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Notations

Les notations suivantes sont utilisées dans l'ensemble du manuscrit de thèse :

t : le temps, c : la vitesse de la lumière dans le vide, λ : la longueur d'onde d'un signal périodique, ω : la pulsation circulaire d'une onde harmonique, f : la fréquence d'une onde harmonique, k : le nombre d'onde, n : l'indice de réfraction, -N : le co-indice de réfraction, m : l'indice de réfraction modifié, -M : le co-indice de réfraction modifié, -∇ : l'opérateur différentiel linéaire exprimé dans le système cartésien de coordonnées (x, y, z) par ∇ = ∂/∂x x + ∂/∂y ŷ + ∂/∂z ẑ, j : le nombre complexe tel que j 2 = -1, -ũ : la transformée de Fourier de la fonction u, u * : la fonction conjuguée de la fonction u, -Re(a + jb) = a : la partie réelle du nombre complexe a + jb, -Im(a + jb) = b : la partie imaginaire du nombre complexe a + jb.

Introduction Contexte

Dans de nombreux systèmes utilisant les ondes électromagnétiques à des fins de communications, de détection ou d'observation, la modélisation de la propagation en milieu inhomogène reste un point fondamental. En particulier, le milieu troposphérique est le siège de plusieurs phénomènes qui selon la fréquence vont affecter la propagation de ces ondes : l'atténuation, la scintillation, la dépolarisation par les hydrométéores et la réfraction. Ces effets ont un impact sur le fonctionnement des radars (détection d'objets ou de phénomènes météorologiques), les liaisons de radiocommunication (en configuration sol-sol ou Terre-espace) et sur la propagation des signaux GNSS (géolocalisation, sondage atmosphérique).

Les travaux de modélisation menés dans cette thèse sont dédiés à la modélisation de l'effet de réfraction troposphérique à grande échelle. Lors de la propagation des ondes électromagnétiques dans la troposphère, la réfraction modifie le front d'onde en amplitude et en phase. De surcroît, la variation d'indice de réfraction sur le trajet induit un temps de propagation plus important par rapport à la propagation dans le vide. Ces travaux sont dédiés à la modélisation de ces effets de réfraction à grande échelle, soit pour des liaisons de plusieurs centaines de kilomètres.

Pour modéliser l'effet de réfraction dans la troposphère, plusieurs modèles existent dans la littérature. Les deux principaux sont la méthode de résolution de l'équation parabolique par spectre Les modèles de propagation PWE-SSF et OG souffrent de limites spécifiques. La première, la PWE-SSF, requiert de résoudre l'équation parabolique dans l'ensemble du domaine de propagation considéré. Cela nécessite des conditions aux limites du domaine. De plus, la décomposition en spectre d'ondes planes peut s'avérer numériquement lourde pour un milieu 2D de grandes dimensions, et encore plus dans un milieu 3D. La seconde méthode, l'OG, est limitée car elle peut générer des caustiques, c'est-à-dire des zones particulières où passent un grand nombre de rayons et pour lesquelles la somme des contributions de chaque rayon ne correspond pas au champ réel. De plus, l'OG peut poser des problèmes de convergence lorsque l'objectif est de déterminer quels rayons atteignent une zone spécifique.

Un autre formalisme, moins classique et issu de l'étude des systèmes optiques (tels que les lasers), peut être utilisé pour la propagation en milieux inhomogènes : le faisceau gaussien. D'abord introduit en optique, ce formalisme a été utilisé pour la modélisation de la propagation des ondes en milieux inhomogènes par Cerveny [Cerv 82] pour traiter de la propagation des ondes sismiques. Le faisceau gaussien a aussi été appliqué dans le cadre de la modélisation des ondes acoustiques en milieu marin [Port 87]. En ce qui concerne la propagation atmosphérique, seuls de rares travaux ont été publiés.

Objectifs et originalité

Les travaux de cette thèse sont donc consacrés au développement d'un modèle de propagation électromagnétique pour traiter le problème de la réfraction troposphérique à grande échelle (voire très grande échelle) basé sur le formalisme faisceau gaussien. Une approche originale est proposée et validée. Tout d'abord une solution analytique au calcul de la propagation de l'axe des faisceaux en milieu inhomogène est proposée. Elle permet de s'affranchir d'un calcul itératif tel que celui proposé par Cerveny [Cerv 82]. D'autre part, l'enveloppe associée à ces faisceaux est également calculée de manière analytique. Un champ quelconque peut être propagé en milieu troposphérique inhomogène grâce à une décomposition préalable en une série de faisceaux gaussiens. Pour cela, une décomposition multi-faisceau adaptée est rajoutée. La méthode développée est validée sur de nombreuses configurations de complexité croissante tout au long de ce manuscrit par confrontation à la méthode PWE-SSF. La méthode proposée, nommée GBAR (Gaussian Beam for Atmospheric Refraction), permet d'obtenir des temps de calculs plus intéressants que les méthodes classiques lorsque la taille du problème devient très importante. Enfin pour illustrer l'intérêt de la méthode, une application à la réfraction très grande échelle, soit pour des liaisons de plusieurs centaines de kilomètres, est proposée : la radio-occultation (RO) [Anth 00] [Edwa 00] [Gala 01] [Hajj 02] [Hock 97] [Wick 02b]. La radiooccultation constitue un secteur de recherche en pleine dynamique. Elle correspond à l'ensemble des moyens et techniques permettant d'effectuer des sondages de l'atmosphère d'une planète à partir d'une configuration où le signal radio entre émetteur et récepteur est en limite d'occultation par le corps de la planète. Pour la RO terrestre, est souvent utilisé le signal émis par un satellite GNSS (GPS, Galileo...) et reçu par un satellite en orbite basse (LEO). En géométrie de radio-occultation la troposphère réfracte l'onde derrière la surface planétaire. La méthode GBAR développée est appliquée dans ce contexte. Permettant de propager une onde électromagnétique dans une structure troposphérique variable en altitude et distance, la méthode est utilisée pour évaluer une technique d'inversion des conditions de réfraction en radio-occultation. Ces travaux d'application de la méthode GBAR constituent donc un originalité supplémentaire.

Plan du manuscrit de thèse

Ce manuscrit de thèse comporte, en plus de cette introduction, quatre chapitres puis une conclusion. Le premier chapitre a pour objectif de présenter le cadre spécifique de l'étude, à savoir la réfraction atmosphérique, ainsi que d'effectuer un état de l'art sur les modèles de propagation PWE-SSF et OG. Enfin, le formalisme faisceau gaussien est présenté tel qu'il a été historiquement introduit pour les milieux homogènes.

Le second chapitre se porte d'abord sur la présentation du formalisme faisceau gaussien en milieu inhomogène, selon l'approche de Cerveny [Cerv 82]. L'implémentation de ce modèle y est également expliquée. Puis, une nouvelle formulation, développée dans le cadre de cette thèse, est détaillée. Elle permet de formuler avec des équations analytiques la propagation d'un faisceau gaussien dans un milieu inhomogène caractérisé par l'indice de réfraction n. Ces équations sont à la base du modèle proposé dans cette thèse, appelé Gaussian Beam for Atmospheric Refraction (GBAR). Enfin, des tests numériques sont menés pour établir le domaine de validité de la nouvelle formulation, en comparant ses résultats à la méthode PWE-SSF, choisie comme référence.

Le troisième chapitre est consacré à la propagation troposphérique par l'utilisation de la nouvelle formulation du faisceau gaussien en milieu inhomogène avec une procédure de décomposition appelée "décomposition multi-faisceaux", développée dans sa thèse par Alexandre Chabory [Chab 04]. Pour ce faire, la modélisation réaliste du milieu de propagation est expliquée. Ensuite, la décomposition multi-faisceaux est présentée, et mise en perspective avec la procédure classique de décomposition de Gabor. Puis, l'implémentation de la formulation GBAR avec la décomposition multi-faisceaux est expliquée. Enfin, des tests numériques sont présentés pour valider et montrer les performances de la méthode proposée.

Le quatrième chapitre porte sur l'application de la nouvelle méthode à la radio-occultation. Ainsi, il commence par une présentation du principe et de la géométrie de la radio-occultation, avant d'expliquer les modèles d'inversions de données permettant d'estimer des profils atmosphériques d'indice de réfraction à partir du traitement des signaux satellitaires. Ensuite, la modélisation du problème pour la méthode GBAR est détaillée. Des tests numériques sont enfin présentés pour simuler différents cas d'inversion. 

Chapitre 1

État de l'art

Introduction

Ce premier chapitre a pour objectifs de situer la problématique générale de la propagation troposphérique (section 1.1), et de présenter les modèles existant pour la traiter. Les deux principales classes de méthodes sont les méthodes de résolution de l'équation parabolique par propagation itérative du spectre d'ondes planes (section1.2) et les méthodes du formalisme rayons issu de l'Optique Géométrique (section 1.3). Les bases théoriques de ces méthodes sont présentées, ainsi que les points importants de leur implémentation pratique. Les limites de ces méthodes sont aussi abordées. Pour tenter de pallier ces limites, un autre formalisme est abordé : les faisceaux gaussiens. Ce formalisme a d'abord été utilisé pour traiter des problèmes en milieu homogène [Koge 66]. Il a ensuite été étudié afin d'étendre son domaine d'application aux milieux inhomogènes, surtout dans le cadre de la géophysique [Cerv 82]. La partie 1.4 présente l'état de l'art du formalisme en milieu homogène, tandis que l'extension en milieu inhomogène sera traitée plus en détail dans le deuxième chapitre de cette thèse. 

Conclusion

Cette section a permis de présenter le phénomène de réfraction troposphérique déterministe, ainsi que l'indice n et le coindice N de réfraction qui servent à la modéliser. Les méthodes présentées dans la suite de ce chapitre utilisent n et N pour estimer le champ réfracté.

Résolutions numériques de l'équation d'onde parabolique en milieu inhomogène basées sur une décomposition en spectre d'ondes planes

ouverture angulaire (Wide-angle split-step algorithm). Enfin, des formulations par différences finies ont également été développées [Cran 97] afin de permettre la formulation de conditions aux limites arbitraires. Ces dernières n'ont pas été étudiées dans le cadre de cette thèse. ceci car le terme e -jkx permet de compenser les variations rapides de phase dans la direction de propagation principale. Par conséquent, la fonction φ(x, z) varie lentement dans la direction principale x, ce qui lui donne des propriétés de stabilité qui vont être exploitées par la suite. En insérant cette expression de φ(x, z) dans (1.5), il vient

Approximation parabolique de l'équation d'onde

∂ 2 φ ∂x 2 + 2jk ∂φ ∂x + ∂ 2 φ ∂z 2 + k 2 (n(x, z) 2 -1)φ = 0. (1.7) C'est ici qu'est défini l'opérateur formel pseudo-différentiel Q = 1 k 2 ∂ 2 ∂z 2 + n(x, z) 2 .
(1.8)

Il est écrit ici dans le cas général où n est supposé fonction de x et de z. La signification de la racine pour cet opérateur mathématique formel est la suivante : en composant l'opérateur Q avec lui même, la grandeur obtenue égale la grandeur sous la racine, c'est-à-dire

Q(Q(φ)) = 1 k 2 ∂ 2 φ ∂z 2 + n(x, z) 2 φ.
(1.9)

Sans entrer dans les détails mathématiques spécifiques, il faut noter que l'opérateur Q se construit en accord avec la classe de fonctions à laquelle appartient φ, ainsi qu'aux conditions aux limites imposées au problème électromagnétique. L'intérêt de définir Q est qu'il permet de factoriser l'équation (1.7) pour obtenir

∂ ∂x + jk 1 -Q ∂ ∂x + jk 1 + Q φ = 0.
(1.10)

Si n est fonction de x et de z, alors la factorisation de l'équation (1.10) comporte une erreur. En effet, dans ce cas, l'opérateur Q ne commute pas. Plus l'hypothèse de faible variation de n dans la direction de propagation principale x est fausse, plus l'erreur inhérente à la factorisation est grande. L'étape qui suit consiste à séparer l'équation (1.10) en deux parties : une décrivant la propagation d'une onde dans le sens des x positifs, l'autre décrivant la propagation d'onde dans le sens des x négatifs. Cela s'écrit respectivement

∂φ ∂x = -jk 1 -Q φ, (1.11) et ∂φ ∂x = -jk 1 + Q φ.
(1.12) L'équation (1.11) peut être appelée équation parabolique vers l'avant, et l'équation (1.12) peut être appelée équation parabolique vers l'arrière. Pour des problèmes de propagation dans lesquels n est indépendant de x, alors une solution de (1.11) ou (1.12) sera également solution de (1.7). Néanmoins, la solution ne correspond pas à l'onde qui serait observée réellement, puisque serait négligée la propagation en arrière. L'implémentation numérique de ces méthodes se fait généralement en initialisant le champ sur une verticale, le long de l'axe z, et en propageant itérativement en distance la solution. La factorisation (1.10) de l'équation d'onde précède la résolution itérative, et conditionne par conséquent l'erreur minimale atteignable en réduisant le pas de progression ∆x. Il faut également s'assurer que les conditions aux limites supérieure et inférieure du domaine de propagation sont respectées le long de la propagation. La présente démonstration est scalaire et donc ne suffit pas à modéliser des effets vectoriels comme les changements de polarisation, par exemple, qui peuvent exister en trois dimensions.

Approximation de l'opérateur Q

La factorisation de l'équation (1.7) qui permet d'obtenir l'équation (1.10) est la base de la classe des méthodes numériques de résolution de l'équation paraxiale. Cette factorisation entraîne l'obtention de deux équations pseudo-différentielles (1.11) (1.12) décrivant respectivement la propagation d'une onde vers l'avant et vers l'arrière. En négligeant la rétro-propagation, il est possible de travailler sur (1.11) et d'utiliser un développement de Taylor du premier ordre sur la racine carrée de l'opérateur Q. Il vient alors l'équation parabolique standard (SPE)

∂ 2 φ ∂z 2 (x, z) + 2jk ∂φ ∂x (x, z) + k 2 (n 2 (x, z) -1) φ(x, z) = 0. (1.13)
Cette forme de l'équation parabolique permet de résoudre efficacement beaucoup de problèmes de propagation électromagnétique. La principale limitation de la méthode survient lorsque l'onde à modéliser se propage dans des directions s'écartant trop de la direction de référence définissant le cône paraxial. Cette erreur est proportionnelle à sin 4 α où α est l'angle de la direction de propagation par rapport à la direction de référence [Levy 00]. 

Modélisation de la propagation troposphérique par méthode Split-Step

∂φ ∂x = jk 2 1 k 2 ∂ 2 ∂z 2 + (n 2 (x, z) -1) φ, (1.14)
où l'indice de réfraction n est fonction de la distance x et de l'altitude z. Transposer directement dans le domaine spectral cette équation, en intégrant selon la direction z, ferait apparaître un terme de convolution avec la transformée de Fourier du profil de réfraction le long de l'axe z.

Ceci poserait un problème dans le sens où la résolution de l'équation serait rendue difficile. Par conséquent, l'idée est de séparer le terme de propagation en deux parties : une partie rendant compte de la propagation le long de l'axe x en considérant que n ne varie pas le long du pas de propagation, et une partie venant ajouter les effets de réfraction par un écran de phase actualisant le profil de réfraction après propagation. Soit φ(x, z) la solution φ connue à une distance x. En partant de (1.14), la fonction φ(x + ∆x, z) après propagation le long de x avec un pas ∆x peut s'écrire de façon formelle

φ(x + ∆x, z) = e δ(A+B) φ(x, z), (1.15) avec A = 1 k 2 ∂ 2 ∂z 2 , (1.16) B = n 2 (x, z) -1, (1.17) δ = jk∆x 2 .
(1.18) L'effet du terme A peut être facilement modélisé dans le domaine spectral, et l'effet du terme B peut être modélisé par un produit dans le domaine spatial (écran de phase). C'est pourquoi il est intéressant de pouvoir séparer le terme e δ(A+B) en deux termes, l'un étant utilisé dans le domaine spectral après transformation de Fourier, l'autre dans le domaine spatial après transformation de Fourier inverse. Néanmoins, séparer de la sorte e δ(A+B) n'est pas rigoureusement exact lorsque le milieu de propagation est inhomogène. L'erreur est fonction de la séparation choisie. La séparation S = e 

Q ∂ 2 ∂z 2 + k 2 + kN (x, z) × 10 -6 , (1.21)
où N est le coindice dont la définition est rappelée :

n(x, z) = 1 + N (x, z) × 10 -6 . (1.22)
Une telle écriture du facteur Q amène au calcul itératif de u selon la formulation suivante

u(x + ∆x, z) = e j∆x(A+B) u(x, z), (1.23) avec A = kN × 10 -6 , (1.24) B = ∂ 2 ∂z 2 + k 2 .
(1.25) C'est une équation de résolution itérative identique à (1.20) mais directement sur u, que l'on peut aussi écrire sous la forme

u(x + ∆x, z) = e jk∆x N ×10 -6 2 +∞ -∞ dk z 2π e jkx∆x e +jkzz dk z × +∞ -∞ e jk∆x N ×10 -6 2 u(x, z )dz .
(1.26) En pratique, les intégrations pour le calcul des transformées de Fourier directe et inverse sont remplacées par des Transformées de Fourier Discrètes (TFD ou DFT en anglais) dans le domaine [0, z max ] le long de l'axe z, où z max est l'altitude définissant la limite supérieure du domaine de propagation. Les TFDs sont évaluées numériquement en utilisant des transformées de Fourier rapides (FFTs) afin de minimiser les temps de calculs. Il est important de noter que lors d'une TFD, il est nécessaire de vérifier le critère d'échantillonnage de Nyquist-Shannon afin d'éviter les effets de recouvrement de spectre (aliasing) dans le spectre obtenu.

Équation de propagation paraxiale pour la réfraction troposphérique

Généralités

Les méthodes de résolution de l'équation parabolique sont adaptées à la modélisation de la propagation troposphérique. La réfraction troposphérique peut être modélisée de façon déterministe en définissant les valeurs de l'indice de réfraction dans l'espace troposphérique. La réfraction affecte la propagation du champ en ayant un impact sur sa trajectoire, sa phase, son amplitude, son retard. Il est important de se fixer un système de coordonnées permettant une description la plus simple possible de ces effets. S'il est possible d'utiliser le système sphérique, il est aussi possible d'effectuer une transformation dite "Terre plate". Cette transformation modifie l'indice de réfraction originel afin de pouvoir décrire la propagation du champ relativement à la Terre dans un système cartésien. Il a été proposé d'effectuer une transformation du système de coordonnées afin de pouvoir décrire la propagation du signal radio-électrique par rapport à la surface terrestre, en représentant celleci de façon rectiligne (la transformation se fait en deux dimensions) 

k gH = kn 2 g -k 2
x , (1.37) en polarisation horizontale et (1.42)

k gV = kn 2 g -k 2 x n 2 g , ( 1 
Il permet de ne montrer que les phénomènes de propagation hors atténuation espace libre. D'autre part, le profil trilinéaire du coindice modifié génère un conduit dans lequel une partie importante de l'énergie est guidée. Ainsi, les conduits troposphériques peuvent augmenter la distance atteignable par le signal émis par l'antenne au-delà de l'horizon radioélectrique standard. 

Limites de la méthode PWE-SSF

L'équation parabolique repose sur la recherche d'une solution se propageant proche d'une direction principale. Quoique justifiée précédemment, l'erreur qui apparaît suite à cette approximation est difficile à quantifier. Cependant, il est clair que la résolution de l'équation parabolique en supposant la propagation vers l'avant uniquement ne modélise pas la rétropropagation qui peut apparaître suite à l'interaction de l'onde avec le relief notamment. 

Conclusion

La méthode PWE-SSF a été présentée dans cette section. Plusieurs schémas de résolution existent. Celui qui sera utilisé comme méthode de référence dans les chapitres 2 et 3 est le schéma correspondant à la formulation grand angle, donnée par (1.26). Ce choix est justifié par la validation qui en a été faite pour le cadre d'application de cette thèse. 

Approximation de l'équation d'onde par le formalisme rayons

Cette section présente comment le formalisme rayon peut être introduit comme une solution asymptotique en fréquence de l'équation d'onde, au travers d'un développement en série.

Expression du nombre d'onde

Par souci de généralité, le développement est présenté en trois dimensions dans le système cartésien de coordonnées (x, y, z 

k = k x x + k y ŷ + k z ẑ (1.46) apparaît telle que k = k 2 x + k 2 y + k 2 z = ω c = 2π λ . ( 1 
           ∇T (x, y, z) × E 0 T (x, y, z) -µ r η 0 H 0 T (x, y, z) = 0, ∇T (x, y, z) × H 0 T (x, y, z) + r η 0 E 0 T (x, y, z) = 0, E 0 (x, y, z) • ∇T (x, y, z) = 0, H 0 (x, y, z) • ∇T (x, y, z) = 0.
( De plus, il existe dans ce cas un angle d'incidence limite θ d,lim définissant la valeur l'incidence au-delà de laquelle il n'y a plus de rayon transmis mais uniquement un rayon réfléchi. On parle alors de réflexion totale. Lorsque n 2 > n 1 alors le rayon réfracté se rapproche de la normale à l'interface. 

Théorème des images

Le théorème des images permet de traiter la réflexion d'un rayon sur une interface plane, comme illustré sur la Fig. 1.9. Ce théorème peut être appliqué de façon successive afin de traiter la propagation de rayons subissant des réflexions multiples avant d'atteindre la cible. Cette technique est appelée "tracé de rayons". Néanmoins, si le nombre de réflexion est très important, cette procédure devient lourde à implémenter et les algorithmes de résolution numérique prennent des temps de calculs prohibitifs. -Le premier est de modéliser un lancer de rayon isotrope depuis la source, c'est-à-dire en discrétisant de façon régulière une sphère (en trois dimensions) ou un cercle (en deux dimensions). -Le deuxième temps concerne le tracé des rayons dans la scène d'étude.

-Le troisième et dernier temps traite de la réception des rayons au niveau de la cible.

Chaque rayon modélise en fait un tube de rayons à section transverse circulaire, rectangulaire ou triangulaire. Ainsi, pour chaque "tube" de rayons, une décision est prise lors de cette dernière étape pour déterminer s'il doit contribuer au champ résultant au niveau de la cible. Il est possible de concevoir un algorithme hybride utilisant dans une première étape la méthode SBR pour déterminer quels sont les rayons utiles (c'est-à-dire ceux qui contribuent au champ résultant au niveau de la cible), pour ensuite, dans une seconde étape, ajuster les trajectoires de ces rayons avec le théorème des images [Layb 04]. Le théorème étant plus précis mais plus lourd, une hybridation de ce type limite l'application du théorème à un nombre restreint de rayons, garantissant une résolution rapide et précise du problème.

Applications du formalisme rayons à la modélisation de la propagation troposphérique

L'utilisation de l'OG pour la modélisation de la propagation troposphérique doit prendre en compte la courbure de la Terre. Deux méthodes sont possibles. La première utilise la loi de Bouguer, qui est l'équivalent de la loi de Snell-Descartes en symétrie sphérique. La deuxième utilise un rayon terrestre fictif pour tracer les rayons.

Loi de Bouguer

Lorsque le domaine de propagation couvre au moins plusieurs dizaines de kilomètres en distance, la courbure de la Terre ne peut pas être négligée. Des équations prenant en compte la structure sphérique de la Terre et de l'atmosphère doivent être utilisées. Si la variation spatiale de l'indice de réfraction est une superposition de couches d'indice de réfraction constant, il est possible d'établir une loi similaire à la loi de Snell-Descartes pour une structure sphérique. En utilisant les notations de la Fig. 1.10, elle s'énonce d'une couche à l'autre par Il y a une bijection entre le rayon terrestre fictif et le gradient pour lequel un rayon se propage de façon rectiligne par rapport à la surface terrestre fictive. Par exemple, en prenant la valeur du gradient de l'atmosphère normale -39 unités-N/km (qui est une valeur standard pour les altitudes inférieures au kilomètre), alors K = 1.32 (valeur donnée par (1.70)). Pour avoir une géométrie cartésienne, il faut prendre la valeur dN/dh = -157 unités-N/km, ce qui implique K = 91.7. Un gradient plus négatif que -157 unités-N/km implique une supraréfraction (les rayons ont une courbure plus importante que la courbure de la Terre), et un gradient supérieur implique une infraréfraction (les rayons ont une courbure moins importante que la courbure de la Terre). La Fig. 1.11 illustre ces différents cas. À souligner que cette approche ne peut être appliquée que pour un gradient unique et constant sur tout le domaine. 

n 1 r 1 sin(i 1 ) = n 2 r 2 sin(i 2 ). ( 1 

Précision et limites de l'OG

Conclusion

Les méthodes de modélisation de la propagation basées sur l'Optique Géométrique ont été présentées. Elles ont permis de rappeler la loi de Snell-Descartes et les transformations permettant de prendre en compte, en géométrie cartésienne, la courbure de la Terre. Ces éléments seront repris dans les chapitres 2 et 3.

Les faisceaux gaussiens

Les deux méthodes classiques de modélisation de la propagation troposphérique à grande distance ont été rappelées : les méthodes numériques de résolution de l'équation parabolique et l'optique géométrique. Les méthodes numériques de résolution de l'équation parabolique ont l'avantage de modéliser les interactions du champ avec le sol, sous l'hypothèse de propagation en-avant. C'est-à-dire que si l'interaction produit un champ se propageant vers l'arrière, il n'est pas modélisé. Cette classe de méthodes a aussi l'avantage d'être très rapide lorsque le milieu de propagation est en deux dimensions et d'une taille ne dépassant pas quelques kilomètres en hauteur et quelques dizaines de kilomètres en distance. En revanche, lorsque le milieu est plus grand ou la fréquence plus élevée, le temps devient significativement plus long. Le cas d'un milieu en trois dimensions aggrave encore davantage ce problème puisque la décomposition du champ en spectre d'ondes planes doit se faire sur une grille à deux dimensions.

Les méthodes de l'optique géométrique ont pour avantage d'être simples à appliquer, et de donner une représentation physique de la trajectoire de l'énergie à l'intérieur du domaine de propagation. Mais de telles méthodes ont des limites qui ont été rappelées dans 1.3.5. Dans certaines applications en propagation, ces limites posent réellement problème, par exemple dans la modélisation de la propagation dans les conduits troposphériques, pour lesquels des caustiques se forment fréquemment [ Boit 83].

Les limites des méthodes classiques identifiées ont ainsi justifié l'adoption de l'approche par faisceaux gaussiens. Les faisceaux gaussiens ont surtout été utilisés en optique pour modéliser les comportements d'intruments tels que les lasers. Le faisceau gaussien modélise un champ gaussien autour d'un axe de référence, appelé l'axe du faisceau. Plusieurs formulations sont possibles, donnant au faisceau des propriétés diverses selon le besoin. Celles-ci sont rappelées dans les paragraphes suivants.

Formulation paraxiale du faisceau gaussien

Dans cette section, le faisceau gaussien est d'abord présenté en 3D par souci de généralité. Il est ensuite réduit au cas 2D, puisque dans cette thèse l'étude a été menée en 2D.

Résolution de l'équation paraxiale

Une première façon d'introduire le formalisme faisceau gaussien est de le présenter comme une solution de l'équation d'onde paraxiale [Koge 66]-[Sieg 86]. L'équation d'Helmholtz en trois dimensions et sans charge s'écrit pour la fonction u(x, y, z)

∆u + k 2 u = ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 + ∂ 2 u ∂z 2 + k 2 u = 0, (1.72)
dans laquelle u désigne soit le potentiel scalaire électrique, le potentiel scalaire magnétique ou bien une composante transverse du champ, selon la polarisation étudiée (horizontale ou verticale). En gardant la convention exp(-jωt), la fonction u(x, y, z) est ensuite écrite en séparant le terme de phase le long de la direction de propagation principale et le terme d'amplitude. Considérant que la direction de propagation principale est selon l'axe x, alors u(x, y, z) est décomposée selon u(x, y, z) = φ(x, y, z)e jkx .

(1.73)

Cette écriture donne des propriétés de stabilité particulières à la fonction φ(x, y, z). Notamment, c'est sur la fonction φ(x, y, z) qu'est introduite l'approximation paraxiale. En supposant que les variations de φ(x, y, z) sont faibles dans la direction x par rapport à la longueur d'onde et par rapport à ses variations dans les autres directions y et z, alors la dérivée seconde de φ par rapport à x est négligée lorsque (1.73) est introduite dans (1.72). Il vient alors

∂ 2 φ ∂y 2 + ∂ 2 φ ∂z 2 + 2jk ∂φ ∂x = 0.
(1.74) L'équation (1.74) est l'équation paraxiale sur φ(x, y, z), c'est une équation parabolique. Le faisceau gaussien peut être défini à partir d'une solution de (1.74) ayant pour caractéristique un champ d'amplitude gaussienne centrée sur l'axe de direction principale x. L'expression du faisceau gaussien vient alors selon

u(x, y, z) = u 0 W 0y W 0z W y (x)W z (x) exp - y 2 W y (x) 2 - z 2 W z (x) 2 exp + jk 2 y 2 R y (x) + z 2 R z (x) exp - j 2 arctan x -x W 0y x 0y + arctan x -x W 0z x 0z
exp(+jkx).

(1.75) L'expression du faisceau gaussien dans (1.75) utilise quelques fonctions et grandeurs qu'il faut définir. D'abord, en notant W 0y la largeur de ceinture du faisceau gaussien selon l'axe y et W 0z la largeur de ceinture du faisceau gaussien selon l'axe z, les grandeurs x 0y et x 0z définissent les distances de Rayleigh selon les directions (Oy) et (Oz). Elles s'écrivent

x 0y = kW 2 0y 2 ,
(1.76)

x 0z = kW 2 0z 2 .
(1.77)

La ceinture du faisceau localise sa zone focale. À partir de cette zone, le faisceau diverge et les expressions de sa largeur selon les axes y et z sont données par

W y (x) = W 0y 1 + x -x W 0y x 0y 2 , (1.78) W z (x) = W 0z 1 + x -x W 0z x 0z 2 .
(1.79)

La largeur du faisceau est définie comme la partie du champ autour de l'axe dans laquelle l'amplitude du champ est supérieure à l'amplitude du champ sur l'axe divisée par e = exp(1). Les grandeurs x W 0y et x W 0z localisent sur l'axe x les ceintures du faisceau dans les deux directions transverses y et z. La ceinture selon l'axe y peut être localisée à une autre position que la ceinture selon l'axe z. Le faisceau est alors qualifié d'astigmatique. C'est un degré de liberté qui peut être intéressant pour certaines applications. Les fonctions R y (x) et R z (x) sont les rayons de courbures du faisceau selon les axes y et z. Ils sont définis par

R y (x) = (x -x W 0y ) 1 + x 0y x -x W 0y , (1.80) R z (x) = (x -x W 0z ) 1 + x 0z x -x W 0z
.

(1.81)

Il est commode de définir une fonction regroupant, dans chaque direction, le rayon de courbure du faisceau avec la largeur du faisceau. En les notant q y (x) et q z (x), elles sont définies par

q y (x) = x 0y + j(x -x W 0y ), (1.82) q z (x) = x 0z + j(x -x W 0z ). (1.83)
Les inverses de ces définitions permettent d'exprimer à la fois le rayon de courbure et la largeur

1 q y (x) = 2 kW 2 y (x) -j 1 R y (x) , (1.84) 1 q z (x) = 2 kW 2 z (x) -j 1 R z (x)
.

(1.85)

En injectant ces expressions dans (1.75), l'expression du faisceau gaussien se met sous la forme

u(x, y, z) = u 0 W 0y W 0z W y (x)W z (x) exp - k 2 y 2 q y (x) + z 2 q z (x) exp - j 2 arctan x -x W 0y x 0y + arctan x -x W 0z x 0z
exp(+jkx).

(1.86)

Dans le cas d'un problème en deux dimensions, le faisceau gaussien peut être décrit dans le système cartésien (x, z). Supposant que l'axe de propagation du faisceau est l'axe x, alors il n'y a que z comme direction transverse, et il n'est plus nécessaire de préciser à quelle direction se réfère le rayon de courbure, la largeur ou la fonction q. L'expression du faisceau est simplifiée et peut être écrite

u(x, z) = u 0 W 0 W (x) exp - k 2 z 2 q(x) exp - j 2 arctan x -x W 0 x 0 exp(+jkx).
(1.87) Afin de simplifer encore davantage cette expression, la relation suivante est utilisée

W 0 W (x) exp - j 2 arctan x -x W 0 x 0 = q 0 q(x)
.

(1.88)

Dans ce cas, l'expression du faisceau gaussien en deux dimensions se réduit à

u(x, z) = u 0 q 0 q(x) exp - k 2 z 2 q(x) exp(+jkx), (1.89) 
où la nature complexe de la fonction q assure que les caustiques sont évitées, contrairement à l'optique géométrique dans laquelle la fonction q est réelle. L'allure gaussienne se vérifie dans les deux directions transverses à la direction de propagation du faisceau (0x). Lorsque le faisceau est circulaire, l'amplitude du faisceau est symétrique autour de l'axe de propagation.

Propriétés physiques du faisceau gaussien

En ce qui concerne l'amplitude du faisceau gaussien, l'expression de u dans (1.75) définit une distribution gaussienne dans les directions transverses à la direction de propagation principale, c'est-à-dire la direction de l'axe du faisceau. Dans le cas d'un faisceau circulaire stigmatique, l'expression de l'amplitude du faisceau dans le plan y0z à la position x W 0 de la ceinture sur l'axe x s'exprime

|u(x W 0 , y, z)| = u 0 exp - y 2 W 2 0y - z 2 W 2 0z
(1.90) ce qui met en évidence l'allure gaussienne du champ dans les directions transverses y et z.

