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Rule 34 of Statistics: if it exists, there is a
kernel version of it. No exceptions.

Anonymous

When you get new rules that work, you’re
changing the physiology of your brain.
And then your brain has to reconfigure
itself in order to deal with it.

Richard D. James (Aphex Twin)

There are other worlds (they have not told
you of).

Sun Ra
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Gaussian Models and Kernel Methods

Abstract

Kernel methods have been extensively used to transform initial datasets by mapping them into a so-called
kernel space or RKHS, before applying some statistical procedure onto transformed data. In particular,
this kind of approach has been explored in the literature to try and make some prescribed probabilistic
model more accurate in the RKHS, for instance Gaussian mixtures for classification or mere Gaussians for
outlier detection. Therefore this thesis studies the relevancy of such models in kernel spaces. In a first
time, we focus on a family of parameterized kernels - Gaussian RBF kernels - and study theoretically the
distribution of an embedded random variable in a corresponding RKHS. We managed to prove that most
marginals of such a distribution converge weakly to a so-called ”scale-mixture” of Gaussians - basically a
Gaussian with a random variance - when the parameter of the kernel tends to infinity. This result is used
in practice to device a new method for outlier detection. In a second time, we present a one-sample test
for normality in an RKHS based on the Maximum Mean Discrepancy. In particular, our test uses a fast
parametric bootstrap procedure which circumvents the need for re-estimating Gaussian parameters for
each bootstrap replication.

Keywords: kernel methods, rkhs, normality test, outlier detection

Modèles Gaussiens et Méthodes à Noyaux

Résumé

Les méthodes à noyaux ont été beaucoup utilisées pour transformer un jeu de données initial en les
envoyant dans un espace dit « à noyau » ou RKHS, pour ensuite appliquer une procédure statistique sur
les données transformées. En particulier, cette approche a été envisagée dans la littérature pour tenter
de rendre un modèle probabiliste donné plus juste dans l’espace à noyaux, qu’il s’agisse de mélanges de
gaussiennes pour faire de la classification ou d’une simple gaussienne pour de la détection d’anomalie.
Ainsi, cette thèse s’intéresse à la pertinence de tels modèles probabilistes dans ces espaces à noyaux. Dans
un premier temps, nous nous concentrons sur une famille de noyaux paramétrée - la famille des noyaux
radiaux gaussiens - et étudions d’un point de vue théorique la distribution d’une variable aléatoire projetée
vers un RKHS correspondant. Nous établissons que la plupart des marginales d’une telle distribution est
asymptotiquement proche d’un « scale-mixture » de gaussiennes - autrement dit une gaussienne avec une
variance aléatoire - lorsque le paramètre du noyau tend vers l’infini. Une nouvelle méthode de détection
d’anomalie utilisant ce résultat théorique est introduite. Dans un second temps, nous introduisons un test
d’adéquation basé sur la Maximum Mean Discrepancy pour tester des modèles gaussiens dans un RKHS.
En particulier, notre test utilise une procédure de bootstrap paramétrique rapide qui permet d’éviter de
ré-estimer les paramètres de la distribution gaussienne à chaque réplication bootstrap.

Mots clés : méthodes à noyaux, rkhs, test de normalité, détection d’anomalie

Laboratoire de Mathématiques Paul Painlevé
UMR 8524 CNRS - Université Lille 1 – 59655, Villeneuve d’Ascq Cedex – France
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Chapter1
General Introduction

1.1 Issues adressed by this thesis

The world of statistics is traditionally divided into two halves: non-parametric statistics and

parametric statistics. Parametric statistics — as the name suggests — are based on a parametric

model, that is a collection {Pθ}θ∈Θ of distributions that may have generated the observed dataset.

There are several advantages of using a parametric model: firstly the parameter θ stands as a

summary of the underlying mechanism governing the data which enables interpretation, and

secondly narrowing the possible representation of this mechanism to a simple model allows a

better inference on θ — which is well-known by statisticians as the bias-variance trade-off. On

the other hand, an inaccurate model may lead to bad performances of the learning task at play.

Besides, a model must be defined with respect to the type of observed data, that is one must

design specific models for vectorial data, qualitative data, structured objects, heterogeneous

data, and so on.

By contrast, non-parametric statistics do not impose such distributional assumptions on data.

One family of such non-parametric procedures are kernel methods. Kernel methods rely on a

transformation φ : X →H (the feature map) where X (the input space) is the set where our data

take values and H is a typically high-dimensional space also called the feature space or kernel
space. The idea is to map the initial dataset into H through φ and to work on the transformed

data lying in the kernel space instead of the initial data. The interest of such mapping is to

get properties on transformed data that initial data may not satisfy. As an illustration, let us

take a look at Support Vector Machines (SVM) [BGV92; CV95] which is the archetype of kernel

methods. SVM is an algorithm of supervised binary classification which separates two classes

of observations by means of a linear boundary. Clearly using a linear classifier directly on the

initial data may be problematic as the two classes may not be linearly separable. Hence SVM

aims at linearly separating the two classes in the kernel space instead of the input space, which

1



2 CHAPTER 1. General Introduction

is a feasible task because of the high dimensionality of the kernel space. Since the introduction

of SVM, many other kernel methods have been conceived throughout the last two decades and

cover a wide field of applications: regression [SGV98], denoising [SSM97], hypothesis testing

[Gre+07a; Gre+07b], outlier detection [Sch+01; Hof07], . . .

A remarkable feature of kernel methods is that it is possible to do non-parametric statistics

and parametric statistics at the same time, by applying a parametric statistical procedure in the

kernel space. Such an approach is non-parametric in the sense that no distributional assumption

is made in the input space. Instead, we consider a family of mappings and if this family is large

enough, chances are that an adequately chosen mapping will "shape" the data to make it fit a

given parametric model in the kernel space. So far, this approach has only been exploited by a

few papers in the litterature, including [BFG15] for classification and [Rot06] for batch outlier

detection.

Albeit promising, this parametric approach to kernel methods raises several questions:

• Is a given parametric model well-defined in the kernel space? The kernel space is often

represented as a functional space (reproducing kernel Hilbert space or RKHS) which is

typically infinite dimensional. Since the number of dimensions is infinite, special care

must be taken to define properly a distribution in the kernel space, in particular such a

distribution must be guaranteed to lie almost surely in the kernel space.

• Is a given parametric model realistic in the kernel space? Considering a family of feature

maps, the question is whether this family is "rich" enough so that it contains a map that

yields a distribution in the kernel space which is accurately described by a given parametric

model. Another concern is whether such a map preserves the information carried by the

initial data so that the parametric procedure in the kernel space still allows inference.

• How to test competing parametric models in the kernel space? Two or more parametric

models may be in competition in the kernel space. To decide between those different

models, a goodness-of-fit test may be used. The objective is to devise such a test that

handles samples taking values in a possibly infinite-dimensional Hilbert space, such as a

kernel space.

Therefore the aim of the present thesis is to bring answers to the questions above.

1.2 Outline of this thesis

This thesis is outlined as follows:

Chapter 2 consists in an introduction to kernel methods. The aim of the chapter is to explain

the interest of kernel methods through motivating examples, to introduce essential notions such

as kernels, positive definite functions and reproducing kernel Hilbert spaces, and also to provide

several instances of kernels. Besides, we also mention elements that will be useful throughout
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the remainder of the thesis: we introduce in details three examples of kernel methods that are

Support Vector Machines (SVM) and Kernel Principal Component Analysis (kernel PCA) — that

will be mentioned as rival methods in Chapter 5 — and the Maximum Mean Discrepancy (MMD)

— which is essential to understand Chapter 6. Besides we also present methods for low-rank

approximations of the so-called Gram matrices that are Nyström method and Random Kitchen

Sinks — which will be useful in Chapter 5.

Chapter 3 is devoted to properly defining distributions in a kernel space represented as a

reproducing kernel Hilbert space (RKHS). Such a distribution can be defined in two ways, either

through a random element when seeing the RKHS as a vector space or through a stochastic

process when seeing the RKHS as a function space. We see how these two definitions are linked

to one another. We focus in particular on the definition of Gaussian distributions in an RKHS. We

also cover the notion of nuclear dominance that provide criteria for a random element/stochastic

process to be well defined in an RKHS and to take values almost surely in the RKHS. Furthermore,

we check by means of nuclear dominance that in practice, Gaussian processes whose parameters

are estimated on the basis of a fintie sample are well defined in an RKHS. Finally, we review

three existing methods that make use of Gaussian processes in kernel spaces.

Chapter 4 focuses on a family of Gaussian RBF kernels and studies theoretically the dis-

tribution of a random variable embedded into corresponding RKHS. The distribution of such

embedded variable is characterized through the distribution of its projection onto a randomly

chosen low-dimensional subspace of the RKHS. We prove that when the parameter of the kernel

tends to infinity, this projection converges weakly to a scale-mixture of Gaussians (SMG), which

corresponds basically to a Gaussian distribution with a random variance. Furthermore, we

extend this result to the empirical setting where the distribution embedded into the RKHS is

only known through a finite sample of size n. In this case, we establish that the result in the

non-empirical setting still holds as long as n tends to infinity and the kernel parameter grows to

infinity slowly enough compared to n. Finally, we show that with an adequate renormalization of

the kernel, the previous results still hold but with an asymptotic Gaussian distribution instead

of a SMG.

Chapter 5 introduces a new algorithm for outlier detection (OD) in an online setting. This

algorithm relies on random projection in an RKHS induced by a Gaussian RBF kernel, and makes

use of the results evidenced in Chapter 4 to get a control of the false alarm rate — that is the

probability of incorrectly tagging a "normal" observation as an outlier. This new kernel-based

OD method is compared with two existing kernel methods for OD that are one-class SVM and

kernel PCA. It is shown that our proposed procedure manages to circumvent shortcomings of

the two rival algorithms, that are a lack of false alarm rate control for one-class SVM and the

lack of scalability for kernel PCA. Furthermore, we theoretically guarantee the consistency of

our OD method, in other words the missed detection rate (the probability of missing an outlier)

tends to 0 when the number of past observations grows to infinity.
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Chapter 6 presents a goodness-of-fit test for normality dedicated to samples taking values

in a general Hilbert space (which may be an RKHS). This test is based on the Maximum Mean

Discrepancy (MMD) which is known to be used for homogeneity and independence testing. Our

procedure allows to test a large variety of Gaussian models (zero-mean Gaussian, Gaussian with

covariance of rank r, . . . ). Furthermore, a fast parametric bootstrap procedure adapted from

[KY12] is successfully applied to our test and allows to reduce its computational cost. Our test

displays good empirical performances and mild sensibility to high dimensions (unlike common

multivariate normality tests), outperforming goodness-of-fit tests based on random projections

[Cue+06]. Finally, we propose an application of our test to covariance rank selection.

Finally, Chapter 7 concludes by providing some possible future works which could stem

from the results of this thesis.



Chapter2
Background: an Overview of Kernel

Methods

This chapter presents an introduction to kernel methods, a set of methods used in the machine

learning community for the past two decades and relying on the same principle — the "kernel

trick". The aim of the present chapter is not to be exhaustive, but to provide a broad overview of

this topic.

2.1 Motivating examples

Broadly speaking, kernel methods are based on a transformation called feature map that maps

available data taking values in a set X — called the input space — into a (typically) high-

dimensional space called feature space or kernel space. This introductory section aims at presenting

three different cases that motivate the use of such a mapping: supervised binary classification,

Fisher discriminant analysis and structured objects. Each of these examples highlights one

useful aspect of kernelization, which are respectively:

• Benefit from the high-dimension nature of the feature space (Section 2.1.1),

• Applying a linear method in the kernel space to solve a non-linear problem in the input

space (Section 2.1.2),

• Applying methods made for vectorial data in the kernel space to deal with non-vectorial

data in the input space (Section 2.1.3).

5
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Figure 2.1 – Left plot: Two groups of points not linearly separable in R
2; right plot: Two linearly

separable classes after embedding into R
3.

2.1.1 Supervised binary classification

Let us consider the problem of supervised binary classification. Assume that we are given n

observations (x1, y1), . . . , (xn, yn) ∈ X × {−1,1} where X is some set. Given a test point x ∈ X , the

goal is to guess the corresponding y ∈ {−1,1} based on the n observations.

Consider for instance X = R
d with d ∈N∗. A way of fulfilling this goal is to separate the two

sets of points {xi | yi = −1} and {xi | yi = 1} by an hyperplane H of Rd defined by a corresponding

normal vector u ∈ Rd and an offset b ∈ R, that is H = {x ∈ Rd | xT u + b = 0}. Therefore a new

point x ∈Rd is assigned to the class ŷ defined by

ŷ
∆= sgn

(
xT u + b

)
,

where sgn(.) denotes the sign of its argument.

The advantage of such a linear classifier is its simplicity. However, the drawback of such

approach is that the existence of an hyperplane that separates the two classes is not always

guaranteed. For instance, the left plot in Figure 2.1 1 displays two classes of points in R
2, one

class (blue, triangle) being enclosed by the other one (red, circle). It is clear that there exists

no straight line in R
2 to separate these two groups of points, as a natural boundary would be

instead the green circle displayed in the left plot of Figure 2.1. However, one can apply the

following map to our observations:

R
2→R

3, (x1,x2) 7→ (x1,x2,x
2
1 + x2

2) ,

which yields the transformed dataset represented in three dimensions in the right plot of

1The plots in Figure 2.1 were taken from http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Figure 2.1. In this new setting, it is possible to find a plane (e.g. the plane of equation z = 0.5) in

R
3 which separates the two classes.

This toy example illustrates the usefulness of embedding a dataset into a space of higher di-

mension. More generally, linear classifiers are known to be powerful enough in high-dimensional

settings. This is related to the notion of the Vapnik-Chernovenkis dimension (or VC-dimension)

of a set of classifiers. Considering a set of classifiers C ⊂ {(A,Ac) | A ⊂ X} as an ensemble of

two-part partitions of a set X , the VC-dimension of C is defined as the maximum number h(C )

of points in X such that, for each of the 2h(C ) ways of splitting these h(C ) points into two classes,

there exists a classifier in C that classifies correctly all of the h(C ) points. In more formal terms,

h(C ) ∆= max

h ∈N∗
∣∣∣∣∣∣ ∀(x1, . . . ,xh) ∈ X h, ∀I ⊆ {1,2, . . . ,h}, ∃(A,Ac) ∈C ,

h∑
i=1

11xi∈A11i∈I ∈ {0,h}

 .

In the particular case of linear classifiers in R
d , it is known that the corresponding VC-dimension

is d + 1 (see [Vap00], Section 3.6), that is a set of n points — split into two groups – lying in a

vector space of dimension d with d > n− 1 is always linearly separable.

2.1.2 Fisher discriminant analysis

Let x1, . . . ,xn ∈ R
D be a sample of n D-variate vectors split into M classes, and let y1, . . . , yn ∈

{1,2, . . . ,M} be the corresponding labels, that is yi = j means that xi belongs to the class j for every

1 6 i 6 n and 1 6 j 6M. When d is large, it is desirable to search for a (linear) transformation

T : RD → R
d such that d is much smaller than D and T (x1), . . . ,T (xn) allows to visualize data

(when p 6 3) and identify the structure of the classes.

Fisher discriminant analysis (FDA) [Fis36] is a classical method of dimensionality reduction

that consists in finding a direction that best separates those M clusters. Therefore it corresponds

to a transformation T : RD →R
d that is linear and such that d = 1. Introducing the pooled mean

µ = (1/n)
∑n
i=1 xi and the inner class means µj =

∑n
i=1 xi11yi=j /

∑n
i=1 11yi=j for 1 6 j 6M, the goal

is to find a direction u∗ ∈RD which maximizes the following quantity

u∗ ∈ argmax
u∈RD ,|u|2=1

uT SBu
uT SWu

, (2.1.1)

where |u|2 =
√
uT u denotes the Euclidean norm in R

D and

SB =
M∑
j=1

(µj −µ)(µj −µ)T

SW =
M∑
j=1

n∑
i=1

(xi −µj )(xi −µj )T 11yi=j ,
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Figure 2.2 – Top-left: points X1, . . . ,Xn split into two classes in R
2 (red triangles and blue

circles); bottom-left: overlapping projected points found by FDA; top-right: transformed points
φ(X1), . . . ,φ(Xn) in the feature space; bottom-right: well separated projected points in the feature
space found by FDA.

denote respectively the between class scatter matrix and within class scatter matrix.

The idea is that maximizing (2.1.1) is equivalent to maximizing the numerator uT SBu and

minimizing the denominator uT SWu. A large uT SBu means that the within class means of the

projected sample uT x1, . . . ,u
T xn are distant from each other, while a small uT SWu implies that

the within class variances of the projected sample are all small. Therefore a larger value for the

objective (2.1.1) indicates a better separability between the M clusters.

However, an optimal direction u∗ does not necessarily provide satisfactory separation for

the projected sample, even though the clusters are not overlapping in R
D before projection. For

instance, the top left plot of Figure 2.2 presents two classes of points in R
2 (red triangles, blue

circles) which lie on distinct subsets of R2. Despite this, the projected points onto the optimal

direction found by FDA (Figure 2.2, bottom left plot) form two overlapping classes.

In the example of Figure 2.2, the use of an appropriate feature map may be helpful. For
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Figure 2.3 – Illustration of the bag-of-words approach: given a set of relevant words, transform
a text into a histogram with occurrence of each of the relevant words, and compare texts by
comparing corresponding histograms.

instance, if one introduces the feature map φ as follows

φ : R2→R
2, (x,y) 7→

(
x+ sgn(0.5x − y)

|y|1/2
, y + 0.5sgn(0.5x − y)

)
,

then the transformed data φ(x1), . . . ,φ(xn) ∈ R2 as displayed in the top right plot of Figure 2.2

admit a linear projection that perfectly separates the classes (Figure 2.2, bottom right plot).

This example shows that through the use of a non-linear feature map φ, a problem in the

input space for which linear methods such as FDA fail turns to a problem in the feature space

that can be solved by such methods.

2.1.3 Text data and bag-of-words

In the era of Big Data, data are often available in a raw form, that is observations are not always

represented as multivariate vectors with real entries, but as a batch of heterogeneous types

of data: vectors but also graphs, trees, categorical data, text, images, audio streams,. . . The

main problem is that most data analysis tools are designed for a specific type data – typically

multivariate data. Instead of creating ad hoc methods corresponding to each conceivable type of

data, one may instead transform the initial dataset to get vectorial data.

We illustrate this approach with the bag-of-words technique [Joa02] used to represent a text

as a multivariate vector. The bag-of-words method is simple (Figure 2.3 2). Given a finite set

of m relevant words (e.g. "dog", "cat", "economy", "kafkaesque" but not "the", "where", "but")

2The picture in Figure 2.3 was taken from http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf
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denoted by w1, . . . ,wm, an observed text x is mapped to a histogram φ(x) ∈Rm where [φ(x)]i is

the number of occurrence of the word wi in the text x, for every i ∈ {1, . . . ,m}. This way, any

algorithm designed for multivariate data (linear classification, principal component analysis,. . . )

can be applied to φ(x) to treat x.

A straightforward way of choosing the relevant words is to take a dictionary and, based on a

corpus of texts, to weed out the most observed words (stopword elimination) — typically words

like "the" or "if" — and the least observed ones (document frequency thresholding).

2.2 Kernels: definition and basic properties

Section 2.1 showed through examples the usefulness of embedding data into a feature space H
through a feature map φ. In practice, this embedding is represented by a function called kernel.
The objective of this section is to define formally the notion of kernel, how it is linked to positive

definite functions and to illustrate the so-called "kernel trick", the latter allowing to perform all

practical computations only in the input space. The notion of reproducing kernel Hilbert spaces
(RKHS) [Aro50] is covered as well, in order to provide an explicit construction of the feature

map and the feature space.

2.2.1 Definition

In the following, we introduce the formal definition of a kernel.

Definition 2.2.1 (Kernel). Let X be a set and k : X ×X →R.
k is called a (real valued) kernel if there exist a real Hilbert space H endowed with an inner product
〈., .〉H and a map φ : X →H such that:

∀x,y ∈ X , k(x,y) = 〈φ(x),φ(y)〉H .

In particular, a kernel k can be defined by an expansion of the form

k(x,y) =
D∑
r=1

φr (x)φr (y) , (2.2.2)

where (φr )16r6D are real-valued functions defined on X and D ∈N∗ ∪ {+∞}, when considering a

feature map of the form

φ : X →R
D , x 7→ (φ1(x) . . .φD (x))T .

A kernel k defined by an expansion as in (2.2.2) is called a Mercer kernel. Furthermore, Mercer’s
theorem [Mer09] states that conversely, a kernel k admit the representation (2.2.2) under the

assumption that X is a compact topological space and k is continuous. However this result still
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Figure 2.4 – Trees (a) and (b) are compared by counting the number of their common subtrees.
For instance, Tree (c) is a common subtree of (a) and (b).

holds true if the compactness assumption for X is removed [SS12].

In Examples 2.2.1 to 2.2.3 thereafter, we provide examples of kernels defined through an

implicit feature map as in Definition 2.2.1.

Example 2.2.1. (Linear kernel)

The most simple kernel on X = R
d (d > 1) is the canonical scalar product

∀x,y ∈Rd , k(x,y) = yT x .

The corresponding feature map/space are

H = X = R
d , φ = Id

R
d .

Example 2.2.2. (Tree kernel)

In this example, we will define a tree kernel as proposed in [CD01]. To compare two given trees

T1 and T2, we build a kernel following the idea that two trees are similar if they share many

common subtrees. Let {Si}1≤i≤M be the set of all the M possible subtrees.

Consider the feature map: h(T ) = (h1(T ), . . . ,hM (T )) where hi(T ) counts the number of occur-

rences of Si in T .

The tree kernel is defined by the canonical dot product in R
M :

k(T1,T2) =
M∑
i=1

hi(T1)hi(T2) .

Remark that M is exponentially much larger than the number of nodes in T1 and T2. To be able

to compute k, the tree kernel is written in another form. Let Ii(n) the indicator equal to 1 if Si
is rooted at the node n and 0 otherwise. Then hi(T ) =

∑
n∈T Ii(n) and K can be formulated in a
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different way

k(T1,T2) =
M∑
i=1

 ∑
n1∈T1

Ii(n1)


 ∑
n2∈T2

Ii(n2)


=

∑
n1∈T1

∑
n2∈T2

M∑
i=1

Ii(n1)Ii(n2)

︸            ︷︷            ︸
=C(n1,n2)

.

On the first hand, k becomes a sum over the pairs of nodes (n1,n2), and on the other hand,

C(n1,n2) can be computed quickly with a recursive procedure. Therefore the computation of the

tree kernel does not depend on M.

Example 2.2.3. (Fisher kernel)

An a priori about the behaviour of the dataset can be expressed by a generative model. Such a

model involves a family of distributions P(.|θ) on X parameterized by θ ∈Ω ⊆R
D where Ω is

the parameter space. Haussler and Jaakkola (1999, [JDH99]) introduced a type of kernels called

Fisher kernels which take into account such a model.

Fisher kernels are built upon the feature map

φθ0
: X →R

D , φθ0
(x) =

(
∂ logP(x|θ)

∂θi
(θ0)

)
1≤i≤D

,

where θ0 is a given point in Ω. φθ0
(x) represents how to modify the current setting (with

parameter set at θ0) to maximize log(P(x|θ)) and make the model fit x better.

Two points x and y are similar if they "draw" the model towards similar directions, thus a

Fisher kernel is defined as an inner product in R
D between φθ0

(x) and φθ0
(y). Namely, let I be

the Fisher information matrix

I =
[
EXφθ0

(X)iφθ0
(X)j

]
1≤i,j≤D

,

where X follows the distribution P(.|θ0). For any x,y ∈ X , the Fisher kernel k related to the

model {P(.|θ)}θ∈Ω and a given parameter value θ0 is defined by

k(x,y) = φθ0
(x)T I−1φθ0

(y) .

Note that given a kernel k, the corresponding pair of feature map/space (φ,H) is not unique.

For instance, consider the linear kernel of Example 2.2.1, k(x,y) = xT y for every x,y ∈Rd (d > 1).

Example 2.2.1 defined φ = Id
R
d andH = R

d as the corresponding feature map/space. However,
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one could have also considered the following feature space/map H̃ and φ̃ as

H̃ = R
2d , φ̃ : Rd →R

2d , x 7→
(

1
√

2
x,

1
√

2
x

)
,

where for any u,v ∈Rd , (u,v) ∈R2d denotes the vector obtained by concatenating u and v. It is

then trivial to check that

∀x,y ∈ X , k(x,y) = φ(x)Tφ(y) = φ̃(x)T φ̃(y) .

2.2.2 Positive definite functions and reproducing kernel Hilbert spaces

The kernels shown in the examples of Section 2.2.1 were constructed by explicitly defining

a feature map φ and a feature space H. However the function k : X × X → R is sometimes

defined in the first place without any preliminary definition of φ and H. In fact, k(x,y) is often

understood as a measure of similarity between x,y ∈ X and is directly constructed following this

rationale. For instance if X is endowed with a distance function d : X ×X →R
+, the function k

can be written as

∀x,y ∈Rd , k(x,y) = κ(d(x,y)) ,

for some function κ : R+→R with κ(0) = supt∈Rκ(t).

