Mais on ne se bat pas dans l'espoir du succès ! Non ! non, c'est bien plus beau lorsque c'est inutile ! " Cyrano de Bergerac Edmond ROSTAND
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Plan du manuscrit

Ce manuscrit présente tout d'abord un État de l'art (Chapitre 1 ) qui décrit plus en détail les méthodes de séparation aveugle de sources jusqu'au cas particulier du démélange hyperspectral non supervisé qui fera l'objet d'une section à part entière. On s'intéressera aussi au cas des traitements possibles sur des images urbaines.

La prise en compte des effets non-linéaires liés aux réflexions multiples a ensuite été introduite dans la méthode IP-NMF (Chapitre 6 ). Cette nouvelle méthode, LQIP-NMF, a été testée sur des données semi-synthétiques pour évaluer l'apport de la prise en compte des réflexions multiples dans le cas de la présence de variabilité intra-classe.
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Introduction Générale Présentation du travail et contexte

Actuellement, selon l'ONU, plus de la moitié de la population mondiale vit en milieu urbain. La gestion, la surveillance, le développement de ces zones sont devenus un enjeu majeur de la politique urbaine et environnementale. L'utilisation de la télédétection aéroportée dans les études d'urbanisme ou de géographie date des années 1970 [1] [2].

Ces études ont profité du développement de la technologie des capteurs. Aujourd'hui, différentes caméras peuvent êtres utilisées dans le cadre de la télédétection aéroportée :

-des images en niveaux de gris, dites panchromatiques, avec une résolution spatiale très fine de l'ordre du centimètre, -des images dites multispectrales, acquises sur plusieurs bandes spectrales (généralement une dizaine) et qui ont une résolution de l'ordre de la dizaine de centimètres, -des images dites hyperspectrales, acquises sur plusieurs centaines de longueurs d'onde et qui ont une résolution spatiale de l'ordre du mètre ou plus.

Depuis quelques années, la télédétection spatiale permet également d'observer de telles zones du fait de l'amélioration de la résolution spatiale et spectrale. En 2012 a été lancé le dernier satellite Pléiade. Il s'agit d'un système d'imagerie multispectrale (4 bandes) à très haute résolution (2.8 m pour le capteur multispectral) dédié entre autres à l'imagerie urbaine. Prochainement le satellite Sentinel 2B sera lancé. Il est dédié à l'étude de l'évolution de la végétation, de l'occupation des sols... Il fournira des images dans 13 bandes spectrales dans le domaine visible et proche infra-rouge. La résolution de cet imageur multispectral va dépendre des bandes considérées, elle varie entre 10 m, 20 m et 60 m.

Actuellement, les missions existantes ne suffisent pas forcément pour l'étude des milieux urbains. En effet à très haute résolution spatiale les satellites comme Pléïades permettent une bonne description de l'organisation géométrique du milieu mais sont limités pour décrire les classes de matériaux présentes. A l'inverse les missions hyperspectrales, existante (Hyperion) ou en projet (Enmap, PRISMA...) permettent de discriminer un plus grand nombre de classes de matériaux mais sont limités en résolution spatiale (typiquement 30 m), d'où une difficulté pour discriminer les bâtiments, routes... Cette thèse s'est inscrite dans le cadre d'un pré-projet pour une mission du CNES, HYPXIM. Il s'agit d'un imageur hyperspectral spatial doté d'une caméra panchromatique de résolution 1.8 1 INTRODUCTION m et d'une caméra hyperspectrale de résolution spatiale envisagée de 8 m. L'objectif de cette phase est de montrer les intérêts scientifiques d'un tel projet, en particulier pour l'étude des zones urbaines. La faible résolution spatiale du capteur hyperspectral est problématique pour l'étude de ces zones car la résolution de l'image est plus faible que la taille caractéristique des éléments étudiés. Certains pixels observés dans l'image seront dits mélangés, c'est-à-dire composés de plusieurs éléments du paysage urbain (route + toit, végétation + toit...). Une des problématiques va alors être de séparer les différents composants au sein de ces pixels. On appelle cela le démélange hyperspectral.

Le démélange hyperspectral non supervisé est un domaine particulier de la Séparation Aveugle de Sources (SAS). Pour effectuer ce démélange il est nécessaire de connaître les lois qui régissent les mélanges entre les constituants d'un pixel. Dans le cas le plus simple, on considère qu'un spectre de pixel observé correspond à la somme des spectres des matériaux présents dans ce pixel, pondérés par l'occupation au sol de chacun des matériaux. De nombreuses méthodes de démélange se basant sur ce modèle ont déjà été développées [START_REF] Bioucas-Dias | Hyperspectral Unmixing Overview : Geometrical, Statistical, and Sparse Regression-Based Approaches[END_REF]. Cependant ce modèle ne prend pas en compte la structure en trois dimensions des espaces urbains.

Les travaux de Meganem et al. [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] ont montré que dans le cas de zones urbaines il était pertinent de prendre en compte les phénomènes de réflexions multiples sur les façades des bâtiments pour établir le modèle de mélange. Ces travaux sont intéressants car ils s'appuient sur une étude précise du transfert radiatif dans les canyons urbains. Toutefois, dans son étude, Meganem et al. ne prennent pas en compte les effets de variabilité spectrale des matériaux.

Or Lacherade et al. dans [START_REF] Lacherade | Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France)[END_REF] présentent une étude qui met en évidence la variabilité des spectres de matériaux urbains. Cependant cette étude a été faite en laboratoire à une résolution très fine (20 cm) et on ne peut pas s'assurer de la validité de ces conclusions à une résolution plus faible (de l'ordre du mètre).

Actuellement des méthodes de démélange existent, elles permettent dans le cas de scènes simples d'extraire les spectres de chaque matériau, et leurs proportions, au sein de chaque pixel de l'image. Certaines méthodes ont aussi été développées pour prendre en compte la variabilité intra-classe. Cependant ces méthodes ne s'appuient sur aucune étude précise de ce phénomène. La modélisation de cette variabilité est alors souvent discutable (gaussienne, paquet...).

Les méthodes de démélange mises en oeuvre couramment sont donc remises en cause en milieu urbain par deux phénomènes : la variabilité intra-classe et les phénomènes de réflexions multiples.

C'est ce qui justifie ce travail de thèse. Dans cette étude nous nous sommes particulièrement intéressés à l'étude du phénomène de variabilité intra-classe en milieu urbain afin d'établir des modèles de mélange prenant en compte ce phénomène. Des méthodes de démélange adaptées à ces modèles ont été développées et testées sur des images urbaines afin d'évaluer les performances de tels algorithmes dans l'optique de la mission HYPXIM. La prise en compte des phénomènes non-linéaires liés aux réflexions multiples ont été introduits dans le modèle dans un second temps.

La suite du manuscrit correspond à la démarche qui a été suivie durant cette thèse. Nous avons tout d'abord cherché à développer un modèle de mélange prenant en compte la variabilité intra-classe (Chapitre 2 ). Pour cela on a commencé par mettre en évidence numériquement cette variabilité. On s'est ensuite servi de ces résultats pour construire des modèles de mélange incluant la variabilité intra-classe.

Comme aucune méthode de démélange n'est adaptée aux nouveaux modèles proposés nous avons développé dans le cas linéaire deux méthodes de démélange (Chapitre 3 ). La première, UP-NMF (Unconstrained Pixel-by-pixel NMF), prend uniquement en compte la formule du modèle de mélange. Dans la seconde, IP-NMF (Inertia-constrained Pixel-by-pixel NMF), une contrainte est ajoutée pour rendre compte de la notion de classes de matériaux.

Une étude de l'impact des différents paramètres influençant les performances de UP-NMF et IP-NMF est ensuite présentée (Chapitre 4 ). Cette étude a été faite sur des données semisynthétiques.

Compte tenu des résultats sur données semi-synthétiques, une étude des performances de la méthode IP-NMF a été menée sur des images réelles de milieux urbains (Chapitre 5 ). Les tests ont tout d'abord été effectués sur des images avec une résolution spatiale élevée (1.6 m) puis avec des résolutions spatiales dégradées (3.2 m et 6.4 m). 

Passage de la séparation aveugle de source (SAS) au démélange hyperspectral

Résumé : Dans cette partie on présentera les grandes lignes de la Séparation Aveugle de Sources (SAS) ainsi que les principaux groupes de méthodes associés à cette branche du traitement du signal. A partir de cela on s'intéressera au passage du cas général de la SAS au cas du démélange hyperspectral. On introduit ainsi le démélange hyperspectral et ses particularités.

Position du problème de Séparation Aveugle de Sources (SAS)

Les signaux acquis par un capteur (antenne, micro, caméra...) sont rarement égaux aux signaux émis par la source étudiée. En effet durant leur propagation ils vont interagir avec des signaux émis par d'autres sources. L'exemple courant de ce phénomène est celui du micro devant lequel se tiennent 2 orateurs qui parlent en même temps. Le signal acquis par le capteur sera une composition des 2 voix. Plus généralement on dira que le signal observé, x i est relié au signaux émis par les M différentes sources, appelées signaux sources s j par une fonction de mélange, multidimensionnelle, f , qui dépendra de la situation considérée :

x i = f (s 1 , • • • , s M ).
(1.1)

La SAS vise alors, à partir des signaux observés, à retrouver les signaux sources et/ou les paramètres de la fonction de mélange à partir de peu d'information a priori. Ces a priori portent sur les signaux sources et/ou la fonction de mélange :

-connaissance de la classe de la fonction de mélange, f -connaissance de contraintes sur les sources -connaissance uniquement de certains paramètres de la fonction de mélange -... Si la fonction de mélange est inconnue, ou partiellement connue, l'estimation des paramètres de f devra souvent être faite en même temps que la recherche des sources. L'utilité de ces paramètres, en dehors de la recherche des sources, dépendra du domaine d'application dans lequel on décide de se placer.

La connaissance de la classe de la fonction de mélange va être associée à la connaissance du modèle de mélange, c'est-à-dire à la connaissance d'un modèle mathématique résultant de l'analyse physique et/ou de l'estimation du ou des phénomènes en jeu dans l'application considérée. On classe généralement ces modèles de mélange en 2 types : les mélanges linéaires et les mélanges non-linéaires.

Les mélanges linéaires

Les mélanges linéaires sont les modèles de mélange les plus simples et les plus répandus. Ils correspondent à une somme pondérée des différents signaux. Cette catégorie de modèle de mélange peut être divisée en trois sous-catégories : linéaire instantané, retardé et convolutif.

On parlera de mélanges instantanés si, quels que soient les échantillons d'indice e du signal observé x i (e), ceux-ci dépendent, respectivement, des mêmes échantillons des signaux sources, s j (e). Dans ce cas chacun des signaux observés s'écrit :

x i (e) = M j=1 a i,j s j (e) (1.2)
ici x i ∈ R E×1 correspond à un signal observé composé de E échantillon, les s j ∈ R E×1 correspondent aux signaux sources et les a i,j aux coefficients de mélange. Dans ce cas une écriture matricielle du modèle de mélange est généralement adoptée :

X = AS (1.3) avec X = [x 1 , • • • , x P ] T ∈ R P ×E la matrice des observations, A = [a ij ] 1 i P 1 j M ∈ R P ×M la matrice des coefficients de mélange et S = [s 1 , . . . , s M ] T ∈ R M ×E la matrice des sources.
Dans le cas où chacun des signaux observés correspond à une combinaison de sources décalées dans le temps on a un mélange dit retardé :

x i (e) = M j=1 a i,j s j (e -e ij ) (1.4)
Lorsque chaque signal observé est issu des mêmes sources mais pondérées différemment et avec des retards différents, on parle de mélanges linéaires convolutifs :

x i (e) = M j=1 a i,j (e) * s j (e) (1.5)
Dans la suite du manuscrit on considèrera uniquement les mélanges instantanés. On ne précisera donc plus l'indice de l'échantillon. On écrira donc le mélange linéaire de la manière suivante :

x i = M j=1 a i,j s j .
(1.6)

Ce type d'écriture est relativement développé car il équivaut au développement au premier ordre de modèles plus complexes qui font intervenir des réflexions multiples. Dans le cas où ces réflexions multiples sont prises en compte on aboutit à des modèles plus complexes et nonlinéaires.

Les mélanges non-linéaires

Ce type de catégorie englobe un plus grand nombre de modèles de formes très différentes. On peut cependant regrouper ces mélanges en sous catégories.

Les mélanges linéaire-quadratiques

Les mélanges linéaire-quadratiques sont des mélanges du second ordre, c'est-à-dire que chaque signal observé se compose d'un mélange linéaire des signaux sources auquel viennent s'ajouter les produits 2 à 2 des spectres sources :

x i = M j=1 a i,j s j + M j=1 M k=j b i,j,k s j s k .
(1.7)

Ici correspond au produit terme à terme. Comme pour le cas linéaire, il est possible d'adopter une notation matricielle pour ce type de mélanges.

Soient S = s 1 , • • • , s M , s 1 s 1 , s 1 s 2 , • • • , s M s M T
la matrice contenant les signaux sources ainsi que les signaux "produits" et à la matrices des paramètres associées, la matrice des observations X s'écrit alors :

X = ÃS . (1.8)
L'intérêt de ce type d'écriture est qu'il se rapproche du cas linéaire.

Dans le cas où les mélanges entre les mêmes spectres n'existent pas on parle de mélanges bilinéaires. Le modèle de mélange linéaire-quadratique est fréquemment associé à des signaux sources qui subissent des réflexions multiples. Lorsque l'amplitude des signaux sources est faible, on s'arrête alors dans beaucoup de cas au second ordre car l'amplitude des signaux quadratiques (i.e du produit de 2 signaux sources) est généralement faible comparée aux signaux sources, et les produits d'ordre 3 et plus deviennent négligeables.

ÉTAT DE L'ART

Si l'on considère des ordres plus élevés on parle de mélanges polynomiaux :

x i = M j 1 =1 a i,j 1 s j 1 + M j 1 =1 M j 2 =j 1 a i,j 1 ,j 2 s j 1 s j 2 +• • •+ M j 1 =1 M j 2 =j 1 • • • M jq=j q-1 a i,j 1 ,j 2 ,••• ,jq s j 1 s j 2 • • • s jq .
(1.9) Comme dans le cas du mélange linéaire-quadratique il est possible d'écrire ce mélange sous forme matricielle et obtenir une forme similaire au cas du mélange linéaire.

Les mélanges post-non-linéaires

Ce type de mélange survient lorsque les signaux observés sont issus d'un phénomène linéaire puis subissent séparément un phénomène non linéaire, modélisé par une fonction mono-dimensionnelle g i (•) :

x i = g i M j=1 a ij s j .
(1.10)

Différents choix pour les fonctions g i peuvent être faits [6].

Les mélanges semi-empiriques

Dans certains cas les modèles de mélange sont difficiles à formaliser pour l'application considérée car il font intervenir des phénomènes très complexes et difficilement modélisables. Dans ce cas, des modèles hautement paramétriques sont utilisés et il est nécessaire d'avoir recours à des connaissances précises de certains des paramètres des éléments avec lesquels les signaux vont interagir. Parmi ce type de modèles on pourra citer les modèles de Hapke [START_REF] Hapke | Bidirectional reflectance spectroscopy : 1. theory[END_REF] ou de Shkuratov [START_REF] Shkuratov | A Model of Spectral Albedo of Particulate Surfaces : Implications for Optical Properties of the Moon[END_REF].

Les différents paramètres de ces modèles, linéaires ou non-linéaires, peuvent être totalement ou partiellement connus. En fonction des connaissances a priori sur les paramètres et les signaux sources, des contraintes peuvent être ajoutées pour rendre compte de certains phénomènes physiques et faciliter la recherche des sources et/ou des paramètres du modèle de mélange. Cependant dans le cadre de la SAS on essaie de se placer dans le cas le moins informé possible, d'où le terme "aveugle".

Les principales méthodes de SAS

Différentes méthodes ont été développées pour répondre aux problèmes soulevés par la SAS. Chaque type, ou classe, de méthodes est adapté à certains types de signaux et/ou de mélange. Dans cette partie un rappel des principales classes de méthodes est proposé. Il met en évidence les situations dans lesquelles les méthodes citées pourront être utilisées et celles pour lesquelles elles ne sont pas adaptées.

Méthodes d'ICA

Les méthodes d'ICA (pour Independent Component Analysis en anglais) sont les premières méthodes qui ont été développées pour la SAS. Cette classe de méthodes utilise l'indépendance statistique entre les signaux sources. Ce type de méthodes peut être vu comme une extension de l'Analyse en Composantes Principales (ACP). En effet l'ACP ne cherche que la noncorrélation, c'est-à-dire l'indépendance au second ordre. A l'inverse l'ICA recherche une transformation linéaire qui minimise l'information mutuelle des signaux source estimés obtenus.

En SAS il est commun de travailler avec des signaux ayant certaines caractéristiques. Ces caractéristiques représentent généralement des comportements que l'on peut espérer observer sur des signaux sources "réels" :

• les signaux sont statistiquement indépendants les uns des autres, c'est-à-dire que les variables aléatoires représentant chacun des signaux sont statistiquement indépendantes. • les signaux sont stationnaires (c'est-à-dire identiquement distribués).

• la loi de probabilité des signaux est une loi gaussienne.

Les méthodes d'ICA s'appuient sur le fait que ces conditions soient présentent dans les mélanges étudiés. Cependant il a été montré dans [START_REF] Comon | Independent Component Analysis, a new concept[END_REF] que des signaux sources gaussiens identiquement distribués et indépendants (i.i.d) ne pouvaient pas être séparés. Par conséquent on ne peut pas considérer des signaux sources possédant l'ensemble des caractéristiques présentées dans les points précédents. Les différentes méthodes basées sur l'ICA considèrent donc soit que les signaux sont i.i.d et non gaussiens, soit qu'ils ont une distribution gaussienne mais ne sont pas i.i.d [START_REF] Cardoso | The Three Easy Routes To Independent Component Analysis, Contrasts And Geometry[END_REF].

Les méthodes qui s'appuient sur la non gaussianité sont les premières à avoir été développées [START_REF] Herault | Réseau de neurones à synapses modifiables : décodage de messages sensoriels composites par apprentissage non supervisé et permanent[END_REF]. La majorité d'entre elles utilisent les statistiques d'ordre supérieur (ordre supérieur ou égal à deux). Les approches de ces méthodes peuvent être très variées : calcul des moments d'ordre supérieur, maximisation de la vraisemblance, ... On citera ici quelques méthodes qui recouvrent les grands types d'approche utilisée.

La méthode FastICA [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] est l'une des nombreuses méthodes qui tentent de maximiser la non-gaussianité des signaux source obtenus. FastICA est une approche basée sur le calcul du kurtosis pour estimer les sources. Cette méthode a été créée pour traiter le cas de mélanges linéaires.

La méthode JADE (Joint Approximate Diagonalisation of Eigenmatrices) [START_REF] Cardoso | Blind Beamforming for Non Gaussian Signals[END_REF] propose une approche basée sur les tenseurs. JADE se fonde sur le calcul du tenseur des cumulants d'ordre 4 pour retrouver les signaux source. La conception de cette méthode repose encore sur l'hypothèse de mélanges linéaires.

La méthode de Bell et al. [START_REF] Bell | An information-maximization approach to blind separation and blind deconvolution[END_REF] utilise l'algorithme Infomax [START_REF] Baram | Multi-Dimensional Density Shaping by Sigmoidal Networks[END_REF]. Cette approche se base sur la maximisation de l'information transmise pour retrouver les signaux sources. Cette approche est issue des méthodes basée sur les réseaux de neurones. On retrouve plusieurs extensions de ce type de technique comme dans [START_REF] Lee | Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources[END_REF].

Dans le cas de mélanges linéaires instantanés, d'autres classes de méthodes n'imposent pas la non-gaussianité mais imposent le fait que les signaux sources ne soient pas i.i.d. Cette sous-classe de méthode va donc s'appuyer sur la structure des signaux.

Pour illustrer ce groupe de méthodes on trouve la méthode SOBI (pour Second Order Blind Identification) [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF]. Le principe de cette méthode repose sur la non-indépendance statistique des échantillons d'un signal source. Ce type d'approche est aussi utilisé dans d'autres méthodes [START_REF] Yeredor | Blind separation of gaussian sources via second-order statistics with assymptotically optimal weighting[END_REF].

La méthode BSS-CCA (pour Blind Source Separation -Canonical Correlation Analysis) [START_REF] Li | Joint blind source separation by multi-set canonical correlation analysis[END_REF] et l'ensemble de ses dérivées suppriment l'hypothèse d'indépendance statistique pour la remplacer par l'hypothèse de non-corrélation .

Des méthodes par réseau de neurones ont aussi été développées. Par exemple [START_REF] Herault | Space or time adaptive signal processing by neural network models[END_REF] ou [START_REF] Matsuoka | A neural net for blind separation of nonstationnary signal sources[END_REF]. Dans ce dernier article la méthode proposée utilise un réseau de neurones et suppose que les signaux source sont indépendants et non-stationnaires. La règle principale d'apprentissage de ce réseau de neurones va chercher à minimiser la corrélation entre les signaux de sortie.

Des méthodes ICA ont aussi été développées dans le cas de mélanges non-linéaires. Plus par-ticulièrement ces méthodes s'intéressent au cas des mélanges linéaire-quadratiques ou bilinéaires. Les outils qu'elles utilisent sont similaires à ceux utilisés dans le cas linéaire. Ainsi pour des sources indépendantes et circulaires, [START_REF] Krob | Blind Identification of a linear-quadratic mixture : application to quadratic phase coupling[END_REF] propose une méthode basée sur la décomposition en éléments simples du cumulant d'ordre 3. Cette méthode ne peut être appliquée que sur des mélanges sur-déterminés. Dans [START_REF] Deville | Recurrent Networks for separating extractabletarget nonlinear mixture. Part I : Non blind configurations[END_REF] la méthode proposée utilise un réseau récurrent du même type que ceux développés par [START_REF] Jutten | Blind Separation of sources, part I : An adaptative algorithm based on neuromimetic architecture[END_REF] dans le cas linéaire. Cette méthode est intéressante car elle offre la possibilité de traiter des mélanges plus complexes que le cas linéaire-quadratique.

Pour approfondir le sujet on pourra citer [START_REF] Hyvärinen | Independent component analysis : algorithms and applications[END_REF] et [START_REF] Comon | Handbook of blind source separation : Independent component analysis and applications[END_REF] ainsi que les références qui y sont mentionnées. On n'entrera pas plus que cela dans les détails de ce type de méthodes. En effet l'indépendance statistique des sources est une hypothèse forte. Et l'on verra par la suite que le cadre dans lequel se situe cette thèse ne permet pas de vérifier cette hypothèse car les signaux étudiés seront fortement corrélés.

Méthodes bayésiennes

Pour effectuer la SAS des méthodes bayésiennes ont aussi été développées. Cette classe de méthodes offre l'avantage d'utiliser une approche statistique et de pouvoir dans le même temps imposer des a priori. Ces a priori peuvent résulter de contraintes justifiées par le type de signaux sources, les phénomènes physiques s'appliquant aux signaux sources entre leur émission et leur réception ... Ils vont permettre de résoudre un problème qui pourra être mal-posé.

Les méthodes bayésiennes reposent sur l'utilisation de la règle de Bayes. Ces méthodes ont d'abord été conçues pour des mélanges linéaires. En considérant l'écriture (1.3) on peut écrire :

• p(X|A, S) comme étant la vraisemblance observation X

• p(A) et p(S) les lois a priori associées aux deux variables inconnues. C'est avec ces termes que l'on va pouvoir ajouter les connaissances physiques des signaux.

• p(A, S|X) la loi a posteriori, obtenue à partir de l'écriture de la règle de Bayes :

p(A, S|X) = p(X|A, S)p(A)p(S) p(X) (1.11)
Différents estimateurs peuvent alors être utilisés pour estimer les paramètres de la loi a posteriori. Parmi eux on trouve le maximum a posteriori (MAP) [START_REF]Wiley Series in Probability and Statistics[END_REF], la moyenne a posteriori (MP) ou encore les modèles hiérarchiques bayésiens [28] [29]. Il est aussi possible de marginaliser le problème. Dans ce cas, les méthodes tentent de maximiser les distributions a posteriori marginalisées, p (A | X) et p (S | X). Ces estimateurs vont souvent faire appel à des algorithmes d'optimisation et intégration itératifs comme la modélisation par chaîne de Markov (méthodes MCMC) [30] [31].

Des méthodes bayésiennes ont aussi été développées pour traiter des cas où les mélanges sont non-linéaires [START_REF] Wei | Post-Nonlinear Undercomplete Blind Signal Separation : A Bayesian Approach[END_REF] [33] [START_REF] Altmann | Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes[END_REF]. Elles se basent sur les mêmes mécanismes que dans le cas linéaire, seulement les paramètres à estimer, l'écriture de la fonction de vraisemblance,... seront différents.

Les approches bayésiennes sont des méthodes qui peuvent avoir un coût calculatoire important. Par ailleurs elles vont demander un grand nombre de connaissances a priori, c'est particulièrement le cas lorsque l'on considère les modèles hiérarchiques bayésiens qui vont faire intervenir des hyperparamètres [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model. application to hyperspectral imagery[END_REF]. La sensibilité des méthodes à ces paramètres pouvant être grande, les connaissances a priori doivent donc être nombreuses et/ou très précises et les estimations de ces paramètres très bonnes. Dans ce cas là ces méthodes offrent des approches très intéressantes.

Méthodes d'analyse en composantes parcimonieuses

La classe des méthodes dites d'analyse en composantes parcimonieuses exploite le fait que les signaux ont une structure particulière. On qualifiera un signal de parcimonieux dans cet espace, si la plupart de ses coefficients sont nuls. Différents "types" de parcimonie sont possibles, les méthodes associées à chacune d'entre elles varieront en fonction des caractéristiques de ces parcimonies.

Le premier type de parcimonie repose sur une hypothèse forte selon laquelle dans chaque point du domaine d'analyse (i.e. chaque pixel dans le cas d'une image, chaque longueur d'onde dans le cas d'un signal spectral...) un unique signal source est actif. Cette hypothèse est appelée W-DO (pour W-Disjoint-Orthogonality). Les méthodes s'appuyant sur une telle hypothèse [START_REF] Jourjine | Blind separation of disjoint orthogonal signals : demixing N sources from 2 mixtures[END_REF] offrent l'avantage de pouvoir traiter le cas où le problème est sous-déterminé (moins d'observations que de sources).

Le second type de parcimonie repose sur l'hypothèse de l'existence de zones mono-sources, c'est à dire que pour chaque signal source il existe au moins une zone du domaine d'analyse dans laquelle il est le seul signal actif. Les méthodes qui découlent de cette hypothèse sont dites "quasinon-parcimonieuses". Ces méthodes fonctionnent généralement en deux étapes : (a) recherche des zones mono-sources dans les observations pour extraire la fonction de mélange, (b) récupération des sources par inversion de la matrice de mélange. Les méthodes LI-TEMPCORR et LI-TIFCORR [START_REF] Deville | Temporal and time-frequency correlation-based blind source separation methods. Part I : Determined and underdetermined linear instantaneous mixtures[END_REF] utilisent la corrélation des observations pour retrouver les zones mono-sources. Cette méthode a été étendue dans [START_REF] Deville | Blind Identification and Separation methods for Linear-quadratic mixtures and/or linearly independent non-stationary signals[END_REF] pour traiter un cas particulier de mélange non-linéaire. La méthode s'intéresse à des mélanges bilinéaires où les signaux sources sont linéairement indépendants et centrés, et pour chaque signal source il existe un petit domaine des observations dans lequel la source est isolée.

Dans le dernier cas on considère que chaque signal observé est obtenu en combinant un nombre faible de signaux sources. On utilise généralement ce critère de parcimonie si l'on dispose d'un dictionnaire contenant l'ensemble des signaux sources. Les méthodes développées cherchent alors à reconstruire les signaux sources, généralement en connaissant le type de mélange (linéaire, linéaire-quadratique,...), en minimisant le nombre de signaux sources utilisés lors de la reconstruction. Dans le cas du mélange linéaire on peut écrire la contrainte de parcimonie de la manière suivante : min

a B i a B i 0 tel que B s a B i -x i 2 ≤ δ (1.12)
où a B i 0 correspond au nombre d'éléments du vecteur a B i différents de 0, B s ∈ R L×m représente une bibliothèque de m signaux de L échantillons parmi lesquels se trouvent les signaux source, a B i ∈ R m×1 est le vecteur des coefficients multiplicatifs associés à l'observation x i ∈ R L×1 et δ est une valeur proche de 0. Lorsque le nombre d'éléments non nuls devient trop faible devant la taille de la bibliothèque l'équation (1.12) devient un problème mal posé [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l minimization[END_REF]. Les méthodes correspondent alors à des régressions qui cherchent à résoudre une approximation de (1.12). Cette approximation va généralement faire appel à la norme l 1 . C'est par exemple le cas de la méthode SUNSAL [START_REF] José | Alternating direction algorithms for constrained sparse regression : Application to hyperspectral unmixing[END_REF]. On peut aussi utiliser cette hypothèse de parcimonie dans le cas de mélanges non-linéaires. Dans [START_REF] Qu | Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation[END_REF] un modèle bi-linéaire est utilisé. On remarquera cependant que dans ce cas le problème de SAS est biaisé puisque les signaux sources sont déjà connus et que l'on cherche seulement les paramètres du mélange.

On peut aussi trouver des méthodes dites "mixtes" qui vont utiliser les différentes hypothèses de parcimonie. Cette classe de méthodes dites d'analyse en composantes parcimonieuses offre un large choix d'approches. Cependant elle repose sur des hypothèses qui peuvent se révéler fortes dans le cas du W-DO ou alors elles peuvent nécessiter la connaissance de bibliothèques des sources ce qui éloigne du caractère aveugle de la SAS.

Les méthodes de NMF

La classe des méthodes de factorisation en matrices non-négatives (Nonnegative Matrix Factorisation en anglais) regroupe des méthodes basées sur une hypothèse, la non-négativité des signaux sources ainsi que des paramètres de mélange. Ce type de méthodes a été introduit par Paatero et Tapper dans [START_REF] Paatero | Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values[END_REF]. Le développement des algorithmes liés à la NMF prend surtout son essor après les travaux de Lee et Seung [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF]. La NMF étant la base d'une partie des travaux présentés dans ce manuscrit, elle fera donc l'objet d'une présentation plus approfondie que les classes de méthodes évoquées précédemment.

Le principe de la NMF est assez simple. Soit une matrice non-négative Y ∈ R + F ×B et une dimension D telle que D ≤ min(F, B), l'objectif est de trouver deux matrices positives

W ∈ R + F ×D et H ∈ R + D×B qui factorisent Y : Y = WH.
(1.13)

Cette approche diffère des factorisations de type LU ou QR [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF] qui cherchent à factoriser Y de telle sorte que :

Y = LU avec U une matrice triangulaire supérieure Y = QR avec Q une matrice orthogonale et R une matrice triangulaire supérieure.
Dans ce cas on ne peut pas ajouter la contrainte sur la dimension D.

La première application de la NMF concerne des images de visages desquels on souhaite extraire les différentes parties (bouche, yeux...) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. Par la suite l'utilisation de la NMF s'est développée dans de nombreux domaines de la SAS [START_REF] Berry | Algorithms and applications for approximate nonnegative matrix factorization[END_REF]. Si l'on se place dans le cadre de la SAS, la NMF équivaut, à partir d'une matrice des observations positive, Y ∈ R P ×E , à retrouver les matrices non-négatives, W ∈ R P ×D et H ∈ R D×E telles que X = AS.

On retrouve ici l'écriture du mélange linéaire de l'équation (1.3), avec D = M , le nombre de sources. La NMF permet donc, dans le cas de mélanges linéaires, de retrouver les signaux sources et les paramètres de mélange. On remarquera que le problème est symétrique et que l'on peut tout aussi bien écrire l'équation (1.13) sous la forme Y T = H T W T , ce qui permettra dans certains cas de pouvoir inverser signaux sources et coefficients.

Pour retrouver les matrices facteurs, les algorithmes NMF fonctionnent sur un principe itératif qui consiste généralement à minimiser une fonction de coût, J . On cherche ainsi à minimiser la distance entre la matrice des observations Y et le produit des matrices estimées WH, sous la contrainte de non-négativité :

min W,H J (Y, W, H) = min W,H D(Y WH), avec W ≥ 0 et H ≥ 0 (1.14)
où D(• •) désigne une distance entre matrices (ou vecteurs). Le choix de cette mesure de distance va dépendre de la structure des données, de la distribution des signaux à étudier, du bruit. La mesure la plus commune est celle qui a été introduite par [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF], elle correspond à la norme de Frobenius, • F , (qui équivaut à la norme l 2 ou distance euclidienne).

D(Y WH) = 1 2 Y -WH 2 F . (1.15)
Cette distance est bien adaptée dans le cas de bruits additifs gaussiens [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorization[END_REF] sur les signaux sources. Dans le cas d'autres types de bruit la divergence de Kullback-Leibler (aussi appelée I-divergence) [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] est largement utilisée :

D(Y WH) = e,b y eb • ln y eb [WH] eb -y eb + [WH] eb (1.16)
De nombreuses autres fonctions de coût ont été utilisées, on pourra citer les divergences de Bregman [START_REF] Sra | Generalized Nonnegative Matrix Approximations with Bregman Divergences[END_REF], les divergences de Itakura Saito [START_REF] Fevotte | Nonnegative Matrix Factorization with the Itakura-saito Divergence : With Application to Music Analysis[END_REF] ou encore les β-divergence [START_REF] Yu | Nonnegative matrix factorization 2d with the flexible β-Divergence for single channel source separation[END_REF] qui regroupent certaines des divergences précédemment mentionnées. Dans [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations : Applications to exploratory multi-way data analysis and blind source separation[END_REF] un large éventail des choix de distances possibles est mentionné.

Unicité et convergence de la NMF Jusqu'à présent on a parlé de la décomposition de Y en W et H cependant cette décomposition n'est pas unique. En effet on peut très bien trouver une matrice Q ∈ R D×D , inversible, telle que Y = WQQ -1 H = W H. On obtient alors deux nouvelles matrices facteurs. La contrainte de non-négativité ne s'applique pas à Q. Il n'y a donc pas unicité de la solution [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations : Applications to exploratory multi-way data analysis and blind source separation[END_REF]. De plus dans le cas de la NMF les critères ne sont convexes que selon l'une des deux variables. Par conséquent les algorithmes de NMF ne peuvent converger que vers des minima locaux. La convergence de l'algorithme vers la solution va donc dépendre de différents paramètres (initialisation, ajouts de contraintes,...) que nous développerons ultérieurement. Différents auteurs se sont penchés sur le cas de la convergence des algorithmes de NMF. [START_REF] Moussaoui | Non-negative source separation : range of admissible solutions and conditions for the uniqueness of the solution[END_REF] et [START_REF] Donoho | When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts ? Advances in neural information processing systems 16[END_REF] ont une approche mathématique du problème et donnent les conditions suffisantes sur les données pour avoir une solution unique à la NMF. Ces conditions sont toutefois très difficiles à satisfaire dans le cas d'étude de signaux "réels". D'autres auteurs préfèrent étudier la convergence vers un minimum local [START_REF] Lin | On the convergence of multiplicative update algorithms for nonnegative matrix factorization[END_REF] [START_REF] Bardeau | Stability analysis of multiplicative update algorithms for non-negative matrix factorization[END_REF]. On se servira ensuite des différents paramètres pour que ce minimum local soit le plus proche possible de la solution. Différents éléments influençant la convergence de la NMF sont décrit ci-dessous ; Normalisation des matrices produits Pour contraindre le champ des solutions possibles il est possible de normaliser les colonnes de W et/ou les lignes de H. Cette approche est utile lorsque l'on ne dispose d'aucun a priori, elle permet d'atténuer les effets de facteur d'échelle. La plus commune de ces normalisations correspond à la division des vecteurs choisis (lignes de W ou colonne de H) par la somme de leurs éléments respectifs, ce qui équivaut à diviser par la norme l 1 de chaque vecteur. D'autres normes peuvent être utilisées, cependant d'après [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorizations : Applications to exploratory multi-way data analysis and blind source separation[END_REF], c'est avec la norme l 1 que l'on obtient les meilleurs résultats.

Initialisation Les méthodes NMF étant des méthodes itératives il est nécessaire de les initialiser.

Les performances de ces méthodes vont souvent être fortement dépendantes de l'initialisation choisie. En effet si l'initialisation n'est pas "bonne" l'algorithme peut diverger ou converger vers un minimum local qui sera éloigné de la solution attendue. De nombreuses possibilités d'initialisation ont été étudiées [START_REF] Wild | Improving non-negative matrix factorizations through structured initialization[END_REF], [START_REF] Zheng | Initialization enhancer for non-negative matrix factorization[END_REF], [START_REF] Qiao | New SVD based initialization strategy for non-negative matrix factorization[END_REF]. Le choix de l'initialisation ou de la méthode d'initialisation pourra dépendre des connaissances a priori, du type de signaux... Ajout de contraintes au critère de distance Il est possible d'ajouter à la fonction de coût des contraintes supplémentaires à la distance à minimiser. On réduit alors le champ des solutions possibles. L'ajout de telles contraintes va être soumis aux connaissances a priori ou aux hypothèses faites sur l'une et/ou l'autre des matrices facteurs recherchées. La fonction de coût (1.14) devient alors : • la contrainte de parcimonie, telle qu'elle a été décrite dans 1.1.2.3, a largement été utilisée dans le cas de méthodes NMF contraintes [START_REF] Hoyer | Non-negative sparse coding[END_REF], [START_REF] Zhu | Structured Sparse Method for Hyperspectral Unmixing[END_REF]. Elle peut s'appliquer à une matrice en particulier ou aux deux. Dans [START_REF] Hoyer | Non-negative sparse coding[END_REF] on a par exemple J H (H) = db h ij et α W = 0.

J (Y, W, H) = D (Y WH) + α W J W (W) + α H J H (H) (1.
• la contrainte sur le lissage est aussi largement utilisée [START_REF] Essid | Smooth Nonnegative Matrix Factorization for Unsupervised Audiovisual Document Structuring[END_REF]. Avec cette contrainte on cherche à obtenir des signaux et/ou des paramètres (selon les matrices contraintes) qui soient les plus lisses et continus possible. Pour ce type de contraintes on aura tendance à utiliser la norme l 2 . En effet cette norme va d'avantage mettre en évidence les variations importantes.

• la contrainte sur la localisation est aussi une possibilité. Ce type de contraintes peut être utilisé sur un graphe (théorie des graphes) [START_REF] Caï | Graph Regularized Nonnegative Matrix Factorization for Data representation[END_REF]. On met aussi en place cette contrainte en traitant le problème d'un point de vue local [START_REF] Feng | Local non-negative matrix factorization as a visual representation[END_REF]. On retrouve fréquemment ce genre d'approche lorsque l'on traite des images où l'on observe une cohérence spatiale (route qui se poursuit sur plusieurs pixels, champs qui recouvrent plusieurs pixels voisins...).

• des contraintes qui s'appuient sur des connaissances statistiques des signaux sources (ou des paramètres de mélange) sont intéressantes à utiliser dans le cas de modélisations gaussiennes. Dans ce cas on est alors dans des configurations semi-supervisées. C'est le cas de [START_REF] Emad | Regularized nonnegative matrix factorization using Gaussian mixture priors for supervised single channel source separation[END_REF], où des mélanges de gaussiennes sont utilisés comme contraintes.

Bien d'autres paramètres peuvent être utilisés pour faire converger la NMF vers la solution attendue (jouer sur le critère d'arrêt des itérations [START_REF] François | Stopping Criteria for Non-Negative Matrix Factorization Based Supervised and Semi-Supervised Source Separation[END_REF], etc). Ces nombreuses possibilités vont aussi dépendre du type d'algorithme utilisé pour effectuer la NMF.

Quelques algorithmes de NMF

Des algorithmes de NMF ont été développés pour chacune des fonctions de coût envisagées (se rapporter aux différentes références déjà citées). Cependant la majorité de ces méthodes sont basées sur deux grandes classes d'algorithmes. Pour présenter ces algorithmes, on considère que la fonction D correspond à la distance de Frobenius, telle que décrite dans (1.15). On cherche donc à résoudre :

min W,H J (Y, W, H) = min W,H 1 2 Y -WH 2 F , avec W ≥ 0 et H ≥ 0. (1.18)
Des variantes des algorithmes présentés ci-dessous existent pour des choix différents de D ainsi que dans les cas où des contraintes sont rajoutées, comme dans (1.17).

Algorithmes par gradient projeté : Ces algorithmes utilisent la méthode du gradient projeté, avec, à chaque itération, une mise à jour des matrices sur l'espace des solutions possibles. Dans le cas de (1.18) la seule contrainte porte sur la non-négativité, l'espace des solutions correspond donc à R + . Cet espace pourra être modifié dans le cas où des contraintes sont ajoutées, comme dans la fonction de coût décrite dans (1.17). La version standard, la plus simple, de l'algorithme de NMF donne les règles de mise à jour des matrices suivantes :

W ← W -β W ∂J ∂W + (1.19) H ← H -β H ∂J ∂H + (1.20) où β W ∈ R * + et β H ∈ R * + correspondent
aux pas des itérations de mise à jour de W et H. Leurs valeurs peuvent être fixées manuellement ou être adaptées automatiquement au cours de l'algorithme. La notation [.] + signifie que chacun des éléments des matrices mis à jour est projeté sur le domaine R + . Cette projection équivaut à associer une valeur quasi-nulle à toutes les valeurs négatives. Différents algorithmes de NMF utilisent le gradient projeté [START_REF] Lin | Projected gradient methods for nonnegative matrix factorization[END_REF], [START_REF] Cichocki | Multilayer Nonnegative Matrix Factorization using projected gradient approaches[END_REF], [START_REF] Guan | NeNMF : An Optimal Gradient Method for Nonnegative Matrix Factorization[END_REF]. Cependant la mise à jour diffère en raison de la complexification du modèle (fonction de coût, adaptation du pas...).

