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Introduction

Avec l'augmentation constante du trafic aérien, les nuisances sonores émises par les avions sont de plus en plus gênantes pour les communautés proches des zones aéroportuaires. Les réglementations sont toujours plus strictes puisque la directive Européenne ACARE prévoit de réduire de 50 % le bruit perçu, par rapport à une référence mesurée en 2000. Conscients de ces enjeux, les instituts de recherche et les industriels du secteur aéronautique déploient des efforts importants pour réduire le bruit émis par les aéronefs en combinant les mesures et les méthodes numériques. Parmi les outils mis en place par la communauté scientifique pour étudier les mécanismes de génération de bruit, les souffleries permettent de reproduire les conditions de vol autour d'une maquette d'aéronef, dans l'optique de localiser et d'identifier les sources sonores d'origine aérodynamique générées par l'écoulement autour de la maquette.

L'expérience consiste à placer une maquette dans la veine de la soufflerie, qui peut être ouverte ou fermée, et à mesurer les ondes acoustiques (le bruit) générées par l'écoulement de l'air autour de la maquette. Dans les souffleries à veine ouverte, ces ondes acoustiques sont mesurées par des microphones situés en dehors du jet, dans une zone au repos. Elles doivent alors traverser une couche de cisaillement turbulente qui se forme à cause du différentiel de vitesse entre le jet et la zone au repos. L'onde acoustique subit, lors de sa propagation, les effets de convection et de réfraction liés au champ de vitesse moyen. De plus, si la fréquence de l'onde acoustique est suffisamment élevée, elle interagit avec les fluctuations de vitesse du milieu turbulent ce qui entraîne une modulation d'amplitude et de phase, ainsi qu'une redistribution spatiale et spectrale de son énergie. On parle de la diffusion de l'onde acoustique par l'écoulement turbulent. Les effets de la diffusion sont d'autant plus importants que les échelles caractéristiques (temporelle et spatiale) de l'onde acoustique incidente sont petites devant celles de l'écoulement turbulent. Cela peut conduire à une perte d'informations sur les caractéristiques essentielles du bruit initialement émis par la maquette à savoir son intensité, sa directivité et sa fréquence d'émission.

Le mécanisme de diffusion acoustique a d'abord été étudié de manière analytique à partir des années 50 dans le cadre de l'analogie de Lighthill [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF]54,29,57] et de l'équation de Helmholtz inhomogène [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]11,[START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF]. Lighthill [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF] a identifié le terme source de la diffusion acoustique comme étant le produit entre les fluctuations de vitesse liées au passage de l'onde acoustique et les fluctuations de vitesse du milieu turbulent. Son modèle relie l'intensité acoustique diffusé au tenseur d'inter-corrélation des fluctuations de vitesse de l'écoulement turbulent qu'il simplifie en considérant une turbulence homogène et isotrope. Son analyse a permis de prévoir le facteur de directivité de l'intensité acoustique, facteur qui a été vérifié à partir de mesures expérimentales par Baerg et Schwarz [10]. Ford et Meecham [54] ont affiné cette analyse en considérant un écoulement turbulent en mouvement de translation. Ils ont montré qu'en plus d'une redirection spatiale, l'énergie acoustique est redistribuée sur des fréquences décalées par rapport à la fréquence d'émission de la source. Ils ont attribué cet propriété à l'effet Doppler induit par le mouvement de translation du milieu turbulent. Une autre approche consiste à écrire l'équation Introduction de propagation du champ de pression diffusé sous la forme d'une équation stochastique (dites équation d'Helmholtz inhomogène) avec un terme source qui dépend des fluctuations du milieu de propagation. Cette approche, développée par Tatarski [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF] et complétée par Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF][START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF] a permis notamment d'exprimer le champ de pression diffusé ainsi que la section efficace de diffusion. Rytov [11] s'est quant à lui servi de l'équation stochastique pour exprimer les fluctuations d'amplitude et de phase du champ de pression diffusé, dont il a calculé les densités spectrales. Dans ses travaux expérimentaux, Blanc-Benon [16] s'est chargé de mesurer les spectres et les moments d'ordres supérieurs des fluctuations de phase et d'amplitude du champ de pression diffusé afin de tester la validité des formulations établies. Une troisième approche initiée par Cargill [35] et reprise récemment par Powles [START_REF] Powles | A weak-scattering model for turbine-tone haystacking outside the cone silence[END_REF] et McAlpine et al. [START_REF] Mcalpine | A weak-scattering model for turbine-tone haystacking[END_REF][START_REF] Mcalpine | A weak-scattering model for tone haystacking caused by sound propagation through an axisymmetric turbulent shear layer[END_REF] consiste à résoudre une équation qui porte sur le champ de pression diffusé avec un terme source simplifié dans l'hypothèse de faible diffusion afin d'exprimer le spectre de pression diffusé en champ lointain. Cependant, dans toutes les approches analytiques décrites ci-dessus, le tenseur d'inter-corrélation des fluctuations de vitesse du milieu turbulent est modélisé en considérant que la turbulence est isotrope ou homogène. Si ces modélisations sont valables dans certaines conditions (l'hypothèse d'isotropie permet de décrire la décroissance de l'énergie des échelles de la zone inertielle à condition que le nombre de Reynolds soit suffisamment élevé), elles ne peuvent pas renseigner sur l'énergie contenue dans les plus grosses échelles inhomogènes de l'écoulement turbulent qui interviennent en priorité dans le mécanisme de diffusion acoustique [28].

Le mécanisme de diffusion acoustique a aussi été étudié dans les souffleries anéchoïques à veine ouverte du Von Kármán Institute (VKI) et de l'ONERA (CEPRA 19) par Candel et al.

estimée au vue des mesures en soufflerie plus récentes. Enfin, les approches numériques ont prouvé leur pertinence dans l'étude de la diffusion acoustique mais n'ont pas su reproduire fidèlement le champ de pression diffusé car le contenu spectral de l'écoulement turbulent a été modélisé.

Toutes ces observations viennent justifier les travaux réalisés dans cette thèse. Ils consistent à l'étude de la diffusion acoustique par une couche de cisaillement turbulente à l'aide d'une simulation numérique aux grandes échelles. En effet, ce type d'approche numérique permet la simulation fidèle des grandes échelles de l'écoulement turbulent qui ont un rôle prépondérant dans le mécanisme de diffusion acoustique.

L'étude consiste dans un premier temps à réaliser la simulation numérique aux grandes échelles d'une couche de cisaillement turbulente. L'objectif principal de cette première étape est de valider le bon développement de la couche de cisaillement turbulente en observant son taux de croissance, ses longueurs intégrales ainsi que l'intensité de la turbulence qui s'y développe.

Dans un second temps, une source acoustique est ajoutée d'un côté de la couche cisaillement et le champ de pression diffusé issu de l'interaction entre l'onde acoustique et l'écoulement turbulent est calculé directement. Une analyse spectrale du champ de pression diffusé est réalisée afin d'observer la répartition de l'énergie sur les fréquences adjacentes à la fréquence d'émission. De plus, nous étudions l'influence des paramètres tels que la fréquence et l'amplitude de la source ainsi que l'épaisseur de la couche de cisaillement et la vitesse de convection des larges structures turbulentes sur le spectre de pression diffusé. Des plans entiers de l'écoulement sont ensuite extraits dans le but d'étudier la répartition spatiale de l'énergie diffusée. Ces travaux ont fait l'objet d'une publication dans le journal Computers & Fluids (annexe D). Cette partie se termine avec l'étude de la modulation de l'amplitude que subit l'onde acoustique lors de sa traversée de la couche de cisaillement turbulente.

Dans le dernier volet de cette thèse, nous étudions les liens qui existent entre la vitesse du milieu turbulent et le champ de pression diffusé et notamment le lien de cohérence entre les composantes de vitesse de l'écoulement et l'enveloppe du champ de pression diffusé. Cette propriété nous permet de reconstruire, avec la méthode de l'estimation stochastique linéaire, le champ de vitesse turbulent qui est corrélé avec les fluctuations d'enveloppe du champ de pression diffusé et par conséquent prépondérant dans le mécanisme de diffusion acoustique.

Chapitre I

Étude bibliographique

La diffusion d'une onde acoustique par une couche de cisaillement turbulente s'inscrit dans le cadre plus général de la propagation d'une onde (sonore, électromagnétique, entropique, etc.) dans un milieu (atmosphère, océan, vaisseau sanguin, pluie, brouillard, plasma interstellaire, etc.) dont les propriétés (vitesse, température, champ magnétique et électrique, humidité, etc.) fluctuent de manière aléatoire. L'onde subit alors une modulation de phase et d'amplitude ainsi qu'une perte de cohérence spatiale, sa directivité et son contenu spectral sont modifiés. La propagation des ondes dans les milieux aléatoires est un phénomène naturel qui intervient dans de nombreuses branches de la physique et de l'industrie. Dans le domaine des télécommunications, les ondes radios se réfléchissent successivement sur la ionosphère et la surface terrestre avant d'être captées par un récepteur. Entre deux réflexions, les ondes se propagent dans l'atmosphère qui présente des fluctuations de vitesse et de température ainsi qu'un gradient de champ moyen. Le signal initialement émit est altéré pendant la propagation ce qui peut résulter en la perte d'informations. En astrophysique, le scintillement des étoiles est directement lié au fait que l'onde lumineuse traverse les différentes couches de l'atmosphère avant d'être perçus par les télescopes. Celle-ci sera perturbée par les variations aléatoires de concentration d'électrons, de température et de champ magnétique. Une onde acoustique qui se propage en milieu marin est soumise à des variations de température, de vitesse, de masse volumique et de salinité. Ce phénomène intéresse les industriels qui souhaitent perfectionner leurs systèmes de détection (SONAR).

Dans le domaine de l'aéroacoustique, le phénomène de diffusion se manifeste dès qu'une onde acoustique se propage dans un écoulement turbulent, qui fait office de milieu aléatoire. Ce phénomène est présent lors des mesures acoustiques en soufflerie à veine ouverte, schématisé par la figure I.1a. Le bruit émis par la maquette d'avion est diffusé par la couche de cisaillement turbulente qui se forme aux abords du jet de la soufflerie, avant d'être reçu par les microphones situés en dehors du jet. La diffusion acoustique s'observe aussi à la sortie d'un réacteur double flux. Les ondes acoustiques tonales émises par la soufflante et par les turbines haute et basse pression s'échappent du moteur et traversent les deux couches de cisaillement formées en périphérie du jet avant de se propager librement dans l'atmosphère (figure I.1b).

Le but de cette étude bibliographique est, dans un premier temps, de décrire les principales caractéristiques du champ de pression diffusé par une couche de cisaillement turbulente, lors de mesures en soufflerie anéchoïque à veine ouverte. Des expériences très bien documentées ont été menés entre 1975 et 1985 par Candel, Guédel et Julienne [28,29,30,31,56,57,58] dans la soufflerie L 1 du VKI (Von Kármán Institue) et dans CEPRA 19 située au Centre d'Essais des Propulseurs de Saclay. Dans un second temps, nous rappellerons les éléments clefs de la théorie de la propagation d'une onde acoustique dans un écoulement turbulent. Le cadre de l'analogie de Lighthill [START_REF] Lighthill | On Sound Generated Aerodynamically. I. General theory[END_REF][START_REF] Lighthill | On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound[END_REF] est utilisé pour obtenir les renseignements essentiels sur l'intensité du champ de pression diffusé par un volume de turbulence ayant ou non un mouvement de translation moyen [54]. Le formalisme de Lighthill a été appliqué par Candel et al. [28,30,31] et par Guédel [57,58] dans la configuration des mesures acoustiques en soufflerie à veine ouverte dans le but d'obtenir un modèle qui valide les observations expérimentales. Nous expliciterons leurs principaux résultats analytiques qui rendent compte des observations. L'équation de Lighthill est ensuite mise sous la forme d'une équation stochastique de propagation dont l'opérateur de propagation est celui de l'équation de Helmholtz et les méthodes de résolution sont passées en revue. Elles permettent notamment d'obtenir des informations sur la phase et l'amplitude de l'onde diffusée. Cette méthode de résolution a notamment été développée par Tatarski [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF] et Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF] qui ont proposé, à partir des équations de propagation en milieu stochastique et moyennant des hypothèses sur le champ turbulent, des expressions sur les variations du champ acoustique. Deux autres approches analytiques sont aussi abordées, celle de Campos [24,25] et celle initiée par Cargill et reprise récemment par Powles et al. [START_REF] Powles | A weak-scattering model for turbine-tone haystacking outside the cone silence[END_REF] et McAlpine et al. [START_REF] Mcalpine | A weak-scattering model for turbine-tone haystacking[END_REF]. La bonne compréhension du mécanisme de diffusion acoustique a aussi permis l'essor d'une technique expérimentale qui permet de caractériser la turbulence de manière non-intrusive et d'obtenir des informations sur le champ de vorticité [START_REF] Pinton | Mesure de vorticité par diffusion acoustique[END_REF]13,98]. Le formalisme de Lund et Rojas [START_REF] Lund | Ultrasound as a probe of turbulence[END_REF] d'où découle cette méthode est brièvement décrit. Enfin, les études numériques sur la diffusion acoustique qui se rapprochent le plus de la configuration des mesures en soufflerie sont détaillées en fin de chapitre.

I.1 La diffusion acoustique dans le cadre des mesures en soufflerie anéchoïque à veine ouverte

Les souffleries anéchoïques à veine ouverte sont des dispositifs expérimentaux qui permettent aux scientifiques de prendre en compte en laboratoire des conditions de vol dans le but d'étudier les caractéristiques aéroacoustiques d'un aéronef. Il existe cependant des différences majeures entre la configuration réelle et la configuration expérimentale qui doivent être prises en compte lors des mesures acoustiques. En effet, en configuration réelle, l'avion est en mouvement par rapport à l'observateur ce qui induit un effet Doppler sur la fréquence reçue au sol. Dans la configuration expérimentale, la maquette placée dans le cône potentiel du jet dans lequel l'écoulement est de vitesse uniforme et les fluctuations turbulentes très faibles, est immobile par rapport aux microphones situés dans un milieu au repos, en dehors de la veine. Le différentiel de vitesse déstabilise l'écoulement selon le mécanisme de Kelvin-Helmholtz et entraîne la formation d'une couche de cisaillement turbulente aussi appelée zone de mélange. Les ondes acoustiques émises par la maquette doivent se propager dans l'écoulement uniforme, puis dans l'écoulement turbulent avant d'être reçues par les microphones. Afin de caractériser les phénomènes physiques qui I.1. La diffusion acoustique dans le cadre des mesures en soufflerie anéchoïque à veine ouverte entrent en jeux lors de la propagation des ondes acoustiques, des expériences ( [6,[START_REF] Schlinker | Refraction and scattering of sound by a shear layer[END_REF]4,30,56]) ont été conduites en remplaçant la maquette par une source monochromatique S de référence dont on connaît la fréquence d'émission et le diagramme de directivité avec précision. Trois phénomènes physiques venant se substituer à l'effet Doppler présent dans des conditions de vol réelles sont alors observés :

1. La convection de l'onde acoustique émise par la source S dans un milieu en mouvement.

2. La réfraction de l'onde acoustique par le gradient de vitesse moyen.

3. La diffusion de l'onde acoustique par les fluctuations de vitesse du milieu turbulent dans la couche de cisaillement.

Les effets de convection et ont été étudiés par Candel et al. [29] lors de mesures dans la soufflerie L 1 du VKI. Les auteurs montrent notamment la modification du diagramme de directivité de la source lorsque celle-ci émet dans un écoulement uniforme. Ils ont aussi analysé les effets de réfraction sur la propagation acoustique grâce à la mesure de la variation de phase moyenne (entre le signal électrique de la source et le signal de pression reçu par un microphone en dehors du jet) et du diagramme de directivité, en dehors du jet. La différence de phase moyenne évolue de manière linéaire en fonction de l'angle d'observation (par rapport à la direction de l'écoulement), indépendamment de la fréquence d'émission f 0 . Cela montre la nature géométrique de la propagation acoustique, confirmée par des comparaisons entre les diagrammes de directivité mesurés expérimentalement et les diagrammes calculés à l'aide d'un code d'acoustique géométrique pour un écoulement stationnaire. Enfin, la réfraction induit une redistribution spatiale de l'amplitude, caractérisée par une déviation de la loi de propagation acoustique en 1/r, r étant la distance entre le front d'onde et la source. Cette re-direction spatiale de l'amplitude et le changement des angles de propagation lors de la traversée de la couche de cisaillement a été étudiée par Amiet [6]. L'auteur exprime les relations qui existent entre l'angle de propagation initial, l'angle après réfraction et l'angle de propagation sans la couche de cisaillement. Il montre que les relations entre les angles ne dépendent pas de l'épaisseur de la couche de cisaillement, si celle-ci est petite devant la distance entre la source et le microphone. Pour que les corrections soient valides, il faut néanmoins que la distance source microphone soit grande devant la longueur d'onde et devant les dimensions de la source. La correction qui porte sur l'amplitude quant à elle dépend de la nature de la couche de cisaillement (plane ou cylindrique). Ahuja et al. [4] ont proposé une démarche pour prendre en compte les effets de convection et de réfraction lors des mesures acoustiques en soufflerie anéchoïque à veine ouverte. Ils montrent que l'on retrouve précisément le niveau de pression sonore émis par la source à condition que l'on prenne en compte le changement de direction des rayons et que l'on applique, au niveau de la pression sonore reçue par les microphones situés en dehors du jet, des coefficients de correction portant sur l'amplitude et la distance source microphone. Les auteurs s'intéressent aussi aux potentielles réflexions internes sur les couches de cisaillements. Celles-ci deviennent importantes si la direction de l'onde acoustique émise est proche de celle de l'écoulement. Pour des mesures plus où moins à l'aplomb de la source, celles-ci sont faibles, ce qui simplifie la détermination du coefficient de calibration en amplitude. Lorsque la fréquence de l'onde acoustique augmente, le diagramme de directivité mesuré en dehors du jet ne correspond plus à l'estimation calculée à partir de l'approximation géométrique stationnaire, c'est-à-dire lorsque seuls sont pris en compte les effets de la réfraction. La figure I.2a, extraite de [31] montre que la seule réfraction (diagramme en trait plein, repéré par la flèche U 0 = 60 ms -1 ) se traduit par une rotation du diagramme de rayonnement tandis que la diffusion (diagramme mesuré), engendre une baisse de niveau et un élargissement du diagramme. Ces effets sont d'autant plus importants que la fréquence de l'onde acoustique est élevée, cf. figure I.2b, extraite aussi de [31]. Nous allons désormais résumer les observations expérimentales de Candel et al. sur le champ de pression diffusé par la couche de cisaillement turbulente. Soit une La première conséquence de l'interaction entre l'onde acoustique et l'écoulement turbulent réside dans la modulation de l'amplitude du champ de pression diffusé, comme on peut le voir sur la figure I.4a, extraite des travaux de Candel et al. [28]. Cette modulation est basse fréquence, comparée à la fréquence de la "porteuse", c'est à dire la fréquence d'émission f 0 . La différence de phase entre la source et le microphone fluctue aussi de manière erratique. La densité spectrale des fluctuations de pression reçues par le microphone P , extraite de [28], est tracée sur la figure I.4b, en fonction de la fréquence centrée sur f 0 , f -f 0 . Une grande partie de l'énergie acoustique reste contenue dans le "pic principal" de la fréquence d'émission mais l'on observe aussi la présence de deux "lobes secondaires", de part et d'autre du pic. À mesure que la fréquence d'émission augmente, l'énergie contenue dans le pic principal diminue au profit des lobes secondaires. Il est intéressant de remarquer que les fréquences ∆f pour lesquelles les lobes atteignent leur maximum, sont identiques au signe près et indépendantes de la fréquence d'émission. Candel et al. ont aussi étudié l'influence de la vitesse du jet sur la position du maximum des lobes. Ils ont montré que le décalage fréquentiel ∆f est proportionnel à la vitesse de convection des structures turbulentes U c , elle-même proportionnelle à U J , et ont abouti à l'expression : Candel et al. [28,30,29] ont aussi montré la nature projective du champ de pression diffusé, en calculant les coefficients d'inter-corrélations et les inter-spectres entre les microphones P et P 1 , pour le champ de pression diffusé et son enveloppe. Ils déduisent notamment l'expression de deux vitesses défilement U d1 et U d2 , qu'ils relient à la vitesse de convection des structures turbulentes via le facteur de projection µ p :

U d1 ≈ U d2 ≈ U c µ p , avec µ p = H 0 H + H 0 . (I.2)
En traçant des contours d'iso-corrélation de l'amplitude du champ de pression diffusé en dehors du jet, ils relient de la même manière la longueur de défilement

L d à l d via la relation L d = l d /µ p .
La nature projective du champ de pression diffusée peut s'expliquer facilement en raisonnant à partir de la figure I.3. L'onde acoustique émise par la source va interagir avec une structure turbulente au point Q 1 et le champ de pression diffusé résultant de l'interaction sera perçu par P 1 à l'instant t 1 . La structure turbulente va ensuite se déplacer à la vitesse U c et un signal de pression diffusé similaire sera ressenti en P , à l'instant t 0 , lorsque la structure aura atteint le point Q 0 . En définissant la vitesse de défilement montrent notamment que le processus de diffusion sélectionne les basses fréquences de la couche de cisaillement, qui sont de l'ordre de ∆f . Cela permet d'isoler le caractère quasi-périodique du passage des larges structures turbulentes. Les caractéristiques du champ de pression diffusé ainsi que les mécanismes d'interaction de la diffusion acoustique décrits précédemment ont été validés par des modèles analytiques que l'on détaillera plus loin dans ce chapitre. Schlinker et Amiet [START_REF] Schlinker | Refraction and scattering of sound by a shear layer[END_REF] ont approfondi l'étude de la réfraction et se sont aussi intéressés aux effets de la diffusion acoustique. Les auteurs expliquent que la répartition spatiale et spectrale de l'énergie diffusée est une conséquence de l'effet Doppler. Le rayon émis par la source serait "emmagasiné" puis ré-émis par la structure turbulente. Cela induit un double effet Doppler ; dans un premier temps, le rayon est absorbé par un récepteur en mouvement et dans un second temps, ré-émit par une source en mouvement. Schlinker et Amiet [START_REF] Schlinker | Refraction and scattering of sound by a shear layer[END_REF] ont effectué une série de mesures sur la soufflerie Acoustic Research Tunnel du United Technologies Research Center afin d'étudier l'influence de l'angle d'observation θ P , de la position et de la fréquence de la source, de l'épaisseur de la couche de cisaillement et du nombre de Mach du jet sur l'atténuation du pic principal. Leurs conclusions sont en accord avec celles de Candel et al., le pic principal s'atténue d'autant plus que la fréquence d'émission, l'épaisseur de la couche traversée et le nombre de Mach augmentent. Ils ont estimé aussi que les effets de diffusion deviennent significatifs, c'est à dire lorsque plus de la moité de l'énergie incidente est diffusée, si :

U d comme U d = ξ/(t 0 -t 1 ), le raisonnement précédent induit ξ/U d = Q 1 Q 0 /U c , soit U d ≈ U c /µ p car µ p ≈ Q 1 Q 0 /ξ.
M J l 1 λ 0 0.5, (I.3) 
avec l 1 une mesure de l'épaisseur de la couche de cisaillement, M J le nombre de Mach du jet basé sur la vitesse U J et λ 0 la longueur d'onde de l'onde acoustique émise par la source. Ahuja et al. [4] ont cherché à évaluer l'absorption du son par la turbulence et les effets de la diffusion. Afin d'évaluer l'absorption du son par la turbulence, les auteurs utilisent une source acoustique large bande et comparent la densité spectrale de puissance du champ de pression reçu par un microphone dans la veine de la soufflerie et celle d'un microphone en dehors du jet. Ils montrent que l'absorption du son par la turbulence, dans leur configuration expérimentale et pour les fréquences acoustiques testées, n'a pas d'effet significatif. Pour évaluer les effets de la diffusion acoustique, une source mono-fréquentielle est utilisée. Les auteurs montrent que le niveau d'énergie diffusée augmente avec le ratio l 1 /λ 0 et avec M J et concluent que les effets de diffusion sont visibles si le ratio l 1 /λ 0 est supérieur à 10.

Dans la suite du chapitre, on va donner des détails sur les analyses théoriques qui permettent de retrouver les propriétés principales du champ de pression diffusé, d'abord dans le cas général, puis dans la configuration des mesures en soufflerie.

I.2 Détails sur les analyses théoriques qui permettent d'expliciter les caractéristiques du champ de pression diffusé

I.2.1 Répartition spatiale et spectrale de l'énergie acoustique diffusée

Expression du terme source responsable de la diffusion acoustique, dans le cadre de l'analogie de Lighthill L'analogie de Lighthill [START_REF] Lighthill | On Sound Generated Aerodynamically. I. General theory[END_REF] consiste à reformuler de manière exacte les équations de Navier-Stokes sous la forme d'une équation d'onde inhomogène avec un terme source de nature quadripolaire qui dépend des variables de l'écoulement turbulent. On distingue alors la région turbulente I.2. Détails sur les analyses théoriques qui permettent d'expliciter les caractéristiques du champ de pression diffusé confinée dans laquelle les interactions entre les champs de vitesse, de pression et de température génèrent le bruit aérodynamique et la zone d'observation au repos, où s'appliquent les lois de l'acoustique linéaire. L'équation de propagation s'écrit alors :

c 2 0 ∆ - ∂ 2 ∂t 2 [ρ(x, t) -ρ 0 ] = - ∂ 2 T ij ∂x i ∂x j , (I.4)
avec c 0 et ρ 0 la vitesse du son et la masse volumique du milieu au repos, ρ(x, t) la masse volumique au point d'observation et T ij le tenseur de Lighthill qui s'exprime :

T ij = ρu i u j I + ((p -p a ) -c 2 0 (ρ -ρ 0 ))δ ij II -τ ij III , (I.5)
avec p a la pression dans le milieu au repos. Le tenseur des contraintes visqueuses τ ij s'exprime, dans un écoulement compressible, par 

τ ij = -pδ ij + µ ∂u i ∂x j + ∂u j ∂x j - 2 3 
∂u k ∂x k δ ij , (I.
T ij ≈ ρ 0 u i u j .
Si l'on suppose que les composantes de vitesse de l'écoulement v i et celles liées au passage de l'onde acoustique incidente U i sont petites devant c 0 on peut, en première approximation, décomposer le champ de vitesse u i en la somme de ses deux contributions de telle sorte que le tenseur de Lighthill simplifié se scinde en trois parties,

T ij = ρ 0 v i v j + ρ 0 U i U j + ρ 0 (v i U j + v j U i ) . (I.7)
Le terme ρ 0 v i v j correspond à la génération de bruit par l'interaction entre les fluctuations de vitesse du milieu turbulent, le terme ρ 0 U i U j décrit l'interaction entre les composantes acoustiques et le dernier terme représente l'interaction entre le champ de vitesse turbulent et l'onde acoustique. C'est ce dernier terme qui entre en jeu dans le mécanisme de diffusion acoustique. Si l'on scinde le champ de vitesse du milieu turbulent en une partie moyenne v i et une partie fluctuante v ′ i , l'opérateur • correspondant à la moyenne sur l'ensemble des réalisation de l'écoulement, on peut réécrire le dernier terme comme

ρ 0 (v i U j + v j U i )
Interaction avec le champ moyen

+ ρ 0 v ′ i U j + v ′ j U i Interaction avec le champ fluctuant . (I.8)
L'interaction avec le champ moyen est responsable du phénomène de réfraction alors que l'interaction avec le champ fluctuant est responsable de la diffusion. Seul ce dernier terme, aussi appelé le quadripôle de diffusion, sera alors conservé dans le reste du développement analytique. Calculer les fluctuations du champ de pression p s associées au mécanisme de diffusion revient alors à résoudre l'équation de propagation :

∆ - 1 c 2 0 ∂ 2 ∂t 2 p s (x, t) = -2ρ 0 ∂ 2 v ′ i U j ∂x i ∂x j . (I.9)
Chapitre I. Étude bibliographique Expression du vecteur d'onde de diffusion et de l'intensité du champ de pression diffusé en un point

On considère l'interaction d'une onde acoustique plane qui se propage selon le vecteur unitaire e 0 , induisant des fluctuations de vitesse U 1 = U a cos(k 0 (x 1 -c 0 t)), avec les fluctuations de vitesse du milieu turbulent v ′ i , confinées dans un volume V (y) où y est le vecteur position parcourant le volume. Le point d'observation P est situé en x P = x P e s et reçoit le champ de pression diffusé selon un angle θ par rapport au vecteur d'onde k 0 = k 0 e 0 de l'onde incidente. Le nombre de Mach de l'écoulement turbulent M t est défini comme du champ de pression diffusé par unité de volume de turbulence I s reçue au point P est environ égale à En intégrant la formule (I.10) sur une sphère centrée en O, Lighthill déduit la valeur de la puissance totale diffusée, par unité de volume de turbulence

M t = (v ′ 2 ) 1 2 /c 0 , où (v ′ 2 )
I s ≈ 2πIk 4 0 c 2 0 x P i x P j x 2 P 1 x 6 P F ij (k d ), (I.10) avec F ij (k d ) = 1 8π 3 Re V V v ′ i (y)v ′ j (y ′ )e -ik d • (y-y ′ ) dydy ′ , (I.11) où I = ρ 0 c 0 U
p t = 2Ik 2 0 L 1 v ′ 2 1 c 2 0 , (I.13)
avec v ′ 1 la composante du champ de vitesse turbulent dans la direction de propagation de l'onde incidente et L 1 la longueur intégrale de la vitesse v ′ 1 , dans cette même direction. L'expression (I.13) montre que la puissance totale diffusée dépend de la fréquence de l'onde acoustique incidente, de l'intensité de la turbulence dans la direction de propagation et de la distance sur laquelle les fluctuations turbulentes sont corrélées. Il est possible de simplifier l'expression du spectre des corrélations turbulentes F ij (I.11) si l'on suppose que la turbulence est homogène isotrope. L'hypothèse d'homogénéité permet d'écrire que les corrélations turbulentes v ′ i (y)v ′ j (y ′ ) en deux points ne dépendent plus que de la position relative z = yy ′ . On définit alors une nouvelle fonction ϕ ij (z) = v ′ i (y)v ′ j (yz) qui permet de réécrire le tenseur spectral comme

F ij (k d ) = 1 8π 3 V ϕ ij (z)e -ik d • z dz. (I.14)
Lorsque la turbulence est isotrope, F ij est réel et dépend uniquement de la densité spectrale de l'énergie cinétique fluctuante E(k) selon la formule

F ij (k) = E(k) 4πk 4 (k 2 δ ij -k i k j ). (I.15)
L'intensité d'énergie diffusée par volume de turbulence (I.10), normalisée par l'intensité acoustique de l'onde incidente se réécrit alors Expression de l'intensité du champ de pression diffusé en un point, lorsque le milieu possède un mouvement de translation Dans la section précédente, le milieu turbulent était considéré statistiquement stationnaire ce qui impliquait une densité spectral d'énergie cinétique fluctuante indépendante du temps. Dans le cas où le volume de turbulence se déplace avec une vitesse U t , il est nécessaire de réécrire l'intensité de pression diffusée en prenant en compte la dépendance temporelle du spectre E. Ford et Meecham [54] ont mené ce raisonnement et ont abouti à la formule de la puissance diffusée, par unité d'angle solide, par fréquence angulaire, par unité de volume, normalisée par l'intensité acoustique incidente :

I s I = k 2 0 8c 2 0 x 2 cos 2 (θ) cot 2 (θ/2) D(θ) E(k d ). (I.
P (ω, θ) = k 2 0 8c 2 0 cos 2 (θ) cot 2 (θ/2) π ∞ 0 cos(∆ωτ )E(k d , τ )dτ, (I.19)
où ∆ω = ω -ω 0 avec ω 0 la fréquence angulaire incidente et τ = t 1 -t 2 , la séparation entre deux instants. L'expression (I. 19) est reliée à la formule (I.18) par la relation :

∞ 0 P (ω, θ)dω = 1 V dσ dΩ . (I.20)
On peut montrer (Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF], page 340), dans l'hypothèse de turbulence gelée de Taylor [START_REF] Taylor | The spectrum of turbulence[END_REF], que

E(k d , τ ) = E(k d ) exp(ik d • U t τ ).
Cette hypothèse n'est valide que si le temps caractéristique d'advection par le champ moyen est petit devant celui des autres mécanismes qui agissent et modifient le champ fluctuant. L'expression de P (ω, θ) peut alors se simplifier en : Expression de la densité spectrale de puissance des fluctuations du champ de pression diffusé, dans la configuration des mesures en soufflerie Dans le cadre analytique décrit précédemment, Guédel [58] a exprimé la densité spectrale de puissance S p ′ s des fluctuations du champ de pression diffusé dans la configuration d'une mesure en soufflerie, représentée par la figure I.3, pour un angle θ P = 90 • . S p ′ s est directement reliée à la densité spectrale des fluctuations de vitesse S v ′ 1 par la relation : géométriques sont nécessaires pour aboutir à cette expression. Nous reviendrons par la suite sur les plus contraignantes. Cette formulation montre notamment que le spectre de pression diffusé à la fréquence ω est proportionnel au spectre des fluctuations de vitesse transversale du milieu turbulent, évalué à la fréquence ω -ω 0 . Par conséquent, si le spectre S v ′ 1 présente un maximum à la fréquence turbulente ω tmax , le maximum d'énergie diffusé est atteint à la fréquence ω max = ω 0 ± ω tmax , tant que ω tmax ≪ ω 0 (hypothèse 3). En mesurant par fil chaud le spectre S v ′ 1 , l'auteur teste la pertinence de l'expression (I.23). Il montre notamment que la densité spectrale de puissance mesurée de manière expérimentale est proche de l'expression I.23 tant que l'inégalité M J l 1 λ 0 1.5 (I.24) est respectée. Au-delà de cette valeur, l'hypothèse 2. de la section I.2.1 n'est plus valable et il faudrait prendre en compte la décroissance progressive de l'amplitude de l'onde acoustique incidente lors du calcul du champ de pression diffusé.

P (ω, θ) = k 2 0 8c 2 0 cos 2 (θ) cot 2 (θ/2) k d (2πσ 2 U ) 1 2 E(k d ) exp - (∆ω + k d • U m ) 2 2σ 2 U k 2 d , (I.
f 0 f 0 e -1 1 Δf(k d ) = k d ·U m 2π Δf e = k d σ U π 2 1/2
S p ′ s (x P , ω) = πP 2 a k 2 0 l 1 2c 2 0 (H + H 0 ) 2 S v ′ 1 (∆ω/c 0 k 1 , ∆ω), (I.

Interprétation physique du décalage fréquentiel et de la longueur de diffusion

Selon Lighthill [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF], l'énergie diffusée sera non nulle seulement si le vecteur d'onde de diffusion est égal au vecteur d'onde des tourbillons porteurs de l'énergie turbulente. Ainsi, il est possible de définir ce vecteur d'onde, indépendamment de la fréquence acoustique et de l'angle de diffusion, comme une grandeur intrinsèque à l'écoulement turbulent à laquelle on peut associer une longueur de diffusion : 

l d = 2π k d . (I.25)
k 3 = 2π/l d = k d .
Finalement, l'analyse en un point du champ de pression, via la résolution de l'équation de Lighthill (I.4), moyennant certaines hypothèses, a permis de montrer que l'intensité de l'énergie diffusée à la fréquence ω est proportionnelle au spectre des corrélations des fluctuations de vitesse F ij , pris au nombre de diffusion k d et à la fréquence ω-ω 0 . Dans le cas où le volume de turbulence se déplace, l'effet Doppler induit une répartition de l'énergie diffusée autour de la fréquence f 0 . Nous allons maintenant montrer que l'on retrouve le caractère projectif du champ de pression diffusé lorsque l'on mène l'analyse en deux points.

I.2.2 Caractère projectif du champ de pression diffusé dans la configuration des mesures en souffleries

Candel et al. [28,29] ont exprimé la densité inter-spectrale de puissance des fluctuations de pression diffusé afin de valider le caractère projectif du champ de pression diffusé observé expérimentalement. Nous allons expliciter la formulation de l'inter-spectre, que l'on retrouve aussi chez Guédel [58], après avoir décrit la géométrie de la configuration.

Géométrie et notations

La figure I.8 renseigne sur les paramètres dont dépend l'expression de la densité inter-spectrale de puissance des fluctuations de pression diffusé S p ′ s1 p ′ s2 , calculée entre les points P 1 et P 2 , situés aux positions r 1 et r 2 . L'origine O du référentiel est situé au centre de la couche de cisaillement, sur la ligne reliant la source et le point P . Celui-ci se trouve à la position H = (r 1 + r 2 )/2. On définit le repère orthonormé ( , ⊥ 1 , ⊥ 2 ) où la direction est celle de H. La distance qui sépare l'origine et la source est égale à H 0 . La source est placée dans un écoulement uniforme de nombre de Mach M J . La longueur l correspond à l'épaisseur de la couche de cisaillement selon la direction . Les fluctuations de vitesse du milieu turbulent v 1 et v 2 ont pour direction respective la direction des lignes SP 1 et SP 2 .

M J S

U c H 0 H P 1 (r 1 ) P 2 (r 2 )

1 2 P( ) H O l v 2 v 1

Figure I.8 -Configuration des mesures acoustiques en deux points

Expression de l'inter-spectre du champ de pression diffusé en deux points lorsque que la turbulence est considérée gelée.

L'inter-spectre S p ′ s1 p ′ s2 des fluctuations de pression diffusée entre les points P 1 et P 2 est relié à l'inter-spectre des fluctuations de vitesse du milieu turbulent S v ′ 1 v ′ 2 par l'expression [57,58] :

S p ′ s1 p ′ s2 (r 1 , r 2 , ω) = πP 2 a k 2 0 l 2c 2 0 (H + H 0 ) 2 e ik 0( r -µpM J ⊥ • r ⊥) S v ′ 1 v ′ 2 µ p r ⊥ , k 0 M J + ω * , ∆ω , (I.26)
où r = r 1r 2 , ω * = ∆ω/ω 0 , r la composante de r dans la direction et r ⊥ la projection de r dans le plan (⊥ 1 , ⊥ 2 ) (idem pour M J et M J⊥ ). Cette expression fait apparaitre plusieurs propriétés du champ de pression diffusé :

1. Une échelle spatiale de dimension transversale L ⊥ dans le milieu turbulent apparait comme une échelle de taille L ⊥ /µ p sur la ligne joignant les points P 1 et P 2 . Cela montre que le champ de pression diffusé est la projection du champ turbulent dans la direction transversale, avec un rapport de projection 1/µ p .

2. La phase de l'exponentiel prend en compte le déphasage des signaux lié à la séparation entre les points P 1 et P 2 dans la direction , ainsi que le déphasage lié à la convection des ondes sonores par l'écoulement uniforme, via le terme µ p M J⊥ • r ⊥ .

3. La diffusion sélectionne les structures turbulentes qui ont comme composante de nombre d'onde k la valeur k 0 M J + ω * .

L'expression de la densité spectrale de puissance des fluctuations de pression diffusée (I.23) découle directement de (I.26) si l'on considère r ⊥ et r nuls. Si on considère une turbulence gelée, qui se déplace à la vitesse U c , le spectre des fluctuations de vitesse du milieu turbulent S(k, ω) se réécrit :

S(k, ω) = S(k)δ(ω + k • U c ), (I.27)
avec δ la fonction Dirac. Cette relation permet de ré-exprimer l'expression (I.26) sous la forme : 

S p ′ s1 p ′ s2 (r 1 , r 2 , ω) = πP 2 a k 2 0 l 2c 2 0 (H + H 0 ) 2 e ik 0( r -µpM J ⊥ • r ⊥) e -i[∆ω+k 0( M +ω * )Uc ] µp r ⊥ 1 U c⊥ 1 champ de pression diffusé S v ′ 1 v ′ 2 - ∆ω + k 0 M + ω * U c U c⊥ 1 , µ p r ⊥ 2 , k 0 M J + ω * , (I.
⊥ 1 = 2π/L ⊥ 1 ≈ -∆ω/U c⊥ 1 , l'inter-spectre du champ de pression diffusé sera maximal pour ω max = ω 0 -U c⊥ 1 2π/L ⊥ 1 .
Ce décalage correspond à l'effet Doppler décrit précédemment. Les observations expérimentales ont aussi mis en avant la forte modulation de phase et d'amplitude due à l'interaction avec la turbulence. Nous allons maintenant expliciter les modèles analytiques qui permettent d'obtenir les densités spectrales des fluctuations de phase et d'amplitude du champ de pression diffusé.

I.2.3 Étude analytique portant sur l'amplitude et sur la phase du champ de pression diffusé

Équation de Helmholtz inhomogène

Les problématiques de propagation d'ondes dans les milieux aléatoires sont généralement traitées par la résolution d'une équation stochastique dites équation d'Helmholtz inhomogène où les fluctuations aléatoires sont intégrées dans une 'constante diélectrique' aléatoire ǫ(x, t) [11] et dont la forme la plus simple s'écrit :

∆p + k 2 0 ǫ(x, t)p = 0. (I.29)
Cette équation est valable si le temps caractéristique de la variation de la constante diélectrique est très grand devant le temps de propagation de l'onde dans le milieu, ce qui revient à supposer

L c 0 ≪ 1 f t , (I.30)
où L est une longueur caractéristique du volume de turbulence (V = L 3 ). Cette hypothèse n'est pas équivalente à l'hypothèse 3. de la section I. 

∆p + k 2 p = -k 2 ǫ ′ p avec k 2 = k 2 0 ǫ (I.31)
Cette équation n'étant pas résoluble en état, il est nécessaire de faire des approximations sur le système étudié, notamment sur l'intensité des fluctuations et sur les échelles caractéristiques, temporelles et spatiales, de l'onde et du milieu aléatoire. C'est la diversité de ces approximations qui est à la base des différentes méthodes de résolution de l'équation (I.29) et il s'avère indispensable de vérifier le domaine d'applicabilité de la solution obtenue. Dans la suite de cette section les principales méthodes de résolution de l'équation (I.31) sont décrites dans le but de donner de nouvelles informations sur le champ de pression diffusé et en particulier sur son amplitude, sa phase et sur la quantité d'énergie diffusée.

Chapitre I. Étude bibliographique

Expression du champ de pression diffusé dans le cadre de l'approximation de Born L'approximation de Born, aussi appelée 'single scattering approximation', consiste à décomposer le champ de pression p en une série de i-termes d'ordre ǫ ′ i et à ne garder que les deux premiers termes de la série ; le terme de pression incidente p 0 et le terme de pression diffusée p s , d'ordre de grandeur respectif ǫ ′ 0 et ǫ ′ 1 . L'équation (I.29) devient alors, à l'ordre ǫ ′ 0 , l'équation de propagation du champ p 0 en l'absence de milieu diffusant et, à l'ordre ǫ ′ 1 : 

∆p s + k 2 p s = -k 2 ǫ ′ (x,
∆p s + k 2 0 p s = 2p 0 k 2 0 1 -i e 0 • ∇ k 0 1 2 
T ′ T 0 + e 0 • v ′ c 0 -n ′ , (I.34)
où n ′ représente les fluctuations de l'indice de réfraction généralisé n = 1+n ′ [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]. Cet indice est relié à la constante di-électrique par la relation n 2 = ǫ ([64] p.347). Dans le cas où l'observation s'effectue en champ lointain, pour un angle de diffusion θ < 30 • , on montre que la contribution au champ de pression diffusé du terme -n ′ est nettement supérieure à celle de ie 0 • ∇n ′ /k 0 de sorte que l'on simplifie l'équation en

∆p s + k 2 0 p s = 2p 0 k 2 0 1 2 
T ′ T 0 + e 0 • v ′ c 0 . (I.35)
Cette expression est équivalente à l'expression (I.32) lorsque les fluctuations d'indice de réfraction sont faibles. Dans ce cas, ǫ ′ ≈ 2n ′ . Clifford [40], dans le chapitre 11 du livre de Derr [46], interprète n ′ comme les fluctuations de l'indice du milieu, défini comme le ratio entre la vitesse de référence c 0 et la vitesse de phase locale d'une onde plane qui se propage dans la direction e 0 . L'expression (I.35) est l'équation de départ du développement de Tatarski [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF] ainsi que du travail de thèse de Blanc-Benon [16], lorsque les fluctuations de température sont mises à zéro. Pour respecter les hypothèses qui interviennent dans la simplification du tenseur de Lighthill, on considère dans la suite de l'étude que les fluctuations de température sont négligeables par rapport au fluctuations de vitesse. L'intégration de l'équation (I.34) aboutit à :

p s (x P ) = 2k 2 0 c 0 V e 0 • v ′ ( 
y)p 0 (y)G 0 (x P , y)dy, champ de pression diffusé où G 0 (x P , y) est la fonction de Green en espace libre dans le domaine spectrale. Elle s'exprime simplement par G 0 (x P , y) = -e ik 0 |x P -y| /(4π|x P -y|) et peut se simplifier grâce à l'hypothèse d'observation en champ lointain en G 0 (x P , y) = -e ik 0 (x P -y • es) /(4πx P ). Le champ de pression diffusé est finalement égal à :

p s (x P ) = - k 2 0 2πc 0 e ik 0 x P x P V e 0 • v ′ (y)e ik d • y dy. (I.36)
Celui-ci est donc une onde sphérique d'amplitude aléatoire complexe qui dépend de la longueur d'onde incidente, des fluctuations de vitesse dans la direction incidente et du vecteur de diffusion k d . Il est aisé à partir de cette formule de retrouver l'expression de la section efficace de diffusion en suivant Tatarski [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]. À mesure que le produit kl c augmente, l'approximation de Born est de moins en moins bien vérifiée. Dans ce cas, pour résoudre l'équation (I.29) il faut, soit garder d'avantage de termes dans le développement en série de la pression, soit changer de méthode de résolution. On distingue habituellement trois méthodes de résolution, la méthode des petites perturbations due à Rytov, l'approximation de l'équation parabolique et l'acoustique géométrique. La première permet notamment d'expliciter les variations d'amplitude et de phase du champ de pression diffusé, c'est l'objet de la section suivante.

Expressions des densités spectrales de puissance des fluctuations d'amplitude et de phase, dans le cadre de la méthode de Rytov, dans la configuration des mesures en soufflerie

Une onde qui se propage dans un milieu aléatoire subit une modulation d'amplitude et de phase. La méthode des perturbations "lisses" (smooth perturbations en anglais) proposée par Rytov consiste à écrire la pression sous la forme p(x) = exp(ψ(x)) avec ψ(x) une phase complexe qui se décompose en ψ(x) = χ(x) + iS R (x), où χ(x) représente l'amplitude logarithmique de l'onde et S R (x) sa phase. En injectant cette forme dans l'équation (I.29) et en développant en série ψ = ψ 0 + ψ 1 + . . . , il est possible d'obtenir les formulations des fluctuations d'amplitude et de phase de l'onde diffusée, aux différents ordres, ainsi que leur moments d'ordres supérieurs et leurs spectres (Tatarski [112], Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF], Blanc-Benon [16], etc.). Il est possible de montrer (Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF], p.350) que la solution de Rytov au premier ordre est reliée à la solution de Born par l'expression : 

ψ
S χ ′ 1 (x P , ω) = πk 2 0 l c 2 0 ∞ -∞ f χ 1 (k ⊥ 1 , f 0 )S v ′ v ′ k ⊥ 1 , ω c 0 , ω dk ⊥ 1 (I.39) avec f χ 1 (k ⊥ 1 , k 0 ) = 1 -I 1 L ⊥ 2 v ′ v ′ cos F k 2 ⊥ 1 k 0 + I 2 L ⊥ 2 v ′ v ′ sin F k 2 ⊥ 1 k 0 , (I.40) où F = HH 0 /(H + H 0 ). I 1 (L ⊥ 2 v ′ v ′ ) et I 2 (L ⊥ 2 v ′ v ′ )
sont des intégrales qui dépendent de la longueur intégrale des fluctuations de vitesse transversale v ′ , dans la direction ⊥ 2 . Ces intégrales sont évaluées numériquement. L'expression de la densité spectrale des fluctuations de phase s'obtient en remplaçant f χ 1 par :

f S R1 (k ⊥ 1 , k 0 ) = 1 + I 1 L ⊥ 2 v ′ v ′ cos F k 2 ⊥ 1 k 0 -I 2 L ⊥ 2 v ′ v ′ sin F k 2 ⊥ 1 k 0 (I.41)
dans l'expression (I.39). Les fonctions filtres dépendent de la fréquence d'émission et de la composante des nombres d'ondes des structures turbulentes dans la direction de l'écoulement ⊥ 1 . f χ 1 a tendance à croitre lorsque k ⊥ 1 augmente. Cela signifie que la contribution des petites échelles de la turbulence au spectre S χ ′ 1 est amplifiée, au détriment de la contribution des grosses échelles. Cet effet est d'autant plus flagrant que la fréquence d'émission est importante. La fonction filtre f S R1 joue le rôle inverse, elle amplifie l'importance relative des grosses structures par rapport aux plus petites échelles. D'après Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF], les densités spectrales S χ ′ 1 et S S ′ R1 décroissent en ω -8/3 lorsque ω tend vers l'infini. Candel et al. [28] ont trouvé, à partir de leurs mesures en soufflerie, une décroissance en ω -5/2 , qui est très proche de la décroissance théorique.

Domaine de validité de la méthode de Rytov

La méthode de Rytov s'applique si λ 0 < l c et si les fluctuations d'indice ǫ ′ sont petites devant l'unité. Ishimaru ([64], p.407) propose un autre critère portant sur la variance de l'amplitude logarithmique σ 2 χ , celle-ci ne doit pas dépasser 0.2-0.5. Le domaine d'applicabilité de la méthode de Rytov dépasse celui de l'acoustique géométrique car il couvre aussi le domaine de la diffraction de Fresnel correspondant à l'inégalité [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF] : dans l'équation (I.29) et de considérer que la fonction P • a est lentement variable dans la direction de l'onde incidente e 0 . Cette hypothèse permet de ne garder que les composantes du Laplacien perpendiculaires à la direction de propagation de l'onde incidente. L'équation de Helmholtz se réécrit alors :

η K ≤ λ 0 x P ≤ L t , ( 
2ik 0 ∂P • a ∂y 1 + ∆ ⊥ P • a = -2n ′ k 2 0 P • a , (I.45) avec ∆ ⊥ = ∂ 2 /∂y 2 2 + ∂ 2 /∂y 2 3 .
Physiquement, la partie gauche de l'équation (I.45) signifie qu'il y a une faible diffusion de l'énergie dans les directions perpendiculaires à la direction de propagation. La résolution de l'équation (I.45), moyennée sur l'ensemble des réalisations conduit à l'expression de l'intensité de l'onde cohérente ( [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF], p.410), au bout d'une distance y 1 dans le milieu : 

|P • a (y 1 , y ⊥ )| 2 = |P 0 (y 1 , y ⊥ )| 2 e -2α 0 y 1 , avec α 0 = k 2 0 n ′ 2 L
P peak P tot = exp(-β 2 G ), avec β G = 2 √ 2πf 0 v ′ m √ L 1 l 1 c 2 0 , (I.47)
où v ′ m est le maximum de l'écart-type de la vitesse fluctuante dans la direction e 1 , qu'il compare favorablement à ses mesures expérimentales.Sijtsma et al. [START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] ont évalué le même ratio avec une approche différente qui consiste à estimer les variations de retard que subit l'onde acoustique lors de la traversée de la couche de cisaillement. Ils obtiennent l'expression :

P peak P tot = exp(-β 2 S ) avec β S = 2 √ 2π 2 f 0 v ′ m δ m c 2 0 , (I.48)
où δ m est l'épaisseur de quantité de mouvement de la couche de cisaillement, à l'aplomb de la source. Cette équation à la même forme que celle obtenue par Guédel mais avec un facteur d'atténuation β légèrement différent. Ils ont, eux aussi, comparé favorablement cette expression aux résultats issus de leurs essais expérimentaux, surtout lorsque β 2 S < 1. Cette expression leur permet in fine de retrouver la puissance acoustique initialement émise par la source acoustique.

Nous allons maintenant faire un bref rappel sur la méthode de l'acoustique géométrique, avant de décrire deux modélisations théoriques de la diffusion acoustique par une couche de cisaillement turbulente.

I.3 Autres approches analytiques pour étudier la diffusion acous-

tique par une couche de cisaillement turbulente

I.3.