This raises the following question: how to tell whether a given k is a kernel or not? It turns

out that answering this question does not require to explicitly build a feature space and a feature

map and is related to the notion of symmetric, positive definite functions.

Definition 2.2.2 (Symmetric, positive definite function). A function k : X ×X → R is positive
definite if for every a1, . . . , an ∈R and x1, . . . ,xn ∈ X :

n∑
i,j=1

aiajk(xi ,xj ) ≥ 0 .

Moreover if k(x,y) = k(y,x) for every x,y ∈ X , k is symmetric.

Remark: Often in the literature, the expression positive definite function is replaced by positive

semi-definite function. With the additional condition that
∑
i,j aiajk(xi ,xj ) = 0 if and only if

a1 = . . . = an = 0, "positive definite" becomes "strictly positive definite" in the first naming, and
"positive semi-definite" becomes "positive definite" in the second one, which may be confusing. In the
following, we stick to the first terminology.

The interest of this notion is that k is a symmetric, positive definite function if and only if k

is a kernel, as we show in the following.

Straightforwardly, a kernel k is necessarily symmetric and definite positive. Given a cor-

responding feature space H — equipped with the inner product 〈., .〉H and associated norm
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‖.‖H with ‖h‖H =
√
〈h,h〉H for every h ∈ H— and feature map φ, then for any a1, . . . , an ∈ R and

x1, . . . ,xn ∈ X

n∑
i,j=1

aiajk(xi ,xj ) =
n∑

i,j=1

aiaj〈φ(xi),φ(xj )〉H =

∥∥∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥∥∥
2

H

≥ 0 ,

and for every x,y ∈ X

k(x,y) = 〈φ(x),φ(y)〉H = 〈φ(y),φ(x)〉H = k(y,x) ,

by symmetry of the inner product of H. Therefore, a kernel k is always positive definite and

symmetric.

Showing the converse requires to build a canonical feature map φ and feature spaceH. The

construction of φ and H thereafter follows the proof of Theorem 4.16 from [SC08]. Given a

symmetric, positive definite function k, consider the following pre-hilbertian space of functions

H0 consisting of linear combinations of evaluations functions k(x, .), x ∈ X

H0 =

 n∑
i=1

aik(xi , .)

∣∣∣∣∣∣ n ∈N∗, a1, . . . , an ∈R, x1, . . . ,xn ∈ X

 .

which is equipped with the inner product 〈., .〉H0
defined for any h =

∑n
i=1 aik(xi , .) ∈ H0 and

h′ =
∑m
j=1 a

′
jk(x′j , .) ∈ H0 as

〈h,h′〉H0
=

n∑
i=1

m∑
j=1

aia
′
jk(xi ,x

′
j ) .

Let us check that 〈., .〉H0
actually defines an inner product.

First of all, 〈., .〉H0
is well defined since 〈h,h′〉H0

can be written 〈h,h′〉 =
∑m
j=1 a

′
jh(x′j ) =∑m

i=1 aih
′(xi), which shows that 〈h,h′〉H0

does not depend on the representation of h and h′ .

The positivity condition is fulfilled by the positive definiteness of k, since for every h =∑n
i=1 aik(xi , .) ∈ H0

〈h,h〉H0
=

n∑
i=1

n∑
j=1

aiajk(xi ,xj ) > 0 .

It is straightforward that 〈., .〉H0
is symmetric and bilinear. Therefore it satisfies the Cauchy-

Schwarz’s inequality 〈h,h′〉H0
6

√
〈h,h〉H0

〈h′ ,h′〉H0
which implies that 〈·, ·〉H0

is definite as follows:

for any h ∈ H0 such that 〈h,h〉H0
= 0,

∀x ∈ X , |h(x)| = |〈h,k(x, ·)〉H0
| 6 |〈h,h〉H0

||k(x,x)| = 0 ,
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hence h = 0.

Now we are in a position to define a feature space H as the completion of H0 with respect to

〈., .〉H0
. H is therefore a Hilbert space whose inner product 〈., .〉H satisfies

∀h,h′ ∈ H0, 〈h,h′〉H = 〈h,h′〉H0
.

In particular, this implies the so-called reproducing property

∀x,y ∈ X , 〈k(x, .), k(y, .)〉H = k(x,y) .

The reproducing property shows that choosing H as a feature space and

φ : X →H, x 7→ k(x, .) ,

as a feature map yields

∀x,y ∈ X , k(x,y) = 〈k(x, .), k(y, .)〉H = 〈φ(x),φ(y)〉H ,

proving that k is a kernel.

H is called the reproducing kernel Hilbert space (RKHS) of k [Aro50] and is denoted H(k).

Furthermore, every kernel k is related to a unique RKHS ([SC08], Theorem 4.21).

Definition 2.2.3 (Reproducing kernel Hilbert space). For any symmetric, positive definite function
k : X ×X →R, there exists a unique Hilbert space H(k) equipped with an inner product 〈., .〉H(k) which
satisfies:

• ∀x ∈ X , k(x, .) ∈H(k) ,

• ∀f ∈H(k), ∀x ∈ X , 〈f ,k(x, .)〉H(k) = f (x) .

Such an H(k) is called reproducing kernel Hilbert space with reproducing kernel k.

Apart from providing a canonical form for the feature space and the feature map, H(k) has

the remarkable property of being the simplest" possible feature space corresponding to k, that is

H(k) is the smallest possible feature space in the following sense: Theorem 4.21 from [SC08]

states that given any feature space/map pair (H̃, φ̃) related to k, the following operator

H̃ →H(k), w 7→ 〈w,φ̃(.)〉H̃ ,

is surjective. As Section 2.1.2 suggested, one of the motivations for the use of a kernel is to apply

a linear algorithm in a feature space such as H̃. Such an algorithm deals with inner product such

as 〈w,φ̃(x)〉H̃ where w ∈ H̃ and x ∈ X , which shows that viewing the feature space as an RKHS

suffices.
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Finally, we illustrate this section by introducing a family of symmetric, positive definite

functions (hence kernels): translation-invariant kernels.

Example 2.2.4. (Translation-invariant kernels)

Let us set X = R
d for some d > 1 and define k as

∀x,y ∈Rd , k(x,y) ∆= K(x − y) ,

where K : Rd →R.

The function K is said to be positive definite if the corresponding kernel k is positive definite.

Furthermore, assuming that K is continuous, Bochner’s theorem states that K is positive definite

if and only if K is the Fourier transform of a bounded positive measure on R
d ([BT04], Theorem

20), that is

K(z) =
∫
eiw

T zΛ(dw) ,

for some bounded positive measure Λ on R
d .

Therefore, the family of translation-invariant kernels encompasses several instances of

commonly used kernels on R
d such as:

• Gaussian kernel: k(x,y) = exp(−γ‖x − y‖2), γ > 0 .

This kind of kernel corresponds to K(z) = exp(−γ‖z‖2) which is positive definite since K is

the characteristic function of aN (0,2γId) Gaussian distribution.

• Laplace kernel: k(x,y) = exp(−γ‖x − y‖) , γ > 0 .

Here K(z) = exp(−γ‖z‖) corresponds to the characteristic function of a random vector rU ,

where U is uniform on the unit sphere of Rd and r is independent of U and follows a

Cauchy distribution with density function f (t) =
[
πγ

(
1 + (t/γ)2

)]−1
.

• Cauchy kernel: The Cauchy kernel is a parametric kernel (with parameter σ > 0) with

formula

k(x,y) =
1

1 + σ−2‖x − y‖2
,

for every x,y ∈ Rd Compared to the Gaussian and Laplace kernels, the Cauchy kernel

emphasized more possible influences between distant points [Bas08].

• B-spline kernels: Define B0 = 11B1,d
the indicator function of the unit ball B1,d of R

d .

For every function f ,g : Rd → R, let f ⊗ g denote the convolution of f and g that is

(f ⊗ g)(x) =
∫
R
d f (x′)g(x′ − x)dx′. Then define iteratively each function Bi : Rd → R by

Bi+1 = Bi ⊗ B0 for each i > 0. The function B2p+1 where p > 0 are positive definite and
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therefore the kernel kp

kp(x,y) = B2p+1(x − y) for all x,y ∈Rd ,

defines a translation-invariant kernel [V+97].

Some translation-invariant kernels such as the Gaussian kernel, the Laplace kernel and the

Cauchy kernel admit actually in the more specific form k(x,y) = κ(‖x − y‖) where κ : R+ → R.

These particular kernels are called radial kernels or radial basis function kernels (RBF kernels).

2.2.3 The "kernel trick"

As shown in Section 2.2.1, a kernel k is designed to match the inner product of some feature

space. The feature space is typically high-dimensional — a property that is desired within some

frameworks as the example of Section 2.1.1. However, manipulating high-dimensional vectors

may be more of a curse than a blessing — especially in regard of computational costs.

In the following, we expose how using a kernel allows to eventually perform computations

in the input space, hence avoiding the computational burden of high dimension. This practical

usefulness of kernels is due to two aspects: the "kernel trick" and the representer theorem.

"Kernel trick"

Here is a simple illustration of the "kernel trick". Given x and y two elements in the input

space and a kernel k, the distance between the embedded points φ(x) and φ(y) in H(k) can be

calculated as follows

‖φ(x)−φ(y)‖2H(k) = 〈φ(x)−φ(y),φ(x)−φ(y)〉H(k)

= 〈φ(x),φ(x)〉H(k) + 〈φ(y),φ(y)〉H(k) − 2〈φ(x),φ(y)〉H(k)

= k(x,x) + k(y,y)− 2k(x,y) .

Therefore computing a distance in the RKHS only requires to evaluate the kernel k on elements

of the input space. There is no need to manipulate directly any vectors in the feature space: this

is the principle of the "kernel trick".

More generally, given a set of observations x1, . . . ,xn ∈ X , if computations in the RKHS only

consist of pairwise inner products 〈φ(xi),φ(xj )〉H(k) for 1 6 i, j 6 n, then calculating the Gram
matrix K ∈Mn(R) defined by

K =
[
k(xi ,xj )

]
16i,j6n

,

suffices. It turns out that most learning algorithms only require the Gram matrix, as implied by

the representer theorem stated thereafter.



18 CHAPTER 2. Background: an Overview of Kernel Methods

Representer theorem

Most learning algorithms can be cast as an optimization problem. Given observations (x1, y1), . . . , (xn, yn) ∈
X ×R, the goal is to seek out a prediction function f ∗ such that Yi = f ∗(xi) + εi for every 1 6 i 6 n

where ε1, . . . ,εn are error terms. Such a function is determined by minimizing (or maximizing) a

functional of the general form

Ω(f ) = c ((x1, y1, f (x1)), . . . , (xn, yn, f (xn))) +R(f ) , (2.2.3)

where f ∈ F ⊆ R
X with F a prescribed set of functions, c : (X ×R2)m → R

+ is a loss function

and R(f ) is a regularizer term which typically controls the "smoothness" of f in some sense to

avoid overfitting. For instance in the case of ridge regression, an optimal regression function

f ∗ : Rd →R satisfies

f ∗ ∈ argmin
f (x)=aT x, a∈Rd

n∑
i=1

(aT xi − yi)2 +λ‖a‖2 ,

where λ > 0. Here F = {x 7→ aT x | a ∈ R
d} is the set of linear regression functions, the loss

function c is the squared loss
∑n
i=1(aT xi − yi)2 and R(f ) = λ‖a‖2.

The representer theorem provides an explicit form for the optimizers of functionals as (2.2.3)

when F is an RKHS. Originally introduced in [KW71] in the special case of the squared loss, it

has been generalized by [SHS01]. The latter version is stated in Proposition 2.2.4.

Proposition 2.2.4 (Representer theorem, [SHS01]). Let k : X ×X → R be a kernel where X is a
non-empty set and let (x1, y1), . . . , (xn, yn) ∈ X ×R.
Assume that the regularizer R(f ) in (2.2.3) is a strictly increasing (resp. decreasing) function of
‖f ‖H(k).
Then, any f ∗ ∈ H(k) that minimizes (resp. maximizes) Ω(f ∗) lies in the span of k(x1, .), . . . , k(xn, .),
that is

∃a1, . . . , an ∈R, f ∗ =
n∑
i=1

aik(xi , .) . (2.2.4)

Proof of Proposition 2.2.4. We focus on the case where Ω(f ) is strictly increasing w.r.t. ||f ||, the

other case being proved likewise.

Let V = span(k(x1, .), . . . , k(xn, .)), and f ∈H(k). Let us split f into the sum of two orthogonal

functions:

f = PV f︸︷︷︸
∈V

+ f ⊥︸︷︷︸
∈V ⊥

,

which is possible since V is finite dimensional and H(k) is a Hilbert space (hence complete).

Using the reproducing property and the fact that f ⊥ is orthogonal to V and k(xi , .) ∈ V for
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every 1 6 i 6 n,

∀1 6 i 6 n, f (xi) = PV f (xi) + f ⊥(xi) = PV f (xi) ,

since f ⊥(xi) = 〈f ⊥, k(xi , .)〉H(k) = 0.

It follows

Ω(f ) = c((x1, y1, f (x1)), . . . , (xn, yn, f (xn))) +R(f )

= c((x1, y1, PV f (x1)), . . . , (xn, yn, PV f (xn))) +R(f ) .

Finally, since PV f and f T are orthogonal

||f ||2 = ||PV f ||2 + ||f ⊥||2 ≥ ||PV f ||2 .

Therefore since R is strictly increasing with respect to ‖f ‖H(k),

Ω(f ) = c((x1, y1, PV f (x1)), . . . , (xn, yn, PV f (xn))) +R(f )

> c((x1, y1, PV f (x1)), . . . , (xn, yn, PV f (xn))) +R(PV f ) =Ω(PV f ) .

It proves that any minimizer of Ω(f ) necessarily belongs to V .

Thus determining f ∗ reduces to determining the scalars a1, . . . , an ∈ R. We can therefore

reformulate the problem in terms of matrices and vectors (called the dual problem) which is more

convenient for resolution. Furthermore, the dual writing of the optimization problem does not

involve the number of dimensions of the feature space but only the number of observations n.

2.3 Some examples of kernel methods

Now that we have properly introduced the definition of a kernel and some of their key properties,

we are in a position to review some of the most encountered statistical and/or learning methods

that make use of kernels. Many of them turn out to be generalized version of pre-existing

procedures: Kernel Principal Component Analysis [SSM97] which is a non-linear extension of PCA,

Kernel Ridge Regression [SGV98], Kernel Fisher discriminant analysis [Mik+99], Kernel Canonical
Correlation Analysis [LF00], among others.

Due to the vast variety of kernel methods, this section has not the ambition to present an

exhaustive taxonomy of such methods. We restrict ourselves to three examples that will be

mentioned or useful throughout this thesis: Support Vector Machine for classification, Kernel PCA
for dimension reduction and Maximum Mean Discrepancy for two-sample and independence

testing.
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2.3.1 Support Vector Machine

Introduced by [BGV92] and then [CV95], Support Vector Machine (SVM) is a learning algorithm

designed for binary classification. We recall the binary classification framework — that we have

already encountered in Section 2.1.1: we are given n pairs of observations (x1, y1), . . . , (xn, yn) ∈
X ×{−1,1}where X is an arbitrary set. The objective is to guess the class y ∈ {−1,1} corresponding

to a new point x ∈ X based on (xi , yi)16i6n.

The main idea of SVM is to construct a linear decision function that separates the two classes

and to determine y according to the side of the decision hyperplane where the tested point x lies.

Furthermore, this decision boundary is not set in the input space X but in a high dimensional

feature space H where x1, . . . ,xn are embedded into, in order to make the two classes linearly

separable. More precisely, assuming that X is endowed with a kernel k : X × X → R with

corresponding feature space/map (H,φ), the SVM algorithm aims at finding a vector f ∈ H that

solves the following constrained optimization scheme

minimize 1
2‖f ‖

2
H +C

∑n
i=1 ξi over f ∈ H,b ∈R,ξ1, . . . ,ξn ∈R+

such that yi(〈f ,φ(xi)〉H + b) > 1− ξi for all 1 6 i 6 n ,
(2.3.5)

where C > 0.

Let us denote optimal separating hyperplane as {h ∈ H | 〈f ∗,h〉H + b∗ = 0} where (f ∗,b∗) is a

solution of (2.3.5). Thus a tested point x ∈ X will be assigned the class y ∈ {−1,1} defined by

y = sgn(〈f ∗,φ(x)〉H + b∗) .

Let us discuss the inequality constraints yi(〈f ,φ(xi)〉H + b) > 1− ξi in (2.3.5). In a first time, we

omit the variables ξ1, . . . ,ξn and focus on the simplified optimization scheme

minimize 1
2‖w‖

2
H over f ∈ H, b ∈R

such that yi(〈f ,φ(xi)〉H + b) > 1 for all 1 6 i 6 n .
(2.3.6)

The effect of optimizing (2.3.6) is twofold. On the first hand, the constraints yi(〈f ,φ(xi)〉H+b) > 1

require that yi(〈f ,φ(xi)〉H + b) is positive for every 1 6 i 6 n, which means that every training

point φ(x1), . . . ,φ(xn) is correctly classified by the separating hyperplane. On the other hand,

minimizing ‖f ‖2H makes the distance between the training points and the decision hyperplane as

large as possible. To see this, rewrite (2.3.6) as follows

minimize N over N ∈R+, b̃ ∈R+, ‖f̃ ‖H = 1

such that yi(〈f̃ ,φ(xi)〉H + b̃) > 1
N for all 1 6 i 6 n .

where f̃ = f /‖f ‖2H(k), b̃ = b/‖f ‖2H(k) and N = ‖f ‖2H(k).

The drawback of the optimal decision boundary that stems from (2.3.6) is that it tolerates no

classification error among the training points. It may be a problem if one of the training points is
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Figure 2.5 – Illustration of Support Vector Machine

an outlier. This lack of robustness may lead to a well-known problem in learning theory called

overfitting, that is the learning algorithm sticks too much to the training set and causes a large

generalization error — a tested point is more likely to be misclassified.

To tackle this overfitting issue, [CV95] introduced the slack variables ξ1, . . . ,ξn in (2.3.5).

These slack variables allow a few training points to be exceptionally close to the separating hy-

perplane or even to be misclassified. This more robust approach leads to a smaller generalization

error.

Now that the objective of the SVM is clearly set, we show that solving (2.3.5) is feasible

in practice, despite the fact that the optimization is done over a possibly infinite dimensional

space H. In particular, the representer theorem can be applied in this framework so that the

optimization problem does not depend on the dimension of H. Namely, (2.3.5) is equivalent to

minimize 1
2‖f ‖

2
H +C

∑n
i=1 max(0,1− yi(〈f ,φ(xi)〉H + b)) over f ∈ H, b ∈R . (2.3.7)

If the feature spaceH is chosen as the RKHSH(k), the reproducing property entails 〈f ,φ(xi)〉H(k) =

f (xi) for every 1 6 i 6 n and (2.3.7) becomes

minimize 1
2‖f ‖

2
H +C

∑n
i=1 max(0,1− yi(f (xi) + b)) over f ∈ H, b ∈R ,

which is of the same form as the objective (2.2.3) in Section 2.2.3 with c(xi , yi , f (xi)) = Cmax(0,1−
yi(f (xi) + b)) as the loss function — in this case, the hinge loss — and R(f ) = (1/2)‖f ‖2H(k). Hence

the representer theorem states that the optimal f ∗ admits the following expansion

f ∗ =
n∑
i=1

aik(xi , .) .
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Introducing the vector a = (a1 . . . an)T ∈ Rn and the Gram matrix K = [k(xi ,xj )]1leqsi,j6n, (2.3.5)

finally becomes

minimize 1
2 aTKa +C

∑n
i=1 ξi over f ∈ H, b ∈R, ξ1, . . . ,ξn ∈R+

such that yi(Ka + b) > 1− ξi for all 1 6 i 6 n ,

which depends on n but not on the dimension of H(k).

2.3.2 Kernel PCA

Before introducing kernel principal component analysis (kernel PCA), let us recall the principle

of linear PCA which is a classical tool in statistics for dimension reduction.

In the classical framework, we are given n i.i.d. observations X = [X1 . . .Xn] in R
m which are

assumed zero-mean. The goal is to find the directions u1, . . . ,ud that capture the major part of

the variance of the observations. To do so, we first have to find the unit vector u1 that maximizes

the variance uT1 Σu1, where Σ = EXXX
T is the covariance matrix of X. The associated Laplacian

to be maximized is

L(u1,λ) = uT1 Σu1 −λ(uT1 u1 − 1) ,

which is equivalent to solving the eigenvalue equation

Σu1 = λ1u1 , (2.3.8)

where λ1 the largest eigenvalues of Σ. The following vector u2 is sought in the same way but such

that it is orthogonal to u1, and so on. Therefore, the principal components u1, . . . ,ud correspond

to the first d eigenvectors of Σ.

In practice, we consider the sample covariance estimator Σ̂ = (1/n)
∑n
i=1XiX

T
i , so that the

equation (2.3.8) becomes

1
n

XXT u1 = λ1u1 .

In [SSM97], the authors have proposed a kernelized version of the PCA, and applied it

successfully to image denoising. Given a kernel k, kernel PCA applies usual PCA in the feature

space H. For the sake of clarity, kernel PCA is presented in the case where H is a finite

dimensional linear space but it can be extended as well to infinite dimensional settings by means

of Hilbert-Schmidt operators algebra.

Assume H = R
D where D is typically very large. Writing the feature map as φ(x) =

(φ1(x), . . . ,φD(x))T ∈ R
D , the images of our observations in H are stored in the matrix Φ ∈
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MD,n(R)

Φ = [φ(X1), . . . ,φ(Xn)] .

As in classical PCA, we have to solve the following eigenvalue equation

1
n
ΦΦT u1 = λ1u1 . (2.3.9)

We can not solve it directly, since the matrix ΦΦT ∈MD(R) is too large. Instead we transform

(2.3.9) and multiply it from the left by ΦT

1
n
ΦTΦ︸︷︷︸

=K

ΦT u1︸︷︷︸
=v1∈Rn

= λΦT u1︸︷︷︸
=v1

,

where K = [〈φ(Xi),φ(Xj )〉H]16i,j6n = [k(Xi ,Xj )]16i,j6n is the Gram matrix. Therefore, it becomes

an eigenvalue problem in R
n

Kv1 = nλ1v1 .

Having found a wanted v1, we can express the eigenvector u1 as follows

ΦT u1 = v1 ⇔ ΦΦT u1︸   ︷︷   ︸
=nλ1u1

= Φv1

⇔ u1 =
1
nλ1

Φv1 .

Finally we normalize u1 by ‖u1‖H to obtain ũ1 ∈RD . Since

‖u‖2H =
1

n2λ2
1

vT1 Φ
TΦv1 =

1

n2λ2
1

vT1 Kv1 =
1
nλ1

,

we get

ũ1 =
1
√
nλ1

Φv1 .

Projecting a new embedded point φ(X) with X ∈ X onto the normalized principal component ũ1

yields

φ(X)T ũ1 =
1
√
nλ1

φ(X)TΦv1 ,
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Figure 2.6 – Application of kernel PCA to image de-noising. From left to right: original noisy
image; de-noised image with linear PCA; de-noised image with kernel PCA and gradient descent
to learn the pre-image; de-noised image with kernel PCA and regularized regression to learn the
pre-image.

with

φ(X)TΦ = (k(X1,X), . . . , k(Xn,X)) .

Note that every actual computation has been made all along in the input space through k, which

is an instance of the kernel trick. In the seminal paper of [SSM97], an application of kernel PCA

consists in "cleaning out" noisy data by projecting an embedded point φ(X) ∈ H onto principal

components in the feature space to obtain Pφ(X) ∈ H, then by going back into the input space.

The latter step is not trivial since most vector in H do not admit a pre-image through the feature

map φ. In particular, there exists in general no element X∗ ∈ X satisfying φ(X∗) = Pφ(X). Instead,

X∗ is determined as a solution of the following optimization problem

X∗ = argmin
x∈X

‖φ(x)− Pφ(X)‖2H ,

which is solved by gradient descent.

Another way to define X∗ is to consider the problem of going back to the input space as

a regression problem [BWS04]. The regularization in the regression procedure allows to get

a "smoother" approximate pre-image, which is shown to be efficient in practice for image de-

noising (see Figure 2.6 taken from [BWS04]).

Other instances of applications of kernel PCA include regularized binary classification

[Zwa05] and outlier detection [Hof07].

2.3.3 Maximum Mean Discrepancy

Let X1, . . . ,Xn and Y1, . . . ,Ym be two samples of i.i.d. X -valued random variables, where (Xi)16i6n

were drawn from a distribution PX and (Yi)16i6m from a distribution PQ, where PX and PQ are

both defined on the measurable space (X ,A). The purpose of a two-sample test is to test the

null-hypothesis H0 : PX = PY against the alternative hypothesis H1 : PX , PY . In order to set such
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a test, one needs a test statistic that measures the discrepancy between PX and PY based on the

two available samples. This test statistic is typically an estimator of some quantity ∆(PX , PY ) that

quantifies the gap between the unknown distributions PX and PY .

