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Abstract
Small, electrically driven unmanned aircraft are likely to suffer from inferior endurance
compared to their larger counterparts, attributable mostly to the limited aerodynamic
efficiency of small wings of moderate aspect ratio and the comparably low energy den-
sity of available civil battery technology. Upwash exploitation by tight formation flight,
inspired bymigratory birds, aswell as aerial recharging are themost promising control-
driven approaches tomitigate this disadvantagewhile simultaneously opening up new
possibilities such as distributed payloads and mission-level redundancy.

Flight experiments with manned aircraft as well as wind tunnel data suggest that the
region in the wake of a predecessor aircraft where a significant reduction in energy
consumption can be achieved is however both laterally and vertically of the magnitude
of a mere fraction of a wingspan. The docking procedure involved in exchanging bat-
teries between Unmanned Aircraft Systems (UAS) in flight implies similar, if not even
tighter, guidance performance requirements. Precise formation flight has, furthermore,
to be performed under the adverse influence of only approximately known wake dis-
turbances.

Continuous time higher order slidingmode control (CTHOSM) has been considered as
a candidate for this challenging open problem and was successfully applied to simple
kinematicmodels in simulation, where excellent relative position tracking performance
can be demonstrated. In this work we study the implications of the presence of inner
loop dynamics and discrete implementation at moderate sampling rates and we find
that it precludes the application of CTHOSM control to fixed-wing UAS. We propose
a predictive discrete sliding mode guidance scheme to approximate the performance
of CTHOSM control assuming realistic fixed-wing UAS dynamics. Comparisons with
time sampled continuous-time sliding mode control previously proposed show vastly
improved chattering and position tracking performance. We show that the proposed
guidance scheme in combination with inner load factor tracking loops and a distur-
bance observer allows for relative position tracking performance compatible with the
requirements of upwash exploitation. We address the scalability of local feedback slid-
ing mode control schemes and point out fundamental limitations of sliding mode con-
trol with local feedback information when it comes to string stability.
To evaluate the performance of the proposed guidance scheme and to facilitate the test-
ing and comparison of new, improved formation flight control techniques, an openly
accessible benchmark problem is proposed in this work.

Finally, the closeness of UAS in tight formation flight scenarios makes collision avoid-
ance a major concern. However, existing probabilistic localization algorithms cannot
provide guaranteed confidence regions of the relative position of other members of the
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formation. As an important building block for safe tight formation flight, we present a
set membership filter that provides ellipsoidal regions guaranteed to contain the rela-
tive positions of the other UAS. Being based on observations of single-frequency Global
Satellite Navigation System (GNSS) receivers and ultra-wide band ranging devices, it is
compatible with the hardware constraints of small low-cost UAS. Simulations suggest
computational efforts compatible with the computational resources typically available
onboard small UAS.
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Résumé
Les mini-drones à propulsion électrique sont susceptibles d’avoir une endurance in-
férieure à celle de drones plus grands, en raison, principalement, de l’efficacité aérody-
namique limitée des petites ailes de faible allongement. La capacité de stockage limitée
des batteries embarquables sur les mini-drones réduit également l’endurance totale.
L’exploitation des interactions aérodynamiques, inspirée par les oiseaux migratoires,
ainsi que le ravitaillement en vol , sont des approches prometteuses pour améliorer
l’endurance des mini-drones tout en permettant une distribution de la charge utile.

Dans le contexte du vol en formation classique des avions, on a observé qu’une réduc-
tion significative de la consommation d’énergie de l’avion suiveur peut être obtenue
dès lors qu’il se place dans les tourbillons de sillage du prédécesseur. Dans notre con-
texte, cela implique des déplacements très précis du mini-drone suiveur dont la posi-
tion relative (latérale et verticale) doit rester à une fraction d’envergure du mini-drone
prédécesseur. Par ailleurs, la procédure d’amarrage utilisée dans l’échange de batter-
ies entre drones en vol implique des exigences de performance de guidage similaires,
voire plus strictes. Ces fortes contraintes de performance s’accompagnent en outre
d’exigences de robustesse particulièrement élevées sur les lois de commande en raison
des perturbations mal connues induites par les turbulences de sillage.

La commande par modes glissants d’ordre supérieur en temps continu (CTHOSM) a
été considérée comme un candidat prometteur à ce problème ouvert difficile et a été
appliquée avec succès à des modèles cinématiques simples. Des performances excel-
lentes de suivi de position relative ont en effet pu être démontrées. Dans nos travaux,
nous étudions les implications de la présence de la dynamique de la boucle interne
et de l’implémentation en temps discret à des taux d’échantillonnage modérés et con-
statons alors que l’application de la commande CTHOSM devient impossible. Nous
proposons donc un schéma de guidage prédictif discret par modes glissants pour ap-
proximer les performances de la commande CTHOSM pour une dynamique réaliste
du drone. La comparaison avec la commande par modes glissants en temps continu
échantillonnée proposée dans la littérature montre des performances de suivi de po-
sition considérablement améliorées. Nous montrons que la loi de guidage proposée,
complétée par des boucles de suivi du facteur de charge interne et d’un estimateur des
perturbations permet de garantir une précision sur le suivi de position relative compat-
ible avec les exigences de l’exploitation du flux d’air généré par le prédécesseur. Dans
nos travaux, nous abordons aussi, avec la notion de « string stability », la probléma-
tique liée à la propagation des erreurs de suivi dans des systèmes de commande par
modes glissants sous retour d’états locaux et soulignons les limitations fondamentales.
Pour évaluer la performance de la loi de guidage proposée et permettre aussi à la com-
munauté de tester diverses améliorations des techniques de commande de vol dédiées
au vol en formation de drones, un problème de référence ouvert a été proposé dans le
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cadre de ce travail.

Enfin, la proximité des drones dans les scénarios de vol en formation serrée nécessite
la mise en place de stratégies efficaces d’évitement de collisions. Cependant, les al-
gorithmes de localisation probabilistes existants ne permettent pas la caractérisation
de régions de confiance garanties de la position des autres membres de la formation.
Dans ce contexte, nous proposons un nouveau filtre ensembliste caractérisant de telles
régions de confiance sous forme ellipsoïdale. La mise en œuvre du filtre proposé re-
pose uniquement sur des mesures accessibles via des récepteurs GNSS à faible coût
et des capteurs de distance relatifs. Nos premières évaluations ont montré que les ef-
forts de calcul induits par cette mise en œuvre restent parfaitement compatibles avec
les contraintes des systèmes avioniques des petits drones.
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Introduction

Background and motivation

Migratory birds routinely perform long range flights, and impressive nonstop distances
of more than 8000 km over a flight time of over nine days are reported [1]. This kind
of endurance has so far been elusive for man-made unmanned aircraft of similar size.
At the same time, the class of small, low cost unmanned aircraft systems (UAS) enjoys
a rising market success as their growing maturity and cost efficiency makes them a vi-
able tool for a range of industries, from crop surveillance in agriculture over short-range
cargo delivery to mining exploration.
Commercial small electrically driven fixed wing UAS, however, typically are able to
stay in the air for not more than a few hours. Research efforts focusing on increasing
propulsion efficiency and improving onboard energy storage density have succeeded
in pushing this envelope in prototypes to several days of endurance over the last years
by employing liquid hydrogen fuel cell technology [2]. Other approaches rely on ex-
ploiting exogenous energy sources by adding solar cell arrays [3] or localizing thermal
updrafts [4].
Tight formation flight has attracted attention over the last decades as a complementary
exogenous energy source inspired by nature. Many bird species use efficient formation
patterns that allow them to recover part of the energy stored in the upwash generated
by the birds in front of them and achievable energy savings of the order of 10 % are
reported in the literature [5]. As early as 1990 the feasibility of this approach has been

Figure 1: Flock of grus americana in close formation flight

1



2 Introduction

demonstrated in humanly piloted flight experiments withmanned aircraft [6], showing
excellent agreement with theoretical predictions. From the NASAAFF program, about
a decade later, maximum fuel savings of 18% of fuel flow for the follower are reported
[7] for a pair of F/A-18 fighter aircraft under automatic control, further confirming the
feasibility of tight formation flight (TFF) for significant energy gains and thus range
enhancements. Subsequent more recent flight experiments [8] with C-17 transport air-
craft suggest average fuel flow savings of 7 to 8%.
While potential benefits are thus considerably smaller than those achievable by im-
proved energy storage, tight formation flight (TFF) requires only readily available con-
sumer grade commercial-off-the-shelf (COTS) sensors for precise localization and very
limited, if at all, airframe modifications. On top of range benefits, the TFF capability is
an enabling technology that can unlock a number of other applications with the poten-
tial to enlarge the operating envelope of small electrically driven UAS. Aerial recharg-
ing and aerial docking are two examples that are not possible today due to a lack of
available technologies for safe precise navigation in the close vicinity of another UAS.
Position tracking performance requirements of aerial docking obviously depends on
the dockingmechanism catching the other UAS, but it seems reasonable to assume that
they are of the same order of magnitude or stricter than those for upwash exploitation.
Any advancement made in the field of small UAS towards safe tight formation flight
techniques are of obvious great interest to commercial aviation and could bring an ap-
preciable leap in fuel efficiency to commercial air transport. Small UAS provide in this
context an inexpensive testing environment of low complexity that allows to rapidly
evaluate the maturity of new techniques.
The benefits of upwash exploitation come with supremely challenging guidance per-
formance requirements. Both theoretical considerations [9] and the flight experiments
of [7] suggest that significant upwash gains can only be expected within a small region
spanning roughly about 20% of the wingspan vertically and laterally. Longitudinal
separations are less critical due to slow vortex decay. For small UAS this translates into
decimeter-level relative position tracking performance and corresponding accuracy in
relative localization between UAS.
The resulting small separations between UAS make collision avoidance a major con-
cern. Flight safety has gained even more importance with the ongoing integration of
civil UAS into National Airspaces (NAS). Despite recent advances, important elements
are missing that we consider essential to make tight formation flight a safe mode of
operation. In this work, three principal issues are addressed: position tracking perfor-
mance, the lack of benchmark problems and guaranteed localization under observation
errors.
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Open problems and contributions

Open problem I: position tracking performance

Reported experimental results for heterogeneous [10] and homogeneous 2-formations
[11, 12] of small UAS feature relative guidance errors of the order of meters. In order to
enable meaningful range enhancement for small UAS, significant advances need thus
to be made.

The performance gap Considerable interest has appeared in the control community
over roughly the last two decades to tackle this challenging control problem. Look-
ing at the landscape of existing research, it becomes apparent that two quite differ-
ent approaches have been taken for outer loop control (at the inner loop level we find
mostly attitude tracking controllers, an exception being the use of Nonlinear Dynamic
Inversion (NDI) by the authors of [11]). At one end of the theory-application spectrum,
established control techniques such as LQ control [13] or in-flight-tuned proportional-
integral-derivative (PID) control [14] have been applied and successfully flight tested
(see [11], and [15] for amore recent implementation of the same control laws on an elec-
tric fixed wing UAS). As mentioned, the achieved position errors exceed the tolerances
necessary for significant wake energy gains.

On the other hand, more advanced techniques such as Higher Order SlidingMode con-
trol (HOSM) have been applied to heavily simplified kinematic representations of the
relative position tracking problem in simulation, and very successfully so in terms of
relative position errors, see [16, 17, 18, 19, 20, 21]. Sliding mode control exhibits ex-
cellent disturbance rejection properties in continuous time for a very specific class of
input-affine systems with matched disturbances. Real-world aircraft formation control
violates both central assumptions – input switching in continuous time and the match-
ing condition – that form the very basis of SMC techniques. One approach (see e.g. [16])
to circumvent this fundamental issue is to simplify the relative tracking dynamics until
the matching condition is satisfied, corresponding to some form of double-integrator
dynamics, raising however questions about the applicability of the thus defined control
to real fixed-wing aircraft featuring bandwidth-limited rotatory dynamics and actua-
tors.

Contribution I: Predictive sliding mode guidance law

It is considered a prerequisite to successful tight formation flight to close the gap be-
tween insufficient position holding performance reported from flight experiments and
the superior performance HOSM control can demonstrate on heavily simplified ap-
proximations of the relative position tracking problem. In chapter 2 we present Pre-
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dictive Discrete Sliding Mode (PDSM) guidance laws that enable position holding per-
formance compatible with the tight requirements of TFF in the vertical channel on a
realistic benchmark. We show that, in simulation, PDSM control can provide perfor-
mance comparable to super twisting sliding mode control for fast sampling and fast
inner loops, and vastly superior performance under more realistic conditions. A key
ingredient of the control strategy studied in this work is an inner/outer loop interface
based on load factor tracking. We provide a prototype LQ vertical load factor tracking
control law employing Direct Lift Control (DLC), see section 2.4.4.

Open problem II: benchmark problems

Binary properties of a system under automatic control such as robust stability can usu-
ally be evaluated unambiguously for a given system. In contrast to that, control per-
formance is intimately tied to the problem that is used to evaluate a certain control ap-
proach. An important obstacle to the systematic and performance-driven advancement
of tight formation flight control as of today is the absence of agreed-upon benchmarks
that allow to evaluate competing approaches and tomake an informed judgment about
performance and implementability. Especially for control techniques involving high-
frequency control inputs, differences in the chosen modeling of aircraft dynamics and
more subtle details such as the choice of simulation sampling times canmake the differ-
ence between superior control performance and total failure for the same control law,
as is elaborated in more detail in chapter 2.

Contribution II: openly available formation flight benchmark

We therefore propose in chapter 1 a benchmark accompanied by an openly available
reference implementation. Making available an implementation is expected to signifi-
cantly lower the threshold towards adopting the benchmark by other researchers, tak-
ing into account the corresponding implementation effort of several man-weeks (ac-
cording to our experience).

Open problem III: guidance safety guarantees

Trajectory planning in the vicinity of other UAS needs to take into account both localiza-
tion errors and UAS guidance errors to avoid inter-vehicle collisions as well as entering
regions in the wake where roll control saturation can occur. The most popular localiza-
tion filtering strategies based on the Unscented (UKF) [22] or Extended Kalman filter
(EKF) [23], provide confidence measures by estimating the state estimate covariances
that can be used to approximate performance bounds. Their stochastic nature preclude
however that collision avoidance guarantees can be given.
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Contribution III: Set membership localization filter and constrained sliding surface

In chapter 3 we describe a set membership localization filter that computes guaranteed
bounds on the position of another UAS based on GNSS carrier phase and UWB range
observations.
In chapter 2 we exploit the guaranteed relative position sets by designing an integral
discrete sliding surface using standardModel PredictiveControl (MPC) techniques that
enables guaranteed collision avoidance in sliding mode.
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Chapter 1

A formation flight benchmark

Benchmark problems play an essential role in every performance-driven field of re-
search, as they allow to quantitatively compare different approaches and to overcome
the problems of solution-specific modeling 1. As of today, there is no lack of contribu-
tions that hold the promise of enabling the performance leap necessary for tight for-
mation flight, a lack of reference problems is however evident. This section presents
a benchmark problem for automatic aircraft formation flight [26]. It provides a heav-
ily simplified kinematic model including first-order load factor tracking loop approx-
imations as well as a realistic six degrees of freedom nonlinear model of an electric
glider UAS including servo actuator and engine models. A 3D benchmark trajectory
and wind and turbulence modeling put guidance laws through a sequence of track-
ing problems of increasing difficulty, from a straight cruise flight section over climb-
descent maneuvers through a level turn into successive helical climb-descent-turn ma-
neuvers. To be useful, a benchmarkmust be accessible for other researchers, and to this
end aMatlab® /Simulink® implementation has beenmade accessible as an open-source
project (Formation Flight Benchmark (FFB) [29]).

1.1 Standard Vehicle Model

Every controller design model inevitably involves simplifications that make it a more
or less rough approximation of the actual process to be controlled. The performance
of various control techniques applied to the problem of tight formation flight is inti-
mately related to the set of simplifying assumptions adopted for modeling the system
dynamics. As an example, excellent performance can be achieved by second order slid-
ing mode control when assuming double integrator dynamics and high controller and

1By this we understand choosing a problem that is tailored to a specific solution approach and inher-
ently favors its success. One example is the evaluation of techniques involving high-frequency control
inputs such as sliding mode control on plant approximations that lack important dynamics

7
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model sampling rates (see e.g. [30]), i.e. conditions close to the controller designmodel.
Sampling times compatible with avionics hardware constraints and the introduction of
inner loop tracking dynamics lead to unacceptable chattering in the input channel and
unacceptable position errors, see sc. 2.4.4. To systematically explore these issues, an
extension of the Standard Car Model widely used in research on ground vehicle pla-
tooning is proposed in this work. It represents the 3D double integrator kinematics of
a UAS, further introducing linear first order input dynamics representing load factor
tracking loops. Dynamic limitations of the UAS (stall angle, maximum thrust etc.) are
represented by input magnitude saturations.
This Standard Vehicle Model (SVM) is of low complexity compared to the more realis-
tic model of a small UAS presented later, but is well suited to systematically study the
impact of dynamic effects such as inner loop dynamics that pose serious challenges to
the application of SMC techniques and in the development of new approaches to tackle
these challenges.
The equations of motion are given in a local North-East-Down tangent frame (index e).
We denote at some points this frame as local inertial frame, since, as common in short-
term flight simulation, effects of the earths motion w.r.t. inertial space are neglected, as
are local variations of gravity.
The continuous-time vehicle position dynamics of vehicle iw.r.t. the local inertial frame
follow from Newton’s second law to

xei (t) = (pe
T

i (t) ve
T

i (t))T (1.1.1)
ṗei (t) = vei (t) (1.1.2)
v̇ei (t) = ge + Reg,in

g
i g (1.1.3)

where pei (t) is the vehicle’s position w.r.t. the NED frame, vei (t) denotes its velocity,
ngi are load factors due to aerodynamic forces including thrust acting on vehicle i ex-
pressed in the local guidance frame, Reg,i performs the rotation from that frame to the
NED frame, ge is the local gravity vector and g the norm of the nominal gravity vector
converting load factors into accelerations.

Exogenous disturbances

The load factors acting on the aircraft are assumed to be composed of nominal load
factor tracking outputs and unknown but bounded parasitic load factors due to atmo-
spheric turbulence, wake vortices of neighboring UAS and imperfect tracking:

ngi = ñgi + ngw,i (1.1.4)

To obtain synthetic load factor disturbances representative of those faced during cruise
flight, load factor tracking errors of the Cularis (see section 1.2) baseline inner loop
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Figure 1.1: Example time series of SVM load factor disturbances

controllers (see section 2.4.4) are recordedduring a simulated straight flight in turbulent
air under an ambient headwind of 20% of the airspeed. See figure 1.1 for an example
time series of the resulting load factor perturbations.

Load factor tracking dynamics

It is assumed that inner load factor controllers track a decoupled first order dynamics
reference model

˙̃ngi =

−τ−1
x 0 0

0 −τ−1
y 0

0 0 −τ−1
z

 (ñgi − sat(n̂gi (t),n
g
i (t),n

g
i (t))) (1.1.5)

where n̂gi are commanded load factors, ñgi is the state of the tracking loop, with the cor-
responding time constants τp for p = x, y, z and ngi ,n

g
i define time-varying box bounds

on the admissible load factors.
As will be shown later on, inner loop bandwidth and sampling time of the guidance
laws pose the principal issues for continuous time sliding mode control. By vary-
ing these parameters, the SVM can cover both the simple double integrator kinematic
model in its various forms used in the sliding mode literature (see e.g. [30]) and more
realistic configurations. The specific vehicle dynamics are captured by the inner loop
load factor controllers. Load factor tracking perturbations and tracking reference satu-
rations ngi (t),n

g
i (t) are specific to a given vehicle and mission environment.

1.2 Electric glider UAS model

While the SVM is useful for preliminary studies, a more realistic 6DOF UAS model in-
cluding rotatory dynamics, engine and actuator models is provided as a second major
component of the FFB benchmark and is proposed to evaluate guidance and algorithms
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Figure 1.2: Cularis glider (image taken from www.multiplex-rc.de)

either by interfacing to build-in load factor tracking loops (see sec 2.4.4) or directly ac-
cessing aircraft engine and servo actuator inputs.

1.2.1 Aerodynamics and actuators

There is an abundance of possibilities to model the aerodynamic coefficients of an air-
craft, reaching from look-up tables to neural networks. Following the principle of mini-
mum necessary complexity, here a simple model of the aerodynamic coefficients based
on a truncated Taylor expansion and a quadratic drag polar has been adopted. The
aerodynamic force and moment coefficients in the wind frame are given by

CD = CD0 + (CL,0 + CL,αα)2 1

πeΛ
+ CDδeδe + CDqq + CDδf δf (1.2.1)

CY = Cyββ + CYpp+ CYrr + CYδaδa + CYδr δr (1.2.2)
CL = CL0 + CLαα + CLqq + CLδeδe + CLδf δf (1.2.3)

Cl = Clββ + Clpp+ Clrr + Clδaδa + Clδr δr (1.2.4)
Cm = Cm0 + Cmαα + Cmqq + Cmδeδe + Cmδf δf (1.2.5)

Cn = Cnββ + Cnpp+ Cnrr + Cnδaδa + Cnδr δr (1.2.6)

Aerodynamic coefficients are adopted from [31], where the vortex lattice software AVL
is used to obtain an aerodynamic model of a small electric glider airplane (Multiplex
Cularis, depicted in flight in figure 1.2).

Control surface actuators and engine A second order approximation of a typical
miniature servo actuator has been determined in previous work [32] by system identi-
fication: (

δ̇i

δ̈i

)
=

[
0 1

−ω2
n −2ζωn

](
δi

δ̇i

)
+

[
0

ωn

]
δi,c (1.2.7)
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with the natural frequency ωn = 62.8 s−1 and the damping coefficient ζ = 0.8. This
model is augmented here by adding realistic saturations on deflection and deflection
rate

δi ∈ [−π
4
,
π

4
] rad (1.2.8)

δ̇i ∈ [−5.8, 5.8]
rad

s
(1.2.9)

The engine is modeled as first order system

δ̇en = τ−1
en (δen,c − δen) (1.2.10)

where τen = 0.27−1s−1. The thrust T is then computed using a simple model based on
momentum theory (from [33]) as

T =
ρ

2
SenCen((kenδen)2 − V 2

a ) (1.2.11)

with the propeller disc surface Sen, the thrust constant Cen and the engine constant ken.

