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Abstract

In the engineering area (e.g. aerospace, automotive, biology, circuits), dynamical systems are
the basic framework used for modeling, controlling and analyzing a large variety of systems and
phenomena. Due to the increasing use of dedicated computer-based modeling design software,
numerical simulation turns to be more and more used to simulate a complex system or phe-
nomenon and shorten both development time and cost. However, the need of an enhanced model
accuracy inevitably leads to an increasing number of variables and resources to manage at the
price of a high numerical cost. This counterpart is the justification for model reduction.

For linear time-invariant systems, several model reduction approaches have been effectively
developed since the 60’s. Among these, interpolation-based methods stand out due to their
flexibility and low computational cost, making them a predestined candidate in the reduction of
truly large-scale systems. Recent advances demonstrate ways to find reduction parameters that
locally minimize the H2 norm of the mismatch error.

In general, a reduced-order approximation is considered to be a finite dimensional model. This
representation is quite general and a wide range of linear dynamical systems can be converted
in this form, at least in principle. However, in some cases, it may be more relevant to find
reduced-order models having some more complex structures. As an example, some transport
phenomena systems have their Hankel singular values which decay very slowly and are not easily
approximated by a finite dimensional model. In addition, for some applications, it is valuable to
have a structured reduced-order model which reproduces the physical behaviors. That is why, in
this thesis, reduced-order models having delay structures have been more specifically considered.

This work has focused, on the one hand, in developing new model reduction techniques for
reduced order models having delay structures, and, on the other hand, in finding new applications
of model approximation. The major contribution of this thesis covers approximation topics and
includes several contributions to the area of model reduction. A special attention was given to
the H2 optimal model approximation problem for delayed structured models. For this purpose,
some new theoretical and methodological results were derived and successfully applied to both
academic and industrial benchmarks.

In addition, the last part of this manuscript is dedicated to the analysis of time-delayed
systems stability using interpolatory methods. Some theoretical statements as well as an heuristic
are developed enabling to estimate in a fast and accurate way the stability charts of those systems.
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Résumé

Dans le domaine de l’ingénierie (par exemple l’aéronautique, l’automobile, la biologie, les cir-
cuits), les systèmes dynamiques sont le cadre de base utilisé pour modéliser, contrôler et analyser
une grande variété de systèmes et de phénomènes. En raison de l’utilisation croissante de logiciels
dédiés de modélisation par ordinateur, la simulation numérique devient de plus en plus utilisée
pour simuler un système ou un phénomène complexe et raccourcir le temps de développement et
le coût. Cependant, le besoin d’une précision de modèle améliorée conduit inévitablement à un
nombre croissant de variables et de ressources à gérer au prix d’un coût numérique élevé. Cette
contrepartie justifie la réduction du modèle.

Pour les systèmes linéaires invariant dans le temps, plusieurs approches de réduction de
modèle ont été effectivement développées depuis les années 60. Parmi celles-ci, les méthodes
basées sur l’interpolation se distinguent par leur souplesse et leur faible coût de calcul, ce qui
en fait un candidat prédestiné à la réduction de systèmes véritablement à grande échelle. Les
progrès récents démontrent des façons de trouver des paramètres de réduction qui minimisent
localement la norme H2 de l’erreur d’incompatibilité.

En général, une approximation d’ordre réduit est considérée comme un modèle de dimen-
sion finie. Cette représentation est assez générale et une large gamme de systèmes dynamiques
linéaires peut être convertie sous cette forme, du moins en principe. Cependant, dans certains
cas, il peut être plus pertinent de trouver des modèles à ordre réduit ayant des structures plus
complexes. A titre d’exemple, certains systèmes de phénomènes de transport ont leurs valeurs
singulières Hankel qui se décomposent très lentement et ne sont pas facilement approchées par
un modèle de dimension finie. En outre, pour certaines applications, il est intéressant de dis-
poser d’un modèle structuré d’ordre réduit qui reproduit les comportements physiques. C’est
pourquoi, dans cette thèse, les modèles à ordre réduit ayant des structures de retard ont été plus
précisément considérés.

Ce travail a consisté, d’une part, à développer de nouvelles techniques de réduction de mod-
èle pour des modèles à ordre réduit avec des structures de retard et, d’autre part, à trouver
de nouvelles applications d’approximation de modèle. La contribution majeure de cette thèse
couvre les sujets d’approximation et inclut plusieurs contributions au domaine de la réduction
de modèle. Une attention particulière a été accordée au problème de l’approximation du modèle
optimale pour les modèles structurés retardés. À cette fin, de nouveaux résultats théoriques et
méthodologiques ont été obtenus et appliqués avec succès aux repères académiques et industriels.

De plus, la dernière partie de ce manuscrit est consacrée à l’analyse de la stabilité des sys-
tèmes retardés par des méthodes interpolatoires. Certaines déclarations théoriques ainsi qu’une
heuristique sont développées permettant d’estimer de manière rapide et précise les diagrammes
de stabilité de ces systèmes.





Notation

N Set of natural numbers including zero
N∗ N\{0}
Z Set of integers
R Set of real numbers
R+ Set of strictly positive numbers
R− Set of strictly negative numbers
Rn Set of real vectors with dimension n
R∗ Set of non-null real numbers
C Set of complex numbers
i Imaginary unit, i.e., i =

√
−1

Re(s) and Imag(s) Real and imaginary parts of s ∈ C respectively
s Complex conjugate of s ∈ C
C+ Open right-half plane
C− Open left-half plane
Rny×nu and Cny×nu Set of real and complex matrices with dimensions ny × nu
AT ∈ Cnu×ny Transpose of matrix A ∈ Cny×nu
A∗ ∈ Cnu×ny Hermitian transpose of matrix A ∈ Cny×nu
dim Dimension of vector space
‖b‖2 or ‖A‖2 Vector and matrix 2 norm
‖A‖F Frobenius matrix norm
λmax(A) and σmax(A) Largest eigenvalue and largest singular value of matrix A
⊕ Direct sum between vector spaces
G Dynamical system/full order model
Ĥ Reduced order model
s Laplace transform variable
G(s) Transfer function of the dynamical system G
G′(s) Derivative of the function G(s) with respect to s
Gd and Ĥd Dynamical system/Reduced order model having a delay structure
order(G) Dimension of the state space of a dynamical system G.
H2 (or H2(C+)) and H∞ Hardy spaces of holomorphic functions on C+

H2(C−) Hardy space of holomorphic functions on C−
L2(iR) L2(iR) = H2(C+)⊕H2(C−)
‖G‖H2 and ‖G‖H∞ H2 and H∞ norm of the system G ∈ H2 ∩H∞
‖G‖L2(iR) L2(iR) norm of the system G ∈ L2(iR)
Gs Stable part of G ∈ L2(iR), i.e., projH2(C+)(G) = Gs

Ga Unstable part of G ∈ L2(iR), i.e., projH2(C−)(G) = Gs

〈G,H〉H2 and 〈G,H〉L2(iR) H2 and L2(iR) inner products
In Identity matrix of size n



Acronyms
LTI Linear Time-Invariant
TDS Time-Delay Systems
DDEs Delay-Differential Equation
LTI TDS Linear Time-Invariant Time-Delay Systems governed by a retarded DDEs
ROM Reduced order model (in general denoted by Ĥ or Ĥd with the hat symbol)

Algorithms
IRKA Iterative Rational Krylov Algorithm
TF-IRKA IRKA based on transfer function evaluations
MIMO IO-dIRKA IRKA version including input and output delays (Chapter 5)
dTF-IRKA TF-IRKA version including a single state-delay (Chapter 6)
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Chapter 1

Context and motivations

1.1 Context and problem formulation
Modeling is an essential step to well understand and interact with physical dynamical phenom-
ena. It, among other, permits to analyze, simulate, optimize and control dynamical processes.
Examples range from mechanical systems such as the resonance of a suspension bridge, the dy-
namics of flexible beam and the vibration of a drum, to biological ones such as the enzyme
kinetics, the gene expression and the circulatory system. Models are extensively used in differ-
ent domains in order to predict the dynamical behavior of a system without the need of any
experimentation. Thereby, modeling has several advantages for the design of a new product,
e.g., avoidance in building expensive prototypes, predicting behavior in extreme scenarios and
accelerating the design process.

The interest of a model lies in its ability to describe the reality as accurately as possible.
Increasing demands on the accuracy typically bring about higher complexity of the model. In
general, dynamical models are described by equations and their complexity is somehow linked
to its number of equations and variables. Depending on the complexity of the physical system
to be modeled, the means used to build the mathematical model and the desired accuracy of the
model, this model can be more or less complex and representative. Although complex models
have a high degree of representativeness with respect to reality, in practice, due to numerical
limitations, they are problematic to manipulate. Actually, complex models are difficult to analyze
and to control due to limited computational capabilities, storage constraints and finite machine
precision. Therefore, a good model have to reach a trade-off between its accuracy and complexity.

However, some models are naturally designed to be very complex. This generally happens
in two scenario : (i) the phenomena is governed by partial differential equations requiring a
discretization (e.g., transport phenomena, Black-Scholes equations, quantum mechanics, etc) (ii)
the coupling of a large set of components (e.g., electronic microchip, the international space
station, satellite, etc). Numerical modeling tools (such as identification methods, finite ele-
ments methods, etc.) do not necessarily enable to restrain the complexity without loosing too
much information leading to large-scale models (or high-fidelity models). In this context, an a
posteriori method is generally preferred to reduce the complexity of the original, high-fidelity
representation.

Model approximation (or model reduction) techniques serve to this purpose. Their general
goal is to replace an existing high fidelity model by another one which is just as well suited for
the engineering task but of lower complexity. Thereby, efficiency can be dramatically increased,
as comparable results can be produced in far less time. The difficulty is to identify and extract
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1.2. Motivating examples

the components of the large-scale model that are pertinent while discarding the unnecessary part
of the model. As mathematical models may take very different forms, depending on the kind of
system they describe, every type of model requires customized techniques for its simplification.

In this thesis, continuous dynamical systems are considered. They can be represented, for
example, by ordinary differential equations, differential algebraic equations or partial differential
equations which can be linear, non-linear, time-invariant or time-variant. Among the possible
representations, Linear Time Invariant (LTI) models are widely used, both in industry and
research. Indeed, for many physical systems, they are sufficiently representative around an
equilibrium point and numerous tools exist in order to analyze and control them. For this kind
of models, complexity results in a large state-space vector and one talks of large-scale model.

Approximation of LTI models has been extensively studied over the years and two main steps
can be distinguished. Initially, some well-known methods such as the Balanced Truncation and
the Hankel norm approximation have been developed by [Moore, 1981] and [Glover, 1984]. Then,
the extensive use of numerical modeling tools has led to modify the conception of large-scale
models which can now have thousands or even millions of states. Standard model approximation
methods (in their basic form) were not adapted anymore for very large-scale systems due to
their inherent numerical complexity. Hence, original techniques that are numerically cheaper
have been developed.

In general, a reduced-order approximation is considered to be a finite dimensional model Ĥ
represented by a differential equation as follows1 :

Ĥ :=
{
Êẋ(t) = Âx(t) + B̂u(t)
y(t) = Ĉx(t) + D̂u(t) (1.1)

This representation is quite general and a wide range of linear dynamical systems can be
converted to this form, at least in principle. However, in some cases, it may be more relevant
to find Reduced-Order Model (ROM) having some more complex structures. Indeed, (i) some
transport phenomena systems have their Hankel singular values which decay very slowly and are
not easily approximated by a ROM as (1.1), (ii) for some applications, it is valuable to have
structures in the reduced-order model which represents the real behavior, e.g., input and output
delays or second-order behavior. In addition, the problem of model approximation for a family
of reduced-order models more general than (1.1) is an improvement. That is why we have chosen
in this thesis, to address the problem of approximating systems by time-delay structured models.

This thesis tries to bring together the methodology used in optimal H2 model approximation
[Gugercin et al., 2008] and the Loewner framework [Mayo and Antoulas, 2007], in order to find
model approximations presenting time-delay structures. Let us now introduce some examples of
system that will be used in this work.

1.2 Motivating examples
In this section, we present three examples illustrating the model approximation need and used
along this thesis as numerical applications. The first one represents a large-scale system from
[Leibfritz and Lipinski, 2003], the second one corresponds to a system having an input-delay
behaviors from [Beattie and Gugercin, 2011] and the third one [Dalmas et al., 2016] is an infinite
dimensional model represented by its irrational transfer function.

1The notation will be formally introduced in chapter 2.
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Clamped beam model

This example arises from the theory of elasticity. A great amount of flexible structures are
modeled by the fundamental mechanics laws. In particular, beam structures are usually modelled
by the Euler–Bernoulli beam equation. This is a partial differential equation and is used for
engineering purposes like simulation, optimization, analysis and control, for which a discretization
appears necessary.

The model considered here represents one of this discretized (finite dimensional) beam model
obtained by spatial discretization of an appropriate partial differential equation. The input
represents the force applied to the structure at the free end, and the output is the resulting
displacement. This model has 348 states whose poles are given in Figure 1.1. Its frequency
behavior is given by its Bode plot in Figure 1.2.

We have chosen this particular example to illustrate possible difficulties that can arise through-
out the reduction process. As it is shown, the original transfer function exhibits many peaks.
Interpreting model approximation as an interpolation problem, coming up with a good reduced
interpolant is very difficult since the function is not very smooth and, hence, a large number of
interpolation points is needed for a successful reproduction. Moreover, a central question for the
performance of a reduced-order model is the location of the interpolation points and throughout
this thesis we provide several (known) statements about optimality with respect to a specific
accuracy metric.
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Figure 1.1: Poles of the discretized clamped beam model of order 348.
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Figure 1.2: Bode diagram of the discretized clamped beam model of order 348.

Ladder network system

The following example is the Ladder network system proposed in [Beattie and Gugercin, 2011]
and [Gugercin et al., 2012] in the context of Port-Hamiltonian systems. This model corresponds
to a linear ladder network circuit as it is shown on Figure 1.3. In the article, the system is
modeled by a finite dimensional state-space representation, i.e., it is described by :

GLadder :=
{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (1.2)

and it has 100 states. Its impulse response is represented on Figure 1.4. Even if the system is
represented by a finite dimensional system, it has an intrinsic input-delay behavior (with delay
around 19s). This example leads to consider and look for an approximation having an input-delay
structure.
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Figure 1.3: Ladder network circuit topology. Figure from [Beattie and Gugercin, 2011].
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Figure 1.4: Impulse response of Ladder systems with intrinsic delay behavior.

Open channel flow for hydroelectricity
Run-of-the-river power plants rely on open-channel hydraulic systems. These large distributed
systems are characterized by non-linearities and operating point dependent dynamic behaviors.
The following example, taken from [Dalmas et al., 2016], model an open-channel hydraulic sys-

7



1.2. Motivating examples

tems. The physical equations on which this work is done are Saint-Venant equations applied to
a non-rectangular cross section channel, i.e.,

∂S

∂t
+ ∂Q

∂x
= 0

∂Q

∂t
+ ∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J),

(1.3)

where x ∈ [0;L] is the spatial variable, H(x, t) the water depth, S(x, t) the wetted area, and
Q(x, t) the discharge. These later are two coupled non-linear hyperbolic partial differential
equations which are linearized (see [Dalmas et al., 2016]) and converted, by means of the Laplace
transformation, into the following parameter dependent irrational transfer function :

Hflow(s,Q0) =
[
Ge(s,Q0) −Gs(s,Q0)

] [qe(s)
qs(s)

]
(1.4)

with
Ge(s,Q0) = λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(s,Q0) = λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

(1.5)

and
λ1,2(s) = V0s+ ϕ0 ±

√
c20s

2 + Φ0s+ ϕ2
0

δ0
, (1.6)

where qe and qs, representing the inflow and outflow receptively, are the inputs, and Hflow,
representing the measured water depth, is the output. The parameters x, B0, L, V0, φ0, Φ0,
c0, ϕ0 and δ0 are given by the physics of the problem and some nominal values can be found in
[Dalmas et al., 2016]. In addition, Hflow depends on the nominal flow Q0. The transfer function
(1.4) is clearly irrational. For a frozen Q0, Figures 1.5 and 1.6 shows its frequency behavior.
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Figure 1.5: Bode magnitude diagram of the irrational transfer function of (1.4).
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Figure 1.6: Bode phase diagram of the irrational transfer function of (1.4).

Experimentation and a great number of publications show that, even if this model does not
present an explicit input/output delay, it behaves as having an intrinsic input-delay. Hence, it
may be relevant to find reduced-order models having some input/output delays.

1.3 Problem formulation
Classical model approximation problem
The classical model approximation problem can be stated as follows :

Problem 1.1 (Classical model approximation problem). Given a continuous LTI
model Ga of order N represented by:

G :=
{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (1.7)

where E,A ∈ RN×N , B ∈ RN×nu , C ∈ Rny×N , D ∈ Rny×nu , the model approximation
problem consists in finding Ĥ of order n� N given by the following realization:

Ĥ :=
{
Ê ˙̂x(t) = Âx̂(t) + B̂û(t)
ŷ(t) = Ĉx̂(t) + D̂û(t) (1.8)

where Ê, Â ∈ Rn×n, B̂ ∈ Rn×nu , Ĉ ∈ Rny×n, D̂ ∈ Rny×nu , which accurately reproduces the
behavior of the full-order model Gb.

aThose notions will be formally defined in Chapter 2
bAt this point, to reproduce the behavior seems a very vague sentence. This notion will be quantified

with the introduction of system norms. That will be presented in Chapter 2.
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If finding the model approximation is more computationally expensive than to work directly with
the full-order model G, then it is not worth approximating it. That is why a procedure intending
to construct a model approximation Ĥ should satisfy the following properties.

Remark 1.2 (Properties of a model approximation technique). The procedure to find the
model approximation Ĥ should satisfy the following properties:

1. The approximation error ‖y−ŷ‖a is small. In addition, the existence of a global error
bound is not required but recommended;

2. Systems properties (like stability) should be preserved;

3. The procedure have to be computationally efficient.
aThis notion will be formally defined in Chapter 2.

The reader should note that Problem 1.1 does not take into account systems G which cannot be
represented by a finite dimensional realization as (1.7), e.g., time-delay systems and irrational
transfer functions. In general, the family of infinite dimensional models cannot be represented by
(1.7). This family includes time-delay systems, transport equations, and more generally, systems
governed by a partial differential equation.

In this thesis, we considered that the full-order model G that will be approximated can be
represented by one of the three representations:

1. Finite dimensional realization: In this case, system G is represented by its time-domain
realization of the form (1.7). In this case, its transfer function2 is given by :

G(s) = C(sE −A)−1B +D (1.9)

and it is a matrix rational function.

2. Irrational transfer function: In this case, system G is represented by its frequency
behavior, i.e., by a matrix complex function :

G : C → Cny×nu
s 7→ G(s) , (1.10)

where nu is the number of inputs and ny is the number of outputs. Notice that if G(s)
is a rational transfer function, then it is possible to find a finite dimensional realization
(E,A,B,C) such that C(sE −A)−1B = G(s). Otherwise, G(s) is said to be an irrational
transfer function.

3. Frequency data: In this case, G is considered to be represented by a transfer function
G(s) for which only a partial knowledge is considered to be known. As an example, for
a set of different complex numbers {σk}nk=1, the only knowledge available from G is the
values of

G(σk) = wk ∈ Cny×nu , for k = 1, . . . , n.3 (1.11)

Additionally, we are interested in finding a reduced-order model Ĥ in a family of models that
is bigger than the one modeled by (1.8). We have chosen to work with the family of models having

2defined formally in Chapter 2.
3In Chapter 3, the notion of tangential interpolation data will be introduced which is weaker than point-wise

interpolation of (1.11).
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a time-delay structure, e.g., input/output delays and state-delays. For this family of models, a
great variety of simulation, analysis, optimization and control techniques were already developed
[Richard, 2003; Briat, 2015; Michiels and Niculescu, 2014] and a great amount of systems can be
represented by Time-Delay Systems (TDS).

In this work we consider a model approximation problem which generalizes Problem 1.1

Problem 1.3 (Extended model approximation problem). Let G be a continuous
LTI system represented by one of the three possibilities below (finite dimensional realization,
irrational tranfer function or frequency data). The model approximation problem consists
in finding Ĥ from a subset of the TDS familya which accurately reproduces the behavior of
the full-order model G.

aThis will be detailed later in this monograph. Reduced order models having input and output delay
structures are considered in Chapter 5. State-delay structures are considered in Chapters 6 and 7.

Evidently, the procedure to construct Ĥ for Problem 1.3 should satisfy the properties from
Remark 1.2.

1.4 Overview of the contributions
In this thesis, we were particularly interested in infinite dimensional systems approximation, and
more specifically, time-delay and irrational ones. Some examples of this class of systems can be
found in the context of networked systems, chemical reactions, traffic jam and heating systems.
Since for this class of systems, standard analysis and control methods are not directly applicable,
it might be very appealing to approximate them by finite order models. Even if many dedicated
approaches have been derived to handle infinite dimensional problems, most of them are limited
to systems with low order state space vector and associated methods are not scalable when the
order of the model increase.

The aim of this thesis is to investigate the approximation of large-scale and infinite di-
mensional systems. We are particularly interested in tackling the problem using data-driven
(Loewner) and interpolatory methods. As made clearer in what follows, this work has fo-
cused, on one hand, in finding new applications of those model approximation techniques, e.g.,
estimation of stability charts for a time-delay system, on the other hand, to develop new model
reduction techniques for reduced order models based on more complex structures (integrating
delays for example). We believe that the originality of this work comes from the combination
of results from two different fields: time-delay systems and model approximation. The following
list summarizes the main contributions and publications.

H2 model approximation for input/output delay reduced order model

Given G, a finite dimensional stable model, we have studied theH2 optimal model approximation
problem when the ROM includes input/output delays, i.e.,

Ĥd = ∆o(s)Ĉ(Ês− Â)−1B̂∆i(s).

The ∆i/o(s) blocks represent here multiple input and output delays having the form ∆i/o(s) =
diag(e−τ1s, . . . , e−τMs) with {τ1, . . . , τM} ∈ R∗+. We derived the H2 optimality conditions for
this problem based on the pole/residue decomposition. Finally, a two stage algorithm, in order
to practically obtain such an approximation, has been proposed. Those results were submitted
to [Pontes Duff et al., 2016b] and presented in Chapter 5.
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Data-based model interpolation for single time-delay systems

We have developed an extension of the Loewner framework, initially settled for delay-free reduced
models, to the single state-delay case, i.e., when the reduced order model has the following delay
structure :

Ĥd(s) = Ĉ(Ês− Âe−sτ )−1B̂.

Secondly, using the Lambert function, a new algorithm called dTF-IRKA enabling the
construction of a reduced order delay-model satisfying some interpolation conditions has been
developed. Theoretical results and several numerical examples are presented in [Pontes Duff
et al., 2015a] and in Chapter 6.

More general H2-optimality conditions :

The H2-optimal model reduction problem was revisited when the reduced system has a more
general pole-residue structure and new H2-optimality conditions were obtained. These condi-
tions are no longer simple interpolation conditions as in the finite-dimensional case but rather
interpolation of series which depends on the spectral structure of the reduced order model. These
results are presented in [Pontes Duff et al., 2016a] and in Chapter 7.

Model reduction and stability charts for time-delay systems:

The problem of determining approximate stability regions for large-scale time-delay systems is
treated using model approximation techniques. To achieve this, an H2-oriented approximation
algorithm (see [Beattie and Gugercin, 2012]) is used in order to estimate the stability of a
given TDS. We show how model reduction can be efficiently used to approximate time-delay
systems with multiple delays and estimate their stability regions with respect to those delays.
Theoretical results and several numerical examples are presented in [Pontes Duff et al., 2015b]
and in Chapters 8 and 9.

1.5 Manuscript outline
This manuscript is divided into four parts and ten chapters. Part I is dedicated to the in-
troduction, notation and state of the art of model approximation. Part II is dedicated to the
main theoretical developments of this thesis, i.e., model approximation by structured time-delay
reduced order models. Part III presents a model approximation based framework to estimate
stability of a TDS. Finally, Part IV concludes the manuscript with a global analysis and provides
some perspectives. The chapter are organized as follows:

Part I: Introduction
Chapter 2: Fundamentals of LTI system theory

This chapter aims at recalling some general elements about linear continuous systems theory and
introduces the general notations used along this thesis. In particular, two elements that form
the basis of this thesis are recalled : the partial fraction decomposition of a finite dimensional
system and the H2 norm of LTI models. In addition, a very brief introduction on time-delay
systems are provided. Experts in control theory might skip this chapter.
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Chapter 3: State of the art of model approximation

In this chapter, some well-known model approximation techniques based either on state-space
truncation or tangential interpolation are recalled. In particular, the modal and balanced trunca-
tion are recalled since they are the most popular approximation methods. Model approximation
by tangential interpolation is also presented. Finally the Loewner framework, which enables to
construct reduced-order models via data interpolation, is described. This framework can be ap-
plied in a larger class of system representations, including irrational transfer functions. Readers
who are familiar with the model approximation literature might skip this chapter.

Part II: Model approximation by structured time-delay reduced order
models
Chapter 4: Optimal H2 model approximation problem

The optimal H2 approximation problem is introduced together with some methods that address
it. Firstly, a state of the art on H2 approximation is presented. Then, the H2 necessary opti-
mality conditions are derived in two different ways. Finally, two algorithms achieving H2 model
approximations are presented: (i) IRKA, which is based on the interpolation of the large-scale
model through projection on some specific Krylov subspaces and (ii) TF-IRKA, which is based
on the interpolation of the transfer functions through the Loewner framework. This chapter
plays a pivotal role in this manuscript, since it links recent results on H2 model approximation
while introducing the necessary elements required in the developments of the main contributions
reported in this part, detailed in Chapters 5, 6 and 7.

Chapter 5: Optimal H2 model approximation by input/output-delay structure re-
duced models

In this chapter, the H2 optimal approximation problem by a finite dimensional model including
input/output delays, is addressed. Firstly, theH2 inner product formulas are revisited in the case
where the models have input/output delays. Secondly, the approximation error is formulated
as a function of the pole/residue decomposition. Then, by taking the gradient of the error,
the H2-optimality conditions of the approximation problem are obtained as an extension of the
tangential interpolatory conditions in the delay-free case. It is also demonstrated that for fixed
delay values, this problem can be recast as a delay-free one. The approach followed in this
first part is similar to what has been done in the delay-free case in Chapter 4. The similarities
and the key differences from the delay-free case are highlighted. The results are compared with
some simpler interpolation conditions. Finally, an iterative algorithm, entitled IO-dIRKA:, is
sketched out and numerical results assess the theoretical contributions.

Chapter 6: Data-driven model approximation by single state-delay structure re-
duced order models

In this chapter, the Loewner framework is revisited in the case where the interpolating model
might be a single state-delay dependent model. To this aim, the Loewner framework, initially
settled for delay-free realization, is firstly generalized to the single-delay case. Secondly, the finite
dimensional inspired interpolation conditions are established through the use of the Lambert
functions. Finally, a iterative scheme, named dTF-IRKA, similar to theTF-IRKA, is proposed
to reach a part of the aforementioned optimality conditions. The proposed method validity and
interest are assessed on different numerical examples.

13



1.5. Manuscript outline

Chapter 7: H2 optimality conditions derivation for state-delay reduced models

In this chapter, we first attempt to generalize the H2 optimal interpolation conditions for more
general reduced order models. To this aim, we first expose the necessary optimality conditions
in the case where the reduced system is of dimension one and have a single state delay structure.
This can be viewed as a first step towards the H2 optimal model approximation where the
reduced system corresponds to an infinite dimensional one. Finally, we illustrate the results with
an academic example.

Part III: Stability charts of time-delay systems and model approxima-
tion
In this part of the thesis, corresponding to Chapters 8 and 9, we apply model approximation
in order to analyze the stability of time-delay systems. As they represent infinite dimensional
systems, the stability analysis of any time-delay system is a complex problem and is not simply
established solving a matrix eigenvalue problem. Our philosophy here is to address the stability
problem using interpolatory model approximation. Some theoretical results and heuristics are
developed and were partially presented in [Pontes Duff et al., 2015b].

Chapter 8: Model approximation framework for evaluating time-delay systems’ sta-
bility

In this chapter, a model approximation framework is developed in order to evaluate the stability
of a time-delay system. Henceforth, systems are considered to be elements of L2(iR) (instead
of H2). The set of stable and unstable systems are characterized as subsets of L2(iR), leading
to some topological and approximation results. Thereby, a certificate of instability is derived
based on the numerical estimation of the L2(iR) norm. Equipped with those results, one can
estimate the stability of any time-delay systems by finding a model approximation with is good
enough in the sense of L2(iR). Finally, interpolation-based techniques are used to build such
approximations and some numerical results are presented.

Chapter 9: Stability chart approximation from interpolatory methods

This chapter is dedicated to the use of model approximation techniques to determine the stabil-
ity charts of time-delay systems. We give a major attention to the algorithm TF-IRKA (see
[Beattie and Gugercin, 2012]), which enables to achieve the H2 optimal model approximation.
This algorithm has been shown to be well suited for the approximation of infinite-dimensional
systems into finite-dimensional ones. Some theoretical arguments are, then, provided to justify
the stability-property preservation in the reduced order model. Discussions regarding the adap-
tation of existing algorithms to the considered problem are also provided. Several numerical
examples illustrate the efficiency and the accuracy of the approach, including in the large-scale
setting.

Part IV: Conclusion
Chapter 10: Discussion and perspectives

This chapter aims at recalling the contributions of this thesis as well as their limitations. Ad-
ditionally, some short-term extensions are presented and some long-term outlook concerning the
extension of the methods and tools developed in this thesis to other type of models.

14



Chapter 2

Fundamentals of LTI system
theory

In this chapter, some central concepts about continuous Linear Time Invariant (LTI) systems
theory and the associated notations are recalled. We also introduce several objects associated
with LTI systems that will be used throughout this thesis. The material is standard and is covered
in many monographs such as [Antoulas, 2005; Partington, 2004, 1997]. Additional references are
mentioned through the text when required.

This chapter is decomposed in three different sections. In the first one, the notion of LTI
model is defined by the convolution integral. Then, the H2 and H∞ spaces are defined and
some useful results are recalled. In the second section, some theoretical results related to finite
dimensional LTI models are given, including the partial fraction decomposition and the notion
of gramians. Finally, the third section recalls some facts about time-delay models, pointing out
two structures: input/output delays and state-delay models.

Contents
2.1 Signals, systems and norms . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Signals and norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Systems and norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Hardy spaces and norms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Finite dimensional models . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Descriptor realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Gramians and H2 norm computation . . . . . . . . . . . . . . . . . . . 25

2.3 A glimpse of LTI time-delay systems . . . . . . . . . . . . . . . . . . 27
2.3.1 Input and output time-delay models . . . . . . . . . . . . . . . . . . . 27
2.3.2 State-delay systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Signals, systems and norms
In Section 2.1, some elements about the general theory of LTI models are recalled. The subjects
that are highlighted here are: (i) the representation of an LTI model as a convolution with the
impulse response, (ii) the Hardy spaces H2 and L2(iR) and (iii) the inequalities involving systems
and signals.
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2.1. Signals, systems and norms

2.1.1 Signals and norms
Let us define a signal as a Lebesgue measurable function f that maps the real numbers R to Cn.
The set of signals is defined as :

Sn = {f : R→ Cn : f measurable}. (2.1)

A particular Sn subspace is the signals with finite energy denoted by:

Ln2 (−∞,∞) = {f ∈ Sn :
∫ ∞
−∞
‖f(t)‖22dt <∞}. (2.2)

The space Ln2 (−∞,∞) is a Hilbert space equipped with the following inner product :

〈f ,g〉L2 =
∫ +∞

−∞
g∗(t)f(t)dt, for f ,g ∈ Ln2 (−∞,∞) (2.3)

whose induced norm is given by ‖f‖L2 = 〈f , f〉
1
2
L2

=
(∫ ∞
−∞
‖f(t)‖22dt

) 1
2 . We often call the L2

norm of a signal its energy.
From a practical point of view, it is convenient to define the two following subspaces :

Ln2 [0,∞) = {f ∈ Ln2 (−∞,∞) : f(t) = 0 for all t < 0} and
Ln2 (−∞, 0] = {f ∈ Ln2 (−∞,∞) : f(t) = 0 for all t > 0}. (2.4)

The Ln2 [0,∞) and Ln2 (−∞, 0] spaces are also Hilbert spaces with respect to the inner product
(2.3). Moreover,(

Ln2 [0,∞)
)⊥

:= {f ∈ Ln2 (−∞,∞) : 〈f ,g〉L2 = 0,∀g ∈ Ln2 [0,∞)} = Ln2 (−∞, 0]

and
Ln2 (−∞,∞) = Ln2 [0,∞)⊕ Ln2 (−∞, 0].

In what follows, we give the definition of an LTI system based on the convolution product
between given signals.

2.1.2 Systems and norms
A dynamical system or model consists in the mathematical equations that represent a physical
process that evolves in time. In this monograph, we are particularly interested in continuous LTI
models. In addition, in this work, the words system and model will be considered as synonyms.
For a more general axiomatic definition of system/model see [Sontag, 2013] and the references
therein.

Time-domain representation of LTI models

A continuous LTI model H is an "input-output" map which associates to an input signal u ∈
D(Snu), where D(Snu) is a sub-domain of Snu , an output one y ∈ Sny by means of convolution
operation

H : D(Snu) 7→ Sny
u(t) 7→ y(t) =

∫ ∞
−∞

h(t− τ)u(τ)dτ = h ∗ u(t),
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where h(t) ∈ Rny×nu is called the impulse response of the system. Models with nu > 1 or ny > 1
are referred to as Multi-Input Multi-Output (MIMO) models; the special case nu = ny = 1 is
called Single-Input Single-Output (SISO) models. A LTI model is causal if and only if h(t) =
0, t < 0 and, in this case, the convolution product with an input u (u(t) = 0, t < 0) is reduced
to the integral

y(t) =
∫ t

0
h(t− τ)u(τ)dτ =

∫ t

0
h(τ)u(t− τ)dτ (2.5)

For now on, we suppose that all systems are causal.

Frequency-domain representation of LTI models

The unilateral Laplace transform L of the impulse response h of an LTI model is defined as :

H(s) = L (h) =
∫ ∞

0
h(τ)e−sτdτ ∈ Cny×nu , (2.6)

and taking the Laplace transformations of (2.5), one obtains

Y(s) = H(s)U(s), (2.7)

where Y(s) and U(s) are the Laplace transform of y(t) and u(t). The ny × nu matrix function
H(s) is called the transfer function of the LTI model. A model is said to be real if its impulse
response matrix h(t) is a real valued matrix function. As a consequence, the transfer function
H(s) = L (h) satisfies for s ∈ C

H(s) = H(s). (2.8)
In this work, all models are assumed to be real. A transfer function H(s) is said to represent

a proper model if for sufficiently large ρ (see [Curtain and Morris, 2009]) :

sup
Re(s)≥0,|s|≥ρ

‖H(s)‖2 <∞.

It is said to be a strictly proper model if the limit of H(s) at infinity is 0.
In this work, an LTI system H is said to be stable if and only if its transfer function H(s)

is bounded and analytic on C+, i.e., it has no poles in the closed right half-plane. Causal
stable models are represented by transfer functions that are analytic in the right half-plane. In
addition, the family of stable models can be regarded as a functional space of analytic functions
on the right half-plane and is therefore a Hardy space. These spaces are detailed in the following
subsection.

2.1.3 Hardy spaces and norms
Hardy spaces are linear spaces of functions which are bounded and analytic in a certain region
of the complex plane. These spaces are equipped with a norm ‖ . ‖H which allows to quantify
the distance d(a,b) between two different elements a and b. Hence, one can use this norm
to measure the distance between two LTI models H1 and H2 by considering the norm of the
difference of their transfer function, i.e., d(H1,H2) = ‖H1 −H2‖H. This notion is particularly
interesting in the domain of model approximation since it provides a way to quantify the quality
of a model approximation (see Part II).

In this section, we recall the definition and some properties of some Hardy spaces that are
particularly important in this work. The theoretical elements related to Hardy spaces can also
be found in the bibliographical references [Partington, 1997; Hoffman, 1962].
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The H2 and L2 spaces

Firstly, let us define the L2(iR) space.

Definition 2.1 (L2(iR) space). The L2(iR) space is the vector-space of matrix-valued
functions F : C→ Cny×nu which satisfy∫

R
trace[F(iω)F(iω)T ]dω =

∫
R
‖F(iω)‖2F dω <∞.

This space is an Hilbert space equipped with the inner product defined as

〈H,G〉L2(iR) = 1
2π

∫ ∞
−∞

trace
(
H(iω)G(iω)T

)
dω = 1

2π

∫ ∞
−∞
〈H(iω),G(iω)〉F dω, (2.9)

with corresponding induced-norm ‖H‖L2(iR) = 〈H,H〉
1
2
L2(iR).

Two subspaces of L2(iR) will be important in this work. We now introduce the H2 space,
which plays a very important role for model reduction. Its definition follows as :

Definition 2.2 (H2 space). The Hardy space H2(C+) is the space of the matrix-valued
functions F(s) ∈ Cny×nu such that

(a) F(s) is analytic in the open right half-plane C+,

(b) for almost every real number ω,

lim
σ→0+

F(σ + iω) = F(iω),

(c) sup
σ≥0

∫ +∞

−∞
trace[F((σ + iω))F((σ + iω))T ]dω <∞.

This space is an Hilbert space equipped with the inner product defined as

〈H,G〉H2 = 1
2π

∫ ∞
−∞

trace
(
H(iω)G(iω)T

)
dω = 1

2π

∫ ∞
−∞
〈H(iω),G(iω)〉F adω. (2.10)

for H,G ∈ H2(C+) and its induced norm is defined as ‖H‖H2 = 〈H,H〉
1
2
H2

.
aIf (ai,j) = A ∈ Cny×nu is a complex matrix, its Frobenious norm is defined as ‖A‖2

F = trace[AAT ] =∑
i,j
|ai,j |2. The Frobenious norm is induced by the inner product 〈A,B〉F = trace[ABT ].

The H2 space is the vector-space of the transfer functions whose impulse responses h(t) are
stable1 and have finite energy.2

Let us denote by H2(C−) the left half-plane analog to H2(C+), e.g., G(s) ∈ H2(C−) if and
only if G(−s) ∈ H2(C+). This space is the vector-space of the LTI models H(s) whose all

1It depends, of course, on the definition of stability. Here, in general, we consider that if a system is H2, we
consider it to be stable.

2Moreover, if h(t) ∈ Ln2 [0,∞)∩Ln1 [0,∞), the Riemann-Lebesgue lemma guaranties that the associated transfer
function H(s) satisfies limω→±∞H(iω) = 0 and thus, the model is strictly proper.
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Chapter 2. Fundamentals of LTI system theory

the poles are in C−, i.e., are all unstable. The space H2(C−) corresponds to the space of the
anti-stable models.

The space L2(iR) is the vector-space of models whose transfer functions are square-integrable
over the imaginary axis. In addition, L2(iR) can be understood as the Laplace transform im-
age of the signal space Ln2 (−∞,∞), i.e., L (Ln2 (−∞,∞)) = L2(iR). Moreover, the following
proposition holds:

Proposition 2.3 (L2(iR) decomposition). The Laplace transform gives the following
bijections between the signal spaces (defined in Section 2.1) and the Hardy spaces:

L : Ln2 [0,∞)→ H2(C+),

and
L : Ln2 (−∞, 0]→ H2(C−).

Moreover, H2(C−) and H2(C+) are closed subspaces of L2(iR) and

L2(iR) = H2(C−)
⊕
H2(C+),

i.e., L2(iR) is the direct sum of H2(C−) and H2(C+).

Proof. See e.g. [Partington, 1997, Chapter 1].

Proposition 2.3 shows that every element H ∈ H2(C+) (respectively G ∈ H2(C−) ) can be
uniquely associated to an element h ∈ Ln2 [0,∞) (respectively g ∈ Ln2 (−∞, 0]). In addition,
the following functional analysis’ theorem shows that the Laplace transform preserves the inner
product, and hence, the orthogonality property.

Theorem 2.4 (Plancherel’s theorem). For h1,h2 ∈ Ln2 (−∞,∞), one has

〈H1,H2〉L2(iR) = 〈L (h1),L (h2)〉L2(iR) = 〈h1,h2〉L2 .

Moreover, H2(C−) is orthogonal to H2(C+) with respect to the L2(iR) inner product, i.e.,
if Hs ∈ H2(C+) and Ha = H2(C−), then

〈Hs,Ha〉L2(iR) = 0.

Proof. See [Partington, 1988, chapter 1].

In other words, the above Proposition 2.3 and Theorem 2.4 state that given a model H ∈ L2(iR),
there is a stable model Hs ∈ H2(C+) and an anti-stable model Ha = H2(C−) such that H =
Hs + Ha and 〈Hs,Ha〉L2(iR) = 0. These orthogonality results will play an important role in the
stability estimation in the Chapters 8 and 9.

The H∞ space

The definition of the H∞ space is given as follows :

Definition 2.5 (H∞ space). The H∞(iR) space is the vector-space of meromorphic matrix-
valued functions F : C → Cny×nu analytic on C+ for which supRe(s)>0 ‖F(s)‖2 < ∞. This
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space is equipped with the norm

‖F‖H∞ := max
ω∈R

σmax(F(iω)).

This norm allows to measure the worst case scenario and it is essential for robust control
methods. In addition, one should note that the computation of the H∞ norm can be a very
difficult task and it is usually achieved by an iterative bisection algorithm (see e.g. [Bruinsma
and Steinbuch, 1990] for H∞ norm computation of finite dimensional model). This is the reason
this norm is not widely used in the large-scale setting.

Norm inequalities and stability

Norms of systems can be used to measure how "large" an output y(t) will be if an LTI model is
subjected to an input u(t). In others words, they can be used to estimate of an upper bound
of the output y(t), given an input u(t). Different norms lead to different inequalities. In this
section we will present two of these bounds that are useful to motivate the model reduction
problem.

Proposition 2.6 (Inequality with H2 norm). Let H ∈ H2 and u ∈ L2. Then

‖y‖L∞ := sup
t≥0
‖y(t)‖2 ≤ ‖H‖H2‖u‖L2 . (2.11)

Proof. Firstly we denote U(s) and Y(s) the Laplace transforms of the input u and output y,
respectively. In addition, Equation (2.7) gives the frequency relationship between U(s), Y(s)
and H(s). Hence,

‖y‖L∞ := sup
t≥0
‖y(t)‖2 = sup

t≥0

∥∥∥∥ 1
2π

∫ ∞
−∞

Y(iω)eiωtdω
∥∥∥∥

2

≤ sup
t≥0

1
2π

∫ ∞
−∞
‖Y(iω)‖2 |eiωt|︸ ︷︷ ︸

=1

dω

≤ 1
2π

∫ ∞
−∞
‖Y(iω)‖2dω

= 1
2π

∫ ∞
−∞
‖H(iω)U(iω)‖2dω

≤ 1
2π

∫ ∞
−∞
‖H(iω)‖2‖U(iω)‖2dω

≤ 1
2π

∫ ∞
−∞
‖H(iω)‖F ‖U(iω)‖2dω

≤︸︷︷︸
Cauchy-Schwartz Inequality

( 1
2π

∫ ∞
−∞
‖H(iω)‖2F dω

)1/2( 1
2π

∫ ∞
−∞
‖U(iω)‖22dω

)1/2

=︸︷︷︸
Parseval’s identity

( 1
2π

∫ ∞
−∞
‖H(iω)‖2F dω

)1/2(∫ +∞

0
‖u(t)‖22dt

)1/2

= ‖H‖H2‖u‖L2 .
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Chapter 2. Fundamentals of LTI system theory

Hence, a model H possessing a "small" H2 norm will produces output signals whose peak am-
plitude is also "small". Proposition 2.6 is largely applied in the context of model reduction, as
illustrated in Chapter 5.

In a similar way, the H∞ norm provides the following inequality

Proposition 2.7 (Inequality with H∞ norm). Let H ∈ H∞ and u ∈ L2. Then

‖y‖L2 ≤ ‖H‖H∞‖u‖L2 . (2.12)

Moreover, the H∞ norm is the induced norm by the signal L2 norm, i.e.,

‖H‖H∞ = sup
u∈L2

‖y‖L2

‖u‖L2

,

and it is also called the L2-L2 induced norm.

Hence, a model H possessing "small" H∞ norm will produces output signals with "small"
energy. A system is considered to be stable a stable if small inputs lead to responses that do not
diverge. Different input/output norms can lead to different notions of stability. In this work we
considered the following two notions

ä H2 stability. A system is H2 stable if it transfer function H(s) lies in H2. In this case
the inequality (2.11) holds, and L2 bounded inputs produces L∞ bounded outputs.