A series of papers [Bor+06; Gre+07a; Gre+09] have proposed to use kernels for this task.

Their method rely on an Hilbert space embedding of distributions.

Definition 2.3.1 (Hilbert space embedding of distributions, Lemma 3 in [Gre+12a]). LetM+
1 (X )

be the set of probability distributions onX and k a (measurable) kernel onX that satisfies supx∈X k(x,x) <

+∞.
Then the following mapping µ is well-defined

µ :M+
1 (X )→H(k), P 7→ µ[P ] ,

where for each P ∈M+
1 (X ), µ[P ] ∈H(k) is the element of H(k) that satisfies

∀f ∈H(k), 〈µ[P ], f 〉H(k) = EX∼P [〈k(X, ·), f 〉H(k)] .

For every P ∈M+
1 (X ), µ[P ] is called the Hilbert space embedding of P in H(k).

This can be seen as a generalization of the notion of moment-generating function — i.e.
a function of the type ϕ(w) = EXe

wTX related to some random vector X. It is clear that a

moment-generating function corresponds to a Hilbert space embedding with an exponential

kernel k(x,y) = exp(xT y).

Through the embedding µ, each distribution P on X is represented by a mean element µ[P ]

in H(k). This mapping is injective for a class of kernels called characteristic kernels.

Definition 2.3.2 (Characteristic kernel). Let k a kernel on X and µ the corresponding Hilbert space
embedding of distributions.
k is said to be characteristic if and only if µ is injective, that is

∀P ,Q ∈M+
1 (X ), P =Q⇐⇒ µ[P ] = µ[Q] .

Criteria for a kernel to be characteristic have been widely investigated in [Fuk+09; Sri+10;

CS10; SFL11]. Examples of characteristic kernels include commonly used kernels such as the

Gaussian kernel and the Laplacian kernel on R
d .

Through the Hilbert space embedding of distribution µ, the discrepancy between PX and PY
can be gauged by the following quantity

MMD(PX , PY ) ∆=
∥∥∥µ[PX ]−µ[PY ]

∥∥∥2
H(k)

,

that is equal to 0 if and only if PX = PY whenever k is a characteristic kernel. MMD(PX , PY ) is

called the maximum mean discrepancy (MMD) between PX and PY .
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To set a two-sample test, MMD(PX , PY ) is estimated based on (Xi)16i6n and (Yi)16i6m. In-

troducing P̂X = (1/n)
∑n
i=1 δXi (resp. P̂Y = (1/n)

∑m
i=1 δYi ) the empirical measure of the sample

(Xi)16i6n (resp. (Yi)16i6m) leads to the following test statistic

M̂MD(PX , PY ) ∆= MMD(P̂X , P̂Y ) =

∥∥∥∥∥∥∥∥1
n

n∑
i=1

k(Xi , ·)−
1
m

m∑
j=1

k(Yj , ·)

∥∥∥∥∥∥∥∥
2

H(k)

.

Expanding the squared norm and the kernel trick lead to a fully computable statistic

M̂MD(PX , PY ) =
1
n2

n∑
i,j=1

k(Xi ,Xj ) +
1
m2

m∑
i,j=1

k(Yi ,Yj )−
2
mn

n,m∑
i,j=1

k(Xi ,Yj ) .

The same rationale can be applied to design an independence test. Let (X1,Y1), . . . , (Xn,Yn) ∈
X ×Y be n independent copies of an X ×Y-valued random variable (X,Y ) following the joint

distribution PXY . Let PX and PY denote respectively the marginal distributions of X and Y . An

independence test aims at testing the null hypothesis H0 that X and Y are independent against

the alternative H1 that they are dependent. By definition, X and Y are independent if and only

if the joint distribution PXY and the product distribution PX ⊗ PY coincide 3.

Therefore the independence testing framework is reformulated as follows

H0 : PXY = PX ⊗ PY versus H1 : PXY , PX ⊗ PY ,

and an adequate test statistic is an the MMD between the empirical measures of PXY and PX ⊗ PY
[Gre+07b]. This statistic is called the Hilbert space independence criterion (HSIC). Namely, given a

kernel K defined on X ×Y , the HSIC writes

HSIC(X,Y ) = M̂MD(PXY , PX ⊗ PY )

=

∥∥∥∥∥∥∥∥1
n

n∑
i,j=1

K ((xi , yi), (., .))−
1
n2

n∑
i,j=1

K
(
(xi , yj ), (., .)

)∥∥∥∥∥∥∥∥
2

H(K)

=
1
n2

n∑
i,j=1

K
(
(xi , yi), (xj , yj )

)
+

1
n4

n∑
i,j,k,l=1

K
(
(xi , yj ), (xk , yl)

)
− 2
n3

n∑
i,j,k=1

K
(
(xi , yi), (xj , yk)

)
.

In [Gre+07b], kernels K of the form K((x,y), (x′ , y′) = k(x,x′)l(y,y′) are considered where k is a

3PX ⊗ PY is defined as the measure on X ×Y such that for every measurable A ⊆ X and B ⊆ Y , PX ⊗ PY (A × B) =
PX (A)PY (B).
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kernel on X and l is a kernel on Y which leads to the following expression of the HSIC

HSIC(X,Y ) =
1
n2 Tr(KHLH) ,

where Tr(.) denotes the trace of a matrix, K = [k(Xi ,Xj )]16i,j,n, L = [l(Yi ,Yj )]16i,j,n and H =

In − (1/n)11n11Tn is a centering matrix. In this case, [Gre15] shows that if k and l are both

characteristic, then the HSIC is consistent — that is HSIC(X,Y )→ 0 almost surely as n→ +∞
under H1. This is a useful result since one does not need to check whether the product kernel K

is characteristic.

2.4 Efficient computation of the kernel matrix

Through the kernel trick, we are able to run algorithm in some high dimensional feature space

while performing actual calculations in the input space through evaluations of the kernel k on

pairs of observations X1, . . . ,Xn ∈ X summarized by the Gram matrix (or kernel matrix)

K =
[
k(Xi ,Xj )

]
16i,j6n

,

so that computational costs are not affected by the number of dimensions of the feature space

but only on the sample size n. However, kernel methods may still be computationally expensive

when n is large. In particular, the obtainment of K requires n2 entries to compute and store,

while algorithms in linear time with respect to n are more desirable nowadays.

This section is devoted to presenting methods used to tackle this problem by approximating

K with low-rank representations, thus setting the computation/memory costs down to the order

of O(n). More exactly, we are interested in factorizations of the Gram matrix as follows

K = UVT ,

such that U,V ∈Mn,r(R) and r is much smaller than n. Such approaches include the Nyström
method [WS01] and Random Kitchen Sinks with its variation Fastfood [RR07; LSS13].

Note that the goal is not to find the best low-rank factorization of K but to find a satisfactory

low-rank representation of the Gram matrix at a reduced computational cost, typically in linear

time. Actually the best r-rank approximation Kr of K can be defined as the matrix Kr of rank

r < n that minimizes ‖K−Kr‖F where ‖A‖2F = Tr(AAT ) defines the Froebenius norm for every

A ∈Mn(R). The expression of Kr depends on the eigenexpansion of the Gram matrix since it

reads

Kr = UrDrUr ,

where Dr = diag(d1, . . . ,dr ) contains the r largest eigenvalues of K on its diagonal and where the
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columns of Ur are the eigenvectors of K (with unit norm) corresponding to d1, . . . ,dr . However

obtaining Kr requires to compute — at least partially — the eigenexpansion of K which costs a

too demanding execution time of order O(n2r).

2.4.1 Nyström method

The Nyström method consists in subsampling the columns of K to build a low-rank approxima-

tion of K. Namely, consider a subset I ⊆ {1, . . . ,n} of cardinality r < n and define the approximate

Gram matrix K̃ as

K̃ ∆= K·,IK†I ,IKI ,· , (2.4.10)

where KI ,I = [k(Xi ,Xj )]i,j∈I , KI ,· = [k(Xi ,Xj )]i∈I ,16j6n, K·,I = KT
I ,· and for any matrix A ∈Mr (R),

A† denotes the pseudo-inverse 4 of A.

The computation of (2.4.10) is in linear time with respect to n since KI ,· takes nr entries to

calculate, KI ,I has r2 entries to calculate and its inversion costs r3 operations hence a total of

nr + r2 + r3 operations, which is of order O(n) if r is negligible compared to n.

Note that K̃I ,· = KI ,IK†I ,IKI ,· = KI ,·, that is the rows (and likewise the columns) of K and

K̃ indexed by I coincide. This is due to the fact that the Nyström method amounts to project

the embedded points k(X1, .), . . . , k(Xn, .) onto the subspace V of H(k) spanned by the subsample

{k(Xi , .)}i∈I . To see this, let us introduce the orthogonal projector Π : H(k)→ H(k) projecting

onto V and L = 〈Πk(Xi , .),Πk(Xj , .)〉H(k) the Gram matrix corresponding to projected points in

the RKHS. It follows for every 1 6 i, j 6 n with i ∈ I ,

Li,j = 〈Πk(Xi , .),Πk(Xj , .)〉H(k) = 〈Π∗Πk(Xi , .), k(Xj , .)〉H(k)

= 〈Πk(Xi , .), k(Xj , .)〉H(k) = 〈k(Xi , .), k(Xj , .)〉H(k)

= Ki,j ,

where Π∗ =Π is the adjoint operator of Π. Furthermore, there exists only one matrix K̃ of rank

r < n satisfying K̃I ,· = KI ,· ([BJ05], Proposition 1), hence K̃ = L.

There exist several strategies for the choice of the subset I . In [WS01], I is picked at random

uniformly from the set of all subsets of {1, . . . ,n} of cardinality p. [SS00] uses sparse greedy
approximation that consists in selecting the indexes in I one after the other — namely at each

iteration, the selected index optimizes some criterion. However, to make this greedy selection

efficient, the new index is chosen at each iteration from a randomly picked subset of the non-

chosen indexes instead of trying all the remaining indexes. The proposal of [DM05] is close to

that of [WS01] except that they assign different probabilities pi = Kii /
∑n
i=1 Kii to each i ∈ {1, . . . ,n}

4In general, the pseudo-inverse M† of a matrix M ∈ Mn,m(R) is defined by M† = limδ→0(MTM + δIm)−1MT =
limδ→0M(MMT + δIn)−1.
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and construct I by picking from {1, . . . ,n} p subsequent times with replacement according to

these probabilities.

It remains to determine the minimal value of r that makes the approximation of K satisfactory.

This problem is studied in [Bac13] in the case of a uniform sampling of I . [Bac13] points out

that the quality of approximation of the Gram matrix should not be assessed by the matrix error

‖K − K̃‖F but by the performance of the statistical task at stake when using the approximate

Gram matrix. In particular, [Bac13] focuses on the case of regression problems — such as SVM —

and shows that the generalization error obtained with K̃ is of the same order as that with K if p is

larger than a certain quantity that depends on the eigenspectrum decay of K and the regression

function.

2.4.2 Random Fourier features

Another way to approximate k is to build a low-rank kernel k̃ defined explicitly through a

feature map φ̃ : X →R
p where the number of features p is small. Random Kitchen Sinks [RR07]

proposes such an approach for translation-invariant kernels k : Rd ×Rd → R. We recall the

definition of translation-invariant kernels mentioned previously in Section ??. A kernel k is

translation-invariant if there exists a function K : Rd →R such that

∀x,y ∈Rd , k(x,y) = K(x − y) .

Bochner’s theorem states that K is the Fourier transform of a positive measure Λ on R
d , that is

∀z ∈Rd , K(z) =
∫
R
d
eiz

TwΛ(dw) . (2.4.11)

Note that since K is real-valued, (2.4.11) can be written in the following alternate way

∀z ∈Rd , K(z) = Re
(∫

R
d
eiz

TwΛ(dw)
)

=
∫
R
d

Re(eiz
Tw)Λ(dw) =

∫
R
d

cos(zTw)Λ(dw) , (2.4.12)

where Re(.) denotes the real part of a complex number.

Let us assume that K is properly normalized so that Λ is a probability measure — that

is
∫
R
d Λ(dw) = 1. The basic idea of Random Kitchen Sinks is to randomly draw a few points

w1, . . . ,wp ∈Rd from the distribution Λ and consider a Monte-Carlo estimation of the integral in

(2.4.12). Namely, k is approximated by a low-rank kernel k̃ as follows

∀x,y ∈R, k(x,y) = K(x − y) =
∫
R
d

cos({x − y}Tw)Λ(dw)

' 1
r

r∑
i=1

cos({x − y}Twi)
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=
1
r

r∑
i=1

{
cos(xTwi)cos(yTwi) + sin(xTwi)sin(yTwi)

}
= φ̃(x)T φ̃(y) = k̃(x,y) ,

where

∀x ∈Rd , φ̃(x) = r−1/2



cos(xTw1)

. . .

cos(xTwr )

sin(xTw1)

. . .

sin(xTwr )


.

All in all, computing φ̃(x) for a single x ∈ X mostly involves the calculation of a matrix

W = [w1 . . .wr ]T ∈M2r,d(R) and of the matrix product Wx, which amounts to a computational

complexity of order O(dr). Repeating this computation for every x = Xi with 1 6 i 6 n leads to a

running time of order O(ndr).

In the case of radial kernels where K(z) is a function of ‖z‖, the fastfood method proposed

by [LSS13] improves the running time of Random Kitchen Sinks with respect to d so that the

complexity changes from linear to logarithmic dependence on d. Assuming in a first time that

r = d, Fastfood bypasses the direct sampling of W and the computation of Wx by replacing W

with the matrix W̃

W̃
∆=

√
2γ
d
SHdGΠHdB ∈Md(R) , (2.4.13)

where S,G,B ∈Md(R) are diagonal matrices,Π ∈Md(R) is a permutation matrix andHd ∈Md(R)

is the so-called Walsh-Hadamard matrix defined recursively by

H2 =

 1 1

1 −1

 and for every l ∈N∗H2l =H2 ⊗Hl ,

where ⊗ stands for the Kronecker matrix product. The diagonal entries of B are i.i.d. Rademacher

variables 5 , those of G are i.i.d. N (0,1) Gaussians and those of S are i.i.d. variables whose

distribution depends on the kernel k.

The iterative definition of Hd allows to compute any matrix product Hdv where v ∈ R
d

recursively to get a O(d log(d)) computational cost instead of O(d2). This way computing W̃ x

costs O(d log(d)) in time in the case r = d. If r > d is chosen as a multiple of d, W̃ can be written

as the result of stacking r/d square matrices W̃1, . . . , W̃r/d of size d sampled as in (2.4.13) which

finally leads to a complexity of order O(r log(d)).

5A Rademacher random variable ξ is a {−1,1}-valued r.v. such that P(ξ = 1) = P(ξ = −1) = 1/2.
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To understand how W̃ emulatesW , one must see that the rows ofHdGΠHdB follow aN (0, Id)

Gaussian distribution and have the same norm equal to ‖G‖2F d. In other words the rows of

(1/‖G‖2F d)HdGΠHdB are uniformly distributed on the unit sphere Sd−1 of Rd . Since k(·, ·) = K(·−·)
is assumed to be a radial kernel, K is the Fourier transform of a spherical distribution Λ, that

is the distribution of a random variable of the form rU where U is uniform on Sd−1 and r is

a positive random variable independent of U . Therefore setting the diagonal entries of S as

i.i.d. copies of r/(‖G‖2F d) implies that the rows of W̃ follow the distribution Λ. In the end, the

actual difference between W̃ and W is that the rows of W̃ are not independent. Despite this

dependency, [LSS13] proved that the approximate kernel k̃ converges pointwise to k almost

surely as r tends to infinity.
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Chapter3
Gaussian Models in Reproducing

Kernel Hilbert Spaces

This chapter is devoted to defining probability distributions in an RKHS, especially Gaussian

distributions. Conditions that guarantee that such distributions lie almost surely in a given

RKHS will be of interest. In particular in the case of a Gaussian process parameterized by mean

and covariance functions, we establish that such a process is well defined in the empirical setting

where those parameters are estimated on the basis of a finite sample. In a second time, we

present a few existing methods using Gaussian models in kernel spaces that can be found in the

literature.

3.1 Gaussian distributions in RKHS

Let k : X×X →R be a symmetric, positive definite function defined on a setX and letH(k) denote

the corresponding RKHS. H(k) can be seen either as a function space —whose elements are seen

as real functions — or as a mere Hilbert space — whose elements are seen as vectors. Each of

these two points of view corresponds to a different way of defining a probability distribution on

an RKHS: either through a stochastic process or through a random element.

Definition 3.1.1 (Stochastic process). Let X be a non-empty set and (Ω,A,P) a probability space. A
stochastic process Y is a collection Y = {Y (x)}x∈X of real-valued random variables defined on (Ω,A,P).

Definition 3.1.2 (Random element). Let (Ω,A,P) be a probability space and (H,A′) a measurable
space. A random element Z in (H,A′) is a (A,A′)-measurable function Z :Ω→H, that is for every
B ∈ A′ , the pre-image Z−1(B) = {ω ∈Ω | Z(ω) ∈ B} belongs to A.

Let us focus on the case where H = H(k) is an RKHS. Since H(k) is endowed with an inner

product 〈·, ·〉H(k), the σ -algebra A′ can be defined as the cylindrical σ -algebra CH(k), which is the

33



34 CHAPTER 3. Gaussian Models in Reproducing Kernel Hilbert Spaces

coarsest σ -algebra that contains all the cylinder sets CA,h1,...,hm ⊆H(k) with

CA,h1,...,hm
∆=
{
h ∈H(k)

∣∣∣∣ (〈h,h1〉H(k) . . .〈h,hm〉H(k)

)
∈ A

}
,

where m ∈N∗, h1, . . . ,hm ∈ H(k) and A ⊆ R
m is a Borel subset of Rm. In other words, an RKHS-

valued random element Z can be characterized by the distribution of its real-valued marginals

〈Z,h〉H(k), h ∈H(k).

A Gaussian distribution in H(k) corresponds to either a Gaussian stochastic process or a

Gaussian random element.

Definition 3.1.3 (Gaussian stochastic process). Let Y = {Y (x)}x∈X be a stochastic process where X
is a non-empty set. Y is a Gaussian stochastic process if for every a1, . . . , am ∈ R and x1, . . . ,xm ∈ X
with m ∈N∗,

∑m
i=1 aiY (xi) is a (univariate) Gaussian random variable.

Definition 3.1.4 (Gaussian random element). Let Z be a random element in (H(k),CH(k)). Z is a
Gaussian random element if for every h ∈H(k), 〈Z,h〉H(k) is a (univariate) Gaussian random variable.

A multivariate Gaussian distribution is parametrized by its mean and its variance, which are

respectively a vector and a square matrix. In the following, we show how the notions of mean

and covariance are transposed to stochastic processes and RKHS-valued random elements.

The mean of a stochastic process {Y (x)}x∈X is a map m : X →R defined by

∀x ∈ X , m(x) ∆= EY [Y (x)] , (3.1.1)

where we assume that the expectation in (3.1.1) exists for every x ∈ X .

The covariance function of a stochastic process {Y (x)}x∈X is a map R : X ×X →R defined by

∀x,x′ ∈ X , R(x,x′) ∆= EY [{Y (x)−m(x)}{Y (x′)−m(x′)}] , (3.1.2)

assuming that the expectation in (3.1.2) exists for every x,x′ ∈ X .

In the case of a random element Z, the mean and the covariance are defined differently.

Assume that Z is a random element with weak first order, that is

∀h ∈H(k), EZ [〈Z,h〉H(k)] < +∞ . (3.1.3)

Then the mean of the random element Z is the element µ ∈H(k) that satisfies

∀h ∈H(k), EZ [〈Z,h〉H(k)] = 〈µ,h〉H(k) . (3.1.4)

The existence of µ is guaranteed by Riesz’s Representation Theorem. Indeed, (3.1.3) implies that

the linear map h 7→ EZ [〈Z,h〉H(k)] is bounded hence continuous so that Riesz’s Representation

Theorem states the existence of µ ∈H(k) so that (3.1.4) holds.



3.1. Gaussian distributions in RKHS 35

Assume that the random element Z is of weak second order, that is

∀h ∈H(k), EZ [〈Z,h〉2H(k)] < +∞ . (3.1.5)

If (3.1.5) holds then the following bilinear form S :H(k)×H(k)→R is well defined

∀h,h′ , S(h,h′) ∆= EZ [〈Z −µ,h〉H(k)〈Z −µ,h′〉H(k)] , (3.1.6)

The covariance operator of the random element Z is the operator Σ :H(k)→H(k) that satisfies

∀h,h′ ∈H(k), 〈Σ · h,h′〉H(k) = S(h,h′) . (3.1.7)

To prove the existence of the covariance operator, one can build Σ as follows. Firstly, consider

the linear map h 7→ (h′ 7→ S(h,h′)). By the Riesz’s Representation Theorem and the assumption

(3.1.5), each linear map h′ 7→ S(h,h′) with h ∈H(k) fixed corresponds to an element Σ · h ∈H(k)

with 〈Σ · h,h′〉H(k) = S(h,h′) for every h′ ∈H(k). Clearly h 7→ Σ · h is linear so that the property in

(3.1.7) holds.

Because of the RKHS nature of H(k), the notions of Gaussian stochastic process and Gaussian

random element turn out to be the two sides of the same coin. Consider a Gaussian random

element Z in H(k) and define the stochastic process Y = {Y (x)}x∈H(k) as

∀x ∈H(k), Y (x) ∆= 〈Z,k(x, ·)〉H(k) . (3.1.8)

Clearly Y defines a Gaussian stochastic process. Indeed for every a1, . . . , am ∈R and x1, . . . ,xm ∈ X ,

m∑
i=1

aiY (xi) =
m∑
i=1

ai〈Z,k(xi , ·)〉H(k) =
〈
Z,

m∑
i=1

aik(xi , ·)
〉
H(k)

,

is a Gaussian random variable because k(xi , ·) ∈H(k) for every 1 6 i 6m since H(k) is an RKHS.

The respective mean and covariances of Z and Y as defined in (3.1.8) can be linked as follows.

Because of the reproducing property of H(k), the mean function m : X → R of Y is expressed

with respect to the mean µ ∈H(k) of Z as follows

∀x ∈ X , m(x) = 〈µ,k(x, ·)〉H(k) = µ(x) ,

so that m and µ actually coincide.

Straightforwardly, the covariance function R(x,x′) of Y satisfies for every x,x′ ∈ X

R(x,x′) = 〈Σ · k(x, ·), k(x′ , ·)〉H(k) .

Defining conversely a random element Z from a stochastic process Y is less straightforward.
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To do so, one has to assume that there exists a subset of trajectories — or sample paths —

T ⊆ {Y (x)(ω) | ω ∈ Ω} of Y that lie in H(k) with P(Y ∈ T ) = 1. When this is the case, one can

define the random element Z in H(k) as

Z(ω) ∆= Y (·)(ω) ,

for every ω ∈Ω such that Y ∈ T and and Z(ω) = 0 for instance for every ω ∈Ω such that Y < T .

However, such T does not necessarily exist. Here is a simple example that illustrates this. Let

k = 〈·, ·〉 be the linear kernel on R
m. In this case the RKHS H(k) consists in the set of every linear

map u 7→ uT v with v ∈Rm. Let Y = {Y (u)}u∈Rm be a Gaussian stochastic process indexed by R
m

such that the Y (u) are i.i.d. N (0,1) Gaussian variables. Clearly Y is not a linear map with high

probability. This raises the question about conditions for a Gaussian process to lie in a given

RKHS with probability one. This issue is treated in Section 3.2 thereafter which introduces the

notion of nuclear dominance.

3.2 Nuclear dominance

We saw that a H(k)-valued random element Z always defines a corresponding stochastic process

Y (x) = 〈Z,k(x, ·)〉H(k) but that the converse is possible only if the paths of a given process Y belong

to H(k) almost surely. In this section, we are interested in sufficient conditions that ensure this

requirement.

Let us assume that the process Y = {Y (x)}x∈X admits a mean function m : X → R and a

covariance function R : X ×X → R. In the case of a Gaussian process Y , [Dri73] studied the

relationships between R and the kernel k that entail P(Y ∈H(k)) = 1.

Proposition 3.2.1 ([Dri73]). Assume X is a separable metric space and Y = {Y (x)}x∈X is a Gaussian
process with mean m(·) ∈H(k), covariance function R(·, ·) continuous on X ×X and whose paths are
almost surely continuous on X . Let {x1,x2, . . .} be a countable dense subset of X and define the matrices
Rn = [R(xi ,xj )]16i,j6n and Kn = [k(xi ,xj )]16i,j6n for every n > 1. If the quantity τ defined as

τ = lim
n→+∞

Tr(RnK
−1
n ) , (3.2.9)

is finite, then P(Y ∈H(k)) = 1.