Le terme avec la racine, dans l'équation (1.89), décrit l'évolution de l'amplitude du champ en fonction de sa distance de propagation selon l'axe x. En effet, le faisceau diverge au fil de sa propagation, et ainsi son amplitude calculée au niveau de son axe diminue, ce qui est traduit ici. Une façon commune de définir la largeur du faisceau au fil de sa propagation est de décrire la distance à l'axe pour laquelle l'amplitude du champ a été multiplié d'un facteur 1/e par rapport à l'amplitude sur l'axe. C'est ce qui définit W y (x) (et W z (x)), appelée enveloppe du faisceau gaussien. La distance de Rayleigh associée au faisceau correspond à la distance mesurée le long de l'axe x de propagation entre la ceinture et la valeur de x pour laquelle W (x) = √ 2W 0 . Elle permet de situer la vitesse de divergence du faisceau. Le comportement asymptotique à l'infini du faisceau se caractérise par une évolution linéaire de la largeur en fonction de x. Par conséquent, il est possible de définir une ouverture angulaire θ vers laquelle tend l'enveloppe du faisceau. Dans la direction z, elle est définie par

tan θ z = 2 kW 0z
.

(1.91)

Puisque la formulation du faisceau gaussien découle de l'approximation paraxiale, il existe une limitation sur la valeur de θ. Si θ est trop grand, typiquement 20 degrés, alors le formalisme comporte une erreur non négligeable. La phase du faisceau peut se décomposer en trois termes :

Phase d'onde plane ϕ OP = +kx Effet Gouy ϕ Gouy = -1 2 arctan x-x W 0y x 0y + arctan x-x W 0z x 0z Phase transverse ϕ T v = ky 2 2Ry(x) + kz 2 2Rz(x)
Le terme ϕ OP modélise la phase d'une onde plane le long de l'axe de propagation principal x. Le terme ϕ Gouy modélise l'effet de Gouy, qui correspond à une variation rapide de la phase lorsque la zone focale du faisceau est traversée selon l'axe x. Le terme ϕ T v traduit la variation de la phase dans les directions transverses à la direction de propagation principale. En effet, puisque le faisceau diverge, le front d'onde du faisceau n'est pas plan et il existe une variation de phase le long des directions transverses.

Le faisceau gaussien généralisé

Il existe une autre formulation du faisceau gaussien, permettant une représentation du champ par un modèle se rapprochant des tubes de rayons issus de l'optique géométrique. 

u(x, y, z) = 1 4π 2 R 2 ũ(k y , k z ) exp(jk x x + jk y y + jk z z)dk y dk z . (1.92)
L'hypothèse paraxiale est introduite dans le raisonnement en supposant que le vecteur d'onde traduit une propagation se faisant majoritairement dans une direction fixée. Si cette direction est selon l'axe x, alors l'approximation paraxiale s'écrit

k 2 y + k 2 z k 2 .
(1.93)

Ceci permet d'effectuer un développement limité sur k x :

k x k 1 - k 2 y + k 2 z 2k 2 .
(1.94) Sous cette approximation, l'intégrale de (1.92) peut être estimée par la méthode du chemin de la descente rapide [Chab 04] [Luga 01]. L'expression du faisceau généralisé vient alors sous la forme

u(x, y, z) = u 0 detQ(x) detQ(0) exp jk 2 y z t Q(x) y z + jkx (1.95)
où la matrice Q est appelée "matrice de courbure" du faisceau gaussien généralisé. Elle est complexe et symétrique de taille (2,2). Elle caractérise l'évolution de l'amplitude et de la phase dans les directions transverses à la direction de propagation. En optique géométrique, la matrice de courbure est réelle, et peut avoir un déterminant nul. Cela produit alors des caustiques. Les caustiques sont des zones où un nombre infini de rayons se superposent, conduisant à un dénominateur nul dans la solution de l'équation de transport. L'énergie prévue par l'optique géométrique est alors infinie, produisant une solution erronée. Dans le cas des faisceaux gaussiens, la matrice de courbure est complexe et cela rend impossible la formation de caustiques.

Formulation champ lointain

Pour s'affranchir de la limite paraxiale qui peut conduire à des erreurs lorsque le faisceau diverge trop par rapport à sa direction de propagation principale, il est possible d'estimer l'intégrale du spectre angulaire d'ondes planes (1.92) par la méthode de la phase stationnaire, donnant une solution valide en champ lointain. L'expression du champ ainsi obtenu se met alors en coordonnées sphériques (r, θ, ϕ) sous la forme

u(r, θ, ϕ) = u 0 1 detQ(0) exp - jk sin 2 θ 2 cos ϕ sin ϕ t Q -1 (0) cos ϕ sin ϕ exp(jkr) r .
(1.96)

Le terme exp(jkr)/r traduit une structure sphérique du champ, c'est-à-dire non limitée autour d'une direction particulière, la direction paraxiale de propagation.

Le faisceau gaussien à phase linéaire

Le faisceau gaussien peut aussi être formulé à partir d'une fonction, définie sur un plan initial, possédant une amplitude gaussienne et une variation de phase linéaire. En prenant le cas en deux dimensions avec les coordonnées (x, z), telle que la fonction initiale est définie en x = 0, la fonction initiale s'écrit 

u(x, z)| x=0 = u 0 exp - z 2 W 2 0 exp(jβ 0 z), ( 1 
u(x, z) = 1 2π +∞ -∞ ũ(k z ) exp(jk x x + jk z z)dk z . ( 1 

Conclusion

Le formalisme faisceau gaussien en milieu homogène, sous ses principales formes, a été présenté dans cette section. L'expression du champ associé à un faisceau et ses propriétés en amplitude et en phase ont été présentées. Dans les chapitres suivants, le faisceau gaussien en deux dimensions donné par l'expression (1.89) sera utilisé comme point d'appui pour le formalisme en milieu inhomogène qui sera développé.

Synthèse

Ce chapitre a permis de présenter le cadre d'application de l'étude, à savoir la propagation des ondes électromagnétiques dans la troposphère. L'indice de réfraction n et le coindice de réfraction N ont été définis. Ils servent à caractériser le milieu et ses variations de façon déterministe.

Les méthodes classiques PWE-SSF et OG ont été présentées. Leur base théorique, leur implémentation pratique et leurs limites ont été rappelées. Les inconvénients majeurs de la méthode PWE-SSF sont la lourdeur de la décomposition itérative en spectre d'ondes planes lorsque le milieu est vaste, en particulier en trois dimensions, ainsi que les conditions à définir aux limites inférieure et supérieure du milieu. La finesse de l'échantillonnage permettant les transformées de Fourier discrètes peut aussi poser problème lorsque la fréquence de l'onde modélisée devient importante (bandes C, X, Ku, K, Ka...) et que la taille verticale du domaine est grande. L'OG a pour principale limite la recherche de rayons atteignant un point d'observation donné. Cette difficulté grandit lorsque le milieu de propagation est plus vaste. L'existence de caustiques peut également poser problème.

Pour pallier ces limites, le formalisme faisceau gaussien a été présenté dans ce chapitre, à partir des travaux sur la propagation en milieu homogène. Cette solution gaussienne de l'équation de propagation paraxiale a l'avantage de combiner la souplesse de l'approche rayons, tout en s'affranchissant des limites de l'OG. Ceci a conduit divers auteurs à étudier l'extension du formalisme faisceau gaussien au milieu inhomogène. Leurs travaux sont présentés en début de deuxième chapitre.

Les travaux de cette thèse portent sur la modélisation en deux dimensions, et se focalisent sur les effets de réfraction. La méthode PWE-SSF servira de méthode de référence.

Introduction

Le 

Formulation du FG en milieu inhomogène

Présentation de l'équation de propagation en milieu réfractif inhomogène

L'équation d'onde en deux dimensions (2D) et en milieu inhomogène s'écrit, pour la composante du champ électromagnétique transverse au plan, notée u = u(x, z, t), décrite dans le repère cartésien (x, z) et en fonction du temps t

∂ 2 u ∂x 2 + ∂ 2 u ∂z 2 - n 2 c 2 ∂ 2 u ∂t 2 = 0, (2.1) 
avec n = n(x, z) désignant l'indice de réfraction et c la vitesse de la lumière dans le vide. Considérons un rayon dans le cadre de l'Optique Géométrique (OG). Il est possible d'écrire l'équation (2.1) dans un repère évoluant le long du rayon, appelé repère curviligne. Dans ce repère, les coordonnées curvilignes d'un point M au voisinage de ce rayon sont la longueur curviligne s et la distance au rayon ρ, comme illustrées dans la figure 2.1. Dans ce système de coordonnées, l'équation (2.1) peut s'écrire sous la forme

1 h ∂ 2 u ∂s 2 + h ∂ 2 u ∂ρ 2 -h n 2 c 2 ∂ 2 u ∂t 2 + ∂u ∂s ∂(1/h) ∂s + ∂u ∂ρ ∂h ∂ρ = 0, (2.2) où u = u(s, ρ), n = n(s, ρ) et h = h(s, ρ) est appelé facteur d'échelle. L'expression de h dans cette équation est h(s, ρ) = 1 + n ∂(1/n) ∂ρ ρ. (2.3)
La démonstration de (2.2) se fait à partir des formules de Frenet. Elle est détaillée en annexe B, ainsi qu'une démonstration de (2.3), qui est lourde et complexe. 

Résolution de l'équation d'onde curviligne par faisceau gaussien

Mise en forme asymptotique de la solution

À haute fréquence, l'énergie du champ se propage au voisinage des rayons. Dans ce cadre, il est classique de chercher le champ sous une forme qui met en facteur le terme de phase d'onde plane dans la direction principale. Si u est la fonction finale recherchée, alors u est mise sous la forme

u(s, ρ, t) = exp -jω t - s s 0 n(s ) c ds φ(s, ρ).
(2.4) L'indice de réfraction n est évalué le long de la direction principale de propagation. En insérant cette expression dans l'équation parabolique curviligne (2.2), il vient

1 h - n 2 ω 2 c 2 +j ω c dn ds φ+j 2ωn c ∂φ ∂s + ∂ 2 φ ∂s 2 +h ∂ 2 φ ∂ρ 2 + hn 2 ω 2 φ c 2 + j nω c φ+ ∂φ ∂s ∂ ∂s 1 h + ∂φ ∂ρ ∂h ∂ρ = 0.
(2.5) Pour formuler mathématiquement qu'à haute fréquence l'énergie se propage au voisinage du rayon, il est fait l'hypothèse que 

ρ = O β √ ω , ( 2 
hω 2 n 2 c 2 - n 2 h 2 c 2 φ + ω -j n 2 hc ∂ ∂s 1 n φ + j n c ∂ ∂s 1 n + j 2n hc ∂φ ∂s + h ∂ 2 φ ∂ζ 2 + √ ω ∂φ ∂ζ ∂h ∂ρ + 1 h ∂ 2 φ ∂s 2 + ∂φ ∂s ∂ ∂s 1 h = 0.
(2.8)

Un développement asymptotique ω → +∞ est ensuite introduit en ne gardant que les termes

ω γ où γ ≥ 1. Lorsque ω → +∞ (ou ρ → 0), h → 1. La vitesse au voisinage du rayon est notée V (s, ρ) = c/n(s, ρ).
Pour alléger l'écriture, la notation v(s) = V (s, 0) est utilisée. La fonction v désigne la vitesse au niveau du rayon. Le premier terme dans (2.8) est alors réécrit en faisant un développement limité de V (s, ρ) autour de ρ = 0. Soient les notations suivantes

∂V (s, ρ) ∂ρ | ρ=0 = v ρ , ∂ 2 V (s, ρ) ∂ρ 2 | ρ=0 = v ρρ , (2.9) avec V = v + ρv ρ + 1 2 ρ 2 v 2 ρρ .
(2.10)

Utilisées en plus de h → 1, il vient

hω 2 1 V 2 - 1 hv 2 ∼ ω 2 1 V 2 - 1 v 2 (2.11) ∼ ω 2 v + ρv ρ + 1 2 ρ 2 v ρρ -2 -v -2 (2.12) ∼ ω 2 v 2 1 + ρ v v ρ + ρ 2 2v v ρρ -2 -1 . (2.13)
En utilisant le développement limité au deuxième ordre

(1 + x) -2 ∼ 1 -2x lorsque x → 0, il s'ensuit hω 2 1 V 2 - 1 hv 2 ∼ - ω 2 v 2 2 v v ρ ρ + ρ 2 v v ρρ (2.14) ∼ - ω 2 v 2 2 v v ρ ζ √ ω + 1 v v ρρ ζ 2 ω . ( 2.15) 
En ne gardant que le terme en ω, il vient

hω 2 1 V 2 - 1 hv 2 ∼ - ω v 3 ζ 2 v ρρ , (2.16) puisque ζ = √ ωρ.
Les autres termes de (2.8) sont développés de la même façon. L'équation sur φ devient alors 

j 2 v ∂φ d ∂s + ∂ 2 φ d ∂ζ 2 - 1 v 3 ζ 2 v ρρ + j 1 v 2 ∂v ∂s φ d = 0, ( 2 
ϕ(s, ζ) = 1 √ v φ d (s, ζ). (2.18) Ceci conduit à j 2 v ∂ϕ ∂s + ∂ 2 ϕ ∂ζ 2 - 1 v 3 ζ 2 v ρρ ϕ = 0. (2.19)
En réécrivant cette équation avec l'indice de réfraction plutôt que la vitesse, il vient

j 2n c ∂ϕ ∂s + ∂ 2 ϕ ∂ζ 2 - n 3 c 2 ζ 2 ∂ 2 (1/n) ∂ρ 2 ϕ = 0. (2.20)
Ainsi, en reprenant la forme décrite dans l'équation (2.4), il vient

u(s, ρ, t) = c n exp -jω t - s s 0 n(s ) c ds ϕ(s, ζ), (2.21)
où ϕ est solution de (2.20).

Recherche d'une solution de type gaussien

Le caractère gaussien de la solution d'onde est introduit dans le raisonnement en cherchant la fonction ϕ sous la forme 

ϕ(s, ζ) = A(s) exp j Γ 2 ζ 2 , ( 2 
+ AΓ -Aζ 2 n c ∂Γ ∂s + Γ 2 + n 3 c 2 ∂ 2 (1/n) ∂ρ 2 = 0, (2.23) 
où la dérivée dans la direction transversale est évaluée en ρ = 0. Il en est de même dans la suite de la démonstration. L'équation (2.23) est vérifiée si les deux conditions suivantes sont vérifiées en même temps (condition suffisante)

         ∂Γ ∂s + c n Γ 2 + n 2 c ∂ 2 (1/n) ∂ρ 2 = 0, dA ds + c 2n AΓ = 0. (2.24a) (2.24b)
La première équation de ce système est une équation différentielle linéaire du premier ordre en s. Pour la résoudre, les fonctions p et q de la longueur curviligne sont introduites de la façon suivante Γ = p/q, dq ds = c n p.

(2.25)

La première équation de (2.24) se met alors sous la forme d'un système de deux équations différentielles du premier ordre

       dq ds = c n p, dp ds = - n 2 c ∂ 2 (1/n) ∂ρ 2 q.
(2.26)

Ainsi, la première équation du système (2.24) passe par la résolution du système (2.26) afin de déterminer les fonctions solutions p et q. En ce qui concerne la seconde équation du système (2.24), les solutions sont les fonctions de forme générale Ces fonctions p et q doivent être initialisées à partir des paramètres physiques du faisceau.

A(s) = Ψ 1 q(s) , ( 2 

Initialisation des fonctions p et q

Afin de comprendre comment sont initialisées les fonctions p et q, l'analogie avec l'expression du faiseau gaussien classique peut être considérée dans le cas de la propagation en milieu homogène. Pour cela, l'équation (2.28) peut être réécrite en supposant une propagation rectiligne dans la direction x, et en utilisant la coordonnée z comme direction transverse 

u(x, z, t) = Ψ c q(x) exp -jω t - x c + j ω 2 p(x) q(x) z 2 . ( 2 
u(x, z, t) = Ψ q(0) q(x)) exp -jω t - x c + j k 2 1 q h (x) z 2 , (2.30)
où la fonction q h est définie par

q h (x) = x -x W 0 -jx 0 , (2.31)
où x W 0 est la position de la ceinture du faisceau sur l'axe des x, et x 0 = kW 2 0 /2. Par analogie avec le cas homogène, plusieurs conventions sont possibles dans la définition de p et q pour faire correspondre (2.29) avec (2.30). La convention utilisée est la suivante :

   p(x) = j 1 c , q(x) = x 0 + j(x -x W 0 ).
(2.32)

Bilan

L'expression du champ est donnée par (2.28). Pour l'utiliser, il faut au préalable déterminer la trajectoire du faisceau, ainsi que les coordonnées curvilignes associées à un point d'observation arbitraire, la valeur de l'eikonale, et les fonctions p et q décrivant l'enveloppe du faisceau. L'approche classique présentée par Cerveny et suivie par la plupart des auteurs cités en introduction consiste à déterminer ces grandeurs en raisonnant de façon itérative. Les équations sont intégrées par différences finies au fur et à mesure de la propagation dans le milieu. La sous-section suivante 2.1.3 détaille la procédure. 

Implémentation numérique itérative du formalisme FG

Détermination des fonctions p et q

Les fonctions complexes p et q modélisent l'enveloppe du FG. Il est possible d'adopter deux démarches pour les calculer, selon le degré d'approximation sur les effets de la réfraction sur l'enveloppe. La première démarche est de résoudre le système (2.26) par une méthode de différences finies. La deuxième consiste à modéliser l'enveloppe du FG comme en milieu homogène mais autour d'un rayon courbé par la réfraction. Dans les deux démarches, les fonctions p et q sont initialisées avec (2.32).

Formulation 1 Pour prendre en compte l'effet de l'inhomogénéité du milieu sur l'enveloppe du FG, il faut résoudre le système différentiel

           dp ds = - 2 n(s) c ∂n(s, ρ) ∂ρ 2 q(s), dq ds = c n(s) p(s).
(2.34a)

(2.34b)

Ce système peut être résolu avec un algorithme d'intégration par différences finies. Pour cela, le pas curviligne ∆s entre deux points de la trajectoire est pris égal à celui choisi pour le tracé de la trajectoire de l'axe. Ainsi, les fonctions p et q seront résolues aux points où la trajectoire a été déterminée. Il faut également fixer un pas transversal ∆ρ pour évaluer le coefficient variable dans la première équation du système. Ainsi, en utilisant la notation [•] pour les indices et (•) pour les variables, pour tout l ≥ 0

p[l + 1] = p[l] + ∆sA[l]q[l], q[l + 1] = q[l] + ∆sB[l]p[l], (2.35a) 
(2.35b) avec 

A[l] = - 2 c n[l] ∆n(l, ρ) ∆ρ 2 , (2.36) et B[l] = c n[l] . ( 2 
   p(s i ) = j n e c , q(s i ) = s 0 + j(s i -s W 0 ), (2.39a) 
(2.39b)

où n e est l'indice de réfraction évalué à l'émetteur, s W 0 est la longueur curviligne de la position de la ceinture du faisceau, et s 0 est définie par 

s 0 = k e W 2 0 2 = 1 2 ωn e c W 2 0 , ( 2 
u i-1 (s i , ρ) = u 0 q i-1 (0) q i-1 (s i ) exp T (s i ) + j ω 2 p i-1 (s i ) q i-1 (s i ) ρ 2 , (2.41) u i (s i , ρ) = u 0 q i (0) q i (s i ) exp T (s i ) + j ω 2 p i (s i ) q i (s i ) ρ 2 , (2.42) où T (s i ) désigne l'eikonale (temps de propagation) calculée itérativement jusqu'au point D i . Comme q i-1 (s i ) = q i (s i ),

Calcul du champ

Le champ au point d'observation M de coordonnées curvilignes (s M , ρ M ) est donné par

u(s M , ρ M , t) = u 0 q(0) q(s M ) exp -jω(t -T (s M )) + j ω 2 p(s M ) q(s M ) ρ 2 M . (2.43)
Les grandeurs p(s M ) et q(s M ) et l'eikonale T (s M ) de cette expression sont celles calculées par les étapes précédentes. 

Conclusion

n(z) = n 0 + dn dz (z -z 0 ), (2.45) = n 0 + ξ(z -z 0 ), (2.46) 
où n 0 est la valeur de l'indice de réfraction à une altitude de référence z 0 . La notation ξ = dn/dz est utilisée pour souligner que la variation verticale du gradient est constante. La dérivation de (2.44) par rapport à la variable x conduit à 

d dx cos α n 0 + ξ(z -z 0 ) = 0, (2.47) soit cos(α)ξ dz dx + d cos α dx n 0 + ξ(z -z 0 ) = 0. ( 2 
d 2 z dx 2 n 0 + ξ(z -z 0 ) = 0. (2.52)
En remarquant que dz/dx = tan α, la division de (2.52) conduit à

ξ - 1 1 + dz dx 2 d 2 z dx 2 n 0 + ξ(z -z 0 ) = 0, (2.53) 
qui peut être mise sous la forme 

ξ 1 + dz dx 2 -n 0 -ξ(z -z 0 ) d 2 z dx 2 = 0. ( 2 
ξ dx = n 0 dγ 1 + γ 2 , (2.58) ξx + β 1 n 0 = n 0 arctanγ, (2.59) γ = tan ξ n 0 x + β 1 (2.60)
À partir de l'expression de γ, il vient

z(x) = γ(x)dx, (2.61) = tan ξ n 0 x + β 1 dx, (2.62) = - n 0 ξ ln cos ξ n 0 x + β 1 + β 2 .
(2.63)

Les deux constantes d'intégration β 1 et β 2 sont déterminées à partir des conditions initiales. Celles-ci concernent la position de l'émetteur dans le système de coordonnées (x, z), et la pente α e de l'axe au niveau de l'émetteur, c'est-à-dire 

         x initial = x e , z initial = z e , dz dx initial = tan α e . ( 2 
d 2 z ds 2 (n 0 + ξ(z -z 0 )) = 0. (2.73)
En remarquant que sin α = dz/ds, la division de la dernière équation par sin α donne 

cos(α) ξ - 1 1 -dz ds 2 d 2 z ds 2 (n 0 + ξ(z -z 0 )) = 0. ( 2 
           dp ds = - n(s) 2 c - 1 n(s) 2 ∂ 2 n(s, ρ) ∂ρ 2 + 2 n(s) 3 ∂n(s, ρ) ∂ρ 2 q(s), dq ds = c n(s) p(s).
( 

Formulation analytique de l'eikonale

T (s) = 1 c s se n 0 + ξ(z(t) -z 0 ) dt, (2.99) = n 0 c s se 1 + ξ n 0 (z e -z 0 ) -ln(cosh a) + ln cosh ξ n 0 (t -s e ) + a
T (s) = n 0 c 1 + ξ n 0 (z e -z 0 ) -ln(cosh a) (s -s e ) + n 2 0 c ξ ξ n 0 s ξ n 0 se ln cosh u - ξ n 0 s e + a du.
(2.101) L'intégration formelle du terme intégral dans (2.101) donne 

ξ n 0 s ξ n 0 se ln cosh u - ξ n 0 s e + a du = 1 2 Li 2 (-e -2(b+u) ) -2(b + u)[ln(e -2(b+u) + 1)] -2 ln[cosh(b + u)] + b + u ξ n 0 s ξ n 0 se , ( 2 
s(x) = - n 0 ξ √ 2 cos(b + t) 1 cos(2b + 2t) + 1 ln cos b + t 2 -sin b + t 2 -ln sin b + t 2 + cos b + t 2 ξ n 0 x ξ n 0 xe , (2.109) avec b = - ξ n 0 x e + α e .
(2.110) 

Bilan

Détermination du centre curviligne associé au point d'observation

Pour déterminer le centre du repère curviligne associé au point d'observation M , la procédure consiste à rechercher le point P appartenant à l'axe du faisceau qui minimise la distance à M . Ce point peut être appelé centre curviligne associé au point M , ou projeté de M sur l'axe du faisceau. Une piste étudiée a été d'exprimer de façon analytique la fonction décrivant la distance entre M et les points de l'axe en utilisant l'équation (2.67), puis de la dériver pour rechercher le minimum. Cependant, l'expression de la dérivée est trop complexe pour être résolue de cette manière. L'idée de simplifier la fonction distance en approchant l'équation (2.67) par un développement de Taylor a également été étudiée. La solution, obtenue sous forme polynomiale, est cependant trop lourde pour être implémentée dans un algorithme y faisant régulièrement appel.

Ces constatations ont conduit à raisonner en utilisant une méthode de Newton. Cette méthode est détaillée en annexe C.

Calcul des coordonnées curvilignes du point d'observation

Les coordonnées curvilignes de M = (x M , z M ) sont notées (s M , ρ M ). Elles sont associées au projeté de M sur l'axe P = (x P , z P ). La coordonnée ρ M correspond à la distance entre M et P . 

Par conséquent ρ M = (x M -x P ) 2 + (z M -z P ) 2 . ( 2 

Conclusion

Les équations démontrées dans cette section permettent de décrire le champ d'un FG de façon directe, contrairement aux approches comme la méthode PWE-SSF qui fonctionnent par une procédure itérative. Elles constituent la base du modèle GBAR (Gaussian Beam for Atmospheric Refraction) développé dans le cadre de cette thèse. Ces équations conservent les informations sur la physique du FG, et permettent par exemple de ne calculer le champ que dans la zone utile. L'hypothèse de base dans ces démonstrations est que le gradient de n est vertical et constant. Afin de déterminer la validité des équations GBAR, la section 2.3 présente une série de tests numériques permettant de comparer les champs calculés par GBAR et PWE-SSF pour différents paramètres du faisceau et dans différents gradients. L'extension de GBAR à des milieux réalistes modélisés par des grilles distance-altitude de valeurs de n fait l'objet du chapitre 3.

Tests numériques de la nouvelle formulation analytique

Cette section a plusieurs objectifs. D'abord, une simulation d'illustration de la méthode GBAR. Ensuite, des tests visent à justifier le choix des paramètres. Ils concernent en premier lieu l'utilisation de l'enveloppe homogène décrite par le système (2.32), plutôt que la formulation intégrale (2.96). Ensuite, une simulation paramétrique rend compte de l'impact de l'ordre du développement de Taylor pour la fonction Li 

ε rms (x) = k |u P W E-SSF (x, z k ) -u GBAR (x, z k )| 2 k |u P W E-SSF (x, z k )| 2 , ( 2 

Paramétrage de la simulation

Les conditions de simulation sont un domaine couvrant 100 km de distance, un gradient ξ = -500 uN/km, une fréquence f = 1GHz, une largeur de ceinture W 0 = 20 m et un dépointage initial α e = 1.5 • . Comme précisé dans le chapitre 1, le pas en distance dans la méthode PWE-SSF est fixé à ∆x = 100m. Les paramètres de la méthode GBAR de ce test correspondent à l'utilisation de la formulation asymptotique (2.32) des fonctions p et q, et à l'utilisation du développement de Taylor de la fonction Li 2 à l'ordre 5 pour le calcul de l'eikonale avec l'équation (2.102).

Résultats

La Fig. 2.6 représente la carte du champ calculée par la méthode GBAR. La Fig. 2.7 correspond à la différence des champs point à point entre PWE-SSF et GBAR. L'amplitude et la phase déroulée du champ en bout de domaine, c'est-à-dire à 100 km de distance, sont montrées en Fig. 2.8. Enfin, l'erreur relative est illustrée en Fig. 2.9. La carte du champ montre que le sévère gradient négatif réfracte fortement le champ vers le bas. le faisceau diverge avec la distance, et son enveloppe suit la trajectoire de l'axe. La carte de l'erreur avec PWE-SSF montre que la méthode GBAR est précise en tout point du calcul puisque le niveau de l'erreur reste inférieur à -38 dB. À noter que l'erreur augmente lorsque le point d'observation s'éloigne de l'axe. Ceci s'explique par les équations du modèle GBAR qui donnent le champ à partir de grandeurs estimées au niveau de l'axe. Cela peut aussi s'expliquer par l'hypothèse de paraxialité à la base de la méthode PWE-SSF et de la méthode GBAR. La validité des résultats est confirmée autant en amplitude qu'en phase au bout du domaine, comme le montre la Fig. 2.8. Les courbes d'amplitude et de phase correspondant aux deux méthodes sont superposées. Enfin, la Fig. 2.9 montre que malgré la difficulté que comporte la modélisation de la phase à une telle distance, l'erreur avec phase reste inférieure à -40 dB. Sans phase, elle est inférieure à -120 dB. L'écart entre les deux courbes est expliqué dans la sous-section 2.3.4. 

Conclusion

Cette illustration a permis de montrer que dans sa configuration finale pour un faisceau unique, la méthode GBAR est validée pour la modélisation de la propagation dans un sévère gradient vertical et constant. Les sous-sections 2.3.2 et 2.3.3 justifient respectivement l'utilisation de la formulation asymptotique pour les fonctions p et q, et l'utilisation de l'ordre 5 dans le développement de la fonction Li 2 . Le paramétrage de la simulation correspond à la simulation de l'illustration de la sous-section 2.3.1.

Tests sur les formulations intégrale et asymptotique des fonctions

Résultats

La Fig. 

Conclusion

L'apport de l'utilisation de la formulation intégrale des fonctions p et q par rapport à la formulation asymptotique n'apparaît pas sur ce test. D'autre part, la formulation asymptotique est significativement plus rapide que la formulation intégrale. En effet, pour calculer la carte du champ en Fig. 2.6, avec un maillage ∆x = 100 m en distance et ∆z en hauteur, se fait en 499.68 secondes pour la formulation intégrale contre 7.28 secondes pour la formulation asymptotique. La méthode PWE-SSF prend 29.76 secondes pour donner son résultat. Utiliser la formulation asymptotique est donc plus de 60 fois plus rapide dans ce cas de figure.

Les tests de cette sous-section justifient l'utilisation de la formulation asymptotique des fonctions p et q. La très grande valeur du gradient (-500 uN/km) place cette simulation dans un pire cas de réfraction. Pour des valeurs plus faibles du gradient, l'utilisation de la formulation asymptotique est encore validée. Par conséquent, cette formulation sera utilisée dans la suite de l'étude. 

Résultats

Les courbes d'erreur relative sont données en Fig. 2.11. Elles montrent que les ordres 2 et 3 sont insuffisants pour décrire l'eikonale. Augmenter l'ordre de développement au-delà de 5 n'a pas d'effet, comme le montrent les courbes respectives des ordres 5 et 6. Avec l'ordre 4, l'erreur est plus faible au début de la propagation, mais évolue ensuite avec une pente plus importante que pour les ordres 5 et 6. 

Conclusion

Au regard des résultats de la simulation, il ressort qu'avec un gradient fort de -500 uN/km, le développement de Taylor de la fonction Li 2 est suffisamment précis à partir de l'ordre 5. Comme pour les tests sur la formulation des fonctions p et q en sous-section 2.3.2, un gradient de -500 uN/km fait office de pire cas. Pour des gradients plus faibles, l'ordre 5 reste suffisant. En conclusion, l'ordre 5 sera utilisé par la suite.

Tests sur les conditions du milieu et les paramètres initiaux du FG, temps de calculs.

Le FG a deux caractéristiques susceptibles de faire varier l'erreur relative entre PWE-SSF et GBAR. Ce sont son élévation initiale et sa largeur de ceinture. L'influence des variations des deux est étudiée dans les tests suivants.

Étude de l'erreur relative PWE-SSF/GBAR en fonction de l'élévation initiale

Pour tester l'impact de l'élévation initiale du faisceau sur l'erreur relative entre PWE-SSF et GBAR, un milieu de gradient standard -40 uN/km est considéré. L'émetteur est placé aux coordonnées x e = 0 m et z e = 10 km (pour éviter les effets de bords aux fortes élévations). La largeur de faisceau est W 0 = 20 m et la fréquence f = 1 GHz. Une étude paramétrique est réalisée en faisant varier l'élévation de -3.5 • à 3.5 • . L'erreur avec phase est montrée en Fig. 2.12, l'erreur sans phase est montrée en Fig. 2.13 (voir définition des erreurs au paragraphe 2.3.1). Il peut être observé que plus le dépointage est important, plus l'erreur avec phase l'est aussi, tandis que l'erreur sans phase reste faible.

Pour expliquer les écarts entre erreur avec phase et erreur sans phase, la Fig. 2.14 montre un grossissement de l'amplitude et de la phase du champ à 100 km de distance, dans le cas α e = 3.0 • . Elle montre un décalage d'environ 30 cm dans la description de la trajectoire du faisceau, qui génère un écart de phase, à une altitude donnée, de l'ordre de 20 • . Il faut noter la difficulté que constitue la modélisation de la phase à une telle distance. En effet, 30 cm d'écart à 100 km pour deux modèles fondamentalement différents est à relativiser. C'est d'ailleurs pourquoi l'erreur sans phase est quasiment nulle. Pour conclure, la modélisation avec phase est validée pour des élévations comprises entre -3.0 • et 3.0 • . Sans phase, elle est validée pour des angles plus importants : la simulation paramétrique a montré qu'à des élévations jusqu'à 4 • l'erreur était négligeable. Une étude complémentaire, non montrée ici, valide la description de l'amplitude jusqu'à des élévations supérieures à 10 • .

Étude de l'erreur relative PWE-SSF/GBAR en fonction de la largeur de ceinture du faiseau

La largeur de ceinture du faisceau est un paramètre important. En effet, plus la largeur de ceinture est importante, plus le faisceau est paraxial. Ceci est une conséquence de la définition de la fonction q présente dans l'exponentielle et hors de l'exponentielle dans l'expression du faisceau gaussien (2.28). L'étude qui suit a pour objectif d'évaluer l'impact de ce paramètre sur l'erreur relative entre PWE-SSF et GBAR. Un milieu de mêmes dimensions et même gradient atmosphérique que précédemment est considéré.

Les résultats de l'étude paramétrique de l'erreur relative en fonction de W 0 sont données en Fig. 2.15 (erreur avec phase) et en Fig. 2.16 (erreur sans phase). L'erreur avec phase tend à augmenter lorsque la largeur de ceinture diminue. En effet, elle reste inférieure à -80 dB pour les faisceaux très paraxiaux (W 0 supérieure à 100 m), alors qu'elle atteint -27 dB à 100 km dans le cas W 0 = 3 m. L'erreur sans phase reste à -97 dB environ quelle que soit la largeur de ceinture, ce qui suppose que c'est encore une fois la sensible description de la phase qui génère l'erreur. 

Conclusions

Il ressort de ces tests sur l'élévation initiale et sur la largeur de ceinture du faisceau que la précision de GBAR augmente lorsque les faisceaux tendent vers une faible élévation et une forte paraxialité. Lorsque la configuration s'écarte de ces conditions, une très légère erreur sur la phase liée à la description de la trajectoire du faisceau apparaît. L'erreur sans phase reste insignifiante dans tous les cas de figure testés.