ä H∞ stability. A system is H∞ stable if it transfer function H(s) lies in H∞. In this case,
the inequality (2.12) holds, and L2 bounded inputs produces L2 bounded outputs.

In this thesis, we are interested in methods based on the H2 norm and that is why the notion
of H2 stability will be used henceforth. In this work, a system refereed to be stable when it is
H2 stable. It should be noticed that a transfer function H2 stable, analytic over the imaginary
axis and strictly proper is automatically H∞ stable.

Now, let us recall the definition and some representation properties of finite dimensional
models.

2.2 Finite dimensional models
In this section, some elements about the representation of LTI finite dimensional models are
recalled. The subjects that are highlighted are: (i) the partial fraction representation and (ii)
the infinite gramians.

2.2.1 Descriptor realisation
Time-domain representation

A LTI dynamical model H is considered to be finite dimensional model if it can be represented
in matrix terms by the following equations :

H :=
{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) , (2.13)

where E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rn×ny and D ∈ Rny×nu are the matrices defining the
model. Also, x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny denote the state, input and output vectors,
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2.2. Finite dimensional models

respectively. The dimension n is the order of the model H and we denote order(H) = n. One
another common short notation for H, given by (2.13), is

H := (E,A,B,C,D) or H :=
(
E,A B
C D

)
. (2.14)

For convenience, we shall suppose zero initial conditions, i.e., that x(0) = 0. See [Dai, 1989;
Kunkel and Mehrmann, 2006; Benner and Sokolov, 2006] for complete explanations about dif-
ferential algebraic equations.

If E = In, identity matrix of order n, we call (2.13) a standard state space realization,
otherwise a generalized state space model. Models with det(E) = 0 are referred to as Differential-
Algebraic Equations (DAE), but play a minor role in this thesis. Unless specified otherwise, we
will assume E to be non-singular. In the case where E is assumed to be non-singular, the model
H can be written in a standard state space realization. Even though this would always allow
to get rid of the E matrix by multiplying the state equation of (2.13) with its inverse from the
left, this should usually be avoided in a large scale-setting due to numerical issues and the (2.13)
structure should be kept.

The impulse response of the LTI model is the Green function associated to the model, i.e.,
the output response when the model is subjected by a Dirac input. In the case where the model
H is governed by (2.13), the impulse response is given by

h(t) = CeE
−1AtE−1B +Dδ(t) for t ≥ 0, (2.15)

and the model (2.13) can be represented by the convolution operator, i.e.,

y(t) =
∫ t

0
h(t− τ)u(τ)dτ

as in (2.5).

Transfer function of a finite dimensional model

The transfer function H(s) = L(h(t)) associated with H := (E,A,B,C,D) is given by

H(s) = C(sE −A)−1B +D ∈ Cny×nu , (2.16)

and represents the model in the frequency-domain. Since det(sE − A) is a polynomial in s, the
transfer function of a finite dimensional model is a matrix-valued function with rational entries.
The poles of the transfer function H(s) are the generalized eigenvalues of the pencil (E,A),
denoted as Λ(E,A) and defined as follows:

Definition 2.8 (Generalized eigenvalues). The complex number λ ∈ C is an eigenvalue
of the matrix pencil (E,A) if there exists a non-trivial vector x ∈ Cn such that

Ax = λEx.

In addition, the vector x is the right eigenvector associated with the eigenvalue λ. Moreover
if there exists a basis X =

[
x1 . . . xn

]
of eigenvectors of (E,A), we say that the pencil

(E,A) is diagonalizable and
AX = EXΣ,

where Σ = diag(λ1, . . . , λn) and, for k = 1, 2, . . . , n, λk is the eigenvalue associated with
the eigenvector xk. We also denote Λ(E,A) = {λ1, . . . , λn} as the generalized eigenvalues
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Chapter 2. Fundamentals of LTI system theory

of the pencil (E,A).

In addition, for a real model, if λ is a complex pole of H(s), λ is also a pole of H(s). Moreover,
if Φk denotes the kth residue of H(s) with respect to λk, we have :

Φk = lim
s→λk

(s− λk)H(s),

then Φ∗k is the residue of H(s) with respect to λ.
If E is non-singular, the poles are also the eigenvalues of the matrix E−1A. Depending on the

multiplicity of the poles, H(s) can be represented as the following poles-residues decomposition
(see [Vuillemin, 2014; Vuillemin et al., 2014b]). The following proposition provides the partial
fraction decomposition when the pencil (E,A) is diagonalizable.

Proposition 2.9 (Partial fraction decomposition, semi-simple poles). Let H =
(E,A,B,C,D), with E non-singular. In addition, suppose that the pencil (E,A) is di-
agonalizable, i.e., there is non-singular matrix X ∈ Cn×n such that AX = EXΣ, Σ =
diag(λ1, . . . , λn). Then

H(s) =
n∑
k=1

Φk
s− λk

+D, (2.17)

where
Φk = CXekeTk (EX)−1B,

where ek ∈ Rn is the vector whose all entries are zero, with exception the k-th entry which
is equal 1.

Reader should note that if λk is a simple pole, its associated residue Φk can be obtained by

Φk = lim
s→λk

(s− λk)H(s).

The pencil (E,A) is said to be defective if it is not diagonalisible. In this case, one would
need superior order partial fraction decomposition, as stated in the following proposition:

Proposition 2.10 (Partial fraction decomposition, higher multiplicity pole). Let
H = (E,A,B,C,D), with E non-singular. In addition, let us suppose that the pencil (E,A)
has only one single eigenvalue λ ∈ C and that there exists a non-singular transformation X
such that AX = EXJ , where J is the following Jordan block :

J =


λ 1

λ 1 . . .
. . .

λ

 , λ ∈ C.

Then
H(s) =

n∑
k=1

Φk
(s− λ)k +D,

where the residues Φk ∈ Cny×nu can be computed by

Φk = CFkE
−1B
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where

F1 = In, F2 =


0 1

0 . . .
. . . 1

0

 , . . . , Fn =


0 0 1

0 . . .
. . . 0

0

 .

Proposition 2.10 assumes that the pencil (E,A) has only one eigenvalue. In the general case,
the pencil (E,A) can be written in its Jordan’s form J , i.e., there is a non-singular matrix
V ∈ Cn×n such that

AV = EV J, where J =

J1
. . .

Jnb

 ∈ Cn×n,

where each Jordan block Ji (i = 1, . . . , nb) is given by

Ji =


λi 1

λi
. . .
. . . 1

λi

 ∈ Cni×ni

Then, the transfer function H(s) = C(Es−A)−1B +D can be written as

H(s) =
( nu∑
i=1

Hλi(s)
)

+D,

where
Hλi(s) = Ci(sI − Ji)−1E−1Bi,

and Ci ∈ Cny×ni denotes (respectively Bi ∈ Cni×nu) the columns of CV (respectively the lines)
associated to the block Ji. Hence, to obtain the partial fraction decomposition of H(s) one
should apply Proposition 2.10 to each term Hλi(s). Let us illustrate this results by the following
example:

Example 2.11 (Example of partial fraction decomposition). Let us consider the
SISO model H whose realization is given by the following matrices :

E = I3, A =

 −5 3 1
2 −10 −2
−11 5 −1

 , B = CT =

1
1
1

 , D = 0.

First, A can be expressed in its Jordan’s form as follows:

AV = V J, where J =

 8 0 0
0 4 1
0 0 4

 and V =

−1/4 2 5/4
1/2 −4 −1/2
−3/4 14 3/4

 .
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Hence,
H(s) = C(Es−A)−1B = CV (sI3 − J)−1V −1B

= C1(s− 8)−1B1 + C2(sI2 −
[
4 1
0 4

]
)−1B2

= Φ
s−8 + Ψ1

s−4 + Ψ2
(s−4)2

where
Φ = C1B1 = −3, Ψ1 = C2I2B2 = 6, and C2

[
0 1
0 0

]
B2 = 18.

and
C1 = −1

2 , B1 = 6, B2 =
[
5/16
3/2

]
and C2 =

[
12 3/2

]
.

These partial fraction decomposition will plays a very important role in the spectral H2 inner
product computation in Chapter 4. We remark that if the matrix E is singular, then the partial
fraction representation of H(s) may have a polynomial part, implying that the model is no longer
in H2 (see [Benner and Sokolov, 2006] for some applications in model approximation). That is
why we want to avoid this case and we suppose that det(E) 6= 0. Note that in the Loewner
framework (see Chapter 3) this particular case is handled. Now, let us move on towards the
gramians and H2 norm computation.

2.2.2 Gramians and H2 norm computation
Controllabiliy and observability gramians

The controllability and observability gramians P andQ are symmetric semi-positive matrices that
are used to determine whether or not a stable and finite dimensional LTI model is controllable
or observable. In general, a finite dimensional LTI model is controllable and observable and only
if and only if the matrices P and Q are non-singular. In addition, their associated bilinear form
is related with the degree of controllability and observability of a given state x ∈ Rn. For a
descriptor model H as in (2.13), the gramians can be defined as follows :

Definition 2.12. Given an asymptotically stable model H = (E,A,B,C,D), the infinite
controllability and observability gramians associated with H, denoted by P and Q respec-
tively, are defined as

P =
∫ ∞

0
eE
−1AtE−1BBTE−T eA

TE−T tdt (2.18)

Q =
∫ ∞

0
eA

TE−T tCTCeE
−1Atdt (2.19)

in the time domain, and as

P = 1
2π

∫ ∞
−∞

(ωiE −A)−1BBT (−ωiET −AT )−1dω (2.20)

Q = 1
2πE

T

∫ ∞
−∞

(−ωiET −AT )−1CTC(ωiE −A)−1dωE (2.21)

in the frequency domain.
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The controllabillity and observability gramians can be also computed as the solution of the
following Lyapunov equations :

APET + EPAT +BBT = 0 (2.22)
ATQE + ETQA+ CTC = 0. (2.23)

Now let us exploit the grammians to compute the H2 norm of a dynamical system.

Gramian-based H2 norm computation

The H2 norm of a finite dimensional model can be expressed by the infinite gramians of the
model as presented in Theorem 2.13.

Theorem 2.13 (Gramian formulation of the H2 norm). Let H = (E,A,B,C) be a
finite dimensional model, H ∈ H2, with infinite observability and controllability gramians
are Q and P, respectively. The H2 norm of H, is given by

‖H‖H2 = trace(CPCT ) = trace(BTQB). (2.24)

Proof. See e.g. [Gugercin et al., 2008].

Theorem 2.13 provides a way to compute the H2 norm of a finite dimensional model. Hence,
given H = (E,A,B,C,D), one should solve the Lyapunov equations (2.22) and apply the formula
(2.24) to obtain the H2 norm of H.

H2 inner product computation based on Sylvester equations

Analogously, H2 inner product between two finite dimensional models can be expressed by the
Sylvester equations as presented in Theorem 2.14.

Theorem 2.14 (Cross Gramians formulation of the H2 inner product). Let H =
(E,A,B,C) and G = (Ê, Â, B̂, Ĉ) be two finite dimensional models, and assume H,G ∈ H2.
Then, the H2 inner product is given by

〈H,G〉H2 = trace(BTYB̂) = trace(CX ĈT ) = trace(CTZB̂), (2.25)

where the matrices X ,Y and Z satisfy the Sylvester equations

AX ÊT + EX ÂT +BB̂T = 0
ATYÊ + ETYÂ+ CT Ĉ = 0
AZÊT + ETYÂ+BĈT = 0

. (2.26)

Proof. See [Mehrmann and Stykel, 2005]

Theorems 2.13 and 2.14 characterize the H2 inner product and norm by Sylvester and Lya-
punov equations in the finite dimensional case. For more details about the numerical procedures
to efficiently compute them in the large-scale setting, reader is invited to refer to [Antoulas,
2005; Sorensen and Antoulas, 2002; Benner et al., 2009, 2006]. In Chapter 4 an alternative
characterization based on the spectral decomposition of a dynamical system will be provided.
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2.3 A glimpse of LTI time-delay systems
Hereafter, some elements about the theory of linear time-delay systems are recalled. The subjects
that are focused on: (i) input and output delays and (ii) state-delay systems.

Delay-differential equations
A great amount of real systems present delays in their inner structure, due to transport, prop-
agation or communication phenomena. In practice, most of the time they are ignored for the
sake of simplicity. On the other hand, those delays can be the cause of bad performance or even
instability, and therefore, in order to analyze properly and design controllers for those systems,
it is mandatory to take their effects into account. Another important source of delay is the
feedback control itself, with this delay induced by the sensors, actuators and, in more modern
digital controllers, the time of calculation.

Time-delays systems are an important class of infinite dimensional models extensively studied
(see [Richard, 2003; Niculescu, 2001a; Gu et al., 2003]). Such time-delay representations occur
often in systems in engineering, biology, chemistry, physics, and ecology [Niculescu, 2001b]. Time-
delay systems can be represented by Delay Differential Equations (DDEs), which belong to the
class of functional differential equations, and have been extensively studied over the past decades.
See [Bellman and Cooke, 1963; Gu et al., 2003; Briat, 2015; Richard, 2003] for a bibliographical
references on DDEs. In this work, the following two kinds of time-delay structure are being
considered :

2.3.1 Input and output time-delay models
A dynamical system presents an input delays when the action of the control input takes a
certain amount of time before it affects systems dynamics. It presents an output delay when the
measurement process takes a certain amount of time to produce a measurement. Those kinds of
behavior appear frequently in industrial processes as well as in economical and biological systems.
These can be the delays in the process itself and delays caused by processing sensed signals,
transport phenomena, among others. See [Balluchi et al., 2006] for an example of modeling and
control of a rail injection system using an input delay model. For this kind of systems, a great
variety of control design techniques can be found in the literature, e.g., the well-know Smith
predictor (see [Smith, 1957; Alevisakis and Seborg, 1973; Watanabe and Ito, 1981]).

In the case where the system presents only a single input delay, it is also referred in the
literature of control systems as a dead-time systems. Reader might refer to [Dym et al., 1995;
Meinsma and Zwart, 2000; Foias et al., 1996; Tadmor, 1997] for this kind of systems. The input
and output delay models present in this work can be defined as follows.

Time-domain representation of an input and output delay model

First, let us consider the shift time input operator, denoted by ∆i, and the shift time output
operator, denoted by ∆o, defined respectively as follows:

∆i : Snu 7→ Snu(
u(t)

)
i
7→
(
∆i(u)(t)

)
i

= ui(t− τi), for i = 1, . . . , nu.
(2.27)

∆o : Sny 7→ Sny(
y(t)

)
j
7→
(
∆o(y)(t)

)
j

= yj(t− γj), for j = 1, . . . , ny. (2.28)
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for some input delays {τ1, . . . , τnu} ∈ R+, and output delays {γ1, . . . , γnu} ∈ R+.
Then, we say that Hd is a multiple-input/output delays MIMO system if it is represented by:

Hd :
{
Eẋ(t) = Ax(t) +B∆i(u(t))

y(t) = ∆o(Cx(t)) , (2.29)

where E,A ∈ Rn×n (with state dimension n ∈ N∗), B ∈ Rn×nu , C ∈ Rny×n.
Let H be the delay-free version of Hd, i.e., the model H is represented by

H :
{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (2.30)

In addition, suppose that h(t) ∈ Rny×nu is the impulse response of the delay-free model H. Then,
the impulse response of the input and output delay model Hd, denoted here by hd(t) ∈ Rny×nu
is given by:

hd(t) =

 h1,1(t− γ1 − τ1) . . . h1,nu(t− γ1 − τnu)
... . . . ...

hny,1(t− γny − τ1) . . . hny,nu(t− γny − τnu)

 ∈ Rny×ny . (2.31)

Transfer function of an input and output delay model

Recall that the Laplace transform satisfies the following shift property: if L(hij(t)) = Hij(s),
then L(h(t− γi − τj)) = e−sγiHij(s)e−sτi . Hence, the transfer function associated to the input
and output delay model Hd is given by

Hd(s) = L(hd(t))
= ∆o(s)L(h(t))∆i(s)
= ∆o(s)H(s)∆i(s)

where {
∆i(s) = diag(e−sτ1 . . . e−sτnu ) ∈ Hnu×nu∞
∆o(s) = diag(e−sγ1 . . . e−sγny ) ∈ Hny×ny∞ .

(2.32)

are the matrix transfer functions which ∆i(s) and ∆o(s) represent the frequency behavior of the
delays operators ∆i and ∆o, respectively, and

H(s) = C(sE −A)−1B ∈ Cny×nu (2.33)
is the transfer function of the delay-free version H. The order of Hd is defined as the order of
the underlying delay-free model H. In addition, if H lies in H2, then Hd also lies in H2.

Reader should note that a multiple-input/output delays MIMO system Hd as in (2.30) is an
infinite dimensional model even if it has a finite number of poles, since its transfer function is
not rational. However, because they have a simple transfer function, they are well adapted for
analysis and controller design. Input and output reduced order models will be considered in
Chapter 5.

2.3.2 State-delay systems
The models considered here present one or many state-delays. They are represented by functional
differential equations of retarded type, i.e., by a retarded delay differential equation of the form

ẋ = F (x(t), x(t− τ1), . . . , x(t− τmax)), (2.34)
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where τ1 < τ2 < . . . τmax ∈ R+, equipped with an initial condition (also called history function)

x(t) = φ(t), for t ∈ (−τmax, 0).

The reader should refer to [Bellman and Cooke, 1963] for more details. There exist as well the
class of neutral time-delay systems, where the function F in (2.34) depends also on ẋ(t − τk),
and the class of advanced time-delay systems, where the function F in (2.34) depends only on
ẋ(t−τk). Those systems are not considered in this thesis and the reader should refer to [Bellman
and Cooke, 1963; Michiels and Niculescu, 2014] for more details. In addition, there exists the
class of distributed retarded time-delay systems where the delays are not discrete. An example
of this is given by the following distributed delay differential equation

ẋ =
∫ 0

−τ
x(t+ θ)f(θ)dθ.

This class of systems is not consider in this work and reader should refer to [Richard, 2003]. In
what follows, we present the class of linear discrete state-delays models.

Time-domain representation of a linear discrete state-delay models

The following general class of LTI discrete retarded time-delay systems will also be considered in
this work:

Hd =
{
Eẋ(t) = A0x(t) +

∑nd
k=1Akx(t− τk) +Bu(t)

y(t) = Cx(t) , (2.35)

where E,Ak ∈ Rn×n, for k = 1, . . . , nd, B ∈ Rn×nu , C ∈ Rny×n, τ1 < τ2 < · · · < τd ∈ R∗+,
x(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rny are the delays, the state of the system, the input and the
output, respectively. In this case, we say that the system Hd has order n, because it is defined by
n DDEs. We suppose also that E is a non-singular matrix, otherwise this family might include
neutral systems.

Transfer function of a discrete state-delay model

Considering φ(t) = 0, for −τd < t < 0 taking the Laplace transformation of equation (2.35), one
is able to find that the transfer function of Hd is given by

Hd(s) = C

(
Es−A0 −

d∑
k=1

Ake
−sτk

)−1
B. (2.36)

The transfer function of Hd is a matrix-valued function with meromorphic (Hd)ij(s) entries
expressed as

(Hd(s))ij = nij(s, e−sτ1 , . . . , e−sτd)
dij(s, e−sτ1 , . . . , e−sτd) ,

where n(s, e−sτ1 , . . . , e−sτd) and d(s, e−sτ1 , . . . , e−sτd) are polynomials on the variables s, e−sτ1 ,
. . . , e−sτd . This is reflected in the characteristic equation, i.e.,

p(s) = det(Es−A0 −
d∑
k=1

Ake
−sτk),

which is a quasi-polynomial whose zeros are the poles of Hd. Since E is supposed to be , p(s)
does not depend on sne−sτk , otherwise the model would be neutral. Those systems present nice
properties and some of them are listed hereafter (see [Michiels and Niculescu, 2014]) :
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ä the poles of Hd are roots of an analytic function.

ä there are only finitely many roots in any right-half plane.

ä the system Hd is strictly proper. Hence, it is (H2 and H∞) stable if and if all its poles lie
in the left-half plane.

ä the spectral abcissa is continuous with respect to the parameters (see Chapter 8, Property
8.1 for more details).

These properties will be developed and used in Chapter 8. In addition, the transfer function of
Hd is clearly irrational and that is why Hd is considered to be an infinite dimensional model.
A special case of retarded time-delay system, namely single state-delay model, is considered in
Chapters 6 and 7. Stability of time-delay systems is considered in Chapter 8 and 9.

Conclusions
In this chapter, some important results related to the LTI system theory were recalled in order to
unify the necessary background for the development of this work. Firstly, Section 2.1 defines the
notion of LTI models by convolution integral and by transfer functions living in a Hardy space.
Secondly, Section 2.2 has recalled the definition of a finite dimensional LTI models pointing out
the notion of partial fraction decomposition and gramians. Finally, Section 2.3 recalls some
facts about time-delay models, highlighting two structures : input/output delays and state-delay
models.
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Chapter 3

State of the art of model
approximation

This chapter aims at providing a (non-exhaustive) state-of-the-art on model approximation tech-
niques. The main goal of this chapter is, on one hand, to provide to the non-familiar reader a
brief introduction on model approximation, and, on the other hand, to present some methods
that have inspired the results from this thesis. Moreover, some of the theoretical results and
some mathematical proofs are provided for a better understanding.

The chapter is organized as follows. Firstly, a general overview and the projection-based
model approximation framework are presented in Section 3.1. Secondly, Section 3.2 briefly recalls
the notion of model approximation by truncation, especially the well-known modal truncation
and balanced truncation techniques. Then, in Section 3.3, model approximation by tangential
interpolation is presented. Finally, Section 3.4 presents the Loewner framework. These two last
frameworks are the main basis of the work done in this thesis. Optimal H2 model approximation
will be developed in Chapter 4.
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3.1 Introduction
3.1.1 General overview
A great amount of physical phenomena can be modeled by LTI systems, which are usually
derived from a linearisation at the operating point of interest. In this work, only LTI models are
considered (see Chapter 2). In this chapter, some model approximation techniques are presented.
Firstly, the projection-based model approximation framework is presented. A great variety of
model approximation methods can be described in this framework. In the sequel, two projection-
based model approximation methods are described: (i) model approximation by truncation in
3.2 and (ii) model approximation by tangential interpolation in 3.3. These techniques can be
successfully applied to a large number of applications. The major drawback is that they require
that both the full-order model G and the reduced order model Ĥ to be represented by finite-
dimensional realizations. Hence, they are not directly applicable to infinite dimensional systems
or irrational transfer functions and they do not allow the reduced order model to have any
particular structure. However, in Section 3.3, a preserving structure projection-based method
is presented, which already enables model approximation for a larger family of models. Finally,
Section 3.4 presents the Loewner framework. This framework performs data-based tangential
interpolation and, in the context of model approximation, can be used to construct reduced order
models directly from the evaluation of the original transfer function or for data provided by any
simulator.

In what follows, let us consider G to be a large-scale finite dimensional model whose realiza-
tion is given by

G :=
{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (3.1)

where x(t) ∈ RN , u(t) ∈ Rnu and y(t) ∈ Rny denote the state, input and output, respectively.
The order N of G is considered to be large, e.g, N = 102, . . . , 107 and the necessity to find
a low-order approximation will depend on the application. The matrix E is assumed to be
non-singular, which means that the model does not contain any algebraic constraint.

Model approximation seeks for a simpler model Ĥ which has a similar behavior as G. Simpler,
in this context, means to be described by less equations, or, in other words, to have fewer state
variables. Hence, if Ĥ has a finite dimensional realization, it takes the form

Ĥ :=
{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t) (3.2)

where Ê, Â ∈ Rn×n, B̂ ∈ Rn×nu , Ĉ ∈ Rny×n and D̂ ∈ Rny×nu , and the state variable x̂(t) ∈ Rn
is a lower dimension vector, i.e., n� N , the input u(t) ∈ Rnu and the output ŷ(t) ∈ Rny have
the same dimensions that u(t) and y(t), respectively. We recall that the transfer functions of G
and Ĥ are, respectively,

G(s) = C(sE −A)−1B +D and Ĥ(s) = Ĉ(sÊ − Â)−1Ĉ + D̂.

As model approximation is concerned to match the transfer behavior, a ROM usually features
an equal feed-through term, i.e., D = D̂ ∈ Rny×nu . One should note that if D 6= D̂, then
(G−Ĥ)(i∞) = D−D̂ 6= 0 and, hence, ‖G−Ĥ‖H2 =∞. So, if one requires a good approximation
in the sense of the norm H2, then we must have D = D̂. However, the feed-through D̂ term
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may still be used as an additional degree of freedom in order to improve the approximation. For
example, the work of [Flagg et al., 2013] presents a framework which uses the feed-through term
D̂ in order to improve the approximation in the H∞ norm sense. In addition, the weighted (see
[Breiten et al., 2015] and [Anić et al., 2013]) and the frequency limited (see [Vuillemin, 2014] and
[Petersson and Löfberg, 2014]) model approximation might provide reduced order models having
the feed-through D̂ different than zero.

In this work, since we study H2-oriented approaches, we will consider D = D̂ = 0. In
addition, we denote the systems G and Ĥ having, respectively, the realizations from equations
(3.1) and (3.2) by G = (E,A,B,C) and Ĥ = (Ê, Â, B̂, Ĉ).

In the next section, we present the projection-based model approximation framework (see
[Antoulas, 2005, Chapter 1]). This framework has led to various model approximation methods
for finite dimensional LTI models, e.g., the balanced truncation and the model approximation by
tangential interpolation methods. Both of these methods are reviewed in Sections 3.2 and 3.3.

3.1.2 Projection-based model approximation framework
In this section, the projection-based model approximation framework is introduced. Let us
consider a large-scale model G = (E,A,B,C) described by (3.1). Let us assume that there
exists a n-dimensional subspace, with n � N , that contains the most dominant dynamics.
Suppose that this subspace is generated by the basis {v1, . . . ,vn}, where vk ∈ CN and let
V =

[
v1 . . .vn

]
∈ CN×n. Then one can find the approximation

x(t) = V x̂(t) + e(t) (3.3)

to be admissible. In (3.3), e(t) ∈ CN is the resulting error which comes from the approximation
of x(t). Then, by substituting (3.3) in the state equation of the original model, we get

EV ˙̂x(t) = AV x̂(t) +Bu(t) + ε(t), (3.4)

where the residual variable ε(t) ∈ CN contains the errors and satisfies ε(t) = Ae(t) − Eė(t). It
is worth to note that the differential equation (3.4) has N equations for n unknowns x̂(t). To
handle this problem, one can enforce the Petrov-Galerkin conditions by finding a subspace W
which is orthogonal to ε(t). By denoting W ∈ CN×n be the matrix whose span(W ) = W, by
multiplying (3.4) by WT on the left, one obtains the reduced order model Ĥ, as follows:

Ĥ =


WTEV︸ ︷︷ ︸

Ê

˙̂x(t) = WTAV︸ ︷︷ ︸
Â

x̂(t) +WTB︸ ︷︷ ︸
B̂

u(t) +WT ε(t)︸ ︷︷ ︸
=0

ŷ(t) = CV︸︷︷︸
Ĉ

x̂(t) (3.5)

Hence, the reduced order model Ĥ obtained by the projection over the space V along the
directions W⊥ is given by Ĥ = (Ê, Â, B̂, Ĉ), where

Ê = WTEV, Â = WTAV, B̂ = WTB and Ĉ = CV. (3.6)

The following remark characterizes the implicit projector operator used in this procedure.

Remark 3.1 (Projector Π). Assume that WTEV is invertible, so that the projection is
regular. Let Π = EV (WTEV )−1WT ∈ CN×N . Then

Π = Π2 ∈ CN×N
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is an oblique projector onto the n-th subspace spanned by the columns of span(EV ) along the
kernel of W ∗ (see [Saad, 2003]). In addition, model Ĥ can be represented by the following
realization

Ĥ =
{

ΠEV ˙̂x(t) = ΠAV x̂(t) + ΠBu(t)
ŷ(t) = CV x̂(t) .

In this regard, matrices V and W are called projection matrices because they are the fun-
damental blocks to generate the projector. In addition, if the subspaces V and W are equal,
then one talks about orthogonal projection. Otherwise, one talks about oblique projection.

To sum up, given a large-scale model G = (E,A,B,C) represented by equation (3.1), a
reduced order model Ĥ = (Ê, Â, B̂, Ĉ) can be constructed by a pair of projection matrices
V and W and the relations from (3.6). As a consequence, in this framework finding a good
approximation Ĥ is equivalent to a pair of projection matrices V,W such that the reduced order
model constructed Ĥ by projection has a similar behavior as G.

In the reasoning, only the subspaces span(V ) and span(W ) play an important role in the
projection framework and the projection matrices are not important in this regard. Indeed, this
result can be properly stated mathematically as follows :

Proposition 3.2 ([Gallivan et al., 2004b]). Let T1, T2 be two non-singular matrices. Then,
the projected transfer function Ĥ(s) = Ĉ(sÊ − Â)−1B̂ obtained by the projection matrices
V,W is unchanged if we replace the projectors by Ṽ = V T1 and W̃ = WT2.

Proof. Note that the matrix V (respect. W ) span the same subspace as the matrix Ṽ (respect.
W̃ ). Hence,

Ĥ(s) = Ĉ(sÊ − Â)−1B̂
= CV (sWTEV −WTAV )−1WTB
= CV T1(sTT2 WTEV T1 − TT2 WTAV T1)−1TT2 W

TB
= CṼ (sW̃TEṼ − W̃TAṼ )−1W̃TB

which concludes the proof.

Proposition 3.2 states that only the projection spaces span(V ) and span(W ) are important
for the construction of the reduced order model Ĥ. In other words, similar projection matrices
lead to the same reduced order model. As a consequence, in this framework, finding a reduced
order model consists in finding projection spaces encoded by W and V which determine the
approximation. However, different projection matrices can lead to the same reduced order model,
as long as they span the same subspace.

A projection framework for model approximation was introduced by [Villemagne and Skelton,
1987]. A great amount of model approximation techniques can be stated using the projection-
based framework. This chapter does not intend to provide an extensive review of all of them.
Here there is a list of model approximation techniques that are not discussed in what follows:

v Hankel norm approximation: this procedure is presented in [Glover, 1984]. The theory
enables to construct reduced order models which are optimal in the sense of the Hankel-
norm (norm induced by the Hankel operator linked to the system). This approach provides
a bound of the H∞ mismatch error norm which is related to the Hankel singular values that
were neglected. This bound is the same as the one presented in the balanced truncation (see
Section 3.2). The article [Glover et al., 1988] extended the Hankel-norm approximation for
infinite dimensional models. The book [Sasane, 2002] gives a good overview of the Hankel
approximation in the larger context.
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v Weighted and frequency limited model approximation : weighted model approxi-
mation enables to construct a reduced order model Ĥ which is a good approximation of a
system G after the application of a filter W. In order words, the goal is to find Ĥ, such
that the weighted error ‖(G − Ĥ)W‖ is small. See [Halevi, 1992], [Anić et al., 2013] and
[Breiten et al., 2015] for some references. Similarly, frequency limited model approximation
seeks a reduced order model Ĥ which is a good approximation of G over a given frequency
bound Ω = [ω1, ω2], 0 ≤ ω1 < ω2. In this case the H2,Ω norm (see Chapter 2 for definition)
is used to measure the quality of the approximation. See [Vuillemin, 2014], [Vuillemin et al.,
2014a] for a pole/residue-based approach, and [Petersson, 2013], [Petersson and Löfberg,
2014] for a limited gramian-based approach.

v Proper orthogonal decomposition : the philosophy is to snapshot the time-domain
simulations of a possibly non-linear model. Generally, empirical gramians are built to
project the initial model which leads to the so-called Proper Orthogonal Decomposition.
See [Antoulas, 2005, Chapter 9] and references therein for further information on this
method.

v Dominant poles : dedicated algorithms have been developed to efficiently compute iter-
atively the dominant poles of a large-scale model. In [Martins et al., 1996], the so-called
dominant pole algorithm is presented. This algorithm uses the Newton’s method to com-
pute a dominant pole of a SISO model. Later, this algorithm is improved and extended
to a robust and efficient method for MIMO systems in [Rommes and Martins, 2006] and
for second order models in [Rommes and Martins, 2008]. Then, [Rommes and Sleijpen,
2008] presents some convergent properties, theoretical results and some comparisons with
the Rayleigh quotient iteration.

For a general overview, the interested reader can refer to the books [Antoulas, 2005] and
[Schilders et al., 2008], the classical survey papers [Gugercin and Antoulas, 2004], [Antoulas
et al., 2001] and the recent survey papers [Beattie and Gugercin, 2015], [Baur et al., 2014]. In
addition, for model approximation of parametric dynamical systems, topic which is not addressed
in this thesis, see the recent survey of [Benner et al., 2015]. For differential algebraic systems see
also [Benner and Stykel, 2015].

In what follows, we present two well-known projection-based methods, named the modal/balanced
truncation and model approximation by moment matching.

3.2 Model approximation by truncation
In this section, model approximation by truncation is first defined. Then, two classical techniques
are presented : modal and balanced truncations. Firstly, let us start by defining model approx-
imation by truncation. Let us consider a system G = (E,A,B,C), whose realization is given
by

G =
{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) (3.7)

The state vector x(t) can be decomposed between the states which must be retained x1(t) ∈
Rn and those which will be neglected x2(t) ∈ RN−n. Hence,

x(t) =
[
x1(t)
x2(t)

]
and the state space representation (3.7) can be structured as follows,
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E =
[
E11 E12
E21 E22

]
, A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C =

[
C1 C2.

]
(3.8)

The truncated state-space realization Ĥ of G only keeps the sub-matrices associated with x1(t).
The order of Ĥ is then given by the number of states which have been retained. As a consequence,
Ĥ = (E11, A11, B1, C1) = (WTEV,WTAV,BV,WTC), where the projection spaces are encoded
by the matrices W,V ∈ RN×n,

V =
[
In
0

]
∈ RN×n, and W = V.

The procedure of truncation on the canonical basis can be considered as an orthogonal pro-
jection since V = W . In general, the truncated model Ĥ does not have any particular property
from the original model G. In particular, any property such as stability, controlabillity, etc.
might be lost. This procedure is often interesting when there is a physical meaning behind.
For example, if some of the states are faster than others, one might consider to use a simple
truncation. One advantage is that the state space variables of Ĥ keep a physical meaning.

Another way to proceed is to find a particular linear transformation leading the system to a
similar state-space representation. If in this new state-space the states are organized following
their degree of importance, then the reduced order model obtained by truncation will be a better
approximation. In what follows, two approaches based on this idea are presented: modal and
balanced truncations.

3.2.1 Modal truncation
Model approximation by truncation is a technique widely used in many engineer applications
due to its simplicity and physical meaning. The idea behind is to find the modal (pole/residue)
decomposition of the full order model G and then construct a reduced order model preserving
the more relevant dynamics. In general, the high frequency modes are neglected, since they
represent fast dynamics playing a secondary role in the transfer, at least for control engineers.
One advantage of modal truncation is that the reduced order model preserves some properties
from the full order model, e.g. stability, controllability and observability. In addition, the
preserved modes still have a physical meaning. The major drawback is that one needs to compute
the eigenvalue decomposition of the pencil (E,A) and this task can be very expensive for large-
scale systems.

Suppose that the full order model G is described by (3.7) and that the pencil (E,A) is
diagonalizable, i.e., there is a non-singular matrix X ∈ Cn such that AX = EXΣ, Σ =
diag(λ1, . . . , λN ). Then, the transformation

G = (EX,AX,B,CX−1) = (IN , Σ︸︷︷︸
Ã

, (EX)−1B︸ ︷︷ ︸
B̃

, CX︸︷︷︸
C̃

)

leads the modal state space realization

Ã =

λ1
. . .

λN

 , B̃ =

bT1
...

bTN

 , C̃ =
[
c1 . . . cN

]
(3.9)

whose transfer function can be written as

G(s) =
N∑
k=1

cibTi
s− λi

.
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Then, the reduced order model Ĥ is obtained by applying a truncation over the modal
realization (3.10). Hence, Ĥ = (In, Â, B̂, Ĉ), where

Â =

λ1
. . .

λn

 B̂ =

bT1
...

bTn

 Ĉ =
[
c1 . . . cn

]
. (3.10)

In the projection-based framework, let G = (E,A,B,C) and suppose X be the left eigen-
vectors of the pencil (E,A). Then, the reduced order model obtained by truncation reads
Ĥ = (WTEV,WTAV,WTB,CV ) where the projection matrices are :

V = X

[
In
0

]
∈ CN×n W = (EX)−T

[
In
0

]
∈ CN×n (3.11)

Moreover, the approximation error

G(s)− Ĥ(s) =
N∑

i=n+1

cibTi
s− λi

,

and from this expression a H∞ bound can be derived as follows:

‖G− Ĥ‖H∞ = max
ω∈R

∥∥∥∥ N∑
i=n+1

cibTi
iω − λi

∥∥∥∥
2

≤ max
ω∈R

N∑
i=n+1

∥∥∥∥ cibTi
iω − λi

∥∥∥∥
2

≤
N∑

i=n+1

‖ci‖2‖bi‖2
|Re(λi)|

.

In practice, this H∞ approximation bound is very conservative (see [Vuillemin, 2014, Chapter
3]). This comes from the commutation between the sum and the max operator. In general,
modal truncation is less effective compared to other model approximation methods when the
task is to reduce the H2 or H∞ approximation errors.

To sum up, modal approximation is a simple approximation technique that has the advantage
of preserving some modes of the full order model. This is particularly interesting when some
modes with a particular physical meaning must be retained. Yet, modal truncation is often less
efficient than other methods in the sense of the H2 or H∞ norms. See [Vuillemin, 2014] and the
examples therein for more details.

3.2.2 Balanced truncation
One of the most widely used model approximation methods is the so-called balanced truncation.
It was first introduced in [Mullis and Roberts, 1976] and then later by [Moore, 1981] in systems
and control literature. This method has the nice physical interpretation: the states that are
removed are those that are difficult to reach and to observe simultaneously, and consequently,
which least contribute to the energy transfer from the input to the output. Therefore, the starting
point of balanced truncation is to suitably characterize “observability” and “controllability” of a
system, which are quantified by the gramians (see Chapter 2). The method can be summarized
in finding the balanced realization (balancing step) and, subsequently, eliminating the states that
are associated to the least Hankel singular values (truncation step).
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Balanced realization step: the balanced realization is the state-space representation where
the states are ordered by their importance in the input-output energy transfer. Let us recall its
definition.

Definition 3.3 (Balanced realization). A model Hb = (Eb, Ab, Bb, Cb) is represented in
the balanced state-space realization if the associated gramians P and Q (defined in Chapter
2, equations (2.18) and (2.19)) satisfy

P = ETb QEb = Σ = diag(σ1, . . . , σN ), (3.12)

where σ1 ≥ σ2 · · · ≥ σN ≥ 0 are the Hankel singular values of Hb, i.e., σi =
√
λi(PETb QEb),

for i = 1, . . . , N .

It is worth mentioning that the gramians P and Q both depend on the realization (E,A,B,C).
However, the Hankel singular values are invariants, i.e., do not depend on the realization. In
order to find the transformation leading the system to the balanced realization, let us apply on
the realization a change in the variables of the form

z = Tx, with T ∈ RN×N non-singular.

This implies that the Gramians in this new realization are

P̃ = TPTT , Q̃ = T−TQT−T .

Hence, finding the balanced realization is similar as finding a transformation T which diagonalizes
both P and ETQE. This consists in the simultaneous diagonalization of two positive definite
matrices. This is always possible and there are different ways to construct this transformation (see
[Gugercin and Antoulas, 2004]). The following lemma recalls the so-called square root algorithm
(see [Laub et al., 1987]).

Lemma 3.4. Let P = UUT and Q = LLT be the Cholesky decompositions of the gramians
P and Q. In addition, let LTEU = MΣN be the singular value decomposition of LTEU ,
where MT = M−1 and NT = N−1 are orthogonal matrices, and Σ = diag(σ1, . . . , σN ) are
the Hankel singular values of the system. Then, the state transformation z = Tx given by

T = Σ− 1
2MTLTE and T−1 = UNΣ− 1

2 ,

allows to transform the system in its balanced realization.

Hence, Lemma 3.4 gives a constructive way to find the balanced realization of a system. This
generalized version takes into consideration the matrix E and it is due to [Hsu et al., 1983].
There exist other algorithms to find this transformation and they will briefly discussed latter.

Truncation step: once the system is in its balanced realization H = (Eb, Ab, Bb, Cb), the
balanced truncation is obtained by eliminating the states corresponding to the least Hankel
singular values. In this way, let us write

Σ =
[
Σ1

Σ2

]
, Eb =

[
E1 E2
E3 E4

]
, Ab =

[
A1 A2
A3 A4

]
, Bb =

[
B1
B2

]
, Cb =

[
C1 C2

]
,
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where Σ1 = diag(σ1, . . . , n) and Σ2 = diag(σn+1, . . . , σN ). Therefore, the reduced-order model
obtained by balanced truncation is

Ĥ =
(
E1, A1 B1
C1 0

)
(3.13)

The following theorem provides some properties of the balanced truncation.

Theorem 3.5 (Balanced truncation properties [Antoulas, 2005]).Let G = (E,A,B,C)
be a stable, controllable and observable realization. Then the reduced-order model Ĥ =
(E1, A1, B1, C1) of order n obtained by balanced truncation as in (3.13), with σn > σn+1,
has the following properties: it is stable, balanced, minimal and it satisfies

σn+1 ≤ ‖G− Ĥ‖H∞ ≤ 2
N∑

i=n+1
σi.

The full proof of Theorem 3.5 can be found in [Antoulas, 2005, Chap.7]. The proof of
stability of the reduced-order model is based on inertia results (see [Antoulas, 2005, Chap.6]).
The theorem provides an important reassuring insight into the potential of balanced truncation:
since the singular numbers of exponentially stable LTI systems generally decay exponentially,
the upper bound of Theorem 3.5 is not expected to be much larger than the lower bound.

In order to obtain the reduced-order model by projection, let us consider the matrices L,
U , M , N and Σ from Lemma 3.4. One can considered that the matrices Σ, M and N can be
partitioned as,

Σ =
[
Σ1

Σ2

]
, M =

[
M1 M2

]
, N =

[
N1 N2

]
,

where M1 ∈ RN×n, N1 ∈ RN×n and Σ1 ∈ Rn×n. Therefore, the balanced truncation can be
simply stated using the projection framework as follows :

Theorem 3.6 (Balanced truncation - Projection framework). Using the notation
predefined, let

WT = Σ−
1
2

1 MT
1 L

T ∈ Rn×N and V = UN1Σ−
1
2

1 ∈ RN×n,

be projection matrices. These matrices lead to the construction of the reduced-order model
Ĥ = (Ê, Â, B̂, Ĉ) by balanced truncation as follows

Â = WTAV, Ê = WTEV B̂ = WTB and Ĉ = CV.

Notice that by construction, the matrix Ê is equal to identity. To sum up, balanced truncation
is a model approximation method that generally yields a good approximation, preserves stability
and provides an a priori error bound. The drawback is that it requires to find the solution
of Lyapunov equations which can be a difficult task for large-scale systems. In addition, the
provided error bound is conservative in practice (see [Vuillemin, 2014, Chapter 3]).

A great amount of extensions of the balanced truncation and numerical improvements are
available. Here is a non-exhaustive list of examples:
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Extensions :

v Differential algebraic equations : see [Bender, 1987; Stykel, 2004] for extension of
the theory. See [Stykel, 2006] for application to the semidiscretized Stokes equation. In
addition, the paper [Mehrmann and Stykel, 2005] gives a very good survey of balanced
truncation for differential algebraic systems.

v Second-order systems : both papers [Meyer and Srinivasan, 1996] and [Chahlaoui et al.,
2006] develop different structures preserving model reduction methods for second-order
systems.

v Unstable systems : it was first developed in [Therapos, 1989] for unstable non-minimal
systems and then generalized in [Zhou et al., 1999].

v Inhomogeneous initial conditions : [Heinkenschloss et al., 2011] presents a new method
allowing model approximation for systems with inhomogeneous initial conditions, by adding
auxiliary inputs derived from the initial conditions.

v Infinite dimensional systems : [Glover et al., 1988] extends balanced truncation to
the class of infinite-dimensional continuous-time systems. More recently, papers [Reis and
Selig, 2014; Guiver and Opmeer, 2014] generalize those results.

v Time-varying systems : one extension of balanced truncation for time-varying systems
is developed in [Sandberg and Rantzer, 2004]. Applications using a projection method are
presented in [Sandberg, 2006].

v Nonlinear systems : Balanced truncation for nonlinear systems is introduced in [Scher-
pen, 1993]. In addition, balanced truncation based on the empirical gramians to project
the initial model leads to the so-called Proper Orthogonal Decomposition. See [Antoulas,
2005] and the references therein for further information.