Even though it provides some answers, the result of [Dri73] relies on some restrictive assump-

tions, such as the almost sure continuity of Y or the continuity of the covariance function R(·, ·).
[LB01] improved Driscoll’s result by relaxing those assumptions. In particular, [LB01] simplified

the definition of τ in (3.2.9) by relating τ to the trace of some operator called dominance operator.

Definition 3.2.2 (Dominance operator). Let R and k be two symmetric, positive definite functions
and H(R),H(k) denote their respective RKHS.
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Assume H(R) ⊆H(k). Then there exists a bounded operator L :H(k)→H(R) such that

∀h ∈H(k), ∀f ∈H(R), 〈L · h,f 〉H(R) = 〈h,f 〉H(k) .

In particular, L · k(x, ·) = R(x, ·) for every x ∈ X .
The operator L is called dominance operator of H(k) over H(R).
Moreover, if L : H(k) → H(k) is a positive, continuous and self-adjoint operator, then R(x,x′) =

〈L · k(x, ·), k(x′ , ·)〉H(k) is a positive definite kernel such that H(R) ⊆H(k).

The existence of L as asserted by definition 3.2.2 comes from Theorem 1.1 in [LB01]. Remark

that the operator L as defined in 3.2.2 coincide with the covariance operator Σ of the Gaussian

random element Z defined from Y when Y ∈H(k) almost surely. Indeed for every x,x′ ∈ X

〈Σ · k(x, ·), k(x′ , ·)〉H(k) = R(x,x′) = 〈R(x, ·), k(x′ , ·)〉H(k) = 〈L · k(x, ·), k(x′ , ·)〉H(k) ,

hence by bi-linearity and continuity of 〈·, ·〉H(k), 〈Σ · f ,g〉H(k) = 〈L · f ,g〉H(k) for every f ,g ∈H(k)

and Σ = L.

According to Proposition 4.5 in [LB01], the quantity τ as defined in (3.2.9) corresponds to

the trace of the dominance operator L. To define the trace of L, we need to assume that H(k) is

separable so that an orthonormal Hilbertian basis {ei}i∈N∗ exists and

τ = Tr(L) ∆=
∑
i>1

〈L · ei , ei〉H(k) .

Note that this definition of the trace does not depend on the choice of the orthonormal basis

{ei}i>1 (see Theorem VI.18 in [RS80]). Also remark that a sufficient condition for H(k) to be

separable is that X is a separable topological space and k is continuous on X ×X (see Lemma

4.33 in [SC08]).

Therefore Driscoll’s condition about the finiteness of τ is replaced by the finiteness of Tr(L)

and the condition H(R) ⊆H(k) that allows the existence of the dominance operator L. These two

conditions defines the nuclear dominance of H(k) over H(R).

Definition 3.2.3 (Nuclear dominance). Let R and k be two symmetric, positive definite functions
and H(R),H(k) denote their respective RKHS.
One says that there is nuclear dominance of H(k) over H(R) if the following assertions hold true:

• H(R) ⊆H(k),

• Tr(L) <∞,

where L is the dominance operator as defined in Definition 3.2.2. This relationship of nuclear
dominance is denoted by k >> R.

Proposition 3.2.4 thereafter follows Proposition 7.2 from [LB01].
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Proposition 3.2.4 ([LB01]). Let R and k be two symmetric, positive definite functions and H(R),H(k)

denote their respective RKHS. Assume that H(k) is separable.
Then there exists a Gaussian process Y = {Y (x)}x∈X with mean m ∈ H(k) and covariance function
R(·, ·) such that P(Y ∈H(k)) = 1 if and only if k >> R.

In particular, a consequence of Proposition 3.2.4 is that there cannot be any isotropic Gaussian

process in an infinite-dimensional RKHS. In an RKHS H(k), an isotropic stochastic process is

a stochastic process with covariance function R(x,x′) = k(x,x′) for every x,x′ ∈ X . In other

words, the dominance operator of H(k) over H(R) is the identity operator L = IdH(k). Given an

orthonormal Hilbertian basis {ei}i∈N∗ of H(k),

Tr(L) = Tr(IdH(k)) =
∑
i>1

〈IdH(k) · ei , ei〉H(k) =
∑
i>1

‖ei‖2H(k) =
∑
i>1

1 = +∞ ,

hence nuclear dominance does not hold and Proposition 3.2.4 entails the non-existence of an

isotropic Gaussian process in H(k).

3.3 Validity of Gaussian processes in the empirical case

In this section, we consider the empirical case where a sample x1, . . . ,xn ∈ X of X -valued ob-

servations is available and where the embedded data k(x1, ·), . . . , k(xn, ·) ∈H(k) are modeled as a

Gaussian process. The parameters of this Gaussian process need to be chosen with respect to the

dataset. Hence two things are required: firstly, define empirical estimators for the mean and

the covariance function of the Gaussian process, and secondly check whether the corresponding

Gaussian process is well-defined in H(k) for this choice of parameters.

A natural estimator for the mean and the covariance function is to consider the mean/co-

variance of the empirical measure
∑n
i=1 δk(xi ,·), which gives rise to the empirical mean and the

empirical covariance function.

Definition 3.3.1 (Empirical mean). Given an embedded sample k(x1, ·), . . . , k(xn, ·), the corresponding
empirical mean m̂ : X →R is defined by

∀x ∈ X , m̂(x) ∆=
1
n

n∑
i=1

k(xi ,x) . (3.3.10)

Definition 3.3.2 (Empirical covariance function). Given an embedded sample k(x1, ·), . . . , k(xn, ·),
the corresponding empirical covariance function R̂ : X ×X →R is defined by

∀x,x′ ∈ X , R̂(x,x′) ∆=
1
n

n∑
i=1

[k(xi ,x)−m(x)][k(xi ,x
′)−m(x′)] . (3.3.11)

Let Y = {Y (x)}x∈X be a Gaussian process with mean m̂(·) and covariance function R̂(·, ·). The
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next step consists in ensuring that Y is well-defined in H(k) by means of the results exposed in

Section 3.2, which is the case as stated by Proposition 3.3.3. Note that the nuclear dominance

holds even if the actual covariance function R(·, ·) related to the true underlying distribution of

the sample x1, . . . ,xn does not satisfy R << k.

Proposition 3.3.3. Assume H(k) is separable. Then the empirical mean m̂(·) and covariance function
R̂(·, ·) as defined in (3.3.10) and (3.3.11) satisfy m̂ ∈ H(k) and R̂ << k. Therefore, there exists a
Gaussian process with mean m̂ and covariance R̂ whose sample paths belong almost surely to H(k).

Proof of Proposition 3.3.3. It is straightforward that m̂ ∈H(k) since H(k) is a vector space.

We show that R̂ << k by exhibiting the corresponding dominance operator L̂:

L̂ · f ∆=
1
n

n∑
i=1

〈f ,k(xi , ·)〉H(k)k(xi , ·)−
m̂(·)
n

n∑
i=1

〈f ,k(xi , ·)〉H(k) , (3.3.12)

for every f ∈H(k).

First of all, it is clear that L̂ · k(x, ·) = R̂(x, ·) for all x ∈ X . Let us check that L̂ is a bounded

operator. Since |〈f ,k(xi , ·)〉|H(k) 6 ‖f ‖H(k)k
1
2 (xi ,xi) by Cauchy-Schwarz’s inequality, one obtains

that for ‖f ‖H(k) = 1,

‖L̂ · f ‖H(k) 6
1
n

n∑
i=1

k(xi ,xi) +
1
n

 1
n2

n∑
j,l=1

k(xj ,xl)


1/2 n∑

i=1

k(xi ,xi)
1/2 < +∞ ,

hence the boundedness of L̂.

Finally since the operator L̂ is of finite rank (up to n), it has a finite trace. Therefore we can

conclude that R̂ << k.

Due to the high-dimensional nature of an RKHS, the empirical covariance function as defined

in (3.1.2) may be unwieldy for some applications. For instance, in the methods described later in

Sections 3.4.1 and 3.4.2, the covariance function needs to be "inverted" in the following sense.

Consider the eigen-expansion of the empirical covariance function R̂

∀x,x′ ∈ X , R̂(x,x′) =
r∑
j=1

λ̂jϕ̂j (x)ϕ̂j (x
′) , (3.3.13)

where the pairs (λ̂j , ϕ̂j )16j6r are the eigenvalues/eigenvectors of the corresponding dominance

operator L̂ — defined in (3.3.12) — that satisfy

∀1 6 j 6 r, L̂ · ϕ̂j = λ̂jϕ̂j ,

and 〈ϕ̂j , ϕ̂l〉H(k) = δjl for every 1 6 j, l 6 r and δjl denotes the Kronecker delta. Here r 6 n denotes

the rank of L̂. Therefore "inverting" R̂(·, ·) means inverting the operator L̂ which is done by
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inverting the eigenvalue in the eigen-expansion (3.3.13). This operation becomes problematic

when r is very large as the smallest eigenvalues tend to 0 when r → +∞ — because of the

finiteness of Tr(L̂) required by the nuclear dominance conditions. Hence inverting those small

eigenvalues may result in computational instability in practice.

To overcome this issue, a class of parsimonious Gaussian models have been proposed [MM08;

BFG15] where the r − d smallest (non-zero) eigenvalues are assumed to be equal to the same

value (for some 1 6 d 6 r). The parameter d of the model is called intrinsic dimension and

has to be interpreted as the number of directions that carry most of the information of the

dataset whereas the r − d other directions consists of noise. Following this model, the empirical

covariance function is "tweaked" in the following way: whereas the d largest eigenvalues of R̂

remain unchanged , the other eigenvalues are replaced by their average value. The resulting

parsimonious covariance estimator is formally defined thereafter.

Definition 3.3.4 (Parsimonious covariance estimator). Write the eigen-expansion of R̂ as in
(3.3.13).

The parsimonious sample covariance R̂d(x,x′) is defined for every x,x′ by

R̂d(x,x′) ∆=
d∑
j=1

λ̂jϕ̂j (x)ϕ̂j (x
′) +

∑r
l=d+1 γ̂l
r − d

r∑
j=d+1

ϕ̂j (x)ϕ̂j (x
′) . (3.3.14)

It remains to show that a Gaussian process with R̂d as covariance function is well-defined

in an RKHS. This is done by first proving that nuclear dominance of R̂ over R̂d (Lemma 3.3.5)

which combined with the already known relationship R̂ << k entails R̂d << k (Proposition 3.3.6).

Lemma 3.3.5. Nuclear dominance of the sample covariance estimator R̂ over the parsimonious
estimator R̂d holds.

Proof of Lemma 3.3.5. Considering the eigenexpansion of R̂ as written in (3.3.13), the dominance

operator between R̂ and R̂d can be defined by

L̂d · f =
d∑
j=1

〈f , ϕ̂j〉H(k)ϕ̂j +

 1
r − d

r∑
l=d+1

λ̂l

 r∑
j=d+1

λ̂−1
j 〈f , ϕ̂j〉H(k)ϕ̂j .

Straightforwardly L̂d(R̂(x, .)) = R̂d(x, .) for every x ∈ X . Let us check that L̂d is bounded. For any

‖f ‖H(R̂) ≤ 1,

‖L̂d · f ‖H(R̂) 6
d∑
j=1

|〈f , ϕ̂j〉|H(k)‖ϕ̂j‖H(R̂) +

 1
r − d

r∑
l=d+1

λ̂l

 r∑
j=d+1

λ̂−1
j |〈f , ϕ̂j〉|H(k)‖ϕ̂j‖H(R̂)

6
d∑
j=1

‖f ‖H(k)‖ϕ̂j‖H(R̂) +

 1
r − d

r∑
l=d+1

λ̂l

 r∑
j=d+1

λ̂−1
j ‖f ‖H(k)‖ϕ̂j‖H(R̂)
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6
d∑
j=1

‖f ‖H(R̂)‖ϕ̂j‖H(R̂) +

 1
r − d

r∑
l=d+1

λ̂l

 r∑
j=d+1

λ̂−1
j ‖f ‖H(R̂)‖ϕ̂j‖H(R̂)

6
d∑
j=1

‖ϕ̂j‖H(R̂) +

 1
r − d

r∑
l=d+1

λ̂l

 r∑
j=d+1

λ̂−1
j ‖ϕ̂j‖H(R̂) < +∞ ,

where we used the inequality ‖f ‖H(k) 6 ‖f ‖H(R̂) due to H(R̂) ⊆H(k) (see Theorem 1.1 in [LB01]).

Furthermore L̂d has a finite trace because of the finiteness of its rank.

Proposition 3.3.6. There is nuclear dominance of k over the parsimonious sample covariance estimator
R̂d , that is R̂d << k.

Proof of Proposition 3.3.6. Having proved that k >> R̂ and R̂ >> R̂d , one would like to deduce

that k >> R̂d . It is straightforward that H(R̂d) ⊆ H(k). A candidate for being the dominance

operator of k over R̂d is L̂d L̂. Clearly L̂d L̂ is bounded since L̂d and L̂ are bounded. It remains to

check that Tr(L̂d L̂) <∞:

Tr(L̂d L̂) =
∑
j≥1

〈L̂d L̂ϕ̂j , ϕ̂j〉H(k)

=
∑
j,l≥1

〈L̂ϕ̂j , ϕ̂l〉H(k)〈L̂dϕ̂j , ϕ̂l〉H(k) ,

since L̂d is symmetric that is 〈L̂df ,g〉H(k) = 〈f , L̂dg〉H(k) for all f ,g ∈H(k).

Note that

〈L̂dϕ̂j , ϕ̂l〉H(k) =

 0 if j , l or j > d or l > d

1 if j = l 6 d

which leads to

Tr(L̂d L̂) =
∑
j,l≥1

〈L̂ϕ̂j , ϕ̂l〉H(k) =
d∑
j=1

λ̂k < +∞ .

3.4 Gaussian models and RKHS: examples of application

This section presents how a Gaussian model in an RKHS can be used in practice for some learning

tasks. Three existing methods that make use of such models are reviewed: one for multigroup

classification through a mixture of Gaussian processes in the kernel space [BFG15],a method for

outlier detection [Rot06] and Gaussian process regression [RW06].
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3.4.1 Multigroup classification with a mixture of Gaussian processes

Consider an i.i.d. sample (X1,Z1), . . . , (Xn,Zn) ∈ X × {1, . . . ,C}. The n observations X1, . . . ,Xn are

assumed to come from M different classes, and for each 1 6 i 6 n the variable Zi represents the

class membership of Xi — that is Zi = j if Xi comes from the j-th class. Given a new point X in

X , the goal is to assign correctly X to one of the C classes.

One way of doing this is to compute the maximum a posteriori (MAP) probabilities P(Z = j |
X = x) for each 1 6 j 6 C, where Z denotes the class label of X and x is the observed value of X.

The new point is assigned to the class that maximizes the MAP.

In a first time, let us assume that X = R
d . The MAP is calculated through the Bayes rule as

P(Z = j | X = x) =
πjfj (x)∑C
l=1πlfl(x)

, (3.4.15)

where πj = P(Z = j) and fj denotes the density function of X conditionally to Z = j for every

1 6 j 6 C and x is the observed value of X.

A method to get a tractable expression for the MAP is to model the dataset X1, . . . ,Xn as a

mixture of Gaussians, that is each fj is modeled as a Gaussian density

fj (x) = (2π)−d/2|Σj |−1/2 exp
(
−1

2
(x −µj )TΣ−1

j (x −µj )
)
,

where µ1, . . . ,µC ∈ Rd are the respective mean vectors of each class, Σ1, . . . ,ΣC ∈ Md(R) their

respective covariance matrices and | · | denotes the determinant of a matrix.

Now we are in a position to assign a score function to each class based on the MAP. Note

that the denominator in (3.4.15) does not depend on the class label j, hence the score function

Dj (x) of the j-th class is defined solely via the numerator in (3.4.15). Namely, Dj (x) is written as

a decreasing function of πjfj (x) that is

Dj (x) = −2log(πjfj (x))− d log(2π)

= (x −µj )TΣ−1
j (x −µj ) + log(|Σj |)− 2log(πj ) , (3.4.16)

so that the new point X is assigned to the class that minimizes Dj(x). Let us write the eigen-

expansion of each matrix Σj as Σj =
∑rl
l=1λj,luj,lu

T
j,l where rj ∈ {1, . . . ,d} is the rank of Σj , λj,1 >

λj,2 > . . . > λj,rj > 0 are the non-zero eigenvalues of Σj and uj,1, . . . ,uj,rj ∈ R
d the corresponding

eigenvectors. Then (3.4.16) can be written alternatively as

Dj (x) =

rj∑
l=1

1
λj,l

[(x −µj )T uj,l]2 +

rj∑
l=1

log(λj,l)− 2log(πj ) . (3.4.17)

However this approach may suffer some shortcomings. The actual distribution of X condi-

tionally to Z = j may be far from a Gaussian distribution which may lead to bad classification



3.4. Gaussian models and RKHS: examples of application 43

performances. Moreover, this method does not cover the case of non-vectorial data, that is when

X ,Rd .

[BFG15] proposed a variation of this classification method by using a kernel. Let k be a

kernel on X with corresponding feature map φ : X →H(k). The idea of [BFG15] is to model the

embedded data Yi = φ(Xi), i = 1, . . . ,n — instead of the initial data X1, . . . ,Xn — as a mixture of

Gaussian processes. Namely, Y | Z = j is modeled as a Gaussian process with mean mj : X →R

and covariance function Rj : X ×X →R. Following Section 3.2, we assume that mj ∈H(k) and

Rj << k so that these Gaussian processes are well-defined in H(k). The dominance operator of

H(k) over H(Rj ) is denoted Σj . Remember that as remarked in Section 3.2, Σj coincides with the

covariance operator of the random element defined from Y conditionally to Z = j.

This kernelization allows to tackle the two issues mentioned above: there is no requirement

about the nature of the set X where the initial dataset lies, and the kernel k can be chosen from a

family of kernels that is rich enough so that the Gaussian model in the RKHS is reliable.

On the other hand, the transposition to the RKHS version is not straightforward. Indeed,

the score functions Dj(x) defined in the R
d case were based on Gaussian densities, which was

defined with respect to the Lebesgue measure on R
d . In the case of an infinite-dimensional

RKHS, there exists no canonical reference measure such as the Lebesgue measure on R
d from

which a Gaussian density could be defined. For this reason, we have to assume that H(k) is of

finite dimension d even if it means that d is very large. The score function in (3.4.17) therefore

becomes

Dj (x) =
d∑
l=1

1
λj,l
〈φ(x)−mj ,ϕj,l〉2H(k) +

d∑
l=1

log(λj,l)− 2log(πj ) , (3.4.18)

where the pairs (λj,1,ϕj,1), . . . , (λj,d ,ϕj,d) ∈ R+ × H(k) are the eigenvalue/eigenvectors of the

covariance operator Σj , that is

Σj ·ϕj,l = λj,lϕj,l ,

for every 1 6 j 6 C and 1 6 l 6 d.

Since d is potentially very large, a parsimony assumption is made on the eigenvalues of

Σ1, . . . ,ΣC . Namely, we assume the existence of so-called intrinsic dimensions d1, . . . ,dC ∈ {1, . . . ,d}
such that for every 1 6 j 6 C and l > dj , λj,l = λ with λ > 0. This way (3.4.18) becomes

Dj (x) =

dj∑
l=1

(
1
λj,l
− 1
λ

)
〈φ(x)−mj ,ϕj,l〉2H(k) +

1
λ
‖φ(x)−mj‖2H(k)

+

dj∑
l=1

log(λj,l) + (d − dj ) log(λ)− 2log(πj ) . (3.4.19)

Note that if d = +∞, this parsimony assumption entails that Tr(Σj ) = +∞ for every 1 6 j 6 C
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which violates one of the conditions for the relationships Rj << k to hold.

In practice, (3.4.19) is expressed in a different form that does not involve φ or any direct

calculations in H(k) (the "kernel trick"). Beforehand, we need to estimate some parameters on

the basis of the sample (X1,Z1), . . . , (Xn,Zn). The within class means m1, . . . ,mC and covariance

functions R1, . . . ,RC are replaced by their empirical counterparts m̂1, . . . , m̂C and R̂1, . . . , R̂C as

defined in Section 3.3. The empirical eigenvalues {λ̂j,l}l and eigenfunctions {ϕ̂j,l}l corresponding

to R̂j are estimated as in kernel PCA (see Section 2.3.2) from the eigendecomposition of the

matrix [k(Xi ,Xi′ )]i,i′∈Ij where Ij = {i ∈ {1, . . . ,n} | Zi = j}. In particular the eigenfunctions admits

an expansion of the form ϕ̂j,l =
∑
i∈Ij a

(i)
j,lφ(Xi). Besides, the class proportions πj are simply

estimated by π̂j = nj /n where nj is the cardinal of Ij . Plugging those empirical estimates into

the score function (3.4.19) leads to the empirical score functions D̂j (x)

D̂j (x) =

dj∑
i=1

 1

λ̂j,l
− 1

λ̂


∑
i∈Ij

a
(i)
j,lk(x,xi)−

1
nj

∑
i,i′∈Ij

k(xi ,xi′ )


2

+

k(x,x) +
1

n2
j

∑
i,i′∈Ij

k(xi ,xi′ )−
2
nj

∑
i∈Ij

k(x,xi)


2

+

dj∑
l=1

log(λ̂j,l) + (d − dj ) log(λ̂)− 2log(π̂j ) .

3.4.2 Batch outlier detection

The problem of outlier detection can be described as follows: given a sample of n observations

X1, . . . ,Xn ∈ X , one assumes that there exists a subsample with indexes Iout ⊂ {1, . . . ,n} such that

{Xi}i∈Iout — called the outliers — were generated by an underlying distribution Q different from

the distribution P the {Xi}i<Iout stem from. The goal is to identify those outliers. The difficulty

lies in the fact that the number of outliers is typically very small compared to n. This issue is

solved by assuming that outliers fall outside the support of P . Therefore, the problem amounts

to define an acceptance region that contains non-outliers with high probability.

[Rot06] proposes to solve this problem by setting a Gaussian model in a feature space. Let

us assume that the X1, . . . ,Xn take values in X = R
d and consider a feature map φ : Rd → R

p

with related kernel k(x,x′) = φ(x)Tφ(x′) for every x,x′ ∈Rd . The proposed model assumes that

φ(X) follows a N (µ,Σ) Gaussian distribution with mean vector µ ∈ Rp and covariance matrix

Σ ∈Mp(R) when X ∼ P .

The useful quantity to detect outliers is the Mahalanobis distance D(φ(x),µ) between an

embedded observation φ(x) ∈Rp and the mean vector µ

D(φ(x),µ) = (φ(x)−µ)TΣ−1(φ(x)−µ) . (3.4.20)
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When X is a non-outlier, the distance D(φ(X),µ) is expected to follow a χ2(p) chi-square distribu-

tion. To detect outliers, the empirical distribution of the D(φ(x1),µ), . . . ,D(φ(xn),µ) is compared

with the χ2(p) distribution by means of a quantile-quantile plot or QQ-plot. The QQ-plot

consists in the pairs of points (F−1(i/n), F̂−1(i/n))16i6n where F−1 denotes the quantile function

of the χ2(p) distribution and F̂−1 the empirical quantile function of D(φ(X),µ). In the case when

no outlier is present, the QQ-plot should ideally be close to a straight line of equation y = x.

Thus a linear model is applied to the QQ-plot and a confidence interval around the fitted line is

calculated. The observations declared as outliers are those that fall outside of the confidence

interval.

Note that both µ and Σ are unknown and should be estimated. Moreover, the inversion of the

covariance matrix Σ may be cumbersome when the number of dimensions p in the feature space

becomes very large. However, [Rot06] uses an alternative approach that bypasses this estimation

phase by relating the Mahalanobis distance in (3.4.20) to a kernel ridge regression formulation of

the outlier problem. Namely, they consider the regression problem

w∗ ∈ argminw∈Rp ‖y−Φ
Tw‖2 + δ‖w‖2 with y = (1 . . .1)T ∈Rn

Φ = [φ(x1) . . .φ(xn)] ∈Rp×n

δ > 0 ,

where y represents the realizations of a latent variable Y that indicates whether X is an outlier

or not. The solution of this regression problem is known to be w∗ = (K + δI)−1y where K = ΦTΦ
is the Gram matrix. Therefore the Mahalanobis distance (3.4.20) can be split into two parts by

projecting φ(x) onto some vector w̃ = αw∗ where α ∈R is adequately chosen to get an expression

of the form

D(φ(x),µ) = (φ(x)T w̃ −m+)2 +D⊥ where m+,D⊥ ∈R . (3.4.21)

The detailed expression of (3.4.21) writes for every 1 6 i 6 n

D(φ(xi),µ) =
s−2

1− s2
[
yT (K + δIn)−1ki − s2

]2
− s−1

[
yT(K + δIn)−1ki

]2
+nkT

i (K + δIn)−1ei ,

where s2 = n−1yTK(K + δI)−1y, ki is the i-th column of K and ei ∈Rn is the vector whose entries

are all equal to 0 except for the i-th entry that is equal to 1. The advantage of this formulation is

two-fold. Firstly, the parameters µ and Σ do not need to be estimated and in particular Σ does

not need to be inverted. Secondly introducing the solution w∗ of the kernel ridge regression

problem above leads to invert only the matrix (K+δIn) instead of the Gram matrix K. Apart from

avoiding computational instability, this also introduces a quantity that [Rot06] calls effective
degrees of freedom df = Tr(K(K + δIn)−1). This quantity is useful when the number of dimensions

p of the feature space is infinite so that D(φ(x),µ) is modeled as a χ2(df ) random variable instead
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of a χ2(p) variable.