Méthode générale de l'acoustique géométrique

Lorsqu'une onde acoustique se propage dans un milieu dont la taille l m et le temps T m caractéristiques du champ moyen sont nettement supérieurs à λ 0 et T 0 = λ 0 /c 0 , on peut utiliser la méthode de l'acoustique géométrique pour calculer les champs associés à l'onde propagée. Cette méthode a été développée en détail par Candel ([33], [27], [26]) et a été appliquée dans de nombreuses configurations d'écoulements, notamment dans les jets de soufflerie ( [28], [29]). En partant des équations normalisées de conservation de la masse, de la quantité de mouvement et de l'entropie dans un fluide parfait et non conducteur de chaleur, on décompose les champs de vitesse, de pression, de masse volumique et d'entropie en une composante liée à l'écoulement moyen instationnaire et une composante fluctuante de faible amplitude liée à l'onde acoustique. On cherche ensuite une solution du système d'équation sous la forme :

  P a U S a   =   P • a (x, t) U • (x, t) S • a (x, t)
  e iS(x,t) , (I.49) avec P a , U et S a les composantes acoustiques respectives de pression, vitesse et entropie. L'amplitude de ces fluctuations (P • a , U • , S • a ), le vecteur d'onde local k = ∇S et la fréquence angulaire locale ω = -∂S/∂t sont des fonctions lentement variables dans le temps et dans l'espace. On décompose alors les amplitudes en une série asymptotique dont le i-ème terme est de l'ordre de (λ 0 /l m ) i ou (T 0 /T m ) i . Le système d'équation est réécrit en égalisant les termes qui ont le même ordre de grandeur, ce qui permet d'obtenir une hiérarchie de système qui prennent la forme générale de

D   P a0 U 0 S a0   = 0, D   P a1 U 1 S a1   =   A 0 B 0 C 0   , D   P a2 U 2 S a2   =   A 1 B 1 C 1   ... (I.50)
Annuler le déterminant de D permet d'obtenir une relation de dispersion qui se met sous la forme d'une équation aux dérivées partielles du premier ordre, portant sur la phase S. Cette équation, appelée équation iconale, est résolue par la méthode des caractéristiques. On peut montrer que la résolution des systèmes (I.50) revient à résoudre les équations

∂A i ∂t + ∇c g • A i = f (P a(i-1) , U i-1 , S a(i-1) ), (I.51)
où A i est 'l'action d'onde' associée aux amplitudes acoustiques d'ordre i et c g = ∂ω/∂k, la vitesse de groupe locale. À l'ordre 1 (i = 0), la fonction f est nulle de sorte que l'action d'onde A 0 = P 2 a0 /(ρc 2 kc) est conservée le long des lignes caractéristiques de la relation de dispersion. On montre alors ( [27], [26]) que la grandeur A 0 c g δa = constante avec δa la section élémentaire d'un tube de rayon, calculable pour des conditions d'écoulement très générales. Finalement, la résolution d'un problème de propagation acoustique à l'ordre 1 revient, lorsque le milieu est indépendant du temps, à la résolution de 18 équations ordinaires d'ordre 1, 6 portant sur la phase et les coordonnées des rayons, et 12 qui permettent de calculer δa. Comme cela a été mentionné en début de paragraphe, il est admis que la méthode de l'acoustique géométrique est valable pour λ 0 ≪ l m et T 0 ≪ T m . En pratique, ces deux conditions se révèlent très restrictives et on les remplace par deux autres limitations. La première porte sur les variations temporelles et spatiales de l'indice de réfraction généralisé du milieu n (cf. équation (I.34)) et la seconde est associée aux effets de diffraction. La première condition s'exprime selon deux inégalités [26] : 

λ 0 2π |δ x n ′ | n < l m et T 0 2π |δ t n ′ | n < T m (I.

I.3.2 L'approche heuristique de Campos

Campos [24,25] propose un modèle pour étudier la transmission du son à travers les couches de cisaillement turbulentes, qu'il établit en considérant deux cas limites, le cas où λ 0 est très nettement supérieure à l'échelle des in-homogénéités l c de la couche de cisaillement, et celui où λ 0 ≪ l c . La figure I.9 représente la configuration étudiée par Campos.

0 t P k i =(γ,g) k t =(Γ,g) M 0 M S M J S ω 0 P ω K=(Γ,G) ξ h (x-U 0 t,t) e 1 e 3 e 2 e 2 ϕ ,c 0 ,c 0 v' v' v' v' v'
Figure I.9 -Modélisation de la couche de cisaillement par une interface instationnaire.

Une source acoustique S, placée dans un jet de nombre de Mach M J , se déplace à une vitesse U S = M S c 0 dans la direction e 3 et émet dans toutes les directions (sur la figure, seule l'émission Chapitre I. Étude bibliographique selon θ 0 est représentée) à la fréquence angulaire ω 0 . L'onde acoustique est diffusée par une interface instationnaire, de hauteur ξ h (x -U 0 t, t), qui se déplace à la vitesse U 0 = M 0 c 0 et dont la forme moyenne sur l'ensemble des réalisations est le plan (e 2 ,e 3 ). L'onde acoustique sera aussi diffusée par les fluctuations de vitesse de l'écoulement turbulent v ′ de la couche de cisaillement. L'auteur cherche à estimer la densité spectrale de puissance des fluctuations de pression diffusé au point P , repéré dans le système de coordonnées sphériques centré en S, par le vecteur x SP = x SP (sin θ P cos φ e 1 + sin θ P sin φ e 2 + cos θ P e 3 ), avec x SP la distance séparant la source et le point P . Les vecteurs k i , k t et K représentent respectivement les vecteurs d'onde incidents, transmis et totaux. Le raisonnement de Campos peut se résumer en 5 étapes majeures :

1. Calcul du coefficient de transmission complexe T r(g) de l'amplitude du champ de pression dans le cas limite λ 0 ≫ l c . La couche de cisaillement est alors vue comme une interface irrégulière et instationnaire. L'auteur exprime le coefficient de transmission à l'aide d'un terme d'amplitude A(g) et d'un terme de phase Φ a (g) selon T r(g) = A(g) exp(iΦ a (g)), où :

A(g) = 2ρ 0 γ(g) ρ 0 γ(g) + ρ(1 -M J cos θ 0 ) 2 Γ(g) et Φ a (x, t) = (γ(g)-Γ(g))ξ h (x-U 0 t, t) (I.55)
avec γ(g) et Γ(g) les composantes dans la direction e 1 des vecteurs d'ondes incidents et transmis et g = (g 2 , g 3 ) les composantes dans le plan (e 2 , e 3 ).

2. Calcul du décalage de phase induit par la turbulence lors de la traversée de la couche, dans la configuration où λ 0 ≪ l c . Campos exploite les équations de l'acoustique géométrique à l'ordre 1 (l'action d'onde est conservée sur les caractéristiques) pour obtenir l'expression du décalage de phase :

Φ b (x, t) = βM J (c 0 /c)kζ avec ζ(x -U 0 t, t) ≡ L n • mdl. (I.56) où β ∼ |v ′ |/U J , n = k/k, m = v ′ /v ′ et L la longueur du rayon.
3. Prise en compte des effets d'atténuation et de re-distribution fréquentielle et spatiale de l'énergie acoustique via la fonction caractéristique C(z, t) qui représente la moyenne sur toutes les réalisations des variations de phase induites par la traversée de la couche. Cette fonction s'exprime par :

C(z, τ ) = exp(-Q a (1 -E t (z, τ ))), avec Q a ≡ a 2 (γ(g) -Γ(g)) + β 2 M 2 J (c 0 /c) 2 k 2 l 2 1 cosecθ, (I.57)
où E t (z, τ ) représente le coefficient de corrélation normalisé et a l'écart type des fluctuations de hauteur de l'interface ξ h . La fonction E t , pour une turbulence anisotrope et instationnaire, peut se mettre sous la forme : [START_REF] Mcalpine | A weak-scattering model for turbine-tone haystacking[END_REF]. Celle-ci consiste à résoudre une forme simplifiée de l'équation de Lilley (Goldstein [55]) dans le cadre de l'approximation de Born. Ce modèle permet de prédire la densité spectrale du champ de pression diffusé par la couche de cisaillement d'un jet cylindrique (cf. figure I.10) en champ lointain et pour tous les angles d'observation, même ceux qui correspondent au cône de silence (θ P petit). La vitesse u 3 (r) correspond au champ de vitesse moyen du jet, supposé unidirectionnellement cisaillé. Dans ce cas, l'équation qui décrit l'évolution des fluctuations du champ de pression s'écrit : Les spectres des inter-corrélations ne dépendent plus que de trois paramètres, la vitesse de convection U c de la couche de cisaillement, la longueur intégrale

E t (z, τ ) = 1 - 2τ 2 t 2 c exp - τ 2 t 2 c i=3 i=2 1 - 2z 2 i L 2 ci exp - z 2 i L 2 
I d (θ P , φ, ω) = Θ(θ P , φ) Reγ,Γ Ψ(g, ω) exp(iΦ(g, ω, G; z, τ ))C(z, τ )dg 2 dg 3 dz 2 dz 3 dτ avec Θ(θ P , φ) = 1/ρ 0 c 3 0 256π 5 sin 2 θ P cos 2 φ 1 -M S cos θ P , Ψ(g, ω) = ω 2 A(g)S(g) γ(g) 2 , et Φ(g, ω, G; z, τ ) = (g -G) • z + (ω -ω 0 -g • U S + U 0 • (g -G))τ
L P B p ′ = S, où L P B = D Dt D 2 Dt 2 -∇ • c 2 ∇ + 2c 2 du 3 dr ∂ 2 ∂x 3 ∂t et S = ρc 2 D Dt ∂ 2 ∂x i ∂x j u ′ i u ′ j . (I.
L 3 v ′ 3 v ′ 3
dans la direction axiale e 3 , calculée à partir de la composante de vitesse axiale de l'écoulement turbulent et le temps intégrale T . McAlpine et al. [START_REF] Mcalpine | A weak-scattering model for turbine-tone haystacking[END_REF] montrent que les deux maximums locaux du spectre de pression diffusé sont décalés par rapport à la fréquence d'émission de ∆f = ± √ 2U c /(2πL

3 v ′ 3 v ′ 3
) ce qui aboutit, par comparaison au décalage fréquentiel trouvé par Candel et al. [28] 

(∆f = U c /(3.2δ ω )), à la valeur L 3 v ′ 3 v ′ 3
= 0.72 δ ω . les auteurs choisissent finalement de calculer les densités spectrales de puissance S p ′ s à partir des valeurs : 

U c = 0.6 U J , L 3 v ′ 3 v ′ 3 = δ ω (x 3 ) et T = 0.6 L 3 v ′ 3 v ′ 3 U c (I.

I.4 Mesure de vorticité par diffusion acoustique

Candel et al. [29] ont montré que l'étude du champ de pression diffusé permet d'extraire des informations sur l'écoulement turbulent et notamment la taille, la vitesse de convection et la fréquence de passage des larges structures, cohérentes en envergure. Cette idée de sonder un écoulement turbulent via l'étude du champ de pression diffusé a connu un nouvel essor depuis les travaux théoriques de Lund et Rojas [START_REF] Lund | Ultrasound as a probe of turbulence[END_REF], dans lesquels le champ de pression diffusé est explicité en fonction de la transformée de Fourier spatio-temporelle du champ de vorticité de l'écoulement turbulent. Cette formulation revêt une importance particulière car la vorticité est au coeur des mécanismes de transfert d'énergie vers les petites échelles dans la cascade de Kolmogorov [36]. En champ lointain, sous l'approximation de Born et en considérant l'écoulement turbulent incompressible, la transformée de Fourier temporelle du champ de pression diffusé s'exprime comme : La source S émet une onde plane à la fréquence f 0 dans la direction e 0 et un récepteur P mesure le champ de pression diffusé, issue de l'interaction avec la turbulence dans le volume sondé V s , qui se propage dans la direction e S . L'angle de diffusion est ainsi fixé, ce qui détermine un nombre d'onde de la diffusion car k d = 2k 0 sin(θ/2). Si l'on ré-exprime l'équation I.63 dans le domaine temporel on obtient la relation p s (x P , t) exp(iω 0 t) ∝ Ω ⊥ (k d , t) ce qui conduit, en pratique, à travailler sur le signal démodulé z(t) = p s (x P , t) exp(iω 0 t). La densité spectrale de puissance du signal z(t) aura typiquement la forme d'une gaussienne, centrée sur la fréquence ∆f = k d U c /2π, et de largeur liée aux fluctuations de vitesse moyenne de l'écoulement U f . Le décalage étant bien sur dû à l'effet Doppler. Cette méthode à l'avantage d'être non-intrusive car les fluctuations de vitesse liées au passage de l'onde acoustique, faibles par hypothèse, ne viennent pas perturber l'écoulement turbulent. Il faut néanmoins tenir compte des effets de diffraction induits par l'émission et la réception de l'onde acoustique, illustrés en bleu sur la figure. Le récepteur va recevoir, en plus du champ de pression diffusé, une partie des ondes émises par la source à f 0 . L'amplitude de celles-ci sera plus importante que l'amplitude du champ de pression diffusé ce qui peut entrainer un masquage des informations liées à la diffusion. Dans sa thèse, Pinton [START_REF] Pinton | Mesure de vorticité par diffusion acoustique[END_REF] a réalisé des mesures de vorticité par diffusion acoustique sur une allée de von Kármán formée dans le sillage d'un cylindre, décrite par Baudet et al. [12]. Cet écoulement se forme lorsque le nombre de Reynolds, basé sur le diamètre du cylindre d K et sur la vitesse amont U K , dépasse 45. Dans ce cas, deux lignes de vortex se forment et se déplace vers l'aval. La distance qui sépare les deux lignes a K et la distance qui sépare les vortex b K sont constantes. Pinton [START_REF] Pinton | Mesure de vorticité par diffusion acoustique[END_REF] a montré entre autre que l'énergie acoustique diffusée est maximale lorsque la condition de Bragg k d = 2π/b K est remplie. Cette technique expérimentale, appliquée sur un écoulement de turbulence développée de type jet rond par Baudet et al. [13] où Poulain et al. [START_REF] Poulain | Turbulence dans l'espace de Fourier : Mesures de vorticité par diffusion acoustique[END_REF]98], a permis l'étude des temps et des longueurs de décorrélation des modes de vorticité et de montrer que ceux-ci sont advectés à la même vitesse moyenne. Les auteurs ont aussi réalisé des analyses temps-fréquence afin de discerner, dans le volume de mesure V f , les vortex ayant la même taille mais une durée de vie et une vitesse d'entraînement différentes. En rajoutant une voie de mesure au dispositif expérimental (deux modes de vorticités k d1 et k d2 sont mesurés simultanément), Baudet et al. [13] Dans la dernière section de ce chapitre bibliographique, nous allons décrire les principales études numériques portant sur la diffusion acoustique.

ps (x P , ω) = p 0 cos θ sin θ 1 -cos θ iπ 2 ω c 2 0 e iωx P /c 0 x P Ω ⊥ (k d , ω -ω 0 ), ( 

I.5 Étude de la diffusion acoustique par simulations numériques

Les modèles analytiques qui décrivent le champ de pression diffusé par une couche de cisaillement turbulente font intervenir des grandeurs spectrales de l'écoulement qui ne sont pas connues à priori. Il est néanmoins possible de simuler cette interaction en résolvant les équations d'Euler ou de Navier-Stokes numériquement. Si l'on considère qu'un écoulement turbulent se constitue d'un ensemble de structures vorticitaires, il est intéressant, en première approche, d'étudier l'interaction entre une onde acoustique et un vortex isolé. Cette étude a été réalisé par Candel [27], puis par Colonius et al. [42] sur un vortex statique et plus récemment par Clair et Gabard [38] dans la configuration d'un vortex en mouvement. Quelques détails sur ces études et les principaux résultats sont donnés plus bas. Suzuki [START_REF] Suzuki | Acoustic Scattering from a Mixing Layer : Role of Instability Waves[END_REF][START_REF] Suzuki | Acoustic wave propagation in transversly sheared flows[END_REF] a étudié la diffusion d'une onde acoustique par une couche de cisaillement laminaire, dans le régime pré-transitionnel, lorsque l'écoulement est une succession de vortex. L'étude numérique de diffusion par un écoulement qui se rapproche le plus de la couche de cisaillement turbulente a été réalisée par Ewert et al. [50,52,51] et reconduite plus récemment par Clair et Gabard [39].

I.5.1 Diffusion d'une onde acoustique par un vortex

Lorsque le vortex est statique

Candel [27] a étudié, avec un code qui résout l'équation de l'approximation parabolique (I.45), la diffusion d'une onde acoustique par un tourbillon 2D non-visqueux, de circulation non-nulle. Il montre notamment la re-distribution spatiale de l'énergie diffusée et compare sa solution numérique avec l'expression analytique obtenue dans le cadre de l'approximation de Born. Colonius et al. [42] ont résolu directement les équations de Navier-Stokes 2D pour simuler la diffusion d'une onde acoustique plane par deux vortex différents, un vortex non-visqueux de circulation non-nulle identique à celui de Candel, et un tourbillon de circulation nulle dû initialement à Taylor [START_REF] Taylor | On the dissipation of eddies[END_REF]. Les auteurs ont pris des précautions pour réduire au maximum les erreurs numériques en utilisant des schémas de discrétisation spatiale et temporelle d'ordre 6 et

Lorsque le vortex est en mouvement uniforme

Les études de diffusion par un vortex statique ont montré la redirection spatiale de l'énergie acoustique. La fréquence du champ de pression n'est quant à elle pas modifiée car il n'y a pas d'effet Doppler. Afin d'obtenir une redistribution spectrale de l'énergie acoustique et de se rapprocher de la configuration des mesures en soufflerie, Clair et Gabard [38] ont effectué le calcul numérique 2D de la diffusion d'une onde acoustique par un tourbillon uniformément convecté. Ils ont utilisé le solveur CAA (Computationnal AeroAcoutics) PIANO, développé au DLR, qui résout les équations d'Euler, linéarisées autour d'un champ instationnaire qui comporte les fluctuations de vitesse de l'écoulement turbulent, en l'occurrence le champ de vitesse du tourbillon pour la présente simulation. Ces équations s'écrivent formellement :

∂ρ ′ ∂t + u 0 • ∇ρ ′ + u ′ • ∇ρ 0 + ρ 0 ∇ • u ′ + ρ ′ ∇ • u 0 = h 1 ∂u ′ ∂t + ∇u ′ • u 0 + ∇u 0 • u ′ + ∇p ′ ρ 0 - ∇p 0 ρ ′ ρ 2 0 = h 2 ∂p ′ ∂t + u 0 • ∇p ′ + u ′ • ∇p 0 + γp 0 ∇ • u ′ + γp ′ ∇ • u 0 = h 3 (I.64)
où (ρ ′ , u ′ , p ′ ) sont les perturbations acoustiques de faibles amplitudes résolus par le système, (ρ 0 , u 0 , p 0 ) sont les champs de base stationnaire, γ le coefficient de Laplace et (h 1 , h 2 , h 3 ) les termes sources de la diffusion qui font intervenir les interactions entre les termes turbulents (ρ t , u t , p t ) et les perturbations acoustiques. Ces trois termes sources se simplifient en :

h 1 = -u t • ∇ρ ′ h 2 = -∇u ′ • u t + ∇u t • u ′ h 3 = -u t • ∇p ′ (I.65)
si l'on fait l'hypothèse que les termes des fluctuations de vitesse du milieu turbulent sont prépondérants par rapport aux termes faisant intervenir ρ t et p t . Le champ de vitesse turbulent est de plus considéré solénoïdal, i.e ∇ • u t = 0. Dans la configuration de la diffusion par un vortex, le champ de base stationnaire est uniforme, ∇u 0 = 0 et (ρ t , u t , p t ) correspond aux champs de pression, de masse volumique et de vitesse induits par le vortex. L'influence de la fréquence d'émission de la source et de la vitesse de convection sur la densité spectrale de puissance du champ de pression diffusé correspond aux observations expérimentales ; l'intensité du champ de pression diffusé augmente avec la fréquence et les lobes d'énergie diffusée s'éloigne du pic central si la vitesse du tourbillon augmente.

I.5.2 Diffusion d'une onde acoustique par une couche de cisaillement dans son régime pré-transitionnel

Durant sa thèse, Suzuki [START_REF] Suzuki | Acoustic wave propagation in transversly sheared flows[END_REF] a élaboré un code de tracé de rayon instationnaire afin d'étudier la propagation acoustique dans différents types d'écoulement cisaillé. Il s'est notamment intéressé à la réfraction et à la diffusion que subit une onde acoustique lors son passage dans une couche de cisaillement laminaire. Ce type d'écoulement se forme à l'interface entre deux zones d'écoulement de vitesse différente. L'instabilité de Kelvin-Helmholtz se développe et une succession de tourbillons bien délimitée apparaît. Ces tourbillons vont fusionner deux à deux pour former un tourbillon plus gros, augmentant ainsi l'épaisseur de la couche de cisaillement. Si le nombre de Reynolds de l'écoulement, basé par exemple sur l'épaisseur de vorticité et sur le différentiel de vitesse, est suffisamment élevé, la transition vers la turbulence s'amorce après deux ou trois fusions de tourbillons et la couche de cisaillement devient pleinement turbulente. Suzuki et Lele [START_REF] Suzuki | Acoustic Scattering from a Mixing Layer : Role of Instability Waves[END_REF] ont étudié l'interaction entre une onde acoustique et les deux premiers vortex qui se forment dans la couche de cisaillement, bien avant une quelconque fusion. Ils ont comparé le champ de pression issu du code d'acoustique géométrique instationnaire avec le champ de pression calculé par une simulation numérique directe 2D. Les auteurs ont notamment montré la réfraction aléatoire des rayons acoustiques qui se focalisent en moyenne dans une certaine région de l'espace. L'amplitude du champ de pression diffusé converge dans cette même région. La diffusion serait ainsi une conséquence de la distorsion des rayons par la vorticité. En étudiant l'élargissement spectral, ils se sont aperçus que le maximum d'énergie diffusée est atteint pour ∆f = f i -f 0 , lorsque l'angle d'incidence n'est pas trop éloigné de 90 • , avec f i la fréquence à laquelle la couche est "forcée" en entrée de domaine pour déclencher l'instabilité de Kelvin-Helmholtz. Cette fréquence correspond aussi à la fréquence de passage des tourbillons ce qui montre encore une fois que la condition de Bragg détermine correctement la fréquence sur laquelle est réparti le maximum d'énergie diffusée.

I.5.3 Diffusion d'une onde acoustique par une turbulence stochastique

Les études numériques de diffusion acoustique qui à ce jour se rapprochent le plus de la configuration des mesures en soufflerie anéchoïque à veine ouverte sont celles d'Ewert et al. [52,51]. Ces auteurs ont simulé numériquement la propagation d'une onde acoustique dans un écoulement présentant un gradient de vitesse moyen et des fluctuations de vitesse de l'écoulement turbulent, à l'aide du code CAA PIANO. Cependant la présence d'un gradient de champ moyen dans les équations d'Euler linéarisées (I.5.1) provoque l'apparition d'instabilités hydrodynamiques. Cela a amené les auteurs à plutôt résoudre l'équation de Pierce [START_REF] Pierce | Wave equation for sound in fluids with unsteady inhomogeneous flow[END_REF] qui décrit la propagation du son dans un écoulement instationnaire et inhomogène. En ne gardant que les termes d'interaction qui font intervenir u t , les équations qui régissent le système s'écrivent :

∂u ′ ∂t + ∇(u 0 • u ′ ) + ∇ p ′ ρ 0 = -∇(u t • u ′ ) ∂p ′ ∂t + c 2 0 ∇ • ρ 0 u ′ + u 0 p ′ c 2 0 = -c 2 0 ∇ • u t p ′ c 2 0 . (I.66)
Les fluctuations de vitesse du milieu turbulent sont modélisées par la méthode RPM (Random Particle Mesh), introduite par Ewert [50], qui est une méthode stochastique qui génère un champ turbulent instationnaire. Cette méthode consiste à générer une fonction courant ψ en filtrant un bruit blanc, relié au champ de vitesse turbulent par u t = ∇ ∧ ψ, dont le tenseur des intercorrélations spatio-temporelle ψ i (x, t)ψ j (x + ξ, t + τ ) s'écrit :

ψ i (x, t)ψ j (x + ξ, t + τ ) = δ ij σ 2 ψ exp - |τ | t c - π|ξ -U c τ | 2 4l 2 c , (I.67)
où l c et t c sont l'échelle et le temps de corrélations et σ 2 ψ = ψ 2 i est la variance des fluctuations de ψ i . Il est alors nécessaire de choisir les valeurs de σ 2 ψ , l c et t c . Ces grandeurs peuvent être reliées à l'intensité de l'énergie cinétique fluctuante k t et au taux de dissipation de l'énergie cinétique fluctuante ǫ t que l'on peut obtenir via une simulation numérique de type RANS (Reynolds Averaged Navier-Stokes). Les auteurs ont appliqué cette méthode sur la configuration expérimentale de Candel et al. [28], ils ont d'abord effectué une simulation numérique de type RANS afin d'obtenir les valeurs de σ 2 ψ , l c et t c pour alimenter le modèle RPM. Ils ont ensuite calculé, avec leur code CAA, la propagation de l'onde acoustique dans le couche de cisaillement turbulente modélisée et ont comparé leurs densités spectrales de puissance de champ de pression diffusé à celles obtenus par Candel et al. [28]. Leurs spectres présentent effectivement les deux bosses autour de la fréquence d'émission mais certaines caractéristiques essentielles des spectres ne correspondent pas aux observations expérimentales. Lorsque la vitesse en sortie de convergent augmente, la quantité d'énergie diffusée reste pratiquement la même. De plus, la position des lobes reste elle aussi la même, alors que celle-ci est sensée croître linéairement avec la vitesse de convection (I.1). Les auteurs observent aussi une différence de niveau entre le pic principal et les lobes secondaires plus importante que les observations expérimentales. Ils attribuent cette différence au fait que leur simulation ne calcule pas les composantes azimutales des termes sources de diffusion.

Plus récemment, Clair et Gabard [37,39] ont réalisé une simulation numérique de diffusion acoustique par une couche turbulente avec la même méthodologie qu'Ewert et al. [50] (RPM pour générer les fluctuations turbulentes et code CAA PIANO pour calculer la propagation acoustique). L'écoulement moyen stationnaire est choisi uniforme ce qui évite d'avoir des instabilités hydrodynamiques car les gradients de champ moyen sont nuls. Les auteurs résolvent alors les équations d'Euler linéarisées décrites par le système (I.5.1), avec les termes ∇ρ 0 , ∇u 0 , ∇p 0 et ∇ • u 0 mis à zéro. Clair et Gabard étudient notamment l'influence de la fréquence de la source, de la vitesse de convection de la turbulence et de l'angle d'observation sur la forme du spectre de pression diffusé. Les densités spectrale de puissance de fluctuations de pression, calculé à l'aplomb de la source, sont représentées sur la figure I.12. Le spectre passe d'une forme proche de celle trouvée lors de leur précédente étude sur la diffusion acoustique par un unique vortex (courbes bleue et verte sur la figure I.12), à une forme plus proche des études expérimentales, lorsque la fréquence de la source augmente. Il semblerait que la zone de turbulence soit vue comme une seule grosse échelle par l'onde acoustique basse fréquence, comme cela est le cas pour la diffusion par un vortex unique. À mesure que la fréquence de la source augmente, la turbulence plus fine joue un rôle de plus en plus important dans le mécanisme de diffusion acoustique. La position du maximum des lobes augmente légèrement lorsque la fréquence de la source augmente avant de se stabiliser pour les fréquences de source plus élevées. Les auteurs remarquent aussi que la longueur de diffusion l d , défini par (I.1), est égale à 0.88 l 1 , ce qui très inférieur de l'intervalle [3.2, 4.4] δ ω obtenu lors des différentes mesures en soufflerie. Pour comparer les valeurs de la longueur de diffusion, les auteurs ont assimilé δ ω avec l 1 .

(f-f 0 )δ ω /c 0 S v' (k x ) (dB/Hz) Figure I.
12 -Densités spectrales de puissance des fluctuations de pression, pour différentes fréquences de la source acoustique, extraite de Clair et Gabard [39] I.6 Résumé du chapitre bibliographique Dans ce chapitre bibliographique, nous avons rappelé les principales propriétés du champ de pression diffusé dans la configuration des mesures acoustiques en soufflerie à veine ouverte (section I.1), à savoir, la répartition spatiale et spectrale de l'énergie acoustique, la modulation d'amplitude et de phase et le caractère projectif. Nous avons ensuite montré comment les différents modèles analytiques (section I.2) de la littérature rendent compte de ses propriétés. Ceux-ci mettent notamment en avant la relation de proportionnalité qui existe entre le spectre de pression diffusé et le spectre des fluctuations de vitesse du milieu turbulent, évalué au nombre d'onde de diffusion k d et à la fréquence ∆f . Ce nombre d'onde de diffusion est intrinsèque à la couche de cisaillement et peut être relié à une longueur de diffusion l d qui caractérise le milieu turbulent. Nous avons donné des détails sur d'autres approches analytiques pour étudier la diffusion d'une onde acoustique par une couche de cisaillement turbulente (section I.3). La bonne compréhension du mécanisme de diffusion acoustique a entrainé l'essor d'une technique expérimentale qui permet d'étudier des modes de vorticité de manière globale et non-intrusive (section I.4). Dans la dernière partie (section I.5), nous avons décrit les études numériques de la diffusion d'une onde acoustique par des écoulements qui se rapprochent le plus de la couche de cisaillement turbulente, notamment les travaux d'équipes qui ont simulé numériquement l'interaction entre une onde acoustique et une turbulence dont le contenu spectral est modélisé. Si l'influence de la fréquence acoustique et de la vitesse de convection sur le spectre de pression diffusé concorde avec les observations expérimentales, la position des lobes ainsi que la forme des spectres diffèrent. Cela tient au fait que le contenu spectral de la turbulence modélisée est très différent du spectre réel d'une couche de cisaillement turbulente qui se développe aux abords du jet d'une soufflerie à veine ouverte. Dans cette étude, nous réalisons la simulation numérique aux grandes échelles de la diffusion d'une onde acoustique par une couche de cisaillement turbulente plane. Ce type de simulation permet notamment de résoudre finement les grandes échelles contenues dans l'écoulement turbulent qui interviennent en priorité dans le mécanisme de diffusion acoustique. La première étape du travail consiste alors à réaliser la simulation de la couche de cisaillement turbulente plane seule, c'est ce que nous détaillons dans le chapitre suivant.

Chapitre II

Simulation numérique d'une couche de cisaillement turbulente plane

Avant de réaliser le calcul direct de l'interaction entre une onde acoustique et la couche de cisaillement turbulente, il est d'abord nécessaire de simuler uniquement la couche de cisaillement et de valider ses caractéristiques physiques. Dans ce chapitre nous allons, dans un premier temps, décrire la géométrie et les paramètres de la couche de cisaillement et donner des informations sur le code de calcul permettant de la simuler. Nous étudions ensuite l'influence des fluctuations et du profil de vitesse injecté en entrée de domaine ainsi que de l'envergure du domaine sur le développement de la couche de cisaillement. Cette étape permet, par comparaison avec des travaux numériques et expérimentaux antérieurs, de valider les caractéristiques physiques de celleci. Enfin, nous calculons quelques grandeurs qui concernent les larges structures turbulentes et le contenu spectral de la couche de mélange, utiles à la compréhension du mécanisme de diffusion acoustique. Bien que l'objectif du chapitre soit la validation de la simulation de la couche de cisaillement turbulente seule, il est important de garder à l'esprit que cela ne constitue qu'une étape avant la calcul direct du champ de pression diffusé. Cela nous amène à être particulièrement précautionneux vis-à-vis des bruits parasites inhérents au calcul numérique.

II.1 Mise en place du calcul numérique de la couche de cisaillement turbulente

II.1.1 Géométrie de la couche de cisaillement

Généralement, dans la configuration des mesures acoustiques en soufflerie anéchoïque à veine ouverte, la couche de cisaillement turbulente qui se forme aux abords du jet est de géométrie cylindrique. Dans cette étude, nous avons choisi de simuler une couche de cisaillement turbulente plane. Ce choix permet de simplifier la mise en place et de réduire le coût du calcul. En effet, le maillage sera relativement simple à mettre en place et puisque la couche de cisaillement plane est statistiquement homogène en envergure, il sera possible d'appliquer des conditions limites de périodicité. La configuration de la couche de cisaillement turbulente plane est aussi fortement documentée, autant sur le plan expérimental que numérique ( [14,[START_REF] Jones | Turbulent correlation measurements in a two-stream mixing layer[END_REF][START_REF] Rogers | Direct simulation of a self-similar turbulent mixing layer[END_REF][START_REF] Mcmullan | The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers[END_REF][START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF][START_REF] Liepmann | Investigations of free turbulent mixing[END_REF][START_REF] Wygnanski | The two-dimensionnal mixing region[END_REF] etc.), ce qui facilite les comparaisons.

II.1.2 Physique et paramètres de la couche de cisaillement turbulente

Une couche de cisaillement turbulente se développe à l'interface entre deux zones de vitesse différente, selon le mécanisme d'instabilité de Kelvin-Helmholtz. Soit

U 1 = U 1 e x et U 2 = U 2 e x
Chapitre II. Simulation numérique d'une couche de cisaillement turbulente plane les vitesses respectives de ces deux zones, dirigées dans la direction de l'écoulement e x , aussi appelée direction axiale. On appellera la direction transverse e y et la direction de l'envergure e z . Nous considérons par la suite que la vitesse U 1 est supérieure à la vitesse U 2 . La couche de cisaillement turbulente est représentée sur la figure II.1. Le point P 1 est un point situé en dehors de la couche de cisaillement.

U 1 y 0 x U 2 z a ( ) b ( ) c ( ) P 1
Figure II.1 -Schéma de la couche de cisaillement turbulente.

Le mécanisme de Kelvin-Helmholtz va entrainer la formation d'une succession de tourbillons primaires orientés dans la direction de l'envergure qui se déplacent dans la direction de l'écoulement (partie (a) de la figure II.1). L'excitation des sous-harmoniques de la fréquence initiale de l'instabilité de Kelvin-Helmholtz entraîne la fusion deux à deux des tourbillons [START_REF] Winant | Vortex pairing : the mechanism of turbulent mixing-layer growth rate at moderate reynolds number[END_REF] ce qui résulte en la formation d'un tourbillon plus gros, augmentant ainsi l'épaisseur de la couche de cisaillement. Entre temps, des tourbillons secondaires orientés dans la direction de l'écoulement se forment et relient les tourbillons primaires entre eux [START_REF] Lin | The mixing layer : deterministic models of turbulent flow. Part 3. The effect of plane strainon the dynamics of streamwise vortices[END_REF][START_REF] Lasheras | On the origin and evolution of streamwise vortical structures in a plane, free shear layer[END_REF]. L'interaction entre les tourbillons primaires et secondaires génèrent des petites échelles turbulentes tri-dimensionnelles. Au bout de deux ou trois appariements, si le nombre de Reynolds est suffisamment élevé, la transition vers la turbulence s'amorce (partie (b)) et l'écoulement devient pleinement tri-dimensionnel. Dans cette phase post-transition, des larges structures turbulentes, cohérentes en envergure, se forment [23] et se déplacent à la vitesse de convection U c = (U 1 + U 2 )/2 (partie (c)). Celles-ci croissent linéairement et finissent par fusionner lorsqu'elles sont trop proches l'une de l'autre [START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF]. La couche de cisaillement, une fois turbulente, évolue de manière auto-similaire [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF] ; c'est à dire que les profils transverses de chaque moment statistique convergent vers un unique profil qui prend en compte l'évasement de la couche de mélange. Pour caractériser la couche de cisaillement, on définit usuellement la différence des vitesses ∆U et le rapport des vitesses R comme :

∆U = U 1 -U 2 et R = U 1 -U 2 U 1 + U 2 . (II.1)
Il existe différentes manières d'évaluer l'épaisseur de la couche de cisaillement. À partir de la vitesse dans la direction de l'écoulement moyennée en temps et en envergure u (x, y), on peut calculer l'épaisseur de vorticité δ ω (x) :

δ ω (x) = ∆U (∂ u (x)/∂y) max . (II.2)
Si l'on souhaite avoir une mesure de l'épaisseur de la couche de cisaillement aux prémices de sa formation, on se base sur le profil de vitesse axial en entrée du domaine, à (x = 0). Si l'on considère que ce profil est de type tangente hyperbolique, exprimé comme :

U 0 (y) = ∆U 2 1 R + tanh 2y δ ω,0 , (II.3)
alors l'épaisseur de vorticité initiale δ ω,0 s'exprime naturellement par :

δ ω,0 = ∆U (∂U 0 /∂y) max . (II.4)
On peut aussi définir l'épaisseur de quantité de mouvement δ m pour un écoulement incompressible comme :

δ m (x) = 1 ∆U 2 ∞ -∞ [U 1 -u (x, y)] [ u (x, y) -U 2 ] dy.
(II.5)

À partir des vitesses et des longueurs qui viennent d'être explicitées, on peut calculer un nombre de Reynolds et un nombre de Mach qui achèvent la caractérisation d'une couche de cisaillement isotherme. On choisit d'exprimer ses deux nombres sans dimension comme :

Re ω,0 = ∆U δ ω,0 ν et M = U 1 c 0 , (II.6)
où ν est la viscosité cinématique du fluide. Le but de l'étude est de se rapprocher autant que faire se peut de la configuration des mesures acoustiques réalisées par Candel et al. [28] de la soufflerie CEPRA 19 de l'ONERA. Ainsi nous avons fixé dans la zone haute vitesse, qui accueillera la source acoustique par la suite, M à 0, 2 ce qui correspond à U 1 ≈ 69, 34 m.s -1 . Dans la configuration expérimentale, l'onde acoustique interagit avec une couche de cisaillement dans un état auto-similaire. Cela implique qu'il faut choisir un nombre de Reynolds suffisamment élevé pour que l'écoulement devienne turbulent et qu'il atteigne le régime auto-similaire. On sait de plus ( [28]) que la quantité d'énergie diffusée augmente avec l'épaisseur de la couche de cisaillement traversée dont le taux de croissance dδ ω /dx est directement proportionnel au rapport de vitesse R [23]. Nous choisissons ainsi de simuler la couche de cisaillement pour deux valeurs relativement élevées du rapport de vitesse, R = 0, 7 et R = 0, 4, qui correspondent respectivement à des vitesses basses 1 de U 2 ≈ 12, 24 m.s -1 et U 2 ≈ 29, 7 m.s -1 . Ces deux couches de cisaillement turbulentes permettront de tester l'influence de la vitesse de convection des larges structures cohérentes en envergure sur le champ de pression diffusé. L'épaisseur de vorticité initiale δ ω,0 est choisie égale à 3, 174 10 -4 m pour les 2 configurations R = 0, 7 et R = 0, 4, entrainant des valeurs de Reynolds Re ω,0 de 1162 et de 662. Ces valeurs, proches de celle de la simulation numérique directe de Rogers et Moser [START_REF] Rogers | Direct simulation of a self-similar turbulent mixing layer[END_REF], sont suffisamment élevées pour obtenir une couche de cisaillement turbulente. Nous résumons dans le tableau II.1 les paramètres choisis pour les deux configurations. 

R M δ ω,0 (m) U 1 (m/s) U 2 (m/s) U c (m/s) ∆U (m/s) Re ω,0 0, 7 0, 2

II.1.3 Approche numérique

Justifications du choix de la simulation numérique aux grandes échelles Dans cette section nous allons décrire l'approche numérique adoptée pour simuler, dans un premier temps, la couche de cisaillement turbulente et son interaction avec l'onde acoustique dans un second temps. Nous avons vu dans le chapitre introductif que la densité spectrale du champ de pression diffusé S p ′ s est proportionnelle au spectre des fluctuations de la composante transverse de la vitesse du milieu turbulent S v ′ (éq. (I.23)). Si l'on souhaite simuler fidèlement le champ de pression diffusé, il apparaît alors indispensable de simuler correctement les fluctuations de vitesse de l'écoulement turbulent. La simulation numérique aux grandes échelles (SGE) (Large-Eddy Simulation (LES) en anglais), qui consiste à simuler les grandes échelles de l'écoulement (au moins jusque l'échelle de Taylor) et à modéliser les petites, nous a paru être la meilleur solution pour deux raisons. La première est que les simulations numériques aux grandes échelles présentent un bon compromis entre le temps de calcul, et la précision de la solution obtenue. La seconde est que la majeure partie de l'énergie diffusée provient de l'interaction entre l'onde acoustique incidente et les larges structures turbulentes. Si celles-ci sont correctement résolues, comme cela est le cas avec une simulation numérique aux grandes échelles, on peut s'attendre à simuler correctement le champ de pression diffusé.

Équations qui régissent le système

Le principe de la SGE est de décomposer les variables de l'écoulement φ en une partie filtrée résolue φ et une partie modélisée φ ′ (termes de sous-mailles) selon φ = φ + φ ′ . L'opérateur de filtrage • est supposé commuter avec les dérivées spatiales et temporelles. On introduit la moyenne de Favre φ = ρφ/ρ qui permet de clarifier les équations en compressible. La dynamique de l'écoulement est régie par les équations de Navier-Stokes tri-dimensionnelles in-stationnaires filtrées pour un fluide Newtonien compressible et visqueux ainsi que par l'équation d'état filtrée du fluide qui peuvent se mettre sous la forme condensée :

∂Q c ∂t + ∂F j ∂x j - ∂F ν+νt j ∂x j = 0 et p = ρr T , (II.7)
où Q c dénote les variables conservatives de l'écoulement, F les flux Eulériens, F ν+νt les flux visqueux qui contiennent les termes du modèle de sous-maille, p la pression filtrée, T la température et r la constante molaire des gaz parfaits. La convention d'Einstein sur les indices répétés est utilisée dans l'équation II.7. De manière plus explicite, les vecteurs Q c , F et F ν+νt s'expriment :

Q c =       ρ ρ u 1 ρ u 2 ρ u 3 p/(γ -1) + ρ u j u j       , F j = u j Q c +       0 δ 1j p δ 2j p δ 3j p p u j       , et F ν+νt j =       0 σ 1j σ 2j σ 3j σ kj u k + q j       , (II.8)
où σ est le tenseur des contraintes de Cauchy, δ ij le symbole de Kronecker et q le vecteur flux de chaleur qui s'expriment respectivement :

σ ij = [µ( T ) + µ t ] ∂ u i ∂x j + ∂ u j ∂x i - 2 3 δ ij ∂ u k ∂x k et q j = (µ( T ) + µ t ) C p P r ∂ T ∂x j , (II.9)
où la viscosité dynamique µ( T ) suit la loi de Sutherland, C p correspond à la capacité thermique à pression constante et P r au nombre de Prandtl, fixé à 0, 72 pour l'air. La viscosité µ t est associée à la modélisation des termes sous-maille. L'ajout de cette viscosité supplémentaire dans le tenseur de Cauchy permet de prendre en compte l'influence des petites structures sur le champ filtré résolu. Nous allons maintenant expliciter le modèle sous-maille choisi pour les simulations.

Modèle sous-maille

Nous avons choisi, pour modéliser les termes sous-maille, d'utiliser le modèle d'échelles mixtes sélectif proposé par Sagaut [START_REF] Sagaut | Simulations numériques d'écoulements décollés avec des modèles de sous-maille[END_REF] et étendu aux écoulements compressibles par Lenormand et al. [START_REF] Lenormand | Subgrid-scale models for large-eddy simulations of compressible wall bounded flows[END_REF]. Les auteurs ont montré que ce modèle sous-maille permet un bon compromis entre précision, stabilité et coût de calcul. Ce modèle introduit un filtre test, désigné par la notation • , qui s'exprime par φ = A i (A j (A k (φ))) où A l (φ) = 0, 25φ l-1 + 0, 5φ l + 0, 25φ l+1 . La viscosité associée à la modélisation s'exprime alors :

µ t = 1, 65ρf θ 0 C m ∆ 1+α | S| α (q c ) 1-α 2 ,
(II.10)

où | S| = 2 S ij S ij
, f θ 0 la fonction de sélection introduite par David [45], C m = 0, 06 un paramètre constant, ∆ une longueur caractéristique du volume de la maille et S ij le tenseur des taux de déformations filtrés. Dans cette étude, la valeur α = 1/2 sera retenue. La notation q c correspond à l'énergie cinétique des plus petites échelles résolues et s'exprime par

q c = 1 2 u i -ˆ u i 2 .
(II.11)

La fonction de sélection f θ 0 est définie comme [START_REF] Sagaut | Subgrid-scale improvement for non-homogeneous flows[END_REF] :

f θ 0 = 1 si θ t > θ 0 = 10 deg tan 4 (θ t /2)/ tan 4 (θ 0 /2)
sinon , (II.12) où θ t est l'angle formé entre le vecteur tourbillon instantané ω( u i ) et un vecteur tourbillon pseudo-moyen local ω( ˆ u i ).

Solveur numérique, schémas de discrétisations et temps de calcul

Les simulations numériques aux grandes échelles de cette étude ont été réalisées avec FUNk, un code de recherche interne à l'ONERA (voir [START_REF] Laurent | DNS database of a transitional seperation bubble on a flat plate application to RANS modeling validation[END_REF]5] pour des précédentes études utilisant ce code). FUNk a été fortement optimisé pour être exécuté en parallèle sur le super-calculateur de l'ONERA. Les calculs réalisés pour cette étude utilisent 480 processeurs Intel, Nehalem ou Westmere. Les flux Eulériens F sont discrétisés avec le schéma d'ordre deux hybrid AUSM+(P) (Advection Up-stream Splitting Method) avec détection d'oscillations, initialement proposé par l'intégration explicite car elle requiert un certain nombre de sous-itérations. Les calculs de l'interaction entre l'onde incidente et la couche de cisaillement présentés dans le chapitre suivant ont donc été réalisés avec une intégration explicite. Nous avons choisi le schéma backward-Euler d'ordre deux pour l'intégration implicite avec un pas de temps ∆t = 7, 4 10 -7 s. Le nombre CFL convectif (Courant Friedrichs Lewy) n'excède pas 15, 5. Plus de détails sur les valeurs du CFL dans les différentes zones du domaine de calcul seront donnés dans la sous-section II.1.4. Une convergence correcte du processus itératif de Newton (décroissance relative des résidus d'un ordre de grandeur) est obtenue avec 15 sous-itérations par pas de temps. L'intégration explicite est quant à elle effectuée avec un schéma de Runge-Kutta compact d'ordre trois et un pas de temps ∆t = 4, 6 10 -8 s. Le CFL maximum est de 0, 95. Les statistiques des simulations implicites sont correctement convergées après 11 runs de 13 h, soit environ une semaine et demie de calcul, pour un temps physique de signal de 75 ms. Ce temps correspond environ au passage de 60 larges structures turbulentes. Le même temps de signal est obtenu pour les simulations explicites après 24 runs de 13h, soit environ trois semaines de calcul.

II.1.4 Élaboration du maillage

Lorsque l'on souhaite simuler numériquement un écoulement, il est impératif que le maillage soit adapté à la physique de celui-ci. On concentre généralement les points dans les zones de forts gradients (près des parois, dans les zones où le cisaillement est important, etc.) qui interviennent notamment dans le terme de production de l'énergie cinétique du champ fluctuant. D'une manière générale, on élabore un maillage de sorte qu'un écoulement de longueur caractéristique λ i soit correctement discrétisé sur N cellules, de taille ∆x i = λ i /N , où N dépend du schéma numérique. Dans le cas d'un écoulement cisaillé, il est naturel de choisir comme longueur caractéristique transverse λ y l'épaisseur de vorticité δ ω . Pour les longueurs caractéristiques axiale et de l'envergure, on peut choisir les longueurs d'onde les plus instables qui proviennent de la théorie de la stabilité linéaire. Michalke [START_REF] Michalke | On the inviscid instability of the hyperbolic-tangent velocity profile[END_REF] a montré que le nombre d'onde le plus instable pour un profil de vitesse axiale tangente hyperbolique, dans le cadre d'une analyse temporelle locale, vaut α = 0, 4446/(δ ω /2). Cela équivaut à une longueur d'onde axiale λ x ≈ 7 δ ω . La longueur d'onde de l'envergure vaut λ z ≈ 2λ x /3. Pour le schéma de discrétisation spatial AUSM+(P) utilisé dans cette étude, N = 15 permet d'obtenir une précision suffisante. Cette valeur a été validée empiriquement sur différentes configurations d'écoulement dans Sagaut et al. [START_REF] Sagaut | Multiscale and Multiresolution Approaches in Turbulence[END_REF]. Pour les écoulements cisaillés libres, les critères empiriques pour les tailles des mailles dans les trois directions de l'espace, basés sur l'épaisseur de vorticité δ ω , s'expriment donc :

∆x ≤ δ ω 2, 2 , ∆y ≤ δ ω 15 et ∆z ≤ δ ω 3, 2 . (II.13)
Ces critères de raffinement du maillage dépendent donc uniquement de δ ω . Pour connaître l'évolution axiale de cette épaisseur, on doit donc lancer une première simulation qui nous permet d'adapter au mieux notre maillage. La figure II.2 représente l'évolution de l'épaisseur de vorticité en fonction de la coordonnée axiale normalisée par l'épaisseur de vorticité initiale δ ω,0 . Il est possible de distinguer 3 pentes qui correspondent chacune aux trois phases de l'évolution de la couche de mélange décrite précédemment. En début de domaine (a), la croissance de la couche de cisaillement est faible, elle correspond à la formation et au défilement des tourbillons. À partir de x * 1 , la transition vers la turbulence s'amorce et la couche de mélange s'épaissit rapidement (b). Finalement, le taux de croissance se stabilise un peu après x * 2 et la couche de cisaillement s'organise de manière auto-similaire.

C'est à partir de ce premier calcul de l'épaisseur de la couche de cisaillement que nous avons construit notre maillage. La taille des mailles axiales et transverses en entrée de domaine sont obtenues en remplaçant dans (II.13) δ ω par δ ω,0 , c'est à dire que ∆x 0 = δ ω,0 /2, 2 et ∆y 0 = δ ω,0 /15. 

= ∆x(x * 1 ) = δ ω (x * 1 )/2, 2.
De plus, la somme de la taille des n 1 mailles axiales entre

x * = 0 et x * = x * 1 doit être égale à x * 1 .
Ces deux conditions permettent de trouver n 1 et le coefficient de dé-raffinement st 1 suivant les expressions :

st 1 = x 1 -∆x 0 x 1 -∆x 1 et n 1 = ln ∆x 1 ∆x 0 1 ln(st 1 ) + 1. (II.14)
À partir de l'abscisse x * 2 , la couche de mélange s'organise de manière auto-similaire, c'est à dire que les profils des moments statistiques doivent converger vers une unique courbe. Dans le but de réduire au maximum la dissipation numérique inhérente aux schémas et au maillage, nous imposons, à partir de x * 2 , une taille de maille constante dans les trois directions avec un bon rapport d'aspect entre la taille des mailles (égal au maximum à 2). Celles-ci sont fixées à ∆x = 4 10 -4 m, ∆y = 2 10 -4 m et ∆z = 3, 5 10 -4 m. On récupère l'abscisse x * 2 sur la figure II.2 de sorte que δ ω (x *

2 ) = 15 ∆y. À partir des équations (II.14), on obtient le coefficient de déraffinement et le nombre de point entre la position x * 1 et x * 2 . La zone bien raffinée est prolongée jusque L * x = 550 et s'étend entre y * = -142 et y * = 142. La taille de domaine bien raffiné L *

x est suffisante pour que la couche de mélange atteigne le régime auto-similaire, ce que nous allons vérifier par la suite. La taille transverse du domaine bien raffiné L * y = 284 est assez grande pour pouvoir placer une source acoustique et un microphone suffisamment loin de la couche de cisaillement. Les évolutions axiales de ∆x * et ∆y * sur la ligne y * = 0 sont représentées sur la figure II.3. La taille de maille ∆z est constante dans tout le domaine de calcul. Celle-ci respecte le critère (II.13) dans pratiquement tout le domaine de calcul, à part pour les faibles valeurs de x * . Cependant, l'écoulement est presque bi-dimensionnel au début du domaine donc on peut se permettre un critère de raffinement un peu moins contraignant que (II.13) sans que cela dénature la physique de l'écoulement.

En dehors de la zone bien raffinée, nous effectuons un stretching dans la direction de l'écoulement et dans la direction transverse. Le premier a pour but de dissiper progressivement les structures turbulentes avant que celles-ci n'atteignent la fin du domaine de calcul. Nous avons choisi de dé-raffiner avec un coefficient constant de 1, 02. Les fluctuations qui se propagent dans la direction transverse, en dehors de la zone raffinée sont de nature acoustiques. Nous dé-raffinons dans cette direction avec un coefficient de 1, 07. Le nombre de points N i et la taille du domaine L i dans chacune des directions sont donnés dans le tableau II.2. Notons que le CFL maximum dans la zone raffinée n'excède pas 1, 65 et 0, 1 respectivement pour l'intégration implicite et explicite. Cela assure une très bonne précision de l'intégration temporelle dans cette zone. L'envergure du 

N x × N y × N z L * x × L * y × L * z Zone raffinée 555 × 450 × 316 550 × 284 × 350 Domaine de calcul complet 697 × 601 × 316 3500 × 3000 × 350
Table II.2 -Nombres de points et tailles du domaine de calcul.

On peut se demander dès à présent si un tel maillage est propice au calcul numérique du champ de pression diffusé. À partir de la formule de Guédel (I.47) où celle de Sijtsma (I.48) on peut construire un groupement adimensionné qui donne une idée de la quantité d'énergie diffusée pour une configuration donnée. Les ratios β dépendent de la fréquence de l'onde acoustique f 0 = c 0 /λ 0 , de l'intensité turbulente transverse v ′ m et de l'épaisseur de la couche de cisaillement traversée. On définit alors le paramètre de diffusion h comme :

h = v ′ m δ ω λ 0 c 0 . (II.15)
II.1. Mise en place du calcul numérique de la couche de cisaillement turbulente différentes. Le choix du profil de vitesse en entrée de domaine a une influence sur le taux de croissance de la couche de cisaillement, ainsi que sur la position des appariements tourbillonnaires dans la région pré-transition. McMullan et al. [START_REF] Mcmullan | The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers[END_REF] ont montré que l'utilisation du profil tangente hyperbolique amène un taux de croissance plus faible que les prévisions empiriques ainsi qu'une position des appariements erronée. Pour estimer les deux profils de type couche limite, nous utilisons une approximation polynomiale qui constitue une solution approchée des équations de Blasius laminaires. Les deux profils de vitesse s'expriment :

U Bi (η i ) = U i (2η i -2η 3 i + η 4 i ), (II.16)
où η i est une coordonnée adimensionnée η i = y/δ i (x) avec δ i (x) = νx/U i l'épaisseur de la couche limite et i = 1 ou 2 en fonction de la zone considérée. Les vitesses définies par l'équation (II.16) vérifient les conditions aux limites suivantes :

U Bi (η i = 0) = 0 (II.17) ∂ 2 U Bi ∂y 2 η i =0 = 0 (II.18) U Bi (η i = 1) = U i (II.19) ∂U Bi ∂y η i =1 = 0 (II.20) ∂ 2 U Bi ∂y 2 η i =1 = 0. (II.21)
L'équation (II.17) traduit la condition limite d'adhérence à la paroi, l'équation (II.18) est obtenue à partir de l'équation de conservation de la quantité de mouvement projetée dans la direction axiale, lorsque dU i /dx = 0. Les équations (II. 19), (II.20) et (II.21) sont des conditions de raccord entre le profil U Bi et la vitesse constante de la zone U i . Pour achever la détermination des profils de vitesse U Bi , il est nécessaire d'estimer l'épaisseur de la couche limite δ i pour un x fixé. Dans la théorie de la couche limite laminaire, l'épaisseur de quantité de mouvement est exprimée par :

θ i (x) = ∞ 0 U Bi (x, y) U i 1 - U Bi (x, y) U i dy, (II.22)
et peut être reliée à l'épaisseur δ i par la relation approchée θ i ≈ 0, 13 δ i . D'après Monkewitz et Huerre [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF], θ 1 = δ ω,0 /4, ce qui nous permet de relier l'épaisseur de la couche limite à l'épaisseur de vorticité initiale par Les symboles représentent la position des mailles dans la direction transverse. L'influence du choix du profil de vitesse sur le développement de la couche de cisaillement sera détaillée dans une prochaine section.