Algorithmes multiplicatifs : Les premiers algorithmes de type multiplicatif ont été développés par Lee et Seung [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF]. On remarquera d'ailleurs que dans [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF] les algorithmes de mise à jour sont donnés dans le cas où D correspond à la distance de Frobenius et dans celui où D correspond à la divergence de Kullback-Leibler. Les algorithmes multiplicatifs sont issus des algorithmes de descente de gradient. Les pas β W et β H sont remplacés par une écriture en fonction des matrices. C'est l'un des avantages de ce type d'algorithme puisque le pas est ainsi automatiquement fixé par l'algorithme. Dans la version la plus simple la mise à jour des algorithmes multiplicatifs s'écrit de la manière suivante :

W ← W YH T WHH T (1.21) H ← H W T Y W T HH (1.22)
où est l'opérateur de produit terme à terme (produit de Hadamard) et l'opérateur de division terme à terme. Ce type d'algorithmes est plus difficile à adapter pour des fonctions de coût, J , quelconques car il n'existe pas de règles pour obtenir les formules de mise à jour correspondantes. Cependant on trouve dans la littérature de nombreux algorithmes multiplicatifs [START_REF] Sra | Generalized Nonnegative Matrix Approximations with Bregman Divergences[END_REF], [START_REF] Virtanen | Monaural Source Sound Separation by Nonnegative Matrix Factorization with Temporal Continuity and Sparseness criteria[END_REF], [START_REF] Yang | Unified Development of Multiplicative Algorithms for Linear and Quadratic Nonnegative Matrix Factorization[END_REF], [START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative Matrix Factorization with $\beta$-divergence[END_REF]. Chacun de ces algorithmes va être développé à partir de modèles ou de contraintes particulières. Ainsi dans [START_REF] Sra | Generalized Nonnegative Matrix Approximations with Bregman Divergences[END_REF] et [START_REF] Nakano | Convergence-guaranteed multiplicative algorithms for nonnegative Matrix Factorization with $\beta$-divergence[END_REF] on remplace la distance de Frobenius par une divergence. Dans [START_REF] Virtanen | Monaural Source Sound Separation by Nonnegative Matrix Factorization with Temporal Continuity and Sparseness criteria[END_REF], des fonctions de contraintes ont été rajoutées au sein de la fonction de coût.

Algorithmes ALS : Les algorithmes ALS (Alternating Least Square) sont issus des premiers travaux sur la NMF de Paatero et Tapper [START_REF] Paatero | Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values[END_REF] [START_REF] Cichocki | Hierarchical ALS Algorithms for Nonnegative Matrix and 3d Tensor Factorization[END_REF], des fonctions de contraintes sont insérées dans la fonction de coût afin de contraindre, entre autres, la parcimonie. D'autres exemples sont illustrés dans [START_REF] Paatero | The Multilinear Engine : A Table driven, Least Squares Program for Solving Multilinear Problems, including the n-Way parallel Factor Analysis Model[END_REF] et [START_REF] Langville | Algorithms, Initialisations, and Convergence for the nonnegative Matrix Factorization[END_REF].

Il existe encore d'autres classes d'algorithmes pour effectuer la NMF. Pour d'avantage d'informations sur les grandes classes d'algorithmes on pourra se référer à [START_REF] Cichocki | Nonnegative Matrix and Tensor Factorization[END_REF] et [START_REF] Berry | Algorithms and applications for approximate nonnegative matrix factorization[END_REF] ainsi qu'aux références qui y sont mentionnées.

La NMF dans le cas de mélanges non-linéaires

Les méthodes de NMF ont aussi été adaptées pour certaines catégories de mélanges nonlinéaires. Dans [START_REF] Févotte | Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization[END_REF] un modèle original est utilisé : Parmi les méthodes NMF pour le non-linéaire on pourra aussi citer la méthode développée dans [START_REF] Meganem | Linear-quadratic and polynomial Non-Negative Matrix Factorization : application to spectral unmixing[END_REF]. Cette méthode s'intéresse au cas des mélanges linéaires-quadratiques dont le modèle est décrit dans (1.7). L'avantage de ce type de mélange est qu'il peut s'écrire sous forme du produit de deux matrices, (1.8). La méthode développée s'appuie donc sur cette écriture ainsi que sur un certain nombre de critères et contraintes pour obtenir, par descente de gradient, une mise à jour de W et H.

Y = WH + R (1.
On pourra aussi citer [START_REF] Zafeiriou | Nonlinear Non-negative Component Analysis Algorithms[END_REF]. Cette méthode utilise la projection de la matrice à décomposer, Y sur un nouvel espace via une fonction φ : R D → H. On obtient alors

V = φ (y 1 ) • • • φ (y B ) T .
Dans cet espace V est décomposable en produit de matrices, V = WH. La décomposition se fait donc dans cet espace. Dans [START_REF] Zafeiriou | Nonlinear Non-negative Component Analysis Algorithms[END_REF] la mise à jour se fait par un algorithme multiplicatif.

De la SAS au démélange hyperspectral

Les principes généraux de la SAS ont été présentés. Le travail proposé dans le cadre de cette thèse s'intéresse à traiter des images hyperspectrales, plus précisément à effectuer du démélange hyperspectral. On montrera dans cette partie en quoi le démélange hyperspectral est un cas de SAS.

L'imagerie hyperspectrale en télédétection

Une image hyperspectrale correspond à une image acquise sur un grand nombre de longueurs d'onde, entre une vingtaine et plusieurs centaines, sur un domaine spectral réduit. Actuellement deux domaines sont favorisés pour ce type d'images, le VNIR-SWIR entre 0.4µm et 2.5µm qui correspond au visible et au proche infra-rouge, le domaine thermique entre 8µm et 12µm. L'objectif avec ce type d'images est d'avoir une très bonne résolution spectrale, de l'ordre de ∆λ λ ∼ 1%. En contrepartie la résolution spatiale de ces images est dégradée par rapport à celle obtenue pour de l'imagerie multispectrale, qui acquiert une image sur quelques bandes (généralement une dizaine), ou panchromatique (image en niveau de gris). La résolution spatiale des images hyperspectrales va dépendre du type de support du capteur.

• L'imagerie aéroportée permet des résolutions comprises entre plusieurs dizaines de centimètres et quelques mètres. La caméra hyperspectrale 0.4 -2.5µm HySpex, faite pour l'imagerie aéroportée, est composée de deux capteurs : (a) une camera sensible entre 0.4µm et 1µm avec une résolution spatial de 80cm, (b) un capteur sensible entre 1µm et 2.5µm, avec une résolution spatiale de 1.6m, pour une altitude de 2km. • Dans le cas de l'imagerie spatiale, dans le domaine 0.4 -2.5µm, la résolution spatiale est de l'ordre de la dizaine de mètres. Les projets comme PRISMA ou EnMap prévoient respectivement des résolutions de 20m et 30m. Dans les images hyperspectrales, chaque pixel est donc associé à un spectre. On s'intéressera ici à la signification de ces spectres.

Les premiers travaux de spectrométrie ont eu pour objectif l'étude du comportement géophysique des sols [START_REF] Clark | Reflectance spectroscopy : Quantitative analysis techniques for remote sensing applications[END_REF], [START_REF] Hapke | Theory of Reflectance and Emittance Spectroscopy[END_REF]. Ils s'appuient sur une étude fine des phénomènes de transfert radiatif qui interviennent dans le cadre de la télédétection. A partir de ces études des modèles ont été développés pour décrire l'impact de la réflectance des matériaux, présents au sein d'une observation, dans le spectre enregistré par les capteurs. Les modélisations obtenues vont ouvrir la voie à de nombreux domaines de la télédétection : extraction de cibles : il s'agit de rechercher à l'intérieur d'une image un élément plus petit que la résolution spatiale d'un pixel. Pour cela on recherche le spectre caractéristique de cet élément dans les spectres observés de chaque pixel [START_REF] Yu | Automatic target detection and recognition in multiband imagery : a unified ML detection and estimation approach[END_REF], [START_REF] Chang | Constrained subpixel target detection for remotely sensed imagery[END_REF].

classification : ce domaine existait déjà pour les images "classiques"(panchromatique ou multispectral), on verra néanmoins des méthodes apparaître pour prendre en compte la richesse spectrale de ces nouvelles images [83] [84]. démélange : il s'agit de retrouver les spectres des matériaux qui sont présents dans un pixel ainsi que leur proportion à partir du spectre observé de chaque pixel. Ce domaine d'étude sera d'avantage détaillé dans la partie suivante. fusion d'images hyperspectrales et panchromatiques (ou multi-spectrales) : ce domaine vise à compenser la moins bonne résolution spatiale des images hyperspectrales en utilisant des images panchromatiques ou multi-spectrales (dans ce cas on parle de multi-sharpening) qui ont une meilleure résolution spatiale [START_REF] Loncan | Hyperspectral Pansharpening : A riview[END_REF].

Le démélange hyperspectral

Nous allons porter une attention particulière au cas du démélange hyperspectral. L'objectif est donc d'extraire la proportion et/ou les spectres des matériaux dits purs au sein de chaque pixel. On considérera pour l'instant que l'image se compose de M matériaux purs. L'estimation (ou le choix si on n'est pas dans le cas aveugle) de ces matériaux purs va dépendre de l'échelle d'étude, de l'application... On s'intéressera d'avantage à cette notion dans une prochaine partie. L'une des premières formalisation générale de cette problématique est faite par Keshava et Mustard dans [START_REF] Keshava | Spectral unmixing[END_REF]. Dans cet article deux catégories de surfaces sont distinguées. Les équations reliant les spectres de réflectance des matériaux purs aux spectres observés varient en fonction du paysage observé.

La première catégorie de scène correspond à des surfaces planes, en "damier". Les matériaux qui composent la scène occupent au sol une surface définie. Un rayon de lumière n'interagit alors qu'avec un unique matériau en chaque point élémentaire, comme représenté sur la Figure .1.1. Dans ce cas on considère que le modèle de mélange est linéaire. Le spectre observé dans un pixel p, x p s'écrit comme la somme pondérée des spectres en réflectance des matériaux purs, r m , présents dans l'image :

x p = M m=1 c pm r m .
(1.24)

Ici r m = [r m1 , • • • , r mL ] T est un spectre en réflectance de L longueurs d'onde, donc ∀m, r m ≥ 0 et c pm représente le coefficient de mélange pour le matériau m au sein du pixel p. On appelle l'ensemble de ces coefficients abondances. Ils représentent la proportion de surface occupée par le matériau m dans le pixel p. Par conséquent deux contraintes s'appliquent sur les c pm :

• la contrainte de non-négativité, APC (Abundance positivity constraint) :

c pm ≥ 0, ∀ [p, m] ∈ 1, P × 1, M (1.25)
car la surface occupée au sol est positive ou nulle.

• la contrainte de somme à un, ASC (Abundance Sum-to-one Constraint) :

M m=1 c pm = 1, ∀p ∈ 1, P (1.26)
car la somme des proportions de surface occupées par les matériaux purs, correspond à la totalité de la surface du pixel.

Si l'on s'intéresse non plus à un pixel mais à une image on peut écrire (1.24) sous forme matricielle :

X = CR avec ∀p M m=1 c pm = 1 c pm ≥ 0 ∀m ∈ 1, M (1.27) où -X = [x 1 , • • • , x P ] T ∈ R P ×L est la matrice contenant l'ensemble des spectres (à L bandes) observés dans l'image, -R = [r 1 , . . . , r M ] T ∈ R M ×L est la matrice contenant les M spectres purs, -C = [c 1 , • • • c P ] T ∈ R P ×M est la matrice des abondances où c p = [c p1 • • • c pM ] T ∈ R M ×1
correspond au vecteur des coefficients de mélange pour le pixel p.

A partir des équations (1.24) ou (1.27) on constate que l'on se situe dans le cas d'une SAS contrainte. En effet dans le cas initial du démélange, tel qu'introduit par Keshava et Mustard, les spectres de matériaux purs ne sont pas connus. Ils correspondent aux signaux sources du mélange. Ces spectres sont appelés pôles de mélange (ou endmembers en anglais). Les abondances sont les paramètres du modèle de mélange qui correspondent à une information physique, la surface occupée au sol, il s'agit souvent de la principale information recherchée. Les connaissances sur la physique des signaux et des paramètres ont abouti aux contraintes sur les abondances (1.25) et (1.26) ainsi qu'à la contrainte de non-négativité sur les pôles de mélange. En télédétection le choix de considérer les spectres comme étant les sources et les abondances comme étant les paramètres de mélange est le plus fréquent. Il est cependant possible d'inverser ces appellations et de considérer que les abondances sont les sources. Ce choix est courant dans le cadre de la séparation de sources pour l'observation de l'univers. Le second type de mélange introduit par Keshava et Mustard regroupe l'ensemble des mélanges non-linéaires. Ils sont illustrés par le cas des mélanges intimes, Fig. 1.2. Ce type de scènes correspond à des sols très rugueux ou granuleux, où les matériaux purs sont finement mêlés. La lumière interagit avec plusieurs matériaux avant de rejoindre le capteur. Ce type de mélange apparaît fréquent lorsque l'on souhaite étudier des phénomènes microscopiques, des zones de sables ou encore des pollutions aux hydrocarbures dans les sols.

Dans [START_REF] Keshava | Spectral unmixing[END_REF] aucun modèle de mélange n'est donné dans les cas non-linéaire. Keshava et Mustard introduisent seulement cette possibilité pour expliquer les erreurs observées si l'on considère dans certains cas le mélange linéaire. Cependant il existe des modèles de mélange non-linéaire qui établissent le lien entre les spectres des pôles de mélange et les spectres observés. Les mélanges intimes peuvent être caractérisés par les modèles de Hapke [START_REF] Hapke | Bidirectional reflectance spectroscopy : 1. theory[END_REF] ou de Shkuratov [START_REF] Shkuratov | A Model of Spectral Albedo of Particulate Surfaces : Implications for Optical Properties of the Moon[END_REF]. Cependant ces modèles sont hautement non-linéaires et nécessitent la connaissance, l'estimation d'un grand nombre de paramètres. Le problème de SAS est donc extrêmement difficile à résoudre. D'autres types de modèles de mélange non-linéaires ont été obtenus dans le cas de l'observation de la Terre. Dans [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] un modèle de mélange a été obtenu à partir de l'étude du transfert radiatif en milieu urbain. Il permet de prendre en compte les phénomènes de réflexions multiples sur des bâtiments. Le modèle de mélange obtenu correspond à un modèle quadratique avec certaines contraintes. On peut alors écrire le spectre x p :

x p = M m=1 c pm r m + M m=1 M µ=m c p mµ r m r µ , ∀p, avec      M m=1 c pm = 1 c pm ≥ 0 ∀m ∈ 1, M 0 ≤ c p mµ ≤ 0.5 ∀1 ≤ m ≤ µ ≤ M (1.28)
où c p mµ représente le coefficient de mélange des termes quadratiques associés au pixel p ainsi qu'aux spectres m et µ, r m r µ représente le produit entre deux spectres. Ce terme provient de la réflexion d'une partie de la lumière sur le matériau m puis sur le matériau µ (ou inversement) avant d'atteindre le capteur. Ce modèle est extrêmement intéressant car il s'appuie sur une étude physique du phénomène et non sur une évolution des modèles précédents pour les faire coller aux observations. D'autres modèles se sont intéressés au cas de scènes avec présence d'arbres [START_REF] Ray | Nonlinear spectral mixing in desert vegetation[END_REF], [START_REF] José | Nonlinear mixture model for hyperspectral unmixing[END_REF], [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data[END_REF]. Comme dans le cas de l'urbain, on voit alors apparaître des réflexions multiples de la lumière avant l'arrivée au capteur. Les modèles proposés sont donc souvent des modèles linéaire-quadratiques. On pourra citer celui proposé par Fan et al. dans [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data[END_REF]. Ce modèle se rapproche de celui proposé par Meganem et al., la principale différence réside dans les coefficients de mélange des termes quadratiques :

x p = M m=1 c pm r m + M m=1 M µ=m+1 c pm c pµ r m r µ .
(1.29)

Ici les coefficients de mélange des termes quadratiques correspondent aux produits du rapport de surface occupé par chacun des matériaux. On constate aussi que ce modèle n'autorise pas les produits de mêmes sources. Cependant il n'est basé sur aucune analyse physique des phénomènes physiques présents.

On constate donc que le problème de démélange est un problème de SAS mais avec des contraintes particulières. Ces contraintes dépendront du type de scènes étudiées, de la résolution spatiale des images hyperspectrales, de la modélisation physique choisie... La présence de ces contraintes ainsi que des a priori physiques va influencer le choix des méthodes à utiliser parmi celles décrites dans la partie précédente (section 1.1.2).

Le démélange hyperspectral sur des données réelles

Résumé :

Après avoir introduit le démélange hyperspectral et mis en évidence qu'il s'agissait d'un problème de SAS, nous allons présenter les méthodes utilisées pour effectuer le démélange hyperspectral. Dans un premier cas nous nous intéresserons au cas linéaire puis nous aborderons le cas de modèles de mélange plus complexes. Finalement nous introduirons les limites connues des méthodes présentées lorsqu'elles sont appliquées à des images hyperspectrales réelles.

Les méthodes de démélange linéaires

Dans la section 1.1.3.2 on a montré que, pour un certain nombre de scènes, un modèle de mélange linéaire pouvait être une bonne approximation des phénomènes de transfert radiatif entrant en jeu avant l'arrivée au capteur. Les particularités de ce modèle, décrit par (1.27), ainsi que les caractéristiques des signaux, vont orienter le choix des méthodes sélectionnées pour effectuer le démélange.

Ainsi les méthodes d'ICA (cf. Section 1.2.1) ne sont guère applicables au démélange car les spectres de différents matériaux peuvent être largement corrélés. Une discussion correspondant à cette problématique est proposée dans [START_REF] José | Does Independent Component Analysis Play a˜Role in Unmixing Hyperspectral Data[END_REF]. Il apparaît que les résultats des méthodes ICA se dégradent lorsque la corrélation entre les spectres sources augmente. Des méthodes de démélange ont cependant été développées, [START_REF] Xia | Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints[END_REF], [START_REF] Wang | Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[END_REF]. Elles ne pourront être utilisées que dans le cas où la différence entre les pôles de mélange sera suffisamment grande.

Les méthodes géométriques

Les méthodes de démélange géométriques sont issues de la contrainte de somme à un (ASC), (1.26). En effet si l'ASC est vérifiée l'ensemble des observations seront contenues dans un simplexe dont les sommets sont les pôles de mélange. L'objectif va donc consister à déterminer les sommets de ce simplexe à partir des observations. On obtient alors les pôles de mélange. On récupère ensuite les abondances dans chacun des pixels.

Extraction des pôles de mélange On distingue deux types de cas dans les extraction des pôles de mélange qui utilisent la géométrie du simplexe. Dans le premier cas, il existe des pixels dans lesquels un seul matériau est présent. On parlera de spectres purs. Dans ce cas, les sommets du simplexe sont contenus dans la figure des observations. Il faut alors rechercher ces sommets.

De nombreuses méthodes d'extraction de pôles de mélange sont basées sur cette hypothèse de présence de spectres purs. On pourra citer les plus connues comme N-FINDR [START_REF] Winter | N-FINDR : an algorithm for fast autonomous spectral end-member determination in hyperspectral data[END_REF], PPI [START_REF] Boardman | Mapping target signatures via partial unmixing of AVIRIS data[END_REF] ainsi que toutes ses dérivées (FIPPI [START_REF] Cheng | A fast iterative algorithm for implementation of pixel purity index[END_REF]...), VCA [START_REF] Nascimento | Vertex component analysis : a fast algorithm to unmix hyperspectral data[END_REF]. Ces méthodes sont basées sur la maximisation du volume du simplexe.

Dans le second cas il n'y a plus de spectres purs, par contre il y a des spectres observés sur les arêtes du simplexe, c'est-à-dire qu'il y a suffisamment de mélanges 2 à 2. Les méthodes développées dans ce type de cas cherchent à minimiser le volume du simplexe. La méthode SI-SAL [START_REF] Bioucas-Dias | A variable splitting augmented lagrangian approach to linear spectral unmixing[END_REF] propose de résoudre le problème d'optimisation lié à la minimisation du volume. Cette méthode relâche la contrainte de positivité sur les spectres. Cependant une fonction est ajoutée à la fonction de coût qui pénalise la non-positivité des spectres. La méthode MVSE, présentée dans [START_REF] Chan | A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing[END_REF], résout le problème d'optimisation en conservant la contrainte de positivité.

Ces méthodes sont très efficaces lorsqu'il y a absence de bruit et que la condition de présence de pixels purs, ou de pixels sur les arrêtes, est vérifiée. Dans le cas contraire, leurs performances vont très vite diminuer.

Détermination des abondances La récupération des abondances se fait à partir de méthodes supervisées. On considère que les spectres de réflectance présents dans l'image sont connus, on cherche alors à récupérer les coefficients de mélange. La méthode la plus communément utilisée est la méthode des moindres carrés contrainte, FCLSU [START_REF] Heinz | Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[END_REF]. D'autres méthodes ajoutent des contraintes comme la parcimonie à la recherche des coefficients de mélange. C'est le cas de l'algorithme SUNSAL [START_REF] José | Alternating direction algorithms for constrained sparse regression : Application to hyperspectral unmixing[END_REF] qui résout l'équation (1.12).

Dans le cas de SAS on associe la recherche des spectres avec la recherche des abondance. Si on se trouve dans un cas non-aveugle où les spectres des pôles de mélange sont connus ou si l'on dispose d'une bibliothèque de spectres, ces algorithmes supervisés peuvent aussi être utilisés.

Les méthodes bayésiennes

Les méthodes bayésiennes sont utilisables dans le cas du démélange hyperspectral (cf.partie 1.1.2.2). Dans le cas du démélange hyperspectral les contraintes de somme-à-un et de positivité doivent être prises en compte.

Dans [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery[END_REF] une première méthode de démélange supervisé a été développée pour obtenir les abondances, avec la contrainte de somme-à-un, en utilisant une approche bayésienne. Dans ce cas, pour chaque pixel, la distribution a priori du vecteur des abondances correspond à une distribution de Dirichlet. Le bruit est considéré gaussien avec une variance suivant une loi de distribution gamma-inverse. Une extension de cette méthode est présentée dans [START_REF] Dobigeon | Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery[END_REF] pour effectuer le démélange complet. Dobigeon et al. font l'hypothèse que les projections des pôles de mélange sur les M premiers axes de l'ACP suivent une distribution conjuguée de gaussiennes tronquées. D'autres méthodes gaussiennes de démélange ont été créées. Chacune se base soit sur une modélisation différente des pôles de mélange et des abondances, soit sur l'ajout de contraintes. Dans [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model. application to hyperspectral imagery[END_REF] le modèle de mélange est considéré comme un modèle de composition normale, c'est-àdire que chaque pôle de mélange est vu comme une distribution gaussienne centrée autour d'un spectre moyen et une variance propre à chaque pôle de mélange. Cette méthode de démélange s'appuie cependant sur l'hypothèse d'indépendance entre les pôles de mélange, ce qui fait qu'on ne pourra employer cette méthode que sur des zones particulières. Dans [START_REF] Themelis | A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing[END_REF] la contrainte de parcimonie est incorporée dans les a priori de la distribution des abondances. Cependant la méthode est semi-supervisée, elle requiert la connaissance des spectres présents dans l'image.

A l'inverse certaines méthodes bayésiennes ont été développées pour la recherche des pôles de mélange. Dans [START_REF] Miao | Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[END_REF] on introduit les a priori sur les pôles de mélange en se servant de la particularité d'avoir un simplexe (cf. section 1.2.1.1). Dans [START_REF] Zare | An investigation of likelihoods and priors for bayesian endmember estimation[END_REF] est introduite la notion de variabilité intra-classe qui sera détaillée dans la suite du manuscrit. Le modèle considéré part du principe que les pôles de mélange sont contenus dans des gaussiennes.

Les méthodes bayésiennes sont généralement très coûteuses en calcul car elles font appel à des processus comme les MCMC (Méthode Monte Carlo par chaîne de Markov). Ces processus visent à tirer selon une loi de probabilité donnée des échantillons pour converger vers la valeur espérée. Il est parfois nécessaire d'avoir un grand nombre de tirages. On remarquera en outre la complexité d'ajouter des contraintes sur les abondances tout en cherchant à faire du démélange non supervisé [START_REF] Themelis | A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing[END_REF].

Les méthodes d'analyse en composantes parcimonieuses

Les méthodes d'analyse en composantes parcimonieuses sont elles aussi largement utilisées dans le cas du démélange linéaire. L'hypothèse de parcimonie s'accorde bien avec les scènes de type damier. En effet dans le cas où l'on observe un paysage les matériaux purs considérés occuperont de larges espaces et la très grande majorité des pixels seront occupés par un faible nombre de matériaux. Dans le cas des études dans des zones où les objets sont plus petits, cette hypothèse pourra être discutée.

La présence de zones mono-sources, nécessaires à l'application de méthodes de type LI-TEMPCORR (cf. section 1.2.3), est une hypothèse forte. Dans le cas où cette hypothèse serait validée des méthodes ont été développées pour extraire les pôles de mélange ainsi que les abondances [START_REF] Moussa | Blind spatial unmixing of multispectral images : New methods combining sparse component analysis, clustering and non-negativity constraints[END_REF].

Les méthodes qui cherchent uniquement à réduire le nombre de pôles de mélange impliqués dans la reconstruction des observations nécessitent généralement un dictionnaire, B. La formulation de ce type de problématique pour le démélange hyperspectral est décrite précisément dans [START_REF] Iordache | Sparse unmixing of hyperspectral data[END_REF]. Parmi ce type de méthodes, SUNSAL [START_REF] José | Alternating direction algorithms for constrained sparse regression : Application to hyperspectral unmixing[END_REF] optimise l'équation :

min c B i 1 2 Bc B i -x i 2 + λ c B i 0 tel que c B i ≥ 0. (1.30)
Il s'agit d'une extension de (1.12) présentée dans la section 1.1.2.3. La contrainte de somme-à-un est relâchée dans cette méthode. Le dictionnaire B pourra être issu de connaissances a priori de la scène (cas non-aveugle) ou bien être construit à partir de la scène.

Comme on le remarque dans les parties précédentes, la parcimonie est souvent ajoutée comme contrainte à d'autres types de méthodes. On ne s'étendra donc pas sur cette partie.

Les méthodes NMF

En raison de la contrainte de positivité sur les pôles de mélange et les abondances, les méthodes de NMF sont très bien adaptées au cas du démélange. Il est cependant nécessaire d'y ajouter la contrainte de somme-à-un. L'ensemble des considérations évoquées dans la partie 1.2.4 sont toujours valables.

Un très grand nombre de méthodes NMF on été développées dans le cas linéaire. Chacune propose d'ajouter une nouvelle contrainte ou de la prendre en compte différemment dans la fonction de coût. Dans [START_REF] He | Sparsity-Regularized Robust Non-negative Matrix Factorization for Hyperspectral Unmixing[END_REF] une méthode NMF parcimonieuse est proposée. Elle considère aussi que le bruit se modélise comme la superposition d'un bruit gaussien et d'un bruit parcimonieux. Dans [START_REF] Liu | An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data[END_REF] la méthode ASSNMF (pour Abundance Separation and Smoothness constrained NMF) introduit deux contraintes. La première vise à minimiser l'information mutuelle entre la distribution des abondances dans les pixels. La seconde lisse la distribution des abondances. Dans [START_REF] Huck | Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data[END_REF] une contrainte est ajoutée à la fonction de coût pour minimiser la dispersion des spectres. Dans [START_REF] Wang | An endmember dissimilarity constrained Nonnegative Matrix Factorization Method for Hyperspectral unmixing[END_REF] c'est la "dissimilarité" des pôles de mélange qui est prise en compte dans la fonction de coût.

Une revue de l'ensemble des méthodes et classes de méthodes évoquées dans cette partie est disponible dans [START_REF] Bioucas-Dias | Hyperspectral Unmixing Overview : Geometrical, Statistical, and Sparse Regression-Based Approaches[END_REF]. Un grand nombre de méthodes et algorithmes y sont présentés pour chacune des classes de méthodes.

La non-linéarité dans les modèles de mélange

Si le modèle de mélange linéaire est une approximation suffisante pour de nombreux types de scènes, dans certains cas il ne suffit pas à rendre compte de l'ensemble des phénomènes radiatifs qui induisent le spectre observé de chaque pixel. C'est particulièrement le cas des scènes non planes ou fortement rugueuses (cf. section 1.1.3.2). Pour tenir compte de ces effets, des modèles de mélanges non-linéaires ainsi que des méthodes de démélange non-linéaires ont donc été développées.

Méthodes ne s'appuyant sur aucun modèle de mélange défini Il existe des méthodes qui permettent de s'affranchir de la connaissance du modèle de mélange. Ces méthodes sont généralement basées sur l'utilisation de réseaux de neurones. On citera ici quelques exemples de ce type d'approches.

Dans [START_REF] Licciardi | Pixel Unmixing in Hyperspectral Data by Means of Neural Networks[END_REF] la méthode propose un modèle de perceptron multi-couches. La première étape consiste à effectuer une réduction de dimensions pour retrouver les pôles de mélange via une Analyse en Composantes Principales Non-linéaires (NPCA) [START_REF] Del | Nonlinear principal component analysis for the radiometric inversion of atmospheric profiles by using neural networks[END_REF] puis à rechercher les abondances. D'autres modèles de perceptron multi-couches ont été développés, dans [START_REF] Pu | Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER Data[END_REF] par exemple il est construit pour le cas urbain.

Il existe aussi des approches qui utilisent des méthodes mixtes. Une initialisation est faite par une méthode de démélange linéaire puis un démélange non-linéaire est effectué à l'aide d'une méthode par réseaux de neurones [START_REF] Plaza | Joint linear/nonlinear spectral unmixing of hyperspectral image data[END_REF].

Une analyse des performances de différentes approches est proposée dans [START_REF] Liu | Comparison on non-linear mixture models : sub-pixel classification[END_REF]. Les tests sont effectués sur des données synthétiques simulées. Parmi les méthodes testées (arbres de régression, modèles adaptatifs ART, perceptron multi-couches) les meilleures performances sont obtenues pour les perceptrons multi-couches. D'autres méthodes existent pour effectuer le démélange non-linéaire sans connaître le modèle de mélange : passage de la notion de simplexe à celle de variété [START_REF] Heylen | Non-Linear Spectral Unmixing by Geodesic Simplex Volume Maximization[END_REF], changement d'espace (méthode à noyau adaptatif) [START_REF] Broadwater | A generalized kernel for areal and intimate mixtures[END_REF],... Nous ne nous attarderons pas plus sur ces travaux. En effet les travaux de cette thèse visent à étudier les milieux urbains et un modèle a été obtenu pour ce cas précis (cf. section 1.3.2, Eq.(1.28)).

Les méthodes bayésiennes

Comme il a été montré dans la partie consacrée à la description des méthodes bayésiennes (section 1.2.2) il est tout à fait possible d'adapter ce type de méthodes aux modèles de mélanges non-linéaires. Il suffira de recalculer les différentes lois a posteriori et connaître suffisamment les a priori sur les sources et les coefficients.

Dans [START_REF] Halimi | Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model[END_REF] la méthode présentée est une extension de la méthode linéaire présentée dans [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model. application to hyperspectral imagery[END_REF]. Elle repose sur un modèle bilinéaire généralisé qui est une extension de celui proposé par Fan dans [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data[END_REF], Eq.(1.29) :

x p = M m=1 c pm r m + M m=1 M µ=m+1 γ pmµ c pm c pµ r m r µ , ∀p, avec      M m=1 c pm = 1 c pm ≥ 0 ∀m ∈ 1, M 0 ≤ γ pmµ ≤ 1
(1.31) Cependant cette méthode ne permet d'estimer que les abondances. Pour les tests, les pôles de mélange sont extraits à l'aide de l'algorithme VCA [START_REF] Nascimento | Vertex component analysis : a fast algorithm to unmix hyperspectral data[END_REF]. Cet algorithme est adapté au cas linéaire et nécessite des pixels purs dans l'image, ce qui risque de dégrader les résultats obtenus par cette méthode.

Dans [START_REF] Altmann | Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes[END_REF] le mélange est modélisé par un modèle post-non-linéaire. Dans ce cas, les observations s'écrivent :

x p = f p M m=1 c pm r m + e p (1.32) 
où e p est la modélisation du bruit et la fonction f p ( ) est définie comme un polynôme du second ordre ce qui aboutit à une extension du modèle précédent. La méthode proposée est nonsupervisée. Les abondances sont tout d'abord obtenues en utilisant une approche bayésienne. L'originalité de cette approche est que la réduction de dimensionnalité est effectuée en considérant des variables latentes. Les abondances sont obtenues ensuite à partir des variables latentes. Les pôles de mélange sont finalement obtenus en utilisant une méthode de régression gaussienne. Ce modèle est également utilisé dans [START_REF] Altmann | Unsupervised Post-Nonlinear Unmixing of Hyperspectral Images Using a Hamiltonian Monte Carlo Algorithm[END_REF], mais la méthode présentée est une méthode complètement bayésienne qui estime dans le même temps les pôles de mélange et les abondances.

Les méthodes NMF Dans le cas des mélanges linéaires-quadratiques ou bilinéaires les méthodes NMF peuvent être adaptées. En effet, en se basant sur le même principe de factorisation que celui qui nous a permis d'obtenir l'équation (1.8) dans la section 1.1.1.2, l'équation de mélange peut s'écrire sous la forme d'un produit de deux matrices :

X = C R (1.33) où C = C a , C b ∈ R P ×K et R = R a R b ∈ R K×L avec K le nombre de pôles de mélange et de spectres quadratiques dans l'image. La matrice R a = [r 1 , • • • , r M ] T ∈ R M ×L contient les spectres purs et la matrice R b = [r 1 r 1 , r 1 r 2 , • • • , r M r M ] T ∈ R M ×L contient les spectres quadratiques. Les matrices C a ∈ R P ×M et C b ∈ R P ×M correspondent aux matrices des coefficients associés respectivement à R a et R b .
Contrairement au cas linéaire, les spectres composant la "matrice des pôles de mélange", R, ne sont pas indépendants les uns des autres. La matrice R b étant la "matrice des spectres quadratiques", elle est composée de produits de termes de la "matrice des pôles de mélange", R a . Concernant la matrice des abondances les matrices C a et C b ne sont pas forcement liées. Dans le modèle proposé par Fan [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated forest hyperspectral data[END_REF] on a pour chaque pixel p, c bp = c p1 × c p2 , c p1 × c p3 , • • • c p(M -1) × c pM , les deux matrices C a et C b sont alors reliées. A l'inverse dans le modèle proposé par Meganem [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] les deux matrices sont indépendantes l'une de l'autre.

Dans [START_REF] Meganem | Linear-quadratic Blind source separation using NMF to unmix hyperspectral images[END_REF] plusieurs méthodes NMF sont développées pour effectuer le démélange en considérant le modèle de mélange décrit dans [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] dont l'équation et les contraintes sont rappelées dans la section précédente 1.3.2, eq.(1.28). La première méthode appelée linéaire étendue n'utilise pas le lien entre les matrices R a et R b . On passe de la recherche de M spectres purs à la recherche de K = M + M spectres correspondant au spectres purs et aux spectres produits. La méthode proposée est une extension de l'algorithme multiplicatif proposé par Lee & Seung [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. Les matrices sont mises à jour sans prendre en compte le fait que certains spectres sont les produits des autres. Le second algorithme utilise une descente de gradient et une projection sur R + pour obtenir les règles de mise à jour de la matrice R a . La matrice R b est ensuite calculée à partir des spectres de R a . En parallèle la mise à jour de C est obtenue par descente de gradient et projection sur les domaines respectifs de C a et C b . Le troisième et le quatrième algorithme proposés dans [START_REF] Meganem | Linear-quadratic Blind source separation using NMF to unmix hyperspectral images[END_REF] sont des variations de cet algorithme. Le troisième utilise un gradient de Newton pour la mise à jour, le quatrième un algorithme multiplicatif. A partir de ces travaux, de nouveaux algorithmes de NMF ont été développés. On pourra par exemple citer les travaux de Benhalouche et al. [START_REF] Benhalouche | Bilinear matrix factorisation using a gradient method for hyperspectral endmember spectra extraction[END_REF].

Le modèle de Fan est utilisé dans [START_REF] Eches | A Bilinear-Blinear Nonnegative Matrix Factorization Method for Hyperspectral Unmixing[END_REF]. La fonction de coût contraint la somme-à-un. La mise à jour des matrices R a et C a se fait par descente de gradient. Les autres matrices sont obtenues à partir de ces deux premières matrices.

Une revue des méthodes de démélange appliquées dans le cas de modèles non-linéaires est disponible dans [START_REF] Heylen | A review of Nonlinear Hyperspectral Unmixing Methods[END_REF]. On y retrouve les méthodes citées précédemment ainsi que d'autres approches possibles. Nous avons choisi de nous en tenir à la présentation détaillée de quelques méthodes qui pouvaient s'appliquer au cas de l'étude des milieux urbains.

Les problématiques liées à l'application de ces méthodes sur des images réelles

Nous avons montré qu'un grand nombre de méthodes existaient pour effectuer le démélange aussi bien dans le cas de mélanges linéaires que dans le cas de mélanges non-linéaires. Cependant ces méthodes, appliquées sur des images réelles, vont se trouver confrontées à des problèmes qui non envisagés par le modèle de mélange ou les contraintes ajoutées au sein des méthodes.

Le nombre de pôles de mélange

Jusqu'à présent nous n'avons pas évoqué la question du nombre de pôles de mélange au sein des observations. En effet les méthodes que nous avons proposées dans les parties précédentes 2.1 et 2.2 nécessitent toutes de connaître le nombre de pôles de mélange. On s'intéressera donc aux méthodes développées pour extraire le nombre de pôles de mélange.

Pour obtenir le nombre de pôles de mélange on peut extraire la dimension de l'espace des observations. Si les images n'étaient pas bruitées il suffirait de calculer les valeurs propres associées à la matrice de covariance ou de corrélation de l'image et de regarder combien de valeurs propres sont non nulles. Dans le cas d'images réelles, l'approche la plus commune consiste à estimer le nombre de valeurs propres pertinentes à conserver pour retrouver l'ensemble de l'information. Différentes méthodes ont été développées pour cela.

Dans [START_REF] Chang | Estimation of the number of spectrally distinct signal sources in hyperspectral imagery[END_REF] différentes méthodes sont proposées, elles se basent toutes sur un seuillage des valeurs propres. Afin d'établir la valeur de ce seuil des approches se sont basées sur la théorie de détection de Neyman-Pearson. Le résultat de ces méthodes est comparé aux résultats obtenus avec une méthode qui utilise un critère de sélection sur l'information. La méthode HYSIME est proposée dans [START_REF] Dias | Hyperspectral Subspace identification[END_REF]. Cette méthode propose de minimiser l'erreur quadratique moyenne. Cette fonction va dépendre de deux termes : (i) la puissance de la projection du signal, (ii) la puissance de la projection du bruit. Ainsi on obtient une estimation du nombre de spectres qui produisent un espace représentant le meilleur compromis entre ces deux éléments. un seul spectre. A l'inverse on observe une variabilité spectrale. Ce phénomène est tout aussi problématique dans le cadre du démélange.

Dans la littérature on trouve différentes approches pour traiter cette problématique et différentes méthodes pour prendre en compte ce phénomène. Deux grands types d'approches se dégagent pour appréhender ce problème. Dans un premier cas, les pôles de mélange sont vus comme des spectres, dans un second ils sont vus comme des distributions statistiques.

Les pôles de mélange sont vus comme des spectres

Cette classe de méthodes est souvent divisée en deux, [START_REF] Zare | Endmember variability in hyperspectral analysis : Addressing spectral variability during spectral unmixing[END_REF]. Le premier cas est une situation semi-supervisée. On a à disposition une bibliothèque contenant au moins les pôles de mélange présents dans l'image. Dans le second cas cette bibliothèque n'est pas disponible. Cette distinction fait rarement varier le fond des méthodes utilisées. En effet les méthodes qui n'utilisent pas de bibliothèque pré-existantes en créent une ou plusieurs à partir des spectres de l'image [START_REF] Dennison | Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[END_REF]. Le principal problème consiste alors à extraire une bibliothèque "fiable" [START_REF] Franke | Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments[END_REF].

Le nombre de méthodes s'attaquant à ce problème de ce point de vue est relativement réduit. La principale, et plus ancienne, approche est la méthode MESMA (Multiple Endmember Spectra Mixture Models) développée dans [START_REF] Roberts | Mapping chaparral in the santa monica mountains using multiple spectral mixture models[END_REF]. La méthode MESMA est basée sur l'utilisation d'une grande bibliothèque. A partir des cette bibliothèque des "two-endmembers" sont créés. Il s'agit de la somme pondérée de 2 pôles de mélange présents dans la librairie. Ces éléments sont créés en faisant varier les pondérations des éléments dans les mélanges. Les "two-endmembers" obtenus sont ensuite comparés aux spectres de chaque pixel. Si un certain nombre de critères (erreur RMS,...) sont validés pour un "two-endmember" on attribue au pixel les proportions qui ont servi à composer ce "two-endmember". Pour les pixels qui n'ont pas été associés à un "two-endmember" on complexifie le modèle en passant à un "three-endmember". Cette méthode permet d'incorporer de la variabilité dans la classe végétation. On trouve dans la littérature de nombreuses dérivées de cette méthode : MELSUM [START_REF] Ph | Analysis of OMEGA/mars express data hyperspectral data using a multiple-endmember linear spectral unmixing model (MELSUM) : Methodology and first results[END_REF], AutoMCU [START_REF] Asner | Spectral unmixing of vegetation, soil and dry carbon cover in arid regions : Comparing multispectral and hyperspectral observations[END_REF]. Ces variations peuvent rajouter des contraintes ou, au contraire, alléger les a priori sur les spectres et leurs variations.

Les méthodes qui ne nécessitent pas de bibliothèques vont souvent chercher à en créer une artificiellement. C'est le cas des méthodes qui consiste à créer des "paquets" dans lesquels les spectres sont tous considérés comme les pôles de mélange du même matériau, [START_REF] Bateson | Endmember bundles : a new approach to incorporating endmember variability into spectral mixture analysis[END_REF]. La méthode proposée dans cet article consiste à extraire le sommet du simplexe à l'aide de l'une des méthodes décrites dans la section 1.2.1.1. Ces spectres servent de graines aux paquets associés. On cherche ensuite au sein de l'image les spectres des pixels qui sont corrélés à 99% (ou plus). Ils correspondent à des pôles de mélange possibles. On se sert ensuite de ces spectres pour rechercher les abondances. On trouve des évolutions de ce type d'approches par paquets (bundles en anglais).

Pour créer des bibliothèques, d'autres méthodes sont possibles. Il est par exemple possible d'extraire à partir des méthodes de recherche de pôles de mélange citées dans la partie précédente (2.3.1) un grand nombre de pôles de mélange. On extraira ainsi différents pôles de mélange associés à la même classe. On crée ainsi une bibliothèque à partir des données. On peut alors utiliser les méthodes parcimonieuses sur l'image avec cette bibliothèque [START_REF] Castrodad | Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery[END_REF]. D'autres approches vont pouvoir être mises en place à partir de ces bibliothèques connues ou créées. On pourra ainsi citer des méthodes basées sur la théorie des ondelettes [START_REF] Li | Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals[END_REF] pour récupérer les abondances tout en prenant en compte la variabilité intra-classe.