As for theoretical guarantees, [Rot06] focuses on the case of a Gaussian RBF kernel k(x,x′) =

φ(x)Tφ(x′) = exp(−γ‖x − x′‖2) with parameter γ > 0 and justifies that in some sense this class of

kernels is rich enough so that the Gaussian model in the feature space is relevant. Firstly in order

to select an optimal γ , they consider a likelihood cross-validation procedure which necessitates a

proper Gaussian density in the feature space. Since the feature space is infinite-dimensional for

a Gaussian RBF kernel, a proper Gaussian density cannot be defined. However the problem is

circumvented by setting a density pn(x) in the input space that "mimics" the contour lines of a

Gaussian density in the feature space if the latter was finite dimensional, that is

pn(x) ∆= C−1 exp
(
−1

2
D(φ(x),µ)

)
with C = EX

[
exp

(
−1

2
D(φ(X),µ)

)]
.

[Rot06] proves that when γ → +∞, pn(x) tends pointwise to a Parzen window density estimator

(1/n)
∑n
i=1 δ(x − xi) where δ(·) denotes the Dirac function centered at 0. From this observation,

[Rot06] deduces that pn(x) is close to the actual distribution of X when γ,n→ +∞ and therefore

the Gaussian model in the feature space is accurate. However, this conclusion is questionable

since the notion of density is the RKHS of k is not well-defined. Actually, it is proved later in

this thesis (see Chapter 4) that for Gaussian RBF kernels, most of the marginals of an embedded

variable φ(X) are close to a scale-mixture of isotropic Gaussians when γ → +∞— that is a random

variable of the form ηG where G is Gaussian and η is a positive variable independent of G —

which contradicts the Gaussian model of [Rot06].

3.4.3 Gaussian process regression

A regression model can be cast in the following general form

y = f (x) + ε ,

where x is an X -valued variable called the input, y is a real valued variable called the output
and ε is an error term. Given a sample (x1, y1), . . . , (xn, yn) ∈ X ×R, the goal is to estimate the

regression function f , or at least to predict the value f (x∗) for a test point x∗ ∈ X .

[RW06] have introduced Gaussian process regression as a method of regression by using

Gaussian processes in a Bayesian manner.

To illustrate their method, we consider in a first time the standard linear model

X = R
d , y = f (x) + ε with f (x) = xTw , (3.4.22)

for some w ∈ Rd and where ε ∼ N (0,σ2), σ2 > 0. Instead of pursuing an estimator of w like

other regression methods such as ridge regression or Lasso, the approach of [RW06] consists in
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setting a prior distribution on w which is

w ∼N (0,Σ) ,

for some covariance matrix Σ ∈ Md(R). This prior distribution induces a distribution on the

stacked vector (y f (x∗))T where y = (y1 . . . , yn)T that is
y1
...

yn
f (x∗)


∼N

0,

 XTΣX + σ2In XTΣx∗

(x∗)TΣX (x∗)TΣx∗

 ,

where X = [x1 . . .xn] ∈Md,n(R).

Well-known formulas for the conditional distribution of covariates of Gaussian vectors yield

the posterior distribution of f (x∗)

f (x∗) | X,y,x∗ ∼N
(
(x∗)TΣX(XTΣX + σIn)−1y,

(x∗)TΣx∗ − (x∗)TΣX(XTΣX + σIn)−1XTΣx∗
)
. (3.4.23)

An extension of (3.4.22) to a non-linear regression framework can be done by considering a

(non-linear) feature map φ : X → R
p and applying the linear regression method above to the

embedded points φ(x1), . . . ,φ(xn), which leads to the regression model

y = f (x) + ε with f (x) = φ(x)Tw and w ∈Rp . (3.4.24)

Introducing the kernel k defined by

∀x,x′ ∈ X , k(x,x′) ∆= φ(x)TΣφ(x′) ,

the kernel trick allows to express the posterior distribution of f (x∗) in this case as

f (x∗) | X,y,x∗ ∼N
(
kT

x∗(K + σIn)−1y, k(x∗,x∗)−kT
x∗(K + σIn)−1kx∗

)
, (3.4.25)

where kx∗ = (k(x1,x
∗) . . . k(xn,x∗))

T and K = [k(xi ,xj )]16i,j6n.

Note that in the procedure above works as well for more general feature maps φ : X →H
withH ,Rp, and in practice we can define directly the kernel k and bypass the explicit definition

of Σ and φ.
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Chapter4
Asymptotic Distribution of Random

Projections in RKHS

This chapter presents theoretical results concerning embedded distributions in an RKHS induced

by a Gaussian RBF kernel. The content of this chapter will be useful for the new outlier detection

method introduced later in Chapter 5.

4.1 Introduction

Many statistical methods rely on distributional assumptions which often involve normality. This

kind of Gaussian assumption can be found in classification [RW06; MM08; BFG15], dimension

reduction [Bla+06; Die+10; DJS13] or novelty detection [Rot06]. However in most practical

cases, this Gaussian assumption may be questionable. One possible way of dealing with this

issue is to transform the dataset to make the normality assumption more reliable.

In the case of real-valued or multivariate data, a few approaches have been considered to

get a nearly Gaussian distribution by using Box-Cox transformations [HJ80] or more general

power transformations [YJ00]. To handle more general types of data, this transformation can

be done through a positive definite kernel. Only a few papers have considered kernels to

obtain Gaussian distributions. Among them, [BFG15] proposes to perform supervised and

unsupervised classification through a Gaussian mixture model in the kernel space. However,

this work does not provide any theoretical guarantee about the normality of embedded data.

In [Rot06], novelty detection is conducted by setting a Gaussian density in the kernel space.

The validity of their method to detect outliers is justified by relating this method to density

estimation of the distribution in the initial space. However, they do not assert straightforwardly

that kernelized data are actually close to a Gaussian in general. All in all, there is a lack of

understanding about the probabilistic behaviour of random variables embedded into an RKHS.

49



50 CHAPTER 4. Asymptotic Distribution of Random Projections in RKHS

The purpose of the present chapter is to fill this gap and describe embedded distributions in a

parametric class of RKHS. Namely, we study the asymptotic distribution of low-dimensional

random projections in such RKHS when the "size" of the RKHS (which is controlled by the

parameter of the kernel) increases.

Since RKHS — which are typically high-dimensional — are difficult to handle at first sight,

let us resort to the case of RD when D is large. A series of several papers, ranging from [DF84]

to [DHV06] have studied the distribution of low-dimensional projections of random vectors X in

R
D as D grows to infinity. In the seminal paper of [DF84], unidimensional marginal probability

distributions of X are proven to converge weakly to aN (0,σ2) Gaussian distribution (for some

σ2 > 0) as D→ +∞, with high probability over the direction of the projection (whose measure

is given by the uniform distribution on the unit sphere S
D−1). However, this result is based on

the strong assumption that X behaves as an isotropic random vector, that is with a covariance

matrix of the form ν2I where ν2 > 0 and I denotes the identity matrix. They also provide

counter-examples where this isotropic assumption is not satisfied and where normality does not

hold. A series of subsequent papers such as [Wei97], [BK03] or more recently [DHV06] have

generalized this result in broader frameworks. In particular, [DHV06] considers the case where X

is projected on a p-dimensional subspace with p > 1 and for more general covariance structures

of X. In this general setting, the distribution of the marginal is not necessarily Gaussian but an

isotropic scale-mixture of Gaussians (SMG), that is a random variable sG where G ∼ N (0, Ip)

and s is a real-valued random variable independent of G.

However, most of these findings hold in the finite-dimensional case and thus are not straight-

forwardly applicable to RKHS-valued variables since RKHS are often infinite-dimensional. The

only exception is [Wei97] which deals with random vectors in Hilbert spaces, but their result

assumes that the direction of the projection is picked randomly from an isotropic Gaussian pro-

cess, that is whose covariance operator is the identity operator. This makes their result unusable

in the RKHS framework for the following reason. The covariance function of a Gaussian process

must satisfy some conditions of so-called nuclear dominance [LB01] for its trajectories to lie in an

RKHS almost surely (see Section 3.2). These conditions require in particular that the covariance

operator of the process must have a finite trace, which does not hold for an isotropic Gaussian

process in an infinite-dimensional RKHS. Therefore [Wei97] is not helpful in our case.

In the present work, we propose an extension of the results mentioned above from R
D to

RKHS. We restrict ourselves to the family of Gaussian RBF kernels kγ (x,y) = exp(−γd2(x,y))

with γ > 0 where d(·, ·) is a metric on the input space X . The advantage of such kernels is that

the covariance eigenstructure of an embedded distribution tends to be "flat" when γ is large,

which is an ideal situation to get convergence to SMG according to results in R
D . For reasons

that will be explained later, the parameter γ controls the size of the RKHS in the same way D

controls that of RD .

Our contribution is the following. First, we prove the weak convergence of random projections

in the RKHS of kγ to a Gaussian scale-mixture as γ → +∞. Secondly, we examine the empirical
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framework where the distribution in the input space is represented by an i.i.d. sample X1, . . . ,Xn
and show that convergence still holds as long as γ grows to infinity slowly enough compared to

n. Finally, we show that when renormalizing properly kγ , most random projections in the RKHS

converge weakly to aN (0, Ip) Gaussian distribution instead of a SMG. This may be an advantage

in practice since it is no longer required to know the distribution of s in the SMG sG. The latter

result holds when considering the empirical distribution and the true underlying distribution as

well.

This chapter is outlined as follows. In Section 4.2, previous results on marginal distributions

in the multivariate case are detailed and the rationale to extend these results to the RKHS case is

given. In Section 4.3, two theorems describing the distribution of random projections in H(kγ )

— respectively in non-empirical and empirical cases — are stated. In Section 4.4, the results of

Section 4.3 are extended to the case where kγ is adequately renormalized, which gives rise to

a Gaussian limiting distribution instead of a SMG. In Section 4.5, we discuss how our results

improve on existing results in R
D and how the loss of information carried by random projections

in H(kγ ) entails the existence of a "trade-off" value of γ in practice. Finally, the proofs of our

main theorems are provided in Appendix 4.A.

4.2 From R
D to reproducing kernel Hilbert spaces

In this section, we introduce existing results established in the multivariate case and present

some properties of RBF kernels and their RKHS in order to link these two frameworks.

4.2.1 Concentration of random projections in R
D

In the following, we state the main result of [DHV06] since it is one of the most recent and

general result of this kind to our knowledge.

Let X be some random variable with values in R
D . X is projected onto a subspace generated

by p > 1 vectors of RD given by the rows of a random matrix Θ ∈Mp,D(R). To simplify, let us

assume that the rows of Θ are independent GaussianN (0,D−1ID ) random variables, which are

asymptotically orthonormal as D → +∞. In the following, the probability distribution of ΘX

(conditionally on Θ) is denoted by fΘ .

Consider the probability distribution µ corresponding to the random variable ‖X‖D /
√
D

(where ‖.‖D denotes the Euclidean norm in R
D ) and define the probability measure f which

assigns to any Borelian subset S ⊆R
D

f (S) ∆=
∫
νσ (S)µ(dσ ) ,

where νσ denotes the measure of an isotropic GaussianN (0,σ2Ip). f corresponds to the distri-

bution of a random variable σG, where G ∼N (0, Ip) and σ are independent with σ being a copy
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of ‖X‖D /
√
D. Such a distribution f is called a scale-mixture of (isotropic) Gaussians (SMG).

Let d(Θ) = supB |fΘ(B) − f (B)| define the total variation distance between the probability

measure fΘ and f where the supremum is taken over every ball B of RD . Theorem 4.2.1 proved

by [DHV06] gives an upper bound for d(Θ) which holds true with high probability over the

projection matrix Θ.

Theorem 4.2.1 ([DHV06]). Assume X is centered and admits finite second moments. Let λmax (resp.
λavg) denote the largest (resp. average) eigenvalue of the covariance matrix of X and let σε be the
ε-quantile of the distribution of ‖X‖D /

√
D. Then for any ε ∈]0,1/2[,

PΘ (d(Θ) > ε) 6

C1p
2λavg ln(1/ε)

ε3σ2
ε

p exp
(
− C2ε

4Dσ2
ε

pλmax ln(1/ε)

)
, (4.2.1)

where PΘ is taken with respect to Θ and C1,C2 are numerical constants.

The upper bound in (4.2.1) implies that the weak convergence of finite dimensional Gaussian

random projections occurs when λmax/σ
2
ε = o(D) as D→ +∞ (and for any fixed ε ∈]0,1/2[). In

[DHV06], the term λmax/σ
2
ε is denoted ecc(X) and is presented as a measure of eccentricity

of X. In a nutshell ecc(X) is small when the covariance eigenspectrum of X is flat and large

otherwise. For instance when X is isotropic with independent entries (ie its covariance is of

the form ν2ID with ν2 > 0), λmax is equal to ν2 and ‖X‖2D /D converges almost surely to ν2 as

D → +∞ so that ecc(X) is close to 1 and the above convergence arises. On the contrary if the

distribution of X is supported on a line (for example, X = Z.e1 where e1 = (1,0, . . . ,0) ∈RD and Z

is some real-valued r.v.) , ecc(X) is of order D and the bound of Theorem 4.2.1 does not guarantee

the weak convergence toward a SMG.

Note that the result of [DF84] stated in the case where X is isotropic and p = 1 is a special

case of Theorem 4.2.1. [DF84] asserts that most unidimensional marginals of X converges

weakly as D→ +∞ to a Gaussian distribution instead of a SMG. This holds true in the setting

of Theorem 4.2.1 since ‖X‖2D /D converges to a deterministic quantity almost surely under the

assumptions of [DF84].

4.2.2 Connections with RBF kernel spaces

Our purpose is to extend the result of Theorem 4.2.1 from R
D to kernel spaces, which will be

done in Section 4.3. Since kernel spaces are typically infinite-dimensional, Theorem 4.2.1 is not

straightforwardly applicable to RKHS. However, Section 4.2.1 provides two useful ingredients

governing the weak convergence of projections in the multivariate case:

1 - the asymptotic behaviour of projections has to be studied with respect to D, that is the

parameter driving the "size" of the ambient space,

2 - the covariance eigenspectrum of the projected vector has to remain "flat", which corre-

sponds to a small eccentricity ecc(X).



4.2. From R
D to reproducing kernel Hilbert spaces 53

Let us now consider the class of RBF kernels kγ with γ > 0 defined as follows

∀x,y ∈ X , kγ (x,y) = exp
(
−γd2(x,y)

)
,

where X is assumed to be a metric space endowed with a metric d(., .) 1 . For each γ > 0, H(kγ )

denotes the RKHS corresponding to kγ and 〈·, ·〉γ denotes the associated inner product.

In the following, we recall two features of this family of kernels (in the case where d is

the usual Euclidean metric) that satisfies the two criteria mentioned above and thus hint at an

extension of Theorem 4.2.1 to RBF kernel spaces.

First, [Tan+11] states that the RKHSs of RBF kernels are nested, that is

∀γ1,γ2 ∈R∗+, γ1 < γ2 =⇒H(kγ1
) ⊆H(kγ2

) .

In this sense, the parameter γ controls the size of the RKHS H(kγ ). Thus increasing γ - that is

enlarging H(kγ ) - may have the same effect as increasing D in Theorem 4.2.1.

Secondly, we show that the second criterion is met. Let λ1 > λ2 > . . . denote the eigenvalues

of the covariance operator 2
Ekγ (X, .)⊗kγ (X, .). When X is a univariateN (0,ν2) variable (ν2 > 0),

it is known (see [RW06], p. 97) that for any k > 1

λk =
γk/
√

2ν2(
(4ν2)−1 +γ +

√
(16ν4)−1 +γ(2ν2)−1

)k+1/2
∼

γ→+∞
γ−1/2
√

2ν2
.

Note that the asymptotic expression of λk as γ → +∞ does not depend on k. Therefore the covari-

ance eigenspectrum of kγ (X, .) becomes flat as γ grows to infinity, hence a minimum eccentricity.

This fact can be extended for more general distributions of X as shows Proposition 4.2.2 that is

proved in Appendix 4.B.1.

Proposition 4.2.2. Let (λr )r be the eigenvalues of the covariance operator Σγ = EXkγ (X, .)⊗2. Let
supp(X) = {x ∈ X

∣∣∣ ∀ε > 0, P(d2(x,X) < ε) > 0}. Assume that the distribution of X admits no point
mass and that there exists a function A : supp(X)→R

∗
+ and s > 0 such that

∀x ∈ supp(X) , P

(
d2(x,X) 6 t

)
∼ A(x)ts , when t→ 0 .

Then for any integer r,

λr ∼
EX [A(X)]Γ (s+ 1)

γs
, when γ → +∞ ,

1Note that the metric d must be chosen such that the resulting kernel kγ is definite positive. This condition is fulfilled
in the general case where d(x,x′) = ‖ϕ(x) −ϕ(x′)‖H for any x,x′ ∈ X , where ϕ : X →H and H is a separable Hilbert
space.

2Given two vectors u,v ∈ H whereH denotes some prehilbertian space with dot product 〈., .〉, the tensor product u⊗v
is defined as the operator u ⊗ v :H→H such that for any w ∈ H, (u ⊗ v) ·w = 〈v,w〉 ·u.
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where Γ (s) =
∫ +∞

0 xs−1e−xdx denotes the Gamma function.

Therefore under the milder assumptions on X required by Proposition 4.2.2, (λr )r>1 admits a

same asymptotic expression hence a "flat" eigenspectrum.

4.3 Asymptotic distribution of random projections

4.3.1 Notation

Let us further introduce additional notation needed for our main statements. LetX be a X -valued

random variable with distribution P where X denotes some set. Using the notation introduced in

Section 4.2.2, we consider the Radial Basis Function (RBF) kernel kγ parameterized by γ > 0, its

RKHS H(kγ ) with corresponding inner product 〈., .〉γ and norm ‖.‖γ . As a shorthand, we denote

the embedded variable kγ (X, .) taking values in H(kγ ) as kγ (X, .) = kX .

Following [DHV06], we examine the distribution of projections of kX onto p-linear subspaces

of H(kγ ) denoted by V = Span(h1, . . . ,hp) where h1, . . . ,hp ∈ H(kγ ) are random vectors. Ideally

h1, . . . ,hp should form an orthonormal family of H(kγ ) almost surely. For the sake of simplicity,

we follow an approach similar as [DHV06] and consider h1, . . . ,hp p independent zero-mean

Gaussian processes of covariance Σγ , where Σγ = EXkX ⊗kX stands for the (non-centered) covari-

ance operator of kX (to avoid additional notation, we also note Σγ (x,x′) = 〈Σγkγ (x, .), kγ (x′ , .)〉γ
for any x,x′ ∈ X )3. In this case, orthonormality holds true asymptotically as γ → +∞. This is

guaranteed by Lemma 4.3.1 whose proof is provided in Appendix 4.B.2.

Lemma 4.3.1. Consider p independent zero-mean Gaussian processes h1, . . . ,hp with covariance
Σγ = EX∼P kγ (X, .)⊗2 for some probability measure P . Then these p variables are asymptotically
orthonormal when γ → +∞, that is

∀1 6 i 6 p, ‖hi‖2γ −→γ→+∞
1 a.s. ,

and

∀1 6 i, j 6 p, i , j, 〈hi ,hj〉γ −→γ→+∞
0 a.s. .

The ”projection” of kX onto V is denoted

pV (X) =


〈kX ,h1〉γ

...

〈kX ,hp〉γ

 ∈Rp ,
3According to Section 3.2, those Gaussian processes are well defined inH(kγ ) ifH(Σγ ) ⊆H(kγ ) and Tr(Σγ ) < +∞. The

latter condition is easily checked as follows: Tr(Σγ ) = Tr(EXkX ⊗ kX ) = EXTr(kX ⊗ kX ) = EX‖kX‖2 = Ekγ (X,X) = 1 < +∞.
As for the former condition, it suffices to apply the last assertion of Definition 3.2.2 to the operator Σγ .
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We also consider the empirical case when P is not known and an i.i.d. sample X1, . . . ,Xn ∼
P is available. In this case, the covariance operator Σγ is not known thus we resort to the

empirical covariance Σγ,n = (1/n)
∑n
i=1 kγ (Xi , .)⊗2. Therefore we generate instead p independent

(conditionally to the sample) Gaussian processes h1,n, . . . ,hp,n with mean zero and covariance

Σγ,n. In practice this is done by setting hj,n = (1/n)
∑n
i=1u

(j)
i kγ (Xi , .) for each 1 6 j 6 p, where

(u(j)
i )16i6n,16j6p are i.i.d. N (0,1). The linear subspace spanned by h1,n, . . . ,hp,n is denoted Vn and

the projection of kX onto Vn (where X is independent of the sample X1, . . . ,Xn) is denoted

pVn(X) =


〈kX ,h1,n〉γ

...

〈kX ,hp,n〉γ

 ∈Rp .
Let Tr(Σ2

γ ) = EXΣγ (X,X). Our main results in next sections focus on the discrepancy between

the distributions of [Tr(Σ2
γ )]−1/2pV (X) (resp. [Tr(Σ2

γ )]−1/2pVn(X)) and that of some scale-mixture

of Gaussians sG where G ∼ N (0, Ip) and s is some random vector independent of G (The

normalization of pV (X) and pVn(X) is meant to prevent the variance from decreasing to 0).

Let ω be some random variable on R
p and φW (ω) = EW exp(i〈W,ω〉p) denote the character-

istic function of W for any r.v. W 4. If the distribution of ω is fully supported on R
p, then we

can consider the following L2-distance between distributions on R
p [Sri+10]: for any pair of

p-variate random variables W,W ′ ,

∆(W,W ′) ∆=
{
Eω

∣∣∣φW (ω)−φW ′ (ω)
∣∣∣2}1/2

.

4.3.2 Main assumptions

The results stated in Section 4.3.3 and Section 4.3.4 assume that the following assumptions hold:

(A1) X is a separable metric space endowed with a metric d(., .),

(A2) There exists a continuous, bounded function A : X →R+ and s > 0 such that

∀x ∈ supp(P ) , P

(
d2(x,X) 6 t

)
∼ A(x)ts , when t→ 0 ,

where supp(P ) = {x ∈ X
∣∣∣ ∀ε > 0, P(d2(x,X) < ε) > 0} defines the support of the distribution

of X, and A(x) = 0 otherwise,

(A3) supp(P ) is a compact subset of X ,

(A4) (t,x) 7→ PX(d2(x,X) 6 t) is continuous.

The separability condition required by Assumption (A1) is made so that Σγ admits a discrete

eigenexpansion, that is there exists a sequence of eigenvalues (λr )r>1 ∈ (R+)N
∗

and eigenvectors

4Here 〈., .〉p denotes the usual inner product of Rp
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(ψr )r>1 ∈ (H(kγ ))N
∗

such that Σγ =
∑
r>1λrψr ⊗ψr and (ψr )r>1 form an orthonormal family of

vectors of H(kγ ). It is known (see e.g. Lemma 4.33 in [SC08]) that the RKHS H(kγ ) is separable

if kγ is continuous (straightforwardly this is true) and if the input space X is a separable

topological space. Therefore under Assumption (A1) H(kγ ) is separable and since the operator

Σγ :H(kγ )→H(kγ ) is compact and self-adjoint, it admits a discrete eigenspectrum.

Assumption (A2) may seem strong, especially because of the non-dependence between the

exponent s and x. But this assumption turns out to be mostly true when X = R
D endowed with

the Euclidean metric d(., .) = ‖.− .‖, as stated by Proposition 4.3.2.

Proposition 4.3.2. Assume X = R
D and d(·, ·) = ‖ · − · ‖ is the usual Euclidean distance. Let f denote

the density function of X with respect to the Lebesgue measure µ of RD and assume f is continuous and
bounded on its support. Then Assumption (A2) holds with A(x) = πD/2f (x)/Γ (D/2 + 1) and s =D/2.

Proof of Proposition 4.3.2. Let x ∈ X and B(x,
√
t) denote the ball of radius

√
t and center x. Since

f is a density function, f ∈ L1(µ) where µ is the Lebesgue measure of R
D and Lebesgue’s

differentiation theorem entails for µ-almost every x ∈ supp(f )

P(‖x −X‖2 6 t)
µ
(
B(x,
√
t)
) =

∫
B(x,
√
t) f (y)µ(dy)

µ
(
B(x,
√
t)
) −→

t→0
f (x) ,

hence

P(‖x −X‖2 6 t) ∼
t→0

µ
(
B(x,
√
t)
)
f (x) =

πD/2tD/2f (x)
Γ (D/2 + 1)

,

which correspond to Assumption (A2) with A(x) = πD/2f (x)/Γ (D/2 + 1) and s =D/2. This holds

for x ∈ S ⊆ supp(f ) for some S satisfying µ(supp(f ) \ S) = 0. Thus the continuity of f on its

support implies that the result also holds for every x ∈ supp(f ).

