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RÉSUMÉ I

Résumé

Ce travail est consacré à l’étude numérique de l’interaction entre un fluide compressible et une
structure indéformable, en adaptant une famille récente de schémas d’ordre très élevé à la prise
en compte de conditions aux bords particulières entre le fluide et la structure. Plus précisément,
on évalue l’apport de schémas d’ordre strictement supérieur à 3 par rapport à des stratégies plus
classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu’il est
possible de réaliser le couplage à tout ordre et qu’il existe des configurations pour lesquelles on
observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant
les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées
dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions
aux bords. Un schéma sur grilles cartésiennes décalées et d’ordre très élevé est proposé pour la
résolution des équations d’Euler en 1D et 2D. Ce schéma est basé sur le formalisme Lagrange-
projection et bien que formulé en énergie interne assure conservation et consistance faible grâce
à un correctif en énergie interne. Parallèlement, l’étude pour les systèmes hyperboliques linéaires
de discrétisation à l’ordre très élevé des conditions aux bords est faite. Elle met en évidence la
nécessité pour l’ordre élevé de s’intéresser à la stabilité des schémas ainsi obtenus. À partir de ces
travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour
les équations d’Euler en 1D et 2D. Enfin, une procédure de couplage entre fluide compressible et
structure indéformable est proposée.

Mots-clé :

Équations d’Euler, volumes finis, Lagrange-projection, grilles décalées, ordre très élevé, conditions
aux bords, couplage fluide-structure, stabilité.
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ABSTRACT V

Abstract

This work is devoted to the construction of stable and high-order numerical methods in order
to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done,
which highlights theoretical results about hyperbolic system of conservation laws, as well as
the methods available in the literature for the hydrodynamics simulation and the numerical
boundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids
to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-
remap formalism, and although formulated in internal energy, ensures both conservation and
weak consistency thanks to an internal energy corrector. In the same time, the study of high-
order numerical boundary treatment for linear hyperbolic system is done. It highlights the
necessity to focus especially on the linear stability of the effective scheme. Starting from the
linear results, the numerical boundary treatment with imposed normal velocity is done for Euler
equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is
realized, using the designed procedure for numerical boundary treatment.

Keywords:

Euler equations, finite volume, Lagrange-remap, staggered grids, high-order accuracy, numerical
boundary treatment, fluid-structure coupling, stability.
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Introduction

En français

Les phénomènes d’interactions fluide-structure sont cruciaux pour les problèmes multi-physi-
ques. Deux matériaux, de lois de comportement différentes, interagissent entre eux. Ici, un fluide
compressible et un corps rigide sont considérés. L’écoulement du fluide est fortement conditionné
par la forme de la structure ainsi que par son déplacement, tandis que le déplacement du solide
est régi par les forces et moments de pression exercés à sa surface par le fluide. C’est un problème
fortement couplé. Le couplage impacte directement la stabilité et la précision de la méthode
numérique employée. En outre, l’utilisation de méthodes numériques sur grilles cartésiennes
ajoute de la complexité à la discrétisation liée au fait que l’interface entre le fluide et la structure
coupe arbitrairement la grille cartésienne.

En 1964, Noh crée le premier schéma explicite lagrangien et eulérien pour l’interaction entre
un fluide et un corps rigide immobile [126]. Il propose un traitement conservatif de l’interface
par plan orthogonal à la direction de balayage. Ce traitement a permis pour la première fois de
retrouver par la simulation les effets d’un obstacle sur un écoulement compressible. Néanmoins,
la géométrie est discrétisée de manière peu précise, ce qui induit des effets de marche sur les
chocs réfléchis. En outre, ces effets de marche entraînent des erreurs d’ordre 1 qui deviennent
prépondérantes pour des écoulements complexes, et nuisent conséquemment à la fiabilité de la
méthode. De plus, sa discrétisation particulière de l’interface impacte directement sur la CFL,
les pas de temps peuvent être infiniment petit en fonction de la position de l’interface dans la
maille, ce qui peut provoquer l’intractabilité des calculs.

En 2003, Berger et al. proposent une technique de recombinaisons des mailles tronquées le
long de la frontière, dénommée le h-algorithme [12]. Ce travail est basé sur des critères purement
géométriques et fusionne des mailles adjacentes dans le cas où elles impacteraient la CFL. Ce
travail a permis de réduire fortement l’impact des mailles tronquées sur le calcul du pas de temps.
Néanmoins, la recombinaison des mailles tronquées est au plus d’ordre 2, et ne permet pas de
suivre efficacement les quantités conservatives à l’intérieur de ces mailles, particulièrement dans
le cas d’interfaces mobiles. La complexité de la forme de l’interface peut aussi induire des erreurs
importantes voire même empêcher la convergence de l’algorithme proposé. En 3D, le coût du
h-algorithme devient prohibitif et ne permet donc pas de gérer les frontières quelconques.

En 2006, Colella et al. proposent une nouvelle façon de reconstruire l’interface basée sur
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les fractions volumiques de présence [26]. Contrairement à Noh, cette méthode permet de réduire
considérablement les effets de marche à l’interface et reste conservative. Conjointement à l’utilisation
du h-algorithme, il n’y a pas d’impact sur la condition CFL. Néanmoins, la reconstruction faite
des interfaces ne permet pas d’excéder l’ordre 2 en espace.

Plus récemment, Tan et Shu proposent une méthode basée sur une procédure de Lax–Wendroff
inverse pour les conditions aux bords [156]. Cette méthode est a priori sans restriction CFL et
sans limitation quand à l’ordre de convergence de la méthode. Néanmoins, l’algèbre impliquée
dans la méthode est extrêmement lourde et devient prépondérante en terme de coût de calcul. Elle
n’est appliquée dans le cadre de leurs études qu’au cas du gaz parfait et aux schémas eulériens. De
plus, certaines instabilités apparaissent et, sans contrôle, empêchent la convergence des schémas
utilisés. Contrairement aux méthodes précédemment citées, il n’y a pas de preuve de conservation
de la masse, quantité de mouvement et de l’énergie totale à l’interface. Dans le cas des géométries
non-lipschitziennes, il est impossible, sans modification et détérioration, d’appliquer la méthode.

Partant de considérations générales concernant les systèmes hyperboliques de lois de conser-
vation, une étude est faite d’un ensemble de méthodes numériques pour simuler les équations d’un
fluide non-visqueux et compressible. L’accent est mis durant cette étude sur les schémas formulés
en énergie interne et sur maillages décalés. Enfin, une revue bibliographique fait apparaître qu’il
existe une multitude de méthodes permettant de simuler l’interaction entre un fluide compressible
et un corps rigide indéformable de manière stable. Cette revue est présentée dans le chapitre I. Des
méthodes d’ordre 2, stables et conservatives ont été créées. Des algorithmes géométriques de fusion
de mailles permettent d’éviter toute contrainte sur la CFL liée à la taille des mailles tronquées. En
outre, la procédure de Lax–Wendroff inverse permet de prendre en compte n’importe quelle con-
dition aux bords à l’ordre élevé. Néanmoins la difficulté principale réside dans la discrétisation
de la géométrie de l’interface qui impacte la montée en ordre ainsi que dans la stabilité de la
méthode. Les méthodes de type ordre élevé proposé par Tan et Shu s’impliquent dans le cadre
de schéma eulérien pur uniquement pour un gaz parfait. Elles sont en outre particulièrement
onéreuses algébriquement. Enfin, cette méthode n’est pas toujours stable et peut être inapplicable
dans le cas de certaines configurations géométriques.

C’est dans ce contexte que s’inscrit l’étude proposée ici. Elle consiste à développer une
méthode numérique stable, d’ordre arbitrairement élevé capable de modéliser et simuler les inter-
actions entre un fluide compressible et un corps rigide indéformable pour des schémas de type
Volumes Finis Lagrange-Projection d’ordre très élevé et conservatifs sur grilles cartésiennes ainsi
qu’à évaluer les gains en précision apportés par cette stratégie de couplage numérique.

La démarche a consisté dans un premier temps à étendre à l’ordre très élevé un schéma
2D Lagrange-Projection conservatif pour l’hydrodynamique compressible sur grilles cartésiennes
décalées. En se basant sur le système des grilles Arakawa, les variables ont été redistribuées afin de
faciliter l’intégration lagrangienne. Pour la première fois, la variable de masse est dédoublée sur
la grille décalée afin d’assurer conservation, robustesse et consistance. Le schéma 1D d’ordre élevé
Lagrange-projection sur grille décalée est basé sur une intégration en temps de type Runge–Kutta
et en espace de type Volumes Finis pour la phase lagrangienne. Afin d’assurer la capture correcte



INTRODUCTION 3

des chocs, pour la première fois, un correctif en énergie interne conservatif et d’ordre très élevé
est proposé. Ce correctif est rendu possible par l’idée nouvelle de discrétiser l’équation d’évolution
de l’énergie cinétique. La projection est basée sur l’intégration analytique par polynomes de
Lagrange et est adaptée ici aux particularités des grilles cartésiennes décalées. Ainsi un schéma
1D conservatif et d’ordre élevé est obtenu. Son extension dans un cadre multi-dimensionnel par
l’utilisation de séquences de balayage directionnel d’ordre élevé est faite. L’ordre très élevé est
atteint expérimentalement (cf table 1). Enfin une extension aux fluides visqueux compressibles
est proposée. Ce travail est présenté dans le chapitre II et a fait l’objet d’une publication [35].

La démarche a consisté dans un second temps à prendre en compte dans le cas des systèmes
linéaires n’importe quelles conditions aux bords. Pour cela, on a développé une famille de méthodes
d’ordre très élevé et stable pour des conditions aux bords sur frontières quelconques. Partant d’un
système linéaire simplifié qu’est l’advection à vitesse constante, on développe la construction
des opérateurs dits de reconstruction permettant de prendre en compte la condition aux bords
imposée. Ces opérateurs de reconstruction sont d’ordre arbitrairement élevé et leur stabilité est
étudiée. Dans l’idée de pouvoir déterminer a priori la stabilité d’opérateurs pour des systèmes plus
complexes que l’advection, on crée la notion de stabilité réduite. Cette notion est ensuite utilisée
dans le cas des systèmes linéaires hyperboliques. En particulier, une étude numérique est faite
pour déterminer la stabilité réduite des opérateurs de reconstruction pour le cas du systèmes des
équations des ondes. Ce travail est présenté dans le chapitre III et a fait l’objet d’une publication
[34].

À partir des caractéristiques de stabilité des opérateurs de reconstruction dans le cas linéaire,
la démarche a consisté dans un troisième temps à étendre les méthodes stables au cas non-linéaire
des équations d’Euler 1D. Le caractère sous-déterminé du système obtenu conduit à prendre en
compte une équation supplémentaire. Deux choix sont effectués. Le premier choix est basé sur
une hypothèse faite sur le jeu d’équations aux dérivées partielles. Le second choix est lui basé sur
l’utilisation d’un stencil plus large, afin d’éviter toute hypothèse sur les propriétés de l’écoulement.
Enfin, on a étendu la méthode 1D au cas multi-dimensionnel, en se basant sur une méthode de
balayage directionnel. La méthode ainsi développée permet de prendre en compte les conditions
aux bords imposées en vitesse. En particulier, on a montré que c’était équivalent à réaliser le
couplage entre un fluide compressible et un corps rigide indéformable de masse infinie. Ce travail
est présenté dans le chapitre IV et a fait l’objet d’une publication [34].

Enfin, à partir de la discrétisation des conditions aux bords pour les équations d’Euler, le
couplage entre un fluide compressible et un corps rigide de masse finie est réalisé. La méthode
précédemment développée permet de calculer à l’ordre élevé les intégrales des moments et forces
exercés sur le solide. Par conséquent, le couplage en temps comme en espace entre le fluide
compressible et le corps rigide est naturel du fait de la discrétisation spatiale choisie pour l’interface.
Pour ce faire, deux nouveaux schémas sont proposés, un premier basé sur une procédure de type
Cauchy–Kovalevski et un second basé sur une procédure de type Runge–Kutta. Les propriétés de
mouvement de corps rigides sont vérifiées. Enfin, on illustre numériquement la consistance, la
convergence et la stabilité de la méthode. Ce travail est présenté dans le chapitre V.
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Au terme de cette étude, on arrive à la conclusion que le couplage proposé est possible à
l’ordre élevé (cf figure 2) et qu’il existe des configurations pour lesquelles un gain en précision est
obtenu (cf figure 1).
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In english

Fluid-structure interaction phenomena are important in multi-physics problems. It involves two
materials that have different behaviours, different constitutive laws, but that are coupled one to
another. Here, a compressible fluid and a rigid body are considered. The fluid flow is strongly
conditioned by the shape of the solid but also by its displacement, and the solid motion is trig-
gered by pressure forces and torques exerted on its boundary. This is a strongly coupled problem,
which can be a predicament for the stability and accuracy of numerical methods. Indeed, for
the development of numerical methods for fluid-structure interaction, the main difficulty is to
obtain, without further CFL restriction, a stable and high-order accurate coupling between fluid
and structure solvers. An additional difficulty is that for general problems, it is quite impossible
to determine a priori how the coupling behaves, if the fluid forces and torques are predominant
or if it is rather the displacement of the rigid body. This difficulty increases furthermore if one
considers that the fluid solver is based on Cartesian grids. Indeed, the boundary intersects in an
arbitrary fashion the grids. Increasing the order of accuracy leads to unstable methods, which
prevent most uses of the coupling algorithm, as the schemes do not converge.

In 1964, Noh builds the first explicit Lagrangian and Eulerian scheme for the fluid-structure inter-
action in [126]. The structure is considered motionless and without deformations. As the scheme
is based on directional splitting, he proposes a conservative treatment of the interface, consid-
ering that the boundary of the structure is always orthogonal or parallel to the cells interfaces.
The numerical treatment detailed by Noh enables, for the first time, to recover using simulations,
the effects of an obstacle on a fluid flow. However, the obstacle boundary is discretized abruptly,
which induces "step effects" on reflected shocks. Moreover, the CFL restriction is directly im-
pacted by the discretization proposed by Noh. Indeed, cells near interfaces are considered to
be cut and then, the smaller the cut-cells, the stronger the CFL restriction. Note also that due
to the geometrical approximation, the method is at most first order accurate. In 2003, Berger
and al. propose a technique in order to mix cells near the boundary, called the h-algorithm [12].
This work relies on purely geometrical criteria to mix adjacent cells, if their size lead to CFL
restriction. This work tends to reduce drastically the impact of small cut-cells on the time-step
given by the CFL restriction. Nonetheless, the cut-cells mixing is at most second order accu-
rate. For moving obstacles, special procedure must be developed to dispatch quantities inside
mix-cells into the neighbourhood. Moreover, and especially in 3D, the complexity of the rigid
body geometric shape induces large errors (and eventually prevent the scheme from converging).
The more complex the geometric shape, the more difficult it is to deal with their numerical
treatment. In 2006, Colella and al. in [26] develop an innovative way of tracking the interface
based on volume fractions. As a contrary to Noh, this method reduces considerably the "step
effects" due to the geometrical approximations and it is still conservative. However, due to the
geometric approximation of the interface, the scheme is at most second order accurate in space.
More recently, Tan and Shu propose a method based on the inverse Lax–Wendroff procedure for
numerical boundary treatment in [156]. This method is a priori without any CFL restriction and
can be very high-order accurate. However, the algebra used to design the method is extremely
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heavy and the method in itself is only applied for perfect gases and for Eulerian schemes. As a
contrary to the previous method, the procedure is not conservative in mass, momentum and total
energy. For non-Lipschitz geometrical shapes, it is impossible to maintain high-order accuracy
without modification of the procedure.

Starting from general considerations on hyperbolic systems of conservation laws, a review is done
concerning the numerical methods available in the literature to approximate the compressible
Euler equations. The emphasis is laid on schemes formulated in internal energy and on staggered
grids. Last, an overview of the numerical methods available in the literature for fluid-structure
interaction is done. Fictitious domain methods are extensively detailed. This work is presented in
chapter I. Stable, conservative and second order accurate numerical methods have been designed
to tackle fluid-structure interaction. Most are based on geometric approximations of the interface,
as well as physical considerations concerning the behaviour of the fluid near the boundary. A
focus is especially done on the possible CFL restriction induced by the chosen numerical boundary
treatment.

It is in this very context that lies the work proposed in this manuscript. It consists in developing a
stable and high-order accurate numerical method for fluid-structure interactions. The method is
designed for conservative and high-order accurate finite volume schemes based on the Lagrange-
remap formalism for Cartesian grids.

Firstly, the extension to high-order accuracy in both time and space of a hydrodynamics scheme
on staggered Cartesian grids is done. The scheme is based on a Lagrange-remap formalism
and is formulated in internal energy. Starting from the Arakawa grids system, variables are
distributed on the staggered grids to ease the resolution of the Lagrangian system. The 1D
scheme is based on a Runge–Kutta for the time integration and uses finite volume formalism.
The scheme is conservative in mass, momentum and total energy (see lemmas II.2 and II.8) and
weakly consistent for the compressible Euler equations (see theorem II.9). An internal energy
corrector is developed and is the key for both conservation and weak consistency. Such a corrector
derives from the discretization of the kinetic energy, independently of the momentum. The
remapping phase is based on standard polynomial projection, but adapted here to the special
case of staggered grids. The extension to multi-dimensions is made possible thanks to high-
order accurate directional splitting methods. Results concerning the accuracy and the order of
convergence are displayed in table 1. Then, an extension of the scheme for compressible Navier–
Stokes equations is proposed. A part of this works has been published in "Comptes Rendus
Mathématique" [35] and is extensively detailed in chapter II.

Secondly, for linear hyperbolic system of conservation laws, a numerical boundary treatment is
developed. For any well-posed boundary conditions, a stable and high-order accurate discretiza-
tion of boundary condition is proposed. Starting from the advection equation problem, a generic
way of building operators to take into account the boundary condition is detailed. Those opera-
tors, called reconstruction operators, enable to build ghost-cells values outside the fluid domain
without impacting CFL restriction. In order to determine if a scheme with a given numerical
boundary treatment is stable, the notion of reduced stability is introduced in definition III.1.
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Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 3.3e-1 · 1.5e-1 · 2.6e-1 · 1.7e-1 · 1.5e-1 · 1.1e-1 ·
100 9.5e-2 1.79 1.9e-2 3.01 4.9e-2 2.41 8.9e-3 4.27 1.2e-2 3.70 2.0e-3 5.83
200 1.6e-2 2.54 1.0e-3 4.19 1.9e-3 4.68 6.5e-5 7.10 8.0e-5 7.20 5.2e-6 8.59
400 2.2e-3 2.89 6.1e-5 4.06 6.1e-5 4.96 7.2e-7 6.48 6.3e-7 7.00 1.6e-8 8.37
800 2.8e-4 2.97 3.9e-6 3.99 1.9e-6 4.98 9.9e-9 6.18 5.0e-9 6.97 1.1e-10 7.17
1600 3.5e-5 2.99 2.4e-7 3.99 5.98e-8 4.99 1.5e-10 6.02 3.9e-11 6.99 3.4e-12 ?

Table 1 – Illustration of the high-order accuracy of the staggered schemes: l1-error in density
and experimental order of convergence for the 2D Lagrange-remap staggered scheme
taken on the isentropic vortex advection test problem [175], until t = 20, CFL=0.9. ?
indicates machine precision reached.

This notion provides practical informations about the scheme stability and is used to determine a
priori if a scheme is stable or not. It is then applied on the wave equations problem and later to
generic linear hyperbolic systems. This work is presented in chapter III and has been submitted
to a journal [34].

Thirdly, using results obtained in chapter III for the linear case, the method is extended for
the numerical boundary treatment of Euler equations. Works are first performed in 1D case,
considering the boundary condition to be imposed on the normal velocity. Interest of high-
order boundary treatment is highlighted in fig. 1. For this special case, the global accuracy is
mostly due to the numerical boundary treatment accuracy. It highlights the interest of hav-
ing a high order discretization of boundary conditions, particularly for high order fluid solver.
The procedure is first detailed for a simple second order accurate example. One identifies that
the non-inversibility of the Lagrangian system Jacobian matrix requires another equation to be
added. Two methods are derived. The first one consists in adding an equation that describes
a peculiar feature of the flow. The flow is considered to be spatially isentropic near the bound-
ary. A theoretical result is given in lemma IV.1 which characterizes conditions for existence and
uniqueness of the reconstruction near the boundary. The second method consists in enlarging
the stencil on which the reconstruction is based without any hypothesis on the flow structure
near the boundary. Theoretical results are available in lemmas IV.2 and IV.3. They characterize
once again conditions for existence and uniqueness of the reconstruction. Then, the method
is extended to the multidimensional case, using directional splitting method. To prevent any
numerical instabilities from occuring, a least-square procedure is developed, as well as a MOOD
one in case of strong shocks. This is explained and illustrated in chapter IV and has also been
submitted to a journal [34].

Fourthly and lastly, using the reconstruction method proposed in chapter IV, the coupling be-
tween a compressible fluid and a rigid body is done. A semi-discrete scheme for rigid body
dynamics is derived to compute with high-order accuracy the forces and torques resultants ex-
erted on the rigid body boundary. The coupling is straightforward using the reconstruction
method. The time integration is done to match the one of the interior scheme, whether with
a Runge–Kutta one or with a Cauchy–Kovalevskaya one. For multidimensional problems, di-
rectional splitting method is applied. As illustrated in fig. 2, the proposed coupling is able to
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(a) High-order reconstruction (b) 2ndorder reconstruction

Figure 1 – An oscillating boundary conditions is prescribed on the left boundary. It highlights
the impact of high-order accurate numerical boundary treatment for the restitution of
physical oscillations. Velocity profiles are depicted with 10 cells per wavelength at T =
9, for 3rd, 4th and 6th-order inner schemes, with a 2nd-order (left) or with respectively
the same orders (right) boundary reconstructions. High-order accurate boundary
treatment outperforms 2nd-order accurate ones in the whole domain, because the
gain of accuracy propagates in the domain (we expect this kind of behaviour to occur
when considering fluid / vibrating structures interactions.).

recover complex fluid flow structures.

Figure 2 – Rigid-body and compressible fluid coupling. The cylinder is lift off by an incoming
shock wave. In return, the shock wave is reflected on the cylinder, and the fluid is
displaced by the structure. Complex structures are developed due to the reflection on
the top and bottom channel as well as the rigid cylinder. 60 contours are displayed
representing fluid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.



Chapter I

Hyperbolic systems of conservation
laws and fluid-structure interaction

Ce chapitre est une introduction aux méthodes numériques pour l’approximation de problèmes
multiphysiques complexes. Le mode de présentation consiste à réunir dans un cadre commun des
éléments classiques de la littérature, mais qui sont souvent présentés dans des contextes très
différents. Dans un premier temps, des considérations générales sur les systèmes hyperboliques
de lois de conservations sont rappelées. Dans un second temps, la présentation de différentes
méthodes pour approcher numériquement la solution de ce type de système est faite : le cas
du système hydrodynamique compressible ou des équations d’Euler est plus particulièrement
étudié. Ces méthodes seront rangées dans deux familles distinctes. La première famille recense
les méthodes basées sur un maillage d’éléments permettant d’approcher au mieux la déformation
et/ou les bords du domaine. La seconde famille rassemble les méthodes d’ordre élevé, qu’elles
soient sur grilles cartésiennes ou sur grilles non-structurées. Enfin, dans un troisième temps,
une revue sera faite des différentes méthodes numériques présentes dans la littérature concernant
le problème de la discrétisation et de l’approximation pour l’interaction fluide-structure. L’accent
sera particulièrement mis sur le couplage en espace comme en temps de la méthode numérique
pour le fluide avec celle pour la structure. Le couplage en espace portera essentiellement sur
l’utilisation de méthodes de type domaine fictif.
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This chapter is dedicated to an overview of numerical methods for the approximation of complex
multi-physics problems. First, general considerations on hyperbolic systems of conservation
laws are given. Second, the emphasis is laid on numerical approximations of such problems,
with a special focus and care for the compressible hydrodynamics system. Numerical methods
are classified into two families. The first family is for mesh-based method to approximate the
deformation and/or the boundary with geometric elements. The second one is for the high-order
accurate Direct Eulerian or Lagrange-remap methods on Cartesian grids as well as unstructured
ones. Third, a focus is made on discretizations and approximations methods for the fluid-
structure interaction problem. A special interest is made in the time and space coupling between
the numerical method for the fluid part and the one for the structure part. A focus for the space
coupling is made on fictitious domain methods.

I-1 Hyperbolic systems of conservation laws and their numerical approximations . . 10

I-1.1 Hyperbolic system of conservation laws in one dimension . . . . . . . . . 10

I-1.2 Numerical methods for conservation laws and their properties . . . . . . 17

I-2 Numerical methods for compressible hydrodynamics . . . . . . . . . . . . . . . 28

I-2.1 Euler and Lagrange equations for compressible hydrodynamics . . . . . 28

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics . . . . . 32

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes . . . 36

I-2.4 Artificial viscosities and hyperviscosities . . . . . . . . . . . . . . . . . . 39

I-3 Numerical methods for fluid-structure interaction . . . . . . . . . . . . . . . . . 41

I-3.1 Time coupling method for fluid-structure interaction . . . . . . . . . . . 42

I-3.2 Space coupling method for fluid-structure interaction . . . . . . . . . . . 45

I-1 Hyperbolic systems of conservation laws and their numerical
approximations

This section is dedicated to the study of hyperbolic systems of conservation laws in one dimension
and to their numerical approximations. First, mathematical properties of such systems are
detailed. Second, a short overview of numerical approximations for such problems is depicted.
Last, stability, consistency and convergence properties of the numerical schemes are presented
as well as the analytic tools to analyze those properties for a given scheme.

I-1.1 Hyperbolic system of conservation laws in one dimension

For general non-linear conservation laws, assuming the data to be smooth over time, one may
use the method of characteristics to determine smooth solutions to the hyperbolic system. But,
the non-linearity introduces generally discontinuity in a finite time, even for smooth initial data.
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Using the concept of weak solutions for conservation laws [103, 107, 104, 142, 61, 47, 45] and
especially the Rankine-Hugoniot jump conditions, one may still define solutions to the hyperbolic
system. However, uniqueness for the Cauchy problem is lost in the process. Adding the concept
of entropic solutions, uniqueness for the Cauchy problem is proven in the special case of scalar
conservation laws. In the special case of fluid dynamics, the thermodynamics yield a natural
mathematical entropy.

Consider an hyperbolic system of conservation laws in one space dimension under the form

∂tU + ∂xf(U) = 0, x ∈ Ω, t > 0. (I.1)

Assuming that Ω is a bounded domain of R, one gets

∂t

∫
Ω
U +

∫
∂Ω
f(U) = 0, t > 0. (I.2)

For special condition of no-exchange with the exterior, i.e. f(U) is null along the boundary of
Ω, using eq. (I.2) one gets the global conservation of U

∂t

∫
Ω
U = 0, t > 0. (I.3)

Using eq. (I.3), the average value of U over Ω defined as

U :=
1

|Ω|

∫
Ω
U(x, t)dx

is constant in time for no-exchange boundary conditions. It is usual to consider that the unknown
U(x, t) belongs to a convex open set U ⊂ RN . The flux function f is defined as a smooth enough
function, typically f ∈ C 1

f : U −→ RN

U 7−→ f(U)

Less constrictive hypothesis of regularity on the flux function f are possible [61], but not detailed
hereafter. In the peculiar case, where N = 1, one gets a scalar conservation law. For a scalar
conservation law, one drops the vectorial notation and use u instead of U and f rather than f .

I-1.1.1 Smooth solutions of conservation laws

First, consider that U ∈ C 1(R × R+,∗,U ) and U satisfies eq. (I.1). Then U is said to be a
classical solution. In peculiar as U ∈ C 1(R × R+,∗,U ), it yields that ∂tU and ∂xf(U) are
well-defined for any point (x, t) ∈ R× R+,∗.

For a scalar conservation law, let a(u) = f ′(u) then the Cauchy problem written in non-
conservative form writes
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{
∂tu+ a(u)∂xu = 0, x ∈ R, t > 0,

u(x, 0) = u0(x)
(I.4)

Theorem I.1 (Classical solution to the Cauchy problem [61]). Let f ∈ C 2(R), u0 ∈ C 1(R), and
a ∈ C 1(R). Assume D defined as

D = inf
x∈R
{∂x(a(u0(x))} (I.5)

is real. Let

T ? =

{
+∞, for D ≥ 0

− 1
D , otherwise.

(I.6)

If T ? is not zero, then the Cauchy problem in eq. (I.4) has a unique solution u ∈ C 1(R×[0, T ?[ ,R).

The theorem I.1 gives the existence of a smooth solution for 0 < t < T ?. If D is positive, then it
yields the existence for all time t > 0. But otherwise, it is all but natural to want to define u for
time greater than T ?. In fact, for a non-positive value of D, as t increases toward T ?, the profile
of u is going steeper until it reaches a discontinuity. At this point, the solution is no-longer in
C 1. Then the definition of classical solution as introduced previously is too narrow. For such
cases, the weak solutions are introduced in order to allow discontinuities.

I-1.1.2 Weak solutions of conservation laws

Assume that U satisfies the initial conditions

U(x, 0) = U0(x), x ∈ R. (I.7)

The following definition extends the definition of classical solution presented in the theorem I.1
to the case of functions with discontinuities.

Definition I.1 (Weak solution to the Cauchy problem [47]). Let U0 ∈ L∞loc(R)N . A function
U is a weak solution of eqs. (I.1) and (I.7) if U(x, t) ∈ U almost everywhere and if for any
φ ∈ C 1

0 (R× R+,∗)N compactly supported∫
R

∫ ∞
0

(U(x, t)∂tφ+ f(U(x, t))∂xφ) dxdt+

∫
R
U0(x)φ(x, 0)dx = 0 (I.8)

As a contrary to the original writing of eqs. (I.1) and (I.7), eq. (I.8) does not require the definition
of the terms ∂tU and ∂xf(U). Moreover it contains intrinsically the initial conditions U0. In
practice, a weak solution U in the sense of definition I.1 is said to satisfy eq. (I.1) in the sense
of distributions. Moreover if a function U is a weak solution and is smooth, then it is a classical
solution. It is stated in proposition I.2.

Proposition I.2 (A smooth weak solution is a classical solution [47]). Let U be a weak solution
in the sense of definition I.1. Assume U ∈ C 1(R× R+,∗,U ). Then U is a classical solution to
the Cauchy problem stated in eqs. (I.1) and (I.7).
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For physical states of U , it is interesting to focus on piecewise continuous functions. Those
are functions that contains a finite number of discontinuities and are otherwise continuous on
intervals. A very important result is the theorem I.3.

Theorem I.3 (Rankine–Hugoniot conditions [61]). Let initial condition U0 be piecewise C 1.
U ∈ L∞loc(R × R+,∗)N a piecewise C 1 function is a weak solution of eqs. (I.1) and (I.7) if and
only if

i) U is a classical solution of eqs. (I.1) and (I.7) on intervals where U is smooth.

ii) U satisfies the Rankine–Hugoniot jump conditions on the discontinuity points xc

f(U(xrc, t))− f(U(xlc, t)) = σ(U(xrc, t)−U(xlc, t)) (I.9)

where σ is the discontinuity velocity, i.e. σ = dxc
dt .

So far, we have exposed the notion of weak solutions to the Cauchy problem defined in eqs. (I.1)
and (I.7). Using the Rankine–Hugoniot conditions defined in theorem I.3, one may build discon-
tinuous solutions. However, it occurs that both solutions may coexist. The uniqueness of the
Cauchy problem is then not satisfied. To get uniqueness back, and only in the special case of
scalar conservation laws, the concepts of mathematical entropy and therefore entropic solutions
are introduced.

I-1.1.3 Entropic solutions of conservation laws

For physical systems, the second law of the thermodynamics states that the entropy of a system
increases over time or stays constant for an isolated system. The increase of entropy is synonym
of irreversibility of processes. On the partial differential system, it yields another equation, eg.
for smooth flows satisfying the Euler equations the entropy is advected.

Definition I.2 (Mathematical entropy [47]). Let Ω a open bounded subset of RN . Consider a
flux function f of the form

f : Ω −→ RN

U 7−→ f(U).

A strictly convex function η such that

η : Ω −→ R
U 7−→ η(U)

is a mathematical entropy for the conservation laws presented in eq. (I.1) if and only if there is
an entropy flux ζ satisfying

dζ(U) = dη(U) · df(U). (I.10)

Any classical solution of eq. (I.1) satisfies

∂tη(U) + ∂xζ(U) = 0 (I.11)
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The definition of the entropy flux based on eq. (I.10) gives immediately the following propriety.

Proposition I.4 (Hyperbolicity in 1D [47]). Assume there exist an entropy and an entropy flux
(η, ζ) for eq. (I.1). Then the system is hyperbolic. Especially the matrix df(U) is diagonalizable
over the reals.

Proposition I.4 can be extended to multidimensional systems. The following proposition gives
hyperbolicity results for 2D systems.

Proposition I.5 (Hyperbolicity in 2D [47]). Assume there exist an entropy and entropy fluxes
(η, ζ, ξ) for the 2D conservation laws system

∂tU + ∂xf(U) + ∂yg(U) = 0. (I.12)

Then the system is hyperbolic. Especially for any vector n = (nx, ny) ∈ R2 such that ‖n‖ = 1,
the matrix A = df(U) · nx + dg(U) · ny is diagonalizable over the reals.

Remark I.1. Propositions I.4 and I.5 hold for three space dimensions systems.

Propositions I.4 and I.5 are particularly useful for the finite volume schemes that will be presented
later on. Now, the emphasis is laid on scalar conservation law. Indeed, for such a law, any strictly
convex function η is a mathematical entropy function.

Theorem I.6 (Viscous limit of a scalar conservation law [47]). Let η be a mathematical entropy
for the scalar conservation law eq. (I.1) with the associated entropy flux ζ. Let (uε)ε>0 a C 2

family of solution of
∂tu

ε + ∂xf(uε) = ε∂xxu
ε, x ∈ R, t > 0. (I.13)

Assume that (uε) is uniformedly bounded in L∞(R× ]0 :∞[) such that

∃C > 0,∀ε > 0, ‖uε‖L∞(R× ]0 :∞[) ≤ C. (I.14)

Assume that (uε)ε>0 converges almost everywhere to u ∈ L∞(R × ]0 :∞[). Then u is solution
in the sense of distributions to eq. (I.1) and satisfies the entropic inequality in the sense of
distribution

∂tη(u) + ∂xζ(u) ≤ 0 in the sense of distribution, (I.15)

which is equivalent to, for any φ ∈ C∞(R× ]0 :∞[) compactly supported and φ ≥ 0∫
R×]0:∞[

(η(u)∂tφ+ ζ(u)∂xφ)dxdt ≥ 0. (I.16)

The theorem I.6 gives a characterization of a solution in the sense of distributions to eq. (I.1)
which satisfies the entropy inequality (I.16). It seems all the more natural now, to define what
is an entropic solution of a conservation law, and to determine conditions to get existence and
uniqueness of such a solution.



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 15

Definition I.3 (Entropic solution of a conservation law). Let u0 ∈ L∞(R). Let u ∈ L∞(R ×
]0 :∞[) a weak solution to the scalar conservation law eq. (I.1) with the initial condition u0.
The function u is said to be an entropic solution of the Cauchy problem if for any mathematical
entropy pair (η, ζ), it satisfies eq. (I.16).

Theorem I.7 (Existence and uniqueness of an entropic solution to the Cauchy problem [61]).
Suppose that f is a C 1 function and that the initial condition u0 lies in L∞(R). Then the Cauchy
problem with initial condition u0 has a unique entropic solution to the scalar conservation law
eq. (I.1) which satisfies the following conditions

i) u ∈ L∞(R× ]0 :∞[),

ii) ‖u‖L∞(R×]0:∞[) ≤ ‖u0‖L∞(R)

iii) Moreover, if u0 satisfies a bounded inequality, s.t.

∃ (α, β) ∈ R2, α ≤ u0(x) ≤ β, for almost every x ∈ R

then
α ≤ u ≤ β, for almost every x ∈ R, ∀t > 0

Previous theorem only applies for the Cauchy problem with initial condition. For most cases,
boundary conditions have to be prescribed. In some cases, physical considerations give natural
boundary conditions, but it is not always the case, and thus, taking into account boundary
conditions is both tricky and a hard problem to tackle. To understand the boundary conditions
mechanism, the initial boundary value problem is introduced.

I-1.1.4 The initial boundary value problem

Consider the classical initial boundary value problem in the domain x > 0, t > 0 which writes
∂tU + ∂xf(U) = 0, x > 0, t > 0

U(x, 0) = U0(x), x > 0

U(0, t) = g(t), t > 0

(I.17)

The problem depicted in eq. (I.17) is generally ill-posed. Boundary conditions must be prescribed
accordingly to the eigenvalues of ∇Uf and not arbitrarily. The study presented here only
concerns linear hyperbolic systems.

One-dimensional advection equation

The one-dimensional advection problem with prescribed boundary conditions writes as


∂tu+ a∂xu = 0, x > 0, t > 0

u(x, 0) = u0(x), x > 0

u(0, t) = g(t), t > 0

(I.18)
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The problem is well-posed in the sense of Kreiss [96] if a > 0. For a negative a, no boundary
conditions are required at x = 0, and the solution is trivially

u(x, t) = u0(x− at), x > 0, t > 0.

For a > 0, solution to eq. (I.18) writes

u(x, t) =

{
u0(x− at) for x > at

g(t− x
a ) for x < at

(I.19)

Proposition I.8 (Classical solution [96]). u ∈ C 1 is a classical solution of eq. (I.18) if

i) u0 ∈ C 1

ii) g ∈ C 1

iii) u0 and g satisfy the compatibility relation

g(0) = u0(0), ∂tg(0) = −a∂xu0(0). (I.20)

Incrementally, u belongs to C p, p > 0 if u0 and g belong to C p and if they satisfy the compatibility
relation

∂kt g(0) = (−a)k∂kxu0(0), for 0 ≤ k ≤ p. (I.21)

One-dimensional linear systems

Consider a linear hyperbolic system. Let the matrix A satisfy A = ∇Uf(U) which is indepen-
dent of U . The initial boundary value problem for linear hyperbolic system writes


∂tU +A∂xU = 0, x > 0, t > 0

U(x, 0) = U0(x), x > 0

BU(0, t) = Bg(t), t > 0

(I.22)

The following theorem gives conditions for the well-posedness of eq. (I.22).

Theorem I.9 (Uniform Kreiss Condition for well-posedness [96]). Consider the problem depicted
in eq. (I.22). Let q be the number of strictly positive eigenvalues of the matrix A ∈ Rp×p. Denote
the matrix T ∈ Rp×q formed by the q eigenvectors of A whose eigenvalues are strictly positive as
columns. The initial boundary value problem is said well-posed if the matrix B ∈ Rq×p is such
that the matrix BT ∈ Rq×q is invertible.

Remark I.2. In order to obtain a classical solution U to eq. (I.22), initial conditions and boundary
conditions must belong to C 1 and satisfy a compatibility relation, which writes as

BU0(0) = Bg(0), B∂tg(0) = −B ·A∂xU0(0). (I.23)
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The extension of theorem I.9 to multiple space-dimensions problem is known as the Uniform
Kreiss-Lopantiskii Condition [97]. Non-linear hyperbolic system are not detailed here. Often
one uses a quasi-linear form, assuming the matrix A to be independent of U and applying the
same theory as for linear systems. Much more can be said and proven for hyperbolic systems of
conservation laws and initial boundary value problems. One may extend some of the previous
definition and theorems to multiple space dimensions. Only a short overview of the main results
concerning hyperbolic systems of conservation laws has been given. One may refer to [103,
107, 104, 48, 61] for more details on the subject. The problem of numerical approximations for
hyperbolic system of conservation laws is now focused on.

I-1.2 Numerical methods for conservation laws and their properties

Two numerical methods for conservation laws are presented. General system of conservation laws
in two dimensions on a bounded domain Ω takes the following form

∂tU + ∂xF (U) + ∂yG(U) = 0, t > 0, (x, y) ∈ Ω (I.24)

Assume that there exists one entropy triplet (η, ζ, ξ) for the conservation laws in eq. (I.24). Two
main numerical methods to solve conservation laws as in eq. (I.24) are distinguished in this part:
finite difference schemes and finite volume schemes.

It is of great interest to check if a scheme satisfies a certain number of properties:

i) consistency of the scheme

ii) linear stability for the Cauchy problem,

iii) linear stability for the initial boundary value problem,

iv) discrete conservation of U ,

v) discrete entropy inequalities.

These properties are detailed later on.

I-1.2.1 Space discretization for conservation laws

Two space discretizations for conservation laws, commonly used in the literature [62, 107, 47, 61]
are considered. The finite difference formalism consists in a regular Cartesian repartition of points
to discretize the bounded domain. With such a repartition of points, it is particularly convenient
to use equally-spaced polynomial reconstruction. The name originates from the fact that space
derivatives are computed using finite differences of the variables placed on the nodes. A possible
extension of finite difference schemes is to consider finite volume schemes on regular Cartesian
grids. For this kind of schemes, the control volumes are regular, equally spaced and of same
size. More generally, the finite volume formalism consists in integrating the system of partial
derivatives equation on control volumes. For conservation laws, the presence of the divergence
greatly simplifies the numerical computation, transforming it into a numerical computation of
fluxes on the control volumes boundaries.
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Finite difference schemes

First, a uniform grid {xi, yj} is considered in space such that

xi+1 − xi=∆x, ∀ i ∈ [0 : Nx[ ,

yj+1 − yj=∆y, ∀ j ∈ [0 : Ny[ .
(I.25)

We use the notation Un
i,j for an approximation of U at time t = tn and at position (x = xi, y =

yj). Such a discretization of the space is depicted on fig. I.1 with the variables Un
i,j positionned

at each grid nodes (xi, yj).

Un
i,jUn

i−1,j Un
i+1,j

Un
i,j−1

Un
i,j+1

Figure I.1 – Space discretization for centered finite difference schemes on a Cartesian grid

Two kind of difference schemes are possible. The first one is based really on finite differences
and the approximation of spatial derivative of f(U) and g(U). Those kind of schemes writes

Un+1
i,j = Un

i,j −
tn+1 − tn

∆x
Dx · f(Un)− tn+1 − tn

∆y
Dy · g(Un) (I.26)

where Dx and Dy are discrete approximations of respectively the x- and y-space derivatives.
Considering hyperbolic systems of conservation laws, it is convenient to have a discrete conser-
vation form of eq. (I.26). Indeed, for some discretization of space derivatives, one may rewrite
eq. (I.26) under a conservative form as

Un+1
i,j = Un

i,j −
tn+1 − tn

∆x

(
f?
i+ 1

2
,j
− f?

i− 1
2
,j

)
− tn+1 − tn

∆y

(
g?
i,j+ 1

2

− g?
i,j− 1

2

)
. (I.27)

Remark I.3. Any formulation as depicted in eq. (I.27) may be rewritten as in eq. (I.26). The
reverse is untrue. Examples of (i, j)-dependent discretization of the space derivatives may yield
to a non-conservative discretization.

Finite volume schemes on Cartesian grids

Keeping the notations for the grid, one defines a control volume with as a degree of freedom



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 19

the average value of U inside this control volume. This way, one rewrites any central difference
schemes as a finite volume scheme on Cartesian grids. Finite volume schemes are based on an
integration of eq. (I.24) over a control volume K. It yields

∂t

∫
K
UdV +

∫
∂K

(f(U) · nx + g(U) · ny)dS = 0. (I.28)

For finite volume schemes on Cartesian grids, one uses the following definition of the control
volume denoted Ki+ 1

2
,j+ 1

2

Ki+ 1
2
,j+ 1

2
= ]xi, xi+1[× ]yj , yj+1[ . (I.29)

Denoting the average value of U over a control volume Ki+ 1
2
,j+ 1

2
as U i+ 1

2
,j+ 1

2
(see fig. I.2), it

yields the following scheme for Cartesian grids

U
n+1
i+ 1

2
,j+ 1

2
= U

n
i+ 1

2
,j+ 1

2
− tn+1 − tn

∆x

(
f?
i+1,j+ 1

2

− f?
i,j+ 1

2

)
− tn+1 − tn

∆y

(
g?
i+ 1

2
,j+1
− g?

i+ 1
2
,j

)
(I.30)

where f? and g? are the numerical fluxes at the boundary. Under this peculiar form, and
considering vanishing fluxes at the boundary or periodic boundary conditions, by summing on
every i and j, one immediately gets the conservation of U .

U
n
i+ 1

2
,j+ 1

2

Figure I.2 – Space discretization for centered finite volume schemes on a Cartesian grid

Finite volume schemes on unstructured grids

Let T be a tessellation of the bounded domain in which eq. (I.24) is solved. The idea for finite
volume on unstructured grids is to consider the control volumes as members of T . An example
of control volumes is depicted in fig. I.3. Using proposition I.5 and assuming that the normal
outward the control volume is defined, a generic numerical conservative scheme writes

U
n+1
K = U

n
K −

tn+1 − tn

|K|
∑
∂Kq

|∂Kq|
(
f?∂Kq , g

?
∂Kq

)
· n∂Kq (I.31)
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where f? and g? are the numerical fluxes at the boundary and n∂Kq the normal to ∂Kq outward
K. Under this peculiar form, and considering vanishing fluxes at the boundary or periodic
boundary conditions, by summing for every K in T , one immediately gets the conservation of
U .

Un
K

Figure I.3 – Space discretization for finite volume schemes on an unstructured grid

I-1.2.2 Convergence and consistency of numerical schemes

Convergence of a numerical scheme is a most desired property for a given scheme. Briefly,
convergence means that as the time step and mesh size tend toward zero, the approximated
solution gets closer to the real solution. A definition of convergence is introduced as follows

Definition I.4 (Convergence of a finite difference approximation [2]). A finite difference scheme
approximating a partial differential system is convergent if for any solution to the partial
differential equation U(x, t) and solutions to the finite difference schemes Un

i such that U0
i

converges to the initial condition U(x, 0) = U0(x), Un
i converges to U(x, t) as (i∆x, n∆t)

converges toward (x, t) as ∆t,∆x tend to 0.

In order to get convergence of a numerical scheme, two important properties are consistency and
stability. Briefly, the consistency property stands for saying that as the mesh in space and time is
refined, the error between the solution to the continuous system and the approximated solution
goes to zero. Consistency is defined as

Definition I.5 (Consistency of a finite difference approximation [2]). Let PU = 0 be a par-
tial differential system approximated by a finite difference scheme denoted P∆x,∆t. The finite
difference scheme is consistent with the partial differential system if for any smooth function
φ,

lim
∆x,∆t→0

Pφ−P∆x,∆tφ = 0, (I.32)

The norm (uniform convergence) is precised in [2].
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Remark I.4. In order to show consistency of a numerical scheme, one often shows, using a Taylor
expansion of a smooth function φ, that

Pφ−P∆x,∆tφ = O(∆tα + ∆xβ), α > 0, β > 0. (I.33)

It gives both the consistency and the accuracy of a numerical scheme.

Definition I.6 (Consistency of a flux in a finite volume approximation [61]). Assume a finite
volume scheme which writes under the form

Un+1
i −Un

i +
tn+1 − tn

∆x

[
f?
i+ 1

2

− f?
i− 1

2

]
= 0. (I.34)

Let f?
i+ 1

2
,j
write as a vector valued function Φ, with (r, p) ∈ N2 such that

f?
i+ 1

2

= Φ(Un
i−p+1, ...,U

n
i+r), ∀i ∈ Z, ∀n ∈ N. (I.35)

Then if Φ satisfies
Φ(U , ...,U) = f(U), (I.36)

the flux is said consistent.

Definition I.7 (Weak consistency [46]). Consider a given numerical scheme for the discretization
of eqs. (I.1) and (I.7). Assume that the numerical solution, denoted U∆x is bounded in (L∞)N .
Moreover assume that there exists Û ∈ (L∞)N such that U∆x converges toward Û in (L1

loc)
N .

If Û is a weak solution in the sense of definition I.1 to eqs. (I.1) and (I.7), then the scheme is
weakly consistent.

Remark I.5. A practical criterion for weak consistency is to show that the flux is consistent [107].
See also [46, 61].

Proving only consistency of a numerical scheme does not prove its convergence. As will be shown
in section I-1.2.4, consistency alone is not enough. The concept of stability is needed to ensure
convergence for linear systems. Although a scheme may be consistent, truncation error may stack
over time and induce larger and larger errors. Stability is closely related to the property of the
numerical schemes to deal with numerical errors. If a scheme has a tendency to increase at each
time step the numerical errors made on the previous ones, then it is unstable. In a finite time,
the numerical errors become preponderant over the approximation and the computations are not
relevant anymore. As a contrary, if the numerical errors stay constant or even better if they are
damped out by the finite difference schemes, it is then stable. In 1928, Courant, Frierichs and
Lewy [32] formulated the fundamental CFL condition, that strongly links the time step to the
mesh width to ensure quadratic stability. In order to define the notion of quadratic stability, the
definition of the quadratic norms are first introduced

Definition I.8 (Discrete l2 norms). For a given sequence φ = (φi)i∈Z on an infinite grid, the l2

norm in space is defined as
‖φ‖2l2(Z) =

∑
i∈Z

∆x|φi|2. (I.37)
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For φ = (φn)n∈N = (φni )i∈Z,n∈N, the l2 norm in space and time is defined as

‖φ‖2l2(Z),l2(N) =
∑
n∈N

∆t
∑
i∈Z

∆x|φni |2. (I.38)

Definition I.9 (Quadratic stability [2]). A finite difference scheme P∆x,∆t is stable for the
quadratic norm and for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2, if there exists an integer N
such that for any non-negative time T , there exists a constant CT which depends only on T such
that for φ ∈ l2(l2(Z),N) satisfying P∆x,∆tφ = 0

‖φn‖l2(Z) ≤ CT
N∑
k=0

‖φk‖l2(Z), ∀(∆x,∆t) ∈ Λ, 0 ≤ n∆t ≤ T (I.39)

is satisfied.

Often, the stability criteria used for numerical scheme is stronger than the one proposed in
definition I.9. Indeed, the previous stability criteria is quite difficult to prove, in general. Instead
one would rather use the following one.