δ 1 ≈ 1, 92 δ ω,0 ≈ 6,
Le profil de pression P 0 (y) imposé en entrée de domaine correspond à la loi de Crocco-Busemann [START_REF] Ragab | Linear instabilities in two-dimensional compressible mixing layers[END_REF] :

P 0 (y) = ρ 0 r T 0 + 1 2c p (γ -1)M 2 [U 1 -U 0 (y)] [U 0 (y) -U 2 ] . (II.23)
Ce profil est montré sur la figure II.5. Une condition de pression constante est imposée en sortie de domaine. On impose les vitesses constantes U 1 et U 2 respectivement sur les bords du domaine dans la direction transverse. Comme l'écoulement turbulent est statistiquement homogène dans la direction e z , des conditions de périodicité sont imposées sur les deux faces de l'envergure. Afin de minimiser les fluctuations de pression parasites crées lorsque les fluctuations acoustiques sortent du domaine de calcul, on impose une condition limite de non-réflexion dans les directions axiale et transverse. Lorsque des structures tourbillonnaires quittent le domaine de calcul, des fluctuations de pression parasites, qui peuvent être du même ordre de grandeur que les fluctuations acoustiques physiques [START_REF] Tam | Computational aeroacoustics : Issues and methods[END_REF], viennent dégrader la solution. En plus du dé-raffinement progressif qui dissipe les structures tourbillonnaires, on implémente donc une zone éponge dont le principe est détaillé dans la section suivante. 

II.1.6 Zone éponge

Le principe de la zone éponge et de faire progressivement tendre les champs de pression, de vitesse et de masse volumique vers un champ moyen que l'on impose. Combinée avec le dé-raffinement du maillage, cette méthode [41] permet de dissiper totalement les structures turbulentes avec que celles-ci n'impactent la frontière aval du domaine. Concrètement, dans la zone éponge on résout les équations de conservation de la masse, de la quantité de mouvement et de II.1. Mise en place du calcul numérique de la couche de cisaillement turbulente l'énergie (II.7) auxquelles on rajoute un terme source selon :

∂Q c ∂t + • • • = - f (x) ∆t (Q c -Q c ) avec f (x) = f max x -x min x max -x min 2 ,
(II.24) où f max est l'amplitude de la fonction f , x min = 630 δ ω,0 and x max = 3500 δ ω,0 sont respectivement les positions de début et de fin de la zone éponge. La formulation de la zone éponge est inspirée de Bogey et al. [18]. Le champ moyen Q c est composé de la masse volumique constante ρ 0 , d'un profil de vitesse axial de type tangente hyperbolique (II. Les spectres sont calculés en séparant le signal total en n b = 5 blocs et en appliquant le fenêtrage de Welsh [START_REF] Welch | The Use of Fast Fourier Transform for the Estimation of Power Spectra : A Method Based on Time Averaging Over Short, Modified Periodograms[END_REF] ainsi qu'un recouvrement entre les blocs de 50%, ce qui amène une résolution fréquentielle d'environ 41 Hz. Pour réduire significativement l'incertitude des spectres, nous avons collecté le champ de pression sur une ligne de N z = 316 points en envergure et nous avons moyennés les spectres. Cette opération est possible car l'écoulement est statistiquement homogène dans la direction e z . Le niveau du spectre lorsque la zone éponge est activée est inférieur pour les très basses fréquences f < 500 Hz et sur une gamme de fréquences f ∈ [3,20] kHz. Les deux spectres sont cependant strictement identiques à partir de 20 kHz. Avec un tel écart, il n'est pas étonnant que l'intégrale du spectre qui provient du calcul avec la zone éponge soit nettement inférieur à celle calculée à partir d'une simulation sans zone éponge. Dans cette première section, nous avons rappelé dans les grandes lignes la physique de la couche de cisaillement turbulente et ses principaux paramètres. Nous nous sommes inspirés de son développement pour élaborer un maillage optimisé en terme de raffinement et de nombre de points. Nous avons aussi explicité les équations résolues par le code de calcul et le modèle de sous-maille utilisé. Les conditions limites ont été détaillées, ainsi que l'implémentation de la zone éponge qui permet de grandement réduire les bruits parasites générés par le dé-raffinement et la sortie du domaine des structures turbulentes. Nous allons désormais étudier l'influence des fluctuations et du profil de vitesse en entrée du domaine ainsi que la taille L * z sur le développement de la couche de cisaillement.

II.2 Influence des fluctuations et du profil de vitesse en entrée du

domaine ainsi que de l'envergure du domaine sur le développement de la couche de cisaillement

II.2.1 Injection de fluctuations de vitesse en entrée de domaine pour déclencher la turbulence

Bien que le nombre de Reynolds soit suffisamment élevé pour que la turbulence se déclenche naturellement, nous avons choisi d'injecter des fluctuations de vitesse en entrée du domaine afin de déclencher la turbulence plus rapidement dans le but d'obtenir le régime auto-similaire pour une position axiale réduite. Cela nous permet de réduire la taille de la zone de calcul raffinée II.2. Influence des fluctuations et du profil de vitesse en entrée du domaine ainsi que de l'envergure du domaine sur le développement de la couche de cisaillement et de diminuer les coûts de calcul par la même occasion. Ajouter des fluctuations de vitesse se justifie à l'aide des expériences sur les couches de cisaillement turbulentes ; les deux couches limites, si elles se trouvent dans un état turbulent, possèdent des fluctuations de vitesse dont l'écart type qui peut atteindre 1, 5 % de la vitesse loin de la paroi [START_REF] Mcmullan | The effect of initial conditions on streamwise vortices in the plane turbulent mixing layer[END_REF]. Les fluctuations de vitesse injectées sont habituellement de type bruit blanc [43,[START_REF] Wang | Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer[END_REF]9,[START_REF] Mcmullan | The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers[END_REF][START_REF] Mcmullan | The effect of initial conditions on streamwise vortices in the plane turbulent mixing layer[END_REF][START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF]. Récemment, McMullan et Garrett [START_REF] Mcmullan | Initial condition effects on large scale structure in numerical simulations of plane mixing layers[END_REF] ont montré que le type des fluctuations injectées en entrée de domaine peut avoir une forte influence sur le taux de croissance de la couche de cisaillement et sur la topologie des structures tourbillonnaires dans la région auto-similaire. Au lieu d'injecter des fluctuations de type bruit blanc au dessus d'un profil moyen laminaire, ils injectent des fluctuations qui sont partiellement corrélées entre elles, au dessus d'un profil de couche limite laminaire ou turbulente. Les auteurs montrent notamment qu'injecter des fluctuations de type bruit blanc réduit fortement la proportion de tourbillons orientés dans la direction de l'écoulement, statistiquement homogènes et que le taux de croissance de la couche de mélange est plus faible que si les fluctuations étaient corrélées entre elles. Dans cette étude, nous nous sommes inspirés des fluctuations de type bruit blanc utilisées par Bogey et Bailly [17] dans la configuration d'un jet cylindrique. Ainsi nous injectons, en plus du profil de vitesse décrit à la section II.1.5, des perturbations de vitesse de la forme : 2 . Dans cette expression, (y 0 , z j ) représente le centre des zones de perturbations, a p l'amplitude des perturbations, κ l'étalement des zones de perturbations, n p = 10 le nombre de modes, Z le nombre de zones de perturbations, ω i = 7ω p /(i + 2) avec ω p la fréquence angulaire reliée à la longueur d'onde la plus instable λ x . On définit de plus l'amplitude aléatoire -1 ≤ ǫ i (y, z, t) ≤ 1 et la phase aléatoire 0 ≤ ψ i (y, z, t) ≤ 2π qui changent de valeur à chaque itération et pour chaque position y et z. Physiquement, les zones de perturbations sont situées au centre de la couche de cisaillement (y 0 = 0) et centrée en z j = (6j -3) 10 -4 m. Le nombre de zones vaut Z = 185 de sorte que z 185 < L z . Le paramètre d'étalement des zones κ permet d'éviter leur chevauchement. La figure II.8a représente la répartition des zones de perturbations. L'amplitude a p est choisie de sorte que si l'on double sa valeur, la position axiale du début de la zone auto-similaire, ainsi que les tensions de Reynolds dans la couche de cisaillement restent inchangées. Cela nous amène à une valeur moyenne de l'intensité des perturbations en entrée de domaine I p (x = 0, y = 0) = u ′2 + v ′2 + w ′2 = 0, 073 ∆U . La figure II.8 représente le profil d'intensité des perturbations injectées en entrée de domaine, la normalisation s'effectue avec ∆U . La forme des perturbations (II.25) induit des fluctuations de vitesse axiale plus importantes que les deux autres composantes de vitesse.

  u ′ v ′ w ′   = a p ∆U δ ω,0 np i=1 Z j=1 exp -κ c 2 j (y, z) δ 2 ω,0 ǫ i (y, z, t) sin (ω i t + ψ i (y, z, t))   δ ω,0 z -z j y 0 -y   (II.25) avec c j (y, z) 2 = (y -y 0 ) 2 + (z -z j )
Pour illustrer l'effet des perturbations sur le déclenchement de la turbulence nous représentons sur la figure II.9 les structures tourbillonnaires en entrée domaine, dans le plan (x * , z * ). La figure II.9a représente un calcul où il n'y a pas de perturbations de vitesse alors que la figure II.9b est obtenue à partir d'une simulation où les perturbations de vitesse sont injectées. Les deux simulations sont réalisées avec un profil de vitesse en entrée de type tangente hyperbolique. La visualisation des structures tourbillonnaires s'effectue en calculant des iso-surfaces positives de critère Q [61] qui représente le second invariant du gradient de vitesse. Celui-ci s'écrit comme la différence entre le taux de rotation et le taux de cisaillement : 

Q = 1 2 (Ω ij Ω ij -S ij S ij ) = - 1 

II.2.3 Influence de l'envergure du domaine sur le développement de la couche de cisaillement

Dans une couche de cisaillement turbulente, des larges structures cohérentes en envergure se convectent [START_REF] Wygnanski | On the perseverance of a quasitwo-dimensional eddy-structure in a turbulent mixing layer[END_REF]47] et leurs interactions successives sont responsables de la production des contraintes de Reynolds [22,21]. Il apparaît dès lors essentiel de choisir une envergure de domaine L z suffisamment grande pour assurer le bon développement des larges structures cohérentes qui pilotent la dynamique de l'écoulement. Pour connaître l'influence de la longueur en envergure sur les larges structures, nous avons calculé la longueur intégrale L z * u ′ u ′ sur la ligne y/δ m (x) = 6. Sur cette ligne, le champ de vitesse axiale est principalement influencé par les larges structures turbulentes [21]. La longueur intégrale est calculée classiquement à partir du coefficient d'intercorrélation spatio-temporelle normalisé R u ′ i u ′ i défini par :

R u ′ i u ′ i (x, ξ, τ ) = u ′ i (x, t)u ′ i (x + ξ, t + τ ) u ′ 2 i (x, t) u ′ 2 i (x + ξ, t) , (II.27)
où ξ est le vecteur position qui sépare les deux points où sont collectés les composantes des champs de vitesse u i . La longueur intégrale calculée à partir des fluctuations de vitesse u ′ i dans la direction e j s'obtient alors par la relation : Pour la simulation ayant L * z = 40, les tensions u ′2 * et w ′2 * continuent à décroître alors que pour les deux plus grands domaines, elles atteignent une valeur quasi-constante. Le maximum de la tension transverse du plus petit domaine ré-augmente à partir de x * ≈ 300, ce qui indique que l'envergure de la structure cohérente est sensiblement égale à l'envergure du domaine. En effet une telle configuration induit un rétablissement de la nature bi-dimensionnelle des structures ce qui entraine une augmentation des contraintes transverses. L'évolution axiale des intensités turbulentes du domaine L * z = 350 étant très proche de celle du domaine L * z = 700, nous avons décidé de conserver la taille L * z = 350 pour tout le reste de l'étude. Dans cette section nous avons étudié l'influence des fluctuations et du profil de vitesse en entrée de domaine ainsi que l'envergure du domaine sur le développement de la couche de cisaillement turbulente. Ces études justifient les choix suivants, appliqués à toutes les simulations présentées par la suite :

L j u ′ i u ′ i (x) = 1 2 ∞ -∞ R u ′ i u ′ i (x, ξ j , τ = 0)dξ j . (II.
1. des fluctuations de vitesse sont injectées en entrée de domaine 2. un profil de type tangente hyperbolique est utilisé pour les simulations avec R = 0, 7 3. un profil de type couche limite de Blasius est utilisé pour les simulations avec R = 0, 4 4. la longueur en envergure normalisée est choisie égale 350. Nous allons désormais vérifier le bon développement de la couche de cisaillement turbulente. 

II.3 Validation du calcul numérique de la couche de cisaillement turbulente

Il est intéressant de regarder dans un premier temps les valeurs du rapport entre la viscosité sous-maille moyenne ν t et la viscosité du fluide ν. Les profils transverses de ce rapport pour trois positions axiales sont représentés sur la figure II.16. À mesure que l'on se déplace vers l'aval du domaine, le maximum du rapport décroît. Cela tient au fait que l'épaisseur de la couche de cisaillement croit linéairement, alors que les tailles de mailles restent constantes. La couche de mélange est ainsi de mieux en mieux résolue ce qui implique un rapport ν t /ν qui diminue. Une valeur maximale du rapport ν t /ν de 5 est atteinte dans la région de transition vers la turbulence vers x * = 100, lorsque le taux de cisaillement est le plus élevé. Les valeurs relativement faibles du rapport ν t /ν présagent une bonne résolution des échelles turbulentes de la couche de cisaillement, c'est ce que nous allons confirmer. 

II.3.1 Croissance linéaire de la couche de cisaillement

Dans son état auto-similaire [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF]59], l'épaisseur de la couche de cisaillement croît linéairement. Nous avons vérifié cette propriété à partir de l'évolution axiale de l'épaisseur de quantité de mouvement (éq. (II.5)) et l'épaisseur de vorticité (éq. (II.2)). Celles-ci sont représentées sur la figure II.17. Après une région de faible croissance jusque x * ≈ 20, qui correspond à l'état prétransitionnel, le taux de croissance de l'épaisseur de quantité de mouvement (fig. II.17a) devient très rapidement constant. La transition vers une croissance linéaire s'étend davantage (jusque x * ≈ 250) pour l'épaisseur de vorticité. Le taux de croissance dδ ω /dx dépend uniquement du rapport des vitesses R lorsque la couche de cisaillement a atteint son état auto-similaire. Brown et Roshko [23] ont réunis les taux de croissance d'une série de couches de cisaillement et ont testé différentes régressions pour obtenir une formulation empirique du taux de croissance en fonction de R. Ils ont observé une forte dispersion des taux de croissance ce qui ne permet pas d'aboutir à une unique formulation. Nous comparons ici la croissance de nos couches de cisaillement avec l'expression d'Abramovich [1] et Sabin [START_REF] Sabin | An Analytical and Experimental Study of the Plane, Incompressible, Turbulent Free-Shear Layer With Arbitrary Velocity Ratio and Pressure Gradient[END_REF] : dδ ω /dx = 0, 181 R. Dans la configuration H07 (fig. II.17a), le taux de croissance est égal à 0, 081 et pour la configuration B04, nous trouvons 0, 058. Ces valeurs sont respectivement 36% et 20% plus faibles que les valeurs théoriques 0, 1267 et 0, 0724. La forte différence entre les taux de croissance peut s'expliquer en partie par l'intensité des fluctuations de vitesse injectées en entrée de domaine. En effet, Bogey et al. [19] ont montré que le taux de croissance décroît avec l'intensité des perturbations. Les fluctuations de vitesse injectées en entrée de domaine sont effectivement plus intenses que celles de récents travaux numériques [START_REF] Mcmullan | The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers[END_REF][START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF] qui obtiennent un taux de croissance plus proche de la valeur empirique. 

Les longueurs intégrales L

x u ′ u ′ , L y u ′ u ′ et L z u ′ u ′ ont
L x u ′ u ′ /δ ω L y u ′ u ′ /δ ω L z u ′ u ′ /δ ω H07
0, 320 0, 175 0, 115 B04 0, 322 0, 184 0, 110 Jones et al. [START_REF] Jones | Turbulent correlation measurements in a two-stream mixing layer[END_REF] 0, 339 0, 174 0, 113 

II.3.2 Vitesse de convection des larges structures turbulentes

À partir du coefficient d'inter-corrélation spatio-temporelle, il est aussi possible de calculer la vitesse de convection des larges structures turbulentes. Pour cela il suffit de calculer R u ′ u ′ au centre de la couche de cisaillement entre deux points séparés de ξ x et de repérer le décalage temporel τ entre deux maxima successifs. La vitesse de convection s'obtient alors en calculant U c = ξ x /τ . L'écoulement étant statistiquement homogène dans la direction e z , il est théoriquement possible de calculer un coefficient d'inter-corrélation moyenné en envergure. Nous représentons sur la figure II.18a le coefficient d'inter-corrélation R u ′ u ′ (x * = 472, 6, ξ *

x -31, 5, τ * ) calculé au centre de la couche de cisaillement sur une dizaine de couples de points réparties sur toute l'envergure. On s'aperçoit que les coefficients ont globalement la même forme, que les positions des maxima sont très proches, mais que les niveaux peuvent varier légèrement. On améliore alors la précision sur les niveaux et sur la position du maximum en moyennant en envergure le coefficient d'inter-corrélation. D'après l'expression (II.27), les moyennes sur l'ensemble des réalisations de l'écoulement portent sur le numérateur et sur les variances au dénominateurs. Pour obtenir le coefficient d'inter-corrélation moyen, il faut d'abord calculer séparément la moyenne du numérateur et celle des deux variances pour ensuite calculer le ratio R. La moyenne en envergure de R u ′ u ′ (x * = 472, 6, ξ *

x -31, 5, τ * ) calculé au centre de la couche de cisaillement est représenté sur la figure II.18a. La figure II.18b représente le coefficient d'inter-corrélation R u ′ u ′ moyenné en envergure en fonction du retard normalisé τ * = τ U c /δ ω (x * ) pour trois valeurs de séparation axiale ξ * x = -31, 5, 0 et 31, 5. Le capteur de référence est situé en x * = 472, 6. En repérant le décalage temporel entre les maxima, il vient U c ≈ 45 m.s -1 pour la configuration H07, qui est supérieur à la valeur théorique de 40, 8 ms -1 . Pour la couche de cisaillement B04, la vitesse de convection vaut 46, 8 m.s -1 ce qui est inférieur aux 49, 5 m.s -1 théoriques. La différence entre les valeurs théoriques et les valeurs obtenues à l'aide des coefficients d'inter-corrélation s'explique par le fait que les sondes ne sont pas tout à fait placées sur la ligne y 0 (x). Pour la configuration H07, les points sont placées sur la ligne telle que u (x, y) = 42, 5 m.s -1 et pour la configuration B04, les points sont placés sur la ligne telle que u (x, y) = 44, 8 m.s -1 . Ces nouvelles valeurs sont plus proches des valeurs obtenues à partir des coefficients d'inter-corrélation. Dorénavant, lorsque nous aurons besoin de la vitesse de convection pour calculer des grandeurs comme par exemple le retard normalisé ou des longueurs, nous utiliserons les vitesses de convection théoriques.

II.3.3 Convergence des moments statistiques

Lorsque la couche de cisaillement turbulente évolue dans un état auto-similaire, les profils transverses des moments statistiques, tracés en fonction d'une variable de similarité qui prend en compte l'évasement de la couche de mélange, convergent vers un unique profil. Nous introduisons la variable de similarité :

η * (x) = y -y 0 (x) (x -x 0 ) dδ ω dx , (II.29)
où x 0 est l'origine virtuelle4 de la couche de cisaillement. La figure II.19 représente le profil de vitesse moyenne normalisée u * = ( u -U c )/(U 1 -U 2 ) de la configuration H07 en fonction de la variable de similarité η * (x) pour trois positions axiales différentes dans la zone auto-similaire. Sont aussi représentés sur cette figure un profil moyen expérimental et deux profils numériques, extraits de [14] et de [START_REF] Rogers | Direct simulation of a self-similar turbulent mixing layer[END_REF][START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF]. Les courbes convergent bien vers un unique profil. Les profils des tensions de Reynolds, normalisées par ∆U 2 , sont représentés sur les figures II.20 et II.21 pour différentes positions axiales. Les tensions ont pratiquement convergé vers une unique courbe. La petite différence entre les trois profils peut être due au fait que le maillage dissipe II.3. Validation du calcul numérique de la couche de cisaillement turbulente les plus petites échelles de la turbulence, ce qui aboutit à une petite dissipation de l'énergie turbulente. Comparés aux profils extrait de [14,[START_REF] Rogers | Direct simulation of a self-similar turbulent mixing layer[END_REF][START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF], les valeurs maximales des tensions sont sous-estimées. Yoder et al. [START_REF] Yoder | Modeling of turbulent free shear flows[END_REF] ont récemment réunie une grande quantité de données expérimentales et numériques et ont montré une forte dispersion des maxima des tensions de Reynolds reportés. Les valeurs de la présente simulation tombent dans la gamme des valeurs de l'étude [START_REF] Yoder | Modeling of turbulent free shear flows[END_REF]. Pour finir de valider le bon développement de la couche de cisaillement turbulente, nous avons calculé la densité spectrale de puissance des fluctuations de vitesse axiale E(f, x * ) normalisée en Hz -1 pour différentes positions axiales, au centre de la couche de cisaillement H07. Les spectres sont normalisés par les variances u ′2 (x * ) respectives et tracés sur la figure II.22a. On observe la décroissance des spectres selon la pente f -5/3 , entre les fréquences f ≈ 1 kHz et f ≈ 15 kHz. Cette décroissance, qui caractérise la zone inertielle de l'écoulement turbulent, s'étend sur plus d'une décade. Cela indique que la simulation numérique est correctement résolue. Nous avons cherché à savoir si la rupture de pente correspondait à la fin "physique" de la zone inertielle ou plutôt à une fréquence de coupure au delà de laquelle les structures turbulentes ne sont plus correctement résolues. Nous avons ainsi comparé (figure II.22b) un spectre calculé en fin de domaine raffiné (x * = 536) avec un spectre calculé en début de zone dé-raffinée (x * = 580 5 ). On s'aperçoit alors que l'étendue fréquentielle de la zone inertielle diminue ce qui montre une dissipation des plus petites structures auparavant supportées par le maillage. Cette constatation nous permet d'estimer la fréquence de coupure hydrodynamique du maillage à f ch ≈ 20 kHz. Dans cette section nous avons validé la bonne résolution de la couche de cisaillement turbulente en observant sa croissance linéaire, les valeurs de ses longueurs intégrales, la convergence de ses moments statistiques et la décroissance de son spectre des fluctuations de vitesse. Nous allons maintenant caractériser plus finement les larges structures turbulentes cohérentes en envergure et le contenu spectral de la turbulence car ils interviennent en priorité dans le mécanisme de diffusion acoustique.

II.4 Caractérisation des larges structures turbulentes de la couche de cisaillement

II.4.1 Distance moyenne entre les larges structures turbulentes

Nous avons vu dans l'étude bibliographique que la distance entre les structures turbulentes joue un rôle prépondérant dans le mécanisme de diffusion acoustique. En effet, Candel et al. [28] ont remarqué que le maximum d'énergie diffusée se réparti sur les fréquences f 0 ± ∆f , avec ∆f = U c /l d où la longueur de diffusion l d , égale à 3, 2 δ ω , représente la distance moyenne entre les structures turbulentes selon [23]. Nous avons donc cherché à estimer la distance moyenne entre les larges structures qui se développent à l'intérieur des couches de mélange H07 et B04. Une première méthode consiste à calculer le coefficient d'auto-corrélation R u ′ u ′ (x * = 472, 6, 0, τ * ) pour un point situé en périphérie de la couche de cisaillement, sur la ligne y(x)/δ m = 6 [21], sensible principalement aux larges structures. Le coefficient d'auto-corrélation possède une forme quasi-périodique et des niveaux de maxima locaux non-négligeable, proches de 0, 2 6 . Le temps 5. La fin de la zone raffinée est située en x * = 550 d'après la section II.1.4 6. La corrélation est significative avec un intervalle de confiance de 99 % si le coefficient est supérieur à 1, 82 2/Ne, avec Ne le nombre d'échantillons du signal. Le nombre d'échantillons issus de notre simulation est II.4. Caractérisation des larges structures turbulentes de la couche de cisaillement qui sépare deux maxima locaux s'interprète comme le temps de passage T p entre deux structures turbulentes. Pour obtenir la distance moyenne l p entre deux structures, on estime le temps de passage moyen T p sur plusieurs périodes et on calcule l p = U c T p . Nous nous sommes aperçus que la forme quasi-périodique du coefficient d'inter-corrélation varie grandement en fonction de la position en envergure considérée (fig. II.23a). En effet, les positions des maxima locaux ne sont pas les mêmes ce qui influe directement sur l'estimation de la distance moyenne l p . La figure II.23b représente la distance moyenne l p en fonction de la position z * , calculée sur un nombre de période allant de 4, 55 à 12, 55 en moyenne. On s'aperçoit que la distance moyenne évaluée à partir du coefficient d'inter-corrélation peut quasiment doubler en fonction de la position en envergure considérée mais qu'elle dépend aussi du nombre de périodes considérées. On calcule alors la distance moyennée en envergure que l'on définit par : 

l p = 1 N z Nz i=1 l p (z i ). (II.30) On obtient respectivement l p ≈ 3, 2 δ ω (x * ) et l p ≈ 3 δ ω (x * )

II.4.2 Observation de la distance entre deux structures parmi les plus énergétiques et/ou cohérentes

Il est aussi possible d'obtenir la distance entre deux structures turbulentes en observant directement les fluctuations du champ de pression sur un plan de la simulation. Dans une couche de 69 10 3 , de sorte que la corrélation est significative si R u ′ u ′ 0, 01. de cisaillement turbulente, des zones en forte rotation, dénommées cores en anglais, alternent avec des zones fortement étirées, les braids [START_REF] Jimenez | A perspective view of the plane mixing layer[END_REF]. Les zones en fortes rotation, qui ne sont autres que les larges structures turbulentes, présentent un champ de fluctuations de pression fortement négatif. Dans les zones fortement étirées, le fluide stagne dans le repère qui se déplace à la vitesse de convection [START_REF] Jimenez | A perspective view of the plane mixing layer[END_REF], ce qui induit un champ de fluctuations de pression positif. Cette première constatation permet de discerner les larges structures turbulentes. On peut de plus visualiser leur centre de rotation en visualisant les lignes de courant dans le repère convecté à la vitesse 

l p R /δ ω (x * ) 3, 5 3, 1 f p R (Hz) 713 1380 L p /δ ω (x * ) 4, 3 3, 6 
F p (Hz) 580 1155

Table II.4 -Valeurs des distances et des fréquences de passage moyennes calculées à partir de coefficient d'auto-corrélation ainsi que le distance et la fréquence de passage de deux structures particulièrement énergétiques observée dans l'écoulement.

II.4.3 Temps de vie des structures turbulentes

Guédel [57] a donné une autre interprétation de la longueur de diffusion. Selon lui, elle serait représentative de la longueur moyenne l v que parcourent les grosses structures pendant leur durée de vie T v . Pour obtenir cette valeur, l'auteur approche la décroissance des maxima du coefficient [57] obtient effectivement, à partir de ses mesures expérimentales Chapitre II. Simulation numérique d'une couche de cisaillement turbulente plane par fil chaud, une distance l v proche de la longueur de diffusion. Nous avons estimé la valeur de T v à partir de la simulation H07 pour un point de référence situé en x * = 535, 6. La figure II.26 représente la décroissance du coefficient d'inter-corrélation moyenné en envergure entre le point de référence et des points situés en amont, espacés les uns des autres de ξ * x = 17, 75, en fonction du retard normalisé. On s'aperçoit que plusieurs fonctions exponentielles peuvent approcher la décroissance des maxima pour des retard différents. Les deux premiers maxima semblent suivre une loi de décroissance en exp(-τ /T 1 ) avec T 1 = 5, 8 10 -4 s alors que les maxima des intercorrélations calculés pour des points plus éloignés du capteur de référence semblent décroitre selon exp(-τ /T 2 ) avec T 2 = 8, 7 10 -4 s. Le temps T 2 pourrait correspondre davantage au temps de vie des structures turbulentes que le temps T 1 , compte tenu des faibles valeurs des maxima des coefficients d'inter-corrélation. Les distances associées à ces deux temps de vie valent l v1 ≈ 1, 45 δ ω et l v2 ≈ 2, 17 δ ω . Ces valeurs sont nettement inférieures à la distance moyenne entre les structures turbulentes. La fonction exp( -τ /2T 3 ) ne semble quant à elle pas approcher la décroissance des maxima du coefficient d'inter-corrélation. On a représenté sur la figure II.26 cette fonction pour T 3 = T 1 , les valeurs des maxima sont beaucoup plus faibles que les valeurs de la fonction. Brown et Roshko [23] ont aussi donné une estimation de la distance moyenne que parcourt une structure pendant son temps de vie. Pour ce faire, ils ont observé de nombreux clichés de couches de cisaillement turbulentes et ont mesuré la distance que parcourt une structure nouvelle, fraîchement issue d'une fusion entre deux ou plusieurs structures plus petites, avant de fusionner. Ils ont estimé cette longueur à 4, 3 δ ω . Cette valeur semble correspondre à ce que nous observons à partir de nos simulations, contrairement aux valeurs issues de la décroissance du coefficient d'inter-corrélation. Dans les deux cas, la "bosse" des spectres S v ′ s'étend sur une plus petite gamme de fréquence que celle des spectres S u ′ . Le maximum des spectres S v ′ est atteint pour f = 580 Hz et pour f = 1220 Hz respectivement pour H07 et B04. Le maximum des spectres S u ′ est atteint pour des fréquences inférieures. Le pic du spectre S u ′ de la simulation B04 à f = 230 Hz est un artefact du régime transitoire. En effet, lorsque l'on examine le signal temporel des fluctuations de u ′ , on observe une modulation très basse fréquence présente uniquement au début du signal, caractéristique de la fin du régime transitoire. Nous avons également montré dans l'étude bibliographique que la densité inter-spectrale de puissance des fluctuations de pression diffusée S p ′ s1 p ′ s2 (f 0 + ∆f ) est directement proportionnelle au spectre k -ω des fluctuations de vitesse transverse S v ′ 1 v ′ 2 (k x , ∆f ) (eq. (I.2.2)) avec k x la composante axiale du nombre d'onde qui vaut 2π∆f /U c . Pour vérifier cette propriété, nous avons calculé l'estimateur du spectre bidimensionnel espace-temps ψ φ (f, k) [34] à partir de signaux récupérés sur une ligne horizontale qui s'étend de x * = 350 à x * = 580 proche du centre de la couche de cisaillement (en y * = 0). Cet estimateur permet d'approcher correctement le spectre k -ω lorsque les points de discrétisation de l'antenne ne sont pas équidistant (ce qui est le cas ici à partir de x * = 550). L'estimateur est défini comme :

d'inter-corrélation R u ′ u ′ (x, ξ x , τ ) par la fonction exp( -τ /2T v ). L'auteur relie alors T v à l v via la relation l v = U c T v . Guédel
ψ φ (f, k) = e ikx i S φ ′ i φ ′ j (f )e -ikx j , (II.31) où S φ ′ i φ ′ j est l'interspectre entre les fluctuations du champ φ récupérées au point x i et celles du champ φ récupérées au point x j . Celui-ci s'obtient en calculant le produit S φ ′ i φ ′ j (f ) = φ(x i , f ) φ• (x j , f ).
Dans le but de limiter les effets de repliement de la composante spatiale du spectre, le nombre d'onde maximum considéré k max (analogue dans le domaine spatial de la fréquence de Nyquist) est pris comme k max = 2π/(2ξ x ), ξ x étant l'espacement entre les points de discrétisation. Le pas de discrétisation ∆k peut quant à lui être choisi librement, nous choisissons ∆k ≈ 6, 3. On peut réécrire l'expression (II.31) sous la forme : Dans cette section, nous avons caractérisé avec plus de précision les larges structures turbulentes, cohérentes en envergure ainsi que le contenu spectral de la turbulence. Nous avons notamment distingué la distance moyenne entre les larges structures turbulentes et la distance, plus élevée, entre deux structures parmi les plus énergétiques et/ou cohérentes de l'écoulement. Nous allons désormais étudier le champ de pression en dehors de la couche de cisaillement turbulente.

ψ φ (f, k) = N i=1 S φ ′ i φ ′ i + 2 N l=1 N j=l+1 Re e ikx l S φ ′ l φ ′ j (f )e -ikx j , (II.32) car S • φ ′ i φ ′ j = S φ ′ j φ ′ i , N =
II.5 Étude du champ de pression en dehors de la couche de cisaillement II.5.1 Configuration de l'étude du champ de pression en dehors de la couche de mélange

Dans cette dernière section, nous allons nous intéresser au champ de pression en dehors de la couche de cisaillement. Nous allons notamment étudier le champ de pression aux points P 1 et P 2 , situés respectivement en (x * P 1 , y Nous avons tout d'abord cherché à comprendre l'origine physique de la gamme de basses fréquences très énergétiques. Compte tenu de la relative proximité des points P à la couche de mélange, il est fort probable que les microphones soient dans le champ proche des basses fréquences de la couche de cisaillement et qu'ils ressentent le champ de pression hydrodynamique induit par les larges structures turbulentes. Pour le vérifier, nous avons tracé les pentes k -6,67 et (ky) -2 où k = 2πf /c 0 qui correspondent respectivement, selon Arndt et al. [8], à la décroissance du spectre du champ de pression aérodynamique et acoustique à une position transverse donnée. La décroissance en basse fréquence possède effectivement une pente en k -6,67 . Cela confirme bien l'hypothèse de départ, le champ de pression mesuré aux points P possède une composante basse fréquence de nature hydrodynamique. Celle-ci est induite par les larges structures turbulentes.

La fréquence de passage moyenne des larges structures turbulentes estimée à la section II.4.2 vaut environ 780 Hz pour la configuration H07. Cette fréquence tombe bien dans la gamme des basses fréquences énergétiques contenues dans les signaux récoltés en P . À partir de 1 kHz et jusque 10 kHz, la décroissance suit globalement la loi en (ky) -2 , notamment pour le spectre du point P 2 , malgré les trois composantes pseudo-tonales et la remontée du niveau à 10 kHz. La décroissance du spectre du point P 1 ne suit plus la pente (ky) -2 après la remontée du niveau. Nous avons dans un second temps analysé la provenance des trois raies pseudo-tonales dans le spectre. De telles raies ne peuvent être obtenues que si le mécanisme physique responsable est stable au sens où il émet un champ de pression acoustique ayant toujours la même fréquence. Dans une couche de cisaillement turbulente, le mécanisme qui opère à une fréquence bien déterminée est l'appariement des rouleaux de Kelvin-Helmholtz dans la région de pré-transition. Ce mécanisme semble être un bon candidat, d'autant plus que deux structures qui s'apparient rayonnent un fort niveau acoustique. La fréquence de passage initial des rouleaux f I pour un profil de vitesse de type tangente hyperbolique a été déterminée par Monkewitz et Huerre [START_REF] Monkewitz | Influence of the velocity ratio on the spatial instability of mixing layers[END_REF] et vaut :

f I δ m,0 U c ≈ 0, 034. (II.33)
Le premier appariement s'effectue avec une fréquence f I /2 et engendre une nouvelle succession de rouleaux à cette même fréquence. Ce processus se répète deux à trois fois en fonction du nombre de Reynolds jusqu'à la transition vers la turbulence. On définit alors le nombre de Strouhal St n qui renseigne sur la fréquence du n -ième appariement : 

St n = f I 2 n δ m,0 U c = f n δ m,0 U c . ( II 

II.6 Résumé du chapitre

Dans ce chapitre, nous avons réalisé la simulation numérique aux grandes échelles d'une couche de cisaillement turbulente plane. Dans un premier temps (section II.1), nous avons choisi les paramètres, à savoir les vitesses haute et basse et l'épaisseur initiale de la couche de cisaillement pour que celle-ci s'approche au plus près des couches de mélange qui se développent aux abords du jet d'une soufflerie à veine ouverte et pour que la turbulence puisse s'y développer. Nous avons ensuite donné des détails sur l'approche numérique et sur les conditions aux limites de la simulation. À la fin de la première section, nous montrons que l'implémentation d'une zone éponge permet de grandement réduire les bruits parasites générés par le dé-raffinement et la sortie du domaine des structures turbulentes. Dans un second temps (section II.2) nous avons étudié l'influence des fluctuations et du profil de vitesse en entrée de domaine ainsi que l'envergure du domaine sur le développement de la couche de cisaillement turbulente. Nous nous sommes rendu compte qu'injecter des fluctuations de vitesse permettaient d'obtenir un régime auto-similaire plus en amont par rapport à une configuration sans perturbation. L'envergure du domaine joue quant à elle un rôle primordial dans le bon développement des larges structures turbulentes, cohérentes en envergure, responsables de la production des contraintes de Reynolds. Celle-ci doit être suffisamment élevée pour pouvoir atteindre le régime auto-similaire. Dans la section II.3 nous avons vérifié le bon développement de la couche de cisaillement turbulente en observant sa croissance linéaire, les valeurs de ses longueurs intégrales, la convergence de ses moments statistiques et la décroissance de son spectre des fluctuations de vitesse. Dans la section II.4, nous avons caractérisé avec plus de précision les larges structures turbulentes, cohérentes en envergure, en calculant notamment la distance moyenne entre les structures, leur fréquence de passage et leur temps de vie. Nous avons remarqué que certaines structures sont plus énergétiques et/ou plus cohérentes et que la distance qui les sépare est plus élevée que la moyenne. Dans la dernière section, nous avons étudié le contenu spectral du champ de pression en dehors de la couche de cisaillement, à la position où seront effectuées les mesures du champ de pression diffusé dans le chapitre suivant. Nous avons observé que cette position est proche de la couche de cisaillement au point de ressentir les fluctuations de pression hydrodynamique induites par le passage des larges structures turbulentes. Nous avons enfin remarqué que la dissipation des structures turbulentes inhérente au dé-raffinement du maillage pouvait engendrer une augmentation du niveau acoustique perçu en dehors de la couche de mélange. Maintenant que les propriétés physiques de la couche de cisaillement turbulente ont été vérifiées, il est désormais temps de simuler à la fois l'onde acoustique et l'écoulement turbulent. C'est l'objet du chapitre suivant.

Chapitre III

Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente Dans ce chapitre, nous réalisons la simulation numérique directe du champ de pression diffusé issue de l'interaction entre une onde acoustique émise par une source mono-fréquentielle et la couche de cisaillement turbulente. Les objectifs de ce chapitre sont multiples. Dans un premier temps il s'agit de montrer que la simulation numérique permet de calculer correctement le champ de pression diffusé. Pour cela nous commençons par décrire la source acoustique, puis nous vérifions que l'influence des paramètres clefs (fréquence de la source acoustique f 0 , vitesse de convection des larges structures U c , etc.) sur le champ de pression diffusé est en accord avec les observations expérimentales. Nous utilisons dans un second temps nos simulations pour observer la répartition spatiale de l'énergie diffusée et pour estimer l'angle de diffusion. Enfin, nous étudions la dé-corrélation spatio-temporelle des fluctuations d'amplitude du champ de pression diffusé.

III.1 Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé Les ondes acoustiques sont générées en ajoutant à chaque itération temporelle un terme source sur l'équation de conservation de la masse et de l'énergie. Le terme source à une forme gaussienne et s'exprime : L'unique source placée dans la veine émet, avec une certaine directivité (en rouge sur la figure), des ondes acoustiques dans le plan (e r , e θ ). Une partie de l'énergie initialement émise dans la direction 2 sera reçue par le microphone P 1 , possédant de même une certaine directivité, sous forme d'énergie diffusée. Les directivités de la source et du microphone peuvent avoir un effet non-négligeable sur le champ de pression reçu en P 1 . En effet, l'énergie diffusée selon le rayon r d1 ne sera pas entièrement compensée par l'énergie diffusée reçue selon r d2 car l'intensité acoustique incidente du rayon r i2 est plus faible que celle de r i1 . De plus, l'énergie acoustique du rayon r d2 sera de plus en plus sous-évaluée à cause du diagramme de directivité du microphone, à mesure que l'angle de diffusion augmente. Dans la configuration plane, l'énergie diffusée selon r d1 est entièrement compensée par r d2 et les points de réception du champ de pression ne présentent pas de digramme de directivité.

Q A =         ρ A 0 0 0 c 2 ρ A γ -1         exp - π (x -x s ) 2 + (y -y s ) 2 ( 
III.1. Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé Avant de simuler la propagation acoustique dans l'écoulement turbulent, il a fallu dans un premier temps s'assurer que le code de calcul était capable de propager correctement, sur le maillage décrit à la section II.1.4, les ondes acoustiques seules. Nous montrons en annexe B.1 qu'un critère de 20 pts/λ 0 est suffisant pour propager correctement l'onde acoustique. Cela amène une fréquence maximale supportée dans la direction transverse de f 0 = 85 kHz. Rappelons cependant que le taille de maille dans la direction de l'écoulement est deux fois plus grande que celle dans la direction transverse. Cela implique une forte dissipation de l'onde acoustique dans la direction e x car le critère des 20 pts/λ 0 pour f 0 = 85 kHz n'est plus respecté. Néanmois, cela n'aura pas une forte influence sur l'intensité du champ de pression diffusé reçu au point P 1 (fig.

III.1). En effet, Guédel [57] a montré que plus la fréquence d'émission est élevée, moins la région d'où provient le champ de pression diffusé sera éloignée de la ligne d'observation SP 1 , en d'autres termes, moins l'angle de diffusion θ est élevé. En effet, les relations (I.12) et (I.22) impliquent que :

∆f f 0 = 2 sin θ 2 U c c 0 (III.2)
et puisque ∆f est constant, augmenter f 0 implique une diminution de l'angle de diffusion θ selon lequel le champ de pression diffusé le plus intense est reçu par P 1 . Nous montrerons par la suite que θ n'excède effectivement pas les 10 • , ce qui implique que le champ de pression diffusé reçu en P 1 est issue d'ondes incidentes pratiquement transverses, bien supportées par le maillage.

III.1.2 Influence des fluctuations de pression injectées par la source acoustique sur le développement de la couche de cisaillement turbulente

Ajouter la source acoustique ne modifie en rien le développement de la couche de cisaillement turbulente. Nous avons représenté sur la figure III.3 l'évolution axiale de l'épaisseur de vorticité, ainsi que les maxima des tensions de Reynolds, dans une simulation avec et une simulation sans Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente source acoustique. On s'aperçoit effectivement que ni la croissance de la couche de mélange, ni l'évolution tensions de Reynolds ne sont modifiées par l'ajout de la source acoustique. Cela était prévisible car l'amplitude des fluctuations de vitesse liée au passage de l'onde acoustique U a est nettement inférieure aux fluctuations de vitesse du milieu turbulent. Typiquement, pour une onde acoustique incidente qui interagit avec la couche de cisaillement turbulente avec un niveau de 110 dB, U a sera de l'ordre de 2 10 -2 m.s -1 , au moins deux ordres de grandeurs en dessous des fluctuations turbulentes, allant jusque 20 m.s -1 pour v ′ . L'amplitude des fluctuations de vitesse de l'onde acoustique est aussi nettement inférieure à l'amplitude des fluctuations de vitesse injectées en entrée de domaine pour déclencher la turbulence. Cela implique que l'onde acoustique qui arrive en entrée de domaine, déjà nettement atténuée du fait de la propagation, ne peut déstabiliser la couche de cisaillement turbulente et avoir une influence sur son développement. 

III.1.3 Configurations simulées

Nous avons effectué plusieurs simulations en changeant la fréquence, et l'amplitude de la source acoustique ainsi que la vitesse de convection des structures turbulentes et l'épaisseur de la couche de cisaillement. En effet, nous avons vu dans le chapitre bibliographique I que ces paramètres interviennent en priorité dans le mécanisme de diffusion acoustique. Les paramètres de chacune des configurations simulées sont résumés par le tableau III.1. La valeur du paramètre A correspond au niveau de l'écart-type des fluctuations de pression au point P 1 de coordonnée (x * P 1 , y * P 1 ) = (472, 6, -126), exprimé en dB. Pour rappel, l'intégration temporelle des équations de Navier-Stokes s'effectuent de manière explicite. Comme dans le chapitre précédent, les densités spectrales de puissance ont été calculé en séparant le signal total en 5 blocs et en appliquant le fenêtrage de Welsh [START_REF] Welch | The Use of Fast Fourier Transform for the Estimation of Power Spectra : A Method Based on Time Averaging Over Short, Modified Periodograms[END_REF] ainsi qu'un recouvrement entre les blocs de 50%, ce qui amène une résolution fréquentielle d'environ 41 Hz. Le champ de pression est récupéré sur une ligne de N z = 316 points (fig. III.2a) en envergure et nous moyennons les spectres pour réduire l'incertitude statistique. Afin de visualiser à la fois l'onde acoustique émise par la source et l'écoulement turbulent, nous traçons sur la figure III.4 des contours de Schlieren numérique obtenus à partir de la simulation C85. On aperçoit très nettement l'effet du champ de vitesse uniforme U 1 e x sur la longueur d'onde de l'onde acoustique émise par la source. Les fronts d'ondes sont plus resserrés lorsque l'onde se propage vers l'amont que vers l'aval. On visualise aussi l'effet de la zone éponge à partir x * = 630, allié au dé-raffinement du maillage ; l'onde acoustique et les structures turbulentes commencent très nettement à se dissiper. Sont aussi représentés sur III.1. Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé la figure III.4 la position de la source et la position des points de l'antenne centrés sur S sur lesquels sont récoltés les champs de vitesse, de pression et de masse volumique. Le point P 23 est placé sur la ligne y/δ m = 6 et le point P 24 est placé au centre de la couche de cisaillement, sur la ligne y 0 (x). Dans un premier temps, nous comparons le contenu spectral du champ de pression reçu au point P 1 dans le cas sans source acoustique H07 et dans le cas C85 où la source acoustique émet à une fréquence de 85 kHz. La figure III.5a représente la densité spectrale de puissance des fluctuations de pression au point P 1 dans ces deux configurations. Mise à part l'énergie de nature acoustique présente sur les fréquences autour de 85 kHz, les deux spectres sont identiques. Cette constatation vient confirmer le fait que l'écoulement turbulent n'est pas modifié par l'injection Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente de l'onde acoustique. Observons maintenant l'influence de l'amplitude de la source acoustique sur le spectre de pression au point P 1 . La figure III.5b représente les spectres des fluctuations de pression obtenus dans les configurations H07, C85 et C85 A . On observe une fois de plus l'énergie acoustique injectée dans le système qui s'étale entre 60 et 120 kHz pour les cas avec la source. En dehors de cette gamme de fréquence, le spectre de C85 rejoint le spectre de la configuration sans source acoustique H07, alors que le spectre de C85 A présente de l'énergie autour des deux harmoniques 170 kHz et 255 kHz. L'énergie répartie sur les harmoniques de la fréquence du signal est due probablement à des effets non-linéaires. En effet dans la configuration C85 A , la source émet à un niveau d'environ 153 dB, situé dans le domaine de l'acoustique non-linéaire. Nous montrons en annexe B.2 que l'onde acoustique émise par la source de la configuration C85 A présente dès l'émission de l'énergie sur la fréquence principale ainsi que sur les harmoniques. Des prémisses de cet effet non-linéaire sont visibles dans la configuration C85 avec le petit pic de +6 dB présent sur la première harmonique. 

Noms H07 B04 C12 C24 C43 C55 C65 C75 C85 C85 A C85 B04 f 0 (kHz) Ø Ø 12 

Influence de la fréquence d'émission sur les densités spectrales de champ de pression diffusé

Afin de comparer quantitativement les densités spectrales de puissance lorsque l'on change la fréquence d'émission de la source, il est nécessaire de normaliser les spectres par une grandeur qui prend en compte à la fois la quantité d'énergie acoustique injectée dans le domaine et les faibles pertes par dissipation numérique lors de la propagation de l'onde. En effet, si l'on injecte pour deux fréquences différentes exactement la même quantité d'énergie acoustique (ce qui n'est pas évident en pratique), les pertes numériques (très faibles d'après l'annexe B) dues à la propagation de l'onde incidente et diffusée dépendent de la fréquence d'émission ce qui ne permet pas une comparaison directe des niveaux des spectres. Nous choisissons alors de normaliser par la puissance acoustique provenant de la source, reçue en P 1 . Celle-ci s'exprime : différente (en termes de fréquence et de forme de la source acoustique, de vitesse de convection, de forme et d'épaisseur de couche de cisaillement) des configurations expérimentales, nous ne pouvons nous attendre à obtenir les mêmes niveaux d'énergie diffusée. Ainsi, seule la forme des spectres est comparée. Cette comparaison est rendue possible en appliquant un décalage artificiel sur le spectre simulé de sorte que le maximum du lobe gauche coïncide avec celui du spectre expérimental. De plus, les spectres sont tracés en fonction de la fréquence sans dimension (ff 0 ) * = (f -f 0 )/∆f . Les spectres numériques sont en bon accord avec les spectres expérimentaux, la forme des lobes ainsi que la décroissance des spectres sont correctement simulées. L'écart sur la partie droite du spectre entre la simulation et l'expérience de Candel et al. [28] peut provenir du fait que leur source acoustique expérimentale émette un champ de pression directif à la fréquence de 16 kHz. Cela entraine, nous le verrons par la suite, une dis-symétrisation du spectre des fluctuations de pression [57]. III.1. Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé

P tot = f 2 f 1 S p ′ (x P 1 , f )df

III.1.5 Discussion sur la valeur du décalage fréquentiel

Le calcul des densités spectrales de puissance des fluctuations de pression au point P 1 (fig. III.7) nous a permis d'obtenir la valeur du décalage fréquentiel ∆f sur lequel le maximum d'énergie diffusé est re-distribué pour les simulations avec la couche de mélange H07 et la couche de mélange B04. Les deux valeurs du décalage fréquentiel sont rappelées dans le tableau III.2. À partir du décalage fréquentiel et de la vitesse de convection, nous calculons aussi la longueur de diffusion l d = U c /∆f , que l'on exprime en fonction de l'épaisseur de vorticité à l'aplomb de la source. La valeur de la longueur de diffusion pour la couche de mélange H07 est supérieure à la valeur de 3, 2 δ ω utilisée par Candel et al. [28], mais est en bon accord avec les valeurs 4, 2 δ ω , 4 δ ω et 4, 3 δ ω obtenues plus récemment par Sijtsma et al. [START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] et Kröber et al. [START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF]. La longueur de diffusion de la configuration C85 B04 se situe entre la valeur de Candel et al. et les valeurs expérimentales plus récentes. On observe dans un premier temps que le décalage fréquentiel correspond effectivement à la fréquence pour laquelle le spectre S v ′ est maximum. En effet nous avions trouvé dans la section II.4.4 des valeurs de 580 Hz et 1220 Hz respectivement pour les configurations H07 et B04. Les estimateurs ψ u ′ , ψ v ′ et ψ p ′ présentent quant à eux un maximum d'énergie sur une fréquence de 540 Hz pour la couche de mélange H07, légèrement inférieure aux 575 Hz. Cette faible différence s'explique par le fait que l'antenne qui sert à calculer les estimateurs de spectre k -ω capte les champs induits par des structures plus énergétiques et dont la fréquence de passage est plus faible que les structures mesurées à la position x * = 472, 6. Les longueurs de diffusion sont sensiblement éloignées des distances moyennes entre les larges structures turbulentes l p et l p R calculées au chapitre précédent à la section II.4.1 et affichées dans le tableau II.4. En revanche, la longueur de diffusion est sensiblement égale à la longueur L p qui correspond à la distance entre deux grosses structures parmi les plus énergétiques et/ou cohérentes observées dans l'écoulement turbulent. Il n'est pas incohérent effectivement que le maximum d'énergie diffusée résulte de l'interaction entre l'onde acoustique et les quelques structures les plus énergétiques davantage espacées, ce qui aboutirait à une longueur de diffusion supérieure à la distance moyenne entre les larges structures turbulentes. Partant de cette observation, il faudrait réussir à expliquer comment Candel et al. [28] ont abouti aux bonnes valeurs du décalage fréquentiel ∆f en partant d'une valeur sous-estimée de l d . Cela tient probablement au fait que la vitesse de convection U c = 0, 5 U J utilisée était elle aussi sous-estimée. Les auteurs [29] ont pourtant remarqué que cette valeur était inférieure aux 0, 65 U J obtenue par Davies et al. [44] et par Lau et al. [START_REF] Lau | The intrinsic structure of turbulent jets[END_REF] par une analyse des coefficients d'inter-corrélation comme celle menée à la section II.3.2. Plus récemment, Fleury et al. [53] ont obtenu sur des jets froids avec un nombre de Mach en sortie de convergent M J = 0, 6 et 0, 9, à partir de mesures dual PIV (Particle Image Velocimetry) et LDA (Laser Doppler Anemometry), des valeurs de vitesse de convection situées entre 0, 6 et 0, 65, fonction de M J et de la position axiale. Si l'on choisit U c = 0, 63 U J au lieu de 0, 5 U J , ∆f reste constant si l d est pris égale à 4 δ ω . Cette valeur s'apparenterait davan-tage à la distance entre les larges structures les plus énergétiques de l'écoulement turbulent qu'à la distance moyenne entre les larges structures. Par ailleurs, nous avons essayé de trouver une autre interprétation physique du décalage fréquentiel et de la longueur de diffusion. Une analyse de stabilité linéaire 2D, spatiale et temporelle, a été réalisée sur l'écoulement moyen issu de la simulation numérique avec pour objectif de comparer la longueur de diffusion et le décalage fréquentiel aux modes les plus instables de l'écoulement. L'analyse de stabilité locale n'a cependant pas débouché sur la longueur et la fréquence qui interviennent dans le mécanisme de diffusion acoustique. Nous présentons par conséquent l'étude dans l'annexe C.
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III.1.6 Quantité d'énergie diffusée

Après avoir validé la position et la forme des lobes secondaires ainsi que la décroissance du spectre, nous avons cherché à savoir si la quantité d'énergie diffusée était correctement simulée. Celle-ci en effet était soit sous-estimée (fig. 9 de [52]), soit sur-estimée (fig. 25 de [51]) par les simulations numériques précédentes par comparaison avec les expériences de Candel et al. (fig.

