivalence theorem [105]). A consistent �nite di�erence method

for a well-posed linear initial value problem is convergent if and only if it is stable.

One can easily summarized the theorem with

linear, consistency + stability ⇐⇒ convergence.

However, as indicated, the scope of applications of this theorem is restricted to linear partial dif-

ferential equation systems. Stability and consistency are often not enough to imply convergence

for a non-linear system. To deal with non-linearity, the Lax�Wendro� theorem for non-linear

hyperbolic systems of conservation laws is introduced.

Convergence for a non-linear hyperbolic system of conservation laws

The Lax�Wendro� theorem has been presented and proved in [106]. It may be seen as an

extension of the Lax�Richtmyer equivalence theorem for the non-linear hyperbolic system of

conservation laws. It states about su�cient conditions to ensure convergence of the numerical

scheme toward a weak solution. If a consistent, stable and conservative numerical scheme for

eq. (I.1) converges toward a solution, then it converges toward a weak solution of eq. (I.1).

Consider a consistent �nite volume scheme in the sense of de�nition I.6. Consider that (U0
j )j∈Z

satis�es the initial condition prescribed in eq. (I.7). Then as ∆t and ∆x tend to zero, under

certain hypothesis, the limit U is a weak solution of eq. (I.1) for the initial conditions U0.

Theorem I.14 (Lax�Wendro� theorem [106]). Let U∆x(x, t) be a numerical solution obtained

on a given grid whose width is ∆x. If

i) U∆x is uniformly bounded in ∆x in L∞,

ii) lim
∆x→0

‖U∆x −U‖L1,

iii) U∆x is obtained using the formulation presented in eq. (I.34) and Φ satisfying eq. (I.36).
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Then the limit solution U is a weak solution of eq. (I.1) with initial conditions prescribed in

eq. (I.7)

The theorem can be summarized as

convergence + consistency + stability + conservation =⇒ U is a weak solution.

As a contrary to the Lax�Richtmyer equivalence theorem, there is no equivalence in the Lax�

Wendro� theorem, only an implication. A non-linear scheme which converges toward a weak

solution may not be conservative or stable. Furthermore, the Lax�Richtmyer theorem gives

convergence results for linear problem using stability and consistency. Whereas the Lax�Wendro�

theorem assumes convergence, stability, consistency and conservation to yield convergence toward

a weak solution. Theorem I.14 can be extended to unstructured grid based �nite volume scheme

(see [47]).

I-1.2.5 Convergence toward the entropic solution for scalar conservation laws

For scalar conservation laws, one can prove that the numerical scheme under the Lax�Wendro�

hypothesis and a consistency with the entropic condition converges toward the entropic solution.

The proof is done in [154]. The theorem states that if the scheme satis�es a discrete entropy

inequality, then the limit solution u is the entropic solution of the scalar conservation law.

De�nition I.14 (Entropy condition consistency [47]). A �nite di�erence or �nite volume scheme

is consistent with the entropy inequality if for any entropic pair (η, ζ) there exists an entropic

�ux function Ξ satisfying

Ξ(u, ..., u) = ζ(u), u ∈ U .

such that for a scheme which writes as eq. (I.34), the discrete entropic inequality

η(un+1
j )−η(unj )+

∆t

∆x

[
Ξ(unj−p+1, ..., u

n
j+r)− Ξ(unj−p, ..., u

n
j+r−1)

]
≤ 0, ∀j ∈ Z, ∀n ∈ N (I.52)

holds.

This de�nition gives a completion to the Lax�Wendro� theorem for and only for scalar con-

servation laws. Under entropic condition consistency, a scalar numerical scheme satisfying the

hypothesis of the Lax�Wendro� theorem converges toward the entropic solution.

Theorem I.15 (Existence and uniqueness of the entropic solution [47]). Let U∆x(x, t) be a

numerical solution obtained on a given grid whose width is ∆x satisfying the aforementioned

hypothesis of theorem I.14. If moreover the scheme presented in eq. (I.34) is consistent with the

entropy condition (see de�nition I.14) and that for any entropy function η, the numerical �ux

Ξ is at least Lipschitz continuous, then the limit solution u is the unique entropic solution of

the Cauchy problem formed with the scalar conservation law eq. (I.1) and the initial condition

prescribed in eq. (I.7).
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I-2 Numerical methods for compressible hydrodynamics

This section is devoted to an overview of numerical methods for the approximation of the Euler

equations in multidimensional space. These numerical methods are �rst classi�ed into two large

families. The �rst one is called the Lagrangian or Arbitrary Lagrangian Eulerian family of

methods. The underlying tessellation is deformed along the computation. The second family is

the high-order methods on �xed grids, whether Cartesian or unstructured. Before any further

details concerning numerical methods for compressible hydrodynamics, the Euler and Lagrange

equations are reminded.

I-2.1 Euler and Lagrange equations for compressible hydrodynamics

Euler compressible hydrodynamics equations stand for the approximation of inviscid compressible

�ows. The variables are the density ρ, the velocity �eld u and the total energy e. Moreover it is

convenient to use also the de�nitions of internal energy ε and speci�c volume τ as{
ε = e− 1

2‖u‖
2

τ = 1
ρ

(I.53)

The Euler system writes in the absence of any source terms in Rd

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI

(ρe+ p)u

 = 0. (I.54)

The convex set of states U writes [61]

U = {(ρ, q = ρu, E = ρe) s.t. ρ > 0, q ∈ Rd, E − ‖q‖
2

2ρ
> 0},

which means that the density is non-negative as well as the internal energy. The system is closed

with an equation of state which links pressure, internal energy and speci�c volume as

p = EOS(τ, ε). (I.55)

I-2.1.1 Euler and Lagrange systems in 1D

In one space dimension, the Euler system writes

∂t

 ρ

ρu

ρe

+ ∂x ·

 ρu

ρu2 + p

(ρe+ p)u

 = 0. (I.56)

The Lagrangian system is deduced from eq. (I.56) with an appropriate change of variables.
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Introducing a change of variables (x, t)→ (X, t) de�ned as

dx(X, t) = J(X, t)dX + u(X, t)dt, (I.57)

where J is the Jacobian of the deformation and satis�es J = ∂Xx(X, t). One gets the following

result concerning the material derivative of J

DtJ(X, t) = J(x, t)∂xu(x, t). (I.58)

Then for any smooth enough function φ, one gets the following derivatives rules


Dtφ(X, t) = ∂tφ(x, t) + u(x, t)∂xφ(x, t),

∂Xφ(X, t) = J(x, t)∂xφ(x, t),

Dt(Jφ)(X, t) = [J∂tφ+ u∂xφu] (x, t).

(I.59)

Using eq. (I.59), one get the following lemma

Lemma I.16 (Euler-Lagrange change of variables). For any couple of smooth enough function

(φ, ψ), the change of variables (x, t)→ (X, t) yields

[Dt(Jφ) + ∂Xψ] (X, t) = [J∂tφ+ ∂x(φu+ ψ)] (x, t).

Then using lemma I.16 in eq. (I.56), one gets the 1D Lagrange equations. It writes

Dt

ρ0τ

ρ0u

ρ0e

+ ∂X

−up
pu

 = 0. (I.60)

Using the de�nition of internal energy as the di�erence between the total energy and the kinetic

energy, it yields an hyperbolic system with a non-conservative form as


Dtρ0τ − ∂Xu = 0

Dtρ0u+ ∂Xp = 0

Dtρ0ε+ p∂Xu = 0

(I.61)

Note that eq. (I.60) is well de�ned in the sense of distribution for any (τ, u, e) ∈ L∞R×]0:T [. As

a contrary, eq. (I.61) is not. The term p∂Xu is well-de�ned for smooth enough functions, but is

not in general in the sense of distributions. In [36], the authors introduced a generalization of

the notion of weak solution in the sense of distributions despite non-conservative products. The

generalization is based on the integration along a conservative path. However, in [1], the authors

produced a comment on the computation of non-conservative products. Despite the integration

along the conservative path, numerical results thus obtained are not conclusive. Discretization

of non-conservative products has tremendous consequences for schemes solving eq. (I.61). It is

shown later for the special case of hydrodynamics.
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I-2.1.2 Entropic relations for the 1D Lagrange system

Let us focus on the entropy introduced by the second principle of the thermodynamics presented

in theorem I.17.

Theorem I.17 (Second principle of thermodynamics). For a closed system, without any ex-

change with the exterior, the entropy of a system increases over time or stays constant.

Remark I.6. The entropy stays constant for reversible processes. In particular, for smooth �ows,

the entropy is conserved.

Introducing the concave entropy function S, the temperature T , the second principle of thermo-

dynamics writes for the compressible hydrodynamics

TdS = dε+ pdτ. (I.62)

In particular, one gets for smooth quadruplet (ε, p, τ, u) that

TDtS = Dtε+ pDtτ

= −p∂Xu+ p(∂Xu)

= 0

(I.63)

meaning that for smooth �ows and non-zero temperature, the entropy indeed stays constant in

time.

More generally, for any �ows which may include discontinuities, the entropy satis�es

TDtS ≥ 0. (I.64)

A �rst point of view, that will be detailed later on, to ensure increasing of entropy is the use

of pseudo-viscous forces. On the continuous level, it forces the evolution of internal energy to

satisfy Dtρ0ε+(p+q)∂Xu = 0, where q is called the pseudo-viscosity or arti�cial viscosity. Then,

if one assumes that q = −φ∂Xu, φ ≥ 0, then eq. (I.63) becomes formally

TDtS = Dtε+ pDtτ

= −(p+ q)∂Xu+ p(∂Xu)

= −q∂Xu
= φ|∂Xu|2 ≥ 0.

(I.65)

The choice of arti�cial viscosity is detailed in section I-2.4. Note that this result is based on

formal computations at the continuous level, and does not imply results on the discretized one.

In [42], Després derived a canonical formulation for Lagrangian systems of conservation laws,

assuming a zero entropy �ux, Galilean invariance and isentropy for smooth solutions.

Equation (I.64) often yields a natural CFL condition for the numerical scheme, in order to

satisfy a correct increase of entropy. Moreover, one challenging problem for numerical simulation
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containing shocks is to control the increase of entropy, but also to ensure that the entropy does not

increase on smooth �ows. Assuming that the function S is concave. Using similar computations

as in [45], for U ∈ U , let g(α) = S(Un
j + α(Un+1

j − Un
j )). Then, there exists θ ∈ ]0 : 1[ such

that

g(1) = g(0) + g′(1)− 1

2
g′′(θ).

By de�nition of g, one has that{
g′(1) = ∇US(Un+1

j ) · (Un+1
j −Un

j ),

g′′(θ) = (Un+1
j −Un

j ) ·
(
∇2

US(Un+1
j (Un+1

j −Un
j )
)
.

(I.66)

Using the concavity of S, it gives that −1
2g
′′(θ) ≥ 0. Then, it leads to

S(Un+1
j ) = S(Un

j ) +∇US(Un+1
j ) · (Un+1

j −Un
j )− 1

2
(Un+1

j −Un
j ) ·

(
∇2

US(Un+1
j (Un+1

j −Un
j )
)

(I.67)

Assume (as for the example detailed in [45]) that previous equation rewrites under the form

S(Un+1
j ) = S(Un

j ) + (A− ∆t

∆X
B), (I.68)

where A is a quadratic positive form evaluated on (Un+1
j − Un

j ), whereas B is also a positive

quadratic form evaluated on (ψn+1
j −ψnj ). Then assuming that the functionU 7→ ψ is continuous,

there exists a constant c > 0 such that

‖ψn+1
j −ψnj ‖ ≤ c‖Un+1

j −Un
j ‖.

Then for ν = ∆t
∆X small enough, one has (A− νB) ≥ 0, and hence

S(Un+1
j ) ≥ S(Un

j ).

In practice, conditions on ν to get S(Un+1
j ) ≥ S(Un

j ) is not easy to obtain. And, more often that

not, there is no conditions on ν that gives entropic behaviour of the scheme. One should refer

to [45] for further informations concerning the entropic behaviour of some numerical Lagrangian

schemes.

I-2.1.3 General Lagrangian formulation for multi-dimensional problem

The multi-dimensional formulation of Lagrangian hydrodynamics [11] writes in integral form for

a bounded domain K(t)
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
Dt

∫
K(t) ρdV =0,

Dt

∫
K(t) ρudV=−

∫
∂K(t) pndS,

Dt

∫
K(t) ρedV =−

∫
∂K(t) pu · ndS,

Dt

∫
K(t) dV =

∫
∂K(t) u · ndS.

(I.69)

Here the domain K(t) may be displaced or deformed in time. Dt denotes for the material

derivative, meaning Dt = ∂t + u · ∇. The �rst three equations in system (I.69) are respectively

the conservation of mass, momentum and total energy. The last one is a geometric conservation

law. It links the deformation and displacement of the bounded domain K(t) to the normal

velocity at its boundary.

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics

In this section, a brief overview of Lagrangian and ALE methods for compressible hydrodynamics

is given. Traditionally, Lagrangian hydrodynamics are solved using staggered schemes (see sec-

tion I-2.2.1). Thermodynamics quantities and kinematic ones are not colocated. This tradition

is issued from the Richtmyer and Von Neumann Richtmyer formulation for solving Lagrangian

hydrodynamics. Staggered schemes were among the �rst to be used in �uid dynamics compu-

tation. Indeed, in the late 1940s, the �rst shock capturing hydrodynamic scheme by Richtmyer

[137] and von Neumann and Richtmyer [124] was a time-space staggered 1D Lagrange explicit

scheme, formulated in internal energy with arti�cial viscosity and 2ndorder accuracy in space and

time on smooth �ows. The scheme is usually called vNR (for Von Neumann�Richtmyer). Use

of arti�cial viscosities is required to capture correctly shocks. Arti�cial viscosities and models

of hyperviscosities are discussed later. Compatible formulations of compressible Lagrangian hy-

drodynamics are an improvement to such methods in which the schemes naturally preserve total

energy and are consistent although being formulated in internal energy. Starting from localisa-

tion of variables on a given grid, formulation in internal energy is �rst extensively described as

it is somehow the classical way of solving Lagrangian hydrodynamics system. Then, compatible

and entropic Lagrangian methods are introduced. Last, pointing out some arising di�culties in

Lagrangian simulations, ALE formalism is then introduced and detailed.

I-2.2.1 Natural derivation of staggered grids for hydrodynamics

Before addressing time and space discretizations, the localisation of the variables are important

enough to be pointed out. Indeed, the disposition of the variables on a given grid can alter

signi�cantly precision and robustness of the numerical schemes. Staggered grids can be used

to compute with a narrower centered stencil the spatial derivatives or pointwise values from

average ones. This increases the spatial resolution. Indeed, eg. for wave propagation, it is

known that staggered (grids based) schemes require less points per wavelength than cell-centered

schemes. However, due to the fact that the grids are staggered, the CFL condition is often reduced

compared to cell-centered schemes. There exist multiple de�nitions of the staggering of variables.
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These de�nitions are gathered in [5] for the simulation of meteorology and oceanography and

depicted in �g. I.4. The �rst one called cell-centered or A-type staggering is to consider that

both velocity- and mass- related variables are located at the same position on the grid. The

variables are placed at the cell center, or exclusively at the node delimiting the cell. Sometimes

cell-centered schemes are also known as colocated ones. The second one called node-staggering

or B-type staggering is to consider that velocity-related variables are at the nodes and the mass-

related variables are at the cell centers. Equivalently velocity may be de�ned at the cell centers,

and mass-related variables at the nodes. These kind of staggering is used for instance in [124,

176, 163, 109]. The third one called face staggering or C-type staggering consists in locating the

x-velocity (resp y-velocity) related variables along the faces whose normals are colinear to the

x-direction (resp. y-direction). The mass-related variables are positionned at cell-centers. This

staggering is used in [153, 171] for the BBC scheme, and by extension to unstructured grids for

the MAC schemes developed in [58, 80]. The natural extension to unstructured grids is made by

positioning the normal velocity at the face on each faces of the grid's cell. This is often mostly

convenient for conservation laws like Euler equations. The fourth one known as D-type is but a

90◦ rotation of the C-type staggering. This staggering enables both circulation and vorticity to

be de�ned at the same location as mass-related variables. For most conservation laws, integration

of the divergence is less convenient using this staggering of variables. Furthermore studies also

proved that such a grid is more dispersive compared to a B- or C-type staggering. The E-type

staggering is but a 45◦ rotation of the B-type staggering. The adjacency is no longer made on

horizontal or vertical path for regular grids, but rather on a diagonal path.

I-2.2.2 Internal energy formulated numerical schemes

As aforementioned, the original vNR scheme, based on a B-type staggering is not conservative

in total energy. Furthermore, without any arti�cial viscosity, the scheme is unable to correctly

capture strong shocks. This lack of conservation is due to the choice of discretized variables

made by Richtmyer. He chose to discretize the internal energy and its evolution equation. As a

contrary, discretization of total energy yields naturally conservation of the discretized total en-

ergy. The main di�culty for schemes formulated in internal energy is that this is not any longer

a conservation law. On a mathematical continuous level, the term appearing in the internal

energy evolution is not de�ned in the sense of distributions, for velocity and pressure as bounded

functions ((u, p) ∈ L∞). The use of arti�cial viscosities solves this problem by smoothing the

pressure. With an appropriate de�nition of arti�cial viscosities terms, the internal energy evolu-

tion term becomes well-de�ned. The default of total energy conservation was highlighted in 1961

by Trulio and Trigger [165]. For non-constant time-steps, the vNR scheme is not conservative

in total energy. They therefore proposed an implicit conservative version of the vNR scheme,

still formulated in internal energy. They kept the spatial staggering of variables but without the

temporal one. Similarly, works done by Popov and Samarskii [135] developed a similar staggered

scheme with implicitation in time. In the early 1970s, DeBar used a Lagrange-remap formalism

for the Trulio�Trigger scheme [37, 38]. At the end of each Lagrangian phase, the variables were
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Figure I.4 � Arakawa grid system displaying the placement of variables on the grid. u denotes
for x-velocity related variables, v for the y-velocity related variables and p for the
mass related variables

projected on the original grids. He identi�ed a lack of conservation due to this procedure. In

fact, the projection of momentum highly dissipates kinetic energy, and so leads to a dissipation

of the reconstructed total energy. He introduced a correction in internal energy to recover global

total energy conservation and ensure correct shock capturing. Later, and using the earlier works

by DeBar, several multi�uid Eulerian hydrocodes with interface reconstruction on 2D Cartesian

grids [153] were developed, based on a C-type staggering of variables. Those hydrocodes relied on

the Trulio-Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with

Strang splitting. The splitting was made to consider �rst a 1D Lagrange-remap scheme in the x-

direction, and then in the y-direction. This kind of splitting, known as directional splitting, yields

the advantage of an easy extension from one dimensional problems to multi-dimensional ones.
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Later, a strictly explicit predictor-corrector conservative version of the Trulio-Trigger scheme was

reported by Woodward and Colella in [171]. This version was called the BBC scheme. It is a

2D Lagrange-remap scheme on staggered Cartesian grids based on a 1D Lagrange-remap setting

with Strang dimensional splitting. The total energy conservation result has been credited to Noh

[126]. The retained staggering of variables is the C-type one, based on Arakawa classi�cation

system. Caramana in 1998 [19] introduced the so-called compatible Lagrangian hydrodynamics

for node-staggering schemes. The idea of compatible Lagrangian method is to discretize properly

the internal energy evolution in order to automatically satisfy the conservation of total energy.

In [9], the authors highlight the properties of such discretization. Mainly, the emphasis is laid

on accuracy, consistency and stability of the compatible Lagrangian scheme. Simultaneously, on

the other side of the Atlantic, Youngs developed B-type staggered schemes in which the velocity

components were based on the node of the grids [176, 163, 142]. He proved his schemes, al-

though formulated in internal energy, to be conservative in total energy, using a similar internal

energy corrector as DeBar during the remapping phase. Similarly for unstructured grids, Herbin,

Gallouet and al. [82, 58, 80] developed similar procedures to recover local conservation of total

energy for the compressible Navier�Stokes and Euler equations for a C-type staggering. Very

recently, a paper by Llor and al. proposed a conservative, compatible and entropic version of

the original vNR schemes [109] staggered in both time and space. Entropic results are deduced

from arti�cial viscosities formulation.

I-2.2.3 Total energy Lagrangian methods for compressible hydrodynamics

As a contrary to staggered scheme, the cell-centered ones naturally conserve total energy and

satisfy naturally the de�nition of consistency for �nite volume schemes as de�ned in de�nition I.6.

Initial work by Després and Mazeran in [48] developed a framework in which one may easily build

any cell-centered scheme to solve Lagrangian hydrodynamics. The main cell-centered total energy

formulated Lagrangian schemes are Eucclhyd developed by Maire and al. in [110] and Glace

developed by Després and al. [21, 45]. Those schemes are based on unstructured grids. Glace

builds �uxes at the boundary of each cell using an acoustic Riemann solver at each nodes in

the direction given by nodes normals. Eucclhyd builds similar �uxes but using the average of

acoustic �uxes on each face around a node.

I-2.2.4 ALE formalism for compressible hydrodynamics

The Lagrangian approach can be limited due to very large deformations of the Lagrangian mesh.

Indeed, the mesh deformation forces to remesh a part or the entirety of the domain, with an

interface tracking in case of multi-materials simulation. For some complex and strong �ows,

the vorticity induced by the �ows forces the remeshing regularly, which is onerous and discards

partly the interest of the Lagrangian approach. A possible way to reduce this limitation is the

Arbitrary Lagrangian Eulerian (or ALE) approach (see [94]). Fluid �ows are computed on a

domain which is deformed by a given velocity �eld Umesh. This velocity �eld can be chosen such

that the interface between two materials is perfectly followed by the deformation of the mesh,
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or such that the entire solution is smoothed by the deformation of the mesh. If one considers

Umesh = 0, one gets back the Eulerian formulation of the scheme. And if Umesh = u�uid, one

gets back the Lagrangian formulation of the scheme.

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes

In this section, an extended overview of high-order �nite di�erence and �nite volume schemes

on �xed mesh for compressible hydrodynamics is given. First, the high-order space interpolation

of data is presented, as well as some procedures to limit spurious oscillations in the vicinity of

discontinuities. Then, multiple methods to achieve high-order integration in time are presented.

I-2.3.1 High-order space interpolation on Cartesian grids and spurious oscillations

Polynomial space interpolations

Higher-order accuracy in space is often based on high-order polynomial interpolations. Although

this kind of interpolation is very accurate for smooth data, it is highly oscillatory for data

with shocks or discontinuities. Indeed, Gibbs phenomenon due to polynomial interpolations

generates spurious oscillations in the vicinity of discontinuities. As the mesh is re�ned, the Gibbs

phenomenon is ampli�ed in amplitude but bounded, and the oscillations are of lesser amplitude

except near discontinuities. One possibility to reduce such oscillations is to use arti�cial viscosity

terms (see section I-2.4). Another one is to alter the interpolation of data, considering the

smoothness of the data, the average slope or the monotonicity of data. A possibility is to

introduce a MUSCL-like reconstruction to damp oscillations near discontinuities. This is what is

done by Nessyahu and Tadmor in [123]. Although non-oscillatory, the MUSCL reconstruction can

reach beyond second order accuracy. Another point of view has been developed. The essentially

non-oscillatory (aka ENO) schemes were �rst presented by Harten and al. in [77]. It gives a

general method to build non-oscillatory interpolations for piecewise smooth functions. The main

idea of ENO schemes is to select the stencil of data to perform the interpolation in function of

the data smoothness inside the stencil. Originally an easy way to interpolate spatial derivatives

as a function of point-wise values is to use the centered relations

∂xφi =
r∑

k=0

dk(φi+k+1 − φi−k−1), i ∈ Z. (I.70)

For example, for r = 0, d0 = 1
2 and it yields �rst order of accuracy. In practice, the stencil is

shifted in space in order to change the set of points on which the polynomial interpolation is

performed. It yields

∂xφi,l =

r+l∑
k=−r+l

ck,lφi+k+l, l ∈ {−p, . . . , p}, i ∈ Z. (I.71)

Each ∂xφi,l gives an approximation of the �rst space derivative of φ at x = xi but with a di�erent

stencil. Last, it requires to select the stencil which gives the less oscillatory interpolation. By
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doing so, the interpolation thus obtained is less oscillatory than the classical one. Later, based

on the ENO interpolation, the weighted essentially non-oscillatory (aka WENO) schemes were

developed by Shu and Osher in [144]. The modi�cation of the method is due to the presence of

weights that tend to reduce furthermore oscillations due to the interpolation. It gives

∂xφi =

p∑
l=−p

ωl(∂xφi,l), ωl ≥ 0,
∑
l

ωl = 1, i ∈ Z. (I.72)

One disadvantage of the WENO approach was that it was quite onerous to compute weights and

smoothness indicators. Improvements of both have been developed in [90]. Last, in [143], Shu

drew an analysis of the ENO/WENO schemes, as well as their evolution since the late eighties.

As a contrary, the compact schemes are based on a reduced stencil reconstruction. A simple

example of compact scheme is the resolution of the following system

α∂xφi−1 + ∂xφi + α∂xφi+1 =
r∑

k=−r
bkφi+k, l ∈ {−p, . . . , p}, i ∈ Z. (I.73)

Compact schemes have been presented by Lele in [122]. Within this approach, the width of a

stencil is reduced at the cost of a non-diagonal matrix to invert. With α = 0, one recovers the

original interpolation. A reduction of the stencil width tends to reduce interpolation oscilla-

tions. Similar procedures can be developed on unstructured grids but are more onerous than on

Cartesian ones.

Discontinuous Galerkin space interpolations

Discontinuous Galerkin methods [25] assume that the discrete solution Uh lies in the �nite

element space of discontinuous function

Wh = {V ∈ (L∞(Ω))p, ∀K ∈ Th, V |K ∈ (P(K))p}

where Th is a tessellation of Ω whose characteristic size is h and P(K) is the local polynomial

space on K. When computing �uxes between two members of T , one has a discrepancy at

the interface. A possible way is to solve a Riemann problem at the interface (see the ADER

schemes presented in section I-2.3.2) or an interpolation between the two computed values at the

interface.

Non-polynomial space interpolations

Classical interpolations are based on the assumption that locally the function is polynomial, using

Taylor expansion. Another possible interpolation method is the Padé interpolation method which

considers that the function is rational. Using this assumption, Padé interpolations usually reduce

oscillations in the vicinity of discontinuities.
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α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αs−1 as−1,0 · · · · · · as−1,s−2 0

1 θ0 θ1 · · · θs−2 θs−1

Table I.1 � A Butcher table for an explicit Runge�Kutta sequence

I-2.3.2 High-order integration in time

Runge�Kutta time integration

Let us consider �rst an integration in time based on Runge�Kutta sequences [99]. A primary

study of Runge�Kutta sequences has been done by Butcher [16, 17]. Later, multiple authors

proposed up to 5th-order accurate Runge�Kutta sequences in [55, 49]. More recently, study

of total variational diminishing Runge�Kutta sequences has been performed by Gottlieb and

al. in [70, 71, 69]. Moreover, Runge�Kutta sequences up to 9th-order accurate are available

in [167]. Runge�Kutta sequences present the interest of an easy integration in time, once the

semi-discretized in space form is obtained. Assume that the semi-discretized scheme writes

∂tUi = (P∆xU)i, i ∈ Z (I.74)

Assuming an explicit Runge�Kutta sequence whose Butcher table takes the form presented in

table I.1, the integrated in time scheme writes

Un+αl
i = Un

i + ∆t
l−1∑
m=0

al,m(P∆xU
n+αm)i, i ∈ Z,

Un+1
i = Un

i + ∆t
s−1∑
m=0

θm(P∆xU
n+αm)i, i ∈ Z. (I.75)

Lax�Wendro� or Cauchy�Kovalevskaya time integration

Very high-order Lax�Wendro� or Cauchy�Kovalevskaya based schemes have been presented in

[50] and are used in a CEA hydrodynamics simulation platform [91]. Originally, works have been

performed for the linear case, and especially the advection and wave equations as presented in

[40]. Consider an hyperbolic system of the form

∂tU + ∂xF (U) = 0.
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Integrating in time between tn and tn + ∆t and space over a cell Ki =
[
xi− 1

2
: xi+ 1

2

]
, it yields

U
n+1 −Un

= −
∫ tn+∆t

tn
(F (U(xi+ 1

2
, θ))− F (U(xi− 1

2
, θ)))dθ (I.76)

Performing a Taylor expansion around tn of F (U(xi+ 1
2
, θ) and F (U(xi− 1

2
, θ) it yields

U
n+1 −Un

= −
∑
k≥0

∂kt (F (U(xi+ 1
2
, tn))− F (U(xi− 1

2
, tn)))

∆tk+1

(k + 1)!

The idea is then to use the system of PDEs to replace time derivatives of F by spatial ones at

time tn. Thus, a high-order in time scheme is obtained. If one considers that space derivatives

are computed with high-order accuracy in space, then it yields a high-order accurate scheme in

both time and space.

ADER time integration

Arbitrary Derivative Riemann (also known as ADER) problem has been developed by Titarev

and Toro in [164]. It is a high-order accurate in both time and space �nite volume scheme. It

uses Godunov's upwind approach and the Lax�Wendro� (or Cauchy�Kovalevskaya) procedure.

For hyperbolic problem as depicted in eq. (I.56), the idea is to di�erentiate in time eq. (I.56) and

to solve Riemann problems on each of the derivatives. Solving Riemann problems on each of the

derivatives is called solving the generalized Riemann problem. Thus, it yields a high-order �nite

volume scheme.

I-2.4 Arti�cial viscosities and hyperviscosities

Arti�cial viscosities and hyperviscosities are a mean to damp spurious oscillations due to high-

order polynomial interpolations. The main idea is to add a viscous term to prevent oscillations

for occurring. The main drawback is that viscosity are tuned with user-�xed parameters, and

the choice of parameters is not obvious.

I-2.4.1 Internal energy weak formulation

As aforementioned, the internal energy evolution equation has no sense for non-smooth pressure.

A way to deal with this problem is to add a viscosity term such that the Lagrangian system

formulated in internal energy, initially depicted in eq. (I.61), now writes


Dtρ0τ − ∂Xu = 0,

Dtρ0u+ ∂X(p+ q) = 0,

Dtρ0ε+ (p+ q)∂Xu = 0.

(I.77)
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If q is chosen and built such that p+q is smooth and non-zero then the internal energy evolution

equation is de�ned in the sense of distributions. Moreover, from the physical point of view,

q can be seen originally as the viscosity produced by the inelastic collisions between particles

[138]. This can be seen as an enrichment of Euler equations. Usually arti�cial viscosities are

used for high-order schemes and/or for schemes formulated in internal energy. Mainly, the very

essence of the arti�cial viscosity is to reduce the Gibbs phenomenon which occurs at shocks and

discontinuities due to the reconstruction of �uxes. One may refer to the paper by Benson [11]

for more informations on the expression of the arti�cial viscosity q.

I-2.4.2 Standard expressions of viscosities

Originally in [124], the viscosity q takes the form

qi = −cqρi∆ui|∆ui|

with ∆ui = ui+ 1
2
− ui− 1

2
. This viscosity is usually called the vNR arti�cial viscosity or pseudo-

viscosity. In [138], the Rosenbluth viscosity is proposed. It is somehow similar to the original

vNR pseudo-viscosity but only activated where ∆ui < 0. Indeed, for a perfect gas, ∆ui < 0

stands for a compression, where a shock may appear. This is not the case for a non-perfect gas

with a more complex EOS. The Rosenbluth viscosity writes

qi = −cqρi∆ui|∆ui|χ{∆ui<0}.

Another legacy viscosity is denoted Landsho� pseudo-viscosity [101]. It is similar to the Rosen-

bluth one, with an additional linear dissipative term. It writes

qi = −(cqρi∆ui|∆ui|+ clρci∆ui)χ{∆ui<0}.

For these viscosities, the parameters cq and cl are user-chosen. Many works have been performed

in the literature to study the impact of viscosity as well as a way to determine a priori values

for cq and cl. Wilkins developed an extension to the original von Neumann-Richtmyer viscosity

to the multidimensional case in [169]. Noh in [127] showed the very limits of the use of arti�cial

viscosity. Indeed, he showed that arti�cial viscosity can induce strong errors in the compu-

tation, instead of damping oscillations and smoothing pressure pro�les. Caramana, Shashkov

and Whalen presented in [18] a new formulation for the arti�cial viscosity terms. They based

their works considering that the arti�cial viscosity should follow a certain number of conditions

to be considered physically acceptable. The arti�cial viscosity should among other be galilean

invariant and always transfer kinetic energy into internal energy. Moreover, for isentropic com-

pressions, the arti�cial viscosity must not create too much dissipation or entropy. Heuzé, Jaouen

and Jourdren investigated the e�ect of arti�cial viscosities for discontinuities on a non-convex

EOS in [84]. More recently, Guermond and al. proposed the construction of an entropic viscosity

in [74]. Last but not least, the reader may refer to the paper by Mattsson and Rider [111] about

the origins of arti�cial viscosity terms, and the very bedrocks of pseudo-viscosities expressions
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and properties.

I-2.4.3 Hyperviscosities

As said previously, the use of arti�cial viscosities can be seen as a necessary enrichment of

Euler equations. This use enables to match better, on a physical point of view, the complex

structure of �ows. An idea presented by Cook and Cabot in [28] and later in [27] is to consider

the compressible Navier-Stokes equations, which is nothing else but the Euler equation with

a viscous term. Then the underlying viscosity coe�cients in the compressible Navier-Stokes

equations are set accordingly to the smoothness of the �ows. For perfectly smooth �ows, there is

no physical, mathematical or even numerical reason to add dissipation, and thus the coe�cients

are set to 0. However at a discontinuity or a shock, to avoid Gibbs phenomenon, one wishes for

more dissipation and thus the coe�cients are no longer null.

The model is described in eq. (I.78),

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI − σ
(ρe+ p)u− σ · u

 = 0. (I.78)

where the viscous stress tensor is denoted by σ and satis�es

σ = 2µS(u) + (β − 2

3
µ)(∇ · u)I (I.79)

where β is the bulk viscosity, µ is the shear viscosity, and S is the symmetric strain rate tensor

S = 1
2(∇u+∇ut). The coe�cients µ and β are to be set accordingly to the smoothness of the

�ow. In practice, they are set as

β = Cβηr, µ = Cµηr, ηr = ρhr+2G(∇r‖S‖), r ∈ 2N, (I.80)

where Cβ and Cµ are user-speci�ed, h is technically the typical space grid, and ‖S‖2 = S : S.

Last G denotes for the application of a truncated Gaussian �lter. The use of G is to smear

out oscillation introduced by the di�erentiation of the tensor norm. This viscosity presents the

advantages of maintaining high-order accuracy for smooth �ows, but can be rather expensive

numerically due to the di�erentiation of the tensor norm. Extensions and improvements of the

hyperviscosity model have been presented in [13] and [93]. Essentially the authors proposed to

modify the computation of ηr to yield a steeper pro�le for the viscosity, and so avoid undesirable

dissipation in smooth areas.

I-3 Numerical methods for �uid-structure interaction

In this section, an extended review of numerical methods for �uid-structure interaction is made

and especially concerning the coupling in time and space chosen for the continuity relations at
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the boundary. A bounded domain Ω is divided into two parts. A �uid domain denoted Ωf and a

structure domain denoted Ωs such that Ω = Ωf ∪Ωs and Ωf ∩Ωs = ∅. The boundary ∂Ωs∩∂Ωf

is denoted Γ in the following, and the normal to the boundary Γ going from Ωs to Ωf is denoted

nΓ. The �uid (respectively structure) velocity is denoted uf (respectively us), and the �uid

(respectively structure) stress tensor is denoted σf (respectively σs).

For a viscous �uid, continuity relations are called the no-slip boundary conditions. The velocity

and the normal stress are continuous through the boundary. It yields

uf = us, σf · nΓ = σs · nΓ, on Γ. (I.81)

In particular, eq. (I.81) means that the displacement and velocity at the boundary are contin-

uous. This yields in particular that the interface between �uid and solid is easier to track. For

moving meshes methods (ALE) presented in the previous section, the space discretization follows

perfectly the interface.

For a non-viscous �uid, the continuity relations are called slip boundary condition. It allows the

�uid to slip perfectly along the structure boundary without any kind of boundary layer. It writes

uf · nΓ = us · nΓ, σf · nΓ = σs · nΓ, on Γ. (I.82)

As a contrary to the no-slip boundary conditions, eq. (I.82) means that the tangential displace-

ment is not continuous at the boundary as �uid particles may slip freely along the tangential

direction of the boundary. Other models for boundary conditions may be used but in this work,

the emphasis is laid on eq. (I.82). Considering two numerical methods, the coupling must be

realized at the boundary in order to satisfy boundary conditions, in space as well as in time. In

order to achieve that, time-coupling is �rst detailed. Then an overview is made on space coupling

numerical methods found in the literature.

I-3.1 Time coupling method for �uid-structure interaction

There are two ways to see a �uid-structure numerical method : a partitioned domain approach

or a monolithic one (see [116] for further details). The monolithic is not prone to change. Any

modi�cation in the �uid or the structure part, eg. change in the numerical �ux, results in change

for the whole approach. It also means that the hydrocode and structure-code must be entirely

known, and may not be used as a black box. Although it gives the advantage to overview every

part of the code, it is also a strong inconvenient. The partitioned/domain approach yields the

advantage to perfectly decouple �uid and structure part. As an example, it allows a hydro-code

to be coupled with a commercial code for structural deformations computation. The �uid and

structure solver are perfectly independent and do not necessarily rely on the same space and time

discretizations. Depending on the space and time coupling, boundary conditions presented in

eqs. (I.81) and (I.82) are more or less satis�ed at the boundary. If those conditions are perfectly

satis�ed at the boundary at any discrete time, the term strong coupling is used. However, if

not, the term loose coupling is used for boundary conditions that are only weakly imposed. The
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strong coupling often relies on a time-implicitation of terms around the boundary. This reveals

quite onerous since a non-linear system is solved all along the boundary in order to perfectly

satisfy the boundary conditions. Fully explicit schemes are generally considered as loosely coupled

and may introduce large instabilities, especially when the ratio between both material masses

(�uid and structure) is high. Semi-implicit coupling is a computationally compromise between

implicit and explicit coupling. It is not as onerous as a full implicit one, and moreover it prevents

certain instabilities present in the explicit coupling to occur. In the following, the three coupling

are detailed. One may refer to [56] for an overview of the di�erent time coupling methods for

incompressible viscous �ows.

I-3.1.1 Loose coupling

Loose coupling is certainly the most intuitive one in order to deal with �uid-structure interaction.

The �uid and structure system of partial derivatives equations are solved in a decoupled way,

with a regular exchange of information at the boundary. Mostly, one considers that the �uid

part exerts a stress constraint on the structure part, and reciprocally the structure part exerts a

velocity constraint on the �uid part. Velocity and stress boundary conditions are not necessarily

satis�ed, especially if the time discretization is not the same for both solvers. An example of loose
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Figure I.5 � A fully explicit �uid-structure coupling algorithm on same time discretization

coupling is given in �g. I.5. At each time-step beginning, the structure imposes to the �uid the

normal velocity and in return, the �uid imposes pressure stress on the structure (or reversely).

In �g. I.6, the two solvers are on a di�erent time scale, they are staggered with one another in

time. Although it is still considered as a loose coupling, in practice, it proves to be slightly more

stable. It is also possible to consider two di�erent time-scales, one speci�c to the structure and

one to the �uid. Indeed, time-step restrictions are slightly di�erent for the �uid and structure

solvers. It is then possible to achieve multi-time step of �uid evolution whereas only one is

achieved for the structure part, or the reverse. In [119, 120], Monasse and al. developed a fully

explicit coupling but which ensures conservation of quantities up to their algorithm precision.
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Figure I.6 � A fully explicit �uid-structure coupling algorithm on staggered time discretization

I-3.1.2 Strong coupling

Strong coupling is done in order to ensure strongly the boundary conditions. At a given time

t = tn, it builds boundary conditions in order to enforce that the prescribed boundary conditions

hold at time t = tn+1. The strong enforcement of boundary conditions ensures correct mass,

momentum and total energy conservation at the boundary. Conservation is ensured to the limit

of the convergence criteria used in system inversion algorithms. At each time-step, a non-linear

system is solved to �nd the solution at time t = tn+1. One uses an iterative algorithm among

which �xed-point, conjugate gradient, Newton or Gauss-Seidel. A strongly coupled scheme

is much more onerous than an explicit one, as the problem is solved at each iteration of the

algorithm used to inverse the system. However, stability conditions on time-step are much less

severe than for full explicit schemes. But in practice, the time-step must be restricted or the

algorithm must use relaxation terms in order to ensure convergence. The numerical cost of such

a procedure is sometimes prohibitive, and hence another class of coupling has been derived: the

semi-strong coupling.

Fluid
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S n+1

Full implicit algorithm

Figure I.7 � A fully implicit �uid-structure coupling algorithm on same time discretization

I-3.1.3 Semi-strong coupling

The semi-strong coupling has been derived to correct the weaknesses of both loose and strong

coupling. The loose coupling is sometimes unstable and unable to track e�ectively the conser-

vation of mass, momentum and total energy at the boundary. On the other hand, the implicit
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coupling ensures those conservations, but is numerically onerous and the convergence is not en-

sured. Relaxation terms can be added to correct these defaults but to an additional numerical

cost. For these reasons, semi-strong coupling has been derived. Non-oscillatory or stable terms

are treated in an explicit way, whereas unstable and/or oscillatory terms are treated in an implicit

way. Often, the pressure terms are treated in an implicit way, whereas advection and di�usion

terms are treated in a fully explicit way. Conservation results rely strongly on the algorithm and

hypothesis made previously. In [136], Puscas and al. derived a semi-implicit scheme that ensures

conservation of quantities up to the algorithm precision.

I-3.2 Space coupling method for �uid-structure interaction

Independently to the time-coupling, space-coupling methods allow to spatially couple forces

and torques at the boundary in order to enforce boundary conditions presented in eqs. (I.81)

and (I.82). Three families of space coupling are distinguished and sorted as follows. First, the

mixed cells methods which somehow average the di�erent materials over a cell. Second, the

body-�tted method which ensures a deformation and displacement of the mesh such that cells

remain pure. Third and last, the �ctitious domain method which uses overlapping domains to

enforce boundary conditions.

I-3.2.1 Mixed cells methods

One natural way of dealing with �uid-structure interaction is to consider that a control volume

for a �nite volume scheme may contain both materials. A detector is then used to determine

which constitutive laws are to be used. In [41], the authors proposed a uni�ed framework to treat

both solid and �uid simulations on unstructured grid. The proposed schemes can be used in a

fully Lagrangian formalism or in an ALE one. The constitutive laws are then selected considering

to which material the cells interfaces belong (the case of mixed interfaces is also treated). In

[68], they proposed a de�nition of an ad hoc Riemann problem at solid boundaries which is

formally second order accurate. Thanks to a level set method, they detect the proximity of a

wall and modify the Riemann problem to take into account the boundary conditions. Although

the resulting scheme is not conservative, shocks seem to be correctly captured. The scheme is

based on Cartesian grids. Last, [79] introduced a full-Eulerian solid level set method in order to

treat �uid-structure interaction problems for incompressible viscous �ows. The method is derived

by adding a solid body force and a solid-�uid interaction term for cells near the boundary. The

interface tracking is realized thanks to the solid level set method. It also applies for �uid schemes

based on Cartesian grids.