Conclusion

Cette section a permis de valider la méthode GBAR, utilisée avec la formulation asymptotique de l'enveloppe et avec un développement à l'ordre 5 de la fonction Li 2 , dans un sévère gradient vertical et constant. Le domaine de validité a été établi. La modélisation de la phase à grande distance est soumise à un dépointage compris entre -3.0 • et 3.0 • , tandis que la modélisation de l'amplitude reste valide pour des élévations supérieures à 10 • . D'autre part, lorsque la largeur de ceinture diminue l'erreur augmente. Néanmoins, pour des valeurs allant de W 0 = 3m 10 λ à W 0 = 300m 1000 λ, l'erreur avec phase reste toujours inférieure à -27 dB, signe d'une précision suffisante.

Synthèse

Dans ce chapitre, le formalisme FG en milieu inhomogène a été exposé tel qu'il a été introduit par Cerveny [Cerv 82]. L'originalité de cette approche est de s'affranchir des limites de l'OG d'une part, et d'autre part de disposer d'une méthode ayant plus de fléxibilité que la méthode PWE-SSF sur le schéma de résolution et les conditions aux limites. Ce formalisme est implémenté numériquement en résolvant par différences finies les équations décrivant la trajectoire du faisceau et ses propriétés physiques. Les aspects pratiques de son implémentation ont été présentés. Afin de s'affranchir de la nature itérative de cette approche, une nouvelle formulation analytique a été développée. Elle consiste à décrire de façon directe la trajectoire du faisceau, son enveloppe et son eikonale dans le milieu de propagation. Pour proposer des solutions analytiques aux équations du problème, celles-ci ont été simplifiées en proposant de traduire mathématiquement un faible gradient de n et une faible courbure de l'axe du faisceau. L'implémentation numérique de ces équations a été présentée. La détermination du centre curviligne, opération préalable au calcul du champ, se fait au travers d'une méthode de Newton. Le calcul de la largeur du faisceau au fur et à mesure de la propagation permet de ne calculer le champ que dans la zone utile, c'est-à-dire là où le champ du faisceau a une amplitude significative. L'enveloppe du faisceau, sous approximation de faible gradient, est identique à l'enveloppe du faisceau correspondant à la propagation en milieu homogène. Cette hypothèse est valable dans le milieu troposphérique. Par conséquent, les équations GBAR décrivent une enveloppe homogène suivant la trajectoire du faisceau qui est, elle, courbée par la réfraction du milieu. L'expression de l'eikonale comporte une difficulté supplémentaire : l'intégration formelle de la solution fait intervenir une fonction particulière, la fonction polylogarithmique d'ordre 2, notée Li 2 . Dans les conditions étudiées dans le cadre de cette thèse, l'argument de Li 2 reste au voisinage de -1. Par conséquent, un développement de Taylor de Li 2 au voisinage de -1 a été proposée. Afin d'étudier la validité des équations GBAR, des tests numériques ont été effectués. Les résultats ont été comparés avec ceux de la méthode PWE-SSF. Les simulations sur les formulation intégrale et asymptotique de l'enveloppe du faisceau ont montré que la formulation intégrale, bien que plus lourde et nécessitant une procédure d'intégration numérique, n'améliore pas de façon significative la précision de GBAR par rapport à la formulation asymptotique. L'étude sur l'impact de l'ordre du développement de Taylor de la fonction Li 2 a montré que l'ordre 5 était précis et que les ordres supérieurs n'améliorent pas les résultats. Cette formulation a été testée pour un gradient très sévère de -500 uN/km. Les méthodes GBAR et PWE-SSF ont donné des résultats quasi identiques en amplitude et en phase. Les tests sur les propriétés initiales du faisceau ont montré que la description de l'amplitude est précise même pour des dépointages importants et des faisceaux très divergents. L'erreur avec phase augmente lorsque le dépointage et la divergence du faisceau augmentent, à cause d'un léger décalage entre PWE-SSF et GBAR dans la description de la trajectoire de l'axe. Compte tenu de l'ordre de grandeur du rapport entre la longueur d'onde et les distances considérées dans ces simulations, ces erreurs de phase sont à relativiser, d'autant plus que les formalismes comparés sont fondamentalement différents. Les limites du domaine de validité des équations GBAR peuvent être établies telles que le dépointage du faisceau doit rester inférieur à 2.5 • environ, et que la largeur de ceinture doit être supérieure à 10 λ environ. Les équations de bases du modèle GBAR ayant été exposées et le domaine de validité ayant été étudié, le chapitre 3 porte sur l'utilisation de ces équations dans l'objectif de modéliser la propagation dans des milieux troposphériques réalistes. 

Introduction

Ce chapitre a pour objectif d'étendre l'utilisation des équations analytiques du faisceau gaussien développées dans le chapitre 2 à des effets de réfraction plus réalistes. En effet, la modélisation de la propagation dans un milieu réaliste n'est possible que si le milieu est constitué d'un unique gradient vertical et constant. Il est donc nécessaire de prendre en compte les variations de l'indice de façon plus complexes. La section 3.1 présente comment est modélisé le milieu troposphérique de façon réaliste et comment la propagation d'un faisceau gaussien est traitée dans un tel modèle. La section 3.2 expose le principe de la décomposition d'un champ quelconque en somme de faisceaux gaussiens élémentaires. Deux méthodes sont présentées : la décomposition sur les frames de Gabor et la décomposition multi-faisceaux. Le choix de la décomposition multi-faisceaux y est justifié. La section 3.3 détaille l'utilisation de la décomposition multi-faisceaux associée aux équations analytiques de propagation d'un FG en milieu inhomogène. Le besoin de redécomposer le champ au cours de la propagation dans le milieu est mis en évidence sur un cas particulier, et un critère est proposé pour détecter une nécessaire re-décomposition. Enfin, la section 3.4 présente une série de tests numériques ayant pour objectifs de valider, par comparaison avec la méthode PWE-SSF, la méthode proposée. Différents cas sont abordés, allant du plus simple au plus compliqué : profils bilinéaires, profils trilinéaires avec variations en distance du profil, grille d'indice issue de WRF avec et sans prise en compte de la sphéricité de la Terre.

Modélisation du milieu de propagation troposphérique

Cette section explique la modélisation du milieu troposphérique sous la forme d'une grille constituée de cellules élémentaires de gradient vertical et constant, et la propagation d'un faisceau gaussien dans un tel milieu avec les équations analytiques développées dans le chapitre 2.

Modélisation de la troposphère par des cellules régulières de gradient constant

Ici Le milieu de propagation troposphérique est donc composé de cellules rectangulaires définies dans un repère cartésien à deux dimensions. Ces cellules élémentaires sont également utilisées pour définir localement le gradient vertical et constant utilisé dans les équations du modèle proposé. Chaque point M i,j de la grille est associé à une valeur de n. Si M i+1,j est le point de la grille juste au-dessus de M i,j , comme illustré sur la Fig. 3.1, alors la variation n(M i+1,j ) -n(M i,j ) de n entre M i,j et M i+1,j , ramenée à la distance entre M i,j et M i+1,j , définit le gradient vertical et constant ξ i,j de la cellule élémentaire associée à M i,j (M i,j est situé au centre du bord inférieur de sa cellule) :

ξ i,j = n(M i+1,j ) -n(M i,j ) z(M i+1,j ) -z(M i,j ) . (3.1)
Il faut noter que si le gradient est considéré localement vertical et constant, la variation de n dans la direction horizontale est prise en compte par l'échantillonnage de la grille dans cette direction. Ainsi, la variation verticale de n est modélisée à l'ordre 1, et la variation horizontale de n est modélisée à l'ordre 0. Ceci est justifié par la plus grande variabilité de n dans la direction verticale que dans la direction horizontale. D'ailleurs, le modèle atmosphère standard considère le gradient vertical et constant dans tout le domaine atmosphérique, avec une valeur de -39 unités-N/km [ Boit 83], et il n'y a pas de gradient horizontal. 

Propagation d'un faisceau gaussien dans le milieu troposphérique

Le milieu de propagation est composé de cellules dans lesquelles sont définis des gradients verticaux et constants. La question qui se pose maintenant est de savoir comment utiliser les équations analytiques de la section 2.2 dans un tel milieu. Puisque le gradient utilisé dans ces équations doit correspondre aux différentes cellules élémentaires du milieu que le faisceau traverse, il faut définir une procédure permettant de propager le faisceau d'une cellule à une autre tout en conservant ses propriétés. Le principe est de propager le faisceau de cellule en cellule avec à chaque passage dans une nouvelle cellule la définition d'un nouveau point de référence sur l'axe du faisceau. Dans les équations de la section 2.2, cela correspond à actualiser les valeurs de x e , z e , α e , s e et T se . La procédure proposée est composée de quatre étapes :

-étape 1 : initialisation du faisceau gaussien au niveau de l'émetteur et dans sa cellule initiale, -étape 2 : détection du bord de la cellule d'où va sortir le faisceau, -étape 3 : calcul du point d'intersection entre l'axe du faisceau et le côté de la cellule déterminé par l'étape 2, -étape 4 : calcul des paramètres du faisceau au nouveau point de référence. -cas 1 : si z(x c,max ) < z c,min , alors l'axe du faisceau rencontre le bord inférieur de sa cellule, -cas 2 : si z(x c,max ) > z c,min , alors l'axe du faisceau rencontre le bord supérieur de sa cellule, -cas 3 : si z c,min ≤ z(x c,max ) ≤ z c,max , alors l'axe du faisceau rencontre le bord latéral vers l'avant de sa cellule. Le calcul du point d'intersection entre l'axe du faisceau et le bord concerné de la cellule fait l'objet de l'étape 3.

3.1.2.1

Étape 3 : Calcul du point d'intersection entre l'axe du faisceau et le côté de la cellule déterminée par l'étape 2

L'étape 2 a permis de déterminer quel bords l'axe du faisceau rencontre en sortant de la cellule dans laquelle il se trouve. Il n'est pas possible de trancher entre les deux solutions x 1 (z) et x 2 (z) a priori, pour une valeur de z donnée. Il est nécessaire de calculer les deux solutions possibles, et de déterminer à partir de leur valeur, laquelle des deux solutions a un sens physique. Concrètement, x 1 et x 2 sont comparées à x e , qui est l'abscisse du dernier point de référence associé au faisceau gaussien considéré. Quatre cas sont possibles :

-cas 1 : x 1 < x e et x 2 < x e , -cas 2 : x 1 > x e et x 2 < x e , -cas 3 : x 1 < x e et x 2 > x e , -cas 4 : x 1 > x e et x 2 > x e . Le premier cas n'a pas de signification physique, puisque cela signifierait que le faisceau a fait demi-tour et se propage vers l'arrière. Compte tenu de la configuration étudiée, ce n'est pas possible. D'ailleurs, l'étape 2 permet de ne pas rencontrer ce cas puisque celle-ci s'assure au préalable que l'intersection de l'axe du faisceau avec un bord de la cellule (autre que le bord vers l'arrière) a bien lieu. Par conséquent, seuls les trois autres cas sont rencontrés en pratique. Dans les deuxième et troisième cas, une solution est inférieure à x e , tandis que l'autre lui est supérieure. Dans ce cas, la solution physique correspond à la valeur supérieure à x e , puisque la propagation se fait vers l'avant. Dans le quatrième cas, les deux solutions ont a priori un sens physique puisque x 1 et x 2 sont supérieures à x e . La solution retenue est la plus petite valeur entre x 1 et x 2 , car c'est l'abscisse de la prochaine intersection de l'axe avec le bord de la cellule, tandis que l'autre valeur correspond à une autre intersection survenant plus loin dans la propagation du faisceau.

Étape 4 : calcul des paramètres du faisceau au nouveau point de référence

Les paramètres du faisceau à réévaluer au niveau du nouveau point de référence sont les coordonnées de ce point de référence, l'élévation du faisceau en ce point, ainsi que la longueur curviligne et l'eikonale. Les coordonnées du nouveau point de référence sont en fait déjà connues grâces aux étapes 2 et 3. La nouvelle élévation est ensuite calculée. Deux cas de figure sont à distinguer. Lorsque l'axe du faisceau rencontre le bord supérieur ou inférieur de la cellule, cette élévation est calculée directement par dérivation de ( 

Conclusion

Cette section a permis d'expliquer comment les équations analytiques du modèle GBAR, développées sous hypothèse d'un gradient de réfraction vertical et constant, sont étendues à la propagation dans un milieu constitué de cellules élémentaires. Chaque cellule élémentaire se voit attribuer une valeur de gradient vertical et constant calculée à partir des valeurs de n aux bords inférieur et supérieur de la cellule. La propagation de l'axe d'un faisceau dans un tel milieu se fait de cellule en cellule en calculant les points d'intersection de l'axe avec le bord de la cellule qu'il rencontre. La continuité de la distance curviligne, de l'eikonale et des fonctions p et q est assurée à chaque intersection. La pente de l'axe est également réévaluée à chaque intersection.

Décompositions d'un champ en faisceaux gaussiens

Cette section présente deux procédures de décomposition d'un champ en somme de faisceaux gaussiens élémentaires. La décomposition sur les frames de Gabor est une méthode standard et est présentée pour servir de point d'appui et de comparaison à la méthode de décomposition multi-faisceaux présentée ensuite. La décomposition peut se faire sur une base ou sur un frame de Gabor. La décomposition sur la base de Gabor a un inconvénient majeur. La procédure souffre d'instabilité numérique. Les coefficients de décomposition sont mal localisés spatialement et spectralement. C'est-à-dire qu'il est difficile de décider quels sont les coefficients nécessaires afin de recomposer le champ incident, puisqu'un nombre important de faisceaux associés à de faibles coefficients peut, dans l'ensemble, contribuer de façon significative au champ résultant. Les frames sont plus flexibles d'utilisation.

Décomposition de Gabor

Les frames de Gabor

La décomposition sur des frames de Gabor est une procédure basée sur un sur-échantillonnage du champ à décomposer. Dans ce cas, la famille de fonctions élémentaires (w m,n ) est complète mais n'est pas libre : une fonction non nulle de cette famille peut être exprimée par une combinaison linéaire des autres fonctions de cette famille. Le calcul des coefficients se fait alors par le produit scalaire 

a m,n =< f, wm,n >= +∞ -∞ f (z) w * m,n (z)dx, ( 3 
E i = N l=1 a i l u l , (3.12)
où N désigne le nombre de faisceaux élémentaires utilisés dans la décomposition. La formulation du faisceau gaussien issu de l'approximation paraxiale pour chaque faisceau élémentaire u l peut être utilisée. 

Interprétation physique des faisceaux gaussiens élémentaires

Les centres des faisceaux gaussiens élémentaires correspondent aux points de décomposition du champ initial. Ces points de décomposition doivent couvrir la zone utile du champ initial sur l'interface de décomposition. Pour ne pas privilégier une zone particulière du champ inital, la grille de points est choisie régulière avec un pas d entre deux centres adjacents de faisceaux élémentaires. L'utilisation d'un seul faisceau gaussien élémentaire en chaque point de la grille de décomposition suggère d'orienter ce faisceau de façon à ce qu'il soit le plus proche du comportement physique local du champ initial en ce point. C'est pourquoi la direction de propagation du faisceau élémentaire est orientée selon la direction de propagation du champ à décomposer.

Le choix du type de faisceau gaussien est conditionné par la volonté de ne privilégier aucune zone particulière du champ initial. En notant W 0 largeur des ceintures des faisceaux élémentaires, la distance entre deux faisceaux au niveau de la grille de décomposition est donnée par

d = W 0 κ, (3.13)
où κ est un paramètre de la décomposition, dont la valeur, inférieure à l'unité, peut être choisie suite à une étude paramétrique [Chab 04]. Il est aussi possible de choisir la position de la ceinture de sorte qu'un faisceau élémentaire traduise localement au maximum la forme du champ initial. Néanmoins, cette complexité supplémentaire augmente le temps de calcul des coefficients de façon significative sans apporter une réduction significative de la précision de la décomposition. Par conséquent, les ceintures des faisceaux élémentaires sont fixées au niveau de la surface de décomposition.

Détermination des coefficients de décomposition

Le calcul des coefficients se fait de telle sorte qu'aux points de la grille de décomposition la somme des faisceaux élémentaires, pondérés par les coefficients, égale le champ initial. Cela s'écrit, en deux dimensions et pour N faisceaux élémentaires et au point O p de la grille de décomposition

u i (O p ) = N l=1 a l u l (O p ). (3.14)
L'écriture matricielle de la dernière équation se met sous la forme

E = M a, (3.15) où M =    u 1 (O 1 ) • • • u N (O 1 ) . . . . . . u 1 (O N ) • • • u N (O N )    , (3.16) a =    a 1 . . . a N    , (3.17) E =    u i (O 1 ) . . . u i (O N )    .
(3.18)

Conclusion

La méthode de décomposition multi-faisceaux, moins rigoureuse mais plus rapide que la décomposition sur les frames de Gabor, sera utilisée par la suite. Son cadre d'application (surface de décomposition de faible courbure notamment) correspond à son utilisation dans le cadre de cette thèse, qui est détaillée dans la section 3.3.

Méthode GBAR et décomposition multi-faisceaux

La méthode de décomposition multi-faisceaux a été choisie pour être utilisée avec les équations analytiques décrivant la propagation d'un faisceau gaussien en milieu inhomogène développées dans le chapitre 2. Cette section détaille le principe de son utilisation, les étapes de la décomposition, et présente un critère pour détecter automatiquement la nécessité d'une re-décomposition du champ.

Principe

L'utilisation de la décomposition multi-faisceaux avec les équations analytiques du faisceau gaussien en milieu inhomogène doit répondre à la problématique suivante : le champ se propageant dans le milieu inhomogène doit être modélisé de façon précise, avec un temps de calcul le plus faible possible. Un compromis doit être trouvé entre le nombre de faisceaux et leur divergence, caractérisée par la largeur de ceinture. En effet, pour une divergence et une précision de calcul fixées, plus il y a de faisceaux élémentaires utilisés au cours de la simulation, plus le temps de résolution est important. Ces remarques permettent d'identifier deux principales difficultés. La première difficulté est de trouver un critère permettant de fixer la largeur de ceinture des faisceaux élémentaires de décomposition au niveau de l'interface de décomposition. Ce critère doit prendre en compte la précision de la décomposition ainsi que la divergence des faisceaux élémentaires qui se propageront dans le milieu après la surface de décomposition. La deuxième difficulté est de déterminer un critère permettant de décider lorsqu'une nouvelle décomposition est nécessaire. En effet, les hypothèses inhérentes au modèle proposé d'équations analytiques du faisceau gaussien en milieu inhomogène font que la modélisation du champ dans certaines structures réfractives génère une erreur non négligeable à cause de la perte de localité des faisceaux. Une nouvelle décomposition permet d'utiliser une nouvelle famille de faisceaux gaussiens élémentaires prenant mieux en compte les structures réfractives difficiles. Dans la lignée des travaux menés sur la décomposition multifaisceaux [Chab 04], les ceintures des faisceaux élémentaires de décomposition seront choisies identiques pour tous les faisceaux, et situées au niveau de l'interface de décomposition. D'autre part, une décomposition totale du champ incident sera considérée, c'est-à-dire que l'ensemble de la zone utile du champ incident sera décomposé en somme de faisceaux gaussiens élémentaires.

Les étapes de la décomposition

La décomposition comporte sept étapes successives :

-étape 1 : calcul de la largeur spatiale (zone utile) du champ à décomposer, -étape 2 : calcul de la largeur spectrale du champ à décomposer, -étape 3 : utilisation d'un critère spectral pour déterminer la largeur des faisceaux gaussiens élémentaires de décomposition, -étape 4 : localisation des points de décomposition sur la grille, -étape 5 : calcul des directions de propagation du champ à décomposer aux points de décomposition de la grille, -étape 6 : calcul de la matrice des champs des faisceaux gaussiens élémentaires aux points de décomposition de la grille, avec un coefficient unitaire pour chaque faisceau élémentaire, -étape 7 : résolution du système linéaire (3.15) pour déterminer les coefficients de décomposition à associer à chaque faisceau élémentaire de décomposition.

Étape 1 : calcul de la largeur spatiale du champ à décomposer

Soit un champ initial E i arrivant sur une interface droite verticale dans le repère cartésien à deux dimensions (O, x, z). Pour déterminer la zone utile du champ initial, c'est-à-dire la zone où doit être effectuée la décomposition, le champ initial est évalué pour une série de points d'observation disposés le long de l'interface de décomposition. Cette série de points d'observation est régulière avec un pas constant permettant de décrire suffisamment précisément la position de la zone utile. Connaissant les valeurs du champ incident en ces points d'observation, la valeur maximale max z ||E i (x, z)|| du champ sur ces points est déterminée. La zone utile est ensuite déterminée en repérant les points d'observation pour lesquels

|E i (x, z)| max z |E i (x, z)| > η s , (3.19)
où η s fixe le niveau de seuil de la zone utile. Une valeur de η s,dB = -100 dB permet de s'assurer que toute la zone utile de champ à décomposer est prise en compte. Le critère (3.19) permet de trouver z min et z max qui sont les altitudes respectives des limites inférieure et supérieure de la zone utile le long de l'interface de décomposition.

Étape 2 : Calcul de la largeur spectrale du champ à décomposer

La transformée de Fourier du champ à décomposer le long de l'interface de décomposition correspond à la représentation de ce champ en spectre d'ondes planes. Le spectre d'ondes planes permet de connaître quelles sont les directions de propagation du champ au niveau de l'interface. Puisque la zone utile du champ à décomposer a été déterminée, le spectre peut s'écrire au niveau de l'interface repérée par 

x = x 1 ũ(x 1 , k z ) = 1 2π zmax z min u(x 1 , z)e -jkzz dz, (3.20) où k z = k 2 -k 2 x avec

Étape 5 : calcul des directions de propagation du champ à décomposer aux points de décomposition de la grille

Dans le calcul de la direction de propagation, deux cas sont à distinguer. Le premier cas concerne la première décomposition d'un champ initial correspondant à une onde plane ou une onde sphérique. Le deuxième cas concerne la décomposition d'un champ qui est déjà modélisé par une distribution de faisceaux gaussiens élémentaires, c'est-à-dire une re-décomposition. Le calcul du vecteur de Poynting pour une onde plane ou sphérique est bien connu. Pour un champ précédemment décomposé en somme de faisceaux, une méthode alternative consiste à évaluer la variation de phase du champ total autour du point de décomposition, et de supposer une variation linéaire de celle-ci. La direction de propagation locale s'en déduit.

Étape 6 : calcul de la matrice des champs des faisceaux gaussiens élémenaires aux points de décomposition de la grille

La sixième étape consiste à évaluer le champ de chaque faisceau gaussien élémentaire aux points de la grille de décomposition, en considérant un coefficient unitaire pour tous les faisceaux gaussiens. Dans le cas à deux dimensions, la matrice M se ramène à

M =    u 1 (x 1 , z 1 ) • • • u N (x 1 , z 1 ) . . . . . . u 1 (x N , z N ) • • • u N (x N , z N )    , (3.24)
où u l (x m , z m ) indique le champ scalaire du faisceau gaussien élémentaire d'indice l au point d'indice m de la grille de décomposition. La matrice du champ incident u i est également simplifiée, ainsi que la matrice des coefficients

E =    u i (x 1 , z 1 ) . . . u i (x N , z N )    , (3.25) a =    a 1 . . . a N    . (3.26)
La matrice M est calculée en utilisant les nouvelles formulations analytiques du faisceau gaussien en milieu inhomogène présentées en section 2.2. Chaque position (x e , z e ) dans ces équations est remplacée par les coordonnées de chaque centre associé à chaque faisceau gaussien élémentaire de décomposition. Ces positions ont été déterminées dans l'étape 4. L'élévation α e utilisée dans les équations analytiques correspond à la direction de propagation calculée au cours de l'étape 5. La largeur de chaque faisceau élémentaire W 0 est celle résultant de l'étape 3. Il reste à calculer la matrice des coefficients a.

Étape 7 : résolution du système linéaire (3.15) pour déterminer les coefficients de décomposition à associer à chaque faisceau élémentaire de décomposition.

La dernière étape de la décomposition multifaisceaux consiste à déterminer la matrice des coefficients a en résolvant le système linéaire 

E = M a, ( 3 

Conclusion

L'utilisation de la décomposition multi-faisceaux avec les équations analytiques du modèle GBAR a été expliquée dans cette section. Le calcul de la direction de propagation pour un champ sphérique, pour un champ canonique et pour un champ décrit par une somme de faisceaux gaussiens a été détaillé. Le choix de la largeur de ceinture des faisceaux gaussiens de décomposition s'assure que toutes les composantes spectrales du champ à décomposer soient restituées. D'autre part, la nécessité de re-décomposition a été justifiée par une simulation montrant la limite d'une enveloppe symétrique pour modéliser la propagation dans une forte inversion de gradient. Un critère reposant sur l'évolution de la distance relative entre les axes des faisceaux adjacents a été exposé.

Tests numériques

Cette section présente une série de tests numériques exposant la précision et les performances du modèle GBAR avec re-décomposition pour modéliser la propagation dans des profils bilinéaires, trilinéaires et dans des grilles WRF prenant en compte ou non la sphéricité de la Terre. Cette simulation montre que le modèle GBAR développé dans cette thèse est précis et performant pour modéliser la propagation dans des conduits bilinéaires, même lorsqu'il y a une sévère variation de gradient. Le critère et la procédure de re-décomposition permet de relocaliser la description du champ à l'aide de faisceaux élémentaires, lorsque nécessaire. Il ressort également de ces tests que la performance de GBAR est d'autant plus intéressante que le nombre de redécompositions est réduit. Afin de complexifier le milieu de propagation et de le faire tendre vers une description réaliste de la troposphère, la sous-section suivante porte sur la modélisation du champ dans plusieurs conduits trilinéaires successifs. 

Propagation dans des profils bilinéaires

Propagation dans une succession de profils trilinéaires

Propagation dans des grilles WRF

Génération des grilles de N

Les sorties du modèle méso-échelle WRF permettent de calculer l'indice de réfraction (et donc le coindice) sur un ensemble de points repérés par leurs coordonnées en latitude, longitude et altitude. Puisque cette thèse se restreint à la propagation en deux dimensions, les grilles qui vont être utilisées dans cette sous-section sont obtenues en fixant la latitude dans des grilles de N en latitude, longitude et altitude. C'est un choix arbitraire que de fixer la latitude, il est possible de générer une grille 2D dans un plan plus général.

Les données utilisées pour les simulations de cette sous-section correspondent à la simulation du modèle WRF dans la région des Caraïbes, montrée en Fig. les gradients en Fig. 3.32, les gradients sont positifs. Par conséquent le champ est réfracté vers les altitudes plus grandes, comme le montre la Fig. 3.36. Les valeurs de gradient, bien que positives, restent comprises dans le domaine de validité de la méthode GBAR. La carte de l'erreur avec PWE-SSF, en Fig. 3.37 montre la précision de la méthode, ainsi que la Fig. 3.38 qui montre le champ en amplitude et en phase à 100 km de distance. 

Conclusion

L'utilisation des équations analytiques du faisceau gaussien en milieu inhomogène, couplée avec les prodécures de re-décomposition multi-faisceaux, a été exposée dans cette section. Le modèle GBAR permet ainsi de modéliser la propagation dans des profils bilinéaires (y compris avec forte inversion de gradient), dans des profils trilinéaires successifs, et dans des grilles WRF de N (sans prise en compte de la sphéricité de la Terre) et de M (avec prise en compte de la sphéricité de la Terre). Les temps de calculs sont inférieurs à ceux de la méthode de référence de 20 % à 50 %. De plus, les résultats ont été présentés de manière à suivre les résultats de la PWE-SSF. Si l'objectif est de calculer le champ dans une zone très réduite spatialement, voire un point du domaine, la méthode GBAR devient bien plus performante.

Synthèse

Dans ce chapitre, la modélisation du milieu troposphérique a été présentée. Elle consiste à l'approcher par un ensemble de cellules rectangulaires élémentaires, chaque cellule étant associée à un gradient vertical et constant. Cette approche permet d'utiliser les équations du modèle GBAR, puisque celles-ci ont été développées sous l'hypothèse d'un gradient localement vertical et constant. La propagation d'un faisceau dans les cellules élémentaires a été expliquée. Ensuite le principe de décomposition en somme de faisceaux gaussiens élémentaires a été exposé. La décomposition multi-faisceaux, bien que mathématiquement moins rigoureuse que la décomposition de Gabor, a été choisie pour être utilisée avec les équations analytiques du modèle GBAR. Ce choix a été justifié par le fait que l'étude menée dans cette thèse se trouve dans son domaine de validité, identifié dans la littérature, ainsi que par sa rapidité et le faible nombre de faisceaux élémentaires nécessaires (par rapport à la décomposition de Gabor).

Les étapes de la décomposition multi-faisceaux, utilisée avec le modèle GBAR, ont été détaillées. Les propriétés des faisceaux élémentaires sont déduites dynamiquement par les propriétés du champ à décomposer. Un critère spectral a été presenté pour s'assurer que toutes les directions de propagation présentes dans le champ à decomposer soient restituées par les faisceaux de décomposition. D'autre part, la nécessité de redécomposer le champ lorsqu'il se propage dans des cellules de gradients différents a été identifiée. En réponse à ce besoin, un critère a été défini pour détecter automatiquement lorsqu'une re-décomposition est nécessaire à la bonne modélisation du champ. Ce critère repose sur l'évolution des distances entre axes de faisceaux élémentaires adjacents. Enfin, des tests numériques ont été présentés. L'étude des profils bilinéaires a montré que l'utilisation de re-décompositions permet de traiter des inversions fortes de gradient. Dans des profils moins sévères, un nombre plus faibles de re-décompositions est nécessaire et le gain de temps par rapport à la méthode PWE-SSF est de l'ordre de 50 %. L'étude s'est ensuite portée sur des profils trilinéaires se succédant en distance. La précision et les performances de la méthode GBAR ont été validées dans ce type de structure. Enfin, le cas de grilles de coindice et de coindice modifié issues du modèle météo WRF a été traité. Les simulations valident la méthode proposée, avec ou sans prise en compte de la courbure de la Terre. Dans l'ensemble de tests menés, le gain de temps pour estimer le champ au bout du domaine se situe entre 20 % et 40 %.

Le temps de calcul de la méthode de référence PWE-SSF devient d'autant plus limitant que le domaine de propagation est grand. Afin de se placer dans des conditions pour lesquelles le modèle GBAR se démarque favorablement, soit pour de très grands domaines, l'étude de la radio-occultation a été menée. Elle fait l'objet du chapitre 4.

Chapitre 4 L'objectif de ce chapitre est d'utiliser le modèle GBAR développé dans le cadre de cette thèse pour calculer la propagation atmosphérique de signaux en bande L. Ces signaux sont transmis entre satellites en orbite autour de la Terre, et le calcul de l'amplitude de ces signaux après réfraction peut être interprété par un modèle d'inversion pour estimer le profil de réfraction atmosphérique aux points où les rayons sont les plus proches de la surface terrestre, comme le montre Sokolovskiy [Soko 00]. Pour simuler l'inversion de signaux GNSS avec le modèle GBAR, la procédure adoptée dans cette étude consiste à fixer une série de points tangents, de calculer les positions des satellites correspondant à cette configuration, de simuler la propagation des signaux d'un satellite à l'autre, et d'utiliser le modèle d'inversion de Sokolovskiy [Soko 00] pour obtenir des profils estimés de n. Les profils inversés sont ensuite comparés aux profils directement relevés dans le milieu modélisé. Un second objectif est d'étudier l'impact de l'hypothèse de symétrie sphérique assumée par les modèles d'inversion. Dans un premier temps, le principe et la géométrie de la radio-occultation sont présentés. Ensuite, des généralités sont expliquées sur les modèles d'inversion des données de radio-occultation, et le modèle d'inversion de l'amplitude proposé par Sokolovskiy est détaillé. C'est ce modèle d'inversion qui sera utilisé pour interpréter les résultats des simulations. Dans un troisième temps, la modélisation du problème pour son traitement avec la méthode GBAR est exposée, notamment les approximations permettant le passage à une description en deux dimensions. Enfin, des tests numériques sont menés pour valider la procédure en conditions canoniques et pour analyser l'impact de l'hypothèse de symétrie sphérique dans une grille de réfraction réaliste issue de WRF.

Modélisation d'une liaison satellitaire en radio-occultation et inversion en amplitude

Principe et géométrie de la radio-occultation

Cette section présente le principe général des techniques de sondage s'inscrivant dans le cadre de la RO. Pour cela, les objectifs et les avantages par rapport aux méthodes classiques de sondage atmosphérique sont présentés. Les bases du modèle physique d'interprétation des données sont également présentées. Enfin, les éléments de géométrie permettant la description des trajectoires satellites autour de la Terre sont présentés.

Principe de la radio-occultation

Objectif de l'étude des données de radio-occultation

Les techniques auxquelles fait référence cette étude sont destinées à utiliser des signaux comme par exemple les signaux GNSS (Global Navigation Satellite System), émis et reçus par des satellites en orbite autour de la Terre, afin d'estimer les propriétés physiques (pression, température, indice de réfraction...) des différentes couches atmosphériques. Les signaux utilisés sont ceux échangés entre satellites munis d'équipements de traitements des signaux. Les satellites des constellations spécifiquement conçues pour les systèmes GNSS sont en orbite à une altitude moyenne située entre 21000 km et 23200 km environ. Par exemple, le segment spatial de Galileo sera constitué à terme de 30 satellites dont 6 de rechange. Chaque satellite, d'une masse d'environ 700 kg, circule sur une orbite moyenne à 23200 km et dans trois plans orbitaux distincts ayant une inclinaison de 56 • . L'inclinaison i définit l'angle entre le plan équatorial et le plan orbital du satellite, comme illustré sur la Fig. 4.1. Les signaux GNSS sont reçus et traités par des satellites situés sur des orbites plus basses. Des satellites LEO (Low Earth Orbit) peuvent être équipés de récepteurs GNSS. Un satellite LEO se trouve environ à une altitude de 700 km. L'utilisation des satellites LEO permet d'obtenir un grand nombre de positions de RO et donc de diversifier les trajectoires de rayons qui peuvent être ensuite analysées. L'utilisation de signaux GNSS se justifie par trois arguments principaux. D'abord, le grand nombre de satellites dédiés aux systèmes GNSS offre une couverture remarquable de l'atmosphère terrestre. Ensuite, les fréquences utilisées (bande L) permettent aux signaux de traverser les nuages, le brouillard, la pluie, ainsi que d'autres environnements susceptibles d'être rencontrés de jour comme de nuit. Enfin, les informations en déphasage, retard, amplitude et Doppler sont directement disponibles, c'est-à-dire qu'il n'est pas nécessaire de déployer de nouvelles technologies pour acquérir ces informations.