Plus récemment, Veganzones et al. [START_REF] Veganzones | A new extended linear mixing model to address spectral variability[END_REF] ont proposé un modèle permettant de prendre en compte la variabilité intra-classe dans le modèle de mélange (sans passer par les modélisations gaussiennes). Dans ce modèle un spectre observé s'écrit :

x p = M m=1 c pm φ pm r m + e p (1.34)
où e p et le bruit et φ pm est un réel qui va agir comme un coefficient multiplicatif sur le pôle de mélange. Ainsi on autorise une variation d'amplitude dans chaque pixel pour les pôles de mélange. En se basant sur ce modèle une méthode de démélange a été développée par Drumetz et al. [START_REF] Drumetz | Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Adress Spectral Variability[END_REF]. Cette méthode se base sur une optimisation de chaque terme pour chacun des pixels.

Les pôles de mélange sont vus comme des distributions statistiques

Les méthodes présentées dans cette classe sont des méthodes bayésiennes. Elles s'appuient sur le fait que la variabilité des pôles de mélange peut se voir comme une variation des pôles de mélange autours d'un spectre moyen. La variation de ces spectres et leur probabilité de prendre une valeur représente l'aspect statistique. Ces méthodes sont basées sur un certain nombre d'a priori concernant le bruit mais aussi l'allure de la distribution. Des modèles gaussiens peuvent être utilisés mais pas seulement.

Les méthodes statistiques ont, dans un premier temps, été employées pour mettre en place des méthodes de classification. Dans [START_REF] Stocker | Application of stochastic mixing models to hyperspectral detection problems[END_REF] on voit apparaître une des premières formes de classification par mélange de gaussiennes. L'idée est ici d'extraire 2 gaussiennes reliées telles que les lois de probabilité de ces gaussiennes s'écrivent de la manière suivante :

z = f z 1 + (1 -f )z 2 avec :
telles que celles présentées dans [START_REF] Dobigeon | Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery[END_REF] et [START_REF] Eches | Bayesian estimation of linear mixtures using the normal compositional model. application to hyperspectral imagery[END_REF] ont été étendues pour traiter la variabilité intraclasse [START_REF] Halimi | Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability[END_REF].

Des revues présentant ces grands types de méthodes sont disponible dans [START_REF] Zare | Endmember variability in hyperspectral analysis : Addressing spectral variability during spectral unmixing[END_REF] et [START_REF] Somers | Endmember variability in spectral mixture analysis : A review[END_REF]. On pourra aussi se référer à ces articles pour des références supplémentaires.

Le traitement d'images hyperspectrales en zones urbaines

Résumé :

Dans ce travail de thèse, nous nous intéressons aux milieux urbains. Cette partie sera donc consacrée aux différentes méthodes développées dans le domaine de la télédétection pour traiter les zones urbaines. Dans un premier temps on mettra en évidence les apports de la télédétection pour l'imagerie urbaine. On s'intéressera ensuite aux traitements dédiés à l'urbain et plus particulièrement au démélange hyperspectral en zone urbaine.

Les problématiques liées aux milieux urbains

Les territoires urbains sont aujourd'hui des zones de grand intérêt sachant qu'en 2014 l'ONU estimait que 54% de la population mondiale vivait en zone urbaine. De nombreuses problématiques apparaissent donc en lien avec les préoccupations autour de ces zones.

On pourra tout d'abord citer la gestion des espaces urbains. Avec l'agrandissement des villes, la détection des limites de zones urbaines devient un enjeu dans la gestion des espaces nationaux [START_REF] Su | Transformation of agricultural landscapes under rapid urbanization : a threat to sustainability in Hang-Jia-Hu[END_REF]. On cherche alors à caractériser les milieux urbains de différentes manières :

-en définissant les formes caractéristiques des différents milieux urbains -en spécifiant les caractéristiques spectrales des matériaux composant les zones urbaines -en étudiant la température de certaines régions urbaines.

La gestion des espaces urbains est aussi liée à des problématiques écologiques. En effet la détection et la quantification des espaces verts ou à nu va avoir un impact majeur dans l'étude de phénomènes climatiques [START_REF] Dimoudi | Vegetation in the urban environment : microclimatic analysis and benefits[END_REF]. La détection de ces zones passe généralement par la reconnaissance de zones perméables (végétation, terres nues...) et imperméables (bâtiments, routes...). Ces recherches vont plus loin que la simple détection de la végétation.

Dans le cas des zones urbaines on pourra aussi s'intéresser à la détection d'éléments en particulier comme les panneaux solaires. D'autres éléments peuvent aussi être détectés comme des voitures, des routes, des rails... L'étude des villes passe aussi par l'étude du comportement thermique de celles-si. L'analyse et la quantification des îlots de chaleur va permettre de mettre en place des plans d'urbanisation adaptés aux villes étudiées, afin d'améliorer les conditions de vie des habitants (réduction de la pollution...) et de réduire la consommation énergétique de ces villes. Ce domaine, lié aux îlots de chaleur urbain, est largement étudié actuellement [145] [146].

On notera aussi une grande diversité dans les zones urbaines, différents bâtiments (maisons individuelles ou immeubles), urbanisations différentes (quartiers bien définis, bidonvilles), matériaux de construction différents (toits en tuiles ou en ardoises)... La problématique sera donc de mettre au point des méthodes capables de s'adapter à tous les types de situations.

Les différents traitements dédiés aux zones urbaines

Pour répondre à ces problématiques, différents traitements ont été adaptés au cas de l'urbain. La majorité des méthodes que nous citerons dans cette partie sont des approches utilisées dans le cadre général de la télédétection et ont été citées précédemment dans la partie 1.1.3.1. Dans cette partie nous ne nous intéresserons qu'aux approches dédiées à l'exploitation d'images hyperspectrales ou multispectrales. En effet des méthodes basées uniquement sur la détection de coutours et la reconnaissance de formes existent [START_REF] Dalla Mura | Morphological Attribute Profiles for the Analysis of Very High Resolution Images[END_REF]. Cependant elles sont généralement employées sur des images panchromatiques et n'utilisent pas la richesse spectrale dont nous disposons. Ces méthodes ne s'inscrivent donc pas dans le contexte de ces travaux de thèse.

Les méthodes de traitement basées sur la classification

Les premières méthodes développées pour étudier les espaces urbains, avec l'imagerie multispectrale ou hyperspectrale, sont des méthodes de classification. Ces méthodes de classification vont s'appuyer sur les caractéristiques spectrales des matériaux. Différentes approches sont proposées.

Dans [START_REF] Heiden | Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data[END_REF] les matériaux sont caractérisés à partir de certaines spécificités liées à l'allure des spectres. Pour définir ces spécificités il est nécessaire de disposer d'une bibliothèque des matériaux présents dans la zone d'intérêt. Un matériau pourra être caractérisé par le rapport entre les réflectances à deux longueurs d'onde données, la position et la profondeur d'un pic d'absorption,... Cette méthode est présentée comme pouvant tenir compte de la variabilité spectrale des classes. Ainsi dans le cas de variations dues à l'éclairement on observera une variation de l'amplitude des spectres mais pas du rapport entre deux réflectances. D'autres méthodes vont utiliser la totalité du spectre, c'est le cas des méthodes qui s'appuient sur l'algorithme MESMA [START_REF] Roberts | Mapping chaparral in the santa monica mountains using multiple spectral mixture models[END_REF] décrite dans la partie 2.3.2. On obtient alors des cartes hiérarchiques, c'est à dire avec plusieurs niveaux de lecture. Le premier niveau contiendra des classes générales (matériaux perméables, imperméables, eau). En s'enfonçant dans les niveaux on gagne en précision des classes extraites (type de plantes, type de tuiles...). Dans [START_REF] Franke | Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments[END_REF] les pixels mixtes sont attribués au matériau le plus présent dans le pixel.

Les approches présentées ci-dessus sont des méthodes supervisées qui ont toutes besoin d'une bibliothèque pour effectuer la classification. C'est le cas de nombreuses autres méthodes de classification appliquées au milieux urbains comme [START_REF] Huang | An SVM Ensemble Approach Combining Spectral Structural, and Semantic Feature for the Classification of High Resolution Remotely Sensed Imagery[END_REF] qui s'appuie sur la SVM (en anglais Support Vector Machine). Les méthodes non supervisées vont nécessiter l'extraction de spectres caractéristiques des classes présentes dans l'image. On retrouve ici les extractions de pôles de mélange proposées pour effectuer le démélange (cf. partie 2.1). Dans [START_REF] Xu | Unsupervised classification strategy utilizing an endmember extraction technique for airborne hyperspectral remotely sensed imagery[END_REF] une méthode de classification basée sur l'extraction des pôles de mélange est proposée. Les pôles de mélange sont extraits et une classification par un algorithme du k-means est effectuée (les graines utilisées correspondent au pôles de mélange extraits). Les auteurs supposent que le nombre de classes ainsi obtenu est supérieur à celui escompté. Les classes sont alors fusionnées. On obtient alors différents niveaux de classification.

Les méthodes d'extraction d'éléments urbains

A partir d'images hyperspectrales il est aussi possible d'extraire uniquement des éléments d'intérêt (voiture, cible...). Pour ce genre de choses il existe des méthodes de détection de cibles développées pour des cas généraux [START_REF] Broadwater | Hybrid detectors for subpixel targets[END_REF]. Cependant les milieux urbains vont amener de nouvelles contraintes comme la présence d'ombre. Dans [START_REF] Li | Small Objects Detection of Hyperspectral Image in Urban Areas[END_REF] des méthodes de détection de cibles sont proposées et testées pour évaluer leurs performances en milieu urbain. On remarque cependant que cette méthode aboutit à un grand nombre de fausses détections dans ce type de zones. Dans [START_REF] Shimoni | Detection of Vehicles in Shadow Areas Using Combined Hyperspectral and LIDAR Data[END_REF] une méthode a été développée pour repérer des spectres de voitures dans des zones ombragées. Cependant dans ce cas-là l'utilisation d'autres informations est nécessaire. Ici ce sont des informations apportées par un LIDAR à très haute résolution.

Dans le cadre de l'étude des milieux urbains, des informations complémentaires à celles apportées par l'imagerie hyperspectrale sont devenues nécessaires. On pourra par exemple acquérir des modèles tri-dimensionnels de l'espace étudié, MNT (Modèle Numérique de Terrain). Ainsi on pourra utiliser ces informations pour augmenter la précision des méthodes.

L'impact de la résolution spatiale

La plupart des méthodes évoquées ci-dessus requièrent une très haute résolution spatiale. Dans le cas contraire on voit apparaître différents phénomènes :

(i) la disparition au sein des pixels de structures continues de taille plus faible que la résolution du pixel (l'extraction de ces structures n'entre pas dans le cas de la détection de cible).

(ii) l'apparition de pixels dans lesquelles plusieurs classes de matériaux sont présentes (pixels mixtes).

Dans le premier cas, des études ont montré la résolution minimum pour pouvoir extraire correctement des structures particulières. Selon [START_REF] Puissant | Utilité des images haute Résolution pour évaluer la place de la végétation dans l'aménagement urbain. Quelle résolution pour quels besoins ? In Vème rencontre de Théo Quant[END_REF] identifier les bâtiments et matériaux urbain de manière fine requiert une résolution de l'ordre de 2.5m. Cette étude est faite à partir d'images prises au dessus de Strasbourg. Cette résolution permet de distinguer les chemins de fer ainsi que les espaces végétaux interstitiels (jardins particuliers par exemple). D'autres études qui visent à étudier des éléments plus globaux dans les villes fixent cette limite entre 10m et 20m, [START_REF] Small | High Spatial Resolution Spectral Mixture Analysis of Urban Reflectance[END_REF]. Dans cet article les objets urbains de 14 villes ont été étudiés pour arriver à cet ordre de grandeur. Dans [START_REF] Herold | Spectral characteristics of asphalt road aging and deterioration : implications for remote-sensing applications[END_REF] pour estimer le vieillissement des routes une résolution de 5m est nécessaire. La résolution souhaitée dépendra donc des applications souhaitées mais aussi du type de ville étudié.

Le deuxième phénomène qui entre en jeu correspond à la présence de pixels mixtes. Ceci est problématique en particulier dans le cas de la classification. Certaines méthodes de classification s'en sortent en considérant des classes de pixels mixtes.

On voit apparaître ici l'intérêt du démélange hyperspectral en zone urbaine. En effet on cherche ainsi à résoudre le problème des pixels mixtes. On extrait aussi de l'information pour descendre en dessous des seuils de détection de certains éléments. Parmi les autres approches possibles on pourra citer les méthodes de fusion d'image panchromatiques et hyperspectrales (ou multispectrales et hyperspectrales). On notera d'ailleurs que les stratégies de fusion actuellement développées font appel au démélange [START_REF] Loncan | Hyperspectral Pansharpening : A riview[END_REF]. Dans la partie suivante nous nous intéresserons donc particulièrement aux méthodes de démélange qui ont été développées pour le cas urbain.

Un plus grand nombre de considérations sur les milieux urbains est disponible dans [START_REF] Briottet | Optical Remote Sensing in Urban Environments[END_REF]. Dans ce chapitre on trouve, en plus des méthodes de télédétection dans le VNIR et le SWIR les méthodes dédiées à l'imagerie thermique.

Le démélange en zone urbaine

Les méthodes de démélange hyperspectral développées pour s'appliquer en particulier au cas urbain sont très peu nombreuses. Pour démélanger ces espaces, des méthodes classiques sont généralement utilisées. Pourtant ces zones nécessitent une attention spécifique.

La toute première précaution à prendre concerne le modèle de mélange utilisé En effet en raison de la présence de bâtiments, des effets de réflexions multiples vont apparaître. Ceci a déjà été abordé dans la partie 1.1.3.2. Le modèle développé par Meganem et al. dans [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] a été spécifiquement développé pour ce genre de cas. Il faut cependant remarquer que dans ce modèle on considère uniquement les pixels illuminés et que le modèle ne s'applique pas pour les pixels à l'ombre. A partir de ce modèle une méthode a été développée [START_REF] Meganem | Linear-quadratic Blind source separation using NMF to unmix hyperspectral images[END_REF]. Ce modèle peut aussi être amélioré par l'utilisation de modèles numériques de terrain. C'est ce qui est proposé dans [START_REF] Benhalouche | Local Hyperspectral Data Multi-sharpening Based on Linear/Linear-Quadratic Nonnegative Matrix Factorization by Integrating LIDAR Data[END_REF] mais dans le cas de la fusion de données.

Le second point important à prendre en compte est la variabilité intra-classe. Les zones urbaines sont généralement hautement non-planes, notamment en présence de toitures. En effet en raison des pentes on observe des variations d'éclairement importantes. C'est moins le cas dans les zones composées uniquement d'immeubles. D'autre part les matériaux urbains peuvent présenter une forte variabilité. Ceci a déjà été remarqué dans le cas de la classification. Les méthodes prenant en compte cette variabilité sont dérivées de l'algorithme MESMA et aboutissent à des cartes de classification plus qu'à des cartes d'abondances [159] [160]. 

Chapitre 2

Développement de nouveaux modèles de mélange prenant en compte la variabilité intra-classe

Mise en évidence numérique de la variabilité intra-classe

Résumé : Cette partie sera consacrée à la mise en évidence du phénomène de variabilité intra-classe à partir de données issues d'images réelles prises au-dessus de la ville de Toulouse. On s'intéressera tout d'abord à ces images, ainsi qu'à la sélection des zones d'où seront extraites les données. Une fois ce travail effectué on s'intéressera aux outils nécessaires pour mettre en évidence la variabilité intra-classe. La variabilité intra-classe sera ensuite quantifiée sur les données réelles.

Choix des données étudiées

Dans cette partie nous allons décrire les données et les images utilisées durant cette thèse. Le travail mené durant cette thèse a nécessité différents types de données. L'étude de la variabilité intra-classe est faite à partir de spectres extraits de l'image. Des spectres extraits de l'image seront aussi utilisés pour effectuer des tests de démélange sur données semi-synthétiques (Chapitre 4).

Par la suite, des images urbaines seront utilisées pour les tests de démélange sur données réelles (Chapitre 5).

Description des images hyperspectrales étudiées durant cette thèse

Les jeux d'images utilisés sont issus d'une campagne aéroportée effectuée en octobre 2013 audessus de la ville de Toulouse (France). L'instrument hyperspectral utilisé comportait 2 caméras HySpex. La première couvrait le domaine du VNIR (Visible and Near Infra-Red) de 414nm à 992nm avec une résolution spatiale au sol de 0.8m et une résolution spectrale de 4nm. La seconde couvrait le domaine du SWIR (Short Wave Infra-Red) de 980nm à 2498nm avec cette fois une résolution spatiale au sol de 1.6m et une résolution spectrale de 6µm.

Pour obtenir une unique image hyperspectrale allant du VNIR au SWIR, l'image à la meilleure résolution spatiale a été dégradée spatialement. Tout d'abord une registration des images aux différentes résolutions a été effectuée. Après quoi, sachant que la résolution de l'image VNIR est 2 fois plus grande que celle de l'image SWIR, les pixels de l'image VNIR ont été moyennés 4 par 4 pour obtenir une image à la résolution souhaitée.

A partir de cette image en luminance, une image en réflectance a été obtenue. C'est l'outil COCHISE [START_REF] Miesch | Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery[END_REF] qui a été utilisé pour effectuer le passage des données en luminance en entrée du capteur, à la réflectance au sol. Dans le cas de la simulation d'images satellite, l'outil CO-MANCHE [START_REF] Miesch | Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery[END_REF] a été utilisé. COMANCHE va permettre de passer de la luminance avion à la luminance TOA (Top Of Atmosphere), c'est-à-dire celle qui est acquise au niveau du satellite. On utilisera ensuite COCHISE pour revenir aux réflectances au sol. Au niveau du satellite il sera possible de modifier la résolution spatiale des images afin de simuler des capteurs spatiaux des différentes résolutions.

Les outils COMANCHE et COCHISE constituent un simulateur end-to-end, et garantissent la cohérence des calculs de transfert radiatif des 2 codes [START_REF] Miesch | COMANCHE and COCHISE : two reciprocal atmospheric codes for hyperspectral remote sensing[END_REF]. Les images à la résolution spatiale initiale (résolution avion) seront obtenues en effectuant uniquement le passage avion/sol à l'aide de COCHISE.

Une fois les images en réflectance obtenues, les bandes d'absorption de l'atmosphère (CO2, vapeur d'eau...), dans lesquelles la contribution du sol dans le signal est nulle ou trop faible, ont été retirées dans les observations de chaque pixel. En outre nous avons retiré quelques bandes dans le bleu et aux alentours de 750nm en raison de la présence de bruit sur les observations. Au final on dispose pour chaque pixel d'un spectre en réflectance composé de 214 bandes spectrales.

Les images obtenues correspondent à des transects, c'est-à-dire des lignes de vol au-dessus de Toulouse. La Figure 2.1 illustre une portion de transect dont nous disposons et qui recouvrent une partie du centre ville de Toulouse. Ces images à notre disposition recouvrent un grand nombre de zones urbaines différentes : l'hypercentre, des banlieues résidentielles, des zones industrielles... Elles donnent aussi accès à un grand nombre de matériaux : tuile, asphalte, végétation haute et basse, béton, eau...

Extraction de zones d'intérêt

L'étude que nous nous proposons de mener dans cette thèse nécessite des images plus réduites à partir desquelles le lancement des différents traitements et l'application de différents outils se- ront facilités. Pour cela nous avons extrait, à partir des transects décrits dans la partie précédente, des images de plus petites tailles. La sélection des zones s'est faite à partir de l'image à la meilleure résolution spatiale. Différents critères ont été utilisés pour fixer ces zones :

• l'absence d'effets particuliers (réflexion spéculaire, saturation d'un ou plusieurs pixels...) ou de défauts, • la présence de peu de matériaux purs mais ayant des caractéristiques spectrales variées, • la présence de larges zones contenant un unique matériau, • la présence de pixels mixtes (i.e contenant plusieurs matériaux purs),

• peu de zones ombragées (on évitera donc au maximum les canyons urbains trop étroits). Initialement, 3 zones avaient été sélectionnées. Elle décrivaient 3 types d'aires urbaines : l'hypercentre, des banlieues résidentielles, une zone industrielle. Dans la suite de ce manuscrit nous nous intéresserons uniquement à l'hypercentre. En effet, contrairement au cas des banlieues résidentielles, on arrive à trouver dans ces zones de grandes régions occupées par un unique matériau : parc pour la végétation, cathédrales et églises pour les toitures, boulevards pour l'asphalte... Nous avons privilégié l'hypercentre aussi en raison de la présence de hauts bâtiments ce qui va, par conséquent, entraîner des effets de réflexions multiples et donc des mélanges nonlinéaires. Ce type de scène est donc caractéristique des milieux urbains que l'on souhaite étudier. Une première image a été extraite, Figure 2.2. Dans la suite de ce travail de thèse, nous verrons qu'il a parfois été nécessaire d'effectuer des tests sur des imagettes. Elles seront alors extraites à partir de cette image.

Les données étudiées

L'étude que nous allons présenter dans la suite de cette section (sous-sections 2.1.2 et 2.1.3) va avoir pour objectif la comparaison de spectres de matériaux purs. Il est donc nécessaire d'extraire correctement ces spectres.

Dans cette thèse nous avons choisi de nous concentrer sur 3 matériaux présents dans l'image : la tuile présente sur les toits de Toulouse, l'asphalte des routes, la végétation haute (arbre). Ce choix est motivé par la forte présence de ces matériaux en zone urbaine (pour les villes du Sud en tout cas) et parce qu'il est relativement aisé, à haute résolution, de trouver des zones pures de ces matériaux (cf. Figure 2.2). Nous avons donc sélectionné de petites zones pures de l'image au sein desquelles nous avons extrait les spectres de chacun des pixels. Pour chaque matériau, différentes zones ont été sélectionnées. Au total pour chaque matériau on a accès à des spectres avec :

• différentes illuminations (des toitures avec différentes pentes et différentes orientations...)

• différents vieillissements, état d'usure (différentes chaussées, routes avec des usures différentes...)

• différentes localisations (des arbres à différents emplacements, d'âges différents...) La Figure 2.3 montre les zones sélectionnées pour extraire les spectres (carrés de couleur). Avant leur utilisation, un tri de ces spectres a été fait afin de supprimer les anomalies. Ces anomalies sont généralement dues à la présence d'éléments particuliers sur les toits (paraboles, lucarnes... ) qui ont une signature très caractéristique. C'est une des raisons pour lesquelles on a extrait un grand nombre de spectres de tuile.

Un exemple des spectres extraits est présenté sur la Figure 2.4. On observe ici le phénomène qui va être étudié dans la suite de cette section. En effet on constate que pour un matériau donné, les spectres peuvent différer de manière importante, c'est ce qu'on appelle la variabilité intraclasse. Les sous-sections suivantes vont donc avoir pour objectif de quantifier cette variabilité. tuile, vert : végétation, bleu : asphalte.

Choix des outils pour mettre en évidence la variabilité intra-classe

L'objectif est donc de quantifier la variabilité des spectres associés à un matériau pur. Nous présentons dans cette section les deux outils choisis pour caractériser et quantifier la variabilité intra-classe des matériaux.

La corrélation Soit

S = [s 1 , • • • , s N ] ∈ R L×N
la matrice des spectres observés avec s n ∈ R L×1 un spectre. Les coefficients de la matrice de corrélation, CORR, s'écrivent :

CORR i,j = Cov(s i , s j ) σ s i σ s j (2.1)
où σ s i (respectivement σ s j ) correspond à l'écart-type du vecteur s i (respectivement s j ) et Cov(•, •) correspond à l'opérateur de covariance.

Cette mesure va nous permettre de caractériser la distance angulaire entre spectres sans prendre en compte les effets de variation d'amplitude, c'est-à-dire si deux spectres sont identiques à un coefficient d'amplitude positif près la corrélation sera de 1. On met en évidence avec ces mesures les différences de forme entre les spectres. Ceci permettra donc de vérifier si les variations d'illumination sont les seuls facteurs impliqués dans le phénomène de la variabilité intra-classe.

L'Analyse en Composantes Principales (ACP) Comme pour la corrélation on considère la matrice des spectres observés,

S = [s 1 , • • • , s N ] ∈ R L×N avec s n ∈ R L×1
un spectre. L'analyse en composantes principales cherche à obtenir les axes orthogonaux qui maximisent la variance des points de données projetés sur ces axes afin d'obtenir les axes les plus informatifs. Pour cela la matrice de variance/covariance est diagonalisée. Les axes les plus informatifs sont ceux issus des vecteurs propres associés aux valeurs propres les plus grandes.

Pour obtenir ces axes on effectuera une ACP sur S, c'est-à-dire en utilisant les spectres de l'ensemble des matériaux (en équilibrant le nombre de spectres dans chaque classe). On pourra ensuite projeter ces spectres sur les premiers vecteurs propres de l'ACP. On obtiendra ainsi une représentation des principales variations des spectres dans un espace de faible dimension. On mettra ainsi en évidence la variabilité des spectres, y compris les variations d'amplitude.

Mise en évidence de la variabilité intra-classe

On possède à présent des outils qui vont nous permettre d'étudier la variabilité intra-classe. Les spectres qui ont été utilisés dans les tests sont ceux décrits dans la sous-section 2.1.1.3.

Analyse de la corrélation des spectres

Nous nous intéresserons dans un premier temps à l'étude de la corrélation. Pour cela on commencera par regarder indépendamment les unes des autres les matrices de corrélation pour chaque matériau pur. On s'intéressera donc aux matériaux sélectionnés (Tuile, Végétation, Asphalte) un à un.

Tuile Nous commencerons par le cas de la tuile. Ce cas est particulièrement intéressant car on a pu facilement extraire des spectres de ce matériau, et ce sur différents toits. La Figure 2.5 présente deux matrices de corrélation obtenues en utilisant des spectres extraits d'un même toit : dans le cas 2.5a les spectres utilisés correspondent à des tuiles situées sur la toiture de la cathédrale Saint Étienne, dans le cas 2.5b ils correspondent aux tuiles d'une toiture d'une maison. Nous avons choisi d'étudier ces cas afin de montrer qu'il y a une différence entre l'étude dans une zone uniforme et l'étude des spectres dans des zones éparses (différentes toitures) 2.6. Les échelles de mesure étant différentes entre la Figure 2.5a et la Figure 2.5b il est difficile d'effectuer une analyse visuelle de ces matrices. On constate cependant que des corrélations faibles (< 60%) apparaissent dans le cas de la maison. Ces spectres ne sont pas purs, ils correspondent à des portions de toit où se situent différents objets (gouttière, parabole...). Les spectres correspondant seront retirés pour les calculs numériques et dans les matrices calculées dans a suite du manuscrit. Afin de nous aider dans l'analyse de ces matrices on a calculé la corrélation moyenne dans ces deux cas ainsi que l'écart-type de ce paramètre de corrélation (Tab.2.1). On constate que dans le cas de la cathédrale Saint Étienne la corrélation entre les spectres de la zone considérée est beaucoup plus élevée que dans le cas de la maison. Différents éléments permettent d'expliquer ces résultats. D'une part la toiture de la cathédrale a été récemment restaurée et lavée ce qui fait que les tuiles sont propres (donc moins de variabilité due au vieillissement), d'autre part les spectres considérés ici ne recouvrent qu'une unique pente de la toiture (même illumination pour tous les spectres). Dans le cas des maisons on peut supposer que l'entretien de la toiture n'est pas aussi récent, et/ou, pas aussi bien fait que pour la cathédrale. De plus, à l'inverse de la cathédrale les pixels dont sont extraits les spectres recouvrent différents versants du toit. On peut donc en conclure que les variations de spectre au sein d'une zone uniforme ne sont pas constantes. Cependant dans le cas du démélange on associe le même spectre à un matériau quelle que soit sa localisation dans l'image. Nous avons donc calculé la matrice de corrélation en utilisant l'ensemble des spectres de Saint-Étienne et ceux de la maison. On obtient alors la Figure 2.6. Comme dans le cas des zones homogènes on a calculé la moyenne et l'écart-type des coefficients de corrélation. Ce calcul ne permet pas de mettre en évidence la corrélation entre les spectres de différentes zones c'est pourquoi on a aussi calculé la moyenne et l'écart type du bloc contenant uniquement les coefficients "inter-zone" (bloc en haut à droite de la matrice). Les valeurs obtenues sont regroupées dans le tableau 2.2. Comme on s'y attendait la corrélation inter-zone est plus faible que la corrélation totale prenant en compte toute la matrice de corrélation (cf. Tableau 2.1). Cela signifie que la variabilité des spectres augmente lorsque l'on augmente le nombre de zones où le matériau est représenté. L'écart-type étant important on en déduit que la corrélation entre des spectres d'un même matériau au sein d'une image peut facilement descendre en-dessous de 85%. Végétation L'étude réalisée dans le cas de la végétation est la même que celle menée dans le cas de la tuile. On souhaite ainsi vérifier que le comportement des matériaux est identique quel que soit le matériau. On a donc commencé par étudier la corrélation entre des spectres extraits dans 2 zones distinctes. Contrairement au cas de la tuile nous ne présenterons pas l'ensemble des matrices de corrélation, mais uniquement la matrice globale ( On constate que la corrélation entre spectres de végétation est bien plus élevée qu'entre spectres de tuiles. En effet pour la zone d'arbres on obtient en moyenne une corrélation de 97%. Cette corrélation est encore plus forte pour les pelouses. On s'attendait à des résultats différents car la végétation est réputée pour sa forte variabilité. Cependant dans le cadre de cette thèse nous étudions les zones urbaines et dans ce type de paysage les arbres appartiennent à un petit nombre de variétés et sont coupés à la même hauteur, quant à la pelouse elle se situe sur une surface très bien entretenue. Les effets de variabilité sont donc ainsi réduits. En comparant les résultats entre spectres de zones différentes on observe les mêmes résultats que pour la tuile (avec une amplitude moindre). La corrélation entre spectres de classes différentes diminue par rapport à la corrélation mono-zone (96%) et on trouve facilement des spectres dont la corrélation est inférieure à 90%. Ces résultats confirment qu'à partir du moment où l'on s'intéresse à des spectres répartis à différents endroits, la variabilité intra-classe augmente comparée à la variabilité étudiée pour des spectres issus d'une même zone (cette zone doit être homogène). Cette variabilité est cependant propre à chaque matériau et à chaque situation.

Tuiles

Asphalte Dans le cas de l'asphalte les résultats sont intermédiaires entre le cas de la végétation et de la tuile. En effet on observe une forte corrélation, avec une moyenne de 95%, pour des spectres issus d'une même zone. Par contre les corrélations moyennes entre spectres de zones différentes diminuent rapidement : autour de 90% avec un écart type de 0.06. En effet une même portion de route va généralement avoir le même vieillissement ce qui explique la faible variabilité intra-classe. Par contre deux portions de routes différentes vont pouvoir être très différentes (asphalte de différentes qualités, vieillissement...).

Les observations concernant l'interprétation des résultats mono-zones et inter-zones sont similaires à celles faites pour la tuile et la végétation. On n'entrera par conséquent pas plus dans les détails pour le cas de l'asphalte.

Variabilité inter-classe Nous avons précédemment étudié la variabilité pour chacun des matériaux, avec des spectres extraits sur différentes zones. Cependant, la corrélation de l'ensemble de ces spectres n'a jusqu'ici pas été étudiée. La Figure 2.8 représente cette fois la matrice de corrélation calculée à partir de l'ensemble des spectres des différents matériaux.

A partir de la Figure 2.8 on constate qu'il existe une corrélation non-négligeable entre des spectres de matériaux différents. Dans le cas tuile/végétation, la corrélation moyenne atteint 62% avec un écart-type de 0.06. On peut supposer que cette proximité peut être due à la présence, en-dessous des arbres de sol (terre) ayant une signature proche de celle de la tuile. On appelle variabilité inter-classe la variabilité existant entre des matériaux différents. On constate donc que dans le cas des matériaux étudiés la variabilité inter-classe est suffisamment faible pour qu'il n'y ait pas de confusion entre les matériaux. Cependant elle n'est pas négligeable. En effet on observe des corrélations pouvant aller à plus de 70% entre des spectres de végétation et de tuile. Ces effets devront donc être pris en compte par la suite lors du développement de méthodes de démélange afin de s'assurer que des spectres de matériaux différents ne soient pas confondus.

Résultats issus de l'Analyse en Composantes Principales (ACP)

Nous allons à présent analyser les résultats de la projection des spectres des différents matériaux sur les premiers axes de l'ACP. Cette étude va avoir pour objectif de confirmer les constats faits à partir de l'étude des coefficients de corrélation, mais aussi d'étudier la présence de facteur d'amplitude entre spectres d'un même matériau.

Pour effectuer cette série de tests, nous avons utilisé 4 jeux de spectres qui décrivent les matériaux sélectionnés précédemment :

• 1 jeu de spectres issus d'une zone de tuiles avec une orientation du toit vers le soleil (tuiles au soleil) • 1 jeu de spectres issus d'une zone de tuiles avec une orientation du toit correspondant à un éclairement solaire moindre, comparativement au 1 er jeu de spectre (tuiles à l'ombre) • 1 jeu de spectres issus de végétation haute (canopée) où les spectres correspondent à différents éclairements de la canopée(végétation) • 1 jeu de spectres issus d'une route en asphalte (asphalte).

Comme décrit dans la section 2.1.2 les axes de l'ACP ont été obtenus à partir de l'ensemble des spectres. Par la suite on a projeté ces spectres sur les 3 premiers axes de l'ACP. On a choisi de représenter sur la Figure 2.9, la projection sur le premier et le deuxième axe (Figure 2.9a) et la projection sur le premier et le troisième axe (Figure 2.9b). Afin d'étudier l'impact de l'éclairement on a choisi de projeter deux jeux de spectres de tuile soumis à des éclairements différents. On constate que la projection de ces spectres n'est pas localisée au même endroit. Dans le cas des spectres des tuiles les moins éclairées on se rapproche de l'origine. On observe cependant, en particulier sur la Figure 2.9a, que l'ensemble des spectres de tuile se situe autour d'un axe passant par l'origine. La position sur cet axe correspond à une L'étude de la projection, sur les différents plans, des spectres d'asphalte tend à confirmer les hypothèses faites à partir de l'étude des tuiles. En effet l'asphalte est un matériau sombre, il a donc peu de variabilité d'éclairement, c'est pourquoi on retrouve les projections condensées et proche de l'origine, ce qui est similaire au cas des tuiles à l'ombre.

Concernant la variabilité inter-classe (cf. définition dans la section précédente sur la corrélation), la Figure 2.9a montre une superposition des projections des spectres de tuiles à l'ombre et d'asphalte. Il ne faut pas oublier que les 2 premières composantes principales de l'ACP ne sont pas suffisantes pour décrire l'ensemble de l'information contenue dans les données considérées. C'est pourquoi on a aussi représenté les projections sur les axes 1 et 3. On voit sur la Figure 2.9b que la troisième composante permet de séparer les tuiles à l'ombre de l'asphalte.

La projection des spectres de végétation confirme aussi les conclusions formulées ci-dessus. L'illumination de la canopée des arbres varie d'un pixel à l'autre et lorsque l'on a repéré les spectres les moins illuminés et les plus illuminés on a constaté qu'ils sont respectivement proches et éloignés de l'origine. La disposition de ces projections autour d'un axe passant par l'origine confirme la faible variabilité des spectres en dehors des variations d'amplitude, ce qui est en accord avec les résultats donnés par l'étude de la corrélation (sous-section précédente).

Conclusion sur la variabilité inter et intra-classe des matériaux urbains

Les calculs de corrélation et l'étude de l'ACP, réalisés dans les paragraphes précédents, ont permis d'analyser les variabilités inter et intra-classes des matériaux urbains. Ce paragraphe présente une synthèse des résultats.

Les calculs de corrélation et la projection des spectres sur les axes de l'ACP a tout d'abord mis en évidence qu'il existait une variabilité intra-classe au sein des différentes classes de matériaux. Cette variabilité est différente d'un matériau à l'autre. L'étude de la corrélation nous montre que la variabilité intra-classe va dépendre de la corrélation entre spectres appartenant à des zones différentes. En effet on a constaté que la variabilité était plus faible dans les zones proches, par exemple sur un même toit. Définir une variabilité pour un matériau va donc se révéler très compliqué puisqu'elle peut varier d'une scène à l'autre.

Nous avons aussi mis en évidence que la variabilité intra-classe n'était pas uniquement due aux variations d'éclairement des matériaux. L'étude basée sur l'ACP montre effectivement que l'éclairement va avoir une influence sur l'amplitude des spectres. Cependant les variations spectrales vont aussi être dues à d'autres phénomènes : différences chimiques (tuiles différentes), différents vieillissements (routes plus ou moins neuves)... Nous nous sommes aussi intéressés au phénomène de la variabilité inter-classe. En nous basant sur l'étude de la corrélation des spectres de différents matériaux entre eux, nous avons abouti à la conclusion que la proximité entre différentes classes de matériaux était variable et que dans certains cas cette proximité ne pourrait pas être négligée. En effet les matériaux choisis pour effectuer ces tests étaient très différents et la variabilité inter-classe sera moindre dans le cas de matériaux ayant une signature spectrale proche.

Définition de modèles de mélange prenant en compte la variabilité intra-classe

Résumé : Nous allons dans cette partie justifier la nécessité de développer de nouveaux modèles de mélange qui prendront en compte le phénomène de la variabilité intra-classe. Pour cela nous serons amenés à redéfinir la notion de pôle de mélange. Finalement nous présenterons la formalisation de nouveaux modèles de mélange : un modèle linéaire et un modèle linéaire-quadratique.

Mise en évidence des limites du modèle de mélange linéaire classique dus à la variabilité intra-classe

Dans le chapitre État de l'art nous avons évoqué la problématique de la variabilité intraclasse et les modèles qui ont été choisis pour modéliser ce phénomène (section 2.3.2). Nous allons à présent analyser ces choix de modélisation au regard de l'étude sur la variabilité intra-classe que nous avons présentée dans la section précédente (section 1.2.3.2). Nous nous intéresserons ici uniquement aux modèles de mélange et non aux méthodes de résolution associées.

Nous pouvons tout d'abord évoquer les modèles par paquets [START_REF] Bateson | Endmember bundles : a new approach to incorporating endmember variability into spectral mixture analysis[END_REF] où l'on considère que les pôles de mélange forment une sorte de boule comprenant des spectres corrélés à 99% à un spectre "graine". Or nous avons montré que des spectres associés au même matériau avaient des corrélations pouvant être inférieures à 90%. C'est par exemple le cas de la tuile où la corrélation entre deux spectres peut descendre jusqu'à 75%. Ce modèle n'est donc pas en accord avec les observations que nous avons pu faire dans le cas urbain.

Un modèle qui semblait très intéressant est celui introduit par Veganzones at al. dans [START_REF] Veganzones | A new extended linear mixing model to address spectral variability[END_REF]. Ce modèle prend en compte uniquement la variation d'amplitude. Certes ces variations sont importantes comme nous avons pu le voir lors de l'étude par ACP (sous-section 2.1.3.2) cependant elle ne permettent pas de décrire les autres types de variabilité qui sont fortement présentes dans le cas des zones urbaines et que nous avons pu mettre en évidence grâce à l'étude des coefficients de corrélation. Il est donc nécessaire de mettre au point un modèle qui décrive à la fois les variations d'amplitude et les autres types de variations spectrales.

Dans le cas des modèles bayésiens comme celui introduit dans [START_REF] Halimi | Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability[END_REF] les pôles de mélange sont vus comme des variables aléatoires. Dans [START_REF] Halimi | Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability[END_REF] l'hypothèse sur les pôles de mélange suppose que la répartition des spectres d'un matériau suit une loi gaussienne, s r ∼ N (m r , σ r ) où m r est le spectre moyen du r ème matériau pur et σ r est la variance de ce pôle de mélange. Au vu des résultats obtenus dans la partie précédente ce modèle peut être remis en cause. En effet l'hypothèse de spectres évoluant autours d'un spectre moyen devient discutable. On a constaté que les spectres variaient au sein de zones uniformes (même toit, même portion de route...) : à ce niveau modéliser la répartition des spectres par une gaussienne est pertinent. Par contre à partir du moment où l'on observe une scène plus grande les spectres caractérisant un matériau ont tendance à constituer des "sous-classes", autant qu'il y a de toits, de monuments, de routes..., auxquels on peut associer des distributions gaussiennes différentes. Par conséquent ce type de modèle ne nous semble pas adapté au cas des mélanges en milieux urbains en présence de variabilité intra-classe, sauf si l'on considère des pôles de mélange différents par sous-classes spectrales de matériaux.

On a fait ici le tour de l'ensemble des modèles de mélange qui n'utilisent pas de librairies. On constate donc qu'aucun de ces modèles ne colle avec les observations faites sur la variabilité intra-classe en zone urbaine. Nous proposons donc de réfléchir à un nouveau modèle de mélange.

Redéfinition de la notion de pôle de mélange

Au vu des résultats obtenus dans la première partie de ce Chapitre (partie 2.1.3) on peut s'interroger sur la notion de pôle de mélange. En effet si on considère la définition des pôles de mélange utilisée dans les modèles de mélange standard la corrélation entre l'ensemble des spectres d'un matériau pur devrait être égale à 100% et dans le cas de la projection sur les axes de l'ACP on ne devrait obtenir que 3 points (correspondant aux 3 matériaux) puisque l'ensemble des projections d'un matériau se superposeraient. Cependant ce n'est pas ce qui est observé (se référer à la sous-section 2.1.3 pour les résultats obtenus).

Comme nous l'avons exposé dans le paragraphe précédent, les modèles existants pour caractériser la variabilité intra-classe ne correspondent pas à nos observations. L'ensemble de ces modèles considère que pour un matériau pur il existe une sorte de spectre graine duquel tous les autres spectres dérivent. C'est le cas dans les modélisations gaussiennes avec le spectre moyen, mais aussi dans le modèle de Veganzones [START_REF] Veganzones | A new extended linear mixing model to address spectral variability[END_REF] puisque tous les spectres d'un matériau pur sont identiques, à un coefficient multiplicatif près.

Nous proposons de revoir cette notion de pôle de mélange. Au vu de l'étude de la variabilité intra-classe que nous avons détaillée précédemment (partie 2.1) il semble difficile d'établir un modèle pour représenter cette variabilité. En effet elle dépendra de chaque matériau, de la taille de l'image étudiée, du type de zone... En outre la notion même de pôle de mélange est discutable puisque dans le cas d'études macroscopiques c'est l'utilisateur qui va définir ce qui est un pôle de mélange en fonction de l'échelle à laquelle il veut étudier l'image. Le démélange est initialement apparu dans le cas d'étude de composés chimiques (géologie), à ce niveau là, la notion de matériaux purs est possible. Si on prend maintenant le cas d'un matériau pur "tuile" il signera forcément différemment d'un toit à l'autre car la composition chimique des tuiles variera. Voilà pourquoi nous proposons à présent de ne plus parler de pôles de mélange, ou de matériaux purs, mais de classes de matériaux purs.