1.2.2 Kinematics

Using 1.2.1-1.2.6, the aerodynamic forces andmoments in the body frame are computed
as

Fa = Rbwq̄S

CDCY
CL

+

T0
0

 (1.2.12)

Ma = Rbw

q̄Sb 0 0

0 q̄Sc 0

0 0 q̄Sb


Cl

Cm

Cn

 (1.2.13)

with the vector of forces Fa and the vector of moments Ma, assuming that the thrust
vector is aligned with the body frame x axis and coincides with the center of gravity.
Translational accelerations in the body frame result to

v̇b =
1

m
Fa − (ωb × vb) + Rbeg

e (1.2.14)

where v is the translational velocity of the body framew.r.t the inertial frame expressed
in body frame axes, and ωb is the angular velocity of the body frame w.r.t the inertial
frame expressed in body frame axes. The rotation rate of the earth can be neglected
due to the short duration and range of the considered UAS flight maneuvers (the full
benchmark takes about 4 minutes to complete at a nominal trajectory speed of 15 m/s)
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and our focus on local relative guidance.
Angular accelerations about body frame axes follow to

ω̇b = −J−1(ωb × (Jωb)) + J−1Ma (1.2.15)

with the inertia tensor J. With these accelerations, standard integration techniques
and transformations can be used to propagate angular and translational velocities and
positions over time to compute the aircraft’s full state, which is given by

x =
(
pe

T
ve

T
qTeb ω

bT
)T

(1.2.16)

with NED position pe, NED velocity ve, the attitude quaternion qeb and the vector of
rotation rate about body axes ωb.

1.2.3 Wind disturbance modeling

The UAS is subject to exogenous disturbances due to atmospheric free air turbulence
and the wake vortices of surrounding UAS. These are taken into account as additional
system inputs, extending the input vector to

u =
(
δe δa δr δen δf vTw ω

T
w

)T
(1.2.17)

with the control surface deflections δe (elevator), δa (differential aileron), δr (rudder),
δen (throttle setting), δf (flaps) and the induced wind vw and induced angular rates ωw.

Wind The atmospheric wind is assumed to be a linear combination of a constant am-
bient part and a time-varying stochastic part, leading to induced velocities in the body
frame

vbw(t) = Rbe(v
e
w,a + vew,s(t)) (1.2.18)

and corresponding perturbations in airspeed Va and wind angles α, β and induced an-
gular rates ωbw(t). Wind time series are generated according to the Dryden turbulence
spectrum [34].

Wake vortex disturbances A variety of approaches has been proposed to approxi-
mate the effects of trailing vortices on the following UAS, mostly based on modified
Horseshoe Vortex models (HVM) (e.g. [9]), Vortex Lattice methods (VLM) (e.g. [35]),
or even, very recently, real-time CFD approaches [36]. For the proposed benchmark, a
HVMwithmodified core model presented in ([37]) is adopted. It is reported to provide



1.2. ELECTRIC GLIDER UAS MODEL 13

0

0.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.2

0
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predictions that are in good agreement with both VLM models and wind tunnel mea-
surements while allowing for reasonable simulation times on a standard PC. From a set
of induced velocities at discrete points on the airframe, by using an averaging scheme,
an approximate induced airspeed vector and induced angular rates are generated in
function of the inter-UAS separation vector, see [37] for details.
In figs. 1.3-1.4 the resulting normalized aileron deflection and normalized propulsion
power gain for the Cularis model over a range of lateral and vertical separations are
displayed. The normalized propulsion power gain is defined as

∆P

Pj
=
Pj − Pi
Pj

(1.2.19)

where Pi, Pj are the mean engine power in cruise flight of the follower and the prede-
cessor, respectively. The lateral and vertical separations ∆ygo ,∆z

g
o are deviations from

the position of minimum power draw.

Note that for the Cularis UASmodel, themodel predicts rathermodestmaximumgains
of just over 6%. This does not come unexpectedly due to the approximate nature of the
vortex model and the quite complex aerodynamic interactions considered. Note, how-
ever, that the objective of the benchmark is not accurate quantitative prediction, but
comparison of competing flight control strategies under identical conditions. To this
end, a vortex interaction model that predicts the major trends is considered fully suffi-
cient.
Trim aileron deflections displayed in figures 1.3 and 1.4 suggest that in this particu-
lar setting, vortex disturbances are not a major factor for attitude control, since input
resources are only reduced by maximally about 10%.
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1.3 Benchmark trajectory

To be feasible, a flight trajectory needs to be consistent with the dynamics of the UAS.
Strictly, this implies continuity of flight path derivatives down to servo control inputs,
taken even more strictly down to the second derivative of servo inputs, assuming sec-
ond order servo dynamics. For a fixed wing UAS this translates into C6 continuity. In
reality, C2 continuity, corresponding to continuous accelerations, is usually sufficient
due to very small differences in resulting trajectories when requiring higher order con-
tinuity.

The proposed benchmark includes a trajectory composed of cubic Bézier splines, based
on a two-step feasible path planning approach, presented by the authors of [38] for au-
tonomous helicopter flight. After planning first a waypoint-based trajectory composed
of straight lines, a series of C2 continuous smoothing splines is computed to obtain
a feasible approximation. Maximum curvature is a design parameter of the smooth-
ing splines and allows to adapt it to specific vehicle constraints such as maximum lift.
The curvature of the benchmark trajectory is depicted in figure 1.5. The benchmark
trajectory consists of a straight part to evaluate cruise flight performance, followed by
subsequent climb and descent maneuvers, a 90° turn and, inspired by [19, 39], an ap-
proximately helical part (see figure 1.6) to evaluate performance during simultaneous
climb/descent and turn maneuvers. In the context of upwash exploitation, the cruise
flight segment allows to compute useful figures of merit, since typically a major part of
UAS long rangemissions is spent in cruise flight. Themaneuvering segments of the tra-
jectory add predecessor accelerations as additional disturbance and are suited for the
study of maximum control errors as well as the propagation of maneuvering effects.
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Figure 1.5: Benchmark trajectory, curvature over arc length

1.3.1 Arc length parameterization

Smoothing a waypoint-based trajectory following [38], the resulting curvature-limited
sequence of cubic Bézier splines are parameterized with the spline parameter t ∈ [0, 1].
For evaluation of the formationposition andvelocity over time, an arc length parametriza-
tion is more convenient. Using the method proposed by the authors of [40], we first ap-
proximate the arc length of each trajectory spline Si by integration of piecewise linear
samples and then fit a piecewise polynomial cubic spline S̃i to discrete samples of the
spline parameter over the arc length. For a given arc length the corresponding spline
parameter is then found by evaluating S̃i.

1.3.2 Trajectory primitives

Based on the corner smoothing approach [38], a number of trajectory primitives have
been implemented that can be chained to form arbitrary maneuver sequences in possi-
ble future extensions of the benchmark trajectory. Each trajectory is built up by adding
primitives in an incremental manner, i.e. when adding a primitive, the heading of the
last leg ψ̂ and the end point P̂ is modified by an certain increment, avoiding the need
for keeping track of frame transformations. In the following we use the rotation matrix
between the NED frame and a frame corresponding to an NED frame rotated about the
NED z axis by a given heading angle defined by

Ret(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1s

 (1.3.1)

Cruise flight The cruise flight primitive adds an additional waypoint to the trajec-
tory in function of a desired incremental trajectory heading ∆ψ and a desired segment
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length d as

∆P = Ret(ψ̂ + ∆ψ)

d0
0

 (1.3.2)

Climb-Descent The climb primitive is based on adding a waypoint to the trajectory
in function of a desired climb angle γ, altitude increment δh and trajectory heading
increment ∆ψ. The waypoint increment results then to

∆P = Ret(ψ̂ + ∆ψ)


∆h

tan γ

0

−∆h

 (1.3.3)

Turn A turn adds two successive waypoint increments according to a desired turn
angle ∆ψ and turn leg distance d as

∆P1 = Ret(ψ̂)

d0
0

 , ∆P2 = Ret(ψ̂ + ∆ψ)

d0
0

 (1.3.4)

Helix The helix maneuver primitive is parameterized by turn radius r, climb or de-
scent altitude per turn ∆h, vertical center unit vector c indicating sense of rotation and
number of turns n. Due to their non-constant curvature, Bézier splines can only ap-
proximate a circular helix. The approximation can be made arbitrarily close to the true
helix by increasing the number of waypoints per turn N , with the corresponding in-
crease in memory footprint. Starting from the initial heading ψ̂ the initial radius vector
and the initial waypoint increment are computed to

r0 = −rc×Ret(ψ̂)

1

0

0

 (1.3.5)

∆P1 = Ret(
π

N
)r0 − r0 (1.3.6)

and the sequence of waypoint increments is given recursively by

∆Pi = Ret(
2π

N
)∆Pi−1 +

 0

0

−∆h
N

 for i = 2...nN (1.3.7)
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Figure 1.7: Isoview of completed benchmark trajectory in UAV3D

1.4 Visualization
A lightweight visualization environment based on the Java jmonkey game engine [41]
has been developed to display the attitude and positions of multiple UAS in a synthetic
3D environment. It has proven to enhance productivity while developing and debug-
ging control laws as well as the UAS simulation model itself. It is interfaced with the
Simulink dynamics simulation via aUDP (UserDatagramProtocol) network link. Since
the visuals have to be updated only at amoderate rate of about 30Hz for human percep-
tion, sending UDP packets only adds a small overhead to the overall simulation time.
The tool currently provides several UAS 3D models (glider, electric glider, quadcopter)
as well as the possibility to display wake vortex cores.

Computational effort Formations of three UAS have been simulated on an Intel i7
4-core machine close to real time in Simulink® normal simulation mode. Running the
benchmark in Simulink® Accelerator mode, where a standalone executable is compiled
for the host machine, allows for considerable speedups. It comes however with the
downside that control laws have to be implemented in the limited subset of
Simulink® /Matlab® compatible with code generation.

Figure 1.8: N=3 formation in UAV3D



Chapter 2

On guidance and control algorithms for
tight formation flight

A variety of guidance architectures has been considered in the formation flight and ve-
hicles platooning community, from fully centralized ones over those employing leader
information to ensure string stability, circular architectures and bidirectional to fully
decentralized ones relying only on relative states between neighboring vehicles. In this
work we consider a unidirectional predecessor-follower configuration, as it minimizes
data exchange within the formation and is convenient for visual localization.

2.1 Main objectives

Tight formation flight confronts us with two principal control objectives: avoiding col-
lisions entirely and maximizing the aerodynamic gain from the neighbor’s wake. For
the first objective, obtaining a useful, i.e. not overly conservative upper bound on the
maximum control error is desirable.
For the second objective it is convenient to consider the loss in upwash gains intro-
duced by imperfect tracking of the sweet spot or equivalently the added power con-
sumption. Loss in energy savings correspond to integrated loss in propulsion power
savings, which are proportional to relative position tracking errors. The relation can
locally be approximated as quadratic (see figs. 1.3,1.4)

∆Pk ≈ (cy∆y
g2

o,k + ∆zg
2

o,k) (2.1.1)

19
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The added energy consumption for a configuration λ over a flight of N samples with
sample time Ts then being approximated by

∆Eλ ≈ Ts

N∑
k=1

∆Pλ,k (2.1.2)

we can write the relative efficiency of two configurations λ and κ as

∆e ≈Ts
∑N

k=1 ∆Pλ,k

Ts
∑N

k=1 ∆Pκ,k
(2.1.3)

=
1
N

∑N
k=1(cy∆y

g2

o,λ,k + cz∆z
g2

o,λ,k)

1
N

∑N
k=1(cy∆y

g2

o,κ,k + cz∆z
g2

o,κ,k)
(2.1.4)

The weighted mean squared (WMS) tracking error

eλ(cy, cz) =
1

N

N∑
k=1

(cy∆y
g2

o,k + cz∆z
g2

o,k) (2.1.5)

is therefore a simple and meaningful performance index to compare the energy effi-
ciency of different configurations (such as different guidance laws). Recall that in the
longitudinal channel, larger errors can be tolerated since the upwash gain is much less
sensitive than it is w.r.t. lateral and vertical variations. The predecessor tracking prob-
lem we deal with in this chapter is thus the following:

Minimize the weighted sum of squared tracking errors given by relation (2.1.5), while
providing guaranteed, i.e. deterministic bounds on the maximum deviation from the
nominal relative position.

This tracking problem is generally harder for smaller UAS than larger aircraft as we
elaborate on in the next section in some more detail.

Scaling effects affecting small UAS

Tight formation flight demonstrating large upwash gains under automatic control has
been demonstrated on a pair of supersonic F/A-18 fighter aircraft in 2001 [7]. Rare
demonstrations with small UAS that are close to TFF tracking requirements have been
reported more than ten years later [14], raising the question of fundamental obstacles,
in more informal terms: if it has been done on large aircraft, why not on small ones?
Scale analysis allows some order-of-magnitude insight into how airframe size impacts
the TFF problem.
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Scaling of sensitivity towards turbulence

Atmospheric turbulence and wake vortices are the predominant source of disturbance
in tight formation flight. Disturbances in the vertical translational dynamics due to
atmospheric turbulence can be separated into

• disturbances of direction of the airspeed vector, modifying the angle of attack
with the corresponding modification of aerodynamic forces and moments

• disturbances of the airspeed norm

Considering the airspeed vector expressed in the aircraft body frame, the angle of attack
is given by

α = sin−1

(
w

Va

)
(2.1.6)

where Va =
∥∥∥(u v w)T

∥∥∥. Since α is limited to small angles α < αstall, equation (2.1.6)
can be approximated by

α ≈ w

Va
(2.1.7)

Adopting a truncated first order Taylor expansion of the lift coefficient, the vertical load
factor due to lift, using 2.1.7 is approximated by

nz ≈
(CL0 + CLαα)Sbρ

2
V 2
a

gm
(2.1.8)

≈
(CL0Va + CLαw)Sbρ

2
Va

gm
(2.1.9)

The partial derivative of 2.1.9 w.r.t. w

δnz
δw

=
CLαSb

ρ
2
Va

gm
(2.1.10)

and of 2.1.8 w.r.t. Va

δnz
δVa

=
CLSbρVa
gm

(2.1.11)

give an idea of load factor sensitivity w.r.t. turbulence. Note that for both sensitivities,
although the obvious mitigating effect of mass favors larger aircraft, we have the air-
speed in the numerator, making the relation not immediately obvious. In planar cruise
flight we can compute the lift coefficient irrespective of airframe aerodynamics since

CL =
2mg

SbρV 2
a

(2.1.12)
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Cularis UAS NASA AFF F/A-18

b [b] 2.61 11.43
m [kg] 2 16525
Va [m/s] 15 173
S [m2] 0.42 37.16
ρ [kg/m3] 1.25 0.56
CLcruise [−] 0.12 0.04
δnz
δVa

[s/m] 0.0667 0.0058

Table 2.1: FFB benchmark and AFF flight condition parameters and load factor sensi-
tivity

simplifying the sensitivity 2.1.11 to

δnz
δVa

=
1

Va
(2.1.13)

It is therefore a useful and simple comparative metric.
Typical flight conditions of the small UAS considered in the FFB benchmark (see chapter
1) and the NASA AFF program [7, 42] and the corresponding sensitivities are given in
tab. 2.1. Note that for the Cularis UAS, an airspeed perturbation of the samemagnitude
causes load factor perturbations that are roughly ten times as high as those acting on
the F/A-18 aircraft. Similar arguments can be made for the lateral channel and the
rotatory dynamics. This snapshot result sheds some light on the relative difficulty of
performing TFF with small UAS.

2.2 A brief state of the art
Despite a considerable interest in tight formation flight strategies for small UAS, only a
few flight test results are reported so far. This is in contrast to a larger body of published
experimental results on automatic TFF with manned aircraft.
After early advancements [13] achieving meter-level formation flight of a heteroge-
neous pair of two small UAS, incremental improvement could be gained in the fol-
lowing years, see e.g. [11, 15], and a broad variety of guidance schemes tailored to
predecessor following has been developed.
In an attempt at automatic aerial drogue docking with two identical small UAS (b =

2m), the authors of [14] report impressive achieved position errors of
(∆xTRMS ∆yTRMS∆zTRMS)T = (0.42b 0.44b 0.22b)T in cruise flight under an average wind
of 30 % of the airspeed, using proportional guidance laws augmented with a feed for-
ward scheme, operating on inertial speed as interface variable. The use of monocular
machine vision in combination with single-frequency GNSS makes the presented ap-
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proach well suited for low-cost UAS.
Both [13] and [14] choose velocity as interface variable between inner and outer loops In
all cases collision avoidance guarantees are not taken into account explicitly and con-
trol synthesis involves manual gain tuning. These experimental results suggest that
performance close to the requirements of meaningful upwash exploitation and aerial
docking is available based on existing guidance and control techniques is within grasp.
However, improvement is still necessary, achievable for instance by better system iden-
tification and careful control gain tuning.

On the other hand, sliding mode control in theory promises excellent performance and
disturbance robustness while requiring little knowledge about the controlled system.
Sliding mode control gains can systematically be derived from disturbance bounds. As
is well known, adapting sliding mode to the constraints posed by real-world system
invariably deteriorates the excellent performance of ideal sliding mode. We consider
it worthwhile, as a research effort complementary to established guidance techniques
to explore techniques to minimize the extent of this performance deterioration. Excel-
lent position tracking performance could be the reward, as our simulations suggest, see
section 2.6. In the following, we first propose a baseline control architecture - adapted
to the hardware resources of small UAS - accompanied by baseline LQ guidance and
control laws. We then proceed to the design of a novel predictive discrete sliding mode
control law in section 2.5.1 that can considerably reduce position tracking errors - find
simulation results in section 2.6 - and requires less tuning effort from the control de-
signer than the LQ guidance laws.

Notation and terminology In slight contrast to standard terminology, we denote the
separation between UAS along the x axis of the guidance frame as longitudinal, along
the y axis as lateral, and along the z axis as vertical separation. This is due to the afore-
mentioned less critical importance of downstream inter-vehicle separation.

2.3 Guidance and control architecture
Maintaining a position in the wake of a preceding aircraft close to that of maximum
upwash energy gain constitutes a 4D trajectory tracking problem. Not only a position
trajectory needs to be followed (the path tracking problem), but each position needs to
be visited at a specific time. By posing the problem in a moving frame attached to the
UAS’s nominal position, or, equivalently, considering the deviation fromapossibly time
varying reference position, the problem can, without loss of generality, be reduced to
a 3D position regulation problem subject to a number of disturbances the control laws
need to reject.
Tracking trajectories within the formation, e.g. during a leader switch in a rotating
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Figure 2.1: Guidance and control architecture of follower i and a predecessor j

leader configuration, can be handled in the same way by treating the change in refer-
ence position as further disturbance. We make no assumptions about the orientation
of the formation trajectory w.r.t. to gravity other than it is feasible. We make some
assumptions on what constitutes the available control inputs of a typical small UAS.

Control resources: assumptions

The minimally available control inputs of a typical fixed-wing UAS configurations are
thrust setting and commanded elevator, aileron and sometimes rudder deflection. These
inputs naturally limit the control bandwidth (we use the term informally here, since it
only applies to linear systems in its strict sense) by which aerodynamic translational
forces can be generated and disturbances can be counteracted, since lift is influenced
by rotating the airframe about the y axis, and generating side forces involve either bank-
ing or yawing. The closed loop rotatory dynamics obviously depend on airframe pa-
rameters and available servo actuators, but in very general terms, both longitudinally1,
laterally and vertically control bandwidths of the same order of magnitude are avail-
able. Considerable bandwidth in the critical lateral and vertical channel can be gained
by adding control surfaces that have a direct impact on aerodynamic lift and side force,
rendering the aircraft fully actuated. This approach has been taken by [10]. Side force
generators add the benefit of further decoupling lateral and vertical control. There is
thus a trade off between available control bandwidth and the design effort of retrofitting
direct force generating surfaces. This effort can be considered significant especially in
the lateral channel, adding furthermore additional drag, whereas flaps for Direct Lift
Control (DLC) can be added comparatively simple. We therefore assume in this work
that flap control surfaces are available. Note that some flying wing configurations of
low wing sweep do not permit using flaps for DLC.

1considering the electric engine model used in the FFB benchmark
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Two-layer nested architecture Although bynowmeans imposed by aircraft dynamics
it is widely common in flight control to adopt amultiple-loop architecture, subdividing
the problem into "guidance" and "control" problems.
Arguments in favor of nested control loops are of practical nature. Both control de-
sign and implementation are facilitated, since inner loops can be designed and tested
separately. Inner loop control laws can be re-used and outer guidance loops can be de-
veloped on simplified models of the inner closed-loop dynamics. Nested architectures
provide an abstraction layer bearing strong resemblance to abstraction layers found in
software design and share the same benefits, i.e. reducing the complexity of a system
to manageable proportions. As a further benefit of multiple loops, guidance laws can
be implemented at the typically moderate observation rates of localization sensors, re-
ducing the need for high-rate state estimation. A great many existing UAS trajectory or
path tracking control architectures are based on nested control laws, often relying on
timescale separation arguments.
As is argued in this chapter, by the right choice of separation into outer and inner loop
states, full use can be made of the aforementioned advantages by reducing the inner
loop closed loop dynamics to an uncertain, but purely kinematic system. A popular
choice of interface variable2 are Euler angles, since in planar cruise flight the pitch an-
gle Θ is approximately related to the angle of attack α and thus aerodynamic lift; the
bank angle is approximately linearly proportional to lateral load factors (see section
2.4.3) for small angles. During trajectory transients, e.g. climb maneuvers, this Θ ≈ α

assumption holds less, invariably deteriorating control performance. Tracking angle of
attack at the inner loop level circumvents this issue, but requires additional instrumen-
tation. Furthermore, from the perspective of the outer loops, the inner loop appears as
time-varying systemdepending on a number of aerodynamic coefficients such asCLα of
which usually only approximations from system identification are known. Since both
inner and outer loops are affected by uncertain aerodynamic coefficients, robust control
techniques that can deal with these parametric uncertainties need to be employed on
both levels. It would appear desirable to choose a set of interface variables that contain
model uncertainty at the inner loop level.
Both load factor and velocity are candidates for such a kinematic inner/outer loop in-
terface. Estimating inertial velocity onboard small UAS relies however exclusively on
GNSSDoppler and carrier phase observations. A temporary loss of GNSS observations
renders the inner loops nonoperational.
Load factors, on the other hand, can be estimated under loss of GNSS, although with
reduced accuracy due to increasing AHRS errors without GNSS.
3D load factors as interface variables, although employed e.g. by [43], appear to have
found negligible attention in the flight control community, while providing consider-

2By interface variables we mean those aircraft states that are tracked by inner controllers and serve as
virtual control inputs for the outer controllers
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able advantages that are exploited in this work. Nonlinear dynamic inversion (NDI)
based inner loops such as proposed in [11] are a similar approach, making however
the strong assumption that aerodynamic forces can be generated instantaneously, i.e.
that the vehicle is fully actuated. Load factor tracking, on the other hand does not pre-
clude taking tracking dynamics – due to rotatory and actuator dynamics – explicitly
into account. Being able to track load factors allows to base the design of outer laws
on a purely kinematic design model. In the ideal case, the dynamics of the vehicle are
completely governed by the inner loops. Note that uncertainties of the aerodynamic
model of the vehicle affect the outer loops only insofar as they might lead to inner loop
tracking errors.
A load factor interface is vehicle agnostic, insofar as it can accommodate fixed wing as
well as helicopter andmultirotor configurations and could even be used for underwater
vehicles. The specificities of the different vehiclesmanifest themselves in the achievable
closed loop load factor tracking dynamics and time-varying constraints on admissible
load factors. Guidance laws can be developed on simple kinematic models, provided
accurate load factor tracking can be implemented on the concerned vehicle. Further-
more an existing interface based on Euler angles and thrust can be cast as a load factor
interface by simple transformations.
Note that the above arguments do not constitute a claim that load factor tracking is an
inherently superior choice. We claim however that it is a convenient and elegant choice,
largely reiterating arguments given in [43], since it allows to confine aircraft-specific dy-
namics to the inner loops, thus providing a very useful abstraction layer for guidance
loop design.
In the following we consider a two layer guidance and control architecture as depicted
in figure 2.1. Its main elements are load factor tracking loops exposing commanded
load factors as virtual inputs and a novel predictive discrete sliding mode guidance
law complemented by a disturbance estimation scheme. Load factor control as well as
guidance laws operate in a local guidance frame defined in the sequel.