25 de [28]). Pour obtenir la quantité d'énergie diffusée, nous calculons à partir de nos spectres de pression la quantité P peak /P tot avec : L'épaisseur de la couche de cisaillement l 1 est définie par Guédel comme la distance entre les deux points où u (x P 1 , y) = 0, 9 U J et u (x P 1 , y) = 0, 1 U J . Cette définition aboutie à une valeur de l'épaisseur de couche de cisaillement très proche de l'épaisseur de vorticité δ ω (x * P 1 ). Tous les autres termes qui interviennent dans l'expression de β G et de β S sont clairement définis et peuvent être obtenus directement à partir des simulations. On obtient alors les expressions β G ≈ 4, 59 10 -6 f 0 et β S ≈ 4, 25 10 -6 f 0 . Il est intéressant de remarquer que deux expressions analytiques, établies de manière totalement différentes, sont numériquement proches l'une de l'autre. L'influence de la fréquence acoustique de la source sur la valeur du rapport d'énergie P peak /P tot est étudiée sur les configurations C55, C65, C75 et C85. La figure III.9 montre que les rapports obtenus directement à partir des spectres de pression suivent la bonne tendance mais sont supérieurs aux rapport analytiques (I.47) et (I.48). Les rapports de puissances obtenus dans le cadre des mesures en soufflerie et les rapports estimés analytiquement semblent correspondre davantage [START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF]58].

P peak = f p2 f p1 S p ′ (x P 1 , f )df, (III.4) où f p1 et f p2 ont
Cette sur-estimation provient potentiellement d'un effet de directivité de la source et du microphone dans le plan (e r , e θ ), absent des simulations numériques, qui entraînerait une surestimation de l'énergie contenue dans le pic principal et donc une sur-estimation du rapport de puissances. Comme expliqué à la section III.1.1, à partir de la figure III.2b, l'énergie reçue via le trajet 2 à la fréquence f 0 ne peut compenser totalement l'énergie perdue selon le trajet 1 car l'énergie incidente qui arrive selon le trajet 1 est plus importante. Dans la configuration plane des simulations numériques (fig. III.2a), où la source acoustique n'émet pas dans la direction e z , l'énergie issue du trajet 1 qui est re-distribuée spatialement est entièrement compensé par l'énergie diffusée qui provient des autres rayons. Cela entraîne, par rapport à la configuration expérimentale, une sur-estimation de l'énergie contenue dans le pic principal et donc une surestimation du rapport des puissances. Nous avons aussi calculé le rapport des puissances pour III.1. Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé la configuration C85 avec une source linéique directive qui sera décrite plus tard à la section III.2.1. Nous obtenons une valeur de 0, 9006, légèrement inférieure à la valeur de 0, 9033 obtenue pour une source omni-directionnelle. Utiliser une source directive, à l'instar des mesures en soufflerie, diminuerait le rapport des puissances pour s'approcher davantage des ratios obtenus expérimentalement. La sur-estimation du rapport des puissances pourrait aussi avoir un lien avec la faible proportion des structures homogènes orientées dans la direction de l'écoulement due aux perturbations de vitesse de type bruit blanc injectées en entrée de domaine pour déclencher la turbulence [START_REF] Mcmullan | Initial condition effects on large scale structure in numerical simulations of plane mixing layers[END_REF]. En effet, il semblerait, au vue des observations de la dernière partie de cette étude (section IV.4.8) que les structures homogènes en espace jouent un rôle clef dans le mécanisme de diffusion acoustique. Cela étant, la quantité d'énergie diffusée est plus proche des estimations que ne l'était celle des anciennes simulations numériques [52,51]. La figure III.9 montre de plus que le rapport de puissances est correctement décrit par une loi exponentielle lorsque les valeurs du paramètre β sont faibles. Les β élevés sont très couteux à simuler dans le cadre des SGE à cause de la limitation sur le nombre de points par longueur d'onde pour la propagation numérique de l'onde acoustique. Cependant, [START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] montre que la déviation entre le rapport des puissances mesuré et le rapport analytique augmente lorsque β augmente.

III.1.7 Comparaison directe des densités spectrales de puissance à partir du paramètre de diffusion

Comme mentionné à la fin de la section II.1.4, les rapports de puissance (I.47) et (I.48) font apparaître un groupement adimensionné qui dépend d'une mesure de l'épaisseur de la couche de cisaillement, de l'intensité turbulente transverse et de la fréquence de l'onde acoustique incidente. Nous définissons alors le paramètre de diffusion h = v ′ m δ ω (x * S )/(λ 0 c 0 ) (eq. (II.15)) qui permet de caractériser la quantité d'énergie diffusée pour une configuration particulière. Nous avons alors cherché à savoir si la simulation de deux configurations totalement différentes ayant le même paramètre de diffusion aboutissait à la même quantité d'énergie diffusée. Nous avons donc simulé la configuration C43 qui possède le même paramètre de diffusion que la configuration C85 B04 , malgré une fréquence acoustique (près de deux fois plus faible), une vitesse de convection des larges structures turbulentes (inférieure d'environ 18 %) et une épaisseur de couche de cisaillement (environ 30 % supérieure) différentes. Les rapports de puissances calculés par intégration direct des spectres de fluctuations de pression en P 1 sont égaux à 0, 976 et 0, 972 respectivement pour C43 et C85 B04 . Ces deux valeurs très proches indiquent que le paramètre de diffusion h est une Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente grandeur sans dimension pertinente pour renseigner sur la quantité d'énergie diffusée. Nous nous sommes ensuite demandé si nous pouvions comparer quantitativement les densités spectrales de puissance de deux configurations différentes ayant le même paramètre h. Nous représentons sur la figure III.10 les spectres des fluctuations de pression au point P 1 de C43 et C85 B04 , en fonction à gauche de f -f 0 et à droite de (f -f 0 )/∆f . Tracé en fonction de f -f 0 , les spectres présentent une répartition différente de l'énergie sur les fréquences. Une plus grosse quantité d'énergie est répartie autour de ±575 Hz, suivie d'une décroissance plus abrupte du spectre pour la configuration C43 par rapport à C85 B04 . Lorsque l'on trace les spectres en fonction de (f -f 0 )/∆f , le spectre de C43 est supérieur d'environ 3 dB/Hz à celui de C85 B04 . Cela indique que l'on ne peut pas comparer quantitativement deux spectres issus de deux configurations différentes ayant le même paramètre de diffusion. Dans cette section, nous avons décrit la source acoustique et explicité les paramètres des configurations simulées (épaisseur de la couche de mélange, vitesse de convection des larges structures turbulentes, fréquence et amplitude de la source acoustique). Nous avons ensuite ensuite étudié l'influence de la fréquence et de l'amplitude de la source, ainsi que la vitesse de convection des larges structures turbulentes sur le champ de pression diffusé. Les caractéristiques des densités spectrales obtenues avec nos simulations, notamment leur forme, sont en très bon accord avec les spectres des précédentes études expérimentales. Cela montre que la simulation numérique aux grandes échelles est un outil adapté au calcul direct de la diffusion d'une onde acoustique par une couche de cisaillement turbulente. Néanmoins, la longueur de diffusion obtenue à partir des spectres de pression est supérieure à la distance moyenne entre les structures turbulentes calculée à la section II.4.1 du chapitre précédent. Celle-ci se rapproche fortement de la distance entre les structures turbulentes parmi les plus énergétiques et/ou cohérentes de la couche de cisaillement, identifiées à la section II.4.2. Nous allons maintenant étudier l'influence de la directivité de la source et essayer d'identifier le nombre d'onde acoustique à partir duquel le mécanisme de diffusion s'amorce. III.2. Étude de l'influence de la directivité de la source et détermination du nombre d'onde acoustique à partir duquel le mécanisme de diffusion s'amorce III.2 Étude de l'influence de la directivité de la source et détermination du nombre d'onde acoustique à partir duquel le mécanisme de diffusion s'amorce III.2.1 Influence de la directivité de la source sur les spectres de pression diffusé

Les sources acoustiques utilisées dans la configuration des mesures acoustiques en soufflerie [28,29,57,58] sont directives, contrairement à la source omni-directionnelle décrite à la section III.1.1. Nous avons souhaité étudier l'influence de la directivité de la source sur le champ de pression diffusé afin de mieux interpréter les différences qui existent entre les spectres de pression diffusé simulés et ceux observés expérimentalement. La première étape de ce travail consiste à générer numériquement un champ de pression directif. Pour réaliser une telle source, nous avons placé sur une même ligne, centrée en (472, 6, 126), 15 sources omni-directionnelles émettant à la même fréquence et espacées l'une de l'autre de 1, 05 δ ω,0 . Augmenter le nombre de source a pour effet d'accroître la directivité mais d'augmenter le temps de calcul du champ de pression généré par la source. La source linéique étant placée dans une région de vitesse U 1 , la convection implique que la direction du maximum d'énergie émis n'est par perpendiculaire à la direction de la source linéique. Pour palier cet effet et faire en sorte que la source rayonne le maximum de son énergie dans la direction perpendiculaire à la direction de l'écoulement, nous inclinons d'un angle de 8 • la source linéique dans le sens des aiguilles d'une montre. La figure III.11a représente des contours de l'écart-type du champ de pression généré par la ligne dont les 15 sources sont représentées par les points blancs. La figure III.11b représente la directivité de la source linéique sur deux cercles centrés en (472, 6, 126), de rayons r * = 72, 5 et r * = 256. L'angle de directivité θ est croissant dans le sens des aiguilles d'une montre. Les symboles bleus représentent la directivité de l'une des sources utilisée par Candel et al. [28]. Celle-ci a été artificiellement ré-haussée car seule la forme de la directivité nous intéresse. La forme de la directivité de la source numérique est très proche de celle de [28] pour les angles allant de 40 • à 100 • . Pour les angles plus importants la source numérique est plus directive que celle de [28]. La directivité de la source induit des effets de dis-symétrisation de la densité spectrale des fluctuations de pression diffusé [57]. Pour s'en rendre compte, nous traçons sur la figure III.12 la partie droite du spectre (f > f 0 ) de pression calculée au point P 10 (cf. figure III.4) et le symétrique Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente de la partie gauche (f < f 0 ) par rapport à la droite f = f 0 , pour la configuration C85 avec une source omni-directionnelle (fig. III.12a) et pour la source linéique (fig. III.12b). Lorsque la source est omni-directionnelle, le spectre est symétrique, notamment pour les fréquences proches de la fréquence d'émission. Lorsque la source est directive, le spectre calculé au point P 10 est dissymétrique ; l'énergie diffusée est davantage répartie sur les fréquences inférieures à la fréquence d'émission que sur les fréquences supérieures. Pour comprendre le rôle de la directivité de la source sur la dis-symétrisation du spectre calculé au point P 10 , nous avons schématisé cette configuration sur la figure III.13. Nous avons tracé en pointillé la ligne d'observation SP 10 et de part et d'autre, deux rayons qui amènent de l'énergie diffusée en P 10 . Les vecteurs de diffusion k d associés aux deux rayons sont égaux en norme mais opposés en sens, le rayon 2 apportera de l'énergie sur ∆f (k d ) < 0 et le rayon 1 de l'énergie sur ∆f (k d ) > 0 (cf. expression (I.22)). Maintenant si la source est directive, le rayon r i2 est plus énergétique que le rayon r i1 ce qui induit que l'énergie diffusée amenée selon le trajet 2 est supérieure à celle amenée via le trajet 1. La partie gauche du spectre calculé au point P 10 (∆f (k d ) < 0) possède donc plus d'énergie que la partie droite du spectre (∆f (k d ) > 0). Bien sûr, si le point P était placé en aval de la source θ P < 90 • , la dissymétrie serait inversée, la partie droite du spectre serait plus énergétique que la partie gauche. Lorsque la source est omni-directionnelle, le rayon r i1 est aussi énergétique que la rayon r i2 ce qui entraîne un spectre symétrique.

III.2.2 Nombre d'onde à partir duquel le mécanisme de diffusion s'amorce

Dans le cadre d'une couche de turbulence stochastique Clair et Gabard [39] ont récemment réalisé l'étude de la diffusion d'une onde acoustique par une turbulence stochastique générée avec la méthode RPM (voir section I.5.3). Leurs spectres de pression diffusé présentent bien les lobes secondaires, mais leur position ainsi que leur forme sont assez éloignées des spectres expérimentaux (fig. III.14). Ils obtiennent notamment une valeur de l d égale à 0, 88 δ ω , ce qui très inférieur de l'intervalle [3, 2; 4, 4] δ ω obtenu lors des différentes mesures en soufflerie. Dans cette section, nous nous basons sur les travaux des auteurs [39] pour justifier la longueur de diffusion obtenue et pour déterminer un nombre d'onde seuil à partir duquel le mécanisme de diffusion s'amorce. La différence de valeur entre la longueur de diffusion obtenue par les auteurs et celle obtenue lors des différentes mesures en soufflerie s'explique par le fait que le contenu spectral de la turbulence, généré de manière stochastique, est différent de celui généré "naturellement" dans une couche de cisaillement turbulente. En effet, la turbulence stochastique ne comporte pas les grosses structures turbulentes, cohérentes en envergure, décrites par Brown et Roshko [23]. Cela implique que le spectre de la vitesse v ′ du milieu turbulent S v ′ (k x ) atteint un maximum pour un nombre d'onde k x différent de celui des mesures en soufflerie, à fortiori plus élevé car l d est plus faible. Clair et Gabard ont calculé ce spectre en fonction du nombre d'onde sans dimension Dans cette section, nous avons vu comment une source directionnelle pouvait engendrer une dis-symétrisation du spectre de pression. À partir de nos simulations et des travaux de Clair et Gabard [39], nous avons aussi essayé d'estimer le nombre d'onde acoustique seuil à partir duquel le mécanisme de diffusion acoustique s'amorce. Dans la section suivante, nous allons calculer les spectres de cohérence et de phase du champ de pression diffusé sur une antenne cylindrique afin de vérifier que celui-ci est bien de nature projective.

k * = k x L y v ′ v ′ /(
III.3 Étude du caractère projectif du champ de pression diffusé à partir des spectres de cohérence et de phase Lors de leurs expériences en soufflerie, Candel et al. [28,30,29] ont montré la nature projective du champ de pression diffusé dans le sens où le champ de pression diffusé transporte des informations sur l'écoulement turbulent. Ils ont notamment calculé deux vitesses de défilement et une longueur de défilement qu'ils ont reliées à la vitesse de convection des larges structures turbulentes et à la longueur de diffusion via le facteur de projection µ p = H 0 /(H + H 0 ), qui mesure la distance relative de la source et du microphone au centre de la couche de cisaillement. Plus de détails ont été donnés à la section I.1. Avec les notations de l'étude, H 0 est égal à la distance entre la source et le point situé sur la ligne y 0 (x) (le centre de la couche de cisaillement) et H à la distance entre le point sur y 0 (x) et le centre de la ligne joignant les deux microphones P , espacés de ξ (fig. I.8). Dans cette section, nous allons étudier la cohérence et les relations de phase du champ de pression diffusé, reçu par l'antenne de microphone représentée sur la figure III.4 à différentes positions afin d'estimer une première vitesse de défilement et de remonter à la vitesse de convection des larges structures turbulentes.

III.3.1 Spectres de cohérence des fluctuations de pression recueillies en dehors de la couche de cisaillement

Pour comparer le contenu spectral entre deux signaux différents, nous utilisons la densité inter-spectrales de puissance S φ ′ i φ ′ j entre le champ φ i , récupéré en x i et le champ φ j , récupéré en x j . Cette quantité a déjà été utilisée à la section II.4.4 pour calculer l'estimateur des spectres k -ω. À partir de cette quantité nous calculons le spectre de cohérence qui n'est autre que l'inter-spectre normalisé par les spectres calculés en chaque point. Concrètement, le spectre de cohérence s'exprime : est très élevé pour une large gamme de fréquence autour de la fréquence d'émission. Le niveau du spectre de cohérence décroît fortement à mesure que le second point s'éloigne du point de référence, à part pour une bande de fréquence autour de ±∆f . Cela montre que le champ de pression diffusé qui résulte de l'interaction entre l'onde acoustique incidente et les petites structures turbulentes, correspondant aux ∆f (k d ) élevés, est fortement dé-corrélé spatialement. Par contre, le champ de pression diffusé issu de l'interaction avec les larges structures turbulentes reste fortement corrélé sur une grande distance. 

γ 2 φ ′ i φ ′ j (f ) = |S φ ′ i φ ′ j (f )| 2 S φ ′ i (f )S φ ′ j (f ) . (III.

III.3.2 Estimation de la vitesse de défilement à partir des spectres de phase

À partir de la densité inter-spectral S φ ′ i φ ′ j nous pouvons aussi étudier les relations de phase qui existent entre les signaux en calculant le spectre de phase :

Φ φ ′ i φ ′ j (f ) = arctan   Im S φ ′ i φ ′ j (f ) Re S φ ′ i φ ′ j (f )   .
(III.8)

Les spectres de phase calculés à partir de la pression reçue au point de référence P 1 et la pression reçue en P 12 , P 14 et P 16 sont représentés sur la figure III.19. Si la phase croît de manière linéaire avec la fréquence, cela indique qu'il existe une relation de phase sur la gamme de fréquence concernée entre les signaux. Il est alors possible de définir un "temps de vol" [28] :

τ i,j = 1 2π
dΦ φ i φ j df , (III.9) qui dépend de la distance ξ i,j entre les points sur lesquels sont reçus les champs. À partir de ce temps de vol, nous définissons à la manière de Candel et al. [28] la vitesse de défilement U d1 = ξ i,j /τ i,j qui doit être constante pour chaque couple (ξ i,j , τ i,j Dans cette section, nous avons étudié les relations de phase et la cohérence en fonction des fréquences du champ de pression diffusé sur une antenne cylindrique située en dehors de la couche de cisaillement. La vitesse de défilement obtenue à partir du spectre de phase est supérieure à la vitesse de convection pour les deux couches de cisaillement turbulente. Nous allons désormais observer la répartition spatiale du champ de pression diffusé et décrire une méthode numérique qui permet de mesurer l'angle de diffusion.

III.4 Répartition spatiale de l'énergie acoustique diffusée, cohérence spatiale du champ de pression diffusé et estimation de la longueur de diffusion à partir de l'observation de l'angle de diffusion

Le mécanisme de diffusion acoustique re-distribue spatialement l'énergie acoustique incidente et spectralement sur les fréquences autour de la fréquence d'émission de la source. Dans les analyses précédentes, nous avons étudié comment se répartissait l'énergie diffusée sur les fréquences, sur une position donnée. Nous allons désormais fixer une fréquence d'intérêt, typiquement les fréquences f 0 ± ∆f qui correspondent aux fréquences du maximum d'énergie diffusée, et nous allons regarder comment l'énergie se répartie dans le plan (x, y). Cette opération est compliquée à réaliser expérimentalement car il est nécessaire de récupérer le champs de pression sur tout l'espace, y compris dans la couche de cisaillement, sans perturber l'écoulement. Cette opération ne pose aucun problème sur une simulation numérique mais résulte en un gros volume de données qui demande une certaine puissance de calcul pour être traité. Pour chacune des configurations III.4. Répartition spatiale de l'énergie acoustique diffusée, cohérence spatiale du champ de pression diffusé et estimation de la longueur de diffusion à partir de l'observation de l'angle de diffusion simulées, nous récupérons les champs primitifs sur 8 plans (x, y) équidistants en envergure. Les champs sont prélevés tous les 2 ∆x et tous les 2∆y dans un plan qui s'étend de x * = 360 à x * = 580 et de y * = -154 à y * = 154. Chaque plan comporte ainsi 20 880 points, 87 dans la direction e x et 240 dans la direction e y . La durée physique du signal final est toujours égale à 75 ms. La simulation complète pour une configuration produit environ 330 Go de données. Le signal est scindé en n b = 6 blocs et les spectres sont moyennés sur les 8 plans afin de réduire l'incertitude statistique.

III.4.1 Répartition progressive de l'énergie diffusée sur les lobes secondaires

Dans un premier temps, nous représentons sur la figure III.20 la cartographie dans le plan (x * , y * ) de la densité spectrale de puissance des fluctuations de pression à la fréquence d'émission f 0 , calculée dans la configuration C85. Les traits en pointillés représentent approximativement l'épaisseur de la couche de cisaillement (≈ 2 δ ω ). Le champ acoustique à la fréquence f 0 subit uniquement les effets de convection et de réfraction par le gradient de vitesse axiale moyen. Ces effets induisent des iso-contours de densités spectrales non-concentriques autour de la source. 

III.4.2 Cohérence spatiale du champ de pression diffusé

À partir des plans extraits de la simulation, on peut comparer le contenu spectral entre le signal d'un point de référence et les signaux de chacun des autres points du plan. Cette opération permet notamment d'obtenir des cartographies de cohérence pour une fréquence bien particulière. Si l'on choisit les fréquences qui correspondent au champ de pression diffusé, on peut alors étudier la cohérence spatiale du champ de pression diffusé, en fonction du décalage fréquentiel ∆f et donc du nombre d'onde des structures qui ont interagies avec l'onde acoustique incidente car ∆f (k d ) = -k d • U c /2π. Nous calculons le spectre de cohérence γ 2 p ′ 1 p ′ entre les fluctuations du champ de pression récupérées au point de référence P 1 et les fluctuations de pression partout ailleurs sur le plan. La figure III.24a représente cette fonction à la fréquence du maximum du acoustique et la couche de cisaillement turbulente lobe droit f 0 + ∆f ≈ 85575 Hz et la figure III.24b représente cette même fonction à fréquence 87 kHz. Le spectre de cohérence à la fréquence f 0 + ∆f présente des valeurs importantes sur une large zone alors qu'à la fréquence 87 kHz, les forts niveaux sont localisés autour du point de référence. Cela indique que le champ de pression diffusé issu de l'interaction avec les structures turbulentes de faible nombre d'ondes, à fortiori les larges structures turbulentes, est fortement corrélé spatialement. Le champ de pression diffusé issu de l'interaction avec la turbulence plus fine (k d plus grand) est quant à lui plus faiblement corrélé. Si l'on considère que la cohérence spatiale du champ de pression diffusé est intrinsèquement lié à la distance sur laquelle les structures turbulentes dont il est issu restent corrélées, il est logique que le champ de pression diffusé à f 0 + ∆f présente une plus forte cohérence spatiale qu'à 87 kHz. En effet les larges structures turbulentes restent relativement corrélées lors de leur déplacement au sein de la couche de mélange alors que les structures plus fines ont un temps de vie bien plus faible. Ces constatations sont en accord avec les conclusions de la section III.3.1, où été étudiée la décroissance des spectres de cohérence en fonction de la fréquence. On remarque par ailleurs sur la figure III.24a que les forts niveaux de cohérence débutent dès la périphérie de la couche de cisaillement turbulente. Cela indique que l'interaction entre l'onde acoustique incidente et l'écoulement turbulent s'enclenche dès l'entrée dans la couche de cisaillement, bien que les fluctuations de vitesse du milieu turbulent soit de faibles amplitudes. 

III.4.3 Estimation de la longueur de diffusion de la couche de cisaillement turbulente

Pour estimer la longueur de diffusion l d dans la section III.1.5, nous avons utilisé la formule de Candel et al. [28] l d = U c /∆f , basée sur le décalage fréquentiel estimé à partir des spectres de fluctuations de pression. Cette formulation approchée provient de l'équation (I.22), si l'on considère que le vecteur de diffusion est colinéaire avec le vecteur vitesse moyenne du volume de turbulence. Cette vitesse peut s'identifier à la vitesse de convection des larges structures qui est III.4. Répartition spatiale de l'énergie acoustique diffusée, cohérence spatiale du champ de pression diffusé et estimation de la longueur de diffusion à partir de l'observation de l'angle de diffusion pratiquement colinéaire au vecteur e x . L'expression exacte de la longueur de diffusion : [38].

l d = 2π/k d = λ 0 /(2

Schéma des rayons incident, réfracté et diffusé

Considérons un rayon acoustique émis par la source selon un angle θ 0 à la fréquence f 0 , représenté sur la figure III.25a. Si celui-ci interagit avec une structure de nombre d'onde k d = k 0 (e 0e s ) qui se déplace dans la direction de l'écoulement, une partie de son énergie sera redistribuée spatialement dans la direction repérée par θ(k d ) et spectralement sur les fréquences

f 0 ± ∆f (k d ) avec ∆f (k d ) = -k d • U c /2π
. Dans la configuration de la couche de cisaillement turbulente, le rayon incident est de plus réfracté par le gradient de vitesse entre la zone haute et la zone basse vitesse, cf. figure III.25b. Cela ce traduit par une légère déviation du rayon incident, le rayon réfracté correspondant se propage alors sous un angle θ r . Le phénomène de réfraction étant indépendant de la fréquence d'émission [7,28,4], on peut considérer que le rayon diffusé est dévié dans les mêmes proportions que le rayon incident, l'angle de diffusion θ(k d ) reste ainsi identique au cas sans réfraction. Pour récupérer l'angle de diffusion, on doit être capable de repérer le rayon diffusé. Obtenir la trajectoire d'un rayon diffusé par la composante k d d'un écoulement turbulent n'est pas chose aisée. Dans le cas de la diffusion par un vortex déterministe [38], il est possible de visualiser directement le champ de pression diffusé. En effet, il suffit de lancer trois simulations Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente distinctes, une première qui calcule l'interaction entre l'onde acoustique incidente et l'écoulement, une deuxième qui calcule uniquement l'écoulement et une troisième qui calcule uniquement le champ de pression induit par la propagation acoustique. En soustrayant du champ de pression généré par la première simulation le champ calculé par les deux suivante, on récupère le champ de pression diffusé. Cette méthode à aussi été appliquée par [39] dans la configuration de la diffusion par la turbulence stochastique mais elle ne permet pas d'isoler l'interaction avec une unique composante k d dans l'écoulement. On peut aussi obtenir les rayons diffusés par un écoulement turbulent, moyennant les hypothèses mentionnées à la section I.3.1, en appliquant une méthode de tracé de rayons in-stationnaire [START_REF] Suzuki | Acoustic wave propagation in transversly sheared flows[END_REF]. Cependant de tels rayons ont subi une interaction avec toute une gamme d'échelles de l'écoulement turbulent, il n'est donc pas possible une fois de plus d'isoler l'interaction avec un nombre d'onde fixe. Nous proposons ici une méthode pour observer la trajectoire d'un rayon particulier, diffusé par les structures turbulentes de nombre d'onde k d fixé.
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Choix du rayon

Considérons une source acoustique émettant de manière omni-directionnelle (figure III.26a). Les ondes acoustiques étant de nature longitudinales, les fluctuations de vitesse axiales U ′ liée à l'onde acoustique sont nulles sur le rayon perpendiculaire à la direction axiale e x . Si la source est placée dans un écoulement de vitesse constante U 1 , le rayon sur lequel U ′ = 0 pivote. Cela est représenté de manière schématique sur la figure III.26b. Pour s'en convaincre, nous avons simulé numériquement la propagation d'une onde acoustique dans un écoulement uniforme de vitesse axiale U 1 . Les niveaux saturés des fluctuations de vitesse axiale U ′ associée à l'onde acoustique sont représentés sur la figure III.27. On s'aperçoit clairement que le rayon sur lequel U ′ = 0 n'est pas perpendiculaire à la direction de l'écoulement.

x S U'= 0 Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente incident et le rayon réfracté. Ce dernier a été obtenu à partir du code CESAR-P développé par Bulté en 2007 à l'ONERA. Ce code de tracé de rayon basé sur la méthode de l'acoustique géométrique (section I.3.1) a été utilisé récemment pour étudier les effets de réfraction dans les mesures acoustiques en soufflerie à veine ouverte [START_REF] Redonnet | Numerical investigation of the refraction effects by jet flows in anechoic wind tunnels, with application to NASA/LaRC quiet flow facility[END_REF]. Une fois les quatre coordonnées axiales récupérées, il est aisé de trouver les longueurs a, b, c et p pour obtenir les angles de diffusion. La figure III.30 représente les spectres de cohérence γ 2 Ensuite les deux valeurs des angles pour une même configuration sont proches. Théoriquement, ceux-ci devrait être identiques car les deux angles correspondent à la diffusion par les même structures de nombre d'onde k d . L'écart qui existe entre les angles peut provenir de la faible résolution axiale des plans extraits pour le calcul des densités spectrales. En effet, la résolution de 2∆x n'est pas suffisante pour discerner avec une forte précision la trajectoire du rayon diffusé. Si l'on calcule l'angle de diffusion de la configuration C85 en utilisant la coordonnée x +∆f + 2∆x, nous obtenons un angle de 3, 35 • , beaucoup plus proche de θ -∆f . La méthode est d'ailleurs d'autant moins précise que la fréquence est faible car le rayon U ′ = 0 diffusé est plus étalé spatialement. À partir de ces deux angles, on obtient directement les valeurs des longueurs de diffusion, à partir de l'expression (III.10), pour chacune des configurations. Ces valeurs sont réunies dans le tableau III.3. La valeur des longueurs calculées à partir de l'angle θ +∆f sont proches des 4, 3 et 3, 6 δ ω obtenues à partir des spectres de fluctuations de pression, alors que celles calculées à partir de θ +∆f , dans les configurations avec la couche de mélange H07, sont plus éloignées. Cela est du à l'incertitude sur l'angle de diffusion liée à la résolution axiale des plans extraits de la simulation. Finalement, nous pouvons vérifier la méthode d'obtention de l'angle en calculant le décalage fréquentiel sans supposer que le vecteur de diffusion est colinéaire avec la vitesse de convection. Sachant que celle-ci est pratiquement dirigée dans la direction de l'écoulement, le décalage fréquentiel s'exprime : L'extraction de plans entiers de calcul nous a permis de montrer la répartition spatiale progressive de l'énergie acoustique sur les fréquences des lobes secondaires. Il a aussi été démontré que le champ de pression diffusé est nettement plus cohérent spatialement à la fréquence du maximum des lobes qu'aux fréquences qui correspondent à l'interaction de l'onde avec la turbulence fine. Nous avons enfin développé une méthode qui permet d'observer directement l'angle de diffusion pour un nombre d'onde turbulent fixé afin d'en déduire la longueur de diffusion. Dans la dernière section de ce chapitre, nous allons étudier les fluctuations d'amplitude du champ de pression diffusé et plus particulièrement la dé-corrélation spatio-temporelle de son enveloppe.

∆f ≈ U c f 0 c 0 [cos(θ 0 ) -cos(θ 0 + θ)] . ( 
u θ (r, t) = U T r(t) L T exp 1 2 1 - r 2 (t) L 2 T , (III.

III.5 Modulation d'amplitude du champ de pression diffusé

Une onde acoustique qui se propage dans un écoulement turbulent subit, en plus de la redistribution spectrale et spatiale de son énergie, une modulation de phase et d'amplitude. Ces fluctuations de phase et d'amplitude sont intéressantes car elles sont en partie corrélées avec les fluctuations de vitesse du l'écoulement turbulent [28,29]. À ce titre, elles contiennent des informations sur l'écoulement turbulent traversé par l'onde acoustique et permettent de déduire la longueur de diffusion et la vitesse de convection des larges structures turbulentes, cf. section I.1. Dans cette partie, nous allons décrire la procédure qui nous permet d'extraire les modulations d'amplitude du signal de pression brut. Nous estimerons ensuite la longueur et la vitesse de défilement à partir du calcul du coefficient d'inter-corrélation pour enfin discuter des valeurs obtenues.

III.5.1 Filtrage passe-haut pour retirer la composante hydrodynamique du champ de pression

Nous avons vu à la section II.5.3 que le champ de pression en dehors de la couche de cisaillement possède une composante hydrodynamique basse fréquence très énergétique induite par le passage des larges structures turbulentes de l'écoulement. Sur les figures III.34a et III.34b sont représentés respectivement un extrait des fluctuations de pression reçues au point P 1 en fonction du temps sans dimension t * = tU c /δ ω (x S ) et la densité spectrale de puissance associée. Si Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente l'on souhaite extraire l'enveloppe du champ de pression diffusé, il est nécessaire dans un premier temps de supprimer la composante basse fréquence du signal de pression brut p b (t). Pour ce faire, nous avons filtré en passe-haut le signal avec une fréquence de coupure de 2300 Hz. Pour filtrer le signal en passe-haut, nous calculons sa transformée de Fourier et nous mettons les coefficients qui correspondent à des fréquences inférieures à 2300 Hz à zéro. Nous obtenons alors le signal filtré p f (t) de moyenne nulle en calculant la transformée de Fourier inverse du signal dont les coefficients ont été mis à zéro. Un extrait du signal filtré et le spectre associé sont représentés sur les figures III.34a et III.34. La composante basse fréquence a bien été éliminée sans que cela ait une influence sur le spectre pour les fréquences supérieures à la fréquence de coupure. Cette opération sera appliquée avant toute démodulation. 

III.5.2 Méthodes d'extraction de l'enveloppe

Pour extraire l'enveloppe du signal de pression, trois méthodes ont été testées. La première consiste en une démodulation de type analogique décrite dans [57], la seconde est une méthode numérique et la dernière consiste en une démodulation hétérodyne. Nous allons brièvement décrire ces trois méthodes.

Démodulation analogique

La démodulation analogique se décompose en trois étapes :

1. Multiplication de p f (t) par un coefficient choisi à 4 puis écrêtage avec un seuil fixé à 5.

On obtient le signal p 1 (t).

2. Multiplication de p 1 (t) avec p f (t) pour obtenir p 2 (t).

3. Filtrage passe-bas du signal p 2 (t) à la fréquence de démodulation f cd = 25000 Hz.

Pour la dernière étape, nous filtrons de la même manière que précédemment, c'est à dire en mettant à zéro les coefficients de Fourier qui correspondent aux fréquences supérieures à f cd . La fréquence f cd retenue pour le filtrage est légèrement supérieure à la fréquence de coupure hydrodynamique f ch = 20 kHz. Un tel choix devrait donc permettre de prendre en compte l'influence des structures turbulentes bien résolues par la simulation sur la modulation de l'amplitude. La forme du signal p a (t) obtenu avec cette méthode analogique sera montrée par la suite.

III.5. Modulation d'amplitude du champ de pression diffusé

Méthode numérique

La méthode numérique consiste simplement à repérer les maximums locaux de p f (t) et d'interpoler sur une droite joignant deux maximums successifs les points situés entre ces deux maximums. Un extrait de l'enveloppe p e (t) obtenue avec cette méthode est représenté sur la figure III. 35. Une fois l'enveloppe récupérée, nous pouvons filtrer ou non en passe-bas à f cd . Nous regarderons par la suite l'influence de ce filtrage passe-bas sur le coefficient d'inter-corrélation. 

Démodulation hétérodyne

La démodulation hétérodyne consiste à créer les signaux Re [z(t)] = p f (t) cos(2πf 0 t) et Im [z(t)] = p f (t) sin(2πf 0 t), de les filtrer en passe-bas à la fréquence f cd , et de prendre le module du signal complexe z(t) = Re [z(t)] + i Im [z(t)], où i est le nombre imaginaire i 2 = -1. Cette opération est intéressante car elle supprime la porteuse f 0 du signal et conserve uniquement le contenu spectral basse fréquence lié à la diffusion. La figure III.36 représente le spectre des fluctuations de pression brute p b (t), selon la fréquence centrée F = f -f 0 et le spectre du signal z(t) selon la fréquence F = f . Le spectre du signal z(t) présente les deux bosses liées au mécanisme de diffusion mais est affranchi du pic principal. Cette opération est très intéressante pour les expérimentateurs qui souhaitent réduire le volume de données collectées. Le signal démodulé s'obtient ensuite en calculant |z(t)|.

Forme et spectre des signaux après démodulation du signal filtré

Les figures III.37a et III.37b représentent respectivement les fluctuations des signaux normalisés par leur valeur maximale après les démodulations décrites plus tôt et leur spectre. Il est intéressant de remarquer que le signal issu de la démodulation analogique et le signal |z(t)| sont très proches l'un de l'autre. L'enveloppe extraite de manière numérique et filtrée en passe-bas à f cd présente les bonnes modulations mais les niveaux ne correspondent pas forcément. Quant à l'enveloppe non filtrée en passe bas, elle présente davantage de modulations hautes fréquences. Les spectres de ces quatre signaux sont pratiquement identiques jusque la fréquence f cd . Au delà de cette fréquence, le spectre de l'enveloppe non-filtrée contient toujours de l'énergie, alors que les spectres des trois autres signaux décroissent très brutalement. Peu importe la méthode de démodulation, le spectre des signaux suit la décroissance théorique en f -8/3 [16,[START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF] Dans cette section, nous étudions l'influence de l'amplitude de la source et de la vitesse de convection sur l'enveloppe du champ de pression diffusé. La figure III.39a représente les densités spectrales de puissance des fluctuations de l'enveloppe du champ de pression perçue en P 1 , pour les configurations C85, C85 A (configuration avec la source acoustique la plus intense) et C85 B04 (configuration avec la couche de cisaillement plus fine). Les spectres ont été rehaussés pour pouvoir comparer qualitativement leur forme. Le spectre de la configuration C85 A est initialement deux ordres de grandeurs supérieur au spectre de C85, lui-même deux fois supérieur au spectre de C85 B04 . On se rend compte dans un premier temps que les spectres de C85 et C85 A ont une forme qui suit la pente en f -8/3 jusque environ 6000 Hz. Passée cette fréquence le spectre de C85 débute une décroissance moins rapide et présente même un maximum à ≈ 17, 5 kHz. Le spectre de C85 A suit davantage la pente f -8/3 et a aucun moment ne décroît moins rapidement. Le maximum du spectre de la configuration C85 B04 possède un maximum pour une fréquence logiquement supérieure aux deux autres configurations car la fréquence de passage des structures énergétiques responsables du maximum de l'énergie diffusée est supérieure à celle des structures de la couche de mélange H07. Cependant, la forme générale du spectre est identique à celle de C85, la bosse présente autour de 17, 5 kHz est même plus marquée, relativement au niveau maximum du spectre. Cette bosse se retrouve dans les densités spectrales de puissance des fluctuations de pression brute p b recueillies en P 1 , cf. figure III.39b, pour les cas C85 et C85 B04 . Sur cette figure, elles se localisent à la fréquence 67, 5 Hz ≈ 85 -17, 5 Hz. Le spectre de C85 A ne contient quant à lui pas cette bosse car le niveau d'énergie diffusée pour ces fréquences est supérieur à celui de la bosse. La présence de cette bosse est surprenante et son origine reste inexpliquée...

III.5.4 Estimation de la vitesse de défilement à partir du coefficient d'intercorrélation

Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente Finalement, on observe sur la figure III.42a que la position des maxima est indépendante de la fréquence d'émission, de l'amplitude de la source ainsi que de la vitesse de convection des structures turbulentes. Si un tel résultat était attendu pour la fréquence et l'amplitude, il est surprenant en revanche que la position du maximum soit indépendante de la vitesse de convection. Cela implique en effet que la vitesse de défilement U d2 , calculée en divisant la distance qui sépare les micros par le retard qui correspond au maximum de la fonction d'inter-corrélation, est indépendante de la vitesse de convection, ce qui est en contradiction avec la nature projective du champ de pression diffusé. Pour obtenir la valeur de la vitesse de défilement, nous représentons sur la figure III.42b la composante axiale normalisée du vecteur de séparation ξ * x = (x -x P 1 ) * en fonction du retard pour lequel le coefficient d'inter-corrélation est maximal. Les coefficients ont été calculés entre le point de référence P 1 et les points sur la ligne y * = -126 = y * P 1 . La relation linéaire indique une vitesse de défilement constante égale à U d2 ≈ 106 m.s -1 pour les 3 configurations. La vitesse de convection associée vaut U c ≈ µU d2 ≈ 58, 3m.s -1 . Cette valeur est supérieure à la vitesse de convection effective des larges structures turbulentes de chacune des couches de cisaillement. Nous avions aussi sur-estimé la vitesse de convection calculée à partir du spectre de phase à la section III.3.2. Nous discuterons de cette sur-estimation dans la section III.5.6.

III.5.5 Estimation de la longueur de défilement à partir du coefficient d'intercorrélation

Candel et al. [29] ont montré que le coefficient d'inter-corrélation calculé à partir du champ de pression démodulé présente une composante quasi-périodique de laquelle il est possible d'estimer l d , la longueur caractéristique qui intervient dans le mécanisme de diffusion. Nous avons nous aussi représenté le coefficient d'inter-corrélation spatio-temporelle avec le point P 1 (figure III.43a) de la configuration C85 dans le plan (ξ * , τ * ) pour tenter de déceler cette composante quasi-périodique, ξ * étant la distance sans dimension qui sépare les points de l'antenne cylindrique. On remarque Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente 

III.5.6 Discussion sur la sur-estimation de la vitesse et de la longueur de défilement

La vitesse et la longueur de défilement qui découlent des expressions (I.26) et (I.2.2) ont été obtenues avec un certain nombre d'hypothèses sur les grandeurs physiques et la géométrie de la configuration ( [57], annexe C). Si la plupart d'entre elles sont correctement vérifiées dans la configuration de nos simulations, les deux hypothèses :

L 2 H 2 0 ≪ 1 et L 2 H 2 ≪ 1, (III.13)
où L est une taille caractéristique du volume diffusant, H 0 la distance qui sépare la source et le centre de la couche de cisaillement et H la distance entre le centre de la couche de cisaillement et le milieu de la ligne qui sépare les deux points de mesures, ne le sont pas. En effet, si on prend L ≈ 2 δ ω , on obtient pour les simulations avec la couche de mélange H07, L 2 /H 2 0 ≈ L 2 /H 2 ≈ 0, 67, valeur loin d'être très inférieure à 1. Ces deux hypothèses sont pourtant importantes dans la simplification d'un terme d'amplitude et de deux termes de phases qui permet d'aboutir à l'expression (I.26). La mauvaise estimation de la vitesse et de la longueur de défilement provient donc certainement des effets de la diffraction dus à la proximité de la source et des microphones à la couche de cisaillement qui ne sont pas pris en compte dans les analyses théoriques étudiées dans le chapitre bibliographique. En effet Lighthill [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF] utilise la formulation temporelle de son analogie pour décrire le champ de pression diffusé, simplifiée dans le cadre de l'observation en champ lointain. Pour établir la formule I.36, Tatarski [START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF] se place dans l'hypothèse du champ lointain afin de simplifier l'expression de la fonction de Green. Si l'observation s'effectue en champ proche, il n'est plus possible de simplifier ni le terme de phase, ni le terme d'amplitude de la fonction de Green ce qui entraine une modification de l'expression du vecteur de diffusion k d .

III.6 Résumé du chapitre

Dans ce chapitre, nous avons réalisé la simulation numérique aux grandes échelles de l'interaction entre une onde acoustique émise par une source bi-dimensionnelle, étendue en envergure et la couche de cisaillement turbulente plane caractérisée au chapitre précédent. La première partie de ce chapitre (section III.1) avait pour objectif de décrire les configurations simulées et de vérifier que la SGE permettait de simuler correctement le champ de pression diffusé. La forme des densités spectrales de puissance des fluctuations de pression est en très bon accord avec les spectres obtenus lors des mesures en soufflerie à veine ouverte et la position du maximum des lobes concorde avec celle des récentes expériences [START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF][START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] (section III.1.4). Nous nous sommes alors aperçus (section III.1.5) que la longueur de diffusion obtenues à partir des spectres de pression diffusé était supérieure à la longueur moyenne entre les larges structures turbulentes. Celle-ci se rapproche fortement de la distance entre les structures turbulentes parmi les plus énergétiques et/ou cohérentes de la couche de cisaillement, identifiées à la section II.4.2. Dans la section III.2 nous montrons qu'une source acoustique directive entraine une dissymétrisation des spectres de pression diffusé et nous essayons, à partir de nos simulations et des travaux de Clair et Gabard [39], d'estimer le nombre d'onde acoustique seuil à partir duquel le mécanisme de diffusion acoustique s'amorce. La section III.3 a mis en lumière une différence notable entre la vitesse de défilement issue des spectres de phase calculés à partir des fluctuations de pression recueillies sur une antenne cylindrique en dehors de la couche de mélange et la vitesse de convection des larges structures turbulentes. Dans la section III.4 nous avons étudiée la répartition spatiale de l'énergie acoustique à partir de plans entiers, extraits de la simulation aux grandes échelles. Nous avons notamment montré que l'énergie se répartie progressivement sur les fréquences adjacentes à la fréquence d'émission. Nous avons aussi établi une méthode qui permet d'observer directement l'angle de diffusion pour un nombre d'onde turbulent fixé et de déduire en conséquence la longueur de diffusion. Dans la dernière section de ce chapitre (section III.5), nous montrons la modulation d'amplitude que subit l'onde acoustique lors de sa traversée de la couche de cisaillement turbulente. À partir de l'enveloppe du champ de pression diffusé, nous calculons les coefficients d'inter-corrélation sur une antenne cylindrique en dehors de la couche de mélange et nous déduisons la vitesse et la longueur de défilement, sensées s'identifier à la vitesse de convection et à la longueur de diffusion selon [29]. Comme à la section III.3, nous surestimons ces grandeurs. La proximité de la source acoustique et des points où sont recueillies les fluctuations de pression à la couche de cisaillement turbulente pourrait expliquer en partie les différences observées. Dans ce chapitre, nous nous sommes intéressé uniquement au champ de pression diffusé et aux fluctuations de son enveloppe. Dans le dernier chapitre, nous étudions les liens qui existent entre le champ de pression diffusé et les fluctuations de vitesse du milieu turbulent.

Chapitre IV

Étude des relations entre la vitesse du milieu turbulent et le champ de pression diffusé

Dans ce dernier chapitre, nous allons étudier les relations qui existent entre le champ de vitesse de la couche de cisaillement turbulente et le champ de pression diffusé. Nous montrons tout d'abord le fort lien de cohérence [28] qui existe entre les fluctuations turbulentes et les fluctuations d'amplitude du champ de pression diffusé. Nous reconstruisons ensuite, avec une méthode d'estimation stochastique linéaire, le champ de vitesse du milieu turbulent dont l'interaction avec l'onde acoustique incidente est responsable de la majeure partie de l'énergie diffusée. Enfin, nous observons les larges structures turbulentes qui jouent un rôle majeur dans le mécanisme de diffusion acoustique et nous caractérisons leur contenu spectral.

IV.1 Relation spectrale entre la vitesse de l'écoulement turbulent et le champ de pression diffusé

Dans les chapitres précédents, nous avons vu que l'interaction entre une onde acoustique de fréquence angulaire ω 0 et un écoulement turbulent dont le spectre est maximal à la fréquence ω tmax induit un champ de pression diffusé dont le maximum d'énergie est véhiculé aux fréquences ω 0 ± ω tmax . Cette propriété, démontrée initialement par Candel et al. [28,29,30] et Guédel [57], a été vérifiée dans cette étude en calculant la densité spectrale de puissance des fluctuations de la composante transverse de la vitesse du milieu turbulent S v ′ (cf. section II.4.4) et en vérifiant que la fréquence du maximum des spectres correspondait bien au décalage fréquentiel ∆f des lobes secondaires des spectres de pression diffusé (section III.1.5). Une manière très simple de comprendre cette répartition consiste à revenir à l'expression du terme source dans l'équation de propagation de champ de pression diffusé (I.9). Ce terme est une dérivée seconde en espace du produit entre les fluctuations des composantes de la vitesse du milieu turbulent v ′ i et les fluctuations de vitesse liée au passage de l'onde acoustique U ′ j . Simplifions à l'extrême ce produit en considérant qu'une des composantes de vitesse du milieu turbulent soit périodique de fréquence angulaire égale typiquement à la fréquence de passage des structures particulièrement énergétiques ω tmax (cf. section II.4.1). Le produit serait donc proportionnel à : cos(ω 0 t) cos(ω tmax t) ∝ cos((ω 0 + ω tmax )t) + cos((ω 0 -ω tmax )t).

(IV.1)

Ainsi le simple fait que le terme source s'exprime comme le produit entre le champ de vitesse de l'écoulement et le champ de vitesse lié au passage de l'onde acoustique se traduit par une de pression diffusé répartition de l'énergie sur les fréquences adjacentes à la fréquence d'émission. Pour aller plus loin, nous avons calculé des spectres de bi-cohérence pour regarder si le contenu spectral du champ de pression diffusé est effectivement issu du produit entre l'onde acoustique incidente et la vitesse du milieu turbulent de la couche de cisaillement. D'après Kim et Powers [START_REF] Kim | Digital bispectral analysis and its applications to nonlinear waves interaction[END_REF], ceux-ci s'expriment par :

B 2 φ ′ i ϕ ′ j χ ′ k (f 1 , f 2 ) = | φ′ (x i , f 1 ) φ′ (x j , f 2 ) χ′• (x k , f 1 + f 2 )| 2 | φ′ (x i , f 1 ) φ′ (x j , f 2 )| 2 | χ′ (x k , f 1 + f 2 )| 2 .
(IV. . Les forts niveaux de bi-cohérence indiquent que l'énergie sur les fréquences f 1 + f 2 = 85000 ± [300, 2000] Hz dans le signal de pression diffusé au point P 1 , correspondant aux fréquences des lobes secondaires, résulte de l'interaction triadique entre les fréquences f 1 , f 2 et f 1 + f 2 . Compte tenu de la configuration, l'interaction s'effectue certainement entre les fréquences f 1 et f 2 pour alimenter les fréquences des lobes secondaires

f 1 + f 2 . La figure IV.2 représente le spectre de bi-cohérence B 2 V ′ 22 p ′ 24 p ′ 1 .
Les forts niveaux de bicohérence sont répartis sur les mêmes fréquences que précédemment et sont plus élevés que ceux de B 2

V ′ 22 v ′ 24 p ′ 1 .
L'analyse des spectres de bi-cohérence montre que le champ de pression diffusé résulte effectivement du produit entre la vitesse transverse de l'onde acoustique incidente et la vitesse de l'écoulement turbulent. Nous allons désormais étudier les liens statistiques qui existent entre les fluctuations de vitesse dans la couche de cisaillement et celles de l'enveloppe du champ de pression diffusé.

IV.2. Liens entre la vitesse de l'écoulement turbulent et l'enveloppe du champ de pression diffusé 

V ′ 22 u ′ 24 p ′ 1 et (b) B 2 V ′ 22 v ′ 24 p ′ 1 . Figure IV.2 -Spectre de bi-cohérence B 2 V ′ 22 p ′ 24 p ′ 1 .
IV.2 Liens entre la vitesse de l'écoulement turbulent et l'enveloppe du champ de pression diffusé

Dans le chapitre précédent, nous avons montré que les fluctuations d'enveloppe du champ de pression diffusé permettaient d'estimer la longueur de diffusion et la vitesse de convection des larges structures turbulentes. Cela témoigne des corrélations qui existent entre les fluctuations d'amplitude et celles de la vitesse de l'écoulement turbulent que nous étudions plus en détail dans cette section.