I-3.2.2 Body-�tted methods

The Lagrangian and ALE approaches for solving the compressible hydrodynamics system have

been presented in section I-2.2. For viscous �uid, the deformation of the mesh is continuous

along the boundary. It means that technically, if initially the meshes for the �uid and structure
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are coincident at the boundary, then they stay coincident for any time of the simulation. It

leads to an easier interface tracking as no mixed cells appear. However for inviscid �ows, the

deformation is no longer continuous along the boundary, only the normal deformation is. Two

choices are presented in the literature. Either one uses Lagrange multipliers to transfer the forces

and torques between the two meshes, either one uses the ALE formalism with a velocity of the

mesh prescribed by boundary conditions.

Wall boundary conditions

For wall boundary conditions, the prescribed normal velocity at the boundary is set to 0. In [98],

the author described a body-�tted discontinuous Galerkin scheme to approximate the solution

to the Euler equations with solid wall boundary conditions for curved geometry. An important

feature in this paper is that the boundary conditions should be prescribed on the real continuous

geometry, rather that on the approximated discretized geometry obtained with the mesh. Doing

so, the error due to the discretization of the geometry does not reduce the overall accuracy of the

scheme. Moreover in some cases, with conditions imposed on the discretized geometry, steady

�ows are not reached by the schemes. The asymmetry introduced by the discretization may

indeed introduce vortices or wakes that are irrelevant considering the Euler equations system.

Remeshing constrained by structure motion

The ALE method (see section I-2.2.4) relies on a periodic or cycle-based displacement of the

mesh. The displacement is based on a prescribed mesh velocity �eld denoted umesh. To ensure

that the structure and �uid meshes stay coincident one may just provide the following condition

on the velocity �eld

umesh = us, on Γ. (I.83)

The Jacobian is then deduced. However, the presence of too much distorted elements or non-

conformal ones, forces the algorithm to remesh partly the �uid domain and to project conserva-

tively quantities on the new mesh. This re-meshing phase may prove quite expensive. Indeed, in

1D or 2D, the re-meshing is not problematic, but in 3D the numerical cost sometimes becomes

preponderant over the cost of the �uid and structure solvers. In [86], Hu and al. presented an

ALE method to couple a Navier-stokes solver with a particle one, showing in particular that an

explicit coupling is not stable. Later in [87], they assessed the evolution of the ALE methods

for �uid-structure coupling. The structural displacement is dealt with using eq. (I.83). The

update of the meshes displacement is done in an explicit way, whereas the update of the meshes

velocity is implicit, resulting in a stable scheme. Extension to visco-elastic �uid is made. In

[107], Le Tallec and Mouro proposed to consider the whole space as a physical continuum. The

resulting problem is then split into a �uid and a structural part, enforcing kinematic acceptable

states between the two. Their method uses a Lagrangian approach for the structure and an ALE



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 47

formulation for the �uid. Mesh velocity is then imposed according to eq. (I.83) so that interfaces

between �uid and structure stay coincident.

I-3.2.3 Fictitious domain methods

In order to avoid any kind of remeshing, the �ctitious domain methods have been introduced

for �xed mesh methods (see section I-2.3). The �uid mesh overlaps the structure and the �uid

values in the overlapping cells are completely �ctitious. The main problem consists in imposing

the values in these overlapping cells. The main issue is how to impose these values in order to

satisfy the boundary conditions. For body-�tted methods, the meshes are not overlapping, and

there is no need to de�ne such values. Many methods have been derived to tackle this problem.

They gather into seven families which are listed below and described in the following:

i) Immersed boundary methods;

ii) Direct forcing methods;

iii) Penalization methods;

iv) Lagrange multipliers;

v) Embedded cut-cells methods;

vi) Re�ection and mirroring ghost-cells methods;

vii) Inverse Lax�Wendro� boundary treatment.

One may refer to [117] or [147] for an extended review of the �ctitious domain methods.

Immersed boundary method

The immersed boundary method (IBM) has been �rst proposed by Peskin [133] and later ex-

tended by Lai and Peskin [100, 134]. Originally, the method has been developed for the simulation

of cardiac blood �ows. The physical model used is the incompressible Navier�Stokes equations

coupled with very thin elastic structures, with equivalent density. This is a very peculiar model,

where for once the structural displacement is imposed by the �uid one. The method consists

in forcing the movement of the structure using the �uid displacement and to weakly impose a

discontinuity in the �uid constraint at the boundary. To do so, additional forces are added to

the �uid near the interface. For such a �uid, one writes

{
ρ (∂tu+ u · ∇u) +∇p=µ∆u+ f ,

∇ · u =0,
(I.84)

where the variables ρ, u, p denote for the density (assumed constant), the velocity vector and

the pressure. The additional force f is introduced to satisfy weakly the boundary conditions and

writes

f(x, t) =

∫
Ω
F (y, t)δ0(x−X(y, t))dy. (I.85)
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where X is the Lagrangian position of the elastic structure and F is the Fréchet derivative of

the internal energy with respect to the Lagrangian positionX. δ0 symbolizes the Dirac function.

The discretization of the Dirac function is made in order to ensure mass, momentum and total

energy conservation, as well as Galilean invariance. Note in particular that on the continuous

level, eq. (I.85) reduces to f = F . Reciprocally, the structure part is solved thanks to the

following equation

∂tX(x, t) =

∫
Ω
u(y, t)δ0(y −X(y, t))dy. (I.86)

which yields on the continuous levels that ∂tX = u. The �uid velocity imposes the displacement

of the structure. This method is forged to deal with very thin structures, whose density is similar

to the �uid one. Order of accuracy has been studied for smooth problems in [73]. The method

has been modi�ed for adapted re�nement in [72] to reach second order of accuracy. For thick

structure, it is rather the structure velocity that imposes the displacement of the �uid. To deal

with thicker structures, direct forcing methods have been developed.

Direct forcing methods

As for the immersed boundary method, the direct forcing method consists in adding an external

force in order to satisfy boundary conditions. Consider an incompressible viscous �uid �ow with

boundary conditions provided by eq. (I.81). A possible consistent discretization of boundary

conditions is to impose near the interface the �uid velocity to be equal to the structure velocity.

It is equivalent to set f such that

f =
1

∆t

∫ tn+1

tn
(u · ∇u+∇p− µ∆u) dt+

1

∆t
(vn+1 − un), (I.87)

with vn+1 being the structure velocity at time tn+1. Indeed substituting eq. (I.87) in eq. (I.84)

integrated in time between tn and tn+1, it immediately yields that un+1 = vn+1. In the numerical

schemes, f is not used, and the velocity directly satis�es un+1 = vn+1. Geometrically, the

interface neighbourhood is de�ned as the mixed cells (partly �uid, partly solid) in addition with

the cells inside the solid part. See �g. I.8 as a representative example.

The wider the stencil used by the numerical scheme, the wider the interface neighbourhood.

Only mixed and fully solid cells values are to be imposed. With f de�ned as in eq. (I.87), the

order of accuracy of the method is at most one. The method developed by Mohd-Yusof in [118]

and [52] consists in doing an interpolation of the velocity relative to the interface, around the

boundary. Then a antisymmetry of the relative velocity is used inside the mixed/full solid part

of the domain. This method is second order accurate and a priori more accurate than doing a

direct forcing without any kind of interpolation. It is mostly used for incompressible viscous �ows

but has been extended for compressible viscous �ows. It is obviously not conservative in mass,

momentum and total energy. In [173], the authors proposed a simpli�ed, e�cient and accurate

direct forcing method for incompressible �ows. It is still based on a strong coupling but without
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Figure I.8 � Interface neighbourhood for the direct forcing method: black dots stand for the cells
where velocity values are imposed to match the structure velocity

any call to the �uid solver during the coupling, which alleviates greatly the computation. In [10],

the author proposed a regularization technique for the direct forcing methods. This regularization

prevents spurious force oscillations from occurring. The extension to compressible inviscid �ows

is presented later as the re�ection and mirroring ghost-cells methods.

No-penetration and volume penalization methods

For �uid-structure interaction, considering non-porous media for the structure, the �uid mass

must remain outside the structure. There is no �uid penetration inside the structure. For

example, the direct forcing method does not satisfy the no-penetration condition. One possible

approach to deal with this problem is to penalize any kind of �uid penetration in the structure.

This is the penalization method. The method was �rst introduced by Arquis and Caltagirone [7]

for incompressible viscous �ows, with a Brinkman porosity model for the solid. It is equivalent to

simulating a �uid-structure interaction with a porous media whose porosity is de�ned by a very

small parameter. The smaller the parameter, the less porous the media is, till impermeability.

In [4], Angot and al. proposed a L2-penalization. Let η be a parameter and consider Ωs as the

solid part, it yields for incompressible viscous �ows

{
∂tuη + uη · ∇uη +∇pη = 1

Re
∆uη − 1

ηuηχΩs , t > 0,x ∈ R2

∇ · uη = 0, t > 0,x ∈ R2
(I.88)

χ denotes for the indicator function. They showed convergence when η → 0 toward the solution

of the Navier Stokes with zero-velocity boundary conditions provided on ∂Ωs. The accuracy has

been proven to be at worst of order 3
4 in η, but in practice 1storder of accuracy is recovered.

However, the CFL conditions is largely impacted due to the relaxation term 1
ηuηχΩs . Using a

fully-explicit scheme yield a CFL condition as ∆t ≤ Cη which is a constrain as η should tend to

zero. However, an implicit treatment of the relaxation terms entirely withdraws this condition.

As the relaxation term is local, the implicit treatment is not as onerous as the implicit treatment



50 NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTION

of complex numerical �uxes. The penalization is not generally conservative in mass, momentum

and total energy. Depending on the value of η, the boundary treatment may introduce undesirable

boundary layers for compressible inviscid �ows. Moreover correct capture of shocks is impacted

due to this special treatment. In [51], the extension to deformable obstacles is realized.

Lagrange multipliers

Fictitious domain based on Lagrange multipliers for incompressible viscous �ows have been �rst

developed by Glowinski and al. in [60]. The solid domain is �lled with a �ctitious �uid state.

Lagrange multipliers are used to ensure rigid body motion in the Navier-Stokes variational for-

mulation. Studies and improvements have been done to develop the method, increase robustness

and alleviate the computations in [131] and [59]. Extension to visco-elastic particles/bodies has

been realized in [145]. Solid and �uid problems are coupled thanks to the Lagrange multipli-

ers. Those multipliers are seen as pseudo-forces that are exerted on both parts. A full explicit

procedure is possible. As a contrary to the immersed boundary method which relies on approx-

imate Dirac function to enforce the correct exchange of forces, here, the procedure relies on the

Lagrange multipliers to exchange forces.

Embedded cut-cells methods

The �rst embedded cut-cells method has been introduced by Noh, while working on the coupling

between a Lagrangian method for the structure part and an Eulerian �nite volume method for

the �uid part [125]. The proposed embedded cut-cells method provides naturally conservation of

mass, momentum and total energy due to the special space discretization. The method relies on

the following observation: cutting the cells near the interface and integrating forces and torque

on the interface yield immediately conservation of the desired quantities. However due to the

possible very small cells, the CFL condition is highly impacted. Indeed, denote by αn the volume

fraction of the structure inside a cell at time tn, it writes

(1− αn+1)Un+1 = (1− αn)Un − tn+1 − tn

h
∆U (I.89)

where ∆U is the �ux at the boundary of the cell. Immediately, the CFL condition becomes

∆t < (1 − α)hc , which can be arbitrarily small as α tends to 1. This is the main drawback of

the method. The CFL condition is proportional to the volume of a cell divided by its perimeter.

Therefore one gets very small time-steps near the boundary due to the presence of cut-cells. The

general principle of cut-cells methods is presented in �g. I.9. Numerical �uxes for cells around

the boundary need to be modi�ed to ensure correct boundary conditions enforcement. Two

main approaches have been considered in the literature. The �rst one presented in [132] and

[26] consists in evaluating the numerical �uxes as if there were no structure in cut-cells. Then,

identifying the lack of conservation of mass, momentum and total energy, to redistribute the

lacking quantities partly in the cut-cells and partly in the adjacent ones. The redistribution is
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Figure I.9 � Embedded boundary methods: Double head arrows show numerical �uxes needing
modi�cation to take into account the boundary

based on mass weighting. The second one presented in [53] and [88] consists directly in drawing a

conservative balance on each cut-cell. In order to avoid very small cells and so CFL restrictions,

[53] made the suggestion to merge the small cells with fully �uid adjacent ones. As to [88],

they proposed to mix the cells with cells aligned in the normal direction outward the solid/�uid

boundary. Last [120] proposed to mix too small cells 1 with an adjacent one. This mixing is

illustrated in �g. I.10.

Fluid

Solid

Figure I.10 � Merging of small cut-cells present along the boundary using the outward normal
criteria: Arrows stand for conservative mixing of cells, red cells are mixed with the
larger cells indicated by arrows

The main known limitations of cut-cells methods is that it is impossible to consider a very

thin structure present in a �uid. The thickness of the structure must be at least greater that the

characteristic length of the mesh. The mixing procedure can only apply if a large enough adjacent

cell is found. This becomes problematic for some 3D problems. Some geometric con�gurations

are also tricky. If two solid elements are present in the same cell, then there is no natural

de�nition for a global outward normal. Using a �ner mesh or adaptive mesh re�nement (AMR)

1. The criteria if �xed to α > 0.5, where α is the structure presence volumic fraction
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solves the problem. In [115], Meyer and al. proposed a cut-cell embedded boundary method

for Large-Eddy simulation of incompressible �ows on staggered Cartesian grids. The interface

geometry is described by a level-set method in 3D, and cells cut by this interface of small size

are mixed with larger, neighbouring cells. They assessed second order of accuracy for their

method. In [78], Hartmann and al. proposed a cut-cell embedded boundary method for two

and three dimensional problems, on adaptive grids. The method is proved to be conservative

in mass, momentum and total energy, and numerical experiments demonstrated second order

of accuracy. A particularity of their method is that they considered viscous compressible �ows.

They used a mixing algorithm near the boundary to merge very small cells with a master cell in

order not to damp the CFL condition. Muralidharan developed in [121], a new adaptive �nite

volume conservative cut-cell method which is third order accurate for the compressible Navier-

Stokes equation. Despite a high-order geometric approximation, the robustness of their schemes

is proved for viscous �ows. An extension to three dimensions is proposed.

Re�ection and mirroring ghost-cells methods

The re�ection and mirroring ghost-cells is but an extension to the compressible hydrodynamics

of the direct forcing methods using interpolation techniques. The underlying idea is that any

smooth enough surface can be locally approximated by a plane. And that at the crossing of a

plane, the normal velocity is anti-symmetrized whereas density, pressure, internal, kinetic and

total energies are symmetrized. The mirroring method has been described by Forrer and Berger

in [57]. The main idea resides in the fact that the wall acts as a mirror on the variables for a

constant wall velocity. Introducing t and n as the tangential and normal vectors outward the

boundary and xs a point on the boundary, it yields for a small parameter λ that
ρ(xs + λn) = ρ(xs − λn)

p(xs + λn) = p(xs − λn)

u(xs + λn) · t = u(xs − λn) · t
u(xs + λn) · n = 2Dtxs − u(xs + λn) · n

(I.90)

The method is second order accurate at the boundary. Using a stencil inside the �uid domain,

values of ρ, p and u are reconstructed on the blue points depicted in �g. I.11. Then, the value

at the black points inside the solid domain are imposed using eq. (I.90). The �uid solver is then

applied normally on the whole domain.

Similar methods have been introduced in [6], [23], [177]. As a contrary to the previously intro-

duced cut-cells methods, the resulting scheme is not conservative in mass, momentum and total

energy.

Inverse Lax�Wendro� procedure for boundary conditions

Thompson developed in [161], a high-order treatment of non-re�ecting boundary conditions based
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Figure I.11 � Ghost-cells values using the mirroring technique: black dots stand for the ghost-
cells

on the diagonalization of the jacobian matrix. Thus getting the Riemann invariants of the sys-

tem, the boundary conditions are imposed on those invariants. The values (ρ,u, p) are then set

outside the �uid domain using the Riemann invariants. In [162], the author extended the method

to any kind of boundary conditions and especially to the slip and no-slip wall boundary condi-

tions. Changing the space derivatives of Riemann invariants into time derivatives, the author

produces a high-order (up to 4th-order accuracy) boundary discretization. Later, Tan and Shu

introduced the concept of inverse Lax�Wendro� procedure in order to treat boundary conditions

in [155]. The idea is to solve repeatedly linear systems based on the jacobian matrix, in order to

determine ghost-cells values outside the �uid domain. Those ghost-cells values are based on Tay-

lor expansions of the primitive variables, using boundary conditions and values inside the �uid

domain. Lax�Wendro� or Cauchy�Kovalevskaya methods are built by changing time-derivatives

into space-derivatives in Taylor expansion in time of the �ux function. Here the idea is to do

exactly the inverse, meaning to change space-derivatives into time-derivatives in Taylor expan-

sions in space of the primitive variables. In [156], the authors extended their previous results

to the case of a moving boundary whose motion is triggered by the �uid state. This is a �rst

step toward a �uid-structure interaction solver using Inverse Lax�Wendro� boundary treatment.

The main di�culty in their articles is that the structure, considered as a rigid body, is described

in a Lagrangian framework whereas the �uid solver follows an Eulerian approach. In [158], the

authors attempted to reduce the numerical cost of their procedure by reducing the number of

normal space derivatives changed into time and tangential space derivatives. Numerical exper-

iments show that a certain number of normal space derivatives changes is enough to ensure a

priori the stability of the e�ective scheme. In [157], the authors proposed a condensed review of

their method, including applicability of the procedure. Last, Vilar and Shu in [168] developed a

linear analysis of the scheme stability using the Inverse Lax�Wendro� procedure. They used the

GKS theory (see lemma I.11) to analyse theoretically the stability of the e�ective schemes. They

drew comparisons with the standard computation of the eigenvalues of the operator matrices.

Similar results of required changed normal space derivatives as in [158] have been recovered.

Moreover, for the considered schemes, GKS theory and the study of the eigenspectrum of the
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operator matrix are similar. The method is detailed for linear systems in chapter III and then

applied in the special case of Lagrange-Remap hydrodynamics schemes in chapter IV.



Chapter II

High order 2D �nite volume

conservative Lagrange-Remap schemes

for compressible hydrodynamics on

staggered Cartesian grids

On présente comment construire une famille de schémas volumes �nis Lagrange-projection

sur maillage décalé à l'ordre élevé. Ces schémas ont fait l'objet d'une note au comptes-rendus de

l'Académie des Sciences [35]. Pour cela, la distribution originelle des variables sur la grille décalée

Arakawa de type C est altérée pour des questions de robustesse et de conservation, tout d'abord

en 1D puis en multi-dimensionnel. Pour l'extension en 1D à l'ordre élevé de ces schémas, des

séquences de Runge�Kutta ont été choisies pour l'intégration en temps du système lagrangien, basé

sur une formulation en énergies interne et cinétique. Une procédure conservative est développée

à l'ordre élevé a�n de corriger l'énergie interne et d'assurer la capture correcte des chocs. Le

résultat principal de cette partie est le théorème II.9 qui prouve la consistance faible du schéma

pour les équations d'Euler en référentiel lagrangien. En�n, la projection conservative classique

basée sur l'intégration analytique de polynômes de Lagrange est adaptée au cas des grilles décalées.

Une extension en multidimensionnel est réalisée par l'utilisation de séquences d'ordre élevé de

balayage directionnel. En�n, la dérivation de ces schémas dans le cas des équations de Navier�

Stokes compressibles, avec une distribution particulière des termes du tenseur visqueux, est faite.

Des résultats numériques sont proposés tout au long du chapitre a�n d'illustrer la précision et la

robustesse de cette nouvelle famille de schémas.
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We propose in this chapter a new class of �nite volume numerical schemes on staggered Cartesian

grids for solving the compressible hydrodynamics system of equations

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI

(ρe+ p)u

 = 0. (II.1)

The density, velocity, speci�c total energy and pressure are respectively denoted by ρ, u, e and

p. The schemes are based on 1D Lagrange-remap formalism used with directional splitting. The

Lagrangian approach as well as the Lagrange-remap approach is the usual formalism used in the

laboratory where my PhD thesis has taken place, as much for historical reasons as for robustness

issues. They are high-order accurate in both time and space for any equation of states and are

conservative in mass, momentum and total energy. The outline of the chapter is the following.

First, using the Arakawa system of grids, a new grid is derived to ensure face-staggering of

variables and robustness in case of shocks (section II-1). Second, the one-dimensional conservative

Lagrange-remap schemes formulated in internal and kinetic energies are extended to higher order

of accuracy (section II-2). The schemes may be decomposed into three steps that are detailed.

The Lagrangian phase based on high-order reconstruction and interpolation of data to maintain

high-order accuracy in space, and a Runge�Kutta time-integration to ensure the high-order

accuracy in time. A new conservative and high-order accurate internal energy correction is

proposed to ensure the correct capture of shocks. The main result of this chapter is theorem II.9

where the weak consistency of the scheme is proved. Conservative remapping phase is adapted

to the staggered grids. It is based as for the cell-centered case on Lagrange polynomials. Third,

the extension to two-dimensional systems is made using high-order directional splitting methods

(section II-3). The 2D Lagrange-remap schemes on staggered Cartesian grids have been published

in [35]. Fourth, a natural extension of the schemes in the case of Navier�Stokes compressible

equation is made with gravity source terms. It is based on a special distribution of viscous terms

to ensure robustness and high-order of accuracy (section II-4). Numerical results all along the

chapter illustrate both the accuracy and the robustness of the schemes.
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II-3 Extension to 2D Lagrange-remap schemes on staggered Cartesian grids . . . . . 91

II-3.1 Derivation of the subsystems using the operator splitting technique . . . 92

II-3.2 Modi�cations of the 1D schemes for the 2D �nite volume case . . . . . . 93

II-3.3 Numerical validation of the 2D conservative Lagrange-Remap schemes

on staggered Cartesian grids . . . . . . . . . . . . . . . . . . . . . . . . . 96

II-4 Extension to the 2D compressible Navier�Stokes equations with gravity . . . . . 110

II-4.1 Distribution of viscous terms on the modi�ed Arakawa grid . . . . . . . 110

II-4.2 2D viscous staggered Lagrange-Remap schemes with gravity force . . . . 113
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II-1 Structure of schemes on Arakawa C-type grids

In section I-2.2.1, the Arakawa system of classi�cation for staggered grids has been presented.

The BBC scheme which has been proposed in 1984 in [171] by Woodward and Collela will be

extended to higher-order of accuracy in both time and space. The BBC scheme is based on a

C-type Arakawa grid or face staggering. It means that the velocity are located on the face of the

cells: an analysis of the space and time discretization is proposed.

II-1.1 Example of the BBC scheme

The scheme solves the Lagrange system (I.60) formulated in internal energy. On cell centers, the

discretized variables are the cell mass ∆m, the speci�c volume τ and the internal energy ε. On

cell interfaces, the velocity u is discretized. The pressure is denoted p and arti�cial viscosities or

bulk hyperviscosities (see section I-2.4) are denoted q. The interface mass ∆mi+ 1
2
is de�ned by

∆mi+ 1
2

=
1

2
(∆mi+1 + ∆mi). (II.2)

The Lagrangian scheme writes in three steps:

Prediction at t = tn+ 1
4

u
n+ 1

4

i+ 1
2

= un
i+ 1

2

− ∆t

4∆mi+ 1
2

(pni+1 + qni+1 − pni − qni ). (II.3)
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Prediction at t = tn+ 1
2

τ
n+ 1

2
i =τni + ∆t

2∆mi
(u
n+ 1

4

i+ 1
2

− un+ 1
4

i− 1
2

),

ε
n+ 1

2
i =εni − ∆t

2∆mi
(pni + qni )(u

n+ 1
4

i+ 1
2

− un+ 1
4

i− 1
2

),

p
n+ 1

2
i =EOS(τ

n+ 1
2

i , ε
n+ 1

2
i ),

u
n+ 1

2

i+ 1
2

=un
i+ 1

2

− ∆t
2∆m

i+ 1
2

(p
n+ 1

2
i+1 + qni+1 − p

n+ 1
2

i − qni ).

(II.4)

Prediction at t = tn+1



τn+1
i =τni + ∆t

∆mi
(u
n+ 1

2

i+ 1
2

− un+ 1
2

i− 1
2

),

ε
n+ 1

2
i =εni − ∆t

∆mi
(p
n+ 1

2
i + qni )(u

n+ 1
2

i+ 1
2

− un+ 1
2

i− 1
2

),

pn+1
i =EOS(τn+1

i , εn+1
i ),

un+1
i+ 1

2

=2u
n+ 1

2

i+ 1
2

− un
i+ 1

2

,

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆tu
n+ 1

2

i+ 1
2

.

(II.5)

The �rst prediction done in eq. (II.3) is used to stabilize the scheme. Using Arakawa C-type

grids, 2ndorder Runge�Kutta sequences are not stable for the wave equations, as it will be shown

later on. The choice to made the �rst predictor at t = tn+ 1
4 on the velocity rather that on the

pressure allows to reduce the number of call to the equation of state. Another interesting choice

is the velocity obtained at tn+1. This choice is made to obtain a compatible discretization of the

kinetic energy in the sense of Caramana [19]. Doing so, it allows to get the following results

Lemma II.1 (Conservation properties of the BBC scheme). The BBC scheme (II.2)-(II.3)-(II.4)-

(II.5) is conservative in mass, momentum and total energy for any choice of arti�cial viscosities

or hyperviscosities. The total energy of a cell is de�ned here as

∆mie
n
i = ∆miε

n
i +

1

2

(
∆mi+ 1

2
ekin

n
i+ 1

2

+ ∆mi− 1
2
ekin

n
i− 1

2

)
,

with the kinetic energy de�ned as ekini+ 1
2

= 1
2(ui+ 1

2
)2.
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Proof. Mass and momentum conservation are obvious. Only total energy conservation is detailed.

∆mi(ei
n+1 − ein) = ∆mi(εi

n+1 − εin)

+1
2

(
∆mi+ 1

2
(ekin

n+1
i+ 1

2

− ekinni+ 1
2

) + ∆mi− 1
2
(ekin

n+1
i− 1

2

− ekinni− 1
2

)

)
= −∆t(p

n+ 1
2

i + qni )(ui+ 1
2

n+ 1
2 − ui− 1

2

n+ 1
2 )

+1
4

(
∆mi+ 1

2
(un+1
i+ 1

2

− un
i+ 1

2

)(un+1
i+ 1

2

+ un
i+ 1

2

) + ∆mi− 1
2
(un+1
i− 1

2

− un
i− 1

2

)(un+1
i− 1

2

+ un
i− 1

2

)

)
= −∆t(p

n+ 1
2

i + qni )(u
n+ 1

2

i+ 1
2

− un+ 1
2

i− 1
2

)

−∆t
2 (p

n+ 1
2

i+1 + qni+1 − p
n+ 1

2
i − qni )u

n+ 1
2

i+ 1
2

−∆t
2 (p

n+ 1
2

i + qni − p
n+ 1

2
i−1 − qni−1)u

n+ 1
2

i− 1
2

= −∆t

pn+ 1
2

i+1 + p
n+ 1

2
i + qni+1 + qni

2 u
n+ 1

2

i+ 1
2

−
p
n+ 1

2
i + p

n+ 1
2

i−1 + qni + qni−1
2 u

n+ 1
2

i− 1
2


Hence total energy conservation is obtained due to the �ux form of ∆mi(ei

n+1 − ein). �

Remark II.1. The proof for total energy conservation uses special features of the BBC scheme,

especially that un+1
i+ 1

2

= 2u
n+ 1

2

i+ 1
2

− un
i+ 1

2

. Without this special relation between the velocities at

di�erent time steps, total energy conservation does not hold.

Remark II.2. In recent works by Herbin, Latché and al. [83, 80, 81], they propose an a priori

internal energy corrector. This corrector is based on the computation of a residual term obtained

using the discretization of the kinetic energy. Here, for the BBC scheme, the residual term

obtained is exactly 0. Then, no special energy balance is to be performed in the Lagrangian

phase.

In other words, it means that changing the time integration has a strong impact on the total

energy conservation property of the scheme. The idea to be able to deal with any time-integration

sequences is to discretize the kinetic energy and to evolve it using its evolution equation. This

way conservation of total energy will be ensured.

II-1.2 Discretized variables on Arakawa C-type grid

In order to extend the BBC scheme at high-order in both time and space, the method used in

this work is based on the analysis of the kinetic energy equation, in a way that ensures total

energy conservation which appears more as a compatibility relation. The kinetic energy evolution

equation writes formally

∂tρ0ekin + u∂Xp = 0 (II.6)

To form the total energy equation, it is su�cient to combine with the internal energy one which

writes as

∂tρ0ε+ p∂Xu = 0 (II.7)

The use of the Lagrangian kinetic energy eq. (II.6) is unusual with respect to the literature.
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Another di�erence with the BBC scheme is that the masses will be decoupled between the

centered and staggered grids, meaning that eq. (II.2) will not be satis�ed. The discretization is

summarized in �g. II.1. For example in 1D, two mass variables are considered, one located at

the center of each cells, and one at the center of each staggered cells. To our knowledge, such a

choice is also not usual in the literature.

 ρ0

ρ0τ
ρ0ε


i

 ρ0

ρ0u
ρ0ekin


i+ 1

2

Figure II.1 � Staggered �nite volume space discretization on Cartesian grids

II-1.3 De�nition of average and pointwise values

Consider a primal uniform Cartesian grid {xi+ 1
2
} with ∆X = xi+ 1

2
− xi− 1

2
and a dual grid {xi}

with xi = 1
2(xi+ 1

2
+ xi− 1

2
). As presented in eq. (II.8), φ and φ will respectively denote the space

averaged value of φ and its point-wise value.

φ
n
i = 1

∆X

∫ x
i+ 1

2

x
i− 1

2

φ(x, tn)dx,

φ
n
i+ 1

2
= 1

∆X

∫ xi+1

xi

φ(x, tn)dx,

φni = φ(xi, t
n),

φn
i+ 1

2

= φ(xi+ 1
2
, tn).

(II.8)

II-2 High order 1D Lagrange-Remap schemes on staggered Carte-

sian grids

Here we propose a constructive path to build high-order 1D �nite volume conservative Lagrange-

remap schemes. Firstly, the formulation of Runge�Kutta based Lagrangian �nite volume schemes

on staggered Cartesian grids is introduced. Secondly, an internal energy corrector is detailed.

This corrector is conservative, high-order accurate and yields consistency of the scheme in case

of strong shocks. Thirdly, a Lagrange polynomials based conservative remapping is extended to

the special case of staggered grids. Last, numerical experiments show accuracy and robustness

of the method on various numerical examples presented in the literature. This section has been
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the object of a publication [35] in the "Comptes-Rendus Mathématique".

II-2.1 Formulation of Runge�Kutta based Lagrangian �nite volume schemes

The Lagrangian system formulated in kinetic and internal energies is reminded hereafter, using

q as the arti�cial viscosity as detailed in section I-2.4.

Dtρ0τ − ∂Xu = 0,

Dtρ0u+ ∂X(p+ q) = 0,

Dtρ0ε+ (p+ q)∂Xu = 0,

Dtρ0ekin + u∂X(p+ q) = 0,

p = EOS(τ, ε).

(II.9)

II-2.1.1 Semi-discrete formulation of the Lagrangian �nite volume schemes

To get the semi-discrete formulation of the Lagrangian �nite volume schemes, system depicted

in eq. (II.9) is integrated in time between tn and tn+1 over a cell
[
xi− 1

2
, xi+ 1

2

]
for the thermody-

namics variables ρ0τ and ρ0ε and over a cell [xi, xi+1] for the ρ0u and ρekin. It yields

∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ)− ui− 1

2
(θ)dθ,

∆X(ρ0u
n+1
i+ 1

2

− ρ0u
n
i+ 1

2

) =
∫ tn+1

tn (p+ q)i+1(θ)− (p+ q)i(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn

∫ xi+ 1
2

x
i− 1

2

((p+ q)∂Xu)(y, θ)dydθ,

∆X(ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

) =
∫ tn+1

tn

∫ xi+1

xi
(u∂X(p+ q))(y, θ)dydθ,

pi = EOS(τi, εi).

(II.10)

Notations (p+ q)δui and uδ(p+ q)i+ 1
2
are introduced as

(p+ q)δui =

∫ x
i+ 1

2

x
i− 1

2

((p+ q)∂Xu)(y, θ)dy,

uδ(p+ q)i+ 1
2

=

∫ xi+1

xi

(u∂X(p+ q))(y, θ)dy.

So that eq. (II.11) rewrites



∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ)− ui− 1

2
(θ)dθ,

∆X(ρ0u
n+1
i+ 1

2

− ρ0u
n
i+ 1

2

) =
∫ tn+1

tn (p+ q)i+1(θ)− (p+ q)i(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn (p+ q)δui(θ)dθ,

∆X(ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

) =
∫ tn+1

tn uδ(p+ q)i+ 1
2
(θ)dθ,

pi = EOS(τi, εi).

(II.11)

Before performing any kind of time integration, one must �rst address the issue of computing

with high-order accuracy the point-wise values of p, u, τ and ε.



62 HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES

II-2.1.2 High-order in spatial reconstruction of pointwise values from averages ones

and vice versa and of space derivatives

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average)

values from the average (resp. point-wise) ones with high-order accuracy. Table II.1 gives the

coe�cients for centered, symmetric and polynomial reconstructions using eq. (II.12). Although

other reconstructions may be used, centered and symmetric ones are retained here and are

su�cient for uniform Cartesian grids.



φξ(i) =
∑
k

Ckφξ(i)+k,

φξ(i) =
∑
k

Ĉkφξ(i)+k,

δφξ(i) =
∑
k≥0

dk

(
φξ(i)+k+ 1

2
− φξ(i)−k− 1

2

)
,

φξ(i) =
∑
k

rk(φξ(i)+k+ 1
2

+ φξ(i)−k− 1
2
),

φξ(i) =
(ρ0φ)ξ(i)
(ρ0)ξ(i)

,

with ξ(i) =

{
i on primal grid,

i+ 1
2 on dual grid,

(II.12)

The non-conservative terms ψδφ of eq. (II.11) are computed by:

1. Applying the δ operator to point-wise values of φ using coe�cients in table II.3 and third

equation of (II.12).

2. Multiplying by point-wise values of ψ, then reconstructing average values using coe�cients

in table II.2 and second equation of (II.12).

Order C0 C±1 C±2 C±3 C±4

2nd 1 0 0 0 0

3rd 13
12

−1
24 0 0 0

4th and 5th 1067
960

−29
480

3
640 0 0

6th and 7th 30251
26880

−7621
107520

159
17920

−5
7168 0

8th and 9th 5851067
5160960

−100027
1290240

31471
2580480

−425
258048

35
294912

Table II.1 � Coe�cients for the �nite volume computation of point-wise values from cell-average
ones.

II-2.1.3 Runge�Kutta based time discretization

We consider Nth order explicit schemes with s sub-cycles with the following notations for Runge-

Kutta sequences: αm is the time step for the mth sub-cycle, am,l the m, l term of the Butcher

table and θl the lth reconstruction coe�cient for the last step. It is represented by the table

presented in table II.5. The sequences are available in appendix in section A.1. We denote the
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Order Ĉ0 Ĉ±1 Ĉ±2 Ĉ±3 Ĉ±4

2nd 1 0 0 0 0

3rd 11
12

1
24 0 0 0

4th and 5th 863
960

77
1440

−17
5760 0 0

6th and 7th 215641
241920

6361
107520

−281
53760

367
967680 0

8th and 9th 41208059
46448640

3629953
58060800

−801973
116121600

49879
58060800

−27859
464486400

Table II.2 � Coe�cients for the �nite volume computation of average values from point-wise
ones.

Order d0 d1 d2 d3 d4

2nd 1 0 0 0 0

3rd 9
8

−1
24 0 0 0

4th and 5th 75
64

−25
384

3
640 0 0

6th and 7th 1225
1024

−245
3072

49
5120

−5
7168 0

8th and 9th 19845
16384

−735
8192

567
40960

−405
229376

35
294912

Table II.3 � Coe�cients for the δ operator.

sum of arti�cial viscosity and pressure as Π = p+q. The system (II.13) details one Runge-Kutta

sub-cycle at time tn+αm and (II.14) details the �nal step at time tn+1:



ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i ,

ρ0u
n+αm
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,ldΠn+αl
i+ 1

2

,

ρ0ε
n+αm
i =ρ0ε

n
i − ∆t

∆X

m−1∑
l=0

am,lΠδu
n+αl,
i

pn+αm
i =EOS(τn+αm

i , εn+αm
i ),

(II.13)

Here, dφ is the di�erence between two consecutive point-wise values: dφi = φi+ 1
2
−φi− 1

2
and dφi+ 1

2
=

φi+1 − φi. Note that in (II.13), ie for intermediate Runge�Kutta time-step, there is no need to

compute the evolution of the kinetic energy, nor the position of the cells face xi+ 1
2
.
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Order r0 r1 r2 r3 r4

2nd 1
2 0 0 0 0

3rd 9
16

−1
16 0 0 0

4th and 5th 75
128

−25
256

3
256 0 0

6th and 7th 1225
2048

−245
2048

49
2048

−5
2048 0

8th and 9th 19845
32768

−2205
16384

567
16384

−405
65536

35
65536

Table II.4 � Coe�cients for the interpolation of cell-centered values from staggered ones and
vice-versa.

α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αs as,0 · · · · · · as,s−1 0
1 θ0 θ1 · · · θs−1 θs

Table II.5 � Example of Butcher table for explicit Runge�Kutta sequence with s sub-cycles.



ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θldu
n+αl
i ,

ρ0u
n+1
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θldΠn+αl
i+ 1

2

,

ρ0ε
n+1
i =ρ0ε

n
i − ∆t

∆X

s∑
l=0

θlΠδu
n+αl,
i

ρ0ekin
n+1
i+ 1

2

=ρ0ekin
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θluδΠ
n+αl,

i+ 1
2

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t

s∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i , εn+1
i ).

(II.14)

II-2.1.4 Properties of the staggered schemes (II.13)-(II.14)

Two de�nitions of total energies are introduced in order to study the schemes properties con-

cerning the conservation of total energy.

De�nition II.1. The total energy, based on the kinetic energy reconstructed from the momen-

tum, of the system at time t = tn, denoted En, is de�ned as

En = ∆X

(∑
i

ρ0ε
n
i +

∑
i

ρ0u2
n

i+ 1
2

)
. (II.15)

De�nition II.2. A total energy, based on the discretized kinetic energy, of the system at time
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t = tn, denoted En, is de�ned as

En = ∆X

(∑
i

ρ0ε
n
i +

∑
i

ρ0ekin,u
n
i+ 1

2

)
. (II.16)

A desired feature is that the mass, momentum and the total energy En de�ned in de�nition II.1

are conserved for periodic or wall boundary conditions, meaning that En+1 − En = 0. How-

ever using schemes (II.13)-(II.14), the total energy E is not conserved. Here, as mentioned in

lemma II.2, the schemes conserve the total energy En de�ned in de�nition II.2.

Lemma II.2 (Conservation of the staggered schemes (II.13)-(II.14)). For all explicit Runge-

Kutta sequences, all arti�cial viscosities, all spatial reconstructions, the schemes (II.13)-(II.14)

formulated in internal energy are conservative in mass, momentum and total energy E de�ned in

de�nition II.2.

Proof. Conservation of mass and momentum is straightforward. We only prove the conservation

of total energy.

En+1 − En =
∑
i

(
ρ0ε

n+1
i − ρ0ε

n
i

)
+
∑
i

(
ρ0ekin

n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)

= − ∆t

∆X

∑
i

s∑
l=1

θl

(
Πδu

n+αl
i + uδΠ

n+αl
i+ 1

2

)
= − ∆t

∆X

∑
i

s∑
l=1

∑
k

∑
k′

θlĈkdk′(Π
n+αl
i+k un+αl

i+k+k′+ 1
2

+ un+αl
i+k+ 1

2

Πn+αl
i+k+k′+1

−Πn+αl
i+k un+αl

i+k−k′− 1
2

− un+αl
i+k+ 1

2

Πn+αl
i+k−k′).

Making the change of index i← i+ k′ in the �rst term and i← i+ k′ + 1 in the second term of

the RHS we get the result for wall (with non-trivial de�nitions of ghost-cell values) or periodic

boundary conditions.

En+1 − En = − ∆t

∆X

∑
i

s∑
l=1

∑
k

∑
k′

θlĈkdk′( Πn+αl
i+k−k′u

n+αl
i+k+ 1

2

+ un+αl
i+k−k′− 1

2

Πn+αl
i+k

− Πn+αl
i+k un+αl

i+k−k′− 1
2

− un+αl
i+k+ 1

2

Πn+αl
i+k−k′) = 0.

�

We introduce the barotropic version of the staggered schemes: the intermediate stages write
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

ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,l(u
n+αl
i+ 1

2

− un+αl
i− 1

2

),

ρ0u
n+αm
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(p
n+αl
i+1 − p

n+αl
i ),

pn+αm
i =EOS(τn+αm

i ),

(II.17)

and the �nal stage writes



ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θl(u
n+αl
i+ 1

2

− un+αl
i− 1

2

),

ρ0u
n+1
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θl(p
n+αl
i+1 − p

n+αl
i ),

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t
s∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i ).

(II.18)

Lemma II.3 (Weak consistency of the barotropic Lagrangian staggered schemes (II.17)-(II.18)).

For all explicit Runge�Kutta sequences, all consistent spatial reconstructions, the schemes (II.17)-

(II.18) are weakly consistent.

Proof. Here we use the fact that a scheme whose �ux is consistent (de�nition I.6) is weakly

consistent (de�nition I.7). This is why we have to verify that the scheme can be rewritten under

the form (I.34)-(I.35)-(I.36).

From equation (II.18), one can de�ne the natural �ux

f?
i+ 1

2

=
s∑
l=0

θl

(
−un+αl

i+ 1
2

pn+αl
i+1

)
,

and the intermediate �uxes are de�ned from (II.17)

fαm
i+ 1

2

=
m−1∑
l=0

am,l

(
−un+αl

i+ 1
2

pn+αl
i+1

)
.

The proof is done by induction on the intermediate time-steps. First one proves that the interme-

diate (resp. natural) �ux can be written as Φm(Ui−mr+1, ...,Ui+mr+1) (resp. Φ?(Ui−(s+1)r+1, ...,Ui+(s+1)r+1))
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. Second, one proves that Φm (resp. Φ?) satis�es for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t

Φm(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = αm

(
−u
p

)
,

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =

(
−u
p

)
.