Note that this extends to more general metrics in R
D . For instance, consider Mahalanobis

distances d(x,y) =
√

(x − y)>S−1(x − y),x,y ∈ R
D where S ∈ MD(R) is typically a covariance

matrix. Applying Proposition 4.3.2 to the vector X̃ = S−1/2X straightforwardly entails that

Assumption (A2) holds true for X. More generally one may consider metrics of the form

d(x,y) = ‖ϕ(x)−ϕ(y)‖ , (4.3.2)

for some ϕ : X → R
q and q ∈ N∗. Applying Proposition 4.3.2 to ϕ(X) implies that Assump-

tion (A2) holds with A(x) = πq/2fϕ(X)(x)/Γ (q/2 + 1) and s = q/2, where fϕ(X) denotes the density of

φ(X). Conversely, if d2(·, ·) is of negative type 5 , d(·, ·) admits the form (4.3.2) where ϕ : X →H
is an injective map and H is some Hilbert space (Proposition 3 in [Sej+13]), which makes

Assumption (A2) true if H is of finite dimension.

5A function ` : X × X → R is of negative type if for every x1, . . . ,xn ∈ X and a1, . . . , an ∈ R such that
∑n
i=1 ai = 0,∑n

i,j=1 aiaj`(xi ,xj ) 6 0.
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On the other hand, Assumption (A2) may be false especially when X is infinite dimensional.

For example, consider X = C([0,1],R) the space of continuous functions g : [0,1]→R endowed

with the supremum norm |g |∞ = supt∈[0,1] |g(t)|. Assume X = (X(t))06t61 is a fractional Brownian

motion, that is X(0) = 0 a.s. and for any s, t ∈ [0,1], E|X(s)−X(t)|2 = |s − t|α for some α ∈ (0,2).

According to Theorem 4.6 from [LS01], there exists 0 < K1 6 K2 < +∞ only depending on α such

that for any ε ∈ (0,1]

exp(−K2ε
−2/α) 6 P (|X |∞ 6 ε) 6 exp(−K1ε

−2/α) , (4.3.3)

so that small ball probabilities in Assumption (A2) decrease to 0 at exponential rate instead of

polynomial rate. This hints at the idea that the polynomial rate of decay required by Assump-

tion (A2) only corresponds to the case where X is of finite dimensional nature. Note that this

does not imply that the new convergence results presented in Section 4.3.3 and Section 4.3.4

do not hold true when X is infinite-dimensional, even though the rates of decrease of the up-

per bounds might change. Besides the small ball probability in (4.3.3) only corresponds to a

specific case (i.e. fractional Brownian motions). To the best of our knowledge, it seems difficult

to provide a general expression that holds for most infinite-dimensional distributions, unlike

that of Assumption (A2) which holds in all generality in the finite dimensional case. For this

reason we restrict our analysis to finite dimensional input spaces, even if it means to preprocess

infinite-dimensional data in practice through dimension reduction techniques (e.g. functional

principal component analysis [JR92]).

4.3.3 Asymptotic distribution when P is known

We are now in a position to provide our main Theorem 4.3.3, which describes the asymptotic

distribution of [Tr(Σ2
γ )]−1/2pV (X) as γ → +∞ when P is known. The proof of Theorem 4.3.3 is

provided in Appendix 4.A.1.

Theorem 4.3.3. Let us assume (A1), (A2), (A3), (A4) and Eω‖ω‖ < +∞ where ‖ · ‖ stands for the
Euclidean norm of Rp, and define a real-valued random variable s2 by

s2 law=
Σγ (X,X)

Tr(Σ2
γ )
·

Then for every δ ∈ (0,1), there exists an event with probability larger than 1− δ on which

∆2

 pV (X)√
Tr(Σ2

γ )
,sG

 6 8Eω[‖ω‖]

√
pEX [A(X)]Γ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2
[1 + oγ (1)] , (4.3.4)

where G ∼ N (0, Ip) and where A : X → R+ and s ∈ R∗+ are defined as in Assumption (A2) and Γ (.)

denotes the Gamma function Γ (u) =
∫ +∞

0 xu−1e−xdx, ∀u > 0.
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In the special case X = R
D with d(., .) as the Euclidean distance, Proposition 4.3.2 provides

s =D/2 and A(x) = πD/2f (x)/Γ (D/2 + 1), hence the upper bound in (4.3.4) becomes

∆2

 pV (X)√
Tr(Σ2

γ )
,sG

 6 8Eω[‖ω‖]

√
p log

(
2(p+ 1)
δ

)
|f |2

(
2π
γ

)D/4
[1 + oγ (1)] , (4.3.5)

with high probability over h1, . . . ,hp, where f denotes the density function of the distribution P

of X and |f |2 = (
∫
f 2)1/2 denotes the `2-norm.

The upper bound in (4.3.5) hints at the influence of some key quantities on the distributional

approximation of pV (X).

A large value of |f |2 yields a loose bound which suggests that in this case weak convergence

does not occur. This observation may be justified by the following rationale: a large |f |2
corresponds intuitively to a distribution P concentrated around a few "peaks". Consider the limit

case where |f |2 tends to infinity and P gets close to a discrete distribution or at least admits a point

mass. If P admits a point mass x0 ∈ X such that P(X = x0) = p > 0, then P(pV (X) = pV (x0)) > p > 0

and the limit distribution of pV (X) would also admit a point mass which is not compatible with

the asymptotic distribution foretold by Theorem 4.3.3. Therefore the influence of |f |2 displayed

by the bound in (4.3.5) is consistent.

Another way to explain the role of |f |2 is to relate |f |2 with the covariance eigenspectrum

in H(kγ ). Remember that a small eccentricity of the covariance eigenspectrum fosters the

convergence to a SMG, as Theorem 4.2.1 suggests in R
D . When |f |2 is large and P close to a

discrete distribution (let us assume that the support is of cardinality m ∈N∗), the support of

the distribution of kγ (X, .) is contained in a subspace of H(kγ ) of finite dimension at most m.

Therefore the covariance eigenvalues of kγ (X, .) of order larger than m vanish to 0 and weak

convergence to a SMG may not happen.

Besides since the upper bound displays a term of order γ−D/4, it is tempting to conclude

that a high-dimensional input space fosters the weak convergence of pV (X). However, one has

to be careful: when D varies, the input space - and consequently P and |f |2 - do also change.

Thus a decreasing value of γ−D/4 might be canceled out by a high value of |f |2. To see this, let

us consider a simple example. Assume X follows a multivariate GaussianN (0,S) distribution

in the input space, where the covariance matrix S = diag(l(D)
1 , . . . , l

(D)
D ) is a diagonal matrix with

l
(D)
1 > l

(D)
2 > . . . > l

(D)
D > 0. The density function f of P is defined as

f (x) = (2π)−D/2det(S)−1/2 exp(−(1/2)xT S−1x)

for every x ∈RD . Then straightforward algebra yields

|f |2 = (4π)−D/4det−1/4(S) > (4πl(D)
1 )−D/4 ,

and choosing l(D)
1 such that supD>1 l

(D)
1 < 1/(2γ) leads to a loose upper bound in (4.3.5) as D
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grows to infinity.

A special case of Theorem 4.3.3 is when P is a uniform measure on some subset S ⊂ R
D .

In this setting, s converges almost surely to 1 as γ grows to infinity hence the asymptotic

distribution of [Tr(Σ2
γ )]−1/2pV (X) is Gaussian with mean 0 and covariance matrix Ip. This is

stated by Corollary 4.3.4 thereafter.

Corollary 4.3.4. Let us use the same notation and assumptions as in Theorem 4.3.3. Assume X = R
D

and P is the uniform measure on some measurable subset S ⊂ R
D with finite Lebesgue measure

µ(S) > 0. Then there exists an event with probability larger than 1 − δ for any δ ∈ (0,1) on which
[Tr(Σ2

γ )]−1/2pV (X) converges weakly toN (0, Ip) as γ → +∞.

Proof. It suffices to show that s2 −→
γ→+∞

1 almost surely. Lemma A.2.1 combined with Proposi-

tion 4.3.2 yield

Σγ (X,X) =
A(X)Γ (s+ 1)

(2γ)s
[1 + oγ (1)] = f (X)

(
π

2γ

)D/2
[1 + oγ (1)]

= µ−1(S)
(
π

2γ

)D/2
[1 + oγ (1)] ,

and Lemma A.2.2 provides

Tr(Σ2
γ ) =

EA(X)Γ (s+ 1)
(2γ)s

[1 + oγ (1)] =
(∫

µ(S)
f 2(x)dx

)(
π

2γ

)D/2
[1 + oγ (1)]

= µ−1(S)
(
π

2γ

)D/2
[1 + oγ (1)] ,

which proves that s2 = 1 + oγ (1) as γ → +∞. Theorem 4.3.3 and Slutsky’s lemma allow to

conclude.

4.3.4 Asymptotic distribution when P is unknown

In this section, we consider the empirical case where P is unknown and only an i.i.d. sample

X1, . . . ,Xn is available. The question is whether the convergence in distribution to the scale-

mixture of Gaussian as stated in Theorem 4.3.3 still holds when γ and n both grow to infinity.

Theorem 4.3.5 states that this is the case under the additional condition γ = o(n1/s). The proof of

Theorem 4.3.5 is provided in Appendix 4.A.2.

Theorem 4.3.5. Let us assume (A1), (A2), (A3), (A4) and Eω‖ω‖ < +∞, and let s2 be defined as in
Theorem 4.3.3. Then for every δ ∈ (0,1), there exists an event with probability larger than 1− 4δ on
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which

∆2

 pVn(X)√
Tr(Σ2)

,sG

 6 C1γ
−s/2 +C2γ

s/2n−1/2 ,

where G ∼N (0, Ip) and

C1 = 2(s+6)/2
E‖ω‖

√
p log

(
2(p+ 1)
δ

)
EA(X)Γ (s+ 1){1 + oγ (1)}

C2 =
1√

EA(X)Γ (s+ 1)

2E[‖ω‖2]
√

log(1/δ)[1 + εγ,n]

1− δ/2

+4E[‖ω‖]

√
p log

(
2[p+ 1]
δ

)(
2s/2+1 + 2s/2 · 3 ·

√
log(3/δ)

) .

with εγ,n→ 0 as γ → +∞ and γs = o(n).

The fact that γ must be small compared to n for convergence to hold can be understood as

follows. Since h1, . . . ,hp are Gaussian processes with covariance Σγ,n, they take values almost

surely in the n-dimensional subspace Sn of H(kγ ) generated by kγ (X1, .), . . . , kγ (Xn, .) and Vn is

included in Sn as a consequence. If n is fixed and γ grows to infinity, each embedded point kγ (x, .)

with x ∈ X \ {X1, . . . ,Xn} satisfies by the reproducing property 〈kγ (x, .), kγ (Xi , .)〉γ = kγ (Xi ,x) =

exp(−γd2(Xi ,x)) −→
γ→+∞

0 for any i = 1, . . . ,n. Therefore in this case kγ (x, .) tends to be orthogonal

to Sn and thus to Vn, and the distribution of pVn(X) is highly concentrated around the origin and

is far from a scale-mixture of Gaussians. This explains why n must be large enough compared to

γ to counter this effect.

Straightforwardly, Corollary 4.3.4 still holds in the empirical case and a uniform distribution

in the input space yields aN (0, Ip) Gaussian asymptotic distribution for pVn(X).

4.4 Asymptotic distribution when the kernel is renormalized

In Section 4.3, random projections in the RKHS H(kγ ) have been proved to converge weakly

to an SMG sG where s2 is equal to Σγ (X,X) in distribution. However, if the latter equality

holds P -almost surely, one gets a convergence in law to aN (0, Ip) Gaussian by normalizing the

embedded variable kX by
√
Σγ (X,X) — which amounts to consider the renormalized kernel k̃γ

k̃γ (x,y) ∆=
kγ (x,y)√

Σγ (x,x)Σγ (y,y)
, (4.4.6)

where Σγ (·, ·) is replaced by Σγ,n(·, ·) in the empirical framework.
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In this case, we get a simpler limiting distribution that is parameter-free, whereas for kγ the

asymptotic distribution involves the distribution of Σγ (X,X) that must be estimated in practice.

The present section is devoted to show that this Gaussian convergence holds when renormal-

izing kγ as in (4.4.6) — both in the non-empirical and in the empirical case. In the non-empirical

case, we study the asymptotic distribution of projections p̃V (X)

p̃V (X) =


〈k̃X ,h1〉γ

...

〈k̃X ,hp〉γ

 with k̃X =
{
Σγ (X,X)

}−1/2
kX ,

and in the empirical case we study the projections p̃Vn(X)

p̃Vn(X) =


〈k̃(n)
X ,h1,n〉γ

...

〈k̃(n)
X ,hp,n〉γ

 with k̃
(n)
X =

{
Σγ,n(X,X)

}−1/2
kX .

Most of the notation and assumptions from Section 4.3 are continued in this section.

4.4.1 Asymptotic distribution when P is known

Theorem 4.4.1 thereafter provides an upper bound for the discrepancy between the distribution

of p̃V (X) as defined above and the N (0, Ip) Gaussian distribution. This bound decreases to 0

when γ → +∞ — assessing the claimed asymptotic distribution of p̃V (X). The proof of this

theorem is detailed in Appendix 4.A.3.

Theorem 4.4.1. Let us assume (A1), (A2), (A3), (A4) where A : X →R+ as defined in (A2) satisfies
0 < a 6 A(x) 6 A < +∞ for every x ∈ supp(P ). Also assume that Eω‖ω‖ < +∞.

Then for every δ ∈ (0,1), there exists an event with probability larger than 1− δ on which

∆2 (p̃V (X),G) 6 8E‖ω‖

√
pAΓ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2
[1 + oγ (1)] , (4.4.7)

where G ∼N (0, Ip), s ∈R∗+ is the same quantity introduced in Assumption (A2) and Γ (.) denotes the
Gamma function Γ (u) =

∫ +∞
0 xu−1e−xdx, u > 0.

Note the additional assumption that the function A(·) is bounded from below by a positive

quantity a. This assumption is due to the renormalization of the projection pV (X) by Σ1/2
γ (X,X)

that needs to be lower bounded. Namely we use the equivalent term Σγ (X,X) ∼
γ→+∞

A(X)Γ (s+

1)(2γ)−s (provided by Lemma A.2.1), hence a natural lower bound equivalent to aΓ (s+ 1)γ−s.
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4.4.2 Asymptotic distribution when P is unknown

Theorem 4.4.2 extends Theorem 4.4.1 to the empirical case. The proof of Theorem 4.4.2 can be

found in Appendix 4.A.4.

Theorem 4.4.2. Let us assume (A1), (A2), (A3), (A4) where A : X →R+ as defined in (A2) satisfies
0 < a 6 A(x) 6 A < +∞ for every x ∈ supp(P ). Also assume that Eω‖ω‖ < +∞.

Then for every δ ∈ (0,1), there exists an event with probability larger than 1− δ on which

∆2
(
p̃Vn(X),G

)
6 E‖ω‖2

Aa Γ (s+ 1)
(2γ)s

+

√
A2Γ (s+ 1)log(1/δ)

21+2sa3γsn
+

2(1−s)/2κA log(1/δ)
a2n

min
(1
δ
,1 + ξγ,n

)
[1+oγ (1)] ,

(4.4.8)

where s ∈R∗+ is the same quantity introduced in Assumption (A2), κ is a numerical constant and ξγ,n
is a quantity that tends to 0 when γ,n→ +∞ and γ = o(n3/2s).

Unlike the case where kγ is not renormalized, the remarkable novelty is that the upper bound

in (4.4.8) suggests that weak convergence holds when γ,n→ +∞ even without any constraint

on the growth of γ with respect to n. Empirical investigation in Section 4.5.3 below confirms

that this is actually the case. However this raises a practical problem since γ can be chosen as

large as wanted and there is no apparent "counter-weight" that forbids too large values of γ and

leads to the existence of a "trade-off" optimal value of the hyperparameter. Section 4.5.3 below

suggests that a possible counter-weight could be the loss of information carried by p̃Vn(X) when

γ → +∞, which is quantified by the dependence between p̃Vn(X) and X.

4.5 Discussion

4.5.1 Advantages compared to previous results

We proved most of finite-dimensional projections of an embedded variable kX in a Gaussian

RBF kernel space are close to a scale-mixture of Gaussians when the kernel hyperparameter γ is

large, or to aN (0, Ip) Gaussian if the distribution in the input space is a uniform on a subset of

R
D (for some D > 1) or if the kernel is renormalized adequately. This matches existing results

about projections of a random vector X in R
D for large D.

The main advantage of our result over previous results in R
D is the lack of strong assumptions

on X. As noted in Section 4.2.2, the closeness of projections in R
D to a scale-mixture of Gaussians

is due to two factors: the dimension D of the ambient space and a relatively flat covariance

eigenspectrum of X. However, D is usually an immutable parameter whereas in the kernel case γ

can be freely chosen and adapted to the dataset. As for the latter factor, it is tempting to flatten the

eigenspectrum of X, for instance by making multiplying X at left by the square root of its inverse

covariance matrix to get an isotropic vector. However, inverting a covariance matrix is a difficult

task in the high-dimensional framework. It is usually done with methods involving shrinkage
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[LW04], matrix tapering [C+10] or sparsity [LV12], and most of these methods counterbalance

the large number of covariates of X with parsimony assumptions. Because of these underlying

assumptions, it is difficult to foretell whether a vector X renormalized by such a parsimonious

estimator still admits marginals close to a SMG. On the other hand, Theorem 4.3.3 does not

require any strong assumption on the distribution of X, thus avoiding any necessary pre-

processing step on X. Moreover, our results include more general cases where the input space X
is different from R

D .

4.5.2 To renormalize or not to renormalize the kernel?

Whether one considers kγ or its renormalized version k̃γ , one obtains either SMG as marginals

in the former case orN (0, Ip) Gaussians in the latter case. Since the latter distribution is simpler

than the former, it would be natural to conclude that k̃γ should always be used in place of

kγ . However there are some cases where kγ is preferable to k̃γ . This holds for instance in the

application to outlier detection presented later in Chapter 5. It turns out that when transforming

data through kγ , typical observations and outliers are naturally separated which allows to set

a boundary between them and detect outliers (Section 5.2.1). However when using k̃γ , the

renormalizing factor Σ1/2
γ (X,X) tends faster to 0 when X is an outlier and γ → +∞, so that the

renormalization cancels out that separation property.

4.5.3 Loss of information

In practice, the distribution of X is represented by a sample of n observations X1, . . . ,Xn which

are independent copies of X. Consider the Gram matrix Kγ = [kγ (Xi ,Xj )]16i,j6n. When γ → +∞,

Kγ converges entrywise to the identity matrix In, which means that the information carried

by the dataset (Xi)16i6n has been entirely lost. This intuition is confirmed by the experiments

whose results are summarized in Figure 4.1. The upper-left panel of Figure 4.1 displays a

sample of simulated points in the input space R
2 generated from a uniform distribution on a

"donut"-shaped subset of R2. The upper-right plot shows an instance of a random projection of

kX in H(kγ ) (with γ = 400, p = 2 and n = 5000) which looks like a Gaussian (not a scale-mixture

since X is uniformly distributed) as expected. We examine several two-dimensional projections

of kX for increasing values of γ ranging from 50 to 5000 (100 trials for each value of γ). At each

trial, we assess the normality of the projection with the Henze-Zirkler multivariate normality

(MVN) test [HZ90] and we measure the dependence between X and Tr−1/2(Σ2
γ ) · pVn(X) through

a Hilbert Schmidt Independence Criterion (HSIC) test [Gre+07b]. The p-values for these two

tests are displayed respectively in the lower-left and the lower-right boxplots of Figure 4.1. The

p-values of the MVN test seem to almost follow the uniform distribution on [0,1] as γ gets larger

up to 400 then tend back to 0 when γ gets too large, which means that most of the projections

are close to a Gaussian when γ is large enough but small compared to n. On the other hand, the

p-values of the HSIC test converges weakly to a uniform law which shows that X and projections
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Figure 4.1 – Upper-left: Observations in the input space (uniform on a subset of R2); upper-right:
Low-dimensional (p = 2) projection pVn(X) of embedded points in the RKHS H(kγ ) (γ = 400);
lower-left: p-values given by Henze-Zirkler multivariate normality test on projections pVn(X)
(renormalized by Tr1/2(Σ2

γ )) with varying values for γ ; lower-right: p-values given by the HSIC
test for independence between X and Tr−1/2(Σ2

γ ) · pVn(X).

of kX tend to become independent as γ → +∞ and corroborates the expected loss of information.

We carry the same experiments in the case where k is renormalized as in Section 4.4, and

the corresponding results are represented in Figure 4.2. As foretold by Theorem 4.4.2, the

convergence to a Gaussian distribution seems to hold when γ → +∞ even for a finite n (lower-left

plot in Figure 4.2). However X and p̃Vn(X) tend to become independent when γ grows to infinity

which shows that a loss of information occurs as in the case where k is not renormalized.

All in all this negative effect on data information can be seen as a counterweight that defines

a range of optimal values of γ for which a trade-off between distributional approximation and

information is reached.
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Figure 4.2 – Upper-left: Observations in the input space (uniform on a subset of R2); upper-
right: Low-dimensional (p = 2) projection p̃Vn(X) of renormalized embedded points in the RKHS
H(kγ ) (γ = 400); lower-left: p-values given by Henze-Zirkler multivariate normality test on
projections p̃Vn(X) with varying values for γ ; lower-right: p-values given by the HSIC test for
independence between X and p̃Vn(X).

4.A Proofs of main results

This section presents in details the proofs of Theorem 4.3.3, 4.3.5, 4.4.1 and 4.4.2. All of these four

proofs follow a similar outline consisting in three steps. Using the generic notation L to denote

the quantity of interest (the distance between the distribution of a random projection and the

limit law), the first step aims at linking L with its expectancy taken over the directions h1, . . . ,hp
(or h1,n, . . . ,hp,n in the empirical case) through a McDiarmid-type concentration inequality. In

the second step, a tight upper bound for the expectancy of L is derived. Finally the results of

two first steps are combined in the last step and yield the final upper bound of L.
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4.A.1 Proof of Theorem 4.3.3

First step: apply a concentration inequality

In the following, the quantity of interest ∆2

 pV (X)√
Tr(Σ2

γ )
,sG

 is rewritten as a function L(h) of

h = (h1 . . .hp)

L(h) = ∆2

 pV (X)√
Tr(Σ2

γ )
,sG

 = Eω

∣∣∣∣EXei[Tr(Σ2
γ )]−1/2ωT pV (X) −EsGeisω

TG
∣∣∣∣2 .

The goal is to apply the McDiarmid inequality (Lemma A.1.1) to bound the probability

P(L(h1, . . . ,hp) > t) for some t > 0. This requires the existence of some deterministic quantity

c > 0 such that for any 1 6 j 6 p and hj ,h′j ∈H(kγ ),

∣∣∣L(h−j )−L(h)
∣∣∣ 6 c ,

where h−j = (h1, . . . ,hj−1,h
′
j ,hj+1, . . . ,hp). We show that this condition is fulfilled conditionally to

the event EM = ∩pj=1{‖hj‖ 6M} for any M > 0. Assume EM holds for some M > 0. Using Jensen’s

inequality (combined with the convexity of the modulus function) and the triangle inequality

yielding
∣∣∣|z1|2 − |z2|2

∣∣∣ =
∣∣∣|z2

1 | − |z
2
2 |
∣∣∣ 6 ∣∣∣z2

1 − z
2
2

∣∣∣ for any z1, z2 ∈C,

∣∣∣L(h−j )−L(h)
∣∣∣ 6 Eω ∣∣∣∣∣∣(EXei[Tr(Σ2

γ )]−1/2 ∑p
k,j ωk〈hk ,kX 〉+ωj 〈h

′
j ,kX 〉 −EsGeisω

TG
)2

−
(
EXe

i[Tr(Σ2
γ )]−1/2 ∑p

k,j ωk〈hk ,kX 〉+ωj 〈hj ,kX 〉 −EsGeisω
TG

)2
∣∣∣∣∣∣

6 Eω


∣∣∣∣∣∣∣∣EXe

i
∑p
k,j

ωk 〈hk ,kX 〉
[Tr(Σ2

γ )]1/2

ei
ωj 〈h

′
j ,kX 〉

[Tr(Σ2
γ )]1/2 − e

i
ωj 〈hj ,kX 〉

[Tr(Σ2
γ )]1/2


∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣EXe
i
∑p
k,j

ωk 〈hk ,kX 〉
[Tr(Σ2

γ )]1/2

ei
ωj 〈h

′
j ,kX 〉

[Tr(Σ2
γ )]1/2 + e

i
ωj 〈hj ,kX 〉

[Tr(Σ2
γ )]1/2

+ 2EsGe
isωTG

∣∣∣∣∣∣∣∣


6 4Eω

∣∣∣∣∣∣∣∣EX
ei

ωj 〈h
′
j ,kX 〉

[Tr(Σ2
γ )]1/2 − e

i
ωj 〈hj ,kX 〉

[Tr(Σ2
γ )]1/2


∣∣∣∣∣∣∣∣

6
4Eω |ωj | EX |〈h′j − hj , kX〉|

[Tr(Σ2
γ )]1/2

6 4Eω‖ω‖

√
〈Σγ (h′j − hj ),h

′
j − hj〉

Tr(Σ2
γ )

6 4Eω‖ω‖
 λ1

Tr(Σ2
γ )

1/2

‖h′j − hj‖
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6 8Eω‖ω‖
 λ1

Tr(Σ2
γ )

1/2

M :=M(γ) ,

where we used the fact that t 7→ exp(it) is 1-Lipschitz. Here λ1 = sup‖u‖=1〈Σγ ,u,u〉 denotes the

largest eigenvalue of Σγ .