2.4 Baseline guidance and control laws

2.4.1 Guidance frame

The system to be controlled is a formation of n UAS flying in an arbitrary pattern. A
variety of guidance frames has been proposed in the literature, ranging from a planar
frame aligned with the follower’s velocity ([11]) to the predecessor’s body frame ([44]).
The primary objective of tight formation flight for energy saving purposes is to keep
each UAS at the position of maximum efficiency in the wake of its predecessor. Being
induced by the aerodynamic flow, the wake vortices are approximately aligned with
the predecessor’s instantaneous wind frame, plus the effect of trajectory curvature. For
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Figure 2.2: Predecessor-follower geometry longitudinal-vertical

maximum energy savings, the follower thus needs to keep its relative position constant
in this frame.

Nominal predecessor vortex frame

Since small UAS typically are not equipped with sensors for angle of attack and side
slip angle, a local guidance frame (index g) is introduced that approximates the pre-
decessor’s vortex frame. Its x axis unit vector ux,g is aligned with each predecessor’s
NED velocity vector. Its y axis should be aligned with the y axis of the predecessor’s
body frame, since the central axis of the vortices lies somewhere on the predecessor’s
wing. To avoid having to communicate the NED speed and attitude of each UAS to its
follower, the nominal speed and acceleration vector of each UAS on the current forma-
tion trajectory is used to derive a nominal guidance frame. These frames are computed
sequentially for each UAS, since the attitude of each nominal local guidance frame de-
fines the nominal NED position of the next one. For two subsequent UAS, predecessor
p and follower f , the nominal NED speed of f is computed as

vef = vep + ωep ×∆pef (2.4.1)

with the commanded separation vector ∆pef . Acceleration is given by

v̇ef = v̇ep + ωep × (ωep ×∆pe) (2.4.2)
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and the instantaneous rotation rate ωef of the guidance frame due to trajectory curvature
by

|ωef | =

(
|v̇ef |
|∆pe|

) 1
2

(2.4.3)

ωef = |ωef |
v̇ef × vef

|v̇ef × vef |
(2.4.4)

The x axis unit vector of the local guidance frame results then to

ux = |vef |−1vef (2.4.5)

The orientation of the z axis unit vector uz is derived from the simplifying assump-
tion that gravitational acceleration and centrifugal forces due to trajectory curvature
are compensated for by the thrust and drag along xg and by the aerodynamic lift in a
plane normal to xg. Further assuming that the aerodynamic lift Z lies in the x-z plane
of the body frames, first the total centrifugal and gravitational acceleration acting on
the aircraft is computed as

at = |ωp|2r + (0 0 g)T (2.4.6)

The z unit vector uz is then computed by projecting and normalizing the total acceler-
ation on the z-y plane of the g frame

at,zy = at −
at · ux
ux · ux

· ux (2.4.7)

uz = |at,zy|−1at,zy (2.4.8)

and uy completes a right-handed Cartesian coordinate frame

uy = uz × ux (2.4.9)

leading to the corresponding rotation matrix

Reg =
[
ux uy uz

]
(2.4.10)

composed of the unit axes of the guidance frame, see figure 2.2.
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2.4.2 Differential dynamics of a pair of vehicles

It complicates modeling, but simplifies control allocation to write vehicle dynamics in
the guidance frame. The vehicle position in the guidance frame is given by

pgi (t) = Rge(t)(p
e
i − peeg) (2.4.11)

where peeg is the position of the g frame w.r.t. the e frame expressed in the e frame. The
relative position error of vehicle i+ 1 w.r.t. its predecessor i is then given by

∆pgi (t) = Rge(t)(p
e
i+1 − peeg)−Rge(t)(p

e
i − peeg)−∆pgc,i(t) (2.4.12)

= Rge(t)(p
e
i+1 − pei )−∆pgc,i(t) (2.4.13)

with its first derivative

∆ṗgi (t) = Rge(t)(v
e
i+1 − vei )− Ωg(t)∆pg −∆ṗgc,i(t) (2.4.14)

and second derivative

∆p̈gi (t) =Rge(t)(v̇
e
i+1 − v̇ei ) + Ṙge(t)(v

e
i+1 − vei )− Ωg(t)∆ṗg

− Ω̇g(t)∆pg −∆p̈gc,i(t) (2.4.15)

where ∆pgc and its first two derivatives define the desired trajectory of the follower
in the guidance frame and where Ωg is the cross product matrix ([45]) of the angular
velocity ωg =

(
ωg,1 ωg,2 ωg,3

)T of the guidance frame w.r.t. the inertial frame

Ωg =

 0 −ωg,3 ωg,2
ωg,3 0 −ωg,1
−ωg,2 ωg,1 0

 (2.4.16)

and using

Ṙge = −ΩgRge (2.4.17)

Introducing

∆vgi (t) =Rge(t)(v
e
i+1 − vei )−∆ṗgc,i(t) (2.4.18)

ξv =Ωg(t)∆pg (2.4.19)
ξa =Rge(t)v̇

e
i − Ωg(t)(∆vgi + ∆ṗgc,i(t))− Ωg(t)∆ṗg − Ω̇g(t)∆pg

−∆p̈gc,i(t) + gg + gngw,i+1 (2.4.20)
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and rearranging, the assembled dynamics in the g frame can be written in a linear form
convenient for control design as

∆ṗgi (t) = ∆vgi (t) + ξv

∆v̇gi (t) = gngi+1 + ξa
(2.4.21)

with the control input ngi+1 and the partly known disturbances ξv and ξa. The explicit
dependence on time is dropped in the following for better readability. Four different
sources of disturbances become apparent here:

• disturbances corresponding to inevitable load factor tracking errors of the fol-
lower w.r.t. inertial space (ngw,i+1)

• disturbances corresponding to the rotating guidance frame (i.e. Ω̇g(t)∆pg)

• disturbances corresponding to predecessor accelerations (v̇ei )

• disturbances corresponding to modifications of the commanded relative position
(∆p̈gc,i(t))

It is the objective of the guidance laws to track desired positions w.r.t. the predecessor
UAS. In the following we first present a set of baseline control laws based on the Linear
Quadratic Regulator (LQR) for the system given by equation (2.4.21) and then turn our
attention to potentially more powerful sliding mode guidance techniques.

2.4.3 LQ baseline guidance laws

To provide a standard to which to compare new control approaches, we design a set
of baseline LQ control laws as part of the FFB benchmark. For controller synthesis, the
respective subsystems are extracted from the full linear model. The structure of the
control laws is based on the usual assumptions of weak coupling between lateral and
longitudinal dynamics and timescale separation of attitude dynamics and translational
dynamics.
The synthesis procedure is the same for all four subsystems. It is shortly recalled here,
and the specific design systems for every controller are given in the respective sub-
sections. The time-invariant continuous time linear quadratic regulator minimizes the
following quadratic performance index

J =

∫ ∞
t0

(xTQx + uTRu)dt (2.4.22)
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with the positive semi-definite state cost matrix Q and the positive definite input cost
matrix R for a given linear system

ẋ(t) = Ax(t) + Bu(t) (2.4.23)

To track a given reference state xc, the tracking error dynamics are derived (dropping
in the following the explicit dependence on time) as

ẋe = ẋ− ẋc (2.4.24)
= Ax + Bu− ẋc (2.4.25)

The reference state is either constant, as in the static relative position tracking case, or
generated by the outer loop controller (e.g. the commanded bank angle). Its derivative
is here simply treated as unknown disturbance and set to zero for controller design,
leading to the state error dynamics

ẋe = Ax + Bu (2.4.26)

that are identical with the state dynamics. Tracking is thus achieved by a simple change
of state coordinates

xe = x− xc (2.4.27)

To cope with steady state tracking errors, integral action is added by augmenting the
system (2.4.27) with integral states(

ẋe

ẋi

)
=

[
A 0

G 0

](
xe

xi

)
+

[
B

0

]
u (2.4.28)

whereG is a sparse matrix defining the states that are selected for integral action. As is
common practice, wind disturbances and actuator and engine dynamics are neglected
for the LQR design systems. A linear model including models of actuators and engine
is used for fast evaluation of candidate controllers during controller tuning. Note that
states and inputs are deviations from the operating point where the design model has
been obtained by linearization and that for implementation the corresponding operat-
ing point trim values need to be added.

Predecessor tracking

Longitudinal The control inputs of the longitudinal position control loop are the com-
manded longitudinal load factors nx and nz. In the absence of external disturbances
the integral LQ baseline controllers regulate the relative position and velocity errors
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asymptotically to zero. The design system in the guidance frame is given by



∆ṗgx
∆ṗgz
∆v̇gx
∆v̇gz

∆ṗgx,int
∆ṗgz,int


=

02 I2 02

02 02 02

I2 02 02




∆pgx
∆pgz
∆vgx
∆vgz

∆pgx,int
∆pgz,int


+

 02

gI2

02

(nx
nz

)
(2.4.29)

where Ip denotes a unity matrix of size p × p and 0p denotes a matrix of zeros of size
p × p. Note that virtual accelerations due to the rotating guidance frame are lumped
into the unknown disturbances here and neglected in the design model.

Lateral The lateral control strategy is derived from the coordinated turn assumption

F e
a,z ≈ mg (2.4.30)

F e
a ≈

mg

cos Φ
(2.4.31)

⇒ngy,c ≈
sin Φg

cos Φ
(2.4.32)

⇒ Φg
c = sin−1(ngy cos Φ) (2.4.33)

thus lateral load factors in the local guidance frame are generated by inclining the ap-
proximate lift vector F e

a via the bank angle w.r.t. the guidance frame, Φg. The resulting
simple LQ design system is given by ∆ṗy

∆v̇y

∆ṗy,int

 =

0 1 0

0 0 0

1 0 1


 ∆py

∆vy

∆py,int

+

0

g

0

(ny,c) (2.4.34)

and the commandedbank angle in the local guidance frame is computedusing equation
(2.4.33).

We proceed to design a set of integral LQ load factor controllers for the vertical and
lateral channel.

2.4.4 Some elements of load factor tracking loop design

The first set of controllers tracks pitch and bank angle tracking commands, representing
a rather classic approach, and then applies transformations to approximate vertical and
lateral load factor tracking. It is part of the benchmark presented in chapter 1. In a
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second step, an integral LQ control for vertical load factors is presented based on an
augmented state and employingDirect Lift Control for improved tracking performance.

LQ baseline load factor tracking

Commercial as well as open-source UAS autopilots typically provide some kind of ba-
sic attitude tracking laws e.g. based on PID control. We keep this assumption for the
baseline control laws, emulating the presence of standard inner loop control laws and
design a set of LQ attitude tracking laws, but apply transformations to expose a load
factor tracking interface to the guidance laws.

Attitude tracking The inner loops consist of separate pitch angle and bank angle
tracking laws. Both angles are not the usual Euler angles w.r.t. to the NED frame but
are the instantaneous rotations about the y and x axes of the body frame required to
rotate the body frame into the desired attitude. Assuming that the derivatives of the
commanded attitude are sufficiently bounded, the body frame stays close to its desired
attitude and issues arising at Euler angle singularities are avoided. That being said, the
commanded attitude rotation matrix w.r.t. to the NED frame is composed as

Reb,c = Reg Rbg
T
,c(Φ

g
c ,Θ

g
c) (2.4.35)

where

Rbg
T
,c(Φc,Θ

g
c) =

 cos Φg
c sin Φg

c cos Θg
c sin Φg

c cos Θg
c

− sin Φg
c cos Φg

c cos Θg
c cos Θg

c sin Θg
c

0 − sin Θg
c cos Φg

c

 (2.4.36)

Note that the heading angle in the guidance frame is not actively tracked and is set to
zero. Virtual angular velocities due to the rotating guidance frame are lumped into the
unknown disturbance and neglected in the design models.

Longitudinal The pitch attitude design system is given by Θ̇g

q̇

Θ̇g
int

 =

[
Alon,att 0[

1 0
]

0

] Θg

q

Θg
int

+ Blon,att

(
δe

)
(2.4.37)

Vertical load factor tracking Approximate nominal vertical load factor tracking can
be achieved by assuming Θg ≈ α in level cruise flight and using the nominal lift coeffi-
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cient 1.2.3 to compute Θg
c , dropping small coefficients to

Θg
c = C−1

Lα
(
nz,c g

q̄Sb
− CL0) (2.4.38)

Longitudinal load factor tracking Approximate load factor tracking in x is obtained
by inversion of the engine model 1.2.11, i.e. solving equation (1.2.11) for the engine
command δen,c given a commanded thrust force Tc = nx,cgm.

Lateral load factor tracking The lateral attitude law fulfills two requirements: track-
ing a commanded local bank angle and adding damping to the weakly damped dutch
roll mode. The second objective is achieved by adding the yaw rate r to the state vector
of the design system and choosing an appropriate weight in the LQR synthesis matrix
Q. The design system is thus given by:

∆Φ̇

ṗ

ṙ

∆Φ̇int

 =

[
Alat,att 0[
1 0 0

]
0

]
∆Φ

p

r

∆Φint

+ Blat,att

(
δa

δr

)
(2.4.39)

Incorporating Direct Lift Control

Direct Lift control (DLC) has been considered as early as the sixties [46] to improve
fixed wing aircraft responsiveness in the vertical channel. Used in manned refueling,
the authors of [47] report improvements in station holding by flaperons. In [48] Direct
Lift Control by dedicated control surfaces is used for improved flight path following.
In another very recent contribution [49] an adaptive NDI scheme is successfully em-
ployed using DLC to improve altitude tracking of a UAS under the assumption of sep-
arate flaps. Using DLC, aerodynamic lift can be influenced with considerably higher
bandwidth than through the pitch channel.
The Cularis UAS model that is part of the FFB benchmark features separate flaps for
improved glide performance while thermaling and shortened landing distances. Here
we exploit these control surfaces for Direct Lift Control. The most simple control struc-
ture consists of tracking vertical load factor commands solely by DLC, while stabilizing
the short period motion by some auxiliary control. DLC lift resources are however lim-
ited due to mechanically limited flap deflections and flap size. The two input channels,
pitching – slower, but with maximum lift only limited by the stall angle and available
thrust – and DLC surfaces – fast but of limited magnitude – have thus complementary
properties when it comes to lift control. As we will see in this section, by augment-
ing the linearized load factor dynamics with auxiliary states, LQ state feedback control
can be designed that exploits these complementary properties in a systematic way via



2.4. BASELINE GUIDANCE AND CONTROL LAWS 35

the usual LQR tuning matrices. Consider the short period dynamics captured by the
vertical load factor nz and the pitch rate q [50](

ṅz

q̇

)
= A

(
nz

q

)
+ B

(
δe

δf

)
(2.4.40)(

nz

q

)
= C

(
nz

q

)
+ D

(
δe

δf

)
(2.4.41)

where we assume that C = I2, i.e. direct observations of load factor and pitch rate are
available from the onboard AHRS. Note that the feedthrough matrix D has nonzero
entries, since both control entries generate direct lift. We extend the state vector by
defining the input derivatives as new virtual control inputs, rendering D zero. We fur-
ther add the integral of nz to the states for zero steady steady state tracking error.
Furthermore, we would like the control to employ δf only for the high-frequency por-
tion of the tracking task, to avoid saturation. This is achieved by including the integral
of the flap deflection δf as additional state, leading to the augmented LQRdesignmodel

ṅz

q̇

δ̇e

δ̇f

nz

δf


=


A B 02

02 02 02[
1 0

]
01×2 01×2

01×2

[
0 1

]
01×2





nz

q

δe

δf∫
nz∫
δf
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+

02

I2

02

(δ̇de
δ̇f

)
(2.4.42)

The LQR cost-to-go matrices Q,R are selected as diagonal matrices. The diagonal en-
tries of the tuning matrices have an intuitive appeal, as most have a direct impact of a
specific characteristic of the resulting control, such as an increase in Q2,2 increases the
short period damping etc.
See figure 2.3 for a tracking example. Note that due to the integral penalization of flap
deflections δf , flaps are only employed at the beginning of a tracking move and rapidly
return to zero, while the lower frequency portion of the load factor is carried by aero-
dynamic lift due to angle of attack, indicated by non-zero steady state δe.

2.4.5 Benchmark performance

When applied to the FFB benchmark, these basic guidance and control laws provide
good performance under cruise flight conditions, but insufficient disturbance rejection
during predecessor maneuvering, see simulation results in section 2.6.
Inwhat follows, we review the applicability of slidingmode control to the relative guid-
ance problem. We present predictive discrete sliding mode guidance laws that provide
improved tracking performance both in cruise flight and during maneuvers.
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Figure 2.3: nz tracking example, Cularis UAS model, DLC LQ control

2.5 Predictive discrete sliding mode guidance laws
Inmost general terms, it is the objective of control to enforce desirable systemdynamics.
SlidingModeControl (SMC) approaches this problem by first designing a hypersurface
– the sliding surface (SSF) – in state space that represents desirable, stable closed-loop
dynamics of the type

0 = σ(x, x(1), ...x(n)) (2.5.1)

where x(p) = dpx
dtp

and n is the highest derivative of x involved in the definition of the
desired dynamics. This general definition is by nowmeans exhaustive and often output
based sliding surfaces are employed. Here we assume that estimates of the relative
position and velocity states are available and focus on state-based sliding surfaces. To
give a more concrete example, consider a perturbed first order system ẋ = u+w and a
linear sliding surface

0 = λx+ ẋ (2.5.2)

The general disturbancesw can lump together nonlinearities, the effects of modeling er-
rors as well as exogenous disturbances. This prescribed behavior forms a hypersurface
(in this simple example a line) in state space. In a control synthesis step, a control in-
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put u is designed that is guaranteed to drive the system states towards this surface even
underworst-case disturbancesw (reaching phase), mostly using Lyapunov approaches.
Once reached, the control keeps the system states confined to the SSF (sliding phase).
While moving along the sliding surface, the closed loop system is indistinguishable
from the design system represented by the sliding surface. In our example, the system
evolves according to

ẋ = −λx (2.5.3)

which is stable for λ > 0. While greatly differing in detail, all sliding mode approaches
are based on these basic principles.
Note that the underlying idea of SMC is quite different from other control techniques
and a quite audacious one: to instantly eliminate disturbances acting on a system by
a counteracting control input. In ideal sliding mode, guaranteeing system motion to-
wards the sliding surface at all times implies infinitely fast switching on the sliding
surface of a control input of sufficient magnitude to overpower the worst possible dis-
turbance driving the system away from the sliding surface.
It is this worst-case paradigm in concert with the use of continuous-time designmodels
that causes at once the great robustness properties of sliding mode control for certain
select classes of dynamic systems with matched3 uncertainty and potentially very poor
performance for many classes of real-world aerospace systems.
For an illustrative example, consider control of the vertical position of an aircraft. Dis-
turbances enter as accelerations. In order to generate counteracting accelerations, con-
trol inputs have to rotate the aircraft about the y axis, adding at least two integrators
between disturbances and inputs. Even in the presence of DLC devices, actuator dy-
namics render disturbances unmatched. What ismore, guidance laws are implemented
at finite discrete sampling rates, invalidating the assumption of instantaneous input
switching. Both effects, as is well known, lead to chattering, high frequency oscilla-
tions about the sliding surface and in the control inputs.

The approximate nature of both its basic assumptions - matched disturbances and in-
stantaneous switching - on most physical mechanical systems poses the major obstacle
to implementation of continuous time sliding mode control and a number of strate-
gies have emerged to improve on this fundamental issue. Boundary layer smoothing
approaches are based on replacing the discontinuous control inside a boundary layer
around the sliding surface by some linear or nonlinear continuous control law. Con-
tinuous approximations of the signum function such as the saturation or the sigmoid
function are popular examples of this class of chattering attenuation techniques. While
often successfully applied in practice, an important drawback results from the fact that

3The matching condition formalizes the property that disturbances enter the system by the same
channels as control inputs, in principle enabling the latter to instantaneously eliminate the former
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ideal sliding mode is lost even in the disturbance free continuous time case.
A more recent approach is based on including higher-order derivatives of the sliding
variable into the feedback. Higher order slidingmode control of order n forces not only
the sliding variable, but its time derivatives up to the order of n− 1 to zero. Input dis-
continuities appear in the (n − 1)th derivative of the control input. The necessity for
higher-order derivatives of the sliding variables for feedback purposes, introducing the
difficult task of real time signal differentiation, poses the principal implementation is-
sue ofHSOM techniques. HOSMobservers have been proposed for this purpose, which
however remains a challenging task in the presence of discrete sampling and noise. As
a notable exception for systems of relative degree one, the Super-Twisting controller
(STSMC) does not require derivatives of the sliding variable to enforce second order
sliding mode, i.e.

σ̇ = σ = 0 (2.5.4)

in finite time, making it a very popular choice in SMC applications. It is often proposed
as a remedy to recover perfect second order tracking in the ideal case, while providing
continuous implementable control input signals.
Discrete SlidingModeControl (DSMC), treated inmore detail in section 2.5.1 approaches
the chattering problem from a fundamentally different angle. Instead of designing the
control in continuous time and dealing with discretization effects in a second step, a
discrete time description of the design system is adopted.
In this chapter we present a brief study of the sensitivity of super twisting control w.r.t.
discrete sampling and first order input dynamics. We then address the design of a
constrained integral sliding surface that enables collision avoidance guarantees under
bounded control errors. We then present a novel predictive sliding mode control ap-
proach extending DSMC that approximates the continuous-time performance of clas-
sic sliding mode control while exhibiting heavily improved chattering properties in the
presence of discrete sampling and input dynamics.