We start the proof considering the �rst intermediate time-step. One has

fα1

i+ 1
2

= a1,0

(
−un

i+ 1
2

pni+1

)
, α1 = a1,0

where 

un
i+ 1

2

=

r∑
k=−r

Ckρ0u
n
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

,

pni = p


r∑

k=−r
Ckρ0τ

n
i+k

r∑
k=−r

Ckρ0i+k

 .

Hence, one can write fα1

i+ 1
2

as a function Φ1 with

fα1

i+ 1
2

= Φ1(


ρ0τ

n
i−r+1

ρ0i−r+1

ρ0u
n
i+ 1

2
−r

ρ0i+ 1
2
−r

 , ...,


ρ0τ

n
i+r+1

ρ0i+r+1

ρ0u
n
i+ 1

2
+r

ρ0i+ 1
2

+r

).

The function Φ1 writes

Φ1(


ρ0τ

n
i−r+1

ρ0i−r+1

ρ0u
n
i+ 1

2
−r

ρ0i+ 1
2
−r

 , ...,


ρ0τ

n
i+r+1

ρ0i+r+1

ρ0u
n
i+ 1

2
+r

ρ0i+ 1
2

+r

) = a1,0



−

r∑
k=−r

Ckρ0u
n
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n
i+k

r∑
k=−r

Ckρ0i+k




.
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Hence, for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t

Φ1(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = a1,0



−

r∑
k=−r

Ckρ0u

r∑
k=−r

Ckρ̂0

p


r∑

k=−r
Ckρ0τ

r∑
k=−r

Ckρ0




,

using the fact that
∑
k

Ck = 1, it leads to

Φ1(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = a1,0

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
= a1,0

(
−u
p(τ)

)
.

In particular, still for constant states (ρ0τ , ρ0, ρ0u, ρ̂0)t, one obtains that{
ρ0τ

n+α1
i = ρ0τ

n
i = ρ0τ,

ρ0u
n+α1

i+ 1
2

= ρ0u
n
i+ 1

2

= ρ0u.

Then by straightforward induction on the intermediate time-steps, any fαm
i+ 1

2

writes as a function

Φm as

fαm
i+ 1

2

= Φm(


ρ0τ

n
i−mr+1

ρ0i−mr+1

ρ0u
n
i+ 1

2
−mr

ρ0i+ 1
2
−mr

 , ...,


ρ0τ

n
i+mr+1

ρ0i+mr+1

ρ0u
n
i+ 1

2
+mr

ρ0i+ 1
2

+mr

).

The function Φm writes

Φm(


ρ0τ

n
i−mr+1

ρ0i−mr+1

ρ0u
n
i+ 1

2
−mr

ρ0i+ 1
2
−mr

 , ...,


ρ0τ

n
i+mr+1

ρ0i+mr+1

ρ0u
n
i+ 1

2
+mr

ρ0i+ 1
2

+mr

) =
m−1∑
l=0

am,l



−

r∑
k=−r

Ckρ0u
n+αl
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n+αl
i+k

r∑
k=−r

Ckρ0i+k




Then for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t and by induction on the previous intermediate time-
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steps

Φm(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =
m−1∑
l=0

am,l

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
=

m−1∑
l=0

am,l

(
−u
p(τ)

)
= αm

(
−u
p(τ)

)
.

And in particular, still for constant states, one obtains that{
ρ0τ

n+αm
i = ρ0τ

n
i = ρ0τ,

ρ0u
n+αm
i+ 1

2

= ρ0u
n
i+ 1

2

= ρ0u.

Therefore, by induction, the natural �ux f?
i+ 1

2

writes as a vector values function Φ? as

f?
i+ 1

2

= Φ?(


ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1

ρ0u
n
i+ 1

2
−(s+1)r

ρ0i+ 1
2
−(s+1)r

 , ...,


ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1

ρ0u
n
i+ 1

2
+(s+1)r

ρ0i+ 1
2

+(s+1)r

),

where Φ? satis�es

Φ?(


ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1

ρ0u
n
i+ 1

2
−(s+1)r

ρ0i+ 1
2
−(s+1)r

 , ...,


ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1

ρ0u
n
i+ 1

2
+(s+1)r

ρ0i+ 1
2

+(s+1)r

) =
s∑
l=0

θl



−

r∑
k=−r

Ckρ0u
n+αl
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n+αl
i+k

r∑
k=−r

Ckρ0i+k




.

Thus for constant states, it leads to

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =
s∑
l=0

θl

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
=

s∑
l=0

θl

(
−u
p(τ)

)
.



70 HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES

Using the fact that
s∑
l=0

θl = 1, it leads to

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =

(
−u
p(τ)

)

Hence, the scheme is weakly consistent for the barotropic equations in the sense of de�nition I.6.

�

Another important property of a scheme is its linear stability. To study such a property, one

considers the scheme for the linearized system of equation, which is nothing but the wave equation

{
∂tu+ ∂xp = 0

∂tp+ ∂xu = 0
(II.19)

For such a linear system, the staggered scheme writes


pn+αm
i = pni − ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i ,

un+αm
i+ 1

2

= un
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,ldp
n+αl
i+ 1

2

,


pn+1
i = pni − ∆t

∆X

s−1∑
l=0

θldu
n+αl
i ,

un+1
i+ 1

2

= un
i+ 1

2

− ∆t
∆X

s−1∑
l=0

θldp
n+αl
i+ 1

2

,

(II.20)

with a CFL condition of the form

∆t < λ∆X.

Using the ampli�cation factor presented in section I-1.2.3, one deduces a CFL condition which

yields linear stability for the schemes. Lemmas II.4 and II.5 give results concerning the linear

stability of the staggered schemes.

Lemma II.4 (Linear instability of the second order staggered schemes). The two-steps second-

order in time and space explicit Runge�Kutta schemes (II.20) are linearly unstable for any CFL

condition.

Remark II.3. For this reason, second order Runge�Kutta schemes are discarded. Instead the

BBC scheme is used for second order accuracy in time.

Proof. A two-steps second-order explicit Runge�Kutta sequences can be parametrized using a

non-zero α which leads to the following Butcher table

α α 0

1 1− 1
2α

1
2α
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For second-order accuracy, average and pointwise values are equivalent. The index j is used in

order not to introduce confusion with the complex number i. Denoting ν = ∆t
∆X , it writes for u

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(1− 1

2α
)(pnj+1 − pnj ) +

1

2α
(pn+α
j+1 − p

n+α
j )

)
.

Then plugging the terms for pn+α
j and pn+α

j+1 in the previous equation, it yields

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(1− 1

2α
)(pnj+1 − pnj ) +

1

2α
(pnj+1 − pnj − αν(un

j+ 3
2

− 2un
j+ 1

2

+ un
j− 1

2

))

)
,

which can be simpli�ed into

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(pnj+1 − pnj )− 1

2
(ν(un

j+ 3
2

− 2un
j+ 1

2

+ un
j− 1

2

))

)
.

The above expression is completely independent of α and thus the resulting CFL condition is as

well independent of α. It writes

un+1
j+ 1

2

= (1− ν2)un
j+ 1

2

− ν
(
pnj+1 − pnj

)
+
ν2

2

(
un
j+ 3

2

+ un
j− 1

2

)
.

Denoting εj and εj+ 1
2
the numerical errors as introduced in section I-1.2.3, it yields

εn+1
j+ 1

2

= (1− ν2)εn
j+ 1

2

− ν
(
εnj+1 − εnj

)
+
ν2

2

(
εn
j+ 3

2

+ εn
j− 1

2

)
.

Now assuming that for any n, and for any j, εnj = eβn∆t eikπj∆X with k an integer, one gets

eβ∆t = (1− ν2)− ν
(

e
ikπ∆X

2 − e−
ikπ∆X

2

)
+
ν2

2

(
eikπ∆X + e−ikπ∆X

)
.

Using trigonometric identities, it yields

eβ∆t = (1− ν2)− 2iν sin(
kπ∆X

2
) + ν2 cos(kπ∆X).

Introducing θ = kπ∆X and g(θ, ν) = eβ∆t, one gets the following equation for the ampli�cation

factor

g(θ, ν) = (1− ν2)− 2iν sin(
θ

2
) + ν2 cos(θ).

Then the square of the modulus of g(θ, ν) writes

|g(θ, ν)|2 =
(
1− ν2 + ν2 cos(θ)

)2
+ 4ν2 sin2(

θ

2
).

Using the fact that cos(θ) = 1− 2 sin2( θ2) and after simpli�cation one gets

|g(θ, ν)|2 = 1 + 4ν4 sin4(
θ

2
).
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Then, the ampli�cation factor satis�es for ν 6= 0

max
θ∈[0:2π]

|g(θ, ν)|2 > 1.

And thus the scheme is not stable in the sense of de�nition I.11. �

Similar calculations have been performed for higher-order staggered schemes. The Runge�Kutta

sequences used in the following are described in section I-1.2.3. The third order Runge�Kutta

sequence selected is the SSPRK3 [70, 71]. The fourth order Runge�Kutta sequence is the 3
8 -

Kutta sequence [99]. The �fth order Runge�Kutta sequence is the Dormand�Prince sequence

[49]. Last, the sixth, seventh and eighth order Runge�Kutta sequence are the robust Verner

sequences available in [167]. Due to the complexity of the ampli�cation factor, results of stability

are numerical. One checks for a given value of ν that for all θ, |g(θ, ν)| ≤ 1. The results are

summarized in the following lemma.

Lemma II.5 (Linear stability of the staggered schemes). Higher-order schemes are stable under

CFL condition

∆t < λStag
∆X

maxi ci

where ci is the speed of sound in the cell i. The coe�cients λStag are listed in table II.6 with the

aforementioned sequences.

Schemes λStag

2nd order BBC 0.6888

3rd order SSPRK3 0.7423

4th order 3
8 -Kutta 1.1390

5th order Dormand-Prince 0.4015

6th order robust Verner 1.0045

7th order robust Verner 0.0134

8th order robust Verner 0.9840

Table II.6 � CFL conditions for linear stability of the staggered schemes

II-2.2 A new local internal energy corrector

Compared to the barotropic schemes, an additional theoretical di�culty shows up for the hydro-

dynamics case (II.13)-(II.14) with the energy equation. It is related to the fact that, even if the

total energy E is preserved by construction, it is not the case for the total energy E. Experimen-

tally, we also observe that the schemes (II.13)-(II.14) are unable to capture the shocks correctly,

in the sense that the Rankine�Hugoniot jump relations are not recovered.

The idea is to recouple E and E using a correction of the internal energy at the end of the

Lagrangian phase (II.13)-(II.14). The di�erence between the computed kinetic energy and the
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kinetic energy reconstructed from the velocity is reversed in the internal energy. This is very

similar to what is done in works by Herbin, Latché and al. [83, 80, 81]. The main di�erence is

that they perform the correction a priori, whereas here in our case the correction is applied a

posteriori.

II-2.2.1 Internal energy corrector

As an additional comment, the internal energy evolution equation in (II.9) is unde�ned classically

in the sense of distributions. So, in the absence of any arti�cial viscosity, one expects wrong

discontinuities computations. The idea of the internal energy corrector is to really solve the

Lagrangian system formulated in total energy rather that in internal one.

The di�erence between the computed kinetic energy and the kinetic energy reconstructed from

the velocity is computed. As the scheme is high-order accurate, the result is not so straightfor-

ward. It follows the steps described hereafter. First the point-wise kinetic energy reconstructed

from the velocity is

(
1

2
ρ0u

2)n+1
i+ 1

2

=
1

2

(∑
k

Ckρ0u
n+1
i+k+ 1

2

)2

∑
k

Ckρ0
n
i+k+ 1

2

.

Second it is averaged over a cell using the coe�cients Ĉk presented in table II.1

(
1

2
ρ0u2)n+1

i+ 1
2

=
∑
k

Ĉk(
1

2
ρ0u

2)n+1
i+k+ 1

2

.

The di�erence denoted ∆Kn+1
i+ 1

2

between the two kinetic energies is

∆Kn+1
i+ 1

2

= ρ0ekin
n+1
i+ 1

2

− (
1

2
ρ0u2)n+1

i+ 1
2

.

Third, linear interpolation is made to compute ∆Kn+1
i

∆Kn+1
i =

1

2
(∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2

).

Last, the di�erence ∆Kn+1
i is added to the internal energy ρ0ε

n+1
i whereas ∆Kn+1

i+ 1
2

is subtracted

to the kinetic ones. It writes as an a posteriori correction{
ρ0ε

n+1,?
i = ρ0ε

n+1
i + ∆Kn+1

i

ρ0ekin
n+1,?

i+ 1
2

= ρ0ekin
n+1
i+ 1

2

−∆Kn+1
i+ 1

2

= (1
2ρ0u2)n+1

i+ 1
2

(II.21)

The internal energy corrector can be applied at the end of each Runge�Kutta sub-cycle or only

at the end of the time-step. Commonly, the internal energy corrector is performed only at the

end of the time-step, hence the a posteriori correction.
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II-2.2.2 Properties of the internal energy corrector

Lemma II.6 (High-order accuracy of the internal energy corrector). The internal energy cor-

rector is high-order accurate in both time and space.

Proof. Assume that the solution is smooth enough. Assume that the coe�cients Ĉk and Ck yield

Nth order of accuracy in space, and that the Lagrange phase is also of order N in both time and

space. Then in particular, one has

∆Kn+1
i+ 1

2

= ρ0ekin
n+1
i+ 1

2

− (
1

2
ρ0u2)n+1

i+ 1
2

= O(∆XN ).

And then trivially, one gets that

∆Kn+1
i =

1

2
(∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2

) = O(∆XN ).

As the Lagrange phase is assumed to be high-order accurate, one has that

ρ0ε
n+1
i = ρ0ε(xi, t

n+1) + O(∆XN ),

And then, one gets

ρ0ε
n+1,?
i = ρ0ε

n+1
i + ∆Ki = ρ0ε(xi, t

n+1) + O(∆XN ),

which concludes the proof, yielding high-order accuracy for the internal energy. �

Moreover the following lemma gives conservation of total energy when applying the internal

energy corrector.

Lemma II.7 (Conservation of the internal energy corrector). The internal energy corrector

satis�es En+1,? = En+1.

Proof. The internal energy corrector is conservative in E if and only if we have

En+1,? − En+1 = ∆X
∑
i

∆Ki −
∑

∆Ki+ 1
2

= 0.

As ∆Ki = 1
2(∆Ki+ 1

2
+ ∆Ki− 1

2
), it leads to the following computations

En+1,?−En+1 = ∆X

(∑
i

∆Ki −
∑

∆Ki+ 1
2

)
= ∆X

(∑
i

1

2
(∆Ki+ 1

2
+ ∆Ki− 1

2
)−

∑
∆Ki+ 1

2

)
.

Performing change of discrete variables in the �rst summation, and assuming wall or periodic

boundary conditions, it yields
∑
i

∆Ki −
∑

∆Ki+ 1
2

= 0. Thus, the internal energy corrector

conserve the quantity E , meaning that En+1,? − En+1 = 0. �
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Lemma II.8 (Conservation of the staggered schemes (II.13)-(II.14)-(II.21)). The schemes (II.13)-

(II.14) with the internal energy corrector (II.21) satisfy En+1,? = En (cf de�nition II.1).

Proof. We have

En+1,? − En = ∆X
∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0u2

n

i+ 1
2

)
(II.22)

Introducing the term at time t = tn+1, it becomes

= ∆X
∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i + ρ0ε

n+1
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0ekin,u

n+1
i+ 1

2

+ ρ0ekin,u
n+1
i+ 1

2

− ρ0u2
n

i+ 1
2

)
= ∆X

∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i

)
−∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0ekin,u

n+1
i+ 1

2

)
+ En+1 − En

Using the fact that ρ0u2
n+1,?

i+ 1
2

= ρ0ekin,u
n+1,?

i+ 1
2

, it leads to

= En+1,? − En+1 + En+1 − En

= 0.

Thus, applying the internal corrector gives conservation of the energy E between time t = tn+1,?

and time t = tn. �

Theorem II.9 (Weak consistency of the staggered schemes (II.13)-(II.14)-(II.21) ). For all ex-

plicit Runge�Kutta sequences, for coe�cients Ck, Ĉk, dk, rk de�ned in tables II.1 to II.4, the

schemes (II.13)-(II.14)-(II.21) are weakly consistent with the Euler equations in Lagrangian co-

ordinates.

Remark II.4. The proof of the weak consistency of the two �rst variables, speci�c volume and

momentum, which show up in (II.13)-(II.14) is essentially similar to the one of lemma II.3 for

the barotropic case, so is not detailed. Instead we focus on the energy equation. However, due

to the very intricate structure of the discrete energy equation, no explicit natural �uxes for total

energy have been exhibited so far. It means that the energy equation is not rewritten using the

form (I.34)-(I.35)-(I.36). That is the criterion of �ux consistency of de�nition I.6 is unfortunately

not applicable, this is why the proof is detailed hereafter in full length, starting directly from

de�nition I.7.

Proof. The assumptions presented in de�nition I.7 for weak consistency are done. We �rst detail

the proof for a forward Euler, second order in space scheme because it highlights the key elements

of the method. The general case with a forward Euler and any order in space will be dealt with

in a second stage. The most general case with any explicit Runge�Kutta sequences will not be

detailed because it would add no new technical ideas and the notations are too heavy. For the
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sake of simplicity, in the following the time step tn+1,? is denoted by tn+1.

First stage

For a forward Euler, second order in space scheme, the internal and kinetic energies discrete

equations write

 ρ0ε
n+1
i − ρ0ε

n
i = − ∆t

∆Xpni (un
i+ 1

2

− un
i− 1

2

) + ∆Kn+1
i ,

ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

= − ∆t
∆Xun

i+ 1
2

(pni+1 − pni ) − ∆Kn+1
i+ 1

2

,

The idea is to take a test function φ ∈ C∞0 with compact support. Denote φni = φ(i∆X, tn) and

φn
i+ 1

2

((i + 1
2)∆X, tn). Multiply the �rst equation by ∆Xφn+1

i and the second by ∆Xφn+1
i+ 1

2

then

to sum over the n and i and to combine both. It leads to

∑
n

∑
i

∆X

[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)φn+1
i+ 1

2

]
+

∑
n

∑
i

∆t

[
pni φ

n+1
i (un

i+ 1
2

− un
i− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+1 − pni )

]
−

∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
= 0.

(II.23)

Denote h a parameter proportional to ∆X and ∆t. Introducing the notation

T h1 =
∑
n

∑
i

∆X

[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)φn+1
i+ 1

2

]
,

T h2 =
∑
n

∑
i

∆t

[
pni φ

n+1
i (un

i+ 1
2

− un
i− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+1 − pni )

]
,

T h3 = −
∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
,

(II.24)

eq. (II.23) rewrites simply under the form T h1 + T h2 + T h3 = 0. Terms T h1 are reordered into

T h1 = −
∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 .
We will use the natural de�nition/notation for staircase functions

ψh(x, t) =
∑
i

∑
n

χ]tn,tn+1[(t)χ]xi−1/2,xi+1/2[(x)ψni ,

ψh,stag(x, t) =
∑
i

∑
n

χ]tn,tn+1[(t)χ]xi,xi+1[(x)ψn
i+ 1

2

.
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Then, using the internal corrector, it yields that ρ0ekin
n
i+ 1

2

= 1
2(ρ0u

2)n
i+ 1

2

and so

T h1 = −
∫ T

0

∫
Ω

(ρ0ε)h∂tφhdxdt−
∫ T

0

∫
Ω

(
1

2
ρ0u

2)h,stag∂tφh,stagdxdt

+

∫
Ω

(ρ0ε)
0
hφ

0
hdx+

∫
Ω

(
1

2
ρ0u

2)0
h,stagφ

0
h,stagdx.

Using the convergence hypothesis of de�nition I.7 and the regularity of the test function φ, one

can pass to the limit as ∆X and ∆t tend to 0. It leads to

lim
h→0
T h1 = −

∫ T

0

∫
Ω
ρ̂0ε∂tφdxdt−

∫ T

0

∫
Ω

1̂

2
ρ0u2∂tφdxdt

+

∫
Ω
ρ̂0ε(x, 0)φ(x, 0)dx+

∫
Ω

1̂

2
ρ0u2(x, 0)φ(x, 0)dx.

Using the de�nition of the total energy as ρ0e = ρ0ε+ 1
2ρ0u

2, one gets

lim
h→0
T h1 = −

∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Now, focus on T h3 which writes

T h3 = −
∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
,

which leads using ∆Kn+1
i = 1

2(∆Kn+1
i+ 1

2

+ ∆Kn+1
i− 1

2

) to

T h3 = −
∑
n

∑
i

∆X

[
1

2
(∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2

)φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
,

which gives after reordering the terms

T h3 = −
∑
n

∑
i

∆X∆Kn+1
i+ 1

2

(
φn+1
i+1 + φn+1

i

2
− φn+1

i+ 1
2

)
.

Using the boundedness in L∞ of ∆Kn+1
i+ 1

2

and regularity of φ, it leads to

|T h3 | ≤ Cφ∆X‖(∆K)h‖L∞ , which gives immediately lim
h→0
|T h3 | = 0.

The term T h2 writes

T h2 =
∑
n

∑
i

∆t

[
pni φ

n+1
i (un

i+ 1
2

− un
i− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+1 − pni )

]
,
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which, once the terms reordered, writes as

T h2 =
∑
n

∆t
∑
i

[
pni u

n
i+ 1

2

φn+1
i − pni+1u

n
i+ 1

2

φn+1
i+1 + un

i+ 1
2

φn+1
i+ 1

2

(pni+1 − pni )

]
=
∑
n

∆t
∑
i

[
un
i+ 1

2

pni (φn+1
i − φn+1

i+ 1
2

) + un
i+ 1

2

pni+1(φn+1
i+ 1

2

− φn+1
i+1 )

]

= −
∑
n

∆t∆X
∑
i

un
i+ 1

2

1

2
pni

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
1

2
pni+1

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2


= −

∑
n

∆t∆X
∑
i

un
i+ 1

2

pni + pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni + pni+1

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2


−
∑
n

∆t∆X
∑
i

un
i+ 1

2

pni − pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni+1 − pni

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 .
The previous expression is decomposed into two terms denoted T h2,1 and T h2,2 with



T h2,1 = −
∑
n

∆t∆X
∑
i

un
i+ 1

2

pni + pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni + pni+1

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 ,
T h2,2 = −

∑
n

∆t∆X
∑
i

un
i+ 1

2

pni − pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni+1 − pni

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 .
The T h2,2 is dealt with assuming that ph is in BV , uh is bounded in L∞, and φ is in C 1 which

gives

|T h2,2| ≤ ∆XCφ‖uh‖L∞‖ph‖BV .

Hence, passing to the limit, it leads to

lim
h→0
|T h2,2| = 0. (II.25)

On the other hand, one easily notices that T h2,1 rewrites as

T h2,1 = −
∑
n

∆t∆X
∑
i

un
i+ 1

2

pni + pni+1

2

1

2

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
1

2

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 ,
= −

∫ T

0

∫
Ω

(pu)h∂Xφhdxdt
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Using the regularity of φ it leads, passing to the limit, to

lim
h→0
T h2,1 = −

∫ T

0

∫
Ω
p̂û∂Xφdxdt.

Reassembling all the terms, it yields that

lim
h→0
T h1 + T h2 + T h3 = −

∫ T

0

∫
Ω
ρ̂0e∂tφdxdt−

∫ T

0

∫
Ω
p̂û∂Xφdxdt+

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

And, hence, it leads to∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫ T

0

∫
Ω
p̂û∂Xφdxdt =

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Previous equation gives weak consistency for the second order in space, forward Euler staggered

scheme with internal energy corrector.

Second stage

Now, the problem of high-order in space is tackled. It does not yield to any di�culty for the

terms T h1 and T h3 , but this is not the case for T h2 , where the desired results is not obvious. For

the sake of simplicity here, we consider that Ĉ0 = 1, Ĉk = 0,∀|k| > 0. The results does not

change, if
∑
k

Ĉk = 1 but it greatly alleviates the algebra of the proof.

One has that

T h2 = −
∑
n

∆t
∑
i

∑
k≥0

dk

[
pni φ

n+1
i (un

i+k+ 1
2

− un
i−k− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+k+1 − pni−k)
]
.

Reordering the terms, so that only un
i+ 1

2

shows up, leads to

T h2 = −
∑
n

∆t
∑
i

un
i+ 1

2

∑
k≥0

dk

[
pni−k(φ

n+1
i−k − φ

n+1
i+ 1

2

) + pni+k+1(φn+1
i+ 1

2

− φn+1
i+k+1)

]
.

Highlighting the space derivatives of φ gives

T h2 = +
∑
n

∆t
∑
i

∆Xun
i+ 1

2

∑
k≥0

(k +
1

2
)dk

pni−kφn+1
i+ 1

2

− φn+1
i−k

∆X(k +
1

2
)

+ pni+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1

2
)

 .
Noticing that (k + 1

2)dk = rk, k ≥ 0, it yields

T h2 = +
∑
n

∆t
∑
i

∆Xun
i+ 1

2

∑
k≥0

rk

pni−kφn+1
i+ 1

2

− φn+1
i−k

∆X(k +
1

2
)

+ pni+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1

2
)

 .
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As previously for the case of second order in space accuracy, the conclusion is reached using the

assumption that ph is in BV , uh is bounded in L∞, φ is in C 1 and
∑
k

rk = 1. One has

lim
h→0
T h2,1 = −

∫ T

0

∫
Ω
p̂û∂Xφdxdt.

And, hence, it leads to∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫ T

0

∫
Ω
p̂û∂Xφdxdt =

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Previous equation gives weak consistency for forward Euler staggered scheme with internal energy

corrector. Using Runge�Kutta sequences adds only more technical di�culty in the algebra, but

does not alter the weak consistency result. Idem for the use of the coe�cients Ĉk. The key point

for consistency is to use the same coe�cients dk and Ĉk for both the internal and kinetic energies

equations. �

Remark II.5. Without internal energy corrector, for a forward Euler second order in space scheme,

the �rst term writes

T̂ h1 = −
∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t


= −

∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ (

1

2
ρ0u

2)n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t


−
∑
n

∆t
∑
i

∆X

(ρ0ekin
n
i+ 1

2

− (
1

2
ρ0u

2)n
i+ 1

2

) φn+1
i+ 1

2

− φn
i+ 1

2

∆t


= T h1,1 + T h1,2.

where T h1,1 and T h1,2 are de�ned by

(II.26)
T h1,1 = −

∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ (

1

2
ρ0u

2)n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 ,
T h1,2 = −

∑
n

∆t
∑
i

∆X

(ρ0ekin
n
i+ 1

2

− (
1

2
ρ0u

2)n
i+ 1

2

) φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 .
The term T h1,1 has been dealt with as it is equal to the term T h1 of the proof. Now, consider the

term T h1,2. Then under regularity hypothesis on the test function, one obtains something of the

form

|T h1,2| ≤ Cφ‖ρ0ekin − (
1

2
ρ0u

2)‖l1([0:T ]×Ω).
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Figure II.2 � Illustration of the interest and importance of the internal energy corrector. With-
out the internal energy corrector (left), the scheme does not converge toward the
weak solution for the Sod shock tube. Using the internal energy corrector (right),
although oscillatory, the jump relations are recovered.

∆X
1

100

1

200

1

400

1

800

1

1600
‖ρ0ekin − (1

2ρ0u
2)‖l1([0:T ]×Ω) 6.7e-3 4.7e-3 3.7e-3 3.3e-3 3.1e-3

Table II.7 � Illustration of the interest and importance of the internal energy corrector. Without
the internal energy corrector, the term ‖ρ0ekin− (1

2ρ0u
2)‖l1([0:T ]×Ω) does not tend to

0 as ∆X and ∆t tends to zero.

Experimentally, one observes that without internal energy corrector, ‖ρ0ekin−(1
2ρ0u

2)‖l1([0:T ]×Ω)

does not tend to 0 as ∆X and ∆t tend to 0. Indeed, here we present a short example where the

internal energy corrector is most wanted to ensure correct capture of shocks. This example called

the Sod shock tube [146] is presented later on. It is run with and without the energy corrector.

Results are displayed in �g. II.2. On the left picture, we show that the scheme does not converge

toward the analytical solution without the internal energy corrector. On the right one, we show

that adding the internal energy corrector, the pro�le obtained in internal energy is much more

satisfactory. In table II.7, we present the values of ‖ρ0ekin − (1
2ρ0u

2)‖l1([0:T ]×Ω), for the scheme

without internal energy corrector, to assess that it does not tend to 0 experimentally. Further

studies on the Sod shock tube are presented later on.

II-2.3 The remapping stage

The remapping is the algorithm designed to project the Lagrangian quantities on the original

Cartesian grids, so that one gets a Cartesian Euler scheme. The quantities to be remapped

at the end of the Lagrangian phase (II.13)-(II.14)-(II.21) are ρ0, ρ0ε on the primal grid {xi+ 1
2
}

and ρ0, ρ0u, ρ0ekin on the dual one {xi}. The projection detailed hereafter is equal to the one

proposed in [50, 170] but adapted here to the staggered grids.
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II-2.3.1 Lagrange polynomials based conservative projection

At the end of the Lagrangian phase, the primal deformed grid {xn+1
i+ 1

2

} is known. In order to be

able to project the staggered variables ρ0, ρ0u, ρ0ekin, one must be able to deduce the deformation

of the dual grid {xn+1
i }. This is done by using the coe�cients rk presented in table II.4, and

using

xn+1
i =

∑
k

rk(xi+k+ 1
2

+ xi−k− 1
2
),

which leads to locations of cell centers at high-order accuracy provided {xn+1
i+ 1

2

} is also known at

high-order accuracy. We consider any function φ ∈ L∞, then the �nite volume of (ρ0φ)
n+1

ξ(i) leads

to

∆X(ρ0φ)
n+1

ξ(i) =

∫ X
ξ(i)+ 1

2

X
ξ(i)− 1

2

(ρ0φ)(Y, tn+1)dX + O(∆XN ).

Using the de�nition of the change of variables (x, t)→ (X, t), the integral computation yields

∆X(ρ0φ)
n+1

ξ(i) =

∫ xn+1

ξ(i)+ 1
2

xn+1

ξ(i)− 1
2

(ρφ)(y, tn+1)dy + O(∆XN ). (II.27)

Then, on the other hand, one has the following identity

∆X(ρφ)
n+1

ξ(i) =

∫ x
ξ(i)+ 1

2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + O(∆XN ).

Using the integral linearity, it gives

∆X(ρφ)
n+1

ξ(i) =

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy +

∫ xn+1

ξ(i)+ 1
2

xn+1

ξ(i)− 1
2

(ρφ)(y, tn+1)dy

+

∫ x
ξ(i)+ 1

2

xn+1

ξ(i)+ 1
2

(ρφ)(y, tn+1)dy + O(∆XN ).

Plugging eq. (II.27) into the previous equation, it yields

∆X(ρφ)
n+1

ξ(i) =

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + ∆X(ρ0φ)
n+1

ξ(i) +

∫ x
ξ(i)+ 1

2

xn+1

ξ(i)+ 1
2

(ρφ)(y, tn+1)dy + O(∆XN ),

which written under conservative form, dropping the O(∆XN ), gives

(ρφ)
n+1

ξ(i) = (ρ0φ)
n+1

ξ(i) −

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∆X
(ρ0φ)?

ξ(i)+ 1
2

−
xn+1
ξ(i)− 1

2

− xξ(i)− 1
2

∆X
(ρ0φ)?

ξ(i)− 1
2

 , (II.28)
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where (ρ0φ)?
ξ(i)+ 1

2

satis�es

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy. (II.29)

One easily notices that (ρ0φ)?
ξ(i)+ 1

2

can be written as

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∫ xn+1

ξ(i)− 1
2

x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy −
∫ x

ξ(i)− 1
2

x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy


with i? an integer still to be determined to ensure both accuracy and stability. Then introducing

the function Hρφ
ξ(i?)(x) =

∫ x
x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy, one gets

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

(
Hρφ
ξ(i?)(x

n+1
ξ(i)− 1

2

)−Hρφ
ξ(i?)(xξ(i)− 1

2
)

)
. (II.30)

Here, upwinded centered Lagrange polynomials are used to interpolate value of Hρφ
ξ(i?). The

upwinding is done in function of sign of xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2
. It yields natural value for i? as a

function of the upwinding and the order of the scheme N . In practice, one has

i? =

{
i− 1− bN2 c if xn+1

ξ(i)+ 1
2

> xξ(i)+ 1
2
,

i− bN−1
2 c otherwise.

(II.31)

II-2.3.2 Properties of the remap step

Lemma II.10. The remap step (II.28) is conservative in mass, momentum, internal and kinetic

energies. It conserves in particular the total energy E de�ned in de�nition II.2.

Proof. The proof is straightforward. Indeed due to the conservative form depicted in eq. (II.28),

the projection is conservative in mass, momentum, internal and kinetic energies. Thus, as E is

the sum of both internal and kinetic energies, it is also conserved. �

For the same motives mentioned in section II-2.2, the conservation of E is a desired feature.

The dissipation of total energy during the remap phase is mentionned in the early literature.

Indeed, as pointed out by DeBar [37, 38] "kinetic energy disappears in the momentum advection

process, and must be compensated for in the internal energy if total energy conservation is to be

maintained". It was also formulated similarly later by Youngs [176, 163].

Using the conservation of E , the internal energy corrector eq. (II.21) is applied at the end of the

remapping stage. It thus yields straightforwardly conservation of both E and E. Hence, three

algorithms are available.

1. Lagrange phase→ Internal energy corrector,
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2. Lagrange phase→ Internal energy corrector→ Remap phase→ Internal energy corrector,

3. Lagrange phase→ Remap phase→ Internal energy corrector,

The �rst algorithm is used to solve the Euler equations in Lagrangian coordinates, whereas the

other two are used for the standard Euler equations. One can show that 2. and 3. are equivalent.

In the following, the third algorithm is used.

Moreover, another CFL condition is imposed on the scheme, where now the time-step must

satisfy

∆t <
∆X

maxi |ui+ 1
2
|
.

This CFL condition comes directly from the stability of the Strang schemes derived in [43, 44].

A possible modi�cation of the projection is to use monotonicity limiters in order to ensure the

monotonic behaviour of the projection. In practice, one may apply the monotonicity preserv-

ing limiters [152] for more robustness during the remap phase. If not mentioned in numerical

examples, limiters are not activated.

II-2.4 Numerical validation of the 1D conservative Lagrange-Remap schemes

on staggered Cartesian grids

The numerical test-suite for validation contains among others three smooth test-problems which

are the Cook�Cabot breaking wave test-case proposed in 2004 [28], a slight modi�cation of the

breaking wave using a non-convex equation of state and last an acoustic propagation which

highlights the advantages concerning staggered grids schemes over cell-centered ones concerning

the propagation of waves. Then, four shock test-problems are shown to illustrate the correct

capture of shocks, among which the Sod test-case, the Woodward�Colella double blast wave and

the Noh compression. The idea is to validate the schemes on a very large variety of test-cases

to assess both accuracy and robustness. This is the real di�culty of the proposed test-suite.

Recall that for all shock problems, additional arti�cial viscosities or hyperviscosities are never

used. The dissipation induced by the time and space discretization is enough for the proposed

test-suite.

II-2.4.1 Cook�Cabot breaking wave test-case [28]

The Cook�Cabot test-case is designed to assess numerically the order of accuracy of the schemes

as the variables pro�les are smooth until a given time Tshock where a discontinuity occurs. The

breaking wave [28] initial data are set as follows:

ρ = ρ0(1 + α sin(2πx)),

p = p0

(
ρ
ρ0

)γ
,

c = c0

(
ρ
ρ0

)(γ−1)/2
,

u = 2
γ−1(c0 − c),

for − 0.5 ≤ x ≤ 0.5 (II.32)
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with the constants de�ned as ρ0 = 10−3, p0 = 106, γ = 5
3 and α = 0.1. Tshock is de�ned as

Tshock =
1

(γ + 1)παc0
.

The �uid is supposed to be a perfect gas. "For this set of initial conditions, two of the three

caracteristics are initially constant, with the third satisfying a Burgers-like equation" [28]. The

exact solution until Tshock is the initial pro�le advected with velocity u−c. The momentum error

in l1-norm as well as the experimental order of convergence are displayed in table II.8. Expected

order of convergence are almost reached. For very high-order methods, the machine precision is

already reached for 200 cells.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

50 9.3e-5 · 6.4e-6 · 5.3e-7 · 1.0e-7 · 3.1e-8 · 5.6e-9 ·
100 1.2e-5 2.91 4.3e-7 3.89 2.0e-8 4.68 2.1e-9 5.64 2.6e-10 6.88 5.1e-11 6.79
200 1.6e-6 2.95 3.0e-8 3.86 7.7e-10 4.73 4.1e-11 5.69 2.8e-12 6.59 5.4e-13 6.56
400 2.0e-7 2.98 2.0e-9 3.93 2.6e-11 4.87 1.2e-12 5.1 8.2e-13 ? 8.6e-13 ?

800 2.6e-8 2.99 1.2e-10 3.96 1.8e-12 3.87 1.4e-12 ? 1.7e-12 ? 1.7e-12 ?

1600 3.2e-9 2.99 8.7e-12 3.85 3.6e-12 ? 1.5e-12 ? 3.0e-12 ? 2.8e-12 ?

3200 4.0e-10 3.00 6.2e-12 ? 3.8e-12 ? 2.2e-12 ? 3.3e-12 ? 3.1e-12 ?

Table II.8 � l1-error in momentum and experimental order of convergence for the Lagrange-remap
staggered scheme taken on the Cook-Cabot breaking wave test problem [28], until
t = 0.9Tshock. ? indicates machine precision reached.

II-2.4.2 Non-perfect gas breaking wave test-case

The previous test-case is designed for a perfect gas. A similar test-case but for arbitrary EOS

gas can be de�ned. This time, the EOS is not convex and the initial data are set in such a way

that the in�exion point is present in the computational domain. The initial data are

ρ = ρ0(1 + α sin(2πx)),

c(ρ) =
√
γρ(γ−1)/2 + β1ρ

β2 ,

p(ρ) =

∫
c(ρ)2dρ,

u(ρ) =

∫
c(ρ)

ρ
dρ,

with



α = 0.7,

β1 = 0.03
√
γρ

(γ−1)/2−β2)
0 ,

β2 = −4,

ρ0 = 1.4,

p0 = 103.

(II.33)

The exact solution until Tshock is the initial pro�le advected with velocity u − c. The velocity

error in l1-norm as well as the experimental order of convergence are displayed in table II.9.

Although the equation of state is not convex, expected order of convergence are reached by the

staggered schemes.
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Figure II.3 � Non-convex equation of state for a breaking-wave test-case

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

50 4.2e-4 · 6.5e-4 · 2.6e-4 · 3.4e-4 · 2.9e-4 · 2.3e-4 ·
100 1.9e-4 1.14 2.1e-4 1.64 5.7e-5 2.20 1.1e-4 1.67 4.4e-5 2.69 6.8e-5 1.73
200 4.5e-5 2.07 4.3e-5 2.29 1.5e-5 1.90 1.4e-5 2.91 1.3e-5 1.80 9.8e-6 2.80
400 9.3e-6 2.27 5.6e-6 2.94 1.7e-6 3.20 1.5e-6 3.25 6.5e-7 4.30 6.9e-7 3.83
800 1.5e-6 2.66 4.8e-7 3.54 9.9e-8 4.07 5.9e-8 4.64 2.0e-8 5.04 1.5e-8 5.56
1600 2.0e-7 2.89 3.1e-8 3.91 3.8e-9 4.69 1.3e-9 5.53 2.6e-10 6.24 1.2e-10 6.90
3200 2.6e-8 2.96 2.0e-9 3.98 1.3e-10 4.84 2.5e-11 5.68 7.5e-12 5.12 5.7e-12 4.43

Table II.9 � l1-error in momentum and experimental order of convergence for the Lagrange-
remap staggered scheme taken on the modi�ed breaking wave test problem, until
t = 0.9Tshock. ? indicates machine precision reached.

II-2.4.3 Acoustic propagation test-case

This test-case is an acoustic oscillator. It is similar to a plate acting as a pressure harmonic source

at x = 1. The mesh is chosen such that there are 7 cells by wavelength. The sound speed is set

to 1. Slight modi�cations of pressure are imposed by the plate, such that the system of equations

can be linearised. Comparisons between cell-centered schemes (GAD [84] and GoHy [50]) with

the presented staggered schemes and the BBC schemes are drawn. Pressure pro�les are depicted

in �g. II.4 with a zoom on the wave front. As expected when the order of accuracy is increased,

signal phase and amplitude are better restored by the schemes. Moreover, at equivalent order,

the staggered schemes demonstrate a better restitution of both phase and amplitude of the signal.

This one of the main advantages of B-type and C-type staggered schemes as pointed out in [5].

The initial data are
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
ρ = γ,

p = 1,

u = 0,

for 0 ≤ x ≤ 0.5 (II.34)

(a) 3rd order (b) 4th order

(c) 5th order (d) 6th order

Figure II.4 � Acoustic wave with harmonic source - Di�erence between the cell-centered GoHy
[50] (blue, cross) and GAD schemes [84] (gray, �lled triangle), the staggered
BBC scheme [171] (orange, triangle) and the new staggered schemes denoted here
YHORK (black, �lled circle). Analytic solution is represented by the red curve.

II-2.4.4 Sod test-case [146]

The Sod shock tube [146] is very common in the literature as a simple Riemann problem for the

Euler equations. This test-case proves useful to determine the ability of the scheme to handle

shocks and especially the capacity to recover correct discrete Rankine-Hugoniot relations at the

shock using the proposed internal energy corrector. Initially, a left state and a right state trigger

a rarefaction, contact discontinuity and shock. The domain is [0 : 1] and the initial data are
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
ρ0(x) = 1.0χ{x<0.5} + 0.125χ{x>0.5},

p0(x) = 1.0χ{x<0.5} + 0.1χ{x>0.5},

u0(x) = 0,

γ = 1.4.