The survey [Gugercin and Antoulas, 2004] presents some other methods that were not men-
tioned here, e.g., positive real and frequency weighted balancing. In addition, model approxi-
mation by balanced truncation requires the solution of Lyapunov equations which can be a hard
task in the large-scale setting. Some well know methods, e.g., the Bartels-Stewart algorithm,
Hammarling’s method, sparse Alternating Direction Implicit (ADI) Krylov subspaces, can be
found in the survey paper [Benner and Saak, 2013].

In the next section, other projection-based method are presented. The philosophy proposed
no longer to eliminate some states, but rather to find a reduced order model satisfying some
interpolation conditions.

3.3 Model approximation by interpolation
Generally, interpolation consists in finding a simple function, e.g, polynomials, splines, trigono-
metric functions, passing through some given data (xi, yi) for i = 1, . . . , n. The same idea can
be employed to build finite dimensional reduced-order models, which are essentially rational
functions. That motivates the introduction of rational interpolation methods. Given a transfer
function G(s) ∈ Cny×nu , one could consider the problem of finding a rational transfer function
Ĥ = (E,A,B,C) which satisfies some point-wise interpolation conditions as

G(σk) = Ĥ(σk) ∈ C, at each interpolation point σk ∈ C. (3.14)
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However, those point-wise interpolation is to strong since, for each interpolation point σk, it
requires ny × nu constraints to be satisfied. Hence, instead of point wise conditions like (3.14),
we require only that the interpolating matrix function match the original only along certain
directions, known as right and left tangential directions. This new interpolation problem is
called tangential interpolation problem and can be stated as follows.

Problem 3.7 (Tangential interpolation problem). Given a set of n right interpolation
points {σi}ni=1 ∈ C, n right tangential directions {ri}ni=1 ∈ Cnu , n left interpolation points
{µi}ni=1 and n left tangential directions {li}ni=1 ∈ Cny find a reduced order model Ĥ satisfying

G(σi)ri = Ĥ(σi)ri
lTi G(µi) = lTi Ĥ(µi)

}
for i = 1, . . . , n. (3.15)

In addition, we say that Ĥ satisfies a bitangential Hermite condition with respect to G(s)
at σ ∈ C along the right tangent direction ri ∈ Cnu and the left tangent direction li ∈ Cny ,
if

lTi G′(σi)ri = lTi Ĥ′(σi)ri, (3.16)

where G′(σi) denotes the differentiation of G(s) with respect to s.

Notice that in the SISO case, the right and left tangential directions are scalars and can be
choosen as one, e.g., ri, li = 1, for i = 1, . . . , n. It is worth to note that tangential interpolation
generalizes the conditions from (3.14). Indeed, if for the same interpolation point σk, the canon-
ical vectors ei are chosen as right tangential directions, then we obtain (3.14). The tangential
interpolation problem was proposed and solved in [Gallivan et al., 2004a]. It will be shown in
Chapter 4 that the tangential interpolation considerations are adequate to characterize necessary
optimality conditions for the H2 optimal model approximation problem.

In the following, we briefly present the notion of moment matching and the historical devel-
opments behind the solution of Problem 3.7.

3.3.1 Model approximation by moment matching
Historically, the first approach tackling Problem 3.7 was the so-called model approximation by
moment matching. The moments of a transfer function are presented in Definition 3.8 and the
problem of model approximation by moment matching is introduced in Problem 3.9.

Definition 3.8 (Moments of a transfer function). Let us consider a model G =
(E,A,B,C). Its transfer function G(s) = C(sE − A)−1B ∈ Cny×nu can be expanded
using the Taylor series in the neighborhood of a given shift point s0 ∈ C if s0 is not a pole
of G(s). Then,

G(s) =
∞∑
k=0

ηi(s0) (s− s0)k
i! ,

and
ηi(s0) = (−1)k d

i

dsi
G(s)

∣∣
s=s0

∈ Cny×nu

is the i-th momenta of G(s) at s0.
aNotice that this definition is related to the notion of moment of a measure. Given an impulse response

of a model h(t) ∈ Rny×nu , the k-th moment of h(t) at s = s0 is given by ηk(s0) =
∫∞

0 tkh(t)e−s0tdt. This
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can be seen as the i-th moment of the measure dµ = h(t)e−s0tdt.

Notice that moments are invariants of the system. In order to simplify the notation, let us
denote Aσ = (A− σE). Let G(s) = C(sE −A)−1B and s0 ∈ C be given, then the i-th moment
at s0 is given by

ηi(s0) = −C(A−1
s0
E)iA−1

s0
B, for i = 1, 2, . . .

In addition, if s0 =∞, the moments are defined as follows

ηi(∞) = C(E−1A)i−1E−1B. for i = 1, 2, . . . .

In this case, the moments are called Markov parameters and are related to the partial realization
problem (see [Antoulas, 2005, Chapter 4]).

Now, let us define the problem of model approximation by moment matching.

Problem 3.9 (Moment matching problem). Given a N -th oder model G and r shift
points {s1, . . . , sr} ∈ C, whose i-th moment is denoted by ηi(sk), the moment matching
problem consists in finding a reduced-order model Ĥ, whose i-th moment, is denoted by
η̂i(sk), satisfies

ηi(sk) = η̂i(sk) for i = 1, . . . , n and k = 1, . . . , r.

Notice that Problem 3.9 for moments of order 0 and 1 is equivalent to Hermite interpolation
problem 3.7 in the SISO case. In the MIMO case, moment matching corresponds to point-wise
interpolation and the tangential interpolation problem is a generalization of it. The simplest
approach to solve Problem 3.9 is to compute explicitly the moments of G and to find a reduced-
order model Ĥ which matches those moments (see [Villemagne and Skelton, 1987] and [Grimme,
1997]). However, computing the moments is a numerically expensive and ill-conditioned problem.

The method described in this section is numerically efficient and relies on the projection
framework. The following theorem enables to construct the reduced-order model implicitly with-
out explicitly computing the moments. It was first presented in [Grimme, 1997] in the framework
of matching moments and then generalized to the tangential interpolation framework by [Gallivan
et al., 2004a].

Theorem 3.10 (Tangential interpolation by projection). Let G = (E,A,B,C) be
a system whose transfer function is G(s) = C(sE − A)−1B ∈ Cny×nu and Ĥ denotes a
reduced-order model obtained by projection as in (3.6) using the matrices V and W. Let
σ, µ ∈ C be interpolation points which are not poles of G. Then, if

(σE −A)−1Br ∈ span(V ) (3.17)

then the following right tangential interpolation condition

G(σ)r = Ĥ(σ)r, (3.18)

is satisfied. If (
lTC(σE −A)−1

)T
∈ span(W ), (3.19)

then the following left tangential interpolation condition

lTG(µ) = lT Ĥ(µ), (3.20)
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is satisfied. Moreover, if σ = µ and both (3.27) and (3.29) hold, then the bitangential
Hermite condition

lTG′(σ)r = lT Ĥ′(σ)r, (3.21)

is satisfied.

Proof. We only check the right tangential interpolation condition. The other conditions follow
similarly and the development can be found in [Gallivan et al., 2004a] and [Gugercin et al., 2008].
Let us write

Ĥ(σ)r = Ĉ(σÊ − Â)−1B̂r
= CV

(
σWTEV −WTAV

)−1
WTBr

= CV
(
σWTEV −WTAV

)−1
WT (σE −A)(σE −A)−1︸ ︷︷ ︸

=IN

Br.

Notice that (σE −A)−1Br ∈ span(V ). Hence there exists x ∈ Cn such that

(σE −A)−1Br = V x.

Therefore,

Ĥ(σ)r = CV
(
σWTEV −WTAV

)−1
WT (σE −A)V x (3.22)

= CV (σWTEV −WTAV )−1(σWTEV −WTAV )x (3.23)
= CV x = C(σE −A)−1Br = G(σ)r. (3.24)

Theorem 3.10 enables to construct the projection matrices V and W such that the reduced-
order model obtained by projection satisfies left and right tangential interpolation conditions.
Furthermore, if some left and right tangential interpolation condition are imposed for the same
shift σ, the bitangential Hermite condition (3.31) is satisfied for free. In addition, a similar
theorem enforcing higher order derivatives interpolation can be stated (see for example [Grimme,
1997; Gallivan et al., 2004a] and [Antoulas et al., 2010, Theorem 2]).

Projection matrices V and W can be constructed to match moments at the same interpola-
tion point. This can be done in the robust numerical framework of rational Krylov methods (see
[Grimme, 1997; Antoulas, 2005]), in particular using Lanczos and Arnoldi methods (see [Saad,
2003, Chapter 6] and [Antoulas, 2005, Chapter 11]). They enable the construction of the pro-
jectors V,W without explicitly computing the moments and the procedure can be implemented
iteratively. The following papers [Gallivan et al., 1994; Feldmann and Freund, 1995; Freund,
2003; Antoulas et al., 2010; Bai, 2002] and the references therein develop related work to model
approximation using rational Krylov methods and interpolation. In addition, the projectors
V,W can be encoded as a solution of Sylvester equations. Indeed, there is a connection between
Krylov subspaces and Sylvester equations which was reveled by the PhD thesis [Vandendorpe,
2004] and the paper [Gallivan et al., 2004b].

3.3.2 Generalized coprime framework
Until now, the full and the reduced-order models were assumed to be finite dimensional and
described by a realization G = C(sE − A)−1B and Ĥ = Ĉ(sÊ − Â)−1B̂. As it was discussed
in Chapter 1, even if this representation is quite general and a wide range of linear dynamical
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systems can be converted to this form, some more complex structures cannot be represented by
those equations. Problem formulations often lead to somewhat different structures that reflect
the underlying physics or other important system features. In the following, we introduce the
results from [Beattie and Gugercin, 2009a]. It presents interpolatory methods that preserve
relevant system structure in reduced models.

In what follows, we consider a transfer function having the following generalized coprime
representation:

G(s) = C(s)K−1(s)B(s). (3.25)
where both C(s) ∈ Cny×N , B(s) ∈ CN×nu are analytic in the right half plane, and K(s) ∈ CN×N
is analytic and full rank throughout the right half plane. Examples of systems represented by
the coprime representation are given in what follows :

• Second-order systems: let G be a second order system whose transfer function is given
by

G(s) = C(s2M + sK +D)−1B,

where M,K,D ∈ RN×N , B ∈ RN×nu and C ∈ Rny×N . Its coprime representation is given
by C(s) = C, B(s) = B and K(s) = s2M + sK + D. The structured preserving model
approximation problem is to find Ĥ a reduced-order model whose transfer function is given
by

Ĥ(s) = Ĉ(s2M̂ + sK̂ + D̂)−1B̂,

where M̂, K̂, D̂ ∈ Rn×n, B̂ ∈ Rn×nu , Ĉ ∈ Rny×n and n ∈ N, n� N .

• Time-delay systems: let G be a time-delay system whose the transfer function reads

G(s) = C

(
sE −

nτ∑
k=1

Ake
−sτk

)−1
B,

where Ak ∈ RN×N , for k = 1, . . . , nτ , B ∈ RN×nu and C ∈ Rny×N . Its coprime represen-
tation is given by C(s) = C, B(s) = B and K(s) = sE −

∑nτ
k=1Ake

−sτk . Similarly, the
structured preserving model approximation problem is to find Ĥ, a reduced-order model,
whose transfer function is given by

Ĥ(s) = Ĉ

(
sÊ −

nτ∑
k=1

Âke
−sτk

)−1
B̂,

where Âk ∈ Rn×n, for k = 1, . . . , nτ , B̂ ∈ Rn×nu , Ĉ ∈ Rny×N and n� N .

More generally, the goal is to construct a reduced-order model Ĥ having the same structure as
G. This is possible by theorem from [Beattie and Gugercin, 2009a], which enables to generalize
tangential interpolation for generalized coprime representation.

Theorem 3.11 (Tangential interpolation for generalized coprime factors). Let G
be a system whose transfer function is given by

G(s) = C(s)K−1(s)B(s),

and Ĥ(s) = Ĉ(s)K̂−1(s)B̂(s) be the reduced-order model transfer function obtained by the
projection matrices as follows

K̂(s) = WTK(s)V, B̂(s) = WTB(s), and Ĉ(s) = C(s)V. (3.26)
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Assume that σ and µ, the right and left interpolation points, are not poles of C(s), K(s)
and B(s), and the matrices K(σ) and K(µ) have full rank. In addition, let r ∈ Cnu and
l ∈ Cny . Then, if

K−1(σ)B(σ)r ∈ span(V ), (3.27)

then the following right tangential interpolation condition

G(σ)r = Ĥ(σ)r, (3.28)

is satisfied. If (
lTC(σ)K−1(σ)

)T
∈ span(W ), (3.29)

then the following left tangential interpolation condition

lTG(µ) = lT Ĥ(µ), (3.30)

is satisfied. Moreover, if σ = µ and both (3.27) and (3.29) hold, then the bitangential
Hermite condition

lTG′(σ)r = lT Ĥ′(σ)r, (3.31)

is satisfied.

Theorem 3.11 enables to perform tangential interpolation for a larger class of models. It
generalizes the results from Theorem 3.10 with similar conditions on the projection matrices
V,W . Some extensions were developed for other classes of models. Here is a non-exhaustive list
of extensions and relative works:

v Non-linear systems: model approximation by moment matching for non-linear systems
was developed in [Astolfi, 2010]. It generalizes the notion of moment for non-linear models.
For bilinear systems using Volterra series, see [Bai and Skoogh, 2006] and the generalizations
in [Breiten and Damm, 2010] and [Benner and Breiten, 2012].

v Time-delay systems: a similar approach to Theorem 3.11 was given in [Michiels et al.,
2011] which proposes a Krylov-based model approximation for time-delay systems. Moment
matching were also generalized for time-delay systems in [Scarciotti and Astolfi, 2016] and
[Schulze and Unger, 2015].

v Port-Hamiltonian systems: model approximation by interpolation for port-Hamiltonian
systems was studied in [Gugercin et al., 2012] and [Ionescu and Astolfi, 2013] in the lin-
ear context and in [Beattie and Gugercin, 2011] and [Chaturantabut et al., 2016] in the
non-linear case.

v Parametric systems: the paper [Benner et al., 2015] is a recent survey on model approx-
imation by projection applied to parametric systems.

In what follows, we present a framework enabling to derive reduced-order models based on
interpolation of given frequency data, instead of the system realization.

3.4 Data-driven model reduction
So far, projection-based model approximation has been presented in such a way that it aims
at finding a finite dimensional approximation Ĥ = (Ê, Â, B̂, Ĉ) for a full-order model G =
(E,A,B,C). In addition, Theorem 3.11 enables preserving-structure model approximation.

45



3.4. Data-driven model reduction

In this section, a new framework due to [Mayo and Antoulas, 2007] is presented. This
framework permits to build a finite dimensional approximation Ĥ using the evaluations of the
transfer function of G only. Hence, with this framework one can construct an approximation
H = (E,A,B,C) of G, even if G is given by an irrational transfer function or simply if its
realization is not available. The main advantage of this procedure is to avoid any discretization,
which is usually necessary when dealing with an infinite-dimensional system.

3.4.1 Tangential interpolation data problem
We introduce the data-based framework for model approximation from [Mayo and Antoulas,
2007]. Instead of assuming known the frequency behavior of G(s) for all complex number s ∈
C, we suppose that some frequency data of G are available only. Inspired by the tangential
interpolation, given a set of n right interpolation points {σi}ni=1 ∈ C, n right tangential directions
{ri}ni=1 ∈ Cnu , n left interpolation points {µi}ni=1 and n left tangential directions {li}ni=1 ∈ Cny ,
the objective consists in finding a reduced order model Ĥ satisfying,{

G(λi)ri = wi

lTi G(µi) = vi
. (3.32)

We assume that only the right and left tangential evaluations of G are available. The goal is
to find a reduced order model Ĥ matching this frequency data set. This is summarized by the
following problem.

Problem 3.12 (Tangential interpolation data problem). Let

{(λi, ri,wi)| λi ∈ C, ri ∈ Cnu ,wi ∈ Cny}
{(µi, li,vi)| µi ∈ C, li ∈ Cny ,vi ∈ Cnu} for i = 1, . . . , n (3.33)

be the tangential interpolation data set. Find a (minimal) reduced order model Ĥ = (Ê, Â, B̂, Ĉ)
satisfying the right and left interpolation conditions, respectively,

Ĥ(λi)ri = wi

lTi Ĥ(µi) = vi
. for i = 1, . . . , n, (3.34)

In the SISO case, Problem 3.12 is also known as rational interpolation (see [Anderson and
Antoulas, 1990; Antoulas and Anderson, 1986; Ionita, 2013] and the references therein for some
developments in the solution of this problem). Problem 3.12 supposes that the numbers of left
and right interpolation conditions are the same. A more general tangential interpolation problem
can be considered supposing that the number of left and right interpolation conditions can be
different (see [Mayo and Antoulas, 2007]). For clarity, we present only the case where the number
of right and left conditions are the same and readers should refer to [Mayo and Antoulas, 2007]
for the general problem.

Let us introduce the following matrices associated with the interpolation problem
Λ = diag(λ1, . . . , λn) ∈ Cn×n
R =

[
r1 . . . rn

]
∈ Cnu×n

W =
[
w1 . . . wn

]
∈ Cny×n

and


M = diag(µ1, . . . , µn) ∈ Cn×n
LT =

[
l1 . . . ln

]
∈ Cny×n

V T =
[
v1 . . . vn

]
∈ Cnu×n

(3.35)

These matrices represent the tangential interpolation Problem 3.12 and will be useful in later
developments.
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3.4.2 The Loewner framework
Now, we present the main tool of this approach: the Loewner pencil. The Loewner matrix L and
the shifted Loewner matrix Lσ associated to the tangential interpolation data (3.33) are defined
as follows:

Definition 3.13 (The Loewner pencil [Mayo and Antoulas, 2007]). The Loewner
matrix L associated to the data (3.33) is defined as

L =


vT1 r1 − lT1 w1

µ1 − λ1
. . .

vT1 rn − lT1 wn

µ1 − λn
... . . . ...

vTnr1 − lTnw1

µn − λ1
. . .

vTnrn − lTnwn

µn − λn

 ∈ Cn×n. (3.36)

The shifted Loewner matrix Lσ associated to the data (3.33) is defined as

Lσ =


µ1vT1 r1 − λ1lT1 w1

µ1 − λ1
. . .

µ1vT1 rn − λnlT1 wn

µ1 − λn
... . . . ...

µnvTnr1 − λ1lTnw1

µn − λ1
. . .

µnvTnrn − λnlTnwn

µn − λn

 ∈ Cn×n. (3.37)

The pair (L,Lσ) is called the Loewner pencil associated to the tangential interpolation data
(3.33).

For instance, it is assumed that the interpolation points satisfy λj 6= µi, for i, j = 1, . . . , n, in
order to ensure that the Loewner and shifted Loewner matrices are well-defined. This restriction
will be later dropped in Theorem 3.16. These matrices are the key tool to solve the data tangential
interpolation Problem 3.12.

First, notice that these two matrices satisfy the following Sylvester equations:

ML− LΛ = V R− LW, (3.38)

and
MLσ − LσΛ = MVR− LWΛ, (3.39)

where M , Λ, V,W,R and L are defined as in (3.35).
Now, let us assume that the data from (3.33) are sampled from a system whose transfer

function is
Ĥ = Ĉ(sÊ − Â)−1B̂ ∈ Cny×nu ,

where Â, Ê ∈ Rn×n. For model Ĥ, we define the generalized tangential controllability and
observability matrices associated to the tangential interpolation data (3.33) as:

On =

lT1 Ĉ(µ1Ê − Â)−1

...
lTn Ĉ(µnÊ − Â)−1


Rn =

[
(λ1Ê − Â)−1B̂r1 . . . (λnÊ − Â)−1B̂rn

]
 . (3.40)
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Hence, the following matrix factorization result follows,

[L]ji =
vTj ri − lTj wi

µj − λi
= −lTj Ĉ(µjÊ − Â)−1Ê(λiÊ − Â)−1B̂ri,

and, similarly,

[Lσ]ji =
µjvTj ri − lTj wiλi

µj − λi
= −ljT Ĉ(µjÊ − Â)−1Â(λiÊ − Â)−1B̂ri,

leading to
L = −OnÊRn and Lσ = −OnÂRn. (3.41)

Hence, the Loewner matrix and the shifted Loewner matrix can be factorized using the
generalized controllability and observability grammians. This leads to the first important result
about the Loewner pencil.

Lemma 3.14 (Complexity of interpolant [Mayo and Antoulas, 2007]). Given tan-
gential samples of a minimal descriptor system Ĥ = (Ê, Â, B̂, Ĉ), construct the matrices
L and Lσ as in Definition 3.13. Assuming that we have enough samples, and the left and
right directions li and ri are chosen such that On and Rn have full rank, then the following
statements hold:

1. rank(L) = rank(Ê) = McMillan degree of the system Ĥa;

2. rank(Lσ) = rank(Â).
aif the system is strictly proper, its McMillan degree is the order of one of its minimal realizations.

Lemma 3.14 states that the Loewner matrix L encodes the McMillan degree of a system. Hence,
the rank of the Loewner matrix somewhere encodes the number of states necessary to describe
the underlying system.

Let us now state the solution for Problem 3.12 based on the Loewner pencil.

Theorem 3.15. Let det(σL−Lσ) 6= 0 for all σ ∈ {λi}∪{µi}. Then, the n-th reduced-order
model

Ĥ :
{
−L ˙̂x(t) = −Lσx̂(t) + V u(t)

ŷ(t) = W x̂(t) , (3.42)

is a minimal realization of an interpolant of the data, i.e., its transfer function

Ĥ(s) = W (Lσ − sL)−1V,

satisfies the bitangential interpolation conditions from Problem 3.12.

Proof. Multiplying equation (3.38) by s and subtracting it from the equation (3.39) we obtain

(Lσ − sL)Λ−M(Lσ − sL) = LW (Λ− sIn)− (M − sIn)V R.

Then, by multiplying this equation by ei on the right and setting s = λi, we have

(λiIn −M)(Lσ − λiL)ei = (λiIn −M)V ri
(Lσ − λiL)ei = V ri.
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Since, by hypothesis, (Lσ − λiL) is non singular, we deduce

wi = Wei = W (Lσ − λiL)−1V ri = Ĥ(λi)ri.

The left tangential interpolation condition follows similarly.

Theorem 3.15 gives a solution to the tangential interpolation data problem 3.12. In the
context of model approximation, the advantage is that it does not require that the model G is
given by a finite dimensional realization. Hence, given a transfer function G, irrational or not,
we are able to construct a model approximation H = (Ê, Â, B̂, Ĉ) satisfying some tangential
interpolation conditions.

This is not the case of the projection-based approach of Theorem 3.10. Indeed, the projection-
based model approximation framework requires that G has a finite dimensional realization, e.g.,

G(s) = C(sE −A)−1B,

and irrational transfer function cannot be handled by this approach directly, requiring a dis-
cretization step of the underlying infinite dimensional system a priori. Therefore, the Loewner
framework enables to perform model approximation of infinite dimensional models without dis-
cretization.

The following theorem enables to extend Theorem 3.15 to the case where the right and left
interpolation points are identical, i.e., λi = µi, for i = 1, . . . n.

Theorem 3.16. Let G(s) ∈ Cnu×ny be a transfer functions. If

(L)i,j :=


lTi (G(σi)−G(σj)rj

σi − σj
if i 6= j

lTi G′(σi)ri if i = j

(Lσ)i,j :=


lTi (σiG(σi)− σjG(σj)rj

σi − σj
if i 6= j

lTi [sG′(s)]′|s=σiri if i = j

and

W :=
[
G(σ1)r1 . . . G(σn)rn

]
, V :=

lT1 G(σ1)
. . .

lTnG(σn)

 , (3.43)

then, Ĥ(s) = W (Lσ − sL)V satisfies the bitangential Hermite interpolation conditions as
follows: 

Ĥ(σi)ri = G(σi)ri
lTi Ĥ(σi) = lTi G(σi)

lTi Ĥ′(σi)ri = lTi G′(σi)ri
(3.44)

for i = 1, . . . , n.

Theorem 3.16 is equivalent to Theorem 3.10 when the right and left interpolation points
are equal. Hence, Theorem 3.16 enables to build a reduced-order model Ĥ satisfying the the
bitangential Hermite conditions as in Problem 3.7. This result will be particularly interesting
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for the H2 optimal model approximation algorithm (TF-IRKA presented in Chapter 4). Notice
that it is also possible to interpolate higher derivatives and the approach is described in [Mayo
and Antoulas, 2007].

Now, we briefly present a procedure, also from [Mayo and Antoulas, 2007], to handle the case
where more data than necessary is provided.

Theorem 3.17 (Redundant data [Mayo and Antoulas, 2007]). Given tangential data
as in Problem 3.12, let L and Lσ be the Loewner pencil. Then, if

rank
[
xL− Lσ

]
= rank

[
L Lσ

]
= rank

[
L
Lσ

]
= r, (3.45)

for all x = {λi} ∪ {µi}, i = 1, . . . , n. Consider the shorts SVDs

[
L Lσ

]
= Y ΣlX̃∗ and

[
L
Lσ

]
= Ỹ ΣrX∗, (3.46)

where Σl,Σr = Rr×r, Y ∈ Cn×r and X ∈ Cn×r. Then, the system Ĥ = (Ê, Â, B̂, Ĉ), given
by

Ê = −Y ∗LX, Â = −Y ∗LσX, B̂ = Y ∗V, Ĉ = WX, (3.47)

is a decriptor system of an (approximate) interpolant of the data with McMillan degree
r = rank(L).

For realistic applications, Theorem 3.17 is very useful to derive reduced-order models. In
practice, one should use the numerical rank when verifying condition (3.45) and that is the
reason why one has an approximate intepolant.

Some extensions of this framework were developed. Here is a non-exhaustive list of extensions
and relative works:

v Parametric systems: in [Ionita and Antoulas, 2014a], authors extend the Loewner frame-
work for parametric systems. In [Ionita and Antoulas, 2014b], authors present a study-case
on the model approximation using Loewner framework and reduced-basis.

v Time-delay systems: in [Pontes Duff et al., 2015a] and [Schulze and Unger, 2015], the
Loewner framework for a special class of time-delay systems is presented. They will be
discussed later in Chapter 6.

v Non-linear systems: the Loewner framework has been used as well to treat non-linear
model. See [Antoulas and Gosea, 2015] and [Gosea and Antoulas, 2015] for more details.

Conclusion
In this chapter, a non-exhaustive state-of-the-art on model approximation techniques was pre-
sented focusing on two family of methods: (i) the projection-based and (ii) the data-based
model approximation. A great variety of model approximation methods can be described in
this projection-based framework. Two projection-based model approximation methods are de-
scribed: (i) model approximation by truncation in 3.2 and (ii) model approximation by tangential
interpolation in 3.3. These techniques can be successfully applied in a wide range of applications.
The major drawback is that they require that both the full-order model G and the reduced-order
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model Ĥ to be represented by a finite-dimensional realization. Hence, they are not directly ap-
plicable to infinite dimensional systems or irrational transfer functions and they do not allow
the reduced-order model to have any particular structure. However, in Section 3.3, a projection-
based method, able to preserve peculiar structure, is presented. It enables model approximation
for a larger family of models. Finally, Section 3.4 presents the Loewner framework by performing
data-driven tangential interpolation and, in the context of model approximation, it can be used
to construct reduced-order models directly from the evaluation of the original model transfer
function.

In this chapter, we do not discuss the choice of the interpolation points σk and tangential
directions rk and lk for the interpolation based methods. This is done in the next chapter where
the stationary points of the optimalH2 model approximation problem are presented as tangential
interpolation conditions at the mirror images of the reduced-order model poles.
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Chapter 4

Optimal H2 model approximation

In this chapter, the standard optimal model approximation problem with respect to the H2
norm is introduced, motivated and contextualized in the literature. Following the philosophy
of [Gugercin et al., 2008], the objective of this chapter is twofold. On one hand, to introduce
the theoretical results which are the background and the main inspiration for the new results
presented in this thesis, especially the results presented in Chapters 5 and 7. On the other hand,
to revisit some of these results, e.g., the H2 inner product computation based on a pole/residue
decomposition.

The chapter is organized as follows. In Section 4.1, the use of the H2 norm is motivated,
some historical literature results are also detailed and the problem is mathematically introduced
in Problem 4.1. Section 4.2 presents the spectral H2 inner product formulation. Section 4.3, the
necessary optimality conditions of Problem 4.1 are derived. Finally, in Section 4.4, two fixed-point
algorithms are presented enabling the construction of a reduced-order model. We believe that
some demonstrations are original and provide some new insights about the H2 approximation
problem.
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4.1. Motivation and problem statement

4.1 Motivation and problem statement
Motivation

The problem of determining "the best approximation" is meaningless if there is no metric as-
sociated. Indeed, different measures can lead to completely different optimal approximations.
Consequently, when solving approximation problems, one should first of all precise how the
approximation error is quantified.

In the context of model approximation, the well-defined system norms (Chapter 2) are largely
used to quantify the quality of an approximation. Thus, a reduced order model Ĥ will be
considered to be the best approximation of G with respect to the norm H if ‖G − Ĥ‖H is as
small as possible. More precisely, for both H2 and H∞ norms, the inequalities (2.11) and (2.12)
from Chapter 2 allow to bound the output for a given input as follows :

ä H2 norm: let G ∈ H2 and suppose that Ĥ ∈ H2 is a good approximation of G in the H2
norm, i.e., ‖G − Ĥ‖H2 � 1. In addition, assume that both models G and Ĥ are subject
to the same input u(t) and that ‖u‖L2 = 1 has provided the outputs y and ŷ. Then, by
applying (2.11), the following estimate is obtained

‖y(t)− ŷ(t)‖L∞ ≤ ‖G− Ĥ‖H2‖u‖L2 � ‖G‖H2 .

Hence, a good H2 approximation yields good L∞ output approximation.

ä H∞ norm: in a similar way, if G ∈ H∞ and Ĥ ∈ H∞ and ‖G − Ĥ‖H∞ � 1, then, by
applying (2.12), the following result is obtained

‖y(t)− ŷ(t)‖L2 ≤ ‖G− Ĥ‖H∞‖u‖L2 � 1.

Hence, a good H∞ approximation yields to a good L2 output approximation.

It is worth recalling here that the H∞ norm is the L2 − L2 induced norm, i.e., ‖G‖H∞ =
supu∈L2

‖Gu‖L2
‖u‖L2

. However, H2 norm is not an induced system norm since it depends on the
Frobenious matrix norm, which is not an induced matrix norm itself. Indeed, this norm is an
unitarily invariant norm1 and unitarily invariant norms are not induced, with the exception of
the 2-norm2 (see [Chellaboina and Haddad, 1995]).

Metric choice

One common system norm is the H∞ norm (definition in Chapter 2), which measures the worst-
case scenario. Hence, it gives valuable information about the worst amplification and it is well
adapted in the context of control design, more specifically in robust control theory (see [Zhou
and Doyle, 1998; Green and Limebeer, 2012]). However, a severe drawback of the H∞ norm
is that its computation is itself a hard optimization problem. This is the main reason why

1The norm ‖ . ‖ is said to be an unitarily invariant norm if, for U ∈ Cn×n, V ∈ Cm×m, unitary matrices, then
the following is satisfied : ‖UAV ‖ = ‖A‖, for all A ∈ Cn×m.

2The 2-norm, also now as the spectral norm, for A ∈ Cny×nu , is defined as

‖A‖2 = sup
u∈Cnu

‖Au‖2

‖u‖2
= σmax(A).
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it is not adapted in the large-scale case (see [Antoulas and Astolfi, 2002] for some theoretical
aspects about H∞ approximation). Another measure that is particularly interesting in view of
control design is the ν-gap metric, which quantifies the closed-loop behavior of a given model
(see [Georgiou and Smith, 1990; Vinnicombe, 1993] for the definition and the theoretical results
and [Cantoni, 2001; Sootla, 2014] for model approximation based on this metric). Similarly,
ν-gap model approximation is generally considered to be computationally unfeasible, based on
the same arguments provided for the H∞ case.

In this thesis, the H2 norm is the one chosen to measure the quality of an approximation.
Indeed, this norm has several properties that justify its use, e.g.,

ä the H2 norm is numerically accessible even in the large-scale setting.

ä it can be analytically characterized either as a solution of a Lyapunov equation, or based
on the pole/residue decomposition of a transfer function.

ä H2 space is a Hilbert space. Thus, it is equipped with an inner product enabling orthogonal
projections. This geometric notion plays a very important role in H2 model approximation
and will be largely explored from now on in the work.

ä the approximation problem is a root mean-square problem [Riggs and Edgar, 1974] and it
has a nice impulse response energy interpretation.

For some practical applications, the H2 norm might not be desirable (as an example, in the
context of robust control design). Nevertheless, experience has shown that H2 reduced order
model yields to a small error in the H∞ norm as well (see [Poussot-Vassal et al., 2013; Vuillemin
et al., 2016]).

Problem Statement

The standard H2 model approximation problem is stated as follows :

Problem 4.1 (Optimal H2 model approximation problem). Given a strictly proper
LTI model G ∈ H2

a and an order n ∈ N∗, find a finite dimensional model Ĥ? ∈ H2 which
minimizes the H2 norm of the approximation error, i.e.

Ĥ? = arg min
Ĥ ∈ H2

dim(Ĥ) ≤ n

‖G− Ĥ‖H2 (4.1)

where JH2(Ĥ) = ‖G− Ĥ‖H2 .
aThe order of G was not precised on purpose. In general, G is supposed to be an infinite dimensional

model or a large-scale one. In the latter case, we denote the order of G by N and it is supposed that n� N .

Problem 4.1 has been widely studied. Finding a global solution of Problem 4.1 is a hard
task and, so far, a common approach consist in finding a reduced order model which satisfies
the first-order H2 necessary optimality conditions. Major results available in the literature are
devoted to the case where G has a finite dimensional realization, i.e., G = (E,A,B,C). A
(non-exhaustive) list of references concerning this case is given hereafter:

v Interpolation-based optimality conditions: in the context of model approximation,
H2 necessary first-order optimality conditions for SISO models were derived in [Meier III
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and Luenberger, 1967] as interpolation conditions. Later, [Van Dooren et al., 2008] de-
rived the optimality conditions as bitangential Hermite interpolation ones. In addition,
[Van Dooren et al., 2010] characterizes the stationary points of Problem 4.1 when the
reduced order model has higher order poles.

v Lyapunov-based optimality conditions: first-order necessary optimality conditions
were as well derived in the context of Lyapunov equations [Wilson, 1970] for MIMO mod-
els. Later, those conditions were expressed in the projection framework in [Hyland and
Bernstein, 1985]. Finally, frequency weighted model reduction was tackled by [Halevi,
1992] using the Lyapunov and the projection-based frameworks.

v Iterative algorithms: the well-known Iterative Rational Krylov Algorithm (IRKA) was
proposed in [Gugercin et al., 2006] and [Gugercin et al., 2008]. This algorithm uses the
Krylov-spaces methods to find a model satisfying the H2 optimality conditions. Later,
[Beattie and Gugercin, 2012] proposes an algorithm based on the Loewner framework en-
abling the approximation of irrational transfer functions. These algorithms will be recalled
later in this chapter.

v Trust region methods: a second order gradient algorithm was first proposed by [Bryson
and Carrier, 1990]. Later, a trust-region method for optimal H2 model reduction problems
was proposed by [Beattie and Gugercin, 2009b].

v Approaches grounded on non-linear optimization: an interpolation-based algorithm
was proposed in [Lepschy et al., 1991]. A two-step algorithm based on the numerator-
denominator parametrization of G was developed in [Spanos et al., 1992]. The H2 model
approximation problem was formulated as an unconstrained optimization one over a mani-
fold in [Yan and Lam, 1999] and some gradient-based algorithms were proposed. A descent
algorithm using Krylov-spaces was presented in [Beattie and Gugercin, 2007]. More re-
cently, non-linear optimization is used to solve model approximation and control design
problems related to the frequency-limited H2 norm in [Petersson, 2013] and [Vuillemin
et al., 2014a].

In addition, [Flagg et al., 2013] combines interpolatory techniques and H∞ optimatization of
the direct feedthrough term D in order to find good H∞ approximation of SISO models.

In the context of infinite dimensional models, the recent article [Opmeer, 2015] gives a great
survey of H2 optimal approximation methods for systems represented by non-rational transfer
functions. It highlights that several methods proposed in the H2 literature for finite dimensional
models can be applied with some minor modifications to the case of irrational transfer function.

In the context of discrete-time models, [Baratchart, 1986] has presented some theoretical
results including the minimum existence, and the articles [Baratchart et al., 1991; Fulcheri and
Olivi, 1998; Marmorat et al., 2002] present different algorithms to solve the problem using a
dedicated parametrization. It should be notice that there is an isometry from H2(C+) to the
orthogonal of H2(D) (Hardy space for discrete-time systems) so that methods used for discrete-
time systems can also be used for continuous-time and vice versa (see [Olivi et al., 2013]). The
case of discrete-time models is not treated in this thesis.
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Hilbert projection and non-convexity

It is worth noticing that the optimization criterion JH2(Ĥ) is a convex function from H2 to R+.
This can be easily verified, for t ∈ [0, 1], as follows

JH2(tĤ1 + (1− t)Ĥ2) = ‖G− tĤ1 − (1− t)Ĥ2‖H2

= ‖t(G− Ĥ1) + (1− t)(G− Ĥ2)‖H2

≤ ‖t(G− Ĥ1)‖H2 + ‖(1− t)(G− Ĥ2)‖H2

≤ tJH2(Ĥ1) + (1− t)JH2(Ĥ2).

Additionally, since H2 is a Hilbert space, the non-familiar reader might think that Problem
4.1 could be solved by projection over a given basis, using the Hilbert projection theorem (see
[Kreyszig, 1989, Chapter 3]). However, even if the optimization criterion JH2(Ĥ) is a convex
function, Problem 4.1 is non-convex. Indeed, the constraints of Problem 4.1 is defined by the set

M = {Ĥ ∈ H2, order(Ĥ) ≤ n}.

The setM is non-convex3 which justifies the non-convex nature of Problem 4.1.
As a consequence, M does not define a vector space and one cannot apply projection for

solving Problem 4.1. We will see in Subsection 4.3.1 that if we assume that the reduced order
model has assigned poles, then the optimization set becomes convex and the problem can be
solved using the Hilbert projection theorem.

This chapter is dedicated to study the Problem 4.1. The procedure followed here can be
summarized in three steps:

1. Spectral characterization of the H2 inner product, presented in Section 4.2.

2. Derivation of the H2 necessary optimality conditions of Problem 4.1 using the H2 inner
product characterization. This is the subject of Section 4.3.

3. Recall a fixed-point algorithm based on the H2 necessary optimality conditions in order to
construct reduced order models in Section 4.4.

In the following section, a spectral characterization of the H2 inner product is provided.

4.2 H2 inner product properties
4.2.1 Spectral H2 inner product
In Section 2.1 of Chapter 3, the notions of the H2 inner product and norm were introduced.
Hence, for two models G and H in H2, their H2 inner product is given by

〈G,H〉H2 = 1
2π

∫ ∞
−∞

trace
(
G(iω)H(iω)T

)
dω

= 1
2π

∫ ∞
−∞
〈G(iω),H(iω)〉F dω.

In this section, a spectral characterization of this inner product will be presented. Firstly, let us
start with a simple computation formula.

3The sum of two systems of order n is in general a system of order 2n.
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Lemma 4.2 (First order H2 inner product). Let G ∈ H2 be a strictly proper real model,
φ̂ ∈ Cny×nu and λ̂ ∈ C−. Then〈

G,
φ̂

s− λ̂

〉
H2

= trace(G(−λ̂)φ̂T ).

Moreover, if φ̂ = ĉb̂T , ĉ ∈ Cny and b̂ ∈ Cnu , then〈
G,

ĉb̂T

s− λ̂

〉
H2

= ĉTG(−λ̂)b̂. (4.2)

Proof. It is an implication of the Cauchy’s residues theorem (see [Antoulas, 2005] and
[Gugercin et al., 2008]). Observing that G(iω) = G(−iω) and that the only stable pole of
the complex function trace(G(−s) φ̂

T

s−λ̂ ) is λ̂ ∈ C− (the poles of G(−s) are all unstable). Let us
consider the following semi-circular contour ΓC located in the left half plane such that:

ΓC = ΓI ∪ ΓR,

with: {
ΓI = {s ∈ C/s = iω and ω ∈ [−R;R], R ∈ R+}
ΓR = {s ∈ C/s = Reiθ where θ ∈ [π/2; 3π/2]} .

This contour is sketched on Figure 4.1.

−iR

iR

Re

Im

ΓIΓR
λ̂

Figure 4.1: Complex integral path

For a sufficient large radius value R, the ΓC contour will contain the pole λ̂ only. Thus, by
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applying the residues theorem, it follows that:〈
G,

φ̂

s− λ̂

〉
H2

= 1
2π

∫ +∞

−∞
trace

(
G(−iω) φ̂T

iω − λ̂

)
dω

= lim
R→+∞

1
2iπ

∫
ΓC

trace
(

G(−s) φ̂T

s− λ̂

)
ds

= trace
(
Res(G(−s) φ̂T

s− λ̂
, λ̂)
)

= trace(G(−λ̂)φ̂T ).

where Res(.) denotes the residue operator. The second equality line holds true since, when
R→ +∞: ∣∣∣∣ ∫

ΓR
trace

(
G(−s) φ̂T

s− λ̂

)
︸ ︷︷ ︸

〈G(−s), φ̂

s−λ̂
〉F

ds
∣∣∣∣ ≤ ∫

ΓR

∥∥∥∥ φ̂T

s− λ̂

∥∥∥∥
F

∥∥G(−s)
∥∥
F
ds→ 0+,

which concludes the first part of the proof. Now, suppose that φ̂ = ĉb̂T . Then, from the inner
product formula 〈

G,
ĉb̂T

s− λ̂

〉
H2

= trace
(

G(−λ̂)(ĉb̂T )T
)

= trace
(

G(−λ̂)b̂ĉT
)

= ĉTG(−λ̂)b̂.

which concludes the proof.

Lemma 4.2 provides a simple formula which characterizes the H2 inner product when one of
the models is of order one. The following remark enables to turn a MIMO H2 inner product into
a SISO H2 inner product.

Remark 4.3. Let G ∈ H2 be a MIMO model with nu inputs and ny outputs, ĉ ∈ Cny and
b̂ ∈ Cnu be two tangential directions and λ ∈ C− be a pole. Then Ĥ(s) = ĉb̂T

s−λ̂ ∈ Cny×nu is
also a model with nu inputs and ny outputs. Moreover,〈

G,
ĉb̂T

s− λ̂

〉
H2

= ĉTG(−λ̂)b̂ =
〈

GSISO,
1

s− λ̂

〉
H2

, (4.3)

where GSISO, is a SISO model defined by

GSISO(s) = ĉTG(s)b̂ ∈ C.

In order words, the tangential directions ĉ ∈ Cny and b̂ ∈ Cnu enable us to transform
the MIMO H2 inner product into a SISO H2 inner product.

In what follows, we present an alternative way to compute the H2 inner product based on
the pole-residue decomposition of Ĥ(s).
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Theorem 4.4 (Spectral H2 inner product expression). Let G, Ĥ ∈ H2 be strictly
proper real models. In addition, assume that Ĥ has semi-simple poles, that is, it can be
expressed by a pole-residue decomposition of the form

Ĥ =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.

Then the H2 inner product can be expressed as follows:

〈G, Ĥ〉H2 =
n∑
k=1

ĉTkG(−λ̂k)b̂k. (4.4)

Moreover, the H2 norm of Ĥ is given by:

‖Ĥ‖2H2
=

n∑
k=1

ĉTk Ĥ(−λ̂k)b̂k. (4.5)

Proof. The result is a straightforward application of Lemma 4.2, as follows :

〈G, Ĥ〉H2 =
〈

G,

n∑
k=1

ĉkb̂Tk
s− λ̂k

〉
H2

(4.6)

=
n∑
k=1
〈G,

ĉkb̂Tk
s− λ̂k

〉H2 (4.7)

=︸︷︷︸
Lemma 4.2

n∑
k=1

ĉTkG(−λ̂k)b̂k (4.8)

which completes the proof.

Theorem 4.4 enables to express the H2 inner product as a function of the parametrization
related to Ĥ. Hence, if Ĥ = (Ê, Â, B̂, Ĉ) and the pencil (Ê, Â) is diagonalizable, one is able to
find the pole-residue decomposition and then apply Theorem 4.4 to obtain the H2 inner product.
Notice that the expression has no restriction over the representation of G and should be valid
even if it is represented by an irrational transfer function. Moreover, if G can also be represented
by a pole residue decomposition, we have a symmetric expression of the H2 inner product. This
result is presented in the following remark.