2.5.1 Super twisting guidance laws with discrete sampling and inner
loop dynamics

Encouraged by the ability of super twisting control to provide continuous control with-
out requiring the derivative of the sliding variable, the authors of [16, 17, 18, 19, 20, 21]
propose the use of STSMC control for aircraft predecessor tracking. Consider the super
twisting controller proposed in [30] for tight formation flight. Extending trivially from
2D to 3D and assuming decoupled load factor tracking loops [25], it is given by

n̂gp = αp|σp|1/2sign(σp) + βp

∫
sign(σp)dt (2.5.5)



2.5. PREDICTIVE DISCRETE SLIDING MODE GUIDANCE LAWS 39

where p = 1...3 indicates the axes of the guidance frame. We consider the simple LTI
sliding surface defined by

σ(t) = Gx(t) (2.5.6)

x(t) =

(
∆pg(t)

∆vg(t)

)
(2.5.7)

where G ∈ R3×6. In the following, for the continuous-time case, the dependence on
time is dropped for notational convenience. With

G =
[
G1G2

]
(2.5.8)

the position error dynamics in sliding mode (σ = 0) are

0 =
[
G1G2

](∆pg

∆vg

)
(2.5.9)

∆vg = −G−1
2 G1∆pg (2.5.10)

Selecting −G−1
2 G1 as Hurwitz ensures that ∆p asymptotically converges to zero while

in sliding mode.
From equation (2.4.21) we have the open loop σ dynamics of relative vector degree
r = (1 1 1)T

σ̇ = Gẋ (2.5.11)

= G

(
∆vgi + ξv

gn̂gi+1 + ξa

)
(2.5.12)

The super twisting algorithm requires bounds on the disturbance magnitude and rate.
To simplify defining these bounds in this purely academic setting, we select an iner-
tial guidance frame aligned with the local inertial frame, making Rge(t) = I3 and re-
moving the unmatched disturbance ξv, a constant relative position command and no
atmospheric perturbations, reducing the remaining disturbance term ξa to

ξa = v̇ei − gg + gngw,i+1 (2.5.13)

Pre-compensating known terms by the equivalent control

n̂gi+1,eq = g−1(gg −G−1
2 G1∆vgi ) (2.5.14)

reduces equation (2.5.12) to

σ̇ = G2gn̂
g
i+1,1 − ξ̃a (2.5.15)
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where n̂gi,1 is the SMC control compensating the unknown disturbances

ξ̃a = v̇ei + gngw,i+1 (2.5.16)

We can easily enforce bounds on v̇ei by tracking a virtual predecessor following a sinu-
soidal trajectory satisfying v̇ei,p ≤ 1 for p = 1, 2, 3.
In the absence of atmospheric perturbations, load factor tracking errors captured by
the second term are solely due to unknown input dynamics. Assuming that ngi+1 is the
output of a stable LTI system of order one, representing well behaved inner loop load
factor tracking dynamics

ṅgi+1(t) = τ−1(n̂gi+1(t)− ngi+1(t)) (2.5.17)

introduces the obvious issue that equation (2.5.17) breaks the matching condition on
top of which classic SMC stability and performance proofs are built. When trying to
model this dynamics as feedthrough with additive disturbances, consider the system
in the Laplace domain

ngi+1(s) =
n̂gi+1(s)

1 + τs
(2.5.18)

The additive disturbance is

ngw,i+1(s) = 1−
n̂gi+1(s)

1 + τs
(2.5.19)

It follows immediately that for high input frequencies (s = jω → ∞), the disturbance
ngw,i+1(s) approaches the commanded input n̂gi+1(s), reducing the input margin avail-
able for disturbance rejection to zero. Existing proposed HOSM tight formation flight
laws sometimes circumvent this fundamental issue by neglecting the rotatory UAS dy-
namics altogether (e.g. [16]).

Illustration: Standard Vehicle Model closed loop response

To demonstrate the effects of neglecting inner loop dynamics and discrete implementa-
tion in the control design model, we apply 2.5.5 to a pair of two SVM models. Control
gains are computed according to [51]. For implementation, the STCSMC is sampled
with a zero-order hold scheme, leading to the Time-sampled Super Twisting (TSST)
controller . We evaluate the two performance indices - mean squared error and maxi-
mum absolute error - over the cruise flight flight segment of the FFB benchmark mis-
sion. Note that since only the vertical channel is considered, the corresponding weight-
ing coefficient of the weighted mean squared error (see equation (2.1.5)) can be set to
one. The FFB standard vehicle model (see chapter 1.1) is considered, and simulations
are run over a sweep of two parameters: inner loop time constant τ ∈ [τ , τ ] = [0.01, 0.5]
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Figure 2.4: Mean squared error and maximum vertical position error under sampled
super twisting control over envelope of controller sampling time and inner loop track-
ing time constant, SVM cruise flight scenario with periodic predecessor motion. White
areas mark performance indices exceeding one wingspan.

and controller sampling time Ts ∈ [T , T ] = [10−3, 10−1]. A sinusoidal acceleration of
0.1g acts on the predecessor. As seen in figure 2.4, good tracking performance can be
achieved for conditions close to the design model. Performance is however very sensi-
tive w.r.t. both parameters and exceeds the defined acceptable interval for a large part
of the parameter space. At moderate sampling rates and with realistic inner loop con-
stants, heavy chattering occurs, see time series of normalized position error and the
sliding variable in figure 2.5. The depicted four cases represent the corner points of the
sampling time and inner loop time constant envelope.
Note that these simulation results have to be considered with caution quantitatively
due to the severely simplified nature of the SVM, but qualitatively demonstrate the
rapid deterioration of TSST performance in the presence of moderate sampling times
and moderately fast inner loop dynamics.

Discontinuity in inner loops

A further, more fundamental limitation arises from the discontinuous first derivative
of STSMC control that acts as tracking reference for the inner loops. Consider a load
factor tracking law (without direct lift control) with the pitching moment coefficient



42 CHAPTER 2. GUIDANCE AND CONTROL

0 1 2 3 4 5

0

0.2

0.4

0 1 2 3 4 5

-0.2

0

0.2

0.4

Figure 2.5: Tracking error and sliding variable under sampled super twisting control
for corner points of sampling time and inner loop time constant envelope, SVM cruise
flight scenario with periodic predecessor motion

about the center of gravity given by [45]

Cmcg = Cm0 + Cmαα + Cmqq + Cmδeδe (2.5.20)

and assume a hypothetical equivalent control enforcing sliding mode pitch angle com-
mand tracking and an LTI first order sliding surface. For clarity of exposition, level
flight in calm air and thus θ̇ = q and α = θ is assumed. The sliding surface with time
constant τθ is given by

q = −τ−1
θ (θ − θc) (2.5.21)

σ = −τ−1
θ (θ − θc)− q (2.5.22)

Computing the equivalent control from σ̇ = 0, one obtains:

0 = −τ−1
θ (q − θ̇c)− q̇ (2.5.23)

= −τ−1
θ (q − θ̇c)−

q̄Sc

Jyy
(Cm0 + Cmαθ +

c̄

2Va
Cmqq + Cmδeδe) (2.5.24)

δe =

(
Cmδe q̄Sc

Jyy

)−1 [
−τ−1

θ (θ̇c − q) +
q̄Sc

Jyy
(Cm0 + Cmαθ +

c̄

2Va
Cmqq)

]
(2.5.25)

Note that the equivalent control is not only inversely proportional to the desired time
constant, it is also proportional to the commanded pitch rates θ̇c. Thus whether magni-
tude constraints of the elevator actuator are violated depends on the pitch rate reference
trajectory, which can be considered as a disturbance in equation (2.5.25). Further dif-



2.5. PREDICTIVE DISCRETE SLIDING MODE GUIDANCE LAWS 43

ferentiating, we obtain

δ̇e =

(
Cmδe q̄Sc

Jyy

)−1 [
−τ−1

θ (θ̈c − q̇) +
q̄Sc

Jyy
(Cm0 + Cmα θ̇ +

c̄

2Va
Cmq q̇)

]
(2.5.26)

Note that to guarantee bounded actuator input rates δ̇e, the second derivative of the
commanded pitch angle, θ̈c needs to be bounded. Applying super twisting sliding
mode control, the first derivative of the control input is discontinuous, making the sec-
ond derivative unbounded. These unbounded signals that appear as virtual inputs
propagate to actual actuator commands constitute a further, more fundamental limita-
tion of applying STSMC at the guidance level.

In the sequelwe study the application of discrete slidingmode approaches to extend the
performance of TSST control at high sampling rates and fast inner loops towards a larger
envelope that covers regions compatible with the avionics and inner loop dynamics of
more realistic fixed-wing UAS models such as the FFB Cularis UAS (see section 1.2).

Predictive discrete sliding mode control

The detrimental effects of discrete sampling have given rise to discrete variants of con-
tinuous time sliding mode techniques.

Discrete Sliding Mode Control

Discrete Sliding Mode Control (DSMC) techniques such as proposed in [52] approach
the chattering issue of continuous time SMC by employing discrete-time Lyapunov
functions (DTLF) and a discrete-time control design model. The condition on negative
definiteness of the time derivative of a continuous time Lyapunov function

V̇ (σ) < 0 (2.5.27)

is replaced by a condition on the DTLF decreasing over two successive samples

V (σk+1) < V (σk) (2.5.28)

A desired convergence rate can be enforced by requiring

V (σk+1) = ΨV (σk) (2.5.29)

with a Ψ ∈ (0, 1). The choice of Ψ allows to trade off control effort against reaching
time and boundary layer size. DSMC control of this type has been mostly applied to
electromechanical systems. See for instance experimental results reported in [53], con-
firming the expected chattering alleviation in a hydraulic piston position control appli-



44 CHAPTER 2. GUIDANCE AND CONTROL

cation. Intuitively, the advantages of DSMC when it comes to chattering are due to its
being based on a control objective that is closer to our actual objective, which is con-
fining the system states to the sliding surface. Instead of requiring that the derivative
of the sliding variable points towards the sliding surface, we require that the state gets
closer to it at each sampling instant. This predictive nature allows us to avoid chatter-
ing, which is nothing else than a local overshoot over the sliding surface. There are
strong parallels between Model Predictive Control and DSMC control and as we will
see a DSMC control of the type given by equation (2.5.29) can be cast as a special kind
of MPC problem. To the best of the author’s knowledge, discrete sliding mode control
techniques have not been applied to the problem of aircraft formation flight so far.

The promising properties of DSMC come with a price. To perform the one-step-ahead
prediction, a model is required that at least locally well approximates the dynamics
of the sliding variable. That being said, as a particular disadvantage, the input gain
has to be known, while the continuous time super twisting algorithm only requires its
sign and bounds. This property precludes the use of DSMCwith inner loops interfaces
based on airframe orientation or angle of attack. The particular choice of a load factor
interface we make in this work however circumvents this issue, opening the way to ap-
ply DSMC techniques.
While heavilymitigating chattering due to discrete sampling, inner loop dynamics neg-
atively affect classic DSMC control by introducing uncertainty into the prediction im-
plicit in the reaching law (2.5.29). In this work we present a extended discrete SMC
control scheme that mitigates this chattering effect of inner loop dynamics. We find
that established DSMC control laws can be written as equivalent model predictive con-
trol problem. This allows us to extend existing algorithms to integrate inner loops states
in the prediction step that is solved by established MPC techniques. This also enables
us to readily take into account on-line magnitude and rate constraints of inner loops, a
further benefit over existing techniques.
In the following, we first derive the discretized predecessor-follower dynamics. We
then present an optimization-based procedure for the design of discrete-time sliding
surfaces consistent with the constraints of tight formation flight. We then present a pre-
dictive discrete-time sliding mode (PDSCM) guidance law and a discrete-time distur-
bance estimation scheme. Finally, simulations on the FFB benchmark show improved
position tracking performance compared to LQ baseline guidance laws.

2.5.2 Discrete predecessor-follower dynamics

The matching condition in discrete time

In real world physical systems, disturbances are always unmatched, due to the in-
evitable presence of unknown, possibly very fast high order input dynamics. As one
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example, the usually neglected mechanical link between a servo actuator and its cor-
responding control surface represents a fairly complex, very fast and stable nonlinear
system in itself. Only by the specific choice of the designmodel the matching condition
can be satisfied. Forward Euler discretization (as selected for instance in an earlier ver-
sion [25] of the control presented here, not considering inner loop dynamics) preserves
the matching conditions of the continuous time dynamics. Under exact discretization
however, inputs that are separated from the disturbances by fast stable input dynamics
can become matched due to the decay of these parasitic dynamics within one sam-
pling period. Considering the continuous time dynamics of a pair of UAS as given by
equation (2.4.21) and assuming that the inner loop tracking behavior is reasonably well
approximated by the first order LTI system given by equation (2.5.17) we have

∆ṗgi = ∆vgi + ξv

∆v̇gi = gngi+1 + ξa

ṅgi+1 = τ(n̂gi+1 − ngi+1)

(2.5.30)

For greater clarity and ease of notation, we use in the following a generic state space
representation of 2.5.30:

ẋ = Āx +
[
B̄u B̄d

](u

d

)
(2.5.31)

Discretizing 2.5.31, some kind of assumption has to be made about the behavior of con-
trol and disturbance inputs between sampling instants. The zero-order hold assump-
tion, most common in MPC algorithms, assumes that inputs keep a constant value be-
tween samples. While this can be enforced for control inputs, disturbances generally
evolve in between samples and can furthermore only be estimated with some uncer-
tainty. To capture this additional degree of freedom, we split disturbances into a known
(correctly estimated) part, constant over the next sampling period, and a bounded but
unknown part

d = d̃ + ∆d (2.5.32)

so that

ẋ = Āx +
[
B̄u B̄d B̄d

] u

d̃

∆d

 (2.5.33)

with

x =
(

∆pgi ∆vgi ngi+1

)T
(2.5.34)
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u = n̂gi+1 (2.5.35)

d =
(
ξv ξa

)T
(2.5.36)

and

Ā =

03 I3 03

03 03 gI3

03 03 −τI3

 (2.5.37)

B̄u =

 03

03

τI3

 (2.5.38)

B̄d =

I3 03

03 I3

03 03

 (2.5.39)

Note that both disturbances in 2.5.33 are unmatched.
Provided the zero-order hold assumption holds, the exact discrete counterpart of 2.5.31
is given by

xk+1 = eĀTsxk + eĀTs
∫ Ts

0

e−ĀtB̄dt

 uk

d̃k

∆dk

 (2.5.40)

= Axk + B

 uk

d̃k

∆dk

 (2.5.41)

where A,B are the discrete state transition matrix and input matrix respectively and Ts
is the sampling time.

2.5.3 Constrained discrete integral sliding surface

In quasi slidingmode, the sliding surfacewith its boundary layer constrains the dynam-
ics of the system states. During the reaching phase, apart from a stability condition that
ensures contraction of the sliding variable, no guarantees concerning the evolution of
the system state are available. More particularly, additional effort would be required to
obtain bounds on the state space region of the system stays within during the reaching
phase, i.e. to ensure collision avoidance or envelope protection (e.g. Va > Vamin).
Integral sliding mode approaches avoid the reaching phase altogether by designing a
dynamic sliding surface that starts at the initial state. This dynamic sliding surface can
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be designed by applying any standard control technique such as LQR, H∞ , pole place-
ment etc. to a nominal design model.
In formation flight, state constraints such as collision avoidance regions and minimum
and maximum airspeed need to be respected not only during the reaching phase but
over the whole mission time. An example that allows to deal with velocity constraints
is the nonlinear sliding surface proposed in [54]. However, the equivalent control nec-
essary to evolve along the sliding surface additionally needs to allow for a sufficient
margin to reject future disturbances unknown at the time of surface computation.
Very recently, combinations of MPC and sliding mode control have been proposed that
accommodate this set of requirements appearing in many control problems beyond
aircraft guidance in a very natural manner. In [55, 56] an MPC control law is aug-
mented with a first order switching SMC term and good performance in the presence
ofmatched disturbances on a test bench is demonstratedwhile showing the usual input
chattering. Here we apply this idea to the problem of tight fixed-wing formation flight,
replacing the switched input of classic SMC by a predictive discrete slidingmode input
to reduce chattering.

Problem statement

Starting from an initial relative state x0, we ask for a sliding surface (SSF) that satisfies

σ(x0) = 0 (2.5.42)

i.e. there is no reaching phase, and

ueq,k ∈ Ueq ∀k ≥ 0 (2.5.43)

where ueq,k is the equivalent control, i.e. the commanded load factors required to have
the nominal, disturbance-free system follow the SSF, Ueq is an appropriately tightened
load factor constraint set that leaves sufficient margins to reject future disturbances
while following the sliding surface. Note that the sequence ueq,0...ueq,N−1 directly pro-
vides the equivalent control necessary to follow the SSF in the nominal disturbance
free case. This constraint tightening approach is known from robust MPC, see e.g. [57].
Furthermore we require

x∗k ∈ X ∀k ≥ 0 (2.5.44)
x∗N ∈ XN (2.5.45)

i.e. the state trajectory x∗k representing the integral SSF is required to respect constraints
embodied by the state constraint setX e.g. the velocity must not undercut a given value
related to the stall speed and the position must not coincide with the space occupied by
other members of the formation. The state constraint set can furthermore be tightened,
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Figure 2.6: FFB benchmark, state convergence phase with large initial relative position
error in vertical channel, turbulent air, nominal state constraints ∆vgz ∈ [−2, 2]

taking into account maximum control errors of the sliding mode control that drives the
system along the SSF, to guarantee that the original constraint set is not violated under
disturbed feedback control. As an example, consider figure 2.6 where the SSF respects
constraints on vertical velocity, while a control error of about 0.3m/s causes constraint
violation in flight in turbulent air. By tightening state constraints, robust constraint
compliance can be enforced, see figure 2.7.

Furthermore, the state is supposed to be driven into a neighborhood of the sweet spot
in the predecessor’s wake, represented by the terminal state constraint set XN . The size
of XN depends on the region of attraction of the peak seeking algorithm employed to
converge to the position of maximum upwash gain and the amount of uncertainty w.r.t
to it.

The problem can be posed as a standardMPC problemwith terminal constraint set and
prediction horizon N∗

min
ueq,0...ueq,N∗−1

x∗
1 ...x

∗
N∗

N∗−1∑
k=0

uTeq,kRueq,k + x∗Tk+1Qx∗k+1

subject to ueq,k ∈ Ueq

x∗k ∈ X

x∗N∗ ∈ XN

x∗k+1 = Ax∗k + Buueq,k ∀k = 1...N∗

(2.5.46)
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Figure 2.7: FFB benchmark, state convergence phase with large initial relative position
error in vertical channel, turbulent air, tightened state constraints

and solved as a quadratic program using fast embeddable QP solvers such as [58].

Horizon length It is desirable tominimize the prediction horizon length for computa-
tional reasons. Secondly, while moving along the SSF to the sweet spot, no energy gains
can be enjoyed by the follower, adding an additional motivation to find a minimum-
time solution. One answer to the minimum time horizon length is given by the notion
of reachable sets. If the reachable set corresponding to N contains XN , XN is reachable
for an horizon of N. Computing reachable sets is computationally involved even for LTI
systems. The minimum horizon length has however to be determined on line, since X
is partly unknown and time-varying due to a-priori unknown positions of other forma-
tion members.
In their recent contribution [59], the authors propose finding the minimum horizon
N∗ for time-optimal model predictive motion control by sequential feasibility checks
of the corresponding quadratic program. An implementation example achieving solu-
tion update rates of 200 Hz on a standard PC is given, suggesting that this approach
is a promising candidate for the minimum time constrained integral sliding surface
(CISSF) problem, given the powerful computational resources of today’s UAS. It has
been implemented in our simulations to identify N∗.
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2.5.4 From standard to generalized PDSMC

We proceed now to designing predictive discrete sliding mode laws that have the UAS
follow the constrained sliding surface. Employing the CISSF defined in 2.5.3, the open
loop sliding variable dynamics follow to

σk+1 = G(xk+1 − x∗k+1) (2.5.47)

= G(Axk +
[
Bu Bd Bd

] uk

d̃k

∆dk

−Ax∗k −Buueq,k) (2.5.48)

Applying the equivalent control sequence resulting from solving 2.5.46

σk+1 = G

A (xk − x∗k)
[
Bu Bd Bd

] ūk

d̃k

∆dk


 (2.5.49)

where

ūk = uk − ueq,k ∈ U′ ∀k ≥ 0 (2.5.50)

is the control available to the sliding mode control for disturbance rejection.

Existing DSMC algorithms such as [52] seek to enforce a prescribed decay rate of σ.
Due to the unknown disturbance component d̃, ideal sliding mode is not achievable
for finite sampling rates. It is however possible to drive the system into quasi-sliding
mode, defined by

|σk| ≤ ε ∀k ≥ 0 (2.5.51)

and it can be shown that the boundary layer thickness depends quadratically on the
sampling time [25, 60] and linearly on the prescribed decay rate. Thus in order to min-
imize the boundary layer thickness, a small Ψ is desirable. At the same time, for static
sliding surfaces, the initial system state may be far off the sliding surface, limiting the
choice of Ψ to avoid control input saturations.

PDSMC

To meet these conflicting requirements, a time-varying, less restrictive reaching law is
proposed in this work, leading to what we denote Predictive Discrete Sliding Mode
Control (PDSMC). It is conceptually similar to what the authors of [61, 62] proposed
in the context of chemical processing. In contrast to these existing approaches though,
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we take hard constraints on input magnitude and rate saturations into account and
focus on very short prediction horizons. As the linear reaching laws of type (2.5.29),
we enforce a contraction of σ towards the sliding surface at each time step. In contrast
to the reaching law (2.5.29), or the optimization based control proposed in [62] the step
towards the sliding surface is maximized by solving at each time step the minimization
problem

min
ūk

V (σk+1)

subject to ū ∈ U′ ⊂ Rp ∀k ≥ 0
(2.5.52)

Note that this control law has no free tuning parameters that need to be chosen by the
control designer but is defined by hard input constraints dictated by the inner loops
. It is equivalent to choosing a smaller reaching matrix Ψ when closer to the sliding
surface, leading to tighter bounds on the boundary layer thickness and thus reducing
the maximum tracking error. A simple choice for the discrete Lyapunov function V (σ)

is V (σ) = 1
2
σ2.

Inner loop input rate saturations can be taken into account by requiring

ūk − ūk−1 ∈ U∆ (2.5.53)

which can be enforced by setting

Ūk = Ū ∩ (ūk ⊕ U∆) (2.5.54)

where⊕ is the Minkowski sum of two sets given by A⊕B = {a + b|A ∈ A,b ∈ B}, i.e.
we limit the magnitude constraint set to its part that is consistent with rate constraints.
The optimization problem 2.5.52 can efficiently be solved as a small quadratic program,
just like linear MPC problems and the same available fast QP solvers can be employed.
PDSMC control sharesmore similarities withMPC and can bewritten as a special MPC
problem. This property is quite remarkable, taking into account PDSMC originally
being based on a discrete version of sliding mode control. As a convenient benefit,
established ideas and techniques from the field of MPC can readily be exploited in the
design of PDSMC control, such as stability constraints.