Par conséquent au sein de l'image on voit bien qu'il ne peut plus y avoir un unique spectre représentant une classe de matériaux. Par contre dans le cas où la résolution spatiale est suffisamment élevée on peut émettre l'hypothèse que chaque classe de matériaux purs est représentée au sein d'un pixel par un unique spectre. Cette notion de résolution "suffisamment élevée" dépendra du type de matériaux mais surtout de la taille des éléments caractéristiques de chaque classe de matériaux. On a en effet constaté dans la partie 2.1.3 qu'au sein de zones uniformes (même toit, même portion de route, même type/hauteur de végétation...) la variabilité était réduite. Nous proposons donc de considérer qu'il existe au sein de chaque pixel un jeu de spectres purs, (ou de pôles de mélange) qui correspondent aux signatures spectrales des matériaux présents dans ces pixels. Nous considérons qu'il n'existe pas d'expression permettant de relier un spectre pur au sein d'un pixel au spectre associé au même matériau pur dans le pixel voisin. Cependant nous sommes conscients que les spectres purs appartiennent à la même classe de matériaux et qu'il existe une corrélation non négligeable entre l'ensemble des spectres associés à une classe de matériaux purs.

Proposition d'un nouveau modèle linéaire de mélange

On s'intéressera tout d'abord au cas du modèle de mélange linéaire. On a vu dans la partie Etat de l'art (sous-section 1.3.2) que dans le modèle linéaire standard (LMM) chaque spectre observé x p ∈ R L×1 s'écrit de la manière suivante :

x p = M m=1 c pm r m ∀p ∈ 1, P (2.2)
où p est l'index du pixel, P le nombre de pixels , m l'index de l'un des M pôles de mélange, r m ∈ R L×1 est le m eme spectre pur et c pm le coefficient de mélange associé. Ce modèle de mélange ne prend pas en compte la variabilité intra-classe. Nous proposons une extension de ce modèle de mélange en nous basant sur la modélisation du pôle de mélange décrite dans la sous-section 2.2.2, c'est-à-dire qu'il existe au sein de chaque pixel un jeu de spectres purs associés à chacune des classe de matériaux purs. Le modèle que nous proposons s'écrit de la manière suivante pour chacun des spectres observés : (2.4)

x p = M m=1 c pm r m (p) ∀p ∈
Comme dans le cas du modèle linéaire standard on souhaite avoir une écriture matricielle de ce modèle. Pour cela on va se baser sur les notations choisies dans le cas du modèle linéaire standard. Soient X = [x 1 , . . . , x P ] T la matrice des spectres observés, R = [r 1 , . . . , r M ] T la matrice des pôles de mélange si on ne considère pas la variabilité intra-classe (même source pour reconstruire tous les pixels) et C = [c 1 , . . . , c P ] T la matrice des coefficients de mélange associée. Dans ce cas le modèle de mélange standard (2.2) s'écrit sous forme matricielle de la manière suivante :

X = CR.
(2.5) Supposons à présent que l'on considère la présence de variabilité intra-classe. Afin d'obtenir une écriture matricielle de (2.3) on introduit :

• la matrice R(p) = [r 1 (p), . . . , r M (p)] T qui représente le jeu de M spectres purs associés au spectre observé dans le pixel p, x p

• la matrice R =    R(1) . . . R(P )    ∈ R P M ×L
qui contient l'ensemble des spectres purs contenu dans toute l'image (un jeu de spectres purs par pixel)

• la matrice des coefficients de mélange associée à R, C ∈ R P ×P M qui est une matrice diagonale par bloc : (2.6) L'équation (2.3) s'écrit donc de la manière suivante :

C =      
X = C R. (2.7)
On retrouve donc une écriture similaire à l'écriture matricielle du modèle de mélange linéaire standard ce qui facilitera les calculs par la suite. On remarquera aussi que dans (2.7) les matrices C et R sont soumises aux mêmes contraintes que les matrices C et R dans (2.5) : positivité et somme-à-un (uniquement pour C et C).

Proposition d'un nouveau modèle linéaire-quadratique de mélange

Dans la partie État de l'art, sous-sections 1.3.2 et 1.3.3, on explique qu'en milieu urbain des effets de réflexion multiple de la lumière sur les bâtiments entrainent la présence de nouveaux termes dans le modèle de mélange. Dans la section 1.3.2 le modèle proposé par Meganem et al. [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] est présenté. On rappelle ici que ce modèle a été développé en se basant sur une étude fine du transfert radiatif dans un canyon urbain. L'équation de mélange est rappelée ci-dessous, (2.8) :

x p = M m=1 c pm r m + M m=1 M µ=m c p,(m,µ) (r m r µ ), ∀p, avec      M m=1 c pm = 1 c pm > 0 ∀m ∈ 1, M 0 ≤ c p,(m,µ) ≤ 0.5 ∀1 ≤ m ≤ µ ≤ M (2.8)
avec c p,(m,µ) le coefficient de mélange associé au terme quadratique issu du produit des spectres purs r m et r µ .

On propose d'utiliser la même hypothèse que celle faite dans le cas du mélange linéaire : un jeu de spectres purs par pixel. En se basant sur le modèle de mélange développé par Meganem, on aboutit au modèle suivant :

x p = M m=1 c pm r m (p) + q∈Vp q =p M m=1 M µ=1 c (p,q),(m,µ) r m (p) r µ (q) + M m=1 M µ=m c p,(m,µ) r m (p) r µ (p), ∀p, avec          M m=1 c pm = 1 c pm > 0 ∀m ∈ 1, M 0 ≤ c p,(m,µ) ≤ 0.5 ∀1 ≤ m ≤ µ ≤ M 0 ≤ c (p,q),(m,µ) ≤ 0.5 ∀1 ≤ m ≤ µ ≤ M (2.9)
Concernant les termes quadratiques on a ici considéré que les réflexions multiples engageaient au moins un des matériaux purs du pixel observé. Deux possibilités existent donc dans le cas du produit quadratique :

• soit il intervient entre deux éléments présents au sein du pixel p, dans ce cas le produit s'écrit : r m (p) r µ (p)

• soit il intervient entre un élément du pixel p et un élément appartenant à un pixel voisin q (i.e contenu dans le voisinage V p ), à ce moment le produit s'écrit : r m (p) r µ (q) Les termes c p,(m,µ) et c (p,q),(m,µ) correspondent aux coefficients de mélange associés au termes quadratiques dans chacun des cas décrit ci-dessus.

Le modèle décrit ci-dessus est assez complexe et demande de définir convenablement le voisinage V p . Nous proposons donc une version simplifié de ce modèle. En considérant que les pixels couvrent une surface au sol suffisamment grande et qu'il existe au sein de chaque pixel un représentant de chacune des classes de matériaux purs on peut faire l'hypothèse que l'ensemble des termes produits peut être retrouvé en utilisant uniquement les spectres issus du jeu de spectres purs associé au pixel. Cette hypothèse se justifie d'autant plus que l'amplitude du terme quadratique est faible comparée à l'amplitude des termes linéaires, si bien que de petites erreurs sur les spectres quadratiques n'influenceront pas de manière significative le résultat du démélange. Le modèle de mélange quadratique peut donc s'écrire de la manière suivante :

x p = M m=1 c pm r m (p) + M m=1 M µ=m c p,(m,µ) r m (p) r µ (p), ∀p, avec      M m=1 c pm = 1 c pm > 0 ∀m ∈ 1, M 0 ≤ c p,(m,µ) ≤ 0.5 ∀1 ≤ m ≤ µ ≤ M (2.10)
On propose de passer à des écritures matricielles pour les modèles décrits en (2.9) et (2.10). Pour cela il est nécessaire d'adopter un certain nombre de notations :

• R(p) = [r 1 (p), . . . , r M (p)] T ∈ R M ×L est la matrice contenant l'ensemble des spectres purs associés au pixel p, quel que soit le pixel p, le rangement au sein de la matrice est toujours le même (i.e le spectre associé à la classe de matériaux m sera toujours sur la m ème ligne de R(p), ∀p)

• R =    R (1) 
. . . •

R(P )

T(p) = [r 1 (p) r 1 (p), r 1 (p) r 2 (p), . . . , r M (p) r M (p)] T ∈ R K×L (avec K = M 2 - M 2 )
est la matrice contenant l'ensemble des "spectres quadratiques" du pixel p issus uniquement des réflexions multiples au sein de ce pixel, la position des spectres, en fonction des termes utilisés dans les produits, est constante.

• T =    T (1) 
. . .

T(P )

   ∈ R P K×L est la matrice contenant l'ensemble des "spectres quadratiques" issus des réflexions multiples au sein du pixel p

• la matrice Γ ∈ R P ×P K est la matrice des coefficients quadratiques de mélange associée à T, c'est une matrice diagonale par bloc : où γ p = [c p, [START_REF] Herault | Réseau de neurones à synapses modifiables : décodage de messages sensoriels composites par apprentissage non supervisé et permanent[END_REF] , c p, [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] , . . . , c p,(M M ) ] T ∈ R K×1 est le vecteur des coefficients de mélange associé à la matrice T(p).

Γ =      
• Q(p) = [r 1 (p) r 1 (q 1 ), . . . , r M (p) r M (q 1 ), r 1 (p) r 1 (q 2 ), . . . , r M (p) r M (q p )] T est la matrice contenant l'ensemble des "spectres quadratiques" issus des réflexions multiples entre un élément du pixel p et un élément du voisinage (V p = q 1 , q P ).

• Q =    Q(1)
. . . En utilisant le modèle de mélange défini pour chaque spectre observé en (2.9) et les notations proposées ci-dessus on obtient l'équation suivante :

Q(P )

X = C R + Γ T + D Q.
(2.11)

Si l'on souhaite utiliser le modèle simplifié présenté dans l'équation (2.10) le modèle matriciel devient :

X = C R + Γ T. (2.12) 
Il est possible de simplifier encore cette écriture afin de se rapprocher du modèle "pseudolinéaire" présenté dans l' État de l'art dans la section.1.2.2, équation (1.33). Pour cela on doit encore adopter de nouvelles notations :

• Ṙ =        

R(1) T(1)

. . .

R(P ) T(P

)        
∈ R P (M +K)×L est la matrice contenant l'ensemble des spectres purs et des spectres quadratiques issus du pixel. Cette matrice est associée à la matrice des coefficients Ċ ∈ R P ×P (M +K) :

Ċ =       [c 1 T , γ 1 T ] 0 . . . 0 . . . 0 . . . 0 0 . . . 0 [c 2 T , γ 2 T ] . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . [c P T , γ P T ].       • Ȓ =            

R(1) T(1) Q(1)

. . .

R(P )

T(P )

Q(P )            
∈ R P (M +K+H)×L est la matrice contenant l'ensemble des spectres purs et des spectres quadratiques. Cette matrice est associée à la matrice des coefficients C ∈ R P ×P (M +K+H) :

C =       [c 1 T , γ 1 T , d 1 T ] 0 . . . 0 . . . 0 . . . 0 0 . . . 0 [c 2 T , γ 2 T , d 2 T ] . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . [c P T , γ P T , d P T ].      
En utilisant ces notations on peut réécrire les équations (2.11) et (2.12) sous forme pseudolinéaire. Ces deux modèles de mélange s'écrivent alors respectivement :

X = C Ȓ (2.13) et X = Ċ Ṙ. (2.14) 

Conclusion

Dans ce chapitre nous avons commencé par étudier le phénomène de variabilité intra-classe. Nous avons constaté que ce phénomène agissait à différentes échelles : au sein de zones uniformes ne contenant qu'un seul bâtiment et au sein de l'image complète. La section 2.1 nous amène au constat que la variabilité intra-classe résulte de différents phénomènes et qu'il est difficile d'établir une loi régissant l'ensemble de ceux-ci. Cependant il apparait aussi qu'il est nécessaire de prendre en compte ce phénomène si l'on souhaite améliorer la précision des modèles de mélange. La section 2.2 a donc été dédiée à la mise en place d'un modèle de mélange au sein duquel est intégré la variabilité intra-classe. Pour cela nous avons remis en question la notion de pôle de mélange et avons substitué à cette dénomination la notion de classe de matériaux purs. Notre approche consiste à dire que nous ne pouvons mathématiquement décrire la variabilité intraclasse, mais nous pouvons autoriser au sein de chaque pixel de l'image des variations des spectres caractérisant un matériau. Cela nous a amené à proposer des modèles de mélange dans lesquels à chaque pixel est associé un jeu de spectres purs.

Deux modèles de mélange ont été proposés. Le premier est une modification du modèle de mélange linéaire standard, le second est une extension du modèle de mélange linéaire-quadratique proposé par Meganem et al. dans le cas de zones urbaines [START_REF] Meganem | Linear-quadratic Blind source separation using NMF to unmix hyperspectral images[END_REF]. Pour chacun de ces modèles nous proposons une écriture vectorielle ainsi qu'une écriture matricielle de la modélisation.

Ces modèles étant nouveaux et largement sous-dimensionnés les méthodes actuelles de démélange ne peuvent être utilisées pour les inverser. Il est donc à présent nécessaire de mettre au point une méthode de démélange qui sera adaptée à ces modèles de mélange. 

Dans le

Chapitre 2 nous avons proposé de nouveaux modèles de mélanges dédiés soit au cas linéaire (2.3) (ou (2.7)), soit au cas linéaire-quadratique (2.10) (ou (2.12) et (2.14)). Le modèle linéaire est le cas le plus simple pour modéliser les phénomènes de mélange et il permet de modéliser les phénomènes majeurs de mélange qui interviennent en zone urbaine. Ce chapitre sera donc consacré uniquement au développement d'une méthode de démélange basée sur le modèle linéaire avec variabilité intra-classe. 55

Mise en évidence de la non-applicabilité des méthodes existantes avec notre modèle de mélange

Résumé : Dans cette section nous allons montrer qu'il n'existe actuellement pas de méthodes de démélange permettant d'inverser le modèle de mélange que nous avons proposé dans le chapitre précédent. A partir de cette étude, nous expliquerons notre choix d'utiliser une technique basée sur la NMF pour développer notre nouvelle méthode.

Dans le Chapitre 1 (section 1.2.1) nous avons présenté différentes méthodes de démélange. Nous allons ici analyser leur applicabilité à notre modèle de mélange linéaire, (2.3) (ou (2.7)).

Les méthodes géométriques

Ces méthodes sont présentées dans la sous-section 1.2.1.1 du Chapitre 1. Ces méthodes reposent sur l'hypothèse que l'ensemble des spectres observés sont contenus dans un simplexe dont les extrémités sont les pôles de mélange. Notre modèle de mélange ne prévoit pas l'existence d'une structure de simplexe, par conséquent l'extraction de chacun des spectres purs associés à une classe de matériaux n'est pas possible avec ce type de méthode. Dans le cas où des pixels purs de chacune des classes sont présents dans l'image, on extrait au mieux un représentant moyen de tous les spectres caractérisant une classe, au pire un extremum de ces spectres. Ce type de méthode n'est donc pas adapté à notre modèle.

Les méthodes bayésiennes

Ces méthodes sont présentées dans les sous-sections 1.2.1.2 (cas linéaire standard) et 1.2.3.2 (cas avec variabilité intra-classe) du Chapitre 1. Ces méthodes se basent sur différentes modélisations des pôles de mélange : des représentations classiques (un pôle de mélange = un spectre) [START_REF] Dobigeon | Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery[END_REF], des modélisations gaussiennes... Comme nous l'avons expliqué dans le Chapitre 2 (sous-section 2.2.1) aucune de ces modélisations ne correspond aux observations des phénomènes de variabilité intra-classe. Dans notre modèle nous ne proposons pas de lois régissant la répartition des spectres purs associés à une classe de matériaux. Par conséquent, nous ne disposons pas des a priori nécessaires pour mettre en place de telles méthodes.

Les méthodes parcimonieuses On trouve des détails sur ce type de méthodes dans la partie 1.2.1.3 du Chapitre 1. Comme on l'a montré dans cette partie et dans la partie 1.1.2.3 du Chapitre 1, différentes notions de parcimonie peuvent être considérées.

Dans un premier cas elle peut signifier la présence de zones mono-sources. Les méthodes développées pour ce type de cas ne sont pas applicables lorsque l'on utilise notre modèle. En effet la notion de zone mono-source n'existe pas puisque pour une même classe de matériaux les spectres varient d'un pixel à l'autre.

Dans un second cas on parle de parcimonie pour évoquer la présence d'un faible nombre de matériaux purs au sein de chaque pixel de l'image. On retrouve cette notion de parcimonie ajoutée comme contrainte dans différents types de méthodes (bayésienne, géométrique...). Les méthodes uniquement basées sur ce type d'approche utilisent généralement une ou des bibliothèques de spectres purs au sein desquelles elles cherchent les éléments qui minimiseront une fonction de coût, tout en pénalisant l'augmentation du nombre d'éléments utilisés. La présence de bibliothèques va permettre d'incorporer une forme de variabilité dans les spectres étudiés (cf. Chapitre 1, section 1.2.3.2) cependant elle limite la recherche car on ne peut récupérer de spectres non présent dans la bibliothèque. Dans notre modèle, tous les spectres d'un même matériau peuvent être différents.

Nous ne disposons pas de bibliothèques composée de spectres décrivant l'ensemble des variabilités observables.

Les méthodes NMF Les approches par NMF sont décrites précisément dans la section 1.1.2.4 de l'Chapitre 1 et leur application au démélange dans la section 1.2.4 de ce même chapitre. Les méthodes de démélange existantes et basées sur la NMF ne sont pas applicables dans le cas où l'on considère notre modèle de mélange puisqu'elles recherchent un unique jeu de spectres pour l'ensemble de l'image.

Cependant l'approche par NMF est intéressante et peut être étendue à notre situation. En effet, dans le Chapitre 2 section 2.2.3 on propose une écriture matricielle de notre modèle de mélange, (2.7). La matrice des observations s'écrit bien comme le produit de deux matrices non-négatives. L'approche par NMF est donc envisageable. Le principal problème provient des dimensions des matrices recherchées. Le problème est très largement sous-déterminé. Une approche par NMF risque donc de nous conduire à un minimum local de l'erreur de reconstruction. Nous verrons lors du développement des méthodes comment ce problème a été pris en compte.

Une approche par NMF étendue semble donc envisageable pour résoudre le problème de démélange en considérant notre modèle de mélange. Cependant les méthodes existantes ne permettent pas de résoudre notre problème de séparation de sources. Nous allons donc devoir proposer une fonction de coût adaptée à notre modèle de mélange et obtenir les règles de mise à jour associées. L'approche par NMF offre l'avantage de pouvoir rajouter des contraintes lors de l'écriture de la fonction de coût. Nous tirerons partie de ceci pour minimiser les effets de la sous-détermination du problème.

Première extension de la méthode NMF à notre modèle de mélange

Résumé : Nous avons expliqué dans la partie précédente que nous avons opté pour une méthode de démélange s'appuyant sur le principe de la NMF. Cette partie sera donc consacrée à la mise en place d'une première méthode de démélange basée sur notre modèle linéaire. Dans un premier temps nous présenterons la fonction de coût choisie puis les différentes phases de calcul jusqu'à l'obtention des règles de mise à jour. Finalement nous présenterons une analyse critique de cette méthode afin d'identifier ses faiblesses.

Écriture de la fonction de coût

La première étape de la mise en place de la méthode est le choix de la fonction de coût. Nous avons choisi de minimiser l'erreur quadratique de reconstruction. Il s'agit de la distance la plus commune dans le cas des méthodes de démélange. C'est aussi la mesure de distance utilisée dans la NMF standard.

Dans cette partie on mettra en évidence les différences existant entre le modèle standard de la NMF (1 jeu de spectres purs pour l'ensemble de l'image) et celui associé à la méthode NMF que nous proposons (1 jeu de spectres purs pour chaque pixel). Nous avons appelé la première méthode que nous avons développée UP-NMF pour Unconstrained Pixel-by-pixel NMF.

Dans cette partie nous utiliserons les notations introduites dans le Chapitre 2, section 2.2.3. En utilisant ces notations, la fonction de coût utilisée dans la méthode NMF standard de démélange s'écrit :

J nmf = 1 2 X -CR 2 F (3.1)
où • F est la norme de Frobenius. Dans (3.1), C et R représentent respectivement les estimatimations des "véritables" coefficients et spectres purs impliqués dans le mélange. Nous avons choisi cette notation afin de ne pas alourdir l'écriture des calculs présentés par la suite.

L'écriture de la fonction de coût dans le cas de notre modèle de mélange est similaire de l'écriture de (3.1). On remplace uniquement les matrices C et R par nos nouvelles matrices C et R. La fonction de coût de UP-NMF s'écrit alors :

J upnmf = 1 2 X -C R 2 F . (3.2)
Comme pour la NMF nous avons choisi de conserver les notations C et R même si elles correspondent ici aux variables estimées et non aux valeurs exactes des coefficients de mélange et des spectres purs.

Calcul du gradient

La seconde étape va consister à minimiser la fonction de coût sans contraintes. Nous avons choisi une approche par gradient projeté. Nous avons choisi cet algorithme car il est facilement adaptable à notre cas et parce qu'il nous sera possible de complexifier ultérieurement notre fonction de coût tout en conservant les résultats déjà obtenus. Par ailleurs Lin propose un algorithme standard de NMF basé sur la descente de gradient [START_REF] Lin | Projected gradient methods for nonnegative matrix factorization[END_REF]. Nous pourrons alors comparer nos résultats avec ceux obtenus à l'aide de l'algorithme NMF par gradient projeté standard.

Nous devons donc obtenir les dérivées partielles de la fonction de coût J upnmf par rapport à R et C. Pour faciliter les calculs on réécrit la fonction de coût de la manière suivante :

J upnmf = 1 2 T r((X -C R)(X -C R) T ) (3.3)
On obtient facilement une expression de ses dérivées en utilisant les formules de dérivation matricielle.

∂J upnmf ∂ R = -CT (X -C R) (3.4) ∂J upnmf ∂ C = -(X -C R) RT . ( 3.5) 
A partir de ces deux expressions on va pouvoir obtenir les règles de mise à jour.

Règles de mise à jour

Les règles de mise à jour dans le cas du gradient projeté, pour le modèle standard de mélange (sans variabilité intra-classe) sont décrites par les equations (1. [START_REF] Li | Joint blind source separation by multi-set canonical correlation analysis[END_REF]) et (1.20) (section 1.1.2.4 du Chapitre 1 ). Adaptées à notre cas ces écritures deviennent :

R(i+1) ←-R(i) -α R ∂J (i) upnmf ∂ R (3.6) C(i+1) ←-C(i) -α C ∂J (i) upnmf ∂ C (3.7)
ici α R et α C sont des pas d'adaptation positifs. On projette ensuite chaque composante scalaire sur le domaine d'intérêt, R + * , et on effectue la normalisation issue de la somme-à-un.

En utilisant les résultats de (3.4) et (3.5), on obtient les règles de mise à jour pour notre algorithme UP-NMF. On notera que dans la mise à jour de la matrice C seuls les vecteurs c p T (blocs sur la diagonale) sont mis à jour à chaque itération. Les autres termes sont fixés à 0. On obtient finalement l'algorithme de mise à jour de la méthode UP-NMF.

Algorithme I : Unconstrained Pixel-by-pixel NMF (UP-NMF) Tant que J upnmf > Seuil : i+1) , ) ( est un entier positif très petit)

1. Mise à jour de la matrice R R(i+1) ←-R(i) + α R( C(i)T (X -C(i) R(i) )) R(i+1) = max( R(i+1) , ) ( est un entier positif très petit) 2. Mise à jour de la matrice C Pour p = 1 à P c p (i+1)T ←-c p (i)T + α C(x p T -c p (i)T R(p) (i) )R(p) (i)T c p (i+1) = max(c p ( 

Normalisation des coefficients Pour

p = 1 à P c p (i+1) ←-c p (i+1) / M m=1 c pm
Dans le cas présenté dans la sous-section 2.2, on suppose que le nombre de classes de matériaux purs, M , est connu. Par ailleurs l'initialisation des matrices n'est pas présentée ici. On s'intéressera à ce point dans la sous-section 3.4. On rappelle seulement que les spectres associés à une classe de matériaux purs occupent, dans la matrice R, des lignes de R bien déterminées (cf. section 2.2.3).

Discussions autour de la méthode UP-NMF

La méthode UP-NMF est une simple extension de la méthode NMF standard à notre modèle de mélange. Elle permet donc de récupérer dans chaque pixel un jeu de spectres associé à chacune des classes. Cependant UP-NMF augmente considérablement le nombre de variables à estimer et ne modifie pas la dimension de la matrice des données. On est donc en présence d'un problème d'optimisation très largement sous-déterminé. On risque donc de converger vers un minimum local.

En augmentant le nombre de variables à estimer on ajoute aussi une indétermination d'amplitude (courante dans le domaine de la SAS) qui n'était pas présente dans la NMF standard en raison de la contrainte de somme-à-un. Dans notre cas la contrainte de somme-à-un ne fait que normaliser le jeu de coefficient associé à un pixel mais n'a aucun impact sur les spectres vu que les jeux de spectres sont indépendants d'un pixel à l'autre. Du coup on peut très bien réécrire la reconstruction du spectre observé pour le pixel p, (2.3) de la manière suivante : Par ailleurs, sans contraintes supplémentaires sur le problème, on compromet l'existence de classe. En effet, avec UP-NMF, à chaque itération les spectres associés aux différents pixels sont mis à jour indépendamment les uns des autres, même s'ils appartiennent à une même classe de matériaux. Par conséquent ils peuvent évoluer vers un autre matériau ou dans le cas extrême un mélange de matériaux. Cette problématique sera d'autant plus importante que la variabilité inter-classe est faible. Comme nous avons pu le constater dans la section 2.1.3 les spectres entre de classes de matériaux différentes peuvent avoir de fortes ressemblances. Si l'on autorise trop les spectres à varier, ils risquent, au sein d'une même classe, de décrire des matériaux différents.

x p = M m=1 1 k m (p) c pm × k m (p)
Nous proposons donc une amélioration de la méthode UP-NMF en modifiant la fonction de coût afin d'y ajouter des contraintes issues de l'étude de la variabilité intra-classe que nous avons présentée dans la section 2.1.

Extension de la méthode UP-NMF pour prendre en compte la notion de classe

Résumé : Une méthode basée sur notre modèle de mélange linéaire a été développée. Cependant elle présente plusieurs faiblesses. Nous proposons dans cette partie de développer une extension de cette méthode qui prendra en compte les observations faites lors de l'étude de la variabilité intraclasse. Cette nouvelle méthode, appelée IP-NMF, sera construite autour d'une fonction de coût complexifiée par rapport à UP-NMF. Nous présenterons donc cette nouvelle fonction de coût puis les calculs de gradients jusqu'à l'algorithme de mise à jour.

Écriture d'une nouvelle fonction de coût

Dans le Chapitre 2 nous avons mis en évidence la variabilité inter-classe mais aussi le fait qu'il existait une unité au sein des classes de matériaux purs. En effet la variabilité interclasse est suffisamment importante pour que l'on n'ait pas de recouvrement de classes. Dans la méthode UP-NMF cette notion de classe n'existe pas puisque les spectres évoluent complètement indépendamment d'un pixel à l'autre. Nous allons donc introduire ici un terme de pénalisation nous permettant de limiter les variations spectrales dans une même classe.

Nous avons donc choisi de pénaliser l'augmentation de l'inertie de chacune des classes de matériaux, c'est-à dire l'étalement spectral des spectres au sein de chaque classe. Cette pénalisation sera incluse dans la fonction de coût. En choisissant de pénaliser l'inertie on pénalise uniquement l'étalement des spectres de chaque classe les uns par rapport aux autres, et non pas un mouvement collectif de ces spectres. On permet ainsi aux classes d'évoluer même dans le cas d'une mauvaise initialisation (cf. sous-section 3.4). Cette méthode a été nommée IP-NMF (pour Inertiaconstrained Pixel-by-pixel NMF).

Pour obtenir l'inertie de nos classes de spectres nous allons calculer la trace des matrices de covariance obtenues pour chacune des classes :

I m = T r Cov RCm (3.9)
où RCm ∈ R P ×L correspond à la matrice contenant l'ensemble des spectres de la m ème classe de matériaux (pour créer cette matrice on extrait les m(modM ) spectres de la matrice R). La trace étant invariante par similitude, calculer (3.9) correspond à calculer T r D RCm où D RCm est une matrice diagonale telle que Cov RCm = OD RCm O T . On obtient donc la somme des variances sur l'ensemble des dimensions. On calcule la trace de RCm et non de R car on souhaite diminuer l'étalement de chaque classe et non l'étalement total de l'ensemble des spectres.

La nouvelle fonction de coût utilisant cette pénalisation s'écrit alors :

J ipnmf = 1 2 X -C R 2 F + µ M m=1 T r(Cov( RCm )) (3.10)
ici µ est un paramètre qui va contraindre l'inertie. Si µ = 0 on retrouve la méthode UP-NMF, si µ est grand la contrainte d'inertie va devenir prépondérante dans la mise à jour des spectres. On discutera de l'impact de la valeur de ce paramètre dans une partie dédiée (section 4.4.2).

Avec IP-NMF on pénalise donc les spectres qui, lors de la mise à jour, s'éloignent trop du groupe, ce qui permet de préserver l'homogénéité de chacune des classes. On peut donc espérer que des spectres associés à la même classe lors de l'initialisation continuent d'appartenir à la même classe à la fin de l'algorithme.

Calcul du gradient

Comme pour la méthode UP-NMF on utilise une approche par gradient projeté pour minimiser J ipnmf . On pourra ainsi réutiliser les calculs faits dans le développement de cette méthode. On cherche donc, là encore, à calculer les dérivées partielles de J ipnmf par rapport à R et C. Pour cela nous commencerons par décomposer la fonction de coût :

J ipnmf = J RE + µJ I (3.11) avec J RE = 1 2 X -C R 2 F
(3.12)

J I = M m=1 T r(Cov( RCm )) = M m=1 ( 1 P T r( RT Cm RCm ) - 1 P 2 T r(Q Cm )) (3.13) Q Cm = RT Cm 1 P,P RCm (3.14)
où 1 P,P ∈ R P ×P correspond a une matrice de 1 de taille P × P . J RE définit l'erreur de reconstruction et J I représente la contrainte d'inertie. On remarquera que J RE est égale à J upnmf . Les calculs associés à ce terme ont donc déjà été détaillés dans la section 3.2.

J I ne dépend pas de la matrice des coefficients C, par conséquent la dérivée partielle correspondante est égale à 0. Pour obtenir la dérivée de J I par rapport à R on devra passer par l'écriture scalaire des matrices en jeu dans cette expression. C'est pourquoi nous commencerons par proposer une réécriture de J I en fonction des termes de R. L'équation (3.13) mène à l'écriture suivante :

J I = M m=1 ( 1 P L l=1 P k=1 [ RCm ] 2 k,l - 1 P 2 T r(Q Cm )) = 1 P M m=1 L l=1 P k=1 [ R] 2 (k-1)M +m,l - 1 P 2 M m=1 T r(Q Cm ) = 1 P P M κ=1 L l=1 [ R] 2 κ,l - 1 P 2 M m=1 T r(Q Cm ) = 1 P T r( RT R) - 1 P 2 M m=1 T r(Q Cm ). (3.15) 
On calcule facilement la dérivée du premier terme de l'expression (3.15) par rapport à R à partir des formules de dérivation matricielle.

∂ ∂ R ( 1 P T r( RT R)) = 2 P R. (3.16) 
Nous allons à présent nous intéresser au second terme de cette expression. Pour simplifier les calculs nous introduisons deux nouvelles matrices A et B telles que :

A = RT Cm -→ a ij = [ RCm ] ji B = 1 P,P RCm -→ b ij = P β=1 [ RCm ] βj .
La matrice Q Cm s'écrit donc comme le produit de A et B, Q Cm = AB. On obtient alors l'écriture des coefficients de Q Cm en fonction des termes de RCm :

[Q Cm ] ij = P α=1 a iα b αj = P α=1 P β=1 [ RCm ] αi [ RCm ] βj .
On calcule à présent la trace de

Q Cm : T r(Q Cm ) = L l=1 [Q Cm ] l,l = L l=1 P α=1 P β=1 [ RCm ] α l [ RCm ] β l . (3.17)
En utilisant l'expression de T r(Q Cm ) obtenue en (3.17) il est désormais possible de calculer la dérivée de M m=1 T r(Q Cm ) par rapport à [ R] γλ , les coefficients de R. Par construction de RCm , il existe un unique m ∈ 1, M tel que [ R] γλ soit présent dans Q Cm , m = 1 + (γ -1)(mod M ). On le notera η dans la suite des calculs.

On peut désormais passer au calcul de la dérivée du second terme de (3.15) :

∂ ∂[ R] γλ ( M m=1 T r(Q Cm )) = M m=1 ∂ ∂[ R] γλ (T r(Q Cm )) = ∂ ∂[ R] γλ (T r(Q Cη )) = ∂ ∂[ R] γλ ( L l=1 P α=1 P β=1 [ RCη ] α l [ RCη ] β l ). ( 3 

.18)

A partir de l'équation (3.18), quatre cas sont possibles en fonction de la valeur de γ, α et β :

∂( L l=1 [ RCη ] α l [ RCη ] β l ) ∂[ R] γλ =              0 if α = γ and β = γ, [ RCη ] β λ if α = γ and β = γ, [ RCη ] α λ if α = γ and β = γ, 2[ RCη ] α λ if α = β = γ,
Par conséquent on aboutit à l'écriture :

∂ ∂[ R] γλ ( M m=1 T r(Q Cm )) = 2 P α=1 [ RCη ] α λ = 2 P α=1 [ R] (α-1)M +η,λ . (3.19)
On souhaite reformuler l'expression obtenue en (3.19) sous forme matricielle afin d'accélérer les calculs lors de l'implémentation sur ordinateur. On obtient alors :

∂ ∂ R ( M m=1 T r(Q Cm )) = 2U R (3.20)
avec U ∈ R P M ×P M définie de la manière suivante : 

U =               M          M 1 0 . . . 0 0 
∂J I ∂ R = 2 P (Id P M - 1 P U) R. (3.22) 
On peut maintenant combiner les résultats obtenus en (3.4), (3.5) et en (3.22) pour obtenir les deux dérivées partielles de la fonction de coût J ipnmf :

∂J ipnmf ∂ R = -CT (X -C R) + 2µ P (Id P M - 1 P U) R (3.23 
)

∂J ipnmf ∂ C = -(X -C R) RT . ( 3.24) 
Nous avons donc obtenu une écriture simple des dérivées partielles de J ipnmf . A partir de ces expressions nous allons pouvoir obtenir l'écriture des mises à jour.

Règles de mise à jour

Comme pour la méthode UP-NMF nous utilisons les règles de mise à jour décrites dans (1. [START_REF] Li | Joint blind source separation by multi-set canonical correlation analysis[END_REF]) et (1.20) (section 1.1.2.4 du Chapitre 1 ). De la même manière que pour UP-NMF on présente une mise à jour de chaque vecteur c p . Il est aussi possible de mettre à jour directement la matrice C en une unique opération, en s'assurant de fixer les zéros présents en dehors des blocs diagonaux.

Algorithme II : Inertia-constrained Pixel-by-pixel NMF (IP-NMF) Tant que J ipnmf > Seuil : i+1) , ) ( est un entier positif très petit)

1. Mise à jour de la matrice R R(i+1) ←-R(i) + α R( C(i)T (X -C(i) R(i) ) -2µ P (Id P M -1 P U) R(i) ) R(i+1) = max( R(i+1) , ) ( est un entier positif très petit) 2. Mise à jour de la matrice C Pour p = 1 à P c p (i+1)T ←-c p (i)T + α C (x p T -c p (i)T R(p) (i) )R(p) (i)T c p (i+1) = max(c p ( 

Normalisation des coefficients Pour

p = 1 à P c p (i+1) ←-c p (i+1) / M m=1 c pm
Comme dans la section 2.2, on suppose dans cette partie que le nombre de classes de matériaux purs, M , est connu. La question de l'initialisation sera abordée dans la section suivante, nous ne nous attarderons donc pas sur ce point ici.

On remarquera que comme pour UP-NMF on obtient les coefficients de mélange et les spectres purs à un facteur d'amplitude près. Comme nous l'avons expliqué dans la sous-section 3.2.4 (cf. équation (3.8)), la sous détermination de notre modèle de mélange, due à la modification de la signification de la somme-à-un, nous empêche de nous défaire de ce point dur.

Choix des initialisations

Résumé :

Les deux sections précédentes ont permis d'obtenir les équations de mise à jour des deux méthodes UP-NMF et IP-NMF. Ces méthodes étant itératives il est nécessaire d'initialiser les matrices recherchées. Nous nous intéresserons donc dans cette partie aux éléments à initialiser. Nous proposerons ainsi des méthodes d'initialisation pour la matrice des spectres, R, et la matrice des coefficients de mélange, C.

Nous avons évoqué dans le Chapitre 1 (section 1.1.2.4, § Initialisation) la problématique de l'initialisation. Les méthodes UP-NMF et IP-NMF étant itératives elles nécessitent une initialisation des éléments recherchés.

Dans notre cas on doit initialiser les matrices C et R. Ces matrices correspondent respectivement aux coefficients de mélange au sein de chaque pixel et aux spectres "graines" à partir desquels évolueront les spectres mis à jour. Comme nous l'avons évoqué dans le Chapitre 1 ce choix d'initialisation est extrêmement important car en cas de mauvaise initialisation on risque de s'éloigner de la solution optimale.

Différentes approches peuvent être choisies pour l'initialisation des matrices. Nous allons ici présenter indépendamment les possibilités d'initialisation pour les matrices R et C.

Initialisation de la matrice R

L'initialisation de la matrice R correspond à l'initialisation des jeux de spectres au sein de l'ensemble des pixels. On a choisi d'initialiser l'ensemble des pixels avec le même jeu de spectres purs. Ainsi on commence avec des classes ayant une inertie nulle. On se demande donc comment choisir cet unique jeu de spectres .

Si nous n'avons aucune connaissance a priori des scènes et du type de matériaux présents dans l'image deux options sont envisageables.

• On peut sélectionner aléatoirement M spectres de pixels dans l'image et les utiliser pour initialiser les spectres de la matrice R. Cette option est rapide à mettre en place, cepen-dant elle n'est absolument pas optimale et risque de conduire à de nombreuses erreurs. En effet si dans une scène une classe de matériaux est peu présente alors on risque de ne pas extraire de spectres proches de cette classe et, malgré les mises à jour, ne pas réussir à se rapprocher du spectre du matériau recherché. Ce type d'initialisation est envisageable dans le cas où les classes de matériaux purs sont équitablement présentes et que des pixels purs existent pour chaque matériau dans l'image.

• La seconde possibilité consiste à extraire les spectres de matériaux purs de l'image en utilisant une méthode géométrique (cf. Chapitre 1, section 1.2.1.1). Avec ce type d'approche on peut espérer extraire un spectre caractéristique de chaque classe de matériaux. On initialisera donc nos pixels avec des spectres proches des spectres recherchés ce qui évitera aux algorithmes UP-NMF et IP-NMF de trop s'éloigner de la solution. le choix de l'algorithme d'extraction des spectres purs dépendra de ce que l'on cherche. Par exemple la méthode N-FINDR va extraire des spectres extrêmes de chacune des classes de matériaux alors qu'avec VCA on obtiendra des spectres décrivant d'avantage une moyenne de chaque classe. Ce type d'approches nécessitant la présence de pixels purs, leurs performances seront donc limitées lorsqu'une, ou plusieurs, classes de matériaux ne seront pas présentes sous forme de pixels purs dans l'image. On extraira alors des spectres de mélanges, ce qui éloignera les spectres d'initialisation des spectres représentatifs des classes de matériaux. Ce problème sera d'autant plus important que les mélanges sont importants et les pixels purs inexistants.

Dans le cas où l'on possède des connaissances a priori sur les spectres de mélange il est possible d'opter pour d'autres types d'initialisation. Si on connaît les matériaux présents dans une scène on pourra utiliser des spectres de ces matériaux extraits d'une librairie pour construire le jeu d'initialisation. Si le démélange a déjà été fait dans une zone similaire et que l'on dispose de différents spectres caractéristiques des classes de matériaux présentes, on pourra utiliser la moyenne de ces spectres comme spectre d'initialisation. On remarquera aussi que plusieurs de ces méthodes peuvent se compléter. L'ensemble de ces solutions sont possiblement utilisables suivant les connaissances a priori, le type d'image... nous avons donc choisi de sélectionner trois méthodes d'initialisation qui seront par la suite utilisées dans les scénarios test (cf. Chapitre 4 ). Ces trois méthodes d'initialisation de la matrice R sont : (iii) utilisation du spectre moyen de chacune des classes de matériaux purs pour former le jeu d'initialisation (on ne pourra tester ce scénario que dans le cas d'une connaissance a-priori des classes).

Une préférence est toutefois portée sur le scénario (ii). En effet dans le cas de la présence de pixels purs les méthodes géométriques fonctionnent bien. On obtiendra donc pour chacune des classes de matériaux purs un spectre relativement représentatif du matériau et ce, sans connaissance a priori, à l'exception du nombre de classes.

Initialisation de la matrice C

L'initialisation de la matrice C correspond à l'initialisation des coefficients de mélange. Dans UP-NMF et IP-NMF la signification de cette matrice est la même que la signification de la matrice C dans le cas de la NMF standard. Les techniques d'initialisation seront donc les mêmes.

Comme nous l'avons vu dans la section 1.1.2.4 de le Chapitre 1 différentes approches sont possibles pour initialiser cette matrice. Nous considérerons ici qu'aucune information a priori n'est disponible, ce qui réduira le champ des possibilités. Parmi les méthodes d'initialisation des coefficients les plus communes, nous en avons sélectionné deux :

(a) Les coefficients de mélange sont initialisés avec des valeurs constantes qui respectent la contrainte de somme-à-un. On a choisi de prendre ces coefficients égaux à 1 M . Cette approche offre l'avantage de ne pas favoriser un matériau au sein d'un mélange, ce qui arriverait si on tirait aléatoirement ces coefficients. Ceci est aussi un défaut puisqu'on va donner du poids à un spectre qui peut être inexistant dans le mélange. On risque alors de ne pas réussir à converger vers la solution souhaitée.

(b) Les coefficients initiaux sont obtenus à la suite d'une régression par moindres carrés, FCLS (cf. Chapitre 1, section 1.2.1.1, § Détermination des coefficients de mélange) sur les spectres servant à l'initialisation. Avec ce scénario on minimise l'erreur de reconstruction avec les spectres servant à l'initialisation. Si les spectres initiaux correspondent à des approximations correctes des spectres purs présents dans les pixels les coefficients de mélange ainsi obtenus sont proches de ceux recherchés. On réduit donc les risques évoqués dans le scénario (a). Cependant si l'initialisation des spectres est mauvaise cette méthode va conduire à des coefficients très éloignés de la solution. On risque aussi avec ce type d'approche de se retrouver avec une "trop bonne" initialisation, on se situera alors dans un minimum local duquel on ne pourra peut être pas sortir.