IV.2.1 Spectres de cohérence entre le champ de vitesse turbulent et l'enveloppe du champ de pression diffusé

Point P 24

Commençons par comparer le contenu spectral des composantes axiale et transverse de la vitesse du milieu turbulent au centre de la couche de cisaillement (P 24 fig. III.4), avec celui des fluctuations d'enveloppe recueillies au point P 1 . La démodulation hétérodyne, décrite à la section III.5.2, est utilisée pour l'extraction de l'enveloppe du champ de pression diffusé. les fluctuations d'enveloppe du champ de pression diffusé sont notées |z| ′ . Les figures IV.3a et IV.3b représentent Chapitre IV. Étude des relations entre la vitesse du milieu turbulent et le champ de pression diffusé respectivement les spectres de cohérence (cf. section III.3.1) calculés entre les fluctuations d'enveloppe au point P 1 et celles des composantes de la vitesse du milieu turbulent u ′ et v ′ au point P 24 , pour les configurations C85 et C85 B04 . Les spectres de cohérence sont non-négligeables sur une bande basse fréquence plus ou moins étendue en fonction de la composante de vitesse du milieu turbulent considérée. Pour les spectres calculés à partir de u ′ , la bande est centrée sur la fréquence du maximum des lobes secondaires, voir tableau III.2 pour les valeurs, et s'étend sur environ 2000 Hz. La bande des fréquences de cohérence pour les spectres calculés à partir de v ′ s'étend jusque 4000 Hz environ et le maximum est atteint pour une fréquence supérieure à ∆f . Les fréquences du maximum des spectres γ 2 Pour comprendre les différences entre les bandes de fréquences et les niveaux des spectres de cohérence, il faut considérer à la fois la norme des inter-spectres

|S u ′ 24 |z| ′ 1 | et |S v ′ 24 |z| ′ 1 |, ainsi que les auto-spectres S u ′ 24 et S v ′ 24 
qui interviennent dans l'expression des spectres de cohérence (III.5). La figure IV.4 représente tous les spectres qui interviennent dans γ 2

u ′ 24 |z| ′ 1 et γ 2 v ′ 24 |z| ′ 1
. On s'aperçoit effectivement que le maximum de l'inter-spectre calculé sur u ′ est atteint pour une valeur autour de ∆f , alors que celui de |S v ′ 24 |z| ′ 1 | est atteint pour une valeur proche de 1000 Hz. Il est cependant logique que le niveau maximal de γ 2

u ′ 24 |z| ′ 1 soit inférieur au maximum de γ 2 v ′ 24 |z| ′ 1 compte tenu du fait que S u ′ 24 soit supérieur à S v ′ 24 .
On s'aperçoit de plus que l'inter-spectre calculé sur v ′ s'entend jusque 4000 Hz avant de plus fortement décroître alors que celui calculé sur u ′ chute pour une fréquence proche de 2000 Hz. Cela explique la plus grande étendue fréquentielle de

γ 2 v ′ 24 |z| ′ 1
. Regardons maintenant la cohérence entre le champ de vitesse turbulent en périphérie de la couche de cisaillement (au point P 23 ) et les fluctuations de l'enveloppe du champ de pression diffusé.

IV.2. Liens entre la vitesse de l'écoulement turbulent et l'enveloppe du champ de pression diffusé

Figure IV.4 -Auto-spectres S u ′ 24 : (-), S v ′ 24 : (-) et S |z| ′ 1 : (-) et norme des inter-spectres |S u ′ 24 |z| ′ 1 | : (-• -) et |S v ′ 24 |z| ′ 1 | : (-• -) de la configuration C85.

Point P 23

On s'aperçoit dans un premier temps que le spectre de cohérence γ 2

u ′ 23 |z| ′ 1 est sensiblement identique au spectre γ 2 v ′ 23 |z| ′ 1 (figure IV.5
). Il est par ailleurs étonnant que les spectres atteignent leur valeur maximale pour une fréquence de 3500 Hz, nettement supérieure au ∆f ou à la fréquence de passage moyenne des larges structures turbulentes, contrairement aux spectres calculés à partir des fluctuations de vitesse au centre de la couche de cisaillement. Cependant, Candel et al. [31] et Guédel [57] avaient déjà remarqué que les fortes valeurs de cohérence se déplacent vers des fréquences plus élevées à mesure que le fil chaud s'éloigne du centre de la couche de cisaillement turbulente. Nous montrons néanmoins dans cette section qu'il existe un lien de cohérence fort entre les basses fréquences de la couche de cisaillement, correspondant notamment aux fréquences des lobes secondaires, et l'enveloppe du champ de pression diffusé. Cette propriété permet d'estimer la fréquence de passage et la vitesse de convection des structures turbulentes.

IV.2.2 Estimation de la fréquence de passage et de la vitesse de convection des structures turbulentes à partir du coefficient d'inter-corrélation

Fréquence de passage des larges structures turbulentes En suivant Candel et al. [28], il est possible d'estimer la fréquence de passage et la distance moyenne entre les structures turbulentes en calculant le coefficient d'inter-corrélation (eq. II.27) entre la composante de vitesse axiale de l'écoulement turbulent u ′ en périphérie de la couche de cisaillement (P 23 ), sensibles principalement aux larges structures, et l'enveloppe du champ de pression diffusé recueilli en P 1 . La figure IV.6a représente les coefficients d'inter-corrélations

R u ′ 23 |z| ′ 1 et R v ′ 23 |z| ′
1 calculés sur la configuration C85 B04 , pour une certaine position de l'envergure. On remarque d'ores et déjà que la valeur de la fréquence de passage et de la distance moyenne entre les larges structures turbulentes sont indépendantes de la composante de vitesse utilisée pour calculer le coefficient. Par contre, la position en envergure influe fortement sur le nombre et la position des maxima locaux du coefficient d'inter-corrélation, comme en témoigne la figure IV.6b. Contrairement au coefficient d'auto-corrélation R u ′ 23 u ′ 23 calculé à la section II.4.1, la dispersion entre les positions des maxima est si forte qu'il n'est pas pertinent de moyenner le coefficient d'inter-corrélation en envergure pour déceler la forme périodique. En effet, le coefficient d'intercorrélation moyenné en envergure et représenté sur la figure IV.6b présente des niveaux très faibles et ne possède pas une composante quasi-périodique bien définie. Il est tout de même possible de repérer la distance moyenne entre les structures l p R en repérant la position des deux minimums les plus fortement négatifs. Nous calculons aussi la distance moyenne entre les larges structures turbulentes l p et la fréquence de passage moyenne f p associée à l'instar de la section II.4.1.

(a) (b) Figure IV.6 -(a) Coefficients d'inter-corrélation R u ′ 23 |z| ′ 1 : (-) et R v ′ 23 |z| ′ 1 : (-• -) dans la configuration C85 B04 . (b) Coefficients d'inter-corrélation R u ′ 23 |z| ′
1 sur une dizaine de position en envergure : (-• -) et coefficient moyenné en envergure : (-) dans la configuration C85.

Le tableau IV.1 récapitule les valeurs des distances et des fréquences de passage moyennes des larges structures turbulentes l p * , f p , l * p R et f p R pour les configurations C85, C55, C85 B04 et C85 A . Les valeurs sont proches de celles obtenues précédemment section II.4.1 pour sur les couches de cisaillement H07 et B04. Une fois de plus, la distance moyenne entre les structures turbulentes et leur fréquence de passage s'avèrent être inférieures à la longueur de diffusion et au décalage fréquentiel. Cela conforte la différence qui existe entre ces deux jeux de valeurs. Pour la configuration avec la source acoustique plus intense, nous surestimons d'environ 10 % la distance l p * . Cette différence mériterait d'être investiguée. Il serait notamment intéressant d'étudier l'influence de la source acoustique la plus intense sur le développement de la couche IV.2. Liens entre la vitesse de l'écoulement turbulent et l'enveloppe du champ de pression diffusé de cisaillement turbulente car la précédente étude section III.1.2 a été effectuée avec les sources moins intenses.

Noms C85 C55 C85 B04 C85 A l p /δ ω (x * ) 3, 1 3, 2 3 3, 5 
f p (Hz) 805 780 1425 713

l p R /δ ω (x * ) 2, 8 3, 1 2, 8 3, 1 
f p R (Hz) 890 780 1526 780

Table IV.1 -Valeurs de la distance et de la fréquence de passage moyenne calculées à partir de

R u ′ 23 |z| ′ 1 et à partir de R u ′ 23 |z| ′ 1 pour les configurations C85, C55, C85 B04 et C85 A .

Vitesse de convection

Le coefficient d'inter-corrélation calculé entre les fluctuations d'enveloppe du champ de pression diffusé recueillies en P 1 et les fluctuations de vitesse axiale du milieu turbulent sur une ligne horizontale y * = y * P 23 , tracé dans le plan (τ * , (x -x P 1 ) * ) devrait permettre de retrouver la vitesse de convection des larges structures turbulentes [31]. La pente de l'inclinaison des fortes valeurs du coefficient d'inter-corrélations, représentée sur la figure IV.7, aboutit une valeur de vitesse de convection d'environ 57 m.s -1 . Cette valeur est supérieure aux 49, 5 m.s -1 escomptés mais est en accord avec la valeur trouvée section III.5.4, à partir des coefficients d'inter-corrélations sur les fluctuations de l'enveloppe du champ de pression diffusé. Les effets de diffraction, inhérents au fait que la source acoustique et les microphones soient proches de la couche de cisaillement (voir section III.5.6), sont probablement responsables de la sur-estimation de la vitesse de convection. Nous avons montré dans cette section que le contenu spectral de l'enveloppe du champ de Chapitre IV. Étude des relations entre la vitesse du milieu turbulent et le champ de pression diffusé pression diffusé est corrélé avec la vitesse de la couche de cisaillement, sur une gamme de basses fréquences qui correspondent globalement aux fréquences sur lesquelles l'énergie diffusée est répartie. Cette propriété nous a notamment permis d'estimer la fréquence de passage et la distance moyenne entre les larges structures turbulentes. La relation de causalité qui existe entre les fluctuations d'enveloppe et celles du champ de vitesse turbulent nous permet d'envisager d'autres traitements pouvant renseigner sur les larges structures turbulentes dont le rôle est prépondérant dans le mécanisme de diffusion acoustique.

IV.3 Moyenne conditionnelle sur l'enveloppe du champ de pression diffusé

Dans cette section, nous réalisons un traitement par moyenne conditionnelle sur l'enveloppe du champ de pression diffusé afin de visualiser la position des larges structures turbulentes lorsque les plus fortes fluctuations d'enveloppe sont ressenties. Le principe d'un tel traitement est le suivant :

1. Extraction des fluctuations de l'enveloppe du champ de pression au point P 1 2. Définition d'un ou de plusieurs seuils 3. Moyenne temporelle des champs de vitesse et de pression dans la couche de mélange sur tous les instants pour lesquelles les fluctuations de l'enveloppe dépassent le seuil. La dernière étape requiert de prendre en compte le temps de propagation du champ de pression diffusé entre le centre de la couche de cisaillement et P 1 . Nous définissons trois seuils calculés à partir de l'écart-type σ des fluctuations de l'enveloppe du champ de pression en P 1 dans la configuration C85, s 1 = σ, s 2 = 1, 5 σ et s Pour repérer les larges structures turbulentes, nous représentons dans le plan (x * , y * ) les fluctuations de pression moyennées de manière conditionnelle ainsi que les lignes de courant calculées dans le repère convecté à la vitesse de convection U c . Les figures IV.9a, IV.9b et IV.10a IV.3. Moyenne conditionnelle sur l'enveloppe du champ de pression diffusé sont respectivement obtenues avec les seuils s 1 , s 2 et s 3 , sur la configuration C85. Les valeurs relativement fortes des fluctuations de pression indiquent que le traitement par moyenne conditionnelle est pertinent. On s'aperçoit que la position des larges structures turbulentes, dont le centre est repéré par les lignes de courant fermées, est la même pour les trois seuils mais que l'intensité des fluctuations de pression augmente à mesure que le seuil est plus restrictif. En effet, cela implique un nombre plus restreint d'instants sur lesquelles on moyenne les fluctuations de pression et donc des niveaux plus importants. Au vu de ces trois figures, on remarque que les fortes fluctuations positives de l'enveloppe sont obtenues lorsque l'extrémité de la large structure turbulente se situe légèrement en aval de x * Le traitement par moyenne conditionnelle a permis de situer les structures turbulentes lorsque que le point P 1 ressent de fortes fluctuations d'enveloppe du champ de pression. Nous allons désormais estimer de manière stochastique, toujours à partir de l'enveloppe du champ de pression diffusé, les fluctuations in-stationnaires de vitesse et de pression du milieu turbulent dans le but d'obtenir des informations sur le contenu spectral turbulent qui intervient principalement dans le mécanisme de diffusion. IV.4. Estimation stochastique linéaire des champs de vitesse et de pression de l'écoulement turbulent à partir de l'enveloppe du champ de pression diffusé IV.4 Estimation stochastique linéaire des champs de vitesse et de pression de l'écoulement turbulent à partir de l'enveloppe du champ de pression diffusé IV.4.1 Principe de la méthode L'estimation stochastique linéaire (LSE) consiste à estimer la partie d'un signal issu de l'écoulement qui est en cohérence avec un ou de plusieurs signaux conditionneurs. Cette méthode, introduite en turbulence par Adrian [2], a été utilisée dans de nombreuses configuration d'écoulement. Adrian [3] a extrait de la simulation numérique directe d'un écoulement canal, une structure d'épingle à cheveux dîtes hairpin. L'estimation stochastique linéaire a aussi été appliquée sur la configuration des couches de cisaillement turbulentes. Vincendeau [START_REF] Vincendeau | Analyse conditionnelle est estimation stochastique appliquée à l'étude des structures cohérentes dans la couche de mélange[END_REF] a notamment étudié la structuration tri-dimensionnelle ainsi que le mécanisme d'appariement des grandes échelles. De leur côté, Olsen et Dutton [START_REF] Olsen | Stochastic estimation of large structures in an incompressible mixing layer[END_REF] ont exploité la LSE pour déterminer la taille, la forme et l'orientation moyennes des structures de types cores and braids. Concrètement, l'estimation stochastique de la partie d'un signal cible s(x) qui est cohérente avec le signal conditionneur s c (x c ) recueilli en x c peut être assimilée à une opération de moyenne conditionnelle définie de la manière suivante :

ŝ(x) = s(x)|s c (x c ) , (IV.4)
où ŝ(x) est l'estimation de la partie de s(x) qui est corrélée avec s c (x c ). On peut développer l'expression (IV.4) en série de Taylor autour de la moyenne du signal conditionneur et tronquer la série à un certain ordre [2] pour obtenir une expression de l'estimation sous la forme :

ŝ(x) = A(x|x c ) s c (x c ) + B(x|x c ) s 2 c (x c ) + . . . (IV.5) 
Si l'on considère uniquement une dépendance linéaire, seuls les coefficients de A doivent être déterminés. Cette opération s'effectue en minimisant l'erreur quadratique moyenne entre le champ conditionné ŝ(x) et son estimation linéaire s ′ (x), ce qui revient à résoudre l'équation de Yule-Walker :

s ′ (x, t)s ′ c (x c , t + τ ) = A(x|x c , τ )s ′ c (x c , t)s ′ c (x c , t + τ ). (IV.6)
Les fluctuations estimées sous la condition s c (x) s'expriment alors :

s ′ (x) = A(x|x c )s ′ c (x c ). (IV.7)
L'un des principaux intérêts de l'estimation stochastique est de permettre l'extraction des composantes spatio-temporelles d'un écoulement présentant une dépendance avec un signal conditionneur. La LSE peut aussi être couplée avec la décomposition orthogonale aux valeurs propres (POD) afin de reconstruire les structures cohérentes d'un écoulement, tout en réduisant le nombre de mesures instantanées dans l'écoulement. Cette méthode, dîtes technique complémentaire, développée par Bonnet et al. [20] a récemment été appliquée par Druault et al. [48] dans le cadre de l'étude des structures cohérentes responsables de la génération de bruit dans les écoulements de cavité.

IV.4.2 Signaux conditionneurs et décimation des signaux

Pour réaliser l'estimation stochastique linéaire, il est nécessaire dans un premier temps de choisir un signal conditionneur. Nous avons vu dans les sections précédentes que les fluctuations d'enveloppe du champ de pression diffusé sont partiellement corrélées, sur une gamme de basses fréquences, avec les fluctuations de vitesse de l'écoulement turbulent. Comme l'estimation s'effectue par le calcul des coefficients d'inter-corrélations entre le signal conditionneur et les champs Chapitre IV. Étude des relations entre la vitesse du milieu turbulent et le champ de pression diffusé cibles (équation (IV.7)), l'enveloppe du champ de pression diffusé recueillie au point P 1 est un candidat légitime. Nous avons donc estimé de manière stochastique les champs de vitesse et pression dans la couche de cisaillement à partir de trois signaux conditionneurs différents :

1. le champ de pression filtré p f (t) (signal sans la composante hydrodynamique basse fréquence, cf. section III. À partir des trois signaux conditionneurs p f (t), p a (t) et |z(t)| définis à la section IV.4.2, nous estimons les composantes de vitesse du milieu turbulent u et v et le champ de pression p dans la couche de cisaillement (P 24 ) et en périphérie (P 23 ). La figure IV.14 représente des extraits des signaux cibles u et reconstruits à partir des trois signaux conditionneurs. On remarque que p a (t) et |z(t)| aboutissent à des estimations quasiment identiques qui présentent globalement la composante basse fréquence du signal cible mais avec une intensité moindre. La composante axiale de la vitesse reconstruite à partir du signal conditionneur p f (t) est quant à elle très proche de la valeur moyenne et ne comporte pas les basses fréquences du signal cible. Les champs reconstruits à partir de la vitesse axiale au point P 23 suivent la même tendance qu'au point P 24 ; l'utilisation des signaux |z(t)| et p a (t) aboutit à un signal qui possède une composante basse fréquence alors que l'utilisation du signal p f (t) ne permet pas d'estimer de composante basse fréquence. Cependant, l'écart entre l'amplitude des oscillations des estimations et celle du champ cible est supérieure au point P 23 par rapport à l'écart au point P 24 . Les figures IV.15a et IV.15b représentent respectivement les champs cibles v et p au centre de la couche de cisaillement ainsi que leurs estimations stochastiques obtenues à partir des signaux conditionneurs |z(t)|, p a (t) et p f (t). Les conclusions sont identiques que pour le champ cible u, le traitement appliqué à partir de |z(t)| et p a (t) permet d'estimer la composante basse fréquence des champs cibles, contrairement au traitement appliqué à partir de p f (t). Dans la suite de l'étude, nous utiliserons le signal |z(t)| pour estimer le champ cible.

Nous venons de montrer dans cette partie que la méthode d'estimation stochastique linéaire permet de reconstruire les champs de vitesse et de pression du milieu turbulent qui sont corrélés avec l'enveloppe du champ de pression diffusé. Nous allons désormais calculer les statistiques, les spectres ainsi que les coefficients de corrélations des champs estimés pour enfin visualiser les structures qui interviennent dans le mécanisme de diffusion acoustique.

IV.4.5 Statistique des signaux reconstruits

Commençons par comparer les profils transverses des moyennes et des écarts-type du champ de vitesse cible et estimés dans la configuration C85. La figure IV.16 représente les profils transverses sur l'abscisse x * = 472, 6 de la vitesse moyenne u et de l'écart-type σ u ′ du champ cible IV.4. Estimation stochastique linéaire des champs de vitesse et de pression de l'écoulement turbulent à partir de l'enveloppe du champ de pression diffusé et des champs estimés avec les valeurs 200, 1000 et 5000 du paramètre Lar. On s'aperçoit que la moyenne des champs estimés est strictement identique à la moyenne du champ cible, peu importe la valeur de Lar. En ce qui concerne l'écart type, les profils transverses présentent une forme similaire avec une valeur maximale sur la ligne y = y 0 (x) mais l'intensité des fluctuations turbulentes du champ estimé est inférieure à celle du champ cible. Cette constatation pouvait être anticipée au vu de la figure IV.14. On s'aperçoit de plus que l'intensité turbulente estimée croît avec le paramètre Lar. Pour obtenir les profils moyens, nous avons effectué le traitement stochastique sur les 8 plans en envergure et nous avons moyenné en envergure les grandeurs statistiques, du fait de l'homogénéité statistique qui existe dans cette direction. Les conclusions que l'on peut tirer des figures IV.17a IV.17b portant sur la vitesse v sont identiques à celles établies pour la vitesse u. IV.4.6 Contenu spectral des fluctuations de vitesse du milieu turbulent reconstruites par estimation stochastique linéaire Dans cette section, nous comparons le contenu spectral du champ de vitesse estimé avec la méthode stochastique avec celui du champ de vitesse cible, au centre de la couche de cisaillement turbulente (P 24 ). Le traitement stochastique est effectué sur les 316 points en envergure et les spectres des champs sont moyennés dans cette direction pour réduire l'incertitude statistique. Les figures IV.18a et IV.18b représentent respectivement les densités spectrales de puissance des fluctuations de vitesse u ′ et v ′ cibles et reconstruites avec le paramètre Lar prenant les valeurs 200, 1000 et 5000. Les spectres sont tous normalisés par ∆U 2 δ ω (x P 1 ). Nous nous apercevons dans un premier temps que les valeurs du spectre augmentent globalement à mesure que le paramètre Lar croît. Les valeurs des spectres reconstruits sont bien entendu inférieures au spectre du champ cible comme le présageait les profils d'intensité turbulente (fig. IV.16b et fig. IV.17b) montrés à la section précédente. Il est intéressant de remarquer dans un second temps que les spectres S u ′ et S v ′ calculés à partir des champs estimés avec le paramètre Lar = 1000 et Lar = 5000 atteignent des valeurs maximales pour globalement les mêmes basses fréquences (∼ 700 Hz) que les spectres du champ cible, alors que les spectres estimés à partir de Lar = 200 sont maximums pour des fréquences plus élevées (∼ 1000 Hz). Cela provient du fait que le temps sur lequel on estime qu'il y ait une corrélation suffisante entre le signal conditionneur et les signaux cibles n'est pas assez élevé pour correctement reconstruire les fluctuations basses fréquences. On remarque finalement que le paramètre Lar a une forte influence sur la forme globale des spectres. Alors que les spectres reconstruits avec Lar = 5000 ont globalement la même forme que les spectres de vitesse cible, les spectres obtenus à partir de Lar = 1000 et Lar = 200 présentent des décroissances différentes. Outre la position du maximum différente pour les spectres obtenus avec Lar = 200, la décroissance de S u ′ est plus marquée entre 1000 et 2000 Hz que la décroissance du spectre cible. La décroissance des spectres S v ′ obtenus avec Lar = 200 et Lar = 1000 est quant à elle plus marquée jusque 4000 Hz. Compte tenu de ces observations, la valeur 1000 du paramètre Lar semble être la plus pertinente pour reconstruire les champs de vitesse et de pression. Premièrement parce qu'elle correspond à une grandeur physique de l'écoulement qui est le temps caractéristique de dé-corrélation du coefficient d'inter-corrélation entre l'enveloppe du champ de pression diffusé au point P 1 et les u ′ en périphérie de la couche de mélange (fig. IV.6b). Secondement parce qu'une telle valeur est suffisamment grande pour permettre d'obtenir le maximum de l'énergie turbulente sur les bonnes basses fréquences, contrairement aux champs obtenus avec Lar = 200.

IV.4. Estimation stochastique linéaire des champs de vitesse et de pression de l'écoulement turbulent à partir de l'enveloppe du champ de pression diffusé Le traitement stochastique linéaire a aussi été appliqué dans la configuration C85 B04 dans laquelle la couche de cisaillement est plus fine et la vitesse de convection des larges structures turbulentes plus élevée. Nous avons représenté sur les figures IV.19a et IV.19b les densités spectrales de puissance S u ′ et S v ′ au centre de la couche de cisaillement, obtenues à partir des composantes de vitesse u ′ et v ′ estimées respectivement avec Lar H07 = 1000 pour la configuration C85 et avec Lar B04 = 600 pour la configuration C85 B04 . Cette seconde valeur est obtenue en posant t * H07 = Lar H07 ∆t U cH07 /δ ωH07 = t * B04 . On s'aperçoit dans un premier temps que les spectres S u ′ sont maximums pour des fréquences inférieures à celles des spectres S v ′ . Ces fréquences correspondent globalement au décalage fréquentiel ∆f respectif (575 et 1200 Hz pour les cas C85 et C85 B04 , cf. tableau III.2), alors que les fréquences pour lesquelles les spectres S v ′ sont maximum correspondent davantage aux fréquences moyennes de passage des larges structures turbulentes (780 et 1380 Hz, cf. tableau II.4). On remarque alors que les fréquences pour les lesquelles les spectres reconstruits S u ′ et S v ′ sont maximums sont identiques aux fréquences obtenues en calculant les spectres de cohérence γ 2

u ′ 24 |z| ′ 1 et γ 2 v ′ 24 |z| ′ 1
entre les composantes de vitesse du milieu turbulent et l'enveloppe du champ de pression (section IV.2.1). Une fois de plus, cette observation reste surprenante vis-à-vis du fait que le spectre S v ′ calculé à partir des fluctuations simulés est maximum pour la fréquence ∆f et non pour la fréquence de passage moyenne.

Sont aussi représentées sur les figures IV.19a et IV.19b les densités spectrales de puissance des fluctuations de pression simulées (brutes) S p ′ reçues au point P 1 (cf. figure III.7). Les spectres S u ′ et S v ′ sont tracés en fonction de F = f alors que les spectres S p ′ sont tracés en fonction de F = f -f 0 , f 0 étant la fréquence d'émission de la source acoustique. De plus, les spectres S p ′ sont rehaussés de sorte que leur valeur maximale coïncide avec celle du spectre S u ′ . On se rend alors compte que la décroissance du spectre S p ′ pour chacune des configurations est très proche de celle du spectre S u ′ jusqu'à environ 1600 Hz puis s'assimile jusqu'à environ 3500 Hz à celle du spectre S v ′ . Cela pourrait indiquer que le spectre de pression diffusé aux fréquences proches de la fréquence d'émission est principalement régi par les fluctuations de vitesse axiale du milieu turbulent alors qu'aux fréquences plus élevées, ce serait majoritairement les fluctuations de vitesse transverse qui entreraient en jeu dans le mécanisme de diffusion. Cette constatation est surprenante vis à vis des modèles de diffusion acoustique [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF][START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]57] où seules les fluctuations de vitesse dans la direction de propagation de l'onde acoustique (v ′ dans notre configuration) entrent en considération. Surtout si l'on considère que le rayon diffusé par les larges structures Chapitre IV. Étude des relations entre la vitesse du milieu turbulent et le champ de pression diffusé turbulentes (∆f (k d ) eq. (I.22) faible) est proche de la ligne d'observation qui est en l'occurrence perpendiculaire à la direction de l'écoulement. Cependant, le modèle de Lund et Rojas [START_REF] Lund | Ultrasound as a probe of turbulence[END_REF], explicité à la section I.4 du chapitre bibliographique, relie le champ de pression diffusé à la transformée de Fourier spatio-temporelle du champ de vorticité de l'écoulement turbulent qui dépend bien évidemment des deux composantes u ′ et v ′ .

IV.4.7 Estimation de la distance moyenne entre les larges structures turbulentes à partir des champs reconstruits

Nous avons cherché à estimer, à partir du champ de vitesse reconstruit par la méthode stochastique, la distance moyenne et la fréquence de passage moyenne des larges structures turbulentes. Nous avons ainsi appliqué la méthode détaillée à la section II.4.1 pour calculer la distance moyenne entre les structures turbulentes l p , à partir des fluctuations de vitesse axiale u ′ estimées en périphérie de la couche de mélange (P 23 ), que nous comparons à la valeur obtenue à partir du champ simulé. Nous déduisons ensuite de cette longueur la fréquence de passage moyenne entre les structures en utilisant la relation f p = U c / l p . Le tableau IV.3 répertorie les valeurs des distances et des longueurs en fonction du paramètre Lar utilisé pour estimer la vitesse. Nous remarquons que si les valeurs Lar = 1000 et Lar = 5000 aboutissent à des distances moyennes légèrement inférieures à la valeur cible, Lar = 200 sous-estime largement la distance. Cette observation est tout à fait cohérente avec la valeur du temps de reconstruction τ * c (tableau IV.2). En effet, la longueur caractéristique maximale sans dimension l * c = l c /δ ω que l'on peut espérer reconstruire dans l'écoulement turbulent, qui n'est autre que τ * c car l c = U c τ c , est trop faible lorsque Lar = 200 pour estimer correctement la distance moyenne entre les larges structures turbulentes.

Nous avons aussi calculé la distance moyenne et la fréquence de passage moyenne entre les larges structures turbulentes à partir du coefficient d'inter-corrélation entre la vitesse axiale estimée u ′ en périphérie de la couche de cisaillement et l'enveloppe du champ de pression diffusé (cf. section IV.2.2). Les valeurs obtenues dans les configurations C85, C55, C85 B04 et C85 A sont présentées dans le tableau IV.4. Les valeurs des distances et des fréquences sont respectivement sous et sur-estimées d'environ 20 % par rapport aux valeurs cibles, calculées à partir du champ de vitesse simulé. turbulent à partir de l'enveloppe du champ de pression diffusé 

Noms l p /δ ω (x * ) f p (Hz)

IV.4.8 Comparaison des champs reconstruits avec les champs simulés et les champs simulés, filtrés en passe-bas

Nous souhaitons dans cette dernière section comparer les fluctuations instantanées des champs obtenues par la SGE avec les champs estimés par la méthode stochastique afin de visualiser les structures turbulentes qui interviennent dans le mécanisme de diffusion acoustique. De plus, nous avons vu à la section IV.4.6 que l'estimation stochastique reconstruit des structures basses fréquences car les spectres S u ′ et S v ′ calculés au centre de la couche de mélange à partir du champ de vitesse estimé avec Lar = 1000 possèdent la majorité de leur énergie sur les basses fréquences, respectivement jusque 2000 et 4000 Hz (fig. IV. 19). On peut alors se demander si toutes les structures basses fréquences de la couche de mélange sont corrélées avec l'enveloppe du champ de pression diffusé ou si le mécanisme de diffusion sélectionne des structures turbulentes de forme particulière. Pour tenter de répondre à cette question nous représentons sur les figures qui suivent, en plus les champs simulés et les champs estimés, les champs simulés, filtrés en passe Finalement, le traitement stochastique a permis de reconstruire les structures turbulentes qui interviennent dans le mécanisme de diffusion. Celles-ci sont basses fréquences et semblent présenter une certaine homogénéité spatiale si on les compare aux structures issues des instantanés de pression et de vitesse brutes, filtrés en passe-bas.

IV.5 Résumé du chapitre

Dans ce chapitre, nous nous sommes focalisé sur les relations qui existent entre les champs de vitesse et de pression du milieu turbulent et le champ de pression diffusé. Dans la section IV.1, nous avons montré, à partir de l'analyse des spectres de bi-cohérence, que le champ de pression diffusé résulte effectivement du produit entre la vitesse transverse de l'onde acoustique incidente et la vitesse de l'écoulement turbulent, comme le sous-entendais la forme du terme source de la diffusion acoustique dans le formalisme de Lighthill. Dans le section suivante (section IV.2) nous avons comparé le contenu spectral des composantes de vitesse du milieu turbulent avec celui de l'enveloppe du champ de pression diffusé en dehors de la couche de cisaillement. Nous avons montré l'existence d'un fort lien de cohérence entre les fluctuations d'enveloppe et les composantes de vitesse du milieu turbulent, sur une gamme de basses fréquences qui correspondent au décalage fréquentiel ∆f et à la fréquence de passage moyenne respectivement pour u ′ et v ′ . Cette propriété nous a notamment permis d'estimer la fréquence de passage et la distance moyenne entre les larges structures turbulentes. Dans la section IV.3, nous avons moyenné les champs de vitesse et de pression de manière conditionnelle dans le but d'observer la position des larges structures turbulentes lorsque de fortes ou de faibles fluctuations d'enveloppe sont ressenties au point P 1 . Finalement, dans le section IV.4, nous avons effectué un traitement LSE à partir de l'enveloppe du champ de pression diffusé pour reconstruire les champs de vitesse et de pression du milieu turbulent qui sont corrélés avec les fluctuations d'enveloppe. Ce traitement nous a permis notamment de comparer le spectre des fluctuations de pression simulé avec celui des fluctuations u ′ et v ′ reconstruites et de discerner deux gammes de fréquences, l'une de basses fréquences où les fluctuations u ′ seraient prépondérantes dans le mécanisme de diffusion et l'autre, de fréquences plus élevées, où ce serait v ′ qui entreraient principalement en jeu. Le traitement stochastique nous a enfin permis de reconstruire les structures turbulentes qui interviennent dans le mécanisme de diffusion. Celles-ci sont basses fréquences et semblent présenter une certaine homogénéité spatiale si on les compare aux structures issues des instantanés de pression et de vitesse brutes, filtrés en passe-bas.

Discussion

Nous proposons dans cette partie une analyse critique de l'étude. Nous rappelons les principaux résultats obtenus dans les chapitres II, III et IV puis nous détaillons les limites de l'étude afin de générer les perspectives de travaux futurs.

Dans le chapitre II nous avons montré (section II.1.6) que l'implémentation d'une zone éponge, en aval du domaine raffiné, permettait de supprimer les structures turbulentes avant que celles-ci n'atteignent la sortie du domaine de calcul et ne rayonnent des forts niveaux de bruit parasite. Alliée à un dé-raffinement progressif du maillage, la zone éponge a permis de réduire le niveau de l'écart-type des fluctuations de pression en dehors de la couche de cisaillement de 15 à 35 dB en fonction de la position axiale considérée. Cependant, nous avons remarqué en fin de chapitre (section II.5.3) que le dé-raffinement du maillage, qui a pour conséquence de dissiper les structures turbulentes, pouvait être responsable de l'augmentation du niveau acoustique perçu en dehors de la couche, à partir des fréquences de l'écoulement turbulent qui ne sont plus supportées par le maillage. Pour vérifier cette hypothèse il serait intéressant de débuter la zone éponge avant le dé-raffinement du maillage. Ainsi, les structures turbulentes qui atteignent effectivement la partie dé-raffinée du maillage seraient nettement moins énergétiques et leur dissipation numérique engendreraient moins de bruit parasite.

Nous avons aussi montrer dans ce chapitre que l'injection de fluctuations de vitesse de type bruit blanc en entrée de domaine permettait de déclencher la transition vers la turbulence plus rapidement et d'obtenir un régime auto-similaire plus en amont (section II.2.1). Cependant, le taux de croissance de la couche de cisaillement et l'intensité des tensions de Reynolds obtenue sont dans la limite basse des taux de croissance et des intensités répertoriées dans la littérature. Injecter des perturbations de vitesse partiellement corrélées entres elles devrait rehausser le taux de croissance et l'intensité turbulente et permettre la formation des tourbillons orientés dans la direction de l'écoulement, statistiquement homogènes [START_REF] Mcmullan | Initial condition effects on large scale structure in numerical simulations of plane mixing layers[END_REF]. Nous pourrions alors étudier l'influence de ces structures homogènes sur le mécanisme de diffusion acoustique et notamment sur le niveau d'énergie diffusée.

Finalement, dans ce chapitre nous avons visualisé directement dans l'écoulement (section II.4.2) des larges structures turbulentes parmi les plus énergétiques et/ou cohérentes, séparées d'une distance supérieure à la distance moyenne entre les structures, initialement observée par [23] et calculée dans cette étude à partir du coefficient d'auto-corrélation temporelle à la section II.4.1. Cependant, la valeur de cette distance reste sujette à l'incertitude statistique, malgré les deux méthodes de calcul utilisées, basées d'une part sur une moyenne en envergure de la distance entre les larges structures (compte tenu de l'homogénéité statistique dans cette direction) et d'autre part sur la moyenne en envergure du coefficient d'auto-corrélation temporelle. Nous aurions pu obtenir cette distance moyenne en calculant le coefficient d'auto-corrélation à partir d'une moyenne spatio(sur l'envergure)-temporelle du produit des vitesses plutôt qu'à partir d'une moyenne uniquement temporelle. Cette définition est mieux adaptée à la géométrie de la couche de cisaillement turbulente plane et l'incertitude statistique sur la distance moyenne calculée à partir d'un tel coefficient d'auto-corrélation aurait été réduite.

Dans le chapitre III nous avons tout d'abord montré que les densités spectrales de puissance des fluctuations de pression diffusée issues de notre simulation numérique aux grandes échelles ont une forme très proche de celle des spectres obtenus dans les mesures en soufflerie à veine ouverte. La position des lobes secondaires concordent quant à elle avec celle des récentes mesures [START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF][START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF]. Ces résultats, publiés dans [15], confirment la pertinence de l'approche SGE pour l'étude du mécanisme de diffusion acoustique. Cependant, les niveaux d'énergie diffusée sont plus faibles que les niveaux prédits par les modèles analytiques (section III.1.6). Deux causes potentielles ont été identifiées pour expliquer cette sur-estimation des niveaux ; les effets de directivité de la source dans les configurations expérimentales et la faible proportion de tourbillons cohérents dans la direction de l'écoulement, liée à la nature des perturbations de vitesse injectées en entrée de domaine. Par ailleurs, la SGE ne semble pas être la meilleure méthode si l'on souhaite étudier la diffusion d'une onde acoustique très haute fréquence (à part avec des moyens de calcul beaucoup plus importants). Cela tient au critère très restrictif des 20 points par longueur d'onde pour la propagation de l'onde acoustique avec un schéma spatial d'ordre 2.

Nous avons ensuite nuancé à la section III.1.5 l'interprétation physique de la longueur de diffusion jusqu'à la admise depuis les travaux de Candel et al. [28]. Celle-ci est nettement plus proche de la distance entre les larges structures turbulentes parmi les plus énergétiques et/ou cohérentes observées dans l'écoulement à la section II.4.2 que de la distance moyenne entre les larges structures turbulentes, calculée à la section II.4.1. Pour corroborer cette observation, il faudrait que les prochaines études expérimentales et numériques de diffusion acoustique s'intéressent à la présence des larges structures turbulentes parmi les plus énergétiques et/ou cohérentes et qu'elles indiquent la valeur de la distance (exprimé en terme d'épaisseur de vorticité) qui les sépare pour vérifier que celle-ci est proche de la longueur de diffusion.

À la section III.4, nous avons montré que l'outil numérique permet d'observer la répartition spatiale de l'énergie diffusée moyennant la sortie de plans entiers de calcul et un post-traitement volumineux. Nous avons notamment visualisé la répartition progressive de l'énergie diffusée sur les fréquences des lobes secondaires à mesure que l'onde acoustique traverse la couche de mélange et montré que le champ de pression diffusé, à ces mêmes fréquences, reste particulièrement cohérent, comparé au champ de pression diffusé issu de l'interaction avec la turbulence plus fine. Finalement, nous avons décrit une méthode permettant d'observer directement l'angle de diffusion d'un rayon particulier et de déduire la longueur de diffusion. Cependant, la précision de ces traitements est directement liée à la résolution spatiale des plans de calcul extraits, en particulier l'estimation de l'angle de diffusion. Si l'on souhaite raffiner la grille d'extraction sans multiplier trop fortement le volume de données, on peut par exemple réduire la taille de la grille, sachant que le rayon diffusé (section III.4.3) reste globalement vertical.

Enfin, la vitesse et la longueur de défilement calculées aux sections III.3 et III.5 à partir des spectres de phase sur le champ de pression diffusé et à partir des coefficients d'inter-corrélation sur l'enveloppe du champ de pression diffusé se sont avérées supérieures aux grandeurs théoriques prédites par les modèles de diffusion acoustique [28,29,57,58], à savoir la vitesse de convection et la longueur de diffusion. Nous avons identifié comme potentielle cause de ces différences (section III.5.6) les effets de diffraction par la couche de cisaillement induits par la proximité de la source et des microphones à l'écoulement turbulent. En effet, les modèles théoriques sont établis pour une observation en champ lointain. Notre simulation numérique pourrait permettre à terme de confronter des analyses théoriques qui prennent en compte les effets de diffraction. La SGE paraît de plus être un outil adapté à l'étude de la transition entre le champ hydrodynamique proche et le champ acoustique lointain.

Dans le dernier volet de cette étude (chapitre IV), nous avons étudié le lien qui existe entre le champ de pression diffusé et le champ de vitesse de l'écoulement turbulent pour ensuite reconstruire, par une méthode d'estimation stochastique linéaire, le champ de vitesse qui intervient principalement dans le mécanisme de diffusion acoustique. Nous avons tout d'abord montré à la section IV.1, par une analyse de spectres de bi-cohérence, que le champ de pression diffusé résulte effectivement du produit entre la vitesse transverse de l'onde acoustique incidente et la vitesse de l'écoulement turbulent. Puis nous avons étudié à la section IV.2 le lien de cohérence entre les composantes u ′ et v ′ du champ de vitesse du milieu turbulent et l'enveloppe du champ de pression diffusé |z|. Nous avons notamment observé de fortes valeurs du spectre de cohérence γ 2 u ′ |z| autour du décalage fréquentiel ∆f (correspondant à la fréquence sur laquelle est répartie le maximum d'énergie diffusée) et de fortes valeurs de γ 2 v ′ |z| autour de la fréquence de passage moyenne des larges structures turbulentes. Cette différence n'a pas été investigué dans les précédentes études [31,57], car les modèles établis faisaient uniquement intervenir la composante de vitesse v ′ . Il serait intéressant de reprendre les modèles analytiques afin de cerner le rôle de la composante u ′ dans le mécanisme de diffusion acoustique.

Grâce au lien de cohérence qui existe entre le champ de vitesse turbulent et l'enveloppe du champ de pression diffusé, nous avons pu obtenir à la section IV.2.2 une nouvelle estimation de la fréquence de passage des larges structures turbulentes et de la distance qui les sépare. Une fois de plus, nous avons trouvé que ces valeurs sont inférieures au décalage fréquentiel et à la longueur de diffusion, ce qui conforte la différence qui existe entre ces deux fréquences. Cependant, la distance entre les structures obtenue dans la configuration de la source acoustique la plus intense est plus élevée que les valeurs obtenues dans les configurations où la source est moins intense. Il serait intéressant d'étudier l'influence des champs de vitesse et de pression liés au passage de l'onde acoustique la plus intense sur les champs du milieu turbulent.

Dans la dernière partie du chapitre (section IV.4), nous avons reconstruit à partir de la méthode de l'estimation stochastique linéaire, les champs de vitesse et de pression du milieu turbulent qui sont corrélés avec l'enveloppe du champ de pression diffusé. Cette méthode nous a permis de visualiser les structures turbulentes (section IV.4.8) qui interviennent en priorité dans le mécanisme de diffusion acoustique. Celles-ci sont basses fréquences, étendues et relativement homogènes en espace. Nous avons finalement calculé les densités spectrales de puissance S u ′ et S v ′ à partir des composantes du champ de vitesse reconstruites à la section IV.4. Nous avons observé que la forme et la position du lobe secondaire du spectre de pression diffusé issu de la simulation ainsi que sa décroissance en basse fréquence s'apparentent fortement à celles du spectre S u ′ , alors que la décroissance du spectre de pression diffusé pour les fréquences supérieures est identique à celle de S v ′ . Cela pourrait indiquer que le contenu spectral du champ de pression diffusé aux fréquences proches de la fréquence d'émission est principalement régi par les fluctuations de vitesse axiale du milieu turbulent alors qu'aux fréquences plus élevées, ce serait majoritairement les fluctuations de vitesse transverse qui entreraient en jeu dans le mécanisme de diffusion. Cette constatation est surprenante vis à vis des modèles de diffusion acoustique [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF][START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]28,57] où seules les fluctuations de vitesse dans la direction de propagation de l'onde acoustique (v ′ dans notre configuration) entrent en considération. Cependant, dans le modèle de Lund et Rojas [START_REF] Lund | Ultrasound as a probe of turbulence[END_REF], les deux composantes de vitesse du milieu turbulent interviennent via le champ de vorticité. L'estimation stochastique linéaire semble finalement être un outil adapté pour étudier en détail le mécanisme de diffusion acoustique. Il pourrait permettre à terme une modélisation empirique du tenseur d'inter-corrélation spatio-temporelle qui intervient dans les modèles analytiques [START_REF] Mcalpine | A weak-scattering model for tone haystacking caused by sound propagation through an axisymmetric turbulent shear layer[END_REF] et dans les récentes simulations numériques [39] lors de la génération stochastique des fluctuations de vitesse du milieu turbulent.

Conclusions et Perspectives

Nous proposons dans cette dernière partie de synthétiser les principaux résultats de notre étude et de résumer les perspectives que l'on a dégagées dans la partie Discussion.

Conclusions

Cette thèse débute par une étude bibliographique (chapitre I) qui avait pour objectifs de rappeler les principales propriétés du champ de pression diffusé dans la configuration des mesures acoustiques en soufflerie à veine ouverte, de décrire les principaux modèles analytiques et de justifier la pertinence de l'approche de la simulation numérique aux grandes échelles pour l'étude du mécanisme de diffusion acoustique. Les modèles analytiques mettent notamment en avant la relation de proportionnalité qui existe entre le spectre de pression diffusé et le spectre des fluctuations de vitesse du milieu turbulent, évalué au nombre d'onde de diffusion k d et à la fréquence ∆f . Ce nombre d'onde de diffusion est intrinsèque à la couche de cisaillement et peut être relié à une longueur de diffusion l d qui caractérise le milieu turbulent. Les études numériques pré-existantes sur la diffusion d'une onde acoustique par un écoulement qui se rapproche de la couche de cisaillement turbulente ont montré des limites, notamment sur la forme et la position des lobes secondaires des spectres de pression diffusé et sur la quantité d'énergie diffusée. La principale cause de ces limitations réside dans le fait que le contenu spectral de l'écoulement turbulent simulé est modélisé et donc par conséquent différent de celui de l'écoulement turbulent réel. Nous avons ainsi évincé cette difficulté en réalisant la simulation numérique aux grandes échelles de l'interaction entre une onde acoustique et une couche de cisaillement turbulente plane. Cette méthode présente l'avantage de simuler finement les grandes échelles contenues dans l'écoulement turbulent qui interviennent en priorité dans le mécanisme de diffusion acoustique.

Nous débutons alors notre étude (chapitre II) par la description de la simulation numérique aux grandes échelles de la couche de cisaillement turbulente plane. L'objectif principal de ce chapitre était de valider le bon développement de la couche de cisaillement turbulente en observant sa croissance linéaire, les valeurs de ses longueurs intégrales, la convergence de ses moments statistiques et la décroissance de son spectre des fluctuations de vitesse (section II.3). Nous avons par ailleurs essayé de réduire au maximum le bruit parasite inhérent au calcul numérique de l'écoulement turbulent car la finalité de l'étude est le calcul direct des fluctuations de pression diffusé qui sont de très faibles amplitudes. Nous avons ainsi implémenté une zone éponge (section II.1.6) qui a permis de grandement réduire le bruit généré par la dissipation des structures turbulentes due au dé-raffinement du maillage et par la sortie du domaine des structures. Enfin, nous avons remarqué à la section II.4.2 en étudiant les larges structures turbulentes de l'écoulement, que certaines d'entre elles sont plus énergétiques et/ou plus cohérentes et que la distance qui les sépare est plus élevée que la moyenne.

Le principal objectif du chapitre III était de montrer qu'il est possible de calculer directement, à l'aide d'une simulation numérique aux grandes échelles, le champ de pression diffusé qui résulte de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente. La forme des densités spectrales de puissance des fluctuations de pression est en très bon accord avec les spectres obtenus lors des mesures en soufflerie à veine ouverte et la position du maximum des lobes concorde avec celle des récentes expériences [START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF][START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF]. Cette comparaison très favorable a été rendue possible grâce au calcul précis du contenu spectral des grandes échelles de l'écoulement turbulent. Nous validons par la même occasion la pertinence de l'étude numérique de la diffusion sur la configuration simplifiée d'une couche de cisaillement turbulente plane avec une source bi-dimensionnelle étendue en envergure. Ces premiers résultats ont été publié dans Bennaceur et al. [15], l'article est exposé dans l'annexe D. La validation du calcul direct du champ de pression diffusé nous a permis d'analyser plus en détail le mécanisme de diffusion acoustique. La différence majeure observée avec les travaux de Candel et al. [28] porte sur l'interprétation physique de la longueur de diffusion. Alors que les auteurs avaient assimilé cette longueur à la distance moyenne entre les larges structures turbulentes de l'écoulement, calculée dans cette étude à la section II.4.1, les spectres de fluctuations de pression simulées aboutissent à une valeur supérieure (section III.1.5) qui se rapproche fortement de la distance entre les structures turbulentes parmi les plus énergétiques et/ou cohérentes de la couche de cisaillement, identifiées à la section II.4.2. Les derniers résultats de ce chapitre concerne la répartition spatiale de l'énergie diffusée, discutée à la section III.4. Nous avons notamment visualisé la répartition progressive de l'énergie diffusée sur les fréquences des lobes secondaires à mesure que l'onde acoustique traverse la couche et montré que le champ de pression diffusé, à ces mêmes fréquences, reste particulièrement cohérent, comparé au champ de pression diffusé issu de l'interaction avec la turbulence plus fine. Nous avons aussi décrit une méthode permettant d'observer directement l'angle de diffusion d'un rayon particulier et d'en déduire la longueur de diffusion.

Dans la dernière partie de l'étude (chapitre IV), nous nous sommes focalisé sur les relations qui existent entre les champs de vitesse et de pression du milieu turbulent et le champ de pression diffusé pour ensuite reconstruire, par une méthode d'estimation stochastique linéaire, le champ de vitesse qui intervient principalement dans le mécanisme de diffusion acoustique. Nous avons observé le fort lien de cohérence (section IV.2.1) qui existe entre les fluctuations d'enveloppe du champ de pression diffusé et la vitesse du milieu turbulent, sur une gamme de basses fréquences, centrée sur le décalage fréquentiel ∆f pour la composante de vitesse dans la direction de l'écoulement u ′ et centrée sur la fréquence de passage moyenne pour la composante transverse v ′ . Cette propriété nous a notamment permis d'estimer la distance moyenne entre les larges structures turbulentes qui s'avère être une fois de plus inférieure à la longueur de diffusion (section IV.2.2). Finalement, nous avons reconstruit dans le section IV.4 avec la méthode de l'estimation stochastique linéaire, les champs de vitesse et de pression de la couche de cisaillement qui sont corrélés avec l'enveloppe du champ de pression diffusé. Ce traitement nous a permis dans un premier temps de visualiser les structures qui interviennent de manière prépondérante dans le mécanisme de diffusion acoustique. Celles-ci sont basses fréquences, étendues et relativement homogènes en espace. Dans un second temps, nous avons comparé le spectre des fluctuations de pression simulé avec celui des fluctuations u ′ et v ′ reconstruites. Nous avons alors discerné une gamme de basses fréquences où les fluctuations u ′ seraient prépondérantes dans le mécanisme de diffusion et une gamme de fréquences plus élevées où ce serait v ′ qui entreraient principalement en jeu.

Perspectives

Dans la partie Discussion, nous avons décelé les principales limites de l'étude ce qui permet d'envisager des perspectives pour des travaux futurs. Nous avons tout d'abord remarqué dans le chapitre II que le taux de croissance de la couche de cisaillement et l'intensité de la turbulence dans le régime auto-similaire étaient dans la limite basse des valeurs obtenues par les précédentes études. Ces sous-estimations proviennent de la nature des fluctuations de vitesse injectées (de type bruit blanc) en entrée de domaine pour déclencher la turbulence. Nous pourrions rehausser le taux de croissance et l'intensité de la turbulence en injectant des fluctuations de vitesse partiellement corrélées entre elles. Cela aurait aussi comme conséquence d'accentuer la formation de structures turbulentes homogènes dans la direction de l'écoulement ce qui pourrait à terme augmenter la quantité d'énergie diffusée. Nous avons aussi remarqué que la dissipation des structures turbulentes par le dé-raffinement du maillage pouvait avoir comme conséquence l'augmentation du niveau acoustique perçu en dehors de la couche de cisaillement. Il serait intéressant de voir si faire débuter la zone éponge avant de dé-raffiner le maillage entraîne une réduction du niveau acoustique. Dans le chapitre III, nous avons identifié les effets de diffraction dus à la proximité de la source et des microphones à la couche de cisaillement turbulente comme potentiels responsables de la sur-estimation de la vitesse et de la longueur de défilement. Il serait intéressant d'établir un modèle qui prendrait en compte ces effets et de le confronter à notre simulation aux grandes échelles. Enfin, nous avons montré dans la dernière partie (chapitre IV) que le contenu spectral du champ de pression diffusé pourrait être régi principalement, sur les fréquences proches de la fréquence d'émission de la source acoustique, par la composante axiale u ′ du champ de vitesse du milieu turbulent. Cette observation ne trouve aujourd'hui pas écho dans les principaux modèles de diffusion acoustique [START_REF] Lighthill | On the energy scattered from the interaction of turbulence with sound or shock waves[END_REF][START_REF] Tatarski | Wave propagation in a turbulent medium[END_REF]29,57] (mis à part dans celui de Lund et Rojas [START_REF] Lund | Ultrasound as a probe of turbulence[END_REF] où la composante u ′ intervient à travers le champ de vorticité) et il serait intéressant d'en comprendre la raison. Finalement, la méthode de l'estimation stochastique linéaire semble être un outil adapté à l'étude du mécanisme de diffusion acoustique. Il pourrait permettre à terme la modélisation empirique du tenseur d'inter-corrélation spatio-temporelle du champ de vitesse turbulent qui intervient dans les récents modèles analytiques [START_REF] Mcalpine | A weak-scattering model for tone haystacking caused by sound propagation through an axisymmetric turbulent shear layer[END_REF] et dans les récentes simulations numériques [39] lors de la génération stochastique des fluctuations de vitesse du milieu turbulent.

Annexe A

Visualisation de la fusion des larges structures turbulentes

Dans le régime auto-similaire, les larges structures turbulentes croissent linéairement est finissent par fusionner lorsqu'elles sont trop proches les unes des autres [START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF]. Dans cette première annexe nous avons voulu montrer le processus de fusion des larges structures turbulentes à partir de représentations des fluctuations du champ de pression ainsi que des lignes de courant calculées dans le repère convecté à la vitesse U c . Comme pour les visualisations de la section II. Lors de la fusion des structures, les lignes de courants de la structure en aval vont être "aspirées" par les lignes de courant de la structure en amont pour ne former plus qu'un jeu de ligne de courant fermé. McMullan et al. [START_REF] Mcmullan | Organized large structure in the post-transition mixing layer. Part 2. Large-eddy simulation[END_REF] ont remarqué que la position du noyau de la nouvelle structure est celle de la structure en amont. Celui-ci va se déplacer vers l'aval juste après la fusion pour remplir le vide laissé par la destruction de la structure aval. La figure A.2 montre le noyau de la structure amont, peu de temps avant que celui-ci ait complètement aspiré le noyau de la structure en aval. Le noyau de la nouvelle structure se forme effectivement sur la base de celui de la structure amont. 