Stability constraints

Terminal state constraint sets are the dominant way to encode stability into MPC prob-
lems, (where usuallyN > 1) either as dual modeMPC or based on contraction. In dual
mode MPC the existence of an infinite-horizon unconstrained controller is assumed,
e.g. an LQR whose region of attraction (RoA) can be computed. A terminal state con-
straint set that is an exact representation or outer approximation of this RoA ensures
that the last state of the prediction horizon lies within this set. At the end of the pre-
diction horizon the unconstrained controller can thus take over and drive the system
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to the origin. In contraction based MPC the terminal state constraint set enforces that
a Lyapunov function of the state has decreased. Contraction based stability constraints
generally allow for shorter prediction horizons especially when the system is farther
away from the origin. The same principle could be applied to PDSMC by including a
linear equivalent of the contraction constraint

σ2
k+1 < σ2

k (2.5.55)

as

σk+1

∈ [0, σk), if σk ≥ 0

∈ (σk, 0], if σk < 0
(2.5.56)

This constraint can be used to check for the feasibility of the optimization problem (OP)
2.5.52. However, if feasible, the constraint 2.5.55 is implicitly satisfied by solving 2.5.52
and does not need to be implicitly included into the QP, reducing its complexity and
speeding up solution times.

It is worthwhile at this point to take a step back and put this control as well as clas-
sic DSMC approaches of type (2.5.29) into the context of model predictive control to
appreciate its particular properties. From an MPC perspective, the PDSMC control
solves a state trajectory tracking problem with an extremely short prediction horizon
of N = 1 (simulations suggest that sampling times of the prediction model of the or-
der of the inner loop time constant provide good performance). This is a particular
case of contraction-based MPC, brought forward e.g. in [63, 64]. Contraction based
stability in MPC typically allows for much lower prediction horizons than other classic
approaches to ensure stability of MPC algorithms, such as dual mode MPC However,
minimum prediction horizons for stability reported in the MPC literature typically ex-
ceed one.
It is insightful to consider that the controlled system, in spite of the discrete-time pre-
diction model, evolves in continuous time. A minimum horizon required for stabil-
ity by contraction exist therefore as a minimum prediction time horizon. By choosing
a sufficiently large sampling time exceeding this minimum prediction time horizon,
contraction over one sampling time step becomes possible. This is an assumption im-
plicitly made in existing DSMC approaches such as [52]. Considering a long sampling
time under zero-order input hold is equivalent to an extreme case of what is denoted
as "move blocking" in MPC. That being said, posing the PDSMC control problem in an
optimization framework also allows for future interesting modifications such as pre-
diction horizons N > 1 in conjunction with shorter sampling times. The OP 2.5.52
minimizes the maximum absolute value of the sliding variable at each sampling step,
in effect minimizing the boundary layer. By computing an upper bound on σ2

k+1, the
maximum boundary layer thickness can readily be obtained.
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This is an optimal, i.e. minimum achievable boundary layer thickness under the given
input constraints and not a design parameter, in contrast to SMC approaches based on
smoothing the CSMC discontinuity by e.g. saturation or sigmoid functions. This sets
PDSMC control apart from existing DSMC schemes where the boundary layer is func-
tion of the decay rate and as such needs to be chosen by the control designer.
Extending the prediction horizon further than one, the question arises of how to main-
tain this property. The LQ type costs used in most MPC algorithms form a weighted
sum of control errors and as such are not suited. H∞ MPC control approaches based
on Linear Matrix Inequalities have been proposed [65] and adapting this strategy for
PDSMC control seems the natural way to approach this problem. However, while ma-
ture and fast embedded QP solvers based on automatic C code generation are readily
available, this appears not to be the case for LMI solvers [66].

We present in the following a different approach based on contraction constraints that
can be solved as a standard QP.

Generalized PDSMC

Consider the following optimization problem Pσ with σk = Gxk

min
ū0...ūN−1

x1...xN

[
xT1 (GTPG)x1 +

N−1∑
k=0

ūTkRūk

]
subject to ūk ∈ U′

Gx1

∈ [0,Gx0), if Gx0 ≥ 0

∈ (Gx0, 0], if Gx0 < 0

Gxk

∈ [0,Gx1], if Gx0 ≥ 0

∈ [Gx1, 0], if Gx0 < 0
∀k = 2...N

xk+1 = Axk + Buūk + Bdd̃0 ∀k = 0...N − 1

Assuming feasibility, Pσ enforces contraction of the first predicted sliding variable σ1.
It enforces furthermore that the state trajectory does not cross the sliding surface and
that all following σk do not exceed σ1, thus in effect minimizing the predicted boundary
layer. The novelty of this approach consists in optimizing over the next predicted state,
and using this predicted state to constrain the following ones. The matrix R provides,
as in standard MPC problems, a degree of freedom to the control designer to trade off
control effort against boundary layer thickness.

Note that the previously considered DSMC reaching law can be stated in the same op-
timization framework by replacing contraction inequality constraints by equality con-
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straints [62]. Various formulations are possible, one example is

min
uk,xk+1

ūTk ūk

subject to xk+1 = Axk + Buūk + Bdd̃k

Gxk+1 = ΨGxk

(2.5.57)

In the following we direct our attention towards the minimum horizon single input
PDSMC control 2.5.52 which is a special case of Pσ with N = 1, p = 1 and R = 0.
Due to the very small problem size it can actually easily be solved analytically by what
amounts to a minimal version of an active set QP algorithm. Considering

σk+1 = G(Axk + Buk + Bdd̃k + Bd∆dk) (2.5.58)

V =
1

2
σ2
k+1 (2.5.59)

At an unconstrained minimum we have δV
δu

= 0, thus for the nominal control (∆d = 0)

δV

δu
= (G(AxkBdd̃k) + GBuk)GB (2.5.60)

= 0 (2.5.61)

and the unconstrained PDSMC control is

u∗ = −(GB)−1(GAxk + GBdd̃k) (2.5.62)

If the unconstrained control u∗ ∈ U′, it is identical to the constrained control. Other-
wise, we compute V at the boundaries of U′ and select the smallest one, e.g. for a box
constraint U′ = [u, ū], we obtain two values of V (σ) corresponding to applying u or ū.
Note that, interestingly enough, for a linear sliding surface of type σ = Gx and a linear
system, in a neighborhood of the sliding surface where input constraint are inactive,
the single input PDSMC control with N = 1 results in a linear state feedback plus a
disturbance rejection term.
The non-iterative computation of u∗ enables fixed-time implementation, an interesting
general property for flight control, where computing time guarantees need to be given.
We have not commented so far on how to obtain the disturbance estimate d̃k. In the
following we investigate suitable real-time estimators.

2.5.5 Disturbance estimation

Prediction based PDSMC control builds on the assumption that some kind of estimate
of unknown disturbances due to predecessor motion, the rotating guidance frame etc.
is available. In this section we present a continuous time sliding mode observer and a
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discrete disturbance observer and weigh their respective merits.
Consider the error dynamics of a pair of SVMs

∆ṗgi (t) =∆vgi (t) + ξv (2.5.63)
=∆vgi (t) + Ωg(t)∆pg (2.5.64)

∆v̇gi (t) =gngi+1 + ξa (2.5.65)
=gngi+1 + Rge(t)v̇

e
i − Ωg(t)(∆vgi + ∆ṗgc,i(t))

− Ωg(t)∆ṗg − Ω̇g(t)∆pg −∆p̈gc,i(t) + gg + gngw,i+1 (2.5.66)

Disturbance elements such as those due to gravity and imperfect load factor tracking
acting on each vehicle due to atmospheric turbulence and predecessor wake vortices
can in principle be estimated using on board accelerometers. Disturbances due to pre-
decessor motion, require high-rate communication between vehicles.

Super twisting sliding mode disturbance observer

A different approach can be taken by estimating the sum of disturbances with a sliding
mode observer (SMO). The problem tackled here is basically a problem of estimating
unknown acceleration inputs by real time signal differentiation, in the presence of dis-
crete sampling andmeasurement noise. Sliding mode observers, just like sliding mode
controllers, have very attractive properties in a continuous time framework. SMO tech-
niques have been widely applied to disturbance estimation problems in the context of
fault detection and real time signal differentiation. The basic idea is to treat the esti-
mation problem as a control problem and to drive the error between the velocity of a
model of a pair of vehicles internal to the observer and the estimated actual relative
velocity to zero by means of a virtual control input. Once the error has converged to
zero, the virtual control input generated by the SMO is an estimate of the accelerations
acting on the system. Consider the vertical channel of 2.5.66

∆ ˙̂vgi,z = az (2.5.67)

where ∆ ˙̂vgi,z is the relative velocity of the observer model, and az is the virtual control
input. Defining the sliding variable σ and its first time derivative

σ = ∆vgi,z −∆v̂gi,z (2.5.68)
σ̇ = gngi+1,z + ξa − az (2.5.69)

we see that σ is of relative degree one and both classic first order SMC or second or-



56 CHAPTER 2. GUIDANCE AND CONTROL

der super twisting control can be applied. First order SMC generates high-frequency
switching in the virtual control ñ and low-pass filtering needs to be applied to obtain
a smooth estimate, introducing additional lag in the observer response. On the other
hand, the super-twisting algorithm readily generates continuous virtual inputs, it is
therefore the natural choice

az = α|σ|1/2sign(σ) + β

∫
sign(σ)dt (2.5.70)

where α, β have to be tuned according to bounds on ξa, ξ̇a, e.g. to satisfy conditions
given in [51]. Applying this observer to the relative velocity between two UAS in the
guidance frame, we obtain an estimate of its total time derivative. To recover the un-
known disturbance, consider equation (2.5.66)

ξ̃asmo,k = az,k−1 − gngi+1,k−1 (2.5.71)

Discrete disturbance observer

The finite difference differential is given by

∆ ˙̃vgi,z,k =
∆vgi,z,k −∆vgi,z,k−1

Ts
(2.5.72)

and an estimate of the unknown disturbance is recovered by the discrete disturbance
observer (DDO) as

ξ̃addo,k = ∆ ˙̃vgi,z,k − gn
g
i+1,k−1 (2.5.73)

The sensitivity of 2.5.72 w.r.t. additive noise wk as function of sample time can easily be
analyzed by considering

∆ ˙̃vgi,z,k + e =
∆vgi,z,k + wk −∆vgi,z,k−1 − wk−1

Ts
(2.5.74)

= ∆ ˙̃vgi,z,k +
wk − wk−1

Ts
(2.5.75)

thus the differentiation error due to noise is inversely proportional to the sampling time,
confirming intuition, and bounded by e ∈ [−2w̄/Ts, 2w̄/Ts] with w ∈ [−w̄, w̄].

Performance under moderate sampling rates

For tight formationflight underGNSS-based relative localization, disturbance observers
have to deal with measurement noise and low observation rates of low-cost GNSS re-
ceivers (roughly fGNSS ≤ 10Hz [67]). To evaluate the performance of both observers in
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Figure 2.8: Disturbance estimation, Ts = 10−2s

simulation, a synthetic disturbance ξa is injected. This way magnitude and derivative
bounds are perfectly known and the gains of the SMO can be computed without any
assumptions. Measurement noise corresponding to estimation quality achievable with
GNSS carrier phase time differencing [68] is added to the velocity signal.
See [69] for a recent application of SMO for the piston position control of an electro-
pneumatic system. The choice of SMO over finite-difference differentiation is backed
in [69] by a simulation example showing smaller errors in the estimated signal deriva-
tive in the presence of noise. Our simulations confirm this superiority for fast sam-
pling. Taking differentiator sampling time into account, the picture becomes more in-
volved. While at high sampling rates the SMOhandles even noisy velocity observations
well, derivationperformance deteriorateswith lower sampling rates, similar to sampled
continuous time sliding mode control performance. See figures 2.8, 2.9 for snapshots
of observation performance at sampling rates of 10−2s and 10−1s respectively. In the
first case, closer to its continuous time design conditions, the SMO shows significantly
smaller estimation errors.
For a slower sampling rate of 10−1s, the picture reverses, the disturbance estimate of
the SMO is dominated by numerical chattering, while the DDO estimate follows well
the true disturbance, with the phase lag inherent to finite-difference differentiation, see
figure 2.9. This small case study illustrates how sliding mode observer performance,
just like its SMC dual, is tied to its discrete implementation and can be outperformed
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by very simple schemes under unfavorable conditions.
See figure 2.10 for a sweep of the rms andmaximum absolute error of the SMO and the
DDO over a range of sampling rates. The DDO differentiation error in the noisy case
evolve as indicated by equation (2.5.75) and converges to the noise-free error for lower
sampling rates. For low sampling rates, the error due to phase lag dominates, and the
error in case of noisy signal converges to that corresponding to the noise-free case. The
sliding mode observer shows superior performance only for fast sampling rates down
to about 50 Hz.
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Figure 2.9: Disturbance estimation, Ts = 10−1s

2.5.6 A preliminary closed-loop evaluation

We apply PDSMC control and the discrete disturbance observer 2.5.5 to the same SVM
tracking problem employed to evaluate TSST performance, see figure 2.4. No mea-
surement noise is considered. PDSMC control shows improvements w.r.t. both per-
formance indices for small sampling times and fast inner loops as well as the desired
graceful performance degradation for slower inner loops and lower sampling times.
See figure 2.13 for a closeup of the reaching phase and a short period of the quasi-
sliding phase under super twisting control and PDSM control under discrete sampling.
We have selected for this illustrative simulation a setting where super twisting control
starts to exhibit significant, but still acceptable chattering. Under PDSM control, on the
other hand, after a moderate overshoot over the sliding surface no visible chattering
is encountered, see also figure 2.12. Encouraged by these preliminary results, we ap-
ply the disturbance observer based PDSMC guidance law to the vertical channel of the
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Figure 2.10: Sensitivity of disturbance estimation error w.r.t observation sampling time

more realistic FFB benchmark UAS model (see chapter 1) in combination with the LQ
vertical load factor tracking control using direct lift control developed in section 2.4.4.
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Figure 2.11: Mean squared error and maximum vertical position error under PDSMC
control over grid of controller sampling time and inner loop tracking time constant,
SVM cruise flight scenario with periodic predecessor motion
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Figure 2.12: Tracking error and sliding variable under PDSMC control for corner points
of sampling time and inner loop time constant envelope, SVM cruise flight scenario
with periodic predecessor motion
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Figure 2.13: Closeup of reaching under sampled super twisting and PDSM control,
Ts = 3 · 10−2s, τ = 10−3s

2.6 FFB simulations
We first consider one individual UAS tracking a virtual leader on the benchmark tra-
jectory. Longitudinal and lateral spacing is maintained by baseline LQ control. The
trajectory speed in all scenarios is 15m/s. Note that position tracking errors are nor-
malizedwith spanwidth and commanded load factors aswell as elevator and flap com-
mands with their maximum admissible values. A low controller sampling rate of 10 Hz

is selected, compatible with observation rates of low-cost GNSS receivers. Running
guidance laws at the same rate as GNSS observations become available, no high-rate
exchange of accelerometer observations and no IMU/GNSS data fusion is required,
lowering computational load.

2.6.1 Turbulent air

In this scenario, planar turbulent wind of ||vew,a|| = 3m/s aligned with the cruise
flight leg of the FFB trajectory is simulated. Tracking errors of the PDSMC control
without disturbance estimation, displayed in figure 2.15) are slightly worse than those
achieved by the LQ baseline laws, see figure 2.14). Introducing the disturbance esti-
mation scheme presented in section 2.5.5 appreciably reduces especially peak errors by
about 50 % during predecessor maneuvers.

Large initial errors

Large initial position errors are readily accommodated by the predictive integral sliding
surface, see figure 2.17. Peak load factors are of similarmagnitude as in the case of small
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Figure 2.14: Baseline control, Ts = 10−1s, turbulent air, (a) entire trajectory, (b) closeup
of cruise flight phase and first maneuver. The WMS error applies to the cruise flight
segment between 15 s and 55 s
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Figure 2.15: PDSMC, Ts = 10−1s, turbulent air, no disturbance estimation, (a) entire
trajectory, (b) closeup of cruise flight phase and first maneuver. TheWMS error applies
to the cruise flight segment between 15 s and 55 s
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Figure 2.16: PDSMC, Ts = 10−1s, turbulent air, disturbance estimation, (a) entire trajec-
tory, (b) closeup of cruise flight phase and first maneuver. The WMS error applies to
the cruise flight segment between 15 s and 55 s

initial errors despite an initial relative position error of five wingspans, illustrating one
of the principal benefits of the constrained optimization based sliding surface.

2.6.2 Calm air

Flying the benchmark in calm air confirms the importance of disturbance estimation
to suppress tracking errors due to predecessor motion. The basic PDSMC scheme (see
figure 2.19) again displays maximum tracking errors inferior to the baseline scheme
(see figure 2.18). Disturbance estimation improves performance evenmore visibly than
under turbulence, see. figure 2.20.
Overall, the tracking errors observed, if maintained in flight tests, are sufficiently small
to enable considerable upwash gains. The performance gain is more clearly visible by
a direct overlay, see figure 2.21.

2.6.3 Scalability

When adding more members to the formation, linear control with local state feedback
is known to lead to position errors growing with vehicle index, i.e. mesh instability
[70]. As shown in chapter 2, the PDSMC forN = 1 boils down to linear control, leading
us to expect mesh instability when applying it to larger formations. This expectation
is confirmed by simulations of three vehicles, see figure 2.22. Peak vertical position
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Figure 2.17: PDSMC, Ts = 10−1s, turbulent air, disturbance estimation, large initial
deviation, (a) entire trajectory, (b) closeup of cruise flight phase and first maneuver
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Figure 2.18: Baseline control, Ts = 10−1s, calm air, (a) entire trajectory, (b) closeup
of cruise flight phase and first maneuver. The WMS error applies to the cruise flight
segment between 15 s and 55 s



2.6. FFB SIMULATIONS 65

-0.10

0.00

0.10

-0.25

0

0.25

50 100 150 200

-0.05

0

0.05
f e

-0.10

0.00

0.10

-0.25

0

0.25

20 40 60

-0.05

0

0.05
f e

Figure 2.19: PDSMC, Ts = 10−1s, calm air, no disturbance estimation, (a) entire trajec-
tory, (b) closeup of cruise flight phase and first maneuver. The WMS error applies to
the cruise flight segment between 15 s and 55 s
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Figure 2.20: PDSMC, Ts = 10−1s, calm air, disturbance estimation, (a) entire trajectory,
(b) closeup of cruise flight phase and first maneuver. The WMS applies to the cruise
flight segment between 15 s and 55 s
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Figure 2.21: Vertical tracking error under baseline, PDSMC, PDSMC with disturbance
observation, entire mission (left) and closeup of first maneuver (right)

control errors grow consistently from the leading to the trailing vehicle, suggesting that,
while promising excellent performance for applications such as aerial refueling, the
proposed control accommodates only small formations. Remarkably, scalability issues
are encountered with local feedback continuous time super twisting control under fast
sampling as well, see appendix B.
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Figure 2.22: N=3, PDSMC, Ts = 10−1s, calm air, disturbance estimation, entire mission
(left) and closeup of first maneuver (right)
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Chapter 3

Set membership localization

The position of the sweet spot in the wake of a preceding UAS allowing for maximum
range enhancement is airframe-dependent and only approximate models of the com-
plex flow field forming the wake are available. Peak-seeking algorithms, see e.g. [71],
have been proposed to deal with this uncertainty. Peak seeking algorithms attempt to
minimize on-line some cost function related to the wake energy gain to converge to
the point of minimum power consumption without precise knowledge of its position.
Note however that their gradient based nature relies on convexity of the cost, which
can exhibit local minima, see section 1.2. That being said, some exploration of the wake
might be necessary to identify a suitable starting point for peak seeking that has a high
probability of leading to convergence to the global maximum of wake energy gain.
During this exploratory phase, while peak seeking is active and while flying in a static
tight formation, collision avoidance needs to be ensured under localization uncertainty
as well as bounded control errors.

Accuracy and safety
Localization errors generally have a greater detrimental effect on formations of small
UAS than larger ones, since admissible guidance errors scale with airframe size. Us-
ing COTS consumer grade GNSS hardware, relative localization errors in the centime-
ter range are possible using readily available Real Time Kinematic (RTK) algorithms,
see e.g. [22], or commercial low cost RTK systems such as [72], corresponding to the
high precision of GNSS carrier phase observations. This accuracy falls well within the
bounds required for TFF even for sub-meter class UAS.
Alternative GNSS-independent approaches such as machine vision have been consid-
ered but generally provide less accuracy, among other reasons owing to attitude esti-
mation errors of low-cost AHRS, affecting the critical transformation of observations in
the camera frame to the local inertial frame, see e.g. [14].

69
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Availability is a major concern when it comes to using GNSS for guidance, and can
be prohibitive in close-to ground operations due to multipath and signal obstruction.
However, in energy-efficient planar formation flight, excellent availability conditions
can be expected.
For civil UAS applications, where furthermore no intentional GNSS jamming or spoof-
ing is to be expected, localization based on single frequency RTK systems appears to
be well suited, and localization accuracy is thus not a fundamental issue when it comes
to tight formation flight of small UAS. However, to ensure collision avoidance, the un-
avoidable error of relative position estimates needs to be taken into account.

3.1 Problem statement
To this end, not only point estimates of relative position vectors are required, but rather
an outer estimate of the regions that can be guaranteed to contain the other members
of the formation. We want furthermore this estimate to be useful, i.e. only as large as
necessary and relying only on sensors realistically available on board a typical small
low cost UAS. What is more, the employed algorithm needs to be compatible with the
still somewhat limited computational resources of today’s small UAS.

D1,3

D1,2

d1,2

d1,3

x

y

Figure 3.1: Relative localization problem in 2D: guaranteed relative position sets and
possible ellipsoidal and interval outer approximations

Assumptions and constraints

Hardware resources We assume that in view of cost and mass constraints affecting in
particular small UAS for civil applications, the set of observations and state estimates
available for localization is limited to

• The image stream of a single camera, fixed in the body frame



3.2. AIRBORNE RELATIVE LOCALIZATION: STATE OF THE ART 71

• Attitude estimates and observations of angular rates, accelerations and the earth’s
magnetic field in the body frame provided by a MEMS based AHRS

• Single-frequency GNSS carrier phase, Doppler and pseudo range observations

• Ultra-Wide Band (UWB) inter-UAS ranging observations

In this chapter we shortly review existing relative localization approaches. We then
present a modified Extended Set Membership Filter (ESMF) compatible with the as-
sumed limited set sensor hardware. Care has been taken to replace iterative operations
such as numerical optimization by closed-form approximations to enable fixed-time
implementation.
We compare the filter to a standard Extended Kalman Filter to illustrate the benefits
arising from the deterministic nature of set membership filtering.

3.2 Airborne relative localization: state of the art
Existing relative localization approaches rely mostly on Real-Time-Kinematics (RTK)
GNSS positioning, machine vision or a combination of both.