Comme pour l'initialisation de R le choix de l'initialisation de C dépendra de la situation. Elle dépendra aussi et surtout des choix faits pour l'initialisation de R.

Les scénarios (a) et (b) seront utilisés dans la phase de tests. On remarque d'avance que l'emploi en commun des scénarios (b) et (i) pour l'initialisation des coefficients de mélange et des jeux de spectre n'a pas de sens, les spectres extraits étant des spectres mélangés. Toutes les combinaisons de scénarios ne seront donc pas utilisées dans les phases de tests.

Conclusion

L'objectif de ce chapitre était de développer des méthodes de démélange adaptées au modèle de mélange linéaire que nous avons présenté dans le Chapitre 2. Après avoir montré qu'il n'était pas possible d'utiliser des méthodes déjà existantes dans la littérature nous avons proposé de nous baser sur la NMF pour mettre au point deux nouvelles méthodes de démélange. L'extension de la NMF standard a abouti à l'élaboration d'une nouvelle méthode, UP-NMF, pour laquelle nous proposons un algorithme de mise à jour. Cependant cette approche semble sous-dimensionnée par rapport au nombre de variables recherchées. Par ailleurs UP-NMF ne prend pas en compte la notion de classe de matériaux purs dont nous avons pourtant montré l'existence dans le Chapitre 2. Nous avons donc proposé une nouvelle méthode, IP-NMF. IP-NMF se base sur la précédente méthode mais elle y ajoute une contrainte d'inertie. De cette manière une dispersion trop importante des spectres au sein des classes est pénalisée. On introduit ainsi la notion de classe dans l'algorithme de mise à jour. Afin de terminer la description complète des algorithmes nous avons proposé différentes manières d'initialiser les matrices des spectres, R, et des coefficients de mélange, C. L'utilisation de l'un ou l'autre des scénarios dépendra de nombreux paramètres. Nous serons donc amenés à tester différentes combinaisons d'initialisation sur des données semi-synthétiques afin de pouvoir les évaluer. Le ou les scénarios les plus performants seront ensuite utilisés pour les tests sur données réelles.

Outre le choix de leur initialisation, les méthodes UP-NMF et IP-NMF dépendent de plusieurs paramètres. L'influence de ces paramètres dépendra grandement des données utilisées lors des tests. Afin d'étudier ces paramètres nous proposons donc de faire appel à un jeu de test parfaitement maitrisé. Nous serons alors à même de tester nos méthodes sur les images décrites dans le Chapitre 2. Dans le Chapitre 3 nous avons développé deux méthodes de démélange, UP-NMF et IP-NMF. Ces méthodes étant dépendantes de paramètres, il s'avère nécessaire d'effectuer une étude de l'impact de ces paramètres sur les résultats des deux méthodes. Après quoi seulement, nous pourrons envisager des tests sur des images réelles. Les données utilisées pour effectuer ces tests doivent être parfaitement connues et elles doivent aussi être représentatives des images que nous allons traiter par la suite. Une fois les paramètres de nos méthodes fixés, nous proposerons aussi une première étude comparative de ces méthodes avec des méthodes de démélange issues de la littérature. On vérifiera alors si UP-NMF et IP-NMF apportent les améliorations espérées. Si ce n'est pas la cas il sera alors inutile de les tester sur des images réelles. 69

Chapitre 4

Étude de l'impact des paramètres des méthodes UP-NMF et IP-NMF sur le démélange de données semi-synthétiques

Choix des critères pour l'étude des performances des méthodes

Résumé :

Ce chapitre a pour objectif d'étudier l'impact de différents paramètres sur les performances des méthodes UP-NMF et IP-NMF. Pour mesurer ces performances il est nécessaire de définir des critères d'évaluation. Cette section sera donc consacrée au choix de ces critères et mesures.

Pour évaluer les performances des méthodes de démélange nous devons évaluer la distance entre les spectres purs d'une part et les coefficients de mélange d'autre part obtenus en sortie de nos méthodes, et les valeurs réelles des ces éléments. Pour cela nous allons nous appuyer sur différentes mesures : L'erreur de reconstruction (RE) On calcule l'erreur de reconstruction en comparant les spectres observés au sein de chaque pixel avec le résultat de la multiplication des matrices des spectres et des coefficients obtenus en sortie des méthodes. Le résultat de cette multiplication correspond aux spectres estimés des observations. Pour un pixel p on écrira cette erreur de la façon suivante :

RE(p) = 1 L • x p -ĉT p R (p) 2 (4.1) 
ici ĉp et R(p) correspondent aux valeurs estimées de c p et R(p). Il est aussi possible d'avoir une erreur moyenne. On notera cette valeur RE, telle que :

RE = 1 L • X -Ĉ R F (4.2)
où Ĉ et R sont les matrices estimées correspondant à C et R.

Cet outil est le plus utilisé pour évaluer les résultats du démélange. Il est simple d'application et surtout il ne nécessite pas de connaitre les données étudiées. Avec l'erreur de reconstruction on calcule donc une distance entre les observations et les "observations estimées", c'est-à-dire le produit des deux matrices estimées. La principale limitation de ce calcul est qu'il est possible que les erreurs se compensent dans la multiplication des matrices. Si bien que l'erreur de reconstruction sera faible, les spectres seront donc bien reconstruits, par contre les spectres pur et les coefficients ne seront pas proches des spectres et coefficients effectivement présents dans les pixels.

Par ailleurs cet outil n'est pas adapté à l'étude de nos méthodes. En effet dans UP-NMF, l'objectif est de réduire la fonction de coût qui correspond à l'erreur de reconstruction. Dans IP-NMF on minimise cette erreur associée à un terme de pénalisation. Le résultat de l'erreur de reconstruction sera donc forcément faible. Cela ne signifiera pas pour autant que les matrices obtenues sont correctes.

Nous avons tout de même sélectionné cet opérateur comme outil de mesure de la performance des méthodes car il est le plus utilisé dans la littérature et qu'il ne demande pas d'accès aux vérités terrain. Cependant nous manipulerons par la suite ces résultats avec précaution. Nous préfèrerons utiliser les outils de comparaison dédiés à chacune des matrices.

L'angle spectral Le calcul d'angles spectraux, ou SAM (Spectral Angle Mapper en anglais) est communément utilisé dans le domaine de la télédétection hyperspectrale, en particulier par les physiciens. Cette mesure va permettre de détecter les différences de forme entre deux spectres. Pour un pixel p on écrit l'erreur spectrale de la manière suivante :

SAM (p) = 1 M M m=1 cos -1 r m (p), rm (p) r m (p) 2 • rm (p) 2 (4.3) ici •,
• correspond à l'opérateur produit scalaire et rm (p) représente le spectre estimé de la m ème classe dans le pixel p. Comme pour l'erreur de reconstruction on peut calculer une erreur spectrale moyenne, SAM . Elle sera obtenue en moyennant l'ensemble des erreurs spectrales de chaque pixel.

SAM = 1 P M P p=1 M m=1 cos -1 r m (p), rm (p) r m (p) 2 • rm (p) 2 (4.4)
La signification de l'angle spectral est similaire à la signification de la corrélation utilisée dans le Chapitre 2 (cf. equation 2.1). Avec l'angle spectral on repère donc les différences de forme entre deux spectres ce qui nous permet d'étudier la ressemblance entre les jeux de spectres obtenus au sein de chaque pixel et ceux effectivement présents.

Cependant, comme pour la corrélation, l'amplitude des spectres n'est pas prise en compte dans ce calcul. Ce n'est pas problématique puisque l'on a vu dans le Chapitre 3 que l'on obtient les coefficients de mélange et les spectres à un facteur d'amplitude près (cf. (3.8)).

Le calcul de ces valeurs nécessite la connaissance des spectres effectivement présents dans les pixels. Par conséquent on ne pourra utiliser cette mesure que sur des données parfaitement maitrisées, ou alors pour quelques pixels d'images pour lesquels on connait la vérité terrain. Dans ce cas, on obtient donc bien une mesure de la fiabilité des spectres extraits avec les méthodes UP-NMF et IP-NMF.

L'erreur quadratique Cette mesure permet de calculer la distance quadratique entre plusieurs valeurs. On utilisera cette mesure pour obtenir la distance entre les coefficients de mélange estimés, ĉp , et les coefficients de mélange réellement présents, c p , au sein d'un pixel p. Cette erreur, pour le pixel p, s'écrit alors :

CE(p) = 1 M • c p -ĉp 2 . ( 4.5) 
Comme pour les autres erreurs on peut obtenir une erreur moyenne sur l'image, CE, cette erreur est calculée, comme pour l'erreur spectrale, en moyennant l'ensemble des erreurs sur les pixels :

CE = 1 P M • P p=1 c p -ĉp 2 . (4.6)
Avec ce choix on met en évidence les erreurs importantes entre coefficients obtenues par IP-NMF et UP-NMF et les abondances réelles dans le pixel. Pour pouvoir appliquer cet opérateur il est nécessaire de connaitre la proportion de chacune des classes au sein d'un pixel, par conséquent on ne pourra calculer cette erreur que sur des données connues ou sur des pixels où la vérité terrain est connue. Ce type de choix est très commun, on ne s'étendra donc pas plus dessus.

La projection sur les axes de l'ACP Ce type d'approche a déjà été évoqué dans le Chapitre 2 (section 2.1.2) nous ne détaillerons donc pas son principe. L'intérêt de cette approche est de représenter la variabilité des spectres dans chaque classe. On se servira donc de cet outil pour avoir une représentation visuelle, mais non quantitative, entre les variabilités réelle et obtenue (issue des méthodes).

Cet outil sera particulièrement utile pour évaluer l'impact du coefficient d'inertie dans la méthode IP-NMF. Mais aussi pour visualiser la différence entre UP-NMF et IP-NMF.

Choix des méthodes de démélange testées

Résumé :

Dans ce chapitre nous avons pour objectif de montrer, sur des données parfaitement maîtrisées, l'apport des méthodes que nous avons développées. Cette section présentera et justifiera le choix des différentes méthodes de la littérature que nous allons comparer à UP-NMF et IP-NMF.

Nous souhaitons comparer les méthodes que nous avons développées avec des méthodes de démélange classiques. Nous allons donc présenter les méthodes "standard" qui seront comparées dans la section 4.5.

Les méthodes géométriques

Une description de ces méthodes est proposée dans le Chapitre 1 (section 1.2.1.1) nous ne reviendrons donc pas sur leur description. Nous avons choisi de sélectionner des méthodes dites géométriques car il s'agit des plus utilisées lorsque l'on effectue du démélange. Nous avons sélectionné deux méthodes dans cette catégorie.

La méthode N-FINDR [START_REF] Winter | N-FINDR : an algorithm for fast autonomous spectral end-member determination in hyperspectral data[END_REF], a été choisie car il s'agit d'une méthode standard de démélange. C'est une approche itérative qui vise à sélectionner parmi les spectres des observations les sommets du simplexe de volume maximum. Cette méthode est très performante lorsque des pixels purs sont présents dans les observations. Nous avons aussi sélectionné la méthode VCA [START_REF] Nascimento | Vertex component analysis : a fast algorithm to unmix hyperspectral data[END_REF]. Cette méthode est intéressante car elle considère un modèle de mélange standard, un jeu de spectres purs pour l'ensemble des observations, mais, dans son fonctionnement, elle considère qu'il est possible d'avoir une variation des spectres autour de ces spectres purs. Dans cette méthode on ne considère plus le simplexe mais le cône simplicial issu des pôles de mélange. Cette approche se rapproche donc du modèle proposé par Veganzones pour traiter la variabilité intra-classe [START_REF] Veganzones | A new extended linear mixing model to address spectral variability[END_REF].

Ces deux méthodes sont largement utilisées dans la communauté de la télédétection. Elles représentent aussi deux approches différentes basées sur la géométrie des observations. Les algorithmes de ces deux méthodes sont disponibles dans [START_REF]Endmember induction algorithms (eias) toolbox[END_REF].

Pour estimer les abondances on fera suivre ces recherches de pôles de mélange d'une régression par moindres carrés (FCLS) comme décrit dans la section 1.2.1.1 du Chapitre 1.

La méthode NMF Standard

On a aussi choisi de tester la méthode dont sont issues UP-NMF et IP-NMF. L'algorithme choisi pour la NMF est celui proposé par Lin [START_REF] Lin | Projected gradient methods for nonnegative matrix factorization[END_REF]. Il s'agit d'un algorithme par gradient projeté comme dans le cas de nos deux méthodes. L'objectif, en choisissant cet algorithme, est de pouvoir évaluer les effets des modifications que nous avons apportées à cette méthode. La méthode NMF sera testée avec les mêmes initialisations que UP-NMF et IP-NMF. L'avantage de cette méthode est qu'elle ne requiert pas la présence de pixels purs, sauf si l'on souhaite l'initialiser en utilisant les spectres issus d'une méthode géométrique.

Nous avons largement détaillé le fonctionnement de la NMF et les avantages/inconvénients de chacune des méthodes dans le Chapitre 1. Nous ne nous étendrons donc pas d'avantage sur ce type de méthodes.

Description des tests

Résumé :

Dans cette partie nous allons présenter les tests qui seront effectués sur les méthodes UP-NMF et IP-NMF. Nous présenterons tout d'abord les données utilisées pour effectuer ces tests. Ces tests ayant pour but l'étude de l'impact des paramètres liés à ces méthodes, nous nous intéresserons ensuite aux choix des valeurs des paramètres à tester. Finalement nous présenterons les scénarios d'initialisation que nous avons choisi de tester.

Description des données utilisées

Dans le Chapitre 2, section 2.1 nous avons présenté différents types de données : images, spectres. Nous souhaitons dans ce chapitre effectuer des tests sur des données parfaitement maîtrisées et qui représentent de manière fidèle le phénomène étudié (c'est-à-dire la variabilité intra-classe). Nous ne disposons pas d'images urbaines pour lesquelles nous connaissons les spectres effectivement présents dans chaque pixel et les proportions de chacun de ces spectres ces pixels. Nous avons donc choisi d'avoir recours à des données semi-synthétiques.

Nous avons donc décidé d'utiliser les spectres que nous avons extraits de l'image et qui sont décrits dans la section 2.1.1 ( § Les données étudiées). Nous disposons donc de spectres appartenant à trois classes de matériaux purs. Pour chacune de ces classes les spectres décrivent une variabilité cohérente avec ce que nous pourrions observer sur des images réelles.

Les coefficients sont générés de manière aléatoire, tout en respectant la contrainte de sommeà-un. On pourra décider de la présence, ou non, de pixels purs pour une ou plusieurs des classes.

On obtient alors un jeu de P données dites semi-synthétiques. En effet les spectres sont issus d'images réelles et non pas extraits de bibliothèques, si bien que l'on est confronté aux mêmes problèmes (bruit, bandes d'absorption atmosphériques...) que ceux présents dans l'image. Par ailleurs les spectres décrivent une variabilité intra-classe réelle et non simulée. Seuls les coefficients de mélange sont purement synthétiques.

Description des tests effectués sur les paramètres

Comme nous l'avons précédemment évoqué, les méthodes UP-NMF et IP-NMF dépendent de certains paramètres et leurs résultats de l'initialisation des matrices des spectres R et des coefficients de mélange C. Cette phase de test sur données semi-synthétiques a pour but d'évaluer l'impact de la méthode d'initialisation et de la valeur des paramètres afin de fixer l'ensemble de ces éléments pour les tests sur données réelles.

Choix des initialisations

Nous avons présenté dans le Chapitre 3, section 3.4 les initialisations que nous avions choisies. On les rappelle brièvement ci-dessous. Les initialisations pour la matrice R sont :

(i) M spectres de pixels aléatoirement extraits à partir des spectres des observations. (ii) M spectres issus d'un algorithme géométrique d'extraction des spectres appliqué sur les observations. (iii) utilisation du barycentre de chaque classe pour définir les M spectres (possible sur données semi-synthétiques). Pour la matrice des coefficients, C on a choisi les initialisations suivantes :

(a) tous les coefficients sont fixés à 1 M (b) les coefficients sont issus de la régression par moindres carrés (FCLSU) effectuée avec la matrice R d'initialisation.

Dans le cas de l'initialisation (ii) on a choisi d'utiliser les méthodes N-FINDR ou VCA. On a choisi ces algorithmes pour leur fiabilité dans le cas de la présence de pixels purs et aussi parce que ces méthodes vont par la suite être comparées à UP-NMF et IP-NMF. On pourra donc analyser la précision gagnée, ou pas, avec nos méthodes. Les limitations de ces méthodes concernant la présence de pixels purs sont aussi intéressantes puisque nous pourrons voir comment réagissent nos algorithmes dans les cas où les spectres initiaux s'éloignent d'un pôle de mélange.

Choix des valeurs du coefficient associé à l'inertie

La fonction IP-NMF est aussi dépendante d'un autre paramètre, le coefficient associé à l'inertie, noté µ dans l'équation de la fonction de coût J ipnmf , (3.10). Ce paramètre représente le poids que nous allons donner à la contrainte d'inertie. Si la valeur de µ est faible alors on pénalisera faiblement l'étalement des spectres. Dans un cas extrême, µ = 0, on supprimera complètement cette contrainte, on se retrouvera alors dans le cas de la méthode UP-NMF. A l'inverse si l'on augmente la valeur de ce paramètre on va contraindre de plus en plus la dispersion des spectres. Si µ est trop grand on ne prend alors plus en compte l'erreur de reconstruction et tous les spectres associés à une même classe devraient converger vers un unique point. Afin d'évaluer les performances de nos algorithmes en fonction de ce paramètre nous avons choisi de faire varier celui-ci entre 0 et 300. On valide ainsi que dans le cas µ = 0 on retrouve bien les résultats obtenus avec UP-NMF. On émet l'hypothèse que 300 est une valeur suffisamment grande pour observer la convergence de chaque classe vers un spectre. Les résultats seront alors évalués à partir des mesure sélectionnées dans la sous-section 4.1.

Étude de l'impact des paramètres sur les résultats des méthodes

Résumé :

Dans les sections précédentes nous avons présenté les tests que nous allions effectuer ainsi que les moyens nécessaires à l'évaluation des résultats. Cette section sera donc consacrée à l'étude et à l'analyse de l'impact des paramètres sur les performances des méthodes que nous avons développées.

Étude de l'influence de l'initialisation sur UP-NMF et IP-NMF

Les scénarios testés pour l'initialisation ont été décrits dans la section précédente (section 4.3.2). Nous allons maintenant évaluer les performances pour chacun de ces algorithmes. Dans un premier temps nous allons utiliser la projection sur les premiers axes de l'ACP (cf. soussection 4.1). Nous pourrons ainsi visualiser les effets de l'initialisation. Dans un second temps nous nous appuierons sur l'étude des trois autres critères chiffrés pour une analyse plus précise des performances. Pour cela nous utiliserons les résultats figurant dans les trois tableaux 4.1, 4.2 et 4.3. Ils contiennent les valeurs des trois critères numériques sélectionnés dans la section 4.1 : l'angle spectral moyen (Tableau 4.1), l'erreur de reconstruction (Tableau 4.2) et l'erreur sur les coefficients (Tableau 4.3). Dans chacun de ces tableaux on trouve les résultats pour l'ensemble des initialisations possibles de R et C (cf. sous-section 4.3.2) et pour différentes méthodes : NMF, UP-NMF, IP-NMF, N-FINDR + FCLS et VCA + FCLS. Elles correspondent à celles prévues dans la partie 4.2. Dans le cas de IP-NMF on a sélectionnée une seule valeur de µ, µ = 30, ce choix sera justifié dans la sous-section suivante dédiée à l'étude de l'impact de ce paramètre. Dans cette partie nous ne nous intéresserons pas aux résultats des méthodes N-FINDR + FCLS et VCA + FCLS, ils seront étudiés dans la section 4.5 consacrée à la comparaison des résultats entre méthodes. La Figure 4.1 regroupe trois figures de projection sur les deux premiers axes de l'ACP. L'ACP a été réalisée sur les spectres de référence, c'est-à-dire ceux ayant été utilisés pour construire les mélanges. Chacune de ces figures correspond à la projection des spectres de référence, c'est-àdire ceux ayant été utilisés pour construire les mélanges, et à la projection des spectres issus des méthodes NMF et IP-NMF. Ces trois figures ont été obtenues avec différentes initialisations de la matrice R dans IP-NMF et NMF : (i), (ii), (iii) (cf. section 4.3.2), la matrice C a été obtenue en utilisant l'initialisation (b).

On remarque tout d'abord la différence entre les résultats de IP-NMF et de NMF : comme souhaité IP-NMF produit en sortie un grand nombre de spectres différents pour chacune des classes de matériaux (les étoiles oranges, bleues, jaunes respectivement pour les classes tuiles, végétation et asphalte) alors que la méthode NMF ne produit que trois spectres, un par classe (les cercles rouge, vert et noir respectivement associés aux classes tuiles, végétation et asphalte). La méthode IP-NMF satisfait donc à notre première exigence, associer à chaque pixel un jeu de spectres qui lui est propre.

Pour en revenir à l'impact de l'initialisation on constate que les résultats peuvent fortement varier selon le type d'initialisation. Visuellement on considérera qu'un résultat est bon lorsque le nuage de points issus de IP-NMF recouvre la largeur du cône ayant pour sommet l'origine du plan de projection et formé par la projection des spectres de référence. En effet, comme on l'a expliqué dans la section 3.2.4 on obtient les spectres à un facteur multiplicatif près (cf. Eq. (3.8)). 

Initialisation par des spectres des observations (i)

On observe donc que dans le cas de l'initialisation avec des spectres aléatoirement sélectionnés au sein des observations, les résultats de IP-NMF ne sont pas bons. On remarque cependant que le nuage de points a tenté de se rapprocher des spectres de référence. Les spectres qui ont servi à l'initialisation étaient des mélanges, par conséquent les mises à jour ont uniquement permis de se rapprocher de la solution espérée sans l'atteindre. On remarque le même comportement pour les résultats de la méthode NMF. On peut supposer que les fonctions de coût de IP-NMF et NMF sont restées bloquées dans des minima locaux. Si l'on étudie les résultats obtenus par IP-NMF initialisée de la sorte, pour les différents critères de performance, on constate que ces résultats (Tableaux 4.1, 4.2 et 4.3) et les observations faites à partir des projections sur les axes de l'ACP concordent (Figure 4.1). Dans le tableau 4.1 on observe que si l'on initialise R avec des spectres extrait de l'image, quelle que soit l'initialisation de la matrice C l'erreur spectrale moyenne est très élevée avec un écart type élevé. On note cependant que dans le cas d'une initialisation de C avec FCLS ce sont les résultats de IP-NMF les meilleurs.

Concernant l'erreur de reconstruction (Tableau 4.2) on constate qu'elle est élevée dans tous les cas d'initialisation pour NMF. Pour IP-NMF on obtient une valeur limitée pour ce critère (< 1) uniquement dans le cas d'une initialisation avec FCLS. Pour UP-NMF l'erreur de reconstruction est en permanence proche de 0. On ne doit cependant pas accorder trop d'importance à ce critère dans ce cas-là. En effet, comme on l'a déjà expliqué le fonctionnement de la méthode UP-NMF se base sur une minimisation uniquement de l'erreur de reconstruction. Il est donc normal, si cette méthode fonctionne, d'obtenir des valeurs très faibles pour ce critère.

L'erreur sur les coefficients est faible pour l'ensemble des cas d'initialisation. On remarque cependant que cette erreur a tendance à être plus importante (jusqu'à 0.05 pour UP-NMF et NMF) dans le cas de l'initialisation avec un jeu de spectres aléatoirement extrait des données testées.

Ces résultats sont en accord avec les prédictions que nous avions faites concernant l'initialisation de R avec des spectres issus de données. On ne conservera pas cette possibilité d'initialisation étant donné que l'erreur spectrale moyenne est bien supérieure à celle obtenue pour des méthodes standard (N-FINDR et VCA). En effet notre modélisation vise à obtenir au sein de chaque pixel les spectres les plus proches possibles des spectres de référence. Nous accordons donc une grande importance au critère basé sur l'erreur spectrale (SAM ).

Initialisation par des spectres issus de N-FINDR et VCA (ii)

Comparativement au cas précédent, la projection des résultats de IP-NMF, initialisée avec N-FINDR, semble bien meilleure. Les cônes décrit par les nuages de points représentant ces résultats tendent à se superposer à ceux décrits par les spectres de référence. On remarque que les résultats de IP-NMF sont bien meilleurs que ceux obtenus avec NMF. Les cercles représentant la projection des spectres issus de NMF se situent pour les classes Tuiles et Asphalte en dehors du nuage des spectres de référence.

On s'intéresse à présent aux critères numériques pour les initialisations avec N-FINDR et VCA. On étudiera tout d'abord les résultats obtenus pour le critère SAM . Dans le tableau 4.1 on constate que les performances de IP-NMF avec ce type d'initialisation sont toujours meilleures que celles obtenues avec UP-NMF, quelle que soit l'initialisation de C choisie. A l'exception de l'initialisation de C par une valeur constante (cas (a)) et de R par N-FINDR, les performances des algorithmes NMF, UP-NMF et IP-NMF s'améliorent lorsque l'on passe de l'initialisation (a) à l'initialisation (b) de la matrice des coefficients, C. On justifie ces résultats par le fait qu'en utilisant FCLS pour initialiser nos algorithmes on se rapproche de la solution et par conséquent on réduit le risque de converger vers un minimum local. Finalement le dernier point à remarquer sur ce tableau concerne les performances globalement meilleures des méthodes lorsqu'elles sont initialisées avec VCA plutôt que N-FINDR. En effet, compte tenu du fonctionnement de VCA, on peut supposer que le jeu de spectres obtenu est plus proche de la moyenne de chaque classe (cf. section 4.2). On remarque d'ailleurs que l'erreur spectrale moyenne obtenue est plus faible dans le cas de l'application de la méthode VCA + FCLS que pour la méthode N-FINDR + FCLS.

Comme on l'a déjà remarqué pour l'initialisation "aléatoire" les erreurs sur les coefficients (tableau 4.3) sont faibles. On constate qu'elles sont équivalentes pour les méthodes IP-NMF et UP-NMF quelle que soit l'initialisation de R et C choisies. On ne peut donc pas comparer les initialisations en se basant sur ce critère.

Les valeurs associées, pour chaque initialisation, au critère basé sur l'erreur de reconstruction montrent les limites de ce critère. En effet on vient de montrer que pour les deux critères précédents (SAM et CE) la méthode IP-NMF initialisée avec VCA était celle qui donnait les meilleurs résultats par rapport à l'initialisation avec N-FINDR ou avec des spectres issus des observations. Ce qui correspond à dire qu'avec ce type d'initialisation on est le plus proche des éléments effectivement présents dans chaque pixel. Or l'erreur de reconstruction pour IP-NMF calculée dans le cas de l'initialisation (a) + VCA est deux fois plus élevée que celle obtenue toujours pour IP-NMF, dans le cas de l'initialisation (a) + N-FINDR. Ceci s'explique par le fait que l'erreur de reconstruction peut gommer des erreurs qui se compensent entre les matrices des spectres et celles des coefficients. On prouve ainsi que l'erreur de reconstruction doit être utilisée avec précaution, notamment dans le cas des méthodes qui visent exclusivement à travailler avec cette erreur dans leur fonction de coût, comme c'est le cas pour UP-NMF. On constatera tout de même pour IP-NMF que l'ordre de grandeur des erreurs de reconstruction est nettement plus faible avec l'initialisation avec FCLS qu'avec l'initialisation par des constantes ce qui confirme nos observations précédentes.

Au vu de l'ensemble de ces résultats on peut conclure que l'algorithme VCA semble plus adapté pour initialiser nos méthodes. On remarque aussi qu'il est nettement plus intéressant d'utiliser ces algorithmes, N-FINDR ou VCA, par rapport à une initialisation "aléatoire". En effet les résultats sont bien meilleurs pour l'ensemble des critères. Pour le SAM on gagne jusqu'à 9 degrés ce qui est conséquent. Concernant l'initialisation de la matrice C il semble que l'utilisation de l'algorithme FCLS augmente la précision de nos méthodes. On avait déjà remarqué cela dans le cas de l'initialisation par des spectres extraits des observations. Initialisation par des spectres correspondant à la moyenne de chaque classe de matériaux (iii) La projection des résultats obtenus avec NMF et IP-NMF est représentée sur la Figure 4.1c. On constate sur cette représentation que le cône produit par les résultats de IP-NMF est quasi superposable au cône issu des spectres de référence. On notera toutefois que dans le cas de la végétation il semblerait que notre nuage ne couvre pas l'ensemble des possibilités et soit un peu trop resserré.

L'étude de l'erreur spectrale montre qu'avec ce type d'initialisation on améliore considérablement les performances de l'ensemble des méthodes. Par exemple dans le cas d'une initialisation de C avec des constantes, l'angle spectral moyen diminue de 2 degrés entre une initialisation avec VCA et une initialisation avec la moyenne (de 7.43 • à 4.99 • ). De même dans le cas d'une initialisation de C par FCLS on améliore nos résultats de plus de 2 degrés et ce quelle que soit la méthode (NMF, UP-NMF ou IP-NMF). Comme dans le cas précédent on remarque que le passage de l'initialisation (a) à l'initialisation (b) améliore les performances de nos méthodes.

Les erreurs sur les coefficients sont très faibles, 0.02, quelle que soit la méthode et les initialisations de C. Ce critère n'est donc pas discriminant pour le choix de l'initialisation de C. Comme pour le SAM , l'erreur sur les coefficients est plus faible pour une initialisation avec la moyenne des classes que pour n'importe quelle autre initialisation de R.

L'étude de l'erreur de reconstruction confirme ces analyses. Cependant comme on l'a déjà évoqué ce critère ne met pas en évidence la similitude entre les éléments (spectres et coefficients) extraits pour chaque pixel et les éléments effectivement présents dans ces pixels. L'utilisation de la moyenne de chaque classe ainsi que de la méthode FCLS semble être le meilleur duo d'initialisation. En effet les spectres utilisés pour initialiser les méthodes dans ce cas là sont alors, par construction, ceux qui minimisent l'erreur spectrale moyenne lors de l'initialisation. Il semble donc normal d'obtenir de tels résultats. Cependant il sera difficile d'obtenir ces spectres moyens lors du traitement d'images "réelles".

Conclusion sur l'initialisation

Au vu de l'étude des résultats obtenus avec diverses initialisations, un certain nombre de conclusions se dégagent.

On a tout d'abord mis en évidence la sensibilité de notre méthode à l'initialisation des deux matrices C et R. Comme on l'a montré la précision sur un critère d'évaluation des performances, comme l'angle spectral, peut tripler entre deux initialisation. Les méthodes sont sensibles aux initialisations sur les deux matrices C et R.

Le duo d'initialisation donnant les meilleures performances est composé de l'initialisation de R à partir des moyennes de chacune des classes et de l'initialisation de C en utilisant la méthode FCLS. Dans un cas réel il sera cependant difficile de disposer de ces moyennes. Elles représentent l'initialisation vers laquelle il faudrait tendre. On a pu constater que l'initialisation de R à partir de spectres issus de méthodes de démélange standard, en particulier VCA, permettait d'obtenir de bons résultats. Nous avons donc décidé d'utiliser cette approche dans le cas de l'application de nos méthodes sur des images réelles.

Lors de cette étude nous avons aussi mis en évidence les limites de l'erreur de reconstruction pour l'étude de performance. En effet nous avons montré que les critères mesurant la correspondance entre les spectres obtenus et ceux utilisés pour construire les mélanges (idem pour les coefficients) et l'erreur de reconstruction pouvaient ne pas être en accord. L'erreur de reconstruction est donc à manipuler avec précautions notamment pour l'étude de données synthétiques ou semi-synthétiques. Dans le cas de l'étude de données réelles l'utilisation de ce critère peut être utile car on ne dispose que très rarement des spectres effectivement présents dans chacun des pixels.

Étude de l'influence du coefficient associé à l'inertie

Nous allons à présent étudier l'impact du coefficient associé à l'inertie sur les performances de la méthode IP-NMF. Les tests présentés ici ont été effectués en n'utilisant qu'un duo d'initialisation, VCA (ii) pour R et FCLS pour C. On a choisi cette initialisation pour les raisons mentionnées dans la sous-section précédente, 4.4.1. Pour évaluer l'impact de µ nous avons choisi d'utiliser le critère de ressemblance spectrale (SAM ) et l'erreur de reconstruction (Figure 4.3). Comme pour l'étude de l'initialisation nous avons aussi choisi de visualiser la projection des résultats de IP-NMF sur les deux premiers axes de l'ACP pour différentes valeurs de µ (Figure 4.2). 4.2 montrent l'évolution de l'étalement des spectres associés à une même classe. Comme nous l'avions supposé lors de la discussion autour de la méthode UP-NMF (ou IP-NMF avec µ = 0) (section 3.2.4), l'étalement est trop important avec cette méthode. On observe sur la Figure4.2a un étalement des spectres issus de UP-NMF, pour chacune des classes, bien supérieur à l'étalement des spectres de référence.

Initialisation

A l'inverse dans le cas extrême où le paramètre d'inertie est fixé à une valeur élevée (ici 300) on supprime la variabilité des classes. C'est ce que l'on observe sur la Figure 4.2d. Dans ce cas-là les spectres issus de IP-NMF sont quasi identiques au sein d'une même classe, c'est pour cela qu'on observe une superposition des projections. On constate cependant que le résultat de IP-NMF ne correspond pas au résultat de NMF alors qu'on part avec les mêmes initialisations. Il semblerait, si l'on se base sur ces observations, que IP-NMF donne de meilleurs résultats puisque les spectres obtenus se situent plus près des axes décrivant la direction de chacune des classes. Comme on l'avait déjà remarqué dans la section précédente, l'erreur de reconstruction est quasi nulle dans le cas de UP-NMF. Dans le cas de IP-NMF on ajoute une contrainte supplémentaire dans la fonction de coût si bien que l'erreur de reconstruction n'est plus le seul critère minimisé. On observe donc, sur la Figure 4.3, une augmentation de la valeur de ce critère quand µ augmente. Dans le même temps on observe une décroissance de l'erreur spectrale moyenne. Cette erreur ré-augmente par la suite lorsque µ devient trop grand.

La courbe représentant l'erreur spectrale moyenne forme une cuvette au sein de laquelle l'erreur spectrale varie peu malgré des augmentations conséquentes du paramètre µ. Ainsi entre µ = 30 et µ = 90 cette erreur varie de quelques dixièmes de degrés. Dans le même temps l'erreur de reconstruction est en constante augmentation. On préconise donc de choisir une valeur de µ au sein de cette cuvette et de préférence "faible" pour réduire l'erreur de reconstruction.

Conclusion sur le paramètre µ

Dans cette section on a tout d'abord mis en évidence l'apport de la méthode IP-NMF par rapport à la méthode UP-NMF. Le choix du paramètre µ qui définit l'influence du critère d'inertie est donc important.

Nous avons montré dans un premier temps que les performances de IP-NMF pouvaient varier de manière conséquente pour différents choix de µ (cf. Figure 4.2). Le choix de ce paramètre ne peut donc pas être fait au hasard. Cependant on a constaté qu'il existait une plage conséquente de valeurs de µ pour laquelle les performances de IP-NMF restaient similaires. Le choix de ce paramètre ne nécessite donc pas une grande précision. Au vu des résultats dans cette partie, nous avons décidé de fixer µ = 30. Ainsi on limite à la fois l'erreur spectrale et l'erreur de reconstruction. C'est cette valeur qui avait déjà été sélectionnée dans la sous-section précédente sur l'étude de l'initialisation. Elle le sera aussi dans les sections et chapitres suivants. 

Comparaison des résultats avec ceux des méthodes sélectionnées

Résumé :

Dans la section précédente nous avons montré l'impact des paramètres sur les méthodes UP-NMF et IP-NMF. Cette étude a permis de sélectionner les valeurs des paramètres permettant le meilleur fonctionnement de nos méthodes. Dans cette section nous allons comparer nos méthodes, avec ces paramètres de fonctionnement, avec des méthodes classiques de démélange. Nous vérifierons ainsi l'intérêt de nos méthodes et verrons s'il est pertinent de passer à des tests sur données réelles.

Dans la section 4.2 nous avons présenté les méthodes de démélange de la littérature que nous souhaitions comparer aux méthodes UP-NMF et IP-NMF. Les critères nécessaires à la comparaison des méthodes ont été présentés dans la section 4.1. Dans la section 4.4 nous avons présenté trois tableaux (4.1, 4.2 et 4.3) qui nous ont servi à étudier l'impact de l'initialisation sur les performances des algorithmes proposés. Ces tableaux contiennent également les résultats des méthodes N-FINDR et VCA couplées à FCLS pour chacun des critères. Nous utiliserons donc ces tableaux pour notre étude. Nous utiliserons aussi les figures 4.1 et 4.2 pour mettre visuellement en évidence la différence entre les résultats des méthodes que nous avons développées et ceux issus de la méthode NMF.

Dans cette partie nous utiliserons µ = 30 pour IP-NMF, en accord avec les résultats de la partie 4.4.2. Concernant l'initialisation, nous comparerons les méthodes standard à UP-NMF et IP-NMF pour lesquels R a été initialisé soit avec les spectres moyens de chaque classe (cas optimal) soit avec les spectres issus de VCA (cas (ii)-VCA) et C avec FCLS. Ces choix sont issus de l'étude présentée dans la sous-section 4.4.1.

Comparaison de UP-NMF et IP-NMF avec NMF

Comme nous avons commencé à l'aborder dans la sous-section 4.4.1, la différence la plus visible entre les résultats de NMF et de UP-NMF ou IP-NMF se situe dans le nombre de spectres extraits. La méthode NMF produit un unique jeu de spectres pour l'ensemble des spectres d'observation. Les méthodes UP-NMF ou IP-NMF produisent un jeu de spectres par pixel. Cette différence est clairement visible sur les Figures 4.1 et 4.2 où sont représentées les projections des résultats de ces trois méthodes. Il apparaît qu'il est plus facile de décrire les nuages des spectres de références avec plusieurs spectres qu'avec un seul par classe.

Cependant cette visualisation ne permet pas d'avoir une étude numérique des apports de chacune des méthodes. Dans le tableau 4.1 on constate que dans le cas d'une initialisation de R optimale (cas (iii)) l'angle spectral moyen est constamment meilleur pour les méthodes UP-NMF et IP-NMF que pour NMF et ce, quelle que soit l'initialisation de C. Dans le cas des initialisations que nous avons sélectionnées dans la sous section précédente (µ = 30, initialisation par VCA et FCLS) l'erreur spectrale moyenne est minimale pour IP-NMF (7.05 • ). On trouve ensuite par ordre croissant NMF (7.17 • ) et UP-NMF (7.56 • ). La dispersion des spectres fournis par UP-NMF est trop importante en moyenne il est alors plus intéressant d'opter pour un unique spectre représentatif de chaque classe.

L'étude de l'erreur sur les coefficients (Tableau 4.3) montre que pour une initialisation de nos trois méthodes avec le spectre moyen de chaque classe ou avec VCA les performances des méthodes relativement à ce critère sont identiques : erreur de 0.02 dans le cas de l'initialisation optimale et 0.04 dans le cas de l'initialisation avec VCA, dans le cas où C est initialisée par FCLS (b).

L'étude de l'erreur de reconstruction montre comme on pouvait s'y attendre que la méthode UP-NMF est la plus performante relativement à ce critère suivie par IP-NMF (0.38 dans le cas optimal (iii)+(b) et 0. Il semble donc que la méthode IP-NMF soit beaucoup plus performante que la méthode NMF. En effet ses performances sont meilleures pour l'ensemble des critères sélectionnés. Dans le cas de la méthode UP-NMF les résultats ne sont pas aussi concluants. En effet dans le cas d'une initialisation optimale de R, faite avec la moyenne de chacune des classes, les résultats de UP-NMF sont meilleurs que ceux obtenus avec NMF (pour la même initialisation) pour l'ensemble des critères. Mais, dans le cas où l'initialisation est effectuée avec VCA, l'erreur spectrale est légèrement plus élevée avec UP-NMF (7.52 • ) qu'avec NMF(7.17 • ). Comme nous l'avons exposé lors de la présentation de la méthode UP-NMF (section 3.2.4) le manque de contraintes sur la fonction de coût de UP-NMF entraîne une dégradation des résultats espérés car l'algorithme converge facilement vers des minima locaux.

Comparaison de UP-NMF et IP-NMF avec N-FINDR et VCA

Contrairement au cas de l'étude de NMF nous avons choisi dans cette partie de ne pas faire figurer la projection des résultats sur les principaux axes de l'ACP. En effet la visualisation aurait été similaire à celle des résultats de NMF dans les Figures Il semble donc que les méthodes que nous proposons soient plus performantes sur l'ensemble des critères que nous avons sélectionnés. On notera que les résultats des méthodes VCA et N-FINDR s'améliorent lorsque des pixels purs sont présents dans les observations. Cependant ceci entraîne aussi une amélioration des performances des algorithmes que nous proposons (en particulier IP-NMF).

Conclusion

Cette étude visait à vérifier l'intérêt de nos méthodes en les comparant à des méthodes de démélange standard. On a tout d'abord montré que dans le cas où l'initialisation des spectres et des coefficients était optimale, c'est-à-dire effectuée avec les spectres moyens de chaque classe et les coefficients obtenus à l'aide de FCLS, alors les méthodes IP-NMF et UP-NMF sont bien plus performantes que les méthodes standard sur l'ensemble des critères sélectionnés. Cependant dans le cas d'études de données réelles on ne dispose que rarement de ces spectres moyen.

Dans le cas où les spectres sont initialisés par des spectres issus de VCA on observe aussi une amélioration de la précision des résultats de nos méthodes par rapport aux autres méthodes. C'est en particulier le cas lorsque l'on compare les résultats de VCA + FCLS avec ceux de de UP-NMF et IP-NMF initialisés à partir de ces mêmes résultats. Ceci confirme donc que nos méthodes améliorent les résultats par rapport à l'initialisation (c'est-à-dire VCA). Cependant dans le cas de UP-NMF cette amélioration est faible. On a aussi constaté que l'amélioration de l'initialisation (c'est-à-dire lorsque l'on se rapproche d'une moyenne des classes) engendrait une amélioration des performances de UP-NMF et IP-NMF.