Annexe B

Validation de la propagation acoustique dans un écoulement uniforme

B.1 Propagation acoustique

Avant de simuler la propagation acoustique dans l'écoulement turbulent, il a fallu dans un premier temps s'assurer que le code de calcul était capable de propager correctement, sur le maillage décrit à la section II.1.4, les ondes acoustiques seules. Le critère minimal choisi pour propager les ondes acoustiques dans la zone bien raffinée du maillage est de 20 points par longueur d'onde λ 0 . Selon Hüttel et al. [START_REF] Hüttel | Resolution requirements for the numerical computation of tonal noise in compressors and turbines of aeroengines[END_REF], une telle résolution entraîne, pour un schéma de discrétisation spatial d'ordre 2, une atténuation de l'amplitude de l'onde acoustique inférieure à 1.4 dB sur les 400 cellules transverses traversées lors de la propagation. Afin de valider ce critère, nous simulons la propagation de l'onde acoustique émise par la source bi-dimensionnelle décrite à la section III.1.1 située en (x * S , y * S ) = (472.6, 126) dans un écoulement uniforme de nombre de Mach M = U 1 /c 0 e x . La solution numérique est alors comparée à la solution analytique connue de la propagation d'une onde acoustique bi-dimensionnelle dans un écoulement uniforme. En effet, la fonction de Green qui caractérise cette configuration s'exprime :

G(x|x S , ω) = i 4χ exp -i M k(x -x S ) χ 2 H (2) 0 k χ 2 r χ , (B.1) où χ 2 = 1 -M 2 , H (2) 0 
est la fonction de Hankel d'ordre zéro et de second espèce et r χ = (x -x S ) 2 + χ 2 (y -y S ) 2 . Cette fonction de Green est solution de l'équation de propagation : 

∇ 2 G(x, t|x S , τ ) - 1 c 2 0 D 2 Dt 2 G(x, t|x S , τ ) = δ(x -x S )δ(t -τ ), ( 

Annexe C

Analyse de stabilité linéaire sur l'écoulement moyen issu de la simulation aux grandes échelles

Dans cette annexe, nous réalisons une étude de stabilité linéaire locale, temporelle puis spatiale, sur l'écoulement moyen issu de notre simulation aux grandes échelles. L'objectif de cette analyse est d'essayer de donner une nouvelle interprétation physique à la longueur de diffusion l d (eq. (I.25)) et aux fréquences sur lesquelles est réparti le maximum de l'énergie diffusé ∆f . Nous avons alors réalisé une analyse de stabilité linéaire, temporelle et spatiale, afin d'obtenir la longueur d'onde et la fréquence de la perturbation qui aboutit au développement du mode le plus instable, dans l'optique de les comparer à la longueur de diffusion et au décalage fréquentiel. Nous commençons par faire un bref rappel sur la théorie de la stabilité linéaire puis nous menons les analyses temporelle et spatiale sur le champ moyen de notre écoulement pour enfin discuter des valeurs de longueur et de fréquence obtenues. Les valeurs de la longueur de diffusion et du décalage fréquentiel pour les deux couches de cisaillement turbulentes H07 et B04 sont résumées dans le tableau III.2 de la section III.1.5.

C.1 Rappel sur la théorie

La couche de cisaillement turbulente plane simulée dans le chapitre II est statistiquement homogène dans la direction en envergure e z . Nous avons ainsi choisi une source acoustique émettant dans le plan (x, y) et prolongée sur toute l'envergure du domaine (cf. section III.1.1 pour davantage de justifications). Compte tenu de ces observations sur la configuration du calcul, il est légitime d'effectuer une analyse de stabilité bi-dimensionnelle dans le plan (x, y). Le principe de l'analyse est le suivant : à partir des équations Navier-Stokes 2D compressibles, nous écrivons la solution du système comme une petite perturbation autour d'un écoulement de base stationnaire. La petite perturbation est écrite sous la forme d'une série de Fourier ce qui permet d'obtenir un problème aux valeurs propres. La résolution numérique de ce système d'équations permet de dégager les modes instables qui se développent autour de l'écoulement de base. Commençons par détailler les équation de Navier-Stokes 2D compressibles. Celles-ci s'écrivent, dans le repère simulation aux grandes échelles cartésien (O, x, y, z) et dans leur forme sans dimension [START_REF] Towne | Improved Parabolization of the Euler Equations[END_REF][START_REF] Towne | Continued development of the one-way Euler equations : application to jets[END_REF] q(x, y, t) = q(x, y) + q ′ (x, y, t), (C.5) que l'on écrit : q ′ (x, y, t) = q(y) exp (i(kx -ωt)) (C. 

C.2 Description du champ moyen bi-dimensionnel et étude de convergence

Les analyses de stabilité ont été réalisées à partir du champ moyen bi-dimensionnel issu de la SGE des couches de cisaillement turbulentes H07 et B04 (voir tableau II.1 pour les paramètres), sans la source acoustique. Le champ moyen est extrait sur une ligne verticale, à la position axiale x * = 472, 6. Nous avons aussi utilisé le profil de vitesse axiale de type tangente hyperbolique U (y) = ∆U/2(1/R+ tanh(2y/δ ω )) (voir section II.1.2 pour plus de détail). Les profils transverses moyens sur la ligne verticale x * = 472, 6 de u + , U (y) + , v + , ς + et p + , issus de la couche de mélange H07 sont représentés sur les figures C.1 et C.2. L'exposant • + signifie une normalisation des longueurs par L 0 , des vitesses par c 0 , du volume spécifique par 1/ρ 0 et de la pression par ρ 0 c 2 0 . L'exposant • * signifie quant à lui une normalisation des longueurs par δ ω,0 . C.2. Description du champ moyen bi-dimensionnel et étude de convergence Nous avons testé différentes associations de profils lors des analyses de stabilité. Le tableau C.1 répertorie les cas traités. L'entrée "LES" signifie que le profil provient de la simulation numérique aux grandes échelles. Nous avons aussi imposés dans certains cas des profils de pression et de volume spécifique constants. Nous avons de plus testé l'influence d'un champ moyen non parallèle avec un profil de vitesse transverse non nul. Dans tous les cas, pratiquement tous les modes sont stables (ω + i < 0), mise à part un ou deux. Le cas 1 amène le mode le plus instable. Lorsque la vitesse transverse est nonnulle (cas 3 et 4), on trouve un unique mode instable identique pour les deux cas. Cela montre qu'utiliser des profils de volume spécifique et pression constants ou issus de la simulation n'a aucun effet sur les modes qui résultent de l'analyse de stabilité. Cette observation est confirmée par les cas 2, 5 et 6, où les deux modes qui découlent de l'analyse temporelle sont strictement identiques. Il est par ailleurs surprenant que l'analyse de stabilité temporelle réalisée avec les cas 2, 5 et 6 aboutisse à deux modes instables. La résolution numérique du problème aux valeurs propres requiert la discrétisation des profils moyens sur un certain nombre de points N py qui peut avoir une influence sur les valeurs propres obtenues. Nous avons testé l'influence du paramètre N py sur les parties réelles et imaginaires des modes instables issus de l'analyse spatiale et temporelle. La figure C.5 représente les deux modes instables issus de l'analyse de stabilité temporelle du champ moyen du cas 5 sur la couche de cisaillement H07, pour les 3 valeurs du nombre de point de discrétisation N py = 201, 301 et 401. Les deux modes instables qui résultent de l'analyse sont identiques, peu importe la valeur de N py .

u + v + ς + p + Cas 1 U + (y) 0 1 1/1,
La figure C.6a représente les modes instables (k + r > 0 et k + i < 0) issus de l'analyse spatiale sur la couche de cisaillement H07 pour ω + = 0, 0217 réalisés avec N py = 201, 301 et 401. La série de modes ayant un fort taux de croissance dépendent clairement du nombre de points de discrétisation. Par contre, le mode instable autour de k + r ≈ 0, 2 de la figure C.6b est indépendant 

St = f δ ω (x * , R) U c . (C.8)
Les modes les plus instables sont obtenus pour les fréquences 300 et 540 Hz respectivement pour les couches de mélange H07 et B04. Ces valeurs sont pratiquement deux fois plus faibles que les ∆f de 575 et de 1200 Hz, obtenus à partir de la densité spectrale de puissance des fluctuations de pression diffusée. Le nombre de Strouhal correspondant au mode le plus instable est quant à lui proche de 0, 12. 

C.4 Conclusion sur l'annexe

Nous avons réalisé des analyses de stabilité locale, temporelles et spatiales afin d'obtenir la longueur d'onde L • et la fréquence d'excitation qui aboutissent aux modes les plus instables qui se développent autour de l'écoulement moyen issu de notre simulation aux grandes échelles. L'idée sous-jacente était de comparer ces valeurs à la longueur de diffusion l d et au décalage fréquentiel ∆f dans l'espoir de dégager une nouvelle interprétation physique de ces valeurs. Nous trouvons avec l'analyse temporelle la longueur L • = 8 qui est environ deux fois plus grande que les longueurs de diffusion l d = 4, 3 et l d = 3, 6 obtenues sur les couches de mélange H07 et B04. Les décalages fréquentiels 575 et 1200 Hz sont eux aussi environ deux fois plus grands que les valeurs 300 et 540 Hz issus de l'analyse spatiale. Nous concluons donc que l'analyse de stabilité locale ne permet pas de dégager les longueurs et fréquences qui interviennent dans le mécanisme de diffusion acoustique. Il aurait été surprenant finalement qu'une analyse de stabilité linéaire 2D puisse nous renseigner sur la distance entre deux structures turbulentes parmi les plus énergétiques et/ou cohérentes d'un écoulement pleinement turbulent et tri-dimensionnel.

Introduction

An acoustic wave that propagates through a turbulent shear flow undergoes convection, refraction and scattering causing a change of directivity, a phase and amplitude modulation as well as a spectral re-distribution of the acoustic energy over a band of frequencies. Such physical mechanisms are encountered in many scientific fields such as the propagation of electromagnetic and acoustic waves in the atmosphere [1] or in the ocean [2] . In the field of Aeroacoustics, experiments are usually carried out in open jet wind tunnels to measure the acoustic signature of flying device models or engines. Acoustic waves are emitted by the device inside the flow, are convected downstream and have to pass through the turbulent shear layer before being received by the microphones placed outside the jet. During this process, the amplitude and the phase of the waves are modulated and the acoustic energy is redis-tributed for some frequencies. Thus, measuring the acoustic field originally radiated by the model requires to understand and characterize the interactions between the turbulent shear flow and the acoustic waves. From another point of view, one may see the opportunity of turbulence investigation [3] and control by acoustic means.

In the past decades, scientists have investigated theoretically, experimentally, and more recently, numerically, the interaction between the acoustic wave and turbulent shear flows. Refraction and transmission, caused by the mean velocity gradient, have been quite well explained by the theory of infinitely thin shear layer [4,5] and the coefficient found to account for the energy loss and the change in directivity have been validated by experimental studies [6,7] . Another theoretical approach for refraction and transmission investigation that is worth being mentioned is the acoustic ray method (geometrical approximation) first developed by Blokhintsev [8] and applied in the configuration of an open jet wind tunnel by Candel et al. [9][10][11] . Among convection and refraction, the sound wave experiences, at sufficiently high frequencies, a spectral re-distribution of acoustic energy over a band of frequencies around the tone frequency. This is referred to as 'spectral broadening' or 'haystacking' in the Literature. The far field Power Spectral Density (PSD) exhibits side-lobes, caused by the turbulent structures in the flow, and a progressive energy decrease afterwards. Fig. 1 is extracted from the experimental work of Candel et al. [9] and represents the PSD of the scattered pressure field for different values of the frequency of the acoustic source. Literature provides some theoretical, experimental and numerical studies on 'haystacking' but the phenomenon is not yet perfectly understood and further investigations aim to provide, as for refraction, correction coefficients for the acoustic energy. A detailed review of Cargill [12] dealing with sound propagating in turbulent flows may interest the reader.

On the theoretical side, Lighthill [13] derived an expression giving an estimation of the scattered energy of an incident sound wave per unit time from unit of volume turbulence. Later, various approaches have been used to investigate spectral broadening. Ford and Meecham [14] showed that the position of the maximum of the scattered power spectrum is shifted from the incident frequency by an amount determined by the Doppler shift due to the mean shear flow. Candel et al. [10,11] and Guédel [15,16] , assuming the Born and Fraunhoffer approximations, derived expressions for the fluctuating pressure, phase and amplitude power spectral densities. Campos [17,18] derived reflection and transmission coefficients along with equations accounting for the phase diffraction by turbulence and for refraction, based on the idea of turbulence being a phase-modulation process. They used the Born approximation in the case where the acoustic wavelength is greater than the turbulent characteristic length (the classical scattering theory) and the acoustic ray method in the opposite case (geometrical acoustic). Howe [19] derived a kinetic equation describing the energy exchange processes between the acoustic field and the turbulent flow and retrieved the classical scattering theory and geometrical acoustic results. A quite different approach consists in deriving a scattering equation with source terms under the weak-scattering assumption (the scattered field amplitude is small compared to the incident field). Then, the scattered field and the energy spectrum are derived and converted into the far field. Cargill, in a Rolls-Royce internal report, used this method in the case of a two-dimensional jet, followed, three decades later by Powles [20] and McAlpine et al. [21] for a circular jet inside and outside the cone of silence. Hardin and Preisser [22] have shown that the spectral broadening can be explained by a modulation of the amplitude of the acoustic signal in an unsteady shear flow.

On the experimental side, Candel et al. [9][10][11] placed microphones inside and outside an open wind jet tunnel and used classical tools for signal processing (cross spectral and cross correlations analysis) to get information on the scattered field and on turbulent structures. They showed that the main part of scattered energy results from the interaction between the acoustic field and the large turbulent structures. They also deduced the 'convective, projective and wavelike nature of the scattered field' by showing that that the correlation length and the 'propagation' velocity of the scattered pressure field is a projection of the correlation length and the convection velocity inside the mixing layer. This reference experimentation has been re-conducted recently by Kröber et al. [23] and Sijtsma et al. [24] in order to quantify the magnitude of the tone broadening as a function of a dimensionless scattering parameter.

On the numerical side, Ewert et al. [25,26] showed the feasibility of 'haystacking' investigation by coupled CFD/CAA simulations. Their governing equations are derived by neglecting the interaction between the acoustic wave and the mean flow gradient, responsible for the refraction and by assuming that scattering is only induced by the unsteady turbulent velocities. Those are generated by the stochastic Random Particle Mesh (RPM) [27] method which uses a steady state Reynolds Average Navier-Stokes (RANS) computation of the turbulent flow problem. The haystack spectra exhibit the two side-lobes and the spectral shape is globally in agreement with the experiments. However, the scattered energy contained in the side-lobes is different from the energy scattered experimentally, the side-lobes do not always shift in frequency when the jet velocity is increased and the side-lobes do not reach their maximum value at the right frequency. The scattering of an acoustic wave by a moving vortex has been investigated recently by Clair and Gabard [28] , following the work of Colonius et al. [29] on a steady vortex. The spectral re-distribution of acoustic energy by the Doppler effect is observed, showing once again the relevance of the scattering study on a canonical configuration. Those studies seem to be the only ones that investigated spectral broadening with numerical simulation and approaches other than stochastic method or the study on a canonical case are unavailable to the best of the author's knowledge. It is clear that a more precise computation of the mixing layer's turbulent features is needed to better capture the scattered spectra and to accurately study the scattering mechanism. If the Direct Numerical Simulation (DNS) of a realistic open jet wind tunnel is still out of range, the Large Eddy Simulation (LES) that consists in calculating only the larger scale of the flow (at least up to the Taylor Scale) and modeling the smaller scales is feasible, especially for the moderate Reynolds and Mach numbers of the studied configuration.

The aim of the present study is to perform the LES of the scattered pressure field resulting from the interaction between a tonal acoustic wave and a turbulent mixing layer. Compared with the open jet wind tunnel experiments [9] where a cylindrical shear layer is developing, the configuration presented in this study has been simplified to the scattering by a 3D planar turbulent mixing layer. Fig. 2 shows a sketch of the simulated configuration with U 1 and U 2 the high and low-speed side free-stream velocities respectively, S the acoustic source and P 1 the point where the scattered field is collected.

The LES of a 3D planar turbulent mixing layer is performed using the in-house research CFD code FUNk and details on the numerical solver, the subgrid-scale modeling and the computational domain are given in Section 2 . Inflow velocity perturbations are added to trigger the shear layer transition so that the selfsimilar state is reached more quickly (see Bogey et al. [30,31] ) (see Section 3 ). The integral lengths and the convection velocity are calculated in Section 4.1 . The aerodynamic and turbulent characteristics of the flow ensuring the self-similar state [32] are computed in Section 4.1.2 and compared with experimental [33][34][35] and numerical studies [36][37][38] . Great care has been taken to reduce the noise emitted by the inflow velocity perturbations and by the turbulent flow evacuation through the outflow boundary condition. Following Colonius et al. [39] , the end of the computational domain is stretched and a damping function is introduced in order to prevent the turbulent structures reaching the outflow boundary condition, see Section 2.5 .

In Section 4.2 , the acoustic field emitted by a two-dimensional noise source extended in the span-wise direction, located in a uniform flow, is computed using the same grid and the same LES solver as those used for the computation of the mixing layer. The LES of both the turbulent flow and the acoustic wave is carried out in Section 5 for two acoustic wave amplitudes, five frequencies and two convection velocities. The power spectral densities of the scattered pressure field are calculated and compared to the experimental data, in particular the position of the side-lobes and the spectra decrease. Finally, the acoustic field characteristics and the quantity of scattered energy are discussed in Section 6 , and maps of directivity at the side-lobes frequencies are calculated.

Numerical approach

Governing equations

The three-dimensional unsteady filtered Navier-Stokes equations are resolved for a viscous compressible Newtonian Fluid. Any flow variables φ may be split into a large-scale part φ and a smallscale part φ ′ , allowing the expression φ = φ + φ ′ . The filtering operator • is assumed to commute with time and spatial derivatives.

Moreover, the Favre filtering φ = ρφ/ ρ, where ρ is the density of the fluid, is introduced in order to clarify the equations. The dynamic of the flow is driven by the filtered Navier-Stokes equations and the filtered equation of state expressed as

∂ Q c ∂t + ∂ F j ∂x j - ∂ F ν+ νt j ∂x j = 0 and p = ρr T , (1) 
where Q c denotes the conservative flow variables, F the Eulerian fluxes, F ν+ ν t the viscous fluxes, containing the subgrid scale model terms, p the filtered pressure, T the filtered temperature and r the molecular perfect gas constant. In the previous expression, the Einstein convention of the repeated index is used, j going from 1 to 3. The variables x 1 = x, x 2 = y, x 3 = z, t respectively denote the stream-wise, cross-stream and span-wise coordinate and time. Explicitly,

Q c = ρ, ρ u 1 , ρ u 2 , ρ u 3 , p / (γ -1) + p u j u j t , F j = u j Q c + 0 , δ 1 j p , δ 2 
j p , δ 3 j p , p u j t and, by using the eddy viscosity hypothesis, F

ν+ ν t j = 0 , σ 1 j , σ 2 j , σ 3 j , σ kj u k + q j t , with σ ij = [ µ( T ) + µ t ] ∂ u i ∂x j + ∂ u j ∂x i - 2 3 δ ij ∂ u k ∂x k , (2) 
q j = (µ( T ) + µ t ) C p P r ∂ T ∂x j , (3) 
where • t is the transpose operator, u j are the filtered velocity components, δ ij is the Kronecker symbol, µ is the dynamic viscosity following the Sutherland's law, C p is the thermal capacity at constant pressure and Pr is the Prandtl number.

Subgrid scale modeling

The selective mixed scale model, developed by Lenormand et al. [40] has been retained because it realizes a good compromise be-tween accuracy, stability, and computational cost. This model introduces a test-filtered field, denoted by the hat notation. The kinetic energy is approached as q c = 0 . 5( u i -ˆ u i ) 2 giving information on the flow resolution. The quantity q c is deduced by employing a three-dimensional averaging test filter : ˆ

u i = A i A j [ A k ( u i ) ] where A i (φ) = 0 . 25 φ i -1 + 0 . 5 φ i + 0 . 25 φ i +1 . The subgrid viscosity is then evaluated as µ t = ρ f θ 0 C m 2 S ij S ij √ q c , (4) 
where f θ 0 is a continuous expression of the selective function introduced by David [41] , C m = 0 . 06 a constant parameter, a characteristic length-scale given by the cell volume and S ij the strain rate tensor. The selective function is defined as:

f θ 0 = 1 if θ > θ 0 = 10 deg tan 4 (θ / 2) / tan 4 (θ 0 / 2) otherwise , (5) 
where θ is the angle between the filtered vorticity ω( u ) and the local averaged filtered vorticity ω( ˆ u ) .

Numerical solver and method

The LES presented in this study has been performed on 480 Intel Westmere or Nehalem processors of ONERA's supercomputer, using the code FUNk, see [42,43] for previous studies using this code. A modified hybrid second order AUSM+(P) (Advection Upstream Splitting Method) scheme, initially proposed by Mary and Sagaut [44] , is used for the Eulerian fluxes F discretization. This 2 nd -order centered scheme detects the spurious oscillations on the primitive variables and activates a sensor function that modify the expression of the Eulerian fluxes, including numerical dissipation only if oscillations are detected. The viscous fluxes F ν+ ν t are discretized using a 3-point centered scheme. For the flow calculation without the acoustic source, the time integration has been performed using a second-order implicit backward-Euler scheme and a time step t = 7 . 4 10 -7 s . The Courant Friedrichs Lewy number (CFL) reaches a maximum value of 15.5 at the inlet cells of the computational domain, where the mesh spacing is the smallest. A satisfactory convergence of the Newton method was obtained using 15 sub-iterations per time step. Converged statistics are obtained with a 75 ms signal, corresponding to 11 runs of 13 h (a week of computation). Once the acoustic source is activated, the time integration is performed using an explicit third-order accurate compact Runge-Kutta scheme with a maximum CFL number of 0.95 ( t = 4 . 6 10 -8 s ). The complete numerical simulation of one frequency is achieved with 22 runs of 13 h, approximately 3 weeks of computation. In the uniform mesh spacing zone (see Section 2.4 ), where the self-similar state is reached and the scattered pressure field is investigated, the accuracy of the simulation is ensured since the CFL number does not exceed 1.65 and 0.1 for the implicit and explicit computation respectively. Indeed, the mesh spacing in the uniform zone is bigger than the one between the inlet cells, leading to lower values of the CFL number.

Computational grid

The numerical domain is composed of two zones: a wellrefined zone for a sufficiently accurate computation of the turbulent shear layer and acoustic propagation and, downstream, a stretched zone that progressively dissipates the small scale of the flow and the high frequency soundwaves. In the second zone, the stretching occurs in the stream-wise and the cross-stream direction with a cell-to-cell ratio that does not exceed 1.07 in the crossstream direction to avoid spurious reflections from a cell to another. In the stream-wise direction, the mesh is stretched with a constant 1.02 ratio. In the well-refined zone, the mesh is slightly 

Table 1

Numerical parameters for the mixing layer numerical simulation.

N x × N y × N z L x × L y × L z Refined zone 555 × 450 × 316 550 δ ω, 0 × 284 δ ω, 0 × 350 δ ω, 0
Computational domain 697 × 601 × 316 350 0 δ ω, 0 × 30 0 0 δ ω, 0 × 350 δ ω, 0 stretched in the stream-wise and transverse direction, from the beginning of the domain to the beginning of a zone that remains unstretched for the rest of the well-refined zone. For the whole computational domain, the cell size in the span-wise direction remains constant. The resolution in the refined zone always satisfies the criteria given by Sagaut et al. [45] to compute sheared flow (p.375) for the stream-wise and transverse cell sizes, i.e. x ≤ δ ω /2.2 and y ≤ δ ω /15, with δ ω and δ ω, 0 being respectively the vorticity thickness and the initial vorticity thickness defined as:

δ ω (x ) = U ( ∂ u (x ) /∂y ) max and δ ω, 0 = U ( ∂ U/∂ y ) max , (6) 
where u is both a statistical and span-wise average of the stream-wise velocity, U = U 1 -U 2 is the velocity difference and U ( y ) is the inflow hyperbolic tangent stream-wise velocity profile. It is defined as:

U (y ) = U 2 1 R + tanh 2 y δ ω, 0 with R = U 1 -U 2 U 1 + U 2 , (7) 
the velocity ratio. The criterion for the transverse cell size z ≤ δ ω, 0 /3.2 is verified in the whole domain except at the inlet cells where the flow is mainly two-dimensional. Fig. 3 shows the cell sizes of the well-refined zone x * and y * at y * = 0 , plotted against the stream-wise coordinate x * . The notation • * is used when the variable • is normalized. For the length normalization, the initial vorticity thickness δ ω, 0 is used. At x * = 0 , x ≈ 1 . 4 10 -4 m and y ≈ 2 . 1 10 -5 m , translating into x * = 1 / 2 . 2 and y * = 1 / 15 , as seen in Fig. 3 . In the uniform zone, starting at x * = 104 , x = 4 . 10 -4 m , y = 2 . 10 -4 m and z = 3 . 5 10 -4 m , leading to x * = 1 . 26 , y * = 0 . 63 and z * = 1 . 1 . The number of points N and the size L in each direction of the refined zone and the whole computational domain are summarized in Table 1 .

Boundary conditions

The formulation of accurate boundary conditions are essential for acoustic computations [46] . A constant pressure is set for the outflow boundary condition while the constant velocities U 1 and U 2 are set for the upper and lower boundaries in the cross-stream direction respectively. As the flow is statistically homogeneous in span, periodic boundary conditions are applied in the span-wise direction. It is important to minimize the spurious waves created while acoustic fluctuations leave the computational domain. Thus, a characteristic non-reflecting boundary condition has been implemented on both the stream-wise and transverse boundaries. However, such a non-reflecting boundary condition is not sufficient when aerodynamic fluctuations reach the outflow boundary and generate small spurious waves that are not negligible compared to the acoustic fluctuations. Following Colonius et al. [39] , two methods are combined. Firstly, the mesh is stretched in the axial direction so that the turbulent structures are no longer supported by the numerical scheme. Secondly, a damping term is added in the Eq. ( 1) so that the spurious reflections created by the stretching propagate upstream as less as possible. Hence, the fluctuations and reflected waves are damped out by solving the equation

∂ Q c ∂t + ••• = - f (x ) t ( Q c -Q c ) with f (x ) = f max x -x min x max -x min 2 , (8) 
where f max is the maximum value of the function f , x min = 630 δ ω, 0 and x max = 3500 δ ω, 0 are the locations where the damping starts and ends respectively. To compute the field Q c , a first simulation is run without the damping term in order to get the spatial evolution of the vorticity thickness δ ω ( x ). The mean field is then composed of the stream-wise velocity expressed by Eq. ( 7) with δ ω ( x ) instead of δ ω, 0 and the pressure P ( y ) defined by the Crocco-Busemann law [47] as:

P (y ) = ρ ∞ r T ∞ + 1 2 c p (γ -1) M 2 [ U 1 -U (y ) ] [ U (y ) -U 2 ] , (9) 
where ρ ∞ , T ∞ and M are respectively the density and the temperature far from the shear layer and the upper stream Mach number M = U 1 /c ∞ , with c ∞ the speed of sound. Precautions must be taken concerning the value of f max for the damping term to remain the same during the whole simulation, i.e. f max / t = constant . The value of f max must thus be switched when the time-integration changes from an implicit to an explicit scheme. For the implicit time-integration, f max = 0 . 09 whereas f max = 0 . 00595 for the explicit one. To illustrate the effect of the damping function on the acoustic fluctuations, the field ∂ ρ/ ∂ t is plotted on Fig. 4 , with 10 levels between -0 . 5 and 0 . 5 kg . m -3 . s -1 . On the left, the damping function is not activated whereas on the right the damping function is activated. The effect of the damping function is obvious, the field is progressively damped out meaning that the flow structures are killed, preventing spurious reflection to appear. The root mean square pressure fluctuation is calculated on the line y * = -126 (the transverse location of the point where the data are collected, in the low speed region outside the shear layer) and is shown on Fig. 5 . The acoustic intensity is 12 to 35 dB lower in the case with the damping function, depending on the stream-wise coordinate. Parasite acoustic sources coming from the stretching and from the turbulent structures convection through the outflow boundary have been drastically reduced. 

Flow configuration

Flow parameters

The computation is initiated by setting in the whole domain the velocity profile U (y ) e x expressed by Eq. ( 7) and the pressure P ( y ) given by Eq. ( 9) . The initial Reynolds number is defined as Re ω, 0 = Uδ ω, 0 /ν, with ν the kinematic viscosity. The velocity ratio, the Reynolds and Mach numbers are the three dimensionless parameters that conveniently characterize the flow. By setting their values, the velocities U 1 , U 2 as well as the initial vorticity thickness δ ω, 0 are found. In the present computation, R = 0 . 7 , Re ω, 0 = 116 2 and M = 0 . 2 which lead to U 1 ≈ 69 . 34 m . s -1 , U 2 ≈ 12 . 24 m . s -1 and δ ω, 0 ≈ 3 . 17 10 -4 m . The Reynolds number has been chosen close to the DNS of Rogers and Moser [36] and the Mach number close to the experimental configuration of Candel et al. [9] . The growth of the mixing layer may be evaluated by monitoring the momentum thickness of the mixing layer defined as:

δ m (x ) = 1 U 2 ∞ -∞ [ U 1 -u (x, y ) ] [ u (x, y ) -U 2 ] d y. ( 10 
)
The initial Reynolds number is sufficiently high to naturally produce a turbulent flow, however, velocity perturbations are added to the inflow velocity profile to trigger the turbulent transition so that the mixing layer reaches a self-similar state more upstream, leading to reduced domain size and computational costs. The linear instability theory of the hyperbolic tangent profile, first developed by Michalke [48] , provides the most unstable wave number α = 0 . 4 4 46 δ ω, 0 / 2 which leads to the most unstable wavelength in the stream-wise direction λ x ≈ 7 δ ω, 0 . The inflow boundary condition is the superposition of the stream-wise velocity U with three-dimensional ran-dom perturbations V ′ = u ′ , v ′ , w ′ t of the form :

V ′ = a U δ ω, 0 n i =1 Z j=1 exp -κ c 2 j (y, z) δ 2 
ω, 0 ×ǫ i (y, z, t ) sin ( ω i t + ψ i (y, z, t ) ) X j (11) where X j = δ ω, 0 , zz j , y 0 -y t and c 2 j (y, z) = (yy 0 ) 2 + (zz j ) 2 . In this expression, ( y 0 , z j ) denotes the perturbation center coordinates, a is the amplitude of the perturbations, κ = 5 is the spreading parameter of the disturbances, n = 10 is the number of modes, Z is the number of perturbation zones, ω i = 7 ω 0 / (i + 2) where w 0 is the angular frequency related to the most unstable wavelength λ x . Finally, -1 ≤ ǫ i (y, z, t ) ≤ 1 and 0 ≤ ψ i ( y , z , t ) ≤ 2 π are the random amplitudes and phases updated every time step at every transverse and span-wise locations. The expression of those perturbations have been inspired by the work of Bogey et al. [30,31] . The amplitude a has been progressively enhanced so that the value found, if doubled, will not change the location of the beginning of the self-similar regime neither the Reynolds stresses within the shear layer. Thus, the averaged initial turbulent intensity K(0 , y ) = u ′ 2 + v ′ 2 + w ′ 2 is equal to 7 . 5 % of U . Physically, the perturbations are located in the center of the shear layer y 0 = 0 and equally disposed in the span-wise direction z j = (6 j -3)10 -4 m . Z = 185 has been chosen such that z 185 < L z . The spreading parameter κ ensures that the 185 perturbed zones do not overlap. To illustrate the effect of the velocity perturbations, an iso-surface of the Q criterion colored by the stream-wise velocity, is plotted on Fig. 6 , when they are activated or not. In the case where there is no perturbation, two-dimensional rollers are convected down-stream and start to pair and merge with each other at x * = 80 whereas in-homogeneous rollers are created when the perturbations are set on, and start to merge at x * = 40 . Without perturbations, the flow does not reach a fully developed turbulent state within the well refined zone. For the rest of the study, the velocity perturbations are activated in the inflow.

Validation

Shear layer characterization

Influence of the span-wise length of the domain, integral length and convection velocity

In a post-transition turbulent mixing layer, the span-wise coherent large structures persevere in the flow [49,50] and their successive interactions are responsible for the Reynolds-stress production [51,52] . Therefore, the span-wise length of the domain has been chosen carefully to ensure the proper development of these 184 large vortex structures that drive the dynamics of the flow. Following [52] , the span-wise integral lengths of the flow large structures L z uu (x ) based on the stream-wise velocity fluctuations are computed on the line y/δ m (x ) = 6 , where the signals are mainly sensitive to the large rollers and not contaminated by the smallscale features. Fig. 7 a represents the dimensionless span-wise integral length L z * uu on the line y/δ m = 6 at several down-stream locations for three domains of respective span-wise extents 40 δ ω, 0 , 350 δ ω, 0 and 700 δ ω, 0 . Theoretically, the integral length must grow linearly. It is the case for the larger domains but not for the 40 δ ω, 0 span-wise extent domain, where the integral scale remains constant, L z * uu = 19 . 3 ≈ L * z / 2 . This indicates that the physical behavior of the large span-wise coherent rollers are driven by the spanwise extent. The span-wise integral length of the 350 δ ω, 0 domain is slightly lower to the one of the 700 δ ω, 0 domain. The importance of the span-wise extent is also striking while considering the Reynolds stress profiles u ′ 2 , v ′ 2 and w ′ 2 . In the self-similar zone, details will be given in Section 4.1.2 , each profile reaches a constant maximum value. Fig. 7 b represents the maximum value of each profile, normalized by U 2 , versus the stream-wise direction. For the sake of clarity, offsets of -0 . 01 and -0 . 02 are applied on w ′ 2 and v ′ 2 respectively. For the shorter domain, u ′ 2 and w ′ 2 keep decreasing and never reach a constant value whereas for the larger domain, all the profiles reach a quasi constant value.

The vertical Reynolds stress v ′ 2 for the shorter domain slightly increases after x * = 300 indicating that the large structures have grown to reach the span-wise extent of the domain. This induces a recovery of the two-dimensional behavior of the flow due to the periodic conditions, meaning an increase in the vertical stresses.

The Reynolds stresses for the 350 δ ω, 0 and the 700 δ ω, 0 span-wise extents domain are very close to each other. The definitive length is chosen to be 350 δ ω, 0 because it represents a good compro- mise between the simulation's resolution and the computational cost.

The integral lengths L x uu , L y uu and L z uu have also been calculated at the center of the shear layer and are compared to the experimental data of Jones et al. [53] in Table 2 . Their values have been deduced using the fitting δ ′ ω = 0 . 181 R (see 4.1.2 ). Good agreement is found between the two sets of values. The convection velocity has also been calculated in the center of the shear layer using the space-time correlation coefficient. The value of U c = 41 . 5 m . s -1 has been found, which is very close to (U 1 + U 2 ) / 2 = 40 . 8 m . s -1 .

Statistics and self-similarity of the shear layer

It is well known that developed turbulent mixing layers evolve self similarly [32,54] with a linearly growing thickness and the collapse at different down-stream locations of the statistical profiles (mean stream-wise velocity, Reynolds stresses etc... ) onto a single curve. The similarity variable

η * (x ) ≡ y -y 0 (x ) (x -x 0 ) d δ ω d x ( 12 
)
is introduced, where x 0 is the virtual stream-wise coordinate of the shear layer and d δ ω /d x the mixing layer spreading rate in its self-similar state. The drift coordinate y 0 ( x ) corresponds to the shear layer center, i.e. where the mean velocity u is equal to

U c = (U 1 + U 2 ) / 2 .
Self-similarity of the statistical profiles is likely to occur if plotted in terms of η * which takes into account the spreading of the shear layer and its drift towards the lower velocity zone. It is found that the drift coordinate evolves as y 0 (x ) = -0 . 0168 x . The momentum thickness, normalized by δ ω, 0 , is plotted on Fig. 8 a. It grows slowly in the early stage of the mixing layer meaning that the flow is laminar, then the flow evolves into a turbulent state and finally and the momentum thickness grows linearly. The measure of d δ ω / dx only depends on the velocity ratio U 2 /U 1 = (1 -R ) / (1 + R ) when the self-similar regime is reached. Brown and Roshko [34] have reported several fittings depending on R but the fact that the collected experimental data have an undesirable large scatter implies that the fitting expression is somewhat uncertain. The solid line Abramovich-Sabin's expression, d δ ω /d x = 0 . 181 R, will be used for comparison. Fig. 8 b represents the vorticity thickness against the stream-wise coordinate. The growth rate is found equal to 0.081, which is lower than 0 . 181 R = 0 . 1267 . This low growth rate value may be partly explained by the initial velocity profile used and the strength of the inflow velocity perturbations. Indeed, McMullan et al. [37] showed that a hyperbolic tangent initial velocity profile led to a smaller growth rate than the expected value and Bogey et al. [55] showed that the growth rate decreased with the strength of the inflow velocity perturbations. The normalized growth rate of the vorticity thickness r ω = (U c / U ) d δ ω /d x = 0 . 06 , is also lower than the lowest value of the range [0.081; 0.098] coming from the experimental works [56,57] . The dimensionless mean velocity profiles

u * = ( u - U c ) / (U 1 -U 2 )
are plotted on Fig. 9 at several down-stream locations, after x * = 300 , along with the data from experiments [35] and simulations [36,38] . The collapse of the data is good and the mean profiles agree very well with [35,36,38] .

A sensitive indicator of self-similarity is the collapse of the Reynolds stress profiles u ′ 2 , v ′ 2 and w ′ 2 , normalized by U 2 . The components of the Reynolds stress tensor are plotted on the Figs. 10 and 11 at several down-stream locations, along with [35,36,38] . The stresses have almost collapsed into a single curve and the small discrepancy between the profiles may be due to the fact that the mesh dissipates the smallest scales of turbulence leading to a slightly lower amount of resolved energy. Compared to [35,36,38] , the stresses maximum values seem to be underestimated. However, Yoder et al. [58] recently gathered a large amount of experimental and few numerical profiles and showed a fairly large discrepancy between their levels. The values of the present study fall into the ranges given in [58] .

The stream-wise one dimensional turbulent kinetic energy spectrum density is plotted on Fig. 12 a at different stream-wise locations against the frequency f along with the f -5 / 3 slope. The spectrum follows a f -5 / 3 slope from f = 10 0 0 Hz to f = 20 , 0 0 0 Hz .

In the well-refined zone, the ratio ν t / ν reaches a maximum value of 6 and values around 2.5 when the shear layer is in its selfsimilar state. According to the relatively low values of ν t / ν and the inertial zone of a bit more than one decade, the simulation may be considered as a well-resolved LES. Fig. 12 b represents the stream-wise one dimensional turbulent kinetic energy spectrum density inside the well-refined zone at x * = 536 and outside, at x * = 580 . The inertial zone is reduced for the point located outside because the mesh spacing in the stream-wise direction has increased. Therefore, the cut-off frequency of the turbulent structures, inside the well-refined zone, may be considered as the frequency for which the inertial zone ends, around f ct ≈ 20 kHz.

Acoustic source characterization

In the previous section, the aerodynamic properties of the turbulent shear layer have been validated as well as the computational size of the domain and the cell sizes. Before studying the interaction between the acoustic waves and the turbulent struc-186 Fig. 10. Reynolds stress versus η * for x * = 410 , 472 , 535 (-), compared with [35] : ( ), with [36] : ( ) and with [38] tures, the propagation of an isolated acoustic wave in the transverse direction has to be validated. The source is chosen to be a two-dimensional mono-pole emitting in the ( x , y ) plane and extended in the span-wise direction in order to minimize the energy redirected in the z -direction that goes through the periodic spanwise boundaries. The acoustic wave is generated by adding, at each temporal iteration, a source term to the density and energy governing equations. The source term has a Gaussian form and is ex-pressed as:

Q A =       ρ A 0 0 0 c 2 ρ A γ -1       exp - π (x -x s ) 2 + (y -y s ) 2
(2 x ) 2 sin (ωt) , (13) where ρ A is the sound-wave amplitude, c 2 = γ p / ρ is the local sound speed, ( x s , y s ) the location of the source and 2 x the spatial extent [59] . It is placed in the high speed region, outside the shear layer at the stream-wise position x * s = 472 . 6 and transverse position y * s = 126 . To estimate the highest frequency correctly supported by the mesh, the propagation of the 2D acoustic wave is simulated and compared to the well-known analytic solution. A minimum number of 20 points per wavelength (ppw) in the transverse direction, inside the well-refined zone, is chosen to ensure a sufficiently accurate propagation of the acoustic waves. According to Hüttl et al. [60] , this resolution would lead, for a 2 nd order spatial scheme, to an acoustic amplitude attenuation lower than 1.4 dB over the 400 transverse cells y crossed during the propagation. The propagation of a source emitting at f 0 = 85 kHz , corresponding to 20 ppw in the transverse direction, is calculated for the medium uniformly convected at U 1 . Fig. 13 a presents the vertical distribution of the rms pressure fluctuation p ′ rms for a source emitting at f 0 = 85 kHz on the line x * = 472 . 6 , calculated both numerically and analytically. The Green function that characterizes the two-dimensional acoustic propagation in an uniform flow of direction e 1 and Mach number M ∞ = U ∞ /c ∞ is given by:

G (x | x s , ω) = i 4 χ exp -i M ∞ k (x -x s ) χ 2 H (2) 0 k χ 2 r χ , (14) 
where χ 2 = 1 -M 2 ∞ , H (2) 0 is the zeroth order Hankel function of the second kind and r χ = (x -x s ) 2 + χ 2 (yy s ) 2 . This Green function is solution of the following propagation equation:

∇ 2 G (x , t| x s , τ ) - 1 c 2 ∞ D 2 ∞ Dt 2 G (x , t| x s , τ ) = δ(x -x s ) δ(t -τ ) , (15) 
where

D ∞ /Dt = ∂ /∂ t + U ∞ ∂ /∂ x 1 .
The amplitude of the source is calibrated so that acoustic intensity does not exceed 135 dB which is the limit of linear acoustic. Good agreement is found between the two curves, with a lower acoustic attenuation than expected [60] , and the 1 / √ r slope is well recovered. This frequency is considered to be the highest frequency correctly supported by the mesh. In order to validate the two-dimensional nature of the acoustic source, the root mean square pressure is plotted on two different ( x , y ) planes of span-wise coordinate z * = 5 and z * = 15 . A perfect agreement between the two curves is found on Fig. 13 b, indicating that the propagation of the acoustic wave remains purely two-dimensional.

It must be noted that the 20 ppw criterion is valid for the transverse direction. The mesh spacing is twice as large in the streamwise direction than in the transverse direction, leading possibly to numerical errors for the waves moving mainly in the streamwise direction. However, the acoustic waves which will be scattered by the turbulent mixing layer and received at the location P 1 ( Fig. 2 ) will mainly be the ones emitted in the transverse direction so that the numerical errors due to the spatial discretization are fairly small. It may appear questionable to investigate the scattering with acoustic frequencies higher than the turbulent cut-off frequency f ct = 20 kHz . However, following Lighthill's [13] reasoning the smallest well-resolved turbulent eddies, which size may be estimated as λ ct ≈ U c / f ct ≈ 2 . 10 -3 m , will not affect the sound propagation appreciably since they are smaller than the acoustic wavelength λ 0 = c ∞ / f 0 ≈ 4 . 10 -3 m . Candel et al. [9] validated quantita- tively this reasoning, showing that the main part of scattered energy results from the interaction of the acoustic field and the large turbulent structures, which are well-resolved by the simulation.

Results on the spectral broadening

Now that both the turbulent properties of the mixing layer and the acoustic propagation have been verified, both the shear layer and the source are computed. A numerical Schlieren view is a good way to see both the acoustic and the turbulent features. Fig. 14 represents the norm of ∇ ρ for a source emitting at 85kHz. The point P 1 , situated at (x * , y * ) = (472 . 6 , -126) , is where the scattered pressure field is analyzed. A parametric study have been conducted focusing on 4 parameters; the source frequency, its amplitude and directivity and the convection velocity of the large turbu-188 3 sums up the name and the parameters chosen for each case. The value of the parameter A corresponds to the value of p ′ rms in dB at P 1 . The convection velocity U c = 49 . 5 ms -1 is obtained by taking U 2 ≈ 29 . 7 ms -1 . The data were processed using an FFT block size of 67,200 samples and a Welsh window with 50% overlap, yielding 5 averages and a frequency resolution of ≈ 41Hz. Moreover, the turbulent flow and the acoustic source being statistically homogeneous in the span-wise direction, the pressure field is collected on the whole span and the spectra are averaged. To get a well frequency-resolved spectrum, a signal of t s = 77 ms was necessary. Normalized by δ m , 0 / U , the simulated time is equal to 55. 5 10 3 , corresponding physically at the passage of approximately 60 = t s U c / 3 δ ω (x * s ) large turbulent structures at x * s = 472 . 6 .

The distance 3 δ ω (x * s ) corresponds to the mean distance between the large turbulent structures [34] .

The influence of the acoustic field on the shear layer development has been investigated and no change, neither for the growth nor the turbulent intensity of the shear layer, was observed. Fig. 15 a represents the broadened spectra received at the point P 1 in the case with no acoustic source CØ, and for the configurations C85 and C85 A . For the two source intensities, one may clearly discern the main part of acoustic energy added to the system, in a range of frequencies surrounding the emitting frequency going from 60 kHz to 120 kHz . However, outside this range, when the PSD of the case with a quieter source agrees quite well with the one of the case without source, the spectrum of the louder source case exhibits scattering features for the first two harmonics. This is certainly due to non-linear effects because, in the vicinity of the source position, p ′ rms reaches values higher than 135 dB. For the weaker source, premises of non-linear effects are perceptible at the first harmonic f = 170 kHz where a small +6dB peak is discernible. The acoustic cut-off frequency, for which the PSD on Fig. 15 a start to strongly decrease, is estimated at f ca = 130 kHz . In order to quantitatively compare the scattered energy for the different frequencies, a proper normalization for the PSD that takes into account the acoustic energy injected in the domain has to be applied. Following Candel et al. [9] , the spectra are centered around the tone frequency and normalized by the received acoustic power (16) where S p ′ (x s , f ) = p ′ (x s , f ) p ′ * (x s , f ) is the power spectral density of the fluctuating pressure field computed at the location x , the operators • * and • being the complex conjugate and the Fourier transform respectively. The frequencies f 1 and f 2 are shown on Fig. 15 b along with f p 1 and f p 2 used for the computation of the power within the peak in Section 6 .

P tot = f 2 f 1 S p ′ (x s , f ) d f,
The PSD, shown on Fig. 16 a, have been calculated at P 1 for the cases C55 , C65 , C75 and C85 . The side-lobes have been recovered as well as the progressively decreasing shape of the spectra. The results are qualitatively in good agreement with past observations [9] , the amount of scattered acoustic energy increases with frequency but the location of the local maximum of the side-lobes is independent of the frequency. On Fig. 16 a, f corresponds to the frequency shift between the maximum of the side-lobes and the source frequency. Study on the influence of the convection velocity of the large turbulent structures is done by comparing the PSD at P 1 for the configurations C85 and C85 R 04 . The results are presented on Fig. 16 b. For the lower convection velocity, f = 575 Hz whereas for the higher convection velocity, a value of 1200 Hz is found. It also appears that more energy is scattered for the configuration C85 . This is simply because the shear layer thickness with R = 0 . 4 is smaller than a configuration with R = 0 . 7 leading to a smaller part of scattered energy. Candel et al. [9] have suggested that the frequency shift f only depends on the convection veloc- et al. [23] . Sijtsma et al. [24] found l = 4 . 2 δ ω (x s ) for the DNW-PLST wind tunnel and l = 4 δ ω (x s ) for the NLR-KAT tunnel. The value of l seems to be rather universal, although slightly higher than the value first suggested by Candel et al. [9] . It is of interest to know if the shape of the side-lobes and the decrease of the spectra are in agreement with the experimental spectra. For comparison, the spectra computed by Candel et al. [9] and Kröber et al. [23] are used. Candel's et al. [9] spectrum was obtained in a configuration with a jet velocity U j equal to 60 ms -1 and a source frequency f 0 = 15 kHz , when the one of Kröber et al. [23] was obtained for U j = 40 ms -1 and f 0 = 16 kHz . As their configurations (convection velocity, shear layer thickness and source frequency) are totally different from the ones presented in this study, a quantitative comparison of the spectra levels is not possible and only the shape of the side-lobes and the decrease of the spectra are of interest. An artificial shift is applied so that the left lobe maximum value coincide. Moreover, the spectra are plotted versus the dimensionless frequency ( ff 0 ) / f . The comparisons are shown on Fig. 17 a andb. A globally good agreement is found between the numerical simulations and the experimental spectra, the shape of the side-lobes and the decrease of the spectrum is well-retrieved. The discrepancy between the simulation and the spectrum's right part decrease of Candel et al. [9] may come from the fact that, at such high frequencies, the experimental source is directional. This leads to a slight asymmetry in the PSD of the scattered pressure field [15] .

Discussion

Now that the shape of the side-lobes and the decrease of the spectrum have been validated, one may verify if the present simulation recovers the amount of scattered energy. This was either under-estimated ( Fig. 9 of [25] ) or over-estimated (figure 25 of [26] ) by the previous numerical studies, comparing to Candel et al. results (figure 25 of [9] ). To get the part of scattered energy, the power ratio, between the power within the peak P peak , computed by integrating the PSD between f p 1 and f p 2 (see Fig. 15 b), and the total acoustic power P tot (see Eq. ( 16) ), is evaluated. This ratio has been derived analytically by Ishimaru [61] (paragraph 20.3) and applied by Guédel [16] in the open jet wind tunnel configuration. Based on the parabolic equation method, in which the Markov approximation is adopted for the turbulent field, the power within the peak P peak is related to the total acoustic power P tot by the expression

P peak P tot = exp -β 2 G where β G = 2 √ 2 π f 0 v ′ m L (y )
vv l y c 2 0 (17) with v ′ m the maximum rms value of v ′ , L (y ) vv the transverse integral length and l y the shear layer thickness. Guédel [16] defined his shear layer thickness as the distance between two points where u = 0 . 9 U j and 0.1 U j , with U j the jet velocity. This definition turns out to be sensibly equivalent to the vorticity thickness of the shear 190 ), Sijtsma's ratio ( Eq. ( 18) ): ( ) and Guédel's ratio ( Eq. ( 17) ): (

). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) layer. More recently, Sijtsma et al. [24] have evaluated the same power ratio by estimating the time delay variation that undergoes the acoustic wave while propagating through the turbulent shear layer. They have found the expression

P peak P tot = exp -β 2 S where β S = 2 √ 2 π 2 f 0 v ′ m δ m c 2 0 . (18) 
The expressions ( 17) and ( 18) are very similar, they follow the same exponential law and they depend on the source frequency, the transverse turbulent intensity and a shear layer thickness. However, the shear layer thickness is not the same, which may lead to different values between the power ratios (17) and (18) . The ratios, calculated using the simulation parameters, are compared to the ratio computed by integrating the power spectral densities. For β G , the values L (y ) vv = 0 . 312 δ ω , coming from Jones et al. [53] , and l y ≈ δ ω are used, leading to β G = 4 . 59 • 10 -6 f 0 . There is no specific difficulty in calculating β S since all the quantities are clearly defined, the calculation leads to β S = 4 . 25 • 10 -6 f 0 . It interesting to notice that the two scattering parameters, analytically established with a different method and evaluated with the parameters of the present numerical simulation, are very close. The influence of the source frequency on the power ratios is investigated on the configurations C55 , C65 , C75 and C85 . Fig. 18 shows that the power ratios directly calculated from the simulation follow the right trend but seems to be slightly over-estimated, compared with power ratios ( 17) and ( 18) derived analytically. However, the level of scattered energy is closer to the estimation than previous numerical computations [25,26] . It also indicates that, at least for weak scattering configuration (when the power ratio is close to one), the estimation provided by the exponential law is relevant. Higher values of β are hard to obtain numerically because of the limitation on the acoustic frequency. However, it was shown [24] that the deviation between the theoretical power ratio and the measured one increases with β.

In the previous paragraph, β may be seen as a scattering parameter meaning that the part of scattered energy will be the same for two different configurations, as long as β remains equal. One may check this assertion by computing the power ratio for configurations where the source frequency, with the convection velocity and the shear layer thickness are different but where the scattering parameter is the same. A simplified scattering parameter h , extracted from Eq. ( 18) and defined as h = ( f 0 v ′ m δ ω ) /c 2 0 is considered. This scattering parameter has the same physical contents than β S and β G . Configurations C43 and C85 R 04 , which have a different source frequency, convection velocity, shear layer thickness and turbulent intensity, have been calibrated such that h is strictly equal in both case. Very close values of the power ratio, namely 0.976 and 0.972, are found for C43 and C85 R 04 respectively, meaning that the scattering parameter h , and therefore β, are relevant parameters to describe the scattered power. An attempt was made to use this scattering parameter to directly compare the power spectral densities of the numerical simulations with the experimental ones. Fig. 19 represents the power spectral densities for the configurations C43 and C85 R 04 , against, on the left, the centered frequency and on the right, the centered frequency normalized by f . One may see, on Fig. 19 a, that the PSD is higher in the side-lobes for the case C43 but that the energy is redistributed over a smaller frequency range. This redistribution of energy over a smaller frequency range allows the ratio of integrated power to be equal between the two configurations. While plotted against the dimensionless frequency, Fig. 19 b, the PSD of C43 is higher of around 3dB than the one of C85 R 04 . This indicates that a quantitative comparison between the PSD of a numerical and an experimental configuration having the same scattering parameter h is not straightforward.