Remark 4.5 (Symmetric representation). If both G, Ĥ ∈ H2 are real models that can
be represented by the following pole-residue decompositions

G =
N∑
k=1

lkrTk
s− µk

and Ĥ =
n∑
k=1

ĉkb̂Tk
s− λ̂k

, (4.9)
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then, the H2 inner product between G and Ĥ can be expressed as follows:

〈G, Ĥ〉H2 =
n∑
k=1

ĉTkG(−λ̂k)b̂k

=
N∑
k=1

lTk Ĥ(−µk)rk.

Remark 4.5 shows that we have some kind of symmetry in the expression of the H2 inner
product, i.e., it can be evaluated using either the poles and residues of Ĥ or G and evaluations
of G or Ĥ, respectively. Let us illustrate this with a simple example:

Example 4.6. Let G(s) = C(sI −A)−1B and Ĥ(s) = Ĉ(sI − Â)−1B̂, where

A =
[
−1 0
0 −2

]
, B =

[
1
2

]
=
[
rT1
rT2

]
and C =

[
1 2
2 1

]
=
[
l1 l2

]
and

Â =
[
−7 1
1 −7

]
, B̂ =

[
1
0

]
and Ĉ =

[
1 0
0 1

]
Firstly, the eigenvalue decomposition of Â is given by

ÂX = X

[
−6 0
0 −8

]
, where X = 1√

2

[
1 1
1 −1

]
.

Hence,
ĉ1 = ĈXe1 = 1√

2

[
1
1

]
and ĉ2 = ĈXe2 = 1√

2

[
1
−1

]
,

b̂T1 = eT1 X−1B̂ = 1√
2

and b̂T2 = eT2 X−1B̂ = 1√
2

Then, the pole-residue decomposition of G(s) and Ĥ(s) are

G(s) = l1rT1
s+ 1︸︷︷︸

−µ1

+ l2rT2
s+ 2︸︷︷︸

−µ2

and Ĥ(s) = ĉ1b̂T1
s+ 6︸︷︷︸

−λ̂1

+ ĉ2b̂T2
s+ 8︸︷︷︸

−λ̂2

and the H2 inner product can be computed as follows:

〈G, Ĥ〉H2 =
2∑
k=1

lTk Ĥ(−µk)rk

= lT1 Ĥ(−µ1)r1 + lT2 Ĥ(−µ2)r2 ≈ 0.6337.
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and, similarly (see Remark 4.5),

〈G, Ĥ〉H2 =
2∑
k=1

ĉTkG(−λ̂k)b̂k

= ĉT1 G(−λ̂1)b̂1 + ĉT2 G(−λ̂2)b̂2 ≈ 0.6337.

The reader should note that if Ĥ is a stable finite dimensional model, i.e., Ĥ = Ĉ(sÊ−Â)−1B̂,
then one can compute the pole-residue decomposition of Ĥ by diagonalizing the pencil (Ê, Â). In
the case it is not diagonalizable, higher order poles will appear in the pole-residue decomposition.
The procedure to obtain the pole-residue decomposition is described in Chapter 2, Section 2.2.

In the following, we show that the derivative is Hermitian with respect to the H2 inner prod-
uct. The H2 inner product expression for models having higher order poles will be a consequence
of this property.

4.2.2 Hermitian derivative
In this subsection, we derive the H2 inner product expression based on pole-residue when the
model has higher order poles. The key tool to derive this expression is the Hermitian derivative
property in H2. In what follows, G′(s) denotes the derivative of G(s) with respect to s. The
Hermitian derivative property follows:

Proposition 4.7 (Hermitian derivative). Let G, H ∈ H2 be strictly proper real models.
In addition, suppose that G′,H′ ∈ H2. Then the derivative with respect to s is an Hermitian
operator, i.e.,

〈G,H′〉H2 = 〈G′,H〉H2 .

Proof. This is obtained using integration by parts as follows. Let us consider the integral over
[−ω, ω]. By applying integration by parts one obtains :

Sω =
∫ ω

−ω
trace

(
G(−iω)H′(iω)T

)
dω

= trace
(

1
i
G(−iω)H(iω)T

∣∣∣ω
−ω︸ ︷︷ ︸

Rω

)
+
∫ ω

−ω
trace

(
G′(−iω)H(iω)T

)
dω︸ ︷︷ ︸

Tω

.

Since H and G are elements of H2, then ‖H‖H2 < ∞ and ‖G‖H2 < ∞, which implies that
lim

ω→±∞
H(iω)G(iω) = 0. In addition, we can take the limit when ω goes to infinity because

H,H′,G and G′ ∈ H2. Hence, the result follows noticing that Sω → 〈H′,G〉H2 , Tω → 〈H,G′〉H2

and Rω → 0 when ω →∞.

One of the consequences of Proposition 4.7 is given in the following Lemma:

Lemma 4.8 (Higher order H2 inner product). Let G ∈ H2 be a strictly proper real
model, ĉ ∈ Cny , b̂ ∈ Cnu , and λ̂ ∈ C−. Then〈

G,
ĉb̂T

(s− λ̂)2

〉
H2

= −ĉTG′(−λ̂)b̂.
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Moreover, for higher order models, one has〈
G,

ĉb̂T

(s− λ̂)n

〉
H2

= (−1)n−1

(n− 1)! ĉTG(n−1)(−λ̂)b̂,

where G(n) denotes the nth derivative of G(s) with respect to s.

Proof. It is obtained by observing

( φ

s− λ̂

)′
= − φ

(s− λ̂)2
and

( φ

s− λ̂

)(n−1)
= (−1)n−1(n− 1)! φ

(s− λ̂)n
.

Then,

〈
G,

ĉb̂T

(s− λ̂)2

〉
H2

= −
〈

G,
( ĉb̂T

(s− λ̂)

)′〉
H2

(4.10)

=︸︷︷︸
Hermitian derivative

−
〈

G′, ĉb̂T

(s− λ̂)

〉
H2

(4.11)

=︸︷︷︸
Lemma 4.2

−ĉTG′(−λ̂)b̂. (4.12)

The result for higher derivative follows by induction.

Lemma 4.8 enables us to compute the H2 inner product for models having poles with multi-
plicity bigger than one. This result is stated in the following theorem, which generalizes Theorem
4.4 when the model has higher order poles.

Theorem 4.9 (Spectral formulation of the H2 inner product, higher order poles).
Let G, Ĥ ∈ H2 be two strictly proper real models. Let us suppose that the transfer function
of Ĥ can be written as

Ĥ(s) =
nJ∑
k=1

ĉkb̂Tk
(s− λ̂)k

,

where ĉk ∈ Cny , b̂k ∈ Cnu , for k = 1, . . . , nJ , and λ̂ ∈ C−. Then,

〈G, Ĥ〉H2 =
nJ∑
k=1

(−1)k−1

(k − 1)! ĉTkG(k−1)(−λ̂)b̂k.

Moreover, the H2 norm of Ĥ can be computed as

‖Ĥ‖2H2
=

nJ∑
k=1

(−1)k−1

(k − 1)! ĉTk Ĥ(k−1)(−λ̂)b̂k.
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Proof. By applying Proposition 4.8. It follows:

〈G, Ĥ〉H2 = 〈G,

nJ∑
k=1

ĉkb̂Tk
(s− λ)k 〉H2

=
nJ∑
k=1
〈G,

ĉkb̂Tk
(s− λ)k 〉H2

=︸︷︷︸
Lemma 4.8

nJ∑
k=1

(−1)n−1

(n− 1)! ĉTkG(n)(−λ)b̂k

The Examples 4.10 and 4.11 illustrate theH2 inner product and norm computation via partial
fraction decomposition.

Example 4.10 (Spectral H2 inner product application #1). Let us consider the SISO
model H = (E,A,B,C) from Example 2.11 whose transfer function is given by

H(s) = − 3
s+ 8 + 6

s+ 4 + 18
(s+ 4)2 .

Then the H2 norm of H can be computed using Propositions 4.4 and 4.9 as follows:

‖H‖2H2
= 〈H,H〉H2

= 〈H,− 3
s−8 + 6

s−4 + 18
(s−4)2 〉H2

= −3H(8) + 6H(4)− 18H′(4) ≈ 5.9531.

Example 4.11 (Spectral H2 inner product application #2). In this example, the
expression provided in Theorem 4.9 is used to compute the norm of a simple higher order
model. Let us consider n ∈ N∗, λ ∈ R+ and a model Gn ∈ H2 whose transfer function is
given by

Gn(s) = 1
(s+ λ)n .

Hence, the H2 norm of Gn(s) can be computed by

〈Gn,Gn〉H2 = 〈Gn,
1

(s+ λ)n 〉H2

=︸︷︷︸
Theorem 4.9

(−1)n−1

(n− 1)! G(n−1)
n (λ).

Since,

G(n−1)
n (s) = (2n− 2)!

(n− 1)!
(−1)n−1

(s+ λ)2n−1 ,

we obtain
‖Gn‖2H2

= 〈Gn,Gn〉H2 = (2n− 2)!
(n− 1)!2

1
(2λ)2n−1 .

The reader should note that if Ĥ is a stable finite dimensional model, i.e., Ĥ = Ĉ(sÊ−Â)−1B̂,
then one can characterize the H2 inner product by the pole-residue decomposition of Ĥ. The

66



Chapter 4. Optimal H2 model approximation

procedure to obtain the pole-residue decomposition is described in Chapter 2, Section 2.2. Once
the pole-residue decomposition is obtained, we are able to compute theH2 inner product provided
in this section. It is worth noting that the computation of the pole-residue decomposition require
the diagonlization of the pencil (Ê, Â), which is an expensive task for a large-scale system. We
have derived this spectral expression of the H2 inner product in order to parametrize it as
a function of the reduced order model’s poles and residues. This will help us to derive the
optimality conditions of Problem 4.1.

To sum up, in this section we developed the pole-residue expression of the H2 inner product.
This gives a parametrization of this inner product as a function of the poles and residues of the
reduced order model Ĥ. In the next section, we tackle the H2 approximation Problem 4.1 using
these expressions.

4.3 Formulation of the H2 first-order optimality conditions
This section is dedicated to the derivation of the necessary H2 optimality conditions of Problem
4.1. It is organized as follows:

1. In subsection 4.3.1, we consider the case where the poles of the ROM are fixed. In this
case, the constraints defined a vector space (and, consequently a convex set) and the
approximation problem can be solve by projection.

2. In subsection 4.3.2, the H2 inner product is used to characterize the approximation error.

3. In subsection 4.3.3, we suppose that G is a finite dimensional system. Then the gradients
with respect to the parameters defining the reduced order model Ĥ are explicitly computed
and the H2 optimality condtions are derived.

4. In subsection 4.3.4, an extension of the result is presented and no particular structure is
assumed for G. This includes the case where G is represented by an irrational transfer
function.

In the following subsection, we will present the model approximation problem when the
reduced order model has assigned spectra. This is a much simpler problem which can be solved
by Hilbert projection. Even if it is a simplification of Problem 4.1, we believe that this is the
first step for a better understanding.

4.3.1 Reduced model with assigned eigenvalues in the SISO case
In Section 4.1, we show that Problem 4.1 is non-convex because the constrain M = {Ĥ ∈
H2, order(Ĥ) = n} is not-convex. However, if the constrains define a closed vector space, Prob-
lem 4.1 could be solved by the Hilbert projection theorem (see [Kreyszig, 1989, Chapter 3]). A
very interesting example of constrains that define a closed vector space is the space of reduced
order models with fixed semi-simple eigenvalues. More precisely, if Λ = {λ1, λ2, . . . , λn}, with
λk ∈ C−, for k = 1, . . . , n, then

MΛ =
{ n∑
k=1

φ̂k
s− λk

, φ̂k ∈ C, for k = 1, . . . , n
}

is the space of SISO models of order n having pre-assigned semi-simple poles from Λ. MΛ is
clearly a finite-dimensional vector space and thus closed. Moreover, { 1

s−λ1
, 1
s−λ2

, . . . , 1
s−λn } is a

basis ofMΛ and this proposition follows :
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Proposition 4.12 (Model approximation with fixed eigenvalues - SISO case). Let
G ∈ H2 be a real model and Λ = {λ1, λ2, . . . , λn} be a set closed by conjugation ( i.e.,
Λ = Λ). Then, the problem of finding real model Ĥ ∈ MΛ which minimizes ‖G − Ĥ‖H2

has an unique global minimizer Ĥ? which is the orthogonal projection of G ∈ H2 over the
finite-dimensional subspaceMΛ, i.e., Ĥ? ∈MΛ and

〈G− Ĥ?, Ĥ〉H2 = 0, for every Ĥ ∈MΛ.

Moreover, Ĥ? is the unique model fromMΛ satisfying the interpolatory conditions

G(−λk) = Ĥ?(−λk), for λk ∈ Λ. (4.13)

Proof. This is a consequence of the Hilbert projection theorem. Hence, there exists an unique
global minimizer Ĥ of the approximation problem with assigned eigenvalues. If we denote by
{v1, . . . ,vn} = { 1

s−λ1
, 1
s−λ2

, . . . , 1
s−λn }, a basis ofMΛ, then H? can be constructed as follows:

(i) H? =
∑n
k=1 φ̂kvk, for φ̂k ∈ C.

(ii) 〈G−H?,vk〉H2 = 0, for k = 1, . . . , n.

Hence, from item (ii), we have

〈G,vk〉H2 = 〈H?,vk〉H2

hence, G(−λk) = H?(−λk), for k = 1, . . . , n,

which proves the interpolatory conditions from (4.13). In addition, using item (i) and developing
the inner product, one obtains〈v1,v1〉H2 . . . 〈v1,vn〉H2

... . . . ...
〈vn,v1〉H2 . . . 〈vn,vn〉H2


︸ ︷︷ ︸

:=M

φ̂1
...
φ̂n


︸ ︷︷ ︸

:=Φ

=

〈G,v1〉H2
...

〈G,vn〉H2


︸ ︷︷ ︸

:=g

. (4.14)

Thus, H? can be constructed by solving the linear system MΦ = g. Moreover, if we use the fact
that

〈G,vk〉H2 = 〈G,
1

s− λk
〉H2 = G(−λk) and 〈vi,vj〉H2 = 1

−λi − λj
,

the matrices M and g can be expressed as

M =


1

−2Re(λ1) . . . 1
−λ∗n−λ1

... . . . ...
1

−λ∗1−λn
. . . 1

−2Re(λn)

 and g =

G(−λ1)
...

G(−λn).

 (4.15)

It is worth noticing that the matrix M has a Cauchy structure (see [Antoulas, 2005, Chapter
9]). Reader should note that one could have chosen another basis of MΛ. For example, if
{ṽ1, . . . , ṽn} formed an orthogonal basis ofMΛ, then the matrix M would be diagonal and the
linear equation MΦ = g would be easy to solve. In [Mi et al., 2012], a description of an efficient
method to build this orthogonal basis is provided.

68



Chapter 4. Optimal H2 model approximation

In order words, if the poles λ1, . . . , λn are assigned, one can compute the unique optimum
residues φ̂1, . . . , φ̂k through Proposition 4.12. Hence, for each G ∈ H2, there is a function fG
which associates a set of poles to the unique optimum residues, i.e.,

fG(λ1, . . . , λn) =
[
φ̂1 φ̂2 . . . φ̂n

]
and the model constructed such that Ĥ =

∑n
k=1

φ̂k
s−λk is the optimal approximation on MΛ of

G. This result dates from the 30’s in the complex analysis domain and it was first presented by
Walsh in [Walsh, 1932]. In the monograph [Vuillemin, 2014, Chapter 4], this result is developed
in a different way using optimization and it develops a nice simple example showing the non-
convexity of Problem 4.1 numerically.

For the generalization of Proposition 4.12 to the MIMO case reader should refer to the
monograph [Wolf, 2014]. Moreover, this result is used in [Wolf et al., 2013] to construct pseudo-
optimal solutions to the non-convex Problem 4.1.

In what follows, we return back to the non-convex Problem 4.1, using the H2 inner product
to characterize the approximation error.

4.3.2 H2 approximation error
The previous section gives a spectral expression of theH2 inner product from a general viewpoint,
i.e., the assumptions over G and Ĥ are very weak. This expression will be useful to characterize
some properties of Problem 4.1. We are now ready to describe the H2 error in this problem.

Lemma 4.13 (H2 mismatch error characterization). Let us consider G, Ĥ ∈ H2, two
real strictly proper models. Then

JH2(Ĥ)2 = ‖G− Ĥ‖2H2
= ‖G‖2H2

− 2〈G, Ĥ〉H2 + ‖Ĥ‖2H2
. (4.16)

Proof. In order to simplify the notation, henceforth we denote by JH2(Ĥ)2 := J2. We should
only write the norm as an inner product and develop the expression as follows :

J2 = ‖G− Ĥ‖2H2
= 〈G− Ĥ,G− Ĥ〉H2

= ‖G‖2H2
− 2〈G, Ĥ〉H2 + ‖Ĥ‖2H2

.

Notice that the only terms from J2 which depend on Ĥ are 2〈G, Ĥ〉H2 and ‖Ĥ‖2H2
. Hence,

‖G‖2H2
does not need to be computed at all for optimization purposes.

Our goal here is to characterize the optimality conditions related to Problem 4.1. Thus, we
should derive the gradient of J2 with respect to the parameters defining Ĥ. In what follows, we
derive these optimality conditions in two different ways. In the first one, presented in Subsection
4.3.3, we assume that G is a finite dimensional system, and we analytically compute the terms
2〈G, Ĥ〉H2 and ‖Ĥ‖2H2

. In the second one, presented in Subsection 4.3.4, we consider that the
reduced order model depends on a vector of parameters, no special structure will be assumed on
G, and we derive the optimality conditions with respect to this latter. This second derivation
extends the first one and includes the case where G is represented by an irrational transfer
function.
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4.3.3 H2 optimality conditions derivation

Let us assume that G is a finite dimensional representation and that both G, Ĥ have only
semi-simple poles and can be expressed by the following pole-residue decompositions

G(s) =
N∑
k=1

lkrTk
s− µk

and Ĥ(s) =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.

Hence, by the pole-residue H2 inner product expression, the term ‖Ĥ‖2H2
can be written as

‖Ĥ‖2H2
=

n∑
k=1

ĉTk Ĥ(−λ̂k)b̂k

=
n∑
k=1

ĉTk
( n∑
m=1

ĉmb̂Tm
−λ̂k − λ̂m

)
b̂k

=
n∑
k=1

n∑
m=1

(ĉTk ĉm)(b̂Tmb̂k)
−λ̂k − λ̂m

and the term 〈G, Ĥ〉H2 can be written as

〈G, Ĥ〉H2 =
N∑
j=1

lTj Ĥ(−µj)rj

=
N∑
j=1

lTj
( n∑
m=1

ĉmb̂Tm
−µj − λ̂m

)
rj

=
N∑
j=1

n∑
m=1

(lTj ĉm)(b̂Tmrj)
−µj − λ̂m

In what follows, the gradients of J2 with respect to the parameters defining Ĥ are then
properly computed.

Gradient with respect to poles and residues

As explained above, J2 is a function of b̂k, ĉk and λ̂k. Let us now compute the gradient of J2
with respect to these parameters.

Gradient with respect to b̂l : Let us compute the gradient of J2 with respect to b̂l. We
are going to do this in multiple steps. Let δlm be the Kronecker δlm, i.e.,

δlm =
{

1 if l = m

0 otherwise
.
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First, let’s compute the gradient of ‖Ĥ‖2H2
with respect b̂l step by step:

∇b̂l‖Ĥ‖
2
H2

=
n∑
k=1

n∑
m=1

(ĉTk ĉm)
−λ̂k − λ̂m

∇b̂l(b̂
T
mb̂k)

=
n∑
k=1

n∑
m=1

(ĉTk ĉm)
−λ̂k − λ̂m

(b̂Tmδlk + b̂Tk δlm)

=
n∑
k=1

n∑
m=1

(ĉTk ĉm)
−λ̂k − λ̂m

b̂Tmδlk +
n∑
k=1

n∑
m=1

(ĉTk ĉm)
−λ̂k − λ̂m

b̂Tk δlm

=
n∑

m=1

(ĉTl ĉm)
−λ̂l − λ̂m

b̂Tm +
n∑
k=1

(ĉTk ĉl)
−λ̂k − λ̂l

b̂Tk

=︸︷︷︸
Use ĉT

k
ĉl=ĉT

l
ĉk

ĉTl
n∑

m=1

ĉmb̂Tm
−λ̂l − λ̂m

+ ĉTl
n∑
k=1

ĉkb̂Tk
−λ̂k − λ̂l

= ĉTl Ĥ(−λ̂l) + ĉTl Ĥ(−λ̂l) = 2ĉTl Ĥ(−λ̂l).

In a similar way, we compute the gradient of 〈G, Ĥ〉H2 with respect to b̂l step by step:

∇b̂l〈G, Ĥ〉H2 =
N∑
j=1

n∑
m=1

(lTj ĉm)rTj
−µj − λ̂m

∇b̂l b̂m

=
N∑
j=1

n∑
m=1

(lTj ĉm)rTj
−µj − λ̂m

δml

=
N∑
j=1

(lTj ĉl)rTj
−µj − λ̂l

=︸︷︷︸
Use lT

j
ĉl=ĉT

l
lj

ĉTl
N∑
j=1

ljrTj
−µj − λ̂l

= ĉTl G(−λ̂l).

Finally, the gradient of J2 with respect to b̂l is given by

∇b̂lJ2 = −2∇b̂l〈G, Ĥ〉H2 +∇b̂l‖Ĥ‖
2
H2

= −2ĉTl G(−λ̂l) + 2ĉTl Ĥ(−λ̂l)

Gradient with respect to ĉl: similarly, let us compute the gradient of J2 with respect to
ĉl. We are going to do this in multiple steps. Once again, let’s compute the gradient of ‖Ĥ‖2H2
with respect ĉl step by step:
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∇ĉl‖Ĥ‖2H2
=

n∑
k=1

n∑
m=1

(b̂Tmb̂k)
−λ̂k − λ̂m

∇ĉl(ĉTk ĉm)

=
n∑
k=1

n∑
m=1

(b̂Tk b̂m)
−λ̂k − λ̂m

(ĉTmδlk + ĉTk δlm)

=
n∑
k=1

n∑
m=1

(b̂Tk b̂m)
−λ̂k − λ̂m

ĉTmδlk +
n∑
k=1

n∑
m=1

(b̂Tk b̂m)
−λ̂k − λ̂m

ĉTk δlm

=
n∑

m=1

(b̂Tl b̂m)
−λ̂l − λ̂m

ĉTm +
n∑
k=1

(b̂Tk b̂l)
−λ̂k − λ̂l

ĉTk

=
n∑

m=1

(b̂Tl b̂m)ĉTm
−λ̂l − λ̂m

+
n∑
k=1

(b̂Tl b̂k)ĉTk
−λ̂k − λ̂l

= b̂Tl
n∑

m=1

b̂mĉTm
−λ̂l − λ̂m

+ b̂Tl
n∑
k=1

b̂kĉTk
−λ̂k − λ̂l

= b̂Tl ĤT (−λ̂l) + b̂Tl ĤT (−λ̂l).

and

∇ĉl〈G, Ĥ〉H2 =
N∑
j=1

n∑
m=1

(rTj b̂m)lTj
−µj − λ̂m

∇ĉl ĉm

=
N∑
j=1

n∑
m=1

(rTj b̂m)lTj
−µj − λ̂m

δml

=
N∑
j=1

(rTj b̂l)lTj
−µj − λ̂l

= b̂Tl
N∑
j=1

rjlTj
−µj − λ̂l

= b̂Tl GT (−λ̂l)

Finally, the gradient of J2 with respect to ĉl is given by

∇ĉlJ = −2∇ĉl〈G, Ĥ〉H2 +∇ĉl‖Ĥ‖2H2

= −2b̂Tl GT (−λ̂l) + 2b̂Tl ĤT (−λ̂l).

Hence,
∇ĉlJ = 2b̂Tl GT (−λ̂l) + 2b̂Tl ĤT (−λ̂l),

and by taking the transposition, this leads to have the tangential interpolation conditions on G
and Ĥ, instead of GT and ĤT , as follows:

∇ĉlJ T = 2G(−λ̂l)b̂l + 2Ĥ(−λ̂l)b̂l
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Gradient with respect to λ̂l : Finally, let us compute the gradient of J2 with respect to λ̂l.
Hence, let us compute the gradient of ‖Ĥ‖2H2

with respect λ̂l step by step:

∇λ̂l‖Ĥ‖
2
H2

=
n∑
k=1

n∑
m=1

(b̂Tmb̂k)(ĉTk ĉm)∇λ̂l

(
1

−λ̂k − λ̂m

)

=
n∑
k=1

n∑
m=1

(b̂Tk b̂m)(ĉTk ĉm)
(

1
(−λ̂k − λ̂m)2

δlk + 1
(−λ̂k − λ̂m)2

δlm

)

=
n∑
k=1

n∑
m=1

(b̂Tk b̂m)(ĉTk ĉm)
(−λ̂k − λ̂m)2

δlk +
n∑
k=1

n∑
m=1

(b̂Tk b̂m)(ĉTk ĉm)
(−λ̂k − λ̂m)2

δlm

=
n∑

m=1

(ĉTl ĉm)(b̂Tl b̂m)
(−λ̂l − λ̂m)2

+
n∑
k=1

(ĉTk ĉl)(b̂Tk b̂l)
(−λ̂k − λ̂l)2

= ĉTl
( n∑
m=1

ĉmb̂Tm
(−λ̂l − λ̂m)2

)
b̂l + ĉTl

( n∑
k=1

ĉkb̂Tk
(−λ̂k − λ̂l)2

)
b̂l

= −ĉTl Ĥ′(−λ̂l)b̂l − ĉTl Ĥ′(−λ̂l)b̂l.

and

∇λ̂l〈G, Ĥ〉H2 =
N∑
j=1

n∑
m=1

(rTj b̂m)(lTj ĉm) ∇λ̂l

(
1

−µj − λ̂m

)

=
N∑
j=1

n∑
m=1

(rTj b̂m)(lTj ĉm)
(−µj − λ̂m)2

δml

=
N∑
j=1

(lTj ĉl)(rTj b̂l)
(−µj − λ̂l)2

= ĉTl
N∑
j=1

ljrTj
(−µj − λ̂l)2

b̂l

= −ĉTl G′(−λ̂l)b̂l.

Hence,
∇λ̂lJ = 2ĉTl G(−λ̂l)b̂l − 2ĉTl ĤT (−λ̂l)b̂l.

Now we are able to state the H2 optimality conditions for the Problem 4.1.

Theorem 4.14 (Necessary condition of H2 optimality). Let G, Ĥ ∈ H2 be two systems
with semi-simple poles. Assume further that the ROM expressed as

Ĥ(s) =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.
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is a local minimizer of J2 = ‖G− Ĥ‖2H2
. Then the H2 optimality conditions

G(−λ̂k)b̂k = Ĥ(−λ̂k)b̂k, ĉTkG(−λ̂k) = ĉTk Ĥ(−λ̂k), (4.17)

and
ĉTkG′(−λ̂k)b̂k = ĉTk Ĥ′(−λ̂k)b̂k, (4.18)

hold.

Proof. The result is simply obtained by setting ∇ĉlJ = 0, ∇b̂lJ = 0 and ∇λ̂lJ = 0.

Theorem 4.14 asserts that a solution of the optimal H2 model approximation problem must
be a bi-tangential Hermite interpolant of the large-scale model G at the opposite of the reduced-
order model poles (see [Gugercin et al., 2008]). In the SISO case, the H2 optimality conditions
are simpler and can be stated as follows:

Corollary 4.15 (Necessary condition of H2 optimality(SISO)). Let G, Ĥ ∈ H2 be two
SISO models with semi-simple poles. Assume further that the reduced-system is expressed
as

Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k

is a local minimizer of J2 = ‖G− Ĥ‖2H2
. Then the H2 optimality conditions

G(−λ̂k) = Ĥ(−λ̂k), and G′(−λ̂k) = Ĥ′(−λ̂k) (4.19)

hold, for k = 1, . . . , n.

Hence, the optimality conditions for Problem 4.1 can be stated as a bitangential interpolation
problem (see 3, Section 3.3). However, the parameters ĉl, b̂l and λ̂l are still unknowns.

In the following, we provide another demonstration of Theorem 4.14. In this proof, no
particular structure is imposed on G and on Ĥ. This is a more general result and one consequence
is to prove that Theorem 4.14 is also true when G is an irrational transfer function.

4.3.4 Optimality with respect to a general parameterization
In Subsection 4.3.3, we assumed that the reduced order model Ĥ could be written as

Ĥ(s) =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.

Instead of doing that, let us suppose that Ĥ depends on a vector of parameters p̂ = (p̂1, . . . , p̂q) ∈
Cq. Here, the parameter dependency will not be explicit analytically. Then, the gradient of
JH2(Ĥ)2 with respect to p̂ is given by

∇p̂‖G− Ĥ‖2H2
= ∇p̂〈G− Ĥ,G− Ĥ〉H2

= 2〈G− Ĥ,∇p̂
(
G− Ĥ

)
〉H2

= −2〈G− Ĥ,∇p̂Ĥ〉H2 (4.20)
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where 〈G− Ĥ,∇p̂Ĥ〉H2 is an abuse of notation and stands for

〈G− Ĥ,∇p̂Ĥ〉H2 =
[
〈G− Ĥ,

∂

∂p̂1
Ĥ〉H2 〈G− Ĥ,

∂

∂p̂2
Ĥ〉H2 . . . 〈G− Ĥ,

∂

∂p̂q
Ĥ〉H2

]
.

Thus, the local necessary optimization conditions with respect to p̂ are given by

∇p̂‖G− Ĥ‖2H2
= 0, (4.21)

and the following result holds:

Proposition 4.16 (Necessary optimality condition with respect to a parameter).
Let G ∈ H2 be a strictly proper model. In addition, let us consider for each parameter p̂ ∈ C
a model Ĥ(p̂), and the function that associates p̂ → Ĥ(p̂) is differentiable. Then, if p? is
the minimizer of ‖G− Ĥ(p̂)‖, it satisfies

〈G,∇p̂Ĥ
∣∣
p̂=p?〉H2 = 〈Ĥ(p?),∇p̂Ĥ

∣∣
p̂=p?〉H2 (4.22)

Proof. This result follows by setting ∇p̂‖G− Ĥ‖2H2
= 0 and using the equation (4.20).

Proposition 4.16 enables us to derive the optimality conditions for a general parameter p̂. Notice
that no structure was assumed on G. In addition, it enables to obtain the H2 optimality
conditions in a simpler way. First, we can assume that

Ĥ =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.

Thus, if one computes the gradient of Ĥ with respect to b̂k, we have

∇b̂kĤ = ∇b̂k

(
ĉkb̂Tk
s− λ̂k

)
=

[
ĉkeT1
s−λ̂k

ĉkeT2
s−λ̂k

. . .
ĉkeTnu
s−λ̂k

]
.

Hence, by writing the first order optimality conditions with respect to b̂k using Proposition 4.16,
one should have

〈G,∇b̂kĤ〉H2 = 〈Ĥ,∇b̂kĤ〉H2

⇔ 〈G,
ĉkeTi
s−λ̂k

〉H2 = 〈Ĥ,
ĉkeTi
s−λ̂k

〉H2 for i = 1, 2, . . . nu
⇔ ĉTkG(−λ̂k)ei = ĉTk Ĥ(−λ̂k)ei for i = 1, 2, . . . nu
⇔ ĉTkG(−λ̂k) = ĉTk Ĥ(−λ̂k).

In a very similar way, we obtain the right optimization conditions as follows :

∇ĉT
k
Ĥ = ∇ĉT

k

(
ĉkb̂Tk
s− λ̂k

)
=

[
e1b̂Tk
s−λ̂k

e2b̂Tk
s−λ̂k

. . .
eny b̂Tk
s−λ̂k

]
,

75



4.4. Fixed-point algorithms for H2 approximation

which implies

〈G,∇ĉT
k
Ĥ〉H2 = 〈Ĥ,∇ĉT

k
Ĥ〉H2

⇔ 〈G,
eib̂Tk
s−λ̂k

〉H2 = 〈Ĥ,
eib̂Tk
s−λ̂k

〉H2 for i = 1, 2, . . . ny
⇔ eTi G(−λ̂k)b̂k = eTi Ĥ(−λ̂k)b̂k for i = 1, 2, . . . nu
⇔ G(−λ̂k)b̂k = Ĥ(−λ̂k)b̂k.

Finally, since

∇λ̂kĤ = ∇λ̂k

(
ĉkb̂Tk
s− λ̂k

)
= − ĉkb̂Tk

(s− λ̂k)2
.

the condition related to the derivative with respect to λ̂k is obtained:

〈G,∇λ̂kĤ〉H2 = 〈Ĥ,∇λ̂kĤ〉H2

⇔ 〈G,− ĉkb̂Tk
(s−λ̂k)2 〉H2 = 〈Ĥ,− ĉkb̂Tk

(s−λ̂k)2 〉H2

⇔︸︷︷︸
Hermitian derivative

〈G′, ĉkb̂Tk
(s−λ̂k) 〉H2 = 〈Ĥ′, ĉkb̂Tk

(s−λ̂k) 〉H2

⇔︸︷︷︸
Lemma 4.2

ĉTkG′(−λ̂k)b̂k = ĉTk Ĥ′(−λ̂k)b̂k.

Therefore, Theorem 4.14 was proved once again as a consequence of Proposition 4.16. At
this time, no restriction was supposed on G. Hence, this result is valid even if G is given by an
irrational transfer function. In addition, Proposition 4.16 does not require any structure on the
reduced order model Ĥ. This will be explored in Chapter 7.

In the next section, based on the optimality conditions provided in the tangential interpolation
problem (see Chapter 3, Section 3.3 and 3.4), we recall one algorithm to find a reduced order
model satisfying the optimality conditions (4.1) from Problem 4.1.

4.4 Fixed-point algorithms for H2 approximation
As beforementioned, several approaches are now available to address the problem of optimal
H2 approximation. In this section, the two approaches that have mainly inspired the methods
developed during this study are presented :

ä the MIMO version of the Iterative Rational Krylov Algorithm (IRKA, see [Gugercin et al.,
2008]).

ä the MIMO version of the transfer function (TF-IRKA, see [Beattie and Gugercin, 2012]).

Both algorithms are based on the fixed point iteration. As it is shown in Theorem 4.14, the
optimality conditions of Problem 4.1 are stated as bitangential interpolation conditions. The
only inconvenient is that the optimal interpolation points and the tangential directions are not
known a priori. In order to cope with this problem, one can choose randomly the interpolation
points σi and the tangential directions ri and li and repeat the following steps iteratively:
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(i) Find Ĥ satisfying


G(σi)ri = Ĥ(σi)ri
lTi G(σi) = lTi Ĥ(σi)

lTi G′(σi)ri = lTi Ĥ′(σi)ri

(ii) Decompose Ĥ(s) =
n∑
k=1

ĉkb̂Tk
s− λ̂k

.

(iii) Reset interpolation data: shift points as σi →= −λ̂i, and tangential directions as ri ← b̂i
and li ← ĉi, for i = 1, . . . , n.

These steps enforce that the reduced order model should satisfy some similar conditions as those
presented in Theorem 4.14. Hence, upon convergence, the reduced order model Ĥ obtained
satisfies the H2 optimality conditions of Theorem 4.14. Moreover, in [Krajewski et al., 1995], the
authors show (for the SISO case) that saddle points and local maxima of the H2 minimization
problem are know to be repellent to this iterative scheme. Hence, upon converge to a ROM
Ĥ ∈ H2, this model is likely to be a local minimum.

The main difference between IRKA and TF-IRKA is that the former solves the tangential
interpolation problem using projectors (see Theorem 3.10) while the second one uses the Loewner
framework. IRKA is well adapted to find reduced order models for finite dimensional large-scale
systems, because it exploits the projection framework to reduce the computational cost without
computing explicitly the evaluations of the transfer function. In contrast, TF-IRKA is well
adapted to find ROM for irrational transfer functions, requiring the evaluation of the transfer
function on the interpolation points only. Both algorithms are detailed in what follows.

4.4.1 Iterative Rational Krylov Algorithm

This method has been proposed in [Gugercin et al., 2006] for SISO models based on the rational
interpolation framework developed in [Grimme, 1997]. The MIMO extension has then been
suggested in [Gugercin et al., 2008] based on the tangential interpolation framework developed
in [Gallivan et al., 2004a]. It is based on the projection of the initial large-scale model on suitable
Krylov subspaces in order to find a reduced-order model that fulfills the first-order optimality
conditions presented in Theorem 4.14. The method, called Iterative Rational Krylov Algorithm
(IRKA), is recalled hereafter in Algorithm 1.
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Algorithm 1 IRKA : [Gugercin et al., 2008]
1: Input: G = (E,A,B,C) of order N and reduced order n.
2: Make an initial choice for the shift points {σ0

1 , . . . , σ
0
n} ∈ C initial interpolation points and

tangential directions {b̂1,0, . . . , b̂n,0} ∈ Cnu×1 and {ĉ1,0, . . . , ĉn,0} ∈ Cny×1 closed by conju-
gation.

3: while not convergence do
4: Built Vk =

[
(A− σk1E)−1Bb̂T1,k . . . (A− σknE)−1Bb̂Tn,k

]
.

5: Built Wk =
[
(AT − σk1ET )−1CT ĉT1,k . . . (AT − σknET )−1CT ĉTn,k

]
.

6: Ê = WT
k EVk, Â = WT

k AVk, B̂ = WT
k B and Ĉ = CVk

7: k ← k + 1.
8: Compute eigenvalue decomposition of ÂX = ÊXΣ, with Σ = diag(λ̂1,k+1, . . . , λ̂n,k+1).
9: Set σk+1

i = −λ̂i,k+1, new shift points.
10: Set

[
b̂T1,k+1, . . . , b̂Tn,k+1

]
= (ÊX)−1B̂ and

[
ĉ1,k+1, . . . , ĉn,k+1

]
= ĈX, new tangential

directions.
11: end while
12: Output: Ĥ = (Ê, Â, B̂, Ĉ) satisfying the H2 optimality conditions from Theorem 4.14.

Steps 1 and 2 define the inputs of the algorithm, which are the N -th order large-scale model
G = (E,A,B,C), the order of the ROM n and an initial guess of both interpolation shifts and
tangential directions.

Steps 3 to 9 correspond to the loop where the H2 optimality conditions are enforced. Firstly,
the initial projectors Vk and Wk are constructed from the initial interpolation data from the
previous iteration. Then, until the convergence is not reached, i.e., the difference between
|σi,k+1−σi,k| � ε, a reduced-order model is built by projection of the large-scale one in lines 5, 6
and 7. The eigenvalues and right eigenvectors of this reduced-order model are computed in step
7 and used in steps 8 in order to build the next interpolation points. At each iteration k, based
on Theorem 3.10 (tangential interpolation), the reduced-order model Ĥk = (Ê, Â, B̂, Ĉ) (step
6) tangentially interpolates the large-scale model at the opposite of the previous reduced-order
model poles as it was sketched previously.

If Algorithm 1 converges, the model obtained satisfies the H2 first-order necessary conditions
from Theorem 4.14. However, in general, there is neither any guarantee of convergence of the
algorithm nor any certificate that the reduced order model is stable if the original was. Fortu-
nately, extensive numerical applications of the algorithm tend to suggest that most of the time,
it converges towards a stable system. Moreover, for SISO symmetric models, the article [Flagg
et al., 2012] proves the convergence of the algorithm.

Notice that Algorithm 1 is only applicable in the case where G is a finite dimensional model.
The next algorithm shows a procedure that extends this notion to the case of irrational transfer
functions.

4.4.2 Fixed point algorithm based on transfer function evaluations

Based on the same fixed-point idea, an algorithm, named TF-IRKA, has been proposed in
[Beattie and Gugercin, 2012] in order to obtain a reduced-order model that locally satisfies the
optimality conditions for irrational transfer functions.
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Algorithm 2 TF-IRKA [Beattie and Gugercin, 2012]
1: Initialization: Transfer function G(s) and reduced order n.
2: Make an initial choice for the shift points {σ0

1 , . . . , σ
0
n} ∈ C initial interpolation points and

tangential directions {b̂1,0, . . . , b̂n,0} ∈ Cnu×1 and {ĉ1,0, . . . , ĉn,0} ∈ Cny×1 closed by conju-
gation.

3: while not convergence do
4: Build Ê, Â, B̂ and Ĉ satisfying Hermitian interpolation conditions using Loewner frame-

work for the tangential interpolation data σki , b̂Ti,k, ĉi,k (Theorem 3.16 from Chapter 3).
5: k ← k + 1.
6: Compute eigenvalue decomposition of ÂX = ÊXΣ, with Σ = diag(λ̂1,k+1, . . . , λ̂n,k+1).
7: Set σk+1

i = −λ̂i,k+1, new shift points.
8: Set

[
b̂T1,k+1, . . . , b̂Tn,k+1

]
= (ÊX)−1B̂ and

[
ĉ1,k+1, . . . , ĉn,k+1

]
= ĈX, new tangential

directions.
9: end while
10: Output: Ĥ = (Ê, Â, B̂, Ĉ) satisfying the H2 optimality conditions from Theorem 4.14.

This algorithm can be applied to any system for which the corresponding transfer function
is available, regardless its dimension. When the transfer function is unknown, finite difference
methods can be used to evaluate the derivative of the transfer function [Pontes Duff et al., 2015b].
However, there is neither any guarantee of convergence of the algorithm nor any certificate that
the reduced order model is stable. Fortunately, extensive numerical applications of the algorithm
tend to suggest that most of the time, it converges towards a stable system; see e.g. [Pontes Duff
et al., 2015b].

Conclusion
In this chapter, the H2 optimal approximation problem has been introduced together with a non-
exhaustive state-of-the-art. Additionally, the expression of the H2 inner product based on the
pole-residue decomposition has been developed. Then, based on the properties of the H2 inner
product, the H2 optimality conditions are derived in two different ways: (i) by developing the H2
approximation error with respect to b̂k, ĉk and λ̂k; (2) and then, by deriving the H2 optimality
conditions with respect to a general parametrization p̂ and then by applying the results to b̂k, ĉk
and λ̂k. In the last case, the Hermitian derivative property plays a very important role and
the results are valid assuming very weak hypothesis over G, including the case were G is an
irrational function strictly proper in H2. Even if some of the results provided here are already
well known, we believe that some of the proofs and development are new and relevant for the
comprehension. Finally the two fixed-point iterative algorithms are presented in the last part of
the chapter.

It is worth noticing that this chapter plays a pivotal role in this manuscript, since it links
recent results on H2 model approximation while introducing the necessary elements required in
the developments of the main contributions reported in this PhD, detailed in Chapters 5, 6 and
7.
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Chapter 5

Optimal H2 model approximation
by input/output-delay structured
reduced order models

In this chapter, the H2 optimal approximation problem by a finite dimensional model including
input/output delays, is addressed. Firstly, theH2 inner product formulas are revisited in the case
where the reduced order models include input/output delays. Secondly, the approximation error
is formulated as a function of the pole/residue decomposition. Then, by taking the gradient of the
error, the H2-optimality conditions of the approximation problem are obtained as an extension
of the tangential interpolatory conditions in the delay-free case. It is also demonstrated that for
fixed delay values, this problem can be recast as a delay-free one. This approach followed in this
first part is similar to what has been done in the delay-free case in Chapter 4. The similarities and
the key differences from the delay-free case are highlighted. The results are compared with some
simpler interpolation conditions. Finally, an iterative algorithm is sketched out and numerical
results assess the theoretical contributions.

The chapter is organized as follows: first, the interest for the use of input/output delay re-
duced order models is exposed and the optimization problem is stated in Section 5.1. Initially,
the theoretical results will be presented in the SISO case and a new expression of the H2 inner
product in the presence of input and output delays is derived in Section 5.2. Then, Section 5.3
establishes the H2 optimality conditions solving the input/output delay dynamical model ap-
proximation problem. Then, results are extended to MIMO systems in Section 5.4. Finally, a
fixed point algorithm is proposed allowing to compute such an approximation in practice. Sec-
tion 5.5 details the results obtained after treating an academic example. The elements presented
throughout this Chapter have been submitted in [Pontes Duff et al., 2016b].
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5.1 Context and problem statement
Context

Input and output delays are generally used to model information lag, measurements and com-
putational delays. In addition, for several physical models, e.g. transport phenomena, the
information needs a finite amount of time to be transmitted from a point to another. Hence,
these models have an intrinsic delay behavior even though they might not have an explicit delay
in their representation.