Definition I.10 (Von Neumann’s stability [2]). A finite difference scheme P∆x,∆t is stable in
the sense of Von Neumann for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2, if for any non-negative
time T such that for φ ∈ l2(l2(Z),N) satisfying P∆x,∆tφ = 0

‖φ‖l2(Z) ≤ ‖φ0‖l2(Z), ∀(∆x,∆t) ∈ Λ, 0 ≤ n∆t ≤ T, (I.40)

is satisfied. It is equivalent to

|||P∆x,∆t||| ≤ 1, ∀(∆x,∆t) ∈ Λ. (I.41)

Analytic and numerical methods to check stability and determine stability regions are proposed
in the next section. Studies focus only on the Von Neumann’s criteria.

I-1.2.3 Linear stability analysis of numerical schemes

The Von Neumann’s stability analysis has been derived to check stability regions for linear finite
difference schemes. First, a stability analysis for linear finite difference schemes with periodic
boundary conditions is proposed. This is the so-called Von Neumann stability analysis (also
known as the Fourier stability analysis). Second, the analysis of stability for finite difference
schemes with non-periodic boundary conditions is detailed.

Stability analysis for the Cauchy problem

Stability analysis for the Cauchy problem with linear partial differential equations is often per-
formed using the Von Neumann stability analysis. The analysis is based on the Fourier decom-
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position of the numerical error. It was developed by Von Neumann in the 40s, but only first
briefly introduced in [33]. It was then extended in a more theoretical way in [22]. One may also
refer to the textbook by Allaire [2].

Consider a finite difference scheme P∆x,∆t. The approximated solution (uni )i∈Z,n∈N satisfies
P∆x,∆tu = 0. Considering periodic boundary conditions, one may decompose (uni ) as a Fourier
serie in space. Up to a change of variables, one may estimate that the space interval of periodicity
has a length equal to 1. Moreover, one makes the assumptions that u has an exponential growth
or decay in time defined by a constant α ∈ C. It yields that

u(x, t) = eαt
∑
k∈Z

ψk eikπx, ψ ∈ l2(Z). (I.42)

Let us define the sequence (εk) as

εk(x, t) = eαt eikπx, k ∈ Z. (I.43)

It is sufficient to consider the growth of εk for any k to get the growth of u, as the series behave
as its terms. To alleviate the notation, the index k is dropped. The notation j is used for the
space index in order not to introduce any confusion with the complex number i. One may notice
the following relations for the discretized version of εk denoted εnk,j .

εnk,j =εk(j∆x, n∆t) =eαn∆t eikπj∆x

εn+1
k,j =eα(n+1)∆t eikπj∆x =eα∆t εnk,j

εnk,j+m=eαn∆t eikπ(j+m)∆x=eikπm∆x εnk,j

(I.44)

The amplification factor is introduced as a function of θ = kπ∆x, ∆x and ∆t as

G(θ,∆x,∆t) =
εn+1
k,j

εnk,j
= eα∆t . (I.45)

Values taken by the amplification factor G determine the stability of the schemes. Linear stability
via amplification factor study is defined in definition I.11.

Definition I.11 (Amplification factor and stability [2] ). A finite difference scheme P∆x,∆t with
constant coefficients is stable for numerical parameters (∆x,∆t) ∈ Λ ⊂ R2 if and only if there
exists a constant C which is independent of θ, ∆x, ∆t such that its amplification factor satisfies

|G(θ,∆x,∆t)| ≤ 1 + C∆t, ∀θ ∈ [0 : 2π] . (I.46)

Furthermore, the restricted stability conditions yields

|G(θ,∆x,∆t)| ≤ 1, ∀θ ∈ [0 : 2π] . (I.47)

Let us take P∆x,∆t a one-step finite difference scheme for a scalar conservation laws. Assume it
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writes under the following form

un+1
j − unj −

∆t

∆x

r∑
m=−p

Cmu
n
j+m = 0.

which yields using eq. (I.44), that

G(θ,∆x,∆t) = 1 +
∆t

∆x

r∑
m=−p

Cm eimθ

Assuming that ∆t and ∆x are proportional with a given constant λ, it yields

G(θ,∆x, λ∆x) = 1 + λ
r∑

m=−p
Cm eimθ .

One checks analytically or numerically that G(θ,∆x, λ∆x) ≤ 1, θ ∈ [0 : 2π] to determine Von
Neumann’s stability for a given λ as for this example G is independent of ∆x.

Stability analysis for the initial value boundary problem

The normal mode analysis for linear hyperbolic equation was devised and introduced in [63]
and extended in [96] and [131]. The condition called the Godunov-Ryabenkii gives necessary
condition for stability, and so not always sufficient. Works presented in [76] develop sufficient
conditions for stability, called the GKS theory in a fully discrete version (the semi-discrete case
was dealt later with [151]). The essence of their work is presented in the following propositions.
Consider the problem depicted in eq. (I.22) with appropriate boundary conditions according to
the uniform Kreiss condition. First, semi-discrete case for linear hyperbolic equation is considered
and later extended to the fully discrete case.

Consider a semi-discrete finite difference approximation Q∆x and a boundary operator D such
that {

∂tuj = Q∆xu
n
j , j ≥ 1,

Duj = gj , −r ≤ j ≤ 0.
(I.48)

Performing a Laplace transform (u(x, t) = est φ(x)) in the time variable on eq. (I.48), multiplying
by ∆x and using ŝ = s∆x yield{

ŝûj = ∆xQ∆xûj , j ≥ 1,

D ûj = gj , −r ≤ j ≤ 0.
(I.49)

The Godunov-Ryabenkii condition writes

Lemma I.10 (Godunov–Ryabenkii condition [62]). Consider eq. (I.48) with a zero boundary
condition. A necessary condition for stability is that there exists no nontrivial eigenvector û
associated to an eigenvalue ŝ with <(ŝ) > 0 of eq. (I.49).
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In order to introduce the GKS theory in both semi-discrete and fully discrte form, the definition
of generalized eigenvector if firstly given.

Definition I.12 (Generalized eigenvector for the semi-discrete problem [169]). The sequence
{ûj(ŝ)} is an eigenvector if:

1. it is not identically 0,

2. It satisfies eq. (I.49),

3. <(ŝ) ≥ 0 and

— for <(ŝ) > 0, the corresponding solution satisfies lim
j→∞

ûj(ŝ) = 0,

— for <(ŝ) = 0, let ŝ0 = lim
ε→0+

ŝ+ ε. Then {ûj(ŝ0)} is an eigenvector.

The GKS theory provides the following results concerning semi-discrete schemes.

Lemma I.11 (Semi-discrete GKS condition [151]). Consider eq. (I.49) with a zero boundary
condition. A sufficient condition for stability of eq. (I.48) is that there exists no generalized
eigenvector û for <(ŝ) ≥ 0 in the sense of definition I.12.

For fully discrete case, consider a finite difference approximation Qν , with ν = ∆t
∆x and a boundary

operator D such that {
un+1
j − unj = Qνu

n
j , j ≥ 1,

Dunj = gj , −r ≤ j ≤ 0.
(I.50)

Then, taking the discrete Laplace as unj = znuj , one gets the fully discrete problem with Laplace
transform as {

(z − 1)ûj = Qν ûj , j ≥ 1,

D ûj = gj , −r ≤ j ≤ 0.
(I.51)

We introduce the definition of generalized eigenvector for the fully discrete problems.

Definition I.13 (Generalized eigenvector for the fully discrete problem [173]). Let |z| ≥ 1. The
sequence {ûj(z)} is an eigenvector if

1. it is non identically 0,

2. it satisfies eq. (I.51),

3. ‖û(z)‖l2 <∞ for |z| > 1.

The sequence {ûj(z)} is a generalized eigenvector if

1. it is non identically 0,

2. it satisfies eq. (I.51),

3. ‖û(z)‖l2 =∞. Furthermore, û(z) = lim
θ→z,|θ|>1

û(θ) and û(θ) satisfies (θ−1)ûj(θ) = Qν ûj(θ).

It yields in peculiar the following GKS condition for fully discrete scheme.

Lemma I.12 (Fully discrete GKS condition [76, 173]). Consider eq. (I.51) with a zero boundary
conditions. A sufficient condition for stability of eq. (I.50) is that there exists no generalized
eigenvector û for |z| ≥ 1 in the sense of definition I.13.



26 HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

Further works by Wu and later by Coulombel [173, 31, 30, 29] have been done in order to change
the resolvent estimates into semi-groupe stability estimates. Goldberg and Tadmor introduced
stability criteria for a particular class of numerical schemes [64, 65, 66, 67]. See also [75] for a
special link between the Godunov-Ryabenkii conditions for stability and the GKS theory. Last,
the summation by part technique introduced by Olsson give energy estimates and hence stability
using special structure of operator at the boundary [129, 130].

I-1.2.4 Convergence toward a weak solution

Convergence for linear systems using finite difference methods

The Lax–Richtmyer equivalence theorem is from [106]. Its applicability is restricted to the special
case of linear numerical methods for well-posed linear partial differential equations. It states that

Theorem I.13 (Lax–Richtmyer equivalence theorem [106]). A consistent finite difference method
for a well-posed linear initial value problem is convergent if and only if it is stable.

One can easily summarized the theorem with

linear, consistency + stability ⇐⇒ convergence.

However, as indicated, the scope of applications of this theorem is restricted to linear partial dif-
ferential equation systems. Stability and consistency are often not enough to imply convergence
for a non-linear system. To deal with non-linearity, the Lax–Wendroff theorem for non-linear
hyperbolic systems of conservation laws is introduced.

Convergence for a non-linear hyperbolic system of conservation laws

The Lax–Wendroff theorem has been presented and proved in [107]. It may be seen as an
extension of the Lax–Richtmyer equivalence theorem for the non-linear hyperbolic system of
conservation laws. It states about sufficient conditions to ensure convergence of the numerical
scheme toward a weak solution. If a consistent, stable and conservative numerical scheme for
eq. (I.1) converges toward a solution, then it converges toward a weak solution of eq. (I.1).
Consider a consistent finite volume scheme in the sense of definition I.6. Consider that (U0

j )j∈Z

satisfies the initial condition prescribed in eq. (I.7). Then as ∆t and ∆x tend to zero, under
certain hypothesis, the limit U is a weak solution of eq. (I.1) for the initial conditions U0.

Theorem I.14 (Lax–Wendroff theorem [107]). Let U∆x(x, t) be a numerical solution obtained
on a given grid whose width is ∆x. If

i) U∆x is uniformly bounded in ∆x in L∞,

ii) lim
∆x→0

‖U∆x −U‖L1,

iii) U∆x is obtained using the formulation presented in eq. (I.34) and Φ satisfying eq. (I.36).
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Then the limit solution U is a weak solution of eq. (I.1) with initial conditions prescribed in
eq. (I.7)

The theorem can be summarized as

convergence + consistency + stability + conservation =⇒ U is a weak solution.

As a contrary to the Lax–Richtmyer equivalence theorem, there is no equivalence in the Lax–
Wendroff theorem, only an implication. A non-linear scheme which converges toward a weak
solution may not be conservative or stable. Furthermore, the Lax–Richtmyer theorem gives
convergence results for linear problem using stability and consistency. Whereas the Lax–Wendroff
theorem assumes convergence, stability, consistency and conservation to yield convergence toward
a weak solution. Theorem I.14 can be extended to unstructured grid based finite volume scheme
(see [47]).

I-1.2.5 Convergence toward the entropic solution for scalar conservation laws

For scalar conservation laws, one can prove that the numerical scheme under the Lax–Wendroff
hypothesis and a consistency with the entropic condition converges toward the entropic solution.
The proof is done in [155]. The theorem states that if the scheme satisfies a discrete entropy
inequality, then the limit solution u is the entropic solution of the scalar conservation law.

Definition I.14 (Entropy condition consistency [47]). A finite difference or finite volume scheme
is consistent with the entropy inequality if for any entropic pair (η, ζ) there exists an entropic
flux function Ξ satisfying

Ξ(u, ..., u) = ζ(u), u ∈ U .

such that for a scheme which writes as eq. (I.34), the discrete entropic inequality

η(un+1
j )−η(unj )+

∆t

∆x

[
Ξ(unj−p+1, ..., u

n
j+r)− Ξ(unj−p, ..., u

n
j+r−1)

]
≤ 0, ∀j ∈ Z, ∀n ∈ N (I.52)

holds.

This definition gives a completion to the Lax–Wendroff theorem for and only for scalar con-
servation laws. Under entropic condition consistency, a scalar numerical scheme satisfying the
hypothesis of the Lax–Wendroff theorem converges toward the entropic solution.

Theorem I.15 (Existence and uniqueness of the entropic solution [47]). Let U∆x(x, t) be a
numerical solution obtained on a given grid whose width is ∆x satisfying the aforementioned
hypothesis of theorem I.14. If moreover the scheme presented in eq. (I.34) is consistent with the
entropy condition (see definition I.14) and that for any entropy function η, the numerical flux
Ξ is at least Lipschitz continuous, then the limit solution u is the unique entropic solution of
the Cauchy problem formed with the scalar conservation law eq. (I.1) and the initial condition
prescribed in eq. (I.7).
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I-2 Numerical methods for compressible hydrodynamics

This section is devoted to an overview of numerical methods for the approximation of the Euler
equations in multidimensional space. These numerical methods are first classified into two large
families. The first one is called the Lagrangian or Arbitrary Lagrangian Eulerian family of
methods. The underlying tessellation is deformed along the computation. The second family is
the high-order methods on fixed grids, whether Cartesian or unstructured. Before any further
details concerning numerical methods for compressible hydrodynamics, the Euler and Lagrange
equations are reminded.

I-2.1 Euler and Lagrange equations for compressible hydrodynamics

Euler compressible hydrodynamics equations stand for the approximation of inviscid compressible
flows. The variables are the density ρ, the velocity field u and the total energy e. Moreover it is
convenient to use also the definitions of internal energy ε and specific volume τ as{

ε = e− 1
2‖u‖

2

τ = 1
ρ

(I.53)

The Euler system writes in the absence of any source terms in Rd

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI

(ρe+ p)u

 = 0. (I.54)

The convex set of states U writes [61]

U = {(ρ, q = ρu, E = ρe) s.t. ρ > 0, q ∈ Rd, E − ‖q‖
2

2ρ
> 0},

which means that the density is non-negative as well as the internal energy. The system is closed
with an equation of state which links pressure, internal energy and specific volume as

p = EOS(τ, ε). (I.55)

I-2.1.1 Euler and Lagrange systems in 1D

In one space dimension, the Euler system writes

∂t

 ρ

ρu

ρe

+ ∂x ·

 ρu

ρu2 + p

(ρe+ p)u

 = 0. (I.56)

The Lagrangian system is deduced from eq. (I.56) with an appropriate change of variables.



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 29

Introducing a change of variables (x, t)→ (X, t) defined as

dx(X, t) = J(X, t)dX + u(X, t)dt, (I.57)

where J is the Jacobian of the deformation and satisfies J = ∂Xx(X, t). One gets the following
result concerning the material derivative of J

DtJ(X, t) = J(x, t)∂xu(x, t). (I.58)

Then for any smooth enough function φ, one gets the following derivatives rules


Dtφ(X, t) = ∂tφ(x, t) + u(x, t)∂xφ(x, t),

∂Xφ(X, t) = J(x, t)∂xφ(x, t),

Dt(Jφ)(X, t) = [J∂tφ+ u∂xφu] (x, t).

(I.59)

Using eq. (I.59), one get the following lemma

Lemma I.16 (Euler-Lagrange change of variables). For any couple of smooth enough function
(φ, ψ), the change of variables (x, t)→ (X, t) yields

[Dt(Jφ) + ∂Xψ] (X, t) = [J∂tφ+ ∂x(φu+ ψ)] (x, t).

Then using lemma I.16 in eq. (I.56), one gets the 1D Lagrange equations. It writes

Dt

ρ0τ

ρ0u

ρ0e

+ ∂X

−up
pu

 = 0. (I.60)

Using the definition of internal energy as the difference between the total energy and the kinetic
energy, it yields an hyperbolic system with a non-conservative form as


Dtρ0τ − ∂Xu = 0

Dtρ0u+ ∂Xp = 0

Dtρ0ε+ p∂Xu = 0

(I.61)

Note that eq. (I.60) is well defined in the sense of distribution for any (τ, u, e) ∈ L∞R×]0:T [. As
a contrary, eq. (I.61) is not. The term p∂Xu is well-defined for smooth enough functions, but is
not in general in the sense of distributions. In [36], the authors introduced a generalization of
the notion of weak solution in the sense of distributions despite non-conservative products. The
generalization is based on the integration along a conservative path. However, in [1], the authors
produced a comment on the computation of non-conservative products. Despite the integration
along the conservative path, numerical results thus obtained are not conclusive. Discretization
of non-conservative products has tremendous consequences for schemes solving eq. (I.61). It is
shown later for the special case of hydrodynamics.
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I-2.1.2 Entropic relations for the 1D Lagrange system

Let us focus on the entropy introduced by the second principle of the thermodynamics presented
in theorem I.17.

Theorem I.17 (Second principle of thermodynamics). For a closed system, without any ex-
change with the exterior, the entropy of a system increases over time or stays constant.

Remark I.6. The entropy stays constant for reversible processes. In particular, for smooth flows,
the entropy is conserved.

Introducing the concave entropy function S, the temperature T , the second principle of thermo-
dynamics writes for the compressible hydrodynamics

TdS = dε+ pdτ. (I.62)

In particular, one gets for smooth quadruplet (ε, p, τ, u) that

TDtS = Dtε+ pDtτ

= −p∂Xu+ p(∂Xu)

= 0

(I.63)

meaning that for smooth flows and non-zero temperature, the entropy indeed stays constant in
time.

More generally, for any flows which may include discontinuities, the entropy satisfies

TDtS ≥ 0. (I.64)

A first point of view, that will be detailed later on, to ensure increasing of entropy is the use
of pseudo-viscous forces. On the continuous level, it forces the evolution of internal energy to
satisfy Dtρ0ε+(p+q)∂Xu = 0, where q is called the pseudo-viscosity or artificial viscosity. Then,
if one assumes that q = −φ∂Xu, φ ≥ 0, then eq. (I.63) becomes formally

TDtS = Dtε+ pDtτ

= −(p+ q)∂Xu+ p(∂Xu)

= −q∂Xu
= φ|∂Xu|2 ≥ 0.

(I.65)

The choice of artificial viscosity is detailed in section I-2.4. Note that this result is based on
formal computations at the continuous level, and does not imply results on the discretized one.

In [42], Després derived a canonical formulation for Lagrangian systems of conservation laws,
assuming a zero entropy flux, Galilean invariance and isentropy for smooth solutions.

Equation (I.64) often yields a natural CFL condition for the numerical scheme, in order to
satisfy a correct increase of entropy. Moreover, one challenging problem for numerical simulation
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containing shocks is to control the increase of entropy, but also to ensure that the entropy does not
increase on smooth flows. Assuming that the function S is concave. Using similar computations
as in [45], for U ∈ U , let g(α) = S(Un

j + α(Un+1
j − Un

j )). Then, there exists θ ∈ ]0 : 1[ such
that

g(1) = g(0) + g′(1)− 1

2
g′′(θ).

By definition of g, one has that{
g′(1) = ∇US(Un+1

j ) · (Un+1
j −Un

j ),

g′′(θ) = (Un+1
j −Un

j ) ·
(
∇2

US(Un+1
j (Un+1

j −Un
j )
)
.

(I.66)

Using the concavity of S, it gives that −1
2g
′′(θ) ≥ 0. Then, it leads to

S(Un+1
j ) = S(Un

j ) +∇US(Un+1
j ) · (Un+1

j −Un
j )− 1

2
(Un+1

j −Un
j ) ·

(
∇2

US(Un+1
j (Un+1

j −Un
j )
)

(I.67)

Assume (as for the example detailed in [45]) that previous equation rewrites under the form

S(Un+1
j ) = S(Un

j ) + (A− ∆t

∆X
B), (I.68)

where A is a quadratic positive form evaluated on (Un+1
j − Un

j ), whereas B is also a positive
quadratic form evaluated on (ψn+1

j −ψnj ). Then assuming that the functionU 7→ ψ is continuous,
there exists a constant c > 0 such that

‖ψn+1
j −ψnj ‖ ≤ c‖Un+1

j −Un
j ‖.

Then for ν = ∆t
∆X small enough, one has (A− νB) ≥ 0, and hence

S(Un+1
j ) ≥ S(Un

j ).

In practice, conditions on ν to get S(Un+1
j ) ≥ S(Un

j ) is not easy to obtain. And, more often that
not, there is no conditions on ν that gives entropic behaviour of the scheme. One should refer
to [45] for further informations concerning the entropic behaviour of some numerical Lagrangian
schemes.

I-2.1.3 General Lagrangian formulation for multi-dimensional problem

The multi-dimensional formulation of Lagrangian hydrodynamics [11] writes in integral form for
a bounded domain K(t)
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Dt

∫
K(t) ρdV =0,

Dt

∫
K(t) ρudV=−

∫
∂K(t) pndS,

Dt

∫
K(t) ρedV =−

∫
∂K(t) pu · ndS,

Dt

∫
K(t) dV =

∫
∂K(t) u · ndS.

(I.69)

Here the domain K(t) may be displaced or deformed in time. Dt denotes for the material
derivative, meaning Dt = ∂t + u · ∇. The first three equations in system (I.69) are respectively
the conservation of mass, momentum and total energy. The last one is a geometric conservation
law. It links the deformation and displacement of the bounded domain K(t) to the normal
velocity at its boundary.

I-2.2 Lagrangian and ALE methods for compressible hydrodynamics

In this section, a brief overview of Lagrangian and ALE methods for compressible hydrodynamics
is given. Traditionally, Lagrangian hydrodynamics are solved using staggered schemes (see sec-
tion I-2.2.1). Thermodynamics quantities and kinematic ones are not colocated. This tradition
is issued from the Richtmyer and Von Neumann Richtmyer formulation for solving Lagrangian
hydrodynamics. Staggered schemes were among the first to be used in fluid dynamics compu-
tation. Indeed, in the late 1940s, the first shock capturing hydrodynamic scheme by Richtmyer
[138] and von Neumann and Richtmyer [125] was a time-space staggered 1D Lagrange explicit
scheme, formulated in internal energy with artificial viscosity and 2ndorder accuracy in space and
time on smooth flows. The scheme is usually called vNR (for Von Neumann–Richtmyer). Use
of artificial viscosities is required to capture correctly shocks. Artificial viscosities and models
of hyperviscosities are discussed later. Compatible formulations of compressible Lagrangian hy-
drodynamics are an improvement to such methods in which the schemes naturally preserve total
energy and are consistent although being formulated in internal energy. Starting from localisa-
tion of variables on a given grid, formulation in internal energy is first extensively described as
it is somehow the classical way of solving Lagrangian hydrodynamics system. Then, compatible
and entropic Lagrangian methods are introduced. Last, pointing out some arising difficulties in
Lagrangian simulations, ALE formalism is then introduced and detailed.

I-2.2.1 Natural derivation of staggered grids for hydrodynamics

Before addressing time and space discretizations, the localisation of the variables are important
enough to be pointed out. Indeed, the disposition of the variables on a given grid can alter
significantly precision and robustness of the numerical schemes. Staggered grids can be used
to compute with a narrower centered stencil the spatial derivatives or pointwise values from
average ones. This increases the spatial resolution. Indeed, eg. for wave propagation, it is
known that staggered (grids based) schemes require less points per wavelength than cell-centered
schemes. However, due to the fact that the grids are staggered, the CFL condition is often reduced
compared to cell-centered schemes. There exist multiple definitions of the staggering of variables.
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These definitions are gathered in [5] for the simulation of meteorology and oceanography and
depicted in fig. I.4. The first one called cell-centered or A-type staggering is to consider that
both velocity- and mass- related variables are located at the same position on the grid. The
variables are placed at the cell center, or exclusively at the node delimiting the cell. Sometimes
cell-centered schemes are also known as colocated ones. The second one called node-staggering
or B-type staggering is to consider that velocity-related variables are at the nodes and the mass-
related variables are at the cell centers. Equivalently velocity may be defined at the cell centers,
and mass-related variables at the nodes. These kind of staggering is used for instance in [125,
177, 164, 110]. The third one called face staggering or C-type staggering consists in locating the
x-velocity (resp y-velocity) related variables along the faces whose normals are colinear to the
x-direction (resp. y-direction). The mass-related variables are positionned at cell-centers. This
staggering is used in [154, 172] for the BBC scheme, and by extension to unstructured grids for
the MAC schemes developed in [58, 80]. The natural extension to unstructured grids is made by
positioning the normal velocity at the face on each faces of the grid’s cell. This is often mostly
convenient for conservation laws like Euler equations. The fourth one known as D-type is but a
90◦ rotation of the C-type staggering. This staggering enables both circulation and vorticity to
be defined at the same location as mass-related variables. For most conservation laws, integration
of the divergence is less convenient using this staggering of variables. Furthermore studies also
proved that such a grid is more dispersive compared to a B- or C-type staggering. The E-type
staggering is but a 45◦ rotation of the B-type staggering. The adjacency is no longer made on
horizontal or vertical path for regular grids, but rather on a diagonal path.

I-2.2.2 Internal energy formulated numerical schemes

As aforementioned, the original vNR scheme, based on a B-type staggering is not conservative
in total energy. Furthermore, without any artificial viscosity, the scheme is unable to correctly
capture strong shocks. This lack of conservation is due to the choice of discretized variables
made by Richtmyer. He chose to discretize the internal energy and its evolution equation. As a
contrary, discretization of total energy yields naturally conservation of the discretized total en-
ergy. The main difficulty for schemes formulated in internal energy is that this is not any longer
a conservation law. On a mathematical continuous level, the term appearing in the internal
energy evolution is not defined in the sense of distributions, for velocity and pressure as bounded
functions ((u, p) ∈ L∞). The use of artificial viscosities solves this problem by smoothing the
pressure. With an appropriate definition of artificial viscosities terms, the internal energy evolu-
tion term becomes well-defined. The default of total energy conservation was highlighted in 1961
by Trulio and Trigger [166]. For non-constant time-steps, the vNR scheme is not conservative
in total energy. They therefore proposed an implicit conservative version of the vNR scheme,
still formulated in internal energy. They kept the spatial staggering of variables but without the
temporal one. Similarly, works done by Popov and Samarskii [136] developed a similar staggered
scheme with implicitation in time. In the early 1970s, DeBar used a Lagrange-remap formalism
for the Trulio–Trigger scheme [37, 38]. At the end of each Lagrangian phase, the variables were
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Figure I.4 – Arakawa grid system displaying the placement of variables on the grid. u denotes
for x-velocity related variables, v for the y-velocity related variables and p for the
mass related variables

projected on the original grids. He identified a lack of conservation due to this procedure. In
fact, the projection of momentum highly dissipates kinetic energy, and so leads to a dissipation
of the reconstructed total energy. He introduced a correction in internal energy to recover global
total energy conservation and ensure correct shock capturing. Later, and using the earlier works
by DeBar, several multifluid Eulerian hydrocodes with interface reconstruction on 2D Cartesian
grids [154] were developed, based on a C-type staggering of variables. Those hydrocodes relied on
the Trulio-Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with
Strang splitting. The splitting was made to consider first a 1D Lagrange-remap scheme in the x-
direction, and then in the y-direction. This kind of splitting, known as directional splitting, yields
the advantage of an easy extension from one dimensional problems to multi-dimensional ones.
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Later, a strictly explicit predictor-corrector conservative version of the Trulio-Trigger scheme was
reported by Woodward and Colella in [172]. This version was called the BBC scheme. It is a
2D Lagrange-remap scheme on staggered Cartesian grids based on a 1D Lagrange-remap setting
with Strang dimensional splitting. The total energy conservation result has been credited to Noh
[127]. The retained staggering of variables is the C-type one, based on Arakawa classification
system. Caramana in 1998 [19] introduced the so-called compatible Lagrangian hydrodynamics
for node-staggering schemes. The idea of compatible Lagrangian method is to discretize properly
the internal energy evolution in order to automatically satisfy the conservation of total energy.
In [9], the authors highlight the properties of such discretization. Mainly, the emphasis is laid
on accuracy, consistency and stability of the compatible Lagrangian scheme. Simultaneously, on
the other side of the Atlantic, Youngs developed B-type staggered schemes in which the velocity
components were based on the node of the grids [177, 164, 143]. He proved his schemes, al-
though formulated in internal energy, to be conservative in total energy, using a similar internal
energy corrector as DeBar during the remapping phase. Similarly for unstructured grids, Herbin,
Gallouet and al. [82, 58, 80] developed similar procedures to recover local conservation of total
energy for the compressible Navier–Stokes and Euler equations for a C-type staggering. Very
recently, a paper by Llor and al. proposed a conservative, compatible and entropic version of
the original vNR schemes [110] staggered in both time and space. Entropic results are deduced
from artificial viscosities formulation.

I-2.2.3 Total energy Lagrangian methods for compressible hydrodynamics

As a contrary to staggered scheme, the cell-centered ones naturally conserve total energy and
satisfy naturally the definition of consistency for finite volume schemes as defined in definition I.6.
Initial work by Després and Mazeran in [48] developed a framework in which one may easily build
any cell-centered scheme to solve Lagrangian hydrodynamics. The main cell-centered total energy
formulated Lagrangian schemes are Eucclhyd developed by Maire and al. in [111] and Glace

developed by Després and al. [21, 45]. Those schemes are based on unstructured grids. Glace

builds fluxes at the boundary of each cell using an acoustic Riemann solver at each nodes in
the direction given by nodes normals. Eucclhyd builds similar fluxes but using the average of
acoustic fluxes on each face around a node.

I-2.2.4 ALE formalism for compressible hydrodynamics

The Lagrangian approach can be limited due to very large deformations of the Lagrangian mesh.
Indeed, the mesh deformation forces to remesh a part or the entirety of the domain, with an
interface tracking in case of multi-materials simulation. For some complex and strong flows,
the vorticity induced by the flows forces the remeshing regularly, which is onerous and discards
partly the interest of the Lagrangian approach. A possible way to reduce this limitation is the
Arbitrary Lagrangian Eulerian (or ALE) approach (see [94]). Fluid flows are computed on a
domain which is deformed by a given velocity field Umesh. This velocity field can be chosen such
that the interface between two materials is perfectly followed by the deformation of the mesh,
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or such that the entire solution is smoothed by the deformation of the mesh. If one considers
Umesh = 0, one gets back the Eulerian formulation of the scheme. And if Umesh = ufluid, one
gets back the Lagrangian formulation of the scheme.

I-2.3 High-order direct Eulerian and Lagrange-Remap numerical schemes

In this section, an extended overview of high-order finite difference and finite volume schemes
on fixed mesh for compressible hydrodynamics is given. First, the high-order space interpolation
of data is presented, as well as some procedures to limit spurious oscillations in the vicinity of
discontinuities. Then, multiple methods to achieve high-order integration in time are presented.

I-2.3.1 High-order space interpolation on Cartesian grids and spurious oscillations

Polynomial space interpolations
Higher-order accuracy in space is often based on high-order polynomial interpolations. Although
this kind of interpolation is very accurate for smooth data, it is highly oscillatory for data
with shocks or discontinuities. Indeed, Gibbs phenomenon due to polynomial interpolations
generates spurious oscillations in the vicinity of discontinuities. As the mesh is refined, the Gibbs
phenomenon is amplified in amplitude but bounded, and the oscillations are of lesser amplitude
except near discontinuities. One possibility to reduce such oscillations is to use artificial viscosity
terms (see section I-2.4). Another one is to alter the interpolation of data, considering the
smoothness of the data, the average slope or the monotonicity of data. A possibility is to
introduce a MUSCL-like reconstruction to damp oscillations near discontinuities. This is what is
done by Nessyahu and Tadmor in [124]. Although non-oscillatory, the MUSCL reconstruction can
reach beyond second order accuracy. Another point of view has been developed. The essentially
non-oscillatory (aka ENO) schemes were first presented by Harten and al. in [77]. It gives a
general method to build non-oscillatory interpolations for piecewise smooth functions. The main
idea of ENO schemes is to select the stencil of data to perform the interpolation in function of
the data smoothness inside the stencil. Originally an easy way to interpolate spatial derivatives
as a function of point-wise values is to use the centered relations

∂xφi =
r∑

k=0

dk(φi+k+1 − φi−k−1), i ∈ Z. (I.70)

For example, for r = 0, d0 = 1
2 and it yields first order of accuracy. In practice, the stencil is

shifted in space in order to change the set of points on which the polynomial interpolation is
performed. It yields

∂xφi,l =

r+l∑
k=−r+l

ck,lφi+k+l, l ∈ {−p, . . . , p}, i ∈ Z. (I.71)

Each ∂xφi,l gives an approximation of the first space derivative of φ at x = xi but with a different
stencil. Last, it requires to select the stencil which gives the less oscillatory interpolation. By



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND
FLUID-STRUCTURE INTERACTION 37

doing so, the interpolation thus obtained is less oscillatory than the classical one. Later, based
on the ENO interpolation, the weighted essentially non-oscillatory (aka WENO) schemes were
developed by Shu and Osher in [145]. The modification of the method is due to the presence of
weights that tend to reduce furthermore oscillations due to the interpolation. It gives

∂xφi =

p∑
l=−p

ωl(∂xφi,l), ωl ≥ 0,
∑
l

ωl = 1, i ∈ Z. (I.72)

One disadvantage of the WENO approach was that it was quite onerous to compute weights and
smoothness indicators. Improvements of both have been developed in [90]. Last, in [144], Shu
drew an analysis of the ENO/WENO schemes, as well as their evolution since the late eighties.
As a contrary, the compact schemes are based on a reduced stencil reconstruction. A simple
example of compact scheme is the resolution of the following system

α∂xφi−1 + ∂xφi + α∂xφi+1 =
r∑

k=−r
bkφi+k, l ∈ {−p, . . . , p}, i ∈ Z. (I.73)

Compact schemes have been presented by Lele in [123]. Within this approach, the width of a
stencil is reduced at the cost of a non-diagonal matrix to invert. With α = 0, one recovers the
original interpolation. A reduction of the stencil width tends to reduce interpolation oscilla-
tions. Similar procedures can be developed on unstructured grids but are more onerous than on
Cartesian ones.

Discontinuous Galerkin space interpolations

Discontinuous Galerkin methods [25] assume that the discrete solution Uh lies in the finite
element space of discontinuous function

Wh = {V ∈ (L∞(Ω))p, ∀K ∈ Th, V |K ∈ (P(K))p}

where Th is a tessellation of Ω whose characteristic size is h and P(K) is the local polynomial
space on K. When computing fluxes between two members of T , one has a discrepancy at
the interface. A possible way is to solve a Riemann problem at the interface (see the ADER
schemes presented in section I-2.3.2) or an interpolation between the two computed values at the
interface.

Non-polynomial space interpolations

Classical interpolations are based on the assumption that locally the function is polynomial, using
Taylor expansion. Another possible interpolation method is the Padé interpolation method which
considers that the function is rational. Using this assumption, Padé interpolations usually reduce
oscillations in the vicinity of discontinuities.
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α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αs−1 as−1,0 · · · · · · as−1,s−2 0

1 θ0 θ1 · · · θs−2 θs−1

Table I.1 – A Butcher table for an explicit Runge–Kutta sequence

I-2.3.2 High-order integration in time

Runge–Kutta time integration
Let us consider first an integration in time based on Runge–Kutta sequences [100]. A primary
study of Runge–Kutta sequences has been done by Butcher [16, 17]. Later, multiple authors
proposed up to 5th-order accurate Runge–Kutta sequences in [55, 49]. More recently, study
of total variational diminishing Runge–Kutta sequences has been performed by Gottlieb and
al. in [70, 71, 69]. Moreover, Runge–Kutta sequences up to 9th-order accurate are available
in [168]. Runge–Kutta sequences present the interest of an easy integration in time, once the
semi-discretized in space form is obtained. Assume that the semi-discretized scheme writes

∂tUi = (P∆xU)i, i ∈ Z (I.74)

Assuming an explicit Runge–Kutta sequence whose Butcher table takes the form presented in
table I.1, the integrated in time scheme writes

Un+αl
i = Un

i + ∆t
l−1∑
m=0

al,m(P∆xU
n+αm)i, i ∈ Z,

Un+1
i = Un

i + ∆t
s−1∑
m=0

θm(P∆xU
n+αm)i, i ∈ Z. (I.75)

Lax–Wendroff or Cauchy–Kovalevskaya time integration

Very high-order Lax–Wendroff or Cauchy–Kovalevskaya based schemes have been presented in
[50] and are used in a CEA hydrodynamics simulation platform [91]. Originally, works have been
performed for the linear case, and especially the advection and wave equations as presented in
[40]. Consider an hyperbolic system of the form

∂tU + ∂xF (U) = 0.
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Integrating in time between tn and tn + ∆t and space over a cell Ki =
[
xi− 1

2
: xi+ 1

2

]
, it yields

U
n+1 −Un

= −
∫ tn+∆t

tn
(F (U(xi+ 1

2
, θ))− F (U(xi− 1

2
, θ)))dθ (I.76)

Performing a Taylor expansion around tn of F (U(xi+ 1
2
, θ) and F (U(xi− 1

2
, θ) it yields

U
n+1 −Un

= −
∑
k≥0

∂kt (F (U(xi+ 1
2
, tn))− F (U(xi− 1

2
, tn)))

∆tk+1

(k + 1)!

The idea is then to use the system of PDEs to replace time derivatives of F by spatial ones at
time tn. Thus, a high-order in time scheme is obtained. If one considers that space derivatives
are computed with high-order accuracy in space, then it yields a high-order accurate scheme in
both time and space.

ADER time integration

Arbitrary Derivative Riemann (also known as ADER) problem has been developed by Titarev
and Toro in [165]. It is a high-order accurate in both time and space finite volume scheme. It
uses Godunov’s upwind approach and the Lax–Wendroff (or Cauchy–Kovalevskaya) procedure.
For hyperbolic problem as depicted in eq. (I.56), the idea is to differentiate in time eq. (I.56) and
to solve Riemann problems on each of the derivatives. Solving Riemann problems on each of the
derivatives is called solving the generalized Riemann problem. Thus, it yields a high-order finite
volume scheme.

I-2.4 Artificial viscosities and hyperviscosities

Artificial viscosities and hyperviscosities are a mean to damp spurious oscillations due to high-
order polynomial interpolations. The main idea is to add a viscous term to prevent oscillations
for occurring. The main drawback is that viscosity are tuned with user-fixed parameters, and
the choice of parameters is not obvious.

I-2.4.1 Internal energy weak formulation

As aforementioned, the internal energy evolution equation has no sense for non-smooth pressure.
A way to deal with this problem is to add a viscosity term such that the Lagrangian system
formulated in internal energy, initially depicted in eq. (I.61), now writes


Dtρ0τ − ∂Xu = 0,

Dtρ0u+ ∂X(p+ q) = 0,

Dtρ0ε+ (p+ q)∂Xu = 0.

(I.77)
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If q is chosen and built such that p+q is smooth and non-zero then the internal energy evolution
equation is defined in the sense of distributions. Moreover, from the physical point of view,
q can be seen originally as the viscosity produced by the inelastic collisions between particles
[139]. This can be seen as an enrichment of Euler equations. Usually artificial viscosities are
used for high-order schemes and/or for schemes formulated in internal energy. Mainly, the very
essence of the artificial viscosity is to reduce the Gibbs phenomenon which occurs at shocks and
discontinuities due to the reconstruction of fluxes. One may refer to the paper by Benson [11]
for more informations on the expression of the artificial viscosity q.

I-2.4.2 Standard expressions of viscosities

Originally in [125], the viscosity q takes the form

qi = −cqρi∆ui|∆ui|

with ∆ui = ui+ 1
2
− ui− 1

2
. This viscosity is usually called the vNR artificial viscosity or pseudo-

viscosity. In [139], the Rosenbluth viscosity is proposed. It is somehow similar to the original
vNR pseudo-viscosity but only activated where ∆ui < 0. Indeed, for a perfect gas, ∆ui < 0

stands for a compression, where a shock may appear. This is not the case for a non-perfect gas
with a more complex EOS. The Rosenbluth viscosity writes

qi = −cqρi∆ui|∆ui|χ{∆ui<0}.

Another legacy viscosity is denoted Landshoff pseudo-viscosity [102]. It is similar to the Rosen-
bluth one, with an additional linear dissipative term. It writes

qi = −(cqρi∆ui|∆ui|+ clρci∆ui)χ{∆ui<0}.

For these viscosities, the parameters cq and cl are user-chosen. Many works have been performed
in the literature to study the impact of viscosity as well as a way to determine a priori values
for cq and cl. Wilkins developed an extension to the original von Neumann-Richtmyer viscosity
to the multidimensional case in [170]. Noh in [128] showed the very limits of the use of artificial
viscosity. Indeed, he showed that artificial viscosity can induce strong errors in the compu-
tation, instead of damping oscillations and smoothing pressure profiles. Caramana, Shashkov
and Whalen presented in [18] a new formulation for the artificial viscosity terms. They based
their works considering that the artificial viscosity should follow a certain number of conditions
to be considered physically acceptable. The artificial viscosity should among other be galilean
invariant and always transfer kinetic energy into internal energy. Moreover, for isentropic com-
pressions, the artificial viscosity must not create too much dissipation or entropy. Heuzé, Jaouen
and Jourdren investigated the effect of artificial viscosities for discontinuities on a non-convex
EOS in [84]. More recently, Guermond and al. proposed the construction of an entropic viscosity
in [74]. Last but not least, the reader may refer to the paper by Mattsson and Rider [112] about
the origins of artificial viscosity terms, and the very bedrocks of pseudo-viscosities expressions
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and properties.

I-2.4.3 Hyperviscosities

As said previously, the use of artificial viscosities can be seen as a necessary enrichment of
Euler equations. This use enables to match better, on a physical point of view, the complex
structure of flows. An idea presented by Cook and Cabot in [28] and later in [27] is to consider
the compressible Navier-Stokes equations, which is nothing else but the Euler equation with
a viscous term. Then the underlying viscosity coefficients in the compressible Navier-Stokes
equations are set accordingly to the smoothness of the flows. For perfectly smooth flows, there is
no physical, mathematical or even numerical reason to add dissipation, and thus the coefficients
are set to 0. However at a discontinuity or a shock, to avoid Gibbs phenomenon, one wishes for
more dissipation and thus the coefficients are no longer null.

The model is described in eq. (I.78),

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI − σ
(ρe+ p)u− σ · u

 = 0. (I.78)

where the viscous stress tensor is denoted by σ and satisfies

σ = 2µS(u) + (β − 2

3
µ)(∇ · u)I (I.79)

where β is the bulk viscosity, µ is the shear viscosity, and S is the symmetric strain rate tensor
S = 1

2(∇u+∇ut). The coefficients µ and β are to be set accordingly to the smoothness of the
flow. In practice, they are set as

β = Cβηr, µ = Cµηr, ηr = ρhr+2G(∇r‖S‖), r ∈ 2N, (I.80)

where Cβ and Cµ are user-specified, h is technically the typical space grid, and ‖S‖2 = S : S.
Last G denotes for the application of a truncated Gaussian filter. The use of G is to smear
out oscillation introduced by the differentiation of the tensor norm. This viscosity presents the
advantages of maintaining high-order accuracy for smooth flows, but can be rather expensive
numerically due to the differentiation of the tensor norm. Extensions and improvements of the
hyperviscosity model have been presented in [13] and [93]. Essentially the authors proposed to
modify the computation of ηr to yield a steeper profile for the viscosity, and so avoid undesirable
dissipation in smooth areas.

I-3 Numerical methods for fluid-structure interaction

In this section, an extended review of numerical methods for fluid-structure interaction is made
and especially concerning the coupling in time and space chosen for the continuity relations at
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the boundary. A bounded domain Ω is divided into two parts. A fluid domain denoted Ωf and a
structure domain denoted Ωs such that Ω = Ωf ∪Ωs and Ωf ∩Ωs = ∅. The boundary ∂Ωs∩∂Ωf

is denoted Γ in the following, and the normal to the boundary Γ going from Ωs to Ωf is denoted
nΓ. The fluid (respectively structure) velocity is denoted uf (respectively us), and the fluid
(respectively structure) stress tensor is denoted σf (respectively σs).

For a viscous fluid, continuity relations are called the no-slip boundary conditions. The velocity
and the normal stress are continuous through the boundary. It yields

uf = us, σf · nΓ = σs · nΓ, on Γ. (I.81)

In particular, eq. (I.81) means that the displacement and velocity at the boundary are contin-
uous. This yields in particular that the interface between fluid and solid is easier to track. For
moving meshes methods (ALE) presented in the previous section, the space discretization follows
perfectly the interface.

For a non-viscous fluid, the continuity relations are called slip boundary condition. It allows the
fluid to slip perfectly along the structure boundary without any kind of boundary layer. It writes

uf · nΓ = us · nΓ, σf · nΓ = σs · nΓ, on Γ. (I.82)

As a contrary to the no-slip boundary conditions, eq. (I.82) means that the tangential displace-
ment is not continuous at the boundary as fluid particles may slip freely along the tangential
direction of the boundary. Other models for boundary conditions may be used but in this work,
the emphasis is laid on eq. (I.82). Considering two numerical methods, the coupling must be
realized at the boundary in order to satisfy boundary conditions, in space as well as in time. In
order to achieve that, time-coupling is first detailed. Then an overview is made on space coupling
numerical methods found in the literature.

I-3.1 Time coupling method for fluid-structure interaction

There are two ways to see a fluid-structure numerical method : a partitioned domain approach
or a monolithic one (see [117] for further details). The monolithic is not prone to change. Any
modification in the fluid or the structure part, eg. change in the numerical flux, results in change
for the whole approach. It also means that the hydrocode and structure-code must be entirely
known, and may not be used as a black box. Although it gives the advantage to overview every
part of the code, it is also a strong inconvenient. The partitioned/domain approach yields the
advantage to perfectly decouple fluid and structure part. As an example, it allows a hydro-code
to be coupled with a commercial code for structural deformations computation. The fluid and
structure solver are perfectly independent and do not necessarily rely on the same space and time
discretizations. Depending on the space and time coupling, boundary conditions presented in
eqs. (I.81) and (I.82) are more or less satisfied at the boundary. If those conditions are perfectly
satisfied at the boundary at any discrete time, the term strong coupling is used. However, if
not, the term loose coupling is used for boundary conditions that are only weakly imposed. The
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strong coupling often relies on a time-implicitation of terms around the boundary. This reveals
quite onerous since a non-linear system is solved all along the boundary in order to perfectly
satisfy the boundary conditions. Fully explicit schemes are generally considered as loosely coupled
and may introduce large instabilities, especially when the ratio between both material masses
(fluid and structure) is high. Semi-implicit coupling is a computationally compromise between
implicit and explicit coupling. It is not as onerous as a full implicit one, and moreover it prevents
certain instabilities present in the explicit coupling to occur. In the following, the three coupling
are detailed. One may refer to [56] for an overview of the different time coupling methods for
incompressible viscous flows.

I-3.1.1 Loose coupling

Loose coupling is certainly the most intuitive one in order to deal with fluid-structure interaction.
The fluid and structure system of partial derivatives equations are solved in a decoupled way,
with a regular exchange of information at the boundary. Mostly, one considers that the fluid
part exerts a stress constraint on the structure part, and reciprocally the structure part exerts a
velocity constraint on the fluid part. Velocity and stress boundary conditions are not necessarily
satisfied, especially if the time discretization is not the same for both solvers. An example of loose
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Figure I.5 – A fully explicit fluid-structure coupling algorithm on same time discretization

coupling is given in fig. I.5. At each time-step beginning, the structure imposes to the fluid the
normal velocity and in return, the fluid imposes pressure stress on the structure (or reversely).
In fig. I.6, the two solvers are on a different time scale, they are staggered with one another in
time. Although it is still considered as a loose coupling, in practice, it proves to be slightly more
stable. It is also possible to consider two different time-scales, one specific to the structure and
one to the fluid. Indeed, time-step restrictions are slightly different for the fluid and structure
solvers. It is then possible to achieve multi-time step of fluid evolution whereas only one is
achieved for the structure part, or the reverse. In [120, 121], Monasse and al. developed a fully
explicit coupling but which ensures conservation of quantities up to their algorithm precision.
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Figure I.6 – A fully explicit fluid-structure coupling algorithm on staggered time discretization

I-3.1.2 Strong coupling

Strong coupling is done in order to ensure strongly the boundary conditions. At a given time
t = tn, it builds boundary conditions in order to enforce that the prescribed boundary conditions
hold at time t = tn+1. The strong enforcement of boundary conditions ensures correct mass,
momentum and total energy conservation at the boundary. Conservation is ensured to the limit
of the convergence criteria used in system inversion algorithms. At each time-step, a non-linear
system is solved to find the solution at time t = tn+1. One uses an iterative algorithm among
which fixed-point, conjugate gradient, Newton or Gauss-Seidel. A strongly coupled scheme
is much more onerous than an explicit one, as the problem is solved at each iteration of the
algorithm used to inverse the system. However, stability conditions on time-step are much less
severe than for full explicit schemes. But in practice, the time-step must be restricted or the
algorithm must use relaxation terms in order to ensure convergence. The numerical cost of such
a procedure is sometimes prohibitive, and hence another class of coupling has been derived: the
semi-strong coupling.
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Figure I.7 – A fully implicit fluid-structure coupling algorithm on same time discretization

I-3.1.3 Semi-strong coupling

The semi-strong coupling has been derived to correct the weaknesses of both loose and strong
coupling. The loose coupling is sometimes unstable and unable to track effectively the conser-
vation of mass, momentum and total energy at the boundary. On the other hand, the implicit
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coupling ensures those conservations, but is numerically onerous and the convergence is not en-
sured. Relaxation terms can be added to correct these defaults but to an additional numerical
cost. For these reasons, semi-strong coupling has been derived. Non-oscillatory or stable terms
are treated in an explicit way, whereas unstable and/or oscillatory terms are treated in an implicit
way. Often, the pressure terms are treated in an implicit way, whereas advection and diffusion
terms are treated in a fully explicit way. Conservation results rely strongly on the algorithm and
hypothesis made previously. In [137], Puscas and al. derived a semi-implicit scheme that ensures
conservation of quantities up to the algorithm precision.