(II.35)

Wall boundary conditions are imposed at x = 0 and at x = 1. In �g. II.5, pro�les of density

and internal energy are depicted with the analytic solution for a mesh containing 100 cells. In

table II.10, convergence results on density in norm l1 are proposed. Although oscillatory due

to the absence of arti�cial viscosities, convergence in the l1-norm is achieved. As presented in

�g. II.2, the scheme is not consistent without the internal energy corrector, and thus, the l1 error

does not converge to 0.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.5 � Density (top) and internal energy (bottom) pro�les on [0 : 1] for the Sod test-case
problem [146] at time t = 0.2, CFL=0.7, 100 cells, monotonicity limiters used
during the remap phase, no arti�cial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

Nx GAD GoHy-3 BBC STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

50 2.92e-2 1.32e-2 1.81e-2 1.16e-2 1.00e-2 9.70e-3 1.03e-2 1.02e-2 8.69e-3
200 1.12e-2 3.91e-3 5.75e-3 3.47e-3 2.57e-3 2.50e-3 3.08e-3 5.64e-3 2.53e-3
800 3.96e-3 9.73e-4 1.51e-3 8.65e-4 7.82e-4 7.51e-4 7.09e-4 6.95e-4 6.59e-4
3200 1.37e-3 2.99e-4 4.86e-4 2.82e-4 2.38e-4 2.17e-4 2.24e-4 2.17e-4 2.02e-4
12800 4.56e-4 9.41e-5 1.67e-4 1.02e-4 6.86e-5 7.02e-5 9.43e-5 8.67e-5 6.02e-5
25600 2.61e-4 5.54e-5 1.00e-4 6.20e-5 3.80e-5 3.72e-5 7.07e-5 6.20e-5 4.94e-5

Table II.10 � l1-error in density for the Lagrange-remap staggered scheme taken on the Sod test
problem [146], until t = 0.2.
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II-2.4.5 Noh test-case [127]

The Noh test-case [127] is a compression with a complete conversion of kinetic energy into internal

energy. The domain is �xed at [0 : 1]. A continuous incoming �ux of gas at x = 1 is entering the

computational domain with a constant speed and compress the gas located around x = 0. We

consider an incoming constant state of gas at x = 1 and a wall boundary at x = 0. The initial

data are


ρ0 = 1.0,

u0 = −1.0,

p0 = 10−8,

γ = 5
3 .

(II.36)

The analytical solution writes


ρ(x, t) = 4.0χ{x< t

3
} + 1.0χ{x> t

3
},

u = −1.0χ{x> t
3
},

p = 4
3χ{x< t

3
} + 10−8χ{x> t

3
},

(II.37)

which gives an in�nite shock intensity. This is a real di�culty for most schemes as highlighted

in [127]. With this test-case, the robustness of the schemes is studied, without any arti�cal

viscosity or hyperviscosity. In �g. II.6, pro�les of density and pressure are depicted with the

analytic solution for a mesh containing 400 cells over [0 : 1]. Zoom is made on [0 : 0.25]. The

higher the order, the more oscillatory the pro�le is. This is due to the high-order approximations

done in the scheme. Adding arti�cial viscosity with appropriate coe�cients should smear out

these oscillations. The important point is that even without arti�cial viscosity, the schemes even

at very high-order are able to handle such a di�cult test-case with an in�nite shock intensity.

II-2.4.6 Shu-Osher test-case [144]

The Shu-Osher test-case [144] initial data are depicted in eq. (II.38)) on a [−5 : 5] domain with

a Mach 3 shock wave interacting with a sinusoidal density �eld. Computations till t = 1.8 with

CFL=0.7 are reported in �g. II.7. This test-case highlights the interest of high-order accuracy

even on a shock problem, and especially the restitution of the density pro�le with high-order

accurate schemes.


ρ0(x) = 27

7 χ{x<−4} + (1 + sin(5x)
5 )χ{x>−4},

p0(x) = 31
3 χ{x<−4} + 1χ{x>−4},

u0(x) = 4
√

35
9 χ{x<−4},

γ = 1.4.

(II.38)

Reference solution is obtained using the GAD scheme with CFL=0.5 and 50000 cells.
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(a) 3rd order (b) 4th order (c) 6th order

Figure II.6 � Density (top) and pressure (bottom) pro�les on [0 : 0.25] for the Noh test-case
problem [127] at time t = 0.6, CFL=0.7, 400 cells, monotonicity limiters used
during the remap phase, no arti�cial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.7 � Density (top) and pressure (bottom) pro�les on [−3 : 3] for the Shu-Osher test-
case problem [144] at time t = 1.8, CFL=0.7, 200 cells, monotonicity limiters used
during the remap phase, no arti�cial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

II-2.4.7 Interacting blast-waves test-case [171]

The interacting blast-waves test-case was proposed in [171]. It is a three states shock tube.

The left blast will propagate to the right and the right one to the left till interaction between

both. This test-case highlights the robustness of the schemes. The initial data are depicted in

eq. (II.39). The domain is set to [0 : 1]. Wall boundary conditions are imposed at x = 0 and
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x = 1.


ρ0(x) = 1,

p0(x) = 1000χ{x<0.1} + 0.01χ{0.1<x<0.9} + 100χ{0.9<x},

u0(x) = 0,

γ = 1.4.

(II.39)

Density and pressure pro�les are shown in �g. II.8. Reference solution is obtained using the

GAD scheme with CFL=0.5 and 50000 cells. This interest of this test-case comes from the fact

that both shocks are interacting which is a technical di�culty for low dissipative schemes as the

one proposed without arti�cial viscosity or hyperviscosity.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.8 � Density (top) and pressure (bottom) pro�les on [0 : 1] for the Woodward test-case
problem [171] at time t = 0.038, CFL=0.7, 300 cells, monotonicity limiters used
during the remap phase, no arti�cial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

II-3 Extension to 2D Lagrange-remap schemes on staggered Carte-

sian grids

As presented in [50, 170], the extension to the multidimensional case is realized using directional

splitting. The Euler system in 2D writes
∂tρ + ∂x(ρu) + ∂y(ρv) =0,

∂t(ρu)+ ∂x(ρu2 + p) + ∂y(ρuv) =0,

∂t(ρv)+ ∂x(ρuv) + ∂y(ρv
2 + p) =0,

∂t(ρe)+∂x(ρue+ pu)+∂y(ρve+ pv)=0.

(II.40)
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System in eq. (II.40) can be rewritten under the operator form

∂t(U) + A(U) = 0, (II.41)

usingU =


ρ

ρu

ρv

ρe

. The idea of the operator splitting is to �nd two operatorsA1 andA2 such that

A(U) = A1(U)+A2(U). For directional splitting, which is a peculiar class of operator splitting,

the idea is to split A such that all x−derivative are contained in A1, and all y−derivatives are
contained in A2. First, derivation of the subsystems using the directional splitting method is

made. Then, special distribution of variables is detailed for the staggered grids in 2D and 3D.

This distribution allows then to apply the derived 1D staggered schemes to the nD cases. The

schemes properties derived for the 1D case are then extended to the nD case. A numerical test

suite is proposed to assess both accuracy and robustness of the schemes.

II-3.1 Derivation of the subsystems using the operator splitting technique

The main idea is to split system presented in eq. (II.40) according to the x− and y−direction.
It writes


∂tρ + ∂x(ρu) =0

∂t(ρu)+ ∂x(ρu2 + p) =0

∂t(ρv)+ ∂x(ρuv) =0

∂t(ρe)+∂x(ρue+ pu)=0


∂tρ + ∂y(ρv) =0

∂t(ρu)+ ∂y(ρuv) =0

∂t(ρv)+ ∂y(ρv
2 + p) =0

∂t(ρe)+∂y(ρve+ pv)=0

(II.42)

The above system in eq. (II.42) can be rewritten under a similar form as in eq. (II.41)

∂t(U) + A1(U) = 0, ∂t(U) + A2(U) = 0. (II.43)

Splitting techniques relies on solving alternatively �rst and second equation of eq. (II.43) with

weighted time-steps in order to reach high-order accuracy. For ∆t small enough, one can write

U(t+ ∆t) = e(∆t(A1 + A2))(U)(t). (II.44)

Solving �rst equation of eq. (II.43) then the second one, one gets that

Û(t+ ∆t) = e(∆tA2) e(∆tA1)(U)(t). (II.45)

Assuming that the operators A1 and A2 are commutative, the solution is then equivalent. If

both are non commutative, then it is not. A simple Taylor expansion of both expressions yields
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at most �rst order accuracy in time. The idea is then to set

Û(t+ ∆t) =

q∏
k=1

e(ω2k∆tA2) e(ω2k−1∆tA1)(U)(t), (II.46)

where (ωk)k∈[1:q] is a sequence of parameters which are set to reach high-order accuracy in time.

The theory of operator splitting and especially of high-order splitting sequences are extensively

detailed by McLachlan in [113, 112, 114] and very high-order splitting methods are described

by Yoshida in [175]. The weights ωk are available in appendix, section A.2. Using directionnal

splitting methods, each subsystems of eq. (II.43) is solved using the 1D schemes proposed in

section II-2. However, slight modi�cations must be �rst performed. Indeed, as one wishes

for global conservation of mass, momentum and total energy, use of values averaged in both

directions is required, using rectangle control volumes. This is explained hereafter.

II-3.2 Modi�cations of the 1D schemes for the 2D �nite volume case

The �rst important point to mention is the special distribution of variables on the staggered

grids in both 2D and 3D. The extension of the internal energy corrector proposed for the 1D

schemes is straightforward for multidimensional case.

II-3.2.1 nD distribution of variables on the modi�ed Arakawa C-type grids

The distribution of variables on the modi�ed Arakawa C-type grids is very similar to the one for

the 1D case. The x-velocity u is staggered along the x-direction as well as the density and the

kinetic energy related to the x-velocity u. It will be denoted in the following by ekin,u. Then

similarly, the y-velocity is staggered along the y-direction as well as the density and the kinetic

energy ekin,v related to the y-velocity v. If one wishes to extend the schemes to the 3D case,

then the z-velocity denoted w should be staggered along the z-direction along with the density

and the kinetic energy ekin,w. Distribution of variables is depicted on �g. II.9.

Then, for such a choice of variables, the total energy is the sum of the internal energy and the

kinetic energies in each direction. This a key ingredient to yield conservation as will be shown

hereafter.

II-3.2.2 Derivation of a procedure to apply the 1D schemes in one direction using

the 2D �nite volume formalism

The aim here is to apply with slight modi�cations the 1D schemes for two dimensions problem

using directional splitting method. For two dimensions problem, the degree of freedom are the

2D-average value inside a cell. Thus it is mandatory at the beginning of a sweep, to deduce from

the 2D average values the values average in only one direction. The procedure originates from

[50, 170] and is extended here to staggered grids. A sweep along the x-direction proceeds as

follows:
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 ρ0

ρ0τ
ρ0ε


i,j

 ρ0

ρ0u
ρ0ekin,u


i+ 1

2
,j

 ρ0

ρ0v
ρ0ekin,v


i,j+ 1

2

Figure II.9 � Staggered �nite volume space discretization on Cartesian grids

1. Interpolate the 2D-values average values U along the y-direction to get 1D-cell-average

values U of the variables according to eq. (II.12). It writes for cell-centered variables

U
n
i,j =

∑
k

CkU
n

i,j+k.

This way, we only get 1D-cell-average values along the x-direction. This is exactly the

values needed to use the 1D scheme.

2. Compute the 1D Lagrange evolution terms using U . Note that the velocity in the y-

direction as well as its related kinetic energy do not change. The Lagrange evolution step

gives values of the deformed grid {xi+ 1
2
,j}. Interpolation gives value for the {xi,j} and

{xi+ 1
2
,j+ 1

2
} grids. The �rst grid is used to compute remap �uxes of the centered variables

(ρ0, ρ0τ, ρ0ε), the second for the variables (ρ0, ρ0u, ρ0ekin,u) staggered along the x-direction,

and the third one for the variables (ρ0, ρ0v, ρ0ekin,v) staggered along the y-direction.

3. Denote by ∆U the evolution terms (see �g. II.10). Reconstruct the average values of ∆U

in the y-direction using eq. (II.12) denoted ∆U . It writes for cell-centered variables

∆U
n
i,j =

∑
k

Ĉk∆U
n
i,j+k.

4. Apply the reconstructed 2D Lagrange-remap terms ∆U on the 2D-cell-average values. It

leads for cell-centered variables to

U
n+1

i,j = U
n

i,j + ∆U
n
i,j .

The procedure is summarized in �g. II.10.
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U

Compute from 2D average, aver-

age value in the sweep direction

Compute the evolution terms using the 1D

Lagrange-remap-internal energy corrector scheme

Reconstruct the evolution terms aver-

age values in the transverse direction

U ← U + ∆U

U

∆U

∆U

Figure II.10 � Flow chart of the 2D scheme

II-3.2.3 Properties of the 2D schemes

Lemma II.11. The 2D staggered schemes (II.13)-(II.14)-(II.21)-(II.28) are conservative in mass,

momentum and total energy E.

Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.2,

II.8 and II.10 direction by direction and so are globally conservative in mass, momentum and

total energy for any dimensional splitting sequences. �

Remark II.6. Extension to the 3D case is straightforward.

Lemma II.12. For a given directionnal splitting sequence {ωk}, the resulting 2D Cartesian grid

schemes are linearly stable under the condition

∆t <
1

maxk ωk
min

(
∆X min(

λStag
max(i,j) ci,j

,
1

max(i,j) |ui+ 1
2
,j |

),∆Y min(
λStag

max(i,j) ci,j
,

1

max(i,j) |vi,j+ 1
2
|
)

)
.

Proof. Using lemma II.5 and stability of the remapping phase, one gets that A1 is linearly stable

under the condition

∆t < ∆X

(
min(

λStag
max(i,j) ci,j

,
1

max(i,j) |ui+ 1
2
,j |

)

)
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and A2 under the condition

∆t < ∆Y

(
min(

λStag
max(i,j) ci,j

,
1

max(i,j) |vi,j+ 1
2
|
)

)
.

Using the special structure of the operator splitting, one trivially gets the result. �

II-3.3 Numerical validation of the 2D conservative Lagrange-Remap schemes

on staggered Cartesian grids

A test-suite is proposed to assess both accuracy and robustness of the 2D staggered schemes.

Once again, the wide range of problems is a high di�culty for numerical schemes. The idea here is

to demonstrate the e�ectiveness of such schemes for such a variety of problems. First, numerical

order of convergence of the method is assessed using the isentropic vortex advection [174]. Then,

further vortex dynamics is studied with the vortex pairing problem [166]. Considering classical

problems with strong discontinuities, �ve 2D Riemann problems are studied [139, 104, 108] to

assess robustness and respect toward symmetry of the staggered schemes. Then two strong

shocks problems are proposed: a strong blast-wave [140] and the 2D Noh compression problem

[127]. Last, an extension of the 1D acoustic propagation problem is proposed with a 2D set up

of acoustic propagation with a sound speed gradient in the vertical direction. It is derived from

the works by Attenborough and al. [8].

II-3.3.1 Isentropic vortex advection [174]

We assess high-order accuracy on the 2D vortex test [174] whose initial data are given by (with

r2 = x2 + y2) 

ρ0(x, y) =

(
1− (γ − 1)β2

8γπ2
e1−r2

) 1
γ−1

,

u0(x, y) = (2, 1)t +
β

2π
e

1−r2
2 · (−y, x)t,

p0(x, y) = ρ0(x, y)γ ,

γ = 1.4

(II.47)

with γ = 1.4 and β = 5. Computations are performed till t = 20 with a CFL number of 0.9

on the computational domain Ω = [−10, 10]2. Periodic boundary conditions are imposed. The

l1-error in both space and time is computed as

Errl1 =
∑
n

(tn+1 − tn) ·∆x ·∆y
∑
i,j

||ρni,j − ρexacti,j (tn)||.

The l1-error as well as experimental order of convergence are presented in table II.11. Expected

orders of accuracy of the schemes are reached.
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Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

50 3.3e-1 · 1.5e-1 · 2.6e-1 · 1.7e-1 · 1.5e-1 · 1.1e-1 ·
100 9.5e-2 1.79 1.9e-2 3.01 4.9e-2 2.41 8.9e-3 4.27 1.2e-2 3.70 2.0e-3 5.83
200 1.6e-2 2.54 1.0e-3 4.19 1.9e-3 4.68 6.5e-5 7.10 8.0e-5 7.20 5.2e-6 8.59
400 2.2e-3 2.89 6.1e-5 4.06 6.1e-5 4.96 7.2e-7 6.48 6.3e-7 7.00 1.6e-8 8.37
800 2.8e-4 2.97 3.9e-6 3.99 1.9e-6 4.98 9.9e-9 6.18 5.0e-9 6.97 1.1e-10 7.17
1600 3.5e-5 2.99 2.4e-7 3.99 5.98e-8 4.99 1.5e-10 6.02 3.9e-11 6.99 3.4e-12 ?

Table II.11 � l1-error in density and experimental order of convergence for the Lagrange-remap
staggered scheme taken on the isentropic vortex advection test problem [174], until
t = 20, CFL=0.9. ? indicates machine precision reached.

II-3.3.2 Vortex-pairing test-case [166]

We assess here the ability of the staggered schemes to handle vortex dynamics with the vortex

pairing test-case [166]. We �rst introduce the equation satis�ed by a function φ advected by the

velocity �eld u,

∂tφ+∇ · (φu) = 0

In order to de�ne the initial states, a perturbation function ψ is introduced as the sum of two

Kelvin�Helmotz instability eigenmodes as

ψ(x, y) = A1(y)
ν1

k1
cos(k1x) e−k1|y|+A2(y)

ν2

k2
cos(k2x) e−k2|y|

with

Ai(y) =
1− e−2ki(

L
2
−|y|)

1− e−kiL
, i ∈ {1, 2}.

Last, the initial data are given by

ρ0(x, y) = 1.0,

u0(x, y) =

(
−1

2∆U tanh( y
2θ0

)− ∂yψ
∂xψ

)
,

p0(x, y) = ρ0(x, y)γ ,

γ = 5
3 ,

φ0(x, y) = χ{y>0}.

(II.48)

Parameters are k1 = 2π
L , k2 = 4π

L , ν1 = 0.025∆U , ν2 = 0.05∆U , ∆U = 2.62, θ0 = 0.03.

Computations are performed till t = 6.0 with a CFL number of 0.9 on the computational domain

Ω = [0, 6]× [−3, 3]. Periodic boundary conditions are imposed on left and right boundaries, and

wall boundary conditions are imposed on top and bottom boundaries. In �g. II.11, the pro�le of

density is depicted as well as 6 contours of φ from 0 to 1 on a coarse mesh with 128 cells along

each direction. We present results using a �rst and second order cell-centered schemes and the

proposed third order staggered scheme. First order scheme, as expected, struggles to restitute



98
EXTENSION TO 2D LAGRANGE-REMAP SCHEMES ON STAGGERED

CARTESIAN GRIDS

the vortex dynamics. The second order scheme is more dissipative on the pro�le, but is still able

to recover the vortex dynamics. Using high-order schemes gives a steeper pro�le for both the

density and φ and hence yields a better restitution of vortex dynamics.

II-3.3.3 Five states Riemann problems [139, 104, 108]

We assess the robustness of the staggered schemes for 5 di�erent 2D Riemann problems. The

domain Ω = [0 : 1]2 is divided into four quadrants formed with the line x = 1/2 and y = 1/2.

The Riemann problems are de�ned by constant states in each quadrant, with a perfect gas

with γ = 1.4. These initial states in each quadrants are the density ρ0, the pressure p0, the

x and y velocity u0 and v0. The selected Riemann problems are such that the solutions of

all four 1D Riemann problems between quadrants have exactly one wave, which are whether

a shock-wave (S), a rarefaction one (R) or a contact-slip (J) (see [104]). All initial data are

gathered in table II.12 with the initial values of (ρ, p, u, v)t as well as the structure between two

consecutive quadrants. Constant in�ow boundary conditions are imposed. Computations are

run with CFL=0.7 for the staggered schemes and with CFL=0.5 for the cell-centered ones (GAD

available in [84], GoHy-2 available in [50, 170]). Monotonicity limiters are applied during the

remap phase. No arti�cial viscosities are used. Results are depicted in �gs. II.12 to II.16 with

pressure pro�les displayed using colors, and density using contours. Pro�les are in accordance

with those found in the literature [139, 104, 108] for all Riemann problems. In �g. II.12, some

artefacts are present on two segments of the initial discontinuities between upper left, upper

right and lower right quadrants. Moreover, oscillations are present due to the lack of arti�cial

viscosities and dissipation. The symmetry along the axis x = y is better recovered using the

third order scheme than for the fourth order one. In �g. II.13, the main di�erence between results

is that, as expected, the higher the order, the more oscillatory it is, but also the steeper is the

pro�le concerning the contact-slip. This is expected due to high-order polynomial integration. A

small density artefact is present in the lower right quadrant, but is also present in the literature.

Pressure artefacts are present in the high-pressure areas, certainly due to the non-aligned grids.

In �g. II.14, discontinuities are steeper as the order of accuracy is higher. The symmetry along

the axis x = y is quite well recovered. The stationary contacts bordering the lower left quadrant

are well recovered. In �g. II.15, the stress is laid on the resolution of slowly moving contact

discontinuities bordering the lower left quadrant. Vortex dynamics is already recovered with

a coarse mesh using third and fourth order schemes. However, the second order cell-centered

scheme shows a peculiar behaviour between the bottom quadrants with the formation of a small

vortex. This is so far still unexplained. In �g. II.16, contact discontinuities are recovered on the

line x = 1
2 . Moreover, the vortex induced by the interacting states is well recovered by high-order

staggered methods, not so for the low order ones. Some artefacts are present in the right bottom

quadrants, certainly due to boundary conditions that induce oscillations.
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(a) 1st order (b) 2nd order (c) 3rd order

Figure II.11 � Pro�les of density by colors and φ using 6 contours from 0 to 1 for the Vortex-
Pairing test-case, CFL=0.7, for times t = 1, t = 2, t = 3, t = 4 and t = 5, 128
cells in each direction.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.12 � Results at time t = 0.3 for the �rst Riemann problem with the �rst and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 32 contours from 0.16 to 1.71.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.13 � Results at time t = 0.3 for the second Riemann problem with the �rst and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 29 contours from 0.25 to 3.05.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.14 � Results at time t = 0.25 for the third Riemann problem with the �rst and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 30 contours from 0.54 to 1.7.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.15 � Results at time t = 0.25 for the fourth Riemann problem with the �rst and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 29 contours from 0.43 to 0.99.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.16 � Results at time t = 0.25 for the �fth Riemann problem with the �rst and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 30 contours from 0.53 to 1.98.
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Problem upper left  upper right  bottom right  bottom left  

1


0.5323

0.3
1.206

0

 S


1.5
1.5
0
0

 S


0.5323

0.3
0

1.206

 S


0.138
0.029
1.206
1.206

 S

2


2
1

0.75
0.5

 J


1
1

0.75
−0.5

 J


3
1

−0.75
−0.5

 J


1
1

−0.75
0.5

 J

3


1
1

0.7276
0

 J


0.5343

0.4
0
0

 S


1
1
0

0.7276

 S


0.8
1.0
0
0

 J

4


0.5197

0.4
−0.6259
−0.3

 J


1
1

0.1
−0.3

 R


0.5313

0.4
0.1

0.4276

 S


0.8
0.4
0.1
−0.3

 J

5


2
1
0
−0.3

 S


1
1
0
−0.4

 J


0.5197

0.4
0

−1.1259

 R


1.0625

0.4
0

0.2145

 J

Table II.12 � Initial states for the four quadrants of 2D Riemann problem for density, pressure
and x and y velocity u and v.

II-3.3.4 Sedov test-case [140]

With the Sedov test-case, we assess the robustness of the staggered schemes as well as the ability

to restitue correct cylindrical symmetry. Let rSedov = 1√
2

√
∆X2 + ∆Y 2. Initial data are



ρ0(x, y) = 1,

u0(x, y) = 0,

p0(x, y) =
(γ − 1)εSedov
πr2

Sedov

χ{x2+y2<r2
Sedov

} + 10−14χ{x2+y2>r2
Sedov

},

γ = 1.4,

(II.49)

where εSedov = 0.851072. A scatter plot is realized to display pro�les of density along each radius

in �g. II.17 using 100 cells in each direction. Even without the use of arti�cial viscosities, the

density pro�le is quite smooth for each scheme. The higher the order of the staggered schemes,

the better the maximum of density near the shock is recovered. The shock position is in good

agreement with the analytic solution for the three staggered schemes. Results for �rst and second

order cell-centered schemes are presented for comparison.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order (e) 6th order

Figure II.17 � Scatter plot of density pro�les for the Sedov blast-wave test-case using the third,
fourth and sixth order staggered schemes (CFL=0.7) and the �rst and second
order cell-centered schemes (CFL=0.5) at t = 1.0; 100 cells in each direction.

II-3.3.5 Noh test-case [127]

Exactly as in the 1D case, the kinetic energy is transformed into internal energy, giving a com-

pression of the gas by a factor 16. Denote r =
√
x2 + y2, initial data are



ρ0(x, y) = 1,

u0(x, y) =
1

r

(
−x
−y

)
,

p0(x, y) = 10−8,

γ =
5

3
.

(II.50)

Considering free in�ow boundary conditions the analytic solution writes, with rs(t) = γ−1
2 t,

ρ(x, y, t) =

(
γ + 1

γ − 1

)2

χr<rs(t) + (1 +
t

r
)χr>rs(t),

u0(x, y, t) =
1

r

(
−x
−y

)
χr>rs(t),

p0(x, y, t) =
1

2

(γ + 1)2

γ − 1
χr<rs(t) + 10−8χr>rs(t),

γ =
5

3
.

(II.51)

A scatter plot is realized to display pro�les of density along each radius in �g. II.18 using 400 cells

in each direction. Without arti�cial viscosities, the sixth order scheme fails, and therefore is not
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(a) 1st order cell-centered (b) 2nd order cell-centered

(c) 3rd order staggered (d) 4th order staggered

Figure II.18 � Scatter plot of density pro�les for the 2D Noh compression test-case using the
third, fourth order staggered schemes (CFL=0.7) and for the �rst and second
order cell-centered schemes (CFL=0.5) at t = 0.6, 400 cells in each direction.
Axis e�ect are present for the �rst and second order cell-centered schemes

presented in the results. Obviously, the fourth order scheme is much more oscillatory than the

third order one. Otherwise, even without the use of arti�cial dissipation, the compression by a

factor 16 is recovered by the staggered schemes, except near the point (0, 0) due to wall heating.

The artefacts present for the �rst and second order cell-centered schemes are not present with

the staggered ones. Those are certainly due to wall boundary conditions (as highlighted by Noh

in [127]). However, due to high-order polynomial interpolation, results are more oscillatory.

II-3.3.6 Attenborough test-case [8]

We assess here the ability of the staggered schemes to recover correctly long-range acoustic prop-

agation with the Attenborough test-case [8, 39] which has been designed by the geoacoustic

community. In 1D, it has been highlighted during numerical experiments that the high-order

staggered schemes require less cells per wavelength compared to same order cell-centered schemes.

We here want to check that this result still holds in 2D and see if the signal is correctly recov-

ered by the schemes. Comparisons are drawn with results available in the literature [39]. The

computational domain is Ω = [0, 5000] × [0, 4000]. Initially the domain is �lled with a perfect

gas at rest, with γ = 1.4 and at the atmospheric pressure (patm = 105 Pa). A gradient in the
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Figure II.19 � Di�erence between pressure and atmospheric pressure patm following x at y = 1,
for the third order scheme, with circa 10 cells per wavelength

sound speed is set in the vertical direction. It writes



c(x, y) = 343.23 + 0.1y,

p0(x, y) = patm,

ρ0(x, y) = γ
patm
c(x, y)2

,

u0(x, y) = 0,

γ = 1.4.

(II.52)

Wall boundary conditions are imposed. A harmonic source is placed at point Psource = (0, 5)t

and the pressure at this point is set such that p(Psource, t) = patm + sin(2πft) with f = 10 Hz.

Computations are run until t = 10 s. In �g. II.19, the pressure pro�le is depicted along the line

y = 1, x ∈ [0 : 3700] at t = 10 s. In �g. II.20, the attenuation in dB of the pressure along the

line y = 1, x ∈ [0 : 3700] is depicted. In order to recover a 2D-axisymmetric results, a geometric

corrector is applied, which consists in dividing the normalized pressure pro�le by a factor
√
r,

where r is the radius. Result is displayed in �g. II.21 and is in good agreements with the one

presented in the literature [8, 39]. Indeed, the staggered schemes require less cells per wavelength

(circa 8) compared to cell-centered ones (circa 12) to correctly recover phase and amplitude of

the signal.
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Figure II.20 � Absorption (dB) of the pressure following x at y = 1, without recti�cation, for the
third order scheme, with circa 10 cells per wavelength

Figure II.21 � Absorption (dB) of the pressure following x at y = 1, with geometric corrector,
for the third order scheme, with circa 10 cells per wavelength
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II-4 Extension to the 2D compressible Navier�Stokes equations

with gravity

The compressible Navier�Stokes equations are similar to the Euler equations with an additive

viscous stress tensor usually denoted by τ . In order to avoid any confusion with the speci�c

volume already denoted τ , it will be denoted by the letter Υ in this manuscript. The system of

equations in 2D writes in conservative form as


∂tρ + ∇ · ρu = 0,

∂tρu + ∇ · (ρu⊗ u+ pI −Υ) = 0,

∂tρe + ∇ · (((ρe+ p)I −Υ) · u) = 0,

(II.53)

where Υ = µ
(
∇u+ (∇u)t

)
+ λ (∇ · u) I, µ and λ being two parameters which described the

viscous properties of the considered �uid. From now on, µ and λ are assumed constant. Adding

a constant gravity source-term g, it yields


∂tρ + ∇ · ρu = 0,

∂tρu + ∇ · (ρu⊗ u+ pI −Υ) = g,

∂tρe + ∇ · (((ρe+ p)I −Υ) · u) = g · u.
(II.54)

In the following, a discretization of the viscous terms is proposed on the staggered grids, as well

as the discretization of the gravity terms.

II-4.1 Distribution of viscous terms on the modi�ed Arakawa grid

In section II-1.2, an C-type Arakawa grid designed expressly for a diagonal stress tensor has been

derived. Due to the presence of the viscous stress tensor, it is necessary to address non-diagonal

terms. System without gravity presented in eq. (II.53) rewrites


∂tρ +∂xρu +∂yρv = 0,

∂tρu +∂x(ρu2 + p−Υ1,1) +∂y(ρuv −Υ2,1) = 0,

∂tρv +∂x(ρuv −Υ1,2) +∂y(ρv
2 + p−Υ2,2) = 0,

∂tρe +∂x(ρue+ (p−Υ1,1)u−Υ1,2v) +∂y(ρve+ (p−Υ2,2)v −Υ2,1u) = 0,

(II.55)

where the Υ is a symmetric viscous stress tensor which satis�es


Υ1,1 = 2µ∂xu+ λ (∂xu+ ∂yv) ,

Υ2,1 = µ (∂yu+ ∂xv),

Υ1,2 = Υ2,1,

Υ2,2 = 2µ∂yv + λ (∂xu+ ∂yv) .

(II.56)
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II-4.1.1 Space distribution and discretization of the viscosity and gravity terms in

1D

Let address �rst the discretization of viscous stress and gravitiy terms in one space dimension.

The 1D problem ignoring the y-velocity v, and for now the gravity terms writes


∂tρ + ∂xρu = 0,

∂tρu + ∂x(ρu2 + p−Υ1,1) = 0,

∂tρe + ∂x(ρue+ (p−Υ1,1)u) = 0,

(II.57)

which rewrites in Lagrangian form as


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = 0,

Dtρe + ∂x((p−Υ1,1)u) = 0,

(II.58)

then, using the formulation in both kinetic and internal energies, it yields formally


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = 0,

Dtρε + (p−Υ1,1)∂xu = 0,

Dtρekin + u∂x(p−Υ1,1) = 0.

(II.59)

The choice has been made to discretize Υ1,1 in the same location as the pressure. It yields that

Υ1,1 lies on the primal grid. As Υ1,1 = (2µ+ λ)∂xu, and as the velocity is staggered, it yields a

centered discretization of the space derivative in x of u. Such a discretization is exactly the one

obtained by the δ operator de�ned in the third equation of (II.12).

Υ1,1i = (2µ+ λ)
1

∆X
δui.

Consider now a uniform gravity �eld g such that now, eq. (II.59) writes


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = gρ0,

Dtρε + (p−Υ1,1)∂xu = 0,

Dtρekin + u∂x(p−Υ1,1) = gρ0u.

(II.60)

Integrating in space over a dual cell equations for momentum and kinetic energy leads to

{
Dtρ0ui+ 1

2
= gρ0i+ 1

2
− ((p−Υ1,1)i+1 − (p−Υ1,1)i) ,

Dtρ0ekini+ 1
2

= gρ0ui+ 1
2
− 1

∆X

∫ xi+1

xi
u∂x(p−Υ1,1).

(II.61)

The formulation in both kinetic and internal energies yields a simple computation for the gravity

terms. This is in particular due to the choice to discretize the average density ρ0 on both the
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primal and dual mesh, initially for robustness issues. Moreover, it does not alter either the

internal energy corrector nor the remapping phase. The extension in two dimensions is now

discussed.

II-4.1.2 Space distribution and discretization of the viscosity and gravity terms in

2D

The 2D staggered hydrodynamics schemes are based on directional splitting. Here, the choice of

splitting, mainly due to memory alignment is the following for the x-direction


∂tρ +∂x(ρu) =0,

∂t(ρu)+∂x(ρu2 + p−Υ1,1) =0,

∂t(ρv)+∂x(ρuv −Υ2,1) =0,

∂t(ρe)+∂x(ρue+ (p−Υ1,1)u−Υ2,1v)=0,

(II.62)

and in the y-direction


∂tρ +∂y(ρv) =0,

∂t(ρu)+∂y(ρuv −Υ1,2) =0,

∂t(ρv)+∂y(ρv
2 + p−Υ2,2) =0,

∂t(ρe)+∂y(ρve+ (p−Υ2,2)v −Υ1,2u)=0.

(II.63)

As aforementioned, the term Υ1,1 is discretized on the same position as the pressure, meaning

at the center of each primal cell. Symmetrically, it also holds for Υ2,2. Consider now eq. (II.62)

which formally writes in Lagrangian form


Dt(ρ0τ)+∂Xu =0,

Dt(ρ0u)+∂X(p−Υ1,1) =0,

Dt(ρ0v)+∂X(−Υ2,1) =0,

Dt(ρ0e)+∂X((p−Υ1,1)u−Υ2,1v)=0.

(II.64)

Reminding that Υ1,1 = (2µ+ λ)∂xu+ λ∂yv, the choice has been made to discretize ∂xu and ∂yv

at each cell centers. Since u and v are staggered respectively in the x- and y-directions, centered

discretizations of space derivatives give the desired results. Once again, the use of the δ operator

yields high-order accuracy in space for the terms Υ1,1 and Υ2,2. Furthermore, reminding that

the momentum ρ0v lies on the third grid, and is formally indexed ρ0vi,j+ 1
2
and integrating over

a dual cells in the x-direction it yields

Dtρ0vi,j+ 1
2

=
1

∆X
Υ2,1i+ 1

2
,j+ 1

2
−Υ2,1i− 1

2
,j+ 1

2
. (II.65)

The choice has been made to discretize the non-diagonal terms of the viscous stress tensor on

a grid staggered in both directions. Similar analysis performed on eq. (II.63) gives the same

results for Υ1,2. Reminding that Υ1,2 = Υ2,1 = µ (∂yu+ ∂xv) , it remains to discretize the terms
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∂yu and ∂xv. Since u and v are respectively staggered in the x-direction and in the y-directionn

considering centered approximations of the derivatives naturally leads to approximations of ∂yu

and ∂xv staggered in both directions as expected. Then, one can use the previsously introduced

δ operator. It yields high-order accuracy in space for the terms Υ2,1 and Υ2,2. Finally, using the

δ operator, we have


Υ1,1i,j = 2µ+λ

∆X δxui,j + λ
∆Y δyvi,j ,

Υ2,1i+ 1
2
,j+ 1

2
= µ

(
1

∆Y δyui+ 1
2
,j+ 1

2
+ 1

∆X δxvi+ 1
2
,j+ 1

2

)
,

Υ1,2i+ 1
2
,j+ 1

2
= µ

(
1

∆Y δyui+ 1
2
,j+ 1

2
+ 1

∆X δxvi+ 1
2
,j+ 1

2

)
,

Υ2,2i,j = 2µ+λ
∆Y δyvi,j + λ

∆X δxui,j .

(II.66)

That way, a natural distribution of the viscous terms is summarized in �g. II.22. This discretiza-

tion holds for non-symmetric tensor Υ.

t
 p

Υ1,1

Υ2,2


i,j

tui− 1
2
,j

t
vi,j− 1

2

tvi,j+ 1
2

tui+ 1
2
,j

t
(

Υ1,2

Υ2,1

)
i+ 1

2
,j+ 1

2

t
(

Υ1,2

Υ2,1

)
i− 1

2
,j+ 1

2

t(
Υ1,2

Υ2,1

)
i− 1

2
,j− 1

2

t(
Υ1,2

Υ2,1

)
i+ 1

2
,j− 1

2

Figure II.22 � Arakawa C-type like grid for the compressible Navier�Stokes equation with a spe-
cial distribution for the non-diagonal viscous terms

The gravity terms are not explicited here, as this is very similar to the 1D case considering a

constant gravity �eld g = (gx, gy)
t.

II-4.2 2D viscous staggered Lagrange-Remap schemes with gravity force

First, the 1D staggered scheme is derived using explicit Runge�Kutta time-integration. Then

the extension to the multidimensional case is detailed using directional splitting. Gravity terms

are then introduced.
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II-4.2.1 1D staggered Lagrange-Remap scheme to the compressible Navier-Stokes

equations

Consider the 1D compressible Navier�Stokes equation in Lagrangian coordinates as depicted in

eq. (II.64). The total energy is then split into internal and kinetic energies. It formally yields



Dt(ρ0τ) − ∂Xu =0,

Dt(ρ0u) + ∂X(p−Υ1,1) =0,

Dt(ρ0v) + ∂X(−Υ2,1) =0,

Dt(ρ0ε) + (p−Υ1,1)∂Xu−Υ2,1∂Xv=0,

Dt(ρ0ekin,u) + u∂X(p−Υ1,1) =0,

Dt(ρ0ekin,v) + v∂X(−Υ2,1) =0.

(II.67)

The intermediate steps for the staggered scheme write for the compressible Navier�Stokes



ρ0τ
n+αm
i,j =ρ0τ

n
i,j + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i,j ,

ρ0u
n+αm
i+ 1

2
,j

=ρ0u
n
i+ 1

2
,j
− ∆t

∆X

m−1∑
l=0

am,l(dp− dΥ1,1)n+αl
i+ 1

2
,j
,

ρ0v
n+αm
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+αm
i,j =ρ0ε

n
i,j − ∆t

∆X

m−1∑
l=0

am,l(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,

pn+αm
i,j =EOS(τn+αm

i,j , εn+αm
i,j ),

(II.68)

and the �nal step writes
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

ρ0τ
n+1
i,j =ρ0τ

n
i,j + ∆t

∆X

s−1∑
l=0

θldu
n+αl
i,j ,

ρ0u
n+1
i+ 1

2
,j

=ρ0u
n
i+ 1

2
,j
− ∆t

∆X

s−1∑
l=0

θl(dp− dΥ1,1)n+αl
i+ 1

2
,j
,

ρ0v
n+1
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

s−1∑
l=0

θl(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+1
i,j =ρ0ε

n
i,j − ∆t

∆X

s−1∑
l=0

θl(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,

ρ0ekin,u
n+1
i+ 1

2
,j

=ρ0ekin,u
n
i+ 1

2
,j
− ∆t

∆X

s−1∑
l=0

θluδ(p−Υ1,1)
n+αl,

i+ 1
2
,j

ρ0ekin,v
n+1
i,j+ 1

2

=ρ0ekin,v
n
i,j+ 1

2

− ∆t
∆X

s−1∑
l=0

θlvδ(−Υ2,1)
n+αl,

i,j+ 1
2

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t
s−1∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i , εn+1
i ).

(II.69)

As for the 1D Euler staggered schemes, the kinetic energies need only to be updated at the end

of the Lagrangian phase. Conservation properties of the staggered schemes for the compressible

Navier�Stokes formulated in both internal and kinetic energies are summarized in the following

lemma.

Lemma II.13 (Conservation of the staggered schemes (II.68)-(II.69)). For all explicit Runge-

Kutta sequences and all consistent spatial reconstructions, the schemes (II.68)-(II.69) are con-

servative in mass, momentum and total energy E de�nition II.2.

Proof. The proof is identical to the one for (II.13)-(II.14) schemes. �

As for the 1D Euler scheme, the scheme does not conserve the total energy E. The idea is to

recouple E and E using the internal energy corrector proposed in eq. (II.21). It leads to the

following lemma.

Lemma II.14 (Conservation of the staggered schemes (II.68)-(II.69)-(II.21)). For all explicit

Runge-Kutta sequences and all spatial reconstructions, the schemes (II.68)-(II.69)-(II.21) are

conservative in mass, momentum and total energy E (see de�nition II.1).

Proof. The proof is straightforward using lemmas II.7 and II.13. �

The remapping stage is identical to the one for the 1D Euler staggered schemes. Once again

in practice, the Lagrangian phase is performed, then quantities are remapped and at last the

internal energy corrector is applied.
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II-4.2.2 2D Extension of the 1D staggered Lagrange-remap schemes

Equations (II.62) and (II.63) can be rewritten under a similar form as in eq. (II.41)

∂t


ρ

ρu

ρv

ρe

+ B1


ρ

ρu

ρv

ρe

 = 0, ∂t


ρ

ρu

ρv

ρe

+ B2


ρ

ρu

ρv

ρe

 = 0. (II.70)

Splitting techniques relies on solving alternatively �rst and second equation of eq. (II.70) with

weighted time-step in order to reach high-order accuracy. This procedure is identical as for the

Euler equations.

Lemma II.15 (Conservation of the 2D schemes (II.68)-(II.69)-(II.21)-(II.28)). The resulting 2D

Cartesian grid schemes for the compressible Navier�Stokes equations are conservative in mass,

momentum and total energy E (see de�nition II.1).

Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.10

and II.14 direction by direction and are therefore globally conservative in mass, momentum and

total energy for any dimensional splitting sequence. �

II-4.2.3 Gravity source terms integration

In this part, the 2D schemes with gravity source terms are proposed. There is no special modi-

�cations for the gravity source terms integration compared to the 1D case. Consider a constant

gravity �eld g = (gx, gy)
t. Then the proposed integration of gravity source terms writes in the

x-direction as
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+ αm∆tgxρ0
n
i+ 1

2
,j
,

ρ0v
n+αm
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+αm
i,j =ρ0ε

n
i,j − ∆t

∆X

m−1∑
l=0

am,l(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,
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i,j , εn+αm
i,j ),

(II.71)
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
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(II.72)

II-4.3 Numerical validation of the 2D staggered Lagrange-Remap schemes

Three test-cases are proposed to assess the accuracy and robustness of the 2D staggered schemes

for the compressible Navier�Stokes equations. The �rst test-case is in 1D, with no viscous terms,

which assesses schemes ability to recover hydrostatic equilibrium. Then, a 2D test-case without

gravity forces, the Taylor�Green vortex, is presented. Last, a Rayleigh�Taylor instability is

studied with and without viscous terms.