In this context, an input/output delay approximation can be considered whenever the full
order model represents a transport phenomenon. Examples of this kind of models are present in
the domains of fluid mechanics, electronics and thermodynamics. Moreover, there exist several
delay-dependent identification methods in the domains of chemistry [Bresch-Pietri et al., 2014]
and hydroelectric channels [Litrico et al., 2010; Litrico and Fromion, 2009].

Another interesting academic examples are the models having very high order poles. This is
shown in the following example :

Example 5.1. Let us consider a SISO model Gn ∈ H2 whose transfer function is given by

Gn(s) = Cn
(s+ 1)n , for a given n ∈ N,

where Cn is chosen such that ‖Gn(s)‖2H2
= 1. Its impulse response is given by

gn(t) = Cn
n! e

−ttn−1.

The following figure sketches some of these impulse responses for n = {1, 6, 10, 20}.

82



Chapter 5. H2 model approximation by input/output-delay structured reduced order models

0 5 10 15 20 25 30
0

0.5

1

1.5

Time (s)

A
m

pl
itu

de

Impulse Responses

 

 
G

1

G
6

G
10

G
20

Figure 5.1: Impulse responses of Gn when n = 1 (blue line), n = 6 (red line), n = 10 (green
line) and n = 20 (black line)

Hence, for n large enough, the model Gn has an intrinsic delay behavior and an in-
put/output delay approximation is worth to be considered.

In this Chapter, the (H2 optimal) problem of approximating a given large-scale model by
a low order one including (a priori unknown) input/output delays is addressed. To this aim
an alternative pole/residue-based approach is developed, which enables to derive the H2-inner
product expression in the presence of input and output delays, and then the H2 optimality
conditions, treated as interpolation ones.

The presence of input/output delays in the approximation model was firstly tackled in [Halevi,
1996] (exploiting both Lyapunov equations and grammians properties derived in [Hyland and
Bernstein, 1985] for the free-delay case). The bottleneck of this approach is that it requires to
solve Lyapunov equations which might be costly in the large-scale context. From the moment
matching side, [Scarciotti and Astolfi, 2014] proposed a problem formulation that enables the
construction of an approximation which contains very rich delay structure (including state delay),
but where the delays and the interpolation points are supposed to be a priori known. From the
Loewner framework side, [Pontes Duff et al., 2015a] and after [Schulze and Unger, 2015] generalize
the Loewner framework from [Mayo and Antoulas, 2007] to the state delay case enabling data-
driven interpolation. The next chapter will be dedicated to this topic, i.e., data interpolation
with delay structure.

The main contribution of this chapter consists in extending the interpolation results of
[Gugercin et al., 2008] to the approximation with an extended structure, namely, including
non-zero input/output delays. Last but not least, an iterative algorithm and some numerical
simulations illustrate the theoretical results developed.
Problem statement - SISO case

For simplicity, the derivation presented in this part is given in the context of SISO dynamical
models, which already captures the idea of this result. Section 5.4 extends the results to the
MIMO case. The main objective addressed in this chapter is to solve the following H2 approxi-
mation problem :
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Problem 5.2. Input delay model H2-optimal approximation (SISO) Given a stable
N th order SISO system G ∈ H2, find a reduced nth order ( s.t. n � N) input-delay model
Ĥ?
d = Ĥe−sτ s.t.:

Ĥ?
d = arg min

Ĥd ∈ H2
dim(Ĥd) ≤ n

τ ∈ R+

‖G− Ĥd‖H2 ,

where Ĥd = Ĥe−sτ ∈ H2. Once again we define the H2 mismatch error as JH2(Ĥ) =
‖G− Ĥd‖H2 .

As in the delay-free case, this search for an optimal solution will be carried out assuming
that both G and Ĥ from Problem 5.2 have semi-simple poles, i.e., such that their respective
transfer function matrix can be decomposed as follows:

G(s) =
N∑
j=1

ψj
s− µj

and Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k
, (5.1)

where ∀j = 1 . . . N, ∀k = 1 . . . n, ψj , φ̂k ∈ C and the poles µj , λ̂k are elements of C− so that G
and Ĥ belong to H2 and dim(G) = N , dim(Ĥ) = n.

It is worth mentioning that for a SISO system there is no difference between an input or
output delay, due to the fact that the transfer function Ĥ commutes with e−sτ , i.e.,

Ĥ(s)e−sτ = e−sτĤ(s).

As in Chapter 4, this chapter will follow the hereafter three steps :

(i) Spectral characterization of the H2 inner product in the presence of input/output delays,
presented in Section 5.2.

(ii) Derivation of the H2 necessary optimality conditions of Problem 5.2 using the H2 inner
product characterization. This is the subject of Section 5.3.

(iii) Development of a fixed-point algorithm based on the H2 necessary optimality conditions
in order to construct reduced order models in Section 5.5.

Let us firstly derive some H2 inner product properties specific to models having input delay.

5.2 Input/output delay H2 inner product
In this section, some elementary but important results, which will be useful along this chapter,
are derived. First of all, a fundamental result dealing with the H2 norm invariance in case of
input/output delay systems is presented.

Proposition 5.3. (H2 norm invariance) Let Ĥ ∈ H2 be a stable dynamical system and
σ ∈ H∞ such that:

∀ω ∈ R, σ(iω)σ(iω) = 1. (5.2)

If Ĥd = Ĥσ then ‖Ĥd‖H2 = ‖Ĥ‖H2 .
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Proof. If Ĥd = Ĥσ, the H2 norm can be expressed as :

‖Ĥd‖2H2
= 1

2π

∫ ∞
−∞

Ĥd(iω)Ĥd(iω)dω

= 1
2π

∫ ∞
−∞

Ĥ(iω)σ(iω)Ĥ(iω)σ(iω)dω

= 1
2π

∫ ∞
−∞

Ĥ(iω)σ(iω)σ(iω)︸ ︷︷ ︸
=1

Ĥ(iω)dω = ‖Ĥ‖2H2

One can easily check that condition (5.2) appearing in Proposition 5.14 is satisfied by an in-
put/output delay, i.e., if we take σ(s) = e−sτ , then σ(iω)σ(iω) = eiωτe−iωτ = 1. In other words,
the H2 norm does not depend neither on the input, nor on the output delays. This is also true
for MIMO systems if we have multiple input and output delays as stated in Section 5.4. Now let
us derive the following lemma, analogous to Lemma 4.2 from Chapter 4, but in the presence of
input/output delays.

Lemma 5.4 (First order H2 inner product). Let G ∈ H2 be a strictly proper real model
whose transfer function can be expressed by

G(s) =
N∑
j=1

ψj
s− µj

.

In addition, suppose that λ̂ ∈ C− and τ > 0 is a delay. Then

〈G,
1

s− λ̂
e−sτ 〉H2 =

N∑
j=1

ψje
µjτ

−λ̂− µj
. (5.3)

Proof. The proof uses similar ideas from the one of Lemma 4.2. Since, G(iω) = G(−iω) and
that the only stable pole of the complex function G(−s) 1

s− λ̂
e−sτ is λ̂ ∈ C− (indeed, the poles

of G(−s) are all unstable). However, in this case, one cannot use the same contour we have used
in Lemma 4.2, i.e.,

Γ(1)
C = Γ(1)

I ∪ Γ(1)
R , where

{
Γ(1)
I = {s ∈ C, s = iω and ω ∈ [−R;R], R ∈ R+}

Γ(1)
R = {s ∈ C, s = Reiθ where θ ∈ [π/2; 3π/2]}

.

The main reason is that G(−s) 1
s− λ̂

e−sτ goes exponentially to infinite over ΓR when R goes to

infinity (because of the term e−sτ →∞ in the left half plane) . Therefore, the integral over this
contour does not converge to the H2 inner product. In order to deal with this problem, let us
consider an alternative contour ΓC located in the right half plane encircling the poles of G(−s),
i.e.,

Γ(2)
C = Γ(2)

I ∪ Γ(2)
R ,

with: {
Γ(2)
I = {s ∈ C, s = iω and ω ∈ [−R;R], R ∈ R+}

Γ(2)
R = {s ∈ C, s = Reiθ where θ ∈ [π/2;−π/2]}

.
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−iR

iR

Re

Im

ΓIΓR
λ̂

Figure 5.2: Wrong complex integral contour encircling the poles of 1
s− λ̂

e−sτ

This contour is sketched on Figure 5.3. Now the function G(−s) 1
s− λ̂

e−sτ goes to zero expo-

−iR

iR

Re

Im

ΓI

ΓR
λ̂

Figure 5.3: Complex integral contour encircling poles of G(−s).

nentially over ΓR, when R goes to infinity. Once again, for a sufficient large radius value R,
the ΓC contour will contain all the poles of G(−s). Thus, by applying the residues theorem, it
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follows that:
〈G,

1
s− λ̂

〉H2 = 1
2π

∫ +∞

−∞
G(−iω) 1

iω − λ̂
e−iωτdω

= lim
R→+∞

1
2iπ

∫
ΓC

G(−s) 1
s− λ̂

e−sτds

=
N∑
j=1

Res
(

G(−s) 1
s− λ̂

e−sτ ,−µj
)

=
N∑
j=1

ψje
−µjτ

−µj − λ̂
.

where Res(.) denotes the residue operator. Once again, the second equality line holds true since,
when R→ +∞: ∣∣∣∣ ∫

ΓR
G(−s) 1

s− λ̂
e−sτds

∣∣∣∣ ≤ ∫
ΓR

∥∥∥∥ 1
s− λ̂

∥∥∥∥
F

∥∥G(−s)
∥∥
F
ds→ 0+,

which concludes the first part of the proof.

Lemma 5.4 provides a pole/residue formula for the H2 inner product in the presence of
input/output delays. The main difference between the delay-free formula and the delayed one is
that expression (5.3) involves poles and residues of G, while the delay-free expression (4.2) only
involves evaluations of G. This difference comes from the fact that we are not able to use the
same integral contour from Lemma 4.2 and we have to find an appropriate integral contour to
handle the delay. It is worth to note that if τ = 0, i.e. e−sτ = 1 on Lemma 5.4 , the result of
Lemma 4.2 is recovered. Now, let us develop a more general formula as follows:

Theorem 5.5. Input/output delay H2 inner product computation Let G, Ĥ be two
SISO systems in H2 whose respective transfer function reads

G(s) =
N∑
j=1

ψj
s− µj

and Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k
,

and let τ > 0. If Ĥd = Ĥe−sτ , the inner product 〈G, Ĥd〉H2 is given by:

〈G, Ĥd〉H2 =
N∑
j=1

Ĥ(−µj)ψjeτµj . (5.4)

Proof. The result is a straightforward application of Lemma 5.4, as follows :

〈G, Ĥe−sτ 〉H2 = 〈G,

n∑
k=1

φ̂k

s− λ̂k
e−sτ 〉H2 (5.5)

=
n∑
k=1
〈G,

φ̂k

s− λ̂k
e−sτ 〉H2 (5.6)

=︸︷︷︸
Lemma 5.4

n∑
k=1

N∑
j=1

φ̂k
ψje
−µjτ

−λ̂k − µj
=

N∑
j=1

Ĥ(−µj)ψjeτµj . (5.7)

which completes the proof.
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Theorem 5.5 enables to express the H2 inner product in the presence of input/output delays.
The reader should remark that if Ĥd is the model containing the input delay structure, then
the inner product formula (5.4) will depend on the poles µk and residues ψk of G, and on the
evaluations of Ĥ. However, a symmetric formula involving the residues of Ĥ and evaluations of
G is only valid in the delay-free case (see Remark 4.5, Chapter 4). This is illustrated in the
following Example.

Example 5.6 (Non-symmetric expression of the H2 inner product). Delay-free
case : Let G(s) = 1

s+1 = ψ
s−µ , Ĥ(s) = 1

s+2 = φ̂

s−λ̂ . One is able to compute the inner product
between G and Ĥ using both of these symmetric pole/residue expressions (see Remark 4.5,
Chapter 4).

〈Ĥ,G〉H2 = ψĤ(−µ) = ψ
φ̂

−µ− λ̂
= 1

3 and

〈G, Ĥ〉H2 = φ̂G(−λ̂) = φ̂
ψ

−λ̂− µ
= 1

3 .

Thus, in the delay-free context, the H2-inner product can be computed using either the poles-
residues decomposition of G or Ĥ.

I/O delay case : Now, let us define Ĥd(s) = Ĥ(s)e−sτ with τ = 1. Let us compute
the H2-inner product between Ĥd and G using Theorem 5.5 :

〈G, Ĥe−τs〉H2 = ψĤ(−µ)eτµ = ψ
φ̂

−µ− λ̂
eµτ = 1

3e
−1.

By noticing that, 〈G, Ĥe−τs〉H2 = 1
2π

∫ ∞
−∞

G(−iω)Ĥ(iω)e−iωdω = 〈Ges, Ĥ〉L2(iR), one

applies the symmetric version as follows :

1
3e
−1 = 〈G, Ĥe−s〉H2 = 〈Ges, Ĥ〉L2(iR) 6= φ̂G(−λ̂)e−τλ̂︸ ︷︷ ︸

incorrect symmetric version

= φ̂
ψ

−λ̂− µ
e−λ̂τ = 1

3e
2.

Hence a symmetric version of the H2-inner product does not provide the same result any-
more. It is remarkable that Ges 6∈ H2 because it is not analytic at infinite. This is the
justification of the non-symmetry in the inner product expression.

This non-symmetry in the expression of the H2-inner product in the presence of input/output
delays is the crucial point in the derivation of the optimality conditions. Indeed, in the delay-free
context (see [Gugercin et al., 2008]), it is assumed that we have this symmetric form and this
property plays a crucial role in the H2-optimality conditions derivation.

To conclude the inner product discussion, the next example shows what happens when both
models Ĥ and G carry an input/output delay.

Example 5.7 (Both models carrying an input/output delay). Let us consider H(s) =
1

s+ 1 and G(s) = 1
s+ 2 and one wants to compute the H2 inner product 〈He−s,Ge−sτ 〉H2
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as a function of τ ≥ 0. Firstly, let us look at the computation when τ < 1. In this case,

〈He−s,Ge−sτ 〉H2 = 〈He−(1−τ)s,G〉H2 = H(2)e−(1−τ)2,

and the inner product can be expressed using the partial fraction decomposition of G.
However, we would like to stress that this formula is valid if τ ≤ 1 only. In the case

where τ > 1, we have

〈He−s,Ge−sτ 〉H2 = 〈H,Ge−s(τ−1)〉H2 = G(1)e−(τ−1).

Hence, in this case, the inner product can only be expressed using the partial fraction de-
composition of H (because of the exponential domination).

The following Figure 5.4 sketches the plot of f(τ) = 〈He−s,Ge−sτ 〉H2 , for 0 ≤ τ ≤ 2.
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Figure 5.4: Graph of f(τ) = 〈He−s,Ge−sτ 〉H2 for τ ∈ [0, 2]. Notice that when τ < 1, the
f(τ) is increasing, while when τ > 1, the f(τ) is decreasing.

With reference to Figure 5.4, one should note that f(τ) is increasing when τ ≤ 1 and
decreasing when τ > 1. Indeed, this can be easily observed by looking at the time-domain
inner product and the action of the delay operator as shown Figure 5.5 .
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Figure 5.5: Impulse response of He−s, G, Ge−0.4s and Ge−1.4s.

Figure 5.5 sketches what happens when the value of τ varies. Increasing τ shifts the
impulse response g(t) to the right. Since, from Plancherel’s theorem,

f(τ) = 〈He−s,Ge−sτ 〉H2 = 〈h(t− 1),g(t− τ)〉L2 .

Hence, one can conclude graphically that (i) the maximum value of the inner product is
obtained when g is exactly the same as the delay on h ( i.e., τ = 1), (ii) the inner product
must decrease for τ > 1 and (iii) the inner product must increase for τ < 1.

To sum up, this section has developed the pole-residue expression of the H2 inner product in
the presence of input/output delays and highlighted the main differences with the delay-free
case. In the next section, we tackle the input delay H2 approximation Problem 5.2 using these
expressions.

5.3 Formulation of the input/output delay H2 first order
optimality conditions

This section aims at presenting the SISO H2 model approximation problem when the reduced
order model has an input-output delay structure and at expressing the H2-approximation error
as a function of the poles, residues and delay. Section 5.4 provides the generalization of these
results in the MIMO context.

5.3.1 H2 approximation error
The following proposition makes now explicit the calculation of the H2 norm associated with the
dynamical mismatch gap ‖G − Ĥd‖H2 , which characterizes Problem 5.2 criterion. In order to
simplify the notations, let us denote J2 = J 2

H2
= ‖G− Ĥd‖2H2

.
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Proposition 5.8. Let G, Ĥd ∈ H2, such that Ĥd = Ĥe−sτ . The H2 norm of J2, can be
expressed as:

J2 = ‖G− Ĥd‖2H2

= ‖G‖2H2
− 2〈G, Ĥe−sτ 〉H2 + ‖Ĥ‖2H2

.
(5.8)

Proof. Simply develop the H2 norm using the H2 inner product definition and exploit the pre-
vious result ‖Ĥe−sτ‖H2 = ‖Ĥ‖H2 .

Obviously, regarding (5.8), minimizing J2 is equivalent to minimize −2〈G, Ĥe−sτ 〉H2 +‖Ĥ‖2H2
and thus look for the optimal values of the decision variables contained in both the realization
Ĥ ∈ H2 and the delay τ > 0. The pole/residue expression of the H2 inner product given in
Section 5.2 enables to parametrize the mismatch error J2 as s function of the delay τ > 0 and
the minimal parameters defining the reduced order model Ĥ, i.e., its poles and residues. This
expression is given in the following proposition.

Proposition 5.9. Let us assume the same hypothesis from Proposition 5.8. In addition, G
and Ĥ are given by

G(s) =
N∑
j=1

ψj
s− µj

and Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k
.

Then, H2-mismatch error can be expressed as

J2 = ‖G‖2H2
− 2

N∑
k=1

Ĥ(−µk)eµkτψk +
n∑
k=1

φ̂kĤ(−λ̂k). (5.9)

Proof. One should use the spectral formulation of the H2 inner product in the presence of delays
from Section 5.2 and the result follows.

It is worth noticing that the last two terms of the right hand side in the expression of J2
depends on the evaluations of Ĥ, while in the delay-free case, one of them depends on the
evaluations of G (see Section 4.3 in Chapter 4). This is a consequence of the nonsymmetric
expression for the H2 inner product in the presence of input/output delays (see Example 5.6),
which states that the H2 inner product 〈G, Ĥe−sτ 〉H2 can only be expressed as a function of the
poles and residues of G and the evaluations of Ĥ. This remark, which plays a very important
role here, is the origin of the main difference between Problem 5.2 and the delay-free model
approximation Problem 4.1 from Chapter 4.

5.3.2 Gradient with respect to poles, residues and delays
Now, we are able to derive the input/output first-order H2-optimality conditions for Problem
5.2. Let us compute the gradient of J2 with respect to the parameters of Ĥd.

Gradient with respect to φ̂l : let us compute the gradient of J2 with respect to φ̂l. First,
let’s recall the gradient of ‖Ĥ‖2H2

with respect φ̂l from Chapter 4, Section 4.3 :

∇φ̂l‖Ĥ‖
2
H2

= ∇φ̂l

( n∑
k=1

φ̂kĤ(−λ̂k)
)

= 2Ĥ(−λ̂l)
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In a similar way, we now compute the gradient of 〈G, Ĥe−sτ 〉H2 with respect to φ̂l as:

∇φ̂l〈G, Ĥe−sτ 〉H2 = ∇φ̂l

( N∑
k=1

Ĥ(−µk)eµkτψk
)

=
N∑
k=1

ψk
−µk − λl

eµkτ .

Hence, the gradient of J2 with respect to φ̂l is given by:

∇φ̂lJ2 = −2
N∑
k=1

ψk
−µk − λl

eµkτ + 2Ĥ(−λ̂l). (5.10)

Gradient with respect to λ̂l : now, let us compute the gradient of J2 with respect to λ̂l.
First, let’s recall the gradient of ‖H‖2H2

with respect λ̂l from Chapter 4, Section 4.3 :

∇λ̂l‖Ĥ‖
2
H2

= ∇λ̂l

( n∑
k=1

φ̂kĤ(−λ̂k)
)

= −2φ̂lĤ′(−λ̂l)

In a similar way, we compute the gradient of 〈G, Ĥe−sτ 〉H2 with respect to λ̂l as:

∇λ̂l〈G, Ĥe−sτ 〉H2 = ∇λ̂l

( N∑
k=1

Ĥ(−µk)eµkτψk
)

=
N∑
k=1

φ̂l
ψk

(−µk − λl)2 e
µkτ .

Hence, the gradient of J2 with respect to λ̂l is given by:

∇λ̂lJ2 = 2φ̂l
[
−

N∑
k=1

ψk
(−µk − λm)2 e

µkτ − Ĥ′(−λ̂l)
]
. (5.11)

Gradient with respect to τ : Finally, the only term of J2 depending on the delay is
〈G, Ĥe−sτ 〉H2 . Thus, the gradient of J2 with respect to τ is computed as:

∇τJ2 = −2∇τ 〈G, Ĥe−sτ 〉H2 = −2
N∑
k=1

µkĤ(−µk)eµkτψk

Now we are ready to state the input/output delay H2 optimality conditions in the SISO case.

Theorem 5.10. (H2 optimality conditions in the SISO case) Considering G(s) =
N∑
j=1

ψj
s− µj

, Ĥ(s) =
n∑
k=1

φ̂k

s− λ̂k
, such that Ĥd = Ĥe−τs is a local optimum of Problem 5.2,

then the following conditions hold:{
Ĥ(−λ̂k) = G̃(−λ̂k),
Ĥ′(−λ̂k) = G̃′(−λ̂k), (5.12)

N∑
j=1

µjψj

(
n∑
k=1

φ̂k

µj + λ̂k

)
eτµj = 0, (5.13)

92



Chapter 5. H2 model approximation by input/output-delay structured reduced order models

for all k = 1 . . . n, and where

G̃(s) =
N∑
j=1

ψj
s− µj

eτµj . (5.14)

Proof. The stationary conditions hold as soon as we set ∇φ̂mJ2 = 0,∇λ̂mJ2 = 0 and ∇τJ2 = 0.
In addition, by noticing that

G̃(−λ̂l) =
N∑
k=1

ψk

−µk − λ̂l
eµkτ and G̃′(−λ̂l) = −

N∑
k=1

ψk

(−µk − λ̂l)2
eµkτ ,

the results follow.

Theorem 5.10 asserts that any solution of theH2 model approximation Problem 5.13, denoted
by Ĥd = Ĥe−sτ̂ is such that Ĥ satisfies, at the same time, a set of interpolation conditions
detailed in (5.12) and an another relation on the delay given by (5.13). Moreover, as in the
delay-free case, (5.12) corresponds to interpolation conditions. However, the main difference is
that instead of interpolating the full order model G, a new model G̃ is here considered. This new
model possesses the same poles as G, but differs from G by its residues, computed as in (5.14).
One should note that this new model is intrinsically related to the non-symmetric expression of
the H2-inner product (see Example 5.6).

Some considerations

The following remark shows that a simple straightforward reasoning can lead to false optimality
conditions.

Remark 5.11. (False optimality conditions) Let us consider:

J = ‖G− Ĥe−sτ‖H2 = ‖
GNC︷ ︸︸ ︷
Gesτ −Ĥ‖H2 ,

where GNC = Gesτ is a new full order model (and it is a Non-Causal model). Then the
model approximation problem can be written as

Ĥ? = arg min
dim(Ĥ)≤n

‖GNC − Ĥ‖H2 .

Since in the last expression there is no intervention of the delay, one could presume that the
optimality conditions would be those presented in [Gugercin et al., 2008], i.e.

Ĥ(−λk) = GNC(−λk) and Ĥ′(−λk) = G′NC(−λk), k = 1, . . . , n, (5.15)

where λk is a pole of Ĥ and GNC(s) = Gesτ . Unfortunately, this result is not true, since
in the delay-free H2 optimality conditions derivation, the symmetry in the pole-residue H2-
inner-product expression is required.

The following example illustrates why conditions (5.15) do not provide a good approximation
and compare them with those derived in Theorem 5.10.
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5.3. Formulation of the input/output delay H2 first order optimality conditions

Example 5.12. Let us consider

G(s) = 1
(s+ 1)(s+ 2) ∈ H2,

a SISO dynamical model of order n = 2, for which we are seeking an input-delay model
approximation. Let us consider the delay to be fixed at τ = 0.3. By means of conditions
(5.15) and using the fixed-point algorithm TF-IRKA [Beattie and Gugercin, 2012], one is
able to construct an input delay approximation

H̃d(s) = φ̃

(s− λ̃)
e−τs

where φ̃ ≈ 0.5165 and λ̃ ≈ −1.189. Now, we construct

Ĥd(s) = φ̂

(s− λ̂)
e−τs

satisfying the optimality conditions from (5.12) where we obtained φ̂ ≈ 0.3066 and λ̂ ≈
−0.6292. The impulse response of the original system and the two reduced order models are
shown in the following Figure 5.12.
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Figure 5.6: Impulse response of the original model G of order N = 2 (solid blue line), the
input model approximation H̃d of order n = 1 from Example 2 (dashed red line) and the
optimal input model approximation Ĥd of order n = 1 (dash-dotted green line) satisfying
conditions (5.12).

It is clear that the model satisfying the optimality conditions derived in this chapter
provides a better approximation of G.
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Chapter 5. H2 model approximation by input/output-delay structured reduced order models

Up to now, both Ĥd and G were consider to be SISO systems and only one input-delay
was considered. In next section, all the results obtained here are generalized to the multiple
input/output delay MIMO case.

5.4 Extension to MIMO models
This section generalizes the results obtained for SISO models to multiple input multiple output
delay models. The results will be briefly detailed, since they are very similar to the SISO case.

H2 model approximation for MIMO systems

Let Ĥd be a multiple-input/output delays MIMO system s.t. Ĥd(s) ∈ H2 and represented by:

Ĥd :
{
Ê ˙̂x(t) = Âx̂(t) + B̂∆̂i(u(t))

ŷ(t) = ∆̂o(Ĉx̂(t)) , (5.16)

where Ê, Â ∈ Rn×n (with state dimension n ∈ N∗), B̂ ∈ Rn×nu , Ĉ ∈ Rny×n and ∆̂i and ∆̂o are
the delay operators defined as follows{

∆̂i(s) = diag(e−sτ̂1 . . . e−sτ̂nu ) ∈ Hnu×nu∞
∆̂o(s) = diag(e−sγ̂1 . . . e−sγ̂ny ) ∈ Hny×ny∞ .

(5.17)

The matrix transfer functions ∆̂i(s) and ∆̂o(s) defined in (5.17) represent the frequency behavior
of the delay operators ∆i and ∆o respectively. We recall that the transfer function of Ĥd is
given by

Ĥd(s) = ∆̂o(s)Ĥ(s)∆̂i(s) ∈ H2. (5.18)
Recall that we denote by Ĥd = (Ê, Â, B̂, Ĉ, ∆̂i, ∆̂o) a MIMO input/output delayed system

represented by the transfer matrix (5.18). Ĥd will also be said to have order n � N (where N
is the original model order), shortly denoted by dim(Ĥd) = n.

The main objective addressed is to solve the following H2 approximation problem:

Problem 5.13. (Delay model MIMO H2-optimal approximation) Given a stable N th

order system G ∈ Hny×nu2 , find a reduced nth order ( s.t. n � N) multiple-input/output
delays model Ĥ?

d = (Ê, Â, B̂, Ĉ, ∆̂i, ∆̂o) s.t.:

Ĥ?
d = arg min

Ĥd ∈ H2
dim(Ĥd) ≤ n

‖G− Ĥd‖H2 , (5.19)

where Ĥd = ∆̂oĤ∆̂i, as in (5.18).

Once again, this search for an optimal solution will be carried out assuming that both G and
Ĥ from (5.19) have semi-simple poles, i.e., such that their respective transfer function matrix
can be decomposed as follows:

G(s) =
N∑
j=1

ljrTj
s− µj

and Ĥ(s) =
n∑
k=1

ĉkb̂Tk
s− λ̂k

, (5.20)

where ∀j = 1 . . . N, ∀k = 1 . . . n, rj , b̂k ∈ Cnu×1 and lj , ĉk ∈ Cny×1. The poles µj , λ̂k are
elements of C− so that G and Ĥ belong to H2 and dim(G) = N , dim(Ĥ) = n. Let us now first
generalize the inner product results to the MIMO case.
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5.4. Extension to MIMO models

5.4.1 H2 inner product for multiple input and output delays MIMO
systems

First of all, a fundamental result dealing with the H2 norm invariance in case of input/output
delayed systems is recalled.

Proposition 5.14. H2 norm invariance Let Ĥ ∈ Hny×nu2 be a stable dynamical system
and M ∈ Hnu×nu∞ , N ∈ Hny×ny∞ such that:

∀ω ∈ R, M(iω)MT (iω) = Inu , NT (iω)N(iω) = Iny . (5.21)

If Ĥd = NĤM then ‖Ĥd‖H2 = ‖Ĥ‖H2 .

Proof. If Ĥd = NĤM, the scaled term 2π‖Ĥd‖2H2
can be expressed as :∫ +∞

−∞
trace

(
N(iω)Ĥ(iω)M(iω)MT (iω)ĤT (iω)NT (iω)

)
dω

=
∫ +∞

−∞
trace

(
N(iω)Ĥ(iω)ĤT (iω)NT (iω)

)
dω

=
∫ +∞

−∞
trace

(
Ĥ(iω)ĤT (iω)NT (iω)N(iω)

)
dω

=
∫ +∞

−∞
trace

(
Ĥ(iω) ĤT (iω)

)
dω = 2π‖Ĥ‖2H2

.

One can easily check that condition (5.21) appearing in Proposition 5.14 is satisfied by the
delay matrices of the two last lines of (5.17) when M = ∆̂i and N = ∆̂o. In other words, the H2
norm does not depend on the input, nor output delays. Now let us derive the H2 inner product
computation with input/output delays in the MIMO context.

Theorem 5.15. (H2 inner product computation with input/output delays) Let
G, Ĥ be two systems ∈ Hny×nu2 whose respective transfer functions G(s) and Ĥ(s) can be
expressed as in (5.20). Let ∆̂i, ∆̂o be real, elements of Hnu×nu∞ and Hny×ny∞ respectively,
models satisfying sups∈C+{‖∆̂o(s)‖F , ‖∆̂i(s)‖F } = M < +∞ . By denoting Ĥd = ∆̂oĤ∆̂i,
the inner product 〈Ĥd,G〉H2 is expressed as:

〈Ĥd,G〉H2 =
N∑
j=1

trace
(
Res
[
Ĥd(−s)GT (s), µj

])
=

N∑
j=1

lTj ∆̂o(−µj)Ĥ(−µj)∆̂i(−µj)rj .
(5.22)

Proof. The proof is similar to the SISO case one. Once again, one should take the contour
encircling the poles of G(−s) in order to make the integral over ΓR converges to 0 when R→∞.
Then the result follows.

Based on Theorem 5.15, let us derive the H2 optimality conditions in the MIMO case.
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Chapter 5. H2 model approximation by input/output-delay structured reduced order models

5.4.2 H2 optimality conditions
The following proposition makes now explicit the computation of the H2 norm associated with
the dynamical mismatch gap ‖G− Ĥd‖H2 , which defines Problem 5.13 criterion.

Proposition 5.16. Let G, Ĥd ∈ H
ny×nu
2 s.t. Ĥd is given by Equation (5.18). The H2

norm of the approximation gap (or mismatch error), denoted by J2, can be expressed as:

J2 = ‖G− ∆̂oĤ∆̂i‖2H2

= ‖G‖2H2
− 2〈G, ∆̂oĤ∆̂i〉H2 + ‖Ĥ‖2H2

.
(5.23)

Proof. Simply develop the H2 norm using the inner product definition and exploit Proposition
5.14, i.e., ‖∆̂oĤ∆̂i‖H2 = ‖Ĥ‖H2 .

Considering the mathematical formulation of Problem 5.13 and the reduced order system struc-
ture Ĥd = ∆̂oĤ∆̂i, where Ĥ(s) is given as in (5.20), the underlying optimization issue that
must be solved is parameterized by (k = 1, . . . , n):

(i) the n pole(s) λ̂k ∈ C−.

(ii) the n bi-tangential directions {b̂k, ĉk} ∈ Cnu×1 × Cny×1, for k = 1, . . . , n.

(iii) the nu + ny delay values (τ̂l, γ̂m), l = 1 . . . nu, m = 1 . . . ny.

Our primary objective consists in rewriting the expression of the H2 gap J2 as a function of
these latter parameters which will subsequently facilitate the derivation of the H2 optimality
conditions for Problem 5.13. This forms the topic of the three following propositions and of
Theorem 5.20, which stands as the main result of this chapter .

Proposition 5.17. From the preliminary results, the mismatch H2 gap defined previously
in Proposition 5.16 can be equivalently rewritten as:

J2 = ‖G‖2H2
+

n∑
k=1

ĉTk Ĥ(−λ̂k)b̂k − 2
N∑
j=1

lTj ∆̂o(−µj)Ĥ(−µj)∆̂i(−µj)rj . (5.24)

Proof. The result is immediate. When developing the H2 norm expression showing the inner
product and then exploiting Theorem 5.15.

Gradient of the H2 approximation error

From the previous equation (5.24), the first-order optimality conditions related to the minimiza-
tion of J2 can be analytically computed. The gradient expressions of the H2 gap w.r.t. each
parameters (delays, tangential directions and poles) are detailed in the two following proposi-
tions. Starting with the simplest calculations, since the second term of the right-hand side part
of (5.24) is delay-dependent only, we first derive the gradient of J2 w.r.t. the delays.
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5.4. Extension to MIMO models

Proposition 5.18. The gradients of the H2 gap J2 with respect to the delays ∀l = 1 . . . nu,
∀m = 1 . . . ny read :

∇τ̂lJ = −2∂〈Ĥd,G〉H2

∂τ̂l

= −2
N∑
j=1

µjlTj ∆̂o(−µj)Ĥ(−µj)Dl∆̂i(−µj)rj ,

∇γ̂mJ = −2∂〈Ĥd,G〉H2

∂γ̂m

= −2
N∑
j=1

µjlTj Dm∆̂o(−µj)Ĥ(−µj)∆̂i(−µj)rj ,

where elements of Dl ∈ Rnu×nu , Dm ∈ Rny×ny , are defined as:

[Dk]ij = δijk =
{

1 if i = j = k
0 otherwise .

Proof. The proof is straightforward to establish by noticing that both ∆̂i and ∆̂o terms are
diagonal matrices and the exponential derivative function is obvious.

Now, let us compute the gradient with respect to the parameters defining Ĥ.

Proposition 5.19. The gradients of the H2 gap J2 with respect to parameters ĉk, b̂k and
λ̂k, ∀k = 1 . . . n read:

∇ĉkJ = −2∂〈Ĥd,G〉H2

∂ĉk
+
∂‖Ĥ‖2H2

∂ĉk
= −2b̂Tk

(
G̃(−λ̂k)− Ĥ(−λ̂k)

)T
,

∇b̂kJ = −2ĉTk
(
G̃(−λ̂k)− Ĥ(−λ̂k)

)
,

∇λ̂kJ = 2ĉTk
(
G̃′(−λ̂k)− Ĥ′(−λ̂k)

)
b̂k,

where:

G̃(s) =
N∑
j=1

∆̂o(−µj)
lTj rj
s− µj

∆̂i(−µj). (5.25)

and where G̃′ and Ĥ′ are the Laplace derivative of G̃ and Ĥ, respectively.

Proof. By defining r̃j = ∆̂i(−µj)rj and l̃Tj = lTj ∆̂o(−µj) with j = 1 . . . N , the H2 product can
be written as:

〈G, ∆̂oĤ∆̂i〉H2 =
N∑
j=1

l̃Tj
( n∑
m=1

ĉmb̂Tm
−µj − λ̂m

)
r̃j

=
n∑

m=1
ĉm
( N∑
j=1

l̃j r̃Tj
−µj − λ̂m

)
b̂m

= 〈G̃, Ĥ〉H2
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Hence, the H2 gap can be expressed as:

J2 = ‖G‖2H2
− 2〈G, ∆̂oĤ∆̂i〉H2 + ‖Ĥ‖2H2

= ‖G‖2H2
− 2〈G̃, Ĥ〉H2 + ‖Ĥ‖2H2

Hence, this expression does not depend on the delay blocks anymore and the result follows as in
the delay-free case.

Theorem 5.20 gathers all the first-order optimality conditions related to Problem 5.13 and stands
as the main result of this chapter.

Theorem 5.20. (Delay model approximation first-order H2 optimality condi-
tions) Let us consider G ∈ Hny×nu2 whose transfer function is G(s) ∈ Cny×nu . Let
Ĥd = ∆̂oĤ∆̂i be a local optimum of Problem 5.13. It is assumed that Ĥ ∈ Hny×nu2
corresponds to a model with semi-simple poles only and whose transfer function is denoted
by Ĥ(s) = Ĉ(sÊ − Â)−1B̂ ∈ Cny×nu . Let ∆̂i, ∆̂o be elements of Hnu×nu∞ and Hny×ny∞ ,
respectively, s.t. Propositions 5.14 is verified. Then, the following equalities hold:

Ĥ(−λ̂k)b̂k = G̃(−λ̂k)b̂k,
ĉTk Ĥ(−λ̂k) = ĉTk G̃(−λ̂k),

ĉTk Ĥ′(−λ̂k)b̂k = ĉTk G̃′(−λ̂k)b̂k,
(5.26)



N∑
j=1

µjlTj ∆̂o(−µj)Ĥ(−µj)Dl∆̂i(−µj)rj = 0,

N∑
j=1

µjlTkDm∆̂o(−µj)Ĥ(−µj)∆̂i(−µj)rj = 0,
(5.27)

for all k = 1 . . . n, l = 1 . . . nu and m = 1 . . . ny where G̃(s) is given by (5.25) and the terms
Dl and Dm are defined in Proposition 5.18.

Proof. The interpolation conditions gathered in (5.26) are deduced by taking∇ĉlJ2 = 0, ∇b̂lJ2 =
0 and ∇λ̂lJ2 = 0. Conditions (5.27) are obtained similarly by taking ∇τ̂lJ2 = 0 and ∇γ̂mJ2 = 0.
�

Theorem 5.20 asserts that any solution of theH2 model approximation Problem 5.13, denoted
by Ĥd = ∆̂oĤ∆̂i is s.t. Ĥ satisfies, at the same time, a set of 3n bi-tangential interpolation
conditions detailed in (5.26) and another set of nu + ny relations on the delays contained in the
∆̂i and ∆̂o diagonal matrices (5.27). Moreover, as in the delay-free case, (5.26) corresponds
also to interpolation conditions. However, the main difference is that instead of interpolating
the full order model G, a new model G̃ is here considered. This new system possesses the same
poles as G, but differs from G by its residues, computed as in (5.25). As in the SISO case, this
new model is intrinsically related to the non-symmetric expression of the H2-inner product. The
following remark shows that the approximation Problem 5.13 with fixed delays have the same
stationnary points that the delay-free model approximation problem involving G̃.
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Remark 5.21. Optimality conditions equivalence Let us consider G̃ as in (5.25). Let
consider the following delay-free problem:

Delay-free problem: Find Ĥ ∈ H2 a reduced nth order (delay-free) approximation
which minimizes ‖G̃− Ĥ‖H2 .

If Ĥ? is a local minimum of this problem, then it satisfies the interpolation conditions
(5.26). Thus, for fixed input and output delays, this problem and Problem 5.13 both lead to
the same optimality conditions and have the same stationary points. Hence, for fixed blocks
∆̂i and ∆̂o, we have the following equivalence :

Find Ĥ? such that

Ĥ? = arg min
Ĥ ∈ H2

dim(Ĥ) ≤ n

‖G− ∆̂oĤ∆̂i‖H2 ,
⇔


Find Ĥ? such that

Ĥ? = arg min
Ĥ ∈ H2

dim(Ĥ) ≤ n

‖G̃− Ĥ‖H2 ,

5.5 Development of an algorithm and numerical applica-
tions

5.5.1 Practical considerations
In this section, three considerations about Problem 5.13 and Theorem 5.20 are discussed. These
latter are relevant to sketch out an algorithm which enables the computation of the model
∆̂oĤ∆̂i satisfying the optimality conditions appearing in Theorem 5.20. Let us consider that
Ĥd = ∆̂oĤ∆̂i is a local minimum of the H2 optimization Problem 5.13 where Ĥ is given
by (5.20), then:

• Consideration Ê. If the matrices ∆̂o, ∆̂i and the reduced order model poles λ̂1, λ̂2, . . . ,
λ̂n are assumed to be known, Problem 5.13 is reduced to a much simpler problem that can
be solved, for example, by using the well-known Loewner framework such as in [Mayo and
Antoulas, 2007];

• Consideration Ë. If the delay matrices ∆̂o, ∆̂i are known, then Problem 5.13 can be
solved by finding a model realization Ĥ which satisfies the interpolation conditions (5.26)
of Theorem 5.20, only. This can be done using, for instance, a very efficient iterative
algorithm, e.g., IRKA (see [Gugercin et al., 2008]);

• Consideration Ì. Assume that the system realization Ĥ has already been determined.
It follows that Problem 5.13 is equivalent to look for optimal delays matrices (∆̂?

o, ∆̂
?

i ) ∈
Hny×ny∞ ×Hnu×nu∞ such that:

(∆̂?

o, ∆̂
?

i ) = max
(∆̂o,∆̂i)

〈∆̂oĤ∆̂i,G〉H2 . (5.28)

Interestingly, since 〈∆̂oĤ∆̂i,G〉H2 → 0 when the delays go to infinity, this problem can
be restricted to a compact set and thus a global solution exists.
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5.5.2 Computational considerations
An algorithm allowing to numerically compute a model Ĥd satisfying the previous H2 optimality
conditions is proposed in this subsection. It relies on the Remark 5.21 and the considerations
discussed above (Section 5.5.1). Therefore, the proposed approach corresponds to an iterative
algorithm in which each iteration can be decomposed in two steps. The first one aims at comput-
ing a realization Ĥ which satisfies the interpolation conditions (5.26) while fixing the matrices
∆̂o, ∆̂i at their values obtained from the previous iteration. This can be done using, for instance,
IRKA (Step 4 ). In the second step, Ĥ is therefore fixed and the optimal values for the ∆̂o, ∆̂i

matrices elements (Step 5 ) are determined. This sequential procedure can be summarized in
Algorithm 3, and referred to as MIMO IO-dIRKA for MIMO Input/Output delays IRKA.

Algorithm 3 MIMO IO-dIRKA
1: Input: A N th order model G ∈ Hny×nu2 , dimension n ∈ N∗ (n� N) and initial guesses for

both ∆̂it=0
i , ∆̂it=0

o .
2: Make initial choice of the shift points σ0 = {σ0

1 , . . . , σ
0
n} ∈ C initial interpolation points and

tangential directions b̂1,0, . . . , b̂n,0 ∈ Cnu×1 and ĉ1,0, . . . , ĉn,0 ∈ Cny×1 closed by conjugation.
3: while not convergence do
4: Set it← it + 1
5: Build G̃it as in (5.25)
6: Build Ĥit satisfying the bi-tangential interpolation conditions (5.26) using

IRKA [Gugercin et al., 2008] on G̃it

7: Determine (∆̂?

i , ∆̂?

o) which solve (5.28) using Ĥit

8: Set ∆̂it
i ← ∆̂?

i , ∆̂it
o ← ∆̂?

o

9: end while
10: Output: locally H2 optimal reduced model Ĥd = (Ê, Â, B̂, Ĉ, ∆̂?

i , ∆̂
?

o).

This iterative algorithm is inspired from [Gugercin et al., 2008; Van Dooren et al., 2008] and,
upon convergence, it provides input/output delay ROM satisfying the optimality conditions from
Theorem 5.20.

To sum up, from a model reduction point of view, we believe that Theorem 5.20 is the great
novelty from this chapter. One of the implication of this theorem is that, for a fixed delay,
one can rewrite the input-delay approximation problem as a delay-free approximation problem.
Hence, the new delay-free model approximation problem can be solved using dedicated tools. As
it is drastically efficient on the large-scale framework, we have proposed an algorithm based on
the fixed point iteration of IRKA (see [Gugercin et al., 2008]) to find a good approximation.
The algorithm MIMO IO-dIRKA itself was not the main goal, but rather a way to exploit the
main contribution using some well known results from the literature in order to find a solution
of Problem 5.13.

Later in this section this algorithm is validated in some numerical examples.