Les avantages du sondage atmosphérique par radio-occultation

Les signaux GNSS sont émis de manière constante et des satellites LEO sont à même de recevoir fréquemment ces signaux en géométrie RO. Par conséquent, la couverture des différentes zones de la surface terrestre peut-être large et fréquemment actualisable. Ceci est à comparer à d'autres méthodes plus classiques de sondages atmosphériques, comme les ballons à sondes ou les radiomètres. Il serait par exemple nécessaire de lancer énormément de ballons pour avoir une converture équivalente à celle offerte par le système GNSS. De plus, la géométrie "transverse" de la RO est complémentaire aux sondages verticaux plus classiques. Enfin, les ballons à sondes sont soumis, en plus des incertitudes sur les instruments de mesures, aux aléas de la météo qui peuvent les faire dériver des trajectoires qu'ils sont sensés sonder. Les radiomètres, quant à eux, sont onéreux et il n'est pas envisageable d'en installer une quantité permettant d'avoir la couverture du système GNSS.

Modèle physique pour l'interprétation des données de radio-occultation

Les données recueillies par les récepteurs placés sur satellites, elles-mêmes retransmises aux stations sols, sont interprétées pour estimer les propriétés de la partie de l'atmosphère traversée par le signal. Pour que cette interprétation soit possible, un modèle physique simplifié est considéré, afin de réduire le nombre de variables du problème global et de permettre une inversion. Trois hypothèses importantes sont faites. La première est que les orbites des satellites peuvent être localement approximées par des orbites circulaires. La seconde hypothèse est de considé-rer que la Terre est de forme sphérique, ainsi que l'atmosphère, et que les centres de ces deux sphères sont confondus. Enfin la structure réfractive de l'atmosphère est supposée à symétrie sphérique, de telle sorte qu'elle soit modélisée par une superposition de couches sphériques d'indice constant. L'hypothèse sous-jacente à cette représentation est que le gradient de l'indice de réfraction est radial et constant entre deux lignes de niveau de l'indice. Il est à noter que certaines techniques avancées permettent de corriger les résultats a posteriori afin d'atténuer l'impact de ces hypothèses [Kurk 00]. Le modèle de propagation de l'onde électromagnétique repose sur la théorie de l'Optique Géométrique, présentée dans le chapitre 1. Les trajectoires des rayons sont modélisées par la loi de Bouguer. L'hypothèse de la symétrie sphérique de la structure réfractive de l'atmosphère est supposée. Le point fondamental du modèle physique est d'établir une relation (expliquée dans la section 4.2) entre les angles de courbures des rayons réfractés pendant leur traversée de l'atmosphère et les valeurs de l'indice de réfraction aux périgées. Le périgée d'un rayon est le point de sa trajectoire passant au plus près de la surface terrestre. En étant capable d'interpréter les données de radio-occultation pour estimer les angles de courbure des rayons réfractés, un profil de n peut ainsi être déterminé. Une grande partie de la difficulté consiste donc à obtenir avec un minimum d'erreur les angles de courbures des rayons. Plusieurs méthodes exploitant différentes données existent. Les principales seront détaillées dans la section 4. 

Relation entre les angles de courbures et les valeurs de n

Le point important partagé par les différentes méthodes d'inversion des données de RO est de faire le lien entre les angles de courbures des rayons transmis d'un satellite à l'autre et les valeurs de l'indice de réfraction aux points tangents correspondant. Pour une série de rayons associés à une série de positions des satellites occultant l'atmosphère, la valeur de n en un point tangent est obtenue en sommant sur les rayons passant au-dessus de ce point tangent. Cela se formule mathématiquement par une tranformation d'Abel, qui peut être inverse ou directe selon que l'objectif est d'estimer les angles de courbures à partir des valeurs de n ou l'inverse. La formulation directe s'énonce [Kurk 00]

n(r) = exp 1 π asup a 1 α(a) a 2 -a 2 1 da , ( 4.1) 
qui donne la valeur de n au point tangent distant de r du centre de la Terre, en intégrant le long des valeurs des paramètres d'impact a. Le paramètre d'impact est défini par a ≡ nr sin Φ et est caractéristique d'un rayon, puisque la loi de Bouguer (sous hypothèse de symétrie sphérique de l'atmosphère) indique que la quantité nr sin Φ est constante le long du rayon (où Φ désigne l'angle entre le rayon et la direction localement radiale). La quantité a 1 correspond à la valeur du paramètre d'impact pour le rayon associé au point tangent, auquel n(r 1 ) correspond. Le terme a sup fait référence au paramètre d'impact du rayon passant le plus loin de la surface terrestre. Le terme α désigne la courbure totale du rayon, c'est-à-dire l'angle entre la direction d'émission et la direction d'arrivée du rayon. Or, il y a une bijection entre les rayons et les valeurs de a, donc α peut être décrit en fonction de a.

Les zones de l'atmosphère dont il est possible d'estimer les propriétés dépendent des trajectoires de rayons (en suivant le modèle de l'Optique Géométrique). Plus les rayons passent proche de la surface terrestre, plus le profil inversé de réfraction, et donc de pression et température, peut descendre bas. Par conséquent, il est important de connaître les positions des satellites rendant possible l'occultation atmosphérique.

Géométrie de la radio-occultation

Éléments du problème

L'exploitation des données de radio-occultation consiste à récupérer les données de trajectoire des satellites émetteur et récepteur, et de déterminer les points tangents (les périgées) correspondant. L'approche inverse peut être également adoptée : fixer les points tangents et déterminer les positions des satellites qui correspondent à ces points. Étant donné que l'accés à des données complètes de radio-occultation n'as pas été possible dans le cadre de cette thèse, c'est cette approche qui a été utilisée.

Description géométrique des éléments du problème

L'objectif est de déterminer les coordonnées des satellites correspondant à un point tangent (appelé aussi périgée, noté r T sur la Fig. 

θ 1 = π 2 -arcsin n(r T )r T r 1 + α(r T ) 2 , ( 4.2) 
où α(r T ) est la valeur de l'angle de courbure associée à la trajectoire du rayon au point tangent. Or, déterminer l'angle de courbure est un des objectifs de l'inversion. La technique utilisée pour lever cette difficulté est de calculer les positions des satellites en supposant une atmosphère standard, pour laquelle les angles de courbures peuvent être déterminés. Ceci permet de fixer la géométrie du problème afin de simuler une inversion.

                     θ 1 = π 2 -arcsin n(r T )r T r 1 + α(r T ) 2 
                     θ 2 = π 2 -arcsin n(r T )r T r 2 + α(r T ) 2 

Conclusion

Cette section a permis de présenter le principe général de l'inversion des données de radiooccultation : interpréter des signaux (amplitude, phase, Doppler, retard) transmis entre satellites en orbite autour de la Terre afin d'estimer les propriétés de l'atmosphère (pression, température, indice de réfraction 

f d = f T c (v T • êT + v R • êR ), (4.10) = - d T c (v r T cos Φ T + v θ T sin Φ T + v r R cos Φ R -v θ R sin Φ R ), (4.11) 
avec f T la fréquence du signal émis, v T (respectivement v R ) le vecteur vitesse du satellite émetteur (respectivement du satellite récepteur), et êT (respectivement êR ) le vecteur donnant la direction et le sens du rayon au niveau du satellite émetteur (respectivement du satellite récepteur). La mesure de la fréquence Doppler permet donc de connaître la direction d'arrivée du rayon portant l'énergie. Cette équation, utilisée avec la loi de Bouguer, permet d'approcher par une méthode de Newton les angles de courbures des rayons.

Modèle utilisant l'amplitude

Un autre modèle standard consiste à exploiter les variations de l'amplitude du champ à sa traversée de l'atmosphère [Kurk 00]. L'origine de l'atténuation en bande L provient surtout de l'oxygène moléculaire et de la vapeur d'eau. L'atténuation due à l'oxygène est deux fois plus importante que celle provenant de la présence de vapeur d'eau [ Chah 83]. Dans la théorie des rayons, la variation de l'amplitude du champ se modélise par une variation de la distance entre les rayons adjacents. Lorsque cette distance augmente, l'amplitude du champ diminue, et inversement.

Méthode d'inversion de Sokolovskiy

Principe du modèle

La recherche de trajectoire de rayons dans une structure atmosphérique 3D inhomogène par une approche de Newton peut ne pas donner de solution, en particulier en présence de guidages (cf. chapitre 1). Sokolovskiy a présenté une procédure d'inversion basée uniquement sur l'amplitude des signaux [Soko 00]. Contrairement à la méthode présentée ci-dessus dans la sous-section 4.2.1.3, celle-ci n'a pas besoin de procédure de Newton.

Procédure d'inversion

Sous l'hypothèse de symétrie sphérique, le flux d'énergie peut être exprimé en considérant la divergence des tubes de rayons de l'optique géométrique. Le coefficient d'atténuation de réfraction K est défini par [Soko 00]

K = A A 0 2 = L∆Φ 1 ∆r 2 sin Φ 2 , (4.12)
où A (respectivement A 0 ) désigne l'amplitude du signal au niveau du satellite récepteur en configuration de RO (respectivement en espace libre). La valeur de A 0 doit être calibrée à partir des paramètres de l'émetteur, des antennes émettrice et réceptrice, ainsi que le gain de l'antenne réceptrice. La distance L entre les deux satellites peut s'écrire à l'aide de la loi des cosinus, selon 

L = r 2 1 + r 2 2 -

Conclusion

Cette section a permis de présenter l'objectif des modèles d'inversion et les principales difficultés qu'ils doivent relever. Un bref état de l'art a été effectué, montrant l'existence de modèles utilisant le Doppler ou l'amplitude des signaux GNSS pour déterminer les angles de courbures des rayons traversant l'atmosphère. Le modèle de Sokolovskiy a ensuite été présenté et détaillé. Il appartient au groupe des modèles d'inversion de l'amplitude des signaux. Ce modèle sera utilisé en post traitement des simulations GBAR pour modéliser des inversions de profil de n.

Modélisation du problème pour la méthode GBAR

Le problème de la radio-occultation est complexe tant par sa géométrie que par les phénomènes physiques rencontrés. Pour modéliser le problème avec la méthode GBAR, plusieurs approximations, expliquées dans cette section, sont faites afin de se placer en 2D et avec une seule source (le satellite émetteur). Le choix de se placer dans un plan 2D unique a été fait pour mieux tester et valider la méthode. Cette dernière pourra être étendue en géométrie 3D. Ensuite, le milieu atmosphérique doit prendre en compte la sphéricité de la Terre. Cette section détaille comment ce milieu est défini, et comment la propagation d'un satellite à l'autre est calculée.

Modélisation de la configuration radio-occultation en deux dimensions

Définition du plan de propagation

Le modèle GBAR a été développé pour la modélisation de la propagation en deux dimensions. Or, le problème de la RO doit en toute rigueur être décrit en trois dimensions, puisque les satellites mis en jeu n'évoluent pas dans des plans orbitaux identiques. Par conséquent, il est nécessaire de formuler certaines approximations permettant de définir un plan dans lequel propager les signaux GNSS émis d'un satellite à l'autre.

Pour simuler l'inversion de signaux GNSS avec le modèle GBAR, la procédure adoptée dans cette étude consiste à fixer une série de points tangents, de calculer les paramètres géométriques correspondant avec les équations de la sous-section 4.1. 

Tests numériques d'inversion du profil de réfraction

Les tests numériques de cette section comportent deux étapes. La procédure proposée consiste à modéliser la propagation du champ du satellite émetteur au satellite récepteur avec la méthode GBAR, et à inverser les résultats pour estimer le profil de n. Dans un premier temps, elle est validée en utilisant une grille symétrique canonique construite avec un profil exponentiel de n. Ensuite, un milieu réaliste issu de simulations WRF est considéré. Deux résultats sont alors observés : l'écart entre le profil directement relevé dans la grille aux points tangents et l'écart avec le profil inversé lorsque la grille WRF est rendue symétrique. L'objectif est alors d'étudier l'impact de l'hypothèse de symétrie sphérique assumée par la technique d'inversion sur les profils de n obtenus. 

Conclusions

Cette simulation a permis de valider l'inversion du profil exponentiel standard à partir de la simulation de la propagation du champ calculé par la méthode GBAR. Les écarts entre le profil inversé et le profil directement relevé aux points tangents sont inférieurs à 5% de la valeur de N . L'altitude minimale jusqu'à laquelle le profil peut être inversé est de quelques kilomètres au-dessus du niveau de la surface terrestre à cause des effets du sol. Ces effets proviennent de la troncature de l'onde sphérique incidente à la première décomposition en somme de faisceaux gaussiens.

Inversion des résultats en amplitude pour l'inversion d'un profil quelconque

4.4. 

Bilan

Ces tests numériques ont permis d'abord de valider l'utilisation de la méthode GBAR associée à la méthode d'inversion de Sokolovskiy dans un milieu canonique construit avec un profil exponentiel de n. Un milieu réaliste issu de simulations WRF a ensuite été utilisé afin de quantifier l'impact de l'hypothèse de symétrie sphérique. Pour cela le profil inversé à partir de la grille WRF interpolée a été comparé au profil inversé lorsque la grille est rendue symétrique en utilisant les valeurs de n au niveau de la verticale centrale. Sur l'exemple choisi, les écarts constatés entre les deux profils sont inférieurs à 6 %. Par conséquent, dans ce cas, l'hypothèse de symétrie sphérique permet de simplifier grandement la modélisation du problème sans dégrader significativement la précision du profil obtenu après la procédure d'inversion. Ce cas d'application GBAR à la RO démontre tout l'intérêt du modèle. 

Synthèse

Conclusion

Rappel de l'objectif de l'étude L'objectif de cette thèse était de proposer un modèle de propagation pour la réfraction troposphérique basé sur les faisceaux gaussiens. Le formalisme faisceau gaussien a l'avantage de décrire de façon locale l'interaction avec le milieu, contrairement à la méthode PWE-SSF qui nécessite une résolution globale dans le milieu, tout en évitant l'existence de caustiques (contrairement à la méthode OG). Un tel modèle devait offrir des performances particulièrement intéressantes pour la propagation dans des domaines de grandes dimensions. 

Résumé des travaux effectués

A.2.2 Discrétisation du modèle

A.2.2.1 Discrétisation temporelle

Le modèle ARW utilise une résolution temporelle discrète des équations de base. D'une façon générale, les modes acoustiques de basse fréquence sont intégrés en utilisant un schéma de 

B.2.2 Coordonnées liées au rayon central

En raisonnant toujours en trois dimensions, soit un rayon de l'espace. A partir d'une origine quelconque fixe, l'ensemble des points d'un rayon sont toujours repérés par le vecteur r 0 (s). Ce rayon de référence va servir à décrire un tube de rayons situés à son voisinage. Pour cela, soit un plan normal au vecteur tangent τ (s), et les coordonnées d'un point de ce plan (q 1 , q 2 ) tels que décrits sur la figure B.2. Un point M situé au voisinage du rayon central peut être repéré selon r(s, q 1 , q 2 ) = r 0 (s) + q 1 e 1 + q 2 e 2 . (B.4) où la fonction h(s, q 1 , q 2 ) s'écrit h(s, q 1 , q 2 ) = 1 -κ(s) q 1 cos χ(s) + q 2 sin χ(s) .

(B.19)

De l'équation (B.18) on déduit directement les facteurs d'échelle permettant de transposer l'équation d'onde du système cartésien au système lié au rayon. Il sont h(s, q 1 , q 2 ), 1 et 1.

B.2.3 Ecriture de l'équation d'onde dans le repère lié au rayon

La forme générale du laplacien écrit dans le système de coordonnées (x 1 , x 2 , x 3 ) de facteurs d'échelle h 1 , h 2 et h 3 est la suivante Lorsque l'on traite un problème de calcul variationnel, on utilise une propriété importante : quand une fonction possède un minimum, un écart au premier ordre par rapport au point où la fonction prend sa valeur minimum provoque un écart au second ordre par rapport à sa valeur minimum. En tout autre point de la courbe, un écart du premier ordre dans l'espace de définition de la fonction provoque un écart du premier ordre également dans l'espace image. Mais au minimum, un tout petit écart ne produit, en première approximation, aucune différence. En effet, si la différence est du premier ordre dans l'espace de définition, alors la variation de la fonction est proportionnelle à l'écart. Cette variation entraîne une augmentation de la valeur prise par la fonction par rapport au minimum. Mais alors, si la variation est proportionnelle à l'écart, en inversant le signe de cet écart, la variation entraîne une diminution de la valeur. La valeur augmenterait ou diminuerait selon le sens de l'écart. 

∇ 2 u = 1 h 1 h 2 h 3 ∂ ∂x 1 h 2 h
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  d'ondes planes (PWE-SSF, pour Parabolic Wave Equation -Split-Step Fourier) [Leon 46] [Fock 65] [Hard 73a] [Tapp 77] [Ko 83] et l'Optique Géométrique (OG) [Hard 73b] [Babi 56] [Brek 57] [Budd 61] [Klin 65].
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Figure 1 . 1 -

 11 Figure 1.1 -Illustration de la propagation d'un rayon dans la troposphère selon la valeur du gradient de coindice N par rapport au gradient de référence -157 unités-N/km.

Figure 1 . 2 -

 12 Figure 1.2 -Illustration du domaine de propagation cartésien (x, z) en deux dimensions. Le cône paraxial est centré autour de la direction de référence. La direction de référence est parallèle à l'axe des abscisses.

1 2 δB e δA e 1 2

 2 δB , (1.19) permet d'avoir une erreur d'ordre 3 en ∆x [Fels 94], contre une erreur d'ordre 2 avec la séparation triviale e δA e δB . Les termes A et B s'appliquent avec les transformées de Fourier directe TF et inverse TF -1 selon la formule φ(x + ∆x, z) = e 1 2 δB • TF -1 e δA • TF e 1 2 δB • φ(x, z) .(1.20)Le modélisation de la propagation se fait ainsi le long de l'axe x avec un pas ∆x, avec à chaque itération une transformation de Fourier directe et une inverse, comme illustré sur la Fig.1.3.
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 1222 Figure 1.3 -Illustration de l'algorithme de propagation Split-Step Fourier pour la résolution de l'équation parabolique (PWE-SSF), dans le domaine de propagation cartésien (x, z) en deux dimensions.
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 14 Figure 1.4 -Illustration d'un calcul par méthode PWE-SSF. A gauche, le profil vertical de coindice de réfraction modifié M . A droite, le facteur de propagation en dB.

  Fig. 1.5 (carte du champ), 1.6 (amplitude du champ en bout de domaine) et 1.7 (phase du champ en bout de domaine) en polarisation TM (transverse magnétique) et à 3 GHz.
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 15 Figure 1.5 -Comparaison des cartes de champ calculées par les équations intégrales (en haut) et la méthode PWE-SSF (en bas), en polarisation TM et à 3 GHz. Figure extraite de [Bour 14].

Figure 1

 1 Figure 1.6 -Amplitude du champ en bout de domaine, correspondant à la simulation de la Fig. 1.5. Figure extraite de [Bour 14].
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 17 Figure 1.7 -Phase du champ en bout de domaine, correspondant à la simulation de la Fig. 1.5. Figure extraite de [Bour 14].
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 18 Figure 1.8 -Illustration d'une rayon direct impactant une interface séparant deux milieux d'indices de réfraction différents. Le rayon direct génère, après impact, un rayon réfléchi tel que θ d = θ r et un rayon transmis tel que θ t = arcsin n 1 n 2 sin θ d .

( a )

 a Configuration initiale. (b) Configuration virtuelle par application du théorème des images.

Figure 1

 1 Figure 1.9 -Illustration du théorème des images. Un rayon est émis depuis l'émetteur T x.

Figure 1 .

 1 Figure 1.11 -Illustration de la transformation vers une géométrie cartésienne avec un rayon fictif Ka, dans le cas où K = 91.7. Cette valeur de K est calculée avec le gradient dN/dh = -157 unités-N/km, c'est-à-dire que dans cette géométrie cartésienne, un rayon se propageant dans un gradient constant de -157 unités-N/km est représenté par une droite. La supraréfraction survient lorsque le gradient est inférieur à cette valeur. L'infraréfraction survient lorsque le gradient est supérieur à cette valeur.

Figure 1 .

 1 Figure 1.12 -Illustration d'un calcul par méthode OG. A gauche, le profil vertical de coindice de réfraction modifié M . A droite, les trajectoires des rayons issus de l'émetteur.

Figure 1 .

 1 Figure 1.13 -Illustration d'un faisceau gaussien se propageant dans la direction (Ox). (a) Amplitude du faisceau gaussien, en dB, dans le plan x0z. La ceinture du faisceau se caractérise par un resserrement du faisceau. La divergence du faisceau se remarque de part et d'autre de la zone focale (x = x W 0 ). (b) Amplitude du faisceau gaussien dans le plan de sa ceinture y0z. L'allure gaussienne se vérifie dans les deux directions transverses à la direction de propagation du faisceau (0x). Lorsque le faisceau est circulaire, l'amplitude du faisceau est symétrique autour de l'axe de propagation.

  .98) Cette intégrale peut être estimée avec des méthodes asymptotiques comme la méthode de la phase stationnaire, la méthode du point col [Chab 04] [Luga 01].

Figure 2 .

 2 Figure 2.1 -Coordonnées curvilignes (s, ρ) du point M au voisinage de l'axe. La trajectoire est calculée depuis le point de coordonnées (x e , z e ) avec un dépointage α e . La longueur curviligne s est calculée depuis la longueur curviligne de l'émetteur s e .

Figure 2 . 2 -

 22 Figure 2.2 -Description de la trajectoire itérative de l'axe du FG et de son enveloppe. Le long de chaque segment de droite constituant l'axe, l'enveloppe est décrite à partir du segment de droite précédent et de l'indice de réfraction associé au nouveau segment de droite.

Figure 2 .

 2 Figure 2.3 -Illustration de la loi de Snell-Descartes permettant de déterminer l'angle de lancer de chaque segment de droite constituant la trajectoire itérative de l'axe du FG.

  2.1.3.3 Détermination de l'eikonaleL'eikonale en un point du rayon est une grandeur homogène à un temps. Pour un point D du rayon de coordonnée curviligne s, illustré sur la Fig.2.4, l'eikonale en D correspond au temps de propagation de l'énergie depuis le point d'abscisse curviligne nulle jusqu'à D. Il est possible d'approcher sa valeur réelle en utilisant un algorithme itératif le long de la trajectoire. Avec le pas curviligne fixe ∆s, le principe est d'ajouter successivement les temps de propagation élémentaires le long de chaque segment de droite de la trajectoire tracée de façon itérative.

Figure 2 .

 2 Figure2.4 -L'eikonale associée à chaque point de l'axe du FG se calcule de façon itérative à partir de l'émetteur, en sommant les temps de propagations élémentaires le long de chaque segment. La valeur de la vitesse de propagation est actualisée à chaque itération en réévaluant la valeur de l'indice de réfraction.

Figure 2 .

 2 Figure 2.5 -Le centre du repère curviligne local P associé à un point d'observation M donné est déterminé en repérant le point de l'axe itératif étant le plus proche de M . Le point P est alors ajusté sur le segment de droite le plus proche de M . Les valeurs de s, de l'eikonale et des fonctions p et q en P sont déduites de leur valeur en D i-1 (s i-1 ) par de simples relations linéaires.
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 1 Position et objectifs des testsL'objectif est d'illustrer la validité de la méthode GBAR pour la propagation dans un sévère gradient vertial et constant. Comme critère sur l'erreur relative pour l'ensemble des tests de cette section, une valeur inférieure à -40 dB permettra de conclure à une très bonne précision de la méthode GBAR. Une valeur comprise entre -40 et -20 dB sera le signe d'une précision suffisante. Une erreur supérieure à -20 dB sera considérée comme excessive, et donc que la méthode GBAR sera d'une précision insuffisante.

Figure 2 .

 2 Figure 2.6 -(a) Profil du coindice de réfraction N . (b) Carte du champ (en dB) issue de GBAR. Les paramètres de la simulation sont : ξ = -500 uN/km, f = 1 GHz, W 0 = 20 m et α e = 1.5 • .
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 27 Figure 2.7 -Différence des champs issus de GBAR et PWE-SSF, correspondant à la simulation de la Fig. 2.6.

Figure 2 .

 2 Figure 2.8 -Amplitude et phase déroulée à 100 km de distance, correspondant au champ de la Fig. 2.6.

Figure 2 . 9 -

 29 Figure 2.9 -Erreur relative des champs issus de GBAR et PWE-SSF, correspondant à la simulation de la Fig. 2.6.

  2.10 montre l'erreur relative de GBAR par rapport à la méthode PWE-SSF, pour chaque formulation d'enveloppe. D'une façon générale, la description du faisceau est très précise avec les deux formulations puisque l'erreur reste en-dessous de -40 dB sur les 100 km. Il ressort de cette figure que le gain apporté par la formulation intégrale est très faible par rapport à la formulation asymptotique, puisque l'écart entre les deux courbes est inférieur à 2 dB.

Figure 2 .

 2 Figure 2.10 -Erreur relative avec phase entre PWE-SSF et GBAR correspondant au champ de la Fig. 2.6, calculée avec la formulation asymptotique (ligne pointillée noire) et la formulation intégrale (ligne continue grise).

Figure 2 .

 2 Figure 2.11 -Etude paramétrique de l'erreur relative avec phase entre PWE-SSF et GBAR, en fonction de l'ordre dans le développement de Taylor de la fonction Li 2 . L'étude est réalisée sous les conditions de la Fig. 2.6.

Figure 2 .

 2 Figure 2.12 -Erreur relative avec phase entre PWE-SSF et GBAR issue de l'étude paramétrique sur l'élévation initiale α e du FG.

Figure 2 .

 2 Figure 2.13 -Erreur relative sans phase entre PWE-SSF et GBAR issue de l'étude paramétrique sur l'élévation initiale α e du FG.

Figure 2 .

 2 Figure 2.14 -Comparaison de l'intensité et de la phase du FG entre la méthode PWE-SSF et la méthode GBAR, à 100 km de distance, pour α e = 3.0 • .

Figure 2 .

 2 Figure 2.15 -Erreur relative avec phase entre PWE-SSF et GBAR issue de l'étude paramétrique sur la largeur de ceinture W 0 du FG.

Figure 2 .

 2 Figure 2.16 -Erreur relative sans phase entre PWE-SSF et GBAR issue de l'étude paramétrique sur la largeur de ceinture W 0 du FG.
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 31 Figure 3.1 -Le milieu de propagation est modélisé par des cellules rectangulaires élémentaires. Pour chaque cellule, la variation verticale de l'indice est évaluée, et le gradient vertical correspondant est associé à la cellule. L'indice n i,j correspond à l'indice de réfraction au point M i,j , et ζ i,j correspond au gradient d'indice vertical de la case comprise entre les points M i,j et M i+1,j .

x 1

 1 Figure 3.2 -La détection du bord de la cellule que l'axe du faisceau gaussien intercepte est déterminée en calculant l'altitude de l'axe à la distance x c,max , qui est la distance du bord vers l'avant de la cellule courante.
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 211 Principe de la décomposition Plusieurs méthodes de décomposition d'un champ en somme de fonctions élémentaires existent. La décomposition sur des fonctions de Gauss-Hermite [Zaud 86] fait partie des méthodes classiques. Néanmoins, la formulation du rayonnement des fonctions de décomposition est soumise à l'approximation paraxiale. La décomposition sur les bases et frames de Gabor [Gabo 46] [Daub 92] s'affranchit de cette limitation afin de modéliser la propagation d'un champ dans un ensemble large de directions de propagation après décomposition. Cette décomposition consiste à exprimer un champ incident par un ensemble de faisceaux gaussiens décalés à la fois spatialement et spectralement, en utilisant l'expression du faisceau gaussien à phase linéaire. L'utilisation de la décomposition de Gabor a été étudiée dans des problèmes à deux dimensions [Einz 86] [Einz 88] [Maci 89] [Maci 87] ainsi que dans des problèmes à trois dimensions [Luga 01] [Maci 02]. Sa formulation dans le domaine temporel a également été étudiée [Gald 01] [Gald 03]. La représentation dans le domaine spatial exprime le champ en fonction du point dans le milieu. La représentation dans le domaine spectral permet d'exprimer le champ en utilisant le spectre d'ondes planes. Les coordonnées dans l'espace de Fourier correspondent à la direction de propagation de l'onde plane dans le milieu, à l'exception des ondes évanescentes (ondes pour lesquelles k 2x + k 2 z > k 2 ). La décomposition de Gabor correspond ainsi à une décomposition sur des faisceaux élémentaires distribués sur une grille mêlant dimension(s) spatiale(s) (position du faisceau gaussien) et dimension(s) spectrale(s) (direction de propagation du faisceau gaussien). La Fig.3.3 illustre la grille de décomposition spatio-spectrale.

Figure 3

 3 Figure 3.3 -La décomposition de Gabor se fait sur une grille spatio-spectrale régulière, dont les résolutions sont notées l (spatiale) et β (spectrale).
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 34 Figure 3.4 -La décomposition multi-faisceaux se fait sur un ensemble de points alignés verticalement, qui sont les centres des faisceaux élémentaires. La distance entre deux centres est d = W 0 κ.

Figure 3

 3 Figure 3.5 -(a) : profil du coindice. (b) : carte du champ modélisé par la méthode PWE-SSF. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.8 • .

Figure 3

 3 Figure 3.7 -(a) : profil du coindice. (b) : carte de l'erreur entre les méthodes PWE-SSF et GBAR, calculée à partir des cartes illustrées respectivement en Fig. 3.5 et 3.6.

Figure 3

 3 Figure 3.8 -(a) : profil du coindice. Amplitude (a) et phase déroulée (b) du champ à 100 km, calculées par les méthodes PWE-SSF (voir Fig. 3.5) et GBAR (voir Fig. 3.6).
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 39 Figure 3.9 -Illustration du critère de re-décomposition basé sur l'évolution de la distance entre les axes adjacents.

Figure 3 .

 3 Figure 3.10 -Propagation d'un champ gaussien dans un profil bilinéaire avec la méthode GBAR et avec redécompositions. (a) : profil de coindice. (b) : carte du champ. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.8 • . Les redécomposition ont lieu tous les 2 km après 25 km de distance.

Figure 3 .

 3 Figure 3.11 -Différence entre les champs propagés par la méthode GBAR et la méthode PWE-SSF, calculée à partir des cartes illustrées respectivement en Fig. 3.5 et 3.10. (a) : profil de coindice. (b) : carte de l'erreur avec phase.

Figure 3 .

 3 Figure 3.12 -Champs à 100 km de distance calculés par la méthode GBAR (voir Fig. 3.10) et la méthode PWE-SSF (voir Fig. 3.5). (a) : profil de coindice. (b) : amplitude du champ. (c) : phase déroulée du champ.

Figure 3 .

 3 Figure 3.13 -Étude paramétrique de l'erreur avec phase à 100 km de distance entre les méthodes PWE-SSF et GBAR, pour le choix de δ. La valeur δ = 0.2 apparaît comme un bon choix.

Figure 3 .

 3 Figure 3.14 -Propagation d'un champ gaussien dans un profil bilinéaire avec la méthode GBAR et avec redécompositions. (a) : profil de coindice. (b) : carte du champ. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.8 • . Les redécomposition ont lieu tous les 5 km après 25 km de distance.

Figure 3 .

 3 Figure 3.15 -Différence entre les champs propagés par la méthode GBAR et la méthode PWE-SSF. (a) : profil de coindice. (b) : carte de l'erreur entre les méthodes PWE-SSF et GBAR.

Figure 3 .

 3 Figure 3.16 -Champs à 100 km de distance calculés par la méthode GBAR et la méthode PWE-SSF. (a) : profil de coindice. (b) : amplitude du champ. (c) phase déroulée du champ.

Figure 3 .

 3 Figure 3.17 -Trois profils trilinéaires successifs, constituant le milieu de propagation. (a) : profil entre 0 km et 40 km. (b) : profil entre 40 km et 70 km. (c) : profil entre 70 km et 100 km.

Figure 3 .

 3 Figure 3.18 -Carte du champ modélisé par la méthode GBAR, avec re-décompositions du champ. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.3 • . Les re-décomposition ont lieu tous les 5 km après 25 km de distance.

Figure 3 .

 3 Figure 3.19 -Amplitude (a) et phase déroulée (b) du champ à 100 km, calculées par les méthodes PWE-SSF et GBAR (voir Fig. 3.18).

  3.20. Les latitudes sont comprises entre 11.74 • et 18.85 • , les longitudes entre -74.30 • et -67.31 • et les altitudes entre 0 et 20 km. La finesse de la grille utilisée par la suite est définie par un point tous les 50 m en altitude et tous les 0.02 • en latitude et en longitude. Les Fig. 3.21 à 3.24 montrent les coupes de N à différentes altitudes. Il en ressort que la variation de N à altitude constante est significative, variant de plusieurs dizaines d'unités. En revanches, ces variations sont plus faibles que les variations verticales montrées par les Fig. 3.25 à 3.28, illustrant les coupes de N à différentes latitudes. Le coindice peut alors varier de plusieurs centaines d'unités en une dizaine de kilomètres.

Figure 3 .

 3 Figure 3.20 -Illustration de la zone géographique des Caraïbes, modélisée par le modèle WRF pour obtenir les grilles de coindice N .

Figure 3 .