Conclusion

Dans ce chapitre nous avons souhaité étudier les performances de nos méthodes sur des données semi-synthétiques. Pour cela nous avons sélectionné trois critères pour évaluer les performances de nos méthodes. Tout d'abord l'erreur spectrale moyenne qui mesure la ressemblance, dans chaque pixel, des spectres de référence et des spectres issus des méthodes de démélange. Ensuite l'erreur de reconstruction, qui mesure la distance entre la reconstruction des observations, à partir des spectres et des coefficients issus des algorithmes, et les observations "réelles". Et finalement l'erreur quadratique sur les coefficients qui va permettre de mesurer la distance entre les coefficients issus des méthodes et ceux effectivement présent dans les pixels.

Nous avons aussi choisi trois méthodes de démélange standard, NMF, N-FINDR et VCA, qui nous ont servi de référence afin d'étudier les apports de UP-NMF et IP-NMF.

La première étude a eu pour objectif d'étudier l'impact des paramètres de nos méthode sur leurs performances. Nous avons donc observé l'impact de l'initialisation et du paramètre d'inertie µ sur les résultats de UP-NMF et IP-NMF.

Il est apparu que nos deux méthodes étaient particulièrement sensibles à l'initialisation. Nous avons proposé une initialisation qui semble optimale et qui utilise la moyenne des spectres caractéristiques de chacune des classes pour initialiser R. L'initialisation de C est obtenue en utilisant FCLS sur les spectres d'initialisation. C'est avec cette initialisation que les meilleurs résultats sont obtenus. Cependant ces spectres moyens sont difficiles à obtenir dans le cas de données réelles. Nous proposons donc d'utiliser comme initialisation de notre méthode, lorsque les spectres "optimaux" ne sont pas disponibles, les spectres issus de la méthode VCA. Les résultats avec ce type d'initialisation sont bons, notamment lorsqu'on initialise les coefficients avec FCLS.

Après avoir sélectionné le jeu d'initialisation on a étudié l'impact du paramètre µ sur les résultats. Comme on pouvait s'y attendre IP-NMF est sensible à ce paramètre. En effet, il n'y aurait aucune différence entre UP-NMF et IP-NMF sinon. On a cependant constaté qu'il existait une large plage de valeurs de µ au sein de laquelle les performances de IP-NMF ne variaient pas trop. Au vu de ces résultats nous avons choisi de fixer µ à 30.

Une fois l'ensemble des paramètres fixé nous avons comparé les résultats de UP-NMF et IP-NMF aux méthodes que nous avions précédemment sélectionnées. Quelle que soit l'initialisation de R (optimale ou issue de VCA) les résultats de IP-NMF sont meilleurs que ceux des méthodes standard. Les résultats sont à nuancer dans le cas de UP-NMF, les améliorations espérées n'étant pas significatives dans le cas de l'initialisation avec VCA.

La comparaison des résultats de UP-NMF et IP-NMF montre aussi de meilleures performances de IP-NMF par rapport à UP-NMF notamment lorsque les conditions d'initialisation sont dégradées. Cette méthode semble donc d'avantage applicable à l'étude de données réelles.

L'analyse de ces résultats montre donc que, sur des données parfaitement maîtrisées, les méthodes que nous avons développées augmentent la précision des résultats obtenus. Au vu de ces résultats il semble donc pertinent de passer à des tests sur donnée réelles, urbaines. On s'assurera ainsi que nos méthodes réagissent bien face aux problèmes qui apparaissent sur ce type d'images (cf. Chapitre 1, section 3.1).

Chapitre 5

Étude des performances de l'algorithme IP-NMF sur des images réelles Dans le Chapitre 2 nous avons étudié des données extraites d'une image urbaine afin de mettre en évidence le phénomène de variabilité intra-classe. A partir de ces observations nous avons établi un modèle de mélange linéaire adapté à ce type d'observation. Dans les Chapitre 3 et Chapitre 4 nous avons développé deux méthodes de démélange que nous avons testées sur des données parfaitement maîtrisées. Nous avons alors pu déterminer les conditions de fonctionnement optimales de nos algorithmes. Il est à présent temps de revenir aux images urbaines afin de tester ces méthodes et de vérifier si la modélisation que nous avons faite des phénomènes est correcte. Au vu des résultats dans le Chapitre 4 nous avons décidé de ne tester sur les données réelles que la méthode IP-NMF. Les apports de la méthode UP-NMF n'ont pas été jugés suffisamment importants. Dans ce chapitre nous commencerons par nous intéresser à des images avec une résolution spatiale élevée. Nous nous intéresserons par la suite à des images ayant des résolutions spatiales plus faibles. Nous montrerons alors les apports de la méthode IP-NMF ainsi que les limites de l'ensemble des méthodes de démélange à faible résolution spatiale.

Descriptions des tests effectués

Résumé :

Ce chapitre consacrée à l'étude des performances de notre méthode sur des données réelles. Pour effectuer ces tests nous avons sélectionné une zone à étudier. Cette zone est décrite dans la première partie de cette section. Dans la suite de cette section les critères d'évaluation des performance de nos algorithmes sur des données réelles seront définis. Et finalement nous décrirons l'ensemble des tests que nous avons effectués sur notre image. • pour éviter des images trop grandes afin de limiter la durée des calculs.

Description des images utilisées

• pour effectuer l'étude de IP-NMF sur une zone "relativement" simple et maîtrisée.

• pour obtenir une image composée d'un nombre relativement faible de classes de matériaux. 

Définition des critères d'évaluation

Dans le Chapitre 4, section 4.1 nous avons représenté un certain nombre d'outils capables de mesurer les performances de nos algorithmes. Malheureusement l'ensemble de ces outils ne peuvent pas être utilisés dans le cadre de tests sur des images réelles. En effet les critères d'évaluation mesurant l'angle spectral entre spectres de référence et spectres obtenus ainsi que l'erreur quadratique entre coefficients de mélange nécessitent la connaissance des spectres et coefficients de mélange effectivement présents dans le pixel. Dans le cas des images étudiées ici nous ne disposons pas des vérités terrain nécessaires à l'utilisation de ces outils.

Erreur de reconstruction

Contrairement à l'erreur spectrale (SAM ) et à l'erreur sur les coefficients (CE) l'erreur de reconstruction peut être calculée à partir des données réelles. Cependant dans le chapitre précédent nous avons montré les limites de ce critère. En effet IP-NMF comporte dans sa fonction de coût l'erreur de reconstruction et, même si elle est associée à un critère d'inertie, on fausse, en partie, la comparaison avec d'autres méthodes.

Néanmoins cette erreur sera utilisée parce que l'ordre de grandeur des erreurs obtenues reste cohérent avec les performances des algorithmes avec les autres critères (cf. les tests sur données semi-synthétiques sections 4.4 et 4.5). Afin d'augmenter la pertinence de l'utilisation de cette mesure, nous associerons à l'erreur de reconstruction globale, telle qu'utilisée dans le Chapitre 4, la carte de ces erreurs pixel par pixel (cf. Eq. (4.1)).

Analyse des cartes d'abondance

La visualisation des cartes d'abondance est fréquente dans le cas de l'étude des résultats du démélange hyperspectral. Lorsque l'on utilise une méthode de démélange standard (VCA, N-FINDR, NMF,...) qui associe à l'ensemble de l'image un unique jeu de M spectres, on dispose de M cartes d'abondance. Chacune de ces cartes représente, pour chaque pixel, la proportion d'un pôle de mélange (ou spectre pur) au sein du spectre observé.

Dans le cas de la méthode IP-NMF la signification des cartes d'abondance diffère. On dispose toujours de M cartes. Cependant les coefficients de mélange au sein d'une carte sont associés à une même classe mais ne sont pas associés aux mêmes spectres. En effet, avec notre méthode on extrait un jeu de M spectres par pixel. Chacun de ces spectres est associé à une des M classes de matériaux purs. Par conséquent la m ème carte d'abondance représente la proportion de chacun des spectres associés à la m ème classe dans leur pixel respectif. Contrairement au cas standard les abondances dans une même carte ne se réfèrent pas toutes au même spectre.

Comme nous avons peu d'informations sur les pixels mélangés, nous porterons une attention particulière aux zones où les pixels sont purs, mais avec de la variabilité intra-classe. Nous pourrons alors comparer les résultats des méthodes de démélange sur ces zones puisque nous connaissons les valeurs des coefficients de mélange.

Description des tests effectués

Nous allons à présent décrire les tests que nous allons effectuer sur l'image sélectionnée dans la sous-section 5.1.1. La méthode testée est la méthode IP-NMF. Comme nous l'avons vu dans le Chapitre 4 nous devons fixer un certain nombre de paramètres pour que cette méthode fonctionne : le paramètre d'inertie, µ, et l'initialisation des matrices contenant les spectres R et C. A cela nous allons rajouter le choix du paramètre M qui détermine le nombre de classes recherchées dans l'image.

Choix du paramètre µ Une étude de la sensibilité de l'algorithme IP-NMF au paramètre d'inertie a été effectuée sur des données semi-synthétiques (section 4.4.2). Nous avons alors montré que les performances de IP-NMF étaient assez stables sur une plage de valeurs de µ. Comme pour les tests sur données semi-synthétiques, nous avons donc décidé de fixer ici µ = 30.

Choix des initialisations Dans la section 4.4.1 nous avons étudié les différentes initialisations possibles pour les matrices R et C. Les conclusions de cette section montrent que deux initialisations sont possibles pour R. La première est la solution optimale, elle consiste à initialiser R avec les spectres moyens de chacune des classes de matériaux purs. La seconde initialisation consiste à utiliser les spectres issus de l'algorithme VCA pour initialiser notre matrice. Nous ne sommes pas en mesure, sur des données réelles, d'obtenir les spectres d'initialisation optimaux. Nous allons donc utiliser les spectres extraits à l'aide de VCA pour l'initialisation. Nous utilisons alors le moins d'a priori possible. Cependant afin de nous rapprocher des conditions d'initialisation optimales nous allons aussi initialiser R avec M spectres sélectionnés manuellement dans l'image et qui correspondent aux classes que nous souhaitons trouver. Ce choix d'initialisation a uniquement pour but de fournir des résultats à comparer avec les résultats obtenus pour d'autres initialisations. Nous souhaitons en effet obtenir une méthode la moins supervisée possible.

L'initialisation de C sera faite à partir des abondances issues de d'une régression des moindres carrés sur les observations à partir des spectres de R (FCLS). On a montré dans la section 4.4.1 que c'est avec ce type d'initialisation qu'on obtenait les meilleures performances (par rapport aux critères sélectionnés).

Choix du nombre de classes de matériaux purs Dans le Chapitre 4 nous avions fixé le nombre de classes de matériaux purs à M = 3 dans la méthode de démélange, car nous connaissions le nombre de classes effectivement utilisées pour créer les données mélangées semisynthétiques. Dans le cas des tests sur données réelles nous avons plusieurs possibilités.

• Il est possible d'utiliser un algorithme décrit dans le Chapitre 1, tel que HySime [START_REF] Dias | Hyperspectral Subspace identification[END_REF], qui estime le nombre de pôles de mélange. Malheureusement lorsque les phénomènes de variabilité intra-classe deviennent trop importants les performances de cet algorithme se dégradent. Ainsi sur l'imagette décrite dans la section 5.1.1 cet algorithme détecte 46 pôles de mélange. Au vu de notre image cette valeur semble bien trop élevée. Nous n'utiliserons donc pas cette approche.

• On peut aussi estimer M à partir des observations sur l'image. Ainsi à partir de l'imagette on peut donner une estimation du nombre de matériaux purs. La On a choisi de sélectionner cette dernière approche. On effectuera donc différentes tests pour les différentes valeurs de M : 3, 5 et 7. On verra ainsi comment réagit notre algorithme lorsque l'on augmente le nombre de classes. on se reportera à la section 4.2 pour plus de détails. Dans cette phase de test l'algorithme N-FINDR n'a pas été sélectionné parce que ses performances sur données semi-synthétiques étaient moins bonnes que VCA. On a donc préféré ne tester que VCA.

Résumé des tests effectués : Cette section a présenté les différents choix qui ont été faits concernant le paramétrage de la méthode IP-NMF lors de son exécution sur l'imagette sélectionnée. Nous rappelons ici les choix de paramétrage faits :

-le critère d'inertie, µ est fixé à µ = 30 -l'initialisation de la matrice des spectres R sera effectuée de deux manières différentes (les notations de ces conditions d'initialisation sont celles utilisées dans le Chapitre 4, section 4.3.2) (ii) en utilisant les spectres résultants de la méthode VCA (iv) en utilisant des spectres purs manuellement extraits de l'image et représentant les classes souhaitées. -l'initialisation de la matrice C est faite en utilisant FCLS avec les spectres d'initialisation de R -le nombre de classes de matériaux purs sera fixé à différentes valeurs, M = 3, M = 5 et M = 7. En parallèle à ces tests sur IP-NMF des algorithmes standard de démélange (1 jeu de spectres purs pour l'ensemble de l'image) seront lancés pour comparer leurs résultats à ceux obtenus avec IP-NMF. Il s'agit de VCA et NMF.

Étude des résultats du démélange à haute résolution spatiale

Résumé :

Cette section sera consacrée à l'étude des performances de la méthode IP-NMF lors de son application à des données réelles. La partie test sera tout d'abord consacrée à l'étude de l'impact des choix d'initialisation de IP-NMF sur les performances de notre algorithme. Nous nous intéresserons ensuite aux conséquences des variations du nombre de classes de mélange recherchées sur les résultats de l'ensemble des méthodes testées. Finalement, dans une dernière partie, nous proposerons un post-processing et analyserons ces effets sur les résultats de IP-NMF.

Influence de l'initialisation

Dans cette première partie nous allons étudier l'impact du choix des paramétrages choisis dans la section 5.1.3. Dans un premier temps nous allons nous intéresser aux variations d'initialisation pour un M constant. On fixe dans cette sous-section M = 3. La Figure 5.3 représente les différentes cartes d'abondance obtenues pour différents algorithmes. Sur la première ligne on trouve le résultat de VCA + FCLS (Figure 5.3a). Sur la seconde se trouve le résultat de NMF qui a été initialisée avec les spectres issus de VCA (Figure 5.3b). La troisième et la quatrième lignes contiennent les résultats de IP-NMF pour deux initialisations différentes. Dans le premier cas (3 ème ligne, Figure 5.3c) on a initialisé la matrice R avec les résultats de VCA, dans le second (4 ème ligne Figure 5.3d) R a été initialisée manuellement avec trois spectres extraits de l'image (le 1 er sur une zone de tuiles, le 2 nd sur une zone d'asphalte, le 3 ème sur une zone de végétation). On rappelle ici que l'on nomme cartes d'abondance l'ensemble des cartes de la Figure 5.3 ; cependant les deux premières lignes ne représentent pas les mêmes choses que les deux dernières (cf. section 5.1.1, §.Analyse des cartes d'abondance).

Pour analyser les cartes d'abondance, on se référera à la classification partielle présentée dans la Figure 5.2. Par exemple la carte correspondant au pôle de mélange 1 dans la Figure 5.3a est associée à la classe asphalte à l'ombre car les pixels dont l'abondance vaut 1 sont localisés dans la classe asphalte à l'ombre de la Figure 5.2a.

Initialisation avec VCA

Dans un premier temps nous allons étudier les résultats issus de IP-NMF initialisée avec les spectres issus de VCA. On s'intéressera donc pour cette partie de l'étude aux Figure 5.3a et 5.3c. La Figure 5.3a représente les cartes d'abondance de l'initialisation et la Figure 5.3c représente l'évolution des cartes d'abondance après avoir utilisé IP-NMF.

A partir des cartes de la Figure 5.3a on déduit que les trois spectres extraits par VCA correspondent à des spectres appartenant aux classes asphaltes à l'ombre, tuile et végétation basse. On constate que le spectre de l'asphalte n'a pas été extrait car sur les zones correspondant à l'asphalte (cf. Figure 5.2a) l'abondance n'est pas égale à 1 (zones jaunes sur la carte associée à l'endmember 1, Figure 5.3a).

On observe à présent les cartes de la Figure 5.3c. Plusieurs constats peuvent être faits en comparant ces cartes à celles de la Figure 5.3a.

• Les zones où les abondances sont égales à 0, ou très faibles (zones bleu foncé) sont plus nombreuses sur les cartes de la Figure 5.3c. Ces zones correspondent à des aires où l'abondance est égale à 1 sur une des autres cartes d'abondance. On remarque aussi que ces zones correspondent aux zones pures de la classification partielle. On en déduit donc que les spectres des différentes classes se sont correctement déformés pour correspondre aux spectres effectivement présents dans le pixel. Par rapport à l'initialisation, et donc à la méthode VCA, on améliore donc la récupération de l'abondance sur les pixels purs ainsi que des spectres associés.

• La classe 2 correspond à un mélange de deux classes, asphalte et tuile (cf. Figure 5.3c). Ceci est lié à l'initialisation. Comme on l'a remarqué, le spectre d'asphalte n'a pas été extrait par VCA. La forme des spectres de pixels à l'ombre étant extrêmement caractéristique, dans les pixels contenant l'asphalte c'est le pôle de mélange 2 (celui initialisé par un spectre de tuile) qui s'est déformé pour obtenir un spectre d'asphalte. A l'inverse dans les pixels contenant de la tuile le endmember a simplement évolué pour prendre en compte la variabilité intraclasse. Pour s'assurer de ceci on a tracé des spectres sélectionnés dans les 3 classes de matériaux. Ils sont représentés sur la Figure 5.4. Des spectres de ces deux zones (asphalte et toiture) ont été sélectionnés et sont représentés sur la Figure 5.4b. On a aussi représenté sur cette figure un spectre moyen de tuile (obtenu en moyennant des spectres de tuile de l'image) et le spectre moyen d'asphalte (obtenu de la même façon). Sur la Figure 5.4b on observe bien deux comportements spectraux différents. Par conséquent, malgré une initialisation qui ne correspondait pas à un spectre d'asphalte on le retrouve tout de même à l'issue de IP-NMF. Ceci prouve donc les capacités de notre méthode à adapter les spectres pour correspondre à la réalité des observations. On constate donc l'impact de l'initialisation sur la méthode. En effet même si l'on obtient des spectres estimés au sein des pixels proche des spectres réels ils ne sont pas catégorisés dans les bonnes classes. La classe décrite par les spectres estimés de la classe 2 n'existe physiquement pas. Notre algorithme fonctionne donc correctement dans le sens où il extrait les bons spectres et les bonnes abondances mais on ne peut pas utiliser les résultats tels quels. On verra dans la section 5.2.3 comment il est possible d'améliorer cela.

Afin de s'assurer que dans les zones associées à un seul type de matériau on retrouve les bons spectres estimés, nous pouvons étudier la carte des erreurs de reconstruction présentée à la Figure 5.5a. On constate que sur les zones contenant des pixels purs (abondances proche de 1 dans la Figure 5.3c) l'erreur de reconstruction est faible. Comme on sait que l'abondance estimée est en accord avec celle proposée par la classification partielle (Figure 5.2a) une erreur de reconstruction faible implique la récupération d'un spectre proche de celui effectivement présent dans cette zone. On remarque aussi qu'il y a un facteur 10 entre l'erreur de reconstruction de IP-NMF et celle de VCA. Même en tenant compte des limitations de ce critère (cf. Chapitre 4 ) il semble que notre méthode améliore les résultats par rapport à la méthode VCA qui lui sert d'initialisation.

A une telle résolution il y a peu de pixels mixtes et nous ne possédons pas de vérités terrain sur ces pixels. L'analyse des performances de notre méthode sur de tels pixels sera davantage développée dans la section suivante 5.3 lorsque nous aurons affaire à une imagette ayant une moins bonne résolution spatiale. 

Initialisation avec des spectres manuellement extraits de l'image

Nous allons à présent étudier les résultats de la méthode IP-NMF initialisée avec des spectres que nous avons manuellement choisis et extraits de l'image. Nous allons donc nous intéresser aux cartes d'abondance présentées sur la Figure 5.3d.

L'utilisation de spectres appartenant aux classes souhaitées (tuile, asphalte et végétation) aboutit à l'existence en sortie de IP-NMF de ces classes. Contrairement à l'initialisation avec VCA la tuile et l'asphalte ne sont plus mélangés. On constate cependant avec cette initialisation que, en sortie de IP-NMF, des zones uniformes (la route par exemple) ne le sont plus tout-àfait et que les zones d'ombre sont réparties sur différentes classes. C'est notamment le cas de l'asphalte à l'ombre qui n'est pas associé à la même classe que l'asphalte et de la végétation à l'ombre qui est associée à la classe issue de l'asphalte. On peut justifier ceci par le fait que la variabilité inter-classe est faible sur les matériaux sombres. L'évolution d'un spectre de végétation vers un spectre d'asphalte à l'ombre est alors possible. On remarquera d'ailleurs que la contrainte d'inertie impose que l'ensemble des spectres d'asphalte à l'ombre se développent tous au sein de la même classe.

Avec la méthode IP-NMF on espérait pouvoir associer les matériaux à l'ombre avec les mêmes matériaux au soleil. Les tests effectués avec ce type d'initialisation montrent que notre méthode ne le permet pas. En effet les matériaux à l'ombre ont des spectres de réflectance particuliers pour lesquels la partie SWIR est nulle. On ne se trouve pas dans le cas d'une unique variation d'amplitude comme lorsqu'on fait varier l'angle d'illumination. Il semble donc nécessaire d'opter pour l'existence d'une, ou plusieurs, classes ombre.

Conclusion

Nous avons pu constater en initialisant R à l'aide des résultats de VCA que les résultats alors obtenus par IP-NMF étaient très bons sur le plan des abondances et sur la reconstruction des spectres. Nous avons aussi pu montrer que dans le cas d'une initialisation avec VCA les résultats étaient améliorés en terme de qualité spectrale des spectres associés à chaque pixel. Cependant les classes obtenues ne sont pas physiquement significatives. En effet on retrouve au sein d'une même classe deux sous classes qui se sont développées en parallèle. Nous aborderons ce problème dans la section 5.2.3.

On évite ce problème lorsque l'on initialise manuellement nos algorithmes. Cependant, dans ce cas, nous ne sommes pas capables de retrouver dans une même classe les spectres de matériaux à l'ombre et au soleil. Il est donc nécessaire de considérer au moins une classe ombre. Ce point sera développé dans la prochaine section consacrée à l'impact du choix du nombre de classes de matériaux.

Influence du nombre de classes de matériaux purs

Comme nous avons pu le constater dans la sous section précédente, la question du nombre de classes de matériaux à fixer lorsque l'on étudie des images réelles doit se poser. On a montré dans la section précédente que des sous-classes pouvaient se développer au sein d'une même classe. Dans le cas M = 3 on avait observé la même chose pour la tuile et l'asphalte qui sont contenus dans la classe 2. Nous avons aussi montré que lorsque l'on initialisait les classes avec les spectres des classes de matériaux désirées se posait le problème de l'appartenance des spectres d'ombre. Il est alors nécessaire de faire exister au moins une classe ombre. Initialisation avec VCA Nous allons tout d'abord nous intéresser à l'étude des résultats obtenus par les méthodes standard. On constate tout d'abord que les cartes d'abondance issues de la méthode NMF sont extrêmement similaires aux cartes de VCA. Comme la méthode NMF a été initialisée avec les spectres issus de VCA et les coefficients obtenus ensuite avec FCLS, on peut supposer qu'on se trouve dans un minimum local duquel NMF n'a pas réussi à s'extraire. L'analyse des cartes d'abondance de VCA (toujours faite en se référant à la classification partielle, Figure 5.2) nous montre que les 5 spectres extraits par cette méthode correspondent à (dans l'ordre d'apparition sur la Figure 5.7a) : de l'asphalte à l'ombre, une voiture, de la tuile, un spectre assez indéterminé et un spectre de végétation. On a représenté les spectres de ces matériaux sur la Figure 5.6. On peut ainsi valider l'association des endmembers aux classes physiques. On se rend alors compte que le endmember 4 correspond à un mélange de plusieurs spectres. On observe en effet le pic dans le vert mais pas de montée dans le rouge. On se rend compte qu'en augmentant le nombre de classes recherchées on fait apparaître les limites des algorithmes standard pour ce type de scène. Avec les méthodes géométrique on extrait unique les spectres extrêmes du simplexe. C'est pour cette raison que le spectre de la voiture (endmember 2) a été récupéré (cf. spectre bleu dans la Figure 5.6). A l'inverse d'autres spectres de matériaux comme l'asphalte, pourtant largement présent dans les données, n'ont pas été extraits. La classe asphalte n'existant pas avec VCA, la méthode IP-NMF l'a faite apparaître (Classe 3 Figure 5.7c) à partir du spectre du endmember 3. Ce pôle de mélange représentait initialement de la tuile. Du fait de la contrainte d'inertie on remarque d'ailleurs que les spectres de tuile ont été partitionnés sur deux classes. En effet l'apparition de l'asphalte a fait se déplacer la classe issue de la graine 3 si bien que des spectres issus du endmember 5 ont fini par évoluer vers un spectre de tuile.

Étude pour le cas

La classe 4 est particulièrement intéressante. On a vu que le endmember 4 devait représenter un mélange de plusieurs matériaux dont la végétation. La méthode IP-NMF a permis de faire évoluer les spectres issus de cette graine vers une classe de végétation comprenant des spectres de végétation à l'ombre et au soleil.

L'initialisation avec VCA et pour M = 5 de IP-NMF entraîne donc certains problèmes. Cependant on peut tout de même mettre en évidence l'amélioration des résultats par rapport à VCA ou NMF. Pour l'asphalte par exemple, les pixels au seins desquels ce matériau est le seul à être présent sont représentés par un spectre d'asphalte et non pas une composition de spectres d'autres matériaux. Par ailleurs on constate que l'on rend bien compte de la variabilité des matériaux puisque des spectres différents, associés à la même classe de matériaux, caractérisent des pixels différents. Les principaux problèmes observés lorsque M = 5 résultent de deux points :

(1) l'initialisation avec les spectres issus de VCA (2) le développement au sein d'une classe de sous classes caractérisant des matériaux différents Le problème (2) était déjà présent dans le cas où l'on avait fixé M = 3. On verra si ce problème persiste encore en augmentant la valeur de M .

Initialisation manuelle Dans le cas où l'on initialise R avec des spectres que nous avons sélectionnés manuellement on évite le problème (1). La Figure 5.7d représente les résultats de IP-NMF dans le cas où on a sélectionné, sur l'image, 5 pixels correspondant aux classes de matériaux : tuile, végétation, asphalte à l'ombre, voiture, asphalte. Là encore les résultats semblent moins bons que ce à quoi on pouvait s'attendre.

Conclusion pour M = 5

Par rapport au cas M = 3 on constate que les même problèmes perdurent (apparition de sous-classes, problèmes avec les ombres...). Ces problèmes apparaissent tant avec l'initialisation manuelle qu'avec l'initialisation avec VCA. En effet on n'est pas à l'abri, avec l'extraction manuelle de spectres, de choisir des spectres éloignés du centre de gravité de la classe souhaitée. Des sous-classes peuvent encore apparaître. Des sous-classes apparaissent aussi dans le cas où des matériaux absents de la classification manuelle se trouvent dans l'image. Avec cette approche pour l'initialisation, les performances de IP-NMF ne sont pas significativement meilleures que celles obtenues en utilisant VCA. Les mêmes problèmes continuent de se poser.

On justifie ainsi l'utilisation de l'algorithme VCA pour l'initialisation.

On a choisi d'augmenter le nombre de classes et de passer de M = 3 à M = 5 pour éviter le développement de sous-classes. On constate que ce n'est pas le cas. L'apport de l'augmentation du nombre de classes est faible en ce qui concerne la reconstruction des spectres. Par exemple la tuile et l'asphalte sont mieux reconstruits dans le cas M = 3, et comme pour M = 5, ils se sont développés au sein de la même classe. L'intérêt dans le cas M = 5 est que l'on différencie plus de classes. On a par exemple réussi à extraire la classe spécifique associée à la voiture. Avec VCA, le cas où M = 7 montre des résultats similaires au cas M = 5. Les spectres extraits correspondent aux classes de matériaux : voiture, terre (chemin de terre + gravier), asphalte à l'ombre, tuile, tuile, végétation basse et végétation. On constate donc que comme pour le cas M = 5 où M = 3 aucune classe asphalte n'a été extraite. Par contre deux spectres de tuile ont été extraits. Le premier caractérise plutôt des tuiles au soleil, l'autre des tuiles moins éclairées.

Étude pour le cas

Les cartes d'abondance fournies par IP-NMF initialisée avec ces résultats montrent une sensible amélioration des performances par rapport à VCA. En effet on fait apparaître des spectres d'asphalte. Le spectre d'asphalte à l'ombre (endmember 3) ne sert plus à la reconstruction de l'asphalte. La végétation est divisée en deux classes herbe et arbres. On observe aussi une unique classe tuile.

On pourra remarquer que la classe tuile s'est unifiée à partir du endmember de tuile claire (endmember 4) et que le endmember de tuile sombre a été utilisé pour faire apparaître la classe asphalte. On vérifie ainsi que nos classes sont capables de s'adapter pour modifier une classe de matériaux et faire apparaître en son sein des spectres caractéristiques d'un nouveau matériau qui n'avait pas été introduit dans l'initialisation.

Il est cependant préférable dans le cas d'une initialisation optimale de faire apparaître dans l'initialisation de R les grandes classes de matériaux. On constate ainsi que lorsque l'on initialise une classe avec un spectre d'asphalte on récupère une carte d'abondance pour l'asphalte avec les bonnes abondances. C'est le cas de la classe 2 dans la Figure 5.8d. En effet dans le cas d'une initialisation avec VCA notre méthode n'est pas suffisamment efficace et attribue à la route une proportion d'asphalte de l'ordre de 80%.

L'initialisation manuelle de IP-NMF a été faite avec des spectres caractérisant les classes tuile, asphalte, asphalte à l'ombre, végétation haute, herbe, terre (chemin terre + gravier) et végétation à l'ombre. On retrouve bien ces classes dans les cartes de la Figure 5.8d.

Dans le cas M = 7 pour une initialisation avec VCA ou manuellement on constate que la végétation n'est pas à 100% dans certaines zones (en particulier sur la partie gauche de l'imagette). La connaissance du lieu de la prise de vue nous informe que, en dessous de ces arbres, se trouvent des matériaux différents de la végétation. En particulier sur la partie gauche on a un parking en dessous des arbres. Or on constate sur nos cartes d'abondance que dans ces régions là, la végétation est mélangée avec l'asphalte à l'ombre ce qui est cohérent avec la connaissance du terrain.

Avec 7 classes, les performances de l'algorithme VCA ne se sont pas énormément améliorées par rapport au cas M = 5 ou M = 3. La méthode IP-NMF avec M fixé à 7 donne de bons résultats. Tout d'abord en terme de cartes d'abondance, en effet elles se rapprochent de la classification partielle dont nous disposons ainsi que des connaissance du terrain. En terme spectral nous ne pouvons nous prononcer que sur les zones pures en nous aidant de l'erreur de reconstruction. On constate alors que l'erreur de reconstruction est globalement très faible sur ces zones. Comme nous n'avons pas de relevés terrain nous ne pouvons pas nous prononcer d'avantage sur la précision spectrale de notre méthode.

Contrairement au cas M = 5 ou M = 3 nous n'avons pas de divisions des classes en sousclasses ce qui nous permet de dire que cette imagette se compose de 7 classes.

Conclusion

Nous avons donc fait varier la valeur de M pour étudier l'impact de ce paramètre sur la méthode. En se basant sur les résultats dont nous disposons pour l'instant on constate une variation des résultats en sortie de IP-NMF. La principale raison de ces variations provient de l'utilisation de l'algorithme VCA. Comme on l'a précisé dans cette section, les spectres en sortie de VCA sont des extrema et une initialisation optimale nécessite les centres de chacune des classes recherchées. En utilisant les spectres issus de VCA comme graine pour chacune des classes on centre alors nos classes initiales loin des véritables centres de classes. L'algorithme aura donc du mal à modifier suffisamment les spectres. En outre certains spectres ne sont pas à modifier, comme la voiture qui a un spectre très caractéristique qui sera très difficile à déformer pour trouver d'autres éléments. On "gaspille" donc une classe.

A l'inverse lorsque l'initialisation est faite manuellement on obtient les classes que l'on recherche. Cependant au sein de ces classes on voit se développer des sous classes. C'est par exemple le cas de la Classe 3 dans la Figure 5.3d. C'est un problème car on ne peut pas, en sortie de IP-NMF, associer une classe à un matériau si M est trop faible. Cependant c'est la preuve que malgré un M mal adapté à la scène notre algorithme est capable de retrouver les spectres de l'ensemble des éléments présents dans l'image. Notre algorithme est donc beaucoup moins sensible que les méthodes VCA ou NMF à une mauvaise estimation du nombre de classes puisqu'on retrouve bien au sein des pixels les spectres effectivement présents.

Il serait donc intéressant d'arriver à retirer les 7 classes présentées dans le cas M = 7 des résultats issus de IP-NMF avec M = 3 ou M = 5. On montrerait ainsi la faible sensibilité des performances de démélange de IP-NMF au nombre de classes indiqué à la méthode par l'utilisateur.

Apport d'un post-processing sur les performances de la méthode

Dans cette partie nous souhaitons montrer à la fois la faible sensibilité des performances de démélange de IP-NMF au choix de M mais aussi une possibilité d'utilisation des résultats en sortie de notre algorithme. Comme nous l'avons déjà évoqué nous ne disposons pas en sortie de IP-NMF de M spectres mais de M × P spectres. On peut donc envisager différents post-processings pour mettre en valeur et exploiter toutes les informations obtenues à l'issu de IP-NMF.

Description du Post-processing

Nous nous sommes aperçus dans les sous-sections précédentes 5.2.1 et 5.2.1 que des sous classes s'étaient développées au sein de nos classes de matériaux. On souhaite donc utiliser un post-processing pour récupérer ces différentes classes.

Pour effectuer ce post-processing nous avons opté pour une méthode de clustering qui regroupera les spectres en fonction de leur proximité spectrale. Nous avons choisi pour cela l'algorithme k-means [START_REF] Seber | Multivariate Observations[END_REF]. Il s'agit d'un algorithme dont le fonctionnement est relativement simple. Le seul paramètre à fixer dans cet algorithme est le nombre de classes M. Il s'agit d'un algorithme itératif qui sélectionne initialement M spectres aléatoirement qui seront les premiers centres de classes. Puis à chaque itération il effectue les opérations suivantes :

-affectation à chaque centre de classe de la partition des données les plus proches -calcul du nouveau centre de chaque nouvelle partition. Dans notre cas nous avons choisi comme mesure de distance l'angle spectral. En effet ce critère permet de mettre en évidence les différences spectrales mais il est insensible aux variations d'amplitude.

On va donc fournir en entrée de k-means l'ensemble des spectres issus de IP-NMF. En sortie ces spectres seront donc réorganisés dans un nombre M de classes. On pourra alors visualiser des cartes d'abondance en réorganisant de la même manière les coefficients de mélange issus de IP-NMF.

Influence sur les résultats

Nous avons testé ce post-processing sur les résultats issus de IP-NMF dans les cas M = 3, M = 5 et M = 7. Nous avons vu dans la partie 5.2.2 qu'il semble que l'on extrait bien l'ensemble des classes pour M = 7. Nous avons donc choisi de fixer le nombre de cluster M = 7. Les nouvelles cartes d'abondance alors obtenues sont représentées sur la Figure 5.9.

On constate sur la Figure 5.9c que le post-processing n'a pas modifié significativement les cartes d'abondance. Ceci est conforme aux observations que l'on avait faites dans la section 5.2.2, c'est-à-dire que lorsque M = 7 on a bien un matériau par classe.

Nous allons à présent particulièrement nous intéresser au cas M = 3. Les nouvelles cartes d'abondance associées à ce cas sont présentées sur la Figure 5.9a. On remarque dans ces Figures que l'on a réussi à séparer la tuile de l'asphalte qui étaient deux sous classes de la même classe (cf. On remarque que de nombreux pixels sont considérés comme la composition de ces deux éléments de la végétation. A l'inverse la carte associée à la végétation dans la Figure 5.9a (Classe 4) associe une abondance proche de 1 à tous ces pixels. Comme nous ne disposons pas de vérités terrain il est difficile d'établir quelle situation est la plus proche de la vérité. Cependant si l'on cherche à avoir une vue globale de la végétation en zone urbaine, sans différentiation des espèces, le cas M = 3 est suffisant.

Dans le cas où M = 5 les résultats du post-processing (Figure 5.9b) sont similaires à ceux obtenus dans le cas M = 7. En effet comme dans le cas M = 3 on retrouve les grandes classes de matériaux et une classe (Classe 5) qui contient des spectres signant de manière particulière et qui n'a pas de sens physique. Les différences qui existent entre les résultats du post-processing avec M = 5 et M = 7 résultent des variations qui existaient avant le post-processing (en sortie de IP-NMF). En effet le post processing n'améliore pas l'estimation des spectres et des abondances.

Conclusion

Avec le post-processing proposé nous avons confirmé le résultat de la partie 5.2.2 selon lequel notre méthode était peu sensible à la valeur du nombre de classe imposé à la méthode. En effet à la suite de ce post-processing on retrouve bien les grandes classes de matériaux réellement présente dans l'image et associées aux abondances réelles. Ainsi lorsque l'on fixe M = 3 il est facile de récupérer au final 7 classes ce qui n'est absolument pas possible avec une méthode standard de démélange.

Cependant la valeur de M pourra avoir un impact dans la précision des résultats. Ainsi on a montré que dans le cas où M = 3 on ne distinguait pas végétation haute et végétation basse (1 unique classe) alors que dans le cas M = 5 ou M = 7 cette distinction existait (2 classes). Ces deux classes existent car VCA a extrait des spectres de ces 2 classes. Le choix de la valeur de M pourra donc dépendre du niveau de précision que l'on souhaite pour les classes.

Conclusion

Cette section était consacrée à l'étude des résultats de la méthode IP-NMF sur une image à haute résolution spatiale (1.6 m). On a tout d'abord étudié l'impact de l'initialisation. On s'est alors rendu compte que l'utilisation de la méthode VCA permettait d'obtenir de bons résultats lorsque M était faible. L'utilisation de l'initialisation manuelle nous a montré que notre algorithme était suffisamment autonome pour permettre le développement au sein de certaines classes de sous classes qui n'avait pas été initialisées. Ainsi on obtient, à partir d'une classe initialisée par un spectre de végétation, les spectres de végétation pour les spectres contenant de la végétation et des spectres d'asphalte à l'ombre dans les pixels qui en contiennent. Notre méthode est donc relativement indépendante, lorsque M est petit, des spectres initiaux (on ne parle pas ici de cas extrêmes).

Nous nous sommes ensuite intéressés à l'impact du paramètre M , c'est-à-dire au nombre de classe à rechercher imposé à la méthode. On a alors constaté que lorsque M augmentait les spectres extraits par VCA ne correspondaient pas à l'ensemble des classes que nous souhaitions trouver (plusieurs spectres du même matériau, un matériau non extrait...). Cependant la méthode IP-NMF améliore considérablement les résultats. En effet on s'est aperçu qu'une classe initialisée avec un spectre de tuile (cas M = 7) pouvait évoluer en une classe contenant de l'asphalte (matériau qui n'avait pas été détecté par VCA). Cependant la détérioration de la qualité des spectres issus de VCA lorsque M augmente entraîne aussi une diminution de la qualité de certaines cartes d'abondance, en particulier dans le cas où le matériau n'est pas détecté par VCA, ou alors lorsque plusieurs spectres d'une même classe de matériaux sont extraits.

Comparativement à des méthodes standard de démélange, notre méthode est tout de même moins sensible au nombre de pôles de mélange. En effet on arrive à retrouver les classes majeures de matériaux quelle que soit la valeur de M . Nous avons montré cela en mettant en oeuvre un post-processing basé sur l'utilisation d'une méthode de clustering. Ce post processing exploite le fait que l'on extrait non pas un unique spectre par classe mais un par pixel. L'analyse des résultats du post-processing montre que dans le cas d'un M faible on augmente la qualité globale de la reconstruction, car on extrait les grandes classes de manière très précise. Par contre si l'on souhaite plus de précision dans les spectres extraits par exemple pour faire la différence entre deux types de végétation il est préférable d'utiliser une valeur plus élevée de M . Avec les spectres issus de notre méthode on peut envisager un grand nombre de traitements. Le post-processing proposé peut être adapté selon les objectifs recherchés par les utilisateurs. On pourra ainsi utiliser le fait d'avoir un jeu de pixel par classe pour faire de la détection de source à une échelle plus faible que le pixel, ou encore s'en servir dans le cadre de fusion de données panchromatiques/hyperspectrales...

Influence de la résolution spatiale sur le démélange

Résumé :

La section précédente a été dédiée à l'étude des résultats de IP-NMF à haute résolution spatiale. Dans cette section nous allons nous intéresser aux performances de cette méthode sur des données avec des résolutions spatiales dégradées. Nous commencerons par considérer une image à une résolution spatiale deux fois moins bonne (3.2 m) que l'image étudiée dans les parties précédente. Puis nous étudierons les performances de IP-NMF pour une résolution spatiale quatre fois plus faible (6.4 m). 

Critères d'évaluation

Les outils utilisés pour évaluer les performances des méthodes de démélange sur nos données sont les mêmes que ceux utilisés pour étudier les résultats du démélange sur des données à 1.6 m de résolution (cf. section 5.1.2).

Comme pour l'image à 1.6 m nous ne disposons pas de vérités terrain. Cependant en nous aidant de l'image à 1.6 m il est possible de connaître la composition de certains pixels à 3.2 m (ceci est possible car nous savons quels pixels ont été agrégés ensemble). C'est notamment le cas au sein des zones pures à haute résolution. On peut alors connaître la position de certains pixels purs au sein de l'image à 3.2 m. On pourra utiliser la même méthode pour connaître les abondances dans des pixels mixtes. Cependant la recherche de pixels mixtes, pour lesquels on puisse évaluer les abondances présentes, est plus difficile. En effet les pixels utilisés pour former nos pixels à 3.2 m ne sont généralement pas purs. Il est difficile de trouver deux zones pures se côtoyant sans pixels de transition entre elles. Nous avons cependant réussi à extraire quelques pixels pour lesquels il nous semblait que ces conditions étaient réunies (c'est notamment possible pour les mélange ombre/matériau éclairé).

Nous avons donc connaissance de quelques abondances sur lesquelles nous allons pouvoir calculer l'erreur quadratique sur les coefficient, CE (cf. section 4.1).

Étude des données à 3.2 m

Tests Comme pour les imagettes à 1.6 m de résolution nous avons choisi de comparer les résultats de trois méthodes de démélange : VCA + FCLS, NMF et IP-NMF. Dans ces tests le nombre de classes de matériaux recherchées a été fixé à 3. En effet, on a vu qu'à 1.6 m, pour M = 3, VCA extrayait correctement 3 des 4 matériaux pour lesquels nous savons qu'il existe des pixels purs à 3.2 m (Asphalte à l'ombre, tuile et végétation). On a aussi vu qu'il était difficile d'extraire le spectre d'asphalte même en augmentant le nombre de classes.