II-4.3.1 1D atmosphere at rest [92]

This test-case has been proposed in [92] by Mishra and Kappeli. It consists of a hydrostatic

equilibrium between pressure and gravitational forces. Initial conditions are



ρ0(x) =

(
ργ−1

0 +K0
γ − 1

γ
gx

) 1
γ−1

,

p0(x) = K0ρ0(x)γ ,

u0(x) = 0,

γ = 5
3 ,

(II.73)

with here K0 = 1
ρ0

γ
, ρ0 = 1, g = −1. As the proposed schemes are not well-balanced, it

challengingly assesses the ability of the schemes to recover hydrostatic equilibrium as well as to

see if waves induced by numerical errors are ampli�ed or dumped by the schemes. In table II.13,

the l1 error in density is displayed for the staggered schemes. The third order scheme reaches
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machine-precision � and so hydrostatic equilibrium � using approximately 560 cells. Fourth and

�fth order schemes reach hydrostatic equilibrium at about 140 cells, and the higher-order schemes

have already reached hydrostatic equilibrium with only 35 cells. In practice, it means that for

such a problem, high-order accuracy is able to recover the smooth hydrostatic equilibrium up to

a relatively small number of cells.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

35 2.2e-9 · 2.0e-11 · 2.0e-11 · 7.3e-13 · 7.2e-13 · 2.8e-14 ·
70 1.5e-10 3.88 3.2e-13 6.0 3.2e-13 6.0 5.1e-14 ? 5.0e-14 ? 1.1e-14 ?

140 9.8e-12 3.93 1.5e-14 ? 1.9e-14 ? 6.1e-14 ? 6.4e-14 ? 5.0e-14 ?

280 6.2e-13 3.98 2.8e-14 ? 6.1e-14 ? 7.2e-14 ? 8.1e-14 ? 7.4e-14 ?

560 1.1e-14 5.77 6.8e-14 ? 9.1e-14 ? 6.7e-14 ? 9.6e-14 ? 1.1e-13 ?

Table II.13 � l1-error in density and experimental order of convergence for the Lagrange-remap
staggered scheme with gravity forces taken on the atmosphere at hydrostatic equi-
librium [92], until t = 20, CFL=0.7. ? indicates machine precision reached.

II-4.3.2 Taylor�Green vortex [160]

The Taylor�Green vortex is used to assess the accuracy of the proposed schemes. It is usually

studied by the incompressible Navier�Stokes community. Here, enforcing a very high sound

speed, the compressible Navier�Stokes equations are in near incompressible regime.
ρ0(x, y) = 1,

u0(x, y) = sin(x) cos(y),

v0(x, y) = cos(x) sin(y),

p0(x, y) = p0 − 1
4 (cos(2x) + sin(2y)) .

(II.74)

The analytical solution for incompressible �ows writes
ρ(x, y, t) = 1,

u(x, y, t) = sin(x) cos(y) e−2µt,

v(x, y, t) = cos(x) sin(y) e−2µt,

p(x, y, t) = p0 − 1
4 (cos(2x) + sin(2y)) e−4µt,

(II.75)

with p0 = 10. The pressure is set such that the regime is nearly incompressible, using a sti�ened

gas EOS which writes

p = (γ − 1)ρε− γp?.

Here p? = 108. The viscosity parameters are set to µ = 10, λ = 0. Computations are performed

till t = 10−3 with a CFL set to 0.9 on the computational domain Ω = [−π, π]2. Periodic boundary

conditions are imposed. The limitation on the �nal time is due to the use of explicit Runge�

Kutta sequences combined with the very high sound speed number. l1-error in momentum as

well as experimental order of convergence are presented in table II.14. Machine precision is

reached quickly on the every variables due to the large di�erence existing between the numerical
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values of momentum, density, pressure with the values of internal energy. Indeed the error are

not taken as relative errors but as absolute ones. Magnitude di�ers by a factor 108. Hence, for

relative errors, one should divide by at least 108. We believe double precision is not su�cient to

reach smaller absolute error.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8

10 5.0e-1 · 1.8e-4 · 3.1e-3 · 1.5e-4 · 2.4e-4 · 6.1e-5 ·
20 7.6e-2 3.88 1.2e-5 6.0 1.0e-4 6.0 1.1e-5 ? 1.1e-5 ? 1.1e-5 ?

40 1.0e-2 3.93 1.1e-5 ? 1.2e-5 ? 1.3e-5 ? 1.3e-5 ? 1.3e-5 ?

80 1.4e-3 3.98 1.3e-5 ? 1.1e-5 ? 1.2e-5 ? 1.2e-5 ? 1.2e-5 ?

160 2.2e-4 5.77 1.4e-5 ? 1.4e-5 ? 1.3e-5 ? 1.4e-5 ? 1.2e-5 ?

320 3.1e-5 2.87 1.3e-5 ? 1.5e-5 ? 1.4e-5 ? 1.6e-5 ? 1.4e-5 ?

Table II.14 � l1-error in density and experimental order of convergence for the compressible
Navier�Stokes Lagrange-remap staggered scheme for the Taylor�Green vortex [160],
until t = 2.10−3, CFL=0.9. Machine precision is reduced to 10−5 as error are taken
in absolute. For relative errors, one should divide by 108. ? indicates machine pre-
cision reached.

II-4.3.3 Rayleigh�Taylor instability [151, 159, 108]

The Rayleigh�Taylor instability is used to assess the ability of the schemes to handle instability,

and if those instabilities are accentuated by the high-order accuracy. The initial data for the

single perturbation mode are
ρ0(x, y) = 2χ{y>0} + 1χ{y<0},

u0(x, y) = 0,

v0(x, y) = 0.25a(1 + cos(4πx))(1 + cos(3πy))χ{|y| < 1/6},
p0(x, y) = K0 + ρ0(x, y)gy,

(II.76)

where g = −0.1, K0 = 2.5, a = 10−2. The viscous parameters are chosen very small with

µ = 10−4 and λ = −2
3µ. In order to highlight the role of viscosity, computations are run

�rst with the Euler schemes and then with the Compressible Navier�Stokes (CNS) schemes.

Periodic boundary conditions are set on the left and right boundaries, whereas wall boundary

conditions are imposed on the top and bottom boundaries. The computation domain is set

to [−0.25 : 0.25] × [−0.75 : 0.75]. Since the hydrostatic equilibrium is not perfectly recovered,

additional noise is added, but still small compared to the perturbations inducing the instability.

Results are depicted in �g. II.23. Without viscous stress tensor, the higher the order, the more

modes develop. As a contrary, using even a small coe�cient of viscosity prevents such modes

from developing, and leads to the expected results. Without dissipation, Euler schemes are

unable to recover correctly the Rayleigh�Taylor expected pro�les, and do not seem to converge.

This is not a new result since it has been highlighted among others in [108].
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(a) 3rdorder Euler (b) 4th order Euler (c) 6th order Euler

(d) 3rd order CNS (e) 4th order CNS (f) 6th order CNS

Figure II.23 � Density pro�les on the Rayleigh�Taylor mono-mode instability for the Euler
equations (top) and for the Compressible Navier�Stokes (CNS) equations with
µ = 10−4 and λ = −2

3µ (bottom) using third, fourth and sixth order schemes, at
time t = 9.5 (left) and t = 12.75 (right) with 200 cells in the x-direction and 600
in the y-direction.
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For the multi-mode perturbation, the initialization is slightly modi�ed as
ρ0(x, y) = 2χ{y>0} + 1χ{y<0},

u0(x, y) = 0,

v0(x, y) = A(x)(1 + cos(3πy))χ{|y| < 1/6},
p0(x, y) = K0 + ρ0(x, y)gy,

(II.77)

where A(x) is chosen as a random number belonging to
[
0 : 10−2

]
. The parameters are left

unchanged. The computation domain is set to [−0.25 : 0.25] × [−0.375 : 0.375]. Results are

depicted in �g. II.24.
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(a) 3rdorder Euler (b) 4th order Euler (c) 6th order Euler

(d) 3rd order CNS (e) 4th order CNS (f) 6th order CNS

Figure II.24 � Density pro�les on the Rayleigh�Taylor multi-mode instability for the Euler
equations (top) and for the Compressible Navier�Stokes (CNS) equations with
µ = 10−4 and λ = −2

3µ (bottom) using third, fourth and sixth order schemes, at
time t = 6, t = 9, t = 12, t = 15 from left to right and top to bottom, with 200
cells in the x-direction and 300 in the y-direction



Chapter III

Stable high-order methods for linear

hyperbolic systems with arbitrary

boundary conditions

L'étude d'une nouvelle famille de schémas numériques pour des systèmes linéaires hyperbo-

liques avec conditions aux bords est réalisée au cours de ce chapitre. On présente dans un premier

temps la procédure a�n de construire les opérateurs d'intégration des conditions aux bords dans

le cas de l'équation de l'advection pour des approximations de type di�érences �nies et volumes

�nis. Ensuite, cette procédure est étendue au cas du système des équations des ondes avec deux

conditions aux bords di�érentes. La méthode est alors étendue au cas général des systèmes hyper-

boliques linéaires avec conditions aux bords. A�n de pouvoir caractériser la stabilité des schémas

ainsi obtenus par l'ajout de ces opérateurs, une étude de type GKS est proposée. A�n de permettre

de disposer d'un aperçu de la stabilité du schéma e�ectif, une dé�nition de stabilité dite réduite

est introduite. Des résultats numériques sont proposés tout au long du chapitre a�n d'illustrer la

précision ainsi que la pertinence de la dé�nition de stabilité réduite introduite. Une partie de ce

travail a été soumise à une revue scienti�que [34].
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Figure III.1 � 1D Boundary between outside and inside computational domain

In this chapter, a way to impose boundary conditions building ghost-cells values for linear con-

servation laws is proposed and studied. It is very close to the method developed in [155, 156,

158, 157, 168]. In order to deal with the discretization of boundary conditions in the special case

of Lagrange-remap schemes, the case of a simpli�ed linear 1D hyperbolic system of conservation

laws on Ω = {x ∈ R, x > xs} is studied as
∂tU +A∂xU = 0, t > 0, x > xs, U(x, t) ∈ Rp

BU(xs, t) = BG(t), t > 0,

U(x, 0) = U0(x), x > xs.

(III.1)

The geometry is depicted in �g. III.1. Put aside temporarily the peculiar shape of Ω = [xs,∞[

and consider the whole domain. The 1D domain is discretized in regular cells Ij = [xj− 1
2
, xj+ 1

2
],

with ∆x = xj+ 1
2
− xj− 1

2
the constant space between two consecutive cell interfaces. Only �nite-

di�erences and �nite-volume-type schemes will be considered (see section I-1.2.1). At time tn,

the discrete solution writes Un = (Un
j )j∈Z. Consider now that Ω = {x ∈ R, x > xs} and that

boundary conditions are speci�ed at x = xs = σ∆x ∈ I0 with σ ∈ [−1
2 ,

1
2 [. The most interesting

case is when the boundary location does not coincide with the discretized grid (see �g. III.1).

Only fully interior cells (depicted in blue in the �gure) are considered to be part of the "interior"

computational domain denoted Ω+ ⊂ Ω. Cells in gray are considered as part of the "ghost"

computational domain denoted Ω−. In practice, one has Ω ⊂ Ω+ ∪ Ω− ⊂ R. The algorithm

proposed in this work builds ghost values in Ω− such that the resulting scheme is both high-order

accurate and stable. For this peculiar value of xs, one has that Ω+ = {x ∈ R, x ≥ x 1
2
}. It implies

that only interior values U+ = (Un
j )j≥1 are known at the beginning of the time-step. Boundary

conditions speci�ed at x = xs are provided according to the incoming/outgoing characteristics

of A = ∇UF (U). Moreover, the matrix B satis�es the condition of theorem I.9. In the whole

chapter, the matrix A is assumed invertible to alleviate computations. To build ghost values,

which is ultimately the real problem, one has in hands the boundary conditions and any kind

of extrapolation technique to reconstruct U− = (Uj)j≤0 from U+ = (Uj)j≥1. Therefore the

problem discussed hereafter can be formulated as follows
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Problem III.1. Build an operator R

R : (Rp)card(Ω+) → (Rp)card(Ω−)

R(U+) = U−
(III.2)

and such that the coupling with the internal scheme (in Ω+) is stable and a high-order approxi-

mation of eq. (III.1).

To numerically solve the initial boundary value problem (III.1), it remains to build averaged

ghost-cell values U− = (Un
j )j≤0 from U+, on a stencil which depends on the interior scheme. In

this chapter, �rst the focus is made on the scalar advection problem, and a method is derived

to reach high-order accuracy. Then, a generalization is made to linear hyperbolic system of

conservation laws, and especially for the wave equations. Numerical results illustrate the accuracy

of the method all along the chapter. Our �ndings highlight the need to tackle stability issues

due to the reconstruction. Hence, stability results are �rst obtained using the GKS theory

(using lemma I.11), and then the concept of reduced stability is introduced to alleviate part of

the computation to obtain stability. The practical interest of the reduced stability de�nition is

con�rmed by numerical results. This work is part of a submitted publication [34].
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III-1.1 Derivation of high-order reconstruction operators for the advection problem126
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III-2.1 GKS stability for IBVP using second order reconstruction for the Lax�

Wendro� scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

III-2.2 Reduced stability for IBVP discretization . . . . . . . . . . . . . . . . . 146

III-1 Inverse Lax�Wendro� procedure for linear hyperbolic sys-

tems

The Inverse Lax�Wendro� (ILW) method is �rst detailed for the special case of the scalar ad-

vection equation. It is used to build high-order accurate values U− using U+ and the boundary

conditions. Numerical experiments illustrate the accuracy of the method. Later on, the proce-

dure is extended to the wave equations, considering two di�erent boundary conditions satisfying

the Kreiss condition. At last, a generic procedure is introduced to deal with general linear

hyperbolic system with boundary conditions.
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III-1.1 Derivation of high-order reconstruction operators for the advection

problem

Guiding lines of the method are �rst explained on the scalar version of (III.1), ie the advection

equation. Let a > 0, the model is
∂tu+ a∂xu = 0, t ≥ 0, x > xs,

u(t, xs) = g(t), t ≥ 0,

u(0, x) = u0(x), x > xs.

(III.3)

As a > 0 a boundary condition must be provided at the left boundary. Obviously (III.3) satis�es

the Uniform Kreiss conditions (theorem I.9). Using either a �nite di�erence or a �nite volume

formalism and denoting ν = a∆t
∆x , numerical schemes under conservative form to solve (III.3)

write

un+1
j = unj − ν

(
u∗
j+ 1

2

− u∗
j− 1

2

)
. (III.4)

Since u is constant along characteristics x = at it is straightforward to show that the numerical

�ux rewrites

u∗
j+ 1

2

=
1

∆t

∫ tn+1

tn
u(xj+ 1

2
, θ)dθ =

1

∆t

∫ tn+1

tn
u(xj+ 1

2
− a (θ − tn), tn) dθ,

=
1

ν∆x

∫ x
j+ 1

2

x
j+ 1

2
−ν∆x

un(y)dy.

A possible way to compute the �uxes u∗
j+ 1

2

is to use polynomials P interpolating the primitive

of un ie

u∗
j+ 1

2

=
1

ν∆x

(
P (xj+ 1

2
, j)− P (xj+ 1

2
− ν∆x, j)

)
. (III.5)

Let m be the order of the scheme. Let also r and p be two positive integers such that r+ p = m.

Interpolating polynomials write

P (x, j) =

p∑
k=−r

 p∏
i=−r
i 6=k

x− xj+i+ 1
2

xj+k+ 1
2
− xj+i+ 1

2

 k∑
l=−r

uj+l∆x. (III.6)

As examples, for (p, r) = (1, 1) we get the Lax�Wendro� scheme

u∗
j+ 1

2

=
1

2
(uj + uj+1) +

ν

2
(uj − uj+1), (III.7)

for (p, r) = (0, 2) the Beam�Warming scheme

u∗
j+ 1

2

=
1

3
(3uj − uj−1)− ν

2
(uj − uj−1), (III.8)
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and for (p, r) = (1, 2) we get the third order upwinded scheme (O3):

u∗
j+ 1

2

=
1

6
(5unj + 2unj+1 − unj−1) +

ν

2
(unj − unj−1) +

ν2

6
(unj+1 − 2unj + unj−1). (III.9)

The three aforementioned schemes are used in the sequel, whether as examples or for numerical

experiments. Such schemes, also described in [148, 149, 44] are very close to those that will be

used to solve Euler equations during the remapping phase as in [50, 170, 35] and in section II-2.3.

Introducing the �oor bc and the ceil de functions

bxc = m ∈ Z, where m is the largest integer less than or equal to x,

dxe = m ∈ Z, where m is the smallest integer greater than or equal to x,

it is proved in [44] that for ν ≤ 1 these schemes are stable for p = bm2 c and r = dm2 e.

The main idea in the Inverse Lax�Wendro� is to use the system of partial di�erential equations

to change space derivatives into time derivatives in Taylor expansions. For the scalar advection

problem, it writes

∂tu = −a∂xu,

and since a is assumed to be non-negative, it becomes

∂xu = (−a)−1∂tu.

Di�erentiating in time an arbitrary number of times the previous equation, and changing time

derivatives into space derivatives, it writes

∂kxu = (−a)−k∂kt u, k ∈ N.

We present hereafter the formal computations to introduce the previous equality in Taylor ex-

pansions. The emphasis is laid on the construction of high-order reconstruction operators for

the �nite volume approximation.

III-1.1.1 Derivation of high-order reconstruction operators for the �nite volume

approximation

Ghost-cell methods rely on the determination of the U− = (u0, u−1, ...) values that are to be

set from the boundary condition g(t) and the interior values U+ = (u1, u2, u3, ...). For x in a
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neighborhood of xs, a formal Taylor expansion leads to

u(x, t) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

u(y, t)dy =
1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kxu(xs, t)
(y − xs)k

k!
dy

=
1

∆x

∑
k≥0

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


Reminding that for a 6= 0 one has ∂kxu = (−a)−k∂kt u for the advection equation (III.3)

=
1

∆x

∑
0≤k≤n

(−a)−k∂kt u(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
k≥n+1

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

Truncating up to order m, previous equation leads to

u(x, t) =
1

∆x

∑
0≤k≤n

(−a)−k∂kt u(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
n+1≤k<m

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

+ O(∆xm).

Consider a mth-order scheme, and consider we only use the n �rst time derivatives of g, with

n < m. Using u(xs, t) = g(t), one therefore gets

u(x, t) =
1

∆x

∑
0≤k≤n

(−a)−k∂kt g(t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
n+1≤k<m

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

+ O(∆xm).

(III.10)

Consider a scheme that requires ng ghost-cell values. We introduce two set of points x− =

{x0, x−1, ..., x−ng+1} and x+ = {x1, x2, ..., xm−n−1} which are �nite sets of points respectively

included in Ω− and in Ω+. Using the identity (III.10) and dropping the O(∆xm) for x ∈ x+, one

builds a system of unknowns ∂kxu(xs, t) with n+ 1 ≤ k < m. Solving this system allows then to

build averaged ghost-cell values u(x, t) for x ∈ x−.

As an example we consider the O3 scheme (m = 3) whose �ux is given by (III.9) and whose total
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stencil is Sj = {j − 2, j − 1, j, j + 1}. It therefore requires ng = 2 ghost-cells (x− = {x0, x−1}).
For this example and for the sake of simplicity, we assume g = 0 and we take n = 1 (ie g(t) and

∂tg(t) are known at the boundary). We therefore get x+ = {x1} and relation (III.10) writes

u(x, t) =
1

∆x
∂2
xu(xs, t)

(x+
∆x

2
− xs)3

3!
−

(x− ∆x

2
− xs)3

3!

+ O(∆x3)

= ∂2
xu(xs, t)

(
12x2 − 24xσ∆x+ 12∆x2σ2 + ∆x2

24

)
+ O(∆x3). (III.11)

Dropping the O(∆x3) and using the �rst interior cell u1 = u(∆x, t) allows to compute the

unknown ∂2
xu(xs, t)

∂2
xu(xs, t) =

(
24

12∆x2σ2 − 24σ∆x2 + 13∆x2

)
u1. (III.12)

Ghost-cell values u0 = u(0, t) and u−1 = u(−∆x, t) can now be explicitely computed from (III.11-

III.12)
u0 =

(
12∆x2σ2+∆x2

24

)
∂2
xu(xs, t),

u−1 =
(

12∆x2σ2+24σ∆x2+13∆x2

24

)
∂2
xu(xs, t),

ie

 u0 = 12σ2+1
12σ2−24σ+13

u1,

u−1 = 12σ2+24σ+13
12σ2−24σ+13

u1.

These staightforward computations can be formalized by introducing the Taylor coe�cients ma-

trices Y+ ∈ R1×1 and Y− ∈ R2×1,

Y+ =
(

12∆x2σ2 − 24σ∆x2 + 13∆x2

24

)
and Y− =

 12∆x2σ2 + ∆x2

24
12∆x2σ2 + 24σ∆x2 + 13∆x2

24

 . (III.13)

Note that for any σ, Y+ ≥ 0. Then, under the assumption that ∆x 6= 0, Y+ is invertible. We

set R = Y−(Y+)−1 and get U− = R(U+), ie

(
u0

u−1

)
=

 12σ2+1
12σ2−24σ+13

12σ2+24σ+13
12σ2−24σ+13

u1. (III.14)

We now extend this procedure to the general case. Let m be the order of the reconstruction. Let

n denote the number of time derivatives of the boundary condition used in the reconstruction and

assume the numerical scheme requires ng ghost-cells. We build matrices Ym,n
− ∈ Rng×(m−n−1)

and Ym,n
+ ∈ R(m−n−1)×(m−n−1)


(Ym,n
− )i,j =

(x1−i +
∆x

2
− xs)n+j+1 − (x1−i −

∆x

2
− xs)n+j+1

∆x(n+ j + 1)!
,

(Ym,n
+ )i,j =

(xi +
∆x

2
− xs)n+j+1 − (xi −

∆x

2
− xs)n+j+1

∆x(n+ j + 1)!
.

(III.15)
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The boundary condition g, previously assumed to be zero is reintroduced in Sn
− ∈ Rng and

Sn
+ ∈ R(m−n−1) de�ned as

(Sn
−)i =

n∑
k=0

(−a)k∂kt g(t)
(x1−i +

∆x

2
− xs)k+1 − (x1−i −

∆x

2
− xs)k+1

∆x(k + 1)!
,

(Sn
+)i =

n∑
k=0

(−a)k∂kt g(t)
(xi +

∆x

2
− xs)k+1 − (xi −

∆x

2
− xs)k+1

∆x(k + 1)!
.

(III.16)

Let Θ = (∂n+1
x u, ..., ∂m−1

x u)t. Relation (III.10) can be rewritten{
U− = Sn

− + Ym,n
− ·Θ,

U+ = Sn
+ + Ym,n

+ ·Θ.
(III.17)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) if

0 ≤ n < m. Elimination of Θ in (III.17) leads to

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.18)

This relation gives a reconstruction up to mth-order of u outside the computational domain using

the n �rst time derivatives of g. It de�nes the so-called Rm,n reconstruction operator

Rm,n = Ym,n
− · (Ym,n

+ )−1. (III.19)

Remark III.1. The previous formal computations also apply straightforwardly in the case of

�nite di�erence schemes. Terms of the form

(x+
∆x

2
− xs)k+1

∆x(k + 1)!
−

(x− ∆x

2
− xs)k+1

∆x(k + 1)!

 become

(x− xs)k
k!

in the �nite di�erence case.

III-1.1.2 Experimental order of accuracy of the procedure

Previous computations yield high-order accurate numerical methods to solve eq. (III.3). Consider

the initial boundary value problem (III.3) with a = 1 and the following C∞ data{
u(0, x) = u0(x) = 0,

u(t, xs) = g(t) = e−
0.1
t2 sin(4πt).

(III.20)

Equation (III.3) is solved on Ω = {x ∈ R, xs < x < 2}, with a classical out�ow boundary

condition in x = 2 and the high-order accurate boundary treatment previously proposed at

x = xs =
√

3
2 10−3. The computational domain, discretized in Nx cells, is [0, 2] so that the

left boundary lies in the �rst cell. The CFL is set to 0.8. Computations are done in order to

assess the accuracy of the proposed methods. In Table III.1, we present the l1-error with respect

to the number of cells for the R3,0,R3,1, and R3,2 reconstructions using the 3rd-order interior
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Nx R3,0 R3,1 R3,2

20 3.1e-2 · 2.8e-2 · 2.9e-2 ·
40 5.9e-3 2.39 5.6e-3 2.32 5.6e-3 2.35
80 8.0e-4 2.88 7.7e-4 2.86 7.7e-4 2.86
160 1.0e-4 2.93 1.0e-4 2.92 1.0e-4 2.92
320 1.3e-5 2.97 1.3e-5 2.97 1.3e-5 2.97
640 1.7e-6 2.99 1.6e-6 2.99 1.6e-6 2.99
1280 2.1e-7 2.99 2.1e-7 2.99 2.1e-7 2.99

Table III.1 � l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n �nite-volume reconstruction polynomial at t = 1.5.

Nx R4,0 R4,1 R4,2 R4,3

20 2.0e-2 · 1.9e-2 · 2.0e-2 · 2.1e-2 ·
40 2.4e-3 3.12 2.3e-3 3.10 2.3e-3 3.15 2.3e-3 3.21
80 1.7e-4 3.80 1.7e-4 3.76 1.7e-4 3.76 1.7e-4 3.76
160 1.1e-5 3.90 1.1e-5 3.89 1.1e-5 3.89 1.1e-5 3.89
320 7.4e-7 3.96 7.3e-7 3.96 7.3e-7 3.96 7.2e-7 3.96
640 4.7e-8 3.98 4.6e-8 3.98 4.6e-8 3.98 4.6e-8 3.98
1280 2.9e-9 3.99 2.9e-9 3.99 2.9e-9 3.99 2.9e-9 3.99

Table III.2 � l1-error and experimental order of convergence for the 4th-order scheme together
with the R4,n �nite-volume reconstruction polynomial at t = 1.5.

scheme (III.4), (III.9). In Table III.2, we present the l1-error with respect to the number of cells

for theR4,0,R4,1, R4,2, andR4,3 reconstructions using the 4th-order interior scheme (III.4). The

expected order of convergence for both schemes is reached for all reconstructions. We also have

checked that modifying xs does not alter the order of accuracy but slightly changes the initial error

level (forNx = 20). Similar experimental orders of convergence for �nite di�erence reconstruction

operators have been recovered. An important feature of the reconstruction operator is its impact

on the �nal scheme stability. This will be discussed hereafter in section III-2.1.

III-1.2 Derivation of high-order reconstruction operators for the wave equa-

tions

The wave equations have already been detailed for the linear stability analysis of the staggered

schemes in section II-2. The system of equations is{
∂tu+ ∂xp = 0,

∂tp+ ∂xu = 0,
(III.21)

which can be written, for U = (u, p)t ∈ R2 as

∂tU +

(
0 1

1 0

)
∂xU = 0. (III.22)
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In the following, we introduce the matrix A =

(
0 1

1 0

)
, and obviously previous equation rewrites

∂tU +A∂xU = 0. (III.23)

The initial value boundary problem that we are interested in therefore writes{
∂tU +A∂xU = 0, t > 0, x > xs

BU = BG, t > 0, x = xs
(III.24)

Lemma III.1. The initial value boundary problem (III.24) is well-posed in the sense of theo-

rem I.9 if B ∈ R1×2 and satis�es B =
(
b1 b2

)
with b1 + b2 6= 0.

Proof. Trivially, one has that the spectrum of A satis�es Sp(A) = {−1, 1} and the eigenvectors

are

v+ =

(
1

1

)
and v− =

(
−1

1

)
.

Using the notation introduced in theorem I.9, it yields that T =

(
1

1

)
. Then, we get that

B ∈ R1×2 with B =
(
b1 b2

)
. Thus BT = b1 + b2. To ensure invertibility of BT , one requires

that b1 + b2 6= 0, which concludes the proof. �

In the following, two di�erent matrices B are proposed which satisfy lemma III.1. The emphasis

is laid on how the boundary condition impacts the reconstruction operator. Before studying

speci�cally the boundary condition, the interior schemes are introduce to solve eq. (III.21).

Those schemes are the linear version of the one proposed for the Euler system introduced and

detailed in section II-2.

III-1.2.1 Runge�Kutta based staggered schemes for the wave equations

The Runge�Kutta based staggered schemes for the wave equations (already introduced in sec-

tion II-2) are eq. (III.25), denoting ν = ∆t
∆X ,


pn+αm
i = pni − ν

m−1∑
l=0

am,ldu
n+αl
i ,

un+αm
i+ 1

2

= un
i+ 1

2

− ν
m−1∑
l=0

am,ldp
n+αl
i+ 1

2

,


pn+1
i = pni − ν

s−1∑
l=0

θldu
n+αl
i ,

un+1
i+ 1

2

= un
i+ 1

2

− ν
s−1∑
l=0

θldp
n+αl
i+ 1

2

,

(III.25)

The explicit Runge�Kutta coe�cients are given in table III.3. A possible way would be to build

the reconstruction operator only at time t = tn, exactly as for the advection case with one-step

schemes. However, considering as an example that there are 3 ghost-cells values to be built at

each sub-cycle, and that the scheme requires 6 Runge�Kutta sub-cycles, then one must build
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α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αp ap,0 · · · · · · ap,p−1 0
1 θ0 θ1 · · · θp−1 θp

Table III.3 � Example of Butcher table for explicit Runge�Kutta sequence with p sub-cycles.

18 ghost-cells values at time t = tn. This will probably be a predicament for the stability of

the e�ective schemes. Thus, the choice has been made here to build ghost-cells values at each

Runge�Kutta sub-cycles. However, as explained and illustrated by Carpenter and al. in [20],

prescribing "naively" boundary conditions at each Runge�Kutta sub-cycle yields only second

order of accuracy. Lemma III.2 gives results concerning a way to impose high-order accurate

values of a given function at intermediary �ctitous time-step.

Lemma III.2 (High-order accurate in time for function values at intermediary �ctitious time).

Consider a qth-order explicit Runge�Kutta sequences whose coe�cients are given by a Butcher

table as table III.3. In order to impose high-order accurate values of a function g : t → g(t) at

intermediary �ctitious time, one sets

gn+αl = g(tn) +

q∑
r=1

βrl ∂
r
t g(tn)∆tr,

where the β coe�cients satisfy 

β1
l =

l−1∑
m=0

al,m,

βrl =
l−1∑
m=0

al,mβ
r−1
m ,

βrp+1=

p∑
m=0

θmβ
r−1
m .

Proof. To build high-order accurate boundary conditions, we consider the following system

(III.26): 

∂tg0(t) = g1(t)
...

∂tgq(t) = gq+1(t)
...

(III.26)

System (III.26) needs closure to be well posed. We close the system considering that for a �xed

q ∈ N (linked to the order of the Runge�Kutta sequence), we have ∂tgq+1(t) = 0. This way, we
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get the following system (III.27). 
∂tg0(t) = g1(t)
...

∂tgq(t) = gq+1(t)

∂tgq+1(t) = 0

(III.27)

We consider qth order explicit Runge�Kutta schemes with the following notations for Runge�

Kutta sequences: αl is the time step for the lth sub-cycle, al,m the l,m term of the Butcher table

and θm the mth reconstruction coe�cient for the last step. We consider p sub-cycles schemes

(see table III.3).

Using Runge�Kutta integration in time with time-step ∆t and considering that gnk = dkg
dtk

(tn) we

will get the following schemes, for l ∈ {1, ..., p+ 1}

gn+αl
0 =gn0 + ∆t

l−1∑
m=0

al,mg
n+αm
1

gn+αl
1 =gn1 + ∆t

l−1∑
m=0

al,mg
n+αm
2

... =
...

gn+αl
q =gnq

, (III.28)

Developing system (III.28) to keep only terms with gn0 , g
n
1 , ..., g

n
q , we get for k ∈ {0, ..., q}

gn+αl
k = gnk +

r+k≤q∑
r=1

βrl g
n
k+r∆t

r, (III.29)

where the βml coe�cients satisfy the following equation:

β1
l =

l−1∑
m=0

al,m,

βrl =
l−1∑
m=0

al,mβ
r−1
m ,

βrp+1=

p∑
m=0

θmβ
r−1
m .

(III.30)

which concludes the proof using k = 0 into eq. (III.29). �

Once the Butcher table of a Runge�Kutta sequence is given, the βrl can easily be computed once

and for all. Then, it allows to impose the value of the gn+αl function only of ∆t and of the values

of g and its time-derivatives at time t = tn. Let us prove that the "time matching" method

which consists of imposing gn+αl = g(tn + αl∆t) is only second order accurate in time.

Lemma III.3 (Low order accuracy of the "time matching" method). For general Butcher coef-
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�cients, the "time matching" method is only second order accurate. It satis�es

g(tn + αl∆t) = gn+αl + O(∆t2).

Remark III.2. This is a generalization to any Runge�Kutta sequences of the results given by

Carpenter and al. in [20].

Proof. Recall that

gn+αl = g(tn) +

q∑
r=1

βrl ∂
r
t g(tn)∆tr.

The Taylor expansion in ∆t of g(tn + αl∆t) writes

g(tn + αl∆t) = g(tn) +

q∑
r=1

∂rt g(tn)
(αl∆t)

r

r!
+ O(∆tq+1)

Then it leads to

gn+αl − g(tn + αl∆t) =

q∑
r=1

∂rt g(tn)∆tr
(
βrl −

(αl)
r

r!

)
+ O(∆tq+1)

Introducing the notations γr = βrl −
(αl)

r

r!
, one gets that

γ1 = β1
l − αl =

l−1∑
m=0

al,m − αl = 0,

since αl =
l−1∑
m=0

al,m for any Butcher table. Now, let us consider γ2, it writes

γ2 = β2
l −

1

2
α2
l

=

l−1∑
m=0

al,mβ
1
m −

1

2
α2
l

=
l−1∑
m=0

al,mαm −
1

2
α2
l ,

which is not equal to zero for general coe�cients al,m. Hence, it yields that

gn+αl − g(tn + αl∆t) = O(∆t2).

�

Using the β coe�cients, let us now deal with building appropriate reconstruction operators

depending on the boundary condition. A method has been devised to deal with such a problem,
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and then to build high-order boundary conditions for any explicit Runge�Kutta sequences. It

has been done for the Runge�Kutta sequences presented in appendix, section A.1.

III-1.2.2 Reconstruction operators for the wave equations with boundary condi-

tions on velocity

First, we consider that the matrixB takes the simple formB =
(

1 0
)
, which obviously satis�es

lemma III.1. The system rewrites as
∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

u(xs, t) = g(t), t > 0.

(III.31)

Then using the eq. (III.31), one gets in particular that for any q ∈ N

{
∂2q+1
t u = −∂2q+1

x p,

∂2q
t u = ∂2q

x u,
(III.32)

which yields

{
∂2q+1
x p(xs, t) = −∂2q+1

t g(t),

∂2q
x u(xs, t) = ∂2q

t g(t).
(III.33)

For x in a neighborhood of xs, a formal Taylor expansion leads to(
u

p

)
(x, t) =

1

∆x

∫ x+ ∆x
2

x−∆x
2

(
u

p

)
(y, t)dy =

1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kx

(
u

p

)
(xs, t)

(y − xs)k

k!
dy

=
1

∆x

∑
k≥0

∂kx

(
u

p

)
(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

Introducing the notation

ψk(x) =

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 ,
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it rewrites as(
u

p

)
(x, t) =

1

∆x

∑
k≥0

(
∂kxu

∂kxp

)
(xs, t)ψk(x),

=
1

∆x

bn2 c∑
k≥0

(
∂2k
x u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

∂2k+1
x p

)
(xs, t)ψ2k+1(x)


+

1

∆x

∑
k≥n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x).

Reminding that ∂2k
x u = ∂2k

t u and that ∂2k+1
x p = −∂2k+1

t u

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

−∂2k+1
t u

)
(xs, t)ψ2k+1(x)


+

1

∆x

∑
k≥n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x).

Truncating up to order m, previous equation gives

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

−∂2k+1
t u

)
(xs, t)ψ2k+1(x)


+

1

∆x

m−1∑
k=n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x) + O(∆xm).

Inserting boundary condition and dropping the O(∆xm), one gets

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t g(t)

∂2k
x p(xs, t)

)
ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u(xs, t)

−∂2k+1
t g(t)

)
ψ2k+1(x)


+

1

∆x

m−1∑
k≥n+1

(
∂kxu(xs, t)

∂kxp(xs, t)

)
ψk(x).

Getting the terms in g in the left hand side, it rewrites as
u(x, t)− 1

∆x

bn
2
c∑

k≥0

∂2k
t g(t)ψ2k(x) =

1

∆x

bn−1
2
c∑

k≥0

∂2k+1
x u(xs, t)ψ2k+1(x) +

m−1∑
k≥n+1

∂kxu(xs, t)ψk(x)

 ,
p(x, t) + 1

∆x

bn−1
2
c∑

k≥0

∂2k+1
t g(t)ψ2k+1(x) =

1

∆x

bn2 c∑
k≥0

∂2k
x p(xs, t)ψ2k(x) +

m−1∑
k≥n+1

∂kxp(xs, t)ψk(x)

 .
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Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.34)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with

0 ≤ n < m. Then eq. (III.34) gives after elimination of Θ formed with spatial derivatives of u

and p,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.35)

Here again, the reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1.

Remark III.3. Straightforwardly, as u and p play a symetric role, one deduces the reconstruction

operator for the following IBVP problem
∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

p(xs, t) = g(t), t > 0.

III-1.2.3 Reconstruction operators for the wave equations with mixed boundary

conditions on both velocity and pressure

First, we consider that the matrix B takes the form B =
(

1 λ
)
, where λ is chosen in order

to satisfy lemma III.1. It yields a condition on λ which writes λ 6= −1. The special case where

λ = 0 has been dealt with previously. The system rewrites as
∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

u(xs, t) + λp(xs, t) = g(t), t > 0.

(III.36)

In particular, one has

∂qt

(
u

p

)
= (−A)q∂qx

(
u

p

)
, (III.37)

and since A is invertible, it leads to

∂qx

(
u

p

)
= (−A)−q∂qt

(
u

p

)
. (III.38)

The matrix B̂ ∈ Rp×p is introduced as

B̂ =

(
B

0

)
.

Keeping the notation previously introduced, for x in a neighborhood of xs, a formal Taylor
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expansion gives(
u

p

)
(x, t) =

1

∆x

∑
k≥0

(
∂kxu

∂kxp

)
(xs, t)ψk(x),

which is split into two terms(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

(−1)kψk(x)(Ak)−1∂kt

(
u

p

)
(xs, t) +

1

∆x

∑
n+1≤k

ψk(x)∂kx

(
u

p

)
(xs, t),

Decomposing along B̂ and I − B̂, it leads to(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂kt

(
u

p

)
(xs, t) +

1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kx

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k

ψk(x)∂kx

(
u

p

)
(xs, t).

Truncating up to mth-order, dropping the O(∆xm) and using B̂

(
u

p

)
(xs, t) = B̂G(t), we get

(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

ψk(x)A−k(−1)kB̂∂ktG(t)

+
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kx

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).

Noticing in particular that A2 = I, thus A−1 = A, one gets(
u

p

)
(x, t) = − 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)AB̂∂2k+1
t G(t)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)B̂∂2k
t G(t)

+
1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)A(I − B̂)A∂2k+1
x

(
u

p

)
(xs, t)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)(I − B̂)∂2k
x

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).
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Then, computing the values of (I − B̂),A(I − B̂)A and AB̂, one gets the following results

I − B̂ =

(
0 −λ
0 1

)
,

AB̂ =

(
λ 1

0 0

)
,

A(I − B̂)A =

(
1 0

−λ 0

)
,

which leads to, denoting g = BG and inserting in the previous expression(
u

p

)
(x, t) = − 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)

(
0

∂2k+1
t g(t)

)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)

(
∂2k
t g(t)

0

)

+
1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)

(
∂2k+1
x u(xs, t)

−λ∂2k+1
x u(xs, t)

)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)

(
−λ∂2k

x p(xs, t)

∂2k
x p(xs, t)

)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).

Getting the terms in g in the left side, one gets

u(x, t)− 1
∆x

∑
0≤k≤bn

2
c

ψ2k(x)∂2k
t g(t) = 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)∂2k+1
x u(xs, t)

− 1
∆x

∑
0≤k≤bn

2
c

λψ2k(x)∂2k
x p(xs, t)

+ 1
∆x

∑
n+1≤k<m

ψk(x)∂kxu(xs, t),

p(x, t) + 1
∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)∂2k+1
t g(t) = 1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)∂2k
x p(xs, t)

− 1
∆x

∑
0≤k≤bn−1

2
c

λψ2k+1(x)∂2k+1
x u(xs, t)

+ 1
∆x

∑
n+1≤k<m

ψk(x)∂kxp(xs, t).

Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.39)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with
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0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of u and p,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.40)

The reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1. One notices several di�erences

compared with the previous example. For a velocity based boundary condition, the problem

could be decoupled between solving a problem on p and later on u (or vice versa). Here, due

to the particular boundary condition coupling both u and p, the obtained problem is solved

simultaneously on both u and p and their derivatives.

Remark III.4. Straightforwardly, one deduces the reconstruction operator for boundary condi-

tions imposed as λu+ p = g, or conditions imposed as µu+ λp = g with λ+ µ 6= 0.

III-1.2.4 Experimental order of accuracy for a wave problem

We consider a C∞ data solution to eq. (III.21) as{
u(t, x) = a sin(ω(t+ x)) + b sin(ω(t− x)),

p(t, x) = −a sin(ω(t+ x)) + b sin(ω(t− x)).
(III.41)

where arbitrarily, a = 1, b = −1, ω = 2π. We consider a domain Ω = {x ∈ R, xs < x < 10}
where the boundary conditions on the right are imposed using the exact solution presented in

eq. (III.41), and on the left, using the high-order accurate boundary treatment (according to

the boundary condition) for x = xs =
√

3
2 10−3, so that the left boundary lies in the �rst cell.

The CFL is set to 0.5. Computations are done in order to assess the accuracy of the proposed

methods. First, the boundary treatment for boundary conditions on velocity is detailed, and

its accuracy assessed with numerical experiments. Second, the boundary treatment for mixed

boundary conditions is detailed, and the error as well as experimental order of convergence are

presented.

Using boundary conditions on velocity

We consider here the initial data and boundary conditions on velocity for the IBVP as
u(x, 0) = 2 sin(ωx),

p(x, 0) = 0,

u(xs, t) = 2 sin(ωxs) cos(ωt).

(III.42)

In Table III.4, we present the l1-error with respect to the number of cells for the R3,0,R3,1, and

R3,2 reconstructions using the 3rd-order interior scheme presented in section II-2. The expected

order of convergence for the third order staggered scheme is reached for the R3,1 and R3,2

reconstructions. Indeed, one can see that using R3,0 leads to an unstable e�ective scheme. We

also have checked that modifying xs does not alter the order of accuracy but slightly changes the
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Nx R3,0 R3,1 R3,2

20 1.3e-2 · 1.1e-3 · 1.5e-3 ·
40 7.9e-4 3.99 8.9e-5 3.66 1.5e-4 3.39
80 4.9e-5 4.02 6.5e-6 3.78 1.3e-5 3.49
160 1.1e-5 2.14 5.1e-7 3.65 1.2e-6 3.43
320 8.5e-5 ? 5.1e-8 3.32 1.2e-7 3.31
640 1.1e-1 ? 6.2e-9 3.05 1.4e-8 3.18
1280 2.8e6 ? 7.9e-10 2.97 1.6e-9 3.08

Table III.4 � l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n �nite-volume reconstruction polynomial at t = 0.3 for boundary
condition on the velocity. ? are indications of unstable behaviour of the scheme.