We apply the McDiarmid inequality to h1, . . . ,hp conditionally to EM . Remark that h1, . . . ,hp
are still i.i.d. when conditioned to EM . This yields for any t > E(L | EM )

P (L(h) > t) 6 P
(
L(h)−EEML(h) > t −EEML(h) | EM

)
+P(EcM )

6 exp
(
−

2(t −EEML(h))2

pM2(γ)

)
+P(EcM ) .

Using the exponential Markov inequality and given some 0 < β < (2λ1)−1, P(EcM ) is bounded as

follows

P(EcM ) 6 pP (‖h1‖ >M) 6 pe−βM
2
Eeβ‖h1‖2 = pe−βM

2
∏
j>1

(1− 2βλj )
−1/2

= pexp

−βM2 + (1/2)
∑
j>1

log
(

1
1− 2βλj

)
6 pexp

−βM2 + (1/2)
∑
j>1

2βλj
1− 2βλj


6 pexp

(
−βM2 + β(1− 2βλ1)−1

)
,

where we used the inequality log(x) 6 x − 1 and the equality Tr(Σγ ) = Tr(EXk
⊗2
X ) = EXTr(k⊗2

X ) =

EXkγ (X,X) = 1.

Assuming M < 1− 1/
√

2, one sets β = (1− 2M)[
√

1 + (2M/(1− 2M2))2 − 1]/(2λ1) entails

P(EM ) 6 pexp
(
−M

2

2λ1

)
,

hence

P(L(h) > t) 6 exp
(
−

2(t −EEML(h))2

pM2(γ)

)
+ pexp

(
−M

2

2λ1

)
.

In other words, with probability larger than 1− δ (for any M such that δ > pe−M
2/(2λ1))

L(h) 6 Eh[L(h) | EM ] +M(γ)

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)

6

[
1− pe−

M2
2λ1

]−1

Eh[L(h)]
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+ 8E‖ω‖
 λ1

Tr(Σ2
γ )

1/2

M

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)
. (4.A.9)

An upper bound for Eh[L(h)] is given thereafter.

Second step: find an upper bound of EhL(h)

In the following, G and G′ denote two independentN (0, Ip) variables, and s,s′ are independent

copies of
√
Σγ (X,X)/Tr(Σ2

γ ). Then Eh[L(h)] can be written

EhL(h) = Eω,h

∣∣∣∣φ[Tr(Σ2
γ )]−1/2pV (X)(ω)−φsG(ω)

∣∣∣∣2
= Eω,h

(
EX,X′e

i[Tr(Σ2
γ )]−1/2ωT (pV (X)−pV (X′))

+EG,G′ ,s,s′e
iωT (sG−s′G′) − 2EX,G,se

iωT ([Tr(Σ2
γ )]−1/2pV (X)−sG)

)
. (4.A.10)

Let ψ(t) = Eωe
−t‖ω‖2/2 defined on R+ and write sX = (Tr(Σ2

γ ))−1Σγ (X,X) (likewise, sX′ =

(Tr(Σ2
γ ))−1Σγ (X ′ ,X ′)) and δXX′ = Σγ (X,X ′). On the first hand,

Eω,h,X,X′e
i[Tr(Σ2

γ )]−1/2ωT (pV (X)−pV (X′)) = Eω,h,X,X′e
i[Tr(Σ2

γ )]−1/2 ∑p
j=1ωj 〈kX−kX′ ,hj 〉γ

= Eω,X,X′e
− 1

2 [Tr(Σ2
γ )]−1‖ω‖2〈Σγ (kX−kX′ ),kX−kX′ 〉γ

= EX,X′ψ
(
[sX + sX′ − 2[Tr(Σ2

γ )]−1δXX′ ]
)
.

On the other hand,

Eω,G,G′ ,s,s′e
iωT (sG−s′G′) = Eω,s,s′e

−(s2+[s′]2)‖ω‖2/2 = Es,s′ψ(s2 + [s′]2)

= EX,X′ψ(s2
X + s2

X′ ) ,

and finally, using pV (X) ∼N (0,Σγ (X,X)Ip) with respect to h1, . . . ,hp and conditionally to X,

Eh,X,G,s,ωe
iωT ([Tr(Σ2

γ )]−1/2pV (X)−sG) = Eh,X,s,ωe
i[Tr(Σ2

γ )]−1/2ωT pV (X)−s2‖ω‖2/2

= EX,s,ωe
−(s2

X+s2)‖ω‖2/2

= EX,X′ψ(s2
X + s2

X′ ) .

Plugging these three equalities into (4.A.10),

EhL(h) = EX,X′ψ
(
s2
X + s2

X′ − 2[Tr(Σ2
γ )]−1δXX′

)
−ψ(s2

X + s2
X′ )

6 2‖ψ′‖∞EX,X′
 δXX′

Tr(Σ2
γ )

 , (4.A.11)
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where ‖ψ′‖∞ = sup{|ψ′(t)| : t ∈R+}. Note that ‖ψ′‖∞ is finite since |ψ′(t)| =
∣∣∣∣Eω (

−(1/2)‖ω‖2e−t‖ω‖2/2
)∣∣∣∣ 6

(1/2)E‖ω‖2 < +∞. Here we are allowed to switch the mean operator and the derivation because

of the Dominated Convergence Theorem and because t 7→ exp(−t‖ω‖2/2) is 1-Lipschitz on R
+.

Lemma A.2.3 states that

EδXX′ =
EXA

2(X)Γ 2(s+ 1)
γ2s [1 + oγ (1)] ,

and according to Lemma A.2.2,

Tr(Σ2
γ ) =

EXA(X)Γ (s+ 1)
2sγs

[1 + oγ (1)] ,

so that

EhL(h) 6
2sE‖ω‖2EA2(X)Γ (s+ 1)

EA(X)γs
[1 + oγ (1)] . (4.A.12)

Conclusion of the proof

Continuing from (4.A.9), we proved that with probability larger than 1−δ for any δ > pe−M
2/(2λ1),

L(h) 6
[
1− pe−

M2
2λ1

]−1

EL(h)

+ 8E‖ω‖
 λ1

Tr(Σ2
γ )

1/2

M

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)
.

Besides, (4.A.12) provided the following upper bound for EhL(h)

EhL(h) 6
2sE‖ω‖2EA2(X)Γ (s+ 1)

EA(X)γs
[1 + oγ (1)] .

Lemma 4.B provides when γ → +∞

λ1 =
EA(X)Γ (s+ 1)

γs
[1 + oγ (1)] ,

and by Lemma A.2.2,

Tr(Σ2
γ ) =

EA(X)Γ (s+ 1)
(2γ)s

[1 + oγ (1)] .

Hence if one sets pe−M
2/(2λ1) = δ/2 that is M =

√
2λ1 log(2p/δ) , then with probability larger than

1− δ for any 0 < δ < 1 and γ large enough so that M =
√

2EA(X)Γ (s+ 1)log(2p/δ)γ−s[1 + oγ (1)] <
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1− 1/
√

2,

L(h) = ∆2

 pV (X)√
Tr(Σ2

γ )
,sG


6

E‖ω‖2EA
2(X)Γ (s+ 1)
EA(X)

(γ
2

)−s
+ 8E‖ω‖

√
pEA(X)Γ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2 [1 + oγ (1)]

= 8E‖ω‖

√
pEA(X)Γ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2
[1 + oγ (1)] .

4.A.2 Proof of Theorem 4.3.5

First step: apply a concentration inequality

Let X = (X1, . . . ,Xn) denote an i.i.d. sample generated by P . In the following, we consider the

function L(·;X) :H(kγ )p→R defined by

∆2

 pVn(X)√
Tr(Σ2

γ )
,sG

 = L(h;X) = Eω

∣∣∣∣EXei[Tr(Σ2
γ )]−1/2ωT pV (X) −EsGeisω

TG
∣∣∣∣2 ,

where pVn(X) =
(
〈h1,n, kX〉γ . . .〈hp,n, kX〉γ

)T
with h = (h1,n, . . . ,hp,n) following independently a

Gaussian process of mean zero and of covariance Σγ,n = (1/n)
∑n
i=1 k

⊗2
γ (Xi , .).

The goal is to apply the McDiarmid inequality (Lemma A.1.1) to bound the probability

P|X(L(h;X) > t) for some t > 0 and conditionally to X. This requires the existence of some

deterministic quantity c > 0 such that for any 1 6 j 6 p and hj,n,h′j,n ∈H(kγ ),

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 c ,

where h−j = (h1,n, . . . ,hj−1,n,h
′
j,n,hj+1,n, . . . ,hp,n). We show that this condition is fulfilled condition-

ally to the event EM = ∩pj=1{‖hj,n‖ 6M} for any M > 0. Assume EM holds for some M > 0. Using

Jensen’s inequality (combined with the convexity of the modulus function) and the triangle

inequality yielding
∣∣∣|z1|2 − |z2|2

∣∣∣ =
∣∣∣|z2

1 | − |z
2
2 |
∣∣∣ 6 ∣∣∣z2

1 − z
2
2

∣∣∣ for any z1, z2 ∈C,

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 Eω ∣∣∣∣∣∣(EXei[Tr(Σ2

γ )]−1/2 ∑p
k,j ωk〈hk,n,kX 〉+ωj 〈h

′
j,n,kX 〉 −EsGeisω

TG
)2

−Eω
(
EXe

i[Tr(Σ2
γ )]−1/2 ∑p

k,j ωk〈hk,n,kX 〉+ωj 〈hj,n,kX 〉 −EsGeisω
TG

)2
∣∣∣∣∣∣

6 Eω


∣∣∣∣∣∣∣∣EXe

i
∑p
k,j

ωk 〈hk,n,kX 〉
[Tr(Σ2

γ )]1/2

ei
ωj 〈h

′
j,n,kX 〉

[Tr(Σ2
γ )]1/2 − e

i
ωj 〈hj,n,kX 〉

[Tr(Σ2
γ )]1/2


∣∣∣∣∣∣∣∣
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·

∣∣∣∣∣∣∣∣EXe
i
∑p
k,j

ωk 〈hk,n,kX 〉
[Tr(Σ2

γ )]1/2

ei
ωj 〈h

′
j,n,kX 〉

[Tr(Σ2
γ )]1/2 + e

i
ωj 〈hj,n,kX 〉

[Tr(Σ2
γ )]1/2

+ 2EsGe
isωTG

∣∣∣∣∣∣∣∣


6 4Eω

∣∣∣∣∣∣∣∣EX
ei

ωj 〈h
′
j,n,kX 〉

[Tr(Σ2
γ )]1/2 − e

i
ωj 〈hj,n,kX 〉

[Tr(Σ2
γ )]1/2


∣∣∣∣∣∣∣∣

6
4Eω |ωj | EX |〈h′j,n − hj,n, kX〉|

[Tr(Σ2
γ )]1/2

6 4Eω‖ω‖

√
〈Σγ (h′j,n − hj,n),h′j,n − hj,n〉

Tr(Σ2
γ )

6 4Eω‖ω‖
 λ1

Tr(Σ2
γ )

1/2

‖h′j,n − hj,n‖

6 8Eω‖ω‖
 λ1

Tr(Σ2
γ )

1/2

M :=M(γ) ,

where we used the fact that t 7→ exp(it) is 1-Lipschitz. Here λ1 = sup‖u‖=1〈Σγu,u〉 denotes the

largest eigenvalue of Σγ .

Therefore, the McDiarmid inequality yields conditionally to EM and X for any t > Eh(L(h;X) |
EM )

Ph (L(h;X) > t) 6 Ph (L(h;X)−Eh(L(h;X) | EM ) > t −Eh(L(h;X) | EM ) | EM ) +Ph(EcM )

6 exp
(
−2(t −Eh[L(h;X) | EM ])2

pM2(γ)

)
+Ph(EcM ) .

Let λ̂1 > λ̂2 > . . . > λ̂n denote the eigenvalues of Σγ,n. Using the exponential Markov inequality

and given some 0 < β < (2λ̂1)−1, Ph(EcM ) is bounded as follows

Ph(EcM ) 6 pPh
(
‖h1,n‖ >M

)
6 pe−βM

2
Eh1,n

eβ‖h1,n‖2 = pe−βM
2
∏
j>1

(1− 2βλ̂j )
−1/2

= pexp

−βM2 + (1/2)
∑
j>1

log

 1

1− 2βλ̂j




6 pexp

−βM2 + (1/2)
∑
j>1

2βλ̂j
1− 2βλ̂j


6 pexp

(
−βM2 + β(1− 2βλ̂1)−1

)
,

where we used the inequality log(x) 6 x − 1 and the equality Tr(Σγ,n) = 1.
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Assuming M < 1− 1/
√

2, one sets β = (1− 2M)[
√

1 + (2M/(1− 2M2))2 − 1]/(2λ̂1) entails

Ph(EM ) 6 pexp
(
−M

2

2λ̂1

)
,

hence

Ph(L(h;X) > t) 6 exp
(
−

2(t −EEML)2

pM2(γ)

)
+ pexp

(
−M

2

2λ̂1

)
.

that is with probability larger than 1− δ (with δ > pe−M
2/(2λ̂1)) over h and conditionally to X

L(h;X) 6 Eh|EML(h;X) +M(γ)

√
p

2
log

 1

δ − pe−M2/(2λ̂1)


6 P−1(EM )EhL(h;X) +M(γ)

√
p

2
log

 1

δ − pe−M2/(2λ̂1)

 . (4.A.13)

The following section is devoted to finding an upper bound for EhL(h;X) that holds with large

probability over the sample X.

Second step: find an upper bound for EhL(h;X)

EhL(h;X) can be expanded as follows

EhL(h;X) = Eω,h

∣∣∣∣φTr(Σ2
γ )−1/2pV (X)(ω)−φsG(ω)

∣∣∣∣2
= Eω,h

{
EX,X′e

i[Tr(Σ2
γ )]−1/2ωT (pV (X)−pV (X′))

+EG,G′ ,s,s′e
iωT (sG−s′G′) − 2EX,G,se

iωT ([Tr(Σ2
γ )]−1/2pV (X)−sG)

}
.

(4.A.14)

Let ψ(t) = Eωe
−t‖ω‖2/2 defined on R+ and write

ŝX =
Σγ,n(X,X)

Tr(Σ2
γ )

sX =
Σγ (X,X)

Tr(Σ2
γ )
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(likewise, ŝX′ = (Tr(Σ2
γ ))−1Σγ,n(X ′ ,X ′) and sX′ = (Tr(Σ2

γ ))−1Σγ (X ′ ,X ′)) and

δ̂XX′ =
Σγ,n(X,X ′)

Tr(Σ2
γ )

.

On the first hand,

Eh,ω,X,X′e
i[Tr(Σ2

γ )]−1/2ωT (pV (X)−pV (X′)) = Eh,ω,X,X′e
i[Tr(Σ2

γ )]−1/2 ∑p
j=1ωj 〈kX−kX′ ,hj,n〉γ

= Eω,X,X′e
− 1

2 [Tr(Σ2
γ )]−1‖ω‖2〈Σγ,n(kX−kX′ ),kX−kX′ 〉γ

= EX,X′ψ
(
ŝX + ŝX′ − 2δ̂XX′

)
.

On the other hand,

EG,G′ ,s,s′ ,ωe
iωT (sG−s′G′) = Es,s,ωe

−(s+s′)‖ω‖2/2 = Es,s′ψ(s+ s′) = EX,X′ψ(sX + sX′ ) ,

and finally, using pVn(X) ∼N (0,〈Σγ,nkX , kX〉γ Ip) with respect to h and conditionally toX,X1, . . . ,Xn,

Eh,X,G,se
iωT ([Tr(Σ2

γ )]−1/2pV (X)−sG) = Eh,X,se
i[Tr(Σ2

γ )]−1/2ωT pV (X)−s‖ω‖2/2

= EX,se
−(ŝX+s)‖ω‖2/2

= EX,X′ψ(ŝX + ŝX′ ) .

Plugging the three equalities into (4.A.14),

EhL(h;X) = EX,X′ [ψ(sX + sX′ − 2δ̂XX′ )−ψ(sX + sX′ )]

+EX,X′ [ψ(ŝX + ŝX′ − 2δ̂XX′ )−ψ(sX + sX′ − 2δ̂XX′ )]

+ 2EXX′ [ψ(sX + sX′ )−ψ(ŝX + sX′ )]

6 2‖ψ′‖∞EX,X′ δ̂XX′ + 4‖ψ′‖∞
√
EX‖ŝX − sX‖2 (4.A.15)

where ‖ψ′‖∞ = sup{|ψ′(t)| : t ∈R+}. Note that ‖ψ′‖∞ is finite since |ψ′(t)| =
∣∣∣∣Eω (

−(1/2)‖ω‖2e−t‖ω‖2/2
)∣∣∣∣ 6

(1/2)E‖ω‖2 < +∞. Here we are allowed to switch the mean operator and the derivation because

of the Dominated Convergence Theorem and because t 7→ exp(−t‖ω‖2/2) is 1-Lipschitz on R
+.

Since EXkγ (x,X) = EXk
2
γ/2(x,X) = Σγ/2(x,x), it follows

EX,X′ δ̂XX′ = EX,X′

1
n

n∑
i=1

kγ (Xi ,X)kγ (Xi ,X ′)

Tr(Σ2
γ )

 =
1
n

n∑
i=1

Σ2
γ/2(Xi ,Xi)

Tr(Σ2
γ )

.
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By Bennett’s concentration inequality (Lemma A.1.2), with probability larger than 1− δ over X

EX,X′ δ̂XX′ 6 EX

1
n

n∑
i=1

Σ2
γ/2(Xi ,Xi)

Tr(Σ2
γ )

+

√
2ν log(1/δ)n−1 +κc

√
2log(1/δ)n−1

Tr(Σ2
γ )

, (4.A.16)

where ν = Var(Σ2
γ/2(X,X)) and c = supx∈X Σ

2
γ/2(x,x).

First, Lemma A.2.2 provides

Tr(Σ2
γ ) =

EA(X)Γ (s+ 1)
2sγs

[1 + oγ (1)] ,

and combined with Lemma A.2.3 entails

EX

1
n

n∑
i=1

Σ2
γ/2(Xi ,Xi)

Tr(Σ2
γ )

 =
EXΣ

2
γ/2(X,X)

Tr(Σ2
γ )

=
EX {A(X)Γ (s+ 1)γ−s}2

EA(X)Γ (s+ 1)(2γ)−s
[1 + oγ (1)]

=
EA2(X)
EA(X)

Γ (s+ 1)
(γ/2)s

[1 + oγ (1)] .

Lemma A.2.3 also leads to

ν = Var(Σ2
γ/2(X,X)) 6 EΣ4

γ/2(X,X) = EX


[
A(X)Γ (s+ 1)

γs

]4

[1 + oγ (1)]


= EA4(X)Γ 4(s+ 1)γ−4s[1 + oγ (1)] ,

and by Lemma 4.B.1

c = sup
x∈X

Σ2
γ/2(x,x) 6 λ2

1(Σγ/2)sup
x∈X
‖kγ/2(x, .)‖4γ/2 = λ2

1(Σγ/2) =
{
EA(X)Γ (s+ 1)

(γ/2)s

}2

[1 + oγ (1)] ,

where λ1(Σγ/2) denotes the largest eigenvalue of Σγ/2 (the covariance operator).

Plugging all of the above into (4.A.16) provides with probability larger than 1− δ over X

EX,X′ δ̂XX′ 6


EA2(X)Γ (s+ 1)
EA(X)(γ/2)s

+

√
2log(1/δ)Γ 4(s+1)EA4(X)

nγ4s + κ
√

2log(1/δ)[EA(X)]2Γ 2(s+1)
n(γ/2)2s

EA(X)Γ (s+ 1)(2γ)−s

 [1 + oγ (1)]

=
EA2(X)Γ (s+ 1)
EA(X)(γ/2)s

[1 + oγ,n(1)] .
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Finally using Bennett’s inequality again yields with probability larger than 1− δ over X

EX (ŝX − sX )2 = EX

Σγ,n(X,X)−Σγ (X,X)

Tr(Σ2
γ )

2

= EX


∑n
i=1

{
k2
γ (Xi ,X)−EX′k2

γ (X ′ ,X)
}

nTr(Σ2
γ )


2

6 EX

√2ν̃ log(1/δ)/n+κc̃
√

2log(1/δ)/n

Tr(Σ2
γ )

2

,

where κ is a numerical constant and

ν̃ = VarX′ (k
2
γ (x,X ′)) 6 EX′k

4
γ (X ′ ,x) = Σ2γ (X,X) =

A(X)Γ (s+ 1)
(4γ)s

[1 + oγ (1)] ,

and

c̃ = sup
x∈X

k2
γ (X,x) 6 1 ,

hence introducing a = inf{A(x) : x ∈ supp(P )} > 0

EX (ŝX − sX )2 6 EX


√

2log(1/δ)A(X)Γ (s+1)
n(4γ) + κ

√
2log(1/δ)
n

EA(X)Γ (s+ 1)(2γ)−s


2

[1 + oγ (1)]

6 EX

{
2log(1/δ)A(X)Γ (s+ 1)

[EA(X)Γ (s+ 1)]2

γs

n

}1 +
κ
√

log(1/δ)(2γ)s/2√
naΓ (s+ 1)

2

[1 + oγ (1)]

=
2log(1/δ)

EA(X)Γ (s+ 1)
γs

n
[1 + oγ,n(1)] ,

where the ’oγ,n(1)’ tends to 0 when γs = o(n).

Therefore gathering all of the above into (4.A.15) yields with probability larger than 1− 2δ

over X

EhL(h;X) 6 E‖ω‖2
EA

2(X)Γ (s+ 1)
EA(X)(γ/2)s

+ 2

√
2log(1/δ)γs

EA(X)Γ (s+ 1)n

 [1 + εγ,n] , (4.A.17)

where εγ,n→ 0 as γ,n→ +∞ and γs = o(n).

Conclusion

Continuing from (4.A.13), we proved that with probability larger than 1 − δ for any δ >

pe−M
2/(2λ1),

L(h;X) 6 P−1(EM )EhL+ 8E‖ω‖
 λ1

Tr(Σ2
γ )

1/2

M

√
p

2
log

 1

δ − pe−M2/(2λ̂1)

 .
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Besides, (4.A.17) provided the following upper bound that holds with probability larger than

1− 2δ over X

EhL(h;X) 6 E‖ω‖2
EA

2(X)Γ (s+ 1)
EA(X)(γ/2)s

+ 2

√
2log(1/δ)γs

EA(X)Γ (s+ 1)n

 [1 + εγ,n] ,

where εγ,n→ 0 as γ,n→ +∞ and γs = o(n).

Setting P(EcM ) = pe−M
2/(2λ̂1) = δ/2 that is M =

√
2λ̂1 log(2p/δ) yields with probability larger

than 1− 3δ over h and X

L(h;X) 6
E‖ω‖2

1− δ/2

EA
2(X)Γ (s+ 1)

EA(X)(γ/2)s
+ 2

√
2log(1/δ)γs

EA(X)Γ (s+ 1)n

 [1 + εγ,n]

+ 8E‖ω‖
 λ1

Tr(Σ2
γ )

1/2
√
pλ̂1 log

(
2[p+ 1]
δ

)
.

Theorem 3.3.2 in [Zwa05] provides with probability larger than 1− δ over X for any δ > 0 the

inequality

|λ̂1 −λ1| 6
2 + 3

√
log(3/δ)
√
n

,

hence with probability larger than 1− 4δ

L(h;X) 6
E‖ω‖2

1− δ/2

EA
2(X)Γ (s+ 1)

EA(X)(γ/2)s
+ 2

√
2log(1/δ)γs

EA(X)Γ (s+ 1)n

 [1 + εγ,n]

+ 8E‖ω‖
 λ1

Tr(Σ2
γ )

1/2
√
p log

(
2[p+ 1]
δ

)λ1 +
2 + 3

√
log(3/δ)
√
n

 .