DifferentialGNSS UsingdifferentialGNSSobservations, Real TimeKinematics (RTK)
systems provide, after ambiguity resolution, estimates of the position vector between
two GNSS receivers with the centimeter-level accuracy of carrier phase positioning.
GNSS RTK systems usually estimate the unknown carrier phase ambiguities employ-
ing pseudo range double differences in what is denoted the "float solution". The es-
timator of choice is usually a Kalman filter for its ability to estimate the covariance of
its estimation error. Once the covariance of the float solution falls within a predefined
threshold, a search algorithm is employed that finds with high probability the correct
set of carrier phase ambiguities. In that case, the position error is reduced to centimeter
level. Two properties of this standard approach are problematic when it comes to flight
safety. First, before ambiguities are fixed, only probabilistic bounds on the estimation
error of the float solution are available. Second, once ambiguities are fixed, a small
nonzero probability that the fixed set of ambiguities is not the actual one remains, due
to the statistical nature of the fixing algorithm.

UWB assisted RTK Very cost effective UWB ranging modules based on time of flight
observations have emerged on the consumermarket over the last years. Their decimeter
level accuracy makes them a natural candidate to enhance differential GNSS localiza-
tion both on the pseudo range level and for RTK solutions. After early experiments for
static surveying applications [73], the authors of [22] report robustness enhancements
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of a conventional RTK solution based on the LAMBDA [74] algorithm for relative local-
ization of two UAS in flight. In this approach, UWB range observations are employed
in forming the float ambiguity estimate.
UWB ranging has as well seen a rising interest for local ground-based localization sys-
tems, see e.g. [75, 76].

Machine vision Both techniques purely based on machine vision [77] as well as com-
binations with differential GNSS [78] have been employed in the community for accu-
rate relative localization of UAS and centimeter level precision is reported in experi-
mental settings, again employing an Extended Kalman Filter.
Machine vision approaches suffer from the fundamental limitation that tracked UASs
need to be within the field of view of the tracking UAS for each filter update, necessi-
tating multiple of gimbaled cameras in larger formations as well as trajectory planning
algorithms that take into account maintaining continuous visual contact. Maintaining
visual contact tomultiple neighbors becomesmore difficultwith decreasing separation,
as in tight formation flight close-by UAS might obstruct the view towards other ones.

Algorithms Relative positioning typically involves nonlinear observation equations.
This is the case also for GNSS double difference observations, due to small linearization
errors usually assumed to be linear in the separation vector (see section 3.4.1 where we
derive upper bounds on the linearization error and consider also the impact of stan-
dalone position and ephemeris uncertainty). The Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF) are the predominant state estimation algorithms
employed. The Kalman Filter can indeed provide an ellipsoidal confidence set that is
guaranteed to contain the true state with a selected probability given that its underly-
ing assumptions of normally distributed, zeromeanmodeling errors andmeasurement
errors are met. However, although the normal distribution in many cases provides a
reasonable model (see figure 3.5), as is well known, in reality both error sources can
only be approximated by it and filter consistency needs to be ensured by careful tun-
ing. Often no attempt to identify the probabilistic properties of the linearization error
is made, and the filter is tuned in a grey-box fashion.
What is more, Kalman filters, being based on probabilistic error models, provide es-
timates of probabilistic state estimation error bounds. Even given a consistent esti-
mate, probabilistic bounds can however only guarantee probabilistic collision avoid-
ance. Guaranteed bounds of estimation errors are however of crucial importance for
flight safety. Set membership filtering is concernedwith the problem of providing tight
outer approximations of these bounds.
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3.3 Set Membership Filters for State Estimation
Setmembership state estimationfilters are the deterministic counterpart to probabilistic
filtering frameworks such as the various flavors of the Kalman filter and have received
considerable interest for applications that require guaranteed bounds on state estima-
tion errors. They deal with the problem of finding mathematically tractable outer ap-
proximations of the set of states compatible with all past observations of the state with
their respective error bounds and the constraints imposed by a state transition model
with bounded prediction error. An exact representation of this set is generally difficult
or impossible to compute and can take on very complex shapes over time.

Assume an unknown state xk ∈ Rn contained in the guaranteed state set Dk. The states
in D evolve according to

xk+1 = f(xk,uk,wk) (3.3.1)

where wk ∈ Wk is some bounded prediction error. Using equation (3.3.1), at each
discrete sampling instant the predicted guaranteed set D+

k can be computed, usually
expanding Dk−1. This is analogous to the state estimate covariance prediction step of a
Kalman Filter. Assume now that some sensor provides observations yk ∈ Rp

yk = h(xk, ek) (3.3.2)

with a bounded measurement error ek ∈ Ek.
From y and E an observation set Y can be computed, given by the set-valued observa-
tion equation

Yk = H(DY,k) (3.3.3)

where the consistent state set is

DY,k = {x|h(x) ∈ Yk} (3.3.4)

i.e. the set of all the states that yield an observation inside the observation setY. When-
ever new measurements y come in, the intersection of the current predicted state set
D+ withDY provides an updated state set, analogous to the Kalman filter measurement
update. This is the standard set membership filtering problem.

As exact representations of Dk are usually computationally intractable, numerous ap-
proaches have emerged that employ various outer set approximations of lower com-
plexity, rendering the set sum and intersection operations that form the basis of set
membership filtering actually implementable.
Application of set membership filtering to the problem of relative localization of UAS
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does not appear to have received a lot of attention so far, especially in contrast to lo-
calization schemes involving Kalman filtering. Two examples of related problems are
given in [79], where GPS standalone positionmeasurements are considered, comparing
interval and zonotope set representations, and [80], studying a cooperative ellipsoid set
membership filter for joint target observation by a group of UAS. Interval membership
localization filtering based on standalone pseudo range observations is presented in
[81] for ground vehicle localization. An interval representation is considered as well
in [82] for set membership localization filtering of underwater vehicles. The authors of
[83] present a cooperative set membership localization algorithm for ground vehicles
based on shared pseudo range observations.
Differential GNSS observations as well as inter-UAS ranging observations generally
lead to arbitrarily oriented guaranteed state sets that can be largely overapproximated
by intervals. Thus set representations with additional degrees of freedom are desirable
to obtain less conservative constraints for trajectory planning, freeing up more maneu-
vering space. What is more, tight set approximations can be decisive for the success of a
mission relying on tight formation flight - if relative position set estimates are too large,
the members of the formation possibly cannot reach their assigned energy-efficient po-
sition in the wake.
Set membership filters employing ellipsoids [84, 85] have been proposed, and even
more flexibility at the cost of computational complexity can be obtained by bound-
ing the guaranteed state set by zonotopes [86, 87], a special class of polyhedra. In this
work we present an adaptation of the Extended Set Membership Filter [85] based on
ellipsoidal set representations for the relative localization problem. The ESMF is par-
ticularly interesting in this context for its direct comparability with the widely popular
Extended Kalman Filter.

Remark The major benefit of set membership filtering is the absolute nature of the
given guarantees. It relies on our assumed ability to guarantee bounds on observation
errors and system modeling errors. In reality, these error bounds are often obtained
from a finite amount of observation samples. Assuming even a bounded - thus staying
in a deterministic framework - non-uniform probability distribution of the error, this
finite observation window might be too small to detect large errors of low probability.
Thus, in a strict sense no guarantee, but a high confidence can be given that all future
samples will respect the bounds thus obtained, interestingly giving a probabilistic as-
pect to this so decidedly deterministic class of filtering.

In what follows, after providing some essential notation, we derive bounded-error lin-
earizations of differential GNSS code phase and carrier phase observations as well as of
inter-UAS range observations. We then present a modified Extended Set Membership
filter that exploits these three observations to provide an ellipsoidal outer approxima-
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tion of the set containing the relative position vector between UAS. We compare the
modified ESMF to a standard EKF in simulation.

Definitions and Notation

In this chapter wemake use of interval as well as ellipsoid representations of sets. Some
relevant notions and notations are given in the following for ease of exposition.

Intervals Apart from regular scalar real valued intervals we encounter interval vec-
tors aswell as intervalmatrices in this chapter. Weuse a general intervalmatrix notation
[x] for the family of matrices x ∈ Rn×m where xi,j ∈ [xi,j, xi,j] for i = 1...n, j = 1...m to
cover all three cases. For n > 1,m = 1, [x] is an interval column vector, for n = 1,m = 1,
[x] is an interval scalar.
Wherever additive errors are assumed, it can be more convenient to write intervals in
center-range notation as [x] = x + [wx] where x is the center point of [x] and [wx] =

[x]− [x,x] where [x,x] denotes a degenerate interval containing only the point x.
Wherever regular terms and interval terms appear in the same expression, such as
[c] = a + [b] it is assumed that the regular terms (a) represent degenerate intervals
([a, a]) and all operations in the expression are interval operations.

Interval extensions Evaluating the result of a function over interval arguments amounts
to constructing an interval extension of this function. Interval extensions of various ba-
sic operators and functions (+,−, exp, log etc.) are known to be sharp inclusions of
the real result sets. When constructing interval extensions of more complex functions,
care needs to be taken, as alternative but equivalent formulations of the same function
can lead to different, possibly heavily conservative result intervals. Take as a purely
illustrative example the functions

f1(x) = x− x (3.3.5)
f2(x) = x(1− 1) (3.3.6)

Whereas f1, f2 are equivalent, evaluating both over the interval [x] = [−1, 1] leads to
vastly different results:

[f1([x])] = [2, 2] (3.3.7)
[f2([x])] = [0, 0] (3.3.8)

This fundamental issue is linked to a variable appearing more than once in an expres-
sion. When evaluating the function using interval arithmetic, the dependency between
both occurrences - the fact that both represent the same variable - cannot be taken
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into account, resulting in inflated result intervals. There is no systematic way to avoid
dependency issues for general functions, except reducing their impact by skillful re-
arrangement of terms.
As a useful exception, for (piecewise) monotonic functions dependency issues can be
circumvented altogether. Monotonic functions are either increasing or decreasing over
the interval range of their argument and it suffices to evaluate the corner points of an
argument interval and to select the results that form the widest interval. For functions
with vector argument {y = f(x)|x ∈ Rn, y ∈ R}, monotonicity can be verified on a
by-element basis [88]. If the elements of the gradient of f(x) do not change sign over
a given input interval vector range, the function is monotonic w.r.t. x and it suffices to
evaluate the 2n corner points of [x] to find a sharp inclusion of [f(x)]. Monotonicity is
exploited in section 3.5 to find sharp inclusions of linearization errors.

Ellipsoids The ESMF relies on ellipsoidal set approximations, and the probability
level sets of the KF covariance matrices form ellipsoids as well. An ellipsoid in Rn is
given by

Ω(xc,P) = {x|(x− xc)
TP−1(x− xc) ≤ 1} (3.3.9)

with x ∈ Rn some point in space, xc ∈ Rn the ellipsoid center and a positive definite
matrix P ∈ Rn×n defining half axes and orientation. Useful for analyzing ellipsoid size
metrics and displaying the ellipsoid surface in 3D, equation (3.3.9) can be decomposed
into a diagonal matrix P0 ∈ Rn×n (corresponding to an axes-aligned ellipsoid) carrying
the squares of the half axes on its diagonal, and a matrix R ∈ Rn×n performing the
rotation to its original attitude

(x− xc)
T (RTP0R)−1(x− xc) ≤ 1 (3.3.10)

The columns ofR are the eigenvectors ofP−1, while the diagonal ofP0 can be computed
from the eigenvalues of P−1. For n = 3, R is the DCM defined by the half axis unit
vectors of the ellipsoid forming a right-handed Cartesian frame.

An alternative representation employed for ellipsoid intersectionswith a strip in section
3.5 is given by describing the ellipsoid surface as a unit ball w under a linear transform
V

E(xc,V) = {x|x = xc + Vw, ||w|| ≤ 1} (3.3.11)

See [89] for useful transformations between different ellipsoid representations.
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3.4 Observation models
For both the ESMF and the EKF we consider in a first step GNSS code phase and car-
rier phase observations. We then integrate UWB ranging observations as a first step to
robustify the localization scheme against GNSS outages and investigate how this ad-
ditional information affects filter performance. In the following GNSS and inter-UAS
ranging observation models and their respective linearizations required for the ESMF
and the EKF are given. Observation error intervals are derived including paramet-
ric uncertainty for set membership estimation. All operations are performed in a lo-
cal NED frame and satellite positions are assumed to have been transformed into this
frame.

3.4.1 GNSS differential code phase observations

GNSS receivers aremost popularly used for standalone absolute positioning. However,
internally they measure the phase shift between an internal copy of the signals emitted
by satellites in space and the received signals. This principle is applied to the sinusoidal
carrier phase signal as well the pseudo-random number (PRN) binary code modulated
on top of it (phase shifts are usually converted to units of distance for convenience).
Due to the principles employed to measure both phase shifts, the measurement noise
of code phase observations exceeds the millimeter-level carrier phase noise by several
levels of magnitude. Carrier phase observations, on the other hand, are inherently am-
biguous due to their periodicity and short wavelength.
From both phase shifts, range information can be derived, making assumptions about
the speed of signal propagation through the atmosphere. Variations of the speed of
propagation are at once the major source of error (see e.g. [90] for a broader treatment
of GNSS ranging principles) and highly correlated for closeby receivers. This spatial
correlation is exploited by differential GNSS positioning techniques. By subtracting
observations of two receivers, exogenous errors can be almost completely eliminated.
By differencing, absolute position information is lost, and instead the relative position
between receivers can be computed. In the following, we employ both differential code
phase and carrier phase observations, each to benefit from its respective complemen-
tary qualities.
GNSS code phase observations, often denoted as pseudo ranges, of UAS iw.r.t. satellite
p in units of distance are given by

ρp,i =rp,i + c(∆Ti −∆Tp) + ∆rI,p,i + ∆rT,p,i

∆rE,p,i + ∆rM,p,i + ∆rDLL,p,i
(3.4.1)

with rp,i = ||pi − pp|| the slant range between receiver i and satellite p, c the speed of
light, ∆Ti the receiver clock bias, ∆Tp the satellite clock bias, ∆rI,p,i the ionospheric
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range error, ∆rT,p,i the tropospheric range error, ∆rE,p,i the ephemeris error, ∆rM,p,i the
range error due tomultipath and∆rDLL,p,i the code phase tracking tracking noise. Most
of these code phase observation errors are highly correlated spatially and can largely
be eliminated by forming single differences at epoch k between two receivers on board
UAS i and UAS j, leading to

∇ρp,i,j =ρp,i − ρp,j (3.4.2)
=(rp,i − rp,j) + c(∆Ti −∆Tj)

+ (∆rM,p,i −∆rM,p,j+ + ∆rDLL,p,i −∆rDLL,p,j) (3.4.3)
=∇rp,i,j + c∇∆Ti,j +∇εp,i,j (3.4.4)

where ∇εp,i,j lumps together residual differential observation errors due to uncorre-
lated hardware noise and multipath. Note in particular that since UAS flying in for-
mation are typically close in altitude, tropospheric propagation delays are highly cor-
related between receivers and thus largely cancel out. It is convenient to then form
double differences w.r.t. to a reference satellite to remove the receiver clock bias com-
mon to all observations, thereby later reducing the localization filter state dimension
by one. Double differencing single differences w.r.t. a reference satellite r (usually the
maximum elevation satellite in view to minimize noise and multipath contamination
of double difference observations), leads to

∇rρp,i,j = ||pi − ps|| − ||pi + di,j − ps|| − ||pi − pr||+ ||pi + di,j − pr||+∇rεp,i,j (3.4.5)

with the relative position vector di,j = pj − pi between receivers.

Parametric uncertainty

In reality, the first receiver position pi is only known with meter-level standalone pre-
cision. Furthermore, broadcast ephemeris are only local approximations of the true
satellite orbits, and RMS deviations between predicted and true satellite positions up
to tens of meters are recorded [91, 92], adding additional parametric uncertainty to the
observation equation 3.4.5.
This parametric uncertainty is traditionally neglected in the GNSS literature [90] due
to their submillimeter impact owing to high GNSS satellite orbits (roughly 2 · 104 km),
i.e its effect tends to "disappear" in the always present receiver hardware observation
noise. The first order Taylor expansion of the observation equation (3.4.5) w.r.t. to d

about d = 0 leads then to the familiar linear double difference pseudo range observa-
tion equation

∇rρp,i,j = Hp,rdi,j +Rρ +∇rεp,i,j (3.4.6)
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with the geometry matrix Hp,r = ∂∇rρ
∂d

∣∣
d=0

The small remainder Rρ is again commonly
neglected in the differential GNSS literature. When applying probabilistic filters such
as the EKF, neglecting the ensemble of these small effects can be a reasonable simpli-
fication due to their millimeter-level magnitude compared to the typically meter-level
code phase hardware noise.

Interval inclusion of linearization errors

The deterministic nature of the ESMF requires however guaranteed bounds on the ob-
servation error, forcing us to actually quantify these small error terms. To obtain these
bounds, we follow in principle the approach proposed in [85] and perform an inter-
val evaluation of the Taylor expansion’s remainder term. In the following we consider
without loss of generality one element yi of an output vector y. The Lagrange remain-
der being bounded by the interval inclusion

[Ri([x])] = ([x]− x̂)T
∂2hi([x])

∂x2
([x]− x̂) (3.4.7)

interval bounds are obtained by evaluatingRi over [x], the interval containing the state.
In [85], no parametric uncertainty is considered, i.e. it is assumed that the output

yi = hi(x) (3.4.8)

depends only on the state. To deal with observation equations subject to parametric
uncertainty of type

yi = hi(x, θ) (3.4.9)

where interval vector bounds on the parameters θ are known, we proceed as follows.
By adopting an augmented state

x̃ =
(
xT θT

)
(3.4.10)

we can write
y = h(x̃) (3.4.11)

The state as well as the parameters are bounded by an interval vector [x̃] with the inter-
val center x̃0 corresponding to the current state point estimate and nominal parameter
values. The first order interval Taylor expansion about x̃0 is then given by

[yi] = h(x̃0) +
∂h

∂x̃

∣∣∣∣
x̃=x̃0

([x̃]− x̃0) + [Ri([x̃])] (3.4.12)
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We split the gradient

[yi] = h(x̃0) +
∂h

∂x

∣∣∣∣
x=x0

(x− x0) +
∂h

∂θ

∣∣∣∣
θ=θ0

([θ]− θ0) + [Ri([x̃])] (3.4.13)

Evaluating the last two terms of equation (3.4.13) over [θ] and [x̃] respectively provides
then interval bounds on the error of the combined parametric and linearization error.
This procedure to incorporate parametric uncertainty is a general one, but depending
on the structure of the observation equation, may not provide very tight interval enclo-
sures as we will see in the following. In some cases the degree of overapproximation is
acceptable. in other cases, as will be the case for inter UAS range observations, interval
evaluations of the parametric error tailored to the problem enable sharper enclosures.

Application to pseudo range double differences

Before applying this method to the double difference observation equation (3.4.5), it is
convenient to write it as

∇ρ =
4∑
i=1

||Eix̃|| (3.4.14)

=
4∑
i=1

(x̃TET
i Eix̃)1/2 (3.4.15)

=
4∑
i=1

(x̃TMix̃)1/2 (3.4.16)

with

x̃ = (dT pT pTs pTr )T (3.4.17)
x̃ = (dT θT )T (3.4.18)

and where the Ei matrices form the vector argument of each vector norm term. For
instance, for the first term of 3.4.5

||p− ps|| =||E1x̃|| (3.4.19)

=||
[
03 I3 −I3 03

]
(dT pT pTs pTr )T || (3.4.20)
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In this compact form the first and second derivative can be formed conveniently as

∂∇ρ
∂x̃

=
4∑
i=1

(x̃TMix̃)−1/2x̃TMi (3.4.21)

∂2∇ρ
∂x̃2

=
4∑
i=1

(x̃TMix̃)−1/2MT
i −MT

i x̃(x̃TMix̃)−3/2x̃TMi (3.4.22)

Interval bounds on the observation model error due to linearization and parametric
uncertainty can thus be obtained by evaluating

[R∇ρ] =
∂∇ρ([x̃])

∂θ

∣∣∣∣
θ=θ0

([θ]− θ0) + ([x̃]− x̃0)
∂2∇ρ([x̃])

∂x̃2
([x̃]− x̃0)T (3.4.23)

A sufficiently small degree of overapproximation can thus be obtained, see figure 3.2 for
an example. A large number (> 103) of samples is drawn from an uniform distribution
over x̃ to approximate the true shape of the set containing the error terms. Note that
the obtained intervals are quite expectedly not sharp due to dependency. The order of
magnitude and center of the error term is however well (outer) approximated. Note
furthermore that due to the small magnitude of the error term, the achieved tightness
of the interval is fully sufficient.
Regarding implementation, intervals bounding the receiver standalone position can be
found by again applying set membership filtering to the standalone positioning prob-
lem, using algorithms such as proposed by [81] or by again applying an ESMF.Note that
there is a correlation between satellite ephemeris error bounds and receiver standalone
position bounds, since ephemeris errors directly affect receiver positioning errors.
No published assessment of maximum broadcast ephemeris errors is known to the au-
thor. This constitutes an open problem for set membership filtering. As a workaround,
we assume a pessimistic satellite position error interval of 100m in each coordinate.