 3 Figure 3.21 -Valeurs du coindice N à 2 km d'altitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.22 -Valeurs du coindice N à 4 km d'altitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.23 -Valeurs du coindice N à 6 km d'altitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.24 -Valeurs du coindice N à 7 km d'altitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.25 -Valeurs du coindice N à 12.10 degrés de latitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.26 -Valeurs du coindice N à 12.47 degrés de latitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.27 -Valeurs du coindice N à 12.84 degrés de latitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.28 -Valeurs du coindice N à 13.21 degrés de latitude, dans la zone des Caraïbes.

Figure 3 .

 3 Figure 3.29 -Grille WRF du coindice de réfraction N , dans le plan longitude-altitude, après avoir converti les longitudes en distances kilométriques.

Figure 3 .

 3 Figure 3.30 -Grille du gradient de coindice de réfraction dN/dz calculé à partir de la grille 3.29, dans le plan longitude-altitude, après avoir converti les longitudes en distances kilométriques.

Figure 3 .

 3 Figure 3.31 -Grille WRF du coindice modifié de réfraction M , dans le plan longitude-altitude, après avoir converti les longitudes en distances kilométriques.

Figure 3 .

 3 Figure3.32 -Grille du gradient de coindice modifié de réfraction dM/dz calculé à partir de la grille 3.31, dans le plan longitude-altitude, après avoir converti les longitudes en distances kilométriques.

Figure 3 .

 3 Figure 3.33 -Carte du champ modélisé par la méthode GBAR, avec re-décomposition du champ, dans la grille WRF illustrée en Fig. 3.29. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.3 • . Les re-décompositions ont lieu tous les 5 km après 20 km de distance.

Figure 3 .

 3 Figure 3.34 -Carte de l'erreur entre les méthodes PWE-SSF et GBAR, correspondant à la simulation de la Fig. 3.33.

Figure 3 .

 3 Figure 3.35 -Amplitude (a) et phase déroulée (b) du champ à 100 km, calculées par les méthodes PWE-SSF et GBAR (voir Fig. 3.33).

Figure 3 .

 3 Figure 3.36 -Carte du champ modélisé par la méthode GBAR, avec re-décompositions du champ, dans la grille WRF illustrée en Fig. 3.31. Les conditions de simulation sont les suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.3 • . Les re-décomposition ont lieu tous les 5 km après 20 km de distance.

Figure 3 .

 3 Figure 3.37 -Carte de l'erreur entre les méthodes PWE-SSF et GBAR, correspondant à la simulation de la Fig. 3.36.

Figure 3 .

 3 Figure 3.38 -Amplitude (a) et phase déroulée (b) du champ à 100 km, calculées par les méthodes PWE-SSF et GBAR (voir Fig. 3.36).
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 1 Principe et géométrie de la radio-occultation . . . . . . . . . . . . . . . . 104 4.1.1 Principe de la radio-occultation . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.1.2 Géométrie de la radio-occultation . . . . . . . . . . . . . . . . . . . . . . . . 107 4.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2 Méthodes d'inversion des données de radio-occultation . . . . . . . . . 110 4.2.1 Généralités sur les méthodes d'inversion des données de radio-occultation . 110 4.2.2 Méthode d'inversion de Sokolovskiy . . . . . . . . . . . . . . . . . . . . . . 111 4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.3 Modélisation du problème pour la méthode GBAR . . . . . . . . . . . . 112 4.3.1 Modélisation de la configuration radio-occultation en deux dimensions . . . 112 4.3.2 Propagation du champ d'un satellite à l'autre avec la méthode GBAR . . . 115 4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4 Tests numériques d'inversion du profil de réfraction . . . . . . . . . . . 116 4.4.1 Validation de la méthode sur un gradient canonique . . . . . . . . . . . . . 116 4.4.2 Inversion des résultats en amplitude pour l'inversion d'un profil quelconque120 4.4.3 Bilan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5 Synthèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Depuis les années 1970, des techniques ont été développées dans le cadre de la radio-occultation (RO) pour l'observation de l'atmosphère de différentes planètes [Klio 72] [Vasi 75]. En 1972, Lindal a montré la possibilité d'estimer des profils d'indice de réfraction à partir de la courbure subie par la trajectoire de l'onde électromagnétique à la traversée de l'atmosphère de Mars [Lind 79]. Depuis 1995, les données recueillies par le système de localisation par satellite américain GPS (Global Positioning System) ont été traitées avec différents modèles d'inversion pour évaluer les propriétés physiques de l'atmosphère terrestre (indice de réfraction, pression, température, contenu en vapeur d'eau) et dans l'ionosphère (quantité intégrée d'électrons ou Total Electron Content, TEC). Plusieurs missions ont été menées ces dernières années comme par exemple la mission CHallenging Minisatellite Payload (CHAMP) en 2000, Gravity Recovery And Climate Experiment (GRACE) en 2002 et Constellation Observing System for Meteorology (COSMIC) en 2006, montrant l'intérêt croissant de la communauté scientifique pour ce domaine de recherche. Plusieurs modèles ont été proposés considérant le Doppler, la phase ou l'amplitude du champ recueillis au cours de ces missions. Ainsi, certains de ces modèles utilisent le déphasage et le retard qui résultent notamment de la trajectoire courbée que suit le signal réfracté [Kurk 97] [Kurk 00] [Rock 97]. D'autres considèrent le décalage Doppler par rapport à la propagation dans le vide estimé par la dérivée du retard par rapport au temps. Pavelyev et al. ont proposé une technique basée sur l'accélération de l'eikonale, donnant un moyen de calculer l'atténuation de réfraction à partir des données en phase [Pave 09] [Pave 13]. Cela permet la détection et la localisation de couches atmosphériques inclinées par rapport à la normale à la direction radiale locale. Cette méthode est présentée comme une alternative à d'autres comme la méthode thin phase screen [Soko 00] ou la méthode radio-holographic back-propagation [Soko 02] [Gorb 02]. Pour toutes ces méthodes, il faut déterminer la trajectoire des ondes électromagnétiques dans l'atmosphère. La méthode classique consiste à utiliser un algorithme itératif de tracé de rayons [Li 11] [Heal 01]. Comme expliqué dans [Pave 13], l'hypothèse de base des modèles d'inversion est la symétrie sphérique de l'atmosphère (ionosphère comprise). Certains auteurs ont étudié l'erreur générée par cette approximation lorsqu'elle est utilisée pour l'ionosphère [Kurk 97] [Heal 01] [Ahma 99] [Zou 99].

Figure 4

 4 Figure 4.1 -L'inclinaison i correspond à l'angle entre le plan orbital contenant la trajectoire du satellite en orbite autour de la Terre et le plan équatorial.

  2. La Fig. 4.2 illustre la géométrie du problème avec un satellite MEO (Medium Earth Orbit) comme émetteur et un satellite LEO (Low Earth Orbit) comme récépteur. Un satellite MEO a une altitude comprise entre 2000 km et 35786 km. Les satellites des systèmes Glonass, GPS et Galiléo sont MEO. L'écart angulaire entre le point tangent de la trajectoire courbée du rayon et le satellite émetteur est noté θ 1 . L'écart angulaire avec le satellite récepteur est noté θ 2 .
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 42 Figure 4.2 -Illustration 2D d'une configuration radio-occultation. Les satellites GNSS et LEO sont en orbite autour de la Terre. Les rayons sont tracés de l'un vers l'autre. Lorsqu'un rayon traverse l'atmosphère, il est réfracté. Le point tangent est repéré par le rayon r T par rapport au centre de la Terre. L'effet total de la réfraction sur le rayon est quantifié par l'angle de courbure α(r T ).

  4.2) fixé. Pour ce faire, des équations décrivant les positions des satellites sont nécessaires. Celles-ci peuvent s'écrire comme les traces des trajectoires des satellites projetées sur la surface terrestre, c'est-à-dire les valeurs de latitude et de longitude des positions du satellite projetées sur la surface terrestre. Sous l'hypothèse que l'altitude du satellite est constante (hypothèse d'orbite circulaire), la position est entièrement déterminée. Pour repérer la trace du satellite sur la Terre, le repère utilisé est composé par le plan équatorial et un plan tranverse au plan équatorial contenant le centre de la Terre. Le raisonnement va être mené pour le satellite émetteur du signal GNSS. La Fig. 4.3 montre le repère de référence. Le point E correspond à un des deux points, à la surface terrestre, d'intersection entre le plan équatorial et le plan transverse de référence portant la trajectoire du rayon. Le point P désigne un pôle du globe. La trace du point tangent sur la surface terrestre est notée T et la position d'un des satellites correspondant à ce point tangent est notée S. Le point T e (respectivement S e ) a la même longitude que le point T (respectivement S) et appartient au plan équatorial. La longitude et la latitude du point tangent (respectivement du satellite) sont notées L T et l T (respectivement L S et l s ). L'angle θ T désigne l'angle repérant le point tangent par rapport au plan contenant O, E et P . L'angle θ 1 désigne l'écart angulaire entre le point tangent et le satellite. Enfin l'angle Ê désigne l'angle T E ET . L'objectif est de déterminer θ 1 , LS et lS à partir de Ê, LT , lT et r T (la distance entre O et le point tangent).

Figure 4

 4 Figure 4.3 -Géométrie 3D du problème RO, présentant le référencement du point tangent (périgée) T et du satellite considéré (point S), en terme de latitude, longitude et angles relatifs.

Figure 4

 4 Figure 4.4 -Le satellite GNSS, émetteur du signal, est considéré fixe. Cette hypothèse est compensée en ajustant la position du satellite récepteur afin que l'écart angulaire soit le même que lorsque la position du satellite émetteur varie. En conséquence, les points tangents sont décalés par rapport à la direction radiale.
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 45 Figure 4.5 -Représentation du décalage des périgées (courbe rose), suite à la fixation du satellite émetteur. Le milieu est représenté en couleurs, il s'agit d'une grille canonique construite avec un profil exponentiel standard de N .
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 46 Figure 4.6 -La grille sphérique du coindice N issue de WRF est interpolée sur une grille cartésienne, afin de modéliser le plan de propagation par un ensemble de cellules rectangulaires.

  Pour tester et vérifier que l'utilisation du modèle GBAR pour la propagation du champ entre les deux satellites et que le traitement des résultats par la méthode de Sokolovskiy fonctionnent, le cas test suivant est considéré. Une grille de propagation est construite de façon symétrique en utilisant le profil standardn(z) = 1 + N 0 exp(-z/h s ), (4.23) où N 0 = 315 × 10 -6 et h s = 7.35 × 10 3 m. La grille de coindice et la grille de gradient de coindice ainsi construites sont représentées en Fig. 4.7. La distance couverte par la grille est d'environ 700 km car cela correspond à la distance au sol entre la longitude -74 • et la longitude -68 • , qui sont les limites minimale et maximale des valeurs de longitudes couvertes par les données WRF. Ainsi, la grille standard de la Fig. 4.7 et les grilles WRF couvrent les mêmes distances et les résultats pourront être directement comparés. L'allure exponentielle du profil standard se retrouve sur la grille de coindice avec une diminution rapide de N aux basses altitudes, passant de 300 uN pour 0 km à 100 uN pour 10 km d'altitude. Dans la grille des gradients de coindice, toutes les valeurs sont négatives (conséquence de la définition du profil exponentiel standard) et sont plus négatives aux basses altitudes qu'aux hautes altitudes. Ainsi, le gradient au niveau du sol est de l'ordre de -40 uN/km alors qu'il est de l'ordre de -10 uN/km à 10 km d'altitude.
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 47 Figure 4.7 -Grille originale. (a) : Grille symétrique de coindice construite avec le profil exponentiel de l'équation (4.23). (b) : Grille de gradients calculée à partir de la grille de coindice.

Figure 4 . 8 -

 48 Figure 4.8 -Grille interpolée. (a) : Grille d'interpolation de n calculée à partir de 4.7. (b) : Gradients de n calculés à partir de la grille d'interpolation.
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 49 Figure 4.9 -Facteur de propagation dans la grille d'interpolation, calculé par la méthode GBAR. La Fig. 4.10a représente le profil de la quantité K (définie dans la sous-section 4.2.2 présentant le modèle d'inversion de Sokolovskiy) associée à chaque point tangent. Ce profil est obtenu par le calcul du champ aux positions du satellite récepteur, puis en faisant le lien vers les points tangents correspondants par les relations de la sous-section 4.1.2. Les valeurs calculées de K correspondent à ce qui est observé en Fig. 4.9 : à hautes altitudes le champ n'est quasiment pas réfracté et K tend vers 0 dB. Plus l'altitude diminue, plus K diminue également, avec une allure exponentielle qui s'explique par le profil exponentiel de n. Le niveau descend ainsi à -16 dB pour le point tangent situé à 6 km d'altitude. La Fig. 4.10b montre le profil inversé à partir des valeurs de K, comparé au profil de N relevé directement aux points tangents, qui correspond au profil standard. L'objectif est donc d'avoir le profil inversé qui soit le plus proche possible du profil standard. Or il ressort de ces résultats que les écarts entre le profil inversé et le profil standard sont inférieurs à 4 uN, soit 5% environ de la valeurs de N . Les deux courbes sont quasiment superposées.

Figure 4 .

 4 Figure 4.10 -Inversion à partir de la simulation GBAR. (a) : Profil de K associé à la série de points tangents correspondant aux positions des satellites. (b) : Comparaison du profil inversé à partir de K et du profil relevé dans la grille aux points tangents.

Figure 4 .

 4 Figure 4.11 -Grille originale. (a) : Grille de coindice construite à partir d'une simulation du modèle météo méso-échelle WRF. (b) : Grille de gradients calculée à partir de la grille de coindice.

Figure 4 .

 4 Figure 4.12 -Grille étendue jusqu'à 100 km. (a) : Grille de coindice construite issue d'une simulation du modèle météo méso-échelle WRF. (b) : Grille de gradients calculée à partir de la grille de coindice.

Figure 4 .

 4 Figure 4.13 -Facteur de propagation dans la grille d'interpolation, calculé par la méthode GBAR.

Figure 4 .

 4 Figure 4.14 -Inversion à partir de la simulation GBAR. (a) : Profil de K associé à la série de points tangents correspondant aux positions des satellites. (b) : Comparaison du profil inversé à partir de K et du profil relevé dans la grille aux points tangents.

Figure 4 .

 4 Figure 4.15 -Grille originale. (a) : Grille de coindice symétrique construite à partir de la grile de la Fig. 4.11a en utilisant le profil de la verticale centrale à toutes les distances. (b) : Grille de gradients calculée à partir de la grille de coindice.

Figure 4 .

 4 Figure 4.16 -Inversions à partir des simulations GBAR. (a) : Profils obtenus après propagation dans la grille originale (courbe noir en pointillés) et la grille symétrisée (courbe grise continue). (b) : Erreur des deux profils avec leur référence respective.

  Enfin, avec plus de recul, l'étude d'une nouvelle formulation du faisceau gaussien pourrait être un travail fondamental enrichissant. En plus de la formulation paraxiale, du faisceau gaussien à phase linéaire et du faisceau gaussien conforme, l'utilisation d'une source ponctuelle localisée dans l'espace complexe rayonne, dans l'espace réel, une solution de l'équation d'onde proche du faisceau gaussien. Par ailleurs, il existe une formulation analytique du rayonnement d'une source ponctuelle en 1D pour une variation linéaire de l'indice. Cette formulation analytique fait appel à la fonction d'Airy. L'idée de combiner la source ponctuelle complexe et la formulation analytique du rayonnement soulève une difficulté intéressante : étendre la validité de la fonction d'Airy pour exprimer le rayonnement en 2D d'un faisceau gaussien en milieu inhomogène. ces domaines, ainsi que les modèles microphysiques utilisés pour une descente en résolution. Une descente en résolution consiste à résoudre les équations régissant la dynamique de l'atmosphère de façon de plus en plus locale, permettant d'évaluer les différentes sorties sur l'ensemble des points du domaine de résolution sur un ensemble de 36 couches verticales. Un maillage initial de 85 km × 85 km peut ainsi être descendu localement en un maillage de cellule de 2 km × 2 km. Plusieurs stratégies de descente en résolution sont possibles. Quatre sont illustrées en Fig.A.2.
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 22 Figure A.2 -Types de descente en résolution avec le modèle WRF : (a) téléscopée et (b) plusieurs cellules de même sous-niveau. Les cas (c) et (d) ne sont pas pris en charge par WRF.
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 3 Figure A.3 -Illustration de la dimension verticale utilisée dans la version ARW de WRF pour la résolution des équations de base du modèle.
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 4 Figure A.4 -Illustration de la projection conique conforme de Lambert.
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 5 Figure A.5 -Illustration de la projection stéréographique polaire.
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 6222 Figure A.6 -Illustration de la projection Mercator.
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  Figure A.7 -Illustration des grilles de discrétisation spatiale du milieu de résolution ARW.
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 9 Figure A.9 -Valeurs du coindice N à 2 km d'altitude, dans la zone des Caraïbes.

Figure

  Figure A.10 -Valeurs du coindice N à 4 km d'altitude, dans la zone des Caraïbes.
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 11 Figure A.11 -Valeurs du coindice N à 6 km d'altitude, dans la zone des Caraïbes.

Figure A. 12 -

 12 Figure A.12 -Valeurs du coindice N à 7 km d'altitude, dans la zone des Caraïbes.

Figure

  Figure A.13 -Valeurs du coindice N à 12.10 degrés de latitude, dans la zone des Caraïbes.

Figure

  Figure A.14 -Valeurs du coindice N à 12.47 degrés de latitude, dans la zone des Caraïbes.
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 15 Figure A.15 -Valeurs du coindice N à 12.84 degrés de latitude, dans la zone des Caraïbes.
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 16 Figure A.16 -Valeurs du coindice N à 13.21 degrés de latitude, dans la zone des Caraïbes.
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 1 Figure B.1 -Définitions des plans osculateur, normal et rectifiant associés à un point d'un rayon.

Figure B. 2 -

 2 Figure B.2 -Définitions des coordonnées transverses associées à un point situé au voisinage d'un rayon.

  Figure B.3 -Illustration du plus court chemin (ligne continue) entre les points A et B, et d'un chemin plus long d'une quantité infinitésimale δl (ligne en pointillés).

  du facteur d'échelle h peut ainsi s'obtenir en rappelant l'équation eikonale T (s) • T (s) = n(s) 2 c 2 , (B.71) où T est le temps du parcours de l'énergie le long du rayon, appelée aussi eikonale, et n est l'indice de réfraction le long du rayon. Les équation (B.70) et (B.71) permettent de poser p(s) = ∇T (s). (B.72)La droite (T 0 ) est ainsi entièrement déterminée, et elle sert à trouver le nouveau point P 1 de l'axe du faisceau considéré comme centre curviligne associé à M . Pour ce faire, l'abscisse du point d'intersection entre (T 0 ) et (T 0 ) est calculé parx 1 = b 0 -b 0 a 0 -a 0 . (C.5)Pour connaître l'altitude z 1 du point P 1 , l'équation (2.67) est utilisée avec x = x 1 . Cette procédure s'approche à chaque itération du centre curviligne exact associé au point M . Un critère doit être fixé pour considérer que le point P i de l'itération i est suffisamment proche de la solution exacte. Le critére choisi consiste à comparer les abscisses x i-1 et x i de deux centres successifs P i-1 et P i . Dès que |x i -x i-1 | est inférieur à un centième de λ, la procédure est arrêtée, et c'est le dernier point P i qui sera utilisé pour calculer les cordonnées curvilignes de M , noté P .

Figure C. 1 -

 1 Figure C.1 -Le centre du repère curviligne associé au point d'observation M est déterminé par une procédure de Newton, initialisée au point de même abscisse que le point M . Les droites tangentes T i au rayon et les droites T i normales au droites T i et passant par M sont calculées à chaque itération. L'intersection des droites tangentes et normales donnent l'abscisse du centre cuviligne local à chaque itération.
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1.1 Propagation des ondes électromagnétiques dans la tropo- sphère 1.1.1 Réfraction et indice de réfraction troposphériques

  La troposphère est la couche de l'atmosphère qui se trouve entre le sol et une altitude variant entre une dizaine et une vingtaine de kilomètres selon la région de la Terre. Ses effets sur la propagation sont l'atténuation (due aux gaz, à la pluie ou aux nuages), la scintillation, la dépolarisation par les hydrométéores et la réfraction. La réfraction doit être étudiée pour prévoir, par exemple, les télécommunications entre aéronefs, ou d'une station sol à un aéronef. Cette thèse a pour objectif de proposer un nouveau modèle de calcul de la réfraction troposphérique. Les autres effets ne sont pas considérés. Elle se limite à la modélisation déterministe des effets de réfraction troposphérique en deux dimensions, dans un plan altitude-distance. La réfraction des signaux électromagnétiques dans un milieu est modélisée à partir d'une description des variations de l'indice de réfraction n. Cet indice est une grandeur sans dimension qui caractérise le milieu de propagation des signaux électromagnétiques relativement au vide. Dans la troposphère, l'indice de réfraction prend des valeurs fonctions de la latitude, la longitude et

l'altitude. Il est également lié à la pression, la température et à l'humidité, et donc fonction de la météorologie. En conséquence, les trajectoires des rayons caractérisant la propagation soumis à la réfraction troposphérique sont courbées. Ces courbures sont formulées par le principe de Fermat, énonçant que la lumière se propage d'un point à un autre de façon à minimiser le temps de propagation. Lorsque le milieu est homogène, la propagation se fait de façon rectiligne. Plusieurs phénomènes météorologiques peuvent conduire à des gradients d'indice de réfraction produisant des modifications significatives de la propagation des ondes relativement à la propagation dans le vide. Par exemple les conduits d'élévation ou d'évaporation, qui, dans certains cas, provoquent un guidage des ondes électromagnétiques. Les propriétés réfractives d'un milieu affectent la vitesse de propagation de phase de l'onde électromagnétique. L'indice de réfraction n rend compte de ces effets par sa partie réelle. Sa partie imaginaire caractérise l'atténuation que subit le signal radio-électrique lorsqu'il traverse le milieu. Le coindice N , défini par N = (n -1) × 10 6

(1.1) est exprimé en unités-N. Le coindice est plus facile à utiliser car les valeurs de n sont proches de l'unité. D'une manière générale, la valeur de N diminue rapidement lorsque l'altitude au-dessus de la surface terrestre augmente. Typiquement, le profil de réfraction troposphérique moyen est caractérisé par une variation en exponentielle décroissante. Ce profil de référence est donné par l'Union Internationale des Télécommunications (UIT) par [Unio 90] N (z) = 315 × exp(-0.136 z), (1.2) où l'altitude z est exprimée en km. Néanmoins, pour des altitudes très basses (moins de 1 km d'altitude), un profil linéaire de coindice est fréquemment utilisé, et un gradient de -40 unités-N/km, ou -39 unités-N/km est souvent adopté comme simplification du profil exponentiel de référence (1.2). Le signe et l'intensité du gradient sont directement liés aux conditions météorologiques. Si, par exemple, une masse d'air chaud et sec est amenée par convection au-dessus d'une masse d'air plus froid et humide, alors une inversion brutale de gradient peut apparaître, et créer un conduit de propagation. Un conduit de propagation se manifeste par une couche d'air dans laquelle un signal radio-électrique se propage comme dans un guide. Une valeur de gradient particulière à noter est -157 unités-N/km. Dans un milieu dont le gradient est constant et vaut -157 unités-N/km, un signal radio-électrique a une courbure de sa trajectoire égale à la courbure de la Terre. Par conséquent, lancé avec une élévation nulle, il garde une altitude constante relativement à la surface de la Terre. Pour un gradient inférieur à -157 unités-N/km, le signal se rapproche de la Terre et impacte sa surface. Pour un gradient supérieur à -157 unités-N/km, le signal s'éloigne de la surface terrestre. La Fig. 1.1 illustre les trois cas.

  Dans les années 1970, Hardin et Tappert ont développé des méthodes Split-Step Fourier qui résolvent l'équation parabolique en propageant itérativement le spectre d'ondes planes, et en appliquant un écran de phase à chaque pas, de façon à modéliser les effets de réfraction. Cette famille de méthodes à l'avantage d'être efficace en termes de temps de calcul. L'inconvénient majeur réside dans le manque de fléxibilité dans le choix des conditions limites aux frontières inférieure et supérieure du domaine de propagation.

	1.2.2.1 Formulation Split-Step de l'équation parabolique standard
	La SPE (1.13) peut être écrite sous la forme

Dans les cas où le milieu de propagation est inhomogène, c'est-à-dire que l'indice de réfraction n varie dans l'espace, la solution de l'équation paraxiale à une distance arbitraire x ne peut pas être donnée directement et analytiquement à partir du champ initial. Il est nécessaire de propager itérativement la solution jusqu'à la distance x.

.3.2 Conditions aux limites

  [Peke 46]. La transformation proposée est conforme, c'est-à-dire qu'elle conserve localement les angles. Elle s'écrit

	l'équation parabolique de la propagation vers l'avant (c'est-à-dire en négligeant la rétro-propagation)
	peut se mettre sous la forme					
	∂φ ∂x	(x, z) = -jk 1 -Q φ(x, z).	(1.35)
	On retrouve l'équation parabolique sous la forme (1.11).
	1.2En général, la limite inférieure du domaine correspond à l'interface air/sol. La limite supérieure
	peut être considérée infinie, mais les implémentations numériques requièrent un domaine de
	calcul fini et par conséquent, une condition limite sur la limite supérieure du domaine est né-
	cessaire afin de garantir que des effets de bords ne viennent pas détériorer la modélisation de
	l'onde électromagnétique dans la zone utile.			
	À la limite supérieure du domaine Le calcul de la transformée de Fourier se fait sur un
	domaine borné dans la dimension z (l'altitude dans le milieu). Soit z max cette altitude limite. La
	finitude du domaine de calcul a pour conséquence de faire réfléchir la partie de l'onde qui atteint   x = aθ, (1.27) z max vers les altitudes décroissantes, comme un mur électrique. Ceci altère la solution dans    z = a log a + h a , la zone utile et génère de l'erreur. Pour s'affranchir de ces réflexions parasites, une technique (1.28) consiste à doubler la hauteur du domaine, et à appliquer une fonction d'apodisation à la fonction
	u dans la partie du domaine comprise entre z max et 2z max . La fonction d'apodisation doit être
	suffisamment régulière et passer de 1 (pas d'apodisation) à 0 (apodisation totale) entre z max et
	2z max . Un exemple de fonction d'apodisation est donné en [Four 89]. Grâce à l'apodisation, la
	perturbation de la zone utile due à la troncature du domaine à sa limite supérieure est fortement
	diminuée.					
	À la limite inférieure du domaine Deux techniques sont généralement utilisées : la méthode
	des images [Four 89] et l'approximation de Leontovitch [Seni 60] [Dott 01a]. Comme expliqué par
	Fabbro dans [Fabb 14b], la première condition peut s'écrire à l'aide du coefficient de réflection
	spectral					
			Γ(k z ) =	k z -k g k z + k g	,	(1.36)
	où k = k 2 x + k 2 z et k g est la composante selon z de k dans le sol. L'expression de k g n'est pas
	la même en polarisation horizontale et en polarisation verticale :
	u h = ka sin	x a	exp	z 2a	E y	(1.31)
	en polarisation horizontale, et					
	u v = ka sin	x a	exp	z 2a	H y	(1.32)
	en polarisation verticale. L'introduction de la transformation "Terre plate" à l'aide de l'indice
	modifié permet d'écrire l'équation d'onde sous la forme (1.30). Il est alors plus simple d'écrire
	l'approximation paraxiale dans ces conditions, puisque la direction x correspond bien à la di-
	rection parallèle au sol, c'est-à-dire la direction de propagation principale dans les problèmes
	de modélisation des signaux radio-électriques. Par conséquent, il est possible de reprendre la
	procédure développée dans la section 1.2.1.1 en définissant dans le repère (x, z)
		φ(x, z) = e -jkx u l (x, z),	(1.33)
	où l est à remplacer par h ou v selon la polarisation de l'onde étudiée. Puis en injectant (1.33)
	dans (1.30), et en scindant l'équation en utilisant l'opérateur pseudo-différentiel Q défini cette
	fois avec l'indice modifié m selon					
	Q =	1 k 2	∂ 2 ∂z 2 + m 2 (x, z),	(1.34)

où a désigne le rayon de la Terre et h l'altitude au-dessus de la surface terrestre. L'angle θ désigne l'ouverture angulaire du point (x, z) autour du centre de la Terre. Une telle transformation ramène un cercle de centre O à un segment de droite horizontal à hauteur z = a log 1+h/a dans le nouveau repère, et pour des valeurs de x comprises entre -πa et +πa. Cette transformation, appelée "transformation Terre plate" est considérée valide, à condition de remplacer l'indice de réfraction n par un indice de réfraction modifié défini par m(x, h) = n(x, h) e h/a .

(1.29)

Cet indice modifié a pour fonction de restituer les effets de réfraction par rapport à la surface terrestre. L'équation d'onde peut alors se mettre sous la forme

∂ 2 u ∂x 2 + ∂ 2 u ∂h 2 + k 2 m 2 (x, h)u = 0, (1.30)

où u désigne la composante étudiée selon la polarisation, telle que

.3.3 Simulation numérique La

  Fig. 1.4 montre le résultat d'une simulation PWE-SSF dans le cas d'un profil de coindice modifié trilinéaire. Le signal est émis depuis une antenne simulée d'ouverture angulaire à -3 dB de 1 degré, à une fréquence de 3.25 GHz et en polarisation verticale. La condition limite (à altitude nulle) est modélisée par la condition limite de Leontovitch sur une surface de mer, sur laquelle les ondes planes du spectre propagé itérativement se réfléchissent. Cela produit des interférences qui se traduisent sur le facteur de propagation. Le facteur de propagation est défini,

	1.2en deux dimensions, par	F dB = 20 log |u|	√	x .
					.38)
	en polarisation verticale, avec n g l'indice de réfraction du sol.
	En incidence rasante k x k et la condition de Leontovitch est vérifiée [Dott 01a], k g devient
		k gH	k(n 2 -1),	(1.39)
	en polarisation horizontale et			
		k gV	k(n 2 -1) n 2	,	(1.40)
	en polarisation verticale. Le champ scalaire réduit φ vérifie alors la condition suivante au niveau
	du sol	∂φ ∂z z=0	+ jk z φ(z = 0) = 0.	(1.41)
	L'étude menée par Fabbro et al. [Fabb 14b] montre que la condition de Leontovitch est une
	bonne approximation, même avec un relief réaliste.	

  Lavaleur maximale du pas ∆x dépend donc du problème traité, mais joue un rôle important dans la précision et la performance de la méthode. À notre connaissance, l'erreur induite par la discrétisation du schéma Split-Step n'a pas été formulée analytiquement dans la littérature. Levy en propose une quantification mais pour une résolution différence finies [Levy 00]. En pratique, ∆x est choisi de l'ordre de la centaine de mètres pour des simulations à la fréquence 1 GHz. Il faut noter que la méthode PWE-SSF, du fait de l'approche itérative, impose de calculer le champ sur toutes les verticales précédentes pour obtenir le champ sur une verticale à une distance donnée. max est l'angle maximal avec l'horizontale présent dans le spectre du champ modélisé par la méthode. Si ce critère n'est pas vérifié, une erreur de crènelage (aliasing) apparaît dans le champ calculé. Pour α max = 4 • , une fréquence de 1 GHz impose ∆z = 1.074 m, alors qu'une fréquence de 10 GHz impose ∆z = 0.1074 m. Avec un échantillonnage vertical et un pas de progression suffisamment fins, des confrontations entre approche PWE-SSF et équations intégrales modélisant la propagation dans un conduit d'évaporation canonique ont montré une parfaite concordance des résultats pour des conditions de réfraction très sévère [Bour 14], comme le montrent les

	Le calcul du spectre d'ondes planes peut aussi être source d'erreur. D'une part parce que son
	implémentation numérique impose de discrétiser la dimension d'intégration, et d'autre part à
	cause de la troncature imposée à la limite supérieure du domaine. La discrétisation du domaine
	doit être choisie de telle sorte que les propriétés spatiales et spectrales du champ soient les plus
	proches possibles de celles de la solution exacte. Un critère de filtrage angulaire peut être admis
	[Levy 00] afin de conduire à la condition suivante sur la finesse ∆z de l'échantillonnage	
	∆z ≤	λ 4 sin α max	,	(1.43)
	où α			

D'autre part, si lorsque les propriétés du milieu sont indépendantes de la distance, le champ à une distance arbitraire peut être directement déduit depuis le champ initial, ce n'est pas le cas lorsque les propriétés du milieu sont fonctions de la distance. Dans ce cas, la propagation doit être modélisée de façon itérative en fixant un pas ∆x entre deux calculs du spectre d'ondes planes. Plus les effets de réfraction et ceux dus au sol sont complexes, plus ce pas doit être faible, étant donné que la propagation le long d'un pas est calculée en espace libre, avant d'être corrigée par un écran de phase.

1.3 Résolution de l'équation d'onde en milieu inhomogène basée sur l'Optique Géométrique

  

	La méthode PWE-SSF est une méthode de référence pour traiter la modélisation de la propa-
	gation atmosphérique. La deuxième est l'Optique Géométrique (OG). Les premiers travaux de
	référence remontent aux années quarante, avec la résolution des équations électrodynamiques
	par le formalisme rayon [Hard 73b]. En 1956, Babich [Babi 56] a utilisé la méthode des rayons
	pour modéliser la propagation dans un milieu isotrope inhomogène. Concernant l'étude des ondes
	électromagnétiques harmoniques, les travaux de Brekhovskikh [Brek 57], Budden [Budd 61] et
	Kline [Klin 65] peuvent être cités. Le principe de l'OG est de résoudre l'équation de propagation
	en cherchant une solution sous forme d'une somme de champs élémentaires propagés par des
	tubes de rayons paraxiaux. Chaque tube de rayon est décrit par l'équation eikonale (pour sa
	trajectoire) et par l'équation de transport (pour l'amplitude du champ qu'il porte). Cette section
	présente les bases théoriques de l'OG ainsi que son application au cas particulier de la progation
	troposphérique.
	Dans la première partie, le formalisme rayon est introduit comme solution asymptotique de
	l'équation d'onde. Ensuite, les principales techniques basées sur le formalisme rayon sont pré-
	sentées. Elles permettent de l'utiliser pour modéliser la réfraction et la réflexion notamment.
	Par suite, l'utilisation des rayons pour la propagation troposphérique est présentée ainsi que le
	lancer et le tracé de rayons. Enfin, quelques éléments sont donnés sur la précision et les limites
	de l'OG, avant de conclure.