Nx R3,0 R3,1 R3,2

20 2.4e-2 · 1.4e-3 · 2.2e-3 ·
40 2.3e-3 3.40 9.9e-5 3.84 2.4e-4 3.17
80 7.9e-5 4.88 8.6e-6 3.52 2.5e-5 3.24
160 1.1e-4 ? 8.3e-7 3.37 2.8e-6 3.16
320 2.5e-3 ? 8.1e-8 3.36 2.9e-7 3.27
640 1.1e5 ? 8.4e-9 3.28 3.0e-8 3.26
1280 ? ? 9.3e-10 3.18 3.3e-9 3.21

Table III.5 � l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n �nite-volume reconstruction polynomial at t = 0.3 for mixed bound-
ary condition (λ = 1747). ? are indications of unstable behaviour of the scheme.

initial error level (for Nx = 20). Similar experimental orders of convergence for �nite di�erence

reconstruction operators have been recovered.

Using mixed boundary conditions

The initial data and mixed boundary conditions for the IBVP are
u(x, 0) = 2 sin(ωx),

p(x, 0) = 0

u(xs, t) + λp(xs, t) = (1− λ) sin(ω(t+ xs))− (1 + λ) sin(ω(t− xs)),
(III.43)

with arbitrarily �x the parameter λ to λ = 1747. In Table III.5, we present the l1-error with

respect to the number of cells for the R3,0,R3,1, and R3,2 reconstructions using the 3rd-order

interior scheme presented in section II-2. The expected order of convergence for the third order

staggered scheme is reached for the R3,1 and R3,2 reconstructions. Indeed, one can see that

using R3,0 leads to an unstable e�ective scheme. We also have checked that modifying xs

does not alter the order of accuracy but slightly changes the initial error level (for Nx = 20).

Similar experimental orders of convergence for �nite di�erence reconstruction operator have been

recovered.
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III-1.3 High-order reconstruction operator for general linear system

We extend the previous case to general hyperbolic linear system with boundary conditions. For

linear hyperbolic system (III.1), one gets the following equality, assuming that A is invertible,{
∂kt U= (−1)kAk∂kxU ,

∂kxU=(−1)kA−k∂kt U .
(III.44)

Consider a mth-order scheme in both time and space and consider we use only the �rst n time

derivatives of the boundary conditions G, with n < m. Relation (III.44) is used to change time

derivatives into space derivatives and vice versa. The matrix B̂ ∈ Rp×p is introduced as

B̂ =

(
B

0

)
.

Taylor expansion of U for x in a neighborhood of xs leads to

U(x, t) = 1
∆x

∫ x+ ∆x
2

x−∆x
2

U(y, t)dy =
1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kxU(xs, t)
(y − xs)k

k!
dy,

= 1
∆x

∑
k≥0

∂kxU(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

To alleviate the notations, let us introduce ψk(x) =
(x+

∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!
. We

have

U(x, t) =
1

∆x

∑
0≤k≤n

(−1)kψk(x)(Ak)−1∂kt U(xs, t) +
1

∆x

∑
n+1≤k

ψk(x)∂kxU(xs, t),

=
1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂kt U(xs, t) +
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k

ψk(x)∂kxU(xs, t).

Truncating up to mth-order, dropping the O(∆xm) and using B̂U(xs, t) = B̂G(t), we get

U(x, t) =
1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂ktG(t) +
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kxU(xs, t).
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that is rewritten the following way

U(x, t)− 1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂ktG(t) =
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kxU(xs, t),

to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.45)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with

0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of U ,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.46)

Here again, the reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1.

III-2 Stability of the inverse Lax�Wendro� procedure

We have seen in tables III.4 and III.5 that the third order scheme for the wave equation with the

R3,0 is unstable, at least for the set of parameters used during the computations. Our purpose

in this section is to establish the stable or unstable behaviour of the e�ective schemes.

In this section a procedure to study the stability of the reconstruction operator is developed. For

any matrix M , ρ(M) denotes the spectral radius of M . Let Z denote the interior numerical

scheme operator such that Un+1 = ZUn solves (III.1). LetR denote the reconstruction operator

such that U− = RU+. The scheme writes(
U+

U−

)n+1

=

(
Z1,1 Z1,2

Z2,1 Z2,2

)
·

(
U+

U−

)n
=

((
Z1,1 + Z1,2R

)
Un

+(
Z2,1 + Z2,2R

)
Un

+

)
. (III.47)

The reduced version where only Un+1
+ shows up writes

Un+1
+ =

(
Z1,1 + Z1,2R

)
Un

+ = NUn
+, (III.48)

where N =
(
Z1,1 + Z1,2R

)
is called the e�ective operator. The purpose of this section is �rst

to study the stability of such an e�ective scheme, and later on to design a special criteria to

characterize in a reduced sense the stability of this scheme.
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III-2.1 GKS stability for IBVP using second order reconstruction for the

Lax�Wendro� scheme

For this section, we consider the special case of the advection problem with boundary conditions

written in eq. (III.3). As presented in section I-1.2.3, considering IBVP, an important feature of

the e�ective scheme is its stability. The Cauchy stability analysis has already been mentioned for

the interior schemes. To perform the GKS stability [76] analysis of a scheme, we �rst consider

the second-order Lax�Wendro� projection scheme (presented in in eq. (III.7)) with the two

proposed second-order reconstructions. We consider also that g = 0 which does not impact the

linear stability analysis. The Lax�Wendro� scheme requires only one ghost-cell value to the left

of the boundary. The reconstructions are

R2,0 = R0 = σ
σ + 1 and R2,1 = R1 = 0. (III.49)

Proposition III.4 (GKS stability of the Lax�Wendro� scheme). The Lax�Wendro� scheme

is stable in the sense of lemma I.12 using R0 or R1 de�ned in eq. (III.49) for ν ∈ [0 : 1],

σ ∈
[
−1

2 ,
1
2

[
.

Proof. From linear stability analysis, one gets the characteristic equation for the Lax�Wendro�

equation which is

zκ =
ν2 + ν

2
+ (1− ν2)κ+

ν2 − ν
2

κ2. (III.50)

Let f(κ) de�ned as

f(κ) =
ν2 + ν

2
+ (1− ν2 − z)κ+

ν2 − ν
2

κ2. (III.51)

One gets from linear stability analysis of the interior scheme that for κ satisfying f(κ) = 0 and

|κ| = 1 that |z| ≤ 1 for ν ∈ [0 : 1]. Then, the number of roots with |K| < 1 of the characteristics

equation is independent of the value of z. Thus, one may choose any z such that |z| > 1 to

determine the number of roots κ such that |κ| < 1. Arbitrarily we set z = 2, it yields that

f(κ) =
ν2 + ν

2
+ (−1− ν2)κ+

ν2 − ν
2

κ2,

from which one deduces that


κ1(ν) =

1 + ν2 −
√

1 + 3ν2

ν2 − ν
,

κ2(ν) =
1 + ν2 +

√
1 + 3ν2

ν2 − ν
.

(III.52)

In particular, one gets that for

ν ∈ [0 : 1]

{
κ1(ν) ∈

[
0 : 1

2

]
,

κ2(ν) 6∈ [−1 : 1] .
(III.53)

It thus implies that trivially the roots are distinct. If one consider now that z = eik with k ∈ R,
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one get two roots κ1, κ2, with for certain values of k that |κ1| = 1. A perturbation analysis is

then performed. To illustrate the perturbation analysis, assume that z = 1, then one gets that

κ1 = 1, κ2 = −1+ν
1−ν . Then the perturbation analysis consists of considering that now z = δ and

κ = 1 + ε inside the characteristic equation (III.50). One obtains

δ = 1− ν(ε2 + 2ε)− ε2ν2

2ε+ 2
,

which leads to, performing a Taylor expansion at ε = 0,

δ = 1− εν + O(ε2),

which proves that κ = 1 is stable under perturbation as for ε small enough, δ < 1. Then to get

the non-existence of generalized eigensolution, one must verify that there is no solution to(
ν2 + ν

2
R+ (1− ν2 − z)

)
κ2 +

ν2 − ν
2

κ2 = 0, (III.54)

for ν ∈ [0 : 1], σ ∈
[
−1

2 ,
1
2

[
, |z| ≥ 1, R = R0 or R = R1 as de�ned in eq. (III.49) and κ satisfying

the characteristic equation (III.50). The system has no solution. Thus, there is no generalized

eigensolution and the scheme is linearly stable. �

Similar studies can be perform for the Beam�Warming scheme. Increasing the order of the

scheme and of the reconstruction yields more and more complexity of the fully discrete GKS

analysis. Thus, a criteria is introduced (very similar to the one proposed in [168]) to alleviate

the algebra of the GKS stability. The cost of such a criteria is that it does not give strong results

concerning the linear stability of the e�ective scheme.

III-2.2 Reduced stability for IBVP discretization

Let us consider now general linear hyperbolic system with appropriate boundary conditions

written ineq. (III.1). Here, we add an a priori requirement of this stability. We will set

Nnc ∈ Rn2
c , Nnc = PncNPtnc where Pnc is the natural projection such that for X ∈ l2, PncX =

(X1, ..., Xnc) ∈ Rnc .

De�nition III.1 (Reduced stability). Let Z be the interior scheme, and R the reconstruction

operator. The operator N = (Z1,1 + Z1,2R) is stable in a reduced sense if

1. Z is stable using normal mode analysis [22, 2],

2. There exists nc ∈ N∗ such that ρ(Nnc) ≤ 1.

Remark III.5. De�nition III.1 provides practical information concerning the stability of the �nal

scheme and is used to determine a priori if a reconstruction is unstable by taking nc large enough.
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III-2.2.1 Analytic reduced stability of the Beam�Warming scheme

The Beam�Warming scheme presented in eq. (III.8), linearly stable for ν ∈ [0 : 2] writes as

un+1
i = (1 +

ν2 − 3ν

2
)uni + (2ν − ν2)uni−1 +

ν2 − ν
2

uni−2, i ∈ Z.

Considering that the boundary condition g satis�es g = 0, and taking m = 2, n = 0, it yields

that

R =

 σ

σ − 1
σ + 1

σ − 1

 .

Then, the e�ective scheme writes
un+1

1 =
σ + ν − 1

σ − 1
un1 ,

un+1
2 =

3σν − σν2 − 4ν + 2ν2

2σ − 2
un1 + (1 +

ν2 − 3ν

2
)un2 ,

un+1
i = (1 +

ν2 − 3ν

2
)uni + (2ν − ν2)uni−1 +

ν2 − ν
2

uni−2, i > 2.

(III.55)

It is possible to rewrite the previous system under the form Un+1
+ = NUn

+ where the operator

N satis�es

N =


σ+ν−1
σ−1 0 0 . . .

3σν−σν2−4ν+2ν2

2σ−2 (1 + ν2−3ν
2 ) 0 . . .

ν2−ν
2 (2ν − ν2) (1 + ν2−3ν

2 ) 0

0
. . . . . . . . .

 . (III.56)

It leads to the following proposition

Proposition III.5. The operator N given in eq. (III.56) is stable in the sense of the reduced

stability de�ned in de�nition III.1.

Proof. Let p be an integer. Let us introduce the operator Pp such that

∀U ∈ l2,PpU = (u1, ..., up)
t ∈ Rp,

and the operator Qp such that

∀(u1, ..., up)
t ∈ Rp,Q(u1, ..., up)

t = (u1, ..., up, 0, ...)
t ∈ l2.

Let the matrix Np = PpNQp ∈ Rp×p. The spectrum of the matrix Np writes

Sp(Np) = {1 +
ν2 − 3ν

2
,
σ + ν − 1

σ − 1
}.
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Now, we wish to exhibit condition on ν depending on σ such that

|σ + ν − 1

σ − 1
| ≤ 1.

As σ ∈
[
−1

2 : 1
2

[
, it yields that σ − 1 < 0, and thus it writes

σ − 1 ≤ σ + ν − 1 ≤ 1− σ, σ ∈
[
−1

2
:

1

2

[
,

which yields

0 ≤ ν ≤ 2− 2σ, σ ∈
[
−1

2
:

1

2

[
.

Taking the minimum over σ on the right hand side, it yields

0 ≤ ν ≤ 1.

Hence the result. �

III-2.2.2 Numerical reduced stability results for the high-order Strang projection

schemes

We illustrate this de�nition by taking the O3 scheme (III.9) with the reconstruction (III.14).

The interior operator Z writes as a band matrix whose coe�cients are for any i ∈ Z

Zi,i−2 =
ν3

6
− ν

6
, Zi,i−1 = ν +

ν2

2
− ν3

2
, Zi,i =

ν3

2
− ν2 − ν

2
+ 1, Zi,i+1 = −ν

3

6
+
ν2

2
− ν

3
.

The reconstruction for m = 2 and n = 1 writes

R1,1 =
12σ2 + 1

12σ2 − 24σ + 13
, R2,1 =

12σ2 + 24σ + 13

12σ2 − 24σ + 13
.

To alleviate notations and since the interior operator is a band matrix, we denote Cj = Zi,i+j
for any j ∈ Z. Combining both, operator N writes

N =


C−2R2,1 + C−1R1,1 + C0 C1 0 0 0

C−2R1,1 + C−1 C0 C1 0 0

C−2 C−1 C0 C1 0

0
. . . . . . . . . . . .

 . (III.57)

One then checks numerically if the spectral radius of Nnc is less or equal to one. Remind that

Rm,n denotes the mth-order reconstruction operator that takes into account the n �rst time

derivatives of the boundary condition. Results for the Lax�Wendro� (�g. III.2), the Beam�

Warming (�g. III.3), the third order projection (�g. III.4) and the fourth order one (�g. III.5)

are depicted. Those results highlight the areas of reduced stabilities. Parts of the considered

space (ν, σ) where the scheme is stable in a reduced sense are in white and in black otherwise.
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In particular, it means that second order reconstruction are unconditionally stable (in the sense

of de�nition III.1) for the Lax�Wendro� and the Beam�Warming scheme. As a contrary, third

order reconstruction, with n = 0 does not satisfy the reduced stability condition for certain

values of ν and σ. As a matter of fact, for such values of ν and σ, a fully discrete GKS stability

analysis proves the existence of generalized eigensolution. Moreover numerical experiments using

values of ν and σ in this area highlight the unstable behaviour of the e�ective scheme.

Notice that on �g. III.2, the reduced stability results and the results obtained for the fully

discrete GKS analysis presented in proposition III.4 are identical. As well, on �g. III.3, the

reduced stability and the results presented in proposition III.5 are the same. It assesses the

practical relevance of the reduced stability criterion.

Furthermore, an interesting feature is shown in �g. III.5, where one notices that for the R4,0,

the bottom left corner of the (ν, σ)-space is unstable. It means in peculiar that the whole space

(ν, σ) must be treated in order to get a complete idea of the e�ective scheme stability. Indeed,

one may not consider that if a scheme is stable for ν = ν1, then for any ν < ν1 the scheme is

also stable.

Drawing comparisons between reduced stability results and results obtained by performing a

numerical fully discrete GKS analysis for the advection problem using inverse Lax�Wendro�

procedure and projection scheme gives very similar results. As we use the reduced stability

de�nition to choose which reconstruction operator to obtain a stable e�ective scheme, this is, to

our opinion, a su�cient criteria. Therefore in the following for the wave equations, only reduced

stability is studied, and the complete fully discrete GKS analysis is not performed.

R2,0 R2,1

Figure III.2 � Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Lax�Wendro� (second order)
scheme with nc = 20 for theR2,0 (left), R2,1 (right) reconstruction operators. The
whole domain is stable.

III-2.2.3 Numerical reduced stability results for the Runge�Kutta based staggered

scheme for the wave equations

Similarly to the advection equation, we perform a numerical study of the reduced stability of the

Runge�Kutta based staggered scheme for the wave equations for boundary condition on velocity.
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R2,0 R2,1

Figure III.3 � Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Beam�Warming (second or-
der) scheme with nc = 20 for theR2,0 (left), R2,1 (right) reconstruction operators.
The whole domain is stable.

In �g. III.6, parts of the considered space (ν, σ) where the scheme is stable in a reduced sense are

depicted in white and in black otherwise. One notices that using only g yields an e�ective scheme

that does not satisfy the reduced stability de�nition. It has already been numerically checked on

an example in Table III.4. As a contrary, considering more derivatives of g, the e�ective schemes

fully satisfy the reduced stability de�nition.

The reduce stability study for the wave equations determines that until third order of accuracy,

g, Dtg are required for linear stability of the initial boundary value problem. The next chapter

is dedicated to the study in the case of the Lagrange-remap hydrodynamics system. Using the

previous results, only g and Dtg are going to be used in the Inverse Lax�Wendro� procedure.
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R3,0 R3,1

R3,2

Figure III.4 � Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order projection
scheme with nc = 20 for the R3,0 (top, left), R3,1 (top, right) and R3,2 (bot-
tom) reconstruction operators. As a contrary to �gs. III.2 and III.3, one notices a
region of numerical instability for R3,0.
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R4,0 R4,1

R4,2 R4,3

Figure III.5 � Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the fourth-order projection
scheme with nc = 30 for the R4,0 (top, left), R4,1 (top, right), R4,2 (bottom,
left), R4,3 (bottom, right) reconstruction operators. An additional behaviour is
observed w.r.t. �g. III.4 which is that the domain of instability contains a layer
for small value of ν (R4,0 and R4,2)
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R3,0 R3,1

R3,2

Figure III.6 � Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order staggered scheme
for the wave equations with nc = 40 for the R3,0 (top, left), R3,1 (top, right) and
R3,2 (bottom) reconstruction operators.





Chapter IV

Discretization of boundary conditions

for compressible hydrodynamics

En partant de la méthode de Lax�Wendro� inverse développée au chapitre précédent pour

des systèmes linéaires, on propose dans ce chapitre une extension au système non linéaire de

l'hydrodynamique compressible, en traitant la di�culté majeure qui est que la jacobienne du

système Lagrangien possède une valeur propre nulle. Des schémas centrés sont considérés pour la

résolution de l'hydrodynamique a�n de simpli�er la présentation et la construction de la méthode.

Après une courte introduction concernant la particularité du système lagrangien 1D des équations

de l'hydrodynamique compressible, un problème à l'ordre 2 et à masse constante est isolé et

traité de deux façons di�érentes. Dans un premier temps, une hypothèse est faite sur la nature

des écoulements proches de la frontière a�n de se rapprocher le plus possible du cas linéaire

de l'équation des ondes. Dans un second temps, aucune hypothèse n'est faite sur la nature des

écoulements et l'impact sur la stabilité linéaire est étudiée numériquement. Puis, la détermination

de la structure de l'opérateur de reconstruction aux bords est étendue au cas de problèmes à

masse variable et à l'ordre élevé. Les résultats principaux se situent dans les lemmes IV.4, IV.5

et IV.6 qui caractérisent les conditions d'existence et d'unicité de l'opérateur de reconstruction.

Une procédure de type MOOD est établie a�n de garantir la robustesse de la reconstruction dans

le cas de chocs forts. En�n, une extension 2D des opérateurs de reconstruction est proposée.

Des résultats numériques sont proposés tout au long du chapitre a�n d'illustrer la précision, la

stabilité et la robustesse de la méthode décrite. Une partie des résultats obtenus a été soumise à

une revue scienti�que [34]. Une dernière section est consacrée à l'adaptation de la procédure de

discrétisation des conditions aux bords pour les schémas décalés.
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New high-order accurate methods to take into account boundary conditions for hyperbolic equa-

tions, based on the so-called inverse Lax-Wendro� (ILW) procedure (see section I-3.2.3) have

been recently published. The study addressed in this work aims at extending these methods

to the Lagrange-remap discretization of the model 2D Euler system (IV.1) involving complex

(eventually moving) boundaries
∂tρ+ ∂x(ρu) + ∂y(ρv) =0,

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) =0,

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2 + p) =0,

∂t(ρe) + ∂x(ρue+ pu) + ∂y(ρve+ pv)=0.

(IV.1)

Variables ρ, τ = 1
ρ , e, p, u, v respectively denote the density, speci�c volume, total energy,

pressure, x-velocity and y-velocity and eq. (IV.1) is closed with an arbitrary equation of state

p = EOS(τ = 1/ρ, e, u, v). Introducing U = (ρ, ρu, ρv, ρe)t, system (IV.1) rewrites as a general

hyperbolic system of conservation laws

∂tU + ∂xF (U) + ∂yG(U) = 0, t ≥ 0, (x, y) ∈ Ω. (IV.2)

Let Ω ⊂ R2 be the "�uid domain". Boundary conditions are added along a curve Γ(t), t ≥ 0.

In this paper we focus on imposed velocity boundary conditions for inviscid �ows, so that only

the normal velocity on Γ(t) is prescribed

(u, v) · −→n (t, s) = g(t, s), t ≥ 0, (x, y) ∈ Γ(t), (IV.3)

where s is the curvilinear coordinate along the boundary Γ(t), and −→n (t, s) denotes the normal

to the curve at coordinate s and time t. The domain Ω is de�ned as the outside of the volume

delimited by Γ. In numerical algorithms, Γ(t) is approximated by Γ∆s as depicted in �gure IV.1.

In this work, we will consider that Γ∆s is formed as a necklace of pearls Ps without any hypothesis

on how to link two consecutive pearls. Only full �uid cells are considered to be part of the "�uid"

computational domain denoted Ω+ ⊂ Ω. Cells in gray are considered as part of the "ghost"

computational domain denoted Ω−. In practice, one has Ω ⊂ Ω+ ∪ Ω− ⊂ R2. The algorithm

proposed in this work builds ghost values in Ω− such that the resulting scheme is both high-order

accurate and stable.

To build ghost values, which is ultimately the real problem, one has in hands the boundary

conditions and any kind of extrapolation technique to reconstruct U− = (Uj)j∈Ω− from U+ =

(Uj)j∈Ω+ . Therefore the problem discussed hereafter can be formulated as follows

Problem IV.1. Build an operator R

R :
(
R4
)card(Ω+) −→

(
R4
)card(Ω−)

U+ 7−→ U−,
(IV.4)

such that the coupling with the internal scheme (in Ω+) is stable and a high-order approximation

of (IV.2-IV.3).
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Figure IV.1 � Discretization Γ∆s of Γ(t) and decomposition of the whole domain between Ω−
(ghost-cells) and Ω+ (�uid cells). Ω is the domain outside the ellipse.

This work is part of a submitted publication [34].

IV-1 ILW procedure for the 1D Lagrangian system . . . . . . . . . . . . . . . . . . . 157

IV-1.1 An instructive second-order boundary treatment . . . . . . . . . . . . . 158

IV-1.2 General procedure, and characterization of the solution for the system

at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IV-1.3 Stabilization procedure for shocks and very high-order reconstruction . . 167

IV-1.4 1D validation and comparisons . . . . . . . . . . . . . . . . . . . . . . . 168

IV-2 Extension of the ILW procedure to the 2D Euler system . . . . . . . . . . . . . 171

IV-2.1 Formulation of the ILW procedure using directionnal splitting . . . . . . 173

IV-2.2 2D numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

IV-1 ILW procedure for the 1D Lagrangian system

So far, the reconstruction method has been described in section III-1.3 for linear hyperbolic

system with A invertible. Our interest now lies in its derivation and application for non-linear

systems, and especially the 1D Euler system. We recall that ρ, τ , u, p and e respectively describe

the density, speci�c volume, velocity, pressure and total energy. The 1D Euler system writes
∂tρ+ ∂x (ρu) =0,

∂t (ρu) + ∂x
(
ρu2 + p

)
=0,

∂t (ρe) + ∂x (ρue+ pu)=0,

(IV.5)

closed with the equation of state (EOS) p = EOS(τ = 1/ρ, e, u). System (IV.5) is solved with a

Lagrange-remap scheme. Let ρ0 denote the initial mass density. Introducing the (x, t)→ (X, t)
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variable change such that ρdx = ρ0dX, (IV.5) rewrites
Dt (ρ0τ)− ∂Xu = 0,

Dt (ρ0u) + ∂Xp = 0,

Dt (ρ0e) + ∂Xpu = 0,

(IV.6)

in Lagrangian coordinates. The Lagrange-remap method consists in the following two steps for

integrating (IV.5). Let ρ0(x) = ρ(x, tn), ie the regular Eulerian and Lagrangian grids xi+ 1
2
and

Xi+ 1
2
coincide at time tn. First, system (IV.6) is time-integrated to give Lagrangian conservative

variables at time tn+1 on a non-uniform grid. These variables are then remapped on the initial

grid, leading to Eulerian conservative variables at time tn+1. For the Lagrange system (IV.6),

the �ux is F (U) = (−u, p, pu)t and its jacobian A = ∇UF (U) writes

A =


0 − 1

ρ0
0

∂p
∂ρ0τ

∂p
∂ρ0u

∂p
∂ρ0e

u
∂p
∂ρ0τ

p
ρ0

+ u
∂p
∂ρ0u

u
∂p
∂ρ0e

 . (IV.7)

The matrix A admits three eigenvalues λ1 > 0, λ2 = 0, λ3 = −λ1 and is therefore non-invertible.

Due to the sign of the eigenvalues, only one boundary condition is to be set in x = xs and we

choose to prescribe the normal velocity as in eq. (IV.3). It writes

u(xs(t), t) = g(t) or, in Lagrangian coordinates u(Xs, t) = g(t). (IV.8)

We present in the following two methods that are based on two di�erent point of views. The �rst

point of view is to include in the system of partial derivative equations another equation which is

the entropy equation. The second one is to focus on the set of data inside the computation. But

�rst, the emphasis is laid on a simpli�ed second order problem at the boundary, which highlights

both point of views.

IV-1.1 An instructive second-order boundary treatment

To give insights into existence of a solution and explain how we proceed, we here focus on a

sample problem in which we assume a constant initial mass density ρ0 = 1, a perfect gas EOS

and a second-order treatment of the boundary condition. We drop the time variable to alleviate

notations. Dropping also the O((X −Xs)
2) term, the truncated Taylor expansions of (τ, u, e) at

second order writes 
τ(Xs) + ∂Xτ(Xs)(X −Xs) = τ(X),

u(Xs) + ∂Xu(Xs)(X −Xs) = u(X),

e(Xs) + ∂Xe(Xs)(X −Xs) = e(X).

(IV.9)

In order to apply the previously described method, variables inXs must be known. The boundary

conditions writes u(Xs) = g and the equation of state writes p = p(τ, e, u). Using the Euler
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equation in Lagrangian coordinates for the momentum, one gets that

ρ0Dtu = −∂xp,

which rewrites inserting the equation of state, and using ρ0 = 1 as

Dtu = −∂Xp(τ, e, u).

Using the chain rule, it leads to

Dtu = −∂Xτ∂τp(τ, e, u)− ∂Xe∂ep(τ, e, u)− ∂Xu∂up(τ, e, u),

thus inserting the boundary condition Dtu(Xs) = Dtg,

Dtg = −∂Xτ(Xs)∂τp(Xs)− ∂Xe(Xs)∂ep(Xs)− ∂Xu(Xs)∂up(Xs). (IV.10)

Then, we get the following system

τ(Xs) + ∂Xτ(Xs)(X −Xs) = τ(X),

u(Xs) + ∂Xu(Xs)(X −Xs) = u(X),

e(Xs) + ∂Xe(Xs)(X −Xs) = e(X),

u(Xs) = g,

∂Xτ(Xs)∂τp(Xs) + ∂Xe(Xs)∂ep(Xs) + ∂Xu(Xs)∂up(Xs) = −Dtg,

(IV.11)

whose unknowns are τ(Xs), ∂Xτ(Xs), u(Xs), ∂Xu(Xs), e(Xs), ∂Xe(Xs).

IV-1.1.1 First method: the spatially isentropic �ow hypothesis

The system (IV.11) needs one more equation, to get 6 equations for 6 unknowns. The �rst method

is based on the choice of an hypothesis on the �ow structure near the boundary. A spatially

isentropic �ow near the boundary is assumed. We use the second law of thermodynamics

TdS = de− udu+ pdτ. (IV.12)

From (IV.12) we get using space derivation that

T∂XS = ∂Xe− u∂Xu+ p∂Xτ. (IV.13)

Assuming in (IV.13) that the �ow is locally isentropic ∂XS = 0 and that p depends only on τ

and S it yields that

∂Xτ =

(
∂τ

∂p

)∣∣∣∣
S

∂Xp = −
(
∂τ

∂p

)∣∣∣∣
S

ρ0Dtu. (IV.14)
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Then using (IV.14) in (IV.12), it writes

∂Xe = u∂Xu+ p

(
∂τ

∂p

)∣∣∣∣
S

ρ0Dtu. (IV.15)

The hypothesis of locally spatial isentropic �ow is strong, it couples the space variation of total

energy with the variation of both velocity and speci�c volume. For the sake of simplicity, we

focus on perfect gas EOS and recall that ρ0 = 1. But the study may be performed for any

analytic EOS. Therefore we set p = (γ − 1)
e− u2

2
τ and it yields

∂Xτ= τ2

γ(γ − 1)(e− u2

2
)

Dtu,

∂Xe= u∂Xu− τ
γDtu.

(IV.16)

The non-linear system using (IV.16) and (IV.8) writes for a perfect gas
τ(Xs) +

τ(Xs)
2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(X −Xs)=τ(X),

g + ∂Xu(Xs)(X −Xs) =u(X),

e(Xs) + (g∂Xu(Xs)−
τ(Xs)
γ Dtg)(X −Xs) =e(X).

(IV.17)

Considering all values known at X = ∆X with U(X) = U+1 and that Xs = σ∆X, (IV.17) writes
τ(Xs) +

τ(Xs)
2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(1− σ)∆X=τ+1,

g + ∂Xu(Xs)(1− σ)∆X =u+1,

e(Xs) + (g∂Xu(Xs)−
τ(Xs)
γ Dtg)(1− σ)∆X =e+1.

(IV.18)

From second equation of (IV.18), one easily gets ∂Xu(Xs) = du = u+1−g
(1−σ)∆X . Then (IV.18) writes

τ(Xs) +
τ(Xs)

2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(1− σ)∆X=τ+1,

e(Xs) + (gdu− τ(Xs)
γ Dtg)(1− σ)∆X =e+1.

(IV.19)

Using second equation of (IV.19) in the �rst one, and using y = (1 − σ)∆X to alleviate the

notations, it yields

(τ+1 − τ(Xs))

(
e+1 −

g2

2
− (gdu− τ(Xs)

γ
Dtg)y

)
=
τ(Xs)

2Dtg

γ(γ − 1)
y. (IV.20)
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One obtains the polynomial equation (for a non-perfect gas, the equation may not be polynomial,

but procedures still work)

f(τ(Xs)) = τ(Xs)
2(

Dtg
γ − 1y)− τ(Xs)

(
(
Dtgτ+1
γ + gdu)y − e+1 + g2

2

)
+τ+1

(
(gdu)y − e+1 + g2

2

)
= 0.

(IV.21)

where f is a second order polynomial.

� If Dtg = 0 then f becomes a�ne and the solution is τ(Xs) = τ+1.

� Assume ∆X = 0 then f becomes also an a�ne function and the solution is τ(Xs) = τ+1.

� Otherwise, f has two roots β1, β2 with β2 going to the in�nity as ∆X goes to zero.

� Assume Dtg > 0, then the roots are always real.

� Assume Dtg < 0, then for ∆X small enough, the roots are real.

(a) Dtg > 0 (b) Dtg < 0

Figure IV.2 � Graph of x → f(τ+1x) using di�erent value of ∆X for a positive Dtg on the left,
and a negative one on the right.

On �gure IV.2, values of x → f(τ+1x) as a function of x is shown for di�erents values of ∆X.

For Dtg < 0, we can see on the graph the non-existence of solution to f(τ+1x) = 0 as some

curves do not cross the X-axis. But for smaller values of ∆X, real solution to f(τ+1x) = 0 exists.

Lemma IV.1 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such

that the EOS function F (τ, ε) =
(
∂τ
∂p

)∣∣∣
S
is a Lipschitz function of (τ, ε) and such that p(τ, ε)

is locally bounded, then for ∆X small enough, the solution of eq. (IV.17) is unique, and a �xed

point algorithm converges toward such a solution.

Proof. Consider that us satis�es us = g. Denoting that εs = es − 1
2u

2
s, ε+1 = e+1 − 1

2u
2
+1, one

writes the system as{
τs = τ+1 − F (τs, εs)(1− σ)∆X,

εs = ε+1 − 1
2(u2

s − u2
+1)− p(τs, εs)F (τs, εs)(1− σ)∆X,

(IV.22)
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which can be easily rewritten under the form(
τs

εs

)
= ψ(τs, εs). (IV.23)

If one shows in peculiar that the application ψ is a contraction mapping, thus using the Banach

�xed point theorem, the result is proved. Using the Lipschitz hypothesis concerning F and using

that p is locally bounded, and denoting α =

(
τ

ε

)
one gets immediately that

‖ψ(α1)−ψ(α2)‖ ≤ C(1− σ)∆X‖α1 −α2‖. (IV.24)

Then there exists β such that ∆X = β
C(1−σ) , and so

‖ψ(α1)−ψ(α2)‖ ≤ β‖α1 −α2‖, (IV.25)

and for ∆X small enough, β < 1, which yields that ψ is a contraction mapping. Hence, the

result. �

Remark IV.1. The strong hypothesis ∂XS = 0 is made for stabilization of the procedure. It

yields high-order accuracy for smooth and isentropic �ows, and gives �rst-order accuracy for

non-isentropic �ows.

Remark IV.2. One could change the procedure to compute �rst ∂XS doing an extrapolation of

the entropy near the boundary. Then it gives high-order accuracy for smooth isentropic �ows,

but also for smooth non-isentropic �ows.

IV-1.1.2 Second method: the larger stencil reconstruction

Here, the choice is made to use system (IV.11) written in the �rst cell of the computational

domain (X = X1) and to add a Taylor expansion of τ written in the second cell (X = X2).

Denoting ϕs = ϕ(Xs) for simplicity, this leads to

τs + (X1 −Xs)∂Xτs = τ1,

τs + (X2 −Xs)∂Xτs = τ2,

us + (X1 −Xs)∂Xus = u1,

es + (X1 −Xs)∂Xes = e1,

us = g,

∂Xτs∂τps + ∂Xes∂eps + ∂Xus∂ups = −Dtg,

(IV.26)
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which rewrites

τs =
τ1(X2 −Xs)− τ2(X1 −Xs)

X2 −X1
,

∂Xτs = τ2 − τ1
X2 −X1

,

∂Xus =
u1 − g
X1 −Xs

,

es + (X1 −Xs)∂Xes = e1,

us = g,

∂Xτs∂τps + ∂Xes∂eps + ∂Xus∂ups = −Dtg,

(IV.27)

Indeed, since p = (γ − 1)ρ(e − u2/2) for a perfect gas EOS, straightforward computations lead

to

∂Xe = u∂Xu+
τ

γ − 1
∂Xp+

e− u2

2
τ

∂Xτ. (IV.28)

Using the second equation of (IV.6) � which here writes Dtu + ∂Xp = 0 � together with the

boundary condition, this rewrites, in X = Xs

∂Xes = g∂Xus −
τs

γ − 1
Dtg +

es −
g2

2
τs

∂Xτs. (IV.29)

Combining this equation with (IV.27) we get a linear equation for es and the whole system is

solved if invertible. In peculiar, here, it yields τ1 6= 0. Once quantities are known in X = Xs,

averaged ghost-cell values are computed as described in the preceding section. Results can be

extended to ε-a�ne EOS as follows.

Lemma IV.2 (Linear system and ε-a�ne EOS). If the EOS is a�nely dependent on ε, ie

p(ε, τ) = a(τ)ε + b(τ), then for X1 6= X2, a(τs) 6= (X1 − Xs)a
′(τs)∂Xτs and a(τs) 6= 0, there

exists a unique solution to (IV.26).

Proof. Assume the EOS takes the form p(ε, τ) = a(τ)ε+ b(τ). Then using that

∂Xe = u∂Xu+

(
∂p

∂ε |τ

)−1(
∂Xp−

(
∂p

∂τ |ε

)
∂Xτ

)
,

it yields at the boundary that for a(τs) 6= 0

∂Xes = g∂Xus −
1

a(τs)

(
Dtg +

(
a′(τs)(es −

g2

2
) + b′(τs)

)
∂Xτs

)
.

Inserting the previous equation in the Taylor expansion of es, one gets

es

(
1− (X1 −Xs)

a′(τs)

a(τs)
∂Xτs

)
= e1 − (X1 −Xs)

(
g∂Xus −

1

a(τs)

(
Dtg +

(
−a′(τs)

g2

2
+ b′(τs)

)
∂Xτs

))
.
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Then the linear equation is solvable if

a(τs) 6= (X1 −Xs)a
′(τs)∂Xτs.

�

In the literature, many ε-a�ne EOS are presented. A non-exhaustive list of such EOS is presented

hereafter.

� Perfect gas: p(ε, τ) = (γ − 1) ετ ,

� Sti�ened gas: p(ε, τ) = (γ − 1) ετ − p
?,

� Mie-Grüneisen gas [85]: p(ε, τ) = p?(τ) + Γ(τ)
τ (ε− ε?(τ)).

For non ε-a�ne EOS, the following lemma gives result concerning existence and uniqueness of

the solution

Lemma IV.3. For any EOS such that the EOS function F1(ε) =
(
∂p
∂ε |τ

)−1
is a Lipschitz

function of ε and that the function F2(ε) =
(
∂p
∂τ |ε

)
is locally bounded, then for ∆X small enough,

the solution is unique, and a �xed point algorithm converges toward such a solution.

Proof. The proof is very similar and uses the same argument as the one for lemma IV.1. The

coe�cient ∆X gives the contraction mapping using the Lipschitz hypothesis of F1, and the

locally boundedness of F2. �

The aim of the work is now to see if lemmas IV.1 to IV.3 still holds for arbitrary orders of

accuracy and non-constant masses.

IV-1.2 General procedure, and characterization of the solution for the system

at the boundary

The previous study has been made for the special case of a second order boundary treatment,

with constant mass. For spatially isentropic �ow hypothesis, lemma IV.1 gives existence and

uniqueness of the solution under Lipschitz hypothesis concerning the EOS for ∆X small enough.

Similar results hold for the second approach � removing the ∂xS = 0 hypothesis and using an

enlarged stencil � and we morever get existence and uniqueness without any restriction for ε-a�ne

EOS. We now study the general case.

The procedure is now extended without any restriction on the initial density pro�le. In the

following we will set n = 1, meaning that only g and Dtg are known at the boundary (in

practice, more material derivatives of g could be taken into account but it would lead to heavier

algebra). To alleviate notations, we also introduce

ψi,k =
1

∆X

(Xi +
∆X

2
−Xs)

k+1 − (Xi −
∆X

2
−Xs)

k+1

(k + 1)!

 .
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Considering a mth-order scheme and dropping the O(∆Xm), spatial Taylor expansions of con-

servative variables write

ρ0i =
∑
k<m

∂kXρ0

∣∣∣
x=xs

ψi,k,

ρ0ui =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX u
∣∣∣
x=xs

ψi,k,

ρ0τ i =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX τ
∣∣∣
x=xs

ψi,k,

ρ0ei =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX e
∣∣∣
x=xs

ψi,k.

(IV.30)

IV-1.2.1 Well-posedness at the boundary for spatially isentropic �ow hypothesis

Boundary condition and isentropic �ow hypothesis provide the following informations :
u|x=xs

= g(t),

∂Xτ |x=xs
=−

(
∂τ
∂p

)∣∣∣
x=xs

ρ0|x=xs
Dtg,

∂Xe = u∂Xu− p∂Xτ,

(IV.31)

It yields three subsystems to be solved at each boundary in the following order:

� The �rst system is built using the �rst equation of (IV.30). It is a linear system whose size

is m×m. It allows then to build ghost cells values of ρ0.

� The second system is built using the second equation of (IV.30) and the boundary condition

on the velocity. It is also a linear system whose size is (m − 1) × (m − 1). It allows then

to build ghost cells values of ρ0u.

� The third and last system is built using the third and fourth equations of (IV.30) and system

(IV.31). The non-linearity of the system is explained by the non-linearity of (IV.31). The

size of the system is (2m− 2)× (2m− 2). It allows then to build ghost cells values of ρ0τ

and ρ0e.

Once the three systems are solved, ghost-cells values of all quantities are built by Taylor expan-

sions.

Lemma IV.4 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such

that the EOS function F (τ, ε) =
(
∂τ
∂p

)∣∣∣
S
is a Lipschitz function of (τ, ε) and such that p(τ, ε) is

locally bounded, then for ∆X small enough, the solution is unique, and a �xed point algorithm

converges toward such a solution.

Proof. The proof is identical to the one proposed for lemma IV.1. �

Remark IV.3. One could use repeated space derivation of the third equation of eq. (IV.31), to

substitute space derivatives in e into functions of (e, τ, ∂Xτ, ...), yielding a m×m system to be

solved. But for such a choice, theoretical results concerning existence and uniqueness of solution

are not accessible, and requires stronger regularity hypothesis on the EOS.
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IV-1.2.2 Well-posedness at the boundary for enlarged stencil

We have shown existence in lemmas IV.2 and IV.3 of a 2nd-order solution to the prescribed

velocity boundary problem for Lagrangian hydrodynamics when initial mass density is uniform

using the larger stencil based reconstruction. The boundary condition and the equation of state

provide the following informations u|X=Xs
=g(t),

∂Xe =u∂Xu−
(
∂p
∂ε |τ

)−1 (
(ρ0Dtg +

(
∂p
∂τ |ε

)
∂Xτ)

)
in X = Xs.

(IV.32)

Considering (IV.30-IV.32) we therefore have four subsystems to solve at each boundary. This is

done the following way:

� The �rst system is built using the �rst equation of (IV.30), considering m interior cells. It

leads to a m×m linear system. It allows then to build ghost-cell values of ρ0.

� The second system is built using the second equation of (IV.30), considering m−1 interior

cells and the boundary condition on the velocity. It leads to a (m − 1) × (m − 1) linear

system. It allows then to build ghost-cell values of ρ0u.

� The third system is built using the third equation of (IV.30), considering m interior cells.

It leads to a m×m linear system. It allows then to build ghost-cell values of ρ0τ .

� The fourth system is built using the fourth equation of (IV.30), considering m− 1 interior

cells and system (IV.32). This system is linear for perfect and sti�ened gases EOS but may

be non-linear for some EOS, thus requiring �xed-point algorithms to be solved. The size

of the system is (m−1)× (m−1). Once the solution is known, it allows to build ghost-cell

values of ρ0e.