I-3.2 Space coupling method for fluid-structure interaction

Independently to the time-coupling, space-coupling methods allow to spatially couple forces
and torques at the boundary in order to enforce boundary conditions presented in eqs. (I.81)
and (I.82). Three families of space coupling are distinguished and sorted as follows. First, the
mixed cells methods which somehow average the different materials over a cell. Second, the
body-fitted method which ensures a deformation and displacement of the mesh such that cells
remain pure. Third and last, the fictitious domain method which uses overlapping domains to
enforce boundary conditions.

I-3.2.1 Mixed cells methods

One natural way of dealing with fluid-structure interaction is to consider that a control volume
for a finite volume scheme may contain both materials. A detector is then used to determine
which constitutive laws are to be used. In [41], the authors proposed a unified framework to treat
both solid and fluid simulations on unstructured grid. The proposed schemes can be used in a
fully Lagrangian formalism or in an ALE one. The constitutive laws are then selected considering
to which material the cells interfaces belong (the case of mixed interfaces is also treated). In
[68], they proposed a definition of an ad hoc Riemann problem at solid boundaries which is
formally second order accurate. Thanks to a level set method, they detect the proximity of a
wall and modify the Riemann problem to take into account the boundary conditions. Although
the resulting scheme is not conservative, shocks seem to be correctly captured. The scheme is
based on Cartesian grids. Last, [79] introduced a full-Eulerian solid level set method in order to
treat fluid-structure interaction problems for incompressible viscous flows. The method is derived
by adding a solid body force and a solid-fluid interaction term for cells near the boundary. The
interface tracking is realized thanks to the solid level set method. It also applies for fluid schemes
based on Cartesian grids.

I-3.2.2 Body-fitted methods

The Lagrangian and ALE approaches for solving the compressible hydrodynamics system have
been presented in section I-2.2. For viscous fluid, the deformation of the mesh is continuous
along the boundary. It means that technically, if initially the meshes for the fluid and structure
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are coincident at the boundary, then they stay coincident for any time of the simulation. It
leads to an easier interface tracking as no mixed cells appear. However for inviscid flows, the
deformation is no longer continuous along the boundary, only the normal deformation is. Two
choices are presented in the literature. Either one uses Lagrange multipliers to transfer the forces
and torques between the two meshes, either one uses the ALE formalism with a velocity of the
mesh prescribed by boundary conditions.

Wall boundary conditions

For wall boundary conditions, the prescribed normal velocity at the boundary is set to 0. In [98],
the author described a body-fitted discontinuous Galerkin scheme to approximate the solution
to the Euler equations with solid wall boundary conditions for curved geometry. An important
feature in this paper is that the boundary conditions should be prescribed on the real continuous
geometry, rather that on the approximated discretized geometry obtained with the mesh. Doing
so, the error due to the discretization of the geometry does not reduce the overall accuracy of the
scheme. Moreover in some cases, with conditions imposed on the discretized geometry, steady
flows are not reached by the schemes. The asymmetry introduced by the discretization may
indeed introduce vortices or wakes that are irrelevant considering the Euler equations system.

Remeshing constrained by structure motion

The ALE method (see section I-2.2.4) relies on a periodic or cycle-based displacement of the
mesh. The displacement is based on a prescribed mesh velocity field denoted umesh. To ensure
that the structure and fluid meshes stay coincident one may just provide the following condition
on the velocity field

umesh = us, on Γ. (I.83)

The Jacobian is then deduced. However, the presence of too much distorted elements or non-
conformal ones, forces the algorithm to remesh partly the fluid domain and to project conserva-
tively quantities on the new mesh. This re-meshing phase may prove quite expensive. Indeed, in
1D or 2D, the re-meshing is not problematic, but in 3D the numerical cost sometimes becomes
preponderant over the cost of the fluid and structure solvers. In [86], Hu and al. presented an
ALE method to couple a Navier-stokes solver with a particle one, showing in particular that an
explicit coupling is not stable. Later in [87], they assessed the evolution of the ALE methods
for fluid-structure coupling. The structural displacement is dealt with using eq. (I.83). The
update of the meshes displacement is done in an explicit way, whereas the update of the meshes
velocity is implicit, resulting in a stable scheme. Extension to visco-elastic fluid is made. In
[108], Le Tallec and Mouro proposed to consider the whole space as a physical continuum. The
resulting problem is then split into a fluid and a structural part, enforcing kinematic acceptable
states between the two. Their method uses a Lagrangian approach for the structure and an ALE
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formulation for the fluid. Mesh velocity is then imposed according to eq. (I.83) so that interfaces
between fluid and structure stay coincident.

I-3.2.3 Fictitious domain methods

In order to avoid any kind of remeshing, the fictitious domain methods have been introduced
for fixed mesh methods (see section I-2.3). The fluid mesh overlaps the structure and the fluid
values in the overlapping cells are completely fictitious. The main problem consists in imposing
the values in these overlapping cells. The main issue is how to impose these values in order to
satisfy the boundary conditions. For body-fitted methods, the meshes are not overlapping, and
there is no need to define such values. Many methods have been derived to tackle this problem.
They gather into seven families which are listed below and described in the following:

i) Immersed boundary methods;

ii) Direct forcing methods;

iii) Penalization methods;

iv) Lagrange multipliers;

v) Embedded cut-cells methods;

vi) Reflection and mirroring ghost-cells methods;

vii) Inverse Lax–Wendroff boundary treatment.

One may refer to [118] or [148] for an extended review of the fictitious domain methods.

Immersed boundary method

The immersed boundary method (IBM) has been first proposed by Peskin [134] and later ex-
tended by Lai and Peskin [101, 135]. Originally, the method has been developed for the simulation
of cardiac blood flows. The physical model used is the incompressible Navier–Stokes equations
coupled with very thin elastic structures, with equivalent density. This is a very peculiar model,
where for once the structural displacement is imposed by the fluid one. The method consists
in forcing the movement of the structure using the fluid displacement and to weakly impose a
discontinuity in the fluid constraint at the boundary. To do so, additional forces are added to
the fluid near the interface. For such a fluid, one writes

{
ρ (∂tu+ u · ∇u) +∇p=µ∆u+ f ,

∇ · u =0,
(I.84)

where the variables ρ, u, p denote for the density (assumed constant), the velocity vector and
the pressure. The additional force f is introduced to satisfy weakly the boundary conditions and
writes

f(x, t) =

∫
Ω
F (y, t)δ0(x−X(y, t))dy. (I.85)
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where X is the Lagrangian position of the elastic structure and F is the Fréchet derivative of
the internal energy with respect to the Lagrangian positionX. δ0 symbolizes the Dirac function.
The discretization of the Dirac function is made in order to ensure mass, momentum and total
energy conservation, as well as Galilean invariance. Note in particular that on the continuous
level, eq. (I.85) reduces to f = F . Reciprocally, the structure part is solved thanks to the
following equation

∂tX(x, t) =

∫
Ω
u(y, t)δ0(y −X(y, t))dy. (I.86)

which yields on the continuous levels that ∂tX = u. The fluid velocity imposes the displacement
of the structure. This method is forged to deal with very thin structures, whose density is similar
to the fluid one. Order of accuracy has been studied for smooth problems in [73]. The method
has been modified for adapted refinement in [72] to reach second order of accuracy. For thick
structure, it is rather the structure velocity that imposes the displacement of the fluid. To deal
with thicker structures, direct forcing methods have been developed.

Direct forcing methods

As for the immersed boundary method, the direct forcing method consists in adding an external
force in order to satisfy boundary conditions. Consider an incompressible viscous fluid flow with
boundary conditions provided by eq. (I.81). A possible consistent discretization of boundary
conditions is to impose near the interface the fluid velocity to be equal to the structure velocity.
It is equivalent to set f such that

f =
1

∆t

∫ tn+1

tn
(u · ∇u+∇p− µ∆u) dt+

1

∆t
(vn+1 − un), (I.87)

with vn+1 being the structure velocity at time tn+1. Indeed substituting eq. (I.87) in eq. (I.84)
integrated in time between tn and tn+1, it immediately yields that un+1 = vn+1. In the numerical
schemes, f is not used, and the velocity directly satisfies un+1 = vn+1. Geometrically, the
interface neighbourhood is defined as the mixed cells (partly fluid, partly solid) in addition with
the cells inside the solid part. See fig. I.8 as a representative example.

The wider the stencil used by the numerical scheme, the wider the interface neighbourhood.
Only mixed and fully solid cells values are to be imposed. With f defined as in eq. (I.87), the
order of accuracy of the method is at most one. The method developed by Mohd-Yusof in [119]
and [52] consists in doing an interpolation of the velocity relative to the interface, around the
boundary. Then a antisymmetry of the relative velocity is used inside the mixed/full solid part
of the domain. This method is second order accurate and a priori more accurate than doing a
direct forcing without any kind of interpolation. It is mostly used for incompressible viscous flows
but has been extended for compressible viscous flows. It is obviously not conservative in mass,
momentum and total energy. In [174], the authors proposed a simplified, efficient and accurate
direct forcing method for incompressible flows. It is still based on a strong coupling but without
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Figure I.8 – Interface neighbourhood for the direct forcing method: black dots stand for the cells
where velocity values are imposed to match the structure velocity

any call to the fluid solver during the coupling, which alleviates greatly the computation. In [10],
the author proposed a regularization technique for the direct forcing methods. This regularization
prevents spurious force oscillations from occurring. The extension to compressible inviscid flows
is presented later as the reflection and mirroring ghost-cells methods.

No-penetration and volume penalization methods

For fluid-structure interaction, considering non-porous media for the structure, the fluid mass
must remain outside the structure. There is no fluid penetration inside the structure. For
example, the direct forcing method does not satisfy the no-penetration condition. One possible
approach to deal with this problem is to penalize any kind of fluid penetration in the structure.
This is the penalization method. The method was first introduced by Arquis and Caltagirone [7]
for incompressible viscous flows, with a Brinkman porosity model for the solid. It is equivalent to
simulating a fluid-structure interaction with a porous media whose porosity is defined by a very
small parameter. The smaller the parameter, the less porous the media is, till impermeability.
In [4], Angot and al. proposed a L2-penalization. Let η be a parameter and consider Ωs as the
solid part, it yields for incompressible viscous flows

{
∂tuη + uη · ∇uη +∇pη = 1

Re∆uη − 1
ηuηχΩs , t > 0,x ∈ R2

∇ · uη = 0, t > 0,x ∈ R2
(I.88)

χ denotes for the indicator function. They showed convergence when η → 0 toward the solution
of the Navier Stokes with zero-velocity boundary conditions provided on ∂Ωs. The accuracy has
been proven to be at worst of order 3

4 in η, but in practice 1storder of accuracy is recovered.
However, the CFL conditions is largely impacted due to the relaxation term 1

ηuηχΩs . Using a
fully-explicit scheme yield a CFL condition as ∆t ≤ Cη which is a constrain as η should tend to
zero. However, an implicit treatment of the relaxation terms entirely withdraws this condition.
As the relaxation term is local, the implicit treatment is not as onerous as the implicit treatment
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of complex numerical fluxes. The penalization is not generally conservative in mass, momentum
and total energy. Depending on the value of η, the boundary treatment may introduce undesirable
boundary layers for compressible inviscid flows. Moreover correct capture of shocks is impacted
due to this special treatment. In [51], the extension to deformable obstacles is realized.

Lagrange multipliers

Fictitious domain based on Lagrange multipliers for incompressible viscous flows have been first
developed by Glowinski and al. in [60]. The solid domain is filled with a fictitious fluid state.
Lagrange multipliers are used to ensure rigid body motion in the Navier-Stokes variational for-
mulation. Studies and improvements have been done to develop the method, increase robustness
and alleviate the computations in [132] and [59]. Extension to visco-elastic particles/bodies has
been realized in [146]. Solid and fluid problems are coupled thanks to the Lagrange multipli-
ers. Those multipliers are seen as pseudo-forces that are exerted on both parts. A full explicit
procedure is possible. As a contrary to the immersed boundary method which relies on approx-
imate Dirac function to enforce the correct exchange of forces, here, the procedure relies on the
Lagrange multipliers to exchange forces.

Embedded cut-cells methods

The first embedded cut-cells method has been introduced by Noh, while working on the coupling
between a Lagrangian method for the structure part and an Eulerian finite volume method for
the fluid part [126]. The proposed embedded cut-cells method provides naturally conservation of
mass, momentum and total energy due to the special space discretization. The method relies on
the following observation: cutting the cells near the interface and integrating forces and torque
on the interface yield immediately conservation of the desired quantities. However due to the
possible very small cells, the CFL condition is highly impacted. Indeed, denote by αn the volume
fraction of the structure inside a cell at time tn, it writes

(1− αn+1)Un+1 = (1− αn)Un − tn+1 − tn

h
∆U (I.89)

where ∆U is the flux at the boundary of the cell. Immediately, the CFL condition becomes
∆t < (1 − α)hc , which can be arbitrarily small as α tends to 1. This is the main drawback of
the method. The CFL condition is proportional to the volume of a cell divided by its perimeter.
Therefore one gets very small time-steps near the boundary due to the presence of cut-cells. The
general principle of cut-cells methods is presented in fig. I.9. Numerical fluxes for cells around
the boundary need to be modified to ensure correct boundary conditions enforcement. Two
main approaches have been considered in the literature. The first one presented in [133] and
[26] consists in evaluating the numerical fluxes as if there were no structure in cut-cells. Then,
identifying the lack of conservation of mass, momentum and total energy, to redistribute the
lacking quantities partly in the cut-cells and partly in the adjacent ones. The redistribution is
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Figure I.9 – Embedded boundary methods: Double head arrows show numerical fluxes needing
modification to take into account the boundary

based on mass weighting. The second one presented in [53] and [88] consists directly in drawing a
conservative balance on each cut-cell. In order to avoid very small cells and so CFL restrictions,
[53] made the suggestion to merge the small cells with fully fluid adjacent ones. As to [88],
they proposed to mix the cells with cells aligned in the normal direction outward the solid/fluid
boundary. Last [121] proposed to mix too small cells 1 with an adjacent one. This mixing is
illustrated in fig. I.10.

Fluid

Solid

Figure I.10 – Merging of small cut-cells present along the boundary using the outward normal
criteria: Arrows stand for conservative mixing of cells, red cells are mixed with the
larger cells indicated by arrows

The main known limitations of cut-cells methods is that it is impossible to consider a very
thin structure present in a fluid. The thickness of the structure must be at least greater that the
characteristic length of the mesh. The mixing procedure can only apply if a large enough adjacent
cell is found. This becomes problematic for some 3D problems. Some geometric configurations
are also tricky. If two solid elements are present in the same cell, then there is no natural
definition for a global outward normal. Using a finer mesh or adaptive mesh refinement (AMR)

1. The criteria if fixed to α > 0.5, where α is the structure presence volumic fraction



52 NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTION

solves the problem. In [116], Meyer and al. proposed a cut-cell embedded boundary method
for Large-Eddy simulation of incompressible flows on staggered Cartesian grids. The interface
geometry is described by a level-set method in 3D, and cells cut by this interface of small size
are mixed with larger, neighbouring cells. They assessed second order of accuracy for their
method. In [78], Hartmann and al. proposed a cut-cell embedded boundary method for two
and three dimensional problems, on adaptive grids. The method is proved to be conservative
in mass, momentum and total energy, and numerical experiments demonstrated second order
of accuracy. A particularity of their method is that they considered viscous compressible flows.
They used a mixing algorithm near the boundary to merge very small cells with a master cell in
order not to damp the CFL condition. Muralidharan developed in [122], a new adaptive finite
volume conservative cut-cell method which is third order accurate for the compressible Navier-
Stokes equation. Despite a high-order geometric approximation, the robustness of their schemes
is proved for viscous flows. An extension to three dimensions is proposed.

Reflection and mirroring ghost-cells methods

The reflection and mirroring ghost-cells is but an extension to the compressible hydrodynamics
of the direct forcing methods using interpolation techniques. The underlying idea is that any
smooth enough surface can be locally approximated by a plane. And that at the crossing of a
plane, the normal velocity is anti-symmetrized whereas density, pressure, internal, kinetic and
total energies are symmetrized. The mirroring method has been described by Forrer and Berger
in [57]. The main idea resides in the fact that the wall acts as a mirror on the variables for a
constant wall velocity. Introducing t and n as the tangential and normal vectors outward the
boundary and xs a point on the boundary, it yields for a small parameter λ that

ρ(xs + λn) = ρ(xs − λn)

p(xs + λn) = p(xs − λn)

u(xs + λn) · t = u(xs − λn) · t
u(xs + λn) · n = 2Dtxs − u(xs + λn) · n

(I.90)

The method is second order accurate at the boundary. Using a stencil inside the fluid domain,
values of ρ, p and u are reconstructed on the blue points depicted in fig. I.11. Then, the value
at the black points inside the solid domain are imposed using eq. (I.90). The fluid solver is then
applied normally on the whole domain.

Similar methods have been introduced in [6], [23], [178]. As a contrary to the previously intro-
duced cut-cells methods, the resulting scheme is not conservative in mass, momentum and total
energy.

Inverse Lax–Wendroff procedure for boundary conditions

Thompson developed in [162], a high-order treatment of non-reflecting boundary conditions based
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Figure I.11 – Ghost-cells values using the mirroring technique: black dots stand for the ghost-
cells

on the diagonalization of the jacobian matrix. Thus getting the Riemann invariants of the sys-
tem, the boundary conditions are imposed on those invariants. The values (ρ,u, p) are then set
outside the fluid domain using the Riemann invariants. In [163], the author extended the method
to any kind of boundary conditions and especially to the slip and no-slip wall boundary condi-
tions. Changing the space derivatives of Riemann invariants into time derivatives, the author
produces a high-order (up to 4th-order accuracy) boundary discretization. Later, Tan and Shu
introduced the concept of inverse Lax–Wendroff procedure in order to treat boundary conditions
in [156]. The idea is to solve repeatedly linear systems based on the jacobian matrix, in order to
determine ghost-cells values outside the fluid domain. Those ghost-cells values are based on Tay-
lor expansions of the primitive variables, using boundary conditions and values inside the fluid
domain. Lax–Wendroff or Cauchy–Kovalevskaya methods are built by changing time-derivatives
into space-derivatives in Taylor expansion in time of the flux function. Here the idea is to do
exactly the inverse, meaning to change space-derivatives into time-derivatives in Taylor expan-
sions in space of the primitive variables. In [157], the authors extended their previous results
to the case of a moving boundary whose motion is triggered by the fluid state. This is a first
step toward a fluid-structure interaction solver using Inverse Lax–Wendroff boundary treatment.
The main difficulty in their articles is that the structure, considered as a rigid body, is described
in a Lagrangian framework whereas the fluid solver follows an Eulerian approach. In [159], the
authors attempted to reduce the numerical cost of their procedure by reducing the number of
normal space derivatives changed into time and tangential space derivatives. Numerical exper-
iments show that a certain number of normal space derivatives changes is enough to ensure a
priori the stability of the effective scheme. In [158], the authors proposed a condensed review of
their method, including applicability of the procedure. Last, Vilar and Shu in [169] developed a
linear analysis of the scheme stability using the Inverse Lax–Wendroff procedure. They used the
GKS theory (see lemma I.11) to analyse theoretically the stability of the effective schemes. They
drew comparisons with the standard computation of the eigenvalues of the operator matrices.
Similar results of required changed normal space derivatives as in [159] have been recovered.
Moreover, for the considered schemes, GKS theory and the study of the eigenspectrum of the
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operator matrix are similar. The method is detailed for linear systems in chapter III and then
applied in the special case of Lagrange-Remap hydrodynamics schemes in chapter IV.



Chapter II

High order 2D finite volume
conservative Lagrange-Remap schemes
for compressible hydrodynamics on
staggered Cartesian grids

On présente comment construire une famille de schémas volumes finis Lagrange-projection
sur maillage décalé à l’ordre élevé. Ces schémas ont fait l’objet d’une note au comptes-rendus de
l’Académie des Sciences [35]. Pour cela, la distribution originelle des variables sur la grille décalée
Arakawa de type C est altérée pour des questions de robustesse et de conservation, tout d’abord
en 1D puis en multi-dimensionnel. Pour l’extension en 1D à l’ordre élevé de ces schémas, des
séquences de Runge–Kutta ont été choisies pour l’intégration en temps du système lagrangien, basé
sur une formulation en énergies interne et cinétique. Une procédure conservative est développée
à l’ordre élevé afin de corriger l’énergie interne et d’assurer la capture correcte des chocs. Le
résultat principal de cette partie est le théorème II.9 qui prouve la consistance faible du schéma
pour les équations d’Euler en référentiel lagrangien. Enfin, la projection conservative classique
basée sur l’intégration analytique de polynômes de Lagrange est adaptée au cas des grilles décalées.
Une extension en multidimensionnel est réalisée par l’utilisation de séquences d’ordre élevé de
balayage directionnel. Enfin, la dérivation de ces schémas dans le cas des équations de Navier–
Stokes compressibles, avec une distribution particulière des termes du tenseur visqueux, est faite.
Des résultats numériques sont proposés tout au long du chapitre afin d’illustrer la précision et la
robustesse de cette nouvelle famille de schémas.
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We propose in this chapter a new class of finite volume numerical schemes on staggered Cartesian
grids for solving the compressible hydrodynamics system of equations

∂t

 ρ

ρu

ρe

+∇ ·

 ρu

ρu⊗ u+ pI

(ρe+ p)u

 = 0. (II.1)

The density, velocity, specific total energy and pressure are respectively denoted by ρ, u, e and
p. The schemes are based on 1D Lagrange-remap formalism used with directional splitting. The
Lagrangian approach as well as the Lagrange-remap approach is the usual formalism used in the
laboratory where my PhD thesis has taken place, as much for historical reasons as for robustness
issues. They are high-order accurate in both time and space for any equation of states and are
conservative in mass, momentum and total energy. The outline of the chapter is the following.
First, using the Arakawa system of grids, a new grid is derived to ensure face-staggering of
variables and robustness in case of shocks (section II-1). Second, the one-dimensional conservative
Lagrange-remap schemes formulated in internal and kinetic energies are extended to higher order
of accuracy (section II-2). The schemes may be decomposed into three steps that are detailed.
The Lagrangian phase based on high-order reconstruction and interpolation of data to maintain
high-order accuracy in space, and a Runge–Kutta time-integration to ensure the high-order
accuracy in time. A new conservative and high-order accurate internal energy correction is
proposed to ensure the correct capture of shocks. The main result of this chapter is theorem II.9
where the weak consistency of the scheme is proved. Conservative remapping phase is adapted
to the staggered grids. It is based as for the cell-centered case on Lagrange polynomials. Third,
the extension to two-dimensional systems is made using high-order directional splitting methods
(section II-3). The 2D Lagrange-remap schemes on staggered Cartesian grids have been published
in [35]. Fourth, a natural extension of the schemes in the case of Navier–Stokes compressible
equation is made with gravity source terms. It is based on a special distribution of viscous terms
to ensure robustness and high-order of accuracy (section II-4). Numerical results all along the
chapter illustrate both the accuracy and the robustness of the schemes.
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II-1 Structure of schemes on Arakawa C-type grids

In section I-2.2.1, the Arakawa system of classification for staggered grids has been presented.
The BBC scheme which has been proposed in 1984 in [172] by Woodward and Collela will be
extended to higher-order of accuracy in both time and space. The BBC scheme is based on a
C-type Arakawa grid or face staggering. It means that the velocity are located on the face of the
cells: an analysis of the space and time discretization is proposed.

II-1.1 Example of the BBC scheme

The scheme solves the Lagrange system (I.60) formulated in internal energy. On cell centers, the
discretized variables are the cell mass ∆m, the specific volume τ and the internal energy ε. On
cell interfaces, the velocity u is discretized. The pressure is denoted p and artificial viscosities or
bulk hyperviscosities (see section I-2.4) are denoted q. The interface mass ∆mi+ 1

2
is defined by

∆mi+ 1
2

=
1

2
(∆mi+1 + ∆mi). (II.2)

The Lagrangian scheme writes in three steps:

Prediction at t = tn+ 1
4

u
n+ 1

4

i+ 1
2

= un
i+ 1

2

− ∆t

4∆mi+ 1
2

(pni+1 + qni+1 − pni − qni ). (II.3)
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Prediction at t = tn+ 1
2
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2
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(II.4)

Prediction at t = tn+1
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.

(II.5)

The first prediction done in eq. (II.3) is used to stabilize the scheme. Using Arakawa C-type
grids, 2ndorder Runge–Kutta sequences are not stable for the wave equations, as it will be shown
later on. The choice to made the first predictor at t = tn+ 1

4 on the velocity rather that on the
pressure allows to reduce the number of call to the equation of state. Another interesting choice
is the velocity obtained at tn+1. This choice is made to obtain a compatible discretization of the
kinetic energy in the sense of Caramana [19]. Doing so, it allows to get the following results

Lemma II.1 (Conservation properties of the BBC scheme). The BBC scheme (II.2)-(II.3)-(II.4)-
(II.5) is conservative in mass, momentum and total energy for any choice of artificial viscosities
or hyperviscosities. The total energy of a cell is defined here as

∆mie
n
i = ∆miε

n
i +

1

2

(
∆mi+ 1

2
ekin

n
i+ 1

2

+ ∆mi− 1
2
ekin

n
i− 1

2

)
,

with the kinetic energy defined as ekini+ 1
2

= 1
2(ui+ 1

2
)2.
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Proof. Mass and momentum conservation are obvious. Only total energy conservation is detailed.
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Hence total energy conservation is obtained due to the flux form of ∆mi(ei

n+1 − ein). �

Remark II.1. The proof for total energy conservation uses special features of the BBC scheme,
especially that un+1

i+ 1
2

= 2u
n+ 1

2

i+ 1
2

− un
i+ 1

2

. Without this special relation between the velocities at
different time steps, total energy conservation does not hold.

Remark II.2. In recent works by Herbin, Latché and al. [83, 80, 81], they propose an a priori
internal energy corrector. This corrector is based on the computation of a residual term obtained
using the discretization of the kinetic energy. Here, for the BBC scheme, the residual term
obtained is exactly 0. Then, no special energy balance is to be performed in the Lagrangian
phase.

In other words, it means that changing the time integration has a strong impact on the total
energy conservation property of the scheme. The idea to be able to deal with any time-integration
sequences is to discretize the kinetic energy and to evolve it using its evolution equation. This
way conservation of total energy will be ensured.

II-1.2 Discretized variables on Arakawa C-type grid

In order to extend the BBC scheme at high-order in both time and space, the method used in
this work is based on the analysis of the kinetic energy equation, in a way that ensures total
energy conservation which appears more as a compatibility relation. The kinetic energy evolution
equation writes formally

∂tρ0ekin + u∂Xp = 0 (II.6)

To form the total energy equation, it is sufficient to combine with the internal energy one which
writes as

∂tρ0ε+ p∂Xu = 0 (II.7)

The use of the Lagrangian kinetic energy eq. (II.6) is unusual with respect to the literature.
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Another difference with the BBC scheme is that the masses will be decoupled between the
centered and staggered grids, meaning that eq. (II.2) will not be satisfied. The discretization is
summarized in fig. II.1. For example in 1D, two mass variables are considered, one located at
the center of each cells, and one at the center of each staggered cells. To our knowledge, such a
choice is also not usual in the literature.

 ρ0

ρ0τ
ρ0ε


i

 ρ0

ρ0u
ρ0ekin


i+ 1

2

Figure II.1 – Staggered finite volume space discretization on Cartesian grids

II-1.3 Definition of average and pointwise values

Consider a primal uniform Cartesian grid {xi+ 1
2
} with ∆X = xi+ 1

2
− xi− 1

2
and a dual grid {xi}

with xi = 1
2(xi+ 1

2
+ xi− 1

2
). As presented in eq. (II.8), φ and φ will respectively denote the space

averaged value of φ and its point-wise value.

φ
n
i = 1

∆X

∫ x
i+ 1

2

x
i− 1

2

φ(x, tn)dx,

φ
n
i+ 1

2
= 1

∆X

∫ xi+1

xi

φ(x, tn)dx,

φni = φ(xi, t
n),

φn
i+ 1

2

= φ(xi+ 1
2
, tn).

(II.8)

II-2 High order 1D Lagrange-Remap schemes on staggered Carte-
sian grids

Here we propose a constructive path to build high-order 1D finite volume conservative Lagrange-
remap schemes. Firstly, the formulation of Runge–Kutta based Lagrangian finite volume schemes
on staggered Cartesian grids is introduced. Secondly, an internal energy corrector is detailed.
This corrector is conservative, high-order accurate and yields consistency of the scheme in case
of strong shocks. Thirdly, a Lagrange polynomials based conservative remapping is extended to
the special case of staggered grids. Last, numerical experiments show accuracy and robustness
of the method on various numerical examples presented in the literature. This section has been
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the object of a publication [35] in the "Comptes-Rendus Mathématique".

II-2.1 Formulation of Runge–Kutta based Lagrangian finite volume schemes

The Lagrangian system formulated in kinetic and internal energies is reminded hereafter, using
q as the artificial viscosity as detailed in section I-2.4.

Dtρ0τ − ∂Xu = 0,

Dtρ0u+ ∂X(p+ q) = 0,

Dtρ0ε+ (p+ q)∂Xu = 0,

Dtρ0ekin + u∂X(p+ q) = 0,

p = EOS(τ, ε).

(II.9)

II-2.1.1 Semi-discrete formulation of the Lagrangian finite volume schemes

To get the semi-discrete formulation of the Lagrangian finite volume schemes, system depicted
in eq. (II.9) is integrated in time between tn and tn+1 over a cell

[
xi− 1

2
, xi+ 1

2

]
for the thermody-

namics variables ρ0τ and ρ0ε and over a cell [xi, xi+1] for the ρ0u and ρekin. It yields

∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ)− ui− 1

2
(θ)dθ,

∆X(ρ0u
n+1
i+ 1

2

− ρ0u
n
i+ 1

2

) =
∫ tn+1

tn (p+ q)i+1(θ)− (p+ q)i(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn

∫ xi+ 1
2

x
i− 1

2

((p+ q)∂Xu)(y, θ)dydθ,

∆X(ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

) =
∫ tn+1

tn

∫ xi+1

xi
(u∂X(p+ q))(y, θ)dydθ,

pi = EOS(τi, εi).

(II.10)

Notations (p+ q)δui and uδ(p+ q)i+ 1
2
are introduced as

(p+ q)δui =

∫ x
i+ 1

2

x
i− 1

2

((p+ q)∂Xu)(y, θ)dy,

uδ(p+ q)i+ 1
2

=

∫ xi+1

xi

(u∂X(p+ q))(y, θ)dy.

So that eq. (II.11) rewrites



∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ)− ui− 1

2
(θ)dθ,

∆X(ρ0u
n+1
i+ 1

2

− ρ0u
n
i+ 1

2

) =
∫ tn+1

tn (p+ q)i+1(θ)− (p+ q)i(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn (p+ q)δui(θ)dθ,

∆X(ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

) =
∫ tn+1

tn uδ(p+ q)i+ 1
2
(θ)dθ,

pi = EOS(τi, εi).

(II.11)

Before performing any kind of time integration, one must first address the issue of computing
with high-order accuracy the point-wise values of p, u, τ and ε.



62 HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES

II-2.1.2 High-order in spatial reconstruction of pointwise values from averages ones
and vice versa and of space derivatives

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average)
values from the average (resp. point-wise) ones with high-order accuracy. Table II.1 gives the
coefficients for centered, symmetric and polynomial reconstructions using eq. (II.12). Although
other reconstructions may be used, centered and symmetric ones are retained here and are
sufficient for uniform Cartesian grids.



φξ(i) =
∑
k

Ckφξ(i)+k,

φξ(i) =
∑
k

Ĉkφξ(i)+k,

δφξ(i) =
∑
k≥0

dk

(
φξ(i)+k+ 1

2
− φξ(i)−k− 1

2

)
,

φξ(i) =
∑
k

rk(φξ(i)+k+ 1
2

+ φξ(i)−k− 1
2
),

φξ(i) =
(ρ0φ)ξ(i)
(ρ0)ξ(i)

,

with ξ(i) =

{
i on primal grid,

i+ 1
2 on dual grid,

(II.12)

The non-conservative terms ψδφ of eq. (II.11) are computed by:

1. Applying the δ operator to point-wise values of φ using coefficients in table II.3 and third
equation of (II.12).

2. Multiplying by point-wise values of ψ, then reconstructing average values using coefficients
in table II.2 and second equation of (II.12).

Order C0 C±1 C±2 C±3 C±4

2nd 1 0 0 0 0

3rd 13
12

−1
24 0 0 0

4th and 5th 1067
960

−29
480

3
640 0 0

6th and 7th 30251
26880

−7621
107520

159
17920

−5
7168 0

8th and 9th 5851067
5160960

−100027
1290240

31471
2580480

−425
258048

35
294912

Table II.1 – Coefficients for the finite volume computation of point-wise values from cell-average
ones.

II-2.1.3 Runge–Kutta based time discretization

We consider Nth order explicit schemes with s sub-cycles with the following notations for Runge-
Kutta sequences: αm is the time step for the mth sub-cycle, am,l the m, l term of the Butcher
table and θl the lth reconstruction coefficient for the last step. It is represented by the table
presented in table II.5. The sequences are available in appendix in section A.1. We denote the
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Order Ĉ0 Ĉ±1 Ĉ±2 Ĉ±3 Ĉ±4

2nd 1 0 0 0 0

3rd 11
12

1
24 0 0 0

4th and 5th 863
960

77
1440

−17
5760 0 0

6th and 7th 215641
241920

6361
107520

−281
53760

367
967680 0

8th and 9th 41208059
46448640

3629953
58060800

−801973
116121600

49879
58060800

−27859
464486400

Table II.2 – Coefficients for the finite volume computation of average values from point-wise
ones.

Order d0 d1 d2 d3 d4

2nd 1 0 0 0 0

3rd 9
8

−1
24 0 0 0

4th and 5th 75
64

−25
384

3
640 0 0

6th and 7th 1225
1024

−245
3072

49
5120

−5
7168 0

8th and 9th 19845
16384

−735
8192

567
40960

−405
229376

35
294912

Table II.3 – Coefficients for the δ operator.

sum of artificial viscosity and pressure as Π = p+q. The system (II.13) details one Runge-Kutta
sub-cycle at time tn+αm and (II.14) details the final step at time tn+1:



ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i ,

ρ0u
n+αm
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,ldΠn+αl
i+ 1

2

,

ρ0ε
n+αm
i =ρ0ε

n
i − ∆t

∆X

m−1∑
l=0

am,lΠδu
n+αl,
i

pn+αm
i =EOS(τn+αm

i , εn+αm
i ),

(II.13)

Here, dφ is the difference between two consecutive point-wise values: dφi = φi+ 1
2
−φi− 1

2
and dφi+ 1

2
=

φi+1 − φi. Note that in (II.13), ie for intermediate Runge–Kutta time-step, there is no need to
compute the evolution of the kinetic energy, nor the position of the cells face xi+ 1

2
.
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Order r0 r1 r2 r3 r4

2nd 1
2 0 0 0 0

3rd 9
16

−1
16 0 0 0

4th and 5th 75
128

−25
256

3
256 0 0

6th and 7th 1225
2048

−245
2048

49
2048

−5
2048 0

8th and 9th 19845
32768

−2205
16384

567
16384

−405
65536

35
65536

Table II.4 – Coefficients for the interpolation of cell-centered values from staggered ones and
vice-versa.

α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αs as,0 · · · · · · as,s−1 0
1 θ0 θ1 · · · θs−1 θs

Table II.5 – Example of Butcher table for explicit Runge–Kutta sequence with s sub-cycles.



ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θldu
n+αl
i ,

ρ0u
n+1
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θldΠn+αl
i+ 1

2

,

ρ0ε
n+1
i =ρ0ε

n
i − ∆t

∆X

s∑
l=0

θlΠδu
n+αl,
i

ρ0ekin
n+1
i+ 1

2

=ρ0ekin
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θluδΠ
n+αl,

i+ 1
2

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t

s∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i , εn+1
i ).

(II.14)

II-2.1.4 Properties of the staggered schemes (II.13)-(II.14)

Two definitions of total energies are introduced in order to study the schemes properties con-
cerning the conservation of total energy.

Definition II.1. The total energy, based on the kinetic energy reconstructed from the momen-
tum, of the system at time t = tn, denoted En, is defined as

En = ∆X

(∑
i

ρ0ε
n
i +

∑
i

ρ0u2
n

i+ 1
2

)
. (II.15)

Definition II.2. A total energy, based on the discretized kinetic energy, of the system at time
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t = tn, denoted En, is defined as

En = ∆X

(∑
i

ρ0ε
n
i +

∑
i

ρ0ekin,u
n
i+ 1

2

)
. (II.16)

A desired feature is that the mass, momentum and the total energy En defined in definition II.1
are conserved for periodic or wall boundary conditions, meaning that En+1 − En = 0. How-
ever using schemes (II.13)-(II.14), the total energy E is not conserved. Here, as mentioned in
lemma II.2, the schemes conserve the total energy En defined in definition II.2.

Lemma II.2 (Conservation of the staggered schemes (II.13)-(II.14)). For all explicit Runge-
Kutta sequences, all artificial viscosities, all spatial reconstructions, the schemes (II.13)-(II.14)
formulated in internal energy are conservative in mass, momentum and total energy E defined in
definition II.2.

Proof. Conservation of mass and momentum is straightforward. We only prove the conservation
of total energy.

En+1 − En =
∑
i

(
ρ0ε

n+1
i − ρ0ε

n
i

)
+
∑
i

(
ρ0ekin

n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)

= − ∆t

∆X

∑
i

s∑
l=1

θl

(
Πδu

n+αl
i + uδΠ

n+αl
i+ 1

2

)
= − ∆t

∆X

∑
i

s∑
l=1

∑
k

∑
k′

θlĈkdk′(Π
n+αl
i+k un+αl

i+k+k′+ 1
2

+ un+αl
i+k+ 1

2

Πn+αl
i+k+k′+1

−Πn+αl
i+k un+αl

i+k−k′− 1
2

− un+αl
i+k+ 1

2

Πn+αl
i+k−k′).

Making the change of index i← i+ k′ in the first term and i← i+ k′ + 1 in the second term of
the RHS we get the result for wall (with non-trivial definitions of ghost-cell values) or periodic
boundary conditions.

En+1 − En = − ∆t

∆X

∑
i

s∑
l=1

∑
k

∑
k′

θlĈkdk′( Πn+αl
i+k−k′u

n+αl
i+k+ 1

2

+ un+αl
i+k−k′− 1

2

Πn+αl
i+k

− Πn+αl
i+k un+αl

i+k−k′− 1
2

− un+αl
i+k+ 1

2

Πn+αl
i+k−k′) = 0.

�

We introduce the barotropic version of the staggered schemes: the intermediate stages write
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ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,l(u
n+αl
i+ 1

2

− un+αl
i− 1

2

),

ρ0u
n+αm
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(p
n+αl
i+1 − p

n+αl
i ),

pn+αm
i =EOS(τn+αm

i ),

(II.17)

and the final stage writes



ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θl(u
n+αl
i+ 1

2

− un+αl
i− 1

2

),

ρ0u
n+1
i+ 1

2

=ρ0u
n
i+ 1

2

− ∆t
∆X

s∑
l=0

θl(p
n+αl
i+1 − p

n+αl
i ),

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t
s∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i ).

(II.18)

Lemma II.3 (Weak consistency of the barotropic Lagrangian staggered schemes (II.17)-(II.18)).
For all explicit Runge–Kutta sequences, all consistent spatial reconstructions, the schemes (II.17)-
(II.18) are weakly consistent.

Proof. Here we use the fact that a scheme whose flux is consistent (definition I.6) is weakly
consistent (definition I.7). This is why we have to verify that the scheme can be rewritten under
the form (I.34)-(I.35)-(I.36).

From equation (II.18), one can define the natural flux

f?
i+ 1

2

=
s∑
l=0

θl

(
−un+αl

i+ 1
2

pn+αl
i+1

)
,

and the intermediate fluxes are defined from (II.17)

fαm
i+ 1

2

=
m−1∑
l=0

am,l

(
−un+αl

i+ 1
2

pn+αl
i+1

)
.

The proof is done by induction on the intermediate time-steps. First one proves that the interme-
diate (resp. natural) flux can be written as Φm(Ui−mr+1, ...,Ui+mr+1) (resp. Φ?(Ui−(s+1)r+1, ...,Ui+(s+1)r+1))
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. Second, one proves that Φm (resp. Φ?) satisfies for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t

Φm(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = αm

(
−u
p

)
,

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =

(
−u
p

)
.

We start the proof considering the first intermediate time-step. One has

fα1

i+ 1
2

= a1,0

(
−un

i+ 1
2

pni+1

)
, α1 = a1,0

where 

un
i+ 1

2

=

r∑
k=−r

Ckρ0u
n
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

,

pni = p


r∑

k=−r
Ckρ0τ

n
i+k

r∑
k=−r

Ckρ0i+k

 .

Hence, one can write fα1

i+ 1
2

as a function Φ1 with

fα1

i+ 1
2

= Φ1(


ρ0τ

n
i−r+1

ρ0i−r+1

ρ0u
n
i+ 1

2
−r

ρ0i+ 1
2
−r

 , ...,


ρ0τ

n
i+r+1

ρ0i+r+1

ρ0u
n
i+ 1

2
+r

ρ0i+ 1
2

+r

).

The function Φ1 writes

Φ1(


ρ0τ

n
i−r+1

ρ0i−r+1

ρ0u
n
i+ 1

2
−r

ρ0i+ 1
2
−r

 , ...,


ρ0τ

n
i+r+1

ρ0i+r+1

ρ0u
n
i+ 1

2
+r

ρ0i+ 1
2

+r

) = a1,0



−

r∑
k=−r

Ckρ0u
n
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n
i+k

r∑
k=−r

Ckρ0i+k




.
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Hence, for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t

Φ1(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = a1,0



−

r∑
k=−r

Ckρ0u

r∑
k=−r

Ckρ̂0

p


r∑

k=−r
Ckρ0τ

r∑
k=−r

Ckρ0




,

using the fact that
∑
k

Ck = 1, it leads to

Φ1(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) = a1,0

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
= a1,0

(
−u
p(τ)

)
.

In particular, still for constant states (ρ0τ , ρ0, ρ0u, ρ̂0)t, one obtains that{
ρ0τ

n+α1
i = ρ0τ

n
i = ρ0τ,

ρ0u
n+α1

i+ 1
2

= ρ0u
n
i+ 1

2

= ρ0u.

Then by straightforward induction on the intermediate time-steps, any fαm
i+ 1

2

writes as a function
Φm as

fαm
i+ 1

2

= Φm(


ρ0τ

n
i−mr+1

ρ0i−mr+1

ρ0u
n
i+ 1

2
−mr

ρ0i+ 1
2
−mr

 , ...,


ρ0τ

n
i+mr+1

ρ0i+mr+1

ρ0u
n
i+ 1

2
+mr

ρ0i+ 1
2

+mr

).

The function Φm writes

Φm(


ρ0τ

n
i−mr+1

ρ0i−mr+1

ρ0u
n
i+ 1

2
−mr

ρ0i+ 1
2
−mr

 , ...,


ρ0τ

n
i+mr+1

ρ0i+mr+1

ρ0u
n
i+ 1

2
+mr

ρ0i+ 1
2

+mr

) =
m−1∑
l=0

am,l



−

r∑
k=−r

Ckρ0u
n+αl
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n+αl
i+k

r∑
k=−r

Ckρ0i+k




Then for constant state (ρ0τ , ρ0, ρ0u, ρ̂0)t and by induction on the previous intermediate time-
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steps

Φm(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =
m−1∑
l=0

am,l

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
=

m−1∑
l=0

am,l

(
−u
p(τ)

)
= αm

(
−u
p(τ)

)
.

And in particular, still for constant states, one obtains that{
ρ0τ

n+αm
i = ρ0τ

n
i = ρ0τ,

ρ0u
n+αm
i+ 1

2

= ρ0u
n
i+ 1

2

= ρ0u.

Therefore, by induction, the natural flux f?
i+ 1

2

writes as a vector values function Φ? as

f?
i+ 1

2

= Φ?(


ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1

ρ0u
n
i+ 1

2
−(s+1)r

ρ0i+ 1
2
−(s+1)r

 , ...,


ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1

ρ0u
n
i+ 1

2
+(s+1)r

ρ0i+ 1
2

+(s+1)r

),

where Φ? satisfies

Φ?(


ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1

ρ0u
n
i+ 1

2
−(s+1)r

ρ0i+ 1
2
−(s+1)r

 , ...,


ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1

ρ0u
n
i+ 1

2
+(s+1)r

ρ0i+ 1
2

+(s+1)r

) =
s∑
l=0

θl



−

r∑
k=−r

Ckρ0u
n+αl
i+ 1

2
+k

r∑
k=−r

Ckρ0i+ 1
2

+k

p


r∑

k=−r
Ckρ0τ

n+αl
i+k

r∑
k=−r

Ckρ0i+k




.

Thus for constant states, it leads to

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =
s∑
l=0

θl

(
−ρ0u

ρ̂0

p(ρ0τ
ρ0

)

)
=

s∑
l=0

θl

(
−u
p(τ)

)
.
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Using the fact that
s∑
l=0

θl = 1, it leads to

Φ?(


ρ0τ

ρ0

ρ0u

ρ̂0

 , ...,


ρ0τ

ρ0

ρ0u

ρ̂0

) =

(
−u
p(τ)

)

Hence, the scheme is weakly consistent for the barotropic equations in the sense of definition I.6.
�

Another important property of a scheme is its linear stability. To study such a property, one
considers the scheme for the linearized system of equation, which is nothing but the wave equation

{
∂tu+ ∂xp = 0

∂tp+ ∂xu = 0
(II.19)

For such a linear system, the staggered scheme writes


pn+αm
i = pni − ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i ,

un+αm
i+ 1

2

= un
i+ 1

2

− ∆t
∆X

m−1∑
l=0

am,ldp
n+αl
i+ 1

2

,


pn+1
i = pni − ∆t

∆X

s−1∑
l=0

θldu
n+αl
i ,

un+1
i+ 1

2

= un
i+ 1

2

− ∆t
∆X

s−1∑
l=0

θldp
n+αl
i+ 1

2

,

(II.20)

with a CFL condition of the form
∆t < λ∆X.

Using the amplification factor presented in section I-1.2.3, one deduces a CFL condition which
yields linear stability for the schemes. Lemmas II.4 and II.5 give results concerning the linear
stability of the staggered schemes.

Lemma II.4 (Linear instability of the second order staggered schemes). The two-steps second-
order in time and space explicit Runge–Kutta schemes (II.20) are linearly unstable for any CFL
condition.

Remark II.3. For this reason, second order Runge–Kutta schemes are discarded. Instead the
BBC scheme is used for second order accuracy in time.

Proof. A two-steps second-order explicit Runge–Kutta sequences can be parametrized using a
non-zero α which leads to the following Butcher table

α α 0
1 1− 1

2α
1

2α
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For second-order accuracy, average and pointwise values are equivalent. The index j is used in
order not to introduce confusion with the complex number i. Denoting ν = ∆t

∆X , it writes for u

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(1− 1

2α
)(pnj+1 − pnj ) +

1

2α
(pn+α
j+1 − p

n+α
j )

)
.

Then plugging the terms for pn+α
j and pn+α

j+1 in the previous equation, it yields

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(1− 1

2α
)(pnj+1 − pnj ) +

1

2α
(pnj+1 − pnj − αν(un

j+ 3
2

− 2un
j+ 1

2

+ un
j− 1

2

))

)
,

which can be simplified into

un+1
j+ 1

2

= un
j+ 1

2

− ν
(

(pnj+1 − pnj )− 1

2
(ν(un

j+ 3
2

− 2un
j+ 1

2

+ un
j− 1

2

))

)
.

The above expression is completely independent of α and thus the resulting CFL condition is as
well independent of α. It writes

un+1
j+ 1

2

= (1− ν2)un
j+ 1

2

− ν
(
pnj+1 − pnj

)
+
ν2

2

(
un
j+ 3

2

+ un
j− 1

2

)
.

Denoting εj and εj+ 1
2
the numerical errors as introduced in section I-1.2.3, it yields

εn+1
j+ 1

2

= (1− ν2)εn
j+ 1

2

− ν
(
εnj+1 − εnj

)
+
ν2

2

(
εn
j+ 3

2

+ εn
j− 1

2

)
.

Now assuming that for any n, and for any j, εnj = eβn∆t eikπj∆X with k an integer, one gets

eβ∆t = (1− ν2)− ν
(

e
ikπ∆X

2 − e−
ikπ∆X

2

)
+
ν2

2

(
eikπ∆X + e−ikπ∆X

)
.

Using trigonometric identities, it yields

eβ∆t = (1− ν2)− 2iν sin(
kπ∆X

2
) + ν2 cos(kπ∆X).

Introducing θ = kπ∆X and g(θ, ν) = eβ∆t, one gets the following equation for the amplification
factor

g(θ, ν) = (1− ν2)− 2iν sin(
θ

2
) + ν2 cos(θ).

Then the square of the modulus of g(θ, ν) writes

|g(θ, ν)|2 =
(
1− ν2 + ν2 cos(θ)

)2
+ 4ν2 sin2(

θ

2
).

Using the fact that cos(θ) = 1− 2 sin2( θ2) and after simplification one gets

|g(θ, ν)|2 = 1 + 4ν4 sin4(
θ

2
).
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Then, the amplification factor satisfies for ν 6= 0

max
θ∈[0:2π]

|g(θ, ν)|2 > 1.

And thus the scheme is not stable in the sense of definition I.11. �

Similar calculations have been performed for higher-order staggered schemes. The Runge–Kutta
sequences used in the following are described in section I-1.2.3. The third order Runge–Kutta
sequence selected is the SSPRK3 [70, 71]. The fourth order Runge–Kutta sequence is the 3

8 -
Kutta sequence [100]. The fifth order Runge–Kutta sequence is the Dormand–Prince sequence
[49]. Last, the sixth, seventh and eighth order Runge–Kutta sequence are the robust Verner
sequences available in [168]. Due to the complexity of the amplification factor, results of stability
are numerical. One checks for a given value of ν that for all θ, |g(θ, ν)| ≤ 1. The results are
summarized in the following lemma.