L'initialisation de la NMF est faite avec VCA. Pour IP-NMF, les matrices R et C sont respectivement initialisées avec VCA et FCLS et le facteur d'inertie à µ = 30. Ces initialisations ont été choisies car c'est avec celles-ci que l'on obtient les meilleurs résultats (en non-supervisé).

Résultats Les cartes d'abondance en sortie de VCA et IP-NMF sont représentées dans la Figure 5.12. Les cartes d'abondance de la méthode NMF n'ont pas été représentées ici car, comme pour le cas à haute résolution spatiale, elles sont très similaires aux cartes obtenues avec VCA.

Lorsque l'on étudie les cartes d'abondance issues de VCA, on constate que les 3 spectres extraits par la méthode représentent respectivement l'asphalte à l'ombre, la tuile et la végétation. Comme à haute résolution, le spectre de l'asphalte n'a pas été extrait. Les pixels contenant ce matériau sont donc représentés en mélangeant les 3 spectres disponibles. C'est pour cette raison que la route ne correspond pas à une zone uniforme et pure.

Les cartes d'abondance issues de la méthode IP-NMF montrent des résultats similaires à ceux observés à une résolution de 1.6 m. En effet on constate que sur la carte d'abondance associée à la classe 2, des abondances égales à 1 sont présentes sur les zones correspondant à la tuile et à l'asphalte au soleil. On peut donc supposer, comme dans l'étude à 1.6 m, que des sous-classes se sont développées au sein de la classe 2.

Il semblerait, en observant la Figure 5.12, que les résultats d'estimation des abondances soient meilleurs avec la méthode IP-NMF. Pour s'assurer de cela, on a calculé l'erreur sur les abondances pour les pixels sur lesquels on a manuellement estimé les abondances (cf. paragraphe précédent). Les résultats obtenus pour les trois méthodes sont présentés dans le Tableau. 5.1. Les calculs ont été effectués de manière distincte entre les pixels que l'on a estimés purs (cas (a)) et les pixels On constate dans ce tableau que lorsqu'il est question de retrouver des pixels purs la méthode IP-NMF fonctionne beaucoup mieux que la méthode NMF ou VCA. On avait déjà pu établir ce constat dans la section 5.2, même si nous n'avions pas numériquement pu le prouver. C'est le cas à présent (mais sur un faible échantillon de pixels tests). Ce résultat paraît logique puisque les méthodes NMF et VCA cherchent à reconstruire un spectre extrait d'une classe de matériaux à partir d'un autre spectre extrait de cette classe. Comme on l'a montré dans le Chapitre 2 ces deux spectres peuvent avoir une correlation inférieure à 80%. Il va alors être nécessaire d'impliquer les autres endmembers pour reconstruire ce spectre ce qui va entraîner des erreurs sur les abondances. A l'inverse notre méthode permet de faire varier le spectre initial pour obtenir au final l'ensemble des spectres de la classe.

Dans le cas des pixels mixtes, on constate que les performances de IP-NMF décroissent et sont similaires à celles obtenues avec la méthode NMF. Elles restent cependant meilleures qu'avec VCA + FCLS. Ces résultats sont à prendre avec précautions car ils sont obtenus sur un faible nombre d'échantillons et sur des abondances de référence pour lesquelles nous manquons de précision.

Lorsque l'on compare les résultats obtenus avec l'ensemble des données on constate d'ailleurs que l'influence des pixels mixtes est faible. Les performances de IP-NMF sont 2% meilleures et avec un écart type plus faible que les résultats obtenus avec NMF. On remarque surtout une grosse différence entre les résultats de IP-NMF et ceux de VCA + FCLS. Ceci prouve bien que IP-NMF apporte une amélioration significative par rapport à son initialisation. On a donc vu que les performances en terme de proximité des abondances étaient meilleures avec IP-NMF qu'avec VCA. Nous allons à présent utiliser la carte des erreurs de reconstruction pour analyser les performances de IP-NMF par rapport aux autres critères. Ces cartes pour IP-NMF and VCA sont respectivement représentées sur les Figure 5.13a et 5.13b inclues dans la Figure 5.13.

IP-NMF

On remarquera tout de suite qu'il y a une différence d'échelle entre les erreurs de reconstruction obtenues pour IP-NMF et celles obtenues avec VCA qui sont plus élevées d'un facteur 10. Si l'on considère que les abondances obtenues avec IP-NMF sont proches des abondances exactes on peut évaluer la précision des spectres extraits par IP-NMF. En effet si l'erreur de reconstruction d'un pixel est faible et ses abondances estimées exactes on en déduit que les spectres estimés sont proches de ceux effectivement présents dans le pixel. C'est ce qu'on observe sur la Figure 5.13a. On peut aussi montrer la différence entre les spectres obtenus au sein de mêmes classes en utilisant le post-processing décrit dans la section 5.2.3. Les nouvelles cartes d'abondance obtenues sont représentées sur la Figure 5.14a. On a choisi d'effectuer ce post-post processing avec 5 classes avec pour objectif d'extraire les classes végétation, tuile, asphalte, asphalte à l'ombre et peut-être voiture. On a associé à cette figure la représentation des cartes d'abondance obtenues avec VCA lorsque l'on fixe M = 5 (pour extraire les mêmes classes) Figure 5.14b.

On constate tout d'abord qu'avec le post-processing on obtient 4 des 5 classes souhaitées. La carte associée à la classe 1 est difficilement identifiable. On remarque que le pixel associé à la voiture est présent mais pas uniquement. La Figure . 5.14 permet de se rendre compte de l'avantage de IP-NMF par-rapport à une technique classique. En effet il apparaît clairement sur cette figure que l'imagette contient plus de 3 classes. Et en se trompant sur la valeur de M dans IP-NMF on arrive quand même à extraire l'ensemble des classes de matériaux. A l'inverse, avec VCA même lorsque l'on augmente M on n'arrive pas à extraire correctement l'ensemble des classes. Par exemple que ce soit dans la Figure 5.14b ou la Figure 5.12a, la classe asphalte n'est jamais extraite.

Conclusions

On constate en étudiant les données à une résolution plus faible que la méthode IP-NMF continue à donner de meilleurs résultats que la méthode que les méthodes standard (VCA et On remarquera cependant que l'échelle de l'erreur de reconstruction augmente d'un facteur 10 entre l'image à 1.6 m (Figure 5.5a) et celle à 3.2 m (Figure 5.13a). Le calcul des erreurs sur les abondances montre néanmoins que la précision de nos résultats est élevée.

On peut donc en conclure que la méthode IP-NMF est applicable à des données à une résolution de 3.2 m. Les hypothèses faites concernant le modèle de mélange choisi doivent donc encore être valides. L'une de ces hypothèses concerne le fait que la résolution de l'image est suffisamment élevée pour que l'on puisse négliger la variabilité intra-classe au sein du pixel. Il se peut donc qu'à des résolutions encore plus faibles le modèle de mélange choisi ne soit plus adapté à notre scène. On constate sur cette image qu'il est difficile de distinguer les éléments qui constituent la On peut toutefois remarquer les différences entre les cartes issues de VCA et celles issues de IP-NMF. Dans le cas de VCA on observe pour chaque carte des zones conséquentes occupées par des pixels ayant une abondance égale ou très proche de 1. Or comme on l'a expliqué cidessus les zones pures pour chaque classe sont limitées à de très rares pixels et à certaines classes seulement. Il semble donc que les abondances extraites avec IP-NMF soient un peu plus proches de la "réalité" que celles extraites par VCA. Les résultats de l'erreur de reconstruction semblent aussi montrer cela.

Étude des performances de IP

Comme il est difficile de se faire une idée de la qualité des résultats en utilisant les cartes d'abondance nous avons choisi de représenter les spectres obtenus avec IP-NMF et ceux obtenus à l'aide de VCA. Ils sont regroupés dans la Figure 5.17. On a choisi de représenter dans la Figure 5.17a le spectre issu de VCA et qui a initialisé la classe 1 ainsi que tous les spectres caractérisant la classe 1 en sortis de IP-NMF. Il en est de même pour les Figures 5.17b 

.17 -Visualisation des spectres issus de IP-NMF et des spectres issus de VCA ayant servi à l'initialisation (endmember 1), ombre (endmember 2) et asphalte (endmember 3). On avait en effet constaté qu'il n'existait plus de pixels tuile purs ce matériau n'a donc pas été extrait. Il est intéressant de constater que IP-NMF n'a pas réussi à retrouver le spectre de tuile même si on observe que certains spectres de la Figure 5.17c tendent à se rapprocher d'un spectre de tuile. On peut en partie expliquer les défaillances de notre méthode à retrouver les spectres de tuile par la très faible représentativité des spectres de tuile qui ne sont présents que dans quelques pixels. L'étude de ces spectres montre cependant que pour les classes initialisées (végétation, ombre et asphalte) une variabilité intra-classe non-négligeable est obtenue. Cette variabilité est cependant moins importante que celle obtenue à l'issue de IP-NMF pour une image à une meilleure résolution (cf. Figure 5.4). Ce résultat est justifié car à une résolution de 6.4 m, on trouve, par exemple, au sein de nos pixels de végétation différents types d'arbres, de la végétation haute et de la végétation basse... si bien que le spectre observé correspond à une moyenne des spectres caractéristiques de ces éléments. On peut supposer que, dans une portion d'image donnée, la variabilité intra-classe associée à des spectres extraits de pixels à faible résolution spatiale est plus faible que pour des spectres extraits de pixels à haute résolution spatiale. Lorsque les spectres sont extraits de "grands" pixels, ils résulteront en effet du moyennage de spectres ayant une variabilité plus importante. On réduit ainsi cette variabilité.

Conclusions

Il semble donc que la méthode IP-NMF continue de donner de meilleurs résultats que la méthode VCA. Cependant à une résolution spatiale de 6.4 m et sans vérités terrain, il est difficile de se prononcer clairement sur les performances de ces méthodes. On constate néanmoins que les spectres issus de IP-NMF décrivent une variabilité intra-classe plausible qui permet de mieux décrire la complexité de chacune des classes.

On a aussi pu constater que la variabilité des classes de matériaux semblait se réduire avec l'augmentation de la taille des pixels. Cette conclusion est intéressante car elle met en avant les limites du modèle utilisé en zone urbaine. En effet, comme les tailles caractéristiques des éléments urbains sont faibles, à trop faible résolution spatiale la variabilité intra-classe sera noyée car on n'observera plus que des moyennes sur un grand nombre d'éléments (les toits par exemple). C'est le début de ce phénomène que nous commençons à apercevoir à 6.4 m de résolution.

Conclusion

Ce chapitre a été consacré aux tests sur des données réelles. La première partie de ces tests a consisté en une étude des performances de la méthode IP-NMF, mais aussi d'autres méthodes standard de démélange, sur une imagette ayant une résolution spatiale élevée. La haute résolution de cette image, 1.6 m, nous a permis d'établir une classification partielle de la scène étudiée. Nous avons donc pu comparer les résultats obtenus par l'ensemble des méthodes que nous avons testées aux informations que nous possédions ou avons déduites de l'image test. L'objectif de ces tests a aussi été de comparer les performances de notre algorithme en fonction des paramètres d'initialisation. Nous avons ainsi mis en avant les similarités de comportement sur données réelles et données semi-synthétiques.

L'objectif étant d'obtenir la méthode la moins supervisée possible, nous avons mis en évidence que l'initialisation de la matrice R avec les spectres issus de VCA était pertinente. On a aussi montré dans la section 5.2.1 qu'avec ce type d'initialisation on améliorait les performances de IP-NMF par rapport à IP-NMF initialisé de manière manuelle.

Nous avons ensuite étudié l'impact du nombre de classes sur les résultats de IP-NMF. Pour cela trois valeurs différentes ont été attribuées à M : 3, 5 et 7. Nous avons conclu de cette série de tests que notre méthode était sensible à la valeur de M . Néanmoins, IP-NMF est beaucoup moins sensible à ce paramètre que peuvent l'être des méthodes standard qui recherchent un seul jeu de endmembers par image. La forte sensibilité de VCA à des erreurs sur le nombre de classes est d'ailleurs à l'origine de certaines erreurs observées en sortie de IP-NMF puisque les spectres graines de chaque classe sont de moins bonne qualité.

Quelle que soit la valeur de M , nous avons observé en sortie de IP-NMF que des sous-classes pouvaient se développer au sein de nos classes de matériaux purs. Les classes en sortie de la méthode n'ont donc pas une signification physique. Cependant l'apparition de ces sous-classes est une bonne chose. Cela montre que IP-NMF est capable de s'adapter si des spectres graines sont de mauvaise qualité ou si des classes ont été omises. La méthode augmente ainsi d'elle même le nombre de classes "physiques" extraites mais elle conserve la valeur de M fixe. Un post-processing a donc été proposé pour obtenir ces classes ayant un sens physique. Les résultats obtenus à l'issue de ce post-processing montrent aussi l'impact faible du nombre de classes sur le résultat de IP-NMF.

On a pu conclure de cette étude que la méthode IP-NMF était parfaitement applicable aux données réelles. Les performances de cet algorithme sont d'ailleurs meilleures que celles obtenues avec des méthodes de démélange standard. On a aussi pu mettre en évidence l'intérêt d'extraire non plus un jeu de spectres pour l'image mais un par pixel. On ouvre ainsi la porte à de nouvelles applications en aval du démélange.

Les premiers tests ayant été effectués à une résolution spatiale élevée, nous avons voulu étudier les réactions de notre algorithme lorsque la résolution de l'image à traiter était moins bonne. Pour cela nous avons dégradé la résolution de l'image que nous avions traitée dans la partie précédente. Deux nouvelles imagettes ont alors été obtenues, une à 3.2m et l'autre à 6.4m.

On a tout d'abord constaté que les performances de IP-NMF étaient meilleures que celles de VCA ou NMF. C'est un point positif, d'autant plus qu'à 3.2m de résolution on continue de retrouver des classes de matériaux qui n'avait pas été extraites par VCA. On constate néanmoins que les performances de l'ensemble des méthodes diminuent avec la résolution spatiale.

On a aussi pu constater que la variabilité intra-classe semblait moins conséquente à faible résolution spatiale. En effet comme on l'explique dans la section 5.3.2 la diminution de la résolution spatiale entraîne un moyennage des spectres purs entrant dans la décomposition de chaque pixel. Dans le cas de l'urbain ce phénomène apparaît très vite car la taille caractéristique des éléments est relativement faible. C'est pourquoi il est déjà très visible à 6.4m de résolution. A faible résolution spatiale on peut donc s'interroger sur la pertinence du modèle que l'on a développé et choisi pour construire IP-NMF. Compte tenu de ces remarques, on peut émettre l'hypothèse qu'à partir d'une certaine résolution (de l'ordre de grandeur des éléments caractéristiques de la scène étudiée) le modèle avec variabilité intra-classe est peut-être moins pertinent que le modèle de mélange classique.

La méthode IP-NMF a donc prouvé son applicabilité sur des données réelles. Cependant des erreurs perdurent dans les résultats sur données réelles. La méthode IP-NMF a été construite en considérant un modèle de mélange linéaire. Or on a montré dans le Chapitre 1 que dans le cas de zones urbaines des phénomènes de réflexions multiples se produisaient. Nous avons proposé un modèle de mélange prenant en compte à la fois ce phénomène et la variabilité intra-classe dans le Chapitre 2. Il serait possible que la prise en compte de ces phénomènes de non-linéarité permettent d'améliorer les performances de nos algorithmes (cf. Chapitre 6 ). 

Résumé :

Cette section sera consacrée à la description de la méthode de démélange non-linéaire et prenant en compte la variabilité intra-classe. Cette méthode, LQIP-NMF (pour Linear-Quadratic Inertiaconstrained Pixel-by-pixel NMF) est basée sur le même principe que IP-NMF. Il s'agit d'une évolution de la méthode NMF.

Écriture d'une nouvelle fonction de coût

Dans le Chapitre 2, section 2.2.4, on a proposé un modèle de mélange, Eq. (2.9) prenant en compte à la fois la variabilité intra-classe et les non-linéarités liées aux réflexions multiples dans le cas de zones urbaines. Nous avons aussi proposé dans cette partie une version simplifiée de ce modèle de mélange, Eq. (2.10). Nous commencerons par mettre au point une méthode à partir de ce modèle simplifié. Une extension sera envisagée si les résultats obtenus semblent prometteurs. En effet le modèle considéré est déjà largement sous déterminé et il semble pertinent de tester l'intérêt de ce modèle avant d'envisager d'y ajouter encore plus d'indéterminations.

Le modèle de mélange choisi permet d'écrire la matrice des observations sous la forme d'un produit de deux matrices non-négatives, Eq. (2.14) : X = Ċ Ṙ. Il est donc possible d'utiliser la même approche que pour IP-NMF. Nous avons donc choisi de rechercher les matrices Ċ et Ṙ en utilisant une approche par NMF.

La première étape dans la construction de cette méthode a consisté à écrire la fonction de coût à minimiser. Nous avons choisi, comme pour IP-NMF, d'associer un terme de pénalisation à l'erreur de reconstruction dans la fonction de coût de LQIP-NMF. En effet, on a pu constater l'apport de ce terme de pénalisation dans le Chapitre 4 lorsque nous avons comparé les performances de UP-NMF et IP-NMF. La fonction de coût de la méthode LQIP-NMF s'écrit donc :

J lqip-nmf = 1 2 X -C R + Γ T 2 F + µ M m=1 T r(Cov( RCm )). ( 6.1) 
Ici les matrices C, Γ, R, T correspondent à la décomposition en matrices des coefficients et des spectres linéaire et non-linéaire de Ċ et R (cf. section 2.2.4, Eq. (2.12)). Comme pour dans le Chapitre 4 nous avons choisi de conserver ces notations même les matrices correspondent aux matrices estimées et non aux matrices des valeurs réelles. La matrice RCm contient les mêmes spectres et est construite de la même façon pour LQIP-NMF que pour IP-NMF. Il est possible de scinder cette écriture en deux termes, J RE associé à l'erreur de reconstruction et J I associé à la pénalisation de l'inertie. On obtient alors l'écriture suivante :

J lqip-nmf = J RE + µJ I (6.2) avec J RE = 1 2 X -Ċ Ṙ 2 F (6.3) J I = M m=1 T r(Cov( RCm )) (6.4)
La matrice RCm contient les mêmes spectres et est construite de la même façon pour LQIP-NMF que pour IP-NMF. L'écriture de J I a donc déjà été développée dans le Chapitre 3, section 3.3.2, Eq. (3.13).

Calcul du gradient

Comme pour les méthodes UP-NMF et IP-NMF, on utilise une approche par gradient projeté pour minimiser la fonction de coût J lqip-nmf . Il sera donc possible de réutiliser certain des calculs présentés dans les parties 3.2 et 3.3.

Calcul du gradient dans le cas scalaire

Pour pouvoir effectuer la descente de gradient on doit calculer les dérivées partielles On a aussi déjà calculé la dérivée partielle de J I par rapport à R dans la section 3.3.2. On pourra utiliser le résultat final donné par l'équation (3.22). Dans la suite de cette partie on s'intéressera donc à la dérivées partielles de J RE par rapport à R. Pour cela nous allons commencer par réécrire J RE : J p correspond à un cas général de l'écriture de la fonction de coût utilisée par Meganem dans sa méthode NMF [START_REF] Meganem | Méthodes de séparation aveugle de sources pour l'imagerie hyperspectrale : application à la télédétection urbaine et à l'astrophysique[END_REF]. On peut donc utiliser les résultats qu'elle a obtenus. Ainsi on peut écrire :

∂J lqip-nmf ∂ R et ∂J lqip-nmf ∂ Ċ . Comme
J RE = 1 2 X -Ċ Ṙ 2 F = 1 2    x 1 T . . . x P T    -    c 1 T R(1) + γ 1 T T(1) . . . c P T R(P ) + γ P T T(P )    2 F = 1 2 1≤p≤P 1≤l≤L (    x 1 T -c 1 T R(1) -γ 1 T T(1) . . . x P T -c P T R(P ) -γ P T T(P )    2 pl ) = 1 2 P p=1 L l=1 x p T -c p T R(p) -γ p T T(p) 2 l = 1 2 P p=1 x p T -c p T γ p T R(p) T(p) 2 F = P p=1 J p avec J p = 1 2 x p T -c p T γ p T R(p) T(p)
∂J p ∂ [R(p)] ml = -[c p (x p T -c p T γ p T R(p) T(p) )] ml - M µ=1 µ =m [R(p)] µl × [γ p (x p T -c p T γ p T R(p) T(p) )] (µm)l -2 [R(p)] ml × [γ p (x p T -c p T γ p T

R(p) T(p)

)] (mm)l (6.9)

On souhaite maintenant retrouver l'écriture de la dérivée partielle de J RE par rapport à R à partir du résultat de (6.9). Pour cela on commencera par remarquer que pour un p donné, J p ne dépend que de R(p). Par conséquent on peut écrire que : 

∂J RE ∂ [R(p)] ml = P ρ=1 ∂J ρ ∂ [R(p)] ml = ∂J p ∂ [R(p)] ml ( 6 
∂J RE [ R] νl = -CT X -Ċ Ṙ νl - pM µ=(p-1)M +1 µ =ν R µl × ΓT X -Ċ Ṙ (µν)l -2 R νl × ΓT X -Ċ Ṙ (νν)l ( 
∂J lqip-nmf ∂ R νl = -CT X -Ċ Ṙ νl - pM µ=(p-1)M +1 µ =ν R µl × ΓT X -Ċ Ṙ (µν)l -2 R νl × ΓT X -Ċ Ṙ (νν)l + 2µ P Id P M - 1 P U R νl (6.12)
Les matrices Id P M et U ont déjà été définies dans la section 3.3.2 (équation.(3.21)). On ne calcul pas la dérivée partielle par rapport à T car on n'utilisera pas cette règle de mise à jour pour cette matrice. En effet comme les spectres contenus dans T sont issus de R on calculera directement le T(i+1) à partir de la matrice mise à jour R(i+1) :

T(i+1) (mν)l ← Ri+1 ml × Ri+1 νl (6.13)

Obtention des formulations matricielles

La dérivée partielle de J lqip-nmf par rapport à R est obtenue de manière scalaire. Compte tenu de la taille des matrices que l'on veut mettre à jour, une mise à jour coefficient par coefficient prendra trop de temps. On a donc cherché à obtenir une écriture matricielle de

∂J lqip-nmf ∂ R
. Pour cela il est nécessaire de bien fixer l'ordre des spectres dans R. Comme on l'a précisé lors de la définition de R dans la section 2.2.4, on retrouve les spectres associés à une même classe tous les M spectres. Plus précisément, on garde le même ordonnancement des classes dans chacune des matrices R(p) qui forment R.

En considérant cette organisation de la matrice R, et suite à une série de calculs décrits en Annexe A, on obtient :

∂J lqip-nmf ∂ R = -CT X -Ċ Ṙ + 2µ P Id P M - 1 P U R -(Id P M ⊗ 1 1K )× (Id P ⊗ F) (Id P ⊗ (1 M 1 ⊗ Id M )) R (Id P ⊗ (1 M 1 ⊗ Id K )) Γ X -Ċ Ṙ (6.14) 
Le symbole ⊗ représente l'opérateur multiplication de Kronecker. Les matrices 1 Y Z correspondent à des matrices de tailles Y × Z ne contenant que des 1. La matrice F ∈ R M K×M 2 est une matrice diagonale par bloc, elle peut être vue comme une matrice de sélection des spectres :

F =    F 1 • • • (0) . . . . . . . . . (0) • • • F M    avec [F µ ] km = M ν=1 δ ν m δ η k (1 + δ µ ν ) η = (min(µ, ν) -1)(M - min(µ, ν) 2 ) + max(µ, ν)
ici δ j i correspond au symbole de Kronecker. Cette expression de la dérivée de J lqip-nmf peut sembler lourde, cependant les matrices utilisées et calculées sont largement creuses. On pourra utiliser cette caractéristique lors de l'implémentation de l'algorithme. On constate aussi que si l'on modifie l'organisation de la matrice Ṙ seule la matrice F devra être modifiée.

L'écriture de la mise à jour de T correspond pour l'instant à une écriture scalaire. On va donc transformer l'équation (6.13) pour obtenir une écriture matricielle de la mise à jour. Comme dans le cas précédent on a besoin de connaître l'organisation de la matrice T. Cette matrice est construite de la même manière que R (cf. section 2.2.4).

A partir de cette écriture et suite aux calculs décrits en Annexe A on arrive à l'expression suivante :

T ←-(Id P ⊗ G 1 ) R (Id P ⊗ G 2 ) R (6.15) avec G 1 ∈ R K×M et G 2 ∈ R K×M deux matrices qui servent à la sélection des spectres. [G 1 ] km = M α=1 M β α δ k (α-1)(M -α 2 )+β .δ α m [G 2 ] km = M α=1 M β α δ k (α-1)(M -α 2 )+β .δ β m

Règles de mise à jour

Comme pour les méthodes UP-NMF et IP-NMF nous utilisons les règles de mise à jour décrites dans (1. [START_REF] Li | Joint blind source separation by multi-set canonical correlation analysis[END_REF]) et (1.20) (section 1.2.4 de l' État de l'art). On utilise dans cette partie les équations matricielles (6.6), (6.14) et (6.15) obtenues dans la section 6.1.2. Lors de la mise à jour de Ċ on forcera le maintien à zero des termes en dehors des blocs diagonaux (comme pour UP-NMF et IP-NMF).

Algorithme III : Linear Quadratic Inertia-constrained Pixel-by-pixel NMF (LQIP-NMF) Dans cet algorithme les étapes 4 et 5 sont décrites de manière scalaire. Il est très facile de les écrire de manière matricielle pour accélérer les calculs. On suppose dans cet algorithme le nombre de classes M connu. Comme pour IP-NMF la question de l'initialisation des matrices se pose. On abordera ce point dans la section suivante.

Tant que J lqip-nmf > Seuil : 1. Mise à jour de la matrice R R(i+1) ←-R(i) +α Ṙ C(i)T X -Ċ(i) Ṙ(i) - 2µ P Id P M - 1 P U R(i) + (Id P M ⊗ 1 1K ) × (Id P ⊗ F) (Id P ⊗ (1 M 1 ⊗ Id M )) R(i) (Id P ⊗ (1 M 1 ⊗ Id K )) Γ(i) X (i) -Ċ(i) Ṙ(i) R(i+1) = max( R(i+1) , ) ( est un entier positif très petit) 2. Mise à jour de la matrice T T(i+1) ←-(Id P ⊗ G 1 ) R(i) (Id P ⊗ G 2 ) R(i) 3. Mise à jour de la matrice C Ċ(i) ←-Ċ(i) + α Ċ X -Ċ(i) Ṙ(i) Ṙ(i)T .

Test de la méthode LQIP-NMF sur données semi-synthétiques

Résumé :

Nous avons présenté dans la section précédente un algorithme de démélange qui se base sur un modèle de mélange prenant en compte à la fois la variabilité intra-classe et les phénomènes de non-linéarité dus aux réflexions multiples. Cette partie est dédiée aux tests sur cette méthode. Ces tests seront effectués sur données semi-synthétiques car il est très difficile d'étudier précisément la non-linéarité des mélanges sur données réelles. Dans un premier temps nous décrirons les données ainsi que les tests que nous allons effectuer. Ensuite nous étudierons les performances de nos algorithmes sur ces données.

Description des données et des tests effectués

Description des données

Comme pour l'étude de UP-NMF et IP-NMF nous avons choisi de commencer par tester LQIP-NMF sur des données semi-synthétiques. Ces données nous permettent de connaître précisément l'ensemble des paramètres du mélange au sein de chaque pixel. On pourra donc analyser précisément les différences entre les coefficients de mélange et les angles spectraux issus de LQIP-NMF et ceux des données.

Comme pour les tests effectués dans le Chapitre 4 les spectres purs utilisés pour constituer les mélanges ont été extraits de l'image à haute résolution spatiale (cf. section 4.3.1). Ils représentent donc une variabilité spectrale réelle. Les spectres purs utilisés ici sont identiques à ceux utilisés dans le Chapitre 4, ils correspondent à ceux issus des trois classes de matériaux : asphalte, tuile et végétation. On visualise sur la Figure . 6.1 la variabilité des classes considérées.

Les coefficients de mélange pour les termes linéaires ont été sélectionnés aléatoirement entre 0 et 1 et respectent la contrainte de somme à 1. Les termes quadratiques ont été sélectionnés aléatoirement suivant une loi gaussienne tronquée entre 0 et 0.5, centrée sur 0.1 et d'écart type 0.15. Meganem et al. ont montré dans [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] que cette répartition des coefficients quadratiques correspondait à ce que l'on pouvait observer dans le cas des mélanges linéaires quadratiques en milieu urbain.

Le modèle de mélange utilisé correspond au modèle simplifié que nous avons développé dans la section 2.2.4, Eq. (2.10).

Description des tests

Pour pouvoir tester la méthode LQIP-NMF il est nécessaire de commencer par fixer les éléments à initialiser. Tout d'abord on a fixé M = 3 car on connaît le nombre de classes pures. Le paramètre d'inertie µ est fixé égal à 30 car c'est une valeur pour laquelle on a trouvé, pour IP-NMF, un bon compromis entre l'erreur de reconstruction et l'erreur spectrale. On a montré dans la section 4.4.2 que la méthode IP-NMF n'était pas très sensible à ce paramètre et qu'il existait une large plage de valeurs de µ pour lesquelles les performances étaient similaires. On peut supposer qu'il en est de même pour LQIP-NMF.

On va tester la méthode LQIP-NMF sur les données décrites ci-dessus avec les initialisations que l'on vient de proposer. Afin d'avoir une étude statistique du comportement de notre méthode on appliquera LQIP-NMF sur différentes simulations de jeux de données semi-synthétiques. Les résultats présentés par la suite correspondent à une moyenne des erreurs sur l'ensemble de ces tests.

En plus de LQIP-NMF on a testé sur ces jeux de données les méthodes VCA et IP-NMF. Pour ces tests, IP-NMF est initialisée avec les mêmes matrices R et C que LQIP-NMF.

Les outils de mesure des performances de notre algorithme sont les mêmes que dans les chapitres précédents (SAM , CE, RE) nous ne reviendrons donc pas dessus.

Analyse des performances de LQIP-NMF

Dans un premier temps nous avons visualisé les spectres obtenus à l'issue des méthodes testées. On a représenté les spectres issus de IP-NMF et LQIP-NMF respectivement dans les Figures. 6.2 et 6.3. En observant les spectres obtenus avec ces deux méthodes on constate tout d'abord que la variabilité spectrale pour chacune des classes est plus faible en sortie de LQIP-NMF que de IP-NMF. Si l'on compare la variabilité obtenue pour chacune des classes à celle décrite par les spectres de la Figure . 6.1 on en déduit que la variabilité des classes en sortie de LQIP-NMF est largement plus faible que la variabilité des classes ayant servi à construire les mélanges. A l'inverse, malgré la présence de termes quadratiques, IP-NMF semble avoir obtenu pour chacune des classes une variabilité proche de la variabilité réelle.

Pour étudier les performances des différentes méthodes on a regroupé dans le tableau 6.1 les résultats correspondant aux différents outils de mesure (SAM , CE, RE). Comme on a pu le constater sur les représentations des spectres dans les Figures. Pour expliquer ces résultats on peut émettre l'hypothèse que l'impact des termes quadratiques est faible comparé à celui de la variabilité intra-classe, si bien que l'impact du terme quadratique est noyé dans le mélange. La Figure . 6.4 représente le spectre moyen de la classe végétation (spectre bleu) ainsi que l'écart type autour de cette moyenne (rouge) qui permet de visualiser la variabilité intra-classe. Le spectre vert représente le mélange entre ce spectre moyen et le spectre quadratique moyen Tuile/Végétation. on a aussi représenté l'écart type de l'ensemble des spectres quadratique Tuiles/Végétation (cyan) autour de ce spectre. L'ensemble de ces spectres moyens et les écarts types ont été calculés à partir des spectres utilisés pour construire les mélanges (cf. section 6.2.1). On constate sur cette figure que les mélanges spectres linéaires / spectres quadratiques vont se trouver dans une zone où il sera difficile de déterminer si les modifications du spectre sont dues à de la variabilité intra-classe où à la présence de termes quadratiques. C'est pour cette raison que l'on obtient les meilleures performances avec IP-NMF. Il semble que dans le cas linéaire les effets des termes quadratiques dans les spectres mélangés ait été associé à de la variabilité intra-classe. A l'inverse dans la méthode LQIP-NMF la variabilité intra-classe est modélisée en utilisant les coefficients quadratiques. C'est pour cette raison que l'on observe de fortes erreurs sur les coefficients quadratiques et que la valeur des coefficients est relativement élevée. Le tableau 6.2 contient l'étude des performances spectrales pour les deux nouvelles séries de tests ainsi que dans le cas standard. On notera que pour cette étude on a utilisé un jeu de spectres dont les classes ont une variabilité un peu plus faible que dans le cas précédent, ce qui explique les différences de résultats dans le cas test standard.

Dans le cas test (a) (augmentation des coefficients) les performances de LQIP-NMF s'améliorent et celles de IP-NMF diminuent. Cela va donc dans le sens de notre hypothèse. Comme les termes quadratiques deviennent importants dans le mélange on ne peut plus représenter ces termes quadratique par de la variabilité intra-classe. Les résultat de IP-NMF sont donc de moins bonne qualité. A l'inverse LQIP-NMF arrive mieux à faire la différence entre ce qui provient de la variabilité spectrale et ce qui provient des termes quadratiques dans les observations. Dans le cas test (b) (diminution de la variabilité intra-classe) on constate que les performances des deux méthodes ont beaucoup progressé. Les résultats de QIP-NMF sont meilleurs que ceux de IP-NMF car là encore les termes quadratiques sont dominants dans le mélange par rapport à la variabilité. Les résultats de ces deux tests prouvent donc que la méthode LQIP-NMF fonctionne. Cependant ces résultats ne sont pas ceux espérés lorsque la variabilité spectrale des classes entrant dans le mélange devient trop importante.

Discussions sur l'intérêt de la prise en compte de la non-linéarité en zone urbaine

La méthode que nous avons développée a donc été testée sur des données semi-synthétiques décrivant une variabilité intra-classe similaire à celle que l'on peut trouver dans des zones urbaines. Les performances de LQIP-NMF sur ce type de données sont moins bonnes que celles de IP-NMF. On a pu montrer que ces mauvais résultats étaient liés à l'importance de la variabilité intra-classe par rapport à l'amplitude des termes dus aux spectres quadratiques. Il semble que l'ajout de termes quadratiques à un mélange soit noyé dans la variabilité des spectres "linéaires" utilisés dans ce mélange. Ceci explique aussi les performances relativement bonnes de IP-NMF alors que le modèle de mélange des données ne correspond pas à celui attendu par la méthode.

Sur des données urbaines il semble donc qu'il soit plus intéressant de considérer un modèle qui ne décrit que la variabilité intra-classe et considérer l'influence des termes quadratiques comme de la variabilité. En faisant ce choix on s'éloigne cependant de la réalité physique du milieu.

Dans le cas que nous avons testé les signatures de nos matériaux ont une amplitude moyenne ou faible. Dans le cas de classes de matériaux ayant une signature plus forte on peut penser que les termes quadratiques deviendront plus significatifs dans les mélanges. On se rapproche alors du cas test (a), cas pour lequel il se révèle intéressant de recourir à LQIP-NMF pour effectuer le démélange.

On peut aussi imaginer la présence de matériaux avec de très faibles variabilités intra-classe au sein de zones urbaines. Dans ce cas les phénomènes de non-linéarité (s'ils sont présents) deviennent caractéristiques de mélange. Il est alors préférable d'avoir recours à une méthode de démélange considérant les termes quadratiques.

Dans un premier temps nous proposons donc pour l'étude des milieux urbains d'avoir recours à une méthode de démélange prenant en compte la variabilité intra-classe. Avec cette méthode on va pouvoir représenter des phénomènes de non-linéarité au sein de nos spectres et récupérer les bonnes abondances dans nos pixels.

Si l'on souhaite une analyse plus précise de certaines zones, nous proposons une approche en trois étapes :

Conclusions et Perspectives Conclusions

Cette thèse avait pour but de développer une méthode de démélange adaptée au cas urbain. Dans ce type de scènes, différents phénomènes entrent en jeu : les réflexions multiples dues à la présence de bâtiments, la variabilité intra-classe due aux variations d'éclairement et à la forte non-uniformité de ces scènes... Pour aborder le problème du démélange en milieu urbain nous avons cherché à répondre à plusieurs questions :

-est-il pertinent de prendre en compte le phénomène de la variabilité intra-classe dans les modèles de mélange ? -est-ce avantageux d'utiliser une méthode prenant en compte la variabilité intra-classe par rapport à des méthode de la littérature dans le cas de milieux urbains ? Et à quelle résolution spatiale ? -est-il possible de prendre en compte à la fois des phénomènes de réflexions multiples et de variabilité intra-classe dans les méthodes de démélange ?

Pour répondre à ces questions nous avons commencé par étudier le phénomène de la variabilité intra-classe dans des images urbaines (Chapitre 2, section.2.1). Cette étude nous a permis de constater que la variabilité était un phénomène important avec des corrélations entre spectres d'une même classe pouvant descendre en dessous des 80%, et qui devait être pris en compte dans les modèles de mélange. En outre, nous avons pu mettre en évidence que, dans le cas des milieux urbains, les phénomènes de variabilité spectrale restaient mesurés si l'on considérait des surfaces au sol faibles (de l'ordre de la taille caractéristique des éléments urbains). On a ainsi répondu à la première des questions que nous nous étions posées.

A partir de ces conclusions, il semble alors pertinent de développer des modèles de mélange qui prennent en compte cette variabilité. Toujours en nous basant sur les observations faites de la variabilité, nous avons développé deux modèles de mélange (section 2.2). Le premier est un modèle linéaire. Dans ce modèle chaque pixel est le résultat d'un mélange linéaire entre des spectres qui lui sont propres. Contrairement au cas linéaire usuel, on ne reconstruit plus l'image avec un unique jeu de spectres purs mais avec P jeux de spectres purs (un par pixel), où P est le nombre de pixels. Le second modèle reprend cette idée d'indépendance des spectres utilisés dans la décomposition des pixels et l'étend au cas du modèle linéaire-quadratique proposé par Meganem et al. [START_REF] Meganem | Linear quadratic mixing model for reflectances in urban environments[END_REF] et qui décrit les effets des réflexions multiples dans les zones urbaines.

Ces modèles autorisent donc une variabilité des classes puisque les spectres au sein de chacun des pixels sont considérés comme indépendants d'un pixel à l'autre. Ces modèles sont cependant largement sous-déterminés et complexes à utiliser si l'on n'y ajoute pas d'informations 133 complémentaires.

Dans un premier temps nous nous sommes uniquement intéressés au cas du mélange linéaire. Comme nous l'avons montré dans la section 3.1 il n'existe pas dans la littérature de méthodes adaptées aux modèles que nous avons développés. Nous avons donc développé deux méthodes :

-UP-NMF (Unconstrained Pixel-by-pixel NMF) qui est une extension de la méthode NMF et qui s'appuie uniquement sur l'écriture du modèle linéaire étendu. -IP-NMF (Inertia-constrained Pixel-by-pixel NMF) qui est une évolution de UP-NMF puisqu'on rajoute une contrainte sur l'existence de classes. Ces deux méthodes permettent d'effectuer l'inversion du mélange en considérant la variabilité intra-classe. Cependant elles sont dépendantes de certains paramètres. Elles ont donc été testées sur des données semi-synthétiques, d'une part pour étudier leur sensibilité aux paramètres et fixer ces paramètres, d'autre part pour évaluer leur intérêt par rapport à des méthodes standard.

A l'issue de ces tests on a défini les valeurs des paramètres et les méthodes d'initialisation pour lesquelles IP-NMF et UP-NMF obtenaient les meilleures performances. Il est apparu que les performances de IP-NMF, pour ces choix de paramétrage, étaient meilleures que pour des méthodes standard de type VCA ou N-FINDR. Cependant cette amélioration n'est pas significative et demande a être vérifiée sur des données réelles urbaines.

Par contre lorsque la variabilité intra-classe diminue ou que le poids des termes quadratiques augmente dans le mélange, les performances de LQIP-NMF s'améliorent significativement.

Il semble donc que la prise en compte de la non-linéarité du mélange due aux effets de réflexion sur les bâtiments ne soit pas nécessairement pertinente et dépende des scènes étudiées.

Perspectives

Ce manuscrit laisse apparaître de nombreuses perspectives concernant le travail effectué pendant cette thèse. Ces perspectives portent sur différents aspects du travail présenté :

-l'amélioration des algorithmes -l'amélioration des approches de démélange pour l'étude des zones urbaines -l'étude de l'imagerie hyperspectrale spatiale pour l'étude de zones urbaines.

L'étude de la variabilité intra-classe dans le Chapitre 2 a permis de mettre en évidence l'existence et l'aspect non-négligeable de ce phénomène en milieu urbain. On a aussi pu constater que cette variabilité était réduite lorsque l'on s'intéressait à une structure spatiale de taille restreinte. Ces conclusions ont ensuite été utilisées pour proposer différents modèles de mélange. Cependant UP-NMF et IP-NMF n'utilise pas l'ensemble de ces résultats. Ainsi seule la notion de variabilité intra-classe a été utilisée pour construire IP-NMF. L'étude de la variabilité intra-classe a aussi mis en évidence que la variabilité entre des spectres de pixels proches était plus faible qu'entre des spectres de pixels éloignés. Il serait donc pertinent d'insérer dans notre fonction de coût une pénalisation des variations trop importantes entre spectres d'une même classe appartenant à des pixels voisins.

On a mis en évidence à la fois sur les tests sur données semi-synthétiques (section 4.4.1) et sur données réelles (section 5.2.1) qu'une bonne initialisation de la matrice R était nécessaire pour obtenir de bonnes performances avec l'algorithme IP-NMF. L'étude sur données semi-synthétiques nous a montré que l'initialisation optimale pour cette matrice correspondait au centre de gravité de chacune des classes. La méthode VCA que nous utilisons actuellement ne permet pas d'obtenir des spectres correspondant à ces centres. Il serait donc intéressant de développer une méthode capable de se rapprocher au maximum de ces valeurs. En nous basant sur l'hypothèse que la variabilité spectrale associée à chacun des éléments urbains (une toiture, une portion de route,...) est assimilable à une gaussienne il serait intéressant d'étudier les méthodes basées sur le mélange de gaussiennes [START_REF] Biernacki | Model-based cluster and discriminant analysis with the MIXMOD software[END_REF] pour récupérer les centroïdes des classes.