Structured input/output delays

All the previous results are left unchanged in the case of structured input/output delays i.e., if,
for example, delays do not apply on given input(s) and/or output(s) of Ĥd. The results can be
derived in a straightforward way, without any loss of generality, just by considering the following
ordered delays matrices (where delays are present on the first nd1 < nu inputs and nd2 < ny
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outputs): {
∆̂i(s) = diag(e−sτ̂1 , e−sτ̂2 , . . . , e−sτ̂nd1 , 1, . . . , 1)
∆̂o(s) = diag(e−sγ̂1 , e−sγ̂2 , . . . , e−sγ̂nd2 , 1, . . . , 1).

One can easily note that the preliminary results from Sections 5.2 and 5.4 still remain true when
introducing these matrices. The main result stated in Theorem 5.20 thus remains unchanged.
This can be particularly interesting when the original model has the delay behavior only for some
inputs and outputs.

5.5.3 Numerical applications
This section is dedicated to the application of the results obtained in this chapter, namely, the
input/output-delay optimal H2 model approximation and its first-order optimality conditions.
We will emphasize the potential benefit and effectiveness of the proposed approach.

Example 1: Padé approximation

Let us consider a dynamical model Href ∈ H2 whose transfer function is given by

Href (s) = 1
s+ 1e

−s. (5.29)

The reference dynamical model (5.29) (which is obviously of order 1) has an input delay. This
input delay is, then, approximated by a Padé of order 1, which leads to the approximation model
G(s) of order N = 2, given by the following function

G(s) = 1
s+ 1

2− s
s+ 2 = 3

s+ 1 −
4

s+ 2 . (5.30)

The purpose here is to approximate G (5.30) by a lower delayed model of order n = 1. For fixed

values of τ in the interval [0, 1], one now seek for a model Ĥd = Ĥe−τs, where Ĥ(s) = φ̂

s− λ̂
which satisfies the interpolation conditions given in the SISO case as (5.12), where G̃(s) reads
as follows:

G̃(s) = 3
s+ 1e

−τ − 4
s+ 2e

−2τ .

To do so, the iterative algorithm IRKA from [Gugercin et al., 2008], which enables us to find
a model satisfying (5.12), is applied. For each frozen value of the delay value τ , the H2-gap
between Ĥd and G was computed and the results are reported on Figure 5.7. It shows that the
H2-optimal model is attained for a delay value τ ≈ 0.48s. One should first note that 0.48s < 1s
(1 was the initial delay of the original model Href before Padé approximation), which at a first
look, might be surprising.

However, by analyzing Figure 5.8, which shows the Impulse responses of Href (solid red
line), of the model G obtained after Padé approximation (solid green line) and the optimal H2-
approximation with delay Ĥd (n = 1 dashed blue), it appears that Ĥd well approximates G.
As a first remark, it is clear that the Padé approximation G degrades the original input delay
from H and we are not able to recover it doing an H2-approximation. Indeed, since the Padé
approximation impulse response concentrates a great amount of energy when t < 1s, then a H2
approximation with input delay τ ≥ 1 will not take this into account and one should obtain a
better approximation when τ ≈ 0.48s.
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Figure 5.7: The H2-gap, i.e., ‖G− Ĥe−sτ‖H2 as function of τ using IRKA.
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Figure 5.8: Impulse response of original model H (red solid line), Padé approximation G (green
solid line) and input-delay H2-optimal model using interpolation conditions (5.12) of order n = 1
(blue dashed line).

This specific example shows how the Padé approximation degrades some characteristics of
the original model and that performing a Padé approximation followed by a H2 approximation
does not allow us to recover the original input delay.
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Example 2: pseudo higher order poles

Let us consider a model G of order N = 20, given by the following transfer function

G(s) =
20∏
j=1

µj
s− µj

, (5.31)

where µj ∈ R− (j = 1, . . . , N) are linearly spaced between [−2 − 1]. The impulse response of G
is given by the solid dotted blue line in Figure 5.9. Interestingly, it behaves like a system with
an input delay. In order to fit the framework proposed in this chapter, input-delay H2 optimal
model Ĥd = ∆̂oĤ∆̂i of order n = 2 (solid red) was obtained by applying Theorem 5.20 and
IO-dIRKA, as described in Section 5.3. The obtained delay model is compared with delay-free
approximations of order n = {2, 3, 4}, obtained with IRKA. All the results are reported on
Figure 5.9.
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Ĥ, n = 2 (IRKA)
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Figure 5.9: Impulse response of the original model H of order N = 20 (solid dotted blue line), the
input-delay H2-optimal model Ĥd of order n = 2 (solid red line) and the delay-free H2-optimal
models Ĥ of order n = {2, 3, 4} (dashed dark green, light green and yellow lines).

As clearly shown on Figure 5.9, the proposed methodology allows to obtain an input-delay
H2 approximation of model G that clearly provides a better matching than the delay-free cases,
even for higher orders (here, IRKA with n = 4 still have a bad matching and exhibits difficulties
in accurately catching the delay and main dynamics). Indeed, the delay-free cases exhibit an
oscillatory behavior during the first seconds while the input-delay model Ĥd takes benefit of the
delay structure to focus on the main dynamical effect. Moreover, the approximation model of
Ĥd satisfies the conditions given in Theorem 5.20.
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Remark 5.22 (Numerical results (SISO case, n = 2)). For the sake of completeness,
the optimal numerical values obtained with MIMO IO-dIRKA are: λ̂1,2 = −2.0320 ×
10−1 ± i 2.0700 × 10−1, φ̂1,2 = 1.5713 × 10−3 ± i 1.8691 × 10−1 and the optimal delay
τ = 8.7179. The interpolation conditions can be then easily checked:

• Condition (5.12) leads to Ĥ(−λ̂1,2) = G̃(−λ̂1,2) = 2.3567×10−1±i 2.3614×10−1 and
Ĥ′(−λ̂1,2) = G̃′(−λ̂1,2) = 5.6466× 10−1 ± i 1.1465.

• When evaluating
N∑
j=1

µjψj

(
n∑
k=1

φ̂k

µj + λ̂k

)
eτµj , one obtains 9.7284 × 10−5, which is

close to zero, as stated by condition (5.13).

With reference to Figure 5.10, similar results are obtained in the case of an input delay-dependent
approximation of order n = 4 (using IO-dIRKA) and delay-free approximation of order n =
{4, 5, 6} (using IRKA). Then, Figure 5.11 shows the impulse response mismatch errors for these
different configurations. For each reduced order models, the mean square absolute error ε of the
impulse responses are computed. The main observation that can be made is that the mismatch
error obtained for Ĥd of order n = 4 is lower that the one obtained by a delay-free model Ĥ
of order n = 6 (a better result is obtained for a delay-free model with an order n = 7). This
motivates the use of the specific approximation model delay structure.
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Figure 5.10: Impulse response of the original model H of order N = 20 (solid dotted blue
line), the input-delay H2-optimal model Ĥd of order n = 4 (solid red line) and the delay-free
H2-optimal models Ĥ of order n = {4, 5, 6} (dashed dark green, light green and yellow lines).
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Ĥd, n = 4, τ = 6.4103 with mean error ε =2.55906e-07 (IO-dIRKA)

Ĥ, n = 4 with mean error ε =3.75348e-05 (IRKA)

Ĥ, n = 5 with mean error ε =4.94274e-06 (IRKA)

Ĥ, n = 6 with mean error ε =4.56304e-07 (IRKA)

Figure 5.11: Impulse response error between the original model H of order N = 20 and the
input-delay H2-optimal model Ĥd of order n = 4 (solid red line) and the delay-free H2-optimal
models Ĥ of order n = {4, 5, 6} (dashed dark green, light green and yellow lines).

Example 3: Loewner framework and pseudo-delay behavior

Let G be a SISO model of order N = 34 having complex poles which has an intrinsic input-delay
behavior. This model was constructed by means of the Loewner framework (see [Mayo and
Antoulas, 2007]) following these two steps:

1. Take Gdelay(s) = ψ

s2 + 2ξω0s+ ω2
0
e−τs, where τ = 2, ω0 = 1 and ξ = 1/4.

2. Using the Loewner framework for uniformly spaced interpolation points iωk, k = 1, . . . , 100,
(see [Mayo and Antoulas, 2007]), we were able to construct G = Ĉ(sÊ − Â)−1B̂ of order
N = 34, a delay-free model interpolating Gdelay.

Hence, by construction, G is a delay-free model having an intrinsic input-delay behavior. Then,
for the orders n = 2, . . . , 8 delay-free model approximations were constructed using the IRKA
algorithm. In addition, an input-delay approximation Ĥd of order n = 2 was constructed using
the proposed IO-dIRKA algorithm. The results are presented in Figure 5.5.3.
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Figure 5.12: Impulse responses of the original model G of order N = 34 (solid blue dots), the
optimal input model approximation Ĥd of order n = 2 (solid red line) and optimal delay-free
models of order 2 to 8 using IRKA (dashed lines).
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Ĥd , n = 2, τ = 2 with mean error ε =2.11848e-06 (IO-dIRKA)

Ĥ, n = 2 with mean error ε =1.23796e-02 (IRKA)

Ĥ, n = 3 with mean error ε =1.96311e-03 (IRKA)

Ĥ, n = 4 with mean error ε =3.72659e-04 (IRKA)

Ĥ, n = 5 with mean error ε =1.09716e-04 (IRKA)

Ĥ, n = 6 with mean error ε =4.27195e-05 (IRKA)

Ĥ, n = 7 with mean error ε =2.05142e-05 (IRKA)

Ĥ, n = 8 with mean error ε =1.02920e-05 (IRKA)

Figure 5.13: Impulse error responses for the optimal input model approximation Ĥd of order
n = 2 (solid red line) and the optimal delay-free models of order 2 to 8 using IRKA (dashed
lines).
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This example shows that one needs to increase the order of a delay-free approximation to
capture the intrinsic delay behavior of G. In this case, an input-delay approximation is suitable.
Moreover, the proposed algorithm provides a good approximation and well captured the optimal
delay τ̂ ≈ 2, the natural frequency ω̂0 ≈ 1 and damping ξ̂ ≈ 0.25005, as they are very close to
the initial parameters from Gdelay.

Example 4: Ladder Network system

Let GLadder be the ladder network system presented in Chapter 1 from [Beattie and Gugercin,
2011] and [Gugercin et al., 2012]. Even if this system is represented by a finite dimensional
system, it has an intrinsic input-delay behavior (as shown by its impulse response in Chapter 1).
Then, for the orders n = 6, 12 and 20, delay-free model approximations were constructed using
IRKA and the results are reported in Figure 5.14.
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Ĥ6 (IRKA , n = 6)
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Figure 5.14: Impulse response of the Ladder system GLadder of order N = 100 (solid blue line)
and the delay-free H2-optimal model Ĥ6, Ĥ12 and Ĥ20 of orders n = {6, 12, 20} (dashed green,
dashed yellow and dashed magenta lines).

As the reader can see, even if we increase the order to n = 20, the delay-free approximation
does not manage to follow the behavior of the impulse response of GLadder. Let us now consider
an input-delay approximation Ĥd of order n = 6 constructed using the proposed IO-dIRKA
algorithm. The optimal delay obtained was τ̂? = 19.27s. The results are presented in Figure
5.15 and compared with the delay-free ROM of order n = 20.
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Figure 5.15: Impulse response of the Ladder system GLadder of order N = 100 (solid blue line),
the delay-free H2-optimal model Ĥ20 of order n = 20 (dashed magenta line) and the input-delay
H2-optimal model Ĥd of order n = 6, τ̂? = 19.27s (dashed black line).

As clearly shown on Figure 5.15, IO-dIRKA to obtain an input-delay approximation which
is much more accurate than the delay-free approximation. Therefore, in this case, adding an
input-delay in the reduced-order model enables to find better lower order approximations.

Example 5: Open channel flow for hydroelectricity

Let Hflow(s) be the open channel system presented in Chapter 1 from [Dalmas et al., 2016].
This model is represented by an irrational transfer function. Since all the results presented in
this chapter suppose that the full order model is represented by a finite dimensional realization,
they are not directly applicable to Hflow(s). In order to remedy this situation, let G ∈ H2 be
a finite dimensional approximation of order 103 which was built using the Loewner framework
on Hflow. Figure 5.16 shows the Bode magnitude plot of the irrational model Hflow and the
Loewener approximation G.

109



5.5. Development of an algorithm and numerical applications

10
−4

10
−2−110

−100

−90

−80

−70

−60

−50

−40

Frequency [Hz]

G
a
in

[d
B
]

Bode Diagram

10
−4

10
−2−140

−120

−100

−80

−60

−40

Frequency [Hz]

Bode Diagram

 

 

Irrational model
Loewner stable approximation

Figure 5.16: Bode magnitude diagram of the original irrational model Hflow (solid blue line)
and Loewner stable approximation G of order 103.
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Figure 5.17: Impulse response of the full order model G (solid blue line), reduced-order model
Ĥd of order 6 with input delays τ1 = 660.52 and τ2 = 1678.94 (solid red line) and delay-free
approximations of order n = 6, 10 and 14 (darker green, green and yellow dashed lines).
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Hence, since G is a finite dimensional system, we are now able to apply the results from
this chapter. An input-delay approximation Ĥd of order n = 6 constructed using the proposed
IO-dIRKA algorithm. The optimal delays obtained were (τ̂?1 , τ̂?2 ) = (660.52, 1678.94)s. Then,
for the orders n = 6, 10 and 14, delay-free model approximations were constructed using IRKA
and the results are reported in Figure 5.17.

Once again, as shown on Figure 5.15, IO-dIRKA allows to obtain an input-delay approxi-
mation which reproduces the behavior of the full order model G.

Conclusion
The main contribution of this chapter is the derivation of the first-order H2 optimality conditions
for Problem 5.13. Moreover, to achieve this result, the expression of the H2-inner product
in the presence of input and output delays was derived in Theorem 5.5 which forms another
contribution. The crucial point is the introduction of the new interpolant model G̃ in the H2
optimality conditions, which forms a direct extension of the bi-tangential interpolation conditions
of the delay-free case derived in [Gugercin et al., 2008; Van Dooren et al., 2008]. Theorem 5.20
establishes that if Ĥd = ∆̂oĤ∆̂i is a local optimum, then the parameters of this latter verify an
extended set of matrix equalities. These ones are of two types:

(i) a subset of interpolation conditions (5.26) satisfied by the rational part Ĥ of Ĥd, which
generalizes the delay-free case.

(ii) a subset of matricial relationships (5.27) focusing on the input/output delay blocks ∆̂o, ∆̂i.

These conditions are all dependent on the reduced order model parametrization described by
b̂k, ĉk, λ̂k, τ̂l and γ̂m, and solving Problem 5.13 requires to tackle a non-convex optimization
problem. An algorithm referred to as IO-dIRKA, has been suggested to practically address
this issue and some numerical experiments have also been presented, illustrating the benefit of
the proposed approximation which integrates delays with respect to standard delay-free approx-
imation methods.
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Chapter 6

Data-driven model approximation
by single state-delay structure
reduced order models

In this chapter, the realization-free model approximation problem, as stated in [Mayo and An-
toulas, 2007; Beattie and Gugercin, 2012], is revisited in the case where the interpolating model
is a single state-delay dependent one. To this aim, the Loewner framework, initially settled for
delay-free realizations, is firstly extended to the single-delay one. Secondly, Finite dimensional in-
spired interpolation conditions are established through the use of the Lambert function. Finally,
a numerically efficient iterative scheme, named dTF-IRKA, similar to the TF-IRKA [Beattie
and Gugercin, 2012], is proposed to reach a part of the aforementioned optimality conditions.
The proposed method validity and interest are proved on different numerical examples.
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6.1 Problem statement
In Chapter 5, the model approximation problem when the reduced order model has an in-
put/output delay structure was considered. As a next step, we wish to consider reduced order
models with other kinds of structure. Hence, it seems natural to consider state-delay structures
as the following step.
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In this chapter, a data-driven model approximation by a single state-delay structure reduced
order models is developed and used for approximation of any realization or realization-free linear
dynamical model. More specifically, given some tangential interpolation frequency data (as in
Chapter 3, Section 3.4), we are interested in finding a single delay finite-dimensional linear time-
invariant descriptor system denoted Ĥd = (Ê, Â, B̂, Ĉ, τ) and defined by:

Ĥd =
{
Êẋ(t) = Âx(t− τ) + B̂u(t)

y(t) = Ĉx(t), , (6.1)

whose transfer function is Ĥd(s) = Ĉ(sÊ − Âe−τs)−1B̂ interpolates the tangential data. It
is worth noticing that the approximation form (6.1) extends the delay-free one used in [Mayo
and Antoulas, 2007; Beattie and Gugercin, 2012] given as Ĥ = (Ê, Â, B̂, Ĉ, 0) (or simply Ĥ =
(Ê, Â, B̂, Ĉ)),

Ĥ =
{
Êẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉx(t), (6.2)

In the model approximation context, inspired by finite dimensionalH2 necessary interpolation
conditions (see [Van Dooren et al., 2008; Gugercin et al., 2008] or Chapter 4), we are willing to
tackle the following problem :

Problem 6.1 (Finite dimensional inspired interpolation problem). Given G ∈ H2,
an order n, and a fixed delay τ ≥ 0, find Ĥd = (Ê, Â, B̂, Ĉ, τ) of order n such that

G(−λ̂k)b̂k = Ĥd(−λ̂k)b̂k, ĉTkG(−λ̂k) = ĉTk Ĥd(−λ̂k) (6.3)

and
ĉTkG′(−λ̂k)b̂k = ĉTk Ĥ′d(−λ̂k)b̂k (6.4)

for all λ̂k pole of Ĥd and Res(Ĥd, λ̂k) = ĉkb̂Tk .

In other words, if an evaluation of the transfer function G(s), for any s ∈ C, is available (either
from data or by simply evaluating G(s)), our goal is to find a delay model of the form (6.1), that
well approximates G, and, which satisfies the finite dimensional inspired interpolation conditions
(see Chapter 4, Theorem 4.14). Then, a main difference here compared to the delay-free case,
is that the reduced order model is an infinite dimensional model having an infinity number of
poles. Hence the conditions proposed in Problem 6.4 are infinitely many, while the number of
parameters defining Ĥd is finite. Hence, we shall not take into consideration all of them, but
only a finite number of those conditions. Let us start our discussion with the extension of the
Loewner framework (see [Mayo and Antoulas, 2007]).

6.2 Single state-delay data-driven framework
6.2.1 State-delay transformation
The main result of this section is based on a very simple representation argument, which will be
useful along the rest of this chapter.
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Lemma 6.2 (Single state-delay transformation). Given Ĥd = (Ê, Â, B̂, Ĉ, τ), its
transfer function Ĥd(s) can be decomposed as:

Ĥd(s) = Ĥ
(
f(s)

)
esτ (6.5)

where
f(s) = sesτ ,

and Ĥ(s) is the transfer function of the delay-free model Ĥ = (Ê, Â, B̂, Ĉ) as in (6.2).

Proof. The result is straightforwardly obtained by using the expression of f(s) combined with
(6.2) as follows:

Ĥd(s) = Ĉ(sÊ − Âe−sτ )−1B̂

= Ĉ(sesτ Ê − Â)−1B̂esτ = Ĥ(sesτ )esτ .

Lemma 6.2 states that a single state-delay model Ĥd = (Ê, Â, B̂, Ĉ, τ) can be represented by a
delay-free model Ĥ = (Ê, Â, B̂, Ĉ) by means of the transformation (6.5). It is worth mentioning
that the function f(s) = sesτ , which plays a very important role here, is the inverse of the
Lambert function (see [Corless et al., 1996]). Next section will use this lemma to enable the
construction of a single state-delay model Ĥd = (Ê, Â, B̂, Ĉ, τ) which interpolates some given
tangential data.

6.2.2 Single state-delay Loewner framework
The Loewner framework enables to construct a delay-free model Ĥ = (Ê, Â, B̂, Ĉ) which interpo-
lates some given data. Then, one extension of the Loewner framework which makes feasible the
interpolation with a single delay descriptor system as defined in (6.1) can be done by using the
function f(s) = sesτ as a variable substitution and applying the standard Loewner framework
to the new transformed data. This first main result can be stated as follows:

Theorem 6.3 (Single state-delay Loewner framework). Let us consider τ ∈ R and
given (λi, ri,wi) and (µj , lj ,vj), for 1 ≤ i, j ≤ n, the right and left interpolation data
respectively, as stated in Problem 3.12 from Chapter 3. Assuming that f(s) = sesτ is
one-to-one in the interpolation points domaina and let Ĥ = (Ê, Â, B̂, Ĉ) be a realization
satisfying right and left constraints from the data (f(λi), ri,wie

−λiτ ) and (f(µj), lj ,vje−µiτ )
constructed with the Loewner framework (see Theorem 3.15). Then Ĥd = (Ê, Â, B̂, Ĉ, τ)
satisfies the right:

Ĥd(λi)ri = wi, i = 1, . . . n (6.6)

and left constraints:
lTj Ĥd(µj) = vj , j = 1, . . . n (6.7)

for the given right and left interpolation data.
aThis means that for any h1, h2 ∈ {λ1, . . . , λn} ∪ {µ1, . . . , µn}, then f(h1) 6= f(h2) if h1 6= h2, where

f(s) = sesτ .

Proof. The result for the right constraints (6.6) is obtained as follows: first note that if the
delay-free model Ĥ(s) satisfies the right constraints for (f(λi), ri,wie

−λiτ ), then one obtains:

Ĥ(f(λi))ri = wie
−λiτ , (6.8)
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then, it equivalently follows that:

Ĥ(f(λi))eλiτri = wi, (6.9)

and by invoking Lemma 6.2, we obtain the result:

Ĥd(λi)ri = wi. (6.10)

The left data constraints (6.7) are similarly obtained.

Theorem 6.3 provides a method to construct a model Ĥd = (Ê, Â, B̂, Ĉ, τ) whose transfer
function Ĥd(s) = Ĉ(sÊ − Âe−sτ )−1B̂ interpolates given right and left constraints. This is
possible by noticing that the problem can be rewritten as right and left interpolation constraints
for the delay-free case for which a realization is obtained by the standard Loewner framework
as in Theorem 3.15. A similar reasoning enables the generalization of Theorem 3.16 as stated
follows.

Theorem 6.4 (Derivative single delay Loewner framework). Let us consider a given
system represented by its transfer function G(s), n shift points {s1, . . . , sn} ∈ C and n left
and right tangential directions {l1, . . . , ln} ∈ Cny , {r1, . . . , rn} ∈ Cnu . We assume that
for all k 6= m, f(sk) 6= f(sm), where f(s) = sesτ (f is one-to-one in the interpolation
points domain). The n-dimensional single delay model Ĥd = (Ê, Â, B̂, Ĉ, τ), as in (6.1),
interpolates G(s) as follows, for k = 1, . . . , n:

G(sk)rk = Ĥd(sk)rk, lTkG(sk) = lTk Ĥd(sk), (6.11)

lTkG′(sk)rk = lTk Ĥ′d(sk)rk, (6.12)

if only if the n-dimensional delay-free model Ĥ = (Ê, Â, B̂, Ĉ) is constructed with the deriva-
tive Loewner framework as in Theorem 3.16 for the transformed shift points:(

σ1, . . . , σn
)

=
(
f(s1), . . . , f(sn)

)
, (6.13)

and the transformed transfer function evaluation:(
Ĥ(σ1), . . . , Ĥ(σn)

)
=
(
G(s1)e−s1τ , . . . ,G(sn)e−snτ

)
(6.14)

and the transformed derivative transfer function evaluation:(
Ĥ′(σ1), . . . , Ĥ′(σn)

)
=
(
F1, . . . ,Fn

)
(6.15)

where, for i = 1, . . . n:

Ĥ′(σi) = Fi
=

(
G′(si)− τG(si)

)( e−2siτ

1 + τsi

)
(6.16)

Proof. First, one can note that a single delay descriptor system can be expressed as

Ĥd(s) = Ĉ(sesτ Ê − Â)−1B̂esτ = Ĥ(f(s))esτ (6.17)

where Ĥ(s) is a descriptor system whose representation is (Ê, Â, B̂, Ĉ) and f(s) = sesτ . Thus
one can use the Loewner matrices to construct the realization of system Ĥ(s) for the shift points
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(σ1, . . . σn) = (f(s1), . . . , f(sn)) whose transfer function data are

(Ĥ(σ1), . . . , Ĥ(σn)) = (G(s1)e−s1τ , . . . ,G(sn)e−snτ ).

For the transfer function derivative data, one can take the derivative of (6.17) with respect to s
written as Ĥ(f(s)) = Hd(s)e−sτ as follows

Ĥ(f(s))f ′(s) = Ĥ′d(s)e−sτ − τĤd(s)e−sτ ,

and by solving the equation for Ĥ(σk) one obtains the result.

This theorem allows to obtain a single delay descriptor system which interpolates any given
transfer function G(s). This can also be used in the case of data obtained through a signal
generator, considering that the derivative is accessible as well. Applications of this result can be
found in Section 6.4.2.

Now that the state delay Loewner framework has been established, one might be interested
in obtaining a good interpolant in the sense of the H2-norm as formulated in Problem 6.1. We
will now formulate the mathematical conditions to select the finite dimensional inspired shift
complex points si and tangential directions ri and li.

6.3 Finite dimensional inspired interpolation conditions
In this section, we tackle the Problem 6.1. We recall that this problem was inspired by the finite
dimensional H2 optimality conditions in the delay-free case (see Chapter 4, Section 4.3). Hence,
the first step is to characterize the poles of a single-delay reduced order model Ĥd.

6.3.1 Single state-delay model spectrum
Firstly, let us state some preliminary results about the spectrum of a single state-delay model as
(6.1).

Proposition 6.5. Assume that Ĥd = (Ê, Â, B̂, Ĉ, τ) is a single state-delay model and that
Ĥ = (Ê, Â, B̂, Ĉ) is its delay-free representation as in Lemma 6.2. Then, λ̂ is a pole of Ĥd

if and only if f(λ̂) is a pole of Ĥ, where f(s) = sesτ .

Proof. This is a simple implication of Lemma 6.2, which says that Ĥd(s) = Ĥ
(
f(s)

)
esτ . Since

the function f(s) = sesτ has no pole, then if λ̂ is a pole of Ĥd, f(λ̂) is a pole of Ĥ and the
converse is also true.

We recall that the poles of Ĥ can be simply computed as the generalized eigenvalues of the
pencil (Ê, Â). Moreover, the inverse of the function ses is the scalar Lambert function. It is
formally defined as follows

Definition 6.6 (Lambert function Wk). The Lambert function Wk is defined implicitly
as the solution to the equation

s = Wk(s)eWk(s). (6.18)

For every s ∈ C (except at 0), this equation has infinite solutions which are indexed by
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k ∈ Z. We refer to Wk(s) as the k-th branch of the Lambert function.

The reader might refer to [Corless et al., 1996] for more details and properties of the Lambert
function. Hence, the poles of a single state-delay model can be computed as follows.

Corollary 6.7 (Poles of a single state-delay model). Suppose that Ĥd = (Ê, Â, B̂, Ĉ, τ)
is a single state-delay model. Suppose that α̂i is an eigenvalue of the pencil (Ê, Â), for
i = 1, . . . , n. Then the poles of Ĥd(s) are given by

λ̂ik = 1
τ

Wk(τα̂i). (6.19)

where k ∈ Z.

Proof. This is a simple implication of Lemma 6.2, which says that Ĥd(s) = Ĥ
(
f(s)

)
esτ . Since

the function f(s) = sesτ has no poles, then if λ̂ is a pole of Ĥd, f(λ̂) is a pole of Ĥ and the
converse is also true.

Corollary 6.7 enables to characterize the poles of single state-delay model as function of the
eigenvalues of the pencil (Ê, Â). The following example illustrates the poles computation of a
single state-delay model.

Example 6.8 (Spectra of an one dimensional time-delay model). Let Ĥd be a single
delay model whose tranfer function is given by

Ĥd(s) = 1
s+ e−s

. (6.20)

Then, the spectra of Ĥd can be computed using the Lambert function as follows:

λk is a pole of Ĥd if and only if λk = Wk(−1), k ∈ Z.

Figure 6.1 represents, in the complex plane, twenty poles of Ĥd for k = −10, . . . , 9.
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Figure 6.1: Some poles of the model Ĥd in the complex plane
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6.3.2 Truncating the interpolation conditions
Now, using Corollary 6.7, we are able to characterize the finite dimensional inspired interpolation
conditions from Problem 6.1 as follows :

Theorem 6.9 (Characterization of finite dimensional inspired interpolation con-
ditions). Suppose that Ĥd = (Ê, Â, B̂, Ĉ, τ) is a n-th order model having only simple poles
satisfying the interpolation conditions from Problem 6.1. Then, Ĥd can be written as a
pole-residue decomposition:

Ĥd(s) = Ĉ(sÊ − Âe−sτ )−1B̂ =
n∑
i=1

ĉib̂Ti
s− α̂ie−sτ

. (6.21)

Moreover, if for a given G ∈ H2 and a fixed delay τ ≥ 0, Ĥ satisfies the finite dimensional
inspired interpolation conditions from Problem 6.1, then they can be characterized by:

G(−λ̂ik)b̂i = Ĥd(−λ̂ik)b̂i, ĉTi G(−λ̂ik) = ĉTi Ĥd(−λ̂ik) (6.22)

ĉTi G(−λ̂k,p)b̂i = ĉTi Ĥd(−λ̂k,p)b̂i, (6.23)

for all i = 1, . . . , n and k ∈ Z and λ̂ik is defined by:

λ̂ik = 1
τ

Wk(ταi) (6.24)

where Wk is the k-th branch of the Lambert function.

Theorem 6.9 establishes a characterization of Problem 6.1 as an infinite number of interpo-
lation conditions. This is a consequence that Ĥd has an infinite number of poles.

Nevertheless, given τ ∈ R+, as Ĥd(s) = Ĉ(sÊ − Âe−sτ )−1B̂ is parametrized by a finite
number of variables. Indeed, Ĥd lives in a sub-manifold of dimension n(nu + ny), i.e., it can be
shown that it is completely parametrized by n(nu + ny) variables. This can be simply shown
by noticing that there is a simple isomorphism between (Ê, Â, B̂, Ĉ, τ) and (Ê, Â, B̂, Ĉ, 0) and
the last one is parametrized by n(nu + ny) variables (see [Byrnes and Falb, 1979; Van Dooren
et al., 2008]). Hence, all the interpolation conditions cannot be achieved in the general case, but
a finite set only.

Hence, in order to remedy this inconvenient, instead of interpolating an infinite number of
conditions, we are going to choose a finite number of conditions which are associated to the poles
relative to the principal branch of the Lambert function, i.e., W0. These conditions are detailed
in the following problem:

Problem 6.10 (Truncated finite dimensional inspired interpolation conditions).
Given G, a fixed delay τ > 0 and an order n, find a n-th order model Ĥd = (Ê, Â, B̂, Ĉ, τ)
having the following poles-residues decomposition:

Ĥd(s) = Ĉ(sÊ − Âe−sτ )−1B̂ =
n∑
i=1

ĉib̂Ti
s− α̂ie−sτ

, (6.25)
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satisfying the following finite interpolation conditions:

G(−λ̂i0)b̂i = Ĥd(−λ̂i0)b̂i, ĉTi G(−λ̂i0) = ĉTi Ĥd(−λ̂i0) (6.26)

ĉTi G(−λ̂i0)b̂i = ĉTi Ĥd(−λ̂i0)b̂i, (6.27)

for all i = 1, . . . , n where, where λ̂i0 is defined by:

λ̂i0 = 1
τ

W0(ταi) (6.28)

where W0 is the the principal branch of the Lambert function.

Obviously, this is similar to a truncation and we cannot guaranty that the eliminated conditions
will be satisfied. In Chapter 7, we derive the real H2 optimality conditions (in a simpler case) for
single state-delay models and they are finitely many as well. In what follows, we build a point
fixed algorithm to find such a Ĥd solving Problem 6.10.

6.4 Development of a fixed-point algorithm and numerical
applications

6.4.1 Iterative algorithm dTF-IRKA
The algorithm proposed in this section permits to derive a system which satisfies the truncated
finite dimensional inspired interpolation conditions (Problem 6.10) for n shift points. The idea
behind is based on TF-IRKA [Beattie and Gugercin, 2012] which finds a model satisfying the
optimality conditions from Theorem 4.14 using a fixed point iteration. For each iteration the
new shift points will be the poles located in the principal branch of the Lambert function, only.
This algorithm is called delay TF-IRKA (or dTF-IRKA) and is summed up as follows:

Algorithm 4 dTF-IRKA
1: Input: Transfer function G(s) and reduced order n ∈ N∗.
2: Make an initial choice for the shift points {σ0

1 , . . . , σ
0
n} ∈ C initial interpolation points and

tangential directions {b̂1,0, . . . , b̂n,0} ∈ Cnu×1 and {ĉ1,0, . . . , ĉn,0} ∈ Cny×1 closed by conju-
gation.

3: while not convergence do
4: Build

(
Ê, Â, B̂, Ĉ, τ

)
using the tangential data σki , b̂Ti,k, ĉi,k (Derivative single delay

Loewner framework, Theorem 6.4).
5: k ← k + 1.
6: Compute eigenvalue decomposition of ÂX = ÊXΣ, with Σ = diag(λ̂1,k+1, . . . , λ̂n,k+1).
7: Set σk+1

i = −W0(τ λ̂i,k+1), new shift points.
8: Set

[
b̂T1,k+1, . . . , b̂Tn,k+1

]
= (ÊX)−1B̂ and

[
ĉ1,k+1, . . . , ĉn,k+1

]
= ĈX, new tangential

directions.
9: end while

10: Build Ĥd =
(
Ê, Â, B̂, Ĉ, τ

)
.

If the algorithm converges, the approximation model will satisfy the conditions given in
Problem 6.10. The dTF-IRKA then allows to obtain good (in the sense of the H2 norm)
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Chapter 6. Data-driven interpolation by single state-delay structure reduced order models

shift points and tangential directions for which the interpolation problem will lead to a good
approximation model.

As a numerical remark, one should note that the Lambert function evaluated in the principal
branch can sometimes associate a real number to a complex one. In this way, the shift points
might not be a closed set (by conjugation) and the obtained single delay interpolation model
will not have a real representation. To avoid this, one should enforce at each iteration the shift
points to be closed by conjugation.

6.4.2 Numerical applications
This section is dedicated to the application of both methods proposed in both Sections 6.2 and
6.4, namely, the delay model interpolation and algorithm dTF-IRKA. We will emphasize the
potential benefit and effectiveness of the proposed approach.

Example 1: rational interpolation

Let us consider a dynamical model governed by the following delay model G ∈ H2 whose transfer
function is given as

G(s) = 2s+ 1.3e−s
s2 + 1.3se−s + 0.3e−2s . (6.29)

First, model (6.29) (which is obviously of order 2) is approximated by a delay-free model of order
r = 2 using the TF-IRKA (Figure 6.2, green dashed dotted curve). It is also interpolated using
the delay Loewner framework with derivatives as stated in Theorem 6.4 whose delay is set to
τ = 1, at the shift points s1 = 0.1 and s2 = 1 (Figure 6.2, red dashed thick curve). Results are
reported on Figure 6.2, and compared to the original model G(s) (solid blue line).
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Approximation Ĥd(s) (delay Loewner, n = 2)

Figure 6.2: Bode diagram of original model (blue solid line), model of order n = 2 approximated
with TF-IRKA (green dashed dotted curve) and delay interpolation model using Theorem 6.4
of order n = 2 (red dashed line).
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Figure 6.3: Bode diagram of original model (blue solid line), model of order r = 4 approximated
with TF-IRKA (green dashed dotted curve) and delay interpolation model using Theorem 6.4
of order r = 2 (red dashed line).
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free model (TF-IRKA, n=2, green dashed dotted curve) and approximation error of the delay
interpolation model (Theorem 6.4, n = 2,red dashed line).
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Figure 6.2 shows that model defined in (6.29) is well interpolated by a delay model obtained
by Theorem 6.4, for any interpolation points. Indeed, since the transfer function (6.29) has a
realization of the form (6.1) of order 2 it can be reconstructed using the Theorem 6.4. Figure
6.3 shows quite similar results but where TF-IRKA has targeted an order n = 4.

This specific example clearly emphasizes the fact that, if the original model is a delay one, the
counterpart of obtaining a good delay-free approximation (e.g., using TF-IRKA) is to increase
the approximation order (here the original model of order n = 2 must be approximated with
an order n = 4 to well recover the frequency behavior). As illustrated in Figure 6.4, even with
an order n = 4, the delay-free model cannot perfectly match the original infinite dimensional
one, while the delay model (obtained by Theorem 6.4) provides perfect matching (subject to
numerical machine precision errors). On the other hand, the proposed delay Loewner framework
allows to find an exact realization.

Example 2: optimal approximation and method scalability

Let us now consider the SISO Los-Angeles Hospital model extracted from the COMPleib library
[Leibfritz and Lipinski, 2003] whose order is N = 48, denoted Gbuild = C(sI48 − A)−1B ∈ H2.
In order to fit the framework proposed in this paper, a delayed model is constructed by injecting
an internal delay τ = 0.01 to all states, i.e., Gdelay = C(sI48 − Ae−sτ )−1B. This last transfer
function is firstly interpolated on the basis of a realization of order n = 10 by applying the delay
Loewner framework from Theorem 6.4 using ten real shift points logarithmically spaced from 0.1
to 1. Then, an approximation is obtained using the dTF-IRKA algorithm proposed in Section
6.4. Figure 6.5 compares the Bode plots of these models.
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As clearly shown on Figure 6.5, the proposed dTF-IRKA allows once again to obtain shift
points and tangential directions for which the interpolated delay model is much more accurate
than the approximation using random shift points. This shows the scalability of the proposed
approach for larger models.

Conclusion
In this chapter, the problem of interpolating and approximating any dynamical model (provided
by its transfer function or its available evaluation at given points) by a single time-delay one is
analyzed. Firstly, we present an extended framework which generalizes the Loewner one [Mayo
and Antoulas, 2007] to the case where the interpolant is a single time-delay model. Then, as
a second contribution, the finite dimensional inspired interpolation conditions are defined and
lead to an infinite set of conditions. Finally, an algorithm, denoted dTF-IRKA, allowing to
obtain a model which satisfies a finite number of those interpolation conditions is developed and
successfully applied to some numerical examples.

This chapter is a first step towards data interpolation for more general structures. In addition,
the recent paper [Schulze and Unger, 2015] proposes an extension to the results from this chapter
to the case where the reduced order model has more general structure, e.g.,

Ĥd(s) = Ĉ(sÊ − Â0 − Â1e
−sτ )−1B̂.

The main idea is to suppose that the matrix Â1 is a linear combination of Ê and Â0, i.e.,
Â1 = αÊ + βÂ0. Hence Ĥd(s) can be written as

Ĥd(s) = Ĉ(sÊ − Â0 − (αÊ + βÂ0)e−sτ )−1B̂

Ĥd(s) = Ĉ

(
s− αe−sτ

1 + βe−sτ
Ê − Â0

)−1
B̂

1
1 + βe−sτ

= G(f2(s)) 1
1+βe−sτ

(6.30)

where f2(s) = s− αe−sτ

1 + βe−sτ
can be used as the new data transformation, which is an extension

of f(s) = sesτ . Furthermore, this paper provides some new results on the moment matching
problem for descriptor time-delay systems.

One weakness of the proposed method, is the fact that one should know in advance the
delay value τ . Future works will investigate this issue by taking into consideration the delay
as a decision variable in the H2 optimization problem. The extension to multiple delays case
will also be addressed in future works. Moreover, next chapter derives the actual H2 optimality
conditions of the model approximation problem when the reduced order model has a state-delay,
which turn to be interpolatory conditions of series.
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Chapter 7

H2 optimality conditions
derivation for state-delay reduced
models

In this chapter, we first attempt to generalize the H2 optimal interpolation conditions for more
general reduced order model structure. To this aim, we first expose the necessary optimality
conditions in the case where the reduced system is of dimension one and have a single state delay
structure. This can be viewed as a first step towards the H2 optimal model approximation where
the reduced system corresponds to an infinite dimensional one.

The chapter is organized as follows. Firstly, Section 7.1 introduces the H2 optimal approx-
imation problem when the reduced order model is a single state-delay model of dimension one.
In addition, it recalls the spectral decomposition of a time-delay system using the Lambert func-
tion and some convergence results. Secondly, Section 7.2.2 presents a spectra-based H2 inner
product characterization for time-delay systems and some other useful identities. Finally, the
H2 optimality conditions are derived and illustrated with an academic example in Section 7.3.
These results were partially presented in [Pontes Duff et al., 2016a].

Contents
7.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Spectral decomposition and H2 inner product formulation . . . . . 127

7.2.1 Spectral decomposition of a single state-delay model . . . . . . . . . . 127
7.2.2 Spectral H2 inner product of a single state-delay model . . . . . . . . 129

7.3 H2 optimality conditions for single state-delay models . . . . . . . 130
7.3.1 Derivation of the H2 optimality conditions . . . . . . . . . . . . . . . 130
7.3.2 Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1 Problem statement
Chapter 6 has proposed a way to find single state-delay reduced order models based on the single-
delay Loewner framework and the H2 inspired interpolation conditions. In this chapter, we are
interested in finding the exact optimality conditions of the H2 model approximation problem
when the reduced order model has similar structure as the one proposed in Chapter 6.
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7.1. Problem statement

In order to obtain more general H2 optimality conditions, one could consider a reduced order
model having the following transfer function

Ĥd(s) = Ĉ(s)K̂(s)−1B̂(s).

This expression is referred in [Beattie and Gugercin, 2009a] as generalized coprime factoriza-
tion. This is a more general than the finite dimensional state-space representation and a great
amount of models can be represented by such coprime structure, e.g., time-delay models and
second order models. In addition, some interpolation-based model reduction techniques were al-
ready developed and reader might refer to [Beattie and Gugercin, 2009a] for structure preserving
interpolation.

In this chapter, we consider the case where the reduced order system is described by a
single state-delay equation, i.e., the reduced order model Ĥd is governed by the delay differential
equation

Ĥd =
{
ẋ(t) = α̂x(t− τ) + φ̂u(t)
y(t) = x(t) .

Therefore, in this case B̂(s) = φ̂ ∈ R, Ĉ(s) = 1 ∈ R and K̂(s) = s − α̂e−τs, with α̂ ∈ R and
τ ∈ R+, and its transfer function is given by

Ĥd(s) = φ̂

s− α̂e−sτ
. (7.1)

In this chapter, we will consider that the delay τ is fixed. We call such model Ĥd a single reduced
time-delay model of dimension one. The word dimension refers here to the minimal number of
DDEs necessary to represent the model. Indeed, even if Ĥd is an infinite-dimensional model, it
only depends on two parameters, namely, φ̂ and α̂.

Our objective, in this chapter is, given an original model G ∈ H2, to study the problem of
the H2 optimal approximation by a single reduced time-delay model of dimension one. This
approximation problem can be stated as follows :

Problem 7.1 (Single state-delay H2 model approximation). Given a stable strictly
proper model G(s) ∈ H2 and a delay τ ∈ R+, find a model Ĥd = φ̂

s−α̂e−sτ ∈ H2 such that

‖G− Ĥd‖H2 = min
(φ̂,α̂)∈R2

∥∥∥∥G− φ̂

s− α̂e−sτ

∥∥∥∥
H2

(7.2)

Although the reduced order system is defined only by two real parameters, i.e., φ̂, α̂ ∈ R,
its infinite dimensional structure generates some very rich H2 optimality conditions as later
illustrated by Theorem 7.8. Moreover, the results presented here can be seen as a first step
towards the H2 optimality conditions for more general delay structured reduced models.

From now on, the model Ĥd will be decomposed as

Ĥd(s) = φ̂Pτ (s),

where φ̂ ∈ R is the gain part, and Pτ (s) = 1
s−α̂e−sτ is the transfer function containing the

spectral information of Ĥd.
As presented in Chapter 4, the pole/residue decomposition of a reduced order model plays an

important role in the characterization of theH2 inner product and, consequently, in the derivation
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of the delay-free H2 optimality conditions (see Section 4.3 from Chapter 4). In this chapter we
follow a very similar procedure. Firstly, the spectral decomposition of a single state-delay model
will be derived using the Lambert function. Then, based on this spectral decomposition, a new
H2 inner product characterization is derived for single state-delay models. In addition, some
other useful theoretical identities are derived. Finally, based on the spectral H2 inner product
characterization, the H2 optimality conditions from Problem 7.1 are asserted.

7.2 Spectral decomposition and H2 inner product formu-
lation

7.2.1 Spectral decomposition of a single state-delay model
We recall that Ĥd(s) = 1

s+e−s . Hence, in order to evaluate the poles of the model G, one should
solve the following equation:

s+ e−s = 0⇔ ses = −1, for s ∈ C.