We extend lemma IV.2 to arbitrary orders and non-constant ρ0 as

Lemma IV.5 (Linear system and ε-a�ne EOS). If the EOS is a�nely dependent on ε, ie

p(ε, τ) = a(τ)ε+ b(τ), then the system eqs. (IV.30) and (IV.32) is linear.

Proof. Assume the EOS writes p(ε, τ) = a(τ)ε+ b(τ), then using

∂Xe = u∂Xu+

(
∂p

∂ε |τ

)−1(
∂Xp−

(
∂p

∂τ |ε

)
∂Xτ

)
,

it yields at the boundary that

∂Xes = g∂Xus −
1

a(τs)

(
ρ0sDtg +

(
a′(τs)(es −

g2

2
) + b′(τs)

)
∂Xτs

)
.

Therefore ∂Xes is a linear function of es, and thus the system is linear. �

For non ε-a�ne EOS, the following lemma gives existence and uniqueness of the solution.

Lemma IV.6 (Uniqueness of solution for Lipschitz hypothesis on the EOS). For any EOS

such that the EOS function F1(ε) =
(
∂p
∂ε |τ

)−1
is a Lipschitz function of ε and that the function
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F2(ε) =
(
∂p
∂τ |ε

)
is locally bounded, then for ∆X small enough, the solution exists and is unique,

and a �xed point algorithm converges toward such a solution.

Proof. The proof is essentially the same as for the case with constant mass and second order of

accuracy. �

Remark IV.4. In practice, ghost-cells values are imposed at the beginning of each time-step or

sub-cycle eg. if the scheme is based on Runge�Kutta sequences.

IV-1.3 Stabilization procedure for shocks and very high-order reconstruction

Spurious oscillations or non-physical values may result with this high-order treatment in case of

discontinuous solutions near the boundary. A MOOD procedure has been developed to improve

robustness. Moreover for very high-order scheme, the linearized version is not stable using only

g and Dtg. Thus a least-square method also has been developed to enforce stability.

IV-1.3.1 MOOD procedure

A MOOD procedure [24] has been added to automatically decrease the order of this inverse Lax�

Wendro� method if some criteria are violated during the reconstruction of ghost cells values. It

is done in order to improve stability in case of strong shocks ingoing towards the boundary. The

�ow chart of the procedure is depicted in �g. IV.3. The idea is to set as a criteria, the positivity

of the density and internal energy. While the reconstructed density or internal energy in Ω−

are non-positive, the order of reconstruction is decreased until �rst order accuracy or a positive

internal energy and density are reached.

IV-1.3.2 Least-square methods for very high-order methods

The problem, linear or not, to be solved at the boundary can be rewritten under the form

F(Θ) = X. (IV.33)

If the system is linear, there exists a matrix A such that F(Θ) = AΘ, where A is a square

matrix of size p× p and hence X ∈ Rp, Θ ∈ Rp. The idea of the least-square method is to add

values in the interior domain such that the system writes

ÂΘ = X̂ (IV.34)

where Â ∈ Rq×p and X̂ ∈ Rq. Instead of solving directly eq. (IV.34), we introduce the functional

J as

J = ‖ÂΘ− X̂‖, (IV.35)
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U+ m (g,Dtg)

ILW(U+, g,Dtg,m)

reduce order by one

P(U−)

Ghost(U−)

U−

no

m← m− 1

yes

variables
U+ : values in the interior domain
U− : values in the ghost domain
m : order of the procedure
(g,Dtg): boundary conditions

procedures
ILW : computing ghost values
P : criteria on ghost values
Ghost : imposing ghost values

Figure IV.3 � Flow chart for the MOOD procedure applied at the boundary imposing speci�c
criteria on the computed ghost values

where the norm here is arbitrary �xed to the Euclidean norm. The idea is to minimize the

functional J in order to satisfy in a reduced sense the Taylor expansions. Meaning, in particular

that the solution Θ? is de�ned as

∀Θ ∈ Rp, ‖ÂΘ− X̂‖ ≥ ‖ÂΘ? − X̂‖ (IV.36)

Such a procedure, called the least-square method (see [3]), is used to stabilize the reconstruc-

tion operator, especially for very high-order reconstructions where the classical reconstruction

is proved to be linearly unstable. A classical Gauss�Newton algorithm is performed to solve

eq. (IV.36). If the system is non-linear, then the solution Θ? is de�ned as

∀Θ ∈ Rp, ‖F̂(Θ)− X̂‖ ≥ ‖F̂(Θ?)− X̂‖ (IV.37)

IV-1.4 1D validation and comparisons

We assess in this part both the accuracy and the robustness of our method for the 1D Euler

system. The study here is performed using the larger stencil based reconstruction applied to the

GoHy schemes developed in [50, 170]. The spatially isentropic �ow hypothesis based reconstruc-

tion gives similar results concerning isentropic test-cases, but dramatically reduces to �rst order



DISCRETIZATION OF BOUNDARY CONDITIONS FOR
COMPRESSIBLE HYDRODYNAMICS 169

accuracy (using the MOOD procedure) for any non-spatially isentropic �ow, as expected.

IV-1.4.1 Kidder isentropic compression test-case [95]

Kidder's test problem represents the isentropic compression of an ideal volume of gas initially at

rest. For this test, the computational domain [0, 1] is discretized in Nx regular cells. Let (pi, ρi)

and (pe, ρe) denote initial pressures and mass densities at x = 0 and x = 1 respectively. Initial

pro�les are de�ned by 
ρ0(x) =

(
x2ργ−1

e + (1− x2)ργ−1
i

) 1
γ−1

,

u0(x) = 0,

p0(x) = pe

(
ρ(x)
ρe

)γ
,

(IV.38)

with γ = 3 and here we will take pe = 100, pi = 1, ρe = 1 and ρi = ρe(pi/pe)
1
γ . Introducing the

sound speed c =
√
γp/ρ, we de�ne the focalization time tc =

√
γ−1

2
1

c2e−c2i
which allows to write

the complete analytical solution. De�ning h(t) =
√

1− (t/tc)2, it is given by

ρ(x, t) = ρ0

(
x

h(t)

)
· h(t)

2
γ−1 , u(x, t) = − xt

t2ch(t)2
, p(x, t) = pe

(
ρ(x, t)

ρe

)γ
.

For this test we solve Euler equations on Ω = [xl, xr] and exact velocities are prescribed at left

and right boundaries xl = 0.05 + 5
√

7 10−3 and xr = 0.95− 3.33
√

5 10−3. The scheme GoHy-1

stands for the classic acoustic solver.

Nx GoHy-1 GoHy-2 GoHy-3 GoHy-4 GoHy-5 GoHy-6

25 1.6e-3 · 2.3e-4 · 8.7e-6 · 9e-6 · 3.9e-6 · 1.4e-5 ·
50 7.1e-4 1.2 3.5e-5 2.7 4.4e-7 4.3 3.6e-8 8.0 6.1e-9 9.3 3.5e-7 5.3
100 3.7e-4 0.9 2.8e-5 0.3 2.71e-7 1.0 1.6e-9 4.4 1.2e-10 5.7 1.8e-12 17.6
200 1.8e-4 1.0 7.3e-6 2.0 2.7e-8 3.0 4.8e-11 5.0 1.8e-12 6.1 3.5e-14 5.7
400 9.0e-5 1.0 1.8e-6 2.0 3.4e-9 3.0 1.2e-12 5.2 9.4e-15 7.5 4.9e-15 2.9
800 4.5e-5 1.0 4.7e-7 2.0 4.3e-10 3.0 7.4e-14 4.0 2.7e-14 ? 3.3e-14 ?

1600 2.2e-5 1.0 1.2e-7 2.0 5.4e-11 3.0 8e-14 ? 3.6e-14 ? 3.7e-14 ?

3200 1.1e-5 1.0 2.9e-8 2.0 6.8e-12 3.0 8.3e-14 ? 3.9e-14 ? 3.5e-14 ?

Table IV.1 � l1-error and experimental order of convergence (EOC) for ILW-GoHy schemes at
t = 0.01 with a CFL of 0.9. EOC indexed with ? are reduced due to double precision.
For stability issues, least-squares method is used for 4th, 5th and 6th-order.

Results concerning the l1-errors and experimental orders of convergence are given in table IV.1

for GoHy schemes up to 6th-order. For each scheme the expected order of accuracy is reached.

IV-1.4.2 Harmonic piston test-case

The harmonic piston test-case is used to assess the ability of the reconstruction to recover correct

phase/amplitude pro�les using a harmonic source. The initial data are those of a perfect gas
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(a) 2ndorder (b) 3rdorder

(c) 4th order (d) 6th order

Figure IV.4 � Velocity pro�les with 10 cells per wavelength for the 2nd, 3rd, 4th and 6th-order
GoHy schemes for the harmonic piston problem at T = 9.

(γ = 1.4) at rest, and the velocity at left boundary, initially located at xl = −1, is imposed.


ρ0(x) = γ,

u0(x) = 0,

p0(x) = 1,

for x ≥ xl(0) = −1 and u(xl(t)) = a e
−8

t2 sin(2πt). (IV.39)

such that the sound speed in initially set to 1, and a = 2.10−2.

Velocity pro�les are depicted on �g. IV.4. The red plain line represents the reference solution

computed with the �rst order scheme (acoustic solver) and 100000 cells. The black dotted line

represents results obtained with inner scheme and reconstruction �xed to the same order of

accuracy. The blue dotted line is for inner scheme at high-order accuracy but with only a second

order reconstruction procedure. As expected as the order of accuracy is increased, so is the

ability of the scheme concerning the recovering of both phase and amplitude of the signal. The

most signi�cant feature lies in the di�erence between the blue and black dotted lines. When

the order of the reconstruction is �xed to 2ndorder, both phase and amplitude are not so well

recovered. On �g. IV.5, one can see that with a second order reconstruction, results for third,

fourth and sixth order inner schemes are equivalent. This is not the case with reconstruction

whose order match the one of the inner scheme.
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(a) High-order reconstruction (b) 2ndorder reconstruction

Figure IV.5 � Velocity pro�les with 10 cells per wavelength for the 3rd, 4th and 6th-order GoHy
schemes for the harmonic piston problem at T = 9. On the left, results with
appropriate order of reconstruction is depicted, whereas on the right results are
shown with second order reconstruction.

IV-1.4.3 Sod piston test-case [146]

Next test-case is representative of a piston shocking a gas at rest. Initial data are provided by

the right-state of the Sod's shock tube (perfect gas EOS with γ = 1.4) and at the left boundary,

initially located at xl = 0.5, the exact contact discontinuity velocity is prescribed:
ρ0(x) = 0.125,

u0(x) = 0,

p0(x) = 0.1,

for x ≥ xl(0) = 0.5 and u(xl(t)) = 0.927452624. (IV.40)

Density pro�les are depicted on �g. IV.6. The red plain line represents the analytical solution.

The blue dotted line represents the Sod's shock tube solution computed as a Riemann problem

using both left and right initial states with the GoHy solver and the black dotted line represents

the solution obtained with the present ILW method. Shock positions and density levels are in

good agreement with the analytical solution for both methods. The contact continuity is even

slightly better recovered with the ILW procedure than for the complete Riemann problem. Note

that the MOOD procedure presented in section IV-1.3.1 is not used here.

IV-2 Extension of the ILW procedure to the 2D Euler system

The procedure designed for the 1D Euler system is now used with a high-order accurate di-

mensional splitting method on the 2D Euler system (IV.1-IV.3), as it is described in [50, 170,

35].
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(a) 2ndorder (b) 3rdorder

(c) 4th order (d) 6th order

Figure IV.6 � Density pro�les with initially 100 cells for the 2nd, 3rd, 4th and 6th-order GoHy
schemes for the Sod piston problem.
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IV-2.1 Formulation of the ILW procedure using directionnal splitting

Concerning the Lagrangian step, two subsystems will therefore be alternatively considered, de-

pending on the sweep direction:
Dx
t (ρ0τ)− ∂Xu = 0,

Dx
t (ρ0u) + ∂Xp = 0,

Dx
t (ρ0v) = 0,

Dx
t (ρ0e) + ∂X (pu) = 0,


Dy
t (ρ0τ)− ∂Y v = 0,

Dy
t (ρ0u) = 0,

Dy
t (ρ0v) + ∂Y p = 0,

Dy
t (ρ0e) + ∂Y (pv) = 0,

(IV.41)

where Dx
t = ∂t+u∂x and Dy

t = ∂t+v∂y denote the Lagrangian derivatives in x− and y−directions
respectively. Note that Lagrangian subsystems are simpler than Eulerian ones since convective

terms, which are missing here, will be treated during the projection step. When replacing space

derivatives by temporal ones this will lead to a simpler algebra in the sequel and a very close

approach to the one proposed in section IV-1 for the 1D case.

Denoting u = (u, v)t, we recall that the considered boundary condition on Γ is given by u ·
n(t, s) = g(t, s), where s is the curvilinear coordinate along the boundary Γ(t), and n(t, s) the

normal at coordinate s and time t. The boundary is described by a set of points (or pearls) Ps
distributed along Γ (see Figure IV.1). On each of these points, a problem similar to the one

dealt with in the 1D case, is solved at high-order accuracy. From these data, values are then

set in ghost-cells. To get close to the 1D case, velocity components are computed in a local

basis (ts,ns) where ts and ns are respectively tangent and normal vectors to Γ in Ps. Velocity

components in this basis are denoted{
û = u · ns = u · n1 + v · n2,

v̂ = u · ts = u · t1 + v · t2.
(IV.42)

Figure IV.7 � Zoom on a point Ps on the discretized boundary with local coordinate system.
The colored zone corresponds to a six points stencil for 3rd order reconstruction.
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IV-2.1.1 Dimensional splitting technique

The DSM consists in alternatively applying the previous method in the x- and y-direction with

appropriate weighted-time increments ωk∆t. To reach high-order accuracy in time, splitting

sequences beyond the well-known 2nd-order Strang DSM must be used. Such weights, up to

8th-order, can be found in [50, 170, 35] and are reported in appendix, section A.2. During these

sequences, prescribing time-dependent boundary conditions at intermediary time-steps can reveal

quite tricky. The naive way yields only at most second order of accuracy. This is somehow similar

to results found by Carpenter in [20]. To achieve this, the boundary condition is also rewritten

as a 2D evolution system that is also split as explained now. Let us denote n = (n1, n2)t,

i1 = (1, 0)t, and i2 = (0, 1)t. We introduce g(t, s) = g(t, s) n(t, s) and in the sequel we also

assume that Dtn = 0 and that g(t, s) is known analytically. Letting g1 = Dtg we therefore can

write

Dtg = (g1n1) i1 + (g1n2) i2. (IV.43)

As for Euler equations, system (IV.43) is then split into the following two equations that will be

alternatively solved according to the splitting sequence used for the inner scheme

Dtg = (g1n1) i1, and Dtg = (g1n2) i2. (IV.44)

Assume that time weights ω2k−1 and ω2k are respectively used for the x- and y-sweeps respectively

and let us denote tn+ωk the �ctitious time for the kth sweep (with ω0 = 0). We therefore get for

any l ≥ 1 
gn+ω2l−1 = gn+ω2l−2 +

∫ tn+
∑l
k=1 ω2k−1∆t

tn+
∑l−1
k=1 ω2k−1∆t

(g1n1) i1dθ,

gn+ω2l = gn+ω2l−1 +

∫ tn+
∑l
k=1 ω2k∆t

tn+
∑l−1
k=1 ω2k∆t

(g1n2) i2dθ,

which rewrites by induction, for any l ≥ 1
gn+ω2l−1 = gn +

∫ tn+
∑l
k=1 ω2k−1∆t

tn
(g1n1) i1dθ +

∫ tn+
∑l−1
k=1 ω2k∆t

tn
(g1n2) i2dθ,

gn+ω2l = gn +

∫ tn+
∑l
k=1 ω2k−1∆t

tn
(g1n1) i1dθ +

∫ tn+
∑l
k=1 ω2k∆t

tn
(g1n2) i2dθ.

Since g1 = Dtg and Dtn = 0, exact integration therefore yields, for any l ≥ 1
g(tn+ω2l−1) =

(
g(tn + ∆t

l∑
k=1

ω2k−1) n1

)
i1 +

(
g(tn + ∆t

l−1∑
k=1

ω2k) n2

)
i2.

g(tn+ω2l) =

(
g(tn + ∆t

l∑
k=1

ω2k−1) n1

)
i1 +

(
g(tn + ∆t

l∑
k=1

ω2k) n2

)
i2,
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that is to say, performing the scalar product with n,
g(tn+ω2l−1) = g

(
tn + ∆t

l∑
k=1

ω2k−1

)
n2

1 + g

(
tn + ∆t

l−1∑
k=1

ω2k

)
n2

2,

g(tn+ω2l) = g

(
tn + ∆t

l∑
k=1

ω2k−1

)
n2

1 + g

(
tn + ∆t

l∑
k=1

ω2k

)
n2

2.

(IV.45)

These relations are used at the beginning of each dimensional sweep to prescribe boundary

conditions.

IV-2.1.2 Methodology for a given sweep

We now consider a sweep in the x−direction so that only the �rst subsystem of (IV.41) is of

interest � methods for other sweeps are strictly identical modulo slight modi�cations mentioned

in section IV-2.1.1. In the following, we only use g and Dx
t g for building the non-linear problem.

As in the 1D case, more material derivatives could be used but it would lead to a heavier algebra.

To alleviate notations in 2D Taylor expansions we introduce

ψi,j,k,l =
1

k!

(xi +
∆x

2
− xs)l+1 − (xi −

∆x

2
− xs)l+1

(l + 1)∆x


(yj +

∆y

2
− ys)k−l+1 − (yj −

∆y

2
− ys)k−l+1

(k − l + 1)∆y

 .

Let us consider a mth-order scheme. Extending computations done in section IV-1 to the 2D case

and performing the local change for velocity components, spatial Taylor expansions lead to

ρ0i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y ρ0

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0ûi,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0û)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0v̂i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0v̂)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0τ i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0τ)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0ei,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0e)

∣∣∣
x=xs,y=ys

ψi,j,k,l.

(IV.46)

The boundary condition and the equation of state provide the following informations in Ps û|P=Ps
= g(t)

∂Xe · n1|P=Ps
= (û∂X û+ v̂∂X v̂) · n1 −

(
∂p
∂ε |τ

)−1 (
ρ0Dtg +

(
∂p
∂τ |ε

)
∂Xτ · n1

)
,

(IV.47)

Solving (IV.46) amounts to solve �ve subsystems:

� The �rst system is built using the �rst equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0.
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� The second system is built using the second equation of (IV.46), considering m(m+1)
2 − 1

interior cells together with the boundary condition on the normal velocity. It leads to a(
m(m+1)

2 − 1)
)2

linear system and allows to build ghost-cell values of ρ0u.

� The third system is built using the third equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0v.

� The fourth system is built using the fourth equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0τ .

� The �fth system is built using the last equation of (IV.46) considering m(m+1)
2 − 1 interior

cells together with (IV.47). In the special case where n1 = 0, no information is provided

by the boundary conditions, and thus it leads to a
(
m(m+1)

2

)2
linear system. If n1 6= 0,

this system is linear for ε-a�ne EOS but may be non-linear for some EOS, thus requiring

�xed-point algorithms to be solved and the size of the system is
(
m(m+1)

2 − 1)
)2
. It allows

to build ghost-cell values of ρ0e.

Lemma IV.7 (Linear system for ε-a�ne EOS). For any ε-a�ne EOS, the system to inverse at

the boundary is linear.

Proof. The proof is similar to the one in 1D. �

The following �owchart summarizes the algorithm we propose in order to compute ghost-cell

values for a given dimensional sweep in the 2D case.

� For each point/pearl Ps:

1. Do the local change of velocity components in the basis (ns, ts),

2. Build the stencil of interior points (see Figure IV.7),

3. Build and solve the �ve subsystems described above.

� Then, for each ghost-cell:

1. Find the nearest pearl Ps0 ,

2. Build ghost-cell values using Taylor expansions in the vicinity of Ps0 ,

3. Return to physical coordinates.

Remark IV.5. Due to spurious oscillations and linear instabilities of the 2D extrapolations (phe-

nomena already noticed in [155]), rather than solving exactly all subsystems, it proves useful to

use least square methods for m ≥ 2, adding more points inside the stencil. In pratice the stencil

is depicted in �gure IV.8 and set as

SβPs = {P ∈ Ωf , ‖P − Ps‖2 < β, 〈P − Ps,n〉 ≥
1√
2

‖P − Ps‖2

β
}

Commonly, β is set to 0.9(2m− 1)
√

∆X∆Y .
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Figure IV.8 � Zoom on a point Ps on the discretized boundary with local coordinate system.
The color zone corresponds to a least-squares stencil for 3rd order reconstruction.

IV-2.2 2D numerical validation

We assess in this part both the accuracy and the robustness of the method for the 2D Euler

system. The study here is performed using the larger stencil based reconstruction applied to the

GoHy schemes developed in [50, 170]. Similar results are obtained for the proposed staggered

schemes introduced in [35] and detailed in chapter II, as well for smooth �ows as for shock

problems.

The discretization of the boundary Γ is always set such that the distance between two consecutive

points does not exceed CΓ
√

∆x∆y. In the following we set CΓ = 1 which means that we

have approximatively one pearl per cell. In practice, a large value of CΓ leads to instabilities

(boundaries are under-resolved). A smaller value of CΓ is possible, increases accuracy but leads

to heavier computations. The choice of this test-suite is made in order to ensure a large variety

of test-cases, including continuous and isentropic �ows, acoustic propagation around an obstacle,

but also a large variety of shock impacting on in�nite motionless obstacles with shapes that may

or may not be Lipschitz continuous.

IV-2.2.1 2D isentropic vortex test-case [174]

We assess high-order accuracy on the 2D vortex test (see [174]) whose initial condition is reminded

hereafter (with r2 = x2 + y2)
ρ0(x, y) =

(
1− (γ − 1)β2

8γπ2
e1−r2

) 1
γ−1

,

u0(x, y) =
β

2π
e

1−r2
2 · (−y, x)t,

p0(x, y) = ρ0(x, y)γ ,

(IV.48)

with γ = 1.4 and β = 5. Computations are performed on a disk of radius R = 3.5, centered at

(0, 0) till t = 1 with a CFL number of 0.9 on the computational domain Ω = [−4, 4]2. Boundary
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conditions imposed at R = 3.5 are u · n = u0 · n, with u0 de�ned in eq. (IV.48). Table IV.2

shows that the expected order of accuracy is reached. In the third column we also have reported

numerical costs due to the ILW procedure, computed as the ratio between CPU time for ILW

procedure and total CPU time as was done in [155]. These should of course be analysed cautiously

since they strongly depend on the inner scheme and optimization of the boundary treatment (as

well as the number of considered pearls on Γ). However, these �gures show that the cost slope for

the 1st-order ILW method is a bit less than one with respect to the number of cells per dimension.

Second order ILW procedure cost slope is around 0.75 and for third order ILW procedure, it is

about 0.66. One may guess the cost to follow the rule ∼ m+1
2m .

Nx GoHy-1 GoHy-2 GoHy-3

50 4.96e-1 · 35% 5.33e-2 · 47% 9.93e-2 · 49%
100 2.52e-1 0.97 23% 1.40e-2 1.93 42% 2.04e-2 2.28 45%
200 1.20e-1 1.07 12% 4.50e-3 1.63 27% 3.46e-3 2.56 35%
400 5.66e-2 1.08 7% 1.28e-3 1.81 16% 6.43e-4 2.43 22%
800 2.74e-2 1.05 3.7% 3.23e-4 1.99 9.7% 9.31e-5 2.79 14%
1600 1.35e-2 1.03 1.9% 7.66e-5 2.08 6.2% 1.20e-5 2.95 9%
3200 6.70e-3 1.01 1.0% 1.90e-5 2.01 3.7% 1.51e-6 2.99 5%

Table IV.2 � l1-error on density in both time and space, experimental order of convergence and
cost in % of the ILW procedure for GoHy schemes on the 2D isentropic vortex at
t = 1.0.

IV-2.2.2 Acoustic di�raction of a plane wave around a cylinder [15]

Next test-case is a challenging problem coming from the electromagnetic and aeroacoustic com-

munities. Here we wish to assess the interest of increasing the order of accuracy of boundaries

treatments. A plane acoustic wave is propagating in a barotropic gas and is scattered by a rigid

and motionless cylinder. The main interest of this test lies in the fact that an analytical solution

is available, in particular the pressure �eld on the cylinder.

The computational domain is [−5, 5]× [−5, 5] and the rigid wall boundary condition u ·n = 0 is

applied on the rigid body which is a cylinder of radius a = 0.5 whose center is located at (0, 0).

Let ω be the frequency of the acoustic signal and k = ω
c the associated wave number, where c is

the sound speed. The velocity potential of the incident wave is given by

φ0(t, x, y) = − ε
k

cos(k(x− x0)− ωt)χ{x−ct<x0}, (IV.49)

from which we deduce the velocity, the pressure and the density according to

u = <(∇φ), p = p0 −<(∂tφ), ρ = γp
1
γ with γ = 1.4. (IV.50)

For this test we took ε = 10−8 small enough so that Euler equations remain in the linear regime

and approximate wave equations, p0 = 1
γ , x0 = 4.5, and ω = 2πf , f ∈ 0.1N (ie there exists

b ∈ N such that f = 0.1b). Introducing x = r cos(θ) and y = r sin(θ), the harmonic solution for
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the velocity potential is given by (see [15])

φ(t, x, y) = − ε
k

e−i(kx0+ωt)
∞∑
n=0

eni
n

[
Jn(kr)− J ′n(ka)

H ′n(ka)
Hn(kr)

]
cos(nθ), (IV.51)

where Jn is the �rst Bessel function, Hn the �rst Hankel function and e0 = 1, en = 2, n = 1, ..,∞.

From this potential, one gets harmonic velocity u and pressure p thanks to (IV.50).

To ensure a harmonic regime in a neighbourhood of the cylinder without generating interferences

with the computational domain boundaries, the �nal time is t = 8.4. We give on �gure IV.9

pressure variations |p − p0| around the cylinder for 1st, 2nd and 3rd-order ILW methods and

schemes for two space discretizations (∆x = ∆y = 1
20 and 1

40) and three signal frequencies

(f = 0.5, 1 and 2). As expected, it shows that high-order accurate methods lead to better

results. But since interior schemes are also of di�erent orders, it is hard to see bene�ts given by

ILW methods of increasing accuracy here. We therefore give on �gure IV.10 pressure variations

|p − p0| around the cylinder for 1st, 2nd and 3rd-order ILW methods, but with the same 3rd-

order GoHy-3 interior scheme in all cases. Results indeed show the bene�ts of formally 3rd-order

accurate ILW reconstruction procedures.

IV-2.2.3 Re�ected shock wave

This test-case is a theoretical one. It consists of a shock wave impacting an oblique wall. The

computation domain is Ω = [−0.5 : 0.5]2. An oblique wall is parametrized by the starting point

(−0.2, 0) forming an angle θ with the horizontal plane, with θ = 11.99◦. The shock wave is

re�ected with an angle β. Denote M the Mach number, M = u
c , then β satis�es the following

identity

tan(θ) = 2 cot(β)
M2 sin2(β)− 1

M2(γ + cos(2β)) + 2
. (IV.52)

Initial data are 
ρ = 1,

u = 2.9χx<−0.3,

p = 1
γ ,

γ = 7
5 ,

(IV.53)

which gives a static speed sound c = 1, and so a Mach number M = u
c = 2.9.

Using eq. (IV.52), one �nds that for such parameters, the angle formed by the oblique shock β

is 30◦. In �g. IV.11, the density pro�le is depicted at time t = 1, and the expected angle of

the re�ected shock is depicted by the white line. The expected angle is reached by the �rst,

second and third order proposed e�ective schemes. Moreover, the �uid perfectly slips along the

boundary without any boundary e�ects.
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IV-2.2.4 Double Mach Re�ection [171]

The ILW procedure is again applied on solid wall boundaries that may be curved or unaligned

with the grid. For inviscid �ows this leads to the boundary condition u · n = 0. The �rst shock

example considered here is the double Mach re�ection problem [171, 155]. A solid wall is set

at (0, 0) forming a 30◦ angle with the x-axis and a horizontally moving Mach 10 shock, initially

located at x = 0, is propagating in a perfect gas (γ = 1.4) at rest. Ahead of the shock, the gas

has a density of 1.4 and a pressure of 1. The computational domain [−1, 3]× [0, 2] is discretized

with a constant space step ∆x = ∆y = 1
200 . The choice of such a coarse mesh is done to easily

point out di�erences between the di�erent orders of accuracy.

Results, depicted in Figure IV.12, are very close to those found in the literature [171, 155]

and the jet propagates along the wall without any numerical friction. For this test we have

used the MOOD procedure (see section IV-1.3.1) to decrease the order of accuracy wherever

we encountered stability issues. In practice this only happens near the wall in the immediate

vicinity of the Mach stem propagating perpendicularly to it.

IV-2.2.5 Mach shock on a cylinder � Whitham test-case [23]

We now consider the Whitham test-case which consists in a planar shock propagating in a perfect

gas (γ = 1.4) which interacts with a rigid and motionless circular cylinder (see [23] and included

references). At t = 0, a 2.81 Mach shock coming from the left is located at x = 0. Ahead

of the shock, the gas has a density of 1 and a pressure of 5 104. The cylinder's center, whose

radius is 5.10−3, is located at (6.10−3, 0). The computational domain [−10.10−3, 70.10−3] ×
[−40.10−3, 40.10−3] is discretized with a constant space step ∆x = ∆y = 4.10−4.

Here again a MOOD method is used on the boundary to improve robustness. Combined with

high-order accuracy this leads to a better restitution of the �ow structure behind the cylinder as

it can be seen in Figure IV.13 where 1st, 2nd and 3rd-order results at t = 3.10−5 and = 6.10−5 are

reported. The bow shock is well captured and less di�used as the order of accuracy is increased.

The MOOD procedure applies essentially on the shock front.

IV-2.2.6 Mach shock on a prism � Schardin test-case [23]

We now consider the Schardin test-case which consists in a planar shock propagating in a perfect

gas (γ = 1.4) which interacts with a rigid and motionless prism (see [23] and included references).

At t = 0, a 1.3 Mach shock coming from the left is located at x = 0. Ahead of the shock, the gas

has a density of 1 and a pressure of 5.104. The prism's tip is located at (1.5.10−2, 0) and the edge

length is set to 20.10−3. The computational domain [−10.10−3, 70.10−3] × [−40.10−3, 40.10−3]

is discretized with a constant space step ∆x = ∆y = 4.10−4.

A MOOD method is used on the boundary to improve robustness. Combined with high-order

accuracy this leads to a better restitution of the �ow structure behind the prism as it can be seen

in Figure IV.13 where 1st, 2nd and 3rd-order results at t = 1.5.10−4 are reported. The bow shock
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is well captured and less di�used as the order of accuracy is increased. The MOOD procedure

applies essentially on the shock front. The expected structure of the �ow is recovered, especially

the presence of vortices behind the prism.

IV-2.2.7 Mach shock on a NACA0018 pro�le [88]

We now consider a classical aerodynamics test-case which consists in a planar shock propagating

in a perfect gas (γ = 1.4) which interacts with a rigid and motionless NACA0018 airfoil with a

30◦ angle of attack (see [88] and included references). At t = 0, a 1.5 Mach shock coming from

the left is located at x = 0.55. Ahead of the shock, the gas has a density of 1.4 and a pressure

of 1. The airfoil's head is located at (0.6, 1) and the chord length is set to 1. The computational

domain [−0.2, 1.8]× [0, 2] is discretized with 100, 200 and 400 cells in each direction.

Figure IV.15 shows the obtained results for the �rst, second and third order schemes on a

400 × 400 grid at time t = 0.64. These results are in good agreement with the results provided

in [88] concerning the shock structure. As the order is increased, the shock front is sharper

but also more oscillatory, and �ow structures near both tip and head of the airfoil are better

recovered.

Imposing free stream velocity u∞ and density ρ∞ with the post-shock values, both lift Cl and

drag Cd coe�cients are computed using

(
Cd

Cl

)
= − 2

ρ∞u2
∞L

∫
Γ
(p− p0)ndS. (IV.54)

where L is the chord of the airfoil, set here to 1. The computed lift and drag coe�cients are

depicted in �g. IV.16 as a function of time for di�erent grid sizes. For both schemes, the conver-

gence error in the drag coe�cient appears to be linear while more than quadratic convergence

seems to be reached for the lift coe�cient.

How to adapt the method to the staggered schemes

To tackle the procedure for the discretization of boundary conditions in the case of staggered

schemes, two key ingredients are required. The �rst one is that the Taylor expansion of the total

energy variable is replaced by the Taylor expansion of the internal energy. The second one is that

Taylor expansions are performed on variables which are located on two (resp. three) di�erent

grids in 1D (resp. 2D). Lemma III.2 details how to build boundary conditions at intermediate

Runge�Kutta time-steps.

Considering again the acoustic di�raction test-case presented in section IV-2.2.2, comparisons

are drawn between the results obtained with the GoHy-3 scheme and the third order staggered

scheme (STAG-3). Results are displayed in �g. IV.17. Pressure variations are very close for all

frequencies f for both schemes.
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Figure IV.9 � Pressure variations |p−p0| around the cylinder as a function of θ for f = 0.5 (top),
f = 1.0 (middle), f = 2.0 (bottom) for 1st, 2nd and 3rd-order accurate schemes
with ∆x = ∆y = 1

20 (left) and ∆x = ∆y = 1
40 (right).
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Figure IV.10 � Pressure variations |p − p0| around the cylinder as a function of θ for f = 0.5
(top), f = 1.0 (middle), f = 2.0 (bottom) for the GoHy-3 interior scheme and
1st, 2nd and 3rd-order accurate ILW methods with ∆x = ∆y = 1

20 (left) and
∆x = ∆y = 1

40 (right).
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(a) 1st order (b) 2nd order (c) 3rd order

Figure IV.11 � Density colors of a re�ected shock wave on a wedge at CFL=0.5 with 100 cells in
each direction. The expected angle of the oblique shock, depicted by the white
line, is recovered by the schemes.
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(a) Whole domain (b) Zoom near the double Mach stem

Figure IV.12 � Density contours of double Mach re�ection for 1st (top), 2nd (middle) and 3rd-
order (bottom) ILW-GoHy schemes with ∆x = ∆y = 1

200 ; 30 contours from 1.731
to 20.92 as in [155].
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(a) T = 30 µs (b) T = 60 µs

Figure IV.13 � Density contours of Mach 2.81 �ow past a cylinder for 1st (top), 2nd (middle) and
3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at t = 3.10−5

(left) and = 6.10−5 (right); 30 contours from 0.3 to 8.
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(a) 1st order (b) 2nd order

(c) 3rd order

Figure IV.14 � Density contours of Mach 1.3 �ow past a prism for 1st (top, left), 2nd (top,
right) and 3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at
t = 1.5.10−4, CFL=0.5; 30 contours from 0.5 to 1.8
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(a) 1st order (b) 2nd order

(c) 3rd order

Figure IV.15 � Pressure contours of a Mach shock on a NACA0018 for 1st (top, left), 2nd (top,
right) and 3rd-order (bottom) ILW-GoHy schemes with 400 cells in each direction,
CFL=0.5; 35 contours from 0.0 to 3.5
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Figure IV.16 � Lift and drag coe�cients as a function of time for the Mach shock on the
NACA0018 pro�le considering 100, 200 and 400 cells in each direction for 1st

(top, left), 2nd (top, right) and 3rd-order (bottom) ILW-GoHy schemes.
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Figure IV.17 � Pressure variations |p − p0| around the cylinder as a function of θ for f = 0.5
(top), f = 1.0 (middle), f = 2.0 (bottom) for the third order cell-centered scheme
(GoHy-3, blue) and for the third order staggered scheme (STAG-3, black) with
∆x = ∆y = 1

20 (left) and ∆x = ∆y = 1
40 (right).



Chapter V

Extension to �uid-rigid body

interaction

Partant de la procédure de Lax�Wendro� inverse établie pour les équations d'Euler présentée

dans le chapitre IV, un algorithme de couplage �uide-corps rigide est déduit. Après une courte

introduction concernant les caractéristiques physiques et mathématiques du mouvement de corps

rigide, un schéma semi-discret permettant de calculer à l'ordre élevé en espace les forces et mo-

ments exercés sur la frontière du corps rigide est proposé. Deux procédures d'intégrations en

temps sont ensuite développées. La première est basée, tout comme les schémas hydrodynamiques

présentés dans le chapitre II, sur une intégration en temps de type Runge�Kutta. La seconde est

basée sur une approche de type Cauchy�Kowalevski comme dans [50, 170]. Ce choix d'intégration

en temps permet de faire correspondre sur la même échelle en temps les deux solveurs. En�n

l'extension 2D de ces schémas est ensuite faite via splitting directionnel comme pour les schémas

hydrodynamiques utilisés. La procédure de Lax�Wendro� inverse donne une dé�nition naturelle

des forces et moments de pression exercés sur la frontière du corps rigide. Ainsi le couplage est

immédiat et d'autant plus facile à implémenter. Des résultats numériques sont proposés à la �n

du chapitre a�n d'illustrer la stabilité et la robustesse du couplage utilisé.
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In this chapter, we propose a simple and straightforward way for coupling rigid body and com-

pressible �uid dynamics. Considering rigid body dynamics, a semi-discrete scheme is �rst pro-

posed for 1D motion, then for 2D motion using directional splitting method. The computations of

forces and torques is done considering a regular discretization of the boundary. Such a discretiza-

tion enables for a high-order accurate way of computing the forces and torques integrals along

the boundary. Two fully discrete version are then proposed. Mostly those versions strongly

rely on the hydrodynamics schemes used. Indeed, using a one-step cell-centered schemes [50,

170], a one-step scheme is proposed for the integration of forces and torques exerted on the rigid

body boundary. As a contrary, using the staggered schemes introduced in [35] and extensively

detailed in chapter II. The coupling between �uid and solid is then straightforward using the

ILW procedure developed in chapter IV.

The outline of the chapter is the following. First, an overview of rigid body motion and dynamics

is proposed in section V-1. Then, starting from a semi-discrete high-order accurate in space

scheme, two time integration are proposed in section V-2. The �rst one is based on Runge�

Kutta sequences, whereas the second is based on Cauchy�Kovalevskaya time-integration. The

extension to 2D relies on directional splitting method. The choice has been made for both

schemes to match the time-integration used for the hydrodynamics ones. This is done to avoid

any loss of accuracy due to the time-coupling. Last the coupling between the �uid and rigid body

solvers is done using the Inverse Lax�Wendro� procedure designed in chapter II. The procedure

gives naturally de�nition of the pressure forces and torques exerted on the rigid body boundary.

Thus, the coupling method is straightforward and quite easy to implement. Numerical examples

are proposed then in 1D and 2D to assert the viability of the coupling.

V-1 Rigid body motion and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 192

V-1.1 Description of a rigid body . . . . . . . . . . . . . . . . . . . . . . . . . 193

V-1.2 Immersed rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . 194

V-2 High-order Lagrangian schemes for rigid body dynamics . . . . . . . . . . . . . 195

V-2.1 High-order schemes for rigid body dynamics in 1D . . . . . . . . . . . . 195

V-2.2 High-order schemes for rigid body dynamics in 2D . . . . . . . . . . . . 196

V-3 Fluid - Rigid body coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

V-3.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 203

V-3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

V-1 Rigid body motion and dynamics

We consider that the motion of the boundary is no longer prescribed analytically. Instead we

consider the boundary Γ to be the boundary of a rigid body whose mass is �nite. Its motion is

then induced by the forces exerted by the �uid on the boundary. One may refer to [89, 54] for

further informations concerning rigid body motion and dynamics.
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Space dimension Number of variables
d = 1 1
d = 2 3
d = 3 6

Table V.1 � Number of variables for rigid body motion as a function of given space dimensions

V-1.1 Description of a rigid body

In physics, a rigid body is considered as a body where no deformation can be induced in it.

Consider two points (or particles) belonging to the rigid body, denoted by the greek subscript α

and β. Then, for any α and β, rigid body constraint writes

‖xα − xβ‖ = constant, (V.1)

meaning that the distance separating two abstract points α and β in a rigid body is always

constant.

V-1.1.1 Invariant of rigid body motion

Using only eq. (V.1), one can prove that for any space dimension d, the rigid body motion can

be reduced to solving d+ (1
2d(d− 1)) equations [14]. It implies in particular that the rigid body

motion is described by a set of d+ (1
2d(d− 1)) variables.

In particular rigid body motion can be described as

Dtxα = Dtx0 +Q(t)xα, (V.2)

where x0 is in the rigid body, Q is antisymmetric, meaning thatQ(t) = −Q(t)t. In the following,

only one and two space dimensions problems are considered. For one space dimension, eq. (V.2)

is reduced to

Dtxα = Dtx0, (V.3)

since the only antisymmetric matrix in one space dimension is 0. Physically, it implies that the

only possible motion for a rigid body in 1D is a translation. However, in two space dimensions,

eq. (V.2) leads to

Dt

(
xα

yα

)
= Dt

(
x0

y0

)
+

(
0 −q
q 0

)(
xα

yα

)
, (V.4)

which leads to a translation and a rotation. More often than not, eq. (V.4) is written under the

more convenient form

Dt

(
xα

yα

)
= Dt

(
xs

ys

)
+

(
0 −ω
ω 0

)(
xα − xs
yα − ys

)
. (V.5)

where the point xs is called the center of mass and is only translated. In addition to the
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description of the rigid body motion, some quantities must be de�ned to study the rigid body

dynamics.

V-1.1.2 De�nition of physical quantities

Consider a rigid body whose motion is prescribed by eq. (V.5), which is described by a bounded

domain Ωs of R2. Given a positive bounded function ρs which described the material density

of the rigid body, then one de�nes the solid mass Ms, the gravity center xs and the moment of

inertia Js as 

Ms =

∫
Ωs

ρs(x)dx

xs =
1

Ms

∫
Ωs

ρs(x)xdx

Js =

∫
Ωs

ρs(x)‖x− xs‖2dx

(V.6)

And at last, let us = Dtxs, one de�nes the kinetic energy of the rigid body as

Es =
1

2
Ms‖us‖2 +

1

2
Jsω

2. (V.7)

V-1.2 Immersed rigid body dynamics

Using the previously de�ned quantities, one writes the system of equations describing the rigid

body dynamics, without any external forces, as



MsDtus =

∫
∂Ωs

σ · ndS,

JsDtω =

∫
∂Ωs

σ · n ·

(
−y + ys

x− xs

)
dS,

Dtx = us + ω

(
−y + ys

x− xs

)
,

(V.8)

where σ is the stress tensor. Considering that the rigid body is immersed in an inviscid �uid,

then σ = −pI. For a viscous one, it leads to σ = −pI + Υ. For inviscid �uid, it writes



MsDtus = −
∫
∂Ωs

pndS,

JsDtω = −
∫
∂Ωs

pn ·

(
−y + ys

x− xs

)
dS,

Dtx = us + ω

(
−y + ys

x− xs

)
.