3.4.2 Time differenced differential carrier phase observations

When basing localization only on pseudorange observations, assumptions need to be
made about the maximum displacement of a UAS between samples for the filter prop-
agation step. This in turn requires an accurate model permitting to formulate upper
bounds on motion variables such as maximum accelerations, minimum turn radii etc.
In the followingwe describe how time differenced carrier phase observations can be in-
tegrated in a relative position estimation filter that provides accurate tracking by treat-
ing position increments as virtual system inputs and decouples the filter propagation
step from aircraft motion. Note however that this argument is only valid at the discrete
sampling instants, i.e. whenever carrier phase observations are available. In between
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Figure 3.2: Interval bounds on pseudorange double difference linearization error in-
cluding parametric error for two satellites, Monte-Carlo sampling approximating true
error set

samples, assumptions about aircraft motion constraints would still be required to com-
pute a guaranteed relative position set. This aspect is an important future extension of
the work presented here.
While the noise level of pseudo range double differences translates into position errors
of the order of meters, carrier phase observations have complimentary properties as
they feature a very low, i.e. millimeter level noise component (see figures 3.5 and 3.6),
but are biased by unknown integer phase ambiguities due to the periodicity of the car-
rier signal.
GNSS carrier phase observations of UAS iw.r.t. satellite p in units of distance are given
by

Φp,i =rp,i + c(∆Ti −∆Tp)−∆rI,p,i + ∆rT,p,i

λNp,i + ∆rE,p,i + ∆rM,p,i + ∆rPLL,p,i
(3.4.24)

with rp,i the slant range between receiver i and satellite p c the speed of light, ∆Ti the re-
ceiver clock bias, ∆Tp the satellite clock bias, ∆rI,p,i the ionospheric range error, ∆rT,p,i

the tropospheric range error,Np,i the integer ambiguities in carrier signal cycles, ∆rE,p,i

the ephemeris error, ∆rM,p,i the range error due to multipath, ∆rPLL,p,i the PLL carrier
tracking noise and λp the carrier signal frequency. Note that the effect of ionospheric
delay is of inverse sign compared to pseudo ranges. Just as is the case for code phase ob-
servations, forming the difference between observations of two closeby receivers elim-
inates common range errors and forming double differences removes the differential
receiver clock error. Double difference carrier phase observations with the reference
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satellite r and the UAS i and j are given by

∇rΦp,i,j =Φp,i − Φp,j − Φr,i + Φr,j (3.4.25)
=rp,i − rp,j − rr,i + rr,j + λ(Np,i −Np,j −Nr,i +Nr,j) (3.4.26)

+∇rεΦp,i,j

where ∇rεΦp,i,j lumps together residual differential observation errors due to uncorre-
lated hardware noise and multipath. Using the linearized double difference range ob-
servation equation (3.4.5), we can write carrier phase observations as

∇rΦp,i,j =Hp,rdi,j +RΦ + λ(Np,i −Np,j −Nr,i +Nr,j) +∇rεΦp,i,j (3.4.27)
=Hp,rdi,j +RΦ + λ∇rNp,i,j +∇rεΦp,i,j (3.4.28)

whereRΦ combines the linearization remainder termandparametric observationmodel
uncertainty due to uncertainty in satellite and receiver position. With 3.4.28 the vector
of double difference observations to n satellites is

∇rΦ1,i,j

∇rΦ2,i,j

...
∇rΦn,i,j

 =


H1,r

H2,r

...
Hn,r

di,j +


RΦ,1

RΦ,2

...
RΦ,n

+


λ∇rN1,i,j

λ∇rN2,i,j

...
λ∇rN2,i,j

+


∇rεΦ1,i,j
∇rεΦ2,i,j

...
∇rεΦn,i,j

 (3.4.29)

∇Φ =Hd + RΦ +∇N +∇εΦ (3.4.30)

Note that from here on we drop unambiguous indices for the sake of readability. Com-
puting di,j from equation (3.4.30) requires first fixing the unknown integer ambiguities
e.g. by applying some standard method such as LAMBDA [93].
Time-differencing observations locally provides another approach that has originally
been introduced for precise offline short term trajectory reconstruction [94]. Forming
time differences between observations of one receiver removes, in the absence of cycle
slips, carrier phase cycle ambiguities or their respective single or double differences.
Furthermore, atmospheric delays largely cancel out due to their slow variation over
time and resulting high correlation over consecutive epochs. Variations of atmospheric
delays over multiple epochs however unavoidably introduce drift in the standalone
time-differenced carrier phase solution. In double differences, these error sources are
already canceled. We form thus time differenced double difference (T3D) observations
at epoch k w.r.t. an epoch k0

∆∇Φ =Hk∇dk −Hk0dk0 + ∆RΦ,k + ∆∇εΦ (3.4.31)
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Figure 3.3: Interval range of two matrix elements of H, approximation of true result set

By choosing k0 = k−1, satellite-receiver geometry varies only very little due to the low
airspeeds of small UAS, and we can approximate

∆∇Φ ≈Hk∆d + ∆RΦ,k + ∆∇εΦ (3.4.32)

and compute the least squares solution of ∆d = dk − dk0. To find a bound on the
approximation error we consider bounds on the variation ∆H of the geometry matrix
H between two consecutive epochs by first writing

∆∇Φ =Hkdk − (Hk + ∆H)(dk + ∆d) + ∆RΦ,k + ∆∇εΦ (3.4.33)
=Hk∆d + ∆H∆dk + ∆Hk∆d + ∆RΦ,k + ∆∇εΦ (3.4.34)

By interval arithmetic we can then find interval bounds on the second and third term
of equation (3.4.34), see figure 3.3 for an example of the obtained intermediate interval
of two elements of ∆H. Note that the inclusion is not tight, but predicts well the non-
zero center and order of magnitude of the true range, approximated by a large number
of point samples. The interval sum of the last four terms of equation (3.4.34) provides
then an outer bound [wΦ] for the overall observation error of linearized time differenced
carrier phase double differences and the observation interval is

[∆∇Φ] =Hk∆d + [wΦ] (3.4.35)

The interval least-squares solution of 3.4.35 is then given by

[∆d̃] =(HT
kHk)

−1HT
k [∆∇Φ] (3.4.36)

Note that this is a modification of the accumulation strategy studied in [95] and inherits
the same attractive properties. Most importantly, the property that only a set of at least
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four common observations is required over any two consecutive epochs. As a conse-
quence, the availability of the solution 3.4.36 is higher thanwhen using a fixed reference
epoch, especially in the dynamic environment of a small UAS. Flight test results with
a GPS L1 low-cost receiver [96] suggest that although loss of lock occurs frequently,
e.g. in sharp turns, a set of > 4 observations can always be maintained1. Note that
when using a fixed reference epoch, losing lock to a sufficient majority of the satellites
in view between the current and the reference epoch even only once, or a change in the
set of satellites in view due to orbital motion can actually break availability of the car-
rier phase position increment altogether. For any pair of two UAS, the relative position
vector interval can thus be propagated in time by

[dk] = [dk−1] + [∆d̃k] (3.4.37)

or alternatively in center-range notation (see 3.3)

[dk] = [dk−1] + ∆d̃k + [w∆dk ] (3.4.38)

3.4.3 Inter-UAS range observations

The range between the antenna centers of UWB ranging devices on board UAS i and j
is given by

ri,j,k = ||di,j,k + Reb,jr
b
j −Reb,ir

b
i ||+ wr,k (3.4.39)

with the positions rbi , r
b
j of the UWB antenna centers w.r.t. the GNSS antenna centers in

the respective body frame and the device hardware measurement noise wr ∈ [wr, wr].
Equation (3.4.39) is subject to parametric uncertainty due to uncertainty in the attitudes
Reb,i,Reb,j of both UAS. In the following we assume that rbi , rbj are small, i.e. the ranging
antennas are close to the GNSS antennas, and that interval bounds of their additive
effect on the range observation have been determined. We can then lump their effect
on the range observation into a combined range error ŵr,k:

ri,j,k = ||di,j,k||+ ŵr,k (3.4.40)

with ŵr ∈ [ŵr, ŵr]

1What is more, the ongoing incorporation of concurrent GNSS systems (GPS, Glonass, Compass,
Galileo) in low-cost receivers can be expected to improve availability drastically in the near future.
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Linearization

To linearize equation (3.4.39) for the ESMF and EKF, we first write range observations
as

r =(dTd)1/2 (3.4.41)

dropping indices and subscripts since we always consider UAS i and j at sampling
instant k. The first order interval Taylor expansion of equation (3.4.41) follows in the
form familiar from pseudo range observations

[r] =(dTd)1/2 +
∂r

∂d

∣∣∣∣
d=d

([d]− d) + ([d]− d)
∂2r([d])

∂d2
([d]− d)T + [ŵ] (3.4.42)

with the gradient and Hessian

∂r

∂d
= (dTd)−1/2dT (3.4.43)

∂2r

∂d2
= (dTd)−1/2I3 − d(dTd)−3/2dT (3.4.44)

Geometrically, the linearized range observation is the distance from a plane tangent to
the sphere centered at UAS i at the point of linearization. While a good approximation
at large distances, the increasing curvature of the sphere introduces larger linearization
errors as UAS get closer to one another, see figure 3.4.
Evaluating the remainder term of (3.4.42) and forming the interval sum with [ŵr] pro-
vides an interval bound on the total error of the linearized observation equation.
Implementing this generic bounding scheme as introduced in equation (3.4.42) leads
however to some overapproximation due to dependency in the involved expressions.
The larger the linearization error, the less likely it is that the linearized observations
can contribute to contracting the guaranteed state set. That being said, it is desirable
to find tight bounds on the linearization error to exploit the maximum amount of in-
formation captured by range observations. Explicitly evaluating the error between the
nonlinear observation equation (3.4.40) and its linearization, exploiting monotonicity,
can however provide tight bounds. The explicit linearization error interval is given by

[∆r] =(dTd)1/2 + g̃[d]− g̃d̃− ([d]T [d])1/2 (3.4.45)

with g̃ = ∂r
∂d

∣∣
d=d̃

. Evaluating equation (3.4.45) at the 8 vertices of [d] provides a sharp
inclusion of [∆r].

To verify monotonicity of equation (3.4.45) w.r.t. [d], consider the interval-valued gra-
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dient [
∂∆r

∂d

]
=g̃ − ([d]T [d])−1/2[d]T (3.4.46)

=
d̃T

||d̃||
− [dT ]

||[d]||
(3.4.47)

For any d̃,d, the elements of the gradient can be made positive over the range of [d] by
a change of coordinates. The fact that monotonicity can be enforced by a simple trans-
lation of the frame we are operating in, implies that it suffices to evaluate the vertices
of [d] in the original frame, since a translation does not affect ∆r.
See figure 3.4 for two examples. The first one, a separation of about 100m is represen-
tative of the situation when the UAS is approaching the formation from the far field
during the rendezvous phase. The second one is representative of keeping a position
right at the border of the relative position interval, i.e. as close as possible to the prede-
cessor. Note the drastically increasing linearization error for smaller separations.
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Figure 3.4: Range observation linearization error interval bounds andMonteCarlo sam-
ples for two separation vector intervals: [da] =

(
[90, 110] [−10, 10] [−10, 10]

)T and
[db] =

(
[0, 20] [−10, 10] [−10, 10]

)T
Using the linearized observation equations and their interval error bounds developed
in the previous section, we are now ready to apply linear set membership filtering tech-
niques.

3.5 Modified Extended Set Membership Filter
The various existing set membership filters employing ellipsoidal set representations
(see e.g. [85, 97]) follow the common recursive structure introduced in section 3.3, each
one having a convenient intuitive geometrical interpretation. In a first step, the guar-
anteed state set Ω(x̂k,k,Σk,k) of the preceding filter step k is propagated using the dy-
namics model and an ellipsoidal bound Ω(0,Qk) on the modeling error. This amounts
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to forming the Minkowski sum of Ω(x̂k,k,Σk,k) and Ω(0,Qk). This sum generally not
being an ellipsoid, an outer ellipsoidal approximation Ω(x̂k+1,k,Σk+1,k) is formed min-
imizing some measure of size.
Algorithms primarily differ in the selection of this measure. The volume, or equiva-
lently the determinant (see [98] for a survey of minimum volume algorithms) as well
as the trace of Σk+,k have been considered. The determinant criterion is reported to
potentially produce very thin, long ellipsoids, while the trace criterion, proportional to
the sum of squared half axes, tends to lead to better behaved ellipsoids [97].
In a second step, the intersection of Ω(x̂k+1,k,Σk+1,k) and an ellipsoidal approximation
of the consistent state set is approximated by a bounding ellipsoidΩ(x̂k+1,k+1,Σk+1,k+1),
again minimizing the trace or determinant of Σk+1,k+1.
These two steps are particularly efficient to implement for linear systems, see eg. [97],
exploiting firstly the fact that ellipsoids stay ellipsoids under linear transformations
and secondly that the set inversion involved in computing the consistent state set can
be performed without approximation by matrix inversion.
In the spirit of the Extended Kalman Filter, the Extended Set Membership Filter pro-
posed in [85] extends ellipsoidal set membership filtering to nonlinear systems by local
linearization. Ellipsoidal bounds on the resulting linearization errors are employed and
lumped together with the propagation error bounds and measurement error bounds
of the nonlinear model. The algorithm is rather generic as the propagation and update
step provide sets of approximating ellipsoids, each parametrized by a scalar parame-
ter. In [84, 85] the authors, while mentioning the existence of closed form minimum
trace solutions, propose applying numerical optimization to determine the parameter
corresponding to the minimum size ellipsoid in each set. Note that the utilization of
numerical optimization does not preclude real-time application, since everymember of
the given sets is guaranteed to contain the propagated set or intersection respectively,
so optimization can be stopped anytime. Closed-form solutions are however preferable
due to improved efficiency (especially taking into account the still somewhat limited
embedded computing resources of UAS) and guaranteed minimization of the selected
size criterion. As can be shown, the minimum trace solution presented in [97] can di-
rectly be applied to the propagation step. On the other hand, no minimum trace or
minimum volume closed form exist solutions for the update step in its form given by
[85]. In the following we present a modified, fixed time version of the ESMF, adopting
the closed form minimum trace ellipsoid approximations proposed in [97]. A further
modification we make to the ESMF is the addition of an input vector acting on both the
state transition and outputs. This will prove useful for propagating the relative position
by time differenced carrier phase observations and to take the position offset of UWB
ranging antennas into account.
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3.5.1 Algorithm

We provide first the algorithm in general terms, followed by specifics for relative UAS
localization.

Propagation The state transition is given by

xk+1,k = f(xk,k) + uk (3.5.1)

Σk+1,k = Ak
Σk+1,k

1− βk
AT
k +

Qk

βk
(3.5.2)

where A = ∂f(xk)
∂x

∣∣∣
x=x̂k,k

. The parameter βk is computed following [97] to minimize the
trace of Σk+1,k to

βk =

tr
(
Σ

1/2
k,k (Σ

1/2
k,k )T

)1/2

+ tr
(
Q

1/2
k,k (Q

1/2
k,k )T

)1/2

tr
(
Q

1/2
k,k (Q

1/2
k,k )T

)1/2


−1

(3.5.3)

Update The update of the standard ESMF algorithm is a one-step matrix operation.
Although closed-form solutions are mentioned in [85] as an option, numerical opti-
mization has to be employed to minimize the trace of the resulting ellipsoid when im-
plementing the one-step update, see [97]. The alternative update step presented in [97]
exploits the fact that a closed form minimum trace solution is possible for the inter-
section of ellipsoids and strips. Each element of the observation vector with its corre-
sponding error interval defines a pair of hyperplanes - a strip - in state space, in turn
defining the consistent space set as all states enclosed by the hyperplanes. By consecu-
tive intersection of the propagated state ellipsoid with each strip, an approximation of
the minimum trace ellipsoid intersection is obtained. From the linearized observation
equation 

yk+1,1

yk+1,2

...
yk+1,m

 =


C1

C2

...
Cm

x +


wk+1,1

wk+1,2

...
wk+1,m

 (3.5.4)

where Ci are the rows of C = ∂h(xk)
∂x

∣∣∣
x=x̂k+1,k

and wk+1,i ∈ [−Wk+1,i,Wk+1,i]
2 we obtain

m pairs of hyperplanes definingm strips in Rn.
2Note that every asymmetric observation error interval can be converted into a new, centered obser-

vation and a corresponding symmetric error interval
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If known inputs affect outputs in the known form

ỹk =h(x) + g(uk) + wk (3.5.5)

we define a new output yk = ỹk − g(uk) allowing us again to write

yk =h(x) + wk (3.5.6)

and to linearize without modifications to obtain equation (3.5.4).
The strips are then recursively intersectedwith the propagated state ellipsoidΩ(x̂k+1,k,Σk+1,k).

Recursive intersection

Define

M0 =Σ−1
k+1,k (3.5.7)

c0 =x̂k+1,k (3.5.8)

For i = 1...m

For each element of the observation vector the two hyperplanes are given by

Plane 1 : Ci||Ci||−1x =(yk+1,i −Wk+1,i)||Ci||−1

=p+

Plane 2 : Ci||Ci||−1x =(yk+1,i +Wk+1,i)||Ci||−1

=p−

(3.5.9)

with their common unit normal vector Ci||Ci||−1 and the respective distances to the
origin p+, p−. As required by the intersection algorithm, we first check for each plane
if it intersects the ellipsoid Ω(x̂k+1,k,Σk+1,k), and if not, compute a parallel hyperplane
that is tangent to the ellipsoid, see3 appendix A. The resulting tightened hyperplanes
being given by

Tightened plane 1 : Ci||Ci||−1x =p+
t

Tightened plane 2 : Ci||Ci||−1x =p−t
(3.5.10)

we compute a new tightened observation interval center

ŷk+1,i =
1

2
(p+
t + p−t )||Ci|| (3.5.11)

3Details on computing these tightened hyperplanes might also be given in [99], where tightening has
first been introduced. Since [99] appears to be available only in print, we provide a derivation in the
appendix for the sake of accessibility
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and tightened observation error bounds

W k+1,i =
1

2
(p−t − p+

t )||Ci|| (3.5.12)

The corresponding tightened strip has the same intersection with Ω(x̂k+1,k,Σk+1,k), but
simplifies the intersection algorithm, see [97]. After normalizing with the new error
bounds

yk+1,i =W
−1

k+1,iŷk+1,i (3.5.13)

Ci =W
−1

k+1,iCi (3.5.14)

we obtain a strip

S(yk+1,i,Ci) = {x : |yk+1,i −Cix| ≤ 1} (3.5.15)

in the form required for the intersection algorithm. The intersection of the ith strip and
the intermediate ellipsoidΩ(ci−1,M

−1
i−1) is then computed as follows, adapted from [97]:

P =M−1
i−1

δ =yk+1,i −Cici−1

g =CiPC
T

i

γ =CiP
2C

T

i

µ = tr(P)

β1 =
3

g

β2 =
g(µ(1− δ2)− γ) + 2(gµ− γ(1− δ2))

g2(gµ− γ)

β3 =
µ(1− δ2) + γ

g2(gµ− γ)

if β3 > 0 the intersection does notmodifyΩ(ci−1,M
−1
i−1) , i.e. both tightenedhyperplanes

are tangent and

Mi = Mi−1

ci = ci−1
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Otherwise the minimum trace ellipsoid bounding the intersection is computed as

M =
3β2 − β2

1

9

N =
9β1β2 − 27β3 − 2β3

1

54

θ = acos

(
N

(−M3)1/2

)
q =2(−M)1/2 cos

(
θ

3

)
− β1

3

α∗ =
1

1 + q

Mα∗ =α∗Mi−1 + (1− α∗)CiC
T

i

ci =M−1
α∗

[
α∗Mi−1ci−1 + (1− α∗)Ciyk+1,i

]
δα∗ =cTi−1Mi−1ci−1 + (1− α∗)y2

k+1,i − cTi Mα∗ci

Mi =(1− δα∗)−1Mα∗

After the last intersection

x̂k+1,k+1 =cm

Σk+1,k+1 =M−1
m

provide the updated guaranteed state ellipsoid at sample k + 1.

3.5.2 Application to relative localization

We now apply the modified ESMF to the problem of cooperative relative localization
betweenUAS. In amost basic configuration, eachUAS runs a bank of filters, one for each
other UAS. Computational effort could further be reduced by exchanging set estimates
between UAS. In the following we consider the case of one UAS tracking the relative
position of another one.

To initialize the guaranteed state ellipsoid, the maximum error interval of the differen-
tial pseudo range position d̃ρ,0 is computed by interval arithmetic from the least-squares
solution of 3.4.6

[d̃ρ] =(HT
0 H0)−1HT

0 [∇rρ0] (3.5.16)

TheMinimumVolume Ellipsoid (MVE) enclosing this interval then provides the initial
guaranteed state set Ω(x̂0,0,Σ0,0).
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The state comprises the relative position vector between UAS i and UAS j

xk =di,j,k (3.5.17)
f(xk) =di,j,k + ∆d̃k + w∆d,k+1 (3.5.18)

A =I3 (3.5.19)

and observations are double differences of pseudo ranges

yk =∇rρk (3.5.20)
=Hp,rdi,j,k + w∇rρ,k (3.5.21)

C =Hp,r (3.5.22)

Note that we use the linearized observation equation here due to the small linearization
error. The observation error is bounded by the interval sum of the linearization error
interval given by equation (3.4.23) and the interval of double difference pseudo range
observation noise obtained from zero-baseline observations. Note that in contrast to the
standard ESMF, the interval vector bounds on pseudo range observations (see section
3.4.1) can directly by used and do not need to be approximated by a bounding ellipsoid.
The propagation error ellipsoidΩ(0,Qk) is obtained as theMVEof the interval of carrier
phase position propagation errors w∆d,k, see equation (3.4.38).

Incorporating UWB ranging

Range observations are integrated into the filter by augmenting the observation vector
to

yk =

(
∇rρk

ri,j,k

)
(3.5.23)

=

(
Hp,rdk(i, j) + w∇rρ,k

||di,j,k||+ w̄r,k

)
(3.5.24)

C =

[
Hp,r

∂r
∂d

∣∣
d=x̂k,k−1

]
(3.5.25)

Asynchronous observations If ranging and GNSS observations are available asyn-
chronously at different time instants, ranging observations can be incorporated in a
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separate update step using

yk =ri,j,k (3.5.26)
=||di,j,k||+ w̄r,k (3.5.27)

C =
∂r

∂d

∣∣∣∣
d=x̂k,k−1

(3.5.28)

It facilitates an informed judgment of the merits of the proposed set membership filter
to compare it to its stochastic EKF counterpart, to which we will consequently turn our
attention in the following section.

3.6 Extended Kalman Filter

The Extended Kalman Filter appears to be, along with the Unscented Kalman Filter,
the most popular state estimator providing a confidence estimate for nonlinear sys-
tems. For the sake of comparison, we implemented two EKFs that are the analogue
of the ESMF schemes presented in the previous section. The state transition and ob-
servation equations for the EKF are identical to those used for the ESMF, except that
stochastic instead of deterministic bounds on the prediction errors and observation er-
rors are assumed. Accordingly, QKF and RKF are the corresponding process noise and
measurement noise covariance matrices.
For the GNSS-only filter we obtain an estimate of the elements of RKF by fitting a nor-
mal distribution to zero-baseline double difference samples collected with a low-cost
GPS receiver [100], see figure 3.5. An approximation of RKF is then

RGNSS = σ2
∇rρIm (3.6.1)

where σ∇rρ is the standard deviation of the fitted normal distribution andm is the num-
ber of pseudo range double differences. When incorporatingUWB ranging, we approx-
imate the unknown error distribution of the linearized range observation by setting
σr = 3 ∗ w̄r,k

2
, leading to

RGNSSUWB =

[
RGNSS 0

0 σ2
r

]
(3.6.2)

To approximate QKF , we first compute an estimate RΦ of the covariance matrix of the
carrier-phase TDSD observation noise ∆∇εΦi,j,k again from zero-baseline observations
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Figure 3.5: Time series and fitted normal distribution of GPS C/A pseudo range double
difference noise obtained from zero-baseline measurements (ublox LEA-6T receivers)

Figure 3.6: Time series and fitted normal distribution of GPS L1 carrier phase time
differenced double difference zero-baseline observations (ublox LEA-6T receivers)
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(see figure 3.6). The covariance of wk can then be computed as

(HT
i,j,kHi,j,k)

−1HT
i,j,kRΦ

[
(HT

i,j,kHi,j,k)
−1HT

i,j,k

]T (3.6.3)

Note that the resulting covariance matrix is time-varying due to the time-varying ge-
ometry matrix Hi,j .

Equippedwith these covariancematrices, we follow the standard prediction-correction
scheme of the EKF.