Lemma II.5 (Linear stability of the staggered schemes). Higher-order schemes are stable under
CFL condition

∆t < λStag
∆X

maxi ci

where ci is the speed of sound in the cell i. The coefficients λStag are listed in table II.6 with the
aforementioned sequences.

Schemes λStag

2nd order BBC 0.6888

3rd order SSPRK3 0.7423

4th order 3
8 -Kutta 1.1390

5th order Dormand-Prince 0.4015

6th order robust Verner 1.0045

7th order robust Verner 0.0134

8th order robust Verner 0.9840

Table II.6 – CFL conditions for linear stability of the staggered schemes

II-2.2 A new local internal energy corrector

Compared to the barotropic schemes, an additional theoretical difficulty shows up for the hydro-
dynamics case (II.13)-(II.14) with the energy equation. It is related to the fact that, even if the
total energy E is preserved by construction, it is not the case for the total energy E. Experimen-
tally, we also observe that the schemes (II.13)-(II.14) are unable to capture the shocks correctly,
in the sense that the Rankine–Hugoniot jump relations are not recovered.

The idea is to recouple E and E using a correction of the internal energy at the end of the
Lagrangian phase (II.13)-(II.14). The difference between the computed kinetic energy and the



2D STAGGERED LAGRANGE-REMAP SCHEMES 73

kinetic energy reconstructed from the velocity is reversed in the internal energy. This is very
similar to what is done in works by Herbin, Latché and al. [83, 80, 81]. The main difference is
that they perform the correction a priori, whereas here in our case the correction is applied a
posteriori.

II-2.2.1 Internal energy corrector

As an additional comment, the internal energy evolution equation in (II.9) is undefined classically
in the sense of distributions. So, in the absence of any artificial viscosity, one expects wrong
discontinuities computations. The idea of the internal energy corrector is to really solve the
Lagrangian system formulated in total energy rather that in internal one.

The difference between the computed kinetic energy and the kinetic energy reconstructed from
the velocity is computed. As the scheme is high-order accurate, the result is not so straightfor-
ward. It follows the steps described hereafter. First the point-wise kinetic energy reconstructed
from the velocity is

(
1

2
ρ0u

2)n+1
i+ 1

2

=
1

2

(∑
k

Ckρ0u
n+1
i+k+ 1

2

)2

∑
k

Ckρ0
n
i+k+ 1

2

.

Second it is averaged over a cell using the coefficients Ĉk presented in table II.1

(
1

2
ρ0u2)n+1

i+ 1
2

=
∑
k

Ĉk(
1

2
ρ0u

2)n+1
i+k+ 1

2

.

The difference denoted ∆Kn+1
i+ 1

2

between the two kinetic energies is

∆Kn+1
i+ 1

2

= ρ0ekin
n+1
i+ 1

2

− (
1

2
ρ0u2)n+1

i+ 1
2

.

Third, linear interpolation is made to compute ∆Kn+1
i

∆Kn+1
i =

1

2
(∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2

).

Last, the difference ∆Kn+1
i is added to the internal energy ρ0ε

n+1
i whereas ∆Kn+1

i+ 1
2

is subtracted
to the kinetic ones. It writes as an a posteriori correction{

ρ0ε
n+1,?
i = ρ0ε

n+1
i + ∆Kn+1

i

ρ0ekin
n+1,?

i+ 1
2

= ρ0ekin
n+1
i+ 1

2

−∆Kn+1
i+ 1

2

= (1
2ρ0u2)n+1

i+ 1
2

(II.21)

The internal energy corrector can be applied at the end of each Runge–Kutta sub-cycle or only
at the end of the time-step. Commonly, the internal energy corrector is performed only at the
end of the time-step, hence the a posteriori correction.
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II-2.2.2 Properties of the internal energy corrector

Lemma II.6 (High-order accuracy of the internal energy corrector). The internal energy cor-
rector is high-order accurate in both time and space.

Proof. Assume that the solution is smooth enough. Assume that the coefficients Ĉk and Ck yield
Nth order of accuracy in space, and that the Lagrange phase is also of order N in both time and
space. Then in particular, one has

∆Kn+1
i+ 1

2

= ρ0ekin
n+1
i+ 1

2

− (
1

2
ρ0u2)n+1

i+ 1
2

= O(∆XN ).

And then trivially, one gets that

∆Kn+1
i =

1

2
(∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2

) = O(∆XN ).

As the Lagrange phase is assumed to be high-order accurate, one has that

ρ0ε
n+1
i = ρ0ε(xi, t

n+1) + O(∆XN ),

And then, one gets

ρ0ε
n+1,?
i = ρ0ε

n+1
i + ∆Ki = ρ0ε(xi, t

n+1) + O(∆XN ),

which concludes the proof, yielding high-order accuracy for the internal energy. �

Moreover the following lemma gives conservation of total energy when applying the internal
energy corrector.

Lemma II.7 (Conservation of the internal energy corrector). The internal energy corrector
satisfies En+1,? = En+1.

Proof. The internal energy corrector is conservative in E if and only if we have

En+1,? − En+1 = ∆X
∑
i

∆Ki −
∑

∆Ki+ 1
2

= 0.

As ∆Ki = 1
2(∆Ki+ 1

2
+ ∆Ki− 1

2
), it leads to the following computations

En+1,?−En+1 = ∆X

(∑
i

∆Ki −
∑

∆Ki+ 1
2

)
= ∆X

(∑
i

1

2
(∆Ki+ 1

2
+ ∆Ki− 1

2
)−

∑
∆Ki+ 1

2

)
.

Performing change of discrete variables in the first summation, and assuming wall or periodic
boundary conditions, it yields

∑
i

∆Ki −
∑

∆Ki+ 1
2

= 0. Thus, the internal energy corrector

conserve the quantity E , meaning that En+1,? − En+1 = 0. �
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Lemma II.8 (Conservation of the staggered schemes (II.13)-(II.14)-(II.21)). The schemes (II.13)-
(II.14) with the internal energy corrector (II.21) satisfy En+1,? = En (cf definition II.1).

Proof. We have

En+1,? − En = ∆X
∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0u2

n

i+ 1
2

)
(II.22)

Introducing the term at time t = tn+1, it becomes

= ∆X
∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i + ρ0ε

n+1
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0ekin,u

n+1
i+ 1

2

+ ρ0ekin,u
n+1
i+ 1

2

− ρ0u2
n

i+ 1
2

)
= ∆X

∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i

)
−∆X

∑
i

(
ρ0u2

n+1,?

i+ 1
2
− ρ0ekin,u

n+1
i+ 1

2

)
+ En+1 − En

Using the fact that ρ0u2
n+1,?

i+ 1
2

= ρ0ekin,u
n+1,?

i+ 1
2

, it leads to

= En+1,? − En+1 + En+1 − En

= 0.

Thus, applying the internal corrector gives conservation of the energy E between time t = tn+1,?

and time t = tn. �

Theorem II.9 (Weak consistency of the staggered schemes (II.13)-(II.14)-(II.21) ). For all ex-
plicit Runge–Kutta sequences, for coefficients Ck, Ĉk, dk, rk defined in tables II.1 to II.4, the
schemes (II.13)-(II.14)-(II.21) are weakly consistent with the Euler equations in Lagrangian co-
ordinates.

Remark II.4. The proof of the weak consistency of the two first variables, specific volume and
momentum, which show up in (II.13)-(II.14) is essentially similar to the one of lemma II.3 for
the barotropic case, so is not detailed. Instead we focus on the energy equation. However, due
to the very intricate structure of the discrete energy equation, no explicit natural fluxes for total
energy have been exhibited so far. It means that the energy equation is not rewritten using the
form (I.34)-(I.35)-(I.36). That is the criterion of flux consistency of definition I.6 is unfortunately
not applicable, this is why the proof is detailed hereafter in full length, starting directly from
definition I.7.

Proof. The assumptions presented in definition I.7 for weak consistency are done. We first detail
the proof for a forward Euler, second order in space scheme because it highlights the key elements
of the method. The general case with a forward Euler and any order in space will be dealt with
in a second stage. The most general case with any explicit Runge–Kutta sequences will not be
detailed because it would add no new technical ideas and the notations are too heavy. For the
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sake of simplicity, in the following the time step tn+1,? is denoted by tn+1.

First stage

For a forward Euler, second order in space scheme, the internal and kinetic energies discrete
equations write

 ρ0ε
n+1
i − ρ0ε

n
i = − ∆t

∆Xpni (un
i+ 1

2

− un
i− 1

2

) + ∆Kn+1
i ,

ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

= − ∆t
∆Xun

i+ 1
2

(pni+1 − pni ) − ∆Kn+1
i+ 1

2

,

The idea is to take a test function φ ∈ C∞0 with compact support. Denote φni = φ(i∆X, tn) and
φn
i+ 1

2

((i + 1
2)∆X, tn). Multiply the first equation by ∆Xφn+1

i and the second by ∆Xφn+1
i+ 1

2

then
to sum over the n and i and to combine both. It leads to

∑
n

∑
i

∆X

[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)φn+1
i+ 1

2

]
+

∑
n

∑
i

∆t

[
pni φ

n+1
i (un

i+ 1
2

− un
i− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+1 − pni )

]
−

∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
= 0.

(II.23)

Denote h a parameter proportional to ∆X and ∆t. Introducing the notation

T h1 =
∑
n

∑
i

∆X

[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2

− ρ0ekin
n
i+ 1

2

)φn+1
i+ 1

2

]
,

T h2 =
∑
n

∑
i

∆t

[
pni φ

n+1
i (un

i+ 1
2

− un
i− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+1 − pni )

]
,

T h3 = −
∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
,

(II.24)

eq. (II.23) rewrites simply under the form T h1 + T h2 + T h3 = 0. Terms T h1 are reordered into

T h1 = −
∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 .
We will use the natural definition/notation for staircase functions

ψh(x, t) =
∑
i

∑
n

χ]tn,tn+1[(t)χ]xi−1/2,xi+1/2[(x)ψni ,

ψh,stag(x, t) =
∑
i

∑
n

χ]tn,tn+1[(t)χ]xi,xi+1[(x)ψn
i+ 1

2

.
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Then, using the internal corrector, it yields that ρ0ekin
n
i+ 1

2

= 1
2(ρ0u

2)n
i+ 1

2

and so

T h1 = −
∫ T

0

∫
Ω

(ρ0ε)h∂tφhdxdt−
∫ T

0

∫
Ω

(
1

2
ρ0u

2)h,stag∂tφh,stagdxdt

+

∫
Ω

(ρ0ε)
0
hφ

0
hdx+

∫
Ω

(
1

2
ρ0u

2)0
h,stagφ

0
h,stagdx.

Using the convergence hypothesis of definition I.7 and the regularity of the test function φ, one
can pass to the limit as ∆X and ∆t tend to 0. It leads to

lim
h→0
T h1 = −

∫ T

0

∫
Ω
ρ̂0ε∂tφdxdt−

∫ T

0

∫
Ω

1̂

2
ρ0u2∂tφdxdt

+

∫
Ω
ρ̂0ε(x, 0)φ(x, 0)dx+

∫
Ω

1̂

2
ρ0u2(x, 0)φ(x, 0)dx.

Using the definition of the total energy as ρ0e = ρ0ε+ 1
2ρ0u

2, one gets

lim
h→0
T h1 = −

∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Now, focus on T h3 which writes

T h3 = −
∑
n

∑
i

∆X

[
∆Kn+1

i φn+1
i −∆Kn+1

i+ 1
2

φn+1
i+ 1

2

]
,

which leads using ∆Kn+1
i = 1

2(∆Kn+1
i+ 1

2

+ ∆Kn+1
i− 1

2

) to

T h3 = −
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]
,

which gives after reordering the terms

T h3 = −
∑
n

∑
i

∆X∆Kn+1
i+ 1

2

(
φn+1
i+1 + φn+1

i

2
− φn+1
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2

)
.

Using the boundedness in L∞ of ∆Kn+1
i+ 1

2

and regularity of φ, it leads to

|T h3 | ≤ Cφ∆X‖(∆K)h‖L∞ , which gives immediately lim
h→0
|T h3 | = 0.

The term T h2 writes
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]
,
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which, once the terms reordered, writes as
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The previous expression is decomposed into two terms denoted T h2,1 and T h2,2 with
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i+ 1

2

pni + pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni + pni+1

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 ,
T h2,2 = −

∑
n

∆t∆X
∑
i

un
i+ 1

2

pni − pni+1

4

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
pni+1 − pni

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 .
The T h2,2 is dealt with assuming that ph is in BV , uh is bounded in L∞, and φ is in C 1 which
gives

|T h2,2| ≤ ∆XCφ‖uh‖L∞‖ph‖BV .

Hence, passing to the limit, it leads to

lim
h→0
|T h2,2| = 0. (II.25)

On the other hand, one easily notices that T h2,1 rewrites as

T h2,1 = −
∑
n

∆t∆X
∑
i

un
i+ 1

2

pni + pni+1

2

1

2

φn+1
i+ 1

2

− φn+1
i

∆X

2

+
1

2

φn+1
i+1 − φ

n+1
i+ 1

2

∆X

2

 ,
= −

∫ T

0

∫
Ω

(pu)h∂Xφhdxdt
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Using the regularity of φ it leads, passing to the limit, to

lim
h→0
T h2,1 = −

∫ T

0

∫
Ω
p̂û∂Xφdxdt.

Reassembling all the terms, it yields that

lim
h→0
T h1 + T h2 + T h3 = −

∫ T

0

∫
Ω
ρ̂0e∂tφdxdt−

∫ T

0

∫
Ω
p̂û∂Xφdxdt+

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

And, hence, it leads to∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫ T

0

∫
Ω
p̂û∂Xφdxdt =

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Previous equation gives weak consistency for the second order in space, forward Euler staggered
scheme with internal energy corrector.

Second stage

Now, the problem of high-order in space is tackled. It does not yield to any difficulty for the
terms T h1 and T h3 , but this is not the case for T h2 , where the desired results is not obvious. For
the sake of simplicity here, we consider that Ĉ0 = 1, Ĉk = 0,∀|k| > 0. The results does not
change, if

∑
k

Ĉk = 1 but it greatly alleviates the algebra of the proof.

One has that

T h2 = −
∑
n

∆t
∑
i

∑
k≥0

dk

[
pni φ

n+1
i (un

i+k+ 1
2

− un
i−k− 1

2

) + un
i+ 1

2

φn+1
i+ 1

2

(pni+k+1 − pni−k)
]
.

Reordering the terms, so that only un
i+ 1

2

shows up, leads to

T h2 = −
∑
n

∆t
∑
i

un
i+ 1

2

∑
k≥0

dk

[
pni−k(φ

n+1
i−k − φ

n+1
i+ 1

2

) + pni+k+1(φn+1
i+ 1

2

− φn+1
i+k+1)

]
.

Highlighting the space derivatives of φ gives

T h2 = +
∑
n

∆t
∑
i

∆Xun
i+ 1

2

∑
k≥0

(k +
1

2
)dk

pni−kφn+1
i+ 1

2

− φn+1
i−k

∆X(k +
1

2
)

+ pni+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1

2
)

 .
Noticing that (k + 1

2)dk = rk, k ≥ 0, it yields

T h2 = +
∑
n

∆t
∑
i

∆Xun
i+ 1

2

∑
k≥0

rk

pni−kφn+1
i+ 1

2

− φn+1
i−k

∆X(k +
1

2
)

+ pni+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1

2
)

 .
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As previously for the case of second order in space accuracy, the conclusion is reached using the
assumption that ph is in BV , uh is bounded in L∞, φ is in C 1 and

∑
k

rk = 1. One has

lim
h→0
T h2,1 = −

∫ T

0

∫
Ω
p̂û∂Xφdxdt.

And, hence, it leads to∫ T

0

∫
Ω
ρ̂0e∂tφdxdt+

∫ T

0

∫
Ω
p̂û∂Xφdxdt =

∫
Ω
ρ̂0e(x, 0)φ(x, 0)dx.

Previous equation gives weak consistency for forward Euler staggered scheme with internal energy
corrector. Using Runge–Kutta sequences adds only more technical difficulty in the algebra, but
does not alter the weak consistency result. Idem for the use of the coefficients Ĉk. The key point
for consistency is to use the same coefficients dk and Ĉk for both the internal and kinetic energies
equations. �

Remark II.5. Without internal energy corrector, for a forward Euler second order in space scheme,
the first term writes

T̂ h1 = −
∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t


= −

∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ (

1

2
ρ0u

2)n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t


−
∑
n

∆t
∑
i

∆X

(ρ0ekin
n
i+ 1

2

− (
1

2
ρ0u

2)n
i+ 1

2

) φn+1
i+ 1

2

− φn
i+ 1

2

∆t


= T h1,1 + T h1,2.

where T h1,1 and T h1,2 are defined by

(II.26)
T h1,1 = −

∑
n

∆t
∑
i

∆X

ρ0ε
n
i

φn+1
i − φni

∆t
+ (

1

2
ρ0u

2)n
i+ 1

2

φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 ,
T h1,2 = −

∑
n

∆t
∑
i

∆X

(ρ0ekin
n
i+ 1

2

− (
1

2
ρ0u

2)n
i+ 1

2

) φn+1
i+ 1

2

− φn
i+ 1

2

∆t

 .
The term T h1,1 has been dealt with as it is equal to the term T h1 of the proof. Now, consider the
term T h1,2. Then under regularity hypothesis on the test function, one obtains something of the
form

|T h1,2| ≤ Cφ‖ρ0ekin − (
1

2
ρ0u

2)‖l1([0:T ]×Ω).
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Figure II.2 – Illustration of the interest and importance of the internal energy corrector. With-
out the internal energy corrector (left), the scheme does not converge toward the
weak solution for the Sod shock tube. Using the internal energy corrector (right),
although oscillatory, the jump relations are recovered.

∆X
1

100

1

200

1

400

1

800

1

1600
‖ρ0ekin − (1

2ρ0u
2)‖l1([0:T ]×Ω) 6.7e-3 4.7e-3 3.7e-3 3.3e-3 3.1e-3

Table II.7 – Illustration of the interest and importance of the internal energy corrector. Without
the internal energy corrector, the term ‖ρ0ekin− (1

2ρ0u
2)‖l1([0:T ]×Ω) does not tend to

0 as ∆X and ∆t tends to zero.

Experimentally, one observes that without internal energy corrector, ‖ρ0ekin−(1
2ρ0u

2)‖l1([0:T ]×Ω)

does not tend to 0 as ∆X and ∆t tend to 0. Indeed, here we present a short example where the
internal energy corrector is most wanted to ensure correct capture of shocks. This example called
the Sod shock tube [147] is presented later on. It is run with and without the energy corrector.
Results are displayed in fig. II.2. On the left picture, we show that the scheme does not converge
toward the analytical solution without the internal energy corrector. On the right one, we show
that adding the internal energy corrector, the profile obtained in internal energy is much more
satisfactory. In table II.7, we present the values of ‖ρ0ekin − (1

2ρ0u
2)‖l1([0:T ]×Ω), for the scheme

without internal energy corrector, to assess that it does not tend to 0 experimentally. Further
studies on the Sod shock tube are presented later on.

II-2.3 The remapping stage

The remapping is the algorithm designed to project the Lagrangian quantities on the original
Cartesian grids, so that one gets a Cartesian Euler scheme. The quantities to be remapped
at the end of the Lagrangian phase (II.13)-(II.14)-(II.21) are ρ0, ρ0ε on the primal grid {xi+ 1

2
}

and ρ0, ρ0u, ρ0ekin on the dual one {xi}. The projection detailed hereafter is equal to the one
proposed in [50, 171] but adapted here to the staggered grids.
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II-2.3.1 Lagrange polynomials based conservative projection

At the end of the Lagrangian phase, the primal deformed grid {xn+1
i+ 1

2

} is known. In order to be
able to project the staggered variables ρ0, ρ0u, ρ0ekin, one must be able to deduce the deformation
of the dual grid {xn+1

i }. This is done by using the coefficients rk presented in table II.4, and
using

xn+1
i =

∑
k

rk(xi+k+ 1
2

+ xi−k− 1
2
),

which leads to locations of cell centers at high-order accuracy provided {xn+1
i+ 1

2

} is also known at

high-order accuracy. We consider any function φ ∈ L∞, then the finite volume of (ρ0φ)
n+1

ξ(i) leads
to

∆X(ρ0φ)
n+1

ξ(i) =

∫ X
ξ(i)+ 1

2

X
ξ(i)− 1

2

(ρ0φ)(Y, tn+1)dX + O(∆XN ).

Using the definition of the change of variables (x, t)→ (X, t), the integral computation yields

∆X(ρ0φ)
n+1

ξ(i) =

∫ xn+1

ξ(i)+ 1
2

xn+1

ξ(i)− 1
2

(ρφ)(y, tn+1)dy + O(∆XN ). (II.27)

Then, on the other hand, one has the following identity

∆X(ρφ)
n+1

ξ(i) =

∫ x
ξ(i)+ 1

2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + O(∆XN ).

Using the integral linearity, it gives

∆X(ρφ)
n+1

ξ(i) =

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy +

∫ xn+1

ξ(i)+ 1
2

xn+1

ξ(i)− 1
2

(ρφ)(y, tn+1)dy

+

∫ x
ξ(i)+ 1

2

xn+1

ξ(i)+ 1
2

(ρφ)(y, tn+1)dy + O(∆XN ).

Plugging eq. (II.27) into the previous equation, it yields

∆X(ρφ)
n+1

ξ(i) =

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + ∆X(ρ0φ)
n+1

ξ(i) +

∫ x
ξ(i)+ 1

2

xn+1

ξ(i)+ 1
2

(ρφ)(y, tn+1)dy + O(∆XN ),

which written under conservative form, dropping the O(∆XN ), gives

(ρφ)
n+1

ξ(i) = (ρ0φ)
n+1

ξ(i) −

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∆X
(ρ0φ)?

ξ(i)+ 1
2

−
xn+1
ξ(i)− 1

2

− xξ(i)− 1
2

∆X
(ρ0φ)?

ξ(i)− 1
2

 , (II.28)
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where (ρ0φ)?
ξ(i)+ 1

2

satisfies

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∫ xn+1

ξ(i)− 1
2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy. (II.29)

One easily notices that (ρ0φ)?
ξ(i)+ 1

2

can be written as

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

∫ xn+1

ξ(i)− 1
2

x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy −
∫ x

ξ(i)− 1
2

x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy


with i? an integer still to be determined to ensure both accuracy and stability. Then introducing
the function Hρφ

ξ(i?)(x) =
∫ x
x
ξ(i?)− 1

2

(ρφ)(y, tn+1)dy, one gets

(ρ0φ)?
ξ(i)+ 1

2

=
1

xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2

(
Hρφ
ξ(i?)(x

n+1
ξ(i)− 1

2

)−Hρφ
ξ(i?)(xξ(i)− 1

2
)

)
. (II.30)

Here, upwinded centered Lagrange polynomials are used to interpolate value of Hρφ
ξ(i?). The

upwinding is done in function of sign of xn+1
ξ(i)+ 1

2

− xξ(i)+ 1
2
. It yields natural value for i? as a

function of the upwinding and the order of the scheme N . In practice, one has

i? =

{
i− 1− bN2 c if xn+1

ξ(i)+ 1
2

> xξ(i)+ 1
2
,

i− bN−1
2 c otherwise.

(II.31)

II-2.3.2 Properties of the remap step

Lemma II.10. The remap step (II.28) is conservative in mass, momentum, internal and kinetic
energies. It conserves in particular the total energy E defined in definition II.2.

Proof. The proof is straightforward. Indeed due to the conservative form depicted in eq. (II.28),
the projection is conservative in mass, momentum, internal and kinetic energies. Thus, as E is
the sum of both internal and kinetic energies, it is also conserved. �

For the same motives mentioned in section II-2.2, the conservation of E is a desired feature.
The dissipation of total energy during the remap phase is mentionned in the early literature.
Indeed, as pointed out by DeBar [37, 38] "kinetic energy disappears in the momentum advection
process, and must be compensated for in the internal energy if total energy conservation is to be
maintained". It was also formulated similarly later by Youngs [177, 164].

Using the conservation of E , the internal energy corrector eq. (II.21) is applied at the end of the
remapping stage. It thus yields straightforwardly conservation of both E and E. Hence, three
algorithms are available.

1. Lagrange phase→ Internal energy corrector,
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2. Lagrange phase→ Internal energy corrector→ Remap phase→ Internal energy corrector,

3. Lagrange phase→ Remap phase→ Internal energy corrector,

The first algorithm is used to solve the Euler equations in Lagrangian coordinates, whereas the
other two are used for the standard Euler equations. One can show that 2. and 3. are equivalent.
In the following, the third algorithm is used.

Moreover, another CFL condition is imposed on the scheme, where now the time-step must
satisfy

∆t <
∆X

maxi |ui+ 1
2
|
.

This CFL condition comes directly from the stability of the Strang schemes derived in [43, 44].
A possible modification of the projection is to use monotonicity limiters in order to ensure the
monotonic behaviour of the projection. In practice, one may apply the monotonicity preserv-
ing limiters [153] for more robustness during the remap phase. If not mentioned in numerical
examples, limiters are not activated.

II-2.4 Numerical validation of the 1D conservative Lagrange-Remap schemes
on staggered Cartesian grids

The numerical test-suite for validation contains among others three smooth test-problems which
are the Cook–Cabot breaking wave test-case proposed in 2004 [28], a slight modification of the
breaking wave using a non-convex equation of state and last an acoustic propagation which
highlights the advantages concerning staggered grids schemes over cell-centered ones concerning
the propagation of waves. Then, four shock test-problems are shown to illustrate the correct
capture of shocks, among which the Sod test-case, the Woodward–Colella double blast wave and
the Noh compression. The idea is to validate the schemes on a very large variety of test-cases
to assess both accuracy and robustness. This is the real difficulty of the proposed test-suite.
Recall that for all shock problems, additional artificial viscosities or hyperviscosities are never
used. The dissipation induced by the time and space discretization is enough for the proposed
test-suite.

II-2.4.1 Cook–Cabot breaking wave test-case [28]

The Cook–Cabot test-case is designed to assess numerically the order of accuracy of the schemes
as the variables profiles are smooth until a given time Tshock where a discontinuity occurs. The
breaking wave [28] initial data are set as follows:

ρ = ρ0(1 + α sin(2πx)),

p = p0

(
ρ
ρ0

)γ
,

c = c0

(
ρ
ρ0

)(γ−1)/2
,

u = 2
γ−1(c0 − c),

for − 0.5 ≤ x ≤ 0.5 (II.32)
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with the constants defined as ρ0 = 10−3, p0 = 106, γ = 5
3 and α = 0.1. Tshock is defined as

Tshock =
1

(γ + 1)παc0
.

The fluid is supposed to be a perfect gas. "For this set of initial conditions, two of the three
caracteristics are initially constant, with the third satisfying a Burgers-like equation" [28]. The
exact solution until Tshock is the initial profile advected with velocity u−c. The momentum error
in l1-norm as well as the experimental order of convergence are displayed in table II.8. Expected
order of convergence are almost reached. For very high-order methods, the machine precision is
already reached for 200 cells.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 9.3e-5 · 6.4e-6 · 5.3e-7 · 1.0e-7 · 3.1e-8 · 5.6e-9 ·
100 1.2e-5 2.91 4.3e-7 3.89 2.0e-8 4.68 2.1e-9 5.64 2.6e-10 6.88 5.1e-11 6.79
200 1.6e-6 2.95 3.0e-8 3.86 7.7e-10 4.73 4.1e-11 5.69 2.8e-12 6.59 5.4e-13 6.56
400 2.0e-7 2.98 2.0e-9 3.93 2.6e-11 4.87 1.2e-12 5.1 8.2e-13 ? 8.6e-13 ?

800 2.6e-8 2.99 1.2e-10 3.96 1.8e-12 3.87 1.4e-12 ? 1.7e-12 ? 1.7e-12 ?

1600 3.2e-9 2.99 8.7e-12 3.85 3.6e-12 ? 1.5e-12 ? 3.0e-12 ? 2.8e-12 ?

3200 4.0e-10 3.00 6.2e-12 ? 3.8e-12 ? 2.2e-12 ? 3.3e-12 ? 3.1e-12 ?

Table II.8 – l1-error in momentum and experimental order of convergence for the Lagrange-remap
staggered scheme taken on the Cook-Cabot breaking wave test problem [28], until
t = 0.9Tshock. ? indicates machine precision reached.

II-2.4.2 Non-perfect gas breaking wave test-case

The previous test-case is designed for a perfect gas. A similar test-case but for arbitrary EOS
gas can be defined. This time, the EOS is not convex and the initial data are set in such a way
that the inflexion point is present in the computational domain. The initial data are

ρ = ρ0(1 + α sin(2πx)),

c(ρ) =
√
γρ(γ−1)/2 + β1ρ

β2 ,

p(ρ) =

∫
c(ρ)2dρ,

u(ρ) =

∫
c(ρ)

ρ
dρ,

with



α = 0.7,

β1 = 0.03
√
γρ

(γ−1)/2−β2)
0 ,

β2 = −4,

ρ0 = 1.4,

p0 = 103.

(II.33)

The exact solution until Tshock is the initial profile advected with velocity u − c. The velocity
error in l1-norm as well as the experimental order of convergence are displayed in table II.9.
Although the equation of state is not convex, expected order of convergence are reached by the
staggered schemes.
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Figure II.3 – Non-convex equation of state for a breaking-wave test-case

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 4.2e-4 · 6.5e-4 · 2.6e-4 · 3.4e-4 · 2.9e-4 · 2.3e-4 ·
100 1.9e-4 1.14 2.1e-4 1.64 5.7e-5 2.20 1.1e-4 1.67 4.4e-5 2.69 6.8e-5 1.73
200 4.5e-5 2.07 4.3e-5 2.29 1.5e-5 1.90 1.4e-5 2.91 1.3e-5 1.80 9.8e-6 2.80
400 9.3e-6 2.27 5.6e-6 2.94 1.7e-6 3.20 1.5e-6 3.25 6.5e-7 4.30 6.9e-7 3.83
800 1.5e-6 2.66 4.8e-7 3.54 9.9e-8 4.07 5.9e-8 4.64 2.0e-8 5.04 1.5e-8 5.56
1600 2.0e-7 2.89 3.1e-8 3.91 3.8e-9 4.69 1.3e-9 5.53 2.6e-10 6.24 1.2e-10 6.90
3200 2.6e-8 2.96 2.0e-9 3.98 1.3e-10 4.84 2.5e-11 5.68 7.5e-12 5.12 5.7e-12 4.43

Table II.9 – l1-error in momentum and experimental order of convergence for the Lagrange-
remap staggered scheme taken on the modified breaking wave test problem, until
t = 0.9Tshock. ? indicates machine precision reached.

II-2.4.3 Acoustic propagation test-case

This test-case is an acoustic oscillator. It is similar to a plate acting as a pressure harmonic source
at x = 1. The mesh is chosen such that there are 7 cells by wavelength. The sound speed is set
to 1. Slight modifications of pressure are imposed by the plate, such that the system of equations
can be linearised. Comparisons between cell-centered schemes (GAD [84] and GoHy [50]) with
the presented staggered schemes and the BBC schemes are drawn. Pressure profiles are depicted
in fig. II.4 with a zoom on the wave front. As expected when the order of accuracy is increased,
signal phase and amplitude are better restored by the schemes. Moreover, at equivalent order,
the staggered schemes demonstrate a better restitution of both phase and amplitude of the signal.
This one of the main advantages of B-type and C-type staggered schemes as pointed out in [5].
The initial data are
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ρ = γ,

p = 1,

u = 0,

for 0 ≤ x ≤ 0.5 (II.34)

(a) 3rd order (b) 4th order

(c) 5th order (d) 6th order

Figure II.4 – Acoustic wave with harmonic source - Difference between the cell-centered GoHy
[50] (blue, cross) and GAD schemes [84] (gray, filled triangle), the staggered
BBC scheme [172] (orange, triangle) and the new staggered schemes denoted here
YHORK (black, filled circle). Analytic solution is represented by the red curve.

II-2.4.4 Sod test-case [147]

The Sod shock tube [147] is very common in the literature as a simple Riemann problem for the
Euler equations. This test-case proves useful to determine the ability of the scheme to handle
shocks and especially the capacity to recover correct discrete Rankine-Hugoniot relations at the
shock using the proposed internal energy corrector. Initially, a left state and a right state trigger
a rarefaction, contact discontinuity and shock. The domain is [0 : 1] and the initial data are
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ρ0(x) = 1.0χ{x<0.5} + 0.125χ{x>0.5},

p0(x) = 1.0χ{x<0.5} + 0.1χ{x>0.5},

u0(x) = 0,

γ = 1.4.

(II.35)

Wall boundary conditions are imposed at x = 0 and at x = 1. In fig. II.5, profiles of density
and internal energy are depicted with the analytic solution for a mesh containing 100 cells. In
table II.10, convergence results on density in norm l1 are proposed. Although oscillatory due
to the absence of artificial viscosities, convergence in the l1-norm is achieved. As presented in
fig. II.2, the scheme is not consistent without the internal energy corrector, and thus, the l1 error
does not converge to 0.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.5 – Density (top) and internal energy (bottom) profiles on [0 : 1] for the Sod test-case
problem [147] at time t = 0.2, CFL=0.7, 100 cells, monotonicity limiters used
during the remap phase, no artificial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

Nx GAD GoHy-3 BBC STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 2.92e-2 1.32e-2 1.81e-2 1.16e-2 1.00e-2 9.70e-3 1.03e-2 1.02e-2 8.69e-3
200 1.12e-2 3.91e-3 5.75e-3 3.47e-3 2.57e-3 2.50e-3 3.08e-3 5.64e-3 2.53e-3
800 3.96e-3 9.73e-4 1.51e-3 8.65e-4 7.82e-4 7.51e-4 7.09e-4 6.95e-4 6.59e-4
3200 1.37e-3 2.99e-4 4.86e-4 2.82e-4 2.38e-4 2.17e-4 2.24e-4 2.17e-4 2.02e-4
12800 4.56e-4 9.41e-5 1.67e-4 1.02e-4 6.86e-5 7.02e-5 9.43e-5 8.67e-5 6.02e-5
25600 2.61e-4 5.54e-5 1.00e-4 6.20e-5 3.80e-5 3.72e-5 7.07e-5 6.20e-5 4.94e-5

Table II.10 – l1-error in density for the Lagrange-remap staggered scheme taken on the Sod test
problem [147], until t = 0.2.
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II-2.4.5 Noh test-case [128]

The Noh test-case [128] is a compression with a complete conversion of kinetic energy into internal
energy. The domain is fixed at [0 : 1]. A continuous incoming flux of gas at x = 1 is entering the
computational domain with a constant speed and compress the gas located around x = 0. We
consider an incoming constant state of gas at x = 1 and a wall boundary at x = 0. The initial
data are


ρ0 = 1.0,

u0 = −1.0,

p0 = 10−8,

γ = 5
3 .

(II.36)

The analytical solution writes


ρ(x, t) = 4.0χ{x< t

3
} + 1.0χ{x> t

3
},

u = −1.0χ{x> t
3
},

p = 4
3χ{x< t

3
} + 10−8χ{x> t

3
},

(II.37)

which gives an infinite shock intensity. This is a real difficulty for most schemes as highlighted
in [128]. With this test-case, the robustness of the schemes is studied, without any artifical
viscosity or hyperviscosity. In fig. II.6, profiles of density and pressure are depicted with the
analytic solution for a mesh containing 400 cells over [0 : 1]. Zoom is made on [0 : 0.25]. The
higher the order, the more oscillatory the profile is. This is due to the high-order approximations
done in the scheme. Adding artificial viscosity with appropriate coefficients should smear out
these oscillations. The important point is that even without artificial viscosity, the schemes even
at very high-order are able to handle such a difficult test-case with an infinite shock intensity.

II-2.4.6 Shu-Osher test-case [145]

The Shu-Osher test-case [145] initial data are depicted in eq. (II.38)) on a [−5 : 5] domain with
a Mach 3 shock wave interacting with a sinusoidal density field. Computations till t = 1.8 with
CFL=0.7 are reported in fig. II.7. This test-case highlights the interest of high-order accuracy
even on a shock problem, and especially the restitution of the density profile with high-order
accurate schemes.


ρ0(x) = 27

7 χ{x<−4} + (1 + sin(5x)
5 )χ{x>−4},

p0(x) = 31
3 χ{x<−4} + 1χ{x>−4},

u0(x) = 4
√

35
9 χ{x<−4},

γ = 1.4.

(II.38)

Reference solution is obtained using the GAD scheme with CFL=0.5 and 50000 cells.



90 HIGH ORDER LAGRANGE-REMAP STAGGERED SCHEMES

(a) 3rd order (b) 4th order (c) 6th order

Figure II.6 – Density (top) and pressure (bottom) profiles on [0 : 0.25] for the Noh test-case
problem [128] at time t = 0.6, CFL=0.7, 400 cells, monotonicity limiters used
during the remap phase, no artificial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.7 – Density (top) and pressure (bottom) profiles on [−3 : 3] for the Shu-Osher test-
case problem [145] at time t = 1.8, CFL=0.7, 200 cells, monotonicity limiters used
during the remap phase, no artificial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

II-2.4.7 Interacting blast-waves test-case [172]

The interacting blast-waves test-case was proposed in [172]. It is a three states shock tube.
The left blast will propagate to the right and the right one to the left till interaction between
both. This test-case highlights the robustness of the schemes. The initial data are depicted in
eq. (II.39). The domain is set to [0 : 1]. Wall boundary conditions are imposed at x = 0 and
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x = 1.


ρ0(x) = 1,

p0(x) = 1000χ{x<0.1} + 0.01χ{0.1<x<0.9} + 100χ{0.9<x},

u0(x) = 0,

γ = 1.4.

(II.39)

Density and pressure profiles are shown in fig. II.8. Reference solution is obtained using the
GAD scheme with CFL=0.5 and 50000 cells. This interest of this test-case comes from the fact
that both shocks are interacting which is a technical difficulty for low dissipative schemes as the
one proposed without artificial viscosity or hyperviscosity.

(a) 3rd order (b) 4th order (c) 6th order

Figure II.8 – Density (top) and pressure (bottom) profiles on [0 : 1] for the Woodward test-case
problem [172] at time t = 0.038, CFL=0.7, 300 cells, monotonicity limiters used
during the remap phase, no artificial viscosities during the Lagrangian phase, for
the 3rd, 4th and 6th order staggered schemes.

II-3 Extension to 2D Lagrange-remap schemes on staggered Carte-
sian grids

As presented in [50, 171], the extension to the multidimensional case is realized using directional
splitting. The Euler system in 2D writes

∂tρ + ∂x(ρu) + ∂y(ρv) =0,

∂t(ρu)+ ∂x(ρu2 + p) + ∂y(ρuv) =0,

∂t(ρv)+ ∂x(ρuv) + ∂y(ρv
2 + p) =0,

∂t(ρe)+∂x(ρue+ pu)+∂y(ρve+ pv)=0.

(II.40)
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System in eq. (II.40) can be rewritten under the operator form

∂t(U) + A(U) = 0, (II.41)

usingU =


ρ

ρu

ρv

ρe

. The idea of the operator splitting is to find two operatorsA1 andA2 such that

A(U) = A1(U)+A2(U). For directional splitting, which is a peculiar class of operator splitting,
the idea is to split A such that all x−derivative are contained in A1, and all y−derivatives are
contained in A2. First, derivation of the subsystems using the directional splitting method is
made. Then, special distribution of variables is detailed for the staggered grids in 2D and 3D.
This distribution allows then to apply the derived 1D staggered schemes to the nD cases. The
schemes properties derived for the 1D case are then extended to the nD case. A numerical test
suite is proposed to assess both accuracy and robustness of the schemes.

II-3.1 Derivation of the subsystems using the operator splitting technique

The main idea is to split system presented in eq. (II.40) according to the x− and y−direction.
It writes


∂tρ + ∂x(ρu) =0

∂t(ρu)+ ∂x(ρu2 + p) =0

∂t(ρv)+ ∂x(ρuv) =0

∂t(ρe)+∂x(ρue+ pu)=0


∂tρ + ∂y(ρv) =0

∂t(ρu)+ ∂y(ρuv) =0

∂t(ρv)+ ∂y(ρv
2 + p) =0

∂t(ρe)+∂y(ρve+ pv)=0

(II.42)

The above system in eq. (II.42) can be rewritten under a similar form as in eq. (II.41)

∂t(U) + A1(U) = 0, ∂t(U) + A2(U) = 0. (II.43)

Splitting techniques relies on solving alternatively first and second equation of eq. (II.43) with
weighted time-steps in order to reach high-order accuracy. For ∆t small enough, one can write

U(t+ ∆t) = e(∆t(A1 + A2))(U)(t). (II.44)

Solving first equation of eq. (II.43) then the second one, one gets that

Û(t+ ∆t) = e(∆tA2) e(∆tA1)(U)(t). (II.45)

Assuming that the operators A1 and A2 are commutative, the solution is then equivalent. If
both are non commutative, then it is not. A simple Taylor expansion of both expressions yields
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at most first order accuracy in time. The idea is then to set

Û(t+ ∆t) =

q∏
k=1

e(ω2k∆tA2) e(ω2k−1∆tA1)(U)(t), (II.46)

where (ωk)k∈[1:q] is a sequence of parameters which are set to reach high-order accuracy in time.
The theory of operator splitting and especially of high-order splitting sequences are extensively
detailed by McLachlan in [114, 113, 115] and very high-order splitting methods are described
by Yoshida in [176]. The weights ωk are available in appendix, section A.2. Using directionnal
splitting methods, each subsystems of eq. (II.43) is solved using the 1D schemes proposed in
section II-2. However, slight modifications must be first performed. Indeed, as one wishes
for global conservation of mass, momentum and total energy, use of values averaged in both
directions is required, using rectangle control volumes. This is explained hereafter.

II-3.2 Modifications of the 1D schemes for the 2D finite volume case

The first important point to mention is the special distribution of variables on the staggered
grids in both 2D and 3D. The extension of the internal energy corrector proposed for the 1D
schemes is straightforward for multidimensional case.

II-3.2.1 nD distribution of variables on the modified Arakawa C-type grids

The distribution of variables on the modified Arakawa C-type grids is very similar to the one for
the 1D case. The x-velocity u is staggered along the x-direction as well as the density and the
kinetic energy related to the x-velocity u. It will be denoted in the following by ekin,u. Then
similarly, the y-velocity is staggered along the y-direction as well as the density and the kinetic
energy ekin,v related to the y-velocity v. If one wishes to extend the schemes to the 3D case,
then the z-velocity denoted w should be staggered along the z-direction along with the density
and the kinetic energy ekin,w. Distribution of variables is depicted on fig. II.9.

Then, for such a choice of variables, the total energy is the sum of the internal energy and the
kinetic energies in each direction. This a key ingredient to yield conservation as will be shown
hereafter.

II-3.2.2 Derivation of a procedure to apply the 1D schemes in one direction using
the 2D finite volume formalism

The aim here is to apply with slight modifications the 1D schemes for two dimensions problem
using directional splitting method. For two dimensions problem, the degree of freedom are the
2D-average value inside a cell. Thus it is mandatory at the beginning of a sweep, to deduce from
the 2D average values the values average in only one direction. The procedure originates from
[50, 171] and is extended here to staggered grids. A sweep along the x-direction proceeds as
follows:
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 ρ0

ρ0τ
ρ0ε


i,j

 ρ0

ρ0u
ρ0ekin,u


i+ 1

2
,j

 ρ0

ρ0v
ρ0ekin,v


i,j+ 1

2

Figure II.9 – Staggered finite volume space discretization on Cartesian grids

1. Interpolate the 2D-values average values U along the y-direction to get 1D-cell-average
values U of the variables according to eq. (II.12). It writes for cell-centered variables

U
n
i,j =

∑
k

CkU
n

i,j+k.

This way, we only get 1D-cell-average values along the x-direction. This is exactly the
values needed to use the 1D scheme.

2. Compute the 1D Lagrange evolution terms using U . Note that the velocity in the y-
direction as well as its related kinetic energy do not change. The Lagrange evolution step
gives values of the deformed grid {xi+ 1

2
,j}. Interpolation gives value for the {xi,j} and

{xi+ 1
2
,j+ 1

2
} grids. The first grid is used to compute remap fluxes of the centered variables

(ρ0, ρ0τ, ρ0ε), the second for the variables (ρ0, ρ0u, ρ0ekin,u) staggered along the x-direction,
and the third one for the variables (ρ0, ρ0v, ρ0ekin,v) staggered along the y-direction.

3. Denote by ∆U the evolution terms (see fig. II.10). Reconstruct the average values of ∆U

in the y-direction using eq. (II.12) denoted ∆U . It writes for cell-centered variables

∆U
n
i,j =

∑
k

Ĉk∆U
n
i,j+k.

4. Apply the reconstructed 2D Lagrange-remap terms ∆U on the 2D-cell-average values. It
leads for cell-centered variables to

U
n+1

i,j = U
n

i,j + ∆U
n
i,j .

The procedure is summarized in fig. II.10.
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U

Compute from 2D average, aver-
age value in the sweep direction

Compute the evolution terms using the 1D
Lagrange-remap-internal energy corrector scheme

Reconstruct the evolution terms aver-
age values in the transverse direction

U ← U + ∆U

U

∆U

∆U

Figure II.10 – Flow chart of the 2D scheme

II-3.2.3 Properties of the 2D schemes

Lemma II.11. The 2D staggered schemes (II.13)-(II.14)-(II.21)-(II.28) are conservative in mass,
momentum and total energy E.

Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.2,
II.8 and II.10 direction by direction and so are globally conservative in mass, momentum and
total energy for any dimensional splitting sequences. �

Remark II.6. Extension to the 3D case is straightforward.

Lemma II.12. For a given directionnal splitting sequence {ωk}, the resulting 2D Cartesian grid
schemes are linearly stable under the condition

∆t <
1

maxk ωk
min

(
∆X min(

λStag

max(i,j) ci,j
,

1

max(i,j) |ui+ 1
2
,j |

),∆Y min(
λStag

max(i,j) ci,j
,

1

max(i,j) |vi,j+ 1
2
|
)

)
.

Proof. Using lemma II.5 and stability of the remapping phase, one gets that A1 is linearly stable
under the condition

∆t < ∆X

(
min(

λStag

max(i,j) ci,j
,

1

max(i,j) |ui+ 1
2
,j |

)

)
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and A2 under the condition

∆t < ∆Y

(
min(

λStag

max(i,j) ci,j
,

1

max(i,j) |vi,j+ 1
2
|
)

)
.

Using the special structure of the operator splitting, one trivially gets the result. �

II-3.3 Numerical validation of the 2D conservative Lagrange-Remap schemes
on staggered Cartesian grids

A test-suite is proposed to assess both accuracy and robustness of the 2D staggered schemes.
Once again, the wide range of problems is a high difficulty for numerical schemes. The idea here is
to demonstrate the effectiveness of such schemes for such a variety of problems. First, numerical
order of convergence of the method is assessed using the isentropic vortex advection [175]. Then,
further vortex dynamics is studied with the vortex pairing problem [167]. Considering classical
problems with strong discontinuities, five 2D Riemann problems are studied [140, 105, 109] to
assess robustness and respect toward symmetry of the staggered schemes. Then two strong
shocks problems are proposed: a strong blast-wave [141] and the 2D Noh compression problem
[128]. Last, an extension of the 1D acoustic propagation problem is proposed with a 2D set up
of acoustic propagation with a sound speed gradient in the vertical direction. It is derived from
the works by Attenborough and al. [8].

II-3.3.1 Isentropic vortex advection [175]

We assess high-order accuracy on the 2D vortex test [175] whose initial data are given by (with
r2 = x2 + y2) 

ρ0(x, y) =

(
1− (γ − 1)β2

8γπ2
e1−r2

) 1
γ−1

,

u0(x, y) = (2, 1)t +
β

2π
e

1−r2
2 · (−y, x)t,

p0(x, y) = ρ0(x, y)γ ,

γ = 1.4

(II.47)

with γ = 1.4 and β = 5. Computations are performed till t = 20 with a CFL number of 0.9

on the computational domain Ω = [−10, 10]2. Periodic boundary conditions are imposed. The
l1-error in both space and time is computed as

Errl1 =
∑
n

(tn+1 − tn) ·∆x ·∆y
∑
i,j

||ρni,j − ρexacti,j (tn)||.

The l1-error as well as experimental order of convergence are presented in table II.11. Expected
orders of accuracy of the schemes are reached.
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Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 3.3e-1 · 1.5e-1 · 2.6e-1 · 1.7e-1 · 1.5e-1 · 1.1e-1 ·
100 9.5e-2 1.79 1.9e-2 3.01 4.9e-2 2.41 8.9e-3 4.27 1.2e-2 3.70 2.0e-3 5.83
200 1.6e-2 2.54 1.0e-3 4.19 1.9e-3 4.68 6.5e-5 7.10 8.0e-5 7.20 5.2e-6 8.59
400 2.2e-3 2.89 6.1e-5 4.06 6.1e-5 4.96 7.2e-7 6.48 6.3e-7 7.00 1.6e-8 8.37
800 2.8e-4 2.97 3.9e-6 3.99 1.9e-6 4.98 9.9e-9 6.18 5.0e-9 6.97 1.1e-10 7.17
1600 3.5e-5 2.99 2.4e-7 3.99 5.98e-8 4.99 1.5e-10 6.02 3.9e-11 6.99 3.4e-12 ?

Table II.11 – l1-error in density and experimental order of convergence for the Lagrange-remap
staggered scheme taken on the isentropic vortex advection test problem [175], until
t = 20, CFL=0.9. ? indicates machine precision reached.

II-3.3.2 Vortex-pairing test-case [167]

We assess here the ability of the staggered schemes to handle vortex dynamics with the vortex
pairing test-case [167]. We first introduce the equation satisfied by a function φ advected by the
velocity field u,

∂tφ+∇ · (φu) = 0

In order to define the initial states, a perturbation function ψ is introduced as the sum of two
Kelvin–Helmotz instability eigenmodes as

ψ(x, y) = A1(y)
ν1

k1
cos(k1x) e−k1|y|+A2(y)

ν2

k2
cos(k2x) e−k2|y|

with

Ai(y) =
1− e−2ki(

L
2
−|y|)

1− e−kiL
, i ∈ {1, 2}.