.47) 1.3.1.2 Écriture de l'équation eikonale et de l'équation de transport

  

	En cherchant la solution w de (1.44) sous la forme plus générale
			w(t, x, y, z) = e -jωt u(x, y, z),	(1.49)
	l'étude est ramenée à u qui n'est fonction que des coordonnées d'espace (x, y, z). Ensuite, le
	terme de phase est séparé du terme d'amplitude pour rechercher u sous la forme
			u(x, y, z) = e jωT (x,y,z) A(x, y, z),	(1.50)
	où T (x, y, z) désigne l'eikonale de la solution. La signification physique de l'eikonale est un temps
	de propagation depuis la condition initiale (un émetteur radio par exemple) jusqu'à un point
	donné du milieu. L'injection de u dans (1.44), mène à
	∆ +	ω 2 n(x, y, z) c	c 2 u(x, y, z) =e jωT (x,y,z) ω 2 n(x, y, z) 2	-∇T (x, y, z)	2
			+ jω 2 < ∇T (x, y, z), ∇A(x, y, z) > +∆T (x, y, z)A(x, y, z)
			+ ∆A(x, y, z) ,	
							(1.51)
	où l'opérateur < •, • > désigne le produit scalaire. Cette équation est vérifiée si (condition
	suffisante) les deux équations suivantes sont vérifiées
			∇T (x, y, z)	2	=	n(x, y, z) 2 c 2	,	(1.52)
		2 < ∇T (x, y, z), ∇A(x, y, z) > +∆T (x, y, z)A(x, y, z) = 0.	(1.53)
	L'équation (1.52) est appelée "équation eikonale". Elle détermine le trajet d'un signal électroma-
	gnétique dans un milieu inhomogène. L'équation (1.53) est appelée "équation de transport". Elle
	détermine le transport d'énergie associé à un signal se propageant selon la trajectoire déterminée
	par l'équation eikonale. Les deux équations sont donc complémentaires. La base de l'Optique
	Géométrique (OG) est de résoudre les équations (1.52) et (1.53) en remplaçant A(x, y, z) par le
	premier terme A 0 (x, y, z) dans la série			
			A(x, y, z) =	+∞ l=0	A l (x, y, z) (-jω) l .	(1.54)
	Il est clair que cette approximation est d'autant plus proche de la solution exacte que ω tend
	vers l'infini. C'est pour cela qu'il s'agit d'une méthode asymptotique de résolution de l'équation
	d'onde. Cette approximation peut être interprétée physiquement en considérant que le modèle
	de représentation décrit des trajectoires se propageant dans le milieu en tubes de rayons, et que
	le champ électromagnétique associé à chaque rayon est localement transverse à la direction de
	propagation du rayon.			
	1.3					
	Le milieu est maintenant considéré inhomogène, c'est-à-dire que la vitesse est fonction des coor-
	données de l'espace. L'indice de réfraction n(x, y, z) permet d'exprimer la vitesse de propagation
	v(x, y, z) par	v(x, y, z) =	c n(x, y, z)	.	(1.48)

.1.3 Le formalisme de l'Optique Géométrique pour la modélisation du champ électromagnétique

  

	où H 0 est le vecteur d'amplitude du champ magnétique. L'injection de (1.55) et (1.56) dans les
	équations de Maxwell en espace libre et sans source implique	
	En termes de champs, l'approximation de l'OG implique la forme suivante pour le champ élec-
	trique	
	E(x, y, z) = E 0 (x, y, z)e jωT (x,y,z) ,	(1.55)
	où E 0 est le vecteur d'amplitude du champ électrique, et la forme suivante pour le champ
	magnétique	
	H(x, y, z) = H 0 (x, y, z)e jωT (x,y,z) ,	(1.56)

.2 Principales techniques de modélisation de la propagation par le forma- lisme rayons La réfraction et la réflexion peuvent être décrites en utilisant les relations de Snell-Descartes. En ce qui concerne la réflexion, le théorème des images peut également constituer une méthode de résolution. 1.3.2.1 Principe de Fermat et lois de Snell-Descartes

  

				1.57)
				(1.58)
				(1.59)
				(1.60)
	Il est ainsi possible de retrouver l'équation eikonale. L'écriture de ces équations permet égale-
	ment de dégager la structure Transverse ÉlectroMagnétique (TEM) de la solution, telle que le
	trièdre (∇T (x, y, z), E(x, y, z), H(x, y, z)) soit direct. Un tube de rayons se modélise donc par
	la superposition de fronts d'ondes dont les trajectoires sont modélisées par l'equation eikonale.
	Chaque rayon, et donc également le tube de rayons associé, vérifie le principe de Fermat de
	chemin le plus rapide, ce qui signifie que pour lier un point d'émission à un point de réception,
	le rayon emprunte le chemin qui minimise la durée de son parcours.	
	Puisque le rayon obéit à ce principe fondamental, il peut être utilisé pour modéliser les phé-
	nomènes de réflexion, diffraction et réfraction. Il est en effet possible de classer les rayons se
	propageant dans une scène en quatre catégories : les rayons directs, les rayons réfléchis, les
	rayons transmis et les rayons diffractés. Les rayons directs sont les plus simples à modéliser, car
	aucune autre procédure que la résolution de l'équation eikonale n'est requise. Les rayons réfléchis
	et transmis sont traités en appliquant des lois de Snell-Descartes pour calculer leur trajectoire,
	et les coefficients de Fresnel pour ajuster leur amplitude. Enfin, les rayons diffractés sont les plus
	complexes à traiter. Plusieurs méthodes ont été développées afin de compléter l'OG pour traiter
	la diffraction. Les principales méthodes sont la méthode "Knife Edge", la méthode "Geometrical
	Theory of Diffraction" (GTD) et la méthode "Uniform Theory of Diffraction" (UTD) [Kouy 74].
	Sans entrer dans les détails, la méthode UTD complète la méthode GTD en assurant la conti-
	nuité de la solution entre la zone éclairée et la zone d'ombre, stabilisant ainsi la solution. Une
	autre méthode de calcul de la diffraction a été développée sous le nom de "Uniform Asymptotic
	Theory" (UAT) [Ahlu 68]-[Seni 86], moins utilisée néanmoins que l'UTD.	
	1.3Le principe de Fermat a déjà été évoqué plus haut. Il énonce que la lumière se propage d'un
	point de départ à un point d'arrivée en empruntant le chemin le plus rapide. Une conséquence
	de ce principe est que dans un milieu homogène un signal radio-électrique se propage de façon
	rectiligne. Dans un milieu inhomogène, ce n'est plus le cas mais le signal vérifie toujours ce
	principe. C'est du principe de Fermat que sont déduites les lois de Snell-Descartes, permettant
	de déterminer les trajectoires des rayons transmis et réfléchis à une interface entre deux milieux
	d'indice de réfraction différents. La géométrie est montrée en Fig. 1.8. En utilisant les mêmes
	notations, l'angle du rayon réfléchi est donné par		
	θ r = θ d ,		(1.61)
	et l'angle du rayon transmis (ou réfracté) est donné par	
	θ t = arcsin	n 1 n 2	sin θ d .	(1.62)
	Lorsque l'indice de réfraction n 2 dans la zone de transmission est plus petit que l'indice de
	réfraction n			

1 dans la zone directe, alors le rayon réfracté s'écarte de la normale à l'interface.

1.3.2.3 Méthode "Shooting and Bouncing Ray" (SBR)

  La méthode "Shooting and Bouncing Ray" (SBR) traite le problème différemment. Au lieu de déterminer quel rayon atteint une cible donnée en utilisant le théorème des images, la méthode SBR trace un grand nombre de rayons émis depuis la source pour voir, a posteriori, lesquels atteignent la cible. Les phénomènes de réflexion, transmission et réfraction sont modélisés avec les lois de Snell-Descartes et le coefficients de Fresnel. Il y a trois temps dans la méthode.

1.3.3.2 Modélisation simplifiée de la réfraction au-dessus d'une surface terrestre fictive

  désigne le rayon de la Terre, h la hauteur du rayon au-dessus de la surface terrestre, n 0 l'indice de réfraction au niveau du sol et ϕ 0 l'angle de lancer du rayon depuis l'émetteur. Il est nécessaire, pour calculer θ, de connaître les valeurs de n dans l'atmosphère. Figure 1.10 -Illustration de la propagation d'un rayon dans un milieu réfractif à symétrie sphérique, composé de couches superposées d'indice de réfraction constant. A chaque passage d'une couche à l'autre, aux points P 1 et P 2 , la quantité n r sin(i) reste constante.

	.63) Par conséquent, en utilisant l'angle ϕ complémentaire de i, c'est-à-dire que ϕ + i = π/2, alors il vient d'une façon générale n r cos(ϕ) = cste, (1.64) où cste désigne une constante. Cette loi, souvent appelée loi de Bouguer, peut être considérée comme l'équation de la trajectoire d'un rayon dans une structure réfractive sphérique. De (1.64) il est possible de donner une formulation intégrale de l'ouverture angulaire θ, montrée en Fig. 1.10, associée à la trajectoire d'un rayon lancé depuis une altitude nulle [Boit 83] θ = a+h r=a dr r n(r) n 0 2 r a 2 1 cos 2 (ϕ 0 ) -1 , (1.65) première méthode consiste à appliquer la loi de Bouguer en posant deux approximations : d'une part considérer que h a, c'est-à-dire que l'altitude du rayon au-dessus du sol est négligeable par rapport au rayon de la Terre, et d'autre part que le rayon se propage à incidence rasante, c'est-à-dire avec un angle ϕ inférieur à 1 degré [Boit 83]. Il est alors possible d'écrire N + h a -ϕ 2 2 = cste, (1.66) où N = (n -1) × 10 6 est le coindice exprimé en unités-N, h est exprimé en m, a est exprimé en milliers de kilomètres, et ϕ en milliradians. En définissant le coindice modifié M par M = N + h a , (1.67) l'équation (1.66) prend la forme M -ϕ 2 2 = cste, (1.68) qui est la loi de Snell-Descartes réécrite sous les mêmes approximations que pour (1.66). Par conséquent, utiliser M permet de se ramener à une géométrie Terre plate. La deuxième méthode consiste à utiliser un rayon fictif de la Terre pour se ramener à une géométrie cartésienne. En dérivant (1.66) par rapport à l'altitude, il vient dN dh + 1 a -ϕ dϕ dh = 0. (1.69) En définissant K le coefficient multiplicatif du rayon terrestre par K = 1 1 + a dN dh , (1.70) l'équation (1.69) peut être écrite où a Il existe deux méthodes permettant de ramener le tracé des rayons dans un système cartésien. La 1 Ka -ϕ dϕ dh = 0. (1.71)
	Ainsi, la valeur de K fixée par une valeur donnée du gradient vertical dN/dh indique le rayon
	terrestre fictif pour lequel les rayons sont tracés de façon rectiligne.

  Une des difficultés de la méthode est de calculer de façon efficace les intersections successives de ces arcs de cercle avec les triangles élémentaires. C'est aussi une approche itérative qu'a adoptée Porter [Port 87] pour la propagation des ondes en milieu sous-marin. En ce qui concerne la propagation atmosphérique, Rao[Rao 98] a proposé une méthode hybride entre les FG et l'équation parabolique pour modéliser la propagation ionosphérique et la propagation à incidence rasante aux fréquences radar. C'est encore une approche itérative qui est proposée pour la propagation des FG, et la jonction entre les deux formalismes est opérée par des décompositions sur les frames de Gabor. Ces décompositions ont l'inconvénient d'être lourdes et de nécessiter un grand nombre de faisceaux [Chab 04]. L'analyse de ces approches, de leurs avantages et de leurs limites, a justifié l'étude d'une formulation basée sur des équations analytiques, pouvant être utilisées simplement avec des procédures de décomposition multi-faisceaux. Ainsi, le deuxième objectif du chapitre 2 est de présenter les démonstrations mathématiques et les hypothèses physiques de nouvelles équations analytiques décrivant la propagation d'un FG en milieu inhomogène. Ces équations sont ensuite validées par des simulations numériques, en comparant les résultats avec la méthode de référence choisie, c'est-à-dire la méthode PWE-SSF.

chapitre 2 a d'abord pour objectif de présenter le formalisme faisceau gaussien (FG) tel qu'il a été introduit dans la littérature et utilisé dans différents travaux. La plupart de ces travaux sont issus des recherches de Cerveny, Popov et Psencik [Cerv 82] qui ont proposé de modéliser la propagation des ondes en milieu faiblement inhomogène à deux dimensions, en résolvant l'équation parabolique avec une solution gaussienne. Cette solution est asymptotique en fréquence. Les faisceaux sont propagés de manière itérative le long de leur axe, en intégrant au fur et à mesure les équations décrivant leurs propriétés physiques (courbure du faisceau, largeur, eikonale). Cette approche souffre de plusieurs limites. Sa formulation itérative peut rendre difficile son application directe pour des domaines de grandes dimensions. Néanmoins, les grandes possibilités ouvertes par cette approche ont poussé des auteurs comme Müller [Müll 84] à utiliser le formalisme FG pour calculer des seismogrammes théoriques. Pour cela, son approche consiste à subdiviser le milieu de propagation à deux dimensions en triangles élémentaires dans chacun desquels le gradient de la vitesse de propagation est constant. Les trajectoires des axes des faisceaux sont approchées de façon itérative par des arcs de cercles.

  .29) Dans cette dernière équation, l'eikonale est directement exprimée par x/c puisque la propagation se fait de façon rectiligne et à la vitesse constante de la lumière dans le vide c. Cette expression peut être comparée à celle du FG en milieu homogène et dans le même système de coordonnées [Chab 04]

  La trajectoire du rayon central est déterminée en appliquant depuis l'émetteur la loi de réfraction de Snell-Descartes. Pour cela, un pas de longueur curviligne ∆s est fixé. Il lie deux points successifs de la trajectoire, et le milieu est supposé homogène entre ces deux points afin de tracer un segment rectiligne, comme illustré sur la Fig.2.2. Ainsi, la trajectoire totale de l'axe du faisceau constitue une ligne brisée de segments de droite successifs. Pour rappel, l'équation de Snell-Descartes est donnée à l'interface de deux milieux d'indices de réfraction différents n 1 et n 2 par

2.1.3.1 Trajectoire de l'axe du FG

n 1 cos α 1 = n 2 cos α 2 ,

(2.33) où α 1 et α 2 sont les angles de la trajectoire, complémentaires avec la normale à l'interface, avant et après traversée respectivement. Le schéma de la Fig.

2

.3 illustre la configuration. L'exactitude du tracé itératif de la trajectoire de l'axe du faisceau augmente lorsque le pas ∆s diminue.

  les expressions (2.41) et (2.42) sont égales en D i , c'est-à-dire lorsque ρ = 0. Mais la direction ρ dans (2.41) correspond à la direction transverse au (i -1)-ième segment de droite, et la direction de ρ dans (2.42) correspond à la direction transversale au i-ième segment de droite. Or, les deux directions transverses ne sont pas identiques. Par conséquent, les enveloppes gaussiennes décrites par u i et u i-1 sont discontinues entre elles au voisinage de D i . Pour un gradient d'indice donné, il faut un pas suffisamment fin pour que cette discontinuité ne soit pas significative sur le résultat. Pour des valeurs de gradients troposphériques réalistes, cette conséquence du modèle n'a pas d'impact significatif sur les résultats.

2 Nouvelle formulation analytique du FG pour un gradient vertical et constant de l'indice de réfraction

  Cette première section a permis de présenter le FG comme solution de l'équation d'onde écrite dans le système de coordonnées curvilignes. L'approche classique itérative permettant de déterminer les grandeurs décrivant le faisceau ont été présentées. Dans le cadre de cette thèse, une autre approche a été développée. Elle a permis de proposer une formulation analytique des équations du FG en milieu inhomogène. La section suivante 2.2 se propose d'en détailler le raisonnement.Les équations démontrées dans cette section, bases des originalités de cette thèse, ont pour objectifs de décrire de façon analytique (c'est-à-dire non itérative) la propagation d'un FG en milieu inhomogène atmosphérique. Dans ce type d'environnement, le gradient de l'indice de réfraction ne dépasse que très rarement 500 uN/km en valeur absolue [Boit 83]. Ces équations doivent permettre d'utiliser l'équation (2.28) de façon directe. Pour cela, doivent être exprimées de façon analytique la trajectoire du faisceau, l'eikonale et la longueur curviligne le long de l'axe, ainsi que les fonctions p et q décrivant l'enveloppe du faisceau. Pour ce faire, l'hypothèse d'un gradient de l'indice de réfraction à la fois vertical et constant est posée, ce qui permet de simplifier les équations du problème. Ces résultats sont généralisés dans le chapitre 3 à un milieu inhomogène réaliste, dont le gradient varie en distance et en altitude.

2.

2.2.1 Formulation analytique de la trajectoire du FG

2.2.1.1 Trajectoire de l'axe du FG en fonction de la distance La détermination d'une expression analytique de la trajectoire de l'axe du FG part de l'équation de Snell-Descartes. En utilisant les notations de la figure 2.3, elle s'écrit n cos α = β, (2.44) où n est l'indice de réfraction local et β est une constante. En supposant que la variation de l'indice de réfraction se fait uniquement dans la direction des z, et que cette variation soit constante, alors

  .54) Comme mentionné en introduction, les gradients troposphériques ont des valeurs absolues généralement inférieurs à 500 unités-N/km [Boit 83]. Par conséquent le terme ξ a une valeur absolue généralement inférieure à 500 × 10 -9 unités-n/m. D'autre part, le terme d 2 z/dx 2 représente la courbure du faisceau au cours de la propagation. En effet, si z(x) désigne sa trajectoire, dz/dx représente sa pente et d 2 z/dx 2 est sa courbure. Afin de simplifier l'équation (2.54) et au vu des dernières remarques, il est supposé dans la suite de la démonstration que

		ξ	d 2 z dx 2		1.	(2.55)
	Ceci permet de ramener (2.54) à					
	ξ 1 +	dz dx	2	-n 0	d 2 z dx 2 = 0.	(2.56)
					0	dγ dx	= 0,	(2.57)

En posant γ = dz/dx, l'équation est intégrée en reconnaissant une primitive de la fonction arctan ξ(1 + γ 2 ) -n

  Cette équation permet de modéliser la trajectoire d'un FG dans un milieu inhomogène dont le gradient de l'indice de réfraction est à la fois vertical et constant. Sous cette hypothèse, la forme analytique de cette expression permet de calculer de façon directe (non itérative) la hauteur de l'axe du faisceau à une distance de propagation donnée.

	L'équation (2.60) donne directement				
					β 1 = α e -	ξ n 0	x e .	(2.65)
	En évaluant ensuite z(x) en x = x e , il se déduit que
				β 2 = z e +	n 0 ξ	ln(cos α e ).	(2.66)
	Par conséquent, l'équation de l'axe prend la forme
	z(x) = z e +	n 0 ξ	ln(cos α e ) -	n 0 ξ	ln cos	ξ n 0	(x -x e ) + α e .	(2.67)
	d cos α ds	(n 0 + ξ(z -z 0 )) + cos(α) ξ	dz ds	= 0.	(2.69)
	La dérivée de la fonction cosinus par rapport à s donne
		d cos α ds	= -sin α	dα ds	,	(2.70)
					= -sin α	d ds	arcsin	dz ds	,	(2.71)
					= -sin α		1 1 -dz ds	2	d 2 z ds 2 .	(2.72)
	En utilisant cette équation dans (2.69), alors			
	cos(α) ξ	dz ds		-	sin α ds 1 -dz	2	
									.64a)
									(2.64b)
									(2.64c)

2.2.1.2 Trajectoire de l'axe du FG en fonction de la longueur curviligne

L'équation (2.67) décrit de façon analytique la hauteur z de l'axe du faisceau en fonction de la distance x dans le repère cartésien (x, z). La hauteur de l'axe du FG peut aussi être décrite en fonction de la longueur curviligne s. L'équation obtenue sera utilisée par la suite pour déterminer une nouvelle expression analytique de l'eikonale. En reprenant l'équation de Snell-Descartes (2.44) avec un gradient d'indice de réfraction vertical et constant, et en la dérivant cette fois-ci par rapport à la longueur curviligne s, viennent successivement d ds cos α (n 0 + ξ(z -z 0 )) = 0, (2.68)

  'enveloppe du FG est décrite en amplitude et en phase par le couple de fonctions p et q de la longueur curviligne. Ces deux fonctions sont solutions du système de deux équations différentielles (2.26). Le développement du terme ∂ 2 (1/n)/∂ρ 2 conduit ce système à prendre la forme

	La constante β 4 est déterminée en évaluant (2.85) à l'émetteur avec l'expression de β 3 , pour
	obtenir	β 4 = -	n 0 ξ	α = arcsin ln cosh argtanh(sin α e ) . dz ds .	(2.76) (2.88)
	Finalement, l'expression de la hauteur de l'axe du FG en fonction de la longueur curviligne D'autre part, cos(arcsinx) = 1 -x 2 . (2.77) Par conséquent, l'équation (2.75) prend la forme s'écrit z(s) = z e + n 0 ξ ln cosh ξ n 0 (s -s e ) + a -ln(cosh a) , (2.89)
	ξ n 0 a = argtanh(sin α e ). = d 2 z ds 2 1 -dz ds . 2 2.2.2 Formulation analytique de l'enveloppe du FG avec la notation	(2.90) (2.78)
	Puis en posant γ = dz/ds,						
						ξ n 0	ds =	dγ 1 -γ 2	(2.79)
	une intégration est effectuée sur R\ 1 , ce qui donne
			ξ n 0	s =	1 2	ln	γ + 1 γ -1	-β 3 ,	(2.80)
			ξ n 0	s = argtanhγ -β 3 .	(2.81)
	De là , une nouvelle intégration permet d'obtenir une équation faisant intervenir directement z
	et s. En effet	γ =	dz ds	= tanh	ξ n 0	s + β 3 ,	(2.82)
		dz = tanh	ξ n 0	s + β 3 ds,	(2.83)
		z(s) = z e +		s se	tanh	ξ n 0	s + β 3 ds .	(2.84)
	Une primitive de la fonction tanh est la fonction composée ln(cosh). D'où la forme intégrée
		z(s) = z e +	n 0 ξ	ln cosh	ξ n 0	s + β 3 + β 4 ,	(2.85)
	où β 4 est une constante d'intégration. Pour déterminer les constantes d'intégration, les conditions
	initiales doivent être fixées. Elles s'écrivent
			    		s initial = s e , z initial = z e ,	(2.86a) (2.86b)
			   	dz ds initial	= sin α e .	(2.86c)
								ξ n 0	s e .	(2.87)

.74) Lors de la démonstration de l'équation (2.67), le terme ξ d 2 z dx 2 a été négligé. Ici, avec les mêmes justifications, le terme ξ d 2 z ds 2 est supposé négligeable afin de simplifier la dernière équation et d'écrire ξ cos α 1 -dz ds 2 = n 0 d 2 z ds 2 . (2.75) L'élévation α de l'axe peut s'écrire en fonction de z et de s par où β 3 est une constante d'intégration. Lorsque |γ| = |dz/ds| = 1, la trajectoire du faisceau est verticale. C'est un cas particulier que l'on peut exclure de l'étude, en particulier lorsque le gradient de réfraction est vertical et constant, alors un tel rayon garde une trajectoire verticale puisqu'il est parallèle au gradient. Par conséquent, la suite de la démonstration suppose que γ = 1. Dans ces conditions, l'équation (2.80) peut se mettre sous la forme Par conséquent, la constante β 3 vient en utilisant l'équation (2.82) avec ces conditions initiales pour obtenir β 3 = argtanh(sin α e ) -L

  = argtanh(sin α e ). Les quantités p(s e ) et q(s e ) sont initialisées par (2.32), en remplaçant x e par s e . Il est aussi possible de proposer une forme davantage simplifiée en modélisant l'enveloppe du faisceau par les mêmes fonctions p et q qui sont utilisées dans le cas homogène par les équations de (2.32). Dans ce cas, le faisceau en milieu inhomogène correspond à la même enveloppe que dans le cas homogène, mais courbée car suivant la trajectoire réfractée de l'axe. La formulation de (2.32) peut s'interpréter comme une approximation faible gradient par rapport à (2.96). En effet, en considérant l'intégrale dans la deuxième équation de (2.96), le terme ξ/n 0 (z -z 0 ) peut d'abord être annulé en translatant verticalement le repère tel que z 0 → z

	  p(s) = p(s e ),        q(s) = q(s e ) + p(s e )	c n 0	s se	dt n 0 (z e -z 0 ) -ln(cosh a) + ln cosh ξ 1 + ξ n 0 (t -s e ) + a	,	(2.96a) (2.96b)
	où a							
							dξ dz	=	d 2 n(z) dz 2 = 0.	(2.92)
	Par conséquent, le système (2.91) devient
				     	dp ds	= -	2 n(s) c	∂n(s, ρ) ∂ρ	2	q(s),	(2.93a)
				    	dq ds	=	c n(s)	p(s).	(2.93b)
							    	dp ds	= 0,	(2.94a)
							   	dq ds	=	c n(s)	p(s).	(2.94b)
	Ce système implique que la fonction p est une constante de s. D'autre part, sa résolution passe
	par la description des valeurs de l'indice de réfraction en fonction de la longueur curviligne n(s),

2.91a) (2.91b)

Dans la continuité des démonstrations précédentes concernant la trajectoire de l'axe du faisceau, le système (2.91) est repris en supposant que le gradient de l'indice de réfraction est vertical et constant, noté ξ. Sous cette hypothèse, le terme ∂ 2 n(s, ρ)/∂ρ 2 est négligé. En effet, pour un repère curviligne local (s, ρ) fixé la variation de ∂n(s, ρ)/∂ρ est une projection du gradient ξ sur l'axe orienté par le vecteur ρ. Or, D'autre part, le terme ∂n(s, ρ)/∂ρ est de l'ordre de ξ, c'est-à-dire de l'ordre de 100 × 10 -9 en norme. Par conséquent, (∂n(s, ρ)/∂ρ) 2 est de l'ordre de 10 -14 en norme. Si ce terme est négligé, le système (2.93) devient c'est-à-dire le long de l'axe du FG

n(s) = n 0 + ξ(z(s) -z 0 ). (

2

.95) L'utilité de la démonstration pour obtenir l'équation (2.89) apparaît ici. L'expression de z(s) étant connue, l'intégration du système donne la solution sous forme intégrale suivante e . Le rapport n e /n 0 tend quant à lui vers 1 suite à cette opération. Ensuite, en négligeant le terme ξ/n 0 (ζ -s e ) parce que ξ → 0, il reste comme intégrande 1 -ln(cosh a) + ln(cosh a) = 1. Finalement, l'intégrale se réduit à j s se dζ = j(s -s e ). (2.97) Une étude montrera la différence sur le champ selon que l'équation (2.96) ou l'équation (2.32) sera utilisée.

6 Implémentation numérique de la nouvelle formulation du formalisme FG

  en fonction de la longueur curviligne et l'eikonale le long de l'axe est donnée par l'ensemble des équations (2.101) (2.102) et (2.105). Enfin, la description de l'enveloppe du faisceau avec les fonctions p et q peut se faire de façon intégrale avec (2.96) ou de façon asymptotique avec (2.32).Après avoir présenté le raisonnement et les démonstrations permettant d'écrire les nouvelles équations analytiques du FG propagé dans un milieu à gradient d'indice vertical et constant, il faut décrire la façon dont elles sont utilisées dans les algorithmes. De la définition du milieu et des propriétés initiales du faisceau jusqu'au champ calculé en un point d'observation arbitraire, six étapes peuvent être identifiées.

	2.2.2.2.6.1

Pour conclure, ces démonstrations montrent que sous hypothèse d'un gradient atmosphérique de n à la fois vertical et constant, le FG, en tant que solution de l'équation de propagation paraxiale, peut être décrit de façon analytique. En effet, l'équation (2.67) donne la trajectoire de l'axe du faisceau en fonction de la distance, l'équation (2.89) indique la valeur de l'altitude de l'axe

Définition du milieu et initialisation du FG Afin

  de valider les équations analytiques développées dans la section 2.2, la réfraction du milieu est modélisée avec un gradient vertical et constant (l'extension à des variations horizontale et verticale réalistes de n sont étudiées dans le troisième chapitre). Il faut donc définir le gradient ξ et la valeur de l'indice au niveau du sol n 0 . Une fois le milieu défini, le FG à propager doit être initialisé. Cela correspond à localiser l'émetteur dans le milieu par les coordonnées (x e , z

e ), la longueur curviligne à l'émetteur s e , l'élévation initiale α e , la fréquence f et la largeur de ceinture W 0 . Ceci permet également d'initialiser les fonctions p et q avec les équations de (2.32).

2.2.6.2 Définition d'un point d'observation

Un point d'observation, c'est-à-dire où le champ doit être évalué, est repéré dans le milieu par ses coordonnées cartésiennes. En nommant M ce point, ses coordonnées sont notées (x M , z M ). L'avantage d'avoir des équations analytiques plutôt qu'une formulation itérative est qu'il n'est pas nécessaire de propager effectivement le faisceau, via une tracé itératif de l'axe du faisceau et une intégration par différences finies des équations. Le champ peut être directement calculé en M . Pour ce faire, il est nécessaire de déterminer le centre du repère curviligne local associé à M (voir Fig.
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.5).

5 Calcul de l'eikonale et des fonctions p et q associées au point d'observation

  .111) La coordonnée s M est calculée en utilisant l'équation (2.109), avec x = x P .Connaissant les coordonnées curvilignes (s M , ρ M ) de M , l'eikonale peut être directement calculée en utilisant les équations (2.101), (2.102) et (2.105) avec s = s M . De la même façon, p et q sont décrites en fonction de s par l'équation (2.96) si la forme intégrale est choisie, où avec (2.32) si la forme asymptotique est choisie. Enfin, il ne reste plus qu'à calculer le champ en M . du champ en M est donnée par l'équation (2.28). Les étapes précédentes ont permis de calculer toutes les grandeurs intervenant dans cette expression. Lorsque l'objectif est de calculer une carte du champ et non pas le champ en un point précis, plutôt que de calculer ces grandeurs pour tous les points du milieu, la localisation du faisceau autour de son axe permet de ne calculer le champ que pour les points au voisinage de cet axe. Le niveau limite fixé est de trois fois l'enveloppe en 1/ exp(1), soit -78 dB environ. En effet, la largeur du faisceau, définie comme la zone où le champ est supérieur à 1/e fois le champ sur l'axe, est donnée par

	2.2.6.2.2.6.6 Calcul du champ					
	L'expression W (s) =	ω 2	Im	p(s) q(s)	.	(2.112)

Par conséquent, pour calculer le champ aux points de la verticale x = 50 km par exemple, la procédure consiste à calculer l'altitude de l'axe à cette distance et la largeur du faisceau. Pour les points de la verticale situés dans la zone large de trois fois l'enveloppe, le champ est calculé en utilisant la procédure qui vient d'être décrite. Pour les autres, le champ est considéré nul. C'est un avantage par rapport à la méthode PWE-SSF parce que la physique du faisceau est exploitée pour focaliser les calculs dans la zone utile.

1 Illustration de la méthode GBAR et validation par comparaison avec la méthode PWE-SSF Dans

  cette sous-section, la méthode GBAR est illustrée dans sa configuration finale, et validée par la méthode PWE-SSF. Pour se faire, la simulation de la propagation d'un FG est considérée avec les deux méthodes. Les résultats des deux méthodes sont comparés de trois façons : l'erreur point à point dans le domaine, représentée sous forme de carte, l'amplitude et la phase déroulée en bout de domaine (à 100 km de distance) et l'erreur relative. L'erreur point à point est définie en dB par ε pp (x, z) = 20 log(|u P W E-SSF (x, z) -u GBAR (x, z)|).

	(2.113)
	À une distance x, l'erreur relative entre les champs est quantifiée par la fonction

2 , donné par (2.105). Enfin, le domaine de validité des équations analytiques est étudié, en faisant varier le gradient du milieu, ainsi que les propriétés du faisceau (élévation, largeur de ceinture, fréquence). Le langage informatique utilisé tout au long des travaux de cette thèse est le langage Python. Il est à noter que ce type de langage est reconnu comme moins efficace en termes de temps de calcul qu'un langage type C ou Fortran.

2.3.

  .114) où u P W E-SSF désigne le champ calculé par PWE-SSF et u GBAR désigne le champ calculé par la méthode GBAR, soit par formulation asymptotique, soit par formulation intégrale. La fonction ε rms est une erreur relative calculée sur une verticale à la distance x, ce qui permet d'évaluer l'évolution de l'erreur le long de la propagation. Au numérateur, la différence est effectuée à partir de la valeur complexe des champs. Il est possible de ne considérer que leur amplitude. L'erreur relative sera alors qualifiée d'erreur relative sans phase. Ceci est justifié par certaines applications pour lesquelles seuls les diagrammes de rayonnements ou le facteur de propagation en amplitude importent.

p et q 2.3.2.1 Position et objectifs des tests

  Les deux formulations possibles de l'enveloppe du FG sont la formulation intégrale et la formulation asymptotique. Elles sont respectivement décrites par les systèmes (2.96) et (2.32) sur les fonctions p et q. La formulation asymptotique correspond à un ordre d'approximation supplémentaire comparée à la formulation intégrale. En revanche, elle est plus simple et donc plus rapide à calculer. En effet, une intégration requiert d'utiliser un module d'intégration numérique. L'objectif de ces simulations est de montrer qu'il est possible d'utiliser la formulation asymptotique plutôt que la formulation intégrale. Pour cela, des conditions de simulations sont définies (gradient du milieu, propriétés du faisceau) et le champ est calculé dans le milieu en utilisant les deux formulations. Ensuite, les champs calculés par les deux méthodes sont comparés au champ calculé par PWE-SSF. L'ordre 5 de développement de Taylor de la fonction Li 2 est fixé dans cette sous-section.