One can prove that this equation has an infinite number of zeros and that these values define the
Lambert function at point −1. As shown in Chapter 6, a single state-delay model has infinite
poles which can be characterized by means of the Lambert function.

The Lambert function has many applications for the analysis and control of time-delay sys-
tems (see [Yi, 2009]). Thanks to the Lambert function, one is able to determine the poles and
the infinite partial fraction decomposition of Ĥd. This is stated in the following proposition.

Proposition 7.2. Let Ĥd = φ̂
s−α̂e−sτ . Then, the model Ĥd has infinite poles which can be

computed using the Lambert function as follows :

λk = 1
τ

Wk(τα̂), for k ∈ Z, (7.3)

and Ĥd is in H2 iff 0 < −α̂ < π
2τ . Moreover, if Ĥd = φ̂Pτ , the infinite partial fraction

decomposition of Pτ = 1
s−α̂e−sτ is given by

Pτ (s) =
∞∑

k=−∞
φk

1
s− λk

, (7.4)

where
φk = 1

1 + τλk
.

Proof. Since Hd(s)→ 0 as s→ 0 and |Hd(iω)|2 = O

(
1
ω2

)
, it is clear that Hd ∈ H2 if and only

if Hd has no poles in the closed right-half plane. From Example 6.2.4 of [Partington, 2004], this
happens if 0 < −α̂ < π

2τ .
In addition, the poles of Ĥd(s) are the zeros of K(s) = s− α̂e−sτ . Let us assume that λk is

the pole on the k-th complex branch. Then, applying the Lambert function definition, we have

λke
λkτ = α̂⇔ λk = 1

τ
Wk(τα̂).
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See [Cepeda-Gomez and Michiels, 2015] for more details. In order to obtain the partial fraction
decomposition of Pτ (s) = 1

s−α̂e−sτ , one should apply the residues formula. Since all the poles of
Pτ (s) are simple, one obtains

φk = lim
s→λk

Pτ (s)(s− λk)

= 1
lim
s→λk

s−α̂e−sτ
s−λk

= 1
(s− α̂e−sτ )′|s=λk

= 1
1 + τα̂e−λkτ

=︸︷︷︸
λk=α̂e−λkτ

1
1 + τλk

.

See [Pontes Duff et al., 2015c] for additional details.

One should note that Ĥd has an infinite number of poles and that is why it represents an
infinite dimensional model. We now present the infinite partial fraction decomposition of P2

τ ,
which will be useful for the H2 optimality conditions.

Proposition 7.3. Let Pτ = 1
s−α̂e−sτ ∈ H2. Then

P2
τ (s) =

∞∑
k=−∞

ψk
1

(s− λk)2 + ρk
1

s− λk
(7.5)

where
ψk = 1

(1 + τλk)2 and ρk = 2τ2λk
(1 + τλk)3 .

Proof. A similar procedure is followed here such as the one in Proposition 7.2. First, notice that
all the poles of P2

τ have a multiplicity two. That is why the square term is needed as well. To
obtain the coefficients one should use the residues formula taking into account that all the poles
have multiplicity two. Thus :

ψk = lims→λk P2
τ (s)(s− λk)2

= 1(
(s−α̂e−sτ )′|s=λk

)2

= 1
(1+τλk)2

 and


ρk = lims→λk

d
ds

(
P2
τ (s)(s− λk)2)

)
= 2τ2λk

(1+τλk)3

Both Propositions 7.2 and 7.3 will be useful to obtain the H2 optimality conditions for
Problem 7.1. Now, let us derive a spectral characterization of the H2 inner product for single
state-delay models.
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7.2.2 Spectral H2 inner product of a single state-delay model
Once we have the spectral decomposition of a single state-delay model, the next step consists in
characterizing the H2 inner product. The following proposition allows to express the H2 inner
product using the spectral decomposition of Ĥd.

Proposition 7.4. Spectral H2 inner product : Let F ∈ H2 be a real stable system and
Pτ = 1

s−α̂e−sτ ∈ H2 . Then :

〈F,Pτ 〉H2 =
∞∑

k=−∞
φkF(−λk), (7.6)

where φk = 1
1+τλk and λk = 1

τWk(τα̂) for k ∈ Z.

Proof. One can straightforward writes :

〈F,Pτ 〉H2 = 〈F,
∑

φk
1

s−λk 〉H2

=
∑

φk〈F, 1
s−λk 〉H2

=
∑

φkF(−λk)

where we have applied Lemma 4.2 from Chapter 4 in the last step.

In a similar way, we obtain an expression of the H2 inner product computation using the
partial fraction decomposition of P2

τ (s). This point is the result presented in Proposition
7.5.

Proposition 7.5. Spectral H2 inner product 2 : Let F ∈ H2 and Pτ = 1
s−α̂e−sτ . Then

〈F,P2
τ 〉H2 =

∞∑
k=−∞

ρkF(−λk)− ψkF′(−λk), (7.7)

where ψk = 1
(1 + τλk)2 , ρk = 2τ2λk

(1 + τλk)3 and λk = 1
τWk(τα̂) for k ∈ Z. .

Proof. Similar to Proposition 7.4. Thus

〈F,P2
τ 〉H2 = 〈F,

∑
ρk

1
s−λk 〉H2 + 〈F,

∑
ψk

1
(s−λk)2 〉H2 ,

=
∑

ρk〈F, 1
s−λk 〉H2 +

∑
ψk〈F, 1

(s−λk)2 〉H2 .

where, in the last step, we apply the Lemma 4.2 (H2 inner product for first order system) to
the first member and Lemma 4.8 (H2 inner product for higher order system) to the second
member.

In addition, the following result will be useful to demonstrate the main theorem in Section
7.3.
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Proposition 7.6. Let Pτ = 1
s−α̂e−sτ ∈ H2. Then :

Pτ
′(s) = −1− τα̂e−sτ

(s− α̂e−sτ )2

∂Pτ

∂α̂
(s) = e−sτ

(s− α̂e−sτ )2

which, by association, leads to :

∂Pτ

∂α̂
(s) = − 1

α̂τ

(
Pτ
′(s) + Pτ

2(s)
)
. (7.8)

We are now ready to state the main result of this chapter, namely theH2 optimality conditions
for single reduced time-delay models.

7.3 H2 optimality conditions for single state-delay models
7.3.1 Derivation of the H2 optimality conditions
In this section, we state and prove an extension of the interpolation conditions from Theorem
4.14 formulated in Chapter 4 in the case the reduced order model is a single time-delay model
of dimension one, i.e., Ĥd(s) = φ̂

s−α̂e−sτ . In order to do so, we have followed some equivalent
steps as those presented in Chapter 4 to prove delay-free H2 optimality conditions, namely, (i)
we derive the pole residue decomposition of the reduced order model; (ii) we characterize the
H2 inner product for the reduced order models. The next steps are : (a) to characterize the H2
mismatch error as a function of the reduced order model and (b) compute the gradient of this
error to derive the optimality conditions. Both of these steps will be presented in this section.

Firstly, let us write the H2 mismatch error E between the full model G and the reduced
model Ĥd as follows :

E(φ̂, α̂) = ‖G− Ĥd‖2H2
= 〈G− Ĥd,G− Ĥd〉H2 .

Here we follow the same reasoning developed in Subsection 4.3.4 from Chapter 4, i.e., the op-
timality result with respect to parameters presented in Proposition 4.16. Indeed, the results
present here are an application of Proposition 4.16.

Let Θ = {φ̂, α̂} be a variable parameter vector defining Ĥd. Let us take the derivative of E
with respect to Θ. Since only Ĥd depends on Θ, the derivative of the H2 mismatch error with
respect to Θ is given by :

∂E
∂Θ = −2〈G− Ĥd,

∂Ĥd

∂Θ 〉H2 . (7.9)

Notice that in order to formally obtain equation (7.9), one needs to assess that the inner-product
commutes with the partial derivative. This is made possible thanks to the Lebesgue dominated
convergence theorem (see [Pontes Duff et al., 2016a] for more details). Hence, by using the
propositions from Section 2, the following results can be stated.

Proposition 7.7. The partial derivative of the H2 error E with respect to the parameters
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are given analytically by :
∂E
∂φ̂

= −2〈G− Ĥd,Pτ 〉H2

∂E
∂α̂

= 2φ̂
α̂τ
〈G− Ĥd,Pτ

′ + Pτ
2〉H2

Proof. One has to apply the formula (7.9) for each parameter and use ∂Ĥd

∂φ̂
= Pτ and the formula

(7.8). For the second equation, we use the fact that ∂
∂φ̂

commutes with the H2 inner-product
(see [Pontes Duff et al., 2016a] for more details).

Finally, by setting those partial derivatives to zero, one obtains the H2 optimality conditions
for Problem 7.1. Moreover, by applying the inner product computation result (7.6), one obtains
the generalization of the interpolation conditions from Theorem 4.14.

Theorem 7.8 (H2 optimality conditions for single state delay reduced order mod-
els). Let Ĥd = φ̂

s−α̂e−sτ ∈ H2 and G ∈ H2. Let us suppose also that G′ ∈ H2. If Ĥd is the
best H2 approximation of G, then :

∞∑
k=−∞

G(−λk)φk =
∞∑

k=−∞
Ĥd(−λk)φk, (7.10)

∞∑
k=−∞

G′(−λk)(φk−ψk)+
∞∑

k=−∞
G(−λk)ρk =

∞∑
k=−∞

Ĥ′d(−λk)(φk−ψk)+
∞∑

k=−∞
Ĥd(−λk)ρk,

(7.11)
where λk = 1

τWk(τα̂), for k ∈ Z, are the poles of Ĥd, φk = 1
1 + τλk

, ψk = 1
(1 + τλk)2 and

ρk = 2τ2λk
(1 + τλk)3 .

Proof. Equation (7.10) is obtained by setting ∂E
∂φ̂

= 0 and using theH2 inner product computation
formula (7.6). Equation (7.11) is obtained by setting ∂E

∂α̂ = 0 which leads to

〈G,Pτ
′ + Pτ

2〉H2 = 〈Ĥd,Pτ
′ + Pτ

2〉H2 .

Hence, using the Hermitian property from the H2 inner product (see Chapter 4, Proposition
4.7),

〈G,Pτ
′〉H2 = 〈G′,Pτ 〉H2 ,

and the result is obtained using the H2 inner product computation formula (7.6) and (7.7).

Indeed, Theorem 7.8 generalizes Theorem 4.14 for single state-delay reduced-order models.
Due to the infinite dimensional nature of time-delay systems, the H2 optimality conditions here
are no longer interpolation conditions and become interpolation of series depending on both G
and Ĥd and the spectral decomposition of Ĥd and P2

τ . If we choose τ = 0, i.e., Ĥd(s) = 1
s−α ,

we get back the result from Theorem 4.14, because the sum are over the poles and in this case
Ĥd has only one pole. The reader should remark that the conditions presented in Theorem 7.8
are necessary optimality conditions.
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7.3.2 Numerical application

In this section we find one local optimum to Problem 7.1 when G is a very simple model.
Then, we verify numerically that it satisfies the conditions (7.10) and (7.11). Let us consider
Problem 7.1 applied to the following very simple model :

G(s) = 10
s2 + 11s+ 10 .

G and G′ are clearly elements of H2. Let us fix τ = 1. Then, Problem 7.1 consists in finding
φ̂ ∈ R and α̂ ∈ (−π/2, 0) which minimizes :

E(φ̂, α̂) = ‖G− Ĥd‖2H2
= ‖E(φ̂, α̂)‖2H2

where Ĥd(s) = φ̂

s− α̂e−s
.

To find a local minimum the MATLAB function fminunc has been used. The criterion was
computed solving delay Lyapunov equations (see [Jarlebring et al., 2011]). The delay state space
realization of E(φ̂, α̂) used here was

E(φ̂, α̂) :=
{

ẋ(t) = Ax(t) + Aτx(t− τ) + Bu(t)
y(t) = Cx(t) ,

where

A =

−1 0 0
0 −10 0
0 0 0

 , Aτ =

0 0 0
0 0 0
0 0 α̂

 ,
B =

 10/9
−10/9
−φ̂

 and C =
[
1 1 1

]
. The optimal parameters obtained are :

α̂∗ ≈ −0.5371 φ̂∗ ≈ 0.4986. (7.12)

In Figure 7.1, the error H2 is represented as function of φ̂ and α̂. It shows that (α̂∗, φ̂∗) is
effectively a local minimizer.

Now, let us verify that G and Ĥd satisfy the conditions stated in Theorem 7.8. Since this
result involves infinite sums, we then rely on a truncation scheme to evaluate them. Let us use
the set :

DN = {first N dominant poles of Pτ (s)}
= {λk = Wk(−α), k = −N,−N + 1, . . . , N − 2, N − 1} ,

to compute an approximation of the infinite sum. Notice that we have chosen the poles λk to go
from −N to N− 1 so that DN is closed under complex conjugation, i.e., if λ ∈ DN, λ ∈ DN.
In this way, the model constructed by modal truncation is real. Then one should have :

S1,G,N =
N−1∑
k=−N

G(−λk)φk ≈
N−1∑
k=−N

Ĥd(−λk)φk = S1,Ĥd,N
,

and

S2,G,N =
N−1∑
k=−N

G′(−λk)(φk − ψk) +
N−1∑
k=−N

G(−λk)ρk,
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Figure 7.1: Error H2 as function of φ̂ and α̂ (colored surfaced) & optimal parameters (red dot)

S2,Ĥd,N
=

N−1∑
k=−N

Ĥ′d(−λk)(φk − ψk) +
N−1∑
k=−N

Ĥd(−λk)ρk,

and
S2,G,N ≈ S2,Ĥd,N

.

The following table shows the truncation results for different number of poles :

N S1,G,N S1,Ĥd,N
S2,G,N S2,Ĥd,N

2 0.80890 0.80326 0.15280 0.15361
6 0.81620 0.81234 0.15302 0.15310
10 0.81656 0.81410 0.15306 0.15308
200 0.81667 0.81655 0.15307 0.15307

Figure 7.2: Truncation evaluation of the conditions from Theorem 7.8 for N = 2, 6, 10, 200 poles.

This approximation shows that the truncation conditions are close to the optimality condi-
tions from Theorem 7.8.

Conclusion
In this chapter, the H2 optimality conditions for single reduced time-delay models of dimension
one were derived as an extension of the interpolation results from the delay-free case (see Theorem
4.14). In order to prove the main theorem, some results about the spectral decomposition of
Ĥd and the H2 inner product computation were exposed. In addition, an academic example
were presented in order to illustrate these conditions. These results have a great potential to be
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extended to more complex structured reduced models and an algorithm needs to be developed
in order to find reduced order models satisfying these new optimality conditions.
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Part III

Stability charts of time-delay
systems and model approximation
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Chapter 8

Model approximation framework
for evaluating time-delay systems’
stability

So far, our central object of study was the H2 approximation problem when the reduced-order
model has a time-delay structure, and only stable dynamical systems were considered. Part II
was dedicated to study this problem, especially for two different structures, namely : (i) input
and output delays and (ii) single state delay. In addition, until now, all models were considered
to be in H2, i.e., stable with bounded impulse response energy.

In this part of the manuscript, corresponding to Chapters 8 and 9, we follow a completely
different philosophy from the content presented until now. We consider models which represent
LTI systems, not necessarily stable, having multiple state delays. This means that their transfer
functions are not necessarily elements of H2 and the results presented so far are no longer directly
applicable. Our main focus here is to analyze the stability of Time-Delay Systems (TDS) using
interpolation based model approximation methods.

In this chapter, in particular, we consider TDS as being elements of the Hilbert space
L2(iR) (defined in Chapter 2). Our main tool here is the orthogonal decomposition L2(iR) =
H2(C−)

⊕
H2(C+). Based on this, in Section 8.2, we give a Hardy space characterization for

systems’ stability and we derive some theoretical results linking stability and L2(iR) model ap-
proximation. The main contribution, stated on Theorem 8.6 in Section 8.2, shows that, given a
TDS represented by Gd, if one find an unstable approximation Ĥ of a Gd for which the mismatch
error L2(iR) norm ‖Ĥ−Gd‖L2(iR) is small enough, then Gd is also unstable. Finally, in Section
8.3, the algorithm TF-IRKA (see [Beattie and Gugercin, 2012]), presented in Chapter 4, is
applied to produce such approximations. The framework presented here is exploited in Chapter
9 to produce stability charts estimation of a TDS.
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8.2.3 Model approximation based method for evaluating systems’ instability 145
8.3 Model approximation for unstable systems by interpolation . . . . 147

8.3.1 Optimal L2 approximation problem . . . . . . . . . . . . . . . . . . . 147
8.3.2 Interpolatory based heuristic for L2(iR) model approximation . . . . . 148

8.1 Introduction
8.1.1 Context
The so-called LTI time-delay dynamical systems is a broad class of systems that can model a
wide range of phenomena (see [Gu et al., 2003] for some concrete examples). Delays might cause
instability and their effect should be taken into account. Because of its infinite dimensional
behavior, standard techniques based on finite dimensional state-space representation are not
directly applicable and dedicated developments are necessary.

The stability analysis of any time-delay system, for example, cannot be simply established
solving a matrix eigenvalue problem, as in the finite dimensional case. Indeed, TDS can be seen
as systems governed by an abstract differential equation1 in a Banach space and the eigenvalue
problem becomes itself a spectral problem of a linear infinite dimensional operator (see [Curtain
and Zwart, 2012; Partington, 2004]).

Henceforth, we considered discrete2 retarded LTI time-delay system (shortly, LTI TDS), only.
Mathematically, the family of SISO dynamical systems Gd governed by the following retarded
discrete LTI TDS

Gd :=

 Eẋ(t) = A0x(t) +
nd∑
k=1

Akx(t− τk) + bu(t)

y(t) = cx(t)
, (8.1)

is considered, where b, cT ∈ RN , E, A0, Ak ∈ RN×N , and τk ∈ R+ for k = 1, . . . , nd (N
denotes the dimension of x(t)). The initial condition of (8.1) is x(θ) = φ(θ), θ ∈ [−τ, 0] where
τ = max{τ1, . . . , τnd}. Notice that the state of (8.1) at time t is completely determined by the
function xt(θ), with θ ∈ [−τ, 0]. Since it does not play a role in stability analysis, the feedthrough
term D is considered to be zero. We recall that the transfer function associated with Gd, between
the input u(t) and the output y(t), is given by :

Gd(s,∆) = cK(s,∆)−1b, (8.2)

where
K(s,∆) = sE −A0 −

nd∑
k=1

Ake
−sτk , (8.3)

and ∆ = diag(τ1, . . . , τnd) ∈ Rnd×nd . We define the characteristic quasi-polynomial p(s,∆) of
(8.2) as

p(s,∆) = det
(
K(s,∆)

)
= det(sE −A0 −

nd∑
k=1

Ake
−sτk).

(8.4)

1the system is governed by ẋt = Axt + Bu(t), where xt is a function and A, B are bounded or unbounded
operators over these functions.

2discrete here means a finite number of delays in contrast to distributed delay systems.
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Notice that the highest order in the s variable of the characteristic quasi-polynomial p(s,∆)
associated to (8.3) is n. In addition, p(s,∆) does not have any term of the form sne−sγ , otherwise
Gd would be a neutral system. For LTI TDS, finding the roots of p(s,∆) is intrinsically related
to determining the stability of model Gd. However, because of the exponential terms, the
characteristic quasi-polynomial p(s,∆) has an infinite number of roots, and the problem of
assessing the stability of Gd might be hard in practice.

Among the various related tools to investigate stability of a TDS, the following list is high-
lighted :

v Zeros of a quasi-polynomial: as stated before, the zeros of the characteristic quasi-
polynomial p(s,∆) plays an important role in the stability analysis of any TDS. Indeed,
for retarded TDS, if there are no roots in the closed right half-plane, then the system is
stable. Historically, the asymptotic location of these roots was firtly studied in [Pontryagin,
1955]. In the context of time-delay systems, the first systematic and complete reference
was [Bellman and Cooke, 1963]. See also [Hale and Lunel, 2013; Gu et al., 2003] for further
details.

v Razumikhin theory and Lyapunov-Krasovskii theory : this category congregates all
the time-delay techniques which generalizes the Lyapunov based methods. Most strategies
are based on the generalized Lyapunov methods, involving some functionals instead of a
classical positive definite functions. As an example, if the Lyapunov-Krasovskii functional
candidate

V (xt) = xt(0)TPxt(0) +
∫ 0

−τ
xt(θ)Sxt(θ)dθ,

where P, S ∈ Rn×n, and P > 0, S ≥ 0, satisfies some conditions, the TDS

ẋ(t) = A0x(t) +A1x(t− τ),

is asymptotically stable. The historical references are [Krasovskii and Brenner, 1963] and
[Razumikhin, 1956], and the reader might refer to [Datko, 1978; Niculescu, 2001a] for more
details.

v Spectral discretization methods: this category relies on the approximation of the in-
finite dimensional eigenvalue problem into a finite dimensional one. Several numerical
approaches for computing characteristic roots exist and the most commonly known are
based on (i) the discretization of the solution operator associated to the DDEs (for ex-
ample [Breda, 2006] and [Engelborghs and Roose, 2002]), or, (ii) the discretization of the
infinitesimal generator of the solution operators (see for example [Breda et al., 2005] and
[Wu and Michiels, 2012]).

The reader might refer to the monographs [Gu et al., 2003; Michiels and Niculescu, 2014] for
a general overview. This chapter and Chapter 9 aim at proposing a methodology based on
interpolatory model approximation to address the problem of estimating the stability of a LTI
TDS. In particular, this chapter provides a model approximation framework enabling to evaluate
if a given time-delay system is unstable. The philosophy of this chapter is presented as follows.

Philosophy of the proposed method

The purposes of this chapter is to address the LTI TDS stability problem through a novel angle:
the model approximation in the interpolatory framework one. More precisely, given a model of
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the form (8.1) or (8.2), the objective is to find a finite dimensional n-th order model Ĥ of the
form:

Ĥ :=
{
Ê ˙̂x(t) = Âx̂(t) + b̂u(t)

ŷ(t) = ĉx̂(t) (8.5)

with transfer function Ĥ(s) = ĉ(sÊ − Â)−1b̂ ∈ L2(iR), where b̂, ĉ ∈ Rn and Ê, Â ∈ Rn×n, such
that (8.5) well reproduces the (in)stability property of (8.1) or (8.2)3. Here, n denotes the order
of the finite dimensional approximation model. If such an approximation is achieved, clearly, the
exact eigenvalues computation of the simple model Ĥ provides the stability property. In addition,
we will provide some a posteriori results which enable to certificate that if the approximation
(8.5) is unstable and close enough to (8.1), then (8.1) will be also unstable.

The chapter is organized as follows :

(i) In this section, we recall some interesting nice spectral properties of LTI TDS. Although
these results are well know in the literature related to LTI TDS, we recall them for unfa-
miliar reader.

(ii) In Section 8.2, we consider LTI TDS as being elements of L2(iR). Firstly, we characterize
stability using subsets of L2(iR). The main result of this section is the Theorem 8.6. It
states that if Gd is an LTI TDS, Ĥ is an unstable approximation of Gd and the L2(iR)
norm of the approximation error E = Gd − Ĥ is small enough, then Gd is also unstable.
Hence, if one is able to find Ĥ, an unstable good enough L2(iR) approximation of Gd, then
Gd will be also unstable.

(iii) Then, Section 8.3 is dedicated to the construction of finite dimensional reduced order
models that can be used to detect instability exploiting the theoretical results presented in
Section 8.2. Hence, we recall some L2(iR) model approximation results. Since they are not
applicable for solving the stability problem, we propose some relaxed conditions inspired
of the H2 model approximation, that are achieved using the algorithm TF-IRKA.

8.1.2 Time-delay system properties
As exposed before, the spectrum of an LTI TDS is determined by the zeros of its characteristic
quasi-polynomial p(s,∆). Even if p(s,∆) is a transcendental function and has infinite number of
zeros, it has some nice qualitative properties. Some of these properties, which are useful in this
chapter, are recalled without demonstration and the reader can refer to [Bellman and Cooke,
1963] and [Michiels and Niculescu, 2014] for further information.

Property 8.1 (Properties of LTI TDS). A retarded LTI discrete time-delay system (LTI
TDS) have the following properties:

(i) Asymptotic stability of LTI TDS : for an LTI TDS as in (8.1), a necessary and
sufficient condition for the system in (8.1) to be asymptotically stable is to have no
pole in the closed right half-plane.

(ii) Finite number of unstable poles: a LTI TDS has at most a finite number of
characteristic roots in the right-half plane.

3Note that the paradigm presented here is different to the traditional model approximation one. Here the
(in)stability is the main interest instead of the input/output behavior. This is also a justification for the limitation
to the SISO systems case.
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(iii) Continuity of the spectral abcissa: the spectral abcissa function :

α : Rnd×nd × Rn×n×nd → R
α (∆, A0, A1, . . . , And) := sup{Re(λ), p(λ,∆) = 0}, (8.6)

is continuous.

(iv) Loss/acquisition of stability: if the matrices A0, A1, . . . , And and the delays ∆ are
varied, then the loss or acquisition of stability of an LTI TDS as in (8.1) is associated
with characteristic roots on the imaginary axis.

Therefore, for an LTI TDS to be stable, it is enough to show that its characteristic quasi-
polynomial p(s,∆) has no root in the right half plane. Reader should note that this condition
is no longer sufficient for other classes of TDS, such as neutral systems (see [Partington and
Bonnet, 2004] for more details). Moreover, even if an LTI TDS has an infinite number of
poles, only finitely many will be unstable and its poles move continuously with respect to small
perturbations.

It is worth noting that the spectral abcissa is also continuous when ∆ = 0, i.e, the delays
are set to 0. In this case, the system Gd is a finite dimensional one and its poles can be
easily computed. If the delays ∆ pass from ∆ = 0 to ‖∆‖ ≤ ε, for ε small, the number of
poles of Gd goes from finite to infinite. However, as ε tends to 0, those infinite new poles will
satisfy Re(s)→ −∞. This observation is relevant for the stability charts evaluation. Indeed, the
stability of the system when ∆ = 0 (delay free) is easily computed by solving a finite dimensional
eigenvalue problem. Furthermore, the system remains stable with respect to the parameters
(∆, A0, A1, . . . , And) until a pole crosses the imaginary axis (see item (iv) from Property 8.1).

In what follows, we will consider an LTI TDS Gd as being an element of the space L2(iR).
This is a Hilbert space equipped with the L2(iR) inner product (introduced in Chapter 2, Section
2.1), and can be decomposed as

L2(iR) = H2(C−)
⊕
H2(C+).

Moreover,
H2(C−)⊥ = H2(C+).

Hence, given Gd ∈ L2(iR), then there exist Gs
d ∈ H2(C+) and Ga

d ∈ H2(C−)4 , such that

Gd = Gs
d + Ga

d, 〈Gs
d,Ga

d〉L2(iR) = 0.

Therefore, the pythagorean property is satisfied

‖Gd‖2L2(iR) = ‖Gs
d‖2H2(C+) + ‖Ga

d‖2H2(C−). (8.7)

This decomposition plays a very important role in this chapter and it will be used to characterize
the stability of any LTI TDS.

8.2 L2(iR) topology for unstable systems
In this section, we consider an LTI TDS to be an element of L2(iR). Our main goal is to show
that if Gd is unstable and Ĥ is a "good enough" approximation of Gd, then it is also unstable.
Let us start by showing why an LTI TDS can be viewed as an element of L2(iR) and how we
characterize stability through this space.

4the subindex s and a comes from stable and antistable.
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8.2.1 L2(iR) characterization of stability
The following result shows that the transfer function of Gd is an element of L2(iR).

Proposition 8.2 (LTI TDS as element of L2(iR)). Let Gd be a LTI TDS having no
pole over the imaginary axis. Then it satisfies∫ ∞

−∞
|Gd(iω)|2dω <∞.

Hence, Gd ∈ L2(iR).

Proof. The transfer function of any LTI TDS given by (8.2) is strictly proper and has the following
asymptotic behavior5 :

|Gd(iω)|2 =
(∣∣∣∣n(iω)
d(iω)

∣∣∣∣)2
= O

(
1
ω2

)
Hence, if |Gd(iω)| is continuous over R, which means that it has no pole over the imaginary axis,
then ∫ ∞

−∞
|Gd(iω)|2dω <∞,

which implies that Gd ∈ L2(iR).

The following result shows a L2(iR) characterization of the stability:

Proposition 8.3 (L2(iR) stability characterization). Let Gd be an LTI TDS having no
pole on the imaginary axis. Then, there exist

Gs
d ∈ H2(C+) and Ga

d ∈ H2(C−),

where Ga
d has a finite number of poles, such that

Gd = Gs
d + Ga

d, and 〈Gs
d,Ga

d〉L2(iR) = 0.

Moreover, the system Gd is stable if and only if

projH2(C−)Gd = Ga
d = 0.

In other words,a

1. Gd is stable if and only if Gd ∈ H2(C+).

2. Gd is unstable if and only if Gd ∈ (H2(C+))c = L2(iR)\H2(C+).
aGd ∈ (H2(C+))c denotes the complement set of H2(C+) with respect to L2(iR).

Proof. The decomposition result follows from L2(iR) = H2(C−)
⊕
H2(C+) (see Proposition 2.3

in Chapter 2). In addition, Ga
d has a finite number of poles because of item (ii) of Property 8.1.

Finally, a causal LTI TDS is stable if all of its poles lie in the left-half plane, which is equivalent
to Ga

d = 0.
5We say that f = O(g) if there exists a positive real numberM and a real number x0 such that |f(x)| ≤M |g(x)|,

if x ≥ x0.
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Hence, Proposition 8.2 provides a Hardy space characterization for LTI TDS stability. Since
Gd ∈ L2(iR), it is stable if and only if its projection onto H2(C−) is null. Moreover, the set
H2(C+) contains the stable LTI TDS and the set L2(iR)\H2(C+) contains the unstable LTI
TDS. This characterization of the notion of stability motivates the use of the L2(iR) tools, and
this is the subject of the following subsection.

8.2.2 Topological and approximation results in L2(iR)
In what follows, we provide some results connecting L2(iR)-topology, L2(iR) approximation and
LTI TDS stability. The first one concerns the topology of the set of stable systems :

Proposition 8.4 (Unstable L2(iR) approximation of stable model). For every stable
system Gd ∈ H2(C+), there exists a sequence of unstable systems Ĥk ∈ L2(iR)\H2(C+),
k ∈ N∗, such that

‖Gd − Ĥk‖L2(iR) → 0, when k →∞ (8.8)

In other words, the set of stable systems is not an open set of L2(iR).

Proof. Given Gd ∈ H2(C+), let h ∈ H2(C−) be an element such that ‖h‖L2(iR) = 1. The system
Hk = Gd + 1

kh ∈ L2(iR)\H2(C+) and ‖Gd − Ĥk‖L2(iR) = 1
k‖h‖L2(iR) → 0 when k →∞.

Proposition 8.4 tells that it is possible to approximate6 a stable LTI TDS by a sequence of
unstable systems. In other words, given Gd a stable LTI TDS, an approximation Ĥ might be
unstable, even if the L2(iR) approximation error ‖Gd − Ĥ‖L2(iR) is small enough. This is not
the case for unstable systems as stated in the following proposition.

Proposition 8.5 (L2(iR) topology of unstable systems). The set of unstable systems
L2(iR)\H2(C+) is an open set of L2(iR). In order words, given an unstable system H ∈
L2(iR)\H2(C+), there exists an ε > 0 such that the ball Bε(H) = {G ∈ L2(iR)|‖G −
H‖L2(iR) < ε} ⊂ L2(iR)\H2(C+).

Proof. Since H2(C+) is a L2(iR) closed set, its complement (H2(C+))c = L2(iR)\H2(C+) is
open.

Proposition 8.5 states that unstable systems form an open set in the sense of the L2(iR)
norm. This means that, given Gd, if there exists a unstable system Ĥ closed enough to Gd, then
Gd will be unstable as well. Moreover, the following theorem provides an instability guaranty
certificate.

Theorem 8.6 (Instability certificate for an LTI TDS). Let Gd ∈ L2(iR) and let us
consider an approximation Ĥ ∈ L2(iR). Let Ĥ = Ĥs + Ĥa be the decomposition of Ĥ in
L2(iR) = H2(C−)

⊕
H2(C+) , where Ĥs ∈ H2(C+) and Ĥa ∈ H2(C−). Then, if:

‖Gd − Ĥ‖L2(iR) < ‖Ĥa‖H2(C−) (8.9)

then Gd is unstable.

6in the sense of the L2(iR) norm
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Proof. We prove the contrapositive. Let us suppose that Gd is stable, i.e., Gd ∈ H2(C+). Then,

‖Gd − Ĥ‖2L2(iR) = ‖Gd − Ĥs − Ĥa‖2L2(iR)
=︸︷︷︸

pythagorean property

‖Gd − Ĥs‖2H2(C+) + ‖Ĥa‖2H2(C−)

≥ ‖Ĥa‖2H2(C−).

Hence, if Gd is stable, then ‖Gd − Ĥ‖2L2(iR) ≥ ‖Ĥa‖2H2(C−). Therefore , a sufficient condition to
Gd to be unstable is ‖Gd − Ĥ‖2L2(iR) < ‖Ĥa‖2H2(C−).

Theorem 8.6 provides a sufficient condition to check if Gd is unstable. It is based on the
following geometric idea expressed by Figure 8.1. We recall that proposition 8.5 states that
unstable systems form an open set. In other words, if Ĥ is unstable, there exists a radius R > 0
such that the open ball

BR(Ĥ) = {G ∈ L2(iR)|‖G− Ĥ‖L2(iR) < R},

contains only unstable systems. Theorem 8.6 enables to compute this radius R of instability.
Therefore, if Ĥ is unstable, then every system G ∈ L2(iR) satisfying

‖E‖L2(iR) = ‖G− Ĥ‖L2(iR) < ‖Ĥa‖H2(C−) = R

will be also unstable. This result is geometrically sketched in Figure 8.1.

H2(C+)
Stable systems

H2(C−)

Ĥ̂H

Ĥs

Ĥa

Gd

‖E‖

R = ‖Ĥa‖

Figure 8.1: Intuition behind Theorem 8.6.

Indeed, the smallest perturbation leading Ĥ to be stable is −Ĥa. Reader should notice that,
since the set of stable systems is not open, we are not able to derive an equivalent theorem for
stable systems.

Let us summarize what was presented so far in this section. Assume that, for a given Gd

LTI TDS, one has obtained an approximation Ĥ in the sense of the L2(iR) norm. Then, two
scenarios can occur :
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(i) If Ĥ is stable, a priori nothing can be said about the stability of Gd (see Proposition 8.4).

(ii) If Ĥ is unstable, and if it is a good enough L2(iR) approximation of Gd, then Gd is also
unstable (see Proposition 8.5).

Moreover, Theorem 8.6 provides a sufficient condition for Gd to be unstable. Hence, if one
obtains an unstable approximation Ĥ = Ĥs + Ĥa, where Ĥs ∈ H2(C+) and Ĥa ∈ H2(C−) and

‖Gd − Ĥ‖2L2(iR) = 1
2π

∫ ∞
−∞
|Gd(iω)− Ĥ(iω)|2dω < ‖Ĥa‖2H2(C−), (8.10)

then Gd is also unstable. Furthermore, if Ĥ is a finite dimensional system, so does Ĥa ∈ H2(C−).
Since Ĥa(−s) is an element of H2(C+) = H2, the norm ‖Ĥa‖L2(iR) = ‖Ĥa(−s)‖H2 can be either
computed using grammians or pole/residue decomposition (see Chapters 2 and 4).

8.2.3 Model approximation based method for evaluating systems’ in-
stability

Theorem 8.6 leads to a procedure to detect instability of a given LTI TDS. It is described as
follows :

Method 8.7 (Model approximation based method to detect instability). Given
any LTI TDS Gd, then the following steps allow to determine if it is unstable:

1. Guess a finite dimension unstable approximation Ĥ = Ĥs + Ĥa, where Ĥs ∈ H2(C+)
and Ĥa ∈ H2(C−).

2. Verify, by numerical integration, if the integral inequality (8.9) is satisfied.

Method 8.7 provides a way to asses that a given LTI TDS is unstable. Likewise the Lyapunov
methods, where one needs to guess a Lyapunov function to prove stability, here, one needs to
guess an unstable approximation Ĥ and check if it is closed enough to Gd. In addition, Step
2 gives a guaranty certificate of instability by means of the estimation of the L2(iR) norm of
the approximation error E(s) = Gd(s)− Ĥ(s). This can be done by computing numerically the
following integral :

‖Gd(s)− Ĥ(s)‖2L2(iR) = ‖E‖2L2(iR) =
∫ ∞
−∞
|E(iω)|2dω.

Reader should note the numerical integration of ‖E‖L2(iR) might be a difficult task if |E(iω)| has
an intense oscillatory behavior. In this case, the integration quadrature should be computed with
a large number of sample points and this can be very time-demanding. In addition, a sufficient
condition for inequality (8.9) be verified is to show that

|E(iω)| ≤ |Ĥa(iω)|, for all ω ∈ R,

i.e., the Bode magnitude diagram of E is bounded by the one from Ĥa. This method is exem-
plified by the following study-case:
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Example 8.8 (Stability of a single state-delay TDS). Let us consider Gd an LTI TDS
whose transfer function is given by

Gd(s) = 1
s+ 2e−s .

Let Ĥ be a finite dimension approximationa of Gd whose transfer is given by:

Ĥ(s) = 0.5616s+ 1.244
s2 − 0.3456s+ 2.831 .

The poles of Ĥ are

λ1 = 0.1728 + 1.6737i λ2 = 0.1728− 1.6737i,

and Ĥ is obviously unstable. Notice that Ĥ ∈ H2(C−) and hence, Ĥ = Ĥs + Ĥa, where

Ĥs = 0 ∈ H2(C−) and Ĥa = Ĥ ∈ H2(C−)

Figure 8.2 provides the magnitude bode plot of Gd(s), Ĥ(s) and the mismatch approximation
error E(s) = Gd(s)− Ĥ(s).
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Figure 8.2: Bode magnitude diagram of Gd (blue solid line), unstable approximation Ĥ
(green solid line) and mismatch error E (red dashed line).

Ĥ(s) seems to be a quite good approximation of Gd(s) in the sense of the L2(iR) norm.
Let us compute the following norm by gramians

‖Ĥa‖H2(C−) = ‖Ĥ(−s)‖H2(C+) ≈ 1.1169.
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Then, L2(iR) norm of the mismatch error was computed by numerical integration :

‖Gd − Ĥ‖L2(iR) = ‖E‖L2(iR) = 0.1581.

Therefore,
‖Gd − Ĥ‖L2(iR) < ‖Ĥa‖L2(iR)

and, by Theorem 8.6, the system Gd is also unstable. To sum up,

(i) A LTI TDS Gd was given.

(ii) An unstable finite dimensional approximation Ĥ was guessed.

(iii) Ĥ is a good approximation of Gd in the sense of the L2(iR) norm.

(iv) In addition, the inequality (8.9) was numerically verified, proving that Gd is also
unstable.

aThis approximation is a modal truncation of order 2 obtained via the Lambert function.

In this section, given Gd, an LTI TDS, we derived an approach to asses its instability based
on a good enough L2(iR) approximation. Up to now, the bottleneck of Method 8.7 is to guess a
good approximation of Gd. In what follows, we will present a heuristic procedure to built such
that approximation.

8.3 Model approximation for unstable systems by interpo-
lation

8.3.1 Optimal L2 approximation problem
As it was stated before, given any LTI TDS Gd, if one is able to construct Ĥ, a finite dimensional
unstable system which is a good enough L2(iR) approximation of Gd, then Gd is also unstable.
Hence, the aim of this section is to provide some heuristics to find such approximation. As in
Chapter 4, where the H2 optimal model approximation was studied, one might consider here the
L2(iR) model approximation problem. This problem is formally stated as:

Problem 8.9 (Optimal L2 approximation problem). Given any Gd ∈ L2(iR) an LTI
TDS and an order n, find an n-th finite dimensional LTI system Ĥ∗ ∈ L2(iR) such that

Ĥ∗ := arg min
Ĥ∈L2(iR),dim(Ĥ)≤n

‖Gd − Ĥ‖L2(iR). (8.11)

Problem 8.9 is the natural extension of Problem 4.1 (see Chapter 4) to the case where unstable
systems are considered. Hence, following the steps from Chapter 4, one should derive the L2(iR)
optimality conditions of the problem 8.9. This was the object of [Magruder et al., 2010] and the
conditions are presented as follows:

Proposition 8.10 (L2(iR) necessary optimality conditions). Given Gd ∈ L2(iR) and
its decomposition Gd = Gs

d + Ga
d where Gs

d ∈ H(C+) and Ga
d ∈ H(C−). Let Ĥ be the local

minimizer of order n of Problem 8.9, whose poles are all simple {λ̂1, . . . , λ̂k} ∈ C− and
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{λ̂k+1, . . . , λ̂n} ∈ C+, and its decomposition is given by Ĥ = Ĥs + Ĥa where Ĥs ∈ H(C+)
and Ĥa ∈ H(C−). Then, the following Hermitien interpolation conditions are satisfied:

Gs
d(−λ̂i) = Ĥs(−λ̂i),

dGs
d

ds

∣∣∣∣
s=−λ̂i

= dĤs

ds

∣∣∣∣∣
s=−λ̂i

for i = 1, . . . , k

and

Ga
d(−λ̂i) = Ĥa(−λ̂i),

dGa
d

ds

∣∣∣∣
s=−λ̂i

= dĤa

ds

∣∣∣∣∣
s=−λ̂i

for i = k + 1, . . . , n

. (8.12)

Proof. See [Magruder et al., 2010].

Proposition 8.10 states the L2(iR) necessary optimality conditions related to Problem 8.9.
As in the H2 case (see Chapter 4), they are Hermite interpolation conditions. However, in the
L2(iR) case, Gs

d (stable part of Gd) interpolates Ĥs (stable part of Ĥ) and Ga
d (unstable part

of Gd) interpolates Ĥa (unstable part of Ĥ). Hence, in order to use the L2(iR) optimality
conditions for building a reduced order model, one needs to know a priori the decomposition of
Gd = Gs

d + Ga
d, where Gs

d ∈ H(C+) and Ga
d ∈ H(C−). Hence, in this case, we already know

if system Gd is stable (just verify if Ga
d = 0). Therefore, these conditions cannot be used to

construct the approximation required in Method 8.7 and a further heuristic need to be developed.

8.3.2 Interpolatory based heuristic for L2(iR) model approximation
The main heuristic we will employ to construct a good enough L2(iR) approximation is in-
spired by the H2 optimality conditions (see Chapter 4, Section 4.3). Hence, given Gd, an LTI
TDS, we will construct an approximation satisfying the following Hermite interpolation condi-
tions:

Problem 8.11 (L2(iR) interpolation problem). Given Gd ∈ L2(iR) an LTI TDS and
an order n, construct a finite dimensional approximation Ĥ ∈ L2(iR) satisfying

Gd(−λ̂k) = Ĥ(−λ̂k), and G′d(−λ̂k) = Ĥ′(−λ̂k) (8.13)

where {λ̂1, . . . , λ̂n} ∈ C are the poles of the approximation Ĥ.

As exposed in Chapter 4, a reduced-order model can be constructed using interpolation-based
iterative methods (e.g. IRKA or TF-IRKA). In our case, TF-IRKA is the most adapted
algorithm, because Gd is an LTI TDS and, hence, is represented by a irrational transfer function.

Reader should note that conditions (8.13) correspond to the optimality conditions of the H2
model approximation problem (see Chapter 4, Corollary 4.15):

Find Ĥ∗ ∈ H2 s.t. Ĥ∗ := arg min
Ĥ∈H2 dim(Ĥ)≤n

‖Gd − Ĥ‖H2 . (8.14)

Hence, if Gd is stable and we construct an approximation Ĥ satisfying the conditions (8.13),
then it might be a local optimum. In additional, numerical experiences shows that :

(i) For orders n not too high, TF-IRKA generally converges, even if the system Gd is un-
stable. Indeed, the following monograph [Sinani, 2015] shows numerically that TF-IRKA
converges for a great amount of unstable systems.

148



Chapter 8. Model approximation framework for evaluating time-delay systems’ stability

(ii) If the original system Gd is stable and if the algorithm TF-IRKA converges, the reduced
order model Ĥ is generally also stable.

Henceforth, we apply TF-IRKA in order to find the approximation needed in the Method 8.7.
Let us apply this procedure in the following example :

Example 8.12 (Stability of a single state-delay TDS). Let us consider Gd an LTI
TDS whose transfer function is given by

Gd(s) = 1
s2 + 0.1s+ e−3ss+ e−2s .