Last, the initial data are given by

ρ0(x, y) = 1.0,

u0(x, y) =

(
−1

2∆U tanh( y
2θ0

)− ∂yψ
∂xψ

)
,

p0(x, y) = ρ0(x, y)γ ,

γ = 5
3 ,

φ0(x, y) = χ{y>0}.

(II.48)

Parameters are k1 = 2π
L , k2 = 4π

L , ν1 = 0.025∆U , ν2 = 0.05∆U , ∆U = 2.62, θ0 = 0.03.
Computations are performed till t = 6.0 with a CFL number of 0.9 on the computational domain
Ω = [0, 6]× [−3, 3]. Periodic boundary conditions are imposed on left and right boundaries, and
wall boundary conditions are imposed on top and bottom boundaries. In fig. II.11, the profile of
density is depicted as well as 6 contours of φ from 0 to 1 on a coarse mesh with 128 cells along
each direction. We present results using a first and second order cell-centered schemes and the
proposed third order staggered scheme. First order scheme, as expected, struggles to restitute
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the vortex dynamics. The second order scheme is more dissipative on the profile, but is still able
to recover the vortex dynamics. Using high-order schemes gives a steeper profile for both the
density and φ and hence yields a better restitution of vortex dynamics.

II-3.3.3 Five states Riemann problems [140, 105, 109]

We assess the robustness of the staggered schemes for 5 different 2D Riemann problems. The
domain Ω = [0 : 1]2 is divided into four quadrants formed with the line x = 1/2 and y = 1/2.
The Riemann problems are defined by constant states in each quadrant, with a perfect gas
with γ = 1.4. These initial states in each quadrants are the density ρ0, the pressure p0, the
x and y velocity u0 and v0. The selected Riemann problems are such that the solutions of
all four 1D Riemann problems between quadrants have exactly one wave, which are whether
a shock-wave (S), a rarefaction one (R) or a contact-slip (J) (see [105]). All initial data are
gathered in table II.12 with the initial values of (ρ, p, u, v)t as well as the structure between two
consecutive quadrants. Constant inflow boundary conditions are imposed. Computations are
run with CFL=0.7 for the staggered schemes and with CFL=0.5 for the cell-centered ones (GAD
available in [84], GoHy-2 available in [50, 171]). Monotonicity limiters are applied during the
remap phase. No artificial viscosities are used. Results are depicted in figs. II.12 to II.16 with
pressure profiles displayed using colors, and density using contours. Profiles are in accordance
with those found in the literature [140, 105, 109] for all Riemann problems. In fig. II.12, some
artefacts are present on two segments of the initial discontinuities between upper left, upper
right and lower right quadrants. Moreover, oscillations are present due to the lack of artificial
viscosities and dissipation. The symmetry along the axis x = y is better recovered using the
third order scheme than for the fourth order one. In fig. II.13, the main difference between results
is that, as expected, the higher the order, the more oscillatory it is, but also the steeper is the
profile concerning the contact-slip. This is expected due to high-order polynomial integration. A
small density artefact is present in the lower right quadrant, but is also present in the literature.
Pressure artefacts are present in the high-pressure areas, certainly due to the non-aligned grids.
In fig. II.14, discontinuities are steeper as the order of accuracy is higher. The symmetry along
the axis x = y is quite well recovered. The stationary contacts bordering the lower left quadrant
are well recovered. In fig. II.15, the stress is laid on the resolution of slowly moving contact
discontinuities bordering the lower left quadrant. Vortex dynamics is already recovered with
a coarse mesh using third and fourth order schemes. However, the second order cell-centered
scheme shows a peculiar behaviour between the bottom quadrants with the formation of a small
vortex. This is so far still unexplained. In fig. II.16, contact discontinuities are recovered on the
line x = 1

2 . Moreover, the vortex induced by the interacting states is well recovered by high-order
staggered methods, not so for the low order ones. Some artefacts are present in the right bottom
quadrants, certainly due to boundary conditions that induce oscillations.
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(a) 1st order (b) 2nd order (c) 3rd order

Figure II.11 – Profiles of density by colors and φ using 6 contours from 0 to 1 for the Vortex-
Pairing test-case, CFL=0.7, for times t = 1, t = 2, t = 3, t = 4 and t = 5, 128
cells in each direction.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.12 – Results at time t = 0.3 for the first Riemann problem with the first and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 32 contours from 0.16 to 1.71.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.13 – Results at time t = 0.3 for the second Riemann problem with the first and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 29 contours from 0.25 to 3.05.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.14 – Results at time t = 0.25 for the third Riemann problem with the first and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 30 contours from 0.54 to 1.7.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.15 – Results at time t = 0.25 for the fourth Riemann problem with the first and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 29 contours from 0.43 to 0.99.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure II.16 – Results at time t = 0.25 for the fifth Riemann problem with the first and second
order cell-centered scheme (top, CFL=0.5) as well as the third and fourth order
staggered schemes (bottom, CFL=0.7) with 200 cells in each direction. Pressure
is displayed by colors, and density using 30 contours from 0.53 to 1.98.
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Problem upper left  upper right  bottom right  bottom left  

1


0.5323

0.3
1.206

0

 S


1.5
1.5
0
0

 S


0.5323

0.3
0

1.206

 S


0.138
0.029
1.206
1.206

 S

2


2
1

0.75
0.5

 J


1
1

0.75
−0.5

 J


3
1

−0.75
−0.5

 J


1
1

−0.75
0.5

 J

3


1
1

0.7276
0

 J


0.5343

0.4
0
0

 S


1
1
0

0.7276

 S


0.8
1.0
0
0

 J

4


0.5197

0.4
−0.6259
−0.3

 J


1
1

0.1
−0.3

 R


0.5313

0.4
0.1

0.4276

 S


0.8
0.4
0.1
−0.3

 J

5


2
1
0
−0.3

 S


1
1
0
−0.4

 J


0.5197

0.4
0

−1.1259

 R


1.0625

0.4
0

0.2145

 J

Table II.12 – Initial states for the four quadrants of 2D Riemann problem for density, pressure
and x and y velocity u and v.

II-3.3.4 Sedov test-case [141]

With the Sedov test-case, we assess the robustness of the staggered schemes as well as the ability
to restitue correct cylindrical symmetry. Let rSedov = 1√

2

√
∆X2 + ∆Y 2. Initial data are



ρ0(x, y) = 1,

u0(x, y) = 0,

p0(x, y) =
(γ − 1)εSedov
πr2

Sedov
χ{x2+y2<r2

Sedov}
+ 10−14χ{x2+y2>r2

Sedov}
,

γ = 1.4,

(II.49)

where εSedov = 0.851072. A scatter plot is realized to display profiles of density along each radius
in fig. II.17 using 100 cells in each direction. Even without the use of artificial viscosities, the
density profile is quite smooth for each scheme. The higher the order of the staggered schemes,
the better the maximum of density near the shock is recovered. The shock position is in good
agreement with the analytic solution for the three staggered schemes. Results for first and second
order cell-centered schemes are presented for comparison.
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(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order (e) 6th order

Figure II.17 – Scatter plot of density profiles for the Sedov blast-wave test-case using the third,
fourth and sixth order staggered schemes (CFL=0.7) and the first and second
order cell-centered schemes (CFL=0.5) at t = 1.0; 100 cells in each direction.

II-3.3.5 Noh test-case [128]

Exactly as in the 1D case, the kinetic energy is transformed into internal energy, giving a com-
pression of the gas by a factor 16. Denote r =

√
x2 + y2, initial data are



ρ0(x, y) = 1,

u0(x, y) =
1

r

(
−x
−y

)
,

p0(x, y) = 10−8,

γ =
5

3
.

(II.50)

Considering free inflow boundary conditions the analytic solution writes, with rs(t) = γ−1
2 t,

ρ(x, y, t) =

(
γ + 1

γ − 1

)2

χr<rs(t) + (1 +
t

r
)χr>rs(t),

u0(x, y, t) =
1

r

(
−x
−y

)
χr>rs(t),

p0(x, y, t) =
1

2

(γ + 1)2

γ − 1
χr<rs(t) + 10−8χr>rs(t),

γ =
5

3
.

(II.51)

A scatter plot is realized to display profiles of density along each radius in fig. II.18 using 400 cells
in each direction. Without artificial viscosities, the sixth order scheme fails, and therefore is not
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(a) 1st order cell-centered (b) 2nd order cell-centered

(c) 3rd order staggered (d) 4th order staggered

Figure II.18 – Scatter plot of density profiles for the 2D Noh compression test-case using the
third, fourth order staggered schemes (CFL=0.7) and for the first and second
order cell-centered schemes (CFL=0.5) at t = 0.6, 400 cells in each direction.
Axis effect are present for the first and second order cell-centered schemes

presented in the results. Obviously, the fourth order scheme is much more oscillatory than the
third order one. Otherwise, even without the use of artificial dissipation, the compression by a
factor 16 is recovered by the staggered schemes, except near the point (0, 0) due to wall heating.
The artefacts present for the first and second order cell-centered schemes are not present with
the staggered ones. Those are certainly due to wall boundary conditions (as highlighted by Noh
in [128]). However, due to high-order polynomial interpolation, results are more oscillatory.

II-3.3.6 Attenborough test-case [8]

We assess here the ability of the staggered schemes to recover correctly long-range acoustic prop-
agation with the Attenborough test-case [8, 39] which has been designed by the geoacoustic
community. In 1D, it has been highlighted during numerical experiments that the high-order
staggered schemes require less cells per wavelength compared to same order cell-centered schemes.
We here want to check that this result still holds in 2D and see if the signal is correctly recov-
ered by the schemes. Comparisons are drawn with results available in the literature [39]. The
computational domain is Ω = [0, 5000] × [0, 4000]. Initially the domain is filled with a perfect
gas at rest, with γ = 1.4 and at the atmospheric pressure (patm = 105 Pa). A gradient in the
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Figure II.19 – Difference between pressure and atmospheric pressure patm following x at y = 1,
for the third order scheme, with circa 10 cells per wavelength

sound speed is set in the vertical direction. It writes



c(x, y) = 343.23 + 0.1y,

p0(x, y) = patm,

ρ0(x, y) = γ
patm
c(x, y)2

,

u0(x, y) = 0,

γ = 1.4.

(II.52)

Wall boundary conditions are imposed. A harmonic source is placed at point Psource = (0, 5)t

and the pressure at this point is set such that p(Psource, t) = patm + sin(2πft) with f = 10 Hz.
Computations are run until t = 10 s. In fig. II.19, the pressure profile is depicted along the line
y = 1, x ∈ [0 : 3700] at t = 10 s. In fig. II.20, the attenuation in dB of the pressure along the
line y = 1, x ∈ [0 : 3700] is depicted. In order to recover a 2D-axisymmetric results, a geometric
corrector is applied, which consists in dividing the normalized pressure profile by a factor

√
r,

where r is the radius. Result is displayed in fig. II.21 and is in good agreements with the one
presented in the literature [8, 39]. Indeed, the staggered schemes require less cells per wavelength
(circa 8) compared to cell-centered ones (circa 12) to correctly recover phase and amplitude of
the signal.
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Figure II.20 – Absorption (dB) of the pressure following x at y = 1, without rectification, for the
third order scheme, with circa 10 cells per wavelength

Figure II.21 – Absorption (dB) of the pressure following x at y = 1, with geometric corrector,
for the third order scheme, with circa 10 cells per wavelength
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II-4 Extension to the 2D compressible Navier–Stokes equations
with gravity

The compressible Navier–Stokes equations are similar to the Euler equations with an additive
viscous stress tensor usually denoted by τ . In order to avoid any confusion with the specific
volume already denoted τ , it will be denoted by the letter Υ in this manuscript. The system of
equations in 2D writes in conservative form as


∂tρ + ∇ · ρu = 0,

∂tρu + ∇ · (ρu⊗ u+ pI −Υ) = 0,

∂tρe + ∇ · (((ρe+ p)I −Υ) · u) = 0,

(II.53)

where Υ = µ
(
∇u+ (∇u)t

)
+ λ (∇ · u) I, µ and λ being two parameters which described the

viscous properties of the considered fluid. From now on, µ and λ are assumed constant. Adding
a constant gravity source-term g, it yields


∂tρ + ∇ · ρu = 0,

∂tρu + ∇ · (ρu⊗ u+ pI −Υ) = g,

∂tρe + ∇ · (((ρe+ p)I −Υ) · u) = g · u.
(II.54)

In the following, a discretization of the viscous terms is proposed on the staggered grids, as well
as the discretization of the gravity terms.

II-4.1 Distribution of viscous terms on the modified Arakawa grid

In section II-1.2, an C-type Arakawa grid designed expressly for a diagonal stress tensor has been
derived. Due to the presence of the viscous stress tensor, it is necessary to address non-diagonal
terms. System without gravity presented in eq. (II.53) rewrites


∂tρ +∂xρu +∂yρv = 0,

∂tρu +∂x(ρu2 + p−Υ1,1) +∂y(ρuv −Υ2,1) = 0,

∂tρv +∂x(ρuv −Υ1,2) +∂y(ρv
2 + p−Υ2,2) = 0,

∂tρe +∂x(ρue+ (p−Υ1,1)u−Υ1,2v) +∂y(ρve+ (p−Υ2,2)v −Υ2,1u) = 0,

(II.55)

where the Υ is a symmetric viscous stress tensor which satisfies


Υ1,1 = 2µ∂xu+ λ (∂xu+ ∂yv) ,

Υ2,1 = µ (∂yu+ ∂xv),

Υ1,2 = Υ2,1,

Υ2,2 = 2µ∂yv + λ (∂xu+ ∂yv) .

(II.56)
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II-4.1.1 Space distribution and discretization of the viscosity and gravity terms in
1D

Let address first the discretization of viscous stress and gravitiy terms in one space dimension.
The 1D problem ignoring the y-velocity v, and for now the gravity terms writes


∂tρ + ∂xρu = 0,

∂tρu + ∂x(ρu2 + p−Υ1,1) = 0,

∂tρe + ∂x(ρue+ (p−Υ1,1)u) = 0,

(II.57)

which rewrites in Lagrangian form as


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = 0,

Dtρe + ∂x((p−Υ1,1)u) = 0,

(II.58)

then, using the formulation in both kinetic and internal energies, it yields formally


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = 0,

Dtρε + (p−Υ1,1)∂xu = 0,

Dtρekin + u∂x(p−Υ1,1) = 0.

(II.59)

The choice has been made to discretize Υ1,1 in the same location as the pressure. It yields that
Υ1,1 lies on the primal grid. As Υ1,1 = (2µ+ λ)∂xu, and as the velocity is staggered, it yields a
centered discretization of the space derivative in x of u. Such a discretization is exactly the one
obtained by the δ operator defined in the third equation of (II.12).

Υ1,1i = (2µ+ λ)
1

∆X
δui.

Consider now a uniform gravity field g such that now, eq. (II.59) writes


Dtρ0τ − ∂xu = 0,

Dtρ0u + ∂x(p−Υ1,1) = gρ0,

Dtρε + (p−Υ1,1)∂xu = 0,

Dtρekin + u∂x(p−Υ1,1) = gρ0u.

(II.60)

Integrating in space over a dual cell equations for momentum and kinetic energy leads to

{
Dtρ0ui+ 1

2
= gρ0i+ 1

2
− ((p−Υ1,1)i+1 − (p−Υ1,1)i) ,

Dtρ0ekini+ 1
2

= gρ0ui+ 1
2
− 1

∆X

∫ xi+1

xi
u∂x(p−Υ1,1).

(II.61)

The formulation in both kinetic and internal energies yields a simple computation for the gravity
terms. This is in particular due to the choice to discretize the average density ρ0 on both the



112
EXTENSION TO THE 2D COMPRESSIBLE NAVIER–STOKES

EQUATIONS WITH GRAVITY

primal and dual mesh, initially for robustness issues. Moreover, it does not alter either the
internal energy corrector nor the remapping phase. The extension in two dimensions is now
discussed.

II-4.1.2 Space distribution and discretization of the viscosity and gravity terms in
2D

The 2D staggered hydrodynamics schemes are based on directional splitting. Here, the choice of
splitting, mainly due to memory alignment is the following for the x-direction


∂tρ +∂x(ρu) =0,

∂t(ρu)+∂x(ρu2 + p−Υ1,1) =0,

∂t(ρv)+∂x(ρuv −Υ2,1) =0,

∂t(ρe)+∂x(ρue+ (p−Υ1,1)u−Υ2,1v)=0,

(II.62)

and in the y-direction


∂tρ +∂y(ρv) =0,

∂t(ρu)+∂y(ρuv −Υ1,2) =0,

∂t(ρv)+∂y(ρv
2 + p−Υ2,2) =0,

∂t(ρe)+∂y(ρve+ (p−Υ2,2)v −Υ1,2u)=0.

(II.63)

As aforementioned, the term Υ1,1 is discretized on the same position as the pressure, meaning
at the center of each primal cell. Symmetrically, it also holds for Υ2,2. Consider now eq. (II.62)
which formally writes in Lagrangian form


Dt(ρ0τ)+∂Xu =0,

Dt(ρ0u)+∂X(p−Υ1,1) =0,

Dt(ρ0v)+∂X(−Υ2,1) =0,

Dt(ρ0e)+∂X((p−Υ1,1)u−Υ2,1v)=0.

(II.64)

Reminding that Υ1,1 = (2µ+ λ)∂xu+ λ∂yv, the choice has been made to discretize ∂xu and ∂yv
at each cell centers. Since u and v are staggered respectively in the x- and y-directions, centered
discretizations of space derivatives give the desired results. Once again, the use of the δ operator
yields high-order accuracy in space for the terms Υ1,1 and Υ2,2. Furthermore, reminding that
the momentum ρ0v lies on the third grid, and is formally indexed ρ0vi,j+ 1

2
and integrating over

a dual cells in the x-direction it yields

Dtρ0vi,j+ 1
2

=
1

∆X
Υ2,1i+ 1

2
,j+ 1

2
−Υ2,1i− 1

2
,j+ 1

2
. (II.65)

The choice has been made to discretize the non-diagonal terms of the viscous stress tensor on
a grid staggered in both directions. Similar analysis performed on eq. (II.63) gives the same
results for Υ1,2. Reminding that Υ1,2 = Υ2,1 = µ (∂yu+ ∂xv) , it remains to discretize the terms
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∂yu and ∂xv. Since u and v are respectively staggered in the x-direction and in the y-directionn
considering centered approximations of the derivatives naturally leads to approximations of ∂yu
and ∂xv staggered in both directions as expected. Then, one can use the previsously introduced
δ operator. It yields high-order accuracy in space for the terms Υ2,1 and Υ2,2. Finally, using the
δ operator, we have


Υ1,1i,j = 2µ+λ

∆X δxui,j + λ
∆Y δyvi,j ,

Υ2,1i+ 1
2
,j+ 1

2
= µ

(
1

∆Y δyui+ 1
2
,j+ 1

2
+ 1

∆X δxvi+ 1
2
,j+ 1

2

)
,

Υ1,2i+ 1
2
,j+ 1

2
= µ

(
1

∆Y δyui+ 1
2
,j+ 1

2
+ 1

∆X δxvi+ 1
2
,j+ 1

2

)
,

Υ2,2i,j = 2µ+λ
∆Y δyvi,j + λ

∆X δxui,j .

(II.66)

That way, a natural distribution of the viscous terms is summarized in fig. II.22. This discretiza-
tion holds for non-symmetric tensor Υ.

t
 p

Υ1,1

Υ2,2


i,j

tui− 1
2
,j

t
vi,j− 1

2

tvi,j+ 1
2

tui+ 1
2
,j

t
(

Υ1,2

Υ2,1

)
i+ 1

2
,j+ 1

2

t
(

Υ1,2

Υ2,1

)
i− 1

2
,j+ 1

2

t(
Υ1,2

Υ2,1

)
i− 1

2
,j− 1

2

t(
Υ1,2

Υ2,1

)
i+ 1

2
,j− 1

2

Figure II.22 – Arakawa C-type like grid for the compressible Navier–Stokes equation with a spe-
cial distribution for the non-diagonal viscous terms

The gravity terms are not explicited here, as this is very similar to the 1D case considering a
constant gravity field g = (gx, gy)

t.

II-4.2 2D viscous staggered Lagrange-Remap schemes with gravity force

First, the 1D staggered scheme is derived using explicit Runge–Kutta time-integration. Then
the extension to the multidimensional case is detailed using directional splitting. Gravity terms
are then introduced.
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II-4.2.1 1D staggered Lagrange-Remap scheme to the compressible Navier-Stokes
equations

Consider the 1D compressible Navier–Stokes equation in Lagrangian coordinates as depicted in
eq. (II.64). The total energy is then split into internal and kinetic energies. It formally yields



Dt(ρ0τ) − ∂Xu =0,

Dt(ρ0u) + ∂X(p−Υ1,1) =0,

Dt(ρ0v) + ∂X(−Υ2,1) =0,

Dt(ρ0ε) + (p−Υ1,1)∂Xu−Υ2,1∂Xv=0,

Dt(ρ0ekin,u) + u∂X(p−Υ1,1) =0,

Dt(ρ0ekin,v) + v∂X(−Υ2,1) =0.

(II.67)

The intermediate steps for the staggered scheme write for the compressible Navier–Stokes



ρ0τ
n+αm
i,j =ρ0τ

n
i,j + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i,j ,

ρ0u
n+αm
i+ 1

2
,j

=ρ0u
n
i+ 1

2
,j
− ∆t

∆X

m−1∑
l=0

am,l(dp− dΥ1,1)n+αl
i+ 1

2
,j
,

ρ0v
n+αm
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+αm
i,j =ρ0ε

n
i,j − ∆t

∆X

m−1∑
l=0

am,l(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,

pn+αm
i,j =EOS(τn+αm

i,j , εn+αm
i,j ),

(II.68)

and the final step writes
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ρ0τ
n+1
i,j =ρ0τ

n
i,j + ∆t

∆X

s−1∑
l=0

θldu
n+αl
i,j ,

ρ0u
n+1
i+ 1

2
,j

=ρ0u
n
i+ 1

2
,j
− ∆t

∆X

s−1∑
l=0

θl(dp− dΥ1,1)n+αl
i+ 1

2
,j
,

ρ0v
n+1
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

s−1∑
l=0

θl(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+1
i,j =ρ0ε

n
i,j − ∆t

∆X

s−1∑
l=0

θl(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,

ρ0ekin,u
n+1
i+ 1

2
,j

=ρ0ekin,u
n
i+ 1

2
,j
− ∆t

∆X

s−1∑
l=0

θluδ(p−Υ1,1)
n+αl,

i+ 1
2
,j

ρ0ekin,v
n+1
i,j+ 1

2

=ρ0ekin,v
n
i,j+ 1

2

− ∆t
∆X

s−1∑
l=0

θlvδ(−Υ2,1)
n+αl,

i,j+ 1
2

xn+1
i+ 1

2

=xn
i+ 1

2

+ ∆t
s−1∑
l=0

θlu
n+αl
i+ 1

2

,

pn+1
i =EOS(τn+1

i , εn+1
i ).

(II.69)

As for the 1D Euler staggered schemes, the kinetic energies need only to be updated at the end
of the Lagrangian phase. Conservation properties of the staggered schemes for the compressible
Navier–Stokes formulated in both internal and kinetic energies are summarized in the following
lemma.

Lemma II.13 (Conservation of the staggered schemes (II.68)-(II.69)). For all explicit Runge-
Kutta sequences and all consistent spatial reconstructions, the schemes (II.68)-(II.69) are con-
servative in mass, momentum and total energy E definition II.2.

Proof. The proof is identical to the one for (II.13)-(II.14) schemes. �

As for the 1D Euler scheme, the scheme does not conserve the total energy E. The idea is to
recouple E and E using the internal energy corrector proposed in eq. (II.21). It leads to the
following lemma.

Lemma II.14 (Conservation of the staggered schemes (II.68)-(II.69)-(II.21)). For all explicit
Runge-Kutta sequences and all spatial reconstructions, the schemes (II.68)-(II.69)-(II.21) are
conservative in mass, momentum and total energy E (see definition II.1).

Proof. The proof is straightforward using lemmas II.7 and II.13. �

The remapping stage is identical to the one for the 1D Euler staggered schemes. Once again
in practice, the Lagrangian phase is performed, then quantities are remapped and at last the
internal energy corrector is applied.
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II-4.2.2 2D Extension of the 1D staggered Lagrange-remap schemes

Equations (II.62) and (II.63) can be rewritten under a similar form as in eq. (II.41)

∂t


ρ

ρu

ρv

ρe

+ B1


ρ

ρu

ρv

ρe

 = 0, ∂t


ρ

ρu

ρv

ρe

+ B2


ρ

ρu

ρv

ρe

 = 0. (II.70)

Splitting techniques relies on solving alternatively first and second equation of eq. (II.70) with
weighted time-step in order to reach high-order accuracy. This procedure is identical as for the
Euler equations.

Lemma II.15 (Conservation of the 2D schemes (II.68)-(II.69)-(II.21)-(II.28)). The resulting 2D
Cartesian grid schemes for the compressible Navier–Stokes equations are conservative in mass,
momentum and total energy E (see definition II.1).

Proof. With the proposed C-type staggering of variables, the 2D schemes satisfy lemmas II.10
and II.14 direction by direction and are therefore globally conservative in mass, momentum and
total energy for any dimensional splitting sequence. �

II-4.2.3 Gravity source terms integration

In this part, the 2D schemes with gravity source terms are proposed. There is no special modi-
fications for the gravity source terms integration compared to the 1D case. Consider a constant
gravity field g = (gx, gy)

t. Then the proposed integration of gravity source terms writes in the
x-direction as

ρ0τ
n+αm
i,j =ρ0τ

n
i,j + ∆t

∆X

m−1∑
l=0

am,ldu
n+αl
i,j ,

ρ0u
n+αm
i+ 1

2
,j

=ρ0u
n
i+ 1

2
,j
− ∆t

∆X

m−1∑
l=0

am,l(dp− dΥ1,1)n+αl
i+ 1

2
,j

+ αm∆tgxρ0
n
i+ 1

2
,j
,

ρ0v
n+αm
i,j+ 1

2

=ρ0v
n
i,j+ 1

2

− ∆t
∆X

m−1∑
l=0

am,l(−dΥ2,1)n+αl
i,j+ 1

2

,

ρ0ε
n+αm
i,j =ρ0ε

n
i,j − ∆t

∆X

m−1∑
l=0

am,l(p−Υ1,1)δu
n+αl
i,j + (−Υ2,1)δv

n+αl
i,j ,

pn+αm
i,j =EOS(τn+αm

i,j , εn+αm
i,j ),

(II.71)
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ρ0τ
n+1
i,j =ρ0τ

n
i,j + ∆t

∆X

s−1∑
l=0
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∆X

s−1∑
l=0

θl(dp− dΥ1,1)n+αl
i+ 1

2
,j
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2
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− ∆t
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,
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− ∆t
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2

xn+1
i+ 1

2

=xn
i+ 1
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θlu
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i+ 1

2

,

pn+1
i =EOS(τn+1

i , εn+1
i ).

(II.72)

II-4.3 Numerical validation of the 2D staggered Lagrange-Remap schemes

Three test-cases are proposed to assess the accuracy and robustness of the 2D staggered schemes
for the compressible Navier–Stokes equations. The first test-case is in 1D, with no viscous terms,
which assesses schemes ability to recover hydrostatic equilibrium. Then, a 2D test-case without
gravity forces, the Taylor–Green vortex, is presented. Last, a Rayleigh–Taylor instability is
studied with and without viscous terms.

II-4.3.1 1D atmosphere at rest [92]

This test-case has been proposed in [92] by Mishra and Kappeli. It consists of a hydrostatic
equilibrium between pressure and gravitational forces. Initial conditions are



ρ0(x) =

(
ργ−1

0 +K0
γ − 1

γ
gx

) 1
γ−1

,

p0(x) = K0ρ0(x)γ ,

u0(x) = 0,

γ = 5
3 ,

(II.73)

with here K0 = 1
ρ0

γ , ρ0 = 1, g = −1. As the proposed schemes are not well-balanced, it
challengingly assesses the ability of the schemes to recover hydrostatic equilibrium as well as to
see if waves induced by numerical errors are amplified or dumped by the schemes. In table II.13,
the l1 error in density is displayed for the staggered schemes. The third order scheme reaches
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machine-precision – and so hydrostatic equilibrium – using approximately 560 cells. Fourth and
fifth order schemes reach hydrostatic equilibrium at about 140 cells, and the higher-order schemes
have already reached hydrostatic equilibrium with only 35 cells. In practice, it means that for
such a problem, high-order accuracy is able to recover the smooth hydrostatic equilibrium up to
a relatively small number of cells.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
35 2.2e-9 · 2.0e-11 · 2.0e-11 · 7.3e-13 · 7.2e-13 · 2.8e-14 ·
70 1.5e-10 3.88 3.2e-13 6.0 3.2e-13 6.0 5.1e-14 ? 5.0e-14 ? 1.1e-14 ?

140 9.8e-12 3.93 1.5e-14 ? 1.9e-14 ? 6.1e-14 ? 6.4e-14 ? 5.0e-14 ?

280 6.2e-13 3.98 2.8e-14 ? 6.1e-14 ? 7.2e-14 ? 8.1e-14 ? 7.4e-14 ?

560 1.1e-14 5.77 6.8e-14 ? 9.1e-14 ? 6.7e-14 ? 9.6e-14 ? 1.1e-13 ?

Table II.13 – l1-error in density and experimental order of convergence for the Lagrange-remap
staggered scheme with gravity forces taken on the atmosphere at hydrostatic equi-
librium [92], until t = 20, CFL=0.7. ? indicates machine precision reached.

II-4.3.2 Taylor–Green vortex [161]

The Taylor–Green vortex is used to assess the accuracy of the proposed schemes. It is usually
studied by the incompressible Navier–Stokes community. Here, enforcing a very high sound
speed, the compressible Navier–Stokes equations are in near incompressible regime.

ρ0(x, y) = 1,

u0(x, y) = sin(x) cos(y),

v0(x, y) = cos(x) sin(y),

p0(x, y) = p0 − 1
4 (cos(2x) + sin(2y)) .

(II.74)

The analytical solution for incompressible flows writes
ρ(x, y, t) = 1,

u(x, y, t) = sin(x) cos(y) e−2µt,

v(x, y, t) = cos(x) sin(y) e−2µt,

p(x, y, t) = p0 − 1
4 (cos(2x) + sin(2y)) e−4µt,

(II.75)

with p0 = 10. The pressure is set such that the regime is nearly incompressible, using a stiffened
gas EOS which writes

p = (γ − 1)ρε− γp?.

Here p? = 108. The viscosity parameters are set to µ = 10, λ = 0. Computations are performed
till t = 10−3 with a CFL set to 0.9 on the computational domain Ω = [−π, π]2. Periodic boundary
conditions are imposed. The limitation on the final time is due to the use of explicit Runge–
Kutta sequences combined with the very high sound speed number. l1-error in momentum as
well as experimental order of convergence are presented in table II.14. Machine precision is
reached quickly on the every variables due to the large difference existing between the numerical
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values of momentum, density, pressure with the values of internal energy. Indeed the error are
not taken as relative errors but as absolute ones. Magnitude differs by a factor 108. Hence, for
relative errors, one should divide by at least 108. We believe double precision is not sufficient to
reach smaller absolute error.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
10 5.0e-1 · 1.8e-4 · 3.1e-3 · 1.5e-4 · 2.4e-4 · 6.1e-5 ·
20 7.6e-2 3.88 1.2e-5 6.0 1.0e-4 6.0 1.1e-5 ? 1.1e-5 ? 1.1e-5 ?

40 1.0e-2 3.93 1.1e-5 ? 1.2e-5 ? 1.3e-5 ? 1.3e-5 ? 1.3e-5 ?

80 1.4e-3 3.98 1.3e-5 ? 1.1e-5 ? 1.2e-5 ? 1.2e-5 ? 1.2e-5 ?

160 2.2e-4 5.77 1.4e-5 ? 1.4e-5 ? 1.3e-5 ? 1.4e-5 ? 1.2e-5 ?

320 3.1e-5 2.87 1.3e-5 ? 1.5e-5 ? 1.4e-5 ? 1.6e-5 ? 1.4e-5 ?

Table II.14 – l1-error in density and experimental order of convergence for the compressible
Navier–Stokes Lagrange-remap staggered scheme for the Taylor–Green vortex [161],
until t = 2.10−3, CFL=0.9. Machine precision is reduced to 10−5 as error are taken
in absolute. For relative errors, one should divide by 108. ? indicates machine pre-
cision reached.

II-4.3.3 Rayleigh–Taylor instability [152, 160, 109]

The Rayleigh–Taylor instability is used to assess the ability of the schemes to handle instability,
and if those instabilities are accentuated by the high-order accuracy. The initial data for the
single perturbation mode are

ρ0(x, y) = 2χ{y>0} + 1χ{y<0},

u0(x, y) = 0,

v0(x, y) = 0.25a(1 + cos(4πx))(1 + cos(3πy))χ{|y| < 1/6},
p0(x, y) = K0 + ρ0(x, y)gy,

(II.76)

where g = −0.1, K0 = 2.5, a = 10−2. The viscous parameters are chosen very small with
µ = 10−4 and λ = −2

3µ. In order to highlight the role of viscosity, computations are run
first with the Euler schemes and then with the Compressible Navier–Stokes (CNS) schemes.
Periodic boundary conditions are set on the left and right boundaries, whereas wall boundary
conditions are imposed on the top and bottom boundaries. The computation domain is set
to [−0.25 : 0.25] × [−0.75 : 0.75]. Since the hydrostatic equilibrium is not perfectly recovered,
additional noise is added, but still small compared to the perturbations inducing the instability.
Results are depicted in fig. II.23. Without viscous stress tensor, the higher the order, the more
modes develop. As a contrary, using even a small coefficient of viscosity prevents such modes
from developing, and leads to the expected results. Without dissipation, Euler schemes are
unable to recover correctly the Rayleigh–Taylor expected profiles, and do not seem to converge.
This is not a new result since it has been highlighted among others in [109].
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(a) 3rdorder Euler (b) 4th order Euler (c) 6th order Euler

(d) 3rd order CNS (e) 4th order CNS (f) 6th order CNS

Figure II.23 – Density profiles on the Rayleigh–Taylor mono-mode instability for the Euler
equations (top) and for the Compressible Navier–Stokes (CNS) equations with
µ = 10−4 and λ = −2

3µ (bottom) using third, fourth and sixth order schemes, at
time t = 9.5 (left) and t = 12.75 (right) with 200 cells in the x-direction and 600
in the y-direction.
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For the multi-mode perturbation, the initialization is slightly modified as
ρ0(x, y) = 2χ{y>0} + 1χ{y<0},

u0(x, y) = 0,

v0(x, y) = A(x)(1 + cos(3πy))χ{|y| < 1/6},
p0(x, y) = K0 + ρ0(x, y)gy,

(II.77)

where A(x) is chosen as a random number belonging to
[
0 : 10−2

]
. The parameters are left

unchanged. The computation domain is set to [−0.25 : 0.25] × [−0.375 : 0.375]. Results are
depicted in fig. II.24.



122
EXTENSION TO THE 2D COMPRESSIBLE NAVIER–STOKES

EQUATIONS WITH GRAVITY

(a) 3rdorder Euler (b) 4th order Euler (c) 6th order Euler

(d) 3rd order CNS (e) 4th order CNS (f) 6th order CNS

Figure II.24 – Density profiles on the Rayleigh–Taylor multi-mode instability for the Euler
equations (top) and for the Compressible Navier–Stokes (CNS) equations with
µ = 10−4 and λ = −2

3µ (bottom) using third, fourth and sixth order schemes, at
time t = 6, t = 9, t = 12, t = 15 from left to right and top to bottom, with 200
cells in the x-direction and 300 in the y-direction



Chapter III

Stable high-order methods for linear
hyperbolic systems with arbitrary
boundary conditions

L’étude d’une nouvelle famille de schémas numériques pour des systèmes linéaires hyperboliques
avec conditions aux bords est réalisée au cours de ce chapitre. On présente dans un premier temps
la procédure afin de construire les opérateurs d’intégration des conditions aux bords dans le cas
de l’équation de l’advection pour des approximations de type différences finies et volumes finis.
Ensuite, cette procédure est étendue au cas du système des équations des ondes avec deux condi-
tions aux bords différentes. La méthode est alors étendue au cas général des systèmes hyperboliques
linéaires avec conditions aux bords. Afin de pouvoir caractériser la stabilité des schémas ainsi
obtenus par l’ajout de ces opérateurs, une étude de type GKS est proposée. Afin de permettre
de disposer d’un aperçu de la stabilité du schéma effectif, une définition de stabilité dite réduite
est introduite. Des résultats numériques sont proposés tout au long du chapitre afin d’illustrer la
précision ainsi que la pertinence de la définition de stabilité réduite introduite. Une partie de ce
travail a été soumise à une revue scientifique [34].
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Figure III.1 – 1D Boundary between outside and inside computational domain

In this chapter, a way to impose boundary conditions building ghost-cells values for linear con-
servation laws is proposed and studied. It is very close to the method developed in [156, 157,
159, 158, 169]. In order to deal with the discretization of boundary conditions in the special case
of Lagrange-remap schemes, the case of a simplified linear 1D hyperbolic system of conservation
laws on Ω = {x ∈ R, x > xs} is studied as

∂tU +A∂xU = 0, t > 0, x > xs, U(x, t) ∈ Rp

BU(xs, t) = BG(t), t > 0,

U(x, 0) = U0(x), x > xs.

(III.1)

The geometry is depicted in fig. III.1. Put aside temporarily the peculiar shape of Ω = [xs,∞[

and consider the whole domain. The 1D domain is discretized in regular cells Ij = [xj− 1
2
, xj+ 1

2
],

with ∆x = xj+ 1
2
− xj− 1

2
the constant space between two consecutive cell interfaces. Only finite-

differences and finite-volume-type schemes will be considered (see section I-1.2.1). At time tn,
the discrete solution writes Un = (Un

j )j∈Z. Consider now that Ω = {x ∈ R, x > xs} and that
boundary conditions are specified at x = xs = σ∆x ∈ I0 with σ ∈ [−1

2 ,
1
2 [. The most interesting

case is when the boundary location does not coincide with the discretized grid (see fig. III.1).

Only fully interior cells (depicted in blue in the figure) are considered to be part of the "interior"
computational domain denoted Ω+ ⊂ Ω. Cells in gray are considered as part of the "ghost"
computational domain denoted Ω−. In practice, one has Ω ⊂ Ω+ ∪ Ω− ⊂ R. The algorithm
proposed in this work builds ghost values in Ω− such that the resulting scheme is both high-order
accurate and stable. For this peculiar value of xs, one has that Ω+ = {x ∈ R, x ≥ x 1

2
}. It implies

that only interior values U+ = (Un
j )j≥1 are known at the beginning of the time-step. Boundary

conditions specified at x = xs are provided according to the incoming/outgoing characteristics
of A = ∇UF (U). Moreover, the matrix B satisfies the condition of theorem I.9. In the whole
chapter, the matrix A is assumed invertible to alleviate computations. To build ghost values,
which is ultimately the real problem, one has in hands the boundary conditions and any kind
of extrapolation technique to reconstruct U− = (Uj)j≤0 from U+ = (Uj)j≥1. Therefore the
problem discussed hereafter can be formulated as follows
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Problem III.1. Build an operator R

R : (Rp)card(Ω+) → (Rp)card(Ω−)

R(U+) = U−
(III.2)

and such that the coupling with the internal scheme (in Ω+) is stable and a high-order approxi-
mation of eq. (III.1).

To numerically solve the initial boundary value problem (III.1), it remains to build averaged
ghost-cell values U− = (Un

j )j≤0 from U+, on a stencil which depends on the interior scheme. In
this chapter, first the focus is made on the scalar advection problem, and a method is derived
to reach high-order accuracy. Then, a generalization is made to linear hyperbolic system of
conservation laws, and especially for the wave equations. Numerical results illustrate the accuracy
of the method all along the chapter. Our findings highlight the need to tackle stability issues
due to the reconstruction. Hence, stability results are first obtained using the GKS theory
(using lemma I.11), and then the concept of reduced stability is introduced to alleviate part of
the computation to obtain stability. The practical interest of the reduced stability definition is
confirmed by numerical results. This work is part of a submitted publication [34].

III-1 Inverse Lax–Wendroff procedure for linear hyperbolic systems . . . . . . . . . . 125

III-1.1 Derivation of high-order reconstruction operators for the advection problem126

III-1.2 Derivation of high-order reconstruction operators for the wave equations 131

III-1.3 High-order reconstruction operator for general linear system . . . . . . . 143

III-2 Stability of the inverse Lax–Wendroff procedure . . . . . . . . . . . . . . . . . . 144

III-2.1 GKS stability for IBVP using second order reconstruction for the Lax–
Wendroff scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

III-2.2 Reduced stability for IBVP discretization . . . . . . . . . . . . . . . . . 146

III-1 Inverse Lax–Wendroff procedure for linear hyperbolic sys-
tems

The Inverse Lax–Wendroff (ILW) method is first detailed for the special case of the scalar ad-
vection equation. It is used to build high-order accurate values U− using U+ and the boundary
conditions. Numerical experiments illustrate the accuracy of the method. Later on, the proce-
dure is extended to the wave equations, considering two different boundary conditions satisfying
the Kreiss condition. At last, a generic procedure is introduced to deal with general linear
hyperbolic system with boundary conditions.
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III-1.1 Derivation of high-order reconstruction operators for the advection
problem

Guiding lines of the method are first explained on the scalar version of (III.1), ie the advection
equation. Let a > 0, the model is

∂tu+ a∂xu = 0, t ≥ 0, x > xs,

u(t, xs) = g(t), t ≥ 0,

u(0, x) = u0(x), x > xs.

(III.3)

As a > 0 a boundary condition must be provided at the left boundary. Obviously (III.3) satisfies
the Uniform Kreiss conditions (theorem I.9). Using either a finite difference or a finite volume
formalism and denoting ν = a∆t

∆x , numerical schemes under conservative form to solve (III.3)
write

un+1
j = unj − ν

(
u∗
j+ 1

2

− u∗
j− 1

2

)
. (III.4)

Since u is constant along characteristics x = at it is straightforward to show that the numerical
flux rewrites

u∗
j+ 1

2

=
1

∆t

∫ tn+1

tn
u(xj+ 1

2
, θ)dθ =

1

∆t

∫ tn+1

tn
u(xj+ 1

2
− a (θ − tn), tn) dθ,

=
1

ν∆x

∫ x
j+ 1

2

x
j+ 1

2
−ν∆x

un(y)dy.

A possible way to compute the fluxes u∗
j+ 1

2

is to use polynomials P interpolating the primitive
of un ie

u∗
j+ 1

2

=
1

ν∆x

(
P (xj+ 1

2
, j)− P (xj+ 1

2
− ν∆x, j)

)
. (III.5)

Let m be the order of the scheme. Let also r and p be two positive integers such that r+ p = m.
Interpolating polynomials write

P (x, j) =

p∑
k=−r

 p∏
i=−r
i 6=k

x− xj+i+ 1
2

xj+k+ 1
2
− xj+i+ 1

2

 k∑
l=−r

uj+l∆x. (III.6)

As examples, for (p, r) = (1, 1) we get the Lax–Wendroff scheme

u∗
j+ 1

2

=
1

2
(uj + uj+1) +

ν

2
(uj − uj+1), (III.7)

for (p, r) = (0, 2) the Beam–Warming scheme

u∗
j+ 1

2

=
1

3
(3uj − uj−1)− ν

2
(uj − uj−1), (III.8)
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and for (p, r) = (1, 2) we get the third order upwinded scheme (O3):

u∗
j+ 1

2

=
1

6
(5unj + 2unj+1 − unj−1) +

ν

2
(unj − unj−1) +

ν2

6
(unj+1 − 2unj + unj−1). (III.9)

The three aforementioned schemes are used in the sequel, whether as examples or for numerical
experiments. Such schemes, also described in [149, 150, 44] are very close to those that will be
used to solve Euler equations during the remapping phase as in [50, 171, 35] and in section II-2.3.
Introducing the floor bc and the ceil de functions

bxc = m ∈ Z, where m is the largest integer less than or equal to x,
dxe = m ∈ Z, where m is the smallest integer greater than or equal to x,

it is proved in [44] that for ν ≤ 1 these schemes are stable for p = bm2 c and r = dm2 e.

The main idea in the Inverse Lax–Wendroff is to use the system of partial differential equations
to change space derivatives into time derivatives in Taylor expansions. For the scalar advection
problem, it writes

∂tu = −a∂xu,

and since a is assumed to be non-negative, it becomes

∂xu = (−a)−1∂tu.

Differentiating in time an arbitrary number of times the previous equation, and changing time
derivatives into space derivatives, it writes

∂kxu = (−a)−k∂kt u, k ∈ N.

We present hereafter the formal computations to introduce the previous equality in Taylor ex-
pansions. The emphasis is laid on the construction of high-order reconstruction operators for
the finite volume approximation.

III-1.1.1 Derivation of high-order reconstruction operators for the finite volume
approximation

Ghost-cell methods rely on the determination of the U− = (u0, u−1, ...) values that are to be
set from the boundary condition g(t) and the interior values U+ = (u1, u2, u3, ...). For x in a
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neighborhood of xs, a formal Taylor expansion leads to

u(x, t) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

u(y, t)dy =
1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kxu(xs, t)
(y − xs)k

k!
dy

=
1

∆x

∑
k≥0

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


Reminding that for a 6= 0 one has ∂kxu = (−a)−k∂kt u for the advection equation (III.3)

=
1

∆x

∑
0≤k≤n

(−a)−k∂kt u(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
k≥n+1

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

Truncating up to order m, previous equation leads to

u(x, t) =
1

∆x

∑
0≤k≤n

(−a)−k∂kt u(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
n+1≤k<m

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

+ O(∆xm).

Consider a mth-order scheme, and consider we only use the n first time derivatives of g, with
n < m. Using u(xs, t) = g(t), one therefore gets

u(x, t) =
1

∆x

∑
0≤k≤n

(−a)−k∂kt g(t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!


+

1

∆x

∑
n+1≤k<m

∂kxu(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

+ O(∆xm).

(III.10)

Consider a scheme that requires ng ghost-cell values. We introduce two set of points x− =

{x0, x−1, ..., x−ng+1} and x+ = {x1, x2, ..., xm−n−1} which are finite sets of points respectively
included in Ω− and in Ω+. Using the identity (III.10) and dropping the O(∆xm) for x ∈ x+, one
builds a system of unknowns ∂kxu(xs, t) with n+ 1 ≤ k < m. Solving this system allows then to
build averaged ghost-cell values u(x, t) for x ∈ x−.

As an example we consider the O3 scheme (m = 3) whose flux is given by (III.9) and whose total
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stencil is Sj = {j − 2, j − 1, j, j + 1}. It therefore requires ng = 2 ghost-cells (x− = {x0, x−1}).
For this example and for the sake of simplicity, we assume g = 0 and we take n = 1 (ie g(t) and
∂tg(t) are known at the boundary). We therefore get x+ = {x1} and relation (III.10) writes

u(x, t) =
1

∆x
∂2
xu(xs, t)

(x+
∆x

2
− xs)3

3!
−

(x− ∆x

2
− xs)3

3!

+ O(∆x3)

= ∂2
xu(xs, t)

(
12x2 − 24xσ∆x+ 12∆x2σ2 + ∆x2

24

)
+ O(∆x3). (III.11)

Dropping the O(∆x3) and using the first interior cell u1 = u(∆x, t) allows to compute the
unknown ∂2

xu(xs, t)

∂2
xu(xs, t) =

(
24

12∆x2σ2 − 24σ∆x2 + 13∆x2

)
u1. (III.12)

Ghost-cell values u0 = u(0, t) and u−1 = u(−∆x, t) can now be explicitely computed from (III.11-
III.12)

u0 =
(

12∆x2σ2+∆x2

24

)
∂2
xu(xs, t),

u−1 =
(

12∆x2σ2+24σ∆x2+13∆x2

24

)
∂2
xu(xs, t),

ie

 u0 = 12σ2+1
12σ2−24σ+13

u1,

u−1 = 12σ2+24σ+13
12σ2−24σ+13

u1.

These staightforward computations can be formalized by introducing the Taylor coefficients ma-
trices Y+ ∈ R1×1 and Y− ∈ R2×1,

Y+ =
(

12∆x2σ2 − 24σ∆x2 + 13∆x2

24

)
and Y− =

 12∆x2σ2 + ∆x2

24
12∆x2σ2 + 24σ∆x2 + 13∆x2

24

 . (III.13)

Note that for any σ, Y+ ≥ 0. Then, under the assumption that ∆x 6= 0, Y+ is invertible. We
set R = Y−(Y+)−1 and get U− = R(U+), ie

(
u0

u−1

)
=

 12σ2+1
12σ2−24σ+13

12σ2+24σ+13
12σ2−24σ+13

u1. (III.14)

We now extend this procedure to the general case. Let m be the order of the reconstruction. Let
n denote the number of time derivatives of the boundary condition used in the reconstruction and
assume the numerical scheme requires ng ghost-cells. We build matrices Ym,n

− ∈ Rng×(m−n−1)

and Ym,n
+ ∈ R(m−n−1)×(m−n−1)


(Ym,n
− )i,j =

(x1−i +
∆x

2
− xs)n+j+1 − (x1−i −

∆x

2
− xs)n+j+1

∆x(n+ j + 1)!
,

(Ym,n
+ )i,j =

(xi +
∆x

2
− xs)n+j+1 − (xi −

∆x

2
− xs)n+j+1

∆x(n+ j + 1)!
.

(III.15)
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The boundary condition g, previously assumed to be zero is reintroduced in Sn
− ∈ Rng and

Sn
+ ∈ R(m−n−1) defined as

(Sn
−)i =

n∑
k=0

(−a)k∂kt g(t)
(x1−i +

∆x

2
− xs)k+1 − (x1−i −

∆x

2
− xs)k+1

∆x(k + 1)!
,

(Sn
+)i =

n∑
k=0

(−a)k∂kt g(t)
(xi +

∆x

2
− xs)k+1 − (xi −

∆x

2
− xs)k+1

∆x(k + 1)!
.