3.7 Derivation of trajectory planning constraints
The ellipsoid produced by the modified ESMF constrains the position vector between
GNSS antennas. To obtain an ellipsoid that contains all parts of the UAS, we cover
the airframe by another ellipsoid Ω(0,Pac) centered at the GNSS antenna center and
approximate their Minkowski sum by its minimum trace bounding ellipsoid with the
same method used in the ESMF propagation step, see equations (3.5.2)-(3.5.3). The
result is an ellipsoid

Ω(x̂, Σ̄) = Ω(x̂,
Σk,k

1− β
+

Pac

β
) (3.7.1)

guaranteed to completely contain the tracked UAS.
The ellipsoid Ω(x̂, Σ̄) can directly be integrated as a nonlinear constraint into trajectory
planning algorithms. It is however convenient to derive a set of constraints linear in the
UAS position to enable use of fast LMPC based trajectory planning (see section 2.5.1).
We propose computing an approximate convex hull where the number of faces is a
design parameter, representing a tradeoff between tightness of fit and complexity of
the resulting polyhedron.

Finding an approximate convex hull

We adopt the algorithm proposed in [101] for the computation of an approximate con-
vex hull of a set of points in Rn. As shown below, it can be applied to find an outer
polyhedral approximation of ellipsoids as well. The algorithm is briefly outlined here,
see [101] for a detailed derivation.
We first define a set of direction unit vectors n1,n2...nN that are evenly spread on the
unit sphere. Oneway to achieve this even sampling is by adopting spherical coordinates

nsi =
(
r Θ φ

)T
(3.7.2)

where r is distance from the origin, Θ the zenith angle and φ the azimuth angle. Given
a vector of angles Θ =

(
θ1, θ2...θn

)
evenly spaced on the interval [−π

2
, π

2
] and φ =
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(
φ1, φ2...φn

)
evenly spaced on [0, 2π], a set of unit direction vectors results to

(
(1 Θ1 φ1)T , (1 Θ2 φ2)T , ...(1 Θn φn)T

)
Memory consumption can be reduced by sampling one half space of the unit sphere
and considering each unit vector and its negative. This is left as an implementation
detail, as it messes up notation. After converting back to Cartesian coordinates

ni =

sin Θi cosφi

sin Θi sinφi

cos Θi

 (3.7.3)

each of these direction vectors ni is the normal vector of a plane given by

nTi d = pi (3.7.4)

where d is a point on the plane.

Application to Ellipsoids Given the guaranteed state ellipsoid Ωk(x̂k, Σ̄k), for each
of the direction unit vectors ni we find the pi,t that represents a plane tangent to the
ellipsoid and normal to ni by applying the method given in appendix A. Each tangent
plane forms one of the planes constituting the approximate convex hull. The resulting
set of planes can be written as a polyhedron of the form

Ad ≤ b
nT1
nT2
...

nTn

d ≤


p1,t

p2,t

...
pn,t

 (3.7.5)

Existing algorithms such as [102] can then be used to derive convex position constraints
from the polyhedron 3.7.5.

3.8 Evaluation
To evaluate the proposed localization schemes, we consider two UAS in close proxim-
ity. Each UAS is assumed to broadcast its carrier phase and code phase observations
as well as to take UWB range measurements. We select a half circle trajectory of rela-
tive positions of the follower UASw.r.t. the predecessor, emulating a follower changing
stations inside a formation, a maneuver requiring guaranteed but not overly conserva-
tive relative position estimation error bounds for safe but fast execution. Recall that
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for tight formation flight we want a filter that converges fast to useful, i.e. not overly
conservative outer estimates of a set that is guaranteed to contain the relative position.

Figures of Merit

We consider three figures ofmerit to compare ESMF and EKF aswell as to judge the im-
pact of UWB ranging observations. First, the trace of the respective ellipsoid matrices
(For the EKF we consider the 3σ level surface ellipsoid), as it gives a scalar measure of
the ellipsoid size and thus its relative conservativeness. Second, the distance between
the respective ellipsoid center and the relative position vector, representing the useful-
ness of the ellipsoid center as point state estimate. Third, plugging the true relative
position into equation (3.3.9) provides a measure of distance to the ellipsoid surface
indicating whether the guaranteed state set indeed contains the true state at all times.

GNSSobservation errors When comparing the EKF, based on a normally distributed,
i.e. unbounded process and measurement error model, and the ESMF and BPDMF,
based on interval noise bounds, care has to be taken when it comes to simulating ob-
servation errors, as the assumed distribution inherently favors one or another filter for-
mulation. While a simulated normal distribution obviously unduly favors the EKF, a
uniformdistribution is even further from realistic. From inspection of real zero baseline
code phase double difference samples, it appears that the noise profile could reason-
ably be approximated by a biased normal distribution. However, even more realism
can be introduced by directly using noise samples from zero-baseline experiments in
simulation, thereby removing the need for assumptions about the statistical nature of
double difference observation errors. This approach has been adopted here to simulate
both differenced carrier phase as well as differenced code phase observations.

UWB ranging observation errors Our field experiments [103] with a pair of UWB
ranging devices (DecaWave EVK1000 [104]) indicate a range error interval excluding
antenna position offsets of wr ∈ [−0.5m, 0.5m] in unobstructed outdoor conditions.
Larger error bounds reported in [105] are most likely due to the considered metal-
rich industrial indoor environment that is not representative of the conditions expected
within a formation of UASmademostly of composite material. For simulationwe draw
observation errors from a uniform distribution.

Satellite constellation A static constellation of 7 satellites on a sphere corresponding
to GPS orbits, constrained by a minimum elevation of 15° is simulated.
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Figure 3.7: ESMF, GNSS only: half axes of guaranteed state set, ellipsoid membership
of true state, guaranteed state set at last epoch with pseudo range positions and ESMF
position estimates

3.8.1 GNSS only

We first run the ESMF and EKF filter formulations with GNSS observations only. Fig-
ure 3.7 shows how the ESMF guaranteed state ellipsoid fulfills its primary property
and at all epochs contains the true relative position. The ellipsoid contracts drastically
over the first few epochs to a quasi steady state in all three axes with a largest half axis
of about 6 m. In comparison, the EKF 3σ level set ellipsoid is by roughly one order
of magnitude more optimistic, freeing up considerably more maneuvering space. The
ellipsoid contains however from about epoch 45 on no longer the true relative position,
see figure 3.9, illustrating the fundamental limitation of Kalman filtering for this ap-
plication. Note that the EKF estimates an inconsistent confidence ellipsoid in spite of
differential pseudo range noise being well approximated by a zero mean normal distri-
bution, i.e. although operating under rather favorable conditions.
While both the EKF mean state estimate and the ESMF ellipsoid center approximate
the true relative position with sub-meter accuracy (see figure 3.9), the EKF provides a
smoother estimate.
Note that fluctuations in filter execution times (an interpreted Matlab implementation
running on a 4-core i7 CPU on Windows 7 OS) can be attributed to the non-real-time
execution environment.
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Figure 3.8: EKF, GNSS only: half axes of ellipsoid Σ3σ, ellipsoid membership of true
state for Σ3σ, Σ3σ at last epoch with pseudo range positions and KF position estimates

0

0.5

1

1.5

2

ESMF EKF

0

37.5

75

112.5
ESMF EKF

0

0.01

ESMF EKF

Figure 3.9: GNSS only, comparison of ESMF, EKF: norm of center estimation error, size
of guaranteed set (ESMF) or 3σ level set (EKF) respectively asmeasured bymatrix trace,
filter execution time



3.8. EVALUATION 101

Figure 3.10: ESMF, GNSS+UWB ranging: half axes of guaranteed state set, ellipsoid
membership of true state, guaranteed state set at last epochwith pseudo range positions
and ESMF position estimates

3.8.2 Benefits of inter-UAS ranging

Incorporating inter UAS range observations leads to tighter guaranteed state ellipsoids
as well as reduced EKF covariances, see figs. 3.10, 3.11. Both point position estimates
are improved after larger initial transient errors, see figure 3.12. The superior point esti-
mation accuracy of the EKF could be exploited by using it for guidance purposes while
relying on the confidence ellipsoid of the ESMF for guaranteed collision avoidance.
The benefit of incorporating ranging observations is more clearly illustrated by figure
3.13, displaying the ratio of the ESMF a posteriori half axes and trace without and with
ranging observations. A reduction in size as measured by the ellipsoid trace of roughly
30% can be observed compared to the GNSS only case.
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Figure 3.11: EKF, GNSS + UWB ranging: half axes and trace of ellipsoid Σ3σ, member-
ship of true state in Ω(x̂k,k,Σ3σ,k,k, Σ3σ at last epoch with pseudo range positions (blue
dots) and EKF position estimates (red line)
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Figure 3.12: GNSS + UWB, comparison of ESMF, EKF: norm of state estimation error,
volume of guaranteed set (ESMF) or 3σ set (EKF) respectively, filter execution time
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3.8.3 Fixed-time intersection suboptimality
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Figure 3.14: Suboptimality of element-wise ESMF update

As mentioned in [97], incorporating observations recursively in the update step of the
modified ESMF can increase conservativeness of the resulting a posteriori ellipsoid. On
the other hand, overbounding the observation error interval by an ellipsoid is likely to
increase the conservativeness of the standard ESMF update step compared to the re-
cursive intersection that directly operates on the observation error interval.
We consider two measures to study these opposing effects quantitatively. Firstly, when
running the modified ESMF, we compute the minimum trace a posteriori ellipsoid by
numerical optimization in parallel with the closed-form algorithm, see figure 3.14. In-
terestingly, during the initial contraction both an improvement in a posteriori ellipsoid
size and increased conservativeness can be observed. Differences diminish over time
and after filter convergence both methods are roughly on par.
Of more consequence is the size of the converged a posteriori ellipsoid. Running the
ESMF in both configurations and forming the ratio of the trace of the resulting ellip-
soid trajectories, we observe steady state ellipsoids roughly twice as large (as measured
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by the trace criterion) when using numerical optimization. Note however that a factor
of two in the trace size criterion translates into a factor of

√
2 considering lengths of half

axes.
Still, this snapshot result suggests that if observation errors are defined by intervals,
the overapproximation by ellipsoids when applying the standard ESMF leads to signif-
icantlymore conservative set estimates, on top of the performance penalty of numerical
optimization. It suggests also that the effect of ellipsoid bounding of observation error
intervals outweighs the effect of recursive strip intersection.

3.8.4 Overview

We have seen in this chapter how ellipsoidal sets that are guaranteed to contain the
relative positions of other UAS can be efficiently computed with a modified version
of the Extended Set Membership Filter, relying on low-cost GNSS receiver and UWB
ranging hardware. The performed simulations suggest that the resulting algorithm
is suited for simultaneously tracking multiple UAS in real-time due to its moderate
computational cost. We have demonstrated how the resulting ellipsoidal sets can be
outer bounded by polyhedrons to render them useful for path planning algorithms
requiring linear position constraints.



Conclusion and future work

Tight formation flight is an enabling technology for a large number of range enhancing
techniques such as upwash exploitation, aerial recharging and aerial docking between
UAS.
The corresponding major technological challenges lie in reliably and accurately main-
taining relative position in the wake of another aircraft, while guaranteeing collision
avoidance. In this work we address both of these challenges. We present important
building blocks that are expected to be of help in taking tight formation flight from the
experimental stage and make it a safe and routine technique.
We have investigated the critical sensitivity of previously proposed continuous time
sliding mode guidance techniques w.r.t. two often neglected properties of real-world
aircraft: discrete sampling and inner control loop dynamics. We show how these im-
plementability issues can be overcome by extending established discrete sliding mode
techniques. The proposed laws are entirely defined by hard input constraints, an ad-
vantage over existing DMSC laws. We show that both existing DSMC control as well as
the proposed PDSMC control can be posed as special cases of model predictive control
To complement the proposed novel guidance laws, we present a design procedure
based on model predictive control techniques to generate minimum-time constrained
sliding surfaces. By tightening input and position constraints, these sliding surfaces al-
low for taking dynamic limitations of the UAS and bounded control errors into account
simultaneously to guarantee closed-loop constraint satisfaction.
We present a set membership localization algorithm that enables for the first time to
give safety guarantees when it comes to relative positioning between aircraft. The pre-
sented set membership filtering scheme provides both guaranteed regions and point
estimates of the relative position between UAS. It can be employed in a complementary
fashion parallel to possible existing point localization algorithms such as the Extended
Kalman Filter. We provide a derivation of linearized observation equations and the cor-
responding interval inclusions of modeling error bounds. In extension of the standard
ESMF algorithm, we take not only linearization errors, but also parametric errors into
account that are commonly neglected in differential GNSS positioning. The algorithm
can readily be applied to manned aircraft, where safety guarantees are key to making
commercial manned tight formation flight a reality in the future. Incorporating UWB
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ranging observations is a first step towards GNSS-independent positioning. Guaran-
teed localization is complemented by the predictive sliding surfaces employed in this
work, allowing to take bounded position tracking errors into account.
As a distinctive property, all the presented algorithms are readily implementable using
the avionics hardware of a typical small low-cost UAS.

Beyond the pressing need for experimental verification, the work presented here has
opened up numerous directions for future exciting work.

Future research

Simulation

• Available atmospheric turbulence models such as the Dryden model currently
used by the FFB benchmark do not allow taking into account the spatial distribu-
tion of turbulence in a formation. Due to the very small distances between UAS
in formation flight, turbulence acting on each UAS can be expected to be highly
correlated. As a result, the effect of atmospheric turbulence is likely to be overesti-
mated by current simulations. Efforts should bemade towards amultiple-aircraft
turbulence model.

Heterogeneous formations

• In this work, formations of identical UAS have been considered. Heterogeneous
formations have distinct advantages for certain missions. Examples are search
and rescuemissions in cluttered environments, where a group of low-flying small
UAS can explore an areamore efficiently than a single larger UAS at high altitude.
Tight formation flight holds potential in this context for two reasons. First, due
to their stronger upwash, larger UAS could improve the endurance of following
smaller UAS, leading to better overall formation endurance. Secondly, larger UAS
could carry batteries and recharge smaller UAS in air, again improving overall
group endurance. The stronger wake of larger UAS will make avoiding certain
regions of the wake necessary. The constrained sliding surface presented in this
work can readily accommodate wake region constraints.

Scalability

• As is illustrated in section 2.6, rigid formations face scalability problems when it
comes tomaneuvering. This issue should be treated in a globalmanner in a future
research effort. Two lines of attack appear promising. Firstly, for a given forma-
tion, new constraints could be introduced into trajectory planning to ensure indi-
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vidual constraints satisfaction on the level of each formation member. Secondly,
dynamically modifying the formation shape during maneuvering could enable
even large formations to fly on trajectories designed to be feasible for one UAS. To
give one example, by warping a V-formation into a stacked vertical formation, a
horizontal turn feasible for one UAS becomes feasible for a formation of arbitrary
size.

PDSMC guidance and load factor control

• The PDSMC guidance law has been implemented on the vertical channel of the
FFB benchmark. It is the next step to apply PDSMC control to the coupled verti-
cal/lateral channels, followed by experimental evaluation.

• The proposed PDSMC guidance law relies on sufficiently accurate local predic-
tion models of the load factor and bank angle tracking loops. Adaptive control
techniques could improve the proposed guidance schemes in two ways. Firstly,
indirect adaptive control techniques, i.e. online learning could be employed to
learn better models of the inner loop dynamics. Secondly, adaptive control on
the inner loop level could be employed to track reference models corresponding
to the PDSMC prediction models. The second option appears more promising,
since it alleviates at once the need to accurately identify an aerodynamic model
currently required for LQ tracking law synthesis.

• Plasma actuation, while still at an early development stage (about TRL 3 as first
wind tunnel [106] and experimental results for UAS actuation are reported ) al-
lows for very fast flowmanipulation [107]. Once this technology has becomemore
mature, it can remove the main obstacle, slow input dynamics, for the application
of continuous time higher order sliding mode control, with its distinct advan-
tages outlined in chapter 2, and continous time HOSM should be revisited for the
vertical and possibly the lateral channel.

• The PDSMC optimization problem 2.5.52 could be posed employing a prediction
model sampled at the sampling time of the inner loops, imposing the same σ
contraction constraint on the last state, enlarging the degrees of freedom of the
control. It is considered a worthy future study to determine the degree of perfor-
mance loss due to the limitation to constant control inputs over the contraction
horizon.

• In this work estimated load factors are assumed to be available. Accurate 3D load
factor estimation with the consumer-grade MEMS sensors found on todays small
low-cost UAS is an interesting problem in itself and deserves future study.
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Localization

• In evaluating the set membership localization filter presented in chapter 3, no
effort has been made to optimize the trajectory of the follower, i.e. by maximizing
some observability measure. Including the contraction of the guaranteed state set
into the design of the approach trajectory, based on some kind of observability
metric (see e.g. [108] considering the Fisher information matrix) contraction time
as well as final size of the guaranteed state set could be systematically minimized.
Consider also the QP based approach for bearings-only observability optimized
approach trajectories [109] that appears to be a good candidate to be adapted to
the set membership localization scheme considered in this work.



Appendix A

Computing tangent hyperplanes of
ellipsoids

Given an ellipsoid and a plane

E =Ω(xc,Σ)

nTx =p

with the plane normal vector n, we check first whether the plane intersects the ellipsoid
and, if not, find a modified pt that represents a plane parallel to the original one and
tangent to the ellipsoid.
To considerably simplify doing so, we first apply a linear transform to the problem
space that distorts the ellipsoid back into a unit sphere, find the tangent plane in the
distorted space and transform it back to the original space.
The ellipsoid being a unit ball under a linear transform, the inverse transform is given
by

T = Σ
−1/2
k (A.0.1)

The transformed ellipsoid becomes the unit sphere

E ′ = Ω(Txc, I3) (A.0.2)
E ′ = Ω(x′c, I3) (A.0.3)

where ()′ denotes a vector in the transformed space, and the plane corresponding to the
unit vector n in transformed space is given by

nTT−1

||nTT−1||
x′ =

p

||nTT−1||
(A.0.4)

(n′)Tx′ =p′ (A.0.5)
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In the transformed space the distance of the initial plane from the surface of the sphere
is straightforwardly given by

d = n′x̂′ − p′ (A.0.6)

By replacing p′ by an appropriately modified p′t the plane is made tangent to the sphere.
The tangent plane is then transformed back to the original space by T−1

nTT

||nTT ||
x =

p′t
||nTT ||

(A.0.7)

nTx =pt (A.0.8)



Appendix B

Disturbance propagation under local
SMC

String stability and its 3Dgeneralizationmesh stability are a feature of a three-dimensional
formation of vehicles that allow separation errors to stay locally contained. It is a well
known fact ([110]) that formations under linear control with local feedback are mesh
unstable.
Very few solutions based on nonlinear techniques such as Port-Hamiltonian systems,
[111] and sliding mode control, [25, 30], have been proposed so far to tackle this prob-
lem and no experimental results are known to the authors. Furthermore, the existing
approaches have been applied to very simplified models, basically point-mass approx-
imations, neglecting a large part of the complex dynamics and constraints of a fixed-
wing UAS.
While in ideal sliding mode, the position error dynamics are by definition confined to
the sliding surface, independently of adjacent separation errors, implying mesh sta-
bility if the system can be kept in ideal sliding mode. It is this insensitivity towards
bounded disturbances that makes sliding mode control a very interesting candidate
for mesh stable formation control with local state information.
In the following we show that even under conditions allowing for ideal sliding mode
(continuous time system, no input dynamics), bounds on control inputs required to
maintain motion on the sliding surface grow downstream, making SMC unsuitable for
large formations with local feedback.

1D mesh stability in ideal sliding mode In ideal sliding mode after the reaching
phase (t > treach), the system states are confined to the sliding surface and exogenous
disturbances completely compensated for, given that they remain within the design
bounds. Consider the simplified vertical motion of a pair of two UAS i and i+ 1 in the
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sliding phase (σ = 0), where

∆ṗi = ∆vi (B.0.1)
∆v̇i = ai+1 − ai (B.0.2)
σ = σ((∆pi ∆vi)

T ) (B.0.3)

then σ̇ = 0 provides the equivalent control applied by the predecessor i+ 1

0 =
δσ

δ∆pi
∆vi +

δσ

δ∆vi
(ai+1 − ai) (B.0.4)

ai+1 = ai −
δσ

δ∆vi

−1 δσ

δ∆pi
∆vi (B.0.5)

By the triangle inequality we obtain an upper bound for the equivalent control (the
acceleration of the follower vehicle, ai+1 required to completely reject disturbances and
maintain sliding motion) as

||ai+1||∞ ≤ ||ai||∞ + || δσ
δ∆vi

−1 δσ

δ∆pi
∆vi||∞ (B.0.6)

where ||v||∞ denotes maxt≥0(||v(t)||). The first term on the right side of equation (B.0.5)
represents the input component compensatingdisturbanceswhile the second termdrives
the compensated dynamics along the sliding surface. The second component repre-
sents the control input generated by the nominal controller, since without disturbances
integral sliding mode is already induced by the nominal controller. In ideal sliding
mode, the system states can be made to reach the origin and stay confined to it in finite
time by the right choice of sliding surface , i.e. ∆pi(t) = ∆vi(t) = 0 for t > t∗ > treach.
We denote the time interval t∗ > t > treach the state convergence phase. Note that, dur-
ing the state convergence phase, upper bounds on the accelerations the follower has to
exert to maintain sliding motion exceed those of the predecessor. Since the acceleration
of the follower enters the next system downstream as disturbance, by recursion this
implies that norm bounds on the acceleration demands in a chain of vehicles in sliding
mode grow with the vehicle index during the state convergence phase. In quasi slid-
ing mode, the system stays in a reaching phase inside the boundary layer at all times,
therefore this issue affects quasi sliding mode in an even more severe fashion.
We illustrate this issue by a simple simulation example. Consider a chain of double
integrator UAS models. An integral sliding surface designed by applying LQ control
results to

σ = G

(
x−

∫ t

0

Arxr(τ)dτ

)
(B.0.7)
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Figure B.1: Chain of 5 vehicles, identical sliding surfaces, Ts = 10−4s

with x = (∆pi ∆vi)
T , xr = (∆pi,r ∆vi,r)

T and xr(t = 0) = x(t = 0) and where the
reference closed loop dynamics matrix Ar results from applying the LQ state feedback
to the nominal disturbance free system.

Ar =

([
0 1

0 0

]
−

[
0

1

]
Kx

)
(B.0.8)

The projection matrix G fulfills the usual conditions to ensure asymptotic convergence
to the reference state in sliding mode. Applying identical adaptive super twisting con-
trollers [112] to each subsystem and simulating a chain of 5 vehicles, where the first
vehicle is excited by a periodic disturbance, we observe two phenomena. Firstly, dur-
ing the state convergence phase, control inputs grow with the vehicle index. Secondly,
while the first subsystem maintains at least first order sliding mode (we check only
σ = 0 here) from t = 0 on, the following vehicles cannot maintain sliding mode and
enter a reaching phase, exhibiting control inputs growing with vehicle index as well.
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