(V.9)

In the following, the emphasis is laid on solving system (V.9).
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V-2 High-order Lagrangian schemes for rigid body dynamics

First, system (V.9) is considered in one dimensional space. A semi-discrete scheme is proposed

to approximate its solution. Two di�erent discretizations are then proposed. The �rst one is

based on a Runge�Kutta type integration in time, which is particularly adapted to schemes

presented in chapter II. The second one, based on a Cauchy�Kovalevskaya integration in time, as

the GoHy schemes used in chapter IV is then proposed. The extension to two space dimensions

of these schemes is then proposed using a directionnal splitting method. First, the case of the

rigid homogeneous cylinder is detailed, and then it is extended to any kind of geometry and mass

repartition.

V-2.1 High-order schemes for rigid body dynamics in 1D

In one dimensional, we consider a rigid body occupying the domain Ωs = [xl, xr]. Then system

(V.9) leads to the simpli�ed 1D system{
MsDtus = − (p(xr)− p(xl)) ,
Dtx = us,

(V.10)

where p(xr) and p(xl) are respectively the pressure applied at x = xr and at x = xl. The

semi-discrete scheme therefore writes


Dtus = −pr − pl

Ms
,

Dtxl = us,

Dtxr = us.

(V.11)

The pressure values pr and pl are respectively the pressure applied on the right and the left

boundaries of rigid body. In practice, they are given using the Inverse Lax�Wendro� method

proposed in chapter IV. Two approaches to realize the time integration of eq. (V.11) are proposed.

The �rst one is based on a Runge�Kutta approach, the second one using a Cauchy�Kovalevskaya

approach.

V-2.1.1 Runge�Kutta based approach

Using notations of chapter II for Runge�Kutta sequences, the fully discrete scheme writes



un+αm
s = uns −

∆t

Ms

m−1∑
l=0

am,l
(
pn+αl
r − pn+αl

l

)
,

xn+αm
l = xnl −∆t

m−1∑
l=0

am,lu
n+αm
s ,

xn+αm
r = xnr −∆t

m−1∑
l=0

am,lu
n+αm
s ,

(V.12)
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where the pressure pn+αm
r and pn+αm

l are given in practice by the Inverse Lax�Wendro� procedure

using the values inside the �uid domain and the velocity at the boundary.



un+1
s = uns −

∆t

Ms

s−1∑
l=0

θl
(
pn+αl
r − pn+αl

l

)
,

xn+1
l = xnl −∆t

s−1∑
l=0

θlu
n+αm
s ,

xn+1
r = xnr −∆t

s−1∑
l=0

θlu
n+αm
s .

(V.13)

V-2.1.2 Cauchy�Kovalevskaya based approach

The Cauchy�Kovalevskaya based approach is identical to the one used in [50, 170]. It relies

on using the information provided by the EOS and also by the �uid system of equations. In

particular, one uses that

ρ0Dtp+ (ρc)2∂xu = 0, (V.14)

where c is the speed of sound. It yields without expliciting the time derivatives that



un+1
s = uns −

∆t

Ms

∑
k≥0

(
Dk
t p
n
r −Dk

t p
n
l

) ∆tk

k!
,

xn+1
l = xnl −∆t

∑
k≥0

Dk
t u

n
s

∆tk

k!
,

xn+1
r = xnr −∆t

∑
k≥0

Dk
t u

n
s

∆tk

k!
.

(V.15)

V-2.2 High-order schemes for rigid body dynamics in 2D

In order to study rigid body dynamics in 2D, a choice of space discretization must �rst be made.

Indeed, contrarily to the 1D case, the rigid body is no longer described by only two points. We

consider a rigid body which is described by a closed bounded domain Ωs ⊂ Ω ⊂ R2. We denote

by Γ = ∂Ωs. As the external forces are exerted on the boundary Γ, it is all but natural to lay the

emphasis on the discretization of Γ, then to devise a semi-discrete scheme and last to consider

the fully discrete scheme for rigid body motion.

V-2.2.1 Rigid body space discretization

The choice has been made to consider a discretization of Γ instead of Ωs since the forces exerted on

the rigid body are exerted on the boundary Γ. Γ is parametrized by a function γ : [0 : 1] −→ R2.
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Figure V.1 � Regular curvilinear discretization of an ellipse with Γ : s → (5 cos(2πs), sin(2πs))t

using 20 pearls (blue dots)

In the following the curvilinear abscissa is denoted s. It writes

Γ = {x, ∃s ∈ [0, 1] ,γ(s) = x}.

We consider a discretization with N elements Γi+ 1
2
such that


s0 = 0,

sN = 1,

si+1 − si = ∆s, ∀i ∈ {0, ..., N − 1},
Γi+ 1

2
= {x, ∃s ∈ [si, si+1] ,γ(s) = x} ∀i ∈ {0, ..., N − 1}.

(V.16)

Denote in particular that the two points of abscissa s0 and sN are identical. One trivially gets

that
N−1⋃
i=0

Γi+ 1
2

= Γ

We de�ne also the staggered curvilinear abscissae as

si+ 1
2

=
si+1 − si

2
, ∀i ∈ {0, ..., N − 1}.

The pearls Pi+ 1
2
are located as

Pi+ 1
2

= γ(si+ 1
2
)

This discretization, which is depicted for an ellipse in �g. V.1, is particularly appropriate to

compute integrals of the form

∫
Γ
φ(x)dx =

N−1∑
i=0

∫
Γ
i+ 1

2

φ(x)dx

=

N−1∑
i=0

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds

= ∆s

N−1∑
i=0

1

∆s

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds

(V.17)
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The following lemma gives an accuracy result on the spatial discretization concerning the com-

putation of such an integral. It is a corollary of a result proved by Kurganov and Rauch in

[kurganov2009order] about spectral accuracy of low order quadrature formulae for periodic

function. It is proved here for smooth functions on a closed curve using the interpolation coe�-

cients Ĉk which are central in this work.

Lemma V.1. Assume that Γ is a closed curve. Let γ and φ smooth enough and m > 0. Assume

the following approximation φγ
i+ 1

2

= φ(γ(si+ 1
2
))‖γ′(si+ 1

2
)‖, then

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

φγ
i+ 1

2

+ O(∆sm).

Remark V.1. Lemma V.1 implies in particular that trapezoidal rule yields immediately spectral

accuracy for the integral computation on a closed curve.

Proof. Denoting φ
γ

i+ 1
2

= 1
∆s

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds, one has in particular from chapter II, for

r > 0 that

φ
γ

i+ 1
2

=

r∑
k=−r

Ĉkφ
γ

i+k+ 1
2

+ O(∆s2r+1) (V.18)

where the coe�cients Ĉk are available in table II.2, and φγ
i+ 1

2

is de�ned with periodic boundary

conditions as

φγ
i+ 1

2

=


φ(γ(si+ 1

2
))‖γ′(si+ 1

2
)‖), i ∈ {0, ..., N − 1},

φ(γ(si+N+ 1
2
))‖γ′(si+N+ 1

2
)‖, i ≤ −1,

φ(γ(si−N+ 1
2
))‖γ′(si−N+ 1

2
)‖, i ≥ N.

(V.19)

Then, for a given r > 0 one has

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

φ
γ

i+ 1
2

= ∆s
N−1∑
i=0

(
r∑

k=−r
Ĉkφ

γ

i+k+ 1
2

+ O(∆s2r+1)

)

= ∆s

(
r∑

k=−r
Ĉk

)
N−1∑
i=0

(
φγ
i+ 1

2

+ O(∆s2r+1)

)
(V.20)

Taking r such that 2r + 1 > m, using that
r∑

k=−r
Ĉk = 1 and de�nition of φγ

i+ 1
2

in eq. (V.19), it

yields

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

(
φγ
i+ 1

2

+ O(∆sm)

)
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Using that N is inversely proportional to ∆s, it leads to

= ∆s
N−1∑
i=0

φγ
i+k+ 1

2

+ O(∆sm)

Hence the result. �

Lemma V.1 is useful to compute the line integral of torques and forces exerted on the rigid body

boundary Γ. As for rigid body dynamics, we �rst explain how we design the semi-discrete scheme

for irrotational rigid bodies and then extend the semi-discrete scheme to the general case of rigid

body dynamics including both translation and rotation.

V-2.2.2 Irrotational rigid body semi-discrete scheme

Consider the system of equations (V.9) with Js → ∞. It yields an irrotational �eld of velocity

inside the rigid body with, thus, ω = 0. The system writes

 MsDtus = −
∫
∂Ωs

pndS,

Dtx = us.
(V.21)

The only possible motion for the rigid body is therefore a translation. As the interior �uid

schemes in 2D are based on directional splitting, the choice has been made to apply the same

strategy to eq. (V.21). Denoting us = (us, vs)
t, n = (n1, n2)t, x = (x, y)t, it leads to


MsD

x
t us = −

∫
Γ
pn1dS,

MsD
x
t vs = 0,

Dx
t x = us,

Dx
t y = 0.



MsD
y
t us = 0,

MsD
y
t vs = −

∫
Γ
pn2dS,

Dy
t x = 0,

Dy
t y = vs.

(V.22)

Considering the �rst system (in the x-direction) of eq. (V.22), its semi-discrete form using

lemma V.1 writes



MsD
x
t us = −∆s

N−1∑
i=0

(pn1)γ
i+ 1

2

,

MsD
x
t vs = 0,

Dx
t xi+ 1

2
= us,

Dx
t yi+ 1

2
= 0,

(V.23)

where Pi+ 1
2

= (xi+ 1
2
, yi+ 1

2
)t. Considering that Γ is known analytically and that the pressure at

point Pi+ 1
2
can be computed with a mth order of accuracy, then the semi-discrete form is also of

order m in space.
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V-2.2.3 General rigid body semi-discrete scheme

Consider the system of equations (V.9) without any assumption on Ms or Js. We introduce the

notations T and N for the non-normalized tangent and normal. Meaning in particular that one

has

N = n‖γ‖.

The equation on N is immediately obtained using the laws of rigid body motion. Indeed,

T =

(
∂sx

∂sy

)
, N = ±

(
∂sy

∂sx

)
,

and thus one gets that

DtT =

(
Dt∂sx

Dt∂sy

)
= ∂s

(
us + ω

(
−y + ys

x− xs

))
=

(
0 −ω
ω 0

)
T , (V.24)

and similarly the non-normalized vector satis�es

DtN =

(
0 −ω
ω 0

)
N , (V.25)

Using directional splitting method, the semi-discrete scheme for (V.9) and (V.25) writes

MsD
x
t us = −

∫
Γ
pn1dS,

MsD
x
t vs = 0,

JsD
x
t ω =

∫
Γ
pn1(y − yg)dS,

Dx
t x = us − ω(y − yg),

Dx
t y = 0,

Dx
tN1 = 0,

Dx
tN2 = ωN1.



MsD
y
t us = 0,

MsD
y
t vs = −

∫
Γ
pn2dS,

JsD
y
tω = −

∫
Γ
pn2(x− xg)dS,

Dy
t x = 0,

Dy
t y = vs + ω(x− xg),

Dy
tN1 = −ωN2,

Dy
tN2 = 0.

(V.26)

Considering �rst system (in the x-direction) of eq. (V.26), its semi-discrete form using lemma V.1

writes
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

MsD
x
t us = −∆s

N−1∑
i=0

(pn1)γ
i+ 1

2

,

MsD
x
t vs = 0,

JsD
x
t ω = −∆s

N−1∑
i=0

(pn1(y − yg))γi+ 1
2

,

Dx
t xi+ 1

2
= us − ω(y − yg),

Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0,

Dx
tN2,i+ 1

2
= ωN1,i+ 1

2
.

(V.27)

The main di�erences with the case of irrotational motion is obviously that the rigid body is

rotating due to the torques exerted at the boundary, which implies also that the normals are

rotating as well. Hence the equation on both N1 and N2. In practice, one rewrites eq. (V.27)

substituting the term φγ with respectively terms of the form (φN1) for the x−direction and of

the form (φN2) for the y-direction.



MsD
x
t us = −∆s

N−1∑
i=0

(pN1)i+ 1
2
,

MsD
x
t vs = 0,

JsD
x
t ω = −∆s

N−1∑
i=0

(pN1(y − yg))i+ 1
2
,

Dx
t xi+ 1

2
= us − ω(yi+ 1

2
− yg),

Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0,

Dx
tN2,i+ 1

2
= ωN1,i+ 1

2
.

(V.28)

Two integrations in time are know proposed. The �rst one is based on Runge�Kutta time

integration and the second one on a Cauchy�Kovalevskaya one using repetitively time-derivatives

of system (V.28) as well as information provided by the �uid part.

V-2.2.4 Runge�Kutta based approach

We use the notation introduced in chapter II. The fully discrete scheme in the x-direction writes

for the intermediary time-step
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

un+αm
s = uns − ∆t

Ms
∆s

m−1∑
l=0

am,l

N−1∑
i=0

(pn+αlNn
1 )i+ 1

2
,

vn+αm
s = vns ,

ωn+αm = ωn − ∆t
Js

∆s
m−1∑
l=0

am,l

N−1∑
i=0

(pn+αlNn
1 (yn − yng ))i+ 1

2
,

xn+αm
i+ 1

2

= xn
i+ 1

2

+ ∆t

(
m−1∑
l=0

am,l(u
n+αl
s − ωn+αl(yn

i+ 1
2

− yng ))

)
,

yn+αm
i+ 1

2

= yn
i+ 1

2

,

Nn+αm
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+αm
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t

(
m−1∑
l=0

am,lω
n+αlNn

1,i+ 1
2

)
,

(V.29)

and for the �nal time-step as

un+1
s = uns − ∆t

Ms
∆s

s−1∑
l=0

θl

N−1∑
i=0

(pn+αlNn
1 )i+ 1

2
,

vn+1
s = vns ,

ωn+1 = ωn − ∆t
Js

∆s
s−1∑
l=0

θl

N−1∑
i=0

(pn+αlNn
1 (yn − yng ))i+ 1

2
,

xn+1
i+ 1

2

= xn
i+ 1

2

+ ∆t

(
s−1∑
l=0

θl(u
n+αl
s − ωn+αl(yn

i+ 1
2

− yng ))

)
,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t

(
s−1∑
l=0

θlω
n+αlNn

1,i+ 1
2

)
,

(V.30)

V-2.2.5 Cauchy�Kovalevskaya based approach

The Cauchy�Kovalevskaya based approach is identical to the one used in [50, 170]. It relies on

informations provided by the EOS, by the �uid system of equations but also by the rigid body

system of equations. Concerning �uid and EOS, the equation

ρ0Dtp+ (ρc)2∂xu = 0, (V.31)

is derivated in time repetitively to transform time derivatives of p into space derivatives. More-

over, one uses that

{
Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0.

(V.32)

Then starting from eq. (V.28) and integrating in time yield
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

un+1
s = uns − 1

Ms
∆s

∫ tn+1

tn

N−1∑
i=0

(pN1)i+ 1
2
(θ)dθ,

vn+1
s = vns ,

ωn+1 = ωn − 1
Js

∆s

∫ tn+1

tn

N−1∑
i=0

(pN1(y − yg))i+ 1
2
(θ)dθ,

xn+1
i+ 1

2

= xn
i+ 1

2

+

∫ tn+1

tn

(
us − ω(yi+ 1

2
− yg)

)
(θ)dθ,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+

∫ tn+1

tn
ωN1,i+ 1

2
(θ)dθ.

(V.33)

Performing Taylor expansion in the θ variable and using eq. (V.32) lead to

un+1
s = uns − ∆t

Ms
∆s

N−1∑
i=0

(∑
k

Dx,k
t pn

i+ 1
2

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

,

vn+1
s = vns ,

ωn+1 = ωn − ∆t
Js

∆s
N−1∑
i=0

(∑
k

Dx,k
t pn

i+ 1
2

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

(yn
i+ 1

2

− yng )),

xn+1
i+ 1

2

= xn
i+ 1

2

+ ∆t
∑
k

(
Dx,k
t uns −Dx,k

t ωn(yn
i+ 1

2

− yng )
) ∆tk

(k + 1)!
,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t
∑
k

(
Dx,k
t ωn

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

.

(V.34)

V-3 Fluid - Rigid body coupling

After detailing the two proposed numerical schemes for the integration of forces and torques

exerted on the boundary, we propose a simple and straightforward scheme to couple the �uid

and the rigid body solvers.

V-3.1 Description of the algorithm

Since the inverse Lax�Wendro� procedure has been developed in a Lagrange-remap formalism

and since the rigid body motion is described in a Lagrangian formalism, there is no further work

to be done. The �uid-rigid body coupling is depicted in Figure V.2. It follows a simple �ow

chart, where the space and time coupling is realized using our Inverse�Lax Wendro� boundary

treatment. At time t = tn, one knows the value of U+ which are the values inside the �uid

domain and also the rigid body state among which is the normal velocity. Using the normal

velocity known at the boundary, one applies the ILW procedure, and deduces values inside U−
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as well as the integral of forces and torques exerted on the rigid body boundary.

Fluid

Structure

Fn

S n

Fn,Ghost

S n,Ghost

Fn+1

S n+1

Inverse Lax�Wendro� boundary treatment

Un+

Un
s

Un−

p

Figure V.2 � Using the Inverse Lax�Wendro� procedure as a time and space coupling for rigid
body interaction.

The rigid body motion solver also adds a constraint on the time step ∆t. In addition to the

classical CFL condition, in practice the time-step is asked to satisfy the constraint for one

dimensional problem

∆t <
∆x

|us|
,

and for two dimension problems

∆t <
1

maxk ωk
min

(
∆X

maxi |ui+ 1
2
|
),

∆Y

maxi |vi+ 1
2
|
)

)
,

where (ui+ 1
2
, vi+ 1

2
) is the velocity of the pearl i+ 1

2 .

V-3.2 Numerical results

A test-suite is proposed to assess both accuracy and robustness of the �uid-rigid body schemes.

We begin with a 1D case problem consisting of a piston whose motion is triggered by a pressure

di�erential [120]. Then, the ability of the 2D schemes to handle strong shocks is assessed. The

�rst test concerns the lift-o� of a cylinder proposed in [53, 6, 88, 120]. The problem is then

extended to more complex geometries with �rst an ellipse and then a rhombus.

V-3.2.1 Pressure motion driven piston in 1D [120]

This test-case has been proposed in [120] to study the coupling between �uid and rigid body in

1D. The computational domain is [0 : 7]. Initially a rigid body of length 0.5m and of mass 1.0kg

is centered at x = 2m. The �uid initial state is


ρ0(x)=10χ{x<2,x>5} + 1χ{2<x<5},

u0(x)=0,

p0(x)=106χ{x<2,x>5} + 105χ{2<x<5},

γ =1.4.

(V.35)
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The movement of the rigid body (in black in the �gure) is triggered by the pressure di�erential

between the left and right sides of the piston. In return, it induces propagation waves in the

�uid regions. Fluid states as well as the piston position are depicted in �g. V.3 at time t = 3 ms.
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Figure V.3 � Pressure pro�les at time t=3 ms with 800 cells for the pressure motion driven piston
in 1D for second, third, fourth and sixth order ILW-GoHy schemes.

V-3.2.2 Lift-O� of a cylinder [6, 88, 120]

The lift-o� of a cylinder has been proposed in [53] to study the coupling between a �uid solver

and a rigid body motion one. It is a challenging problem coupling both a �uid and a moving

rigid body. The computational domain is [0.0 : 1.0] × [0.0 : 0.2]. A disk of radius 5 cm and of

density ρ = 7.6 kg.m−2 lies at the bottom of a channel. Initially the center of the disk is at point

(15.10−2, 5.10−2). A Mach 3 shock enters the domain, and due to the asymmetry of the problem

lifts the disk. Equivalent initial datas are presented in [6, 88, 120]:

p0= 1.0χ{x>0.08} + 31
3 χ{x<0.08},

u0= 2.6293688χ{x<0.08},

v0= 0,

ρ0=1.0χ{x>0.08} + 3.8571429χ{x<0.08},

γ = 1.4.

(V.36)
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Figure V.8 shows the pressure contours at t = 0.14 and t = 0.255 for a grid size ∆x = ∆y =

6.25×10−4 using the third order scheme GoHy-3. Figure V.9 shows density contours at t = 0.255

for the same grid size and the same scheme. A MOOD method is used on the boundary. General

pro�les are in accordance with results found in the literature. We also compare in table V.2 the

�nal position of the cylinder of [88] and the �nal position obtained for the re�ection method

presented in [6] for di�erent grid sizes and order. Final positions are in good agreements with

those found in the literature, especially with [6]. As presented in [120], the presence of strong

vortices are denoted under the cylinder which does not disappear as the mesh is re�ned. We

assume that a highly dissipative scheme prevents such vortices from appearing. Here, high-order

accuracy and reduced dissipation allow such mechanisms to appear and develop.

Figure V.4 � 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.

∆x = ∆y Hu and al. [88] Arienti and al. [6] GoHy-1 GoHy-2 GoHy-3
2.5× 10−3 (0.659, 0.132) (0.624, 0.143) (0.623, 0.126) (0.628, 0.136) (0.627, 0.136)

1.25× 10−3 (0.649, 0.145) (0.626, 0.145) (0.621, 0.131) (0.626, 0.141) (0.625, 0.140)

6.25× 10−4 (0.641, 0.147) (0.627, 0.145)? (0.623, 0.136) (0.628, 0.144) (0.628, 0.144)

Table V.2 � Comparisons of the position of the cylinder's center at t = 0.255. ? denotes results
for ∆x = ∆y = 10−3.

Integration of forces and torques exerted on the cylinder depends on the number of points used

to discretize the cylinder. Here, it is noticed that if one takes greater value of CΓ, the position is

changed only at the fourth digit. We present in Table V.3, absolute errors made on conservation

of mass and total energy which seem to converge with a slope of 0.7 − 0.8 for the �rst order

scheme, and near unity for the second and third order ones.
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Figure V.5 � 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.

∆x = ∆y GoHy-1 GoHy-2 GoHy-3
|∆m| |∆e| |∆m| |∆e| |∆m| |∆e|

2.5× 10−3 1.55e-2 4.24e-2 8.07e-3 1.71e-2 1.1e-2 2.5e-2
1.25× 10−3 9.41e-3 2.62e-2 4.12e-3 8.89e-3 5.58e-3 1.29e-2
6.25× 10−4 5.36e-3 1.54e-2 2.16e-3 4.58e-3 2.81e-3 6.47e-3

Table V.3 � Conservation on mass and total energy at t = 0.255 for the lift-o� cylinder test-case.

V-3.2.3 Lift-O� of an ellipse

This test-case is very similar to the previous one. The initial data are unchanged. However the

form of the rigid body is changed. Indeed, for the cylinder test-case and in absence of any viscous

forces, the rigid body motion is irrotational. In this test-case, we consider an ellipse lying at the

bottom of the channel. The ellipse is de�ned by a semi-major axe in the x-direction of length

7 cm and a semi-minor axe of length 4 cm. Its density is set to ρ = 9.0 kg.m−2. Initially, the

ellipse lies at the bottom of a channel, and its center is at point (17.10−2, 4.10−2). A Mach 3

shock enters the domain, and due to the asymmetry of the problem lifts the ellipse.

V-3.2.4 Lift-O� of a rhombus

This test-case is very similar to the previous ones. The initial data are unchanged. However the

form of the rigid body is changed. In this test-case, we consider a rhombus which as unde�ned

normals at each of its angles. The rhombus is de�ned by the following equation


|x
†

b
|+ |y

†

h
|= 1(

x†

y†

)
=

(
cos(θ sin(θ)

− sin(θ cos(θ)

)(
x− x0

y − y0

)
(V.37)
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Figure V.6 � 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.

and the parameters x0 = 15.10−2, y0 = 5.10−2, θ = − π
10 , b = 3.10−2, h = 5.10−2. Its density is

set to ρ = 9.0 kg.m−2. Initially, the rhombus is motionless. A Mach 3 shock enters the domain,

and due to the asymmetry of the problem lifts the rhombus.
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Figure V.7 � 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.

Figure V.8 � 60 contours of �uid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.
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Figure V.9 � 60 contours of �uid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.



Conclusions and perspectives

Dans ce manuscrit, nous nous sommes intéressés à des questions de simulation numériques

pour l'interaction �uide-structure. Le modèle considéré a été celui de l'interaction entre un �uide

compressible et une structure indéformable. Pour ce faire, une méthode de type Lax�Wendro�

inverse a été mise au point pour réaliser un schéma de couplage �uide-structure explicite et

stable. Ce couplage permet de faire communiquer un solveur de type Volumes Finis pour le �uide

compressible avec un solveur pour la dynamique des corps rigides.

Dans un tout premier temps, des résultats principaux liés aux systèmes hyperboliques de lois

de conservation ont été présentés. Puis, l'accent a été mis sur les méthodes de résolution des

équations d'Euler pour un �uide compressible, ainsi que les di�érents couplages en espace comme

en temps trouvés dans la littérature. Du fait des grandes disparités physiques entre les matériaux,

la méthode des cellules mixes a été mise de côté, tout comme les méthodes épousant les contours

du corps rigide (body-�tted) car non-adaptées aux schémas numériques sur grilles cartésiennes.

Nous avons fait le choix de nous intéresser plus précisément aux méthodes de domaine �ctif. Le

dévolu a été jeté sur la méthode de frontières immergés (Immersed boundaries) en calculant les

cellules fantômes par la procédure de Lax�Wendro� inverse. En e�et, bien que n'assurant pas la

conservation de la masse, de la quantité de mouvement et de l'énergie totale, elle permet une

reconstruction à l'ordre très élevé des valeurs fantômes et assure ainsi un schéma �nal lui aussi

d'ordre très élevé. En�n, le choix a été fait de considérer un couplage explicite en temps a�n

d'éviter de devoir résoudre un problème non plus local, mais global autour de la frontière.

Ensuite, nous avons présenté la famille de schémas sur grilles cartésiennes décalées, po-

tentiellement utilisée pour former le solveur �uide compressible. Cette famille de schéma a été

démontrée comme étant conservative en masse, quantité de mouvement et énergie totale, ainsi

que faiblement consistante avec les équations d'Euler. Le passage en multidimensionnel se fait

par l'utilisation de séquences de splitting directionnel d'ordre élevé. Puis, l'extension de cette

famille de schémas pour les équations de Navier�Stokes compressibles a été réalisée, impliquant

une distribution particulière sur les grilles décalées des termes visqueux non-diagonaux. Des ré-

sultats numériques sont venus illustrer tout autant la précision que la robustesse de cette famille

de schémas.

Puis, notre étude s'est portée sur la discrétisation des conditions aux bords, sur la précision

ainsi que sur la stabilité qui en découlent. A�n de pouvoir se référer à des résultats théoriques,

le problème a d'abord été traité dans le cas des systèmes hyperboliques linéaires. La procédure de
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calcul des cellules fantômes a été développée dans le cas de l'équation de l'advection en 1D. Elle

a été ensuite étendue au cas du système des équations des ondes, en considérant deux conditions

aux bords di�érentes. Une première forçant la vitesse au bord, tandis que la seconde forçant une

relation entre vitesse et pression. L'extension générique pour un système hyperbolique linéaire

de lois de conservation a ensuite été détaillée. Bien que permettant de construire une méthode

d'ordre très élevé, la procédure de Lax�Wendro� inverse n'assure pas pour autant la stabilité du

schéma �nal obtenu. Cela a été mis en évidence par des expériences numériques sur le système des

équations des ondes. Outre une étude de type GKS sur un schéma donné, il a été proposé de dé�nir

un critère de stabilité permettant en pratique de grandement simpli�er les calculs nécessaires pour

déterminer la stabilité d'un schéma. Ce critère s'est avéré, dans de nombreux cas, en parfaite

concordance avec l'analyse GKS. Ce travail a mis en évidence la nécessité de s'intéresser tout

particulièrement à la stabilité du schéma �nal obtenu et a permis de très largement simpli�er

l'étude faite ensuite dans le cas du système des équations d'Euler.

Pour la discrétisation des conditions aux bords imposées en vitesse pour les équations d'Eu-

ler, une méthode est déduite de l'analyse linéaire pour construire des cellules fantômes stables et

d'ordre très élevé. Plus particulièrement, considérant des schémas intérieurs de type Lagrange-

projection sur grilles cartésiennes, deux méthodes sont isolées pour l'imposition des valeurs fan-

tômes. La première consiste à faire l'hypothèse d'isentropie spatiale locale proche de la frontière,

tandis que la seconde consiste à élargir le stencil pour e�ectuer la reconstruction des valeurs fan-

tômes. Des résultats théoriques permettent de caractériser les conditions d'existence et d'unicité

de la reconstruction proposée par ces deux méthodes. Dans le but de traiter le cas de chocs forts

impactant la frontière, une procédure de type MOOD a été développée. En�n, l'extension au cas

2D a été faite. L'extrapolation polynomiale 2D étant fortement oscillante et ayant tendance à

être instable, une procédure de type moindre carré a été introduite a�n de lisser un tel comporte-

ment. Des résultats numériques sont venus illustrer tout autant la précision que la robustesse de

la méthode proposée.

En�n, le couplage entre un �uide compressible et une structure indéformable a été réalisé à

partir de la procédure de Lax�Wendro� inverse développée précédemment. Un schéma semi-discret

permettant de calculer à l'ordre élevé en espace les forces et moments exercés sur la frontière du

corps rigide a été proposé. Deux procédures d'intégrations en temps ont ensuite été développées,

une de type Runge�Kutta et une seconde de type Cauchy�Kowalevski. Ce choix d'intégration en

temps a permis de faire correspondre sur la même échelle en temps les solveurs �uide et corps

rigide. En�n l'extension 2D de ces schémas a été faite via splitting directionnel. La procédure de

Lax�Wendro� inverse nous a permis de dé�nir naturellement les forces et moments de pression

exercés sur la frontière du corps rigide. Ainsi le couplage fut immédiat et d'autant plus facile

à implémenter. Quelques résultats numériques ont été proposés a�n de mettre en évidence la

stabilité et la robustesse du couplage utilisé.

Plusieurs perspectives sont désormais possibles. Dans un premier temps, il apparaît important

d'étendre la méthode à trois dimensions d'espace. Cela permettrait d'approcher des situations plus

réalistes. La méthode proposée devrait s'appliquer directement, sans modi�cations préalables, au
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3D, à la condition de pouvoir répartir les "perles" de la méthode de Lax�Wendro� inverse sur

la surface du solide. Cela ne devrait pas occasionner un surcoût prohibitif de la procédure par

rapport au coût des solveurs �uide et structure.

Ensuite, il paraît intéressant de pouvoir considérer que la structure n'est plus simplement

un corps rigide, donc indéformable, mais qu'elle suit d'autres lois de comportements (élasticité

linéaire, hypoélasticité, plasticité, fracturation, ...). En maillant ainsi la structure, il paraîtrait dès

lors tout à fait naturel de faire correspondre sommets du maillage sur la frontière et les "perles"

utilisées lors de la procédure de Lax�Wendro� inverse. Considérant que l'analyse linéaire a déjà

été faite, nous pouvons dès à présent nous assurer que le couplage ne devrait pas sou�rir en terme

de stabilité d'un tel traitement à la condition d'en faire aussi l'étude pour la partie structure.

De même, le modèle �uide pourrait être complexi�é en prenant en compte une viscosité de

type Navier�Stokes compressible. Bien que le solveur �uide ait déjà été proposée dans ce travail,

l'analyse linéaire de stabilité n'a pas encore été e�ectuée et le couplage �uide visqueux et corps

rigides n'en est encore qu'à ses prémices. De plus, il serait tout aussi possible d'utiliser la méthode

proposée a�n de réaliser un couplage entre deux �uides non-miscibles aux propriétés di�érentes,

ou encore de considérer des conditions aux bords plus complexes.

Pour conclure, dans un contexte HPC, le code développé pour cette thèse est déjà entiè-

rement parallélisé via MPI/OpenMP. Les principales procédures sont locales, hormis le calcul

des résultantes des forces et des moments. En e�et, le solveur corps rigide nécessite de nom-

breuses synchronisations a�n de calculer les résultantes des forces et moments à sa surface, ce

qui rend certainement le code non optimal. Réduire le nombre de communications globales, dans

un contexte HPC, apparaît comme vital pour assurer un correct passage à l'échelle. En�n l'in-

sertion de la procédure au sein d'une plateforme AMR multi-physique [91] présenterait aussi son

intérêt a�n d'améliorer encore davantage la précision et le temps de calcul. Cela permettrait de

pouvoir simuler des cas d'écoulements plus complexes.
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In this manuscript, numerical simulation of �uid-structure interaction was of most interest to us,

considering a compressible �uid interacting with a rigid body. In order to realize the coupling

between the two, the inverse Lax�Wendro� procedure has been developed for stability and explicit

time-coupling purposes. This coupling is done in a stable way for a compressible hydrodynamics

solver and a rigid body dynamics one.

Firstly, an overview of main theoretical results concerning hyperbolic systems of conservation

laws has been made. The emphasis was then laid on numerical methods for the resolution of

compressible Euler equations as well as for space and time coupling used for �uid-structure

interaction found in the literature. Due to tremendous materials physical discontinuities, the

mixed-cells method was discarded. Methods based on body-�tted meshes were also discarded

as they were irrelevant for hydrodynamics solver on Cartesian grids. The choice has been made

to focus on �ctitious domain methods, and more precisely on the immersed boundary methods.

The selected method for the space coupling was to build high-order accurate ghost-cells values

using the inverse Lax�Wendro� procedure. Although, this method does not ensure conservation

of mass, momentum and total energy, contrarily to the embedded boundary methods, it yields

high-order accuracy which is of most use for high-order hydrodynamics solver. Last, an explicit

coupling has been chosen, rather than implicit or semi-implicit ones, in order to solve a local

problem instead of a global one.

Secondly, as a possible choice for the hydrodynamics solver, a scheme based on staggered Carte-

sian grids has been detailed. The scheme was proven to be conservative in mass, momentum and

total energy and also weakly consistent with the Euler equations. The key for both conserva-

tion and weak consistency is the internal energy corrector that has been proposed. For multiple

space dimensions, the scheme was used with a high-order directional splitting method. Then,

the extension of the scheme for the resolution of the compressible Navier�Stokes equations was

made. It relies on a peculiar distribution of non-diagonal viscous terms on a grid staggered in

both directions. Numerical results have illustrated both the accuracy and the robustness of the

scheme.

Afterwards, numerical boundary treatment was considered, with a special focus on both high-

order accuracy and stability. In order to use theoretical results, especially concerning linear

stability for initial boundary value problems, the problem was dealt with for linear hyperbolic

systems of conservation laws. The ghost-values computation procedure, called in the manuscript

"reconstruction operator", was �rst developed for the special case of linear advection problems in

1D. Then, it was extended to the wave equations system considering two di�erent but well-posed

boundary conditions. The �rst boundary condition imposed only the velocity at the boundary,

whereas the second linked both velocity and pressure at the boundary. The extension was then

realized for generic linear hyperbolic systems. Although giving high-order accuracy for ghost

values in the �ctitious domain, the inverse Lax�Wendro� procedure does not ensure the stability

of the e�ective scheme. It was pointed out by numerical experiments performed for the wave

equations. Besides a GKS stability analysis done for a given scheme and reconstruction operator,

a new stability criterion was proposed in order to ease greatly stability characterization for the
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discretization of the initial value boundary problem. Numerical experiments assess the pratical

relevancy of such a criterion. Our �ndings highlighted the need to focus particularly on linear

stability of the e�ective scheme before tackling the case of non-linear problems. It alleviated

greatly the study that was then performed for the Euler equations.

For the extension of numerical boundary treatment to compressible Euler equations, the bound-

ary conditions was considered to be imposed as a slip boundary condition, enforcing the normal

velocity. A method has been deduced from the linear analysis of the inverse Lax�Wendro� pro-

cedure to obtain high-order and stable e�ective schemes. More precisely, considering Lagrange-

remap interior schemes based on Cartesian grids, the non-inversibility of the Jacobian matrix

pointed out the need for another equation. Two methods were developed to build the recon-

struction operator. The �rst one consisted in considering that the �ow near the boundary was

spatially isentropic. Whereas the second one consisted in enlarging the stencil used to build the

reconstruction operator. Theoretical results to characterize conditions for existence and unique-

ness of the reconstruction operator were proved for both methods. In order to deal with strong

incoming or outgoing shocks, a MOOD procedure was developed. Then the extension to two

space dimensions problems was done. A special procedure of least-square was also developed

in order to prevent 2D extrapolation instabilities from occurring. Numerical experiments have

been performed to illustrate both accuracy and robustness of the method.

Last, the coupling between a compressible �uid and a rigid body was made, starting from the

previously introduced inverse Lax�Wendro� procedure for Lagrange-remap schemes. A semi-

discrete scheme was derived, computing with high-order accuracy in space the resultants of

forces and torques exerted on the rigid body boundary. Two time-integrations were proposed: A

Runge�Kutta one, and a Cauchy�Kovalevskaya one. These time integration choices result from

the hydrodynamics solver choices, and was done in order to maintain both solvers on the same

time-scale, easing the coupling. Then, the two space dimensions extension was performed using

directional splitting method. The inverse Lax�Wendro� procedure yielded natural de�nitions

for pressure forces and torques exerted on the rigid body boundary. Thereby the coupling was

straightforward and easy to implement. Some numerical results have been presented to emphasize

the stability and robustness of the coupling.

New perspectives seem now to be reachable. Firstly, extending the method to three space

dimensions should be quite straightforward and of very high interest. It would allow to get closer

to more realistic situations. The proposed method can be applied straightforwardly provided one

can map the inverse Lax�Wendro� pearls on the surface of a rigid body. Going from 2D to 3D

should not induce large prohibitive numerical costs due to the procedure.

Then, considering a deformable structure instead of a rigid body one should be of great interest for

the CEA needs. Many deformations models are available in the literature such as linear elasticity,

hypo-elasticity, plasticity and fracturation. Once again, be given a set of pearls describing the

structures boundaries, the ILW procedure should be applicable straightforwardly. The structure

being described by a mesh, it seems all but natural to consider that the vertices on the boundary

of the mesh are exactly the pearls used in the ILW procedure. The space and time coupling



216

should still hold for such a more complex multi-physics problem, provided the linear stability is

also performed for the structure part.

Identically, the �uid model could be made more complex. The ILW procedure was designed

whether for internal energy a�ne equations of state or for equations of state such that the square

of the sound speed is Lipschitz continuous but without any viscous components. Same analysis

and works could be performed considering the �uid to follow the compressible Navier�Stokes

equations instead of the compressible Euler ones. Although a compressible Navier�Stokes solver

was proposed in this manuscript, the linear analysis for initial boundary values problem was not

performed, and the viscous �uid rigid body coupling is still in its early stages. Moreover, the

method could also be applied to realize a coupling between two immiscible �uids with di�erent

constitutive laws or to consider more complex boundary conditions than just slip boundary

conditions.

In conclusion, in a HPC context, the code that was implemented during this PhD is already

running in parallel using MPI/OpenMP. Since every procedure is local, the parallel computing

is straightforward for the �uid part and for the discretization of boundary conditions. However

the rigid body solver requires many synchronizations between the processes to get the values of

forces and torques resultants and then to compute the displacement. Reducing the number of

global communications, in a HPC context, is of the essence to enforce correct scalability of the

method. As a last word, implementing such procedures inside the multiphysics AMR platform

[91] would be of special interest to improve even more accuracy and computational cost, and so

to run even more complex simulations.



Appendix A

Butcher tables and weights for

directional splitting methods

L'annexe comprend l'ensemble des tableaux de coe�cients de grande taille a�n de fournir au

lecteur la possibilité de reproduire les méthodes utilisées et décrites dans le manuscrit.
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A.1 Butcher table for usual Runge�Kutta sequences

We remind here brie�y the Butcher table for a given explicit Runge�Kutta sequence.

α1 a1,0 0 0 0 · · ·

α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·

αs as,0 · · · · · · as,s−1 0

1 θ0 θ1 · · · θs−1 θs

α α 0

1 1− 1
2α

1
2α

Table A.1 � Generic second order Runge�Kutta sequence

0

1 1
1
2

1
4

1
4

1 1
6

1
6

2
3

Table A.2 � Third order TVD Runge�Kutta sequence [70]

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Table A.3 � Original Kutta sequence [99]
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0
1
3

1
3

2
3 -1

3 1

1 1 -1 1
1
8

3
8

3
8

1
8

Table A.4 � The 3
8 -Kutta sequence [99]

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

35
384 0 500

1113
125
192

−2187
6784

11
84

Table A.5 � Dormand�Prince Runge�Kutta sequence [49]
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A.2 Directional splitting weights sequences

ω1 1

ω2 1

Table A.6 � First order Godunov splitting weights ωk

ω1 0.5

ω2 1

ω3 0.5

Table A.7 � Second order Strang splitting weights ωk

ω1 0.26833009578175993

ω2 0.91966152301739986

ω3 -0.18799161879915978

ω4 -0.18799161879915978

ω5 0.91966152301739986

ω6 0.26833009578175993

Table A.8 � Third order directional splitting weights ωk

ω1 0.5

ω2 -0.05032120814910445

ω3 -0.27516060407455222

ω4 0.55032120814910445

ω5 0.55032120814910445

ω6 0.55032120814910445

ω7 -0.27516060407455222

ω8 -0.05032120814910445

ω9 0.5

Table A.9 � Fourth order directional splitting weights ωk
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ω1 0.3922568052387787

ω2 0.7845136104775573

ω3 0.5100434119184577

ω4 0.2355732133593581

ω5 -0.4710533854097564

ω6 -1.1776799841788710

ω7 0.0687531682525201

ω8 1.3151863206839112

ω9 0.0687531682525201

ω10 -1.1776799841788710

ω11 -0.4710533854097564

ω12 0.2355732133593581

ω13 0.5100434119184577

ω14 0.7845136104775573

ω15 0.3922568052387787

Table A.10 � Sixth order directional splitting weights ωk [175]
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ω1 0.3145153251052165

ω2 0.629030650210433

ω3 0.9991900571895715

ω4 1.36934946416871

ω5 0.152381158138440

ω6 -1.06458714789183

ω7 0.299385475870660

ω8 1.66335809963315

ω9 -0.007805591481625

ω10 -1.67896928259640

ω11 -1.619218660405435

ω12 -1.55946803821447

ω13 -0.6238386128980215

ω14 0.311790812418427

ω15 0.98539084848119350

ω16 1.6589908845439600

ω17 0.98539084848119350

ω18 0.311790812418427

ω19 -0.6238386128980215

ω20 -1.55946803821447

ω21 -1.619218660405435

ω22 -1.67896928259640

ω23 -0.007805591481625

ω24 1.66335809963315

ω25 0.299385475870660

ω26 -1.06458714789183

ω27 0.152381158138440

ω28 1.36934946416871

ω29 0.9991900571895715

ω30 0.629030650210433

ω31 0.3145153251052165

Table A.11 � Eighth order directional splitting weights ωk [175]
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