(III.16)

Let Θ = (∂n+1
x u, ..., ∂m−1

x u)t. Relation (III.10) can be rewritten{
U− = Sn

− + Ym,n
− ·Θ,

U+ = Sn
+ + Ym,n

+ ·Θ.
(III.17)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) if

0 ≤ n < m. Elimination of Θ in (III.17) leads to

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.18)

This relation gives a reconstruction up to mth-order of u outside the computational domain using
the n first time derivatives of g. It defines the so-called Rm,n reconstruction operator

Rm,n = Ym,n
− · (Ym,n

+ )−1. (III.19)

Remark III.1. The previous formal computations also apply straightforwardly in the case of

finite difference schemes. Terms of the form

(x+
∆x

2
− xs)k+1

∆x(k + 1)!
−

(x− ∆x

2
− xs)k+1

∆x(k + 1)!

 become

(x− xs)k
k!

in the finite difference case.

III-1.1.2 Experimental order of accuracy of the procedure

Previous computations yield high-order accurate numerical methods to solve eq. (III.3). Consider
the initial boundary value problem (III.3) with a = 1 and the following C∞ data{

u(0, x) = u0(x) = 0,

u(t, xs) = g(t) = e−
0.1
t2 sin(4πt).

(III.20)

Equation (III.3) is solved on Ω = {x ∈ R, xs < x < 2}, with a classical outflow boundary
condition in x = 2 and the high-order accurate boundary treatment previously proposed at
x = xs =

√
3

2 10−3. The computational domain, discretized in Nx cells, is [0, 2] so that the
left boundary lies in the first cell. The CFL is set to 0.8. Computations are done in order to
assess the accuracy of the proposed methods. In Table III.1, we present the l1-error with respect
to the number of cells for the R3,0,R3,1, and R3,2 reconstructions using the 3rd-order interior



BOUNDARY TREATMENT FOR LINEAR HYPERBOLIC SYSTEMS 131

Nx R3,0 R3,1 R3,2

20 3.1e-2 · 2.8e-2 · 2.9e-2 ·
40 5.9e-3 2.39 5.6e-3 2.32 5.6e-3 2.35
80 8.0e-4 2.88 7.7e-4 2.86 7.7e-4 2.86
160 1.0e-4 2.93 1.0e-4 2.92 1.0e-4 2.92
320 1.3e-5 2.97 1.3e-5 2.97 1.3e-5 2.97
640 1.7e-6 2.99 1.6e-6 2.99 1.6e-6 2.99
1280 2.1e-7 2.99 2.1e-7 2.99 2.1e-7 2.99

Table III.1 – l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n finite-volume reconstruction polynomial at t = 1.5.

Nx R4,0 R4,1 R4,2 R4,3

20 2.0e-2 · 1.9e-2 · 2.0e-2 · 2.1e-2 ·
40 2.4e-3 3.12 2.3e-3 3.10 2.3e-3 3.15 2.3e-3 3.21
80 1.7e-4 3.80 1.7e-4 3.76 1.7e-4 3.76 1.7e-4 3.76
160 1.1e-5 3.90 1.1e-5 3.89 1.1e-5 3.89 1.1e-5 3.89
320 7.4e-7 3.96 7.3e-7 3.96 7.3e-7 3.96 7.2e-7 3.96
640 4.7e-8 3.98 4.6e-8 3.98 4.6e-8 3.98 4.6e-8 3.98
1280 2.9e-9 3.99 2.9e-9 3.99 2.9e-9 3.99 2.9e-9 3.99

Table III.2 – l1-error and experimental order of convergence for the 4th-order scheme together
with the R4,n finite-volume reconstruction polynomial at t = 1.5.

scheme (III.4), (III.9). In Table III.2, we present the l1-error with respect to the number of cells
for theR4,0,R4,1, R4,2, andR4,3 reconstructions using the 4th-order interior scheme (III.4). The
expected order of convergence for both schemes is reached for all reconstructions. We also have
checked that modifying xs does not alter the order of accuracy but slightly changes the initial error
level (forNx = 20). Similar experimental orders of convergence for finite difference reconstruction
operators have been recovered. An important feature of the reconstruction operator is its impact
on the final scheme stability. This will be discussed hereafter in section III-2.1.

III-1.2 Derivation of high-order reconstruction operators for the wave equa-
tions

The wave equations have already been detailed for the linear stability analysis of the staggered
schemes in section II-2. The system of equations is{

∂tu+ ∂xp = 0,

∂tp+ ∂xu = 0,
(III.21)

which can be written, for U = (u, p)t ∈ R2 as

∂tU +

(
0 1

1 0

)
∂xU = 0. (III.22)
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In the following, we introduce the matrix A =

(
0 1

1 0

)
, and obviously previous equation rewrites

∂tU +A∂xU = 0. (III.23)

The initial value boundary problem that we are interested in therefore writes{
∂tU +A∂xU = 0, t > 0, x > xs

BU = BG, t > 0, x = xs
(III.24)

Lemma III.1. The initial value boundary problem (III.24) is well-posed in the sense of theo-
rem I.9 if B ∈ R1×2 and satisfies B =

(
b1 b2

)
with b1 + b2 6= 0.

Proof. Trivially, one has that the spectrum of A satisfies Sp(A) = {−1, 1} and the eigenvectors
are

v+ =

(
1

1

)
and v− =

(
−1

1

)
.

Using the notation introduced in theorem I.9, it yields that T =

(
1

1

)
. Then, we get that

B ∈ R1×2 with B =
(
b1 b2

)
. Thus BT = b1 + b2. To ensure invertibility of BT , one requires

that b1 + b2 6= 0, which concludes the proof. �

In the following, two different matrices B are proposed which satisfy lemma III.1. The emphasis
is laid on how the boundary condition impacts the reconstruction operator. Before studying
specifically the boundary condition, the interior schemes are introduce to solve eq. (III.21).
Those schemes are the linear version of the one proposed for the Euler system introduced and
detailed in section II-2.

III-1.2.1 Runge–Kutta based staggered schemes for the wave equations

The Runge–Kutta based staggered schemes for the wave equations (already introduced in sec-
tion II-2) are eq. (III.25), denoting ν = ∆t

∆X ,


pn+αm
i = pni − ν

m−1∑
l=0

am,ldu
n+αl
i ,

un+αm
i+ 1

2

= un
i+ 1

2

− ν
m−1∑
l=0

am,ldp
n+αl
i+ 1

2

,


pn+1
i = pni − ν

s−1∑
l=0

θldu
n+αl
i ,

un+1
i+ 1

2

= un
i+ 1

2

− ν
s−1∑
l=0

θldp
n+αl
i+ 1

2

,

(III.25)

The explicit Runge–Kutta coefficients are given in table III.3. A possible way would be to build
the reconstruction operator only at time t = tn, exactly as for the advection case with one-step
schemes. However, considering as an example that there are 3 ghost-cells values to be built at
each sub-cycle, and that the scheme requires 6 Runge–Kutta sub-cycles, then one must build
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α1 a1,0 0 0 0 · · ·
α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·
αp ap,0 · · · · · · ap,p−1 0
1 θ0 θ1 · · · θp−1 θp

Table III.3 – Example of Butcher table for explicit Runge–Kutta sequence with p sub-cycles.

18 ghost-cells values at time t = tn. This will probably be a predicament for the stability of
the effective schemes. Thus, the choice has been made here to build ghost-cells values at each
Runge–Kutta sub-cycles. However, as explained and illustrated by Carpenter and al. in [20],
prescribing "naively" boundary conditions at each Runge–Kutta sub-cycle yields only second
order of accuracy. Lemma III.2 gives results concerning a way to impose high-order accurate
values of a given function at intermediary fictitous time-step.

Lemma III.2 (High-order accurate in time for function values at intermediary fictitious time).
Consider a qth-order explicit Runge–Kutta sequences whose coefficients are given by a Butcher
table as table III.3. In order to impose high-order accurate values of a function g : t → g(t) at
intermediary fictitious time, one sets

gn+αl = g(tn) +

q∑
r=1

βrl ∂
r
t g(tn)∆tr,

where the β coefficients satisfy 

β1
l =

l−1∑
m=0

al,m,

βrl =
l−1∑
m=0

al,mβ
r−1
m ,

βrp+1=

p∑
m=0

θmβ
r−1
m .

Proof. To build high-order accurate boundary conditions, we consider the following system
(III.26): 

∂tg0(t) = g1(t)
...

∂tgq(t) = gq+1(t)
...

(III.26)

System (III.26) needs closure to be well posed. We close the system considering that for a fixed
q ∈ N (linked to the order of the Runge–Kutta sequence), we have ∂tgq+1(t) = 0. This way, we
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get the following system (III.27). 
∂tg0(t) = g1(t)
...
∂tgq(t) = gq+1(t)

∂tgq+1(t) = 0

(III.27)

We consider qth order explicit Runge–Kutta schemes with the following notations for Runge–
Kutta sequences: αl is the time step for the lth sub-cycle, al,m the l,m term of the Butcher table
and θm the mth reconstruction coefficient for the last step. We consider p sub-cycles schemes
(see table III.3).

Using Runge–Kutta integration in time with time-step ∆t and considering that gnk = dkg
dtk

(tn) we
will get the following schemes, for l ∈ {1, ..., p+ 1}

gn+αl
0 =gn0 + ∆t

l−1∑
m=0

al,mg
n+αm
1

gn+αl
1 =gn1 + ∆t

l−1∑
m=0

al,mg
n+αm
2

... =
...

gn+αl
q =gnq

, (III.28)

Developing system (III.28) to keep only terms with gn0 , gn1 , ..., gnq , we get for k ∈ {0, ..., q}

gn+αl
k = gnk +

r+k≤q∑
r=1

βrl g
n
k+r∆t

r, (III.29)

where the βml coefficients satisfy the following equation:

β1
l =

l−1∑
m=0

al,m,

βrl =
l−1∑
m=0

al,mβ
r−1
m ,

βrp+1=

p∑
m=0

θmβ
r−1
m .

(III.30)

which concludes the proof using k = 0 into eq. (III.29). �

Once the Butcher table of a Runge–Kutta sequence is given, the βrl can easily be computed once
and for all. Then, it allows to impose the value of the gn+αl function only of ∆t and of the values
of g and its time-derivatives at time t = tn. Let us prove that the "time matching" method
which consists of imposing gn+αl = g(tn + αl∆t) is only second order accurate in time.

Lemma III.3 (Low order accuracy of the "time matching" method). For general Butcher coef-
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ficients, the "time matching" method is only second order accurate. It satisfies

g(tn + αl∆t) = gn+αl + O(∆t2).

Remark III.2. This is a generalization to any Runge–Kutta sequences of the results given by
Carpenter and al. in [20].

Proof. Recall that

gn+αl = g(tn) +

q∑
r=1

βrl ∂
r
t g(tn)∆tr.

The Taylor expansion in ∆t of g(tn + αl∆t) writes

g(tn + αl∆t) = g(tn) +

q∑
r=1

∂rt g(tn)
(αl∆t)

r

r!
+ O(∆tq+1)

Then it leads to

gn+αl − g(tn + αl∆t) =

q∑
r=1

∂rt g(tn)∆tr
(
βrl −

(αl)
r

r!

)
+ O(∆tq+1)

Introducing the notations γr = βrl −
(αl)

r

r!
, one gets that

γ1 = β1
l − αl =

l−1∑
m=0

al,m − αl = 0,

since αl =
l−1∑
m=0

al,m for any Butcher table. Now, let us consider γ2, it writes

γ2 = β2
l −

1

2
α2
l

=

l−1∑
m=0

al,mβ
1
m −

1

2
α2
l

=
l−1∑
m=0

al,mαm −
1

2
α2
l ,

which is not equal to zero for general coefficients al,m. Hence, it yields that

gn+αl − g(tn + αl∆t) = O(∆t2).

�

Using the β coefficients, let us now deal with building appropriate reconstruction operators
depending on the boundary condition. A method has been devised to deal with such a problem,
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and then to build high-order boundary conditions for any explicit Runge–Kutta sequences. It
has been done for the Runge–Kutta sequences presented in appendix, section A.1.

III-1.2.2 Reconstruction operators for the wave equations with boundary condi-
tions on velocity

First, we consider that the matrixB takes the simple formB =
(

1 0
)
, which obviously satisfies

lemma III.1. The system rewrites as
∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

u(xs, t) = g(t), t > 0.

(III.31)

Then using the eq. (III.31), one gets in particular that for any q ∈ N

{
∂2q+1
t u = −∂2q+1

x p,

∂2q
t u = ∂2q

x u,
(III.32)

which yields

{
∂2q+1
x p(xs, t) = −∂2q+1

t g(t),

∂2q
x u(xs, t) = ∂2q

t g(t).
(III.33)

For x in a neighborhood of xs, a formal Taylor expansion leads to(
u

p

)
(x, t) =

1

∆x

∫ x+ ∆x
2

x−∆x
2

(
u

p

)
(y, t)dy =

1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kx

(
u

p

)
(xs, t)

(y − xs)k

k!
dy

=
1

∆x

∑
k≥0

∂kx

(
u

p

)
(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

Introducing the notation

ψk(x) =

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 ,
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it rewrites as(
u

p

)
(x, t) =

1

∆x

∑
k≥0

(
∂kxu

∂kxp

)
(xs, t)ψk(x),

=
1

∆x

bn2 c∑
k≥0

(
∂2k
x u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

∂2k+1
x p

)
(xs, t)ψ2k+1(x)


+

1

∆x

∑
k≥n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x).

Reminding that ∂2k
x u = ∂2k

t u and that ∂2k+1
x p = −∂2k+1

t u

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

−∂2k+1
t u

)
(xs, t)ψ2k+1(x)


+

1

∆x

∑
k≥n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x).

Truncating up to order m, previous equation gives

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t u

∂2k
x p

)
(xs, t)ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u

−∂2k+1
t u

)
(xs, t)ψ2k+1(x)


+

1

∆x

m−1∑
k=n+1

(
∂kxu

∂kxp

)
(xs, t)ψk(x) + O(∆xm).

Inserting boundary condition and dropping the O(∆xm), one gets

(
u

p

)
(x, t) =

1

∆x

bn2 c∑
k≥0

(
∂2k
t g(t)

∂2k
x p(xs, t)

)
ψ2k(x) +

bn−1
2
c∑

k≥0

(
∂2k+1
x u(xs, t)

−∂2k+1
t g(t)

)
ψ2k+1(x)


+

1

∆x

m−1∑
k≥n+1

(
∂kxu(xs, t)

∂kxp(xs, t)

)
ψk(x).

Getting the terms in g in the left hand side, it rewrites as
u(x, t)− 1

∆x

bn
2
c∑

k≥0

∂2k
t g(t)ψ2k(x) =

1

∆x

bn−1
2
c∑

k≥0

∂2k+1
x u(xs, t)ψ2k+1(x) +

m−1∑
k≥n+1

∂kxu(xs, t)ψk(x)

 ,
p(x, t) + 1

∆x

bn−1
2
c∑

k≥0

∂2k+1
t g(t)ψ2k+1(x) =

1

∆x

bn2 c∑
k≥0

∂2k
x p(xs, t)ψ2k(x) +

m−1∑
k≥n+1

∂kxp(xs, t)ψk(x)

 .
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Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.34)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with

0 ≤ n < m. Then eq. (III.34) gives after elimination of Θ formed with spatial derivatives of u
and p,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.35)

Here again, the reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1.

Remark III.3. Straightforwardly, as u and p play a symetric role, one deduces the reconstruction
operator for the following IBVP problem

∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

p(xs, t) = g(t), t > 0.

III-1.2.3 Reconstruction operators for the wave equations with mixed boundary
conditions on both velocity and pressure

First, we consider that the matrix B takes the form B =
(

1 λ
)
, where λ is chosen in order

to satisfy lemma III.1. It yields a condition on λ which writes λ 6= −1. The special case where
λ = 0 has been dealt with previously. The system rewrites as

∂tu+ ∂xp = 0, x ≥ xs, t > 0,

∂tp+ ∂xu = 0, x ≥ xs, t > 0,

u(xs, t) + λp(xs, t) = g(t), t > 0.

(III.36)

In particular, one has

∂qt

(
u

p

)
= (−A)q∂qx

(
u

p

)
, (III.37)

and since A is invertible, it leads to

∂qx

(
u

p

)
= (−A)−q∂qt

(
u

p

)
. (III.38)

The matrix B̂ ∈ Rp×p is introduced as

B̂ =

(
B

0

)
.

Keeping the notation previously introduced, for x in a neighborhood of xs, a formal Taylor
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expansion gives(
u

p

)
(x, t) =

1

∆x

∑
k≥0

(
∂kxu

∂kxp

)
(xs, t)ψk(x),

which is split into two terms(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

(−1)kψk(x)(Ak)−1∂kt

(
u

p

)
(xs, t) +

1

∆x

∑
n+1≤k

ψk(x)∂kx

(
u

p

)
(xs, t),

Decomposing along B̂ and I − B̂, it leads to(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂kt

(
u

p

)
(xs, t) +

1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kx

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k

ψk(x)∂kx

(
u

p

)
(xs, t).

Truncating up to mth-order, dropping the O(∆xm) and using B̂

(
u

p

)
(xs, t) = B̂G(t), we get

(
u

p

)
(x, t) =

1

∆x

∑
0≤k≤n

ψk(x)A−k(−1)kB̂∂ktG(t)

+
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kx

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).

Noticing in particular that A2 = I, thus A−1 = A, one gets(
u

p

)
(x, t) = − 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)AB̂∂2k+1
t G(t)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)B̂∂2k
t G(t)

+
1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)A(I − B̂)A∂2k+1
x

(
u

p

)
(xs, t)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)(I − B̂)∂2k
x

(
u

p

)
(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).
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Then, computing the values of (I − B̂),A(I − B̂)A and AB̂, one gets the following results

I − B̂ =

(
0 −λ
0 1

)
,

AB̂ =

(
λ 1

0 0

)
,

A(I − B̂)A =

(
1 0

−λ 0

)
,

which leads to, denoting g = BG and inserting in the previous expression(
u

p

)
(x, t) = − 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)

(
0

∂2k+1
t g(t)

)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)

(
∂2k
t g(t)

0

)

+
1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)

(
∂2k+1
x u(xs, t)

−λ∂2k+1
x u(xs, t)

)

+
1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)

(
−λ∂2k

x p(xs, t)

∂2k
x p(xs, t)

)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kx

(
u

p

)
(xs, t).

Getting the terms in g in the left side, one gets

u(x, t)− 1
∆x

∑
0≤k≤bn

2
c

ψ2k(x)∂2k
t g(t) = 1

∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)∂2k+1
x u(xs, t)

− 1
∆x

∑
0≤k≤bn

2
c

λψ2k(x)∂2k
x p(xs, t)

+ 1
∆x

∑
n+1≤k<m

ψk(x)∂kxu(xs, t),

p(x, t) + 1
∆x

∑
0≤k≤bn−1

2
c

ψ2k+1(x)∂2k+1
t g(t) = 1

∆x

∑
0≤k≤bn

2
c

ψ2k(x)∂2k
x p(xs, t)

− 1
∆x

∑
0≤k≤bn−1

2
c

λψ2k+1(x)∂2k+1
x u(xs, t)

+ 1
∆x

∑
n+1≤k<m

ψk(x)∂kxp(xs, t).

Then, it enables to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.39)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with
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0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of u and p,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.40)

The reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1. One notices several differences
compared with the previous example. For a velocity based boundary condition, the problem
could be decoupled between solving a problem on p and later on u (or vice versa). Here, due
to the particular boundary condition coupling both u and p, the obtained problem is solved
simultaneously on both u and p and their derivatives.

Remark III.4. Straightforwardly, one deduces the reconstruction operator for boundary condi-
tions imposed as λu+ p = g, or conditions imposed as µu+ λp = g with λ+ µ 6= 0.

III-1.2.4 Experimental order of accuracy for a wave problem

We consider a C∞ data solution to eq. (III.21) as{
u(t, x) = a sin(ω(t+ x)) + b sin(ω(t− x)),

p(t, x) = −a sin(ω(t+ x)) + b sin(ω(t− x)).
(III.41)

where arbitrarily, a = 1, b = −1, ω = 2π. We consider a domain Ω = {x ∈ R, xs < x < 10}
where the boundary conditions on the right are imposed using the exact solution presented in
eq. (III.41), and on the left, using the high-order accurate boundary treatment (according to
the boundary condition) for x = xs =

√
3

2 10−3, so that the left boundary lies in the first cell.
The CFL is set to 0.5. Computations are done in order to assess the accuracy of the proposed
methods. First, the boundary treatment for boundary conditions on velocity is detailed, and
its accuracy assessed with numerical experiments. Second, the boundary treatment for mixed
boundary conditions is detailed, and the error as well as experimental order of convergence are
presented.

Using boundary conditions on velocity

We consider here the initial data and boundary conditions on velocity for the IBVP as
u(x, 0) = 2 sin(ωx),

p(x, 0) = 0,

u(xs, t) = 2 sin(ωxs) cos(ωt).

(III.42)

In Table III.4, we present the l1-error with respect to the number of cells for the R3,0,R3,1, and
R3,2 reconstructions using the 3rd-order interior scheme presented in section II-2. The expected
order of convergence for the third order staggered scheme is reached for the R3,1 and R3,2

reconstructions. Indeed, one can see that using R3,0 leads to an unstable effective scheme. We
also have checked that modifying xs does not alter the order of accuracy but slightly changes the
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Nx R3,0 R3,1 R3,2

20 1.3e-2 · 1.1e-3 · 1.5e-3 ·
40 7.9e-4 3.99 8.9e-5 3.66 1.5e-4 3.39
80 4.9e-5 4.02 6.5e-6 3.78 1.3e-5 3.49
160 1.1e-5 2.14 5.1e-7 3.65 1.2e-6 3.43
320 8.5e-5 ? 5.1e-8 3.32 1.2e-7 3.31
640 1.1e-1 ? 6.2e-9 3.05 1.4e-8 3.18
1280 2.8e6 ? 7.9e-10 2.97 1.6e-9 3.08

Table III.4 – l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n finite-volume reconstruction polynomial at t = 0.3 for boundary
condition on the velocity. ? are indications of unstable behaviour of the scheme.

Nx R3,0 R3,1 R3,2

20 2.4e-2 · 1.4e-3 · 2.2e-3 ·
40 2.3e-3 3.40 9.9e-5 3.84 2.4e-4 3.17
80 7.9e-5 4.88 8.6e-6 3.52 2.5e-5 3.24
160 1.1e-4 ? 8.3e-7 3.37 2.8e-6 3.16
320 2.5e-3 ? 8.1e-8 3.36 2.9e-7 3.27
640 1.1e5 ? 8.4e-9 3.28 3.0e-8 3.26
1280 ? ? 9.3e-10 3.18 3.3e-9 3.21

Table III.5 – l1-error and experimental order of convergence for the 3rd-order scheme together
with the R3,n finite-volume reconstruction polynomial at t = 0.3 for mixed bound-
ary condition (λ = 1747). ? are indications of unstable behaviour of the scheme.

initial error level (for Nx = 20). Similar experimental orders of convergence for finite difference
reconstruction operators have been recovered.

Using mixed boundary conditions

The initial data and mixed boundary conditions for the IBVP are
u(x, 0) = 2 sin(ωx),

p(x, 0) = 0

u(xs, t) + λp(xs, t) = (1− λ) sin(ω(t+ xs))− (1 + λ) sin(ω(t− xs)),
(III.43)

with arbitrarily fix the parameter λ to λ = 1747. In Table III.5, we present the l1-error with
respect to the number of cells for the R3,0,R3,1, and R3,2 reconstructions using the 3rd-order
interior scheme presented in section II-2. The expected order of convergence for the third order
staggered scheme is reached for the R3,1 and R3,2 reconstructions. Indeed, one can see that
using R3,0 leads to an unstable effective scheme. We also have checked that modifying xs

does not alter the order of accuracy but slightly changes the initial error level (for Nx = 20).
Similar experimental orders of convergence for finite difference reconstruction operator have been
recovered.
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III-1.3 High-order reconstruction operator for general linear system

We extend the previous case to general hyperbolic linear system with boundary conditions. For
linear hyperbolic system (III.1), one gets the following equality, assuming that A is invertible,{

∂kt U= (−1)kAk∂kxU ,

∂kxU=(−1)kA−k∂kt U .
(III.44)

Consider a mth-order scheme in both time and space and consider we use only the first n time
derivatives of the boundary conditions G, with n < m. Relation (III.44) is used to change time
derivatives into space derivatives and vice versa. The matrix B̂ ∈ Rp×p is introduced as

B̂ =

(
B

0

)
.

Taylor expansion of U for x in a neighborhood of xs leads to

U(x, t) = 1
∆x

∫ x+ ∆x
2

x−∆x
2

U(y, t)dy =
1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kxU(xs, t)
(y − xs)k

k!
dy,

= 1
∆x

∑
k≥0

∂kxU(xs, t)

(x+
∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!

 .

To alleviate the notations, let us introduce ψk(x) =
(x+

∆x

2
− xs)k+1

(k + 1)!
−

(x− ∆x

2
− xs)k+1

(k + 1)!
. We

have

U(x, t) =
1

∆x

∑
0≤k≤n

(−1)kψk(x)(Ak)−1∂kt U(xs, t) +
1

∆x

∑
n+1≤k

ψk(x)∂kxU(xs, t),

=
1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂kt U(xs, t) +
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k

ψk(x)∂kxU(xs, t).

Truncating up to mth-order, dropping the O(∆xm) and using B̂U(xs, t) = B̂G(t), we get

U(x, t) =
1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂ktG(t) +
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kxU(xs, t).
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that is rewritten the following way

U(x, t)− 1

∆x

∑
0≤k≤n

ψk(x)(Ak)−1(−1)kB̂∂ktG(t) =
1

∆x

∑
0≤k≤n

ψk(x)A−k(I − B̂)Ak∂kxU(xs, t)

+
1

∆x

∑
n+1≤k<m

ψk(x)∂kxU(xs, t),

to establish a similar procedure to the one presented in section III-1.1. It writes{
U− − Sn

− = Ym,n
− ·Θ,

U+ − Sn
+ = Ym,n

+ ·Θ,
(III.45)

A similar proof as for Vandermonde matrices shows that Ym,n
+ is invertible for any (m,n) with

0 ≤ n < m. Then after elimination of Θ formed with spatial derivatives of U ,

U− = Sn
− + Ym,n

− · (Ym,n
+ )−1 · (U+ − Sn

+). (III.46)

Here again, the reconstruction operator writes Rm,n = Ym,n
− · (Ym,n

+ )−1.

III-2 Stability of the inverse Lax–Wendroff procedure

We have seen in tables III.4 and III.5 that the third order scheme for the wave equation with the
R3,0 is unstable, at least for the set of parameters used during the computations. Our purpose
in this section is to establish the stable or unstable behaviour of the effective schemes.

In this section a procedure to study the stability of the reconstruction operator is developed. For
any matrix M , ρ(M) denotes the spectral radius of M . Let Z denote the interior numerical
scheme operator such that Un+1 = ZUn solves (III.1). Let R denote the reconstruction operator
such that U− = RU+. The scheme writes(

U+

U−

)n+1

=

(
Z1,1 Z1,2

Z2,1 Z2,2

)
·

(
U+

U−

)n
=

((
Z1,1 + Z1,2R

)
Un

+(
Z2,1 + Z2,2R

)
Un

+

)
. (III.47)

The reduced version where only Un+1
+ shows up writes

Un+1
+ =

(
Z1,1 + Z1,2R

)
Un

+ = NUn
+, (III.48)

where N =
(
Z1,1 + Z1,2R

)
is called the effective operator. The purpose of this section is first

to study the stability of such an effective scheme, and later on to design a special criteria to
characterize in a reduced sense the stability of this scheme.
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III-2.1 GKS stability for IBVP using second order reconstruction for the
Lax–Wendroff scheme

For this section, we consider the special case of the advection problem with boundary conditions
written in eq. (III.3). As presented in section I-1.2.3, considering IBVP, an important feature of
the effective scheme is its stability. The Cauchy stability analysis has already been mentioned for
the interior schemes. To perform the GKS stability [76] analysis of a scheme, we first consider
the second-order Lax–Wendroff projection scheme (presented in in eq. (III.7)) with the two
proposed second-order reconstructions. We consider also that g = 0 which does not impact the
linear stability analysis. The Lax–Wendroff scheme requires only one ghost-cell value to the left
of the boundary. The reconstructions are

R2,0 = R0 = σ
σ + 1 and R2,1 = R1 = 0. (III.49)

Proposition III.4 (GKS stability of the Lax–Wendroff scheme). The Lax–Wendroff scheme
is stable in the sense of lemma I.12 using R0 or R1 defined in eq. (III.49) for ν ∈ [0 : 1],
σ ∈

[
−1

2 ,
1
2

[
.

Proof. From linear stability analysis, one gets the characteristic equation for the Lax–Wendroff
equation which is

zκ =
ν2 + ν

2
+ (1− ν2)κ+

ν2 − ν
2

κ2. (III.50)

Let f(κ) defined as

f(κ) =
ν2 + ν

2
+ (1− ν2 − z)κ+

ν2 − ν
2

κ2. (III.51)

One gets from linear stability analysis of the interior scheme that for κ satisfying f(κ) = 0 and
|κ| = 1 that |z| ≤ 1 for ν ∈ [0 : 1]. Then, the number of roots with |K| < 1 of the characteristics
equation is independent of the value of z. Thus, one may choose any z such that |z| > 1 to
determine the number of roots κ such that |κ| < 1. Arbitrarily we set z = 2, it yields that

f(κ) =
ν2 + ν

2
+ (−1− ν2)κ+

ν2 − ν
2

κ2,

from which one deduces that


κ1(ν) =

1 + ν2 −
√

1 + 3ν2

ν2 − ν
,

κ2(ν) =
1 + ν2 +

√
1 + 3ν2

ν2 − ν
.

(III.52)

In particular, one gets that for

ν ∈ [0 : 1]

{
κ1(ν) ∈

[
0 : 1

2

]
,

κ2(ν) 6∈ [−1 : 1] .
(III.53)

It thus implies that trivially the roots are distinct. If one consider now that z = eik with k ∈ R,
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one get two roots κ1, κ2, with for certain values of k that |κ1| = 1. A perturbation analysis is
then performed. To illustrate the perturbation analysis, assume that z = 1, then one gets that
κ1 = 1, κ2 = −1+ν

1−ν . Then the perturbation analysis consists of considering that now z = δ and
κ = 1 + ε inside the characteristic equation (III.50). One obtains

δ = 1− ν(ε2 + 2ε)− ε2ν2

2ε+ 2
,

which leads to, performing a Taylor expansion at ε = 0,

δ = 1− εν + O(ε2),

which proves that κ = 1 is stable under perturbation as for ε small enough, δ < 1. Then to get
the non-existence of generalized eigensolution, one must verify that there is no solution to(

ν2 + ν

2
R+ (1− ν2 − z)

)
κ2 +

ν2 − ν
2

κ2 = 0, (III.54)

for ν ∈ [0 : 1], σ ∈
[
−1

2 ,
1
2

[
, |z| ≥ 1, R = R0 or R = R1 as defined in eq. (III.49) and κ satisfying

the characteristic equation (III.50). The system has no solution. Thus, there is no generalized
eigensolution and the scheme is linearly stable. �

Similar studies can be perform for the Beam–Warming scheme. Increasing the order of the
scheme and of the reconstruction yields more and more complexity of the fully discrete GKS
analysis. Thus, a criteria is introduced (very similar to the one proposed in [169]) to alleviate
the algebra of the GKS stability. The cost of such a criteria is that it does not give strong results
concerning the linear stability of the effective scheme.

III-2.2 Reduced stability for IBVP discretization

Let us consider now general linear hyperbolic system with appropriate boundary conditions
written ineq. (III.1). Here, we add an a priori requirement of this stability. We will set
Nnc ∈ Rn2

c , Nnc = PncNPtnc where Pnc is the natural projection such that for X ∈ l2, PncX =

(X1, ..., Xnc) ∈ Rnc .

Definition III.1 (Reduced stability). Let Z be the interior scheme, and R the reconstruction
operator. The operator N = (Z1,1 + Z1,2R) is stable in a reduced sense if

1. Z is stable using normal mode analysis [22, 2],

2. There exists nc ∈ N∗ such that ρ(Nnc) ≤ 1.

Remark III.5. Definition III.1 provides practical information concerning the stability of the final
scheme and is used to determine a priori if a reconstruction is unstable by taking nc large enough.
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III-2.2.1 Analytic reduced stability of the Beam–Warming scheme

The Beam–Warming scheme presented in eq. (III.8), linearly stable for ν ∈ [0 : 2] writes as

un+1
i = (1 +

ν2 − 3ν

2
)uni + (2ν − ν2)uni−1 +

ν2 − ν
2

uni−2, i ∈ Z.

Considering that the boundary condition g satisfies g = 0, and taking m = 2, n = 0, it yields
that

R =

 σ

σ − 1
σ + 1

σ − 1

 .

Then, the effective scheme writes
un+1

1 =
σ + ν − 1

σ − 1
un1 ,

un+1
2 =

3σν − σν2 − 4ν + 2ν2

2σ − 2
un1 + (1 +

ν2 − 3ν

2
)un2 ,

un+1
i = (1 +

ν2 − 3ν

2
)uni + (2ν − ν2)uni−1 +

ν2 − ν
2

uni−2, i > 2.

(III.55)

It is possible to rewrite the previous system under the form Un+1
+ = NUn

+ where the operator
N satisfies

N =


σ+ν−1
σ−1 0 0 . . .

3σν−σν2−4ν+2ν2

2σ−2 (1 + ν2−3ν
2 ) 0 . . .

ν2−ν
2 (2ν − ν2) (1 + ν2−3ν

2 ) 0

0
. . . . . . . . .

 . (III.56)

It leads to the following proposition

Proposition III.5. The operator N given in eq. (III.56) is stable in the sense of the reduced
stability defined in definition III.1.

Proof. Let p be an integer. Let us introduce the operator Pp such that

∀U ∈ l2,PpU = (u1, ..., up)
t ∈ Rp,

and the operator Qp such that

∀(u1, ..., up)
t ∈ Rp,Q(u1, ..., up)

t = (u1, ..., up, 0, ...)
t ∈ l2.

Let the matrix Np = PpNQp ∈ Rp×p. The spectrum of the matrix Np writes

Sp(Np) = {1 +
ν2 − 3ν

2
,
σ + ν − 1

σ − 1
}.
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Now, we wish to exhibit condition on ν depending on σ such that

|σ + ν − 1

σ − 1
| ≤ 1.

As σ ∈
[
−1

2 : 1
2

[
, it yields that σ − 1 < 0, and thus it writes

σ − 1 ≤ σ + ν − 1 ≤ 1− σ, σ ∈
[
−1

2
:

1

2

[
,

which yields

0 ≤ ν ≤ 2− 2σ, σ ∈
[
−1

2
:

1

2

[
.

Taking the minimum over σ on the right hand side, it yields

0 ≤ ν ≤ 1.

Hence the result. �

III-2.2.2 Numerical reduced stability results for the high-order Strang projection
schemes

We illustrate this definition by taking the O3 scheme (III.9) with the reconstruction (III.14).
The interior operator Z writes as a band matrix whose coefficients are for any i ∈ Z

Zi,i−2 =
ν3

6
− ν

6
, Zi,i−1 = ν +

ν2

2
− ν3

2
, Zi,i =

ν3

2
− ν2 − ν

2
+ 1, Zi,i+1 = −ν

3

6
+
ν2

2
− ν

3
.

The reconstruction for m = 2 and n = 1 writes

R1,1 =
12σ2 + 1

12σ2 − 24σ + 13
, R2,1 =

12σ2 + 24σ + 13

12σ2 − 24σ + 13
.

To alleviate notations and since the interior operator is a band matrix, we denote Cj = Zi,i+j
for any j ∈ Z. Combining both, operator N writes

N =


C−2R2,1 + C−1R1,1 + C0 C1 0 0 0

C−2R1,1 + C−1 C0 C1 0 0

C−2 C−1 C0 C1 0

0
. . . . . . . . . . . .

 . (III.57)

One then checks numerically if the spectral radius of Nnc is less or equal to one. Remind that
Rm,n denotes the mth-order reconstruction operator that takes into account the n first time
derivatives of the boundary condition. Results for the Lax–Wendroff (fig. III.2), the Beam–
Warming (fig. III.3), the third order projection (fig. III.4) and the fourth order one (fig. III.5)
are depicted. Those results highlight the areas of reduced stabilities. Parts of the considered
space (ν, σ) where the scheme is stable in a reduced sense are in white and in black otherwise.
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In particular, it means that second order reconstruction are unconditionally stable (in the sense
of definition III.1) for the Lax–Wendroff and the Beam–Warming scheme. As a contrary, third
order reconstruction, with n = 0 does not satisfy the reduced stability condition for certain
values of ν and σ. As a matter of fact, for such values of ν and σ, a fully discrete GKS stability
analysis proves the existence of generalized eigensolution. Moreover numerical experiments using
values of ν and σ in this area highlight the unstable behaviour of the effective scheme.

Notice that on fig. III.2, the reduced stability results and the results obtained for the fully
discrete GKS analysis presented in proposition III.4 are identical. As well, on fig. III.3, the
reduced stability and the results presented in proposition III.5 are the same. It assesses the
practical relevance of the reduced stability criterion.

Furthermore, an interesting feature is shown in fig. III.5, where one notices that for the R4,0,
the bottom left corner of the (ν, σ)-space is unstable. It means in peculiar that the whole space
(ν, σ) must be treated in order to get a complete idea of the effective scheme stability. Indeed,
one may not consider that if a scheme is stable for ν = ν1, then for any ν < ν1 the scheme is
also stable.

Drawing comparisons between reduced stability results and results obtained by performing a
numerical fully discrete GKS analysis for the advection problem using inverse Lax–Wendroff
procedure and projection scheme gives very similar results. As we use the reduced stability
definition to choose which reconstruction operator to obtain a stable effective scheme, this is, to
our opinion, a sufficient criteria. Therefore in the following for the wave equations, only reduced
stability is studied, and the complete fully discrete GKS analysis is not performed.

R2,0 R2,1

Figure III.2 – Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Lax–Wendroff (second order)
scheme with nc = 20 for theR2,0 (left), R2,1 (right) reconstruction operators. The
whole domain is stable.

III-2.2.3 Numerical reduced stability results for the Runge–Kutta based staggered
scheme for the wave equations

Similarly to the advection equation, we perform a numerical study of the reduced stability of the
Runge–Kutta based staggered scheme for the wave equations for boundary condition on velocity.
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R2,0 R2,1

Figure III.3 – Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the Beam–Warming (second or-
der) scheme with nc = 20 for the R2,0 (left), R2,1 (right) reconstruction operators.
The whole domain is stable.

In fig. III.6, parts of the considered space (ν, σ) where the scheme is stable in a reduced sense are
depicted in white and in black otherwise. One notices that using only g yields an effective scheme
that does not satisfy the reduced stability definition. It has already been numerically checked on
an example in Table III.4. As a contrary, considering more derivatives of g, the effective schemes
fully satisfy the reduced stability definition.

The reduce stability study for the wave equations determines that until third order of accuracy,
g, Dtg are required for linear stability of the initial boundary value problem. The next chapter
is dedicated to the study in the case of the Lagrange-remap hydrodynamics system. Using the
previous results, only g and Dtg are going to be used in the Inverse Lax–Wendroff procedure.
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R3,0 R3,1

R3,2

Figure III.4 – Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order projection
scheme with nc = 20 for the R3,0 (top, left), R3,1 (top, right) and R3,2 (bot-
tom) reconstruction operators. As a contrary to figs. III.2 and III.3, one notices a
region of numerical instability for R3,0.
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R4,0 R4,1

R4,2 R4,3

Figure III.5 – Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the fourth-order projection
scheme with nc = 30 for the R4,0 (top, left), R4,1 (top, right), R4,2 (bottom,
left), R4,3 (bottom, right) reconstruction operators. An additional behaviour is
observed w.r.t. fig. III.4 which is that the domain of instability contains a layer
for small value of ν (R4,0 and R4,2)
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R3,0 R3,1

R3,2

Figure III.6 – Stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third-order staggered scheme
for the wave equations with nc = 40 for the R3,0 (top, left), R3,1 (top, right) and
R3,2 (bottom) reconstruction operators.





Chapter IV

Discretization of boundary conditions
for compressible hydrodynamics

En partant de la méthode de Lax–Wendroff inverse développée au chapitre précédent pour
des systèmes linéaires, on propose dans ce chapitre une extension au système non linéaire de
l’hydrodynamique compressible, en traitant la difficulté majeure qui est que la jacobienne du
système Lagrangien possède une valeur propre nulle. Des schémas centrés sont considérés pour la
résolution de l’hydrodynamique afin de simplifier la présentation et la construction de la méthode.
Après une courte introduction concernant la particularité du système lagrangien 1D des équations
de l’hydrodynamique compressible, un problème à l’ordre 2 et à masse constante est isolé et
traité de deux façons différentes. Dans un premier temps, une hypothèse est faite sur la nature
des écoulements proches de la frontière afin de se rapprocher le plus possible du cas linéaire
de l’équation des ondes. Dans un second temps, aucune hypothèse n’est faite sur la nature des
écoulements et l’impact sur la stabilité linéaire est étudiée numériquement. Puis, la détermination
de la structure de l’opérateur de reconstruction aux bords est étendue au cas de problèmes à
masse variable et à l’ordre élevé. Les résultats principaux se situent dans les lemmes IV.4, IV.5
et IV.6 qui caractérisent les conditions d’existence et d’unicité de l’opérateur de reconstruction.
Une procédure de type MOOD est établie afin de garantir la robustesse de la reconstruction dans
le cas de chocs forts. Enfin, une extension 2D des opérateurs de reconstruction est proposée.
Des résultats numériques sont proposés tout au long du chapitre afin d’illustrer la précision, la
stabilité et la robustesse de la méthode décrite. Une partie des résultats obtenus a été soumise à
une revue scientifique [34]. Une dernière section est consacrée à l’adaptation de la procédure de
discrétisation des conditions aux bords pour les schémas décalés.
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New high-order accurate methods to take into account boundary conditions for hyperbolic equa-
tions, based on the so-called inverse Lax-Wendroff (ILW) procedure (see section I-3.2.3) have
been recently published. The study addressed in this work aims at extending these methods
to the Lagrange-remap discretization of the model 2D Euler system (IV.1) involving complex
(eventually moving) boundaries

∂tρ+ ∂x(ρu) + ∂y(ρv) =0,

∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) =0,

∂t(ρv) + ∂x(ρuv) + ∂y(ρv
2 + p) =0,

∂t(ρe) + ∂x(ρue+ pu) + ∂y(ρve+ pv)=0.

(IV.1)

Variables ρ, τ = 1
ρ , e, p, u, v respectively denote the density, specific volume, total energy,

pressure, x-velocity and y-velocity and eq. (IV.1) is closed with an arbitrary equation of state
p = EOS(τ = 1/ρ, e, u, v). Introducing U = (ρ, ρu, ρv, ρe)t, system (IV.1) rewrites as a general
hyperbolic system of conservation laws

∂tU + ∂xF (U) + ∂yG(U) = 0, t ≥ 0, (x, y) ∈ Ω. (IV.2)

Let Ω ⊂ R2 be the "fluid domain". Boundary conditions are added along a curve Γ(t), t ≥ 0.
In this paper we focus on imposed velocity boundary conditions for inviscid flows, so that only
the normal velocity on Γ(t) is prescribed

(u, v) · −→n (t, s) = g(t, s), t ≥ 0, (x, y) ∈ Γ(t), (IV.3)

where s is the curvilinear coordinate along the boundary Γ(t), and −→n (t, s) denotes the normal
to the curve at coordinate s and time t. The domain Ω is defined as the outside of the volume
delimited by Γ. In numerical algorithms, Γ(t) is approximated by Γ∆s as depicted in figure IV.1.
In this work, we will consider that Γ∆s is formed as a necklace of pearls Ps without any hypothesis
on how to link two consecutive pearls. Only full fluid cells are considered to be part of the "fluid"
computational domain denoted Ω+ ⊂ Ω. Cells in gray are considered as part of the "ghost"
computational domain denoted Ω−. In practice, one has Ω ⊂ Ω+ ∪ Ω− ⊂ R2. The algorithm
proposed in this work builds ghost values in Ω− such that the resulting scheme is both high-order
accurate and stable.

To build ghost values, which is ultimately the real problem, one has in hands the boundary
conditions and any kind of extrapolation technique to reconstruct U− = (Uj)j∈Ω− from U+ =

(Uj)j∈Ω+ . Therefore the problem discussed hereafter can be formulated as follows

Problem IV.1. Build an operator R

R :
(
R4
)card(Ω+) −→

(
R4
)card(Ω−)

U+ 7−→ U−,
(IV.4)

such that the coupling with the internal scheme (in Ω+) is stable and a high-order approximation
of (IV.2-IV.3).
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Figure IV.1 – Discretization Γ∆s of Γ(t) and decomposition of the whole domain between Ω−
(ghost-cells) and Ω+ (fluid cells). Ω is the domain outside the ellipse.

This work is part of a submitted publication [34].
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IV-1 ILW procedure for the 1D Lagrangian system

So far, the reconstruction method has been described in section III-1.3 for linear hyperbolic
system with A invertible. Our interest now lies in its derivation and application for non-linear
systems, and especially the 1D Euler system. We recall that ρ, τ , u, p and e respectively describe
the density, specific volume, velocity, pressure and total energy. The 1D Euler system writes

∂tρ+ ∂x (ρu) =0,

∂t (ρu) + ∂x
(
ρu2 + p

)
=0,

∂t (ρe) + ∂x (ρue+ pu)=0,

(IV.5)

closed with the equation of state (EOS) p = EOS(τ = 1/ρ, e, u). System (IV.5) is solved with a
Lagrange-remap scheme. Let ρ0 denote the initial mass density. Introducing the (x, t)→ (X, t)
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variable change such that ρdx = ρ0dX, (IV.5) rewrites
Dt (ρ0τ)− ∂Xu = 0,

Dt (ρ0u) + ∂Xp = 0,

Dt (ρ0e) + ∂Xpu = 0,

(IV.6)

in Lagrangian coordinates. The Lagrange-remap method consists in the following two steps for
integrating (IV.5). Let ρ0(x) = ρ(x, tn), ie the regular Eulerian and Lagrangian grids xi+ 1

2
and

Xi+ 1
2
coincide at time tn. First, system (IV.6) is time-integrated to give Lagrangian conservative

variables at time tn+1 on a non-uniform grid. These variables are then remapped on the initial
grid, leading to Eulerian conservative variables at time tn+1. For the Lagrange system (IV.6),
the flux is F (U) = (−u, p, pu)t and its jacobian A = ∇UF (U) writes

A =


0 − 1

ρ0
0

∂p
∂ρ0τ

∂p
∂ρ0u

∂p
∂ρ0e

u
∂p
∂ρ0τ

p
ρ0

+ u
∂p
∂ρ0u

u
∂p
∂ρ0e

 . (IV.7)

The matrix A admits three eigenvalues λ1 > 0, λ2 = 0, λ3 = −λ1 and is therefore non-invertible.
Due to the sign of the eigenvalues, only one boundary condition is to be set in x = xs and we
choose to prescribe the normal velocity as in eq. (IV.3). It writes

u(xs(t), t) = g(t) or, in Lagrangian coordinates u(Xs, t) = g(t). (IV.8)

We present in the following two methods that are based on two different point of views. The first
point of view is to include in the system of partial derivative equations another equation which is
the entropy equation. The second one is to focus on the set of data inside the computation. But
first, the emphasis is laid on a simplified second order problem at the boundary, which highlights
both point of views.

IV-1.1 An instructive second-order boundary treatment

To give insights into existence of a solution and explain how we proceed, we here focus on a
sample problem in which we assume a constant initial mass density ρ0 = 1, a perfect gas EOS
and a second-order treatment of the boundary condition. We drop the time variable to alleviate
notations. Dropping also the O((X −Xs)

2) term, the truncated Taylor expansions of (τ, u, e) at
second order writes 

τ(Xs) + ∂Xτ(Xs)(X −Xs) = τ(X),

u(Xs) + ∂Xu(Xs)(X −Xs) = u(X),

e(Xs) + ∂Xe(Xs)(X −Xs) = e(X).

(IV.9)

In order to apply the previously described method, variables inXs must be known. The boundary
conditions writes u(Xs) = g and the equation of state writes p = p(τ, e, u). Using the Euler
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equation in Lagrangian coordinates for the momentum, one gets that

ρ0Dtu = −∂xp,

which rewrites inserting the equation of state, and using ρ0 = 1 as

Dtu = −∂Xp(τ, e, u).

Using the chain rule, it leads to

Dtu = −∂Xτ∂τp(τ, e, u)− ∂Xe∂ep(τ, e, u)− ∂Xu∂up(τ, e, u),

thus inserting the boundary condition Dtu(Xs) = Dtg,

Dtg = −∂Xτ(Xs)∂τp(Xs)− ∂Xe(Xs)∂ep(Xs)− ∂Xu(Xs)∂up(Xs). (IV.10)

Then, we get the following system

τ(Xs) + ∂Xτ(Xs)(X −Xs) = τ(X),

u(Xs) + ∂Xu(Xs)(X −Xs) = u(X),

e(Xs) + ∂Xe(Xs)(X −Xs) = e(X),

u(Xs) = g,

∂Xτ(Xs)∂τp(Xs) + ∂Xe(Xs)∂ep(Xs) + ∂Xu(Xs)∂up(Xs) = −Dtg,

(IV.11)

whose unknowns are τ(Xs), ∂Xτ(Xs), u(Xs), ∂Xu(Xs), e(Xs), ∂Xe(Xs).

IV-1.1.1 First method: the spatially isentropic flow hypothesis

The system (IV.11) needs one more equation, to get 6 equations for 6 unknowns. The first method
is based on the choice of an hypothesis on the flow structure near the boundary. A spatially
isentropic flow near the boundary is assumed. We use the second law of thermodynamics

TdS = de− udu+ pdτ. (IV.12)

From (IV.12) we get using space derivation that

T∂XS = ∂Xe− u∂Xu+ p∂Xτ. (IV.13)

Assuming in (IV.13) that the flow is locally isentropic ∂XS = 0 and that p depends only on τ
and S it yields that

∂Xτ =

(
∂τ

∂p

)∣∣∣∣
S

∂Xp = −
(
∂τ

∂p

)∣∣∣∣
S

ρ0Dtu. (IV.14)



160 ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM

Then using (IV.14) in (IV.12), it writes

∂Xe = u∂Xu+ p

(
∂τ

∂p

)∣∣∣∣
S

ρ0Dtu. (IV.15)

The hypothesis of locally spatial isentropic flow is strong, it couples the space variation of total
energy with the variation of both velocity and specific volume. For the sake of simplicity, we
focus on perfect gas EOS and recall that ρ0 = 1. But the study may be performed for any

analytic EOS. Therefore we set p = (γ − 1)
e− u2

2
τ and it yields

∂Xτ= τ2

γ(γ − 1)(e− u2

2
)

Dtu,

∂Xe= u∂Xu− τ
γDtu.