2.3.3 Tests sur l'ordre de développement de la fonction Li 2 2.3.3.1 Position et objectifs des tests

  La démarche de la section 2.2 a consisté à poser certaines approximations sur le gradient et les propriétés du FG afin d'établir des expressions analytiques du faisceau en milieu inhomogène. Dans le cas de l'eikonale, une intégrale apparaît dans l'équation (2.101). Cette intégrale peut être intégrée formellement afin d'étre calculée directement, sans passer par une procédure itérative, ce qui est l'objectif. L'intégration formelle conduit à l'équation (2.102) qui fait intervenir la fonction polylogarithmique d'ordre 2, notée Li 2 . Dans les bibliothèques scientifiques du langage Python, cette fonction existe mais a l'inconvénient d'être longue à calculer. Par conséquent, le développement de Taylor de Li 2 autour de -1 est proposé dans l'équation (2.105). L'objectif de ce test est de déterminer l'impact de l'ordre de développement sur la précision du résultat.Pour déterminer l'impact de l'ordre de développement, l'écart entre PWE-SSF et GBAR est quantifié en utilisant la fonction d'erreur relative dont l'expression est donnée par la définition (2.114). Pour chaque ordre de développement, l'erreur relative avec PWE-SSF est calculée et observée en fonction de la distance de propagation. Les conditions de simulation choisie pour ce test sont les conditions qui correspondent à la carte de champ de la Fig.2.6. Puisque l'eikonale n'a d'impact que sur la phase, cette figure reste valable pour illustrer le faisceau modélisé dans cette simulation.

	2.3.3.2 Paramétrage de la simulation

  , l'objectif est de présenter comment le milieu de propagation troposphérique est modélisé numériquement. Le modèle méso-échelle WRF permet d'obtenir les valeurs de l'indice de réfraction aux points d'une grille régulière. Cette grille correspond à la discrétisation spatiale qui est opérée au cours de la simulation WRF, en altitude, latitude et longitude.

Les nouvelles équations analytiques de propagation d'un faisceau gaussien en milieu inhomogène proposées en section 2.2 nécessitent de pouvoir définir un gradient de l'indice de réfraction à la fois vertical et constant, localement autour de l'axe du faisceau. Si la courbure de la Terre est négligée, alors il est possible de traiter la grille WRF comme une grille cartésienne et de calculer les gradients des cellules rectangulaires élémentaires directement avec les valeurs de N . Pour d'autre applications, il est nécessaire de prendre en compte la courbure de la Terre, à travers l'utilisation de l'indice de réfraction modifié M , d'un rayon terrestre fictif ou d'une interpolation des valeurs de l'indice d'un repère sphérique vers un repère cartésien. Ceci est détaillé dans le chapitre 4, consacré à la radio-occultation. Enfin, puisque les équations de la section 2.2 ont été démontrées dans un repère à deux dimensions, les grilles d'indice de réfraction issues de WRF, qui elles sont en trois dimensions, sont utilisées pour extraire des grilles en deux dimensions. Dans les applications de cette thèse, ces grilles sont construites en interpolant dans la grille 3D (altitude, latitude, longitude) une grille cartésienne 2D (altitude, distance horizontale).

Étape 1 : initialisation du faisceau gaussien au niveau de l'émetteur et dans sa cellule initiale L

  'initialisation se fait en chargeant les paramètres de simulation au niveau du point initial du faisceau. La section 3.3 détaille ce sujet. Les paramètres du faisceau sont la position du point initial (x e , z e ) (qui est le premier point de référence), l'élévation initiale α e , la longueur curviligne de l'émetteur s e , l'eikonale au niveau de l'émetteur T (s e ) et la largeur du faisceau W 0 . Le faisceau doit ensuite être localisé dans la grille à deux dimensions afin de lui associer une cellule élémentaire, et du même coup un premier gradient vertical et constant, ainsi qu'une valeur de référence de l'indice de réfraction. Cette valeur de référence correspond à la valeur de n au niveau du côté inférieur de la cellule. Pour déterminer la cellule initiale dans laquelle se trouve le faisceau, les coordonnées de l'émetteur (x e , z e ) sont comparées aux coordonnées des cellules dans la grille, qui sont connues. À partir de là, les propriétés du faisceau sont spécifiées et les équations analytiques peuvent être utilisées. Le faisceau est propagé de cellule en cellule jusqu'à une zone d'observation donnée. La question est donc de savoir comment modéliser le passage du faisceau d'une cellule à une autre. L'étape 2 sert à détecter par où l'axe du faisceau va sortir de sa cellule initiale.

3.1.2.2 Étape 2 : détection du bord de la cellule d'où va sortir le faisceau

Puisque le faisceau est orienté vers l'avant (par exemple vers la droite) et que le gradient local est vertical, il ne peut sortir de la cellule courante que par trois bords : le bord supérieur de la cellule, le bord inférieur ou le bord latéral dans la direction vers l'avant. Il faut donc déterminer lequel de ces bords l'axe du faiseau rencontre, et ensuite déterminer les coordonnées du point d'intersection entre l'axe du faisceau et le bord concerné. Pour déterminer quel bord l'axe du faisceau rencontre, l'altitude de l'axe du faisceau est calculée au bord latéral vers l'avant de la cellule par l'équation (2.67) qui donne l'altitude de l'axe en fonction de la distance, comme illustré sur la Fig.

3

.2. En notant x c,max la coordonnée selon l'axe (Ox) du bord vers l'avant de la cellule, la grandeur z(x c,max ) est évaluée avec les paramètres obtenus par l'étape 1. La valeur de z(x c,max ) est ensuite comparée aux altitudes inférieure z c,min et supérieure z c,min de la cellule. Trois cas sont possibles :

  Lorsque l'axe du faisceau rencontre le bord latéral vers l'avant de la cellule, alors la nouvelle élévation est déterminée autrement. La loi de Snell-Descartes est appliquée au niveau du point d'intersection, le bord latéral de la cellule étant l'interface entre deux milieux d'indice de réfraction qui peuvent être différents. L'application de la loi de Snell-Descartes se fait en écrivant que n

			2.67) avec les paramètres de la cellule courante. Cette
	dérivée s'écrit	dz dx	(x) = tan	ξ n 0	(x -x e ) + α e .	(3.7)

1 sin α 1 = n 2 sin α 2 , (3.8) où n 1 est la valeur de l'indice au niveau du point d'intersection et du côté gauche, c'est-à-dire dans la cellule avant intersection, n 2 est l'indice à ce même point mais du côté droit, c'est-à-dire dans la cellule suivante, α 1 est la pente de l'axe du faisceau lorsque celui-ci arrive au point d'intersection. Par rapport à l'équation (2.44), l'équation (3.8) utilise la fonction sin plutôt que la fonction cos car l'interface séparant les deux milieux d'indices différents est considérée horizontale pour l'équation (2.44) alors qu'elle est considérée verticale pour l'équation (3.8). Compte tenu des propriétés du milieu atmosphérique, la réflexion de l'onde à chaque interface verticale est négligeable, et le variation d'élévation apportée par la formule (3.8) est faible puisque les gradients horizontaux de n sont très faibles par rapport aux variations verticales. Le valeur de α 1 est déterminée avec (3.7). Ainsi, la valeur de l'élévation α 2 de l'axe dans la cellule suivante peut être déterminée. Le calcul de la longueur curviligne et de l'eikonale au nouveau point de référence (le point d'intersection entre l'axe et le bord de la cellule) se fait simplement en utilisant les équations (2.109) et (2.101) avec les paramètres avant intersection. Il faut noter qu'il n'est pas nécessaire de changer la valeur de la largeur de ceinture W 0 . En effet, si le faisceau a divergé d'un point de référence au suivant, l'augmentation de la longueur curviligne associée au point de référence suivant prend en compte l'augmentation de la distance entre la ceinture du faisceau et le nouveau point. La continuité de la largeur du faisceau au point d'intersection est assurée.

3 Étape 3 : utilisation d'un critère spectral pour déterminer la largeur des faisceaux gaussiens élémentaires de décomposition

  k le nombre d'onde, qui est la norme du vecteur d'onde k = k x e x + k z e z . Dans la pratique, il s'agit d'un spectre discret calculé sur les points de la grille de l'étape 1, en utilisant une Fast Fourier Transform (FFT). La composante spectrale de poids le plus important max z |ũ(x, k z )| est déterminée à partir des valeurs calculées par (3.20). Les composantes utiles du spectre sont ensuite déterminées de la même façon que pour la largeur spatiale, en utilisant -100 dB afin de s'assurer que toutes les composantes spectrales significatives sont prises en compte. La composante minimale k z,min et la composante maximale k z,max du spectre utile obtenues par applications du critère (3.21) permettent de déterminer la largeur spectrale du champ à décomposer. Cette largeur spectrale est utilisée dans l'étape 3 afin de s'assurer que les faisceaux gaussiens élémentaires de décomposition soient en mesure de restituer les propriétés spetrales du champ à décomposer.

	le critère	|ũ(x, k z )| max z |ũ(x, k z )|	> ηs ,	(3.21)
	où ηs,dB peut être fixé à 3.3.2.W0 =	2 W 0	.	(3.22)
	3.3			

Un choix constant dans l'ensemble de la procédure de décomposition consiste à ne privilégier aucune zone du champ à décomposer. Dans la continuité de cette approche, le choix de la largeur de ceinture associée à tous les faisceaux gaussiens élémentaires de décomposition est fait de telle sorte que chaque faisceau élémentaire soit en mesure de modéliser localement l'ensemble du spectre du champ incident. Ainsi, en notant W0 la largeur spectrale des faisceaux élémentaires, W0 est choisie égale à la largeur spectrale du champ à décomposer. La largeur spatiale des faisceaux élémentaires W 0 en est déduite par la relation

.2.4 Étape 4 : localisation des points de décomposition sur la grille Le

  choix de la largeur des faisceaux élémentaires de décomposition W 0 contribue en partie à la disposition des points sur l'interface de décomposition où seront situés les centres de ces faisceaux élémentaires. Pour déterminer entièrement leurs positions, il faut fixer la valeur du paramètre κ de sur-échantillonnage, puisque la relation entre W 0 , κ et la distance d entre deux centres de faisceaux élémentaires est donnée par d = κW 0 . (3.23) La valeur de κ peut être déterminée par une étude paramétrique pour une simulation canonique donnée. Sa valeur est comprise entre 0.5 et 1 [Chab 04], ce qui signifie que la distance d est plus petite que W 0 . Ainsi, les enveloppes des faisceaux élémentaires se chevauchent d'autant plus que κ est proche de zéro, d'où le terme de paramètre de sur-échantillonnage. Après avoir choisi la valeur de κ, la valeur de d est déduite de W 0 . Les positions des centres des faisceaux élémentaires s'ensuivent : ce sont les points le long de l'interface de décomposition qui sont compris entre z min et z max et qui sont espacés de la distance d. À ce stade, la largeur de ceinture W

0 des faisceaux élémentaires est connue, ainsi que les positions de ces faisceaux. Pour les déterminer complétement, il reste à déterminer leur directions de propagation au niveau de l'interface. Ceci est fait en calculant les valeurs du vecteur de Poynting du champ à décomposer au niveau des positions des faisceaux élémentaires.

3 Critère pour décider de la nécessité d'une re-décomposition 3.3.3.1 Pourquoi est-il nécessaire de redécomposer ?

  Le modèle GBAR, de même que le modèle présenté par Cerveny [Cerv 82], calcule le champ en un point d'observation à partir de grandeurs calculées au niveau de l'axe, et plus précisément au centre curviligne associé au point d'observation. Le champ en (s, ρ) (au-dessus de l'axe) est le même qu'en (s, -ρ) (en-dessous de l'axe). Dans les équations permettant le calcul de ces grandeurs, le gradient ξ est celui que traverse l'axe. Ces remarques mettent en valeur deux éléments. Le premier, c'est que ce modèle ne peut pas modéliser d'enveloppe asymétrique autour de l'axe du faisceau. Le deuxième, c'est que si le point d'observation se trouve dans une zone où le gradient de n est différent du gradient au niveau de l'axe, alors une erreur apparaît car cette information n'est pas prise en compte dans le modèle. Pour mettre en évidence cette limite du modèle, la simulation de la propagation dans un profil bilinéaire avec sévère inversion de gradient est considérée. Ce profil est défini par un gradient de -200 uN/km entre 0 et 1.5 km d'altitude et un gradient de 200 uN/km au-dessus de 1.5 km d'altitude. Cette configuration est particulièrement brutale et est difficile à rencontrer en atmosphère réaliste. Elle est choisie pour cette simulation car elle permet de bien mettre en évidence l'erreur résultant de la modélisation symétrique de l'enveloppe du faisceau. Le faisceau utilisé dans cette simulation a les caractéristiques suivantes : f = 1 GHz, z e = 1 km, W 0 = 20 m et α e = 0.8 • . La carte du champ calculée par PWE-SSF est montrée en Fig.3.5 et celle calculée par GBAR en Fig.3.6. Le point important à remarquer est que puisque l'axe du faisceau décrit par GBAR reste dans la couche inférieure (celle dont le gradient est -200 uN/km), toute l'enveloppe

.27) où les matrices E et M sont celles de l'étape 6.

3.3.suit la trajectoire de l'axe courbée vers le bas, y compris la partie de l'enveloppe située au-dessus de 1.5 km d'altitude. Or, cette partie traverse un gradient positif de 200 uN/km et doit donc être refractée vers les altitudes plus grandes, comme montrée par la carte du champ calculée par PWE-SSF. La Fig.

3

.7 montre la différence (en dB) des champs PWE-SSF et GBAR en chaque point de la carte, c'est-à-dire

∆u dB (x, z) = 20 log(|u P W E-SSF -u GBAR |).

(3.28)

Elle montre que l'écart est très faible (-35 dB) dans la couche inférieure, mais l'enveloppe symétrique modélisée par GBAR différe fortement du champ calculé par PWE-SSF dans la couche supérieure. L'inversion brutale de gradient perturbe très peu le champ dans la couche inférieure, seules quelques oscillations sont visibles après 80 km au niveau de l'interface entre les deux couches. Ceci est également visible sur la Fig.

3

.8 qui montre l'amplitude et la phase déroulée des champs issus de PWE-SSF et GBAR à 100 km de distance. Les deux méthodes donnent des résultats quasi identiques dans la couche inférieure mais fortement différents dans la couche supérieure. Les oscillations du champ PWE-SSF au niveau de l'altitude 1.5 km se voient sur le graphe de l'amplitude. La nécessité d'affiner la description du champ avec plusieurs faisceaux gaussiens, mise en évidence dans cette simulation, explique le besoin de définir un critère automatisant la re-décomposition du champ.

Reprise du profil bilinéaire avec sévère inversion de gradient

  Afin de montrer que le modèle GBAR, sous sa forme comprenant le critère et la procédure de re-décomposition, permet de traiter le cas soulevé dans la sous-section 3.3.3, le même profil bilinéaire est considéré. Pour rappel, il est constitué d'un gradient de -200 uN/km en-dessous de 1.5 km et 200 uN/km au-dessus de 1.5 km. Le champ initial est modélisé par un faisceau gaussien unique situé à l'altitude z e = 1 km, de largeur de ceinture W 0 = 20 m. La fréquence est toujours de 1 GHz. La carte du champ calculée par GBAR est donnée en Fig.3.10. Le faisceau est décomposé en somme de faisceaux élémentaires dès le plan initial. La distance de cette première décomposition est fixée en dur afin de rendre possible l'utilisation du critère de re-décomposition par la suite. Quelques oscillations sont à noter, elles sont dues à la brutalité de l'inversion de gradient qui génère ce type de phénomène. Elles sont d'ailleurs également visible sur la Fig.3.12 représentant l'amplitude et la phase déroulée du champ à 100 km de distance, avec PWE-SSF et GBAR. Cependant, alors qu'avec PWE-SSF ces oscillations se poursuivent en-dessous de 500 m d'altitude, GBAR donne une amplitude plus lisse. Dans la zone utile, l'amplitude et la phase du champ modélisées par GBAR est très fidèle à PWE-SSF, la méthode de référence. En termes de temps de calculs, la modélisation du champ à 100 km de distance se fait en 5.47 secondes par PWE-SSF et 7.23 secondes par GBAR. La méthode de référence est donc légèrement plus performante. En fait, c'est un cas favorable à PWE-SSF car beaucoup de re-décompositions sont nécessaires. Lorsque la variation de gradient d'indice est moins sévère, le temps de calcul de GBAR devient inférieur à PWE-SSF, comme le montre la simulation suivante.

	3.4.1.1

En effet, il est nécessaire d'avoir au moins deux faisceaux pour utiliser ce critère. Une étude paramétrique de l'erreur avec phase à 100 km, illustrée en Fig.

3

.13, a permis de fixer la valeur de δ à 0.2. Ceci a pour conséquence de déclencher une re-décomposition tous les 2 km lorsque le champ commence à se propager dans les zones correspondant aux deux gradients, c'est-àdire à 25 km environ. Les re-décompositions se font jusqu'à 98 km, juste avant de calculer le champ sur la dernière verticale x = 100km. La décomposition à 10 km génère 29 faisceaux de largeur de ceinture W 0 = 13.92 km, calculée par la procédure détaillée en sous-section 3.3.2. La divergence du champ augmente progressivement le nombre de faisceaux pour atteindre 327 à 98 km de distance. Les largeurs de ceintures des re-décompositions successives varient peu, étant contenues entre 13.7 m et 15.31 m. La carte du champ avec re-décomposition donnée en Fig.

3

.10 est à comparer avec la carte du champ GBAR sans re-décomposition de la Fig.

3

.6. Les re-décompositions permettent de décrire les effets dus à l'inversion de gradient au niveau de l'interface z = 1.5 km. L'erreur avec PWE-SSF, dont la carte du champ correspond à la Fig.

3

.5, est donnée en Fig.

3

.11. Elle reste inférieure à -33 dB.

  L'objectif final de ce chapitre est d'utiliser la méthode GBAR pour modéliser le champ dans des grilles d'indice de réfraction issues du modèle météo WRF. Ces grilles sont décrites avec une discrétisation en altitude et en distance. Afin de porter l'étude sur un milieu se rapprochant des grilles WRF, une succession de trois profils trilinéaires est considérée. Il sont illustrés en Fig.3.17. Le premier profil s'étend de 0 à 40 km de distance, le deuxième de 40 à 70 km de distance et le troisième de 70 jusqu'à 100 km, c'est-à-dire la fin du domaine de calcul. Les gradients relativement forts puisqu'ils sont compris entre -180 uN/km et 90 uN/km. Il y a donc des inversions de gradients assez brusques. Le champ calculé par la méthode GBAR est montré en Fig.3.18. Le champ est soumis a des effets de réfraction assez complexes qui produisent une topologie hétérogène, surtout après 60 km de propagation. Au-delà de 60 km, une partie de l'énergie se concentre autour de l'altitude 1 km, avec un minimum et deux minima locaux surtout visibles après 80 km. La partie du champ située au-dessus de 1.4 km d'altitude est légèrement réfractée vers le bas avant 40 km, puis progressivement réfractée vers les plus hautes altitudes après 40 km, en accord avec les gradients des profils définis. Ces remarques se vérifient sur les graphes de l'amplitude et de la phase déroulée de champ à 100 km montrés en Fig.3.19. Les graphes issus de la simulation PWE-SSF valident les résultats de la méthode GBAR.

Le temps de calcul du champ à 100 km est de 4.95 secondes pour la méthode PWE-SSF. Celui pour la méthode GBAR est de 2.01 secondes. Ceci met en lumière l'intérêt de la méthode développée dans le cadre de cette thèse.

  Pour le satellite récepteur, la démarche est la même, à un signe près sur θ qui est un angle orienté par rapport à Or T . Les équations s'écrivent

			,		(4.8a)
	lS 1 = arcsin sin Ê sin θ 1 + arcsin	sin lT sin Ê	,	(4.8b)
	LS 1 = LT + arccos	cos θ 1 -sin lT sin lS 1 cos lT cos lS 1	.	(4.8c)

  Si le satellite émetteur est un satellite GNSS, il faut remplacer r S 1 par 22200 km. Si le satellite récepteur est LEO, alors r 1 est remplacé par 700 km. De même avec r 2 dans (4.9). Il faut retenir l'importance de la séparation angulaire entre les deux satellites θ = θ 1 + θ 2 , qui est largement utilisée dans les modèles d'inversion des données de radiooccultation. D'autre part, il est nécessaire de connaître l'angle de courbure α(r T ) pour localiser les satellites.

		,			(4.9a)
	lS 2 = arcsin sin Ê sin -θ 2 + arcsin	sin lT sin Ê	,	(4.9b)
	LS 2 = LT + arccos	cos θ 2 -sin lT sin lS 2 cos lT cos lS 2	.	(4.9c)
	Les équations des systèmes (4.8) et (4.9) donnent les coordonnées des satellites correspondant
	à un point tangent fixé.			

  ). Pour ce faire, un modèle géométrique est considéré, posant que la Terre est sphérique et partage son centre avec l'atmosphère, également sphérique. La structure réfractive de l'atmosphère est également supposée à symétrie sphérique. Ceci permet d'utiliser la loi de Bouguer dans le modèle physique, qui repose sur le formalisme rayon de l'optique géométrique pour interpréter les signaux GNSS. L'objectif du modèle physique est de traduire les données des signaux en angle de courbure du rayon passé au travers de l'atmosphère. Les angles de courbures permettent de faire le lien avec l'indice de réfraction grâce à une transformation d'Abel. Enfin, les équations donnant les positions des satellites à partir d'un point tangent arbitraire ont été présentées.Cette section est consacrée aux méthodes d'inversion des données de RO. L'objectif de ces méthodes ainsi que les principales difficultés à relever sont d'abord présentés. Ensuite, un modèle utilisant le Doppler et un autre utilisant l'amplitude sont expliqués à titre d'illustration. Enfin, la méthode d'inversion de Sokolovskiy [Soko 00] est détaillée car c'est celle qui est utilisée par la suite avec la méthode GBAR dans les tests numériques de la section 4.4.La relation entre les angles de courbure et l'indice de réfraction est établie par la relation (4.1). Pour estimer l'indice de réfraction aux périgées, l'objectif est d'estimer le plus précisément possible les angles de courbures associés aux rayons atteignant le satellite de réception. Plusieurs modèles d'inversion existent dans la littérature. Certains utilisent le décalage Doppler des signaux par rapport à la propagation en espace libre, d'autres utilisent la variation du niveau du champ résultant de la réfraction atmosphérique. L'interprétation des données doit se faire sous certaines hypothèses afin de diminuer la complexité du problème d'inversion.

	4.2 Méthodes d'inversion des données de radio-occultation
	4.2.1 Généralités sur les méthodes d'inversion des données de radio-occultation
	4.2.1.1 Objectif et difficultés
	4.2.1.2 Modèle utilisant le Doppler
	Un modèle classique exploite le décalage Doppler des signaux afin d'estimer les angles de cour-
	bures des rayons réfractés [Kurk 00]. Sous hypothèse de symétrie sphérique, les données re-
	cueillies peuvent être interprétées avec les informations de position et de mouvement des satel-
	lites. Le décalage Doppler apporté par la réfraction atmosphérique s'écrit

  2r 1 r 2 cos θ, (4.13) où θ est la séparation angulaire entre les deux satellites, r 1 (respectivement r 2 ) désigne la distance entre le centre de la Terre et le satellite émetteur (respectivement récepteur). L'expression explicite de K peut être obtenue en considérant la géométrie du problème. D'abord, l'angle de courbure peut se formuler parα = Φ 1 + Φ 2 + θ -π. cos Φ 1 dΦ 1 = dr 2 sin Φ 2 + r 2 cos Φ 2 dΦ 2 = da. .19) donne K à partir des données orbitales et de dα/da. Or, l'objectif est d'obtenir dα/da à partir des données orbitales et de K. Pour ce faire, la première étape consiste à écrire Il faut aussi spécifier une constante d'intégration. Dans [Soko 00], la constante d'intégration est définie à partir d'informations sur la phase. Une autre option consiste à intégrer depuis une valeur a sup correspondant à un point tangent tellement haut que l'approximation a sup r sup est pertinente. Ainsi, si la coordonnée r sup du point tangent le plus haut est connue, l'équation peut être intégrée. Pour résumer, pour chaque occultation, l'amplitude A du signal reçu par le satellite LEO est relevée. La valeur de calibration A 0 permet de calculer K pour l'ensemble des occultations, à l'aide de (4.12). Ensuite, à partir de la connaissance de la géométrie du problème, les valeurs de a sont calculées par intégration de (4.22). Enfin, les angles de courbures sont déterminés par l'équation (4.20).

	et de différencier par rapport à a. Ensuite, dα/da est substitué dans (4.16) pour avoir
	da dθ	= a	1 r 1 L 1	dr 1 dθ	+	1 r 2 L 2	dr 2 dθ	-1	L 1 .L 2 L	K.	(4.21)
	En considérant que les orbites des satellites sont circulaires, alors les termes dr 1 /dθ et dr 2 /dθ
	s'annulent, et il vient										
				da dθ	= -	L 1 L 2 L	K.	(4.22)
	Si, pour une série d'occultation, sont connues K, L, L 1,2 et θ, alors l'équation (4.22) peut être
	intégrée pour obtenir a en fonction de θ.							
												(4.14)
	Ensuite, la loi de Bouguer donne									
			r 1 sin Φ 1 = r 2 sin Φ 2 = a,	(4.15)
	où a est le paramètre d'impact associé au rayon. Dans (4.15) l'indice de réfraction est supposé
	valoir l'unité aux deux satellites, ce qui est tout à fait justifié étant données leurs altitudes. La
	différenciation de (4.14) et de (4.15) connaissant r 1 et θ conduit à
				dα = dΦ 1 + dΦ 2 ,	(4.16)
	r 1 (4.17)
	La combinaison des équations (4.12), (4.16) et (4.17) permet de faire ressortir une première
	expression explicite de K										
		K =	L L 1 + L 2 -L 2 L 2 (dα/da)	,	(4.18)
	où L 1,2 = r 1,2 cos Φ 1,2 . Si r 1 est la coordonnée radiale d'un satellite GNSS (environ 20200 km)
	et r 2 la coordonnée radiale d'un satellite LEO (environ 700 km), alors la simplification L 1	L 2
	est justifiée. L'équation (4.18) devient alors					
				K =	1 1 -L 2 (dα/da)	.	(4.19)
	L'équation (4α(a) = arcsin(a/r 1 ) + arcsin(a/r 2 ) + θ(a) -π,	(4.20)

Fixation de la position du satellite émetteur L

  2, de simuler la propagation des signaux d'un satellite à l'autre, et d'utiliser le modèle d'inversion de Sokolovskiy pour obtenir les angles de coubures des rayons. Les angles de courbure sont ensuite utilisés pour avoir le profil de réfraction avec la transformation d'Abel donnée par l'équation (4.1). Puis, le profil de n inversé est comparé au profil directement relevé dans la grille. Les équations (4.8) et (4.9) permettent de déduire les positions des satellites à partir des coordonnées d'un point tangent. Le plan tangent peut alors se définir comme contenant les deux satellites et le centre de la Terre (supposée sphérique). En suivant l'approximation de symétrie sphérique à la base des modèles d'inversion (y compris celui de Sokolovskiy), un rayon émis dans le plan tangent y demeure au cours de sa propagation. En effet, sous cette hypothèse les gradients troposphériques que rencontre le rayon sont tous contenus dans le plan tangent, et ne le dévient pas en azimut. Par conséquent, il est justifié de modéliser la propagation en deux dimensions pour chaque rayon associé à une configuration géométrique spécifique. En revanche, la direction du plan tangent peut changer d'une configuration à l'autre, comme le montrent les équations de (4.8). Afin de pouvoir modéliser l'ensemble des configurations en une seule simulation 2D, ce mouvement du plan tangent n'est pas considéré dans la configuration canonique choisie. Ainsi, seule la variation de l'écart angulaire θ est considérée. 'écart angulaire θ est défini par la somme de θ 1 et θ 2 , les écarts angulaires par rapport au satellite émetteur et au satellite récepteur respectivement. Or, l'hypothèse d'immobilité du satellite émetteur dans le repère est souvent faite pour inverser les données [Kurk 00]. Plusieurs méthodes existent pour compenser cette hypothèse. Gorbunov propose d'ajuster la position du satellite émetteur correspondant aux données orbitales réelles recueillies (traduisant donc un mouvement du satellite émetteur) en translatant sa position dans la direction tangente à chaque rayon à l'émission [Gorb 96]. La translation est effectuée de telle sorte que la distance entre le centre de la Terre et le satellite émetteur demeure constante pour l'ensemble des configurations géométriques de l'occultation. La technique utilisée pour les travaux de cette étude est différente. Étant donné que cette section n'utilise pas de données réelles, le satellite émetteur est fixé directement par les équations du modèle géométrique données en (4.8). Cela revient à considérer la position du satellite émetteur correspondant à un rayon particulier, et de garder cette position pour les autres rayons. Cependant, cette approximation doit être compensée afin que l'écart angulaire θ entre les deux satellites soit le même que si le satellite émetteur n'était pas fixé. De cette façon, la longueur de trajet du rayon d'un satellite à l'autre est conservée. Cette compensation doit également être faite dans le cas de l'approximation de Gorbunov [Gorb 96] [Kurk 00]. Il faut également noter que cette opération induit un léger décalage des point tangents, qui ne sont plus alignés dans la direction radiale, comme illustré dans la Fig.4.4, puisque l'écart angulaire θ 1 entre le point tangent et le satellite émetteur varie. La Fig.4.5 illustre elle aussi le décalage des points tangents par rapport à la direction verticale.En configuration RO réaliste 3D, les points périgées sont également décalés verticalement, mais également en latitude et longitude. Pour notre configuration canonique, la courbe des points tangents est montrée dans une grille symétrique canonique définie avec une profil exponentiel standard de N .

	4.3.1.2

4.3.2.2 Propagation du champ du satellite émetteur au satellite récepteur

  Le modèle de propagation du champ comporte trois étapes : la description du champ incident émis, la propagation du champ dans la grille d'interpolation, la propagation du champ en espace libre de la sortie de grille jusqu'aux positions du satellite récepteur. La modélisation du champ incident est faite en considérant que le satellite émet une onde sphérique qui se propage jusqu'à atteindre la grille de calcul. Il est donc suffisant de spécifier la position du satellite émetteur (fixée pour l'ensemble des occultations simulées) ainsi que l'intensité initiale du champ. Le champ est ensuite calculé et décomposé en somme de faisceaux gaussiens à l'entrée de la grille d'interpolation (la simulation suit la géométrie de la Fig.4.2). Le premier jeu de faisceaux (décomposant l'onde sphérique à l'entrée de la grille) est ensuite propagé en utilisant la même procédure que dans le chapitre 3. Les propriétés de chaque cellule élémentaire sont utilisées dans les équations analytiques démontrées dans le chapitre 2, et en se servant du critère sur la distance relative entre les axes des faisceaux adjacents pour détecter le besoin de redécomposer. La propagation est ainsi modélisée à travers toute la grille. Le dernier jeu de faisceaux correspond à la décomposition effectuée en bord de grille. Ces faisceaux sont ensuite propagés jusqu'à la série de positions du satellite LEO correspondant aux points tangents.La modélisation de la propagation dans une configuration de RO entre deux satellites en orbite autour de la Terre est effectuée par la méthode GBAR en plusieurs étapes. D'abord un ensemble de points tangents est défini dans la couche atmosphérique. Ensuite les positions associées des satellites sont calculées avec les équations (4.8) et (4.9). La propagation du champ d'un satellite à l'autre est modélisée dans un seul plan pour l'ensemble des configurations. Les grilles de propagation cartésiennes (distance, hauteur) de N sont obtenues en interpolant les grilles sphériques (altitude, latitude, longitude) issues du modèle météo méso-échelle WRF. Le champ incident sur la grille est modélisé par une onde sphérique dont le centre de phase est le satellite émetteur. Ce champ est décomposé en faisceaux gaussiens et le modèle GBAR décrit la propagation dans la grille. Lorsque les faisceaux atteignent l'espace libre en bout de grille, ils sont propagés jusqu'aux positions du satellite récepteur pour estimer l'amplitude du champ. Les valeurs d'amplitude sont utilisées dans la procédure d'inversion de Sokolovskiy pour obtenir un profil de n pour les positions des points tangents dans l'atmosphère.

	4.3.3 Conclusion

2.1 Simulation et résultats

  La sous-section 4.4.1 a permis de valider la méthode pour l'inversion d'un profil exponentiel canonique. L'objectif consiste maintenant à inverser un profil après propagation du champ dans une grille interpolée à partir de simulations WRF. Pour ce faire, WRF est utilisé pour obtenir une grille 2D de valeurs de n. Les données à disposition sont les mêmes que pour le chapitre 3. Elles couvrent la zone des Caraïbes, entre les latitudes 11.74 • et 18.85 • , entre les longitudes -74.30 • et 67.31 • , et entre 0 km et 20 km. En fixant la latitude à 17 • et en considérant le plan longitude-altitude, la grille de la Fig. 4.11 est obtenue.

  Dans cette sous-section, la méthode GBAR a été utilisée pour modéliser la propagation du champ en conditions de radio-occultation dans une grille d'indice atmosphérique issue de WRF. L'objectif était d'évaluer l'erreur sur le profil inversé lorsque la grille la réfraction atmosphérique n'est pas à symétrie sphérique. Il ressort des résultats que l'approximation de symétrie sphérique à la base des modèles d'inversion (y compris le modèle de Sokolovskiy) ne génère pas d'erreur significative dans les conditions testées. Pourtant l'analyse visuelle de la cartographie d'indice Fig.4.12 montre clairement que le milieu est plus inhomogène pour les latitudes comprises entre -68 • et -70 • . A priori, les inhomogénéités observées amènent une série d'effets de réfraction qui in fine tendent à se compenser vers un cas de réfraction moyen. Le profil central étant proche du profil moyen, le modèle d'inversion fonctionne bien. De plus, c'est autour de cette zone centrale que les effets de réfraction sont les plus importants.