Let Ĥ be a finite dimension approximation of order r = 8 of Gd obtained by TF-IRKA.
Model Ĥ is unstable and Figure 8.3 provides the magnitude Bode plot of Gd(s), Ĥ(s), Ĥa(s)
the unstable part of Ĥ(s), and the approximation error E(s) = Gd(s)− Ĥ(s).
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Figure 8.3: Bode magnitude diagram of Gd (blue solid line), unstable approximation Ĥ
(green solid line), unstable part of the approximation Ĥa (green solid line) and mismatch
error E (red dashed line).

Ĥ(s) seems to be a good approximation of Gd(s) in the sense of the L2(iR) norm. In
addition, let us compute the following norm

‖Ĥa‖L2(iR) ≈ 0.5032,

by grammians. Moreover, the L2(iR) norm of the mismatch error was computed by numer-
ical integration :

‖Gd − Ĥ‖L2(iR) = ‖E‖L2(iR) = 0.0038.
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Obviously, the magnitude of |Ĥa(iω)| majored the error |E(iω)| as shown numerically in
Figure 8.3 (which is enough to prove instability). Therefore,

‖E‖L2(iR) = ‖Gd − Ĥ‖L2(iR) < ‖Ĥa‖L2(iR)

and, by Theorem 8.6, the system Gd is also unstable.

To sum up, the algorithm TF-IRKA provides reduced order models that are good enough
L2(iR) approximation of the original. These approximations, allied with Theorem 8.6, can be
used to prove if a given system Gd is unstable. Up to now, the choice of the order n of the
approximation is still arbitrary and this will be discussed in the next chapter.

Based in what was presented up to now, in the next chapter, we will propose an interpolation-
based procedure in order to estimate the stability charts of an LTI TDS using TF-IRKA.

Conclusion
In this chapter, some theoretical results have been exposed linking stability and model approxi-
mation. The main results exposed can be summarized as :

(1) A Hardy space characterization LTI TDS stability was developed in Proposition 8.3.

(2) Given Gd an LTI TDS and Ĥ a good enough L2(iR) unstable approximation, Theorem
8.6 exhibits a sufficient condition to be unstable. This condition involves L2(iR) norm
computation and can be evaluated by numerical integration.

(3) Finally, Section 8.3 shows that, given Gd an LTI TDS, one can use TF-IRKA to produce
a good-enough approximation to Gd. If this approximation is unstable and the condition
(8.9) is verified, then Gd is also unstable. The choice of the approximation order n is not
evident and will be discussed in the next chapter.

The results presented here enables to prove if a given LTI TDS is unstable. As stated before, one
cannot provide similar results to prove if a system is stable. In the next chapter, we propose a
weaker notion of stability in order to derive similar results. In addition , inspired on the results
presented here, we will use TF-IRKA to estimate stability charts of any LTI TDS.
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Chapter 9

Stability chart approximation
from interpolatory methods

In this chapter, the ideas presented in Chapter 8 will be exploited in order to estimate the stability
charts of any system Gd. This chapter is divided in two sections. The first one, is dedicated to
the introduction of the problem and to the development of some theoretical results, such as (i) a
weaker notion of stability, enabling to derive a certificate of weaker stability result, and (ii) some
properties of the algorithm TF-IRKA. The second section is dedicated to the construction of
a procedure to estimate the stability charts of a given LTI TDS. It is exemplified with some
numerical problems demonstrating that the proposed method provides a good estimation of the
stability charts, even in a large scale setting.

Contents
9.1 Problem statement and some theoretical results . . . . . . . . . . . 151

9.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.1.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 Procedure for stability estimation of an LTI TDS . . . . . . . . . . 156
9.2.1 Brute-force numerical procedure . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Continuity of interpolation points . . . . . . . . . . . . . . . . . . . . . 159
9.2.3 Application to large-scale LTI TDS . . . . . . . . . . . . . . . . . . . . 163

9.3 Heuristic procedure for stability charts of an LTI TDS . . . . . . . 165
9.3.1 Varying the reduced order . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.1 Problem statement and some theoretical results
In the latter chapter, a model approximation based framework for evaluating the stability of
TDS was presented along with a numerical procedure (Method 8.7). This enables to prove
that a given LTI TDS Gd is unstable. Based on this idea, this chapter aims at providing a
general methodology to estimate the stability charts of any LTI TDS using model approximation
methods. The chapter is organized as follows :
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(i) In this section, the stability chart problem of an LTI TDS is defined in Problem 9.1. In
addition, a weaker notion of stability is also defined, enabling to derive a guaranty certificate
result.

(ii) In Section 9.2, we propose a brute-force procedure in order to estimate the stability charts
of any LTI TDS. In addition, we take benefit from the continuity property of the shifts
(see Remark 9.10) in order to improve the convergence speed of the algorithm. Then, the
procedure is validated in a large scale example.

(iii) Finally, in Section 9.3 a procedure enabling to vary the order from the ROM is introduced
and validated in some numerical examples.

9.1.1 Problem statement
This chapter aims at using interpolation-based model approximation to tackle the following
problem :

Problem 9.1 (Stability charts of an LTI TDS). Let Gd(p) be an LTI TDS depending
continuously on the vector of parameters p ∈ Da. Determine, for each p∗ ∈ D fixed, the
stability of system Gd(p∗).

aThe parameters considered are delays, gains, . . .

This problem can be exemplified as follows.

Example 9.2 (Stability charts example ). Let us consider the second order open-loop
system G(s) = 1

s2+9 in feedback with the delayed controller C(s) = ke−τs. This closed-loop
system, denoted as Gd(k, τ), was considered in [Sipahi et al., 2011] and [Abdallah et al.,
1993], and its transfer function is given by

Gd(s, τ, k) = ke−τs

s2 + 9− ke−τs . (9.1)

The problem we are interested in is to derive the stability chart as a function of the pa-
rameters p = (τ, k), couple of delay and gain values i.e. the conditions for τ ∈ [0, 10]s and
k ∈ [0, 4]s for which Gd(τ, k) is stable or not. This specific problem has been theoretically
solved in [Abdallah et al., 1993] using a deep analysis of its characteristic equation leading
to the exact stability chart of Gd as a function of the (τ, k) couple. As a first illustration of
the proposed approach, Figure 9.1 illustrates the stability regions based on the evaluation of
the stability of approximated models Ĥ, obtained by interpolatory methods over a finite grid
set of frozen (τ, k) values (here 100 × 100 grid points), using the procedure detailed in the
following sections.
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Figure 9.1: Example 1 - Gd is a TDS of order 2. The red points correspond to the unstable
cases, while the green points correspond to stable systems.

The red and green regions correspond to the parameters (τ, k) for which the system Gd is
unstable and stable respectively. The data corresponding to Figure 9.1 were obtained using
the Method 9.12 in approximatively 190 seconds. By comparing with [Sipahi et al., 2011]
results, it is clear that the proposed algorithm well catches the (in)stability property while
being quite fast.

Before detailing the proposed contribution, we stress out that the main objective of the
proposed methodology is not to provide an exact solution to the stability chart problem (as it is
well solved by dedicated techniques) but rather a procedure to obtain an approximation of it in
shorter time. As more clearly stated in what follows, we are interested in providing an algorithm
to approximate (quite accurately, but still approximate) the stability regions of any LTI TDS of
the form (8.1) or (8.2). The ground motivation for such approximation result is that most of the
exact techniques which are based on algebraic or optimization techniques (such as bifurcation
[Engelborghs et al., 2001], linear matrix inequalities [Briat, 2015; Seuret and Gouaisbaut, 2015])
reveal a computational weakness when the complexity of the aforementioned LTI TDS increases
(i.e. its state dimension n or number of delays nd). As a matter of consequence, in practice,
these methods became untractable for (very) large-scale systems.

9.1.2 Preliminary results
As it was exposed in chapter 8, one way to prove that Gd is unstable, is to show an unstable
model approximation Ĥ which is close enough to Gd. In addition, Theorem 8.6 provides a way
to certify the instability of Gd. Since the set of stable systems H2 is not open, we are not able
to derive similar results. In what follows, we consider a weaker notion of stability for which we
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are able to derive a similar certificate theorem as Theorem 8.6.

Weaker notion of stability

As previously stated, the set of stable systems is not an open set1 and, as a consequence, no
certificate of stability guaranty can be derived. One way of dealing with that is to consider
a weaker stability notion, allowing the systems to be "just a little bit" unstable. This can be
mathematically described by the following definition.

Definition 9.3 (α-stable system). Let Gd be an LTI TDS and α > 0 be a small positive
real number. Then, if Gd = Gs

d + Ga
d, where Gs

d ∈ H2(C+) and Ga
d ∈ H2(C−), we say that

the system Gd is α-stable if and only if

‖Ga
d‖H2(C−) < α.

Hence, given α > 0, the set of α-stable systems consists of systems that are just a little bit
unstable, i.e., the L2(iR) norm of their unstable part is bounded by α. Reader should note
that the notion of α-stability employed here differs from the notion of α-exponentially stability2.
Moreover, the set of α-stable systems is open as stated as follows :

Proposition 9.4 (Topology of α-stable systems). Let α be a positive real number.
Then, the set of α-stable systems,

αS = {G ∈ L2(iR), ‖Ga‖H2(C−) < α}

is an open set of L2(iR).

Proof. The projector function :

projH2(C−) : L2(iR) → H2(C−)
G 7→ projH2(C−)(G) = Ga ,

and the L2(iR) norm
‖.‖L2(iR) : L2(iR) → R

G 7→ ‖G‖L2(iR)
,

are continuous functions (with respect to the L2(iR) norm). Hence, their composition, f =
‖projH2(C−)(.)‖ is also continuous. The set of α-stable systems is the inverse image of a continuous
function of an open set,

αS = f−1((−∞, α)
)
,

and it is open as well.

Moreover, a similar certificate result as Theorem 8.6 can be stated for α-stable systems as
follows.

1with respect to the L2(iR) norm.
2a continuous LTI system is said to be α-exponentially stable if and only if the system has eigenvalues with

real parts strictly less than α.
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Theorem 9.5 (Certificate α-stability). Let Gd ∈ L2(iR) be an LTI TDS and Ĥ be a
stable approximation of Gd. Then, if

‖Gd − Ĥ‖L2(iR) < α, (9.2)

then Gd is α-stable.

Proof. Since Ĥ is stable, then Ĥ ∈ H2(C+). Hence,

‖Ga
d‖H2(C−) ≤ ‖Ga

d‖H2(C−) + ‖Gs
d − Ĥs‖H2(C+) = ‖Gd − Ĥ‖L2(iR) < α

which proves the Theorem.

Hence, given a α > 0, Theorem 9.5 provides a sufficient condition to verify if Gd is α-stable,
enabling us to compute numerically an α-stability certificate using a similar procedure as in
8.7. Reader should note that, by means of Theorem 9.5, we are not able to provide a stability
certificate, but an α-stability one. That is because the set of stable system is not open while the
set of α-stable systems is. The following proposition states a connection between α-stability and
stability notions.

Proposition 9.6. Let Gd ∈ L2(iR) be an LTI TDS. If Gd is an α-stable system, for every
α > 0, then is is stable.

Proof. The result is straightforward. The norm of the unstable part of Gd should satisfy

‖Ga
d‖L2(iR) < α, for every α > 0.

Hence, Ga
d = 0. Therefore, Gd ∈ H2 and thus stable.

In conclusion, the notion of α-stability was created to remedy the fact the set of stable
systems is not open. Indeed, the set of α-stable systems is open and congregates the systems G
whose unstable Ga have small norm. Moreover, Theorem 9.5 provides a sufficient condition for
a system G to be α-stable. In addition, the same procedure sketched in Chapter 8 (Method 8.7)
can be employed in order to detect a system is α-stable.

In what follows we recall some properties of the algorithm TF-IRKA and we justify its use
for the estimation of stability charts, even if the certificates are not computed.

TF-IRKA and stability

As stated before, given Gd ∈ L2(iR), the algorithm TF-IRKA will be used to construct a
model approximation Ĥ. This algorithm was designed initially to find reduced order models for
H2 systems only. In practice, even for unstable systems, this algorithm produces ROMs that are
good approximations. In what follows, we provide some arguments justifying (but not giving
mathematical proofs) why this algorithm can be used as well to estimate the stability of any LTI
TDS, even if the certificates from Theorems 8.6 and 9.5 are not computed.

Firstly, we recall that TF-IRKA is an iterative algorithm. In [Krajewski et al., 1995], the
authors show that saddle points and local maxima of the H2 minimization problem are know
to be repellent. Hence, if Gd is stable and the algorithm converges, it should converge to a
local minimizer. The following proposition shows that if Gd is stable, so does the L2(iR) local
minimizer (from Problem 8.9).
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Proposition 9.7 (stable L2(iR) local minimizers). Given Gd ∈ H2, if Ĥ ∈ L2(iR) is
a local minimizer of the L2 approximation Problem 8.9, then Ĥ ∈ H2.

Proof. Let Ĥ ∈ L2(iR) be the local minimizer of (8.9). Since Gd ∈ H2(C+), its unstable part is
zero, i.e., Ga

d = 0. Hence, the approximation error is

‖Gd − Ĥ‖2L2
= ‖Gd − Ĥs‖2L2

+ ‖0− Ĥa‖2L2
(9.3)

Thus, Ĥa = 0, otherwise Ĥ is not a local minimizer. Indeed, H̃ε = Ĥs + (1− ε)Ĥa is a system
such that ‖Gd − H̃ε‖2L2

< ‖Gd − Ĥ‖2L2
, for every ε > 0.

In other words, Proposition 9.7 states that, given Gd a stable LTI TDS, then if one finds
a L2(iR) local minimizer Ĥ of Problem 8.9, then Ĥ is also stable. Hence, if Gd is stable and
TF-IRKA converges to a L2(iR) local minimizer, then it should be stable as well. Based on
this result we propose the following procedure to obtain the stability charts of an LTI TDS.

Given Gd an LTI TDS and let Ĥ be an approximation of order n obtained after the conver-
gence of TF-IRKA. Let us list here the possible scenarios:

(i) Unstable approximation : if Ĥ is unstable and is a good enough L2(iR) approximation
of Gd, then Gd is also unstable. In addition, since the algorithm converges in general to
local minima, it is very likely for Gd to be unstable. Moreover, a certificate of guaranty is
given Theorem by 8.6.

(ii) Stable approximation : if Ĥ is stable and is a good enough L2(iR) approximation of
Gd, then Gd might be also stable. In this case no guaranty of stability is given and we
can only certify α stability using Theorem 9.5. However, it might happen to find a stable
approximation Ĥ even if the original system Gd is unstable. In this case, the approximation
is probably not good enough to capture the unstable behavior of Gd and one should increase
the order n of the approximation in order to capture this unstable behavior.

To sum up, given a system Gd, if we a priori know an order n, such that the n-th order
approximation Ĥ obtained by TF-IRKA is very closed to Gd, it is very likely that Gd and Ĥ
are either both stable or both unstable. In what follows we will use this idea to construct an
algorithm to estimate the stability charts of an LTI TDS.

9.2 Procedure for stability estimation of an LTI TDS
9.2.1 Brute-force numerical procedure
Let Gd(p) be an LTI TDS as in (8.1) depending on the parameters values (delays, gains, etc.)
p ∈ D , whose variations impact the system stability. The procedure to find the stability chart
related to Gd(p) with respect of the parameters p ∈ D is described in what follows

Method 9.8 (Brutal force procedure). Let Gd(p) be an LTI TDS depending continu-
ously on the parameters values p ∈ D. Follow the steps :

(1) Discretize the parameter domain D into D̂.

(2) Choose a reduced order n for which reduced order models of order n might be a good
approximation of the systems Gd(s,pi) using TF-IRKA.
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(3) For each pi ∈ D̂, find a finite reduced order model Ĥ and evaluate the stability of Ĥ.

(4) Use the stability of Ĥ to estimate that of Gd(s,pi).

(5) (Optional) Use Theorems 8.6 and 9.5 to provide a guaranty certificate of instability
and α-stability.

Let us consider the following example illustrates the proposed brute-force procedure:

Example 9.9 (Example with certificates). Let us consider the system

Gd(τ, γ) =
{

ẋ(t) = −x(t− τ)− x(t− γ) + u(t)
y(t) = x(t) , (9.4)

with transfer function
Gd(s, τ, γ) = 1

s+ e−τs + 2e−γs , (9.5)

where parameters values are the delay pair p = (τ, γ) ∈ [0, 3] × [0, 3] = D. We grid the
domain D using a 40× 40 uniformly spaced points to construct the discrete domain D̂. For
each point in this grid, we compute a reduced order model of order n = 2 using TF-IRKA.
The stability region evaluated using the brute-force procedure is plotted in Figure 9.2.
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Stability chart with certificate

Figure 9.2: Example 2: System governed by (9.4). Red circles (approximation unstable
with certificate), red crosses (approximation unstable but no certificate), green circles (ap-
proximation stable with certificate of 0.2 stability) and green crosses (approximation stable
but no certificate of 0.2 stability). All points interpolated with a model of order r = 2 using
TF-IRKA.
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On Figure 9.2, the following holds :

ä Red circles : correspond to the case where the approximation obtained by TF-IRKA
is unstable and a guaranty of instability of the original model was produced using
Theorem 8.6.

ä Red crosses : correspond to the case where the approximation obtained by TF-
IRKA is unstable but we were not able to provide a certificate of instability. Hence,
in this case, in order to obtain a guaranty certificate, it is necessary to obtained a better
approximation by increasing the order of the reduced order model. This can be done by
increasing the order of the reduced order model. Indeed, if r = 4, the approximations
obtained by TF-IRKA are good enough to produce the guaranty certificate.

ä Green circles : correspond to the case where the approximation obtained by TF-
IRKA is stable and a guaranty of α-stability of the original model was produced using
Theorem 9.5, where α = 0.2.

ä Green crosses : correspond to the case where the approximation obtained by TF-
IRKA is stable but, for α = 0.2, we were not able to provide a certificate of α-stability.
This can be done by increasing the order of the reduced order model. Indeed, if r = 4,
the approximations obtained by TF-IRKA are good enough to produce the guaranty
certificate.

In Example 9.9, we were able to prove numerically that the brute-force approach sketches gives
a good estimation of the stability charts of the proposed LTI TDS. The following considerations
should be notice :

ä For a great majority of points from D we were able to certify instability and α-stability, for
α = 0.2, (corresponding to the red and green circles in Figure 9.2). However, for some points
(the green and red crosses), the approximation obtained was not faithful enough to have
those certifications. In those cases, one needs to increase the order of the approximation.
In Section 9.3 we propose a procedure to adapt the order n of this approximation.

ä The bottle-neck of this method is the computation of the guaranty certificates. Indeed,
to produce these guaranty certificates, one needs, for each system Gd(s,pi), pi ∈ D̂, to
evaluate the L2(iR) norm of the approximation error, i.e.,

‖Gd(s,pi)− Ĥ‖2L2(iR) = 1
2π

∫ ∞
−∞
|Gd(iω,pi)− Ĥ(iω)|2dω

by numerical integration, which is a very expensive computation, specially for large-scale
systems.

Since the certificate computation is expensive, from now on we will not compute them any-
more. Instead, we suppose that we know the order r for which the approximation Ĥ is closed
enough to Gd and we will use the stability of Ĥ to estimate that of Gd.
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9.2.2 Continuity of interpolation points
The following remark is very important for a fast implementation of the procedure :

Remark 9.10 (Continuity of interpolation points for small perturbation). Let
Gd(p∗) ∈ L2(iR) be an LTI TDS and the perturbed system G(p∗ + ε) ∈ L2(iR), where
‖ε‖ � 1 is a small perturbation.

ä If the TF-IRKA applied to Gd(p∗) = Gd converges, it produces an approximation Ĥ
of order r, satisfying the Hermite interpolation conditions:

Gd(−λ̂k) = Ĥ(−λ̂k), and G′d(−λ̂k) = Ĥ′(−λ̂k), for k = 1, . . . , r,

where {λ̂1, . . . , λ̂r} ∈ C are the poles of Ĥ.

ä Then, if TF-IRKA is applied to the perturbed system Gd(p∗+ε) ∈ L2(iR) initialized
by using minus the poles of Ĥ, i.e.,

σ1, . . . , σr = {−λ̂1, . . . ,−λ̂r},

the convergence is very fast and the poles of the approximation obtained Ĥperturbated
are a small perturbation of the poles of Ĥ.

Therefore, the poles of the approximation obtained by TF-IRKA follow somewhere a con-
tinuity property with respect to small perturbations on the original model Gd.

Remark 9.10 can be taken in advantage to increase the convergence speed of the proposed
method. Hence, if pi,pi + ε ∈ D̂, where ε� 1, are parameter vectors, one should :

(i) Compute the approximation Ĥ for Gd(pi) with TF-IRKA.

(ii) Initialize the algorithm with the optimal shifts points (σ̂1, . . . , σ̂n)3 when computing the
approximation of Gd(pi + ε), so the convergence is faster.

This is illustrated in the following example

Example 9.11 (Continuity of shifts example). Let us consider Gd(s, τ, γ) the transfer
function

Gd(s, τ1, τ2) = 1
s+ e−sτ + e−sγ

where p = (τ, γ). If initially we consider τ = 0.3 and γ = 0.5, the 4-th order approximation
Ĥ1 obtained by TF-IRKA, which converges in 10 iterations. In addition, the poles of Ĥ1
are

λ̂1,2 = −7.6856± 8.1767i λ̂3,4 = −1.1859± 2.8611i.

Now, let we consider τ = 0.31 and γ = 0.51, corresponding to a small perturbation on
the parameters. Then the 4-th order approximation Ĥ∆ obtained by TF-IRKA initialized
with the shifts {σ1, . . . , σ4} = {−λ̂1, . . . ,−λ̂4} converges in 2 iterations. In addition, the

3which are given by (σ̂1, . . . , σ̂n) = −poles(Ĥ)
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following poles of Ĥ∆ are

λ̃1,2 = −7.6274± 8.2262i λ̃3,4 = −1.1202± 2.8380i.

Let us apply the brute-force procedure for estimating the stability charts of a machining
chatter systems (see [Sipahi et al., 2011; Seuret and Gouaisbaut, 2015] for more details). This
system is described by the following LTI TDS :

Gd(k, τ) =
{

ẋ(t) = A0x(t) +A1x(t− τ) + bu(t)
y(t) = cTx(t) , (9.6)

where,

A0 =


0 0 1 0
0 0 0 1

−10− k 10 0 0
5 −15 0 −0.25

 , A1 =


0 0 0 0
0 0 0 0
0 0 k 0
0 0 0 0

 ,
and

b = [0 0 0 1]T and cT = [1 0 0 0].

The problem we are interested in is to derive the stability chart as a function of the parameters
p = (k, τ), couple of gain and delay values, where k ∈ [0, 10] and τ ∈ [0 6]s. This specific problem
has been theoretically solved in [Seuret and Gouaisbaut, 2015] using a LMI approach. Here, by
following the brute-force procedure :

(i) We consider 100 equidistant grid points for the delay τ and 100 logarithmically spaced grid
points for the controller gain k.

(ii) For every pair (ki, τj) we compute an approximation of order n = 6 using TF-IRKA.

(iii) Every TF-IRKA was initialized with the poles of a neighbor system.

(iv) If the algorithm converges and the approximation is stable, we plot a green cross.

(v) If the algorithm converges and the approximation is unstable, we plot a red cross.

(vi) If the algorithm does not converge, nothing is plotted.

The results are exposed in the Figure 9.3. By comparing with the results in [Seuret and
Gouaisbaut, 2015], it is clear that the proposed algorithm well catches the (in)stability property.
In addition, for this specific system, the exact stability can be derived using the stability margins
and the Nyquist method. The blue curve was obtained applying this method and it separates
the regions where the system looses stability.
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Figure 9.3: Stability charts estimation of Gd(k, τ), machining chatter systems governed by (9.6)
using the brutal-force method. For each point in the graph, a 6-th order approximation Ĥ was
obtained by TF-IRKA. Green crosses represent stable approximations. Red crosses represent
unstable approximations. The blue line corresponds where obtained using the Nyquist method.

Let us list some important information about this simulation :

ä The order r = 6 was chosen heuristically because it provides good approximation for a
given (k, τ).

ä 10000 approximations where computed in total.

ä TF-IRKA needs on average 20 iterations to converge for this system for any given pa-
rameter (ki, τj).

ä However, the algorithm is initialized with minus the poles of a neighbor system, it converges
on average in 2 or 3 iterations.

ä The total time needed was 120 seconds. Hence, the mean time per model approximation
is 130

1002 = 0.013s. Reader should notice that this was only possible because of the smart
initialization of TF-IRKA (based on the Remark 9.10).

ä The white points correspond to the parameters where TF-IRKA did not converge. How-
ever, if one choose another order r > 6 it does converge and the approximation obtained
has the coherent stability.

Notice that the order 6 was heuristically determined because 6-th approximation are closed
enough to a given Gd(ki, τj). The same procedure was applied to approximations of orders 2, 4
and 8 and the results follows on Figures 9.4, 9.5 and 9.6, respectively :
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Figure 9.4: Stability charts estimation of Gd(k, τ), machining chatter systems governed by (9.6)
when the approximations have order 2.
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Figure 9.5: Stability charts estimation of Gd(k, τ), machining chatter systems governed by (9.6)
when the approximations have order 4.
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Figure 9.6: Stability charts estimation of Gd(k, τ), machining chatter systems governed by (9.6)
when the approximations have order 8.

One should note that an order r = 2 or 4 is not enough to estimate the stability of all Gd(k, τ)
and that is why some of the approximations are stable while the original system is unstable. On
the other hand, for the order 8 the algorithm does not converge for a great amount of points. That
is probably due to the fact that the 8-th approximation model Ĥ is overparametrized. Practically
this happens if the approximation order is too high to catch the input/output behavior, and, as
a consequence, the shift points (σ1, . . . , σn) never converge. Hence, a smaller order should be
considered.

Hence, as long as the approximation order n is well chosen, the proposed brute-force procedure
enables to capture almost exactly the stability charts of the system (9.6). In addition, based on
the Remark 9.10, the approximations can be computed very quickly (2 or 3 iterations, instead
of 50). In what follows we apply the same procedure in order to estimate the stability of a large
scale time-delay system.

9.2.3 Application to large-scale LTI TDS
Let us now consider the clamped beam model from COMPleib library [Leibfritz and Lipinski,
2003] whose order is n = 348, denoted GBEAM (presented as well in Chapter 1). For this system,
a PID controller has been designed without taking into account any delay. The transfer function
of this PID is given by

PID(s) = 9.791s2 + 0.04095s+ 0.0.07712
s2 + 0.0628s .
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Therefore the closed-loop system including the controller, denoted HPID, in series has di-
mension n = 350. We now add a constant delay τ ∈ [0, 10] between the output of the system
and the input of the controller, and a scaling parameter k ∈ [0, 1.5] on the gains of the PID
controller. The resulting transfer function is then given by

Gd(s, k, τ) = kPID(s)GBEAM (s)
1 + kPID(s)GBEAM (s)e−τs . (9.7)

As before, we consider 60 equidistant grid points for the delay and for the controller gain k.
Then, we compute n = 14-th order approximations using TF-IRKA. The order 14 was chosen
because it provides approximation which are close enough to Gd. Once again, the algorithm is
initialized using the shift points derived from a neighbor system, in order to take advantage of
the continuity of shifts property (see Remark 9.10). The results are depicted in Figure 9.7. As
the system has one single delay, the Nyquist method can also be applied to construct an exact
result, which is shown by the blue curve.

Reader should note that the brute-force procedure captures almost exactly the stability chart,
with exception only for the points where the algorithm did not converge. Let us list the details
from this simulation :

ä The order r = 14 was chosen heuristically because it provides good approximation for a
given (k, τ).

ä 60× 60 = 3600 approximations were computed in total.

ä TF-IRKA needs 30 to 50 iterations to converge for this system for any given parameter
(ki, τj) couple.

ä However, if we start the algorithm with the using the poles of a neighbor system, it con-
verges in 2 or 3 iterations.

ä The total time needed was 4500 seconds, i.e., 1 hour and 15 minutes. Hence, the mean
time per model approximation is 1.25s. Reader should notice that this was only possible
because of the smart initialization of TF-IRKA (based on the Remark 9.10).

ä The white points correspond to the parameters where TF-IRKA did not converge.

The example presented shows that the proposed procedure enables us to capture the stability
charts of a large-scale LTI TDS. Hence, it can be used as an alternative to LMI-based and exact
methods, which are not suitable in the large-scale context.
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Figure 9.7: Stability charts estimation of Gd(k, τ), delayed Beam model governed by (9.7). Green
crosses correspond to stable approximations. Red crosses correspond to unstable approximation.
The blue line corresponds to the stability frontier obtained by the Nyquist method.

In what follows, we propose an heuristic extension enabling to vary the order n from the
approximation.

9.3 Heuristic procedure for stability charts of an LTI TDS
9.3.1 Varying the reduced order
As long as the order n is well chosen, it is very likely that if TF-IRKA converges, then it will
preserve the stability. However, if n is too high the algorithm might not converge. In what
follows, we propose a procedure to estimate the stability charts by varying the order n. We start
with n high, so that the algorithm will capture the stability for the worst case scenarios. Then,
we progressively decrease the order until we have an estimation of stability for every point in the
domain. This procedure is sketched as follows.
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Method 9.12 (Model approximation based method for stability chart estima-
tion). Given Gd(p) an LTI TDS, where the parameter p ∈ D, then follow the steps:

(1) Discretize the parameter domain D into D̂.

(2) Choose a worst case order k = r(0) such that

(3) Repeat

(i) For each pi ∈ D̂ for which no stability estimation have been assigned, apply
TF-IRKA for an order k.

(ii) If TF-IRKA converges, assign the stability associated to pi as being the one
from the approximation obtained.

(iii) k = k − 1(the approximation order is decreased).

Until a stability has been assigned for every pi ∈ D̂.

In order to justify this decreasing sequence of approximating order mechanism, let us remind the
following points:

• If the TF-IRKA does not converge, it might be due to the fact that the approximation
model Ĥ is over-parametrized. In that case, the iterative shift σi selection might never stop
and oscillate. Practically this happens if the approximation order is too high to catch the
input/output behavior. Therefore, the order k is probably too high and is thus decreased.

• On the other hand, if TF-IRKA has converged, an appropriate approximation has been
found and should well reproduce the input/output behavior, also in the L2(iR)-norm sense.
Therefore, it is very likely that this approximation has the same stability as the original
model.

In what follows, some numerical examples illustrate the efficiency and the accuracy of the
approach.

9.3.2 Numerical Examples

Example 1: stabilizing feedback delay model

Let us consider the Gd(τ, k) system of order 2 presented on Example 9.2. For this example let us
first try to estimate the stability using order 6. Figure 9.8 shows the stability chart estimation
for all parameters pi ∈ D̂ for which the algorithm has converged.
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Figure 9.8: Stability charts estimation when the approximation has order 6.
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Figure 9.9: Stability charts estimation when the approximation has order 6 and 4.

Reader should notice that the white regions correspond to systems for which TF-IRKA
was not able to converge for an order 6. Then, for the remaining parameters, the same brute
force procedure is applied, now for 5-th order approximations. For none of this parameters the
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algorithm had converged as well. Finally, TF-IRKA was applied for 4-th order approximations
and enabling to assign an estimation for all the remaining parameters. Figure 9.9 shows the
stability chart estimation (which is the same one presented on Example 9.2).

It is worth mentioning that the total time of simulation was around 190s.

Example 2: congestion system of a high speed network

Let us consider a congestion system of a high speed network, denoted Ghsn(τ1, τ2), originally
derived from [Izmailov, 1996] and analyzed in [Niculescu, 2002] and [Sipahi et al., 2011], which
behavior is driven by the following DDEs:

Ghsn(τ1, τ2) =
{

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ1 − τ2) + bu(t)
y(t) = cTx(t), (9.8)

where b = [1 0]T , c = [0 1] and (a = 2, b = −1.75)

A0 =
[

0 0
1 0

]
, A1 =

[
0 −a
0 0

]
, A2 =

[
0 −b
0 0

]
.

We are interested in deriving the stability chart as a function of the couple {τ1, τ2} delay values,
i.e. , the conditions for τ1 ∈ [0 1.4]s and τ2 ∈ [0 1.8]s for which Ghsn(τ1, τ2) is stable or not.
This specific problem has been theoretically solved in [Niculescu, 2002] using a deep analysis of
its characteristic equation leading to the exact stability chart of Ghsn(τ1, τ2) as a function of
{τ1, τ2}.

Hence, let us use the heuristic procedure 9.12. Firstly, let us consider a finite grid set of frozen
(τ1, τ2) = pi ∈ D̂ values (here 100 × 100 grid points). Let us first try to estimate the stability
using order 6. Figure 9.10 shows the stability chart estimation for all parameters pi ∈ D̂ for
which the algorithm has converged.

Once again, the white regions correspond to systems for which TF-IRKA was not able to
converge for an order 6. Then, for the remaining parameters, the same brute force procedure is
applied, now for 5-th order approximations and the results are reported in Figure 9.11. Then,
for the remaining parameters, the same brute force procedure is applied, now for 4-th order
approximations. For none of this parameters the algorithm had converged as well. Finally, TF-
IRKA was applied for 3-th order approximations and enabling to assign an estimation for all
the remaining parameters, which is reported in Figure 9.12.
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Figure 9.10: Stability charts estimation when the approximation has order 6.
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Figure 9.11: Stability charts estimation when the approximation has orders 6 and 5.
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Figure 9.12: Stability charts estimation when the approximation has orders 6, 5 and 3.

By comparing with the results in [Niculescu, 2002], it is clear that the proposed algorithm
well catches the (in)stability property while being quite fast (result obtained in approximately
210 seconds). Although it is clear that Method 9.12 has neither formal guarantee of finding the
stability proof it does provide a very good approximation of the stability charts.

Conclusion
In this chapter, the main contributions proposed are twofold: (i) a new paradigm to treat the
stability of LTI TDS using interpolatory-based model approximation and (ii) the Method 9.12
enabling to estimate the stability charts of any LTI TDS. The other contribution correspond to
the use of the continuity of shifts (Remark 9.10) in order to speed up the procedure. Obviously
the approach is not restricted to delayed models but still required a smooth parameter variations
(in the eigenspace). All the numerical results presented in this chapter are promising and the gain
obtained in term of computational time involved appears spectacular in comparison with other
tools, e.g., LMI-based or bifurcation techniques. In addition, successful results have been shown
in the large scale setting. Still, unlike these latter, no formal guarantee on the results obtained
by the proposed heuristic can be established. For the case of unstable and α-stable systems, a
certificate of guaranty can be provided a posteriori, but it is computationally expensive. Finally,
this approach can be used as an initialization for more formal methods when applicable or provide
an answer when the system to be analyzed is too complex.
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Chapter 10

Discussion and perspectives

Although throughout the study the majority of the results have been discussed and assessed,
this chapter offers a general overview of the main contributions of this thesis highlighting their
advantages and limitations.

On the topic of model approximation, this work sheds new light on the approximation of
linear time invariant systems by reduced order models with richer structures, e.g., input and
output delays and state delays. The originality of this work comes from the combination of
results from two different fields : time-delay systems and model approximation. Although it is a
model approximation thesis, we believe that many results developed here can be useful in other
fields, e.g., analysis of stability using model approximation and the spectral H2 inner product
formulation. In what follows, for each different topic developed in this thesis, we summarize the
major contributions as well as the possible future research directions.

Model reduction for input/output-delay structure
Contribution
One of the main contributions is the study of the H2 model approximation problem when the
reduced order model has input and output delays, which is the subject of Chapter 5. This problem
is specially interesting when the original model has an intrinsic delay behavior, e.g., transport
equations. We believe that the following topics can be considered as the major contributions :

(i) Spectral formulation of the H2 inner product in the presence of input/output
delays : This result corresponds to Theorem 5.5 for SISO systems and in Theorem 5.22 for
MIMO systems. One of the main difference from the delay free case, is the non-symmetric
expression of these expressions (see Example 5.6). This non-symmetry in the expression
of the H2-inner product in the presence of input/output delays is the crucial point in the
derivation of the optimality conditions.

(ii) First-order H2 optimality conditions for input/output-delay structure : This
result corresponds to Theorem 5.10 for SISO systems and Theorem 5.20 for MIMO ones. As
in the delay-free case, for a fixed input/output delay structure, they are also interpolation
conditions. However, the main difference is that instead of interpolating the full order
model G, a new model G̃ is here considered. The construction of the new G̃ requires the
pole/residue decomposition of G which can be expensive for very large scale systems.
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(iii) IO-dIRKA : This algorithm is developed in Section 5.5 enabling to construct a reduced
order model Ĥd(s) = ∆̂o(s)Ĥ(s)∆̂i(s) . It corresponds to an iterative algorithm in which
each iteration can be decomposed in two steps:

(a) for fixed delay structures ∆̂o(s) and ∆̂i(s), a reduced order model Ĥ is obtained
satisfying the interpolation conditions on G̃.

(b) for a fixed reduced order model Ĥ, the optimal values for the delay structures ∆̂o(s)
and ∆̂i(s) are determined solving an optimization problem.

If this procedure converges, it permits to construct a reduced order model having in-
put/output structure satisfying the H2 optimality conditions.

Future research directions : general input/output structures
Instead of considering input/output delays, one might consider the model approximation problem
where the reduced order model is represented by

Ĥiso = Ĥσ, (10.1)

where Ĥ = (E,A,B,C) is a finite dimensional reduced order model and σ ∈ H∞ represents a
general input structure.

The case where σ is an H2 isometry, i.e.,

‖Ĥσ‖H2 = ‖Ĥ‖H2 ,

is an example of possible extension. Notice that, in addition to input delays, others structures
satisfy this isometric condition, e.g., the Laguerre shifts. An example of such a structure is
given by σ(s) = s− τ

s+ τ
, for a given τ > 0. Hence, the model approximation problem when

the reduced order model has an isometric structure can be considered as a generalization for
input/output-delay structures.

In addition, other input structures, not fitting in the isometric case, can also be interesting.
As example, the reduced order models having more than one delay for the same input. The
following system

Ĥd :=
{
Ê ˙̂x(t) = Âx̂(t) + b̂(u(t) + u(t− τ))

ŷ(t) = ĉx̂(t) (10.2)

illustrates one of this cases.

Data driven model approximation for single state-delay struc-
ture
Contribution
In Chapter 6, a data-driven framework for single state-delay systems, i.e., models denoted by
Ĥd = (Ê, Â, B̂, Ĉ, τ) whose transfer functions are represented by

Ĥd(s) = Ĉ(Ês− Âe−sτ )−1B̂.

The main contributions are summarized as follows :
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(i) State-delay transformation : Lemma 6.2 states that a single state-delay model Ĥd =
(Ê, Â, B̂, Ĉ, τ) represented by a delay-free model Ĥ = (Ê, Â, B̂, Ĉ) by means of the trans-
formation

Ĥd(s) = Ĥ
(
f(s)

)
esτ

where Ĥ(s) is the transfer function of the delay-free model Ĥ = (Ê, Â, B̂, Ĉ) and

f(s) = sesτ .

(ii) Single state-delay Loewner framework : Theorems 6.3 and 6.4 provide a method
to construct a model Ĥd = (Ê, Â, B̂, Ĉ, τ) whose transfer function Ĥd(s) = Ĉ(sÊ −
Âe−sτ )−1B̂ interpolates some tangential interpolation data.

(iii) dTF-IRKA : This algorithm is developed in Section 6.4 enabling to construct a reduced
order single state-delay model satisfying some interpolation conditions inspired in the finite
dimensional case.

Those results interpolation results were generalized for systems having a more general delay
structure, i.e.,

Ĥd(s) = Ĉ(Ês− Â0 − Â1e
−sτ )−1B̂

in [Schulze and Unger, 2015], assuming that matrix Â1 is a linear combination between Ê and
Â1.

Future research direction: delay optimization and more general struc-
tures
One weakness of the proposed method, is the fact that one should know in advance the delay
value τ . Future works will investigate this issue by taking into consideration the delays as decision
variables in the H2 optimization problem. The extension to more general structures, e.g., the
multiple delays case, should also be addressed.

H2 optimality conditions for single state-delay models
Contribution
Chapter 7 introduces the H2 optimal approximation problem when the reduced order model is
a single state-delay model of dimension one, i.e., when the reduced order model Ĥd has the
following representation :

Ĥd(s) = φ̂

s− α̂e−sτ
.

(i) Spectral H2 inner product for single state-delay models : Based on the spectral
decomposition of a single state-delay model, Propositions 7.4 and 7.5 provide a spectral
characterization of the H2 inner product. Due to the infinite dimensional nature of the
reduced order models considered here, those expressions are no longer sums, but infinite
series.

(ii) H2 optimality conditions for single state delay reduced order models : The main
contribution of this chapter is Theorem 7.8. It generalizes the H2 optimality conditions
to the case where the ROM is a single state-delay model. In this case, instead of simple
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interpolation, those conditions are infinite series interpolation. Therefore, interpolation
based methods are no longer applicable and further numerical developments need to be
considered.

To sum up, Theorem 7.8 generalizes Theorem 4.14 for single state-delay reduced-order models.
Due to the infinite dimensional nature of time-delay systems, the H2 optimality conditions here
are not interpolation conditions any more and become interpolation of series. Hence, optimum
H2 reduced order models cannot be constructed by interpolation methods and new tools enabling
interpolation of sums and series might be a future research direction.

Future generalization directions: Other structures
Following similar arguments, we could consider other simple structures, e.g.,

(i) Second order structures : Let us consider the simple second order structure defined as
follows :

h2nd(s) = 1
s2 + β1s+ β2

.

(ii) More general delay structures : Let us consider the simple second order structure
defined as follows :

hd(s) = 1
s+ α1 + α2e−sτ

.

In addition, the reduced order mode given by a linear combination of those proposed struc-
tures, i.e.,

ĤStr2nd =
n∑
k=1

φ̂khk2nd(s),

or

ĤStrDelay(s) =
n∑
k=1

φ̂khkd(s).

could be also considered. Then the H2 approximation problem for such structured systems could
be derived following the same ideas presented on Chapter 7. As a consequence, these conditions
should be also interpolation of sums (for the second order structured case) or interpolation of
series (for the state delay case) and further results on interpolation of sums/series should be also
derived.

Model approximation based framework for evaluating the
stability of a time-delay system
A model approximation framework is developed in order to evaluate the stability of a time-delay
system. Systems are considered to be elements of L2(iR) (instead of H2). The set of stable
and unstable systems are characterized as subsets of L2(iR), leading to some topological and
approximation results. Thereby, a certificate of instability is derived based on the numerical
estimation of the L2(iR) norm. Equipped with those results, one can estimate the stability of
any time-delay systems by finding a model approximation with is good enough in the sense of
L2(iR). This results are presented in Chapters 8 and 9.
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Contribution
The main contributions are summarized as follows :

(i) Topology of stability: Based on the Hardy space characterization of stability, some in-
teresting properties linking model approximations and stability are derived in Section 8.2
from Chapter 8 (for unstable and stable systems) and Section 9.1 from Chapter 9 (con-
cerning α-stable systems). The main contribution is the awareness that the set of unstable
and α-stable systems are open sets of L2(iR). Thereby, (i) if an unstable approximation
is close enough to a given system, it is also unstable and (ii) if an stable approximation is
close enough to a given system, it is α-stable.

(ii) Certificate of instability guaranty: Theorems 8.6 (Chapter 8) and 9.5 (Chapter 9)
give sufficient conditions to a system to be unstable and α-stable, respectively, based on it
distance from an unstable approximation.

(iii) Method to evaluate instability/α-stability: In Chapter 8, the approximation-based
Method 8.7 is proposed in order the evaluate if a given system is unstable. The same
concept can be used to evaluate α-stability and the approximation can be constructed with
TF-IRKA.

(iv) Brute-force procedure : the procedure 9.8 enables to estimate the stability charts of
any LTI TDS.

(v) Continuity of shifts: as stated in Remark 9.10, the shift points behave continuously
when the original model is perturbed. This is used to speed up the brute force procedure.
The results are applied in some numerical examples, including a large-scale LTI TDS.

(vi) Heuristic procedure: In Section 9.3, a procedure enabling to vary the order n is sketched
and applied to some numerical examples.

The overall approach have been validated on many different TDS, including a large-scale
TDS, providing promising perspectives for the TDS stability estimation in the large-scale setting.
Future works should include comparisons with some other literature methods,e.g., LMI-based or
bifurcation techniques.

Future research directions
Based on the results presented, a boundary-search heuristic algorithm can be developed so the
number of model approximations required to establish the stability charts estimation could be
drastically reduced. This work is on progress and the following paper on this topic has been
submitted [Poussot-Vassal et al., 2016].
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