(IV.16)

The non-linear system using (IV.16) and (IV.8) writes for a perfect gas
τ(Xs) +

τ(Xs)
2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(X −Xs)=τ(X),

g + ∂Xu(Xs)(X −Xs) =u(X),

e(Xs) + (g∂Xu(Xs)−
τ(Xs)
γ Dtg)(X −Xs) =e(X).

(IV.17)

Considering all values known at X = ∆X with U(X) = U+1 and that Xs = σ∆X, (IV.17) writes
τ(Xs) +

τ(Xs)
2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(1− σ)∆X=τ+1,

g + ∂Xu(Xs)(1− σ)∆X =u+1,

e(Xs) + (g∂Xu(Xs)−
τ(Xs)
γ Dtg)(1− σ)∆X =e+1.

(IV.18)

From second equation of (IV.18), one easily gets ∂Xu(Xs) = du = u+1−g
(1−σ)∆X . Then (IV.18) writes

τ(Xs) +
τ(Xs)

2

γ(γ − 1)(e(Xs)−
g2

2
)

Dtg(1− σ)∆X=τ+1,

e(Xs) + (gdu− τ(Xs)
γ Dtg)(1− σ)∆X =e+1.

(IV.19)

Using second equation of (IV.19) in the first one, and using y = (1 − σ)∆X to alleviate the
notations, it yields

(τ+1 − τ(Xs))

(
e+1 −

g2

2
− (gdu− τ(Xs)

γ
Dtg)y

)
=
τ(Xs)

2Dtg

γ(γ − 1)
y. (IV.20)
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One obtains the polynomial equation (for a non-perfect gas, the equation may not be polynomial,
but procedures still work)

f(τ(Xs)) = τ(Xs)
2(

Dtg
γ − 1y)− τ(Xs)

(
(
Dtgτ+1
γ + gdu)y − e+1 + g2

2

)
+τ+1

(
(gdu)y − e+1 + g2

2

)
= 0.

(IV.21)

where f is a second order polynomial.

— If Dtg = 0 then f becomes affine and the solution is τ(Xs) = τ+1.

— Assume ∆X = 0 then f becomes also an affine function and the solution is τ(Xs) = τ+1.

— Otherwise, f has two roots β1, β2 with β2 going to the infinity as ∆X goes to zero.

— Assume Dtg > 0, then the roots are always real.

— Assume Dtg < 0, then for ∆X small enough, the roots are real.

(a) Dtg > 0 (b) Dtg < 0

Figure IV.2 – Graph of x → f(τ+1x) using different value of ∆X for a positive Dtg on the left,
and a negative one on the right.

On figure IV.2, values of x → f(τ+1x) as a function of x is shown for differents values of ∆X.
For Dtg < 0, we can see on the graph the non-existence of solution to f(τ+1x) = 0 as some
curves do not cross the X-axis. But for smaller values of ∆X, real solution to f(τ+1x) = 0 exists.

Lemma IV.1 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such
that the EOS function F (τ, ε) =

(
∂τ
∂p

)∣∣∣
S
is a Lipschitz function of (τ, ε) and such that p(τ, ε)

is locally bounded, then for ∆X small enough, the solution of eq. (IV.17) is unique, and a fixed
point algorithm converges toward such a solution.

Proof. Consider that us satisfies us = g. Denoting that εs = es − 1
2u

2
s, ε+1 = e+1 − 1

2u
2
+1, one

writes the system as{
τs = τ+1 − F (τs, εs)(1− σ)∆X,

εs = ε+1 − 1
2(u2

s − u2
+1)− p(τs, εs)F (τs, εs)(1− σ)∆X,

(IV.22)
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which can be easily rewritten under the form(
τs

εs

)
= ψ(τs, εs). (IV.23)

If one shows in peculiar that the application ψ is a contraction mapping, thus using the Banach
fixed point theorem, the result is proved. Using the Lipschitz hypothesis concerning F and using

that p is locally bounded, and denoting α =

(
τ

ε

)
one gets immediately that

‖ψ(α1)−ψ(α2)‖ ≤ C(1− σ)∆X‖α1 −α2‖. (IV.24)

Then there exists β such that ∆X = β
C(1−σ) , and so

‖ψ(α1)−ψ(α2)‖ ≤ β‖α1 −α2‖, (IV.25)

and for ∆X small enough, β < 1, which yields that ψ is a contraction mapping. Hence, the
result. �

Remark IV.1. The strong hypothesis ∂XS = 0 is made for stabilization of the procedure. It
yields high-order accuracy for smooth and isentropic flows, and gives first-order accuracy for
non-isentropic flows.

Remark IV.2. One could change the procedure to compute first ∂XS doing an extrapolation of
the entropy near the boundary. Then it gives high-order accuracy for smooth isentropic flows,
but also for smooth non-isentropic flows.

IV-1.1.2 Second method: the larger stencil reconstruction

Here, the choice is made to use system (IV.11) written in the first cell of the computational
domain (X = X1) and to add a Taylor expansion of τ written in the second cell (X = X2).
Denoting ϕs = ϕ(Xs) for simplicity, this leads to

τs + (X1 −Xs)∂Xτs = τ1,

τs + (X2 −Xs)∂Xτs = τ2,

us + (X1 −Xs)∂Xus = u1,

es + (X1 −Xs)∂Xes = e1,

us = g,

∂Xτs∂τps + ∂Xes∂eps + ∂Xus∂ups = −Dtg,

(IV.26)
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which rewrites

τs =
τ1(X2 −Xs)− τ2(X1 −Xs)

X2 −X1
,

∂Xτs = τ2 − τ1
X2 −X1

,

∂Xus =
u1 − g
X1 −Xs

,

es + (X1 −Xs)∂Xes = e1,

us = g,

∂Xτs∂τps + ∂Xes∂eps + ∂Xus∂ups = −Dtg,

(IV.27)

Indeed, since p = (γ − 1)ρ(e − u2/2) for a perfect gas EOS, straightforward computations lead
to

∂Xe = u∂Xu+
τ

γ − 1
∂Xp+

e− u2

2
τ

∂Xτ. (IV.28)

Using the second equation of (IV.6) – which here writes Dtu + ∂Xp = 0 – together with the
boundary condition, this rewrites, in X = Xs

∂Xes = g∂Xus −
τs

γ − 1
Dtg +

es −
g2

2
τs

∂Xτs. (IV.29)

Combining this equation with (IV.27) we get a linear equation for es and the whole system is
solved if invertible. In peculiar, here, it yields τ1 6= 0. Once quantities are known in X = Xs,
averaged ghost-cell values are computed as described in the preceding section. Results can be
extended to ε-affine EOS as follows.

Lemma IV.2 (Linear system and ε-affine EOS). If the EOS is affinely dependent on ε, ie
p(ε, τ) = a(τ)ε + b(τ), then for X1 6= X2, a(τs) 6= (X1 − Xs)a

′(τs)∂Xτs and a(τs) 6= 0, there
exists a unique solution to (IV.26).

Proof. Assume the EOS takes the form p(ε, τ) = a(τ)ε+ b(τ). Then using that

∂Xe = u∂Xu+

(
∂p

∂ε |τ

)−1(
∂Xp−

(
∂p

∂τ |ε

)
∂Xτ

)
,

it yields at the boundary that for a(τs) 6= 0

∂Xes = g∂Xus −
1

a(τs)

(
Dtg +

(
a′(τs)(es −

g2

2
) + b′(τs)

)
∂Xτs

)
.

Inserting the previous equation in the Taylor expansion of es, one gets

es

(
1− (X1 −Xs)

a′(τs)

a(τs)
∂Xτs

)
= e1 − (X1 −Xs)

(
g∂Xus −

1

a(τs)

(
Dtg +

(
−a′(τs)

g2

2
+ b′(τs)

)
∂Xτs

))
.
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Then the linear equation is solvable if

a(τs) 6= (X1 −Xs)a
′(τs)∂Xτs.

�

In the literature, many ε-affine EOS are presented. A non-exhaustive list of such EOS is presented
hereafter.

— Perfect gas: p(ε, τ) = (γ − 1) ετ ,

— Stiffened gas: p(ε, τ) = (γ − 1) ετ − p
?,

— Mie-Grüneisen gas [85]: p(ε, τ) = p?(τ) + Γ(τ)
τ (ε− ε?(τ)).

For non ε-affine EOS, the following lemma gives result concerning existence and uniqueness of
the solution

Lemma IV.3. For any EOS such that the EOS function F1(ε) =
(
∂p
∂ε |τ

)−1
is a Lipschitz

function of ε and that the function F2(ε) =
(
∂p
∂τ |ε

)
is locally bounded, then for ∆X small enough,

the solution is unique, and a fixed point algorithm converges toward such a solution.

Proof. The proof is very similar and uses the same argument as the one for lemma IV.1. The
coefficient ∆X gives the contraction mapping using the Lipschitz hypothesis of F1, and the
locally boundedness of F2. �

The aim of the work is now to see if lemmas IV.1 to IV.3 still holds for arbitrary orders of
accuracy and non-constant masses.

IV-1.2 General procedure, and characterization of the solution for the system
at the boundary

The previous study has been made for the special case of a second order boundary treatment,
with constant mass. For spatially isentropic flow hypothesis, lemma IV.1 gives existence and
uniqueness of the solution under Lipschitz hypothesis concerning the EOS for ∆X small enough.
Similar results hold for the second approach – removing the ∂xS = 0 hypothesis and using an
enlarged stencil – and we morever get existence and uniqueness without any restriction for ε-affine
EOS. We now study the general case.

The procedure is now extended without any restriction on the initial density profile. In the
following we will set n = 1, meaning that only g and Dtg are known at the boundary (in
practice, more material derivatives of g could be taken into account but it would lead to heavier
algebra). To alleviate notations, we also introduce

ψi,k =
1

∆X

(Xi +
∆X

2
−Xs)

k+1 − (Xi −
∆X

2
−Xs)

k+1

(k + 1)!

 .
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Considering a mth-order scheme and dropping the O(∆Xm), spatial Taylor expansions of con-
servative variables write

ρ0i =
∑
k<m

∂kXρ0

∣∣∣
x=xs

ψi,k,

ρ0ui =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX u
∣∣∣
x=xs

ψi,k,

ρ0τ i =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX τ
∣∣∣
x=xs

ψi,k,

ρ0ei =
∑
k<m

∑
l≤k

(
k

l

)
∂lXρ0

∣∣∣
x=xs

∂k−lX e
∣∣∣
x=xs

ψi,k.

(IV.30)

IV-1.2.1 Well-posedness at the boundary for spatially isentropic flow hypothesis

Boundary condition and isentropic flow hypothesis provide the following informations :
u|x=xs

= g(t),

∂Xτ |x=xs
=−

(
∂τ
∂p

)∣∣∣
x=xs

ρ0|x=xs
Dtg,

∂Xe = u∂Xu− p∂Xτ,

(IV.31)

It yields three subsystems to be solved at each boundary in the following order:

— The first system is built using the first equation of (IV.30). It is a linear system whose size
is m×m. It allows then to build ghost cells values of ρ0.

— The second system is built using the second equation of (IV.30) and the boundary condition
on the velocity. It is also a linear system whose size is (m − 1) × (m − 1). It allows then
to build ghost cells values of ρ0u.

— The third and last system is built using the third and fourth equations of (IV.30) and system
(IV.31). The non-linearity of the system is explained by the non-linearity of (IV.31). The
size of the system is (2m− 2)× (2m− 2). It allows then to build ghost cells values of ρ0τ

and ρ0e.

Once the three systems are solved, ghost-cells values of all quantities are built by Taylor expan-
sions.

Lemma IV.4 (Solution to the non-linear system and Lipschitz EOS gas). For any EOS such
that the EOS function F (τ, ε) =

(
∂τ
∂p

)∣∣∣
S
is a Lipschitz function of (τ, ε) and such that p(τ, ε) is

locally bounded, then for ∆X small enough, the solution is unique, and a fixed point algorithm
converges toward such a solution.

Proof. The proof is identical to the one proposed for lemma IV.1. �

Remark IV.3. One could use repeated space derivation of the third equation of eq. (IV.31), to
substitute space derivatives in e into functions of (e, τ, ∂Xτ, ...), yielding a m×m system to be
solved. But for such a choice, theoretical results concerning existence and uniqueness of solution
are not accessible, and requires stronger regularity hypothesis on the EOS.
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IV-1.2.2 Well-posedness at the boundary for enlarged stencil

We have shown existence in lemmas IV.2 and IV.3 of a 2nd-order solution to the prescribed
velocity boundary problem for Lagrangian hydrodynamics when initial mass density is uniform
using the larger stencil based reconstruction. The boundary condition and the equation of state
provide the following informations u|X=Xs

=g(t),

∂Xe =u∂Xu−
(
∂p
∂ε |τ

)−1 (
(ρ0Dtg +

(
∂p
∂τ |ε

)
∂Xτ)

)
in X = Xs.

(IV.32)

Considering (IV.30-IV.32) we therefore have four subsystems to solve at each boundary. This is
done the following way:

— The first system is built using the first equation of (IV.30), considering m interior cells. It
leads to a m×m linear system. It allows then to build ghost-cell values of ρ0.

— The second system is built using the second equation of (IV.30), considering m−1 interior
cells and the boundary condition on the velocity. It leads to a (m − 1) × (m − 1) linear
system. It allows then to build ghost-cell values of ρ0u.

— The third system is built using the third equation of (IV.30), considering m interior cells.
It leads to a m×m linear system. It allows then to build ghost-cell values of ρ0τ .

— The fourth system is built using the fourth equation of (IV.30), considering m− 1 interior
cells and system (IV.32). This system is linear for perfect and stiffened gases EOS but may
be non-linear for some EOS, thus requiring fixed-point algorithms to be solved. The size
of the system is (m−1)× (m−1). Once the solution is known, it allows to build ghost-cell
values of ρ0e.

We extend lemma IV.2 to arbitrary orders and non-constant ρ0 as

Lemma IV.5 (Linear system and ε-affine EOS). If the EOS is affinely dependent on ε, ie
p(ε, τ) = a(τ)ε+ b(τ), then the system eqs. (IV.30) and (IV.32) is linear.

Proof. Assume the EOS writes p(ε, τ) = a(τ)ε+ b(τ), then using

∂Xe = u∂Xu+

(
∂p

∂ε |τ

)−1(
∂Xp−

(
∂p

∂τ |ε

)
∂Xτ

)
,

it yields at the boundary that

∂Xes = g∂Xus −
1

a(τs)

(
ρ0sDtg +

(
a′(τs)(es −

g2

2
) + b′(τs)

)
∂Xτs

)
.

Therefore ∂Xes is a linear function of es, and thus the system is linear. �

For non ε-affine EOS, the following lemma gives existence and uniqueness of the solution.

Lemma IV.6 (Uniqueness of solution for Lipschitz hypothesis on the EOS). For any EOS

such that the EOS function F1(ε) =
(
∂p
∂ε |τ

)−1
is a Lipschitz function of ε and that the function
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F2(ε) =
(
∂p
∂τ |ε

)
is locally bounded, then for ∆X small enough, the solution exists and is unique,

and a fixed point algorithm converges toward such a solution.

Proof. The proof is essentially the same as for the case with constant mass and second order of
accuracy. �

Remark IV.4. In practice, ghost-cells values are imposed at the beginning of each time-step or
sub-cycle eg. if the scheme is based on Runge–Kutta sequences.

IV-1.3 Stabilization procedure for shocks and very high-order reconstruction

Spurious oscillations or non-physical values may result with this high-order treatment in case of
discontinuous solutions near the boundary. A MOOD procedure has been developed to improve
robustness. Moreover for very high-order scheme, the linearized version is not stable using only
g and Dtg. Thus a least-square method also has been developed to enforce stability.

IV-1.3.1 MOOD procedure

A MOOD procedure [24] has been added to automatically decrease the order of this inverse Lax–
Wendroff method if some criteria are violated during the reconstruction of ghost cells values. It
is done in order to improve stability in case of strong shocks ingoing towards the boundary. The
flow chart of the procedure is depicted in fig. IV.3. The idea is to set as a criteria, the positivity
of the density and internal energy. While the reconstructed density or internal energy in Ω−

are non-positive, the order of reconstruction is decreased until first order accuracy or a positive
internal energy and density are reached.

IV-1.3.2 Least-square methods for very high-order methods

The problem, linear or not, to be solved at the boundary can be rewritten under the form

F(Θ) = X. (IV.33)

If the system is linear, there exists a matrix A such that F(Θ) = AΘ, where A is a square
matrix of size p× p and hence X ∈ Rp, Θ ∈ Rp. The idea of the least-square method is to add
values in the interior domain such that the system writes

ÂΘ = X̂ (IV.34)

where Â ∈ Rq×p and X̂ ∈ Rq. Instead of solving directly eq. (IV.34), we introduce the functional
J as

J = ‖ÂΘ− X̂‖, (IV.35)



168 ILW PROCEDURE FOR THE 1D LAGRANGIAN SYSTEM

U+ m (g,Dtg)

ILW(U+, g,Dtg,m)

reduce order by one

P(U−)

Ghost(U−)

U−

no

m← m− 1

yes

variables
U+ : values in the interior domain
U− : values in the ghost domain
m : order of the procedure
(g,Dtg): boundary conditions

procedures
ILW : computing ghost values
P : criteria on ghost values
Ghost : imposing ghost values

Figure IV.3 – Flow chart for the MOOD procedure applied at the boundary imposing specific
criteria on the computed ghost values

where the norm here is arbitrary fixed to the Euclidean norm. The idea is to minimize the
functional J in order to satisfy in a reduced sense the Taylor expansions. Meaning, in particular
that the solution Θ? is defined as

∀Θ ∈ Rp, ‖ÂΘ− X̂‖ ≥ ‖ÂΘ? − X̂‖ (IV.36)

Such a procedure, called the least-square method (see [3]), is used to stabilize the reconstruc-
tion operator, especially for very high-order reconstructions where the classical reconstruction
is proved to be linearly unstable. A classical Gauss–Newton algorithm is performed to solve
eq. (IV.36). If the system is non-linear, then the solution Θ? is defined as

∀Θ ∈ Rp, ‖F̂(Θ)− X̂‖ ≥ ‖F̂(Θ?)− X̂‖ (IV.37)

IV-1.4 1D validation and comparisons

We assess in this part both the accuracy and the robustness of our method for the 1D Euler
system. The study here is performed using the larger stencil based reconstruction applied to the
GoHy schemes developed in [50, 171]. The spatially isentropic flow hypothesis based reconstruc-
tion gives similar results concerning isentropic test-cases, but dramatically reduces to first order
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accuracy (using the MOOD procedure) for any non-spatially isentropic flow, as expected.

IV-1.4.1 Kidder isentropic compression test-case [95]

Kidder’s test problem represents the isentropic compression of an ideal volume of gas initially at
rest. For this test, the computational domain [0, 1] is discretized in Nx regular cells. Let (pi, ρi)

and (pe, ρe) denote initial pressures and mass densities at x = 0 and x = 1 respectively. Initial
profiles are defined by 

ρ0(x) =
(
x2ργ−1

e + (1− x2)ργ−1
i

) 1
γ−1

,

u0(x) = 0,

p0(x) = pe

(
ρ(x)
ρe

)γ
,

(IV.38)

with γ = 3 and here we will take pe = 100, pi = 1, ρe = 1 and ρi = ρe(pi/pe)
1
γ . Introducing the

sound speed c =
√
γp/ρ, we define the focalization time tc =

√
γ−1

2
1

c2e−c2i
which allows to write

the complete analytical solution. Defining h(t) =
√

1− (t/tc)2, it is given by

ρ(x, t) = ρ0

(
x

h(t)

)
· h(t)

2
γ−1 , u(x, t) = − xt

t2ch(t)2
, p(x, t) = pe

(
ρ(x, t)

ρe

)γ
.

For this test we solve Euler equations on Ω = [xl, xr] and exact velocities are prescribed at left
and right boundaries xl = 0.05 + 5

√
7 10−3 and xr = 0.95− 3.33

√
5 10−3. The scheme GoHy-1

stands for the classic acoustic solver.

Nx GoHy-1 GoHy-2 GoHy-3 GoHy-4 GoHy-5 GoHy-6
25 1.6e-3 · 2.3e-4 · 8.7e-6 · 9e-6 · 3.9e-6 · 1.4e-5 ·
50 7.1e-4 1.2 3.5e-5 2.7 4.4e-7 4.3 3.6e-8 8.0 6.1e-9 9.3 3.5e-7 5.3
100 3.7e-4 0.9 2.8e-5 0.3 2.71e-7 1.0 1.6e-9 4.4 1.2e-10 5.7 1.8e-12 17.6
200 1.8e-4 1.0 7.3e-6 2.0 2.7e-8 3.0 4.8e-11 5.0 1.8e-12 6.1 3.5e-14 5.7
400 9.0e-5 1.0 1.8e-6 2.0 3.4e-9 3.0 1.2e-12 5.2 9.4e-15 7.5 4.9e-15 2.9
800 4.5e-5 1.0 4.7e-7 2.0 4.3e-10 3.0 7.4e-14 4.0 2.7e-14 ? 3.3e-14 ?

1600 2.2e-5 1.0 1.2e-7 2.0 5.4e-11 3.0 8e-14 ? 3.6e-14 ? 3.7e-14 ?

3200 1.1e-5 1.0 2.9e-8 2.0 6.8e-12 3.0 8.3e-14 ? 3.9e-14 ? 3.5e-14 ?

Table IV.1 – l1-error and experimental order of convergence (EOC) for ILW-GoHy schemes at
t = 0.01 with a CFL of 0.9. EOC indexed with ? are reduced due to double precision.
For stability issues, least-squares method is used for 4th, 5th and 6th-order.

Results concerning the l1-errors and experimental orders of convergence are given in table IV.1
for GoHy schemes up to 6th-order. For each scheme the expected order of accuracy is reached.

IV-1.4.2 Harmonic piston test-case

The harmonic piston test-case is used to assess the ability of the reconstruction to recover correct
phase/amplitude profiles using a harmonic source. The initial data are those of a perfect gas
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(a) 2ndorder (b) 3rdorder

(c) 4th order (d) 6th order

Figure IV.4 – Velocity profiles with 10 cells per wavelength for the 2nd, 3rd, 4th and 6th-order
GoHy schemes for the harmonic piston problem at T = 9.

(γ = 1.4) at rest, and the velocity at left boundary, initially located at xl = −1, is imposed.


ρ0(x) = γ,

u0(x) = 0,

p0(x) = 1,

for x ≥ xl(0) = −1 and u(xl(t)) = a e
−8

t2 sin(2πt). (IV.39)

such that the sound speed in initially set to 1, and a = 2.10−2.

Velocity profiles are depicted on fig. IV.4. The red plain line represents the reference solution
computed with the first order scheme (acoustic solver) and 100000 cells. The black dotted line
represents results obtained with inner scheme and reconstruction fixed to the same order of
accuracy. The blue dotted line is for inner scheme at high-order accuracy but with only a second
order reconstruction procedure. As expected as the order of accuracy is increased, so is the
ability of the scheme concerning the recovering of both phase and amplitude of the signal. The
most significant feature lies in the difference between the blue and black dotted lines. When
the order of the reconstruction is fixed to 2ndorder, both phase and amplitude are not so well
recovered. On fig. IV.5, one can see that with a second order reconstruction, results for third,
fourth and sixth order inner schemes are equivalent. This is not the case with reconstruction
whose order match the one of the inner scheme.
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(a) High-order reconstruction (b) 2ndorder reconstruction

Figure IV.5 – Velocity profiles with 10 cells per wavelength for the 3rd, 4th and 6th-order GoHy
schemes for the harmonic piston problem at T = 9. On the left, results with
appropriate order of reconstruction is depicted, whereas on the right results are
shown with second order reconstruction.

IV-1.4.3 Sod piston test-case [147]

Next test-case is representative of a piston shocking a gas at rest. Initial data are provided by
the right-state of the Sod’s shock tube (perfect gas EOS with γ = 1.4) and at the left boundary,
initially located at xl = 0.5, the exact contact discontinuity velocity is prescribed:

ρ0(x) = 0.125,

u0(x) = 0,

p0(x) = 0.1,

for x ≥ xl(0) = 0.5 and u(xl(t)) = 0.927452624. (IV.40)

Density profiles are depicted on fig. IV.6. The red plain line represents the analytical solution.
The blue dotted line represents the Sod’s shock tube solution computed as a Riemann problem
using both left and right initial states with the GoHy solver and the black dotted line represents
the solution obtained with the present ILW method. Shock positions and density levels are in
good agreement with the analytical solution for both methods. The contact continuity is even
slightly better recovered with the ILW procedure than for the complete Riemann problem. Note
that the MOOD procedure presented in section IV-1.3.1 is not used here.

IV-2 Extension of the ILW procedure to the 2D Euler system

The procedure designed for the 1D Euler system is now used with a high-order accurate di-
mensional splitting method on the 2D Euler system (IV.1-IV.3), as it is described in [50, 171,
35].
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(a) 2ndorder (b) 3rdorder

(c) 4th order (d) 6th order

Figure IV.6 – Density profiles with initially 100 cells for the 2nd, 3rd, 4th and 6th-order GoHy
schemes for the Sod piston problem.
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IV-2.1 Formulation of the ILW procedure using directionnal splitting

Concerning the Lagrangian step, two subsystems will therefore be alternatively considered, de-
pending on the sweep direction:

Dx
t (ρ0τ)− ∂Xu = 0,

Dx
t (ρ0u) + ∂Xp = 0,

Dx
t (ρ0v) = 0,

Dx
t (ρ0e) + ∂X (pu) = 0,


Dy
t (ρ0τ)− ∂Y v = 0,

Dy
t (ρ0u) = 0,

Dy
t (ρ0v) + ∂Y p = 0,

Dy
t (ρ0e) + ∂Y (pv) = 0,

(IV.41)

where Dx
t = ∂t+u∂x and Dy

t = ∂t+v∂y denote the Lagrangian derivatives in x− and y−directions
respectively. Note that Lagrangian subsystems are simpler than Eulerian ones since convective
terms, which are missing here, will be treated during the projection step. When replacing space
derivatives by temporal ones this will lead to a simpler algebra in the sequel and a very close
approach to the one proposed in section IV-1 for the 1D case.

Denoting u = (u, v)t, we recall that the considered boundary condition on Γ is given by u ·
n(t, s) = g(t, s), where s is the curvilinear coordinate along the boundary Γ(t), and n(t, s) the
normal at coordinate s and time t. The boundary is described by a set of points (or pearls) Ps
distributed along Γ (see Figure IV.1). On each of these points, a problem similar to the one
dealt with in the 1D case, is solved at high-order accuracy. From these data, values are then
set in ghost-cells. To get close to the 1D case, velocity components are computed in a local
basis (ts,ns) where ts and ns are respectively tangent and normal vectors to Γ in Ps. Velocity
components in this basis are denoted{

û = u · ns = u · n1 + v · n2,

v̂ = u · ts = u · t1 + v · t2.
(IV.42)

Figure IV.7 – Zoom on a point Ps on the discretized boundary with local coordinate system.
The colored zone corresponds to a six points stencil for 3rd order reconstruction.
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IV-2.1.1 Dimensional splitting technique

The DSM consists in alternatively applying the previous method in the x- and y-direction with
appropriate weighted-time increments ωk∆t. To reach high-order accuracy in time, splitting
sequences beyond the well-known 2nd-order Strang DSM must be used. Such weights, up to
8th-order, can be found in [50, 171, 35] and are reported in appendix, section A.2. During these
sequences, prescribing time-dependent boundary conditions at intermediary time-steps can reveal
quite tricky. The naive way yields only at most second order of accuracy. This is somehow similar
to results found by Carpenter in [20]. To achieve this, the boundary condition is also rewritten
as a 2D evolution system that is also split as explained now. Let us denote n = (n1, n2)t,
i1 = (1, 0)t, and i2 = (0, 1)t. We introduce g(t, s) = g(t, s) n(t, s) and in the sequel we also
assume that Dtn = 0 and that g(t, s) is known analytically. Letting g1 = Dtg we therefore can
write

Dtg = (g1n1) i1 + (g1n2) i2. (IV.43)

As for Euler equations, system (IV.43) is then split into the following two equations that will be
alternatively solved according to the splitting sequence used for the inner scheme

Dtg = (g1n1) i1, and Dtg = (g1n2) i2. (IV.44)

Assume that time weights ω2k−1 and ω2k are respectively used for the x- and y-sweeps respectively
and let us denote tn+ωk the fictitious time for the kth sweep (with ω0 = 0). We therefore get for
any l ≥ 1 

gn+ω2l−1 = gn+ω2l−2 +

∫ tn+
∑l
k=1 ω2k−1∆t

tn+
∑l−1
k=1 ω2k−1∆t

(g1n1) i1dθ,

gn+ω2l = gn+ω2l−1 +

∫ tn+
∑l
k=1 ω2k∆t

tn+
∑l−1
k=1 ω2k∆t

(g1n2) i2dθ,

which rewrites by induction, for any l ≥ 1
gn+ω2l−1 = gn +

∫ tn+
∑l
k=1 ω2k−1∆t

tn
(g1n1) i1dθ +

∫ tn+
∑l−1
k=1 ω2k∆t

tn
(g1n2) i2dθ,

gn+ω2l = gn +

∫ tn+
∑l
k=1 ω2k−1∆t

tn
(g1n1) i1dθ +

∫ tn+
∑l
k=1 ω2k∆t

tn
(g1n2) i2dθ.

Since g1 = Dtg and Dtn = 0, exact integration therefore yields, for any l ≥ 1
g(tn+ω2l−1) =

(
g(tn + ∆t

l∑
k=1

ω2k−1) n1

)
i1 +

(
g(tn + ∆t

l−1∑
k=1

ω2k) n2

)
i2.

g(tn+ω2l) =

(
g(tn + ∆t

l∑
k=1

ω2k−1) n1

)
i1 +

(
g(tn + ∆t

l∑
k=1

ω2k) n2

)
i2,
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that is to say, performing the scalar product with n,
g(tn+ω2l−1) = g

(
tn + ∆t

l∑
k=1

ω2k−1

)
n2

1 + g

(
tn + ∆t

l−1∑
k=1

ω2k

)
n2

2,

g(tn+ω2l) = g

(
tn + ∆t

l∑
k=1

ω2k−1

)
n2

1 + g

(
tn + ∆t

l∑
k=1

ω2k

)
n2

2.

(IV.45)

These relations are used at the beginning of each dimensional sweep to prescribe boundary
conditions.

IV-2.1.2 Methodology for a given sweep

We now consider a sweep in the x−direction so that only the first subsystem of (IV.41) is of
interest – methods for other sweeps are strictly identical modulo slight modifications mentioned
in section IV-2.1.1. In the following, we only use g and Dx

t g for building the non-linear problem.
As in the 1D case, more material derivatives could be used but it would lead to a heavier algebra.
To alleviate notations in 2D Taylor expansions we introduce

ψi,j,k,l =
1

k!

(xi +
∆x

2
− xs)l+1 − (xi −

∆x

2
− xs)l+1

(l + 1)∆x


(yj +

∆y

2
− ys)k−l+1 − (yj −

∆y

2
− ys)k−l+1

(k − l + 1)∆y

 .

Let us consider a mth-order scheme. Extending computations done in section IV-1 to the 2D case
and performing the local change for velocity components, spatial Taylor expansions lead to

ρ0i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y ρ0

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0ûi,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0û)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0v̂i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0v̂)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0τ i,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0τ)

∣∣∣
x=xs,y=ys

ψi,j,k,l,

ρ0ei,j =
∑
k<m

∑
l≤k

(
k

l

)
∂lX∂

k−l
Y (ρ0e)

∣∣∣
x=xs,y=ys

ψi,j,k,l.

(IV.46)

The boundary condition and the equation of state provide the following informations in Ps û|P=Ps
= g(t)

∂Xe · n1|P=Ps
= (û∂X û+ v̂∂X v̂) · n1 −

(
∂p
∂ε |τ

)−1 (
ρ0Dtg +

(
∂p
∂τ |ε

)
∂Xτ · n1

)
,

(IV.47)

Solving (IV.46) amounts to solve five subsystems:

— The first system is built using the first equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0.
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— The second system is built using the second equation of (IV.46), considering m(m+1)
2 − 1

interior cells together with the boundary condition on the normal velocity. It leads to a(
m(m+1)

2 − 1)
)2

linear system and allows to build ghost-cell values of ρ0u.

— The third system is built using the third equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0v.

— The fourth system is built using the fourth equation of (IV.46), considering m(m+1)
2 interior

cells. It leads to a
(
m(m+1)

2

)2
linear system and allows to build ghost-cell values of ρ0τ .

— The fifth system is built using the last equation of (IV.46) considering m(m+1)
2 − 1 interior

cells together with (IV.47). In the special case where n1 = 0, no information is provided

by the boundary conditions, and thus it leads to a
(
m(m+1)

2

)2
linear system. If n1 6= 0,

this system is linear for ε-affine EOS but may be non-linear for some EOS, thus requiring

fixed-point algorithms to be solved and the size of the system is
(
m(m+1)

2 − 1)
)2

. It allows
to build ghost-cell values of ρ0e.

Lemma IV.7 (Linear system for ε-affine EOS). For any ε-affine EOS, the system to inverse at
the boundary is linear.

Proof. The proof is similar to the one in 1D. �

The following flowchart summarizes the algorithm we propose in order to compute ghost-cell
values for a given dimensional sweep in the 2D case.

— For each point/pearl Ps:

1. Do the local change of velocity components in the basis (ns, ts),

2. Build the stencil of interior points (see Figure IV.7),

3. Build and solve the five subsystems described above.

— Then, for each ghost-cell:

1. Find the nearest pearl Ps0 ,

2. Build ghost-cell values using Taylor expansions in the vicinity of Ps0 ,

3. Return to physical coordinates.

Remark IV.5. Due to spurious oscillations and linear instabilities of the 2D extrapolations (phe-
nomena already noticed in [156]), rather than solving exactly all subsystems, it proves useful to
use least square methods for m ≥ 2, adding more points inside the stencil. In pratice the stencil
is depicted in figure IV.8 and set as

SβPs = {P ∈ Ωf , ‖P − Ps‖2 < β, 〈P − Ps,n〉 ≥
1√
2

‖P − Ps‖2

β
}

Commonly, β is set to 0.9(2m− 1)
√

∆X∆Y .
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Figure IV.8 – Zoom on a point Ps on the discretized boundary with local coordinate system.
The color zone corresponds to a least-squares stencil for 3rd order reconstruction.

IV-2.2 2D numerical validation

We assess in this part both the accuracy and the robustness of the method for the 2D Euler
system. The study here is performed using the larger stencil based reconstruction applied to the
GoHy schemes developed in [50, 171]. Similar results are obtained for the proposed staggered
schemes introduced in [35] and detailed in chapter II, as well for smooth flows as for shock
problems.

The discretization of the boundary Γ is always set such that the distance between two consecutive
points does not exceed CΓ

√
∆x∆y. In the following we set CΓ = 1 which means that we

have approximatively one pearl per cell. In practice, a large value of CΓ leads to instabilities
(boundaries are under-resolved). A smaller value of CΓ is possible, increases accuracy but leads
to heavier computations. The choice of this test-suite is made in order to ensure a large variety
of test-cases, including continuous and isentropic flows, acoustic propagation around an obstacle,
but also a large variety of shock impacting on infinite motionless obstacles with shapes that may
or may not be Lipschitz continuous.

IV-2.2.1 2D isentropic vortex test-case [175]

We assess high-order accuracy on the 2D vortex test (see [175]) whose initial condition is reminded
hereafter (with r2 = x2 + y2)

ρ0(x, y) =

(
1− (γ − 1)β2

8γπ2
e1−r2

) 1
γ−1

,

u0(x, y) =
β

2π
e

1−r2
2 · (−y, x)t,

p0(x, y) = ρ0(x, y)γ ,

(IV.48)

with γ = 1.4 and β = 5. Computations are performed on a disk of radius R = 3.5, centered at
(0, 0) till t = 1 with a CFL number of 0.9 on the computational domain Ω = [−4, 4]2. Boundary
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conditions imposed at R = 3.5 are u · n = u0 · n, with u0 defined in eq. (IV.48). Table IV.2
shows that the expected order of accuracy is reached. In the third column we also have reported
numerical costs due to the ILW procedure, computed as the ratio between CPU time for ILW
procedure and total CPU time as was done in [156]. These should of course be analysed cautiously
since they strongly depend on the inner scheme and optimization of the boundary treatment (as
well as the number of considered pearls on Γ). However, these figures show that the cost slope for
the 1st-order ILW method is a bit less than one with respect to the number of cells per dimension.
Second order ILW procedure cost slope is around 0.75 and for third order ILW procedure, it is
about 0.66. One may guess the cost to follow the rule ∼ m+1

2m .

Nx GoHy-1 GoHy-2 GoHy-3
50 4.96e-1 · 35% 5.33e-2 · 47% 9.93e-2 · 49%
100 2.52e-1 0.97 23% 1.40e-2 1.93 42% 2.04e-2 2.28 45%
200 1.20e-1 1.07 12% 4.50e-3 1.63 27% 3.46e-3 2.56 35%
400 5.66e-2 1.08 7% 1.28e-3 1.81 16% 6.43e-4 2.43 22%
800 2.74e-2 1.05 3.7% 3.23e-4 1.99 9.7% 9.31e-5 2.79 14%
1600 1.35e-2 1.03 1.9% 7.66e-5 2.08 6.2% 1.20e-5 2.95 9%
3200 6.70e-3 1.01 1.0% 1.90e-5 2.01 3.7% 1.51e-6 2.99 5%

Table IV.2 – l1-error on density in both time and space, experimental order of convergence and
cost in % of the ILW procedure for GoHy schemes on the 2D isentropic vortex at
t = 1.0.

IV-2.2.2 Acoustic diffraction of a plane wave around a cylinder [15]

Next test-case is a challenging problem coming from the electromagnetic and aeroacoustic com-
munities. Here we wish to assess the interest of increasing the order of accuracy of boundaries
treatments. A plane acoustic wave is propagating in a barotropic gas and is scattered by a rigid
and motionless cylinder. The main interest of this test lies in the fact that an analytical solution
is available, in particular the pressure field on the cylinder.

The computational domain is [−5, 5]× [−5, 5] and the rigid wall boundary condition u ·n = 0 is
applied on the rigid body which is a cylinder of radius a = 0.5 whose center is located at (0, 0).
Let ω be the frequency of the acoustic signal and k = ω

c the associated wave number, where c is
the sound speed. The velocity potential of the incident wave is given by

φ0(t, x, y) = − ε
k

cos(k(x− x0)− ωt)χ{x−ct<x0}, (IV.49)

from which we deduce the velocity, the pressure and the density according to

u = <(∇φ), p = p0 −<(∂tφ), ρ = γp
1
γ with γ = 1.4. (IV.50)

For this test we took ε = 10−8 small enough so that Euler equations remain in the linear regime
and approximate wave equations, p0 = 1

γ , x0 = 4.5, and ω = 2πf , f ∈ 0.1N (ie there exists
b ∈ N such that f = 0.1b). Introducing x = r cos(θ) and y = r sin(θ), the harmonic solution for
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the velocity potential is given by (see [15])

φ(t, x, y) = − ε
k

e−i(kx0+ωt)
∞∑
n=0

eni
n

[
Jn(kr)− J ′n(ka)

H ′n(ka)
Hn(kr)

]
cos(nθ), (IV.51)

where Jn is the first Bessel function, Hn the first Hankel function and e0 = 1, en = 2, n = 1, ..,∞.
From this potential, one gets harmonic velocity u and pressure p thanks to (IV.50).

To ensure a harmonic regime in a neighbourhood of the cylinder without generating interferences
with the computational domain boundaries, the final time is t = 8.4. We give on figure IV.9
pressure variations |p − p0| around the cylinder for 1st, 2nd and 3rd-order ILW methods and
schemes for two space discretizations (∆x = ∆y = 1

20 and 1
40) and three signal frequencies

(f = 0.5, 1 and 2). As expected, it shows that high-order accurate methods lead to better
results. But since interior schemes are also of different orders, it is hard to see benefits given by
ILW methods of increasing accuracy here. We therefore give on figure IV.10 pressure variations
|p − p0| around the cylinder for 1st, 2nd and 3rd-order ILW methods, but with the same 3rd-
order GoHy-3 interior scheme in all cases. Results indeed show the benefits of formally 3rd-order
accurate ILW reconstruction procedures.

IV-2.2.3 Reflected shock wave

This test-case is a theoretical one. It consists of a shock wave impacting an oblique wall. The
computation domain is Ω = [−0.5 : 0.5]2. An oblique wall is parametrized by the starting point
(−0.2, 0) forming an angle θ with the horizontal plane, with θ = 11.99◦. The shock wave is
reflected with an angle β. Denote M the Mach number, M = u

c , then β satisfies the following
identity

tan(θ) = 2 cot(β)
M2 sin2(β)− 1

M2(γ + cos(2β)) + 2
. (IV.52)

Initial data are 
ρ = 1,

u = 2.9χx<−0.3,

p = 1
γ ,

γ = 7
5 ,

(IV.53)

which gives a static speed sound c = 1, and so a Mach number M = u
c = 2.9.

Using eq. (IV.52), one finds that for such parameters, the angle formed by the oblique shock β
is 30◦. In fig. IV.11, the density profile is depicted at time t = 1, and the expected angle of
the reflected shock is depicted by the white line. The expected angle is reached by the first,
second and third order proposed effective schemes. Moreover, the fluid perfectly slips along the
boundary without any boundary effects.
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IV-2.2.4 Double Mach Reflection [172]

The ILW procedure is again applied on solid wall boundaries that may be curved or unaligned
with the grid. For inviscid flows this leads to the boundary condition u · n = 0. The first shock
example considered here is the double Mach reflection problem [172, 156]. A solid wall is set
at (0, 0) forming a 30◦ angle with the x-axis and a horizontally moving Mach 10 shock, initially
located at x = 0, is propagating in a perfect gas (γ = 1.4) at rest. Ahead of the shock, the gas
has a density of 1.4 and a pressure of 1. The computational domain [−1, 3]× [0, 2] is discretized
with a constant space step ∆x = ∆y = 1

200 . The choice of such a coarse mesh is done to easily
point out differences between the different orders of accuracy.

Results, depicted in Figure IV.12, are very close to those found in the literature [172, 156]
and the jet propagates along the wall without any numerical friction. For this test we have
used the MOOD procedure (see section IV-1.3.1) to decrease the order of accuracy wherever
we encountered stability issues. In practice this only happens near the wall in the immediate
vicinity of the Mach stem propagating perpendicularly to it.

IV-2.2.5 Mach shock on a cylinder – Whitham test-case [23]

We now consider the Whitham test-case which consists in a planar shock propagating in a perfect
gas (γ = 1.4) which interacts with a rigid and motionless circular cylinder (see [23] and included
references). At t = 0, a 2.81 Mach shock coming from the left is located at x = 0. Ahead
of the shock, the gas has a density of 1 and a pressure of 5 104. The cylinder’s center, whose
radius is 5.10−3, is located at (6.10−3, 0). The computational domain [−10.10−3, 70.10−3] ×
[−40.10−3, 40.10−3] is discretized with a constant space step ∆x = ∆y = 4.10−4.

Here again a MOOD method is used on the boundary to improve robustness. Combined with
high-order accuracy this leads to a better restitution of the flow structure behind the cylinder as
it can be seen in Figure IV.13 where 1st, 2nd and 3rd-order results at t = 3.10−5 and = 6.10−5 are
reported. The bow shock is well captured and less diffused as the order of accuracy is increased.
The MOOD procedure applies essentially on the shock front.

IV-2.2.6 Mach shock on a prism – Schardin test-case [23]

We now consider the Schardin test-case which consists in a planar shock propagating in a perfect
gas (γ = 1.4) which interacts with a rigid and motionless prism (see [23] and included references).
At t = 0, a 1.3 Mach shock coming from the left is located at x = 0. Ahead of the shock, the gas
has a density of 1 and a pressure of 5.104. The prism’s tip is located at (1.5.10−2, 0) and the edge
length is set to 20.10−3. The computational domain [−10.10−3, 70.10−3] × [−40.10−3, 40.10−3]

is discretized with a constant space step ∆x = ∆y = 4.10−4.

A MOOD method is used on the boundary to improve robustness. Combined with high-order
accuracy this leads to a better restitution of the flow structure behind the prism as it can be seen
in Figure IV.13 where 1st, 2nd and 3rd-order results at t = 1.5.10−4 are reported. The bow shock
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is well captured and less diffused as the order of accuracy is increased. The MOOD procedure
applies essentially on the shock front. The expected structure of the flow is recovered, especially
the presence of vortices behind the prism.

IV-2.2.7 Mach shock on a NACA0018 profile [88]

We now consider a classical aerodynamics test-case which consists in a planar shock propagating
in a perfect gas (γ = 1.4) which interacts with a rigid and motionless NACA0018 airfoil with a
30◦ angle of attack (see [88] and included references). At t = 0, a 1.5 Mach shock coming from
the left is located at x = 0.55. Ahead of the shock, the gas has a density of 1.4 and a pressure
of 1. The airfoil’s head is located at (0.6, 1) and the chord length is set to 1. The computational
domain [−0.2, 1.8]× [0, 2] is discretized with 100, 200 and 400 cells in each direction.

Figure IV.15 shows the obtained results for the first, second and third order schemes on a
400 × 400 grid at time t = 0.64. These results are in good agreement with the results provided
in [88] concerning the shock structure. As the order is increased, the shock front is sharper
but also more oscillatory, and flow structures near both tip and head of the airfoil are better
recovered.

Imposing free stream velocity u∞ and density ρ∞ with the post-shock values, both lift Cl and
drag Cd coefficients are computed using

(
Cd

Cl

)
= − 2

ρ∞u2
∞L

∫
Γ
(p− p0)ndS. (IV.54)

where L is the chord of the airfoil, set here to 1. The computed lift and drag coefficients are
depicted in fig. IV.16 as a function of time for different grid sizes. For both schemes, the conver-
gence error in the drag coefficient appears to be linear while more than quadratic convergence
seems to be reached for the lift coefficient.

How to adapt the method to the staggered schemes

To tackle the procedure for the discretization of boundary conditions in the case of staggered
schemes, two key ingredients are required. The first one is that the Taylor expansion of the total
energy variable is replaced by the Taylor expansion of the internal energy. The second one is that
Taylor expansions are performed on variables which are located on two (resp. three) different
grids in 1D (resp. 2D). Lemma III.2 details how to build boundary conditions at intermediate
Runge–Kutta time-steps.

Considering again the acoustic diffraction test-case presented in section IV-2.2.2, comparisons
are drawn between the results obtained with the GoHy-3 scheme and the third order staggered
scheme (STAG-3). Results are displayed in fig. IV.17. Pressure variations are very close for all
frequencies f for both schemes.
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Figure IV.9 – Pressure variations |p−p0| around the cylinder as a function of θ for f = 0.5 (top),
f = 1.0 (middle), f = 2.0 (bottom) for 1st, 2nd and 3rd-order accurate schemes
with ∆x = ∆y = 1

20 (left) and ∆x = ∆y = 1
40 (right).



DISCRETIZATION OF BOUNDARY CONDITIONS FOR
COMPRESSIBLE HYDRODYNAMICS 183

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/3

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/3

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/3

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/3

 0  1e-08  2e-08  3e-08

Harmonic solution
GoHy3/1
GoHy3/3

 0  5e-09  1e-08  1.5e-08  2e-08  2.5e-08

Harmonic solution
GoHy3/1
GoHy3/3

Figure IV.10 – Pressure variations |p − p0| around the cylinder as a function of θ for f = 0.5
(top), f = 1.0 (middle), f = 2.0 (bottom) for the GoHy-3 interior scheme and
1st, 2nd and 3rd-order accurate ILW methods with ∆x = ∆y = 1

20 (left) and
∆x = ∆y = 1

40 (right).
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(a) 1st order (b) 2nd order (c) 3rd order

Figure IV.11 – Density colors of a reflected shock wave on a wedge at CFL=0.5 with 100 cells in
each direction. The expected angle of the oblique shock, depicted by the white
line, is recovered by the schemes.
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(a) Whole domain (b) Zoom near the double Mach stem

Figure IV.12 – Density contours of double Mach reflection for 1st (top), 2nd (middle) and 3rd-
order (bottom) ILW-GoHy schemes with ∆x = ∆y = 1

200 ; 30 contours from 1.731
to 20.92 as in [156].
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(a) T = 30 µs (b) T = 60 µs

Figure IV.13 – Density contours of Mach 2.81 flow past a cylinder for 1st (top), 2nd (middle) and
3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at t = 3.10−5

(left) and = 6.10−5 (right); 30 contours from 0.3 to 8.
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(a) 1st order (b) 2nd order

(c) 3rd order

Figure IV.14 – Density contours of Mach 1.3 flow past a prism for 1st (top, left), 2nd (top,
right) and 3rd-order (bottom) ILW-GoHy schemes with ∆x = ∆y = 4.10−4 at
t = 1.5.10−4, CFL=0.5; 30 contours from 0.5 to 1.8
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(a) 1st order (b) 2nd order

(c) 3rd order

Figure IV.15 – Pressure contours of a Mach shock on a NACA0018 for 1st (top, left), 2nd (top,
right) and 3rd-order (bottom) ILW-GoHy schemes with 400 cells in each direction,
CFL=0.5; 35 contours from 0.0 to 3.5
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Figure IV.16 – Lift and drag coefficients as a function of time for the Mach shock on the
NACA0018 profile considering 100, 200 and 400 cells in each direction for 1st

(top, left), 2nd (top, right) and 3rd-order (bottom) ILW-GoHy schemes.
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Figure IV.17 – Pressure variations |p − p0| around the cylinder as a function of θ for f = 0.5
(top), f = 1.0 (middle), f = 2.0 (bottom) for the third order cell-centered scheme
(GoHy-3, blue) and for the third order staggered scheme (STAG-3, black) with
∆x = ∆y = 1

20 (left) and ∆x = ∆y = 1
40 (right).