	4.4.2.2 Conclusions

  Dans ce chapitre, le modèle GBAR a été utilisé dans le cadre d'une problématique de radiooccultation entre un satellite GNSS et un satellite LEO en orbite autour de la Terre. L'objectif des méthodes de radio-occultation est d'estimer les propriétés physiques de l'atmosphère (indice de réfraction, pression, température, humidité...) en utilisant la couverture du système GNSS, plutôt que d'autres méthodes telle que celle des ballons sondes. Plusieurs méthodes existent pour inverser les données recueillies par un système GNSS embarqué et transmises à une station sol. Toutes ces méthodes ont pour hypothèse fondamentale la symétrie sphérique de l'atmosphère, afin de simplifier l'interprétation des données. Certaines utilisent le décalage Doppler par rapport à la propagation en espace libre, d'autres la phase ou l'amplitude. La méthode d'inversion proposée par Sokolovskiy a l'avantage de n'exploiter que les résultats en amplitude du champ, normalisés par rapport à la propagation en espace libre. Pour modéliser la propagation dans une configuration complexe de radio-occultation, plusieurs hypothèses ont été faites. D'abord, le mouvement en trois dimensions des satellites a été négligé afin de décrire la propagation du champ dans un plan unique. Ensuite, le satellite émetteur a été fixé afin de calculer le champ à partir d'une seule source. Cette hypothèse est faite dans beaucoup de modèles d'inversion afin de simplifier les calculs. Enfin, la courbure de la Terre devant être prise en compte, le milieu a été modélisé par une interpolation des grilles WRF autour de la zone des points tangents. Cette hypothèse est justifiée par le fait que la réfraction du champ et son impact sur l'inversion proviennent essentiellement de la zone autour des points tangents. Dans un dernier temps, les valeurs de l'amplitude du champ au niveau du satellite récepteur sont utilisées avec la méthode de Sokolovskiy pour donner une estimation du profil de n le long des points tangents. Des tests numériques ont été présentés. D'abord une validation de la procédure a été montrée, en utilisant une grille canonique et symétrique construite avec un profil exponentiel standard pour n. L'observation du profil inversé et sa comparaison avec le profil directement relevé dans la grille au niveau des points tangents montrent une très bonne concordance. En effet, le profil inversé observé ne s'écarte pas de plus de 5% du profil relevé. Fort de cette validation, la procédure a été appliquée dans une grille réaliste issue de simulations WRF. Les données WRF n'allant pas au-delà de 20 km d'altitude, elles ont été complétées jusqu'à 100 km d'altitude par une grille symétrique exponentielle. L'inversion du profil de n dans ce cas de figure est également très précise puisque l'erreur par rapport au profil relevé est demeurée inférieure à 6%. Un dernier test a été effectué en symétrisant la grille WRF, afin d'observer le nouveau profil obtenu lorsque la grille est effectivement symétrique. La comparaison des profils avec et sans symétrie de la grille a justifié l'hypothèse de symétrie sphérique posée dans les modèles d'inversion. L'extension à la modélisation en 3D devrait montrer des performances très intéressantes pour le modèle GBAR. En effet, c'est un modèle qui permet de modéliser le champ de façon locale puisque les trajectoires et les enveloppes des faisceaux sont connues et décrites au cours de la propagation dans le milieu. Un modèle de type PWE-SSF doit résoudre l'ensemble du domaine, sans notion de localité, ce qui le rend beaucoup plus lourd que GBAR.

La procédure proposée dans ce chapitre s'articule autour de trois points. D'abord, le champ émis par le satellite GNSS, modélisé par une onde sphérique, est décomposé en somme de faisceaux gaussiens avant l'entrée du champ dans l'atmosphère. Dans un second temps, la propagation dans la grille d'interpolation se fait en utilisant la méthode GBAR avec des décompositions multi-faisceaux. Le champ est ainsi propagé jusqu'aux positions du satellite récepteur associées aux points tangents fixés.

  Dans le premier chapitre, le cadre spécifique de l'étude a été présenté : la réfraction troposphérique modélisée avec l'indice de réfraction n. Un état de l'art a également été effectué sur les principales méthodes de modélisation de la propagation : la méthode PWE-SSF et l'OG. La méthode PWE-SSF résout l'équation de propagation parabolique vers l'avant (sans prise en compte de la rétro-propagation) sous l'hypothèse que le champ se propage dans un cône centré autour d'une direction de référence. Ses principales limites ont été identifiées : la résolution itérative dans l'ensemble du domaine (qui implique des conditions rigoureuses aux limites du domaine) et sa lourdeur pour des grands domaines 2D et des domaines 3D. L'OG est une approche asymptotique en fréquence qui modélise la propagation par des tubes de rayons se propageant dans le milieu en vérifiant l'équation eikonale (pour la trajectoire et la phase) et l'équation de transport (pour l'amplitude). Deux limites ont été rappelées : l'existence de caustiques et la difficulté pour trouver le ou les rayon(s) atteignant un point d'observation spécifique dans le milieu. Enfin, le formalisme faisceau gaussien en milieu homogène a été présenté, ainsi que ses propriétés physiques.Dans le second chapitre, le formalisme faisceau gaussien en milieu inhomogène tel qu'il existe dans la littérature a été présenté. Son implémentation repose sur la résolution itérative de plusieurs équations décrivant sa trajectoire, sa phase au niveau de l'axe, ainsi que son enveloppe. Dans un second temps, une nouvelle formulation du faisceau gaussien en milieu inhomogène a été démontrée. Elle constitue la base du modèle développé dans le cadre de cette thèse, le modèle GBAR (Gaussian Beam for Atmospheric Refraction). Les équations de ce modèle décrivent la trajectoire, l'eikonale et l'enveloppe du faisceau gaussien de façon analytique. L'hypothèse de base pour leur démonstration repose sur l'approximation d'une faible valeur de gradient, et sur le fait que celui-ci soit localement vertical et constant. Cette double hypothèse correspond aux conditions de réfraction troposphérique identifiées pour notre étude. Des tests numériques ont ensuite été menés afin de cerner le domaine de validité de ces équations pour un faisceau dans un milieu canonique à gradient constant. La méthode PWE-SSF a été choisie comme référence pour comparer les résultats. Les tests ont été menés à la fréquence 1 GHz. Le critère fixé est une erreur quadratique moyenne, pour les champs complexes, inférieure à -20 dB à 100 km de distance. Le modèle a été validé pour des gradients allant jusqu'à -500 uN/km, pour des élévations comprises entre -3.0 • et 3.0 • et pour des largeurs de ceinture comprises entre 3 m (soit 10λ) et 300 m (soit 1000λ). Lorsque l'erreur est calculée avec les modules des champs plutôt que les champs complexes (qui eux intègrent l'erreur de phase), l'erreur reste insignifiante (de l'ordre de -100 dB) pour des élévations entre -10 • et 10 plus rapide que la méthode PWE-SSF puisque le calcul du champ peut se faire directement dans la zone demandée de par la nature analytique des équations.Dans le troisième chapitre, la propagation dans un milieu troposphérique réaliste a été considérée. Conformément aux sorties du modèle météo WRF, le choix a été fait de modéliser le milieu en cellules rectangulaires pour chacune desquelles est associé un gradient vertical et constant de n. Ce gradient est calculé à partir des variations de n du bord inférieur au bord supérieur de chaque cellule. La propagation d'un faisceau par le modèle GBAR dans un tel modèle a été expliquée. Elle repose sur la propagation de cellule en cellule de l'axe et de l'enveloppe du faisceau gaussien. Le gradient vertical et constant utilisé dans les équations analytiques est actualisé à chaque transition vers une nouvelle cellule. Pour traiter des cas de réfraction plus complexes qu'un gradient linéaire, le modèle GBAR a été couplé à une procédure de décomposition d'un champ en somme de faisceaux gaussiens appelée "décomposition multi-faisceaux". Celle-ci a un cadre d'application plus restreint que la procédure de décomposition de Gabor, puisqu'elle requiert que le champ soit régulier sur l'interface de décomposition. Cependant, ce cadre restreint est applicable dans le besoin visé par cette étude. D'autre part, la décomposition multi-faisceaux a le double avantage d'être plus rapide et de générer beaucoup moins de faisceaux que la décomposition de Gabor. Le modèle GBAR avec la procédure multi-faisceaux a été appliqué et validé pour la modélisation de la propagation d'un champ gaussien initial dans des gradients linéaires, bilinéaires et trilinéaires avec ou sans inversion de gradient. Un critère a été défini pour détecter la nécessité de redécomposer le champ. Il traduit une variation des distances relatives entre faisceaux adjacents résultant d'un phénomène local de réfraction. Finalement, le cas de grilles issues de simulations WRF a été traité. Il ressort d'abord que le modèle GBAR s'adapte à la complexité du problème : plus la réfraction est faible, moins les redécompositions sont nombreuses. Cela se traduit par un temps de calcul également plus faible. Il ressort également que dans tous les cas traités, la méthode GBAR offre des performances meilleures ou similaires (dans des cas complexes comme une violente et forte inversion de gradient) que la méthode PWE-SSF de référence.Dans le quatrième chapitre, la problématique de la radio-occultation a été étudiée. Le principe et la géométrie de la radio-occulation ont été rappelés : il s'agit d'inverser les signaux transmis entre satellites en orbite autour de la Terre pour estimer des profils de réfraction (et donc de pression, température...) dans l'atmosphère. Des méthodes d'inversion ont été présentées, en particulier la méthode de Sokolovskiy utilisant l'amplitude des signaux et se faisant sans procédure de Newton. Toutes ces méthodes supposent (sans post-traitement) la symétrie sphérique de l'atmosphère. S'il existe des configurations LEO-LEO, la plupart des utilisations de cette technique se font avec un satellite GNSS émetteur et un satellite LEO récepteur. Pour cette raison, le travail a consisté à reproduire et à simuler une série d'occultations entre un satellite GNSS et un satellite LEO correspondant à un ensemble de points fixés dans l'atmosphère.Des hypothèses ont été faites afin de simplifier la modélisation d'une telle configuration : le problème a été représenté en 2D et en fixant la position du satellite GNSS. Une première simulation a été représentée avec une grille canonique définie à partir d'un gradient de réfraction exponentiel sur une Terre sphérique. Elle a permis de valider la procédure en comparant le profil directement relevé dans la grille avec le profil issu de l'inversion, en utilisant la procédure de Sokolovskiy, de l'amplitude du champ calculée par la méthode GBAR. Le cas d'une grille quelconque a ensuite été considéré et validé. Le milieu de propagation atmosphérique a alors été modélisé en interpolant des grilles issues de simulations WRF, en considérant la sphéricité de la Terre. Enfin, une étude a été menée pour tenter de quantifier l'erreur générée par l'hypothèse de symétrie sphérique inhérente aux modèles d'inversion. Pour cela, la procédure a été appliquée dans une grille quelconque et dans la grille symétrique construite en rendant invariant le profil vertical central de n en fonction de la longitude partout dans la grille. Les deux profils ainsi obtenus ont été comparés à leurs profil relevé respectif. Des écarts similaires ont été constatés avec la grille symétrique et avec la grille originale. 'objectif initial de la thèse a été atteint dans la mesure où un nouveau modèle de propagation troposphérique a été développé à partir des faisceaux gaussiens. Ce modèle, appelé GBAR, est issu de développements mathématiques originaux permettant la description analytique de la propagation des faisceaux gaussiens en milieu inhomogène. Le domaine de validité, la précision et les performances du modèle GBAR permettent d'en faire un outil de choix pour la modélisation de la propagation troposphérique en conditions réalistes, y compris lorsque des phénomènes de réfraction locaux complexes sont présents.À partir des travaux menés au cours de cette thèse, plusieurs perspectives sont envisageables. En ce qui concerne le principe des équations GBAR utilisées avec les redécompositions multifaisceaux, il serait intéressant d'évaluer, la bande de fréquences autour de la laquelle il n'est pas nécessaire de recommencer les calculs de trajectoires. Ainsi, seules les décompositions seraient à recalculer lorsqu'il est nécessaire d'effectuer l'étude de la propagation sur une bande de fréquences autour d'une fréquence centrale. La méthode GBAR pourrait alors présenter un gain significatif en temps de calcul par rapport à la méthode PWE-SSF qui doit, elle, refaire tous les calculs pour chaque fréquence.Concernant l'application à la radio-occultation proposée dans le cadre de cette thèse, rappelons qu'elle reste très canonique. En effet, la géométrique a été ramenée en 2D pour faciliter les interprétations. Cependant l'application à une vraie configuration radio-occultation en 3D requiert de décrire une série de positions relatives émetteur-récepteur en 3D. L'extension du modèle au 3D semble relativement directe, puisqu'elle ne génère pas de complexité nouvelle tant que l'on néglige les effets de réfraction transverses au plan de propagation. Cette dernière hypothèse reste très réaliste car les plus forts gradients restent verticaux. On pourrait donc étendre le formalisme électromagnétique des faisceaux gaussiens en 3D, tout en considérant une recherche de trajectoire des faisceaux dans une grille atmosphérique 3D mais qui restent chacune dans des plans contenant émetteur-récepteur et centre de la Terre. Dans une telle configuration, les gains de temps de calculs par rapport à une approche PWE-SSF, ou en efficacité par rapport à une approche OG qui nécessite de trouver la trajectoire émetteur-récepteur, seront importants. L'intérêt de la méthode GBAR serait alors bien mis en valeur. D'autre part, la méthode d'inversion de Sokolovskiy, utilisée dans cette application, utilise l'amplitude des signaux. Il serait intéressant de tester le modèle GBAR avec d'autres méthodes utilisant le Doppler, la phase ou le retard. Kurkinski a montré [Kurk 00] que les deux types de méthodes pouvaient être combinées pour obtenir des estimations fines et précises de phénomènes complexes au niveau des couches atmosphériques, comme la détection et la localisation d'anomalies atmosphériques au voisinage des points tangents.Les cas traités dans ce manuscrit ne mettent pas en jeu de phénomènes de pertes. Autour de 1 GHz, la troposphère n'atténue pas le signal de façon significative. Il faut monter en fréquence au-dessus de 10 GHz environ pour que cet effet soit observable. Une façon simple de prendre en compte la part déterministe de cet effet est d'utiliser des valeurs complexes de l'indice de réfraction dans le milieu. Sa partie imaginaire traduit l'atténuation. L'utilisation d'indices complexes est directement compatible avec les équations du modèle GBAR.La présente étude ne prend pas en compte la scintillation. Ce phénomène peut être important dans l'ionosphère aux fréquences des systèmes GNSS et apparaît dans la troposphère aux fréquences supérieures à 10 GHz. La scintillation est classiquement modélisée par des modèles statistiques. La superposition de la réfraction telle que modélisée dans cette thèse avec un modèle statistique décrivant l'impact de la scintillation sur la propagation des faisceaux gaussiens est envisageable. Elle permettrait d'augmenter la complexité des phénomènes modélisables par la méthode, y compris les phénomènes qui interviennent dans la propagation ionosphérique des signaux GNSS.Un autre axe de développement intéressant serait la prise en compte de reliefs complexes. Lorsque la surface est faiblement rugueuse, un coefficient de réflexion traduisant le niveau du champ moyen réfléchi peut être appliqué. En ce qui concerne des surfaces plus accidentées, les travaux actuels sur les faisceaux gaussiens sont limités. L'interaction d'un faisceau avec un sol courbe illuminé sous incidence rasante pose problème. Plusieurs pistes peuvent cependant être envisagées : le développement de modèles supplémentaires sur les faisceaux gaussiens pour traiter ce type d'interaction ou l'hybridation avec une autre méthode qui traiterait les interactions du champ à basses altitudes.Le formalisme mathématique développé dans cette thèse n'est pas restreint au cadre de la propagation atmosphérique tant que les hypothèses de base sont acceptables : gradient vertical et constant inférieur à 500 uN/km en valeur absolue. Par conséquent, il peut être envisagé, d'utiliser le modèle GBAR pour l'étude de milieux inhomogènes non atmosphériques, sous réserve d'étudier la compatibilité du modèle avec les gradients de ces milieux. Reprendre les problématiques de propagation sismique et acoustique avec le formalisme proposé peut s'avérer intéressant en termes de performances, puisque les implémentations classiques sont itératives. D'autre part, il existe des lentilles à gradient d'indice, qui se composent de surfaces optiques planes et focalisent le signal s'y propageant via un changement continu de l'indice de réfraction à l'intérieur du matériau. Les fibres optiques pour télécommunications et l'imagerie utilisent ce type de lentille. Leurs gradients sont beaucoup plus importants que les gradients atmosphériques étudiés dans le cadre de cette thèse. Étudier l'utilisation du formalisme faisceau gaussien pour ce type de technologie pourrait être un travail de modélisation intéressant, d'autant plus qu'il a historiquement été introduit pour l'optique.

	Conclusion et perspectives

• . L'augmentation de l'erreur lorsque la phase est prise en compte s'explique par la difficulté de modéliser la phase sur de telles distances. En effet la phase varie énormément sur de grandes distances de propagation et des modèles asymptotiques dont le formalisme est très différent peuvent amener des écarts de cet ordre. D'autre part, pour certaines applications seule l'amplitude du champ est nécessaire (pour les applications radars ou de télécommunications par exemple). Dans l'ensemble des cas, le modèle GBAR est beaucoup L

  suit la définition de (B.13). Les dérivées dans (B.14) et (B.15) permettent de calculer le déplacement infinitésimal d'un point au voisinage du rayon, repéré par le vecteur r(s). En différenciant r(s), il vient ds + dq 1 e 1 (s) + dq 2 e 2 (s). (B.17) En notant que dr 0 /ds(s) = t(s) et en se servant des équations (B.14) et (B.15), il vient dr 2 = dr • r = h 2 ds 2 + dq 2 1 + dq 2 2 , (B.18)

					de 2 ds	(s) = -κ(s) sin χ(s)t(s),	(B.15)
	où χ(s) dr(s) =	dr ds	(s)ds +	dr dq 1	(s)dq 1 +	dr dq 2	(s)dq 2	(B.16)
	=	dr 0 ds	(s) + q 1	de 1 ds	(s) + q 2	de 2 ds	(s)

T (s )ds + χ(s 0 ), (B.13) où s e désigne la longueur curviligne à l'origine du rayon. Il vient alors que de 1 ds (s) = -κ(s) cos χ(s)t(s), (B.14)

3 Expression du facteur d'échelle h en fonction de l'indice de réfraction du milieu

  , h 2 et h 3 sont des fonctions de (x 1 , x 2 , x 3 ). Dans le cas correspondant à l'équation (B.18) les facteurs d'échelle sont h 1 = h, h 2 = 1 et h 3 = 1. En injectant l'expression correspondante du laplacien dans l'équation d'onde, il vient Dans le cas d'un application en deux dimensions, on se place dans le système de coordonnées (s, ρ). La coordonnée s renvoie toujours à la longueur curviligne et ρ renvoie à la coordonnée transverse au rayon. L'équation (B.21) appliquée à ce cas de figure devient = 2πf est la pulsation circulaire de l'onde. En insérant cette expression dans l'équation d'onde, dont la forme est désigne le temps et n = n(x, y, z) l'indice de réfraction atmosphérique au point de calcul, on obtient l'équation d'Helmholtz pour la variable U -à-dire que les termes de phase et d'amplitude sont indépendants. On appelle τ l'eikonale. En différenciant U par rapport à la variable x, il vient B.33) Pour s'assurer de la nullité de la partie réelle et de la partie imaginaire, il faut que les deux équations suivantes soient satisfaites

							∆W -	n 2 c 2	∂ 2 W ∂t 2 = 0,	(B.24)
	où t ∆ +	ω 2 n 2 c 2 U = 0.	(B.25)
	On suppose maintenant que U peut s'écrire
					U = exp(jωτ (x, y, z))A(x, y, z),	(B.26)
	c'est∂U ∂x	= exp(jωτ ) jω	∂τ ∂x	+	∂A ∂x	,	(B.27)
	d'où la dérivée seconde peut être déduite		
		∂ 2 U ∂x 2 = exp(jωτ ) jω	∂τ ∂x	jω	∂τ ∂x	A + jω	∂ 2 τ ∂x 2 A + jω	∂τ ∂x	∂A ∂x	+	∂ 2 A ∂x 2	(B.28)
				= exp(jωτ ) -ω 2 ∂τ ∂x			2	+ jω 2	∂τ ∂x	∂A ∂x	+	∂ 2 τ ∂x 2 A +	∂ 2 A ∂x 2 .	(B.29)
	Afin d'alléger l'écriture, les notation nuivantes sont introduites
					3 ∇τ = h 1 ∂u ∂x 1	+ ∂τ ∂x	∂ ∂x 2 e x +	h 1 h 3 h 2 ∂τ ∂y e x + ∂u ∂x 2 ∂τ ∂z	+ e x	∂ ∂x 3	h 1 h 2 h 3	∂u ∂x 3	,	(B.20) (B.30)
	∇τ + < ∇τ, ∇A >= 2 = ∂τ ∂x ∂u ∂s ∂ ∂q 1 h ∂u ∂q 1 ∂τ ∂x 2 ∂A + + ∂x En insérant U = exp(jωτ )A dans l'équation d'Helmholtz (B.25), il vient ∂τ ∂y 2 + ∂τ ∂z 2 où u, h 1 1 h ∂ ∂s 1 h ∂ ∂q 2 h ∂u -n 2 c 2 ∂ 2 u ∂t 2 = 0. + ∂τ ∂y ∂A ∂y + ∂τ ∂z ∂A . ∂z ∂q 2	(B.31) (B.21) (B.32)
	∆ +	ω 2 n 2 c 2 U = exp(jωτ ) ω 2 n 2 c 2 -∇τ
	∂ ∂s	1 h(s, ρ)	∂u ∂s	(t, s, ρ) +	∂ ∂ρ	h(s, ρ)	∂u ∂ρ	(t, s, ρ) -h(s, ρ)	n(s, ρ) 2 c	∂ 2 u ∂t 2 (t, s, ρ) = 0.	(B.22)
	L'équation (B.22) donne l'équation (2.2) après développement des dérivées partielles. ∇τ 2 = n 2 c 2 ,	(B.34)
						2 < ∇τ, ∇A > +∆τ = 0.	(B.35)
	L'équation (B.34) est appelée « équation eikonale »et l'équation (B.35) est appelée « équation
	de transport ».									

B.

B.3.1 Équation eikonale et équation de transport

L'équation eikonale et l'équation de transport sont obtenues en cherchant une onde harmonique de la forme W (x, y, z, t) = exp(-jωt)U (x, y, z), (B.23) où ω 2 A + jω 2 < ∇τ, ∇A > +∆τ A + ∆A = 0. (B.3.

2 Résolution de l'équation eikonale par le fonctionnel d'Euler B.3.2.1 Principe de Fermat On

  considère un milieu en trois dimensions caractérisé par la valeur de son indice de réfraction n = n(x, y, z) en tout point. On se donne deux points A et B fixés dans ce domaine, et on s'intéresse au temps de trajet pour aller de A vers B. Le trajet est caractérisé par trois variables de la longueur curviligne s, tel que

  La seule possibilité, pour que cette valeur soir vraiment minimum, c'est que la dépendance linéaire (c'est-à-dire au premier ordre) soit nulle. En appliquant ceci à la fonction T , il vient δT = 0. (B.47) C'est pour cette raison que seules les termes en δx du premier ordre ont été explicitées dans (B.44), les termes d'ordres supérieurs étant regroupés dans O(δx) 2 . L'objectif est maintenant de reprendre (B.46) afin de faire apparaître l'intégrale d'une fonction multipliée par δx. Ceci se fait en intégrant δT par parties : Dans le cas étudié, il est supposé que les extrémités A et B du trajet sont fixeés. Par conséquent, le permier terme est nul. En définissant la fonction Ce sont les équations d'Euler sous forme Hamiltonienne. C'est un système de deux équations différentielles du premier ordre en x(s) et p(s). L'extension de ce développement au cas en trois dimensions se fait en définissant les composantes du vecteur lenter selon , p 2 , p 3 ; x, y, z) = p 1 ẋ + p 2 ẏ + p 3 ż -L( ẋ, ẏ, ż; x, y, z). 1 dx + p 2 dy + p 3 dz -Hds, (B.62) dont est extraite la première variation δT = p 1 dx + p 2 dy + p 3 dz Lorsque l'étude se fait dans l'espace (x, y, z), alors les grandeurs x 1 , x 2 et x 3 sont respectivement remplacées par x, y et z. Dans le cas où a est fixé à l'unité,

		p 1 =	∂L ∂ ẋ , p 2 =	∂L ∂ ẏ , p 3 =	∂L ∂ ż .	(B.60)
	L'expression du Hammiltonien en fonction du Lagrangien s'écrit
	H(p 1 (B.61)
	Le fonctionnel prend la forme suivante				
	(B)										(B)
	T =	L( ẋ, ẏ, ż; x, y, z)ds =
	(A)										(A)
		(A) (B)	+		(B) (A)		ẋ -	∂H ∂p 1	δp 1 + ẏ -	∂H ∂p 2	δp 2 + ż -	∂H ∂p 3	δp 3
						-ṗ1 -	∂H ∂x	δx -ṗ2 -	∂H ∂y	δy -ṗ3 -	∂H ∂z	δz ds
											(B.63)
	Les équations d'Euler sont obtenues en annulant chaque terme dans l'intégrande
			ẋ =	∂H ∂p 1	, ṗ1 =	dp 1 ds	= -	∂H ∂x	,	(B.64)
			ẏ =	∂H ∂p 2	, ṗ2 =	dp 2 ds	= -	∂H ∂y	,	(B.65)
			ż =	∂H ∂p 3	, ṗ3 =	dp 3 ds	= -	∂H ∂z	.	(B.66)
	La suite du raisonnement se fait en supposant que l'Hamiltonien peut être écrit sous la forme
	générale	H(p i , x i ) =	1 a		(p i x i ) a/2 -	n a c a , i = 1, 2, 3,	(B.67)
	où a est une quantité réelle. Avec cette expression, les équations d'Euler sur les p i prennent la
	forme		dp i ds	=	1 a		∂ ∂x i	n c	a	, i = 1, 2, 3.	(B.68)
				dp i ds	=	∂ ∂x i	n c	, i = 1, 2, 3,	(B.69)
	ce qui peut se mettre sous la forme vectorielle
		δT =	∂L ∂ ẋ δ| (B) (A) +	(B) (A)	∂L ∂x	-	d ds	∂L ∂ ẋ	δxds.	(B.48)
				f (s) =	∂L(s) ∂x(s)	-	d ds	∂L(s) ∂ ẋ(s)	,	(B.49)

p

L'équation d'onde (ou équation de Helmholtz) est établie depuis les équations de Maxwell de l'électromagnétisme. L'équation parabolique (ou PWE pour Parabolic Wave Equation) est une approximation de l'équation d'onde, obtenue en faisant l'hypothèse que l'onde se propage dans un cône de référence orienté dans une direction fixée. L'équation parabolique a été développée dans les années 1940 lorsque les scientifiques Leontovich [Leon 46] et Fock[Fock 65] ont cherché de nouvelles méthodes de modélisation de la diffraction des ondes électromagnétiques autour de la Terre. L'introduction de l'hypothèse paraxiale leur a permis de résoudre les équations différentielles elliptiques décrivant le comportement de l'onde. Avec l'avènement des puissances de calcul accrues par le développement de l'informatique, des méthodes numériques ont été construites sur la base de ce travail. En 1973, Hardin et Tappert [Hard 73a] ont développé l'algorithme Split-Step Fourier pour la résolution de l'équation d'onde parabolique (PWE-SSF) afin de modéliser la propagation en milieu inhomogène. D'autres méthodes basées sur l'approche PWE-SSF ont également été utilisées pour traiter des cas d'ondes acoustiques sous-marines [Tapp 77], puis pour l'étude des anomalies de propagation micro-ondes troposphériques [Ko 83]. À noter que d'autres travaux[Feit 78] ont exploité les possibilités offertes par l'équation paraxiale en proposant une résolution numérique valable pour un cône de propagation ayant une large

1.3.4 Lancer et tracé de rayons dans la troposphèrePour des incidences rasantes la réfraction nécessite une modélisation adaptée à une description déterministe plus fine du milieu. Les techniques lancer ou tracé de rayons peuvent être utilisées. Le lancer de rayons consiste à modéliser l'émission de rayons depuis l'émetteur en fixant un pas angulaire séparant l'élévation entre deux rayons adjacents. Les trajectoires des rayons dans le milieu sont observées et les points qu'ils atteignent sont constatés a posteriori. Le tracé de rayon consiste à se placer dans la perspective inverse. En fixant un point d'observation, le rayon partant de l'émetteur et atteignant le point d'observation est recherché. Plusieurs algorithmes de lancer et de tracé de rayons sont disponibles dans la littérature [Krav 90] [Webs 92] [Lian 98] [Cate 98]. L'approche proposée par Kravstov se place en géométrie cartésienne, après transformations conforme du problème. Le coindice de réfraction modifié M est utilisé en conséquence. Le profil de N est supposé linéaire dN/dz. La trajectoire d'un rayon est déterminée par une équation de parabole et les points du rayons sont ceux vérifiant l'équation de la parabole. D'autres techniques plus générales reposent sur la propagation numérique itérative des rayons, en fixant un pas élémentaire le long de l'axe. Le rayon est constitué d'une série de points dont les positions sont déterminées par application de la loi de Snell-Descartes à chaque itération. Ceci peut être fait en géométrie sphérique [Gego 14] [Choi 15] ou en géométrie Terre plate [Arno 86] [Smul 93] [Dott 01b]. Pour le tracé de rayons, un asservissement de la direction de lancer du rayon au niveau de l'émetteur peut être utilisé afin de minimiser l'écart entre le rayon et le point à atteindre [Yeh 14] [Prie 13]. La Fig. 1.12 illustre le cas d'un lancer de rayons avec un émetteur à 150 m d'altitude, pour une fréquence de 3.25 GHz et une ouverture d'antenne à -3 dB de 1 • . Le profil de coindice modifié compte une première partie linéaire entre 0 et 150 m avec un coefficient positif, une deuxième partie linéaire entre 150 et 200 m avec un coefficient négatif et une troisième partie linéaire au-dessus de 200 m avec de nouveau un coefficient positif. Les coefficients positifs de la première et de la dernière partie linéaire s'explique par la transformation Terre plate qui

L'optique géométrique pour la modélisation de la propagation électromagnétique dans la troposphère a deux avantages principaux. D'abord, elle permet une interprétation physique rapide des résultats en décomposant le champ total en somme de trajectoires le long desquelles l'onde est localement plane (décomposition asymptotique en série de rayons). Ensuite, le tracé de rayons est une procédure relativement rapide comparée aux méthodes de résolution de l'équation parabolique (différences finies, Split-Step, éléments finis). C'est aussi une méthode asymptotique dans le sens où elle gagne en exactitude lorsque la fréquence tend vers l'infini. Lorsque la fréquence devient trop basse, l'optique géométrique comporte une erreur non négligeable [Namb 33]. En revanche elle souffre de deux inconvénients majeurs : l'existence de caustiques et la recherche de rayons. Les caustiques sont des zones où la largeur du tube de rayon s'annule, créant localement une singularité pour laquelle le champ est infini. Les caustiques sont possibles car la matrice de courbure pour l'optique géométrique est réelle. Les faisceaux gaussiens, comme expliqué dans 1.4, ne souffrent pas de cette limitation car la matrice de courbure est complexe. La deuxième limite de la méthode concerne la recherche de rayons. Celle-ci consiste à déterminer quels sont les rayons émis depuis la source qui atteignent un point d'observation donné. C'est en général la problématique la plus complexe.

Dans le chapitre 2, le faisceau gaussien en milieu inhomogène est introduit en tant que solution de l'équation de propagation en coordonnées curvilignes. L'écriture de cette équation n'est pas triviale et nécessite de passer par les éléments de géométrie vectorielle avec les formules de Fresnet. Par souci de généralité, la démonstration est faite en 3D, puis réduite au cas 2D spécifique à l'étude de cette thèse. D'autre part, cette équation fait intervenir le facteur d'échelle h. Ce facteur d'échelle est utilisé pour décrire un tube de rayons autour d'un rayon de référence. C'est une variable des coordonnées spatiales. Puisque l'objectif est d'utiliser le systèmes de coordonnées curvilignes à deux dimensions (s, ρ), cette annexe s'attache à démontrer l'expression de h en fonction de s et de ρ. La démarche est organisée en trois étapes. La première est la formulation de l'équation eikonale et de l'équation de transport. Elles décrivent respectivement l'évolution de la phase et de l'amplitude du champ associé à un tube de rayons. C'est l'équation eikonale qui est utilisée pour la démonstration proposée. La deuxième étape concerne donc la résolution de l'équation eikonale, d'où est définie l'équation d'Euler. La dernière étape s'attache à la résolution de l'équation d'Euler formulée sous forme Hamiltonienne. L'opérateur hamiltonien H est un opérateur mathématique qui permet de décrire par des considérations énergétiques l'état d'un système physique. Cette dernière étape permet d'établir l'expression de h dans le système de coordonnées curvilignes (s, ρ).B.2 Démonstration de l'équation d'onde en coordonnées curvilignes B.2.1 Formules de FrenetDans le cadre de l'OG, on veut construire une base vectorielle locale centrée en un point d'un rayon considéré. Les propriétés de ces vecteurs sont appelées Formules de Frenet. Le raisonnement est d'abord mené en trois dimensions pour établir les formules générales.

C.1 Position du poblème

Le modèle GBAR propose une formulation analytique du formalisme faisceau gaussien en milieu inhomogène. Le champ dans un tel milieu est exprimé au voisinage de l'axe du faisceau par les coordonnées curvilignes (s, ρ), s étant la longueur curviligne le long de l'axe et ρ la distance entre le point d'observation et l'axe du faisceau. Pour exprimer le champ, il est donc nécessaire de déterminer le point de l'axe du faisceau qui est le plus proche du point d'observation. Pour localiser ce point, la procédure de Newton, décrite dans cette annexe, est utilisée.

C.2 Description de la procédure

La procédure est initialisée en choisissant comme point P 0 le point de l'axe du faisceau ayant la même coordonnée x M de M dans la direction horizontale. En partant de P 0 , le centre curviligne est approché par itération selon la procédure suivante. Soient notées (x 0 , z 0 ) les coordonnées de P 0 , avec x 0 = x M . La pente a 0 de l'axe au point P 0 est calculée pour déterminer entièrement l'équation de la droite (T 0 ) tangente à l'axe au point P 0 . Soit