A more extensive study of the scattered pressure field may be considered, now that the fundamental features of the acoustic scattering have been correctly computed by the LES. Indeed, the main interest of numerical simulation over experiment is that one may easily get the whole pressure and velocity field for every point in the flow, without disturbing the flow. This allows new visualizations of the phenomenon under consideration. For example, maps of power spectral densities have been calculated for the C85 configuration and represented at three given frequencies, f 0 , f 0 -f and f 0 + f, on Figs. 20 , 21 a and b respectively. The frequencies f 0 -f and f 0 + f are of interest because they correspond to the frequencies for which the scattered energy is maximal. Fig. 20 is a map of PSD at the source frequency f 0 . The dashed line roughly represent the spatial extent of the shear layer ( ≈ 2 δ ω ). The acoustic field at the frequency f 0 only undergoes the refraction effect induced by the mean velocity gradient between the high and low-speed side. This leads to a non-concentric pattern of directivity as one may see on Fig. 20 . Fig. 21 a and b are maps of PSD at the frequencies f 0 -f and f 0 + f respectively. The two maps are sensibly the same, indicating a similar scattering of the acoustic field by the turbulent structures. As the acoustic wave propagates through the mixing layer, the energy at the frequencies f 0 ± f is progressively increased. Moreover, higher levels of energy are found at the right of the maps. This may partly be explained by the fact that the level of scattered energy depends on the shear layer's thickness the acoustic wave crosses. The vorticity thicknesses computed at the upstream and downstream locations x * = 350 and x * = 550 , on the line y 0 ( x ), are equal to 40 δ ω, 0 and 60 δ ω, 0 respectively. The PSD is equal to 61.1 dB/Hz at the upstream location and to 65 dB/Hz at the downstream location. According to Guédel [16] , the PSD of the pressure fluctuations is proportional to the shear layer thickness. Then, an increase of 50% of the vorticity thickness would lead to an increase of 20 log (1 . 5) = 3 . 5 dB / Hz of the PSD level, which is close to the effective increase of 3.9 dB/Hz.

The influence of the source frequency and the convection velocity on the directivity is investigated. Fig. 22 a and b represent the map of PSD at the frequency f 0 -f for the C55 and C85 R04 configuration respectively. As the level of scattered energy is different for each configuration, the levels are not identical for Figs. 21 a, 22 a and b. However the number of contour levels and the difference between the higher and the lower level is the same. Globally, the three figures exhibit the same pattern of directivity, a difference of around 8 dB is found between the most upstream and downstream locations. The main difference between the figures may be seen by focusing on the vertical line x * = 400 , represented on Fig. 23 . This figure shows the PSD at the frequency f 0 -f on the line x * = 400 for the configurations with and without the acoustic source, at different convection velocities and frequencies. The level of PSD for the configuration C85 increases almost linearly from y * = 126 to y * = -126 whereas the level for the configurations C55 ( Fig. 23 a) and C85 R 04 ( Fig. 23 b) reach a local maximum around the coordinate y * = 0 . This local maximum is representative of the turbulent pressure field of the shear layer. One may see indeed that the levels of PSD for the configurations without the acoustic source CØa t 55 kHzf ( Fig. 23 a) and CØ R 04 at 85 kHzf R 04 ( Fig. 23 b) are of the same order of magnitude as the scattered pressure field of the configurations C55 and C85 R 04 respectively. Such local maxima do not appear for the configuration C85 since the PSD level of scattered pressure field is much higher than for the one of the turbulent pressure field. Two effects have to be taken into account to explain this difference of level between the scattered and turbulent pressure field. Firstly, the PSD level of the turbulent pressure field is higher at the frequency f 0 = 55 kHz , than at the frequency f 0 = 85 kHz ( Fig. 23 a). Secondly, a less intense scattering occurs for the lower frequency because the ratio between the acoustic wavelength and the shear layer thickness is higher. In the case of the C85 R 04 ( Fig. 23 b) configuration, the ratio is also higher because the shear layer is thinner than in the C85 case.

The influence of the convection velocity and the source frequency on the directivity patterns has been investigated. If the directivity seems to be globally independent of the convection velocity and the source frequency, new patterns may appear if the level of turbulent pressure field is of the same order of magnitude as the scattered pressure field.

Conclusion and perspectives

This paper describes a study of the scattering of an acoustic field by a 3D plane turbulent shear layer, by means of numerical simulations. The phenomenon of spectral broadening has been investigated. The first step of the work consisted in the LES of a planar turbulent mixing layer reaching a self-similar state quickly. This goal was achieved by introducing inflow velocity perturbations that induced the turbulent structures merging in an early stage of the shear layer development. A study on the influence of the span-wise extent, motivated by the fact that the flow's dynamics is driven by the evolution of the span-wise coherent rollers, was conducted and allowed the integral lengths and the convection velocity to be in very good agreement with reference experimental results. The evolution of the shear layer thicknesses and the Reynolds stresses were found to be in good agreement with previous authors results as well, validating the mixing layer selfsimilar state. Meanwhile, boundary conditions developed for CAA were implemented along with of a damping function in order to eliminate as much as possible spurious numerical noise.

Once the shear layer's aerodynamic characteristics were correctly retrieved, an acoustic source was introduced in a uniform flow without the turbulent mixing layer and the acoustic propagation is validated using the same grid and the same LES solver. Then, the acoustic source is introduced in the domain and the direct computation of the scattered pressure field is carried out. The spectra exhibit typical scattering features which are in very good agreement with past experimental measurements. The position and the side-lobes shape, as well as the spectra decrease are found to be in good agreement too. The scattered energy has been computed by integrating the power spectral density and the power ratio have been favorably compared to two different theoretical expressions ( [16,24] ). This shows that the scattering of a tonal acoustic wave in the open wind tunnel configuration may be numerically approached by a simplified configuration, knowing a plane turbulent mixing layer and a two-dimensional acoustic source. 
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  Figure I.1 -(a) Schéma d'une mesure acoustique dans une soufflerie à veine ouverte. (b) Schéma de la propagation du bruit tonal des turbines, à la sortie d'un réacteur double flux.

Figure I. 2 - 1 Figure I. 3 -

 213 Figure I.2 -Diagramme de directivité en fonction de θ P (a) f 0 = 20 kHz (b) f 0 = 52 kHz. Les figures sont extraites de Candel et al. [31].

Figure I. 4 -

 4 Figure I.4 -(a) Champ de pression diffusé, mesuré par les microphones P et P 1 . (b) Densité spectrale de puissance des fluctuations de pression en fonction de la fréquence centrée f -f 0 . Les figures sont extraites de Candel et al. [28].
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 5 Figure I.5 -Schéma de l'interaction d'une onde acoustique plane avec un écoulement turbulent sans mouvement de translation.

Figure I. 6 -

 6 Figure I.6 -Forme exponentielle du lobe d'énergie diffusée. L'expression (I.21) est une formulation approchée de la puissance diffusée émise dans la direction θ fixée. Celle-ci résulte de l'interaction entre l'onde acoustique et les structures turbulentes ayant comme nombre d'onde k d , lui aussi fixé via la relation (I.12). Dans la configuration expérimentale étudiée par Candel et al. (figure I.3), le microphone P reçoit le champ de pression diffusé par une large gamme de structures turbulentes de nombre d'onde différent. Ce constat est illustré par la figure I.7a. Compte tenu du signe du produit scalaire k d • U m , U m étant égal à la vitesse de convection U c , un volume de turbulence situé à gauche de la ligne d'observation SP va amener de l'énergie diffusée sur les ∆f positifs, alors que s'il est situé à droite de la ligne d'observation, ce sont les fréquences ∆f négatives qui sont alimentées en énergie diffusée. On peut s'attendre alors à ce que la densité spectrale de puissance des fluctuations du champ de pression diffusé S p ′ s au point P soit composée d'une multitude de lobes dont la position et l'élargissement dépend de k d et dont la valeur maximale dépend de E(k d )/k d et de θ selon (I.12) (cf. figure I.7b). Notons la différence de définition entre les décalages fréquentiels ∆f , introduit par Candel et al. pour repérer la position du maximum des lobes secondaires (courbes bleues) et ∆f (k d ) qui repère la position du maximum d'énergie diffusée par les structures turbulentes de nombre d'onde k d .
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 7 Figure I.7 -(a) Schéma qui montre la contribution de plusieurs nombres d'onde de diffusion au cham de pression diffusé. (b) Schéma de la densité spectrale de puissance théorique du champ de pression diffusé.
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 10 Figure I.10 -Schéma de la configuration étudiée par McAlpine et al. [84].
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 11 Figure I.11 -Principe des mesures de vorticité par diffusion acoustique
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 6012 Figure II.2 -Évolution axiale de l'épaisseur de vorticité

Figure II. 3 -

 3 Figure II.3 -Tailles des mailles axiales et transverses sur la ligne y * = 0. (-) : ∆x * , (---) : ∆y * .

  1 10 -4 m. Pour déterminer l'épaisseur de la couche limite de la zone basse vitesse, on peut utiliser les valeurs du ratio des épaisseurs données dans McMullan et al. [87], θ 2 /θ 1 ∈ [1, 31; 2, 09]. Nous avons choisi δ 2 = 1, 5 δ 1 , ce qui amène à δ 2 = 9, 15 10 -4 m. La figure II.4 représente les profils de vitesse de type tangente hyperbolique et couche limite pour les configurations R = 0, 7 et R = 0, 4.

Figure II. 4 -

 4 Figure II.4 -Profils de vitesse en entrée de domaine. (-•-) : Profil de type couche limite et (--) : Profil de type tangente hyperbolique. (a) : R = 0, 7 et (b) : R = 0, 4.

Figure II. 5 -

 5 Figure II.5 -Profil de pression imposé en entrée du domaine.

  3) dans lequel on remplace δ ω,0 par δ ω (x) et le champ de pression associé (II.23). Pour calculer le champ moyen, il faut connaître l'évolution axiale de l'épaisseur de vorticité, ce qui implique de lancer une première simulation. Lorsque l'on passe d'une intégration temporelle implicite à une intégration explicite, il faut prendre garde à conserver le rapport f max /∆t constant pour ne pas modifier la valeur du terme source. Ainsi, on utilisera f max = 0, 09 en intégration implicite et 0, 00595 en intégration explicite. Ces valeurs sont plutôt faibles, ce qui signifie que la relaxation vers le champ moyen est partielle. Cela suffit néanmoins à dissiper les structures turbulentes. Pour illustrer les effets de la zone éponge, nous traçons sur la figure II.6 le champ ∂ρ/∂t avec des niveaux entre -0, 5 et 0, 5 kg m -3 s -1 . La figure II.6a provient d'un calcul pour lequel la zone éponge n'est pas activée contrairement à la figure II.6b. L'effet de la zone éponge est flagrant, le champ turbulent est progressivement dissipé et n'arrive pas à la frontière avale du domaine. Lorsque celle-ci n'est pas activée, on voit apparaître des sources basses fréquences à partir de x * = 1300 qui émettent un fort niveau de fluctuations acoustiques. L'apparition de ces sources est liée au fait que le dé-raffinement du maillage dans la direction axiale dénature l'écoulement turbulent en allongeant très fortement les structures tourbillonnaires. Ce processus augmente les erreurs numériques, d'où l'importance de dissiper les structures assez rapidement.

Figure II. 6 -

 6 Figure II.6 -Champ ∂ρ/∂t lorsque : (a) la zone éponge n'est pas activée, (b) la zone éponge est activée. De manière plus quantitative, nous avons calculé l'écart type des fluctuations de pression recueillies sur la ligne y * = -126, ligne située dans la région basse vitesse, en dehors de la couche de cisaillement. Les résultats, exprimés en dB (p ref = 2 10 -5 Pa), sont tracés sur la figure II.7a. L'écart type des fluctuations de pression est réduit de 12 à 35 dB en fonction de la position axiale lorsque la zone éponge est activée. Un tel écart s'explique lorsque l'on observe sur la figure II.7b les densités spectrales de puissance des fluctuations de pression S p ′ exprimées en dB/Hz, en dehors de la couche de mélange, par exemple au point P 1 situé en (x * P 1 , y * P 1 ) = (472, 6, -126) (cf. figure II.1) pour les configurations avec et sans la zone éponge. Le spectre se calcule S p ′ = p′ (x P 1 , f ) p′ • (x P 1 , f ) avec p′ et p ′• respectivement la transformée

Figure

  Figure II.7 -(a) Écart-type des fluctuations de pression sur la ligne y * = -126. (b) Densité spectrale de puissance des fluctuations de pression au point P 1 . (-) : Sans la zone éponge, (---) : Avec la zone éponge.
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  Figure II.8 -(a) Schéma qui illustre la disposition des zones de perturbations en entrée de domaine. (b) Profils d'intensité des perturbations, (-) : u ′2 * , (---) : v ′2 * et (-• -) : w ′2 *
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  Figure II.9 -Iso-surfaces du critère Q = 5000 s -2 pour la configuration : (a) sans perturbations et (b) avec perturbations, colorées par la vitesse axiale.
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  Figure II.12 -Contours de Schlieren numérique |∇ρ|, (a) en début du domaine de calcul et (b) sur sa totalité.

FigureFigure

  Figure II.13 -Évolution axiale de (a) : l'épaisseur de vorticité et (b) : du maximum de u ′2 /∆U 2 . (-) : H07, (-•-) : B07, (---) : H04 et (-• -) : B04.

28 )

 28 En pratique, l'intégrale (II.28) est calculée entre les deux positions où le coefficient R u ′ i u ′ i s'annule pour la première fois. La figure II.15a représente l'évolution axiale de la longueur intégrale L z * u ′ u ′ pour 3 simulations dans des domaines d'envergures respectives L * z = 40, 350 et 700, dans la configuration H07. Le point de référence pour le calcul du coefficient d'inter-corrélation est situé au centre du domaine, en z = L * z /2. Théoriquement, la longueur intégrale doit croître linéairement dans la région auto-similaire. C'est ce que l'on observe pour les deux domaines les plus larges, mais pas pour la configuration L * z = 40, où la longueur intégrale reste constante égale à 19, 3 ≈ L * z /2. Cela indique que le développement des structures turbulentes est piloté par la taille en envergure. La croissance de la longueur intégrale pour la simulation ayant L * z = 700 est légèrement supérieure à celle de la simulation ayant L * z = 350. Les évolutions axiales du maximum des tensions de Reynolds des trois simulations sont représentées sur la figure II.15b.

II. 3 .Figure

 3 Figure II.15 -Évolution axiale du maximum de (a) : la longueur intégrale L z u ′ u ′ normalisée et (b) : des tensions de Reynolds normalisées. (---) : L * z = 40, (-) : L * z = 350 et (•) : L * z = 700.

Figure

  Figure II.16 -Profils transverses du rapport ν t /ν pour x * = 410 : (-• -), 472 : (---) et 535 : (-).

Figure

  Figure II.17 -Évolution axiale de (a) l'épaisseur de quantité de mouvement normalisée et de (b) l'épaisseur de vorticité.

Figure

  Figure II.18 -Coefficient d'inter-corrélation spatio-temporelle R u ′ u ′ (x * = 472, 6, ξ x , τ * ) tracé en fonction du retard normalisé τ * = τ U c /δ ω (x * ). (a) ξ * x = -31, 5, coefficients sur différents plans en envergure : (-• -) et coefficient moyenné en envergure : (-). (b) ξ * x = -31, 5 : (-• -) , (-) : ξ * x = 0 : (-) et ξ * x = 31, 5 : (---)

Figure II. 19 -

 19 Figure II.19 -Profils transverses de vitesse moyenne u * pour x * = 410, 472 et 532 (-) comparés à celui de Bell et Metha [14] pour x = 189, 4 cm : (•), Rogers and Moser [102] : ( ) et McMullan et al. [87] : ( ).

Figure

  Figure II.20 -Profils transverses de tensions des Reynolds pour x * = 410, 472 et 532 (-) comparés à [14] : (•), [102] : ( ) et [87] : ( ). (a) u ′2 * et (b) v ′2 *

Figure

  Figure II.22 -Densité spectrale de puissance des fluctuations de vitesse axiale E(f, x * )/ u ′2 (x * ) en fonction de la fréquence, (a) pour différentes positions axiales et (b) pour x * = 536 : (---) et x * = 580 : (-).

Figure

  Figure II.23 -(a) Coefficient d'auto-corrélation R u ′ u ′ (x * = 472, 6, 0, τ * ) sur la ligne y(x)/δ m = 6 en fonction du retard normalisé τ U c /δ ω (x * ) d'une dizaine de points situés sur toute l'envergure : (-• -) et moyenné en envergure : (-). (b) Longueur normalisée l p /δ ω (x * ) en fonction de l'envergure calculée sur environ 4, 5 : (-•-), 8, 5 : (--) et 12, 5 : (--) périodes en moyenne.

  U c . Le centre des zones en rotation correspond alors à des lignes de courant fermées. Cependant, pour obtenir des lignes de courant suffisamment lisses desquelles on distingue aisément le centre de rotation des structures, on moyenne les fluctuations du champ de vitesse sur huit plans en envergure équidistants. Cette technique de moyenne en envergure a été utilisé par McMullan et al. [87] pour visualiser la fusion des noyaux des larges structures turbulentes. Le champ de pression fluctuant p ′ issu de la simulation H07, lui aussi moyenné sur huit plans en envergure, ainsi que des lignes de courant calculées dans le repère convecté, sont représentés pour deux instants différents sur la figure II.24. Moyenner en envergure les fluctuations du champ de pression permet d'accentuer la délimitation des larges structures turbulentes et fait ressortir celles qui sont particulièrement cohérentes en envergure. On observe effectivement sur la figure II.24 des zones de forte dépression centrées sur des lignes de courant fermées qui correspondent aux larges structures. Celles-ci sont espacées d'environ l * p ≈ 150 soit l p ≈ 3 δ ω sur la figure II.24a alors qu'elles sont nettement plus éloignées sur la figure II.24b, l * p s'approche de 220 ce qui équivaut à l p ≈ 4, 3 δ ω . Les fluctuations de pression des structures visibles sur la figure II.24b sont plus intenses que celles des structures de la figure II.24a et s'étendent davantage en espace. Cela signifie que les structures sont soit plus énergétiques, soit plus cohérentes en envergure, soit les deux à la fois. Les structures représentées sur la figure II.24a font parties des structures les plus grosses et les plus espacées observées dans l'écoulement.

Figure

  Figure II.24 -Visualisations instantanées des fluctuations du champ de pression et des lignes de courant, moyennées sur 8 plans en envergure, de la couche de mélange H07. (a) t = 53, 1 ms et (b) t = 57 ms.

Figure

  Figure II.25 -Visualisations instantanées des fluctuations du champ de pression et des lignes de courant, moyennées sur 8 plans en envergure, de la couche de cisaillement B04. (a) t = 0, 1575 ms et (b) t = 3, 528 ms, après le régime transitoire.

Figure II. 26 -

 26 Figure II.26 -Coefficients d'inter-corrélation R u ′ u ′ (x * = 535, 6, ξ x , τ * ) au centre de la couche de cisaillement. Les points sont espacés de ξ * x = 17, 75. Fonctions exp(τ /T i ), i = 1, 2 avec T 1 = 5, 8 10 -4 s : (-) et T 2 = 8, 7 10 -4 s : (-) et fonction exp( τ /2T 3 ) avec T 3 = T 1 : (-).

II. 4 . 4

 44 Contenu spectral de la couche de cisaillement turbulente Nous avons montré dans l'étude bibliographique que la densité spectrale de puissance des fluctuations de pression diffusée S p ′ s (f 0 + f ) est directement proportionnelle au spectre k -ω des fluctuations de vitesse transverse S v ′ (k y , f ) (eq. (I.23)), k y étant la composante transverse du nombre d'onde. Le spectre S v ′ (k y , f ) est d'amplitude maximale pour les vecteurs d'onde k y ≈ 0 de sorte que S v ′ (k y , f ) ≈ S v ′ (0, f ) [57, 58]. Ainsi le spectre S v ′ (f ) doit permettre de repérer la fréquence ∆f sur laquelle sera repartie le maximum d'énergie diffusée. Nous avons représenté sur la figure II.27 les densités spectrales de puissance S u ′ (f ) et S v ′ (f ), normalisées par ∆U 2 δ ω , II.4. Caractérisation des larges structures turbulentes de la couche de cisaillement calculées au centre des couches de cisaillement H07 (fig.II.27a) et B04 (fig.II.27b), en x * = 472, 6.

Figure

  Figure II.27 -Densités spectrales de puissances des fluctuations de vitesse S * u ′ : (-) et S * v ′ : (-) au centre de la couche de cisaillement pour les simulations (a) H07 et (b) B04.

  87 étant le nombre de points de l'antenne. La résolution spectrale, compte tenu de la taille de l'antenne, est d'environ 85 m -1 . Les estimateurs ψ u ′ , ψ v ′ et ψ p ′ sont représentés sur les figures II.28 et II.29. L'énergie est répartie sur une zone qui passe par l'origine dont la pente est égale à l'inverse de vitesse de phase u ϕ = 2πf /k des structures turbulentes. On trouve dans les trois cas u ϕ ≈ U c . Le maximum de l'estimateur est atteint pour f ≈ 540 Hz pour les trois champs. Par contre, la valeur du nombre d'onde pour laquelle l'estimateur est maximal varie légèrement. Nous trouvons k ≈ 86, 82 et 76 m -1 respectivement pour ψ p ′ , ψ v ′ et ψ u ′ . En revanche, il nous est impossible de discuter sur la différence entre ces grandeurs car elles sont de l'ordre de la résolution spectrale, imposée par la taille de l'antenne. Cependant, la position fréquentielle f ≈ 540 Hz du maximum est cohérente avec la fréquence obtenue à partir du spectre S v ′ (fig.II.27a). La légère sous-estimation de cette fréquence provient du fait que l'antenne s'étend jusque x * = 580. Les structures turbulentes qui atteignent cette position sont plus grosses (k plus faible) qu'à la position x * = 472, 6, où est calculé S v ′ . La fréquence associée aux structures les plus énergétiques est donc légèrement plus faible.

Figure II. 28 -

 28 Figure II.28 -Estimateur du spectre bi-dimensionnel calculé sur la couche de mélange H07. (a) ψ u ′ et (b) ψ v ′ .

Figure II. 29 -

 29 Figure II.29 -Estimateur du spectre bi-dimensionnel ψ p ′ calculé sur la couche de mélange H07.

2 Figure

 2 Figure II.30 -Schéma du bruit émis par la couche de cisaillement turbulente

Figure II. 32 -

 32 Figure II.32 -Densités spectrales des fluctuations de pression S p ′ aux points P 1 : (-• -) et P 2 : (-) calculées à partir de la configuration H07.

. 34 )

 34 On obtient alors St 1 ≈ 0, 017, St 2 ≈ 0, 0085 et St 3 ≈ 0, 00425, soit respectivement pour notre simulation H07, f 1 ≈ 8741 Hz, f 2 ≈ 4370 Hz et f 3 ≈ 2185 Hz. Ces trois fréquences sont relativement proches des fréquences des composantes pseudo-spectrales. Nous aurions pu vérifier cette hypothèse de manière plus fine en calculant le spectre des fluctuations de vitesse axiale sur une ligne horizontale, au centre de la couche de cisaillement, lorsque celle-ci est encore dans son régime pré-transitionnel. Ce traitement nous aurait amené les fréquences de passages pour différentes positions axiales. En traçant le nombre de Strouhal en fonction de la coordonnée axiale, nous aurions aussi pu récupérer la position axiale des appariements. Nous n'avons pas mené cette analyse simplement parce que les signaux n'ont pas été collectés lors de la simulation.La différence entre les fréquences théoriques et les fréquences des raies provient certainement des fortes fluctuations de vitesse injectées en entrée du domaine. En effet, Bogey et al.[19] ont montré que l'intensité des fluctuations a un impact direct sur la position et la fréquence des appariements des rouleaux de Kelvin-Helmoltz. La décroissance brutale du niveau du spectre à partir de 120 kHz indique que les ondes acoustiques de fréquence supérieure ne sont pas supportées par le maillage. On estime ainsi la fréquence de coupure acoustique du maillage f ca à 120 kHz dans la zone raffinée.Afin de vérifier nos observations sur le bruit émis par la couche de cisaillement, nous avons calculé l'estimateur ψ p ′ sur la ligne horizontale de la figure II.30. Cet estimateur est représenté sur la figure II.33. On y observe une répartition d'énergie acoustique à partir de 10 kHz sur des nombres d'ondes négatifs (zone verte). Cela indique une émission acoustique vers l'amont du domaine. Il est possible d'évaluer l'angle d'émission des ondes acoustiques les plus intenses en relevant les coordonnés (f, k) d'un point situé au centre de la zone verte et en appliquant l'expression (5, 3) de Larchevêque et al.[START_REF] Larchevêque | Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high reynolds number[END_REF] :U 1 -u ϕ -c 2 0 -U 2 1 cos 2 α p sin α p = 0,(II.35) où u ϕ est la vitesse de phase déduite de l'estimateur ψ p ′ . Pour une fréquence de f = 20 kHz, on trouve un angle d'émission proche de 57 • . Cette valeur tombe dans l'intervalle angulaire observé sur la figure II.31. L'étalement en nombre d'onde de l'énergie acoustique indique par ailleurs que les angles d'émissions sont multiples.

Figure II. 33 -Figure

 33 Figure II.33 -Estimateur du spectre bi-dimensionnel ψ p ′ sur une ligne horizontale en y * = 126. Nous nous sommes finalement intéressé à la remonté à partir de 10 kHz du niveau du spectre des fluctuations de pression émises par la couche de cisaillement. Si l'on trace naïvement les droites parallèles aux directions de propagation des ondes acoustiques particulièrement énergétiques de la figure II.31, on localise le centre d'émission vers x * ≈ 600. À l'instant t = 25, 38 ms de la visualisation instantanée, une large structure turbulente est localisée dans la zone du maillage légèrement dé-raffinée, de x * ≈ 570 à x * ≈ 650. Il se pourrait donc que l'émission de ondes acoustiques particulièrement énergétiques soit liée au dé-raffinement du maillage ; l'énergie hydrodynamique se dissipe et une part est convertie en énergie acoustique qui rayonne dans tout le domaine. Pour s'en convaincre, on peut observer le champ ∂ρ/∂t sur la figure II.34a. On aperçoit clairement les ondes acoustiques émises de la zone dé-raffinée et qui se propagent vers l'amont du domaine. Un dernier constat peut être établi si l'on trace sur une même figure (fig.II.34b) le spectre des fluctuations de vitesse axiale dans le couche de cisaillement et le spectre des fluctuations de pression au point P 1 . On remarque que le début de la remontée du spectre de pression
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 11 Description de la source acoustique On positionne en (x * S , y * S ) = (472, 6, 126) une source acoustique S mono-chromatique dans la zone haute vitesse en dehors de la couche de cisaillement, comme cela est représenté sur la figure III.1.
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 2 Figure III.2 -Schéma de l'interaction entre l'onde acoustique incidente et l'écoulement turbulent dans le plan perpendiculaire à la direction de l'écoulement pour (a) la configuration plane simulée dans cette étude et (b) la configuration des mesures acoustiques en soufflerie.

Figure III. 3 -

 3 Figure III.3 -Évolution axiale de (a) l'épaisseur de vorticité et (b) du maximum des tensions de Reynolds. H07 sans la source acoustique : (-) et H07 avec la source acoustique : (•)
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  III.1 -Paramètres des différentes configurations.

Figure III. 4 -

 4 Figure III.4 -Contours de Schlieren numérique |∇ρ| calculés à partir de la configuration C85, tracés sur une échelle exponentielle.

Figure III. 5 -

 5 Figure III.5 -Densités spectrales de puissance des fluctuations de pression reçue au point P 1 . (a) C85 : (-) et H07 : (-• -) et (b) C85 : (-), C85 A : (---) H07 : (•).

Figure

  Figure III.6 -(a) Représentation des fréquences d'intégration f 1 et f 2 pour calculer la puissance acoustique liée à l'injection de l'onde acoustique. Représentation des fréquences f p1 et f p2 pour calculer l'energie contenue dans le pic principal. (b) Densités spectrales de puissance des fluctuations de pression reçue en P 1 . C55 : (-•-), C65 : ( • • • ), C75 : (-• -) et C85 : (-).

Figure III. 8 -

 8 Figure III.8 -Comparaison des densités spectrales de puissance des fluctuations de pression obtenues numériquement C85 : (-) et expérimentalement (•) par (a) Candel et al. [28] et (b) Kröber et al. [71].

Figure III. 9 -

 9 Figure III.9 -Rapport des puissances. Simulation numérique : (--), expression de Sijtsma et al. [108] :(-•-) et expression de Guédel [58] : (--).

Figure III. 10 -

 10 Figure III.10 -Densités spectrales de puissance des fluctuations de pression calculées au point P 1 pour les configurations C43 : (-) et C85 B04 : (-• -) en fonction de (a) f -f 0 (Hz) et (b) (f -f 0 )/∆f .

Figure

  Figure III.11 -(a) Contours de l'écart type du champ de pression généré par la source linéique. (b) Diagramme de directivité de l'écart-type du champ de pression généré par la source linéique sur des cercles centrés en (472, 6, 126). r * = 72, 5 : (-), r * = 256 : (---), source de [28] : (•).

Figure III. 12 -

 12 Figure III.12 -Densités spectrales de puissance des fluctuations de pression calculées au point P 10 pour la configuration C85 pour (a) : une source omni-directionnelle et (b) : la source linéique. Partie droite du spectre (f > f 0 ) : (-) et symétrique de la partie gauche du spectre (f < f 0 ) : (-• -).

III. 2 .FigureFigure III. 14 -

 214 Figure III.13 -Schéma de l'étude du champ de pression diffusé au point P 10 pour une source directive.

Figure

  Figure III.15 -Densité spectrale de puissance des fluctuations de la vitesse v ′ du milieu turbulent en fonction de k x L y v ′ v ′ /(2π), extraite de Clair et Gabard [39]. Le spectre représenté sur la figure III.15 permet aussi d'expliquer qualitativement le changement de forme et de position des lobes des spectres de pression diffusée lorsque la fréquence de la source augmente. L'hypothèse 3. de Lighthill (section I.2.1) stipule que l'interaction entre une structure turbulente et une onde acoustique est significative seulement si la structure turbulente est au moins aussi grande que la longueur d'onde. Dans le domaine spectral, cela signifie que les nombres d'onde de la turbulence k x qui interviennent dans le mécanisme de diffusion doivent être inférieurs ou égaux au nombre d'onde acoustique k 0 = 2πf 0 /c 0 . Plaçons sur le spectre S v ′ (k x ) les 5 nombres d'onde acoustique sans dimension testés par Clair et Gabard (figure III.16), les couleurs correspondent aux couleurs de la figure I.12.

Figure III. 16 -

 16 Figure III.16 -Densité spectrale de puissance des fluctuations de la vitesse v ′ du milieu turbulent en fonction de k x L y v ′ v ′ /(2π), extraite de Clair et Gabard [39]. Les 5 valeurs reportées sur la figure correspondent aux nombres d'onde acoustique testés par les auteurs. Les deux nombres d'onde acoustique inférieurs à k * d ne peuvent théoriquement pas interagir avec les structures turbulentes de nombre d'onde k * d . On s'attend alors à ce que ∆f (k * d ) > ∆f (k * 0 = 0, 25) > ∆f (k * 0 = 0, 125), ce qui est effectivement le cas d'après la figure I.12. D'après la formule I.22, on peut relier la fréquence sans dimension ∆f * = ∆f l 1 /c 0 avec le nombre d'onde

Figure III. 17 -

 17 Figure III.17 -Densités spectrales des fluctuations de pression reçues en P 1 des cas C12 : (-) et C24 : (-• -).

Figure III. 18 -

 18 Figure III.18 -Spectres de cohérence entre le champ de pression reçu au point P 1 et la pression reçue en P 2 : (-), P 3 : (-• -), P 4 : (-•-) et P 8 : (---).

Figure

  Figure III.20 -Iso-contours de la densité spectrale de puissance des fluctuations de pression de C85 à la fréquence f 0 , tracés dans le plan (x * , y * ).On représente maintenant sur la figure III.21 les densités spectrales aux fréquences du maximum des lobes secondaires f 0 ± ∆f . Les diagrammes de directivités sont très proches l'un de l'autre, ce qui indique une interaction entre l'onde acoustique et les larges structures turbulentes identique. Par contre, ils sont très différents du diagramme à la fréquence f 0 . En effet, le niveau du spectre aux fréquences f 0 ± ∆f est très faible à l'émission et il augmente à mesure que l'onde acoustique se propage dans la couche de cisaillement. De plus, le spectre atteint un niveau plus élevé sur la droite du domaine que sur la gauche. Cela s'explique par le fait que le niveau d'énergie diffusée dépend directement de l'épaisseur de la couche de cisaillement. En effet, à x * = 350, l'épaisseur de vorticité vaut ≈ 40 δ ω,0 et à x * = 550 elle vaut ≈ 60 δ ω,0 . Sachant que le niveau d'énergie diffusée croît linéairement avec l'épaisseur de la couche de mélange[58], une augmentation de 50 % de l'épaisseur de vorticité entraîne une augmentation de 20 log(1, 5) = 3, 5 dB/Hz du spectre. Cette valeur est très proche de l'augmentation axiale de 3, 9 dB/Hz effectivement observée sur la figure III.21.

FigureFigure

  Figure III.21 -Iso-contours de la densité spectrale de puissance des flucutations de pression de C85 représentés dans le plan (x * , y * ) aux fréquences (a) f 0 -∆f et (b) f 0 + ∆f .
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 24 Figure III.24 -Cartographies du spectre de cohérence γ 2 p ′ 1 p ′ entre les fluctuations de pression au point P 1 et les fluctuations de pression collectées partout ailleurs, à la fréquence (a) f 0 + ∆f et (b) 87 kHz.

Figure III. 25 -

 25 Figure III.25 -Schéma de l'émission d'un rayon qui est diffusé par une structure dans un cas (a) sans réfraction et un cas (b) avec réfraction.

Figure III. 26 -

 26 Figure III.26 -Schéma de l'émission du rayon sur lequel les fluctuations de vitesse acoustique axiale U ′ sont nulles lorsque (a) la source est placée dans un milieu au repos et (b) lorsqu'elle est placé dans un écoulement uniforme.

Figure III. 28 -

 28 Figure III.28 -Cartographies du spectre de cohérence γ 2 p ′ 1 u ′ aux fréquences (a) f 0 -∆f et (b) f 0 + ∆f .

p ′ 1 uFigure III. 29 - 118 III. 4 .Figure

 1291184 Figure III.29 -Schéma des coordonnées et des longueurs qui permettent de calculer directement les angles de diffusion

"

  déterministe" est qu'il possible de récupérer et d'observer directement le champ de pression diffusé. Pour cela il faut simuler le champ de pression issu de l'interaction entre le tourbillon et l'onde acoustique incidente et d'y soustraire le champ de pression induit par le tourbillon seul et le champ de pression de l'onde acoustique seule. La figure III.32 est extraite de Clair et Gabard[38] et représente le champ de pression diffusé issu de l'interaction entre une onde plane de vecteur d'onde incident k 0 et un vortex de circulation nulle qui se déplace à une vitesse constante U c de gauche à droite du domaine. Il est possible d'extraire l'angle θ qui indique la direction selon laquelle le maximum d'énergie diffusé se propage et de vérifier la validité de la formule du décalage Doppler ∆f = ±k 0 U c sin(θ/2)/π (I.22). La densité spectrale, calculée à partir du champ de pression obtenu numériquement, présente deux lobes de part et d'autre de la fréquence d'émission, dont les maximums se situent bien en ∆f (fig.13de[38]).

Figure III. 32 -

 32 Figure III.32 -Champ de pression diffusé issu de l'interaction entre une onde plane et un vortex qui se déplace. Cette image est extraite de Clair et Gabard [38]. La longueur intrinsèque à l'écoulement turbulent l d = 2π/k d est environ égale à 8, 7 L T , L T étant la longueur qui caractérise la taille du tourbillon. Cette longueur intervient dans la vitesse tangentielle du tourbillon selon :

120 III. 5 .Figure

 1205 Figure III.33 -Profil de vitesse tangentielle du vortex, extrait de [38].

Figure

  Figure III.34 -(a) Extraits des fluctuations de pression au point P 1 . (b) Densités spectrales de puissance des fluctuations de pression en P 1 . Signal brut p b (t) : (-) et signal filtré p f (t) en passe haut à 2300 Hz : (-•-).

Figure III. 35 -

 35 Figure III.35 -Fluctuations de pression filtrée au point P 1 : (-) et son enveloppe extraite par la méthode numérique : (-).

  Figure III.36 -Densités spectrales de puissance des fluctuations de pression brut reçue en P 1 selon F = f -f 0 : (--) et du signal complexe z(t) selon F = f : (-).

FigureFigure

  Figure III.37 -(a) Fluctuations des signaux normalisés issus des différentes démodulation. (b) Densités spectrales de puissance des fluctuations des signaux démodulés. p a (t) : (-• -), p e (t) filtré à f cd : (-), |z(t)| : ( ) et p e (t) non filtré : (---).

FigureFigure

  Figure III.39 -(a) Densités spectrales des fluctuations d'enveloppe et (b) de pression brute, recueillies en P 1 pour les configurations C85 : (-• -), C85 A : (---) et C85 B04 : (-).

Figure III. 41 -

 41 Figure III.41 -Coefficients d'inter-corrélation entre les fluctuations d'amplitude au point P 1 et celles aux points P 2 et P 6 en fonction de (a) τ (s) et (b) τ * = τ U c /δ ω (x S ). C85 : (-) et C85 B04 : (-• -).

Figure

  Figure III.42 -(a) Coefficients d'inter-corrélation entre les fluctuations d'amplitude au point P 1 et aux points P 2 et P 6 . (b) Séparation normalisée en fonction de τ max , les coefficients étant calculés sur la ligne y * = -126. C85 : (-), C55 : (--), C85 A : (---) et C85 B04 : (-• -).
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 25 Figure III.43 -(a) Coefficient d'inter-corrélation entre la pression démodulée du point P 1 et celle reçue sur l'antenne cylindrique, dans le plan (ξ * , τ ), pour la configuration C85. (b) Coefficient d'inter-corrélation spatial R p ′ 1 p ′ (τ = 0) dans le plan (x * , y * ), pour la configuration C85. Il est tout de même possible d'estimer la longueur de défilement ([29]) en multipliant par 2

Figure III. 44 -

 44 Figure III.44 -Coefficient d'inter-corrélation spatial du champ de pression modulé R p ′ 1 p ′ (τ = 0) sur la ligne y * = -126, pour les configurations C85 : (-), C55 : (--), C85 A : (---) et C85 B04 : (-• -).
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 1 Figure IV.1 -Spectres de bi-cohérence. (a) B 2

v ′ 24 |z| ′ 1 correspondent 1 sont aussi plus élevés que ceux de γ 2 u ′ 24 |z| ′ 1 .Figure IV. 3 -

 11213 Figure IV.3 -Spectres de cohérence (III.5) entre les fluctuations de l'enveloppe du champ de pression diffusé recueillies au point P 1 et les fluctuations des composantes de vitesse de l'écoulement turbulent u ′ : (-) et v ′ : (-• -), pour les configurations (a) C85 et (b) C85 B04 .

Figure IV. 5 -

 5 Figure IV.5 -Spectres de cohérence entre les fluctuations d'enveloppe au point P 1 et les fluctuations des composantes de la vitesse de l'écoulement turbulent u ′ : (-) et v ′ : (-• -) recueillies au point P 23 .

Figure IV. 7 -

 7 Figure IV.7 -Coefficient d'inter-corrélation dans la configuration C85 B04 entre les fluctuations d'enveloppe du champ de pression diffusé et les fluctuations de vitesse axiale du milieu turbulent, recueillies sur la ligne horizontale y * = y * P 23 , dans le plan (τ * , (x -x P 1 ) * ).

  3 = 2 σ. Ces seuils sont représentés sur la figure IV.8, en même temps que l'enveloppe du champ de pression extraite en P 1 . On compte environ 70 périodes temporelles pour lesquelles les fluctuations d'enveloppe dépassent s 1 , 45 pour s 2 et 30 pour s 3 sur toute la durée du signal. Pour l'extrait représenté sur la figure IV.8, on compte par exemple 2 dépassements des seuils s 2 et s 3 et 3 dépassements du seuil s 1 .

Figure IV. 8 -

 8 Figure IV.8 -Fluctuations de l'enveloppe du champ de pression extraites au point P 1 : (-) et les seuils s 1 = σ : (---), s 2 = 1, 5 σ :(---) et s 3 = 2 σ : (---).

P 1 = 472, 6 . 1 .Figure IV. 9 -

 619 Figure IV.9 -Fluctuations du champ de pression et lignes de courant dans le repère convecté à la vitesse U c obtenus dans la configuration C85 avec un seuil de (a) σ et (b) 1, 5 σ.

Figure

  Figure IV.10 -Fluctuations du champ de pression et lignes de courant dans le repère convecté à la vitesse U c obtenus dans la configuration C85 avec un seuil de (a) 2 σ et (b) -2 σ.
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 11 Figure IV.11 -Fluctuations du champ de pression et lignes de courant dans le repère convecté à la vitesse U c obtenus dans la configuration C85 B04 avec un seuil de (a) 2 σ et (b) -2 σ.

Figure

  Figure IV.12 -a) Extraits des signaux conditionneurs p f (t) : (-• -), p a (t) : (---) et |z(t)| : (--). (b) Extraits du signal |z(t)| : (-) complet et du même signal décimé à 25 kHz : (-• -).
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 132 Figure IV.13 -Extraits du signal de vitesse cible u au point P 24 : (-) et de ses estimations stochastiques pour un paramètre Lar = 200 : (---), Lar = 1000 : (--) et Lar = 5000 : (-• -).

Figure IV. 14 -

 14 Figure IV.14 -Extraits du signal de vitesse axiale cible u : (-) (a) au centre de la couche de cisaillement en P 24 et (b) en périphérie en P 23 et ses estimations stochastiques à partir des signaux conditionneurs p f (t) : (-• -), |z(t)| : (--) et p a (t) : (---).
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 15 Figure IV.15 -Extraits des signaux cibles (a) v : (-) et (b) p : (-), au centre de la couche de cisaillement en P 24 et leurs estimations stochastiques respectives à partir des signaux conditionneurs p f (t) : (-• -), |z(t)| : (--) et p a (t) : (---).

FigureFigure

  Figure IV.16 -(a) Profils transverses (x * = 472, 6) de vitesse moyenne u du champ cible : (-) et des champs estimés avec comme valeur du paramètre Lar, 200 : (---), 1000 : (--) et 5000 : (-• -). (b) Profils transverses de l'écart-type σ u ′ .

Figure

  Figure IV.18 -(a) Densités spectrales de puissance des fluctuations de vitesse u ′ au centre de la couche de cisaillement du champ cible : (-) et des fluctuations estimées avec Lar = 200 : (---), 1000 : (--) et 5000 : (-• -). (b) Densités spectrales de puissance des fluctuations de vitesse v ′ .

Figure IV. 19 -

 19 Figure IV.19 -Densités spectrales de puissance S u ′ : (---) et S v ′ : (-• -) calculées à partir des composantes de la vitesse estimées au centre de la couche de cisaillement (P 24 ) en fonction de F = f et S p ′ : (--) au point P 1 en fonction de F = f -f 0 pour les configurations (a) C85 et (b) C85 B04 .

  Figure IV.20 -Instantannées des fluctuations de vitesse u ′ du champ cible (a) et du champ cible, filtré en passe-bas à 2000 Hz.

Figure IV. 21 -

 21 Figure IV.21 -Instantanée des fluctuations de l'estimation stochastique de la vitesse u ′ . Les figures IV.20a, IV.20b et IV.21 représentent respectivement les fluctuations v ′ dans un plan (x * , y * ) simulées, simulées et filtrées en passe-bas à 4000 Hz et estimées par la méthode stochastique avec Lar = 1000. Les conclusions sont les mêmes que pour la vitesse u ′ , les fluctuations brutes présentent de fortes variations spatiales et les zones positives et négatives ne sont pas délimitées en espace, les fluctuations filtrées sont plus étendues mais restent et les fluctuations reconstruites sont nettement plus regroupées par régions (positives et négatives) et possèdent une certaine homogénéité. Au vue de la position de la zone de sur-vitesse transverse sur la figure IV.23, une large structure turbulente doit théoriquement être centrée en (x * , y * ) = (520, -10). Cette constatation peut se vérifier aisément si l'on représente les fluctuations du champ de pression avec les lignes de courant dans le repère convecté à la vitesse U c . En effet les figures IV.24a, IV.24b et IV.25, obtenues respectivement avec les fluctuations brutes, les fluctuations

Figure IV. 22 -

 22 Figure IV.22 -Instantannées des fluctuations de vitesse v ′ , (a) du champ cible et (b) du champ cible filtré en passe-bas à 4000 Hz.

Figure IV. 23 -

 23 Figure IV.23 -Instantanée des fluctuations de l'estimation stochastique de la vitesse v ′ .

Figure IV. 24 -

 24 Figure IV.24 -Instantannées des fluctuations de pression p ′ , (a) du champ cible et (b) du champ cible filtré en passe-bas à 4000 Hz. Les lignes de courant sont calculées à partir du champ de vitesse cible et filtrés, dans le repère convecté à la vitesse U c .
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 25 Figure IV.25 -Instantanée des fluctuations de l'estimation stochastique de la pression p ′ . Les lignes de courant sont calculées à partir des estimations du champ de vitesse, dans le repère convecté à la vitesse U c .

  4.2, les fluctuations de pression sont moyennées sur les 8 plans en envergure et les lignes de courant sont calculées à partir du champ de vitesse, lui-aussi moyenné en envergure. La figure A.1a montre deux structures distinctes, centrées en x * = 380 et en x * = 470, en passe de fusionner. On remarque à partir de la figure A.1b que les lignes de courant fermées se resserrent à mesure que les structures se rapprochent.
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 1 Figure A.1 -Visualisations instantannées des fluctuations du champ de pression et des lignes de courant moyennées sur 8 plans en envergure.

Figure A. 2 -

 2 Figure A.2 -Visualisation instantanée des fluctuations du champ de pression et des lignes de courant moyennées sur 8 plans en envergure.
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 2 où D/Dt = ∂/∂t + U 1 ∂/∂x. L'amplitude de la source est calibrée de sorte que l'écart-type des fluctuations de pression n'excède pas les 135 dB, valeur proche du seuil de l'acoustique nonlinéaire. La source acoustique choisie pour la validation est donc celle de toutes les configurations répertoriées dans le tableau III.1 sauf C85 A . La figure B.1a représente l'écart-type des fluctuations de pression sur la ligne verticale x * = 472.6, simulées par le code de calcul et l'écart-type calculé analytiquement à partir de la fonction de Green (B.1). Nous remarquons un très bon accord entre les deux courbes, la décroissance de l'écart-type des fluctuations de pression suit bien la loi en 1/ √ r. Cela signifie que la propagation acoustique s'effectue sans grosse dissipation à travers la zone bien résolue du domaine de calcul. La source décrite à la section III.1.1 est une source bi-dimensionnelle émettant dans le plan (x * , y * ), prolongée sur toute l'envergure du domaine. Nous avons cherché à savoir si les ondes acoustiques émises restent bi-dimensionnelle au cours de la propagation. Nous avons donc tracé sur la figure B.1b la décroissance de l'écart-type des fluctuations de pression sur deux plans de l'envergure, en z * = 5 et en z * = 15. Une fois de plus, les deux courbes correspondent parfaitement, indiquant le maintien du caractère 2D de l'onde acoustique.
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 12 Figure B.1 -Décroissance sur la ligne verticale x * = 472.6 de l'écart-type des fluctuations de pression (a) simulées : (-) et l'écart-type calculé analytiquement : (•). (b) Écart-type des fluctuations de pression simulées, extraites du plan z * = 5 : (-) et z * = 15 : (•).

Figure C. 1 -Figure C. 2 -

 12 Figure C.1 -Profils transverses des composantes de vitesse moyenne (a) u + : (-) et U (y) + : (---) et (b) v + : (-) sur la ligne x * = 472, 6, normalisés par c 0 et issus de H07.

Figure C. 3 -

 3 Figure C.3 -Valeurs propres issues de l'analyse de stabilité temporelle avec k + = 0, 36 sur la couche de mélange H07.

Figure C. 4 -

 4 Figure C.4 -(a) et (b) Valeurs propres issues de l'analyse de stabilité spatiale avec ω + = 0, 0217 sur la couche de mélange H07.

Figure C. 5 -

 5 Figure C.5 -Valeurs propres issues de l'analyse de stabilité temporelle avec k + = 0, 36 sur la couche de cisaillement H07 avec le jeu de champs 5 pour N py = 201 : (•), N py = 301 : ( ) et N py : ( ).
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 78 Figure C.7 -Taux de croissance du mode instable normalisé en fonction de (a) le nombre d'onde normalisé k + et (b) la longueur L • pour les couches de cisaillement H07 : (-) et B04 : (-•-).

Figure C. 9 -

 9 Figure C.9 -Taux de croissance du mode instable normalisé en fonction de (a) la fréquence d'excitation f (Hz) et (b) le nombre de Strouhal St associé pour les couches de cisaillement H07 : (-) et B04 : (-•-).
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 10 Figure C.10 -Valeurs propres issues de l'analyse de stabilité spatiale pour la fréquence d'excitation f = 85 kHz sur la couche de cisaillement H07.
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Fig. 1 .

 1 Fig. 1. Power Spectral Densities normalized by the total received power, from Candel et al. [9] .

Fig. 2 .

 2 Fig. 2. Sketch of the simulated configuration.

Fig. 3 .

 3 Fig. 3. Dimensionless cell sizes x * (-) and y * ( ) at y * = 0 versus the streamwise coordinate x * .

Fig. 4 .

 4 Fig. 4. (a) The field ∂ ρ/ ∂ t when the damping function is not activated. (b) The damping function is activated.

Fig. 5 .

 5 Fig. 5. Root mean square pressure fluctuation on the line y * = -126 , versus x * . Without (-) and with ( ) the damping function.

Fig. 6 .

 6 Fig. 6. Iso-surfaces of the Q criterion, Q = 50 0 0s -2 . (a) No inflow perturbations. (b) The velocity perturbations are activated in the inflow.

Fig. 7 .

 7 Fig. 7. (a) Integral length L z uu on the line y/δm = 6 versus x * . L * z = 40 : ( ), L * z = 350 : (-), L * z = 700 : ( ). (b) Maximum Reynolds stress profiles normalized by U 2 versus x * . L * z = 40 : ( ), L * z = 350 : (-), L * z = 700 : ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8 .

 8 Fig. 8. (a) Momentum thickness δm normalized by δ ω, 0 /4 versus x * . (b) Vorticity thickness δω versus x * .

Fig. 9 .

 9 Fig. 9. Mean stream-wise velocity profile u * versus η * for x * = 410 , 472 , 535 : (-), compared with Bell and Metha [35] at x = 189 . 4 cm : ( ), with Rogers and Moser [36] : ( ) and with McMullan et al. [38] : ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11 .Fig. 12 .

 1112 Fig. 10. Reynolds stress versus η * for x * = 410 , 472 , 535 (-), compared with [35] : ( ), with [36] : ( ) and with [38] : ( ). (a) u ′ 2 * and (b) v ′ 2 * . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13 .

 13 Fig. 13. Root mean square pressure fluctuation p ′ rms of a source placed at (x * s , y * s ) = (472 . 6 , 126) , emitting at f = 85 kHz , versus y * . (a) Numerical simulation: (-), analytic solution: ( ). (b) z * = 5 : (-), z * = 15 : ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14 .

 14 Fig. 14. Contours of | ∇ ρ| , the source is emitting at f 0 = 85 kHz .

Fig. 15 .

 15 Fig. 15. Broadened spectra in dB/Hz against f . C 85 A : ( ), C 85 : (-), C Ø: ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

  ity and an ad-hoc length-scale l by the expression f ≈ U c l , with l = 3 . 2 δ ω (x s ) . The numerical simulations provide the value f ≈ 575 Hz for C85 giving l ≈ 0.071 m ≈ 4.2 δ ω ( x s ) and the value f R 04 ≈ 1200 Hz for C85 R 04 leading to l R 04 ≈ 0.042 m ≈ 3.6 δ ω ( x s ). Those values are in good agreement with l = 4 . 3 δ ω (x s ) found by Kröber

Fig. 16 .Fig. 17 .

 1617 Fig. 16. Normalized broadened spectra in dB/Hz against the centered frequency ff 0 . (a) 55 kHz: ( ), 65 kHz: ( ), 75 kHz: ( ) and 85 kHz: (-). (b) C85 : ( ) and C85 R 04 : (-). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18 .

 18 Fig. 18. Power ratio. Numerical results: (), Sijtsma's ratio ( Eq. (18) ): ( ) and Guédel's ratio ( Eq. (17) ): (). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 19 .Fig. 20 .

 1920 Fig. 19. Normalized broadened spectra against (a) the centered frequency ff 0 and (b) the normalized centered frequency ( ff 0 ) * . C 85 R 04 : ( ) and C 43 : (-). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 21 .

 21 Fig. 21. PSD of the C85 configuration at the frequency (a) f 0 -f and (b) f 0 + f .

Fig. 22 .

 22 Fig. 22. PSD at the frequency (a) f 0 -f for the C55 configuration and (b) f 0 -f R04 for the C85 R04 configuration.

Fig. 23 .

 23 Fig. 23. Vertical profiles of PSD at the frequency f 0 -f on the line x * = 400 . (a) CØa t 85 kHzf : ( ), C85 : (-•-), CØ: ( ) at 55 kHzf and C55 : ( ). (b) CØ R 04 : ( ) at 85 kHzf R 04 and C85 R 04 : ( ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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  Cette relation de causalité est confirmée[31] par le calcul des coefficients d'intercorrélations et des spectres de cohérence entre les fluctuations de vitesse du milieu turbulent v ′ 1 et v ′ 3 mesurées par fil chaud et les fluctuations de phase et d'amplitude au point P . Candel et al.[31] 

Cette propriété montre le lien de causalité qui existe entre les larges structures turbulentes et la diffusion du champ Chapitre I. Étude bibliographique de pression.