Chapter V

Extension to fluid-rigid body
interaction

Partant de la procédure de Lax–Wendroff inverse établie pour les équations d’Euler présentée
dans le chapitre IV, un algorithme de couplage fluide-corps rigide est déduit. Après une courte
introduction concernant les caractéristiques physiques et mathématiques du mouvement de corps
rigide, un schéma semi-discret permettant de calculer à l’ordre élevé en espace les forces et
moments exercés sur la frontière du corps rigide est proposé. Deux procédures d’intégrations en
temps sont ensuite développées. La première est basée, tout comme les schémas hydrodynamiques
présentés dans le chapitre II, sur une intégration en temps de type Runge–Kutta. La seconde est
basée sur une approche de type Cauchy–Kowalevski comme dans [50, 171]. Ce choix d’intégration
en temps permet de faire correspondre sur la même échelle en temps les deux solveurs. Enfin
l’extension 2D de ces schémas est ensuite faite via splitting directionnel comme pour les schémas
hydrodynamiques utilisés. La procédure de Lax–Wendroff inverse donne une définition naturelle
des forces et moments de pression exercés sur la frontière du corps rigide. Ainsi le couplage est
immédiat et d’autant plus facile à implémenter. Des résultats numériques sont proposés à la fin
du chapitre afin d’illustrer la stabilité et la robustesse du couplage utilisé.
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In this chapter, we propose a simple and straightforward way for coupling rigid body and com-
pressible fluid dynamics. Considering rigid body dynamics, a semi-discrete scheme is first pro-
posed for 1D motion, then for 2D motion using directional splitting method. The computations of
forces and torques is done considering a regular discretization of the boundary. Such a discretiza-
tion enables for a high-order accurate way of computing the forces and torques integrals along
the boundary. Two fully discrete version are then proposed. Mostly those versions strongly
rely on the hydrodynamics schemes used. Indeed, using a one-step cell-centered schemes [50,
171], a one-step scheme is proposed for the integration of forces and torques exerted on the rigid
body boundary. As a contrary, using the staggered schemes introduced in [35] and extensively
detailed in chapter II. The coupling between fluid and solid is then straightforward using the
ILW procedure developed in chapter IV.

The outline of the chapter is the following. First, an overview of rigid body motion and dynamics
is proposed in section V-1. Then, starting from a semi-discrete high-order accurate in space
scheme, two time integration are proposed in section V-2. The first one is based on Runge–
Kutta sequences, whereas the second is based on Cauchy–Kovalevskaya time-integration. The
extension to 2D relies on directional splitting method. The choice has been made for both
schemes to match the time-integration used for the hydrodynamics ones. This is done to avoid
any loss of accuracy due to the time-coupling. Last the coupling between the fluid and rigid body
solvers is done using the Inverse Lax–Wendroff procedure designed in chapter II. The procedure
gives naturally definition of the pressure forces and torques exerted on the rigid body boundary.
Thus, the coupling method is straightforward and quite easy to implement. Numerical examples
are proposed then in 1D and 2D to assert the viability of the coupling.
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V-1 Rigid body motion and dynamics

We consider that the motion of the boundary is no longer prescribed analytically. Instead we
consider the boundary Γ to be the boundary of a rigid body whose mass is finite. Its motion is
then induced by the forces exerted by the fluid on the boundary. One may refer to [89, 54] for
further informations concerning rigid body motion and dynamics.
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Space dimension Number of variables
d = 1 1
d = 2 3
d = 3 6

Table V.1 – Number of variables for rigid body motion as a function of given space dimensions

V-1.1 Description of a rigid body

In physics, a rigid body is considered as a body where no deformation can be induced in it.
Consider two points (or particles) belonging to the rigid body, denoted by the greek subscript α
and β. Then, for any α and β, rigid body constraint writes

‖xα − xβ‖ = constant, (V.1)

meaning that the distance separating two abstract points α and β in a rigid body is always
constant.

V-1.1.1 Invariant of rigid body motion

Using only eq. (V.1), one can prove that for any space dimension d, the rigid body motion can
be reduced to solving d+ (1

2d(d− 1)) equations [14]. It implies in particular that the rigid body
motion is described by a set of d+ (1

2d(d− 1)) variables.

In particular rigid body motion can be described as

Dtxα = Dtx0 +Q(t)xα, (V.2)

where x0 is in the rigid body, Q is antisymmetric, meaning thatQ(t) = −Q(t)t. In the following,
only one and two space dimensions problems are considered. For one space dimension, eq. (V.2)
is reduced to

Dtxα = Dtx0, (V.3)

since the only antisymmetric matrix in one space dimension is 0. Physically, it implies that the
only possible motion for a rigid body in 1D is a translation. However, in two space dimensions,
eq. (V.2) leads to

Dt

(
xα

yα

)
= Dt

(
x0

y0

)
+

(
0 −q
q 0

)(
xα

yα

)
, (V.4)

which leads to a translation and a rotation. More often than not, eq. (V.4) is written under the
more convenient form

Dt

(
xα

yα

)
= Dt

(
xs

ys

)
+

(
0 −ω
ω 0

)(
xα − xs
yα − ys

)
. (V.5)

where the point xs is called the center of mass and is only translated. In addition to the
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description of the rigid body motion, some quantities must be defined to study the rigid body
dynamics.

V-1.1.2 Definition of physical quantities

Consider a rigid body whose motion is prescribed by eq. (V.5), which is described by a bounded
domain Ωs of R2. Given a positive bounded function ρs which described the material density
of the rigid body, then one defines the solid mass Ms, the gravity center xs and the moment of
inertia Js as 

Ms =

∫
Ωs

ρs(x)dx

xs =
1

Ms

∫
Ωs

ρs(x)xdx

Js =

∫
Ωs

ρs(x)‖x− xs‖2dx

(V.6)

And at last, let us = Dtxs, one defines the kinetic energy of the rigid body as

Es =
1

2
Ms‖us‖2 +

1

2
Jsω

2. (V.7)

V-1.2 Immersed rigid body dynamics

Using the previously defined quantities, one writes the system of equations describing the rigid
body dynamics, without any external forces, as



MsDtus =

∫
∂Ωs

σ · ndS,

JsDtω =

∫
∂Ωs

σ · n ·

(
−y + ys

x− xs

)
dS,

Dtx = us + ω

(
−y + ys

x− xs

)
,

(V.8)

where σ is the stress tensor. Considering that the rigid body is immersed in an inviscid fluid,
then σ = −pI. For a viscous one, it leads to σ = −pI + Υ. For inviscid fluid, it writes



MsDtus = −
∫
∂Ωs

pndS,

JsDtω = −
∫
∂Ωs

pn ·

(
−y + ys

x− xs

)
dS,

Dtx = us + ω

(
−y + ys

x− xs

)
.

(V.9)

In the following, the emphasis is laid on solving system (V.9).
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V-2 High-order Lagrangian schemes for rigid body dynamics

First, system (V.9) is considered in one dimensional space. A semi-discrete scheme is proposed
to approximate its solution. Two different discretizations are then proposed. The first one is
based on a Runge–Kutta type integration in time, which is particularly adapted to schemes
presented in chapter II. The second one, based on a Cauchy–Kovalevskaya integration in time, as
the GoHy schemes used in chapter IV is then proposed. The extension to two space dimensions
of these schemes is then proposed using a directionnal splitting method. First, the case of the
rigid homogeneous cylinder is detailed, and then it is extended to any kind of geometry and mass
repartition.

V-2.1 High-order schemes for rigid body dynamics in 1D

In one dimensional, we consider a rigid body occupying the domain Ωs = [xl, xr]. Then system
(V.9) leads to the simplified 1D system{

MsDtus = − (p(xr)− p(xl)) ,
Dtx = us,

(V.10)

where p(xr) and p(xl) are respectively the pressure applied at x = xr and at x = xl. The
semi-discrete scheme therefore writes


Dtus = −pr − pl

Ms
,

Dtxl = us,

Dtxr = us.

(V.11)

The pressure values pr and pl are respectively the pressure applied on the right and the left
boundaries of rigid body. In practice, they are given using the Inverse Lax–Wendroff method
proposed in chapter IV. Two approaches to realize the time integration of eq. (V.11) are proposed.
The first one is based on a Runge–Kutta approach, the second one using a Cauchy–Kovalevskaya
approach.

V-2.1.1 Runge–Kutta based approach

Using notations of chapter II for Runge–Kutta sequences, the fully discrete scheme writes



un+αm
s = uns −

∆t

Ms

m−1∑
l=0

am,l
(
pn+αl
r − pn+αl

l

)
,

xn+αm
l = xnl −∆t

m−1∑
l=0

am,lu
n+αm
s ,

xn+αm
r = xnr −∆t

m−1∑
l=0

am,lu
n+αm
s ,

(V.12)
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where the pressure pn+αm
r and pn+αm

l are given in practice by the Inverse Lax–Wendroff procedure
using the values inside the fluid domain and the velocity at the boundary.



un+1
s = uns −

∆t

Ms

s−1∑
l=0

θl
(
pn+αl
r − pn+αl

l

)
,

xn+1
l = xnl −∆t

s−1∑
l=0

θlu
n+αm
s ,

xn+1
r = xnr −∆t

s−1∑
l=0

θlu
n+αm
s .

(V.13)

V-2.1.2 Cauchy–Kovalevskaya based approach

The Cauchy–Kovalevskaya based approach is identical to the one used in [50, 171]. It relies
on using the information provided by the EOS and also by the fluid system of equations. In
particular, one uses that

ρ0Dtp+ (ρc)2∂xu = 0, (V.14)

where c is the speed of sound. It yields without expliciting the time derivatives that



un+1
s = uns −

∆t

Ms

∑
k≥0

(
Dk
t p
n
r −Dk

t p
n
l

) ∆tk

k!
,

xn+1
l = xnl −∆t

∑
k≥0

Dk
t u

n
s

∆tk

k!
,

xn+1
r = xnr −∆t

∑
k≥0

Dk
t u

n
s

∆tk

k!
.

(V.15)

V-2.2 High-order schemes for rigid body dynamics in 2D

In order to study rigid body dynamics in 2D, a choice of space discretization must first be made.
Indeed, contrarily to the 1D case, the rigid body is no longer described by only two points. We
consider a rigid body which is described by a closed bounded domain Ωs ⊂ Ω ⊂ R2. We denote
by Γ = ∂Ωs. As the external forces are exerted on the boundary Γ, it is all but natural to lay the
emphasis on the discretization of Γ, then to devise a semi-discrete scheme and last to consider
the fully discrete scheme for rigid body motion.

V-2.2.1 Rigid body space discretization

The choice has been made to consider a discretization of Γ instead of Ωs since the forces exerted on
the rigid body are exerted on the boundary Γ. Γ is parametrized by a function γ : [0 : 1] −→ R2.
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Figure V.1 – Regular curvilinear discretization of an ellipse with Γ : s → (5 cos(2πs), sin(2πs))t

using 20 pearls (blue dots)

In the following the curvilinear abscissa is denoted s. It writes

Γ = {x, ∃s ∈ [0, 1] ,γ(s) = x}.

We consider a discretization with N elements Γi+ 1
2
such that


s0 = 0,

sN = 1,

si+1 − si = ∆s, ∀i ∈ {0, ..., N − 1},
Γi+ 1

2
= {x, ∃s ∈ [si, si+1] ,γ(s) = x} ∀i ∈ {0, ..., N − 1}.

(V.16)

Denote in particular that the two points of abscissa s0 and sN are identical. One trivially gets
that

N−1⋃
i=0

Γi+ 1
2

= Γ

We define also the staggered curvilinear abscissae as

si+ 1
2

=
si+1 − si

2
, ∀i ∈ {0, ..., N − 1}.

The pearls Pi+ 1
2
are located as

Pi+ 1
2

= γ(si+ 1
2
)

This discretization, which is depicted for an ellipse in fig. V.1, is particularly appropriate to
compute integrals of the form

∫
Γ
φ(x)dx =

N−1∑
i=0

∫
Γ
i+ 1

2

φ(x)dx

=

N−1∑
i=0

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds

= ∆s

N−1∑
i=0

1

∆s

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds

(V.17)
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The following lemma gives an accuracy result on the spatial discretization concerning the com-
putation of such an integral. It is a corollary of a result proved by Kurganov and Rauch in [99]
about spectral accuracy of low order quadrature formulae for periodic function. It is proved here
for smooth functions on a closed curve using the interpolation coefficients Ĉk which are central
in this work.

Lemma V.1. Assume that Γ is a closed curve. Let γ and φ smooth enough and m > 0. Assume
the following approximation φγ

i+ 1
2

= φ(γ(si+ 1
2
))‖γ′(si+ 1

2
)‖, then

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

φγ
i+ 1

2

+ O(∆sm).

Remark V.1. Lemma V.1 implies in particular that trapezoidal rule yields immediately spectral
accuracy for the integral computation on a closed curve.

Proof. Denoting φγi+ 1
2

= 1
∆s

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds, one has in particular from chapter II, for

r > 0 that

φ
γ

i+ 1
2

=

r∑
k=−r

Ĉkφ
γ

i+k+ 1
2

+ O(∆s2r+1) (V.18)

where the coefficients Ĉk are available in table II.2, and φγ
i+ 1

2

is defined with periodic boundary
conditions as

φγ
i+ 1

2

=


φ(γ(si+ 1

2
))‖γ′(si+ 1

2
)‖), i ∈ {0, ..., N − 1},

φ(γ(si+N+ 1
2
))‖γ′(si+N+ 1

2
)‖, i ≤ −1,

φ(γ(si−N+ 1
2
))‖γ′(si−N+ 1

2
)‖, i ≥ N.

(V.19)

Then, for a given r > 0 one has

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

φ
γ

i+ 1
2

= ∆s
N−1∑
i=0

(
r∑

k=−r
Ĉkφ

γ

i+k+ 1
2

+ O(∆s2r+1)

)

= ∆s

(
r∑

k=−r
Ĉk

)
N−1∑
i=0

(
φγ
i+ 1

2

+ O(∆s2r+1)

)
(V.20)

Taking r such that 2r + 1 > m, using that
r∑

k=−r
Ĉk = 1 and definition of φγ

i+ 1
2

in eq. (V.19), it

yields

∫
Γ
φ(x)dx = ∆s

N−1∑
i=0

(
φγ
i+ 1

2

+ O(∆sm)

)
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Using that N is inversely proportional to ∆s, it leads to

= ∆s
N−1∑
i=0

φγ
i+k+ 1

2

+ O(∆sm)

Hence the result. �

Lemma V.1 is useful to compute the line integral of torques and forces exerted on the rigid body
boundary Γ. As for rigid body dynamics, we first explain how we design the semi-discrete scheme
for irrotational rigid bodies and then extend the semi-discrete scheme to the general case of rigid
body dynamics including both translation and rotation.

V-2.2.2 Irrotational rigid body semi-discrete scheme

Consider the system of equations (V.9) with Js → ∞. It yields an irrotational field of velocity
inside the rigid body with, thus, ω = 0. The system writes

 MsDtus = −
∫
∂Ωs

pndS,

Dtx = us.
(V.21)

The only possible motion for the rigid body is therefore a translation. As the interior fluid
schemes in 2D are based on directional splitting, the choice has been made to apply the same
strategy to eq. (V.21). Denoting us = (us, vs)

t, n = (n1, n2)t, x = (x, y)t, it leads to


MsD

x
t us = −

∫
Γ
pn1dS,

MsD
x
t vs = 0,

Dx
t x = us,

Dx
t y = 0.



MsD
y
t us = 0,

MsD
y
t vs = −

∫
Γ
pn2dS,

Dy
t x = 0,

Dy
t y = vs.

(V.22)

Considering the first system (in the x-direction) of eq. (V.22), its semi-discrete form using
lemma V.1 writes



MsD
x
t us = −∆s

N−1∑
i=0

(pn1)γ
i+ 1

2

,

MsD
x
t vs = 0,

Dx
t xi+ 1

2
= us,

Dx
t yi+ 1

2
= 0,

(V.23)

where Pi+ 1
2

= (xi+ 1
2
, yi+ 1

2
)t. Considering that Γ is known analytically and that the pressure at

point Pi+ 1
2
can be computed with a mth order of accuracy, then the semi-discrete form is also of

order m in space.
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V-2.2.3 General rigid body semi-discrete scheme

Consider the system of equations (V.9) without any assumption on Ms or Js. We introduce the
notations T and N for the non-normalized tangent and normal. Meaning in particular that one
has

N = n‖γ‖.

The equation on N is immediately obtained using the laws of rigid body motion. Indeed,

T =

(
∂sx

∂sy

)
, N = ±

(
∂sy

∂sx

)
,

and thus one gets that

DtT =

(
Dt∂sx

Dt∂sy

)
= ∂s

(
us + ω

(
−y + ys

x− xs

))
=

(
0 −ω
ω 0

)
T , (V.24)

and similarly the non-normalized vector satisfies

DtN =

(
0 −ω
ω 0

)
N , (V.25)

Using directional splitting method, the semi-discrete scheme for (V.9) and (V.25) writes

MsD
x
t us = −

∫
Γ
pn1dS,

MsD
x
t vs = 0,

JsD
x
t ω =

∫
Γ
pn1(y − yg)dS,

Dx
t x = us − ω(y − yg),

Dx
t y = 0,

Dx
tN1 = 0,

Dx
tN2 = ωN1.



MsD
y
t us = 0,

MsD
y
t vs = −

∫
Γ
pn2dS,

JsD
y
tω = −

∫
Γ
pn2(x− xg)dS,

Dy
t x = 0,

Dy
t y = vs + ω(x− xg),

Dy
tN1 = −ωN2,

Dy
tN2 = 0.

(V.26)

Considering first system (in the x-direction) of eq. (V.26), its semi-discrete form using lemma V.1
writes
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MsD
x
t us = −∆s

N−1∑
i=0

(pn1)γ
i+ 1

2

,

MsD
x
t vs = 0,

JsD
x
t ω = −∆s

N−1∑
i=0

(pn1(y − yg))γi+ 1
2

,

Dx
t xi+ 1

2
= us − ω(y − yg),

Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0,

Dx
tN2,i+ 1

2
= ωN1,i+ 1

2
.

(V.27)

The main differences with the case of irrotational motion is obviously that the rigid body is
rotating due to the torques exerted at the boundary, which implies also that the normals are
rotating as well. Hence the equation on both N1 and N2. In practice, one rewrites eq. (V.27)
substituting the term φγ with respectively terms of the form (φN1) for the x−direction and of
the form (φN2) for the y-direction.



MsD
x
t us = −∆s

N−1∑
i=0

(pN1)i+ 1
2
,

MsD
x
t vs = 0,

JsD
x
t ω = −∆s

N−1∑
i=0

(pN1(y − yg))i+ 1
2
,

Dx
t xi+ 1

2
= us − ω(yi+ 1

2
− yg),

Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0,

Dx
tN2,i+ 1

2
= ωN1,i+ 1

2
.

(V.28)

Two integrations in time are know proposed. The first one is based on Runge–Kutta time
integration and the second one on a Cauchy–Kovalevskaya one using repetitively time-derivatives
of system (V.28) as well as information provided by the fluid part.

V-2.2.4 Runge–Kutta based approach

We use the notation introduced in chapter II. The fully discrete scheme in the x-direction writes
for the intermediary time-step
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un+αm
s = uns − ∆t

Ms
∆s

m−1∑
l=0

am,l

N−1∑
i=0

(pn+αlNn
1 )i+ 1

2
,

vn+αm
s = vns ,

ωn+αm = ωn − ∆t
Js

∆s
m−1∑
l=0

am,l

N−1∑
i=0

(pn+αlNn
1 (yn − yng ))i+ 1

2
,

xn+αm
i+ 1

2

= xn
i+ 1

2

+ ∆t

(
m−1∑
l=0

am,l(u
n+αl
s − ωn+αl(yn

i+ 1
2

− yng ))

)
,

yn+αm
i+ 1

2

= yn
i+ 1

2

,

Nn+αm
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+αm
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t

(
m−1∑
l=0

am,lω
n+αlNn

1,i+ 1
2

)
,

(V.29)

and for the final time-step as

un+1
s = uns − ∆t

Ms
∆s

s−1∑
l=0

θl

N−1∑
i=0

(pn+αlNn
1 )i+ 1

2
,

vn+1
s = vns ,

ωn+1 = ωn − ∆t
Js

∆s
s−1∑
l=0

θl

N−1∑
i=0

(pn+αlNn
1 (yn − yng ))i+ 1

2
,

xn+1
i+ 1

2

= xn
i+ 1

2

+ ∆t

(
s−1∑
l=0

θl(u
n+αl
s − ωn+αl(yn

i+ 1
2

− yng ))

)
,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t

(
s−1∑
l=0

θlω
n+αlNn

1,i+ 1
2

)
,

(V.30)

V-2.2.5 Cauchy–Kovalevskaya based approach

The Cauchy–Kovalevskaya based approach is identical to the one used in [50, 171]. It relies on
informations provided by the EOS, by the fluid system of equations but also by the rigid body
system of equations. Concerning fluid and EOS, the equation

ρ0Dtp+ (ρc)2∂xu = 0, (V.31)

is derivated in time repetitively to transform time derivatives of p into space derivatives. More-
over, one uses that

{
Dx
t yi+ 1

2
= 0,

Dx
tN1,i+ 1

2
= 0.

(V.32)

Then starting from eq. (V.28) and integrating in time yield
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un+1
s = uns − 1

Ms
∆s

∫ tn+1

tn

N−1∑
i=0

(pN1)i+ 1
2
(θ)dθ,

vn+1
s = vns ,

ωn+1 = ωn − 1
Js

∆s

∫ tn+1

tn

N−1∑
i=0

(pN1(y − yg))i+ 1
2
(θ)dθ,

xn+1
i+ 1

2

= xn
i+ 1

2

+

∫ tn+1

tn

(
us − ω(yi+ 1

2
− yg)

)
(θ)dθ,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+

∫ tn+1

tn
ωN1,i+ 1

2
(θ)dθ.

(V.33)

Performing Taylor expansion in the θ variable and using eq. (V.32) lead to

un+1
s = uns − ∆t

Ms
∆s

N−1∑
i=0

(∑
k

Dx,k
t pn

i+ 1
2

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

,

vn+1
s = vns ,

ωn+1 = ωn − ∆t
Js

∆s
N−1∑
i=0

(∑
k

Dx,k
t pn

i+ 1
2

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

(yn
i+ 1

2

− yng )),

xn+1
i+ 1

2

= xn
i+ 1

2

+ ∆t
∑
k

(
Dx,k
t uns −Dx,k

t ωn(yn
i+ 1

2

− yng )
) ∆tk

(k + 1)!
,

yn+1
i+ 1

2

= yn
i+ 1

2

,

Nn+1
1,i+ 1

2

= Nn
1,i+ 1

2

,

Nn+1
2,i+ 1

2

= Nn
2,i+ 1

2

+ ∆t
∑
k

(
Dx,k
t ωn

∆tk

(k + 1)!

)
Nn

1,i+ 1
2

.

(V.34)

V-3 Fluid - Rigid body coupling

After detailing the two proposed numerical schemes for the integration of forces and torques
exerted on the boundary, we propose a simple and straightforward scheme to couple the fluid
and the rigid body solvers.

V-3.1 Description of the algorithm

Since the inverse Lax–Wendroff procedure has been developed in a Lagrange-remap formalism
and since the rigid body motion is described in a Lagrangian formalism, there is no further work
to be done. The fluid-rigid body coupling is depicted in Figure V.2. It follows a simple flow
chart, where the space and time coupling is realized using our Inverse–Lax Wendroff boundary
treatment. At time t = tn, one knows the value of U+ which are the values inside the fluid
domain and also the rigid body state among which is the normal velocity. Using the normal
velocity known at the boundary, one applies the ILW procedure, and deduces values inside U−
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as well as the integral of forces and torques exerted on the rigid body boundary.

Fluid

Structure

Fn

S n

Fn,Ghost

S n,Ghost
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S n+1

Inverse Lax–Wendroff boundary treatment

Un+
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s

Un−
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Figure V.2 – Using the Inverse Lax–Wendroff procedure as a time and space coupling for rigid
body interaction.

The rigid body motion solver also adds a constraint on the time step ∆t. In addition to the
classical CFL condition, in practice the time-step is asked to satisfy the constraint for one
dimensional problem

∆t <
∆x

|us|
,

and for two dimension problems

∆t <
1
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2
|
),
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2
|
)

)
,

where (ui+ 1
2
, vi+ 1

2
) is the velocity of the pearl i+ 1

2 .

V-3.2 Numerical results

A test-suite is proposed to assess both accuracy and robustness of the fluid-rigid body schemes.
We begin with a 1D case problem consisting of a piston whose motion is triggered by a pressure
differential [121]. Then, the ability of the 2D schemes to handle strong shocks is assessed. The
first test concerns the lift-off of a cylinder proposed in [53, 6, 88, 121]. The problem is then
extended to more complex geometries with first an ellipse and then a rhombus.

V-3.2.1 Pressure motion driven piston in 1D [121]

This test-case has been proposed in [121] to study the coupling between fluid and rigid body in
1D. The computational domain is [0 : 7]. Initially a rigid body of length 0.5m and of mass 1.0kg
is centered at x = 2m. The fluid initial state is


ρ0(x)=10χ{x<2,x>5} + 1χ{2<x<5},

u0(x)=0,

p0(x)=106χ{x<2,x>5} + 105χ{2<x<5},

γ =1.4.

(V.35)
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The movement of the rigid body (in black in the figure) is triggered by the pressure differential
between the left and right sides of the piston. In return, it induces propagation waves in the
fluid regions. Fluid states as well as the piston position are depicted in fig. V.3 at time t = 3 ms.
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Figure V.3 – Pressure profiles at time t=3 ms with 800 cells for the pressure motion driven piston
in 1D for second, third, fourth and sixth order ILW-GoHy schemes.

V-3.2.2 Lift-Off of a cylinder [6, 88, 121]

The lift-off of a cylinder has been proposed in [53] to study the coupling between a fluid solver
and a rigid body motion one. It is a challenging problem coupling both a fluid and a moving
rigid body. The computational domain is [0.0 : 1.0] × [0.0 : 0.2]. A disk of radius 5 cm and of
density ρ = 7.6 kg.m−2 lies at the bottom of a channel. Initially the center of the disk is at point
(15.10−2, 5.10−2). A Mach 3 shock enters the domain, and due to the asymmetry of the problem
lifts the disk. Equivalent initial datas are presented in [6, 88, 121]:

p0= 1.0χ{x>0.08} + 31
3 χ{x<0.08},

u0= 2.6293688χ{x<0.08},

v0= 0,

ρ0=1.0χ{x>0.08} + 3.8571429χ{x<0.08},

γ = 1.4.

(V.36)
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Figure V.8 shows the pressure contours at t = 0.14 and t = 0.255 for a grid size ∆x = ∆y =

6.25×10−4 using the third order scheme GoHy-3. Figure V.9 shows density contours at t = 0.255

for the same grid size and the same scheme. A MOOD method is used on the boundary. General
profiles are in accordance with results found in the literature. We also compare in table V.2 the
final position of the cylinder of [88] and the final position obtained for the reflection method
presented in [6] for different grid sizes and order. Final positions are in good agreements with
those found in the literature, especially with [6]. As presented in [121], the presence of strong
vortices are denoted under the cylinder which does not disappear as the mesh is refined. We
assume that a highly dissipative scheme prevents such vortices from appearing. Here, high-order
accuracy and reduced dissipation allow such mechanisms to appear and develop.

Figure V.4 – 60 contours of fluid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.

∆x = ∆y Hu and al. [88] Arienti and al. [6] GoHy-1 GoHy-2 GoHy-3
2.5× 10−3 (0.659, 0.132) (0.624, 0.143) (0.623, 0.126) (0.628, 0.136) (0.627, 0.136)

1.25× 10−3 (0.649, 0.145) (0.626, 0.145) (0.621, 0.131) (0.626, 0.141) (0.625, 0.140)

6.25× 10−4 (0.641, 0.147) (0.627, 0.145)? (0.623, 0.136) (0.628, 0.144) (0.628, 0.144)

Table V.2 – Comparisons of the position of the cylinder’s center at t = 0.255. ? denotes results
for ∆x = ∆y = 10−3.

Integration of forces and torques exerted on the cylinder depends on the number of points used
to discretize the cylinder. Here, it is noticed that if one takes greater value of CΓ, the position is
changed only at the fourth digit. We present in Table V.3, absolute errors made on conservation
of mass and total energy which seem to converge with a slope of 0.7 − 0.8 for the first order
scheme, and near unity for the second and third order ones.
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Figure V.5 – 60 contours of fluid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.

∆x = ∆y GoHy-1 GoHy-2 GoHy-3
|∆m| |∆e| |∆m| |∆e| |∆m| |∆e|

2.5× 10−3 1.55e-2 4.24e-2 8.07e-3 1.71e-2 1.1e-2 2.5e-2
1.25× 10−3 9.41e-3 2.62e-2 4.12e-3 8.89e-3 5.58e-3 1.29e-2
6.25× 10−4 5.36e-3 1.54e-2 2.16e-3 4.58e-3 2.81e-3 6.47e-3

Table V.3 – Conservation on mass and total energy at t = 0.255 for the lift-off cylinder test-case.

V-3.2.3 Lift-Off of an ellipse

This test-case is very similar to the previous one. The initial data are unchanged. However the
form of the rigid body is changed. Indeed, for the cylinder test-case and in absence of any viscous
forces, the rigid body motion is irrotational. In this test-case, we consider an ellipse lying at the
bottom of the channel. The ellipse is defined by a semi-major axe in the x-direction of length
7 cm and a semi-minor axe of length 4 cm. Its density is set to ρ = 9.0 kg.m−2. Initially, the
ellipse lies at the bottom of a channel, and its center is at point (17.10−2, 4.10−2). A Mach 3
shock enters the domain, and due to the asymmetry of the problem lifts the ellipse.

V-3.2.4 Lift-Off of a rhombus

This test-case is very similar to the previous ones. The initial data are unchanged. However the
form of the rigid body is changed. In this test-case, we consider a rhombus which as undefined
normals at each of its angles. The rhombus is defined by the following equation


|x
†

b
|+ |y

†

h
|= 1(

x†

y†

)
=

(
cos(θ sin(θ)

− sin(θ cos(θ)

)(
x− x0

y − y0

)
(V.37)
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Figure V.6 – 60 contours of fluid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.

and the parameters x0 = 15.10−2, y0 = 5.10−2, θ = − π
10 , b = 3.10−2, h = 5.10−2. Its density is

set to ρ = 9.0 kg.m−2. Initially, the rhombus is motionless. A Mach 3 shock enters the domain,
and due to the asymmetry of the problem lifts the rhombus.
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Figure V.7 – 60 contours of fluid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.

Figure V.8 – 60 contours of fluid pressure from 0 to 28 at times t=0.14 (top) and t=0.255 (bot-
tom) for the third order scheme, ∆x = ∆y = 6.25× 10−4.
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Figure V.9 – 60 contours of fluid density from 0 to 12 at times t=0.14 (top) and t=0.255 (bottom)
for the third order scheme, ∆x = ∆y = 6.25× 10−4.



Conclusions and perspectives

Dans ce manuscrit, nous nous sommes intéressés à des questions de simulation numériques
pour l’interaction fluide-structure. Le modèle considéré a été celui de l’interaction entre un fluide
compressible et une structure indéformable. Pour ce faire, une méthode de type Lax–Wendroff
inverse a été mise au point pour réaliser un schéma de couplage fluide-structure explicite et
stable. Ce couplage permet de faire communiquer un solveur de type Volumes Finis pour le fluide
compressible avec un solveur pour la dynamique des corps rigides.

Dans un tout premier temps, des résultats principaux liés aux systèmes hyperboliques de lois
de conservation ont été présentés. Puis, l’accent a été mis sur les méthodes de résolution des
équations d’Euler pour un fluide compressible, ainsi que les différents couplages en espace comme
en temps trouvés dans la littérature. Du fait des grandes disparités physiques entre les matériaux,
la méthode des cellules mixes a été mise de côté, tout comme les méthodes épousant les contours
du corps rigide (body-fitted) car non-adaptées aux schémas numériques sur grilles cartésiennes.
Nous avons fait le choix de nous intéresser plus précisément aux méthodes de domaine fictif. Le
dévolu a été jeté sur la méthode de frontières immergés (Immersed boundaries) en calculant les
cellules fantômes par la procédure de Lax–Wendroff inverse. En effet, bien que n’assurant pas la
conservation de la masse, de la quantité de mouvement et de l’énergie totale, elle permet une
reconstruction à l’ordre très élevé des valeurs fantômes et assure ainsi un schéma final lui aussi
d’ordre très élevé. Enfin, le choix a été fait de considérer un couplage explicite en temps afin
d’éviter de devoir résoudre un problème non plus local, mais global autour de la frontière.

Ensuite, nous avons présenté la famille de schémas sur grilles cartésiennes décalées, po-
tentiellement utilisée pour former le solveur fluide compressible. Cette famille de schéma a été
démontrée comme étant conservative en masse, quantité de mouvement et énergie totale, ainsi
que faiblement consistante avec les équations d’Euler. Le passage en multidimensionnel se fait par
l’utilisation de séquences de splitting directionnel d’ordre élevé. Puis, l’extension de cette famille
de schémas pour les équations de Navier–Stokes compressibles a été réalisée, impliquant une
distribution particulière sur les grilles décalées des termes visqueux non-diagonaux. Des résultats
numériques sont venus illustrer tout autant la précision que la robustesse de cette famille de
schémas.

Puis, notre étude s’est portée sur la discrétisation des conditions aux bords, sur la précision
ainsi que sur la stabilité qui en découlent. Afin de pouvoir se référer à des résultats théoriques,
le problème a d’abord été traité dans le cas des systèmes hyperboliques linéaires. La procédure de
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calcul des cellules fantômes a été développée dans le cas de l’équation de l’advection en 1D. Elle
a été ensuite étendue au cas du système des équations des ondes, en considérant deux conditions
aux bords différentes. Une première forçant la vitesse au bord, tandis que la seconde forçant une
relation entre vitesse et pression. L’extension générique pour un système hyperbolique linéaire
de lois de conservation a ensuite été détaillée. Bien que permettant de construire une méthode
d’ordre très élevé, la procédure de Lax–Wendroff inverse n’assure pas pour autant la stabilité du
schéma final obtenu. Cela a été mis en évidence par des expériences numériques sur le système des
équations des ondes. Outre une étude de type GKS sur un schéma donné, il a été proposé de définir
un critère de stabilité permettant en pratique de grandement simplifier les calculs nécessaires pour
déterminer la stabilité d’un schéma. Ce critère s’est avéré, dans de nombreux cas, en parfaite
concordance avec l’analyse GKS. Ce travail a mis en évidence la nécessité de s’intéresser tout
particulièrement à la stabilité du schéma final obtenu et a permis de très largement simplifier
l’étude faite ensuite dans le cas du système des équations d’Euler.

Pour la discrétisation des conditions aux bords imposées en vitesse pour les équations d’Euler,
une méthode est déduite de l’analyse linéaire pour construire des cellules fantômes stables et
d’ordre très élevé. Plus particulièrement, considérant des schémas intérieurs de type Lagrange-
projection sur grilles cartésiennes, deux méthodes sont isolées pour l’imposition des valeurs fan-
tômes. La première consiste à faire l’hypothèse d’isentropie spatiale locale proche de la frontière,
tandis que la seconde consiste à élargir le stencil pour effectuer la reconstruction des valeurs fan-
tômes. Des résultats théoriques permettent de caractériser les conditions d’existence et d’unicité
de la reconstruction proposée par ces deux méthodes. Dans le but de traiter le cas de chocs forts
impactant la frontière, une procédure de type MOOD a été développée. Enfin, l’extension au cas
2D a été faite. L’extrapolation polynomiale 2D étant fortement oscillante et ayant tendance à être
instable, une procédure de type moindre carré a été introduite afin de lisser un tel comportement.
Des résultats numériques sont venus illustrer tout autant la précision que la robustesse de la
méthode proposée.

Enfin, le couplage entre un fluide compressible et une structure indéformable a été réalisé à
partir de la procédure de Lax–Wendroff inverse développée précédemment. Un schéma semi-discret
permettant de calculer à l’ordre élevé en espace les forces et moments exercés sur la frontière du
corps rigide a été proposé. Deux procédures d’intégrations en temps ont ensuite été développées,
une de type Runge–Kutta et une seconde de type Cauchy–Kowalevski. Ce choix d’intégration en
temps a permis de faire correspondre sur la même échelle en temps les solveurs fluide et corps
rigide. Enfin l’extension 2D de ces schémas a été faite via splitting directionnel. La procédure de
Lax–Wendroff inverse nous a permis de définir naturellement les forces et moments de pression
exercés sur la frontière du corps rigide. Ainsi le couplage fut immédiat et d’autant plus facile
à implémenter. Quelques résultats numériques ont été proposés afin de mettre en évidence la
stabilité et la robustesse du couplage utilisé.

Plusieurs perspectives sont désormais possibles. Dans un premier temps, il apparaît important
d’étendre la méthode à trois dimensions d’espace. Cela permettrait d’approcher des situations plus
réalistes. La méthode proposée devrait s’appliquer directement, sans modifications préalables, au
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3D, à la condition de pouvoir répartir les "perles" de la méthode de Lax–Wendroff inverse sur
la surface du solide. Cela ne devrait pas occasionner un surcoût prohibitif de la procédure par
rapport au coût des solveurs fluide et structure.

Ensuite, il paraît intéressant de pouvoir considérer que la structure n’est plus simplement
un corps rigide, donc indéformable, mais qu’elle suit d’autres lois de comportements (élasticité
linéaire, hypoélasticité, plasticité, fracturation, ...). En maillant ainsi la structure, il paraîtrait dès
lors tout à fait naturel de faire correspondre sommets du maillage sur la frontière et les "perles"
utilisées lors de la procédure de Lax–Wendroff inverse. Considérant que l’analyse linéaire a déjà
été faite, nous pouvons dès à présent nous assurer que le couplage ne devrait pas souffrir en terme
de stabilité d’un tel traitement à la condition d’en faire aussi l’étude pour la partie structure.

De même, le modèle fluide pourrait être complexifié en prenant en compte une viscosité de
type Navier–Stokes compressible. Bien que le solveur fluide ait déjà été proposée dans ce travail,
l’analyse linéaire de stabilité n’a pas encore été effectuée et le couplage fluide visqueux et corps
rigides n’en est encore qu’à ses prémices. De plus, il serait tout aussi possible d’utiliser la méthode
proposée afin de réaliser un couplage entre deux fluides non-miscibles aux propriétés différentes,
ou encore de considérer des conditions aux bords plus complexes.

Pour conclure, dans un contexte HPC, le code développé pour cette thèse est déjà entièrement
parallélisé via MPI/OpenMP. Les principales procédures sont locales, hormis le calcul des résultantes
des forces et des moments. En effet, le solveur corps rigide nécessite de nombreuses synchronisations
afin de calculer les résultantes des forces et moments à sa surface, ce qui rend certainement
le code non optimal. Réduire le nombre de communications globales, dans un contexte HPC,
apparaît comme vital pour assurer un correct passage à l’échelle. Enfin l’insertion de la procédure
au sein d’une plateforme AMR multi-physique [91] présenterait aussi son intérêt afin d’améliorer
encore davantage la précision et le temps de calcul. Cela permettrait de pouvoir simuler des cas
d’écoulements plus complexes.



214

In this manuscript, numerical simulation of fluid-structure interaction was of most interest to us,
considering a compressible fluid interacting with a rigid body. In order to realize the coupling
between the two, the inverse Lax–Wendroff procedure has been developed for stability and explicit
time-coupling purposes. This coupling is done in a stable way for a compressible hydrodynamics
solver and a rigid body dynamics one.

Firstly, an overview of main theoretical results concerning hyperbolic systems of conservation
laws has been made. The emphasis was then laid on numerical methods for the resolution of
compressible Euler equations as well as for space and time coupling used for fluid-structure
interaction found in the literature. Due to tremendous materials physical discontinuities, the
mixed-cells method was discarded. Methods based on body-fitted meshes were also discarded
as they were irrelevant for hydrodynamics solver on Cartesian grids. The choice has been made
to focus on fictitious domain methods, and more precisely on the immersed boundary methods.
The selected method for the space coupling was to build high-order accurate ghost-cells values
using the inverse Lax–Wendroff procedure. Although, this method does not ensure conservation
of mass, momentum and total energy, contrarily to the embedded boundary methods, it yields
high-order accuracy which is of most use for high-order hydrodynamics solver. Last, an explicit
coupling has been chosen, rather than implicit or semi-implicit ones, in order to solve a local
problem instead of a global one.

Secondly, as a possible choice for the hydrodynamics solver, a scheme based on staggered Carte-
sian grids has been detailed. The scheme was proven to be conservative in mass, momentum and
total energy and also weakly consistent with the Euler equations. The key for both conserva-
tion and weak consistency is the internal energy corrector that has been proposed. For multiple
space dimensions, the scheme was used with a high-order directional splitting method. Then,
the extension of the scheme for the resolution of the compressible Navier–Stokes equations was
made. It relies on a peculiar distribution of non-diagonal viscous terms on a grid staggered in
both directions. Numerical results have illustrated both the accuracy and the robustness of the
scheme.

Afterwards, numerical boundary treatment was considered, with a special focus on both high-
order accuracy and stability. In order to use theoretical results, especially concerning linear
stability for initial boundary value problems, the problem was dealt with for linear hyperbolic
systems of conservation laws. The ghost-values computation procedure, called in the manuscript
"reconstruction operator", was first developed for the special case of linear advection problems in
1D. Then, it was extended to the wave equations system considering two different but well-posed
boundary conditions. The first boundary condition imposed only the velocity at the boundary,
whereas the second linked both velocity and pressure at the boundary. The extension was then
realized for generic linear hyperbolic systems. Although giving high-order accuracy for ghost
values in the fictitious domain, the inverse Lax–Wendroff procedure does not ensure the stability
of the effective scheme. It was pointed out by numerical experiments performed for the wave
equations. Besides a GKS stability analysis done for a given scheme and reconstruction operator,
a new stability criterion was proposed in order to ease greatly stability characterization for the
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discretization of the initial value boundary problem. Numerical experiments assess the pratical
relevancy of such a criterion. Our findings highlighted the need to focus particularly on linear
stability of the effective scheme before tackling the case of non-linear problems. It alleviated
greatly the study that was then performed for the Euler equations.

For the extension of numerical boundary treatment to compressible Euler equations, the bound-
ary conditions was considered to be imposed as a slip boundary condition, enforcing the normal
velocity. A method has been deduced from the linear analysis of the inverse Lax–Wendroff pro-
cedure to obtain high-order and stable effective schemes. More precisely, considering Lagrange-
remap interior schemes based on Cartesian grids, the non-inversibility of the Jacobian matrix
pointed out the need for another equation. Two methods were developed to build the recon-
struction operator. The first one consisted in considering that the flow near the boundary was
spatially isentropic. Whereas the second one consisted in enlarging the stencil used to build the
reconstruction operator. Theoretical results to characterize conditions for existence and unique-
ness of the reconstruction operator were proved for both methods. In order to deal with strong
incoming or outgoing shocks, a MOOD procedure was developed. Then the extension to two
space dimensions problems was done. A special procedure of least-square was also developed
in order to prevent 2D extrapolation instabilities from occurring. Numerical experiments have
been performed to illustrate both accuracy and robustness of the method.

Last, the coupling between a compressible fluid and a rigid body was made, starting from the
previously introduced inverse Lax–Wendroff procedure for Lagrange-remap schemes. A semi-
discrete scheme was derived, computing with high-order accuracy in space the resultants of
forces and torques exerted on the rigid body boundary. Two time-integrations were proposed: A
Runge–Kutta one, and a Cauchy–Kovalevskaya one. These time integration choices result from
the hydrodynamics solver choices, and was done in order to maintain both solvers on the same
time-scale, easing the coupling. Then, the two space dimensions extension was performed using
directional splitting method. The inverse Lax–Wendroff procedure yielded natural definitions
for pressure forces and torques exerted on the rigid body boundary. Thereby the coupling was
straightforward and easy to implement. Some numerical results have been presented to emphasize
the stability and robustness of the coupling.

New perspectives seem now to be reachable. Firstly, extending the method to three space
dimensions should be quite straightforward and of very high interest. It would allow to get closer
to more realistic situations. The proposed method can be applied straightforwardly provided one
can map the inverse Lax–Wendroff pearls on the surface of a rigid body. Going from 2D to 3D
should not induce large prohibitive numerical costs due to the procedure.

Then, considering a deformable structure instead of a rigid body one should be of great interest for
the CEA needs. Many deformations models are available in the literature such as linear elasticity,
hypo-elasticity, plasticity and fracturation. Once again, be given a set of pearls describing the
structures boundaries, the ILW procedure should be applicable straightforwardly. The structure
being described by a mesh, it seems all but natural to consider that the vertices on the boundary
of the mesh are exactly the pearls used in the ILW procedure. The space and time coupling
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should still hold for such a more complex multi-physics problem, provided the linear stability is
also performed for the structure part.

Identically, the fluid model could be made more complex. The ILW procedure was designed
whether for internal energy affine equations of state or for equations of state such that the square
of the sound speed is Lipschitz continuous but without any viscous components. Same analysis
and works could be performed considering the fluid to follow the compressible Navier–Stokes
equations instead of the compressible Euler ones. Although a compressible Navier–Stokes solver
was proposed in this manuscript, the linear analysis for initial boundary values problem was not
performed, and the viscous fluid rigid body coupling is still in its early stages. Moreover, the
method could also be applied to realize a coupling between two immiscible fluids with different
constitutive laws or to consider more complex boundary conditions than just slip boundary
conditions.

In conclusion, in a HPC context, the code that was implemented during this PhD is already
running in parallel using MPI/OpenMP. Since every procedure is local, the parallel computing
is straightforward for the fluid part and for the discretization of boundary conditions. However
the rigid body solver requires many synchronizations between the processes to get the values of
forces and torques resultants and then to compute the displacement. Reducing the number of
global communications, in a HPC context, is of the essence to enforce correct scalability of the
method. As a last word, implementing such procedures inside the multiphysics AMR platform
[91] would be of special interest to improve even more accuracy and computational cost, and so
to run even more complex simulations.



Appendix A

Butcher tables and weights for
directional splitting methods

L’annexe comprend l’ensemble des tableaux de coefficients de grande taille afin de fournir au
lecteur la possibilité de reproduire les méthodes utilisées et décrites dans le manuscrit.
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A.1 Butcher table for usual Runge–Kutta sequences

We remind here briefly the Butcher table for a given explicit Runge–Kutta sequence.

α1 a1,0 0 0 0 · · ·

α2 a2,0 a2,1 0 0 · · ·
...

...
...

. . . · · · · · ·

αs as,0 · · · · · · as,s−1 0

1 θ0 θ1 · · · θs−1 θs

α α 0

1 1− 1
2α

1
2α

Table A.1 – Generic second order Runge–Kutta sequence

0

1 1
1
2

1
4

1
4

1 1
6

1
6

2
3

Table A.2 – Third order TVD Runge–Kutta sequence [70]

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Table A.3 – Original Kutta sequence [100]
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0
1
3

1
3

2
3 -1

3 1

1 1 -1 1
1
8

3
8

3
8

1
8

Table A.4 – The 3
8 -Kutta sequence [100]

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

35
384 0 500

1113
125
192

−2187
6784

11
84

Table A.5 – Dormand–Prince Runge–Kutta sequence [49]
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A.2 Directional splitting weights sequences

ω1 1

ω2 1

Table A.6 – First order Godunov splitting weights ωk

ω1 0.5

ω2 1

ω3 0.5

Table A.7 – Second order Strang splitting weights ωk

ω1 0.26833009578175993

ω2 0.91966152301739986

ω3 -0.18799161879915978

ω4 -0.18799161879915978

ω5 0.91966152301739986

ω6 0.26833009578175993

Table A.8 – Third order directional splitting weights ωk

ω1 0.5

ω2 -0.05032120814910445

ω3 -0.27516060407455222

ω4 0.55032120814910445

ω5 0.55032120814910445

ω6 0.55032120814910445

ω7 -0.27516060407455222

ω8 -0.05032120814910445

ω9 0.5

Table A.9 – Fourth order directional splitting weights ωk
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ω1 0.3922568052387787

ω2 0.7845136104775573

ω3 0.5100434119184577

ω4 0.2355732133593581

ω5 -0.4710533854097564

ω6 -1.1776799841788710

ω7 0.0687531682525201

ω8 1.3151863206839112

ω9 0.0687531682525201

ω10 -1.1776799841788710

ω11 -0.4710533854097564

ω12 0.2355732133593581

ω13 0.5100434119184577

ω14 0.7845136104775573

ω15 0.3922568052387787

Table A.10 – Sixth order directional splitting weights ωk [176]
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ω1 0.3145153251052165

ω2 0.629030650210433

ω3 0.9991900571895715

ω4 1.36934946416871

ω5 0.152381158138440

ω6 -1.06458714789183

ω7 0.299385475870660

ω8 1.66335809963315

ω9 -0.007805591481625

ω10 -1.67896928259640

ω11 -1.619218660405435

ω12 -1.55946803821447

ω13 -0.6238386128980215

ω14 0.311790812418427

ω15 0.98539084848119350

ω16 1.6589908845439600

ω17 0.98539084848119350

ω18 0.311790812418427

ω19 -0.6238386128980215

ω20 -1.55946803821447

ω21 -1.619218660405435

ω22 -1.67896928259640

ω23 -0.007805591481625

ω24 1.66335809963315

ω25 0.299385475870660

ω26 -1.06458714789183

ω27 0.152381158138440

ω28 1.36934946416871

ω29 0.9991900571895715

ω30 0.629030650210433

ω31 0.3145153251052165

Table A.11 – Eighth order directional splitting weights ωk [176]
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