Les performances de IP-NMF n'ont été étudiées que sur une petite portion d'image urbaine. Afin de conforter l'intérêt de cette méthode il serait judicieux d'effectuer des tests sur des images plus grandes mais aussi sur des paysages urbains différents. En particulier il serait intéressant d'étudier les performances de IP-NMF sur des milieux périurbains où la taille des éléments caractéristiques diminue ou, à l'inverse, des zones industrielles où la taille des éléments augmente. On pourrait aussi tester IP-NMF sur des villes du Nord où la tuile est remplacée, par exemple, par de l'ardoise.

Plus globalement dans ce manuscrit nous avons soulevé plusieurs points importants pour l'étude de zones urbaines. Nous avons en particulier mis en avant la complexité de ces scènes et le fait que certains phénomènes prenaient le pas sur d'autres. Il semble donc pertinent d'adapter le modèle de mélange choisi à la zone étudiée. Dans la conclusion du Chapitre 6 une approche a été proposée pour effectuer le démélange en milieu urbain au vu des résultats obtenus dans ce est la matrice contenant l'ensemble des les "spectres quadratiques" du pixel p issus uniquement des réflexions multiples au sein de ce pixel, la position des spectres, en fonction des termes utilisés dans les produits, est constante

• T =   
T(1) . . . • la matrice Γ ∈ R P ×P K est la matrice des coefficients quadratiques de mélange associée à T, c'est une matrice diagonale par bloc : où γ p = [c p, [START_REF] Herault | Réseau de neurones à synapses modifiables : décodage de messages sensoriels composites par apprentissage non supervisé et permanent[END_REF] , c p, [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] , . . . , c p,(M M ) ] T ∈ R K×1 est le vecteur des coefficients de mélange associé à la matrice T(p). Pour la suite on choisit les notations suivantes :

T(P )

Γ =      

A.1.2 Position du problème

Ψ = ΓT X -Ċ Ṙ (A.2) =          γ 1 x 1 -c 1 γ 1 R (1) 
T(1) . . . On a, à présent, une mise à jour de R(p) (∀p ∈ 1, P ).

• On cherche maintenant la formule pour mettre à jour R = 

F    1 M 2 M (0) . . . 0 1 M 2 M    R) (    1 M K, K (0) 
. . . 
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Au cours de cette thèse nous nous sommes intéressés à la problématique du démélange hyperspectral en milieux urbains. En particulier nous nous sommes penchés sur la prise en compte du phénomène de variabilité intra-classe dans les méthodes de démélange. La mise en évidence de la variabilité intra-classe a été le point de départ de cette étude. Nous avons ainsi constaté que ce phénomène était non-négligeable dans les milieux urbains et qu'il devait être pris en compte. En nous basant sur des modèles de mélange existants dans la littérature nous avons développé deux nouveaux modèles de mélange prenant en compte cette variabilité intra-classe. Le premier est un modèle de mélange linéaire. Le second est un modèle linéaire-quadratique qui permet de prendre en compte les réflexions multiples sur les bâtiments. Dans un premier temps nous ne nous sommes intéressés qu'au cas des modèles linéaires. Comme aucune méthode de la littérature ne permet d'effectuer le démélange à partir de nos modèles de mélange nous avons développé deux méthodes UP-NMF et IP-NMF. UP-NMF est une adaptation de la méthode NMF à notre modèle de mélange. Pour rendre compte de la notion de classes de matériaux purs une contrainte sur l'inertie des classes a été ajoutée à UP-NMF pour obtenir IP-NMF. Les premiers tests ont été effectués sur données semi-synthétiques et ont permis de déterminer l'impact de l'initialisation de ces méthodes sur leurs performances et de fixer le paramètre d'inertie. Les performances de UP-NMF et IP-NMF ont été comparées à celles des méthodes standards de démélange. Les seconds tests ont été effectués sur une portion d'image de Toulouse. Dans cette partie nous avons mis en évidence que, contrairement à des méthodes standards, les résultats de IP-NMF étaient peu sensibles à une erreur sur l'estimation du nombre de classes pures. Finalement nous avons développé une méthode de démélange linéaire-quadratique, LQIP-NMF, en nous basant sur le modèle que nous avons mis en place. Les tests de LQIP-NMF ont montré qu'en cas de trop forte variabilité intra-classe les effets de non-linéarité étaient de second ordre et qu'il ne semblait pas pertinent de les prendre en compte.
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Enhancing urban hyperspectral unmixing considering intra-class variability

This work is devoted to unmixing for urban areas. We particularly focused on the impact of intraclass variability on unmixing. We first described the results of a study highlighting intra-class variability assessed in real images. It appeared that this phenomenon was significant and had to be included in the mixing models. Based on the state of the art we developed 2 new mixing models dealing with intra-class variability. The first one is a linear one. The second one is a linear-quadratic one which allows to consider multiple scattering effects on buildings. First only the linear mixing model was considered. Currently it does not exist any unmixing method able to deal with this new model. So two methods were developed, UP-NMF and IP-NMF. UP-NMF is a new unmixing method based on an extension of the standard NMF. To overcome UP-NMF limitations an extended method is proposed, IP-NMF, which limit the spreading of each class by adding an inertia constraint in the cost function. These methods were firstly tested on a semi-synthetic data set. These tests allowed us to study the impact of the initialisation on our methods performance and also to fix the inertia parameter. We also compared the results of UP-NMF and IP-NMF to the results obtained with standard methods. The second tests were performed on an image taken above Toulouse. It appeared that IP-NMF is less sensitive to an error in the estimation of classes number than standard methods. Finally we developed a linear-quadratic method, LQIP-NMF, dealing with the non-linear mixing model previously described. In cases of high intra-class variability, the quadratic terms are drowned in the large variability of materials. So it seems that it is not relevant to taking into account these non-linearities.
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 21 Figure 2.1 -Exemple d'une portion de transect au-dessus du centre ville de Toulouse à une résolution de 1.8m.
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 22 Figure 2.2 -Zone sélectionnée pour l'étude de l'hypercentre de Toulouse à une résolution de 1.8m.
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 23 Figure 2.3 -Zone sélectionnée pour l'étude de l'hypercentre de Toulouse à une résolution de 1.8m avec en couleur les zones sélectionnées pour l'extraction des spectres purs. Rouge : Tuile, Vert : Végétation, Bleu : Asphalte).
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 24 Figure 2.4 -exemple de spectres extraits pour les 3 matériaux purs sélectionnés (rouge : tuile, vert : végétation, bleu : asphalte.

  (a) Matrice de corrélation pour des spectres de tuile extraits sur St Étienne. (b) Matrice de corrélation pour des spectres de tuile extraits sur une maison.
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 25 Figure 2.5 -Matrices de corrélation pour le matériau tuile dans le cas de 2 zones différentes.
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 26 Figure 2.6 -Matrice de corrélation calculée à partir des 2 jeux de spectre (St Etienne et maison).

  Figure 2.7). L'ensemble des moyennes et écart-types seront regroupés dans un unique tableau (Tableau 2.3).
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 27 Figure 2.7 -Matrice de corrélation calculée à partir des 2 jeux de spectre (Arbres et pelouse).
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 28 Figure 2.8 -Matrice de corrélation calculée à partir de l'ensemble des jeux de spectres précédemment utilisés pour décrire les 3 matériaux.

  (a) Projection des spectres des 3 matériaux sur les 2 premiers axes issus de l'ACP. (b) Projection des spectres des 3 matériaux sur le premier et le troisième axes issus de l'ACP.
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 29 Figure 2.9 -Projection des spectres des 3 matériaux sur différents axes issus de l'ACP.
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 12 ∈ R P M ×L , est la matrice contenant l'ensemble des spectres des différentes classes de matériaux purs. Le rangement de chaque R(p) fait que les spectres associés à la classe de matériaux m se trouvent aux lignes m + κM (κ ∈ 1, P ) • la matrice C ∈ R P ×P M est la matrice associée des coefficients, c'est une matrice diagonale par blocs : . . . 0 . . . 0 . . . 0 0 . . . 0 c . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . c P T . où c p = [c p1 , . . . c pM ] T ∈ R M ×1 est le vecteur des coefficients de mélange associés à la matrice R(p).

γ 1 T

 1 0 . . . 0 . . . 0 . . . 0 0 . . . 0 γ 2 T . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . γ P T

 1 T

 1 ∈ R P K×L est la matrice contenant l'ensemble des "spectres quadratiques" issus des réflexions multiples pixel p / pixel du voisinage • La matrice D ∈ P × H est la matrice des coefficients de mélange associée à la matrice Q, c'est une matrice diagonale par bloc : 0 . . . 0 . . . 0 . . . 0 0 . . . 0 d 2 T . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . d P d p ∈ R H×1 est le vecteur des coefficients associé à la matrice Q(p).

3 . 1 3 . 2 3 . 3 3 . 4 3 . 5

 3132333435 Mise en évidence de la non-applicabilité des méthodes existantes avec notre modèle de mélange . . . . . . . . . . . . . . . . . . . . . . . Première extension de la méthode NMF à notre modèle de mélange 3.2.1 Écriture de la fonction de coût . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Calcul du gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Règles de mise à jour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Discussions autour de la méthode UP-NMF . . . . . . . . . . . . . . . . Extension de la méthode UP-NMF pour prendre en compte la notion de classe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Écriture d'une nouvelle fonction de coût . . . . . . . . . . . . . . . . . . 3.3.2 Calcul du gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Règles de mise à jour . . . . . . . . . . . . . . . . . . . . . . . . . . . . Choix des initialisations . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Initialisation de la matrice R . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Initialisation de la matrice C . . . . . . . . . . . . . . . . . . . . . . . . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  r m (p)∀p ∈ 1, P (3.8) on trouve facilement un jeu k m (p) pour chaque pixel tel que la condition de somme-à-un soit toujours validée. Les spectres et les coefficients sont donc obtenus à un coefficient d'amplitude près. Si nous n'avons pas d'informations supplémentaires nous devrons faire avec la présence de ce facteur d'amplitude dans les résultats.

1 . 21 )

 121 La notation Id D décrit la matrice identité de dimension D. Cette notation sera utilisée dans la suite du manuscrit. Grâce à (3.15), (3.16) et(3.20) on obtient la dérivée partielle de J I par rapport à la matrice des spectres :

  (i) sélection du jeu d'initialisation en extrayant aléatoirement M spectres des observations. (ii) obtention du jeu d'initialisation en utilisant une méthode géométrique d'extraction des pôles de mélange (VCA, N-FINDR).
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  (a) Projection des spectres de référence et des spectres issus de IP-NMF et NMF pour une initialisation aléatoire (i). (b) Projection des spectres de référence et des spectres issus de IP-NMF et NMF pour une initialisation avec N-FINDR (ii).(c) Projection des spectres de référence et des spectres issus de IP-NMF et NMF pour une initialisation avec la moyenne (iii).
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 41 Figure 4.1 -Projection, sur les 2 premiers axes de l'ACP réalisé sur les spectres de référence, des spectres de références utilisés pour construire les spectres mélangés (étoiles rouges, vertes et noires) ainsi que des spectres issus des méthodes IP-NMF (étoiles oranges, bleues et jaunes) et NMF (cercles rouges, verts et noirs) pour différentes initialisations. Les couleurs représentent l'appartenance à une même classe et une même méthode.

  et 4.2c montrent différentes situations entre ces deux extrêmes. A vu d'oeil il semble que le cas IP-NMF avec µ = 30 soit celui donnant les meilleurs résultats car les positions des cônes induits par les spectres de référence et par les spectres issus de IP-NMF coïncident mieux. Cependant une étude plus fine est nécessaire pour étudier précisément l'impact de µ.La Figure4.3 représente la courbe d'évolution de l'erreur de reconstruction (en bleu) et celle d'évolution de l'erreur spectrale moyenne (en vert) en fonction de la valeur du paramètre µ.

  (a) IP-NMF avec µ fixé à 0 (cas UP-NMF) (b) IP-NMF avec µ fixé à 30 (c) IP-NMF avec µ fixé à 100 (d) IP-NMF avec µ fixé à 300
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 42 Figure 4.2 -Projection des spectres de référence utilisés pour construire les spectres mélangés (étoiles rouges, vertes et noires) ainsi que des spectres issus des méthodes IP-NMF (étoiles oranges, bleues et jaunes)et NMF (cercles rouges, verts et noirs)pour différentes différentes valeurs de µ : 0 (UP-NMF), 30, 100, 300.
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 43 Figure 4.3 -Variation de l'erreur spectrale et de l'erreur de reconstruction pour différentes valeurs de µa dans le cas d'une étude de la fonction IP-NMF initialisée avec VCA et FCLS

  44 dans le cas (ii)-VCA + (b)) et NMF (1.93 dans le cas optimal (iii) + (b) et 4.72 dans le cas (ii)-VCA + (b)).
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Dans le Chapitre 2 ,

 2 section 2.1.1, nous avons présenté les images hyperspectrales qui ont été étudiées durant cette thèse. La portion d'image que nous avions alors sélectionnée (Figure 2.2, Section 2.1.1, §.Extraction de zones d'intérêt), était alors très intéressante pour l'étude de la variabilité intra-classe. Dans le cas de l'étude de notre méthode de démélange nous avons choisi d'extraire une imagette de cette portion d'image. Ce choix a été fait pour différentes raisons :
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 51 Figure 5.1 -Imagette sélectionnée à partir de la zone d'intérêt à une résolution de 1.6 m

  Figure 5.2 représente l'imagette sélectionnée ainsi que les différentes classes de matériaux que l'on pourrait extraire. Cette carte a été obtenue manuellement en effectuant une analyse spectrale. Elle ne sera pas disponible dans le cas d'une application automatisée de l'algorithme. A partir de la classification partielle présentée dans la Figure 5.2a différentes options sont possibles : -On peut fixer M = 3 en considérant les trois classes tuiles, végétation et asphalte. On ne considère donc pas que les matériaux à l'ombre forment une ou des classes à part entière. -On peut fixer M = 5, on considérera alors des classes de matériaux avec une signature spectrale très différente les unes par rapport aux autres. Dans ce cas les classes dans lesquelles on va extraire un spectre (cf. §.Choix des initialisations) sont l'ombre, l'asphalte, la végétation, la tuile et la voiture présente dans la scène. Ces cinq classes car elles ont des signatures bien particulières et parce qu'elles recouvrent l'ensemble des matériaux décrits dans la Figure 5.2a. On ne s'intéresse pas ici à leur représentativité (nombre de pixels dans lequel ces classes sont présentes) -On peut aussi considérer que M = 7. Dans ce cas on aura toutes les classes décrites dans la Figure 5.2a sauf qu'on regroupera les deux classes végétation (arbres et herbe).

  (a) Classification manuelle des classes de matériaux de l'imagette (b) Imagette utilisée pour les tests visualisée en RVB avec une résolution de 1.6 m
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 52 Figure 5.2 -Visualisation de l'imagette de référence qui servira pour les tests (à droite) avec une classification partielle des classes de matériaux présentes dans l'image

  (a) Cartes d'abondance obtenues à l'issue de VCA + FCLS (b) Cartes d'abondance obtenues à l'issue de NMF initialisée avec les spectres de VCA (c) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec les spectres de VCA (d) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec des spectres de l'image sélectionnés manuellement
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 5354 Figure 5.3 -Cartes d'abondance obtenues pour M = 3 à l'aide de différentes méthodes : VCA + FCLS (1ère ligne), NMF (2ème ligne), IP-NMF initialisée avec VCA (3ème ligne) et IP-NMF initialisée manuellement (4ème ligne)
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 55 Figure 5.5 -Cartes des erreurs de reconstruction pour les méthodes IP-NMF et VCA, obtenues selon l'équation (4.1).

M = 5

 5 Nous avons représenté sur laFigure 5.7 les cartes d'abondance obtenues en fixant M = 5 pour quatre méthodes de démélange : VCA (Figure 5.7a, NMF (Figure 5.7b), IP-NMF initialisée par VCA (Figure 5.7c) et IP-NMF initialisée avec des spectres manuellement sélectionnés (Figure 5.7d).
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 56 Figure 5.6 -Spectres issus de la méthode VCA lorsque M est fixé à 5 pour des tests effectués sur l'imagette sélectionnée

  (a) Cartes d'abondance obtenues à l'issue de VCA + FCLS (b) Cartes d'abondance obtenues à l'issue de NMF initialisée avec les spectres de VCA (c) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec les spectres de VCA (d) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec des spectres de l'image sélectionnés manuellement
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 57 Figure 5.7 -Cartes d'abondance obtenues pour M = 5 à l'aide de différentes méthodes : VCA + FCLS (1ère ligne), NMF (2ème ligne), IP-NMF initialisée avec VCA (3ème ligne) et IP-NMF initialisée manuellement (4ème ligne)

M = 7

 7 En augmentant la valeur de M à M = 7 on se rapproche de l'ensemble des classes répertoriées dans la classification partielle (Figure 5.2). Comme pour M = 3 et M = 5 on a représenté les cartes d'abondance obtenues à l'issue des différentes méthodes (Figure 5.8) : VCA + FCLS (Figure 5.8a), NMF (Figure 5.8b), IP-NMF initialisée avec les résultats de VCA (Figure 5.8c) et IP-NMF initialisée manuellement (Figure 5.8d).

  (a) Cartes d'abondance obtenues à l'issue de VCA + FCLS (b) Cartes d'abondance obtenues à l'issue de NMF initialisée avec les spectres de VCA (c) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec les spectres de VCA (d) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec des spectres de l'image sélectionnés manuellement
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 58 Figure 5.8 -Cartes d'abondance obtenues pour M = 7 à l'aide de différentes méthodes : VCA + FCLS (1ère ligne), NMF (2ème ligne), IP-NMF initialisée avec VCA (3ème ligne) et IP-NMF initialisée manuellement (4ème ligne)

Figure 5 .

 5 3c). La Figure5.10 représente l'évolution de l'appartenance des spectres que nous avions représentés dans la Figure5.4. On remarque bien que les spectres tracés dans la Figure5.4b ont été divisés en 2 classes. Ils sont maintenant représentés en cyan et en bleu sombre. Pour chacune des classes les spectres se ressemblent mais on observe aussi de fortes variations d'amplitude.Comme on l'avait constaté dans la partie 5.2.1 on retrouve bien des zones pures là où la classification partielle l'avait prédit. On retrouve sur ces cartes d'abondance les grandes classes issues de IP-NMF avec M = 7 : Tuile, végétation, végétation à l'ombre, asphalte à l'ombre et au soleil. Par contre on fait apparaître dans le cas M = 3 après post-processing une classe correspondant

7 Figure 5 . 9 - 7 Figure 5 . 10 -

 7597510 Figure 5.9 -Cartes d'abondance obtenues après avoir effectué IP-NMF initialisée avec VCA avec différents nombres de classes M = 3 (1ère ligne), M = 5 (2ème ligne) et M = 7 suivi d'un post processing où le nombre de classes est fixé à 7
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 31 Étude des performances de IP-NMF pour une résolution de 3.2 m 5.3.1.1 Description de l'image à 3.2 m Nous avons obtenu une image à une résolution dégradée de 3.2 m en sommant 2 × 2 pixels voisins à partir de l'imagette qui a été étudiée dans la section précédente (cf. Section 5.1.1 Figure 5.1). Il sera alors possible de comparer les résultats du démélange à une résolution de 1.6 m et à une résolution de 3.2 m.
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 511 Figure 5.11 -Imagette dégradée à une nouvelle résolution spatiale de 3.2 m

  et 5.2b (respectivement l'image à 3.2 m et celle à 1.6 m) on constate que la quantité de pixels mixtes a augmenté. On continue cependant d'observer des zones pures pour les quatre grandes classes de matériaux (asphalte, asphalte à l'ombre, tuile et végétation).

  (a) Cartes d'abondance obtenues à l'issue de VCA avec M = 3 pour l'imagette à 3.2 m de résolution (b) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec VCA avec M = 3 pour l'imagette à 3.2 m de résolution
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 512 Figure 5.12 -Résultats du démélange sur l'imagette à 3.2 m de résolution spatiale. Cartes d'abondance obtenues pour M = 3 à l'aide de différentes méthodes : VCA (1ère ligne) et IP-NMF (2ème ligne)
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 513 Figure 5.13 -Cartes des erreurs de reconstruction pour les méthodes IP-NMF et VCA, obtenues selon l'équation (4.1) à 3.2 m de résolution spatiale.

  (a) Cartes d'abondance issues de IP-NMF avec M = 3 après post-processing (5 classes). (b) Carte d'abondance en sortie de VCA pour M = 5.
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 514 Figure 5.14 -Cartes d'abondance obtenues en sortie du post-processing (5 classes) pour le résultat de IP-NMF (M = 3) (1ère ligne) et cartes d'abondance obtenues en sortie de VCA pour M = 5.

5 . 3 . 2 . 1 4 m

 53214 -NMF pour une résolution de 6.4 m Description de l'image à 6.Nous allons à présent étudier une image à une résolution encore plus faible. Comme nous l'avons fait dans le section précédente nous avons aggloméré les pixels de l'imagette de référence par 16 (plus précisément 4 × 4). L'image alors obtenue est représentée à la Figure5.15.
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 553224 Figure 5.15 -Imagette dégradée à une nouvelle résolution spatiale de 6.4 m

  et 5.17c respectivement pour les classes 2 et 3.On constate sur la Figure5.17 que les spectres extraits de VCA décrivent les classes végétation

  (a) Cartes d'abondance obtenues à l'issue de VCA avec M = 3 pour l'imagette à 6.4 m de résolution (b) Cartes d'abondance obtenues à l'issue de IP-NMF initialisée avec VCA avec M = 3 pour l'imagette à 6.4 m de résolution

Figure 5 . 16 -

 516 Figure 5.16 -Résultats du démélange sur l'imagette à 6.4 m de résolution spatiale. Cartes d'abondance obtenues pour M = 3 à l'aide de différentes méthodes : VCA (1ère ligne) et IP-NMF (2ème ligne)
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 1 Développement de la méthode de démélange LQIP-NMF

. 10 )

 10 On cherche maintenant à écrire le résultat de ∂J RE [ R] νl où ν ∈ 1, P M . Pour un ν ∈ 1, P M donné, il existe un unique jeu de coefficients (p, m), tels que ν = (p-1)M +m. Dans ce jeu de coefficients p correspond au numéro du pixel auquel est associé [ R] νl et m à la classe pure dans R(p). En utilisant cette nouvelle écriture de ν on obtient :

4 .c pm 5 .

 45 Normalisation des coefficients linéaires Pour p = 1 à P c p (i+1) = max(c p (i+1) , ) ( est un entier positif très petit) c p (i+1) ←-c p (i+1) / M m=1 Projection des coefficients quadratiques Pour p = 1 à P c p(mν) (i+1) = max(c p(mν) (i+1) , ) ( est un entier positif très petit) c p(mν) (i+1) = min(c p(mν) (i+1) , 0.5)
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 61 Figure 6.1 -exemple de spectres extraits pour les 3 matériaux purs sélectionnés (rouge : tuile, vert : végétation, bleu : asphalte)

3 Figure 6 . 2 -Figure 6 . 3 -Figure 6 . 4 -

 3626364 Figure 6.2 -Visualisation des spectres issus de IP-NMF

Tableau 6 . 2 -

 62 Résultats du SAM pour différents cas testés : standard (1 ère colonne), des coefficients quadratiques de mélange élevés (2 ème colonne), une variabilité intra-classe faible (3 ème colonne).

1 A. 1 . 1

 111 Calcul de l'écriture matricielle pour la mise à jour de R Rappel des Notations • R(p) = [r 1 (p), . . . , r M (p)] T ∈ R M ×L est la matrice contenant l'ensemble des spectres purs associés au pixel p, quelque soit le pixel p le rangement au sein de la matrice est toujours le même (i.e le spectre associé à la classe de matériau m sera toujours sur la m ème ligne de R(p), ∀p) P M ×L , est la matrice contenant l'ensemble des spectres des différentes classes de matériaux purs, le rangement de chaque R(p) fait que les spectres associés à la classe de matériaux m se trouvent aux lignes m + κM (κ ∈ 1, P ) • T(p) = [r 1 (p) r 1 (p), r 1 (p) r 2 (p), . . . , r M (p) r M (p)] T ∈ R K×L (avec K = M 2 -M 2 )

 1 T0 2 T

 12 ∈ R P K×L est la matrice contenant l'ensemble des "spectres quadratiques" issus des réflexions multiples au sein du pixel p • la matrice C ∈ R P ×P M est la matrice des coefficients associée, c'est une matrice diagonale . . . 0 . . . 0 . . . 0 0 . . . 0 c . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . c P T . où c p = [c p1 , . . . c pM ] T ∈ R M ×1 est le vecteur des coefficients de mélange associés à la matrice R(p).

γ 1 T 2 T

 12 0 . . . 0 . . . 0 . . . 0 0 . . . 0 γ . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 . . . γ P

νl

  On souhaite écrire cette dérivée partielle sous forme matricielle. Le problème se pose au niveau du terme :

γA•M m=1 δ j m δ η i δ ν µ + 1 2 )1

 12 P x P -c P γ P R(P ) T(P ) p = γ p x p -c p γ p R(p) T(p) (A.3)Au sein de Γ les coefficients sont rangés de tel sorte que :A p = A p 11 , A p 12 , • • • A p 1M , A p 22 , • • • A p 2M , • • • A p M MT On cherche dans un premier temps à exprimer A p µν en fonction de sa position dans A p .Siν µ A p µν = A p T η avec η = (ν -1)(Mν 2 ) + µ Si ν > µ A p µν = A p T η avec η = (µ -1)(Mµ 2 ) + ν ⇒ pour ν fixé ∈ 1, M et ∀µ ∈ 1, M : A p µν = A p T η avec η =(α -1)(Mα 2 ) + β et α = min(ν, µ) et β = max(ν, µ) p)] µl × A p µν l + 2 [R(p)] νl × A p νν l = M µ=1 b µ [R(p)] µl × A p µν l avec b µ = 1 si µ = ν, b µ = 2 si µ = ν = M µ=1 b µ [R(p)] µl × e k = 1 si k = η, e k = 0 sinon et η = (α -1)(Mα 2 η = (α -1)(Mα 2 ) + β et α = min(m, ν) et β = max(m, ν) On pose F ν la matrice de taille K × M telle que : ∀(i, j) ∈ 1, R × 1, M , f ν ij = avec η = (min(m, ν) -1)(Mmin(m,ν) + max(m, ν).On obtient alors :φ νl = K k=1 [(F ν × R(p)) A p ] kl = [1 1K × ((F ν × R(p)) A p )] lOn a obtenu une écriture de [R(p)] νl pour un ν fixé.• On va maintenant chercher l'écriture de R(p) (∀ν ∈ 1, M , ∀l ∈ 1, L ). On s'intéresse à la matrice φ(p) telle que [φ(p)] νl = φ νl ⇒ φ(p) = 1K × ((F 1 × R(p)) A p ) . . .1 1K × ((F M × R(p)) A p )

  'objectif est donc d'écrire matriciellement Φ telle que [Φ] νl = Φ νl .

•A. 2 . 1 νlA. 2 . 2 j

 2122 En utilisant les opérations termes à termes on peut réécrire les matrices diagonales par blocs à l'aide de la multiplication de Kronecker :A ⊗ B = P M ⊗ 1 1K )× (Id P ⊗ F) (Id P ⊗ (1 M 1 ⊗ Id M )) R (Id P ⊗ (1 M 1 ⊗ Id K )) Γ C -Ċ ṘA.2 Calcul de l'écriture matricielle pour la mise à jour de T Position du problèmeOn rappelle ici que la mise à jour scalaire de T s'écrit :En considérant le rangement choisi pour T, cette matrice peut s'écrire de la manière suivante : Obtention de la forme matricielleEn utilisant les résultat des calculs concernant la mise à jour de R on a établi qu'avec ce rangement :T mµ = T η avec η = (min(µ, m) -1) M -min(µ, m) 2 + max(µ, m) ⇒ [T(p)] ηl =On obtient alors l'écriture de la mise à jour de T :

G 2 ×

 2 RP ⊗ G 1 ) × R (Id P ⊗ G 2 ) × R

  

  

  

  

6 Développement et test d'une méthode de démélange prenant en compte la variabilité intra-classe dans le cas linéaire-quadratique
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A Développements mathématiques des formules matricielles associées à l'algorithme LQIP-NMF
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  • 2 ou • F norme 2 ou norme de Frobenius •

	1	norme 1
	•, •	produit scalaire
		multiplication élément par élément
	⊗	multiplication de Kronecker
		division élément par élément
	• ←-•	affectation du terme de droite au terme de gauche
		xi

  Cette valeur est modérée, d'autant plus qu'elle ne tient pas compte des variations d'amplitude.

		Ensemble de la	bloc "inter-zone" de la
		matrice de corrélation	matrice de corrélation
	Moyenne	93%	89%
	Écart-type	0.08	0.08
	Tableau 2.2 -Corrélation moyenne et écart type de la matrice de corrélation globale (St
		Etienne + maison).

  Extraire les sources à partir des observations en considérant ce modèle de mélange correspond à un problème mal posé. La contrainte de somme-à-un est conservée au sein de chaque pixel. Cette contrainte est problématique dans le cas général car les spectres utilisés pour décomposer les spectres observés ne sont pas effectivement présents dans ce pixel. Notre modèle considère que nous extrayons les spectres effectivement présent au sein des pixels. Par conséquent si la résolution spatiale est

1, P (2.3) où r m (p) est le spectre associé à la m ème classe de matériaux à l'intérieur du pixel p. suffisamment élevée (cf.sous-section 2.2.2) la contrainte de somme-à-un est légitime.

  4.1 et 4.2. Il est difficile d'étudier précisément les résultats à partir de ces représentations. Nous avons donc préféré utiliser les résultats contenus dans les tableaux 4.1, 4.2 et 4.3. L'erreur spectrale moyenne (Tableau 4.1) montre tout d'abord que selon ce critère l'algorithme VCA + FCLS donne de meilleurs résultats que l'algorithme N-FINDR + FCLS. On gagne plus d'un degré de précision dans le SAM (7.7 • pour VCA et 8.8 • pour N-FINDR). C'est d'ailleurs ce qui explique les meilleurs résultats de IP-NMF avec une initialisation de R avec VCA plus que N-FINDR. Dans le cas d'une initialisation optimale, les résultats de UP-NMF et IP-NMF (respectivement 4.60 • et 4.99 • ) sont largement meilleurs que ceux de VCA et N-FINDR. Cet écart diminue lorsque l'on initialise nos méthodes avec VCA. Les résultats de nos méthodes restent cependant meilleurs que pour les méthodes standard que nous étudions ici. Les algorithmes VCA + FCLS et N-FINDR + FCLS donnent des erreurs de reconstruction très élevées. Contrairement au critère basé sur l'erreur spectrale moyenne c'est la méthode qui utilise N-FINDR qui donne les meilleurs résultats pour l'erreur de reconstruction (respectivement 2.32 et 6.68). Pour ce critère les méthodes UP-NMF et IP-NMF sont beaucoup plus performantes pour les deux cas d'initialisation.. C'est aussi le cas pour l'erreur sur les coefficients. On constate qu'elle est plus élevée pour les méthodes N-FINDR et VCA, respectivement 0.05 et 0.06, que pour les méthodes UP-NMF et IP-NMF. C'est particulièrement le cas lors de l'initialisation avec la moyenne des classes.

  Résultats des calculs de CE avec les écarts-type associés (σ CE ) pour différentes méthodes (VCA + FCLS, NMF, IP-NMF) et pour différents ensembles de pixels : uniquement des pixels purs (1 ère ligne), uniquement des pixels mixtes (2 ème ligne) l'ensemble de ces pixels (3 ème ligne).

				NMF VCA + FCLS
	Pixels purs (a)	CE σ CE	5% 0.04	9% 0.08	13% 0.12
	Pixels mixtes (b)	CE σ CE	8% 0.05	8% 0.05	11% 0.04
	Ensemble des	CE	7%	9%	12%
	pixels (c)	σ CE	0.05	0.07	0.11
	Tableau 5.1 -				

  nous l'avons indiqué dans la section 3.3.2, le terme J I ne dépend pas des coefficients de mélange. Par conséquent, On obtient alors un résultat similaire à celui décrit dans(3.5). La dérivée partielle de J lqip-nmf par rapport à

			∂J I ∂ Ċ = 0.	(6.5)
	Le calcul de ∂J RE			
				Ċ
	s'écrit alors	∂J lqip-nmf ∂ Ċ	= -(X -Ċ Ṙ) ṘT .	(6.6)

∂ Ċ est équivalent à celui de ∂J RE ∂ C détaillé dans la section 3.2.2.

  On obtient dans (6.7) une reformulation de J RE . On va utiliser cette écriture pour calculer la dérivée partielle ∂J RE

	rapport à R s'écrit :	∂	R . L'opérateur dérivée étant distributif la dérivée partielle de J RE par
			∂J RE ∂ R =	P p=1	∂J p ∂ R	(6.8)
					2 F	(6.7)

  6.2 et 6.3) l'erreur sur les angles spectraux est plus faible en sortie de IP-NMF qu'en sortie de LQIP-NMF. On constate aussi que les erreurs sur les coefficients sont les plus faibles avec cette méthode, tout comme l'erreur de reconstruction.

			VCA + FCLS	IP-NMF (µ = 30)	LQIP-NMF (µ = 30)
	SAM (en degrés)	Moyenne σ SAM	9.9 • 3.9 •	8.2 • 2.5 •	10.3 • 4.6 •
	CE	Moyenne σ CE	15% 0.07	12% 0.06	17% 0.09
	CE quadratique	Moyenne σ CE quad	--	--	17% 0.03
	RE		2.12	0.84	2.43
	Tableau 6.1 -Résultats des calculs des différentes erreurs (SAM , CE, RE) sur les résultats des
	méthodes VCA + FCLS (1			

ère colonne), IP-NMF (2 ème colonne) et LQIP-NMF (3 ème colonne)

•

  Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. Impact of the initialisation of a blind unmixing method dealing with intra-class variability. In 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2017. • Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. A linear-quadratic unsupervised hyperspectral unmixing method dealing with intra-class variability. In 8th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. • Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. A method based on nonnegative matrix factorization dealing with intra-class variability for unsupervised hyperspectral unmixing. In 7th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2015. • Yannick Deville, Charlotte Revel, Xavier Briottet and Véronique Achard. Characterization of hyperspectral image prior to unmixing, based on eigen decompositions and sum-to-one condition. In 6th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2014. Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. Factorisation en matrices non négatives pour le démélange hyperspectral non supervisé. In 4ème colloque de la Société Française de Télédétection Hyperspectrale (SFTH), 2016. Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. Impact of the initialisation of a blind unmixing method dealing with intra-class variability. In 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2017. • Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. A linear-quadratic unsupervised hyperspectral unmixing method dealing with intra-class variability. In 8th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. • Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. A method based on nonnegative matrix factorization dealing with intra-class variability for unsupervised hyperspectral unmixing. In 7th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2015. • Yannick Deville, Charlotte Revel, Xavier Briottet and Véronique Achard. Characterization of hyperspectral image prior to unmixing, based on eigen decompositions and sum-to-one condition. In 6th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2014. Charlotte Revel, Yannick Deville, Véronique Achard and Xavier Briottet. Factorisation en matrices non négatives pour le démélange hyperspectral non supervisé. In 4ème colloque de la Société Française de Télédétection Hyperspectrale (SFTH), 2016.

	Colloques nationaux Congrès internationaux • Colloques nationaux • Publications scientifiques de l'auteur •

Dans[START_REF] Halimi | Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach[END_REF] c'est une approche basée sur la théorie des matrices aléatoires qui utilise des théorèmes issus de ce domaine d'étude, en particulier le SPM (Spiked Population Model). Ce modèle est utilisé pour pouvoir par la suite extraire le rang de la matrice de covariance en se basant sur l'écart entre les valeurs propres.Dans les méthodes que nous venons d'évoquer, l'hypothèse d'un mélange linéaire est faite. Dans le cas où cette hypothèse n'est pas vérifiée les performances de ces méthodes peuvent diminuer. En effet il est possible de confondre les "spectres quadratiques", issus de la multiplication entre deux pôles de mélange, avec des pôles de mélange. On obtient alors une sur-évaluation du nombre de matériaux purs. Dans[START_REF] Deville | Characterization of hyperspectral image prior to unmixing, based on eigen decompositions and sum-to-one condition[END_REF] une méthode est proposée qui permet d'extraire le nombre de pôles de mélange en prenant en compte la possibilité de mélanges linéaires-quadratiques au sein de l'image. La méthode proposée s'appuie sur une comparaison de la dimension de la matrice de covariance des observations et de celle de corrélation. Les différences qui apparaissent entre le cas de mélanges linéaires et linéaires-quadratiques sont liées à la présence de la contrainte de somme-à-un.Les erreurs de sur-estimation du nombre de pôles de mélanges ne sont pas uniquement dues à la présence de mélanges linéaires. En effet la notion de matériaux purs est très subjective et va dépendre de l'échelle (spatiale) d'observation. Ainsi dans une image on pourra chercher à différencier différents types de végétation[START_REF] Yang | Applying spectral unmixing and support vector machine to airborne hyperspectral imagery for detecting Giant Reed[END_REF] alors que dans d'autres cas on s'intéressera à différencier la végétation d'autres matériaux (asphalte, tuiles, ardoises...)[START_REF] Meganem | Linear-quadratic Blind source separation using NMF to unmix hyperspectral images[END_REF]. On s'intéressera à ce point dans la partie suivante (section 1.2.3.2).1.2.3.2 La variabilité des classes de matériauxComme évoqué dans la partie précédente, la notion de matériaux purs est extrêmement subjective et dépendra des observations et de l'échelle spatiale à laquelle on se place. Dans le cas d'étude de scènes macroscopiques, où l'on ne cherche pas à s'intéresser à la composition chimique des matériaux, la notion de matériaux purs va caractériser une classe de matériaux. On observera alors ce que l'on appelle la variabilité intra-classe. Cette notion est d'abord apparue dans les problématiques de classification[START_REF] Stocker | Application of stochastic mixing models to hyperspectral detection problems[END_REF]. En effet une classe de matériaux n'est pas définie par

z 1 : N (m 1 , K 1 ) z 2 : N (m 2 , K 2 ) (1.35)z 1 et z 2 sont les densités de probabilité des spectres purs, m 1 et m 2 les spectres purs moyen et K 1 et K 2 les matrices de covariance. Les distributions, obtenues en faisant varier f , correspondent aux spectres mélangés avec une proportion f du premier pôle de mélange et f -1 du second. On peut donc se servir de cette approche pour effectuer le démélange. Cependant la méthode proposée dans[START_REF] Stocker | Application of stochastic mixing models to hyperspectral detection problems[END_REF] ne fonctionne qu'avec 2 classes. L'extension de ce type de méthodes a donné naissance aux classifications par mélange de gaussiennes. Ces méthodes permettent d'obtenir des cartes de classification issues de cette approche. On cherche à représenter les données comme une somme de distributions gaussiennes. Ce type de classification va chercher à optimiser, sous contrainte ou non, la recherche de la variance et de la moyennes des distributions. Cependant avec ce type de méthodes on ne récupère pas les abondances.Actuellement ce sont les méthodes bayésiennes qui ont pris la suite de ce type d'approche. En effet en considérant les pôles de mélange comme des variables aléatoires elles permettent de prendre en compte la variabilité intra-classe. Les a-priori sur ces variables serviront à définir la variabilité. C'est pour cette raison que des extensions des méthodes de démélange bayésiennes

On remarque qu'on observe encore le développement de sous-classes au sein de certaines classes. C'est par exemple le cas dans la classe 3 au sein de laquelle se sont développés à la fois les spectres de végétation et ceux d'ombre. On remarque toutefois que pour les pixels purs obtenus l'erreur de reconstruction est très faible ce qui signifie bien que le spectre obtenu correspond à celui présent dans ce pixel. Dans le même temps la classe censée être issue d'un spectre de végétation (Classe 2) ne caractérise que quelques zones particulières. On peut émettre l'hypothèse que notre sélection manuelle n'était pas correcte et que l'on a extrait comme initialisation de cette classe un spectre trop particulier.Le résultat avec ce type d'initialisation est aussi décevant pour la classe asphalte. En effet elle est bien localisée, mais on constate que les abondances pour la route ne sont pas égales à 1 alors que l'on sait que ce ne sont pas des pixels mélangés.Par contre dans les résultats on retrouve très bien la tuile, ce qui n'était pas le cas lorsque l'on a initialisé IP-NMF avec les résultats de VCA. Le spectre utilisé comme graine pour cette classe n'était pas un extremum de la classe tuile. On déforme donc plus facilement ce spectre pour arriver à construire l'ensemble de la variabilité des tuiles.

IP-NMF a donc été testée sur une image urbaine, tout d'abord à haute résolution spatiale puis à des résolutions spatiales dégradées. Les résultats de ces tests nous ont permis de répondre à la deuxième question que nous nous étions posées.À haute résolution spatiale les résultats de IP-NMF, en terme de récupération des spectres et des abondances, sont meilleurs que ceux de VCA. Cette amélioration est principalement due à la capacité de notre méthode à faire évoluer indépendamment d'un pixel à l'autre des spectres appartenant à la même classe de matériaux. On a ainsi constaté que lorsque le nombre de classes recherchées est trop faible par rapport au nombre de classes présentes dans l'image, des sous-classes se forment au sein des classes extraites. Dans ce cas là, la classe perd alors son sens physique. Pour remédier à cela un post-processing a été proposé qui permet de récupérer les classes "physiques". On peut ainsi récupérer l'ensemble des classes de matériaux présentes dans l'image, contrairement aux méthodes standard, qui, si elles n'extraient pas un spectre ne l'extrairont jamais. Les résultats du démélange sont donc moins sensibles à l'erreur sur le nombre de classes. Dans le cas des images pour lesquelles la résolution spatiale a été dégradée, les performances de IP-NMF et de l'ensemble des méthodes testées décroissent avec la résolution. Dans le cas d'une image à une résolution de 3.2 m les performances de IP-NMF sont encore bonnes et l'amélioration de ces performances par rapport à VCA est toujours significative. Lorsque l'on passe à une résolution de 6.4 m les performances de l'ensemble des méthodes chutent.On en conclut donc que pour une résolution spatiale approchant la taille caractéristique des objets urbains, les méthodes de démélange, sans apports de connaissances a priori complémentaires ne sont plus performantes.Pour étudier l'impact de la prise en compte à la fois des non-linéarités dues aux réflexions multiples et de la variabilité intra-classe, une méthode a été développée, en se basant sur le modèle de mélange linéaire quadratique avec variabilité intra-classe. LQIP-NMF (Linear Quadratic Inertia-constrained Pixel-by-pixel NMF) est basée sur le même principe que IP-NMF. Cette méthode a été testée sur données semi-synthétiques. On a constaté que dans le cas d'une forte variabilité intra-classe la méthode LQIP-NMF donne de moins bons résultats que IP-NMF.
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