  2 a /2 correspond à l'intensité acoustique de l'onde incidente. Les formules (I.10) et (I.11) montrent que l'intensité de champ de pression diffusé est proportionnel au spectre des corrélations du champ de vitesse turbulent en deux points, pris au vecteur d'onde de diffusion k d , dont l'expression est k d = k 0 (e 0e s ) avec k d = 2k 0 sin .2. Détails sur les analyses théoriques qui permettent d'expliciter les caractéristiques du champ de pression diffusé 3. La fréquence acoustique f 0 = c 0 k 0 /(2π) est nettement supérieure aux fréquences caractéristiques des fluctuations turbulentes f t . Cette condition est nécessaire pour obtenir une quantité non-négligeable d'énergie diffusée. En effet, dans le cas où la fréquence acoustique f 0 serait sensiblement égale à la fréquence turbulente, cela entrainerait une longueur d'onde acoustique λ 0 ≈ l t /M t ≫ l t , l t étant une longueur caractéristique de la turbulence. On peut alors s'attendre à ce que l'interaction soit très faible si la longueur d'onde acoustique est nettement plus grande que les structures turbulentes.4. L'observation s'effectue en champ lointain géométrique de sorte que |x P -y| ≈ x P . Cette hypothèse permet notamment de simplifier la formulation temporelle de l'analogie de Lighthill.

	θ 2	.	(I.12)
	L'intensité diffusée sera non nulle seulement si le vecteur d'onde de la structure turbulente diffu-
	sante est égale au vecteur d'onde de diffusion. Pour obtenir la formule (I.10), quatre hypothèses
	sont nécessaires :		

1. Le nombre de Mach turbulent M t est très petit devant 1 et la vitesse liée à l'onde acoustique U a est très petite devant c 0 .

2. Le champ de vitesse liée à l'onde acoustique U 1 intervenant dans le quadri-pôle de diffusion est supposé constant dans tout le volume turbulent. I

  Chapitre I. Étude bibliographique nombre de Reynolds de l'écoulement est suffisamment élevé, il existe une gamme d'échelles dans l'écoulement qui ne sont régies que par les forces inertielles. La densité spectrale d'énergie cinétique fluctuante est alors connue pour les nombres d'ondes situés entre 2π/L t ≪ k ≪ 2π/η K et s'exprime en fonction du taux de dissipation d'énergie cinétique fluctuante ǫ t et d'un constante sans dimension A par E(k) = Aǫ

			2/3 t k -5/3 .	(I.17)
	La formule (I.16) dans laquelle on utilise la relation (I.17) a été vérifiée expérimentalement par
	Baerg et Schwarz [10], dans une turbulence de jet cylindrique, après le cône potentiel. Plus
	précisément, ils ont mesuré la section efficace de diffusion dσ par unité d'angle solide dΩ, qui est
	relié à la formule (I.16) via la relation					
	1 V	dσ dΩ	=	I s I	x 2 .	(I.18)
	Ils ont montré que, malgré l'hypothèse forte d'une turbulence homogène isotrope, la formule

16) 

Celle-ci est directement proportionnelle à E(k d ), la densité spectrale d'énergie cinétique fluctuante, prise au vecteur d'onde de diffusion. Le facteur de directivité D(θ) indique qu'aucune énergie diffusée n'est rayonnée dans les directions θ = 90 • et 180 • . Dans un écoulement turbulent, une gamme continue d'échelles se développe et on discerne habituellement trois longueurs

[START_REF] Kolmogorov | The local strucutre of turbulence in incompressible viscous fluid for very large Reynolds numbers[END_REF]

. La première est la taille caractéristique des larges structures turbulentes L t , porteuses de la plus grande partie de l'énergie cinétique fluctuante, aussi appelée la longueur intégrale. La seconde est la micro-échelle de Taylor λ T qui caractérise le mécanisme de dissipation de l'énergie cinétique fluctuante par effet Joule. La dernière est l'échelle de Kolmogorov η K qui caractérise la taille des structures pour lesquelles le mécanisme de diffusion visqueuse est prépondérant. Lorsque le (I.18) est bien vérifiée, en particulier pour les angles θ = 90 • et 180 • où l'énergie diffusée est très faible dans ces deux directions.

  21) si l'on considère que la distribution du champ U t est une gaussienne, centrée autour de la valeur moyenne U m . La variance σ 2 U correspond à la variance des fluctuations de vitesse U f = U t -U Détails sur les analyses théoriques qui permettent d'expliciter les caractéristiques du champ de pression diffusé Ce décalage fréquentiel étant la conséquence de la translation du volume de turbulence, il est interprété comme un effet Doppler. Il est aussi intéressant de remarquer que la largeur de la bosse dépend de l'écart-type de la vitesse de translation σ U et de la norme du vecteur de diffusion k d . Sur la figure I.6 sont représentés le terme exponentiel de l'expression (I.21) ainsi que le décalage Doppler ∆f (k d ) et l'élargissement du lobe ∆f e .

m . L'expression (I.21) indique que l'énergie diffusée est redistribuée dans un lobe de forme exponentielle, dont le maximum est décalé par rapport à la fréquence d'émission de ∆f (k d ) = -k d • U m 2π . (I.22) I.2.

  Détails sur les analyses théoriques qui permettent d'expliciter les caractéristiques du champ de pression diffusé pression diffusé (figure I.4b), était bien égal à U c /l d avec l d = 3.2 δ ω , la distance moyenne entre les grosses structures turbulentes, cohérentes en envergure, présentes dans la couche de cisaillement selon Brown et Roshko[23]. L'épaisseur de vorticité δ ω est calculée à l'aplomb de la source et les auteurs ont choisi comme vitesse de convection U c = 0.5 U J . L'expression |∆f | = U c /l d est équivalente à la formule (I.22), car la vitesse de convection et le vecteur de diffusion sont pratiquement colinéaires à la direction e 3 dans la configuration des mesures en soufflerie. Plus récemment, des expériences de diffusion acoustique ont été reconduites par Sijtsma et al.[START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] dans les souffleries DNW-PLST et NLR-KAT, ainsi que par Kröber et al.[START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF] dans la soufflerie AWB (Aeroacoustic Wind Tunnel Braunschweig). Les auteurs ont trouvé des valeurs respectives de 4.2 δ ω , 4 δ ω et 4.3 δ ω , qui sont supérieures à celle utilisée par Candel et al.[28] pour estimer le décalage fréquentiel. Guedél[57] a donné une autre interprétation de cette longueur. Celle-ci serait représentative de la longueur moyenne que parcourt les grosses structures pendant leur durée de vie. Pour obtenir sa valeur, l'auteur approche la décroissance des maximums du coefficient des corrélations spatio-temporel des fluctuations de vitesse axiales v ′ 3 par la fonction exp( -τ /2T v ). Il obtient alors le temps de vie moyen des structures T v , qu'il relie à la longueur de diffusion par l'expression l d = U c T v . Guedél vérifie aussi que le k d associé au maximum d'énergie diffusé correspond au nombre d'onde des tourbillons qui portent le plus d'énergie en mesurant par fil chaud le spectre des fluctuations de vitesse du milieu turbulent S v ′ 1 (k 3 , ∆ω), avec k 3 la composante du vecteur d'onde dans la direction e 3 . Le spectre mesuré présente bien un maximum pour la valeur

Tatarski

([112]

, p.88) propose une interprétation physique de cette longueur ; par analogie avec la diffusion d'une onde électromagnétique par un réseau de Bragg, l d correspondrait à la période spatiale de 'la grille de diffraction', en d'autres termes, à la distance entre les structures turbulentes de nombre d'onde k d . Candel et al.

[28] 

ont validé cette interprétation en vérifiant que le décalage fréquentiel |∆f | obtenu par leurs mesures de densité spectrale du champ de I.2.

  28) avec U c et U c⊥ 1 les composantes de la vitesse de convection dans les direction et ⊥ 1 . Cette expression fait apparaitre deux nouvelles propriétés du champ de pression diffusé. Le terme de phase de la seconde exponentielle, qui est approximativement égal à ∆ωµ p r ⊥ 1 /U c⊥ 1 , implique que la vitesse de défilement du champ diffusé U d⊥ 1 est égale à U c⊥ 1 /µ p . Cela valide les observations expérimentales du caractère projectif du champ de pression diffusé. Si le spectre des fluctuations de vitesse de l'écoulement turbulent S v ′

	du nombre d'onde k	1 v ′ 2 présente un maximum à la composante transversale

  R1 , en fonction des fonctions filtres f χ 1 et f S R1 . Dans la configuration explicitée par la figure I.8, S χ ′ 1 s'exprime, pour θ P = 90 • , par :

	plus élevées, elles correspondent à une turbulence plus fine. Guédel [57, 58] arrive aux mêmes
	1 et de phase conclusions en exprimant les densités spectrales des fluctuations d'amplitude S χ ′ S S ′
	10 (x P , t) =	p s (x P , t) p 0 (x P , t)	.	(I.37)
	Si l'on nomme A s et S Rs l'amplitude et la phase du champ de pression qui s'est propagé dans
	l'écoulement turbulent et P a et S R0 celles du champ de pression incident, la solution de Rytov
	au premier ordre se réécrit :			
	ψ 10 = ln	A s P a	+i (S Rs -S R0 ) ,	(I.38)
		χ 1		S R1
	avec χ 1 = Re [ψ 10 ] et S R1 = Im [ψ 10 ] les fluctuations d'amplitude logarithmique et les fluctuations
	de phase de l'onde qui s'est propagée dans l'écoulement turbulent. Candel et al [31] ont utilisé
	la relation (I.37) pour évaluer la solution de Rytov au premier ordre afin de calculer les inter-
	spectres entre les fluctuations de vitesse de l'écoulement turbulent mesurées par fil chaud dans
	la couche de cisaillement et les fluctuations de phase et d'amplitude, reçues par les microphones.
	Les expressions obtenues leur ont permis de montrer que la phase est corrélée avec le champ de
	vitesse turbulent sur une gamme de basses fréquences qui correspondent aux grosses structures
	turbulentes. Les fréquences de corrélation entre l'amplitude et les composantes de la vitesse sont

  (y 1 , y ⊥ ) est le champ en absence de fluctuation d'indice et y ⊥ la projection du vecteur y dans le plan normal à la direction de propagation. Cette formule est utilisée par Guédel[58] pour calculer le rapport entre la puissance acoustique contenue dans le pic central P peak et la puissance acoustique totale P tot , intégrée sur tout le spectre, pour le microphone P , situé à l'aplomb de la source (cf. figure I.3). Il obtient alors l'expression :

	1 ,	(I.46)
	où P 0	

  52) où δ x n ′ et δ t n ′ représentent respectivement les variations spatiales et temporelles de l'indice n ′ . La seconde condition s'établit par analogie avec la diffraction d'une onde par une surface I.3. Autres approches analytiques pour étudier la diffusion acoustique par une couche de cisaillement turbulente de diamètre d. Une onde est géométriquement déterminée sur une distance inférieure à d 2 /4λ, condition qui se traduit, dans le cadre de la propagation dans un milieu aléatoire, par :

	x P < f (δn ′ /n)	l 2 m λ 0	,	(I.53)
	où x P est la distance entre le point d'observation et le milieu aléatoire et f (δn ′ /n) une fonction
	qui croit lorsque les fluctuations du milieu diminues. Cette condition fixe une limite supérieure
	pour la distance d'observation, on ne peut pas obtenir le champ lointain via la méthode de
	l'acoustique géométrique. Ho et Kovasznay [60] ont réalisé une expérience de diffusion dans la
	configuration d'un jet turbulent et ils obtiennent deux inégalités pour décrire le domaine de
	l'acoustique géométrique et celui de la diffraction de Fresnel qui ne dépendent pas de la distance
	x P . Ils trouvent les conditions suivantes :			
	1. λ 0 / λ T < 1/2 ⇒ Acoustique géométrique 2. λ 0 / λ T > 1 ⇒ Diffraction de Fresnel	(I.54)
	avec λ T la micro-échelle de Taylor moyennée sur toute l'épaisseur de l'écoulement turbulent.
	Si la condition 2. est remplie, les corrélations temporelles des fluctuations d'amplitude et de
	phase pour différentes fréquences, tracées en fonction d'un temps normalisé par une vitesse de l'écoulement et par le rayon de Fresnel √ λ 0 x P , convergent vers une seule courbe.

  Définition de la directivité spectrale I d comme la puissance acoustique transmise par unité d'angle solide, par fréquence angulaire dP s = I d (θ P , φ, ω)dΩdω, égale à :

	I.3. Autres approches analytiques pour étudier la diffusion acoustique par une couche de
	cisaillement turbulente
	4.	
	,	(I.58)
	ci	
	où t c est le temps de réfraction, L c2 et L c3 sont les longueurs de réfraction dans les
	directions e 2 et e 3 . Ces échelles caractérisent le temps et les distances sur lesquelles les
	fluctuations turbulentes sont significativement corrélées. Elles sont d'autant plus grandes
	que la turbulence est peu intense.	

  Modélisation de la couche de cisaillement et calcul de la directivité spectrale. Campos suppose que celle-ci peut être vue comme une ligne d'éléments qui réémettent chacun leur propre énergie avec leur propre caractéristique d'atténuation et de décalage spectral. En se plaçant dans les configurations λ 0 ≫ l c , λ 0 ≪ l c et λ 0 ∼ l c , il simplifie l'expression de la directivité spectrale et conclut sur les formes des spectres. Si λ 0 ≫ l c , la diffusion par une interface qui ondule donne lieu à un spectre composé d'une raie principale à la fréquence ω , ce qui revient à dire que t c et L 2 tendent vers l'infini. Cette supposition permet de simplifier l'expression de la fonction E t (z, τ ) et d'obtenir une formule simplifiée de la directivité spectrale qui ne dépend plus que de U J , f 0 , L 3 , a et l 1 . Pour un jeu de valeur U J et f 0 , Campos fixe les valeurs de L 3 , a et l 1 pour que la directivité spectrale soit le plus proche possible du spectre de Candel et al.

	.	(I.59)
	Dans cette expression, Θ(θ P , φ) est la fonction d'observation qui dépend des propriétés
	du milieu ambiant, du mouvement de la source et de la direction d'observation, Ψ(g, ω)
	représente l'amplitude de la directivité spectrale et dépend du champ émis par la source
	S(g), du facteur de transmission A(g) et de la fréquence de réception ω, Φ(g, ω, G; z, τ ) est
	un terme de phase associé à la différence entre les composantes horizontales des vecteurs
	d'ondes d'émission g et de réception G = ω/c 0 (sin θ P sin φ, cos θ P ), ainsi qu'au déphasage
	dû aux effets Doppler liés au mouvement de la source et à la convection moyenne de
	l'interface. Intervient finalement la fonction caractéristique C(z, t) qui définit le degré
	d'atténuation produit par les irrégularités inter-faciales et la turbulence.	
	5. induite par l'effet Doppler dû au mouvement de la source) et
	d'une série d'harmoniques atténuées si l'interface est convectée. Dans la configuration où
	λ 0 ≪ l c , la diffusion par une épaisse zone de turbulence conduit à la répartition concave de l'énergie autour de la fréquence ω * . Enfin, dans la configuration λ 0 ∼ l c , trois effets sont mis en avant, l'atténuation du pic principal situé en ω * , la répartition de l'énergie dans
	deux lobes de part et d'autre du pic principal et la décroissance progressive de l'énergie
	à mesure que la fréquence d'observation s'éloigne de ω * . Cette dernière configuration est
	typiquement celle étudiée par Candel et al. [28] et les caractéristiques déduites qualitati-
	vement semblent bien correspondre. Pour évaluer quantitativement son modèle, Campos
	considère une couche de cisaillement statistiquement stationnaire et uniforme dans la di-
	rection e 2 [28]. Une fois ces valeurs fixées, Campos
	fait varier U J et f 0 et trouve un très bon accord entre les caractéristiques des directivités
	spectrales (niveau du pic principal, hauteur des bosses et décalage Doppler) et celles des
	spectres expérimentaux [28].	
	I.3.3 Résolution d'une forme approchée de l'équation de Lilley	
	Dans cette dernière sous-section nous décrivons l'approche analytique, initiée par Cargill dans
	deux rapports internes Rolls-Royce, et récemment publiée par Powles et al. [99] puis étendue
	par McAlpine et al.	

* = ω 0 /(1 -M S cos θ P ) (

  calculent une fonction de corrélation spatio-temporelle défini par B(δk d , τ ) = Ω ⊥ (k d , t)Ω ⊥ (k d + δk d , t + τ ) et montrent que le retard τ > 0 pour lequel B I.5. Étude de la diffusion acoustique par simulations numériques est maximum croît linéairement avec la séparation δk d > 0. Cette constatation est cohérente avec le mécanisme de cascade d'énergie selon lequel l'énergie associée au temps t des tourbillons d'échelle spatiale k d et transférée, en moyenne, vers les tourbillons d'échelle k d + δk d au temps t + τ .

Table II

 II 

	3, 174 10 -4	69, 34	12, 24	40, 8	57, 1	1162
	0, 4 0, 2 3, 174 10 -4	69, 34	29, 70	49, 5	39, 64	662

.1 -Valeurs des paramètres qui caractérisent les deux couches de cisaillement turbulentes.

  II.2.2 Influence du profil de vitesse axiale en entrée de domaine sur le développement de la couche de cisaillement II.2. Influence des fluctuations et du profil de vitesse en entrée du domaine ainsi que de l'envergure du domaine sur le développement de la couche de cisaillement initiées avec un profil de type couche limite de Blasius sont appelées B07 et B04. La figure II.13a représente l'évolution axiale de l'épaisseur de vorticité pour chacune des quatre couches de cisaillement turbulentes. On s'aperçoit que l'épaisseur de la couche est indépendante du profil pour R = 0, 7. Pour les configurations H04 et B04, on note une légère différence au début du domaine de calcul ; la rupture de pente pour B04 est située plus en amont que celle du cas H04. Vers la fin du domaine de calcul cependant, les deux courbes semblent converger l'une vers l'autre. Sont représentées sur les figures II.13b et II.14 les évolutions du maximum des tensions de Reynolds normalisées pour les quatre configurations. Dans tout les cas, le maximum des tensions est localisé plus en amont lorsqu'un profil de type Blasius est utilisé pour initier le calcul. Cependant, les profils H07 et B07 sont rapidement très proches les uns des autres alors que les profils H04 et B04 présentent de fortes différences. Le "palier" caractéristique de la zone auto-similaire est obtenu plus en amont pour la configuration B04 que H04. Compte tenu de ces observations, nous initierons le calcul avec un profil de type tangente hyperbolique lorsque R = 0, 7 et de type couche limite de Blasius lorsque R = 0, 4.

  été calculées à partir du coefficient d'intercorrélation spatio-temporelle (éq. II.27) au centre des couches de cisaillement H07 et B04. Le centre de la couche de cisaillement est repéré par la coordonnée transverse y 0 (x) qui est définie telle que u (x, y 0 (x)) = U c 3 . Les valeurs des longueurs L x u ′ u ′ et L y u ′ u ′ sont obtenues pour quatre positions en envergure que l'on moyenne ensuite. Les longueurs intégrales croissent de manière linéaire, comme prévu par la théorie. Les valeurs des longueurs intégrales, normalisées par l'épaisseur de vorticité sont reportées dans la tableau II.3 et comparées aux valeurs expérimentales de Jones et al.[START_REF] Jones | Turbulent correlation measurements in a two-stream mixing layer[END_REF]. Les valeurs de longueurs intégralesde Jones et al. ont été déduites à partir de la loi d'Abramovich et Sabin. Les longueurs intégrales simulées sont très proches de celles mesurées II.3. Validation du calcul numérique de la couche de cisaillement turbulente expérimentalement.

Table II .

 II 3 -Longueurs intégrales calculées au centre des couches de cisaillement H07 et B04, normalisées par l'épaisseur de vorticité.

  P 1 ) = (472, 6, -126) et (x * P 2 , y * P 2 ) = (472, 6, 126), ainsi que sur une antenne horizontale de N = 87 points, située en y * = 126. La configuration est représentée sur la figure II.30. Les résultats présentés dans cette section ont été obtenus à partir d'un calcul intégré de manière explicite.

* 

  Figure III.1 -Schéma de la configuration simulée avec une source acoustique. Comme l'écoulement turbulent ne possède pas un mouvement moyen de translation dans la direction e z , la fréquence des ondes acoustiques diffusées reste égale à f 0 . Notons que la configuration simulée (fig. III.2a) n'est pas si éloignée de la configuration des mesures en soufflerie dans le plan (e r , e θ ) (figure III.2b).

	y	U 1	S
	0		x
		U 2	
			P 1
			2∆x) 2	sin(ωt),	(III.1)

où ρ A est l'amplitude de l'onde acoustique, c 2 = γp/ρ la vitesse du son locale et 2∆x la largeur spatiale de la source, justifiée par Polacsek et al.

[START_REF] Polacsek | An equivalent-source model for simulating noise generation in turbofan engines[END_REF]

. La source décrite par l'équation (III.1) est une source bi-dimensionnelle qui émet uniquement dans le plan (x, y). Cette source est dupliquée dans la direction e z afin qu'elle rayonne sur toute l'envergure de la couche de cisaillement turbulente. Il est important de ne pas émettre initialement de l'énergie acoustique dans la direction e z car celle-ci reviendrait dans le domaine via les conditions limites de périodicité. Pour illustrer cela, nous avons représenté sur la figure III.2a l'émission dans le plan (x, y) des rayons incidents r i par les sources acoustiques, la couche de cisaillement turbulente au centre, les rayons réfractés r r par le gradient de vitesse moyen et les rayons diffusés r d , réorientés spatialement. Puisque l'écoulement ne présente pas dans le plan (y, z) de gradient de vitesse moyen, les rayons réfractés ne sont pas déviés. Puisque l'émission acoustique est homogène et que l'écoulement turbulent est statistiquement homogène dans la direction e z , on peut s'attendre à ce que le champ de pression diffusé le soit aussi. Il est donc possible de récolter le champ de pression diffusé sur une ligne de point P et de moyenner en envergure les grandeurs statistiques. Cela permettra notamment de réduire l'incertitude lors des calculs dans le domaine spectral. Le rayon r d 3 est un rayon diffusé par l'écoulement qui est redirigé de l'autre côté du domaine via la condition limite de périodicité. Récupérer le champ de pression diffusé sur la ligne de point P permet aussi de prendre en compte la redirection spatiale de l'énergie diffusée dans le plan (y, z), bien que les ondes incidentes soient uniquement émises dans le plan (x, y).

  Mise en place de la simulation et étude de l'influence de la fréquence et de l'amplitude de la source acoustique ainsi que de la vitesse de convection des structures turbulentes sur le champ de pression diffusé centrée sur la fréquence de la source et normalisées par la puissance acoustique définie par l'équation (III.3). Une telle normalisation aboutit à des niveaux du pic principal autour de -15 (dB/Hz). Pour avoir un meilleur aperçu de la différence de niveau entre le pic principal et les lobes secondaires, nous rehaussons les 4 spectres avec la même valeur pour que le niveau du pic principal soit aux alentours de 0 (dB/Hz). On s'aperçoit que la quantité d'énergie diffusée augmente avec la fréquence mais que la position des maxima est indépendante de la fréquence d'émission. Ces observations sont en accord avec les observations expérimentales[28]. De plus, la forme des spectres semble bien correspondre aux spectres expérimentaux. Nous relevons sur la figure une valeur de décalage fréquentiel ∆f de 575 Hz dont nous discuterons par la suite.

, (III.3) avec f 1 et f 2 les fréquences d'intégration représentées sur la figure III.6a. Sur cette figure sont aussi visibles les fréquences f p1 et f p2 qui serviront à calculer l'énergie contenue dans le pic principal. La figure III.6b représente les densités spectrales de puissance des fluctuations de pression reçues au point P 1 pour différentes fréquences d'émission, en fonction de la fréquence III.1.

  Table III.2 -Valeurs du décalage fréquentiel et de la longueur de diffusion pour chacune des configurations.

		40, 8	49, 5
	∆f (Hz)	575	1200
	l d /δ ω (x * S )	4, 3	3, 6

5 )

 5 Cette grandeur nécessite une longue durée de signal et un grand nombre de moyenne de bloc pour être correctement résolue et convergée. Nous n'avons pas prolongé le calcul mais nous avons augmenté le nombre de moyenne de bloc à 7 réduisant ainsi l'incertitude. La résolution fréquentielle est passée quant à elle de 41 à 63 Hz. Il est important de déterminer le niveau de γ 2 à partir duquel la corrélation est significative. À partir d'un test d'hypothèse en loi de Fisher avec un intervalle de confiance de 99 %, un niveau de γ 2 ne traduit une corrélation effective que Étude du caractère projectif du champ de pression diffusé à partir des spectres de cohérence et de phase avec n b le nombre de blocs pour le calcul des spectres. Le seuil (III.6) prend ainsi une valeur comprise entre 2, 54 10 -3 et 0, 62 pour les valeurs G = N z et G = 1 respectivement. La figure III.18 représente le spectre de cohérence entre le champ de pression reçu au point de référence P 1 , et les champs de pression aux points P 2 , P 3 , P 4 et P 8 (voir fig. III.4), dans la configuration C85. Pour le point P 2 situé très proche du point de référence, γ 2

	III.3. p ′ 1 p ′ 2
	si γ 2 > γ 2 99% avec, d'après [70] :			
	γ 2 99%	1 -10	-4 n l G-2 .	(III.6)
	n l =	9 11	× 2 n b ,	(III.7)

où G est un entier pris en 1 et N z , le nombre de point dans la direction où la configuration est statistiquement homogène et n l le nombre de degré de liberté. Ce dernier s'exprime selon Welch

[START_REF] Welch | The Use of Fast Fourier Transform for the Estimation of Power Spectra : A Method Based on Time Averaging Over Short, Modified Periodograms[END_REF] 

par :

  Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde acoustique et la couche de cisaillement turbulente les vitesses de défilement respectives. Nous obtenons une unique valeur de U d1 ≈ 91 m.s -1 . Compte tenu du caractère projectif du champ de pression diffusé, la vitesse de défilement est reliée à la vitesse de convection des larges structures turbulentes par la relation : U c = µ p U d1 . Le rapport µ p dépend des points considérés. Il vaut 0, 535 et 0, 565 pour les points P 12 et P 16 . Nous adoptons une valeur constante de µ p = 0, 55 pour le reste de l'étude. Cela entraîne une valeur de vitesse de convection U c ≈ 50 m.s -1 ce qui est supérieur aux 41, 5 m.s -1 obtenus section II.3.1 à partir du coefficient d'inter-corrélation. Pour la configuration C85 B04 , on trouve une vitesse de défilement de 99 m.s -1 , ce qui entraine une vitesse de convection de 54, 45 m.s -1 aussi supérieure à la valeur de 47, 3 m.s -1 obtenue à la sectionII.3.1. Nous verrons à la fin du chapitre quelles sont les potentielles causes de cet écart.

). À partir de la figure III.19, nous relevons les temps de vol associés à Φ p ′

1 p ′ 12 (f ), Φ p ′ 1 p ′ 14 (f ) et Φ p ′

1 p ′ 16 (f ) et nous calculons 109 Figure III.19 -Spectres de phase entre le champ de pression reçu au point P 1 et la pression reçue en P 12 : (-), P 14 : (-• -) et P 16 : (-•-).

  de diffusion prend autant de valeur que le nombre d'interactions entre l'onde acoustique et les structures turbulentes de nombre d'onde k d . Grâce à la sortie de plans entiers de calcul, nous avons élaboré une méthode pour visualiser directement, pour un rayon incident bien particulier, le rayon diffusé par les structures turbulentes d'un nombre d'onde k d fixé. Nous pouvons alors récupérer l'angle de diffusion θ afin de vérifier que celui-ci reste faible, comme présumé par l'expression (III.2) et d'obtenir directement la longueur de diffusion. Réussir à mesurer l'angle de diffusion permet aussi de prévoir sur quelles fréquences est répartie le maximum d'énergie diffusée. Nous illustrerons cela sur les travaux numériques de Clair et Gabard

	sin(θ/2))	(III.10)
	n'est pas facile à exploiter en état car elle dépend de l'angle de diffusion. Lorsque l'onde acoustique
	incidente n'est pas plane et que l'on ne fixe pas la direction d'écoute du champ de pression diffusé,
	l'angle	

  III.11) L'angle θ 0 s'obtient directement sur la figure III.27 et vaut 78, 66. Les valeurs du décalage fréquentiel pour chacune des configurations, calculées à partir de l'angle θ -∆f et θ -∆f sont réunies dans le tableau III.3. Les valeurs du décalage fréquentiel sont effectivement proches des 575 et 1200 Hz choisies pour représenter les cartographies spectrales (figure III.28) lorsque l'angle θ -∆f est utilisé.Table III.3 -Valeurs des angles et de la longueur de diffusion ainsi que du décalage fréquentiel obtenus pour les différentes configurations.

	Chapitre III. Étude du champ de pression diffusé issu de l'interaction entre l'onde
	acoustique et la couche de cisaillement turbulente	
	Noms	C85 C55 C85 B04
	θ +∆f ( • )	4, 5 6, 79	5, 72
	θ -∆f ( • )	3, 5 5, 75	5, 62
	l d+∆f /δ ω	3, 2 3, 3	3, 5
	l d-∆f /δ ω	4, 1 3, 9	3, 6
	∆f +∆f (Hz) 765 752	1185
	∆f -∆f (Hz) 594 629	1153
	III.4.4 Estimation de la longueur de diffusion du vortex "déterministe" convecté,
	à partir des travaux de Clair et Gabard [38]

  2)Des forts niveaux de bi-cohérence indique qu'il existe une relation non-linéaire entre les fluctuations du champ φ au point x i à la fréquence f 1 , celles du champ ϕ au point x j à la fréquence f 2 et celles du champ χ au point x k à la fréquence f 1 + f 2 . Pour un processus à bande fréquentielle étroite, typiquement une configuration qui fait intervenir une onde acoustique mono-chromatique, le spectre de bi-cohérence peut être interprété comme la fraction d'énergie apportée à la fréquencef 1 + f 2 par interaction triadique entre f 1 , f 2 et f 1 + f 2 .Si le sens du transfert de l'énergie n'est pas forcément des fréquences f 1 et f 2 vers f 1 + f 2 , il peut être parfois deviné en fonction de la configuration. D'après Elgar et Guza[49], la bi-cohérence estimée à partir de l'expression (IV.2) est significative seulement si

	B 2	9, 2 n l G(N z )	.	(IV.3)
			V ′ 22 v ′ 24 p ′ 1	sont environ
	quatre fois plus élevés que ceux de B 2 V ′ 22 u ′ 24 p ′ 1			

Pour le calcul des spectres de bi-cohérence nous séparons les signaux en 10 blocs, nous appliquons un recouvrement de 50% et nous moyennons les spectres sur les 316 points de l'envergure. La résolution fréquentielle est alors de 87 Hz. Le seuil (IV.3) prend ainsi une valeur comprise entre 1, 18 10 -3 et 0, 57. Les figures IV.1a et IV.1b représentent les spectres de bi-cohérence calculés dans la configuration C85 entre les fluctuations de vitesse de l'onde acoustique transverse avant la traversée de la couche de mélange (P 22 de la figure III.4), entre respectivement les fluctuations de u ′ et v ′ au centre de la couche de mélange (P 24 ) et les fluctuations de pression diffusé en P 1 . Dans les deux cas, on trouve des niveaux de bi-cohérence non-négligeable à l'intersection entre la fréquence f 1 = 85000 Hz et une gamme de fréquence f 2 ∈ ± [300, 2000] Hz, avec une valeur maximale autour de f 2 ≈ 600 Hz. La fréquence f 1 correspond à la fréquence d'émission de l'onde acoustique et la gamme de fréquence f 2 aux fréquences qui contiennent une forte part de l'énergie turbulente (fig. II.27a). Notons par ailleurs que les niveaux de B 2

  'enveloppe du champ de pression diffusé p a (t) calculé par démodulation analogique Nous avons vu au chapitre précédent que les deux derniers signaux sont pratiquement identiques, à un coefficient multiplicatif de 6 près. La figure IV.12a représente un extrait des signaux conditionneurs à moyenne nulle, normalisés par leur valeur maximale respective. Afin de réduire le temps de calcul de l'estimation stochastique des champs turbulents, nous décimons les signaux |z(t)| et p a (t) de sorte que la fréquence maximale contenue dans le signal soit égale à la fréquence de coupure hydrodynamique f cd = 25 kHz. Cette opération permet de réduire le nombre d'échantillons d'un facteur d'environ 5. La procédure de décimation consiste d'abord à mettre à zéro les coefficients de Fourier qui correspondent aux fréquences supérieures à f cd , à calculer ensuite la transformée inverse pour finalement créer un signal décimé en ne prenant qu'un point sur N decim . Le N decim est calculé à partir de la fréquence maximale que l'on souhaite conserver dans le signal, N

	5.1)
	2. l'enveloppe du champ de pression diffusé |z(t)| calculé par démodulation hétérodyne (sec-tion III.5.2)
	3. l

decim = Ent[1/(2 f cd ∆t)], où ∆t correspond à l'échantillonnage du signal initial et la fonction Ent[ • ] à la fonction partie entière. Un extrait de signal complet |z(t)| en P 1 et de signal décimé est montré sur la figure IV.12b. On s'aperçoit que les deux signaux sont très proches l'un de l'autre. Pour le signal filtré p f (t), le signal doit être décimé autour de la fréquence d'émission de la source pour conserver les informations liées à la diffusion. Nous choisissons ainsi de décimer de sorte que la fréquence maximale contenue dans le signal soit 85 + 20 = 105 kHz.

Table IV

 IV Table IV.3 -Valeurs de la distance et de la fréquence passage moyenne des larges structures turbulentes calculées à partir de R u ′ 23 pour les différentes valeurs du paramètre Lar.

			Cible		3, 2	780
		Lar = 200		1, 15	2170
		Lar = 1000		2, 6	960
		Lar = 5000		3	832
	Noms	l p	* Cible l p	*	f p Cible (Hz) f p (Hz)
	C85 C55 C85 B04 C85 A		3, 1 3, 1 2, 9 3, 5	2, 4 2, 4 2, 2 2, 7	805 805 1134 713	1040 1040 1475 925

.4 -Valeurs de la distance et de la fréquence passage moyenne des larges structures turbulentes calculées à partir de R u ′ 23 p ′ 1 pour les configurations C85, C55, C85 B04 et C85 A .

  : est le volume spécifique, u et v les composantes axiale et transverse de la vitesse et p la pression. Les équations font apparaître le nombre de Reynolds, défini comme Re = c 0 L 0 /ν avec L 0 une longueur caractéristique, et le nombre de Prandtl P r, fixé à 0, 72. La première équation traduit l'équation de conservation de la masse, les deux suivantes la conservation de la quantité de mouvement projetée dans les directions e x et e y et la dernière la conservation de l'énergie. Les variables ont été normalisées par c 0 , ρ 0 et par L 0 . Pour obtenir le jeu d'équation précédent, la dissipation visqueuse de l'énergie ainsi que le gradient de la dilatation ont été négligés. On écrit ensuite le champ de l'écoulement q = [ς, u, v, p] T sous la forme d'une petite perturbation au-dessus d'un écoulement moyen :

	∂ς ∂t	+ u	∂ς ∂x	+ v	∂ς ∂y	-ς	∂u ∂x	+	∂v ∂y	= 0	(C.1)
						∂u ∂t	+ u	∂u ∂x	+ v	∂u ∂y	+ ς	∂p ∂x	=	1 Re	∂ 2 u ∂x 2 +	∂ 2 u ∂y 2	(C.2)
						∂v ∂t	+ u		∂v ∂x	+ v	∂v ∂y	+ ς	∂p ∂y	=	1 Re	∂ 2 v ∂x 2 +	∂ 2 v ∂y 2	(C.3)
	∂p ∂t	+ u	∂p ∂x	+ v	∂p ∂y	+ pγ	∂u ∂x	+	∂v ∂y	=	γ ReP r	(p∆ς + ς∆p) ,	(C.4)
	où ς = 1/ρ												

  Cette résolution nous fournit les valeurs des parties réelles et imaginaires de k et ω, en fonction du type de l'analyse effectuée, et le signe de leur partie imaginaire nous permet de conclure sur la stabilité du mode en question. Dans le cadre d'une analyse temporelle, k ∈ ℜ est connu et le mode est instable si ω i > 0. Dans le cadre de l'analyse spatiale, ω ∈ ℜ est connu et le mode est instable si k i < 0. L'analyse a été effectué avec un code de stabilité développé par Aaron Towne[START_REF] Towne | Improved Parabolization of the Euler Equations[END_REF][START_REF] Towne | Continued development of the one-way Euler equations : application to jets[END_REF].

	6)
	avec où k est le nombre d'onde et ω la fréquence angulaire du mode. Lorsque l'on injecte l'équation k ∈ ℜ et ω ∈ ℑ pour une analyse temporelle ω ∈ ℜ et k ∈ ℑ pour une analyse saptiale,
	(C.5) avec les perturbations de la forme (C.6) dans le système d'équation et que l'on néglige
	les termes non-linéaires, on aboutit à un problème aux valeurs propres que l'on résout numéri-
	quement.

Table C .

 C 1 -Associations des champs pour les analyses de stabilité Pour tester l'influence des différentes configurations explicitées dans le tableau C.1, nous avons Annexe C. Analyse de stabilité linéaire sur l'écoulement moyen issu de la simulation aux grandes échelles réalisé une analyse de stabilité linéaire temporelle puis spatiale sur la couche de cisaillement H07. La figure C.3 représente les valeurs propres dans le plan (ω + r , ω + i ) obtenues dans le cadre d'une analyse temporelle avec k + = kL 0 = 0, 36, vecteur d'onde correspondant au vecteur d'onde de diffusion k + d = 2π/l + d .

					4
	Cas 2	LES	0	1	1/1, 4
	Cas 3	LES	LES	1	1/1, 4
	Cas 4	LES	LES LES LES
	Cas 5	LES	0	LES 1/1, 4
	Cas 6	LES	0	LES LES

  de N py . Dans tous le reste de l'étude, nous nous focaliserons, lors des analyses de stabilité spatiales, sur ce mode en particulier. Le nombre de point de discrétisation est choisi égal à 301.C.3 Analyses linéaire de stabilité locale, temporelles et spatialesMaintenant que nous avons choisi le jeu de champs ainsi que le nombre de points de discrétisation, nous pouvons réaliser les analyses de stabilité temporelles et spatiales en faisant varier le nombre d'onde k + et la fréquence angulaire ω + afin de déterminer les modes les plus instables qui se développent autour du champ moyen. Nous espérons pouvoir comparer favorablement ces valeurs à la longueur de diffusion et à la fréquence sur laquelle est réparti le maximum d'énergie diffusée. Commençons par l'analyse de stabilité temporelle. Le taux de croissance du mode instable ω + i obtenu sur les couches de cisaillement H07 et B04 est représenté sur la figure C.7 en fonction du nombre d'onde normalisé k + (fig. C.7a) et en fonction de la longueur normalisée (fig. C.7b) : Valeurs propres issues de l'analyse de stabilité spatiale avec ω + = 0, 0217 sur la couche de mélange H07 avec le jeu de champs 5 pour N py = 201 : (•), N py = 301 : ( ) et N

	Figure C.6 -(a) et (b)				
	L • =	2π k	1 δ ω (x * , R)	,	(C.7)

py : ( ). où δ ω (x * , R) est l'épaisseur de vorticité à la position axiale x * = 472, 6, où les profils moyens ont été extraits. L'épaisseur de vorticité dépend naturellement du rapport des vitesses R. Tracé en fonction de L • , l'évolution du taux de croissance temporel est identique pour les couches de mélange H07 et B04. Le mode le plus instable est obtenu pour L • ≈ 8 qui est au moins deux fois supérieur au 3, 6 et aux 4, 3 (cf. tableau I.25) escomptés. Par contre, il est intéressant de remarquer que cette valeur n'est pas trop éloignée de celle trouvée par Michalke

[START_REF] Michalke | On the inviscid instability of the hyperbolic-tangent velocity profile[END_REF] 

dans le cas d'une couche de mélange 2D, incompressible, ayant un profil de vitesse axiale de type tangente hyperbolique. En effet, le mode le plus instable est obtenu pour α = 0, 4446/(δ ω /2) qui correspond à L • = 2π/(αδ ω ) ≈ 7, 1. La vitesse de phase ω + r /k + associée aux modes instables est proche de la vitesse de convection U c .
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Table 2

 2 Integral lengths calculated in the center of the shear layer for the domain of span-wise extent 350 δ ω, 0 compared to Jones's et al.[53] results.

		L x uu /δω	L y uu /δω	L z uu /δω
	Results	0 .320	0 .175	0 .115
	Jones et al. [53]	0 .339	0 .174	0 .113

Table 3

 3 Parameters of the different cases.

	Name	CØ	CØ R 04	C43	C55	C65	C75	C85	C85 A	C85 R 04
	f 0	Ø	Ø	43.38	55	65	75	85	85	85
	A	ØØ	1 1 0	110	110	110	110	130	110
	U c	40.8	49.5	40.8	40.8	40.8	40.8	40.8	40.8	49.5
	λ 0 δω (x * s )	ØØ	0 . 4 9	0.38	0.33	0.28	0.25	0.25	0.35

[28, 29, 30, 31] et par Guédel[57, 58]. Les auteurs ont caractérisé avec précision la modulation d'amplitude et de phase du champ de pression diffusé et ont montré que le spectre de pression diffusé se compose d'un pic principal à la fréquence d'émission et de deux lobes secondaires de part et d'autre de la fréquence d'émission. Ils ont aussi mis en évidence le rôle prépondérant des larges structures de l'écoulement turbulent dans le mécanisme de diffusion acoustique et ont su estimer, à partir d'un modèle qui prend en compte l'effet Doppler, le décalage fréquentiel ∆f sur lequel est réparti le maximum d'énergie diffusée. Leurs modèles permettent aussi de rendre compte de la nature projective du champ de pression diffusé. Cependant, les récentes expériences en soufflerie à veine ouverte[START_REF] Kröber | Experimental investigation of spectral broadening of sound waves by wind tunnel shear layers[END_REF][START_REF] Sijtsma | Spectral broadening by shear layers of open jet wind tunnels[END_REF] semblent indiquer que la longueur caractéristique l d du mécanisme de diffusion, reliée au décalage fréquentiel par la vitesse de convection des larges structures turbulentes, a été sous-estimée.Des études numériques sur la diffusion d'une onde acoustique par un écoulement qui se rapproche de la couche de cisaillement turbulente sont venues compléter les approches analytiques et expérimentales. Ewert et al.[52] et très récemment Clair et Gabard[39] ont étudié numériquement la diffusion d'une onde acoustique par un écoulement dont les fluctuations de vitesse ont été générées de manière stochastique. Les spectres de pression diffusé présentent effectivement les deux lobes secondaires mais ceux-ci ne sont pas situés sur les fréquences observées en soufflerie et la forme des spectres ne correspond pas tout à fait à celle des spectres expérimentaux. Ces différences sont liées au fait que le contenu spectral de la turbulence modélisée est différent de celui de l'écoulement turbulent qui se développe effectivement aux abords du jet de la soufflerie.Pour résumer, les modèles analytiques ont décrit avec pertinence la redistribution spatiale et spectrale de l'énergie diffusée ainsi que le modulation d'amplitude et de phase du champ de pression diffusé mais sont limités par la modélisation du spectre des fluctuations de vitesse de l'écoulement turbulent. Les études expérimentales de la diffusion acoustique en soufflerie sont venues valider les principales caractéristiques du champ de pression diffusé et ont montré le rôle prépondérant des larges structures turbulentes dans le mécanisme de diffusion acoustique. Cependant, la longueur caractéristique qui intervient dans le mécanisme semble avoir été sous-

ainsi qu'en appliquant des conditions limites de non réflexions sur les bords du domaine. Cela leur a semblé nécessaire, compte tenu du fait que l'amplitude du champ de pression acoustique, est beaucoup plus faible que celui du vortex. Pour obtenir le champ de pression diffusé, il suffit simplement de soustraire au champ de pression total simulé, le champ de pression du vortex sans l'onde acoustique et le champ de pression de l'onde acoustique seule. Les auteurs ont aussi calculés la solution analytique du champ de pression diffusé par le vortex de circulation nonnulle à l'aide d'un développement en série de Taylor. Cette approche leur a permis de retrouver le minimum d'énergie diffusée dans la direction de propagation. Enfin, ils ont mis en lumière les forts effets de réfraction en champ lointain lié à la faible décroissance du champ de vitesse tangentielle du tourbillon à circulation non-nulle.

En pratique, la zone en dehors du jet de la soufflerie à veine ouverte dans laquelle sont effectuées les mesures acoustiques est rarement au repos.

Mary et Sagaut[START_REF] Mary | Large Eddy Simulation of Flow Around an Airfoil Near Stall[END_REF]. Ce schéma d'ordre deux centré détecte les oscillations parasites sur les variables primitives et active une fonction senseur qui modifie l'expression des flux Eulériens en ajoutant de la dissipation numérique si des oscillations sont détectées. Les flux visqueux F ν+νt sont discrétisés avec un schéma centré en trois points. En ce qui concerne l'intégration temporelle, elle sera implicite ou explicite, en fonction de la configuration simulée et des grandeurs étudiées. En effet, si l'on s'intéresse uniquement à le vitesse de l'écoulement turbulent, l'intégration implicite présente l'avantage d'être suffisamment précise pour un coût de calcul moindre par rapport à une intégration explicite. Par contre, si l'on souhaite simuler avec précision la propagation des fluctuations de pression de nature acoustique, il est plus intéressant d'intégrer de manière explicite. En effet, pour propager avec précision une onde acoustique, le nombre CFL convectif (Courant Friedrichs Lewy) doit être globalement inférieur à 1. Cela implique un pas de temps indépendant du type d'intégration. Dans ce cas, l'intégration implicite s'avère plus coûteuse que

On s'attend alors à ce que la quantité d'énergie diffusée de deux configurations différentes ayant le même paramètre de diffusion soit proche. Lorsque l'on évalue ce paramètre pour la configuration expérimentale de Candel et al.[28] qui aboutit à la figure I.2b on obtient, pour f 0 = 15 kHz, h = 0, 32. Le maillage décrit précédemment peut supporter, à raison de 20 points par longueur d'onde, la propagation d'une onde acoustique de fréquence 85 kHz dans la direction transverse. Avec une telle fréquence on obtient comme valeur du paramètre de diffusion h = 0, 33. Par conclusion, ce maillage est théoriquement suffisamment raffiné pour obtenir un champ de pression diffusé non négligeable. Le critère des 20 pts/λ 0 sera discuté par la suite.II.1.5 Conditions aux limitesEn entrée de domaine, nous imposons soit le profil de vitesse tangente hyperbolique défini par l'équation (II.3), soit un double profil de vitesse type couche limite de Blasius. Imposer un tel profil permet d'approcher davantage les expérimentations sur les couches de cisaillement turbulentes. En effet, dans les configurations expérimentales, les deux zones de vitesse différente sont initialement séparées par une plaque sur laquelle se forment deux couches limites d'épaisseurs

Pour faire une période, il faut deux échantillons, l'un au-dessus de la moyenne, l'autre en dessous.

Dans cette section, nous étudions l'influence du profil de vitesse en entrée de domaine sur l'épaisseur de la couche de cisaillement ainsi que sur l'évolution axiale du maximum des tensions de Reynolds. Les fluctuations de vitesse décrites à la section II.2.1 sont injectées en entrée du domaine. Quatre simulations sont lancées avec les profils de vitesse axiale représentés sur la figure II.4. On appelle H07 et H04 les simulations initiées avec un profil de vitesse de type tangente hyperbolique ayant un rapport de vitesse respectif de R = 0, 7 et R = 0, 4. Les simulations

Le différentiel de vitesse induit une légère déflexion de la couche de mélange vers la zone basse vitesse (cf. figureII.10) 

L'origine virtuelle de la couche de cisaillement correspond à la coordonnée axiale de l'intersection entre la pente de l'épaisseur de vorticité dans la zone auto-similaire et la droite y = 0.

Commençons tout d'abord par visualiser le champ de pression émis par la couche de cisaillement. La figure II.31 est une visualisation instantanée (t = 25, 38 ms) des larges structures turbulentes via les fluctuations du champ de pression et du bruit émis via un Schlieren numérique. On observe, dans la partie supérieure de domaine (y * > 0), des ondes acoustiques particulièrement intenses qui se propagent vers l'amont et qui forment un angle avec l'axe horizontal variant de α p ≈ 30 • à α p ≈ 70 • . Il est possible d'évaluer grossièrement la fréquence de ces ondes en mesurant sur la figure la distance qui sépare deux fronts d'ondes puis en appliquant la formule f = (c 0 -U 1 cos α p )/λ. Les deux fronts dont le centre respectif est localisé en (390, 110) et en (430, 90) sont séparés d'une distance de 45 δ ω,0 et forment un angle d'environ 30 • avec l'axe horizontal. Cela entraine une fréquence d'environ 20 kHz. Les ondes acoustiques visibles en fin de domaine (x * ≈ 560) se propagent avec un angle voisin de 70 • à une fréquence d'environ 45 kHz. Dans la partie basse du domaine, le bruit émis par la couche de mélange ne semble pas comporter d'ondes acoustiques particulièrement intenses.

(a) (b)

Dans cette section, nous nous basons sur les travaux de Clair et Gabard[38] pour donner une interprétation physique de la longueur de diffusion qui découle de l'interaction entre l'onde acoustique et le vortex "déterministe". L'avantage de l'étude de la diffusion par un tourbillon

Nous avons étudié la dé-corrélation de l'enveloppe du champ de pression diffusé sur l'antenne cylindrique décrite à la section III.1.3 en fonction de la fréquence de la source (configurations C85

Dans la configuration C85A avec la source acoustique la plus intense, nous remarquons que la densité spectrale de puissance des fluctuations de pression au point P 1 présente des figures de diffusion sur les harmoniques de la fréquence d'émission (fig. III.5b). Nous avons cherché à savoir si ce dédoublement de fréquence provenait d'une interaction non-linéaire avec la turbulence, enclenchée à partir d'une certaine amplitude de source ou si ce dédoublement était présent dès l'émission. Pour cela nous avons calculé la densité spectrale de puissance des fluctuations de pression émises par la source de la configuration C85 A sans écoulement turbulent, à la position (x * , y * ) = (472.6, 104). Le spectre est représenté sur la figure B.2. Nous nous apercevons qu'il y a de l'énergie sur les harmoniques f 0 . Le dédoublement provient donc directement de l'injection des fluctuations de pression de forte amplitude dans le domaine de calcul.

u ′ sur la ligne y * = -126 à la fréquence f 0 -∆f : (--) et à la fréquence f 0 + ∆f : (-•-). . . . . . . . . . . . . . . . . . . . . . . . . . . . III.31 (a) Spectres S u ′ et (b) et module des inter-spectres |S p ′ 1 u ′ | sur la ligne y * = -126. f 0 -∆f : (--) et f 0 + ∆f : (-•-). . . . . . . . . . . . . . . . . . . . . . . . . . .

Remerciements

Remerciements

Acknowledgment

The authors would like to thank Prof. S. Candel for his valuable comments and suggestions on this work. The authors would also like to thank Dr. W. A. McMullan for the discussion on the simulation of the turbulent mixing layer.

Annexes

Such positive results allow to consider an advanced study of the scattering mechanism thanks to the present numerical simulation. The maps of power spectral densities, plotted at a given frequency, is just an overview of what the numerical simulation may provide as new insights. In a future paper, the questions of which turbulent structures are relevant for acoustic scattering will be addressed. In particular, the use of coherence and phase spectra, bi-coherence spectra, kω spectra and cross-correlations will provide new information on the link between the large turbulent structures and the acoustic frequency. The non-linear mechanism appearing when the sound-wave amplitude is increased may also be investigated. It would also be interesting to numerically evaluate each source terms involved in the scattering equations derived by previous authors under simplifying assumptions (Campos [17,18] , , Howe [19] or McAlpine et al. [21] ) to investigate their relative contributions in the scattering mechanism. Coupled with the numerical analyses, such an evaluation would provide insights for the derivation of a more complete scattering correction coefficient that would take into account the energy within the peak and the side-lobes and the slope of the spectrum. 
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Study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulation

During open jet wind tunnel measurements, the acoustic waves emitted by a device or an acoustic source located inside the flow propagate inside the turbulent shear layer that develops at the periphery of the jet before being received by microphones located outside the flow. The acoustic wave interacts with the turbulent velocity field leading to a change of directivity, a phase and amplitude modulation as well as a spectral re-distribution of the acoustic energy over a band of frequencies. This phenomenon is known as acoustic scattering. This work has consisted in the study of the scattering of an acoustic wave by a turbulent shear layer using large-eddy simulation. The first step of the study has consisted in the large-eddy simulation of a turbulent shear layer in its self-similar state. In a second second step, the direct computation of the interaction between the acoustic wave and the turbulent flow has been performed in order to study the characteristics of the resulting scattered pressure field. It has been shown that the numerical simulation is able to accurately predict the frequencies on which the main part of the scattered energy is redistributed, as well as the shape of the scattered pressure spectrum. Finally, the turbulent velocity field which is correlated with the envelope of the scattered pressure field is reconstructed using the linear stochastic estimation method. This method has enabled the visualization of the large turbulent structures that mainly take part in the acoustic scattering mechanism. It would then be interesting to model, using the estimated turbulent velocity field, the spatio-temporal intercorrelation tensor involved in scattering analytical models and in recent numerical studies in order to improve the predictions of the scattered pressure field.