Lemma 4.B provides when γ → +∞

λ1 =
EA(X)Γ (s+ 1)

γs
[1 + oγ (1)] ,

and by Lemma A.2.2,

Tr(Σ2
γ ) =

EA(X)Γ (s+ 1)
(2γ)s

[1 + oγ (1)] ,
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therefore

L(h;X) 6
E‖ω‖2

1− δ/2

EA
2(X)Γ (s+ 1)

EA(X)(γ/2)s
+ 2

√
2log(1/δ)γs

EA(X)Γ (s+ 1)n

 [1 + εγ,n]

+ 8E‖ω‖

√
p log

(
2[p+ 1]
δ

)EA(X)Γ (s+ 1)
(γ/2)s

{1 + oγ (1)}+
2s+1 + 2s.3

√
log(3/δ)

√
n

 ,
which reads in a more concise way

L(h;X) 6 C1γ
−s +C2γ

s/2n−1/2 +
√
C3γ−s +C4n−1/2 .

To simplify this upper bound, we use the concavity of the square root function to obtain√
C3γ−s +C4n−1/2 = C1/2

3 γ−s/2
√

1 + (C4/C3)γsn−1/2 6 C1/2
3 γ−s/2

[
1 + (C4/2C3)γsn−1/2

]
, hence

L(h;X) 6 C1γ
−s +C2γ

s/2n−1/2 +C1/2
3 γ−s/2 +

C4

2C1/2
3

γs/2n−1/2

= C̃1γ
−s/2 + C̃2γ

s/2n−1/2 .

where

C̃1 = 2(s+6)/2
E‖ω‖

√
p log

(
2(p+ 1)
δ

)
EA(X)Γ (s+ 1){1 + oγ (1)}

C̃2 =
1√

EA(X)Γ (s+ 1)

2E[‖ω‖2]
√

log(1/δ)[1 + εγ,n]

1− δ/2

+4E[‖ω‖]
√
p log(

2[p+ 1]
δ

)(2s/2+1 + 2s/2 · 3 ·
√

log(3/δ))

 .

4.A.3 Proof of Theorem 4.4.1

First step: apply a concentration inequality

In the following, we consider the function L :H(kγ )p→R defined by

∆2 (p̃V (X),G) = L(h) = Eω

∣∣∣∣EXeiωT p̃V (X) −EGeiω
TG

∣∣∣∣2 ,

where h = (h1 . . .hp). The goal is to apply the McDiarmid inequality (Lemma A.1.1) to bound the

probability P(L(h) > t) for some t > 0. This requires the existence of some deterministic quantity

c > 0 such that for any 1 6 j 6 p and hj ,h′j ∈H(kγ ),

∣∣∣L(h−j )−L(h)
∣∣∣ 6 c ,
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where h−j = (h1, . . . ,hj−1,h
′
j ,hj+1, . . . ,hp).

We show that this condition is fulfilled conditionally to the event EM = ∩pj=1{‖hj‖ 6M} for any

M > 0. Assume EM holds for someM > 0. Using Jensen’s inequality (combined with the convexity

of the modulus function) and the triangle inequality yielding
∣∣∣|z1|2 − |z2|2

∣∣∣ =
∣∣∣|z2

1 | − |z
2
2 |
∣∣∣ 6 ∣∣∣z2

1 − z
2
2

∣∣∣
for any z1, z2 ∈C,

∣∣∣L(h−j )−L(h)
∣∣∣ 6 Eω ∣∣∣∣∣∣(EXei∑p

k,j ωk〈hk ,k̃X 〉+ωj 〈h
′
j ,k̃X 〉 −EGeiω

TG
)2

−Eω
(
EXe

i
∑p
k,j ωk〈hk ,k̃X 〉+ωj 〈hj ,k̃X 〉 −EGeiω

TG
)2

∣∣∣∣∣∣
6 Eω

{∣∣∣∣∣EXei∑p
k,j ωk〈hk ,k̃X 〉

(
e
iωj 〈h′j ,k̃X 〉 − eiωj 〈hj ,k̃X 〉

)∣∣∣∣∣
·
∣∣∣∣∣EXei∑p

k,j ωk〈hk ,k̃X 〉
(
e
iωj 〈h′j ,k̃X 〉 + eiωj 〈hj ,k̃X 〉

)
+ 2Es,Ge

isωTG
∣∣∣∣∣}

6 4Eω

∣∣∣∣∣EX (
e
iωj 〈h′j ,k̃X 〉 − eiωj 〈hj ,k̃X 〉

)∣∣∣∣∣
6 4Eω |ωj |

√
EX

〈h′j − hj , kX〉2

Σγ (X,X)
.

where we used the fact that t 7→ exp(it) is 1-Lipschitz.

Lemma A.2.1 combined with assumption 0 < a 6 A(X) 6 A entails

Σγ (X,X) =
A(X)Γ (s+ 1)

(2γ)s
[1 +A−1(X)oγ (1)] 6

AΓ (s+ 1)
(2γ)s

[1 + a−1oγ (1)] ,

where the ’oγ (1)’ term is uniformly bounded with respect to X. Therefore,

∣∣∣L(h−j )−L(h)
∣∣∣ 6 4Eω‖ω‖

√
EX〈h′j − hj , kX〉2

AΓ (s+ 1)(2γ)−s
[1 + oγ (1)]

6 4Eω‖ω‖

√
〈Σγ (h′j − hj ),h

′
j − hj〉

AΓ (s+ 1)(2γ)−s
[1 + oγ (1)]

6 4Eω‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

‖h′j − hj‖ [1 + oγ (1)]

6 8Eω‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

M [1 + oγ (1)] :=M(γ) ,

Here λ1 = sup‖u‖=1〈Σγu,u〉 denotes the largest eigenvalue of Σγ .

Therefore, the McDiarmid inequality yields conditionally to EM and for any t > Eh(L(h) | EM )

P (L(h) > t) 6 P
(
L(h)−Eh[L(h) | EM ] > t −Eh[L(h) | EM ]

∣∣∣∣ EM)
+P(EcM )
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6 exp
(
−2(t −Eh[L(h) | EM ])2

pM2(γ)

)
+P(EcM ) .

Using the exponential Markov inequality and given some 0 < β < (2λ1)−1, P(EcM ) is bounded as

follows

P(EcM ) 6 pP (‖h1‖ >M) 6 pe−βM
2
Eeβ‖h1‖2 = pe−βM

2
∏
j>1

(1− 2βλj )
−1/2

= pexp

−βM2 + (1/2)
∑
j>1

log
(

1
1− 2βλj

)
6 pexp

−βM2 + (1/2)
∑
j>1

2βλj
1− 2βλj


6 pexp

(
−βM2 + β(1− 2βλ1)−1

)
,

where we used the inequality log(x) 6 x − 1 and the equality Tr(Σγ ) = 1.

Assuming M < 1− 1/
√

2, setting β = (1− 2M)[
√

1 + (2M/(1− 2M2))2 − 1]/(2λ1) entails

P(EM ) 6 pexp
(
−M

2

2λ1

)
,

hence

P(L(h) > t) 6 exp
(
−2(t −Eh[L(h)|EM ])2

pM2(γ)

)
+ pexp

(
−M

2

2λ1

)
.

In other words, with probability larger than 1− δ for any δ > pe−M
2/(2λ1)

L(h) 6 Eh[L(h) | EM ] +M(γ)

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)

6

[
1− pe−

M2
2λ1

]−1

EhL(h)

+ 8E‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

M

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)
[1 + oγ (1)] . (4.A.18)

An upper bound for EhL(h) is derived in the second part thereafter.

Second step: find an upper bound of EL(h)

Eh[L(h)] can be expanded as

EhL(h) = Eω,h

∣∣∣φp̃V (X)(ω)−φG(ω)
∣∣∣2
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= Eω,h

(
EX,X′e

iωT (p̃V (X)−p̃V (X′))

+EG,G′e
iωT (G−G′) − 2EX,Ge

iωT (p̃V (X)−G)
)
. (4.A.19)

Letψ(t) = Eωe
−t‖ω‖2/2 defined on R+ and write δ̃2

X = 〈Σγ k̃X , k̃X〉γ = 1 (likewise, δ̃2
X′ = 〈Σγ k̃X′ , k̃X′ 〉γ =

1) and δ̃XX′ = 〈Σγ k̃X , k̃X′ 〉γ . On the first hand,

Eh,ωe
iωT (p̃V (X)−p̃V (X′)) = Eh,ωe

i
∑p
j=1ωj 〈k̃X−k̃X′ ,hj 〉γ

= Eωe
− 1

2 ‖ω‖
2〈Σγ (k̃X−k̃X′ ),k̃X−k̃X′ 〉γ

= ψ
(
[δ̃2
X + δ̃2

X′ − 2δ̃XX′ ]
)

= ψ
(
2− 2δ̃XX′

)
.

On the other hand,

EG,G′ ,ωe
iωT (G−G′) = Eωe

−‖ω‖2 = ψ(2) ,

and finally, using p̃V (X) ∼N (0, Ip) with respect to h1, . . . ,hp and conditionally to X,

Eh,ω,Ge
iωT (p̃V (X)−G) = Eh,ωe

iωT p̃V (X)−(1/2)‖ω‖2

= Eωe
− 1

2 ‖ω‖
2δ̃2
X−

1
2 ‖ω‖

2

= ψ
(
1 + δ̃2

X

)
= ψ (2) .

Plugging the three equalities into (4.A.19),

EhL(h) = EX,X′ψ
(
2− 2δ̃XX′

)
−ψ(2) ,

and there exists ξ satisfying |ξ | 6
∣∣∣δ̃XX′ ∣∣∣ such that

(I) = 2EXX′
∣∣∣ψ′(ξ)δ̃XX′

∣∣∣ 6 2‖ψ′‖∞EX,X′ |δ̃XX′ | = 2‖ψ′‖∞EX,X′ δ̃XX′ , (4.A.20)

where ‖ψ′‖∞ = sup{|ψ′(t)| : t ∈R+}. Note that ‖ψ′‖∞ is finite since |ψ′(t)| =
∣∣∣∣Eω (

−(1/2)‖ω‖2e−t‖ω‖2/2
)∣∣∣∣ 6

(1/2)E‖ω‖2 < +∞. Here we are allowed to switch the mean operator and the derivation because

of the Dominated Convergence Theorem and because t 7→ exp(−t‖ω‖2/2) is 1-Lipschitz on R
+.

It remains to find an equivalent term for Eδ̃XX′ when γ → +∞. Lemma A.2.1 and the

assumption A(x) > a > 0 for every x ∈ supp(P ) provides

EX,X′ δ̃XX′ = EX,X′

 Σγ (X,X ′)√
Σγ (X,X)Σγ (X ′ ,X ′)

 6 EX,X′
 γsΣγ (X,X ′)√
A(X)A(X ′)Γ (s+ 1)

{1 + a−1oγ (1)}

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6 EX,X′

[
γsΣγ (X,X ′)

aΓ (s+ 1)
{1 + a−1oγ (1)}

]
,

where the oγ (1) term is not random. It follows

Eδ̃XX′ 6
γsEX,X′ ,X′′

[
e−γ[d2(X,X

′′
)+d2(X′ ,X

′′
)]
]

aΓ (s+ 1)
{1 + a−1oγ (1)}

=
γsEX′′

[
Σ2
γ/2(X

′′
,X
′′
)
]

aΓ (s+ 1)
{1 + oγ (1)}

6
γsEX′′

[
A2(X

′′
)Γ 2(s+ 1)(2γ)−2s[1 + a−1oγ (1)]

]
aΓ (s+ 1)

{1 + oγ (1)}

=
EX [A2(X)]Γ 2(s+ 1)

a(2γ)2s [1 + oγ (1)] ,

which finally leads to

Eh[L(h)] 6 E‖ω‖2EX [A2(X)]Γ (s+ 1)
a(4γ)s

[1 + oγ (1)] . (4.A.21)

Conclusion of the proof

Continuing from (4.A.18), we proved that with probability larger than 1 − δ for any δ >

pe−M
2/(2λ1),

L(h) 6
[
1− pe−

M2
2λ1

]−1

EhL(h)

+ 8E‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

M

√
p

2
log

(
1

δ − pe−M2/(2λ1)

)
[1+oγ (1)] .

Besides, (4.A.21) provided the following upper bound for EhL(h)

EhL(h) 6 E‖ω‖2EX [A2(X)]Γ (s+ 1)
a(4γ)s

[1 + oγ (1)] ,

and Lemma 4.B.1 provides when γ → +∞

λ1 =
EA(X)Γ (s+ 1)

γs
[1 + oγ (1)] .
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Hence if one sets pe−M
2/(2λ1) = δ/2 that is M =

√
2λ1 log(2p/δ) , then with probability larger than

1− δ for any 0 < δ < 1

L(h) 6

E‖ω‖2EX [A2(X)]Γ (s+ 1)a−1(4γ)−s + 8E‖ω‖

√
pAΓ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2 [1 + oγ (1)]

= 8E‖ω‖

√
pAΓ (s+ 1)log

(
2(p+ 1)
δ

)(γ
2

)−s/2
[1 + oγ (1)] .

4.A.4 Proof of Theorem 4.4.2

First step: apply a concentration inequality

Let X = (X1, . . . ,Xn) denote an i.i.d. sample generated by P . In the following, we consider the

function L(.,X) :H(kγ )p→R defined by

∆2
(
p̃Vn(X),G

)
= L(h;X) = Eω

∣∣∣∣EXeiωT p̃Vn (X) −EGeiω
TG

∣∣∣∣2 ,

with h = (h1,n, . . . ,hp,n) following independently a Gaussian process of mean zero and of covari-

ance Σγ,n = n−1 ∑n
i=1 k

⊗2
γ (Xi , .).

The goal is to apply the McDiarmid inequality (Lemma A.1.1) to bound the probability

Ph(L(h;X) > t) for some t > 0 and conditionally to X. This requires the existence of some

deterministic quantity c > 0 such that for any 1 6 j 6 p and hj ,h′j ∈H(kγ ),

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 c ,

where h−j = (h1,n, . . . ,hj−1,n,h
′
j,n,hj+1,n, . . . ,hp,n). We show that this condition is fulfilled condition-

ally to the event EM = ∩pj=1{‖hj,n‖ 6M} for anyM > 0. Note that h1,n, . . . ,hp,n are still independent

under EM . Assume EM holds for some M > 0. Using Jensen’s inequality (combined with the con-

vexity of the modulus function) and the triangle inequality yielding
∣∣∣|z1|2 − |z2|2

∣∣∣ =
∣∣∣|z2

1 | − |z
2
2 |
∣∣∣ 6∣∣∣z2

1 − z
2
2

∣∣∣ for any z1, z2 ∈C,

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 Eω ∣∣∣∣∣∣

(
EXe

i
∑p
k,j ωk〈hk ,k̃

(n)
X 〉+ωj 〈h

′
j ,k̃

(n)
X 〉 −EGeiω

TG

)2

−Eω
(
EXe

i
∑p
k,j ωk〈hk ,k̃

(n)
X 〉+ωj 〈hj ,k̃

(n)
X 〉 −EGeiω

TG

)2∣∣∣∣∣∣
6 Eω

{∣∣∣∣∣∣EXei∑p
k,j ωk〈hk ,k̃

(n)
X 〉

(
e
iωj 〈h′j ,k̃

(n)
X 〉 − eiωj 〈hj ,k̃

(n)
X 〉

)∣∣∣∣∣∣
·
∣∣∣∣∣∣EXei∑p

k,j ωk〈hk ,k̃
(n)
X 〉

(
e
iωj 〈h′j ,k̃

(n)
X 〉 + eiωj 〈hj ,k̃

(n)
X 〉

)
+ 2EGe

iωTG

∣∣∣∣∣∣
}
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6 4Eω

∣∣∣∣∣∣EX
(
e
iωj 〈h′j ,k̃

(n)
X 〉 − eiωj 〈hj ,k̃

(n)
X 〉

)∣∣∣∣∣∣
6 4Eω |ωj | EX

|〈h′j − hj , kX〉|

Σ
1/2
γ,n(X,X)

6 4Eω‖ω‖

√
EX

〈h′j − hj , kX〉2

Σγ,n(X,X)
,

where we used the fact that t 7→ exp(it) is 1-Lipschitz.

By Lemma A.2.4, for any δ′ ∈ (0,1)

∣∣∣∣∣∣Σγ,n(x,x)

Σγ (x,x)
− 1

∣∣∣∣∣∣ 6
√

2log(1/δ′)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ′)(2γ)s

aΓ (s+ 1)n
{1 + oγ (1)}

 ,

with probability larger than 1− δ′ over X. This event is denoted B in the following.

It follows that under the events EM and B

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 4Eω‖ω‖

√
EX

〈h′j − hj , kX〉2

Σγ,n(X,X)

6 4Eω‖ω‖

√
EX

〈h′j − hj , kX〉2

Σγ (X,X)

{
1 +∆γ,n

}1/2
,

where

∆γ,n =

√
2log(1/δ)γs

aΓ (s+ 1)n
+

2(s+3)/2κ log(1/δ)γs

aΓ (s+ 1)n
[1 + oγ (1)] .

Lemma A.2.1 combined with assumption 0 < a 6 A(X) 6 A entails

Σγ (X,X) =
A(X)Γ (s+ 1)

(2γ)s
[1 +A−1(X)oγ (1)] 6

AΓ (s+ 1)
(2γ)s

[1 + a−1oγ (1)] ,

where the ’oγ (1)’ term is uniformly bounded with respect to X. Therefore,

∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 4Eω‖ω‖

√
EX〈h′j − hj , kX〉2

AΓ (s+ 1)(2γ)−s
[1 + oγ (1) +∆γ,n]

6 4Eω‖ω‖

√
〈Σγ (h′j − hj ),h

′
j − hj〉

AΓ (s+ 1)(2γ)−s
[1 + oγ (1) +∆γ,n]

6 4Eω‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

‖h′j − hj‖ [1 + oγ (1) +∆γ,n]
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6 8Eω‖ω‖
(

(2γ)sλ1

AΓ (s+ 1)

)1/2

M [1 + oγ (1) +∆γ,n] ,

Here λ1 = sup‖u‖=1〈Σγ ,u,u〉 denotes the largest eigenvalue of Σγ . Lemma 4.B.1 provides

λ1 =
EA(X)Γ (s+ 1)

γs
[1 + oγ (1)] ,

which entails ∣∣∣L(h−j ;X)−L(h;X)
∣∣∣ 6 2s/2+3

Eω‖ω‖M [1 + oγ (1) +∆γ,n] ∆=M(γ) .

Therefore, the McDiarmid inequality yields conditionally to EM∩B and X for any t > E(L | EM∩B)

P (L(h;X) > t) 6 P
(
L−E[L | EM ∩B] > t −E[L | EM ∩B]

∣∣∣∣ EM ∩B)+P(EcM ) +P(Bc)

6 exp
(
−2(t −E[L | EM ∩B])2

pM2(γ)

)
+P(EcM ) + δ′ .

Let λ̂1 > λ̂2 > . . . > λ̂n denote the eigenvalues of Σγ,n. Using the exponential Markov inequality

and given some 0 < β < (2λ̂1)−1, Ph(EcM ) is bounded as follows

Ph(EcM ) 6 pPh
(
‖h1,n‖ >M

)
6 pe−βM

2
Eeβ‖h1,n‖2 = pe−βM

2
∏
j>1

(1− 2βλ̂j )
−1/2

= pexp

−βM2 + (1/2)
∑
j>1
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


6 pexp

−βM2 + (1/2)
∑
j>1

2βλ̂j
1− 2βλ̂j


6 pexp

(
−βM2 + β(1− 2βλ̂1)−1

)
,

where we used the inequality log(x) 6 x − 1 and the equality Tr(Σγ,n) = 1.

Assuming M < 1− 1/
√

2, one sets β = (1− 2M)[
√

1 + (2M/(1− 2M2))2 − 1]/(2λ̂1) entails

Ph(EM ) 6 pexp
(
−M

2

2λ̂1

)
,

hence

Ph(L(h;X) > t) 6 exp
(
−2(t −E[L | EM ∩B])2

pM2(γ)

)
+ pexp

(
−M

2

2λ̂1

)
+ δ′ . (4.A.22)

In other words, McDiarmid’s inequality entails with probability larger than 1 − δ for any δ >
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pe−M
2/(2λ̂1) + δ′

L 6 Eh[L | EM ∩B] +M(γ)

√
p

2
log

 1

δ − δ′ − pe−M2/(2λ̂1)


6 Eh[L | EM ∩B] + 2s/2+3

Eω‖ω‖M

√
p

2
log

 1

δ − δ′ − pe−M2/(2λ̂1)

{1 + oγ (1) +∆γ,n}

6 P−1(EM ∩B)EhL+ 2s/2+3
Eω‖ω‖M

√
p

2
log

 1

δ − δ′ − pe−M2/(2λ̂1)

{1 + oγ (1) +∆γ,n} .

Second step: find an upper bound for EhL(h;X)

The mean term in the rhs above can be written

EhL(h;X) = Eω,h

∣∣∣φp̃Vn (X)(ω)−φG(ω)
∣∣∣2

= Eω,h

{
EX,X′e

iωT (p̃Vn (X)−p̃Vn (X′))

+EG,G′e
iωT (G−G′) − 2EX,Ge

iωT (p̃Vn (X)−G)
}
. (4.A.23)

Let ψ(t) = Eωe
−t‖ω‖2/2 defined on R+.On the first hand,

Eh,ω,X,X′e
iωT (p̃V (X)−p̃V (X′)) = Eh,ω,X,X′e

i
∑p
j=1ωj

{
〈k̃(n)
X ,hj 〉γ−〈k̃

(n)
X′ ,hj 〉γ

}
= Eω,X,X′e

− 1
2 ‖ω‖

2{2−2δ̂XX′ }

= EX,X′ψ
(
2− 2δ̂XX′

)
,

where

δ̂XX′ =
〈Σγ,nkX , kX′ 〉γ√

Σγ,n(X,X)Σγ,n(X ′ ,X ′)
.

On the other hand,

EG,G′ ,ωe
iωT (G−G′) = Eωe

−‖ω‖2 = ψ(2) ,

and finally, using p̃Vn(X) ∼N (0, Ip) with respect to h and conditionally to X,X1, . . . ,Xn,

Eh,X,Ge
iωT (p̃Vn (X)−G) = Eh,Xe

iωT p̃Vn (X)−‖ω‖2/2

= Eωe
−‖ω‖2

= ψ(2) .
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Plugging the three equalities into (4.A.23),

EhL(h;X) = Eψ(2− 2δ̂XX′ )−ψ(2)

6 2‖ψ′‖∞Eδ̂XX′ .

where ‖ψ′‖∞ = sup{|ψ′(t)| : t ∈R+}. Note that ‖ψ′‖∞ is finite since |ψ′(t)| =
∣∣∣∣Eω (

−(1/2)‖ω‖2e−t‖ω‖2/2
)∣∣∣∣ 6

(1/2)E‖ω‖2 < +∞. Here we are allowed to switch the mean operator and the derivation because

of the Dominated Convergence Theorem and because t 7→ exp(−t‖ω‖2/2) is 1-Lipschitz on R
+.

By Lemma A.2.4, the event

B =


∣∣∣∣∣∣Σγ,n(x,x)

Σγ (x,x)
− 1

∣∣∣∣∣∣ 6
√

2log(1/δ)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n
{1 + oγ (1)}




occurs with probability larger than 1− δ for any δ ∈ (0,1] and any x ∈ X . Moreover under B√
Σγ (X,X)

Σγ,n(X,X)
=

(
1 +

[
Σγ,n(X,X)

Σγ (X,X)
− 1

])−1/2

6

(
1−

∣∣∣∣∣∣Σγ,n(X,X)

Σγ (X,X)
− 1

∣∣∣∣∣∣
)−1/2

6 1 +
1
2

∣∣∣∣∣∣Σγ,n(X,X)

Σγ (X,X)
− 1

∣∣∣∣∣∣
6 1 +

√
2log(1/δ)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n
{1 + oγ (1)}

 .

Introducing A = sup{A(x) : x ∈ X} < +∞, it follows

Eδ̂XX′ 6 EX,X′

1
n

n∑
i=1

kγ (X,Xi)kγ (Xi ,X ′)√
Σγ,n(X,X)Σγ,n(X ′ ,X ′)


6

1 +

√
log(1/δ)γs

2aΓ (s+ 1)n
+

2
s+1

2 κ log(1/δ)γs

aΓ (s+ 1)n

EX,X′
1
n

n∑
i=1

kγ (X,Xi)kγ (Xi ,X ′)√
Σγ (X,X)Σγ (X ′ ,X ′)

 {1 + oγ (1)}

6

1 +

√
log(1/δ)γs

2aΓ (s+ 1)n
+

2
s+1

2 κ log(1/δ)γs

aΓ (s+ 1)n

EX,X′
1
n

n∑
i=1

kγ (X,Xi)kγ (Xi ,X ′)

aΓ (s+ 1)(2γ)−s

 {1 + oγ (1)}

=

1 +

√
log(1/δ)γs

2aΓ (s+ 1)n
+

2
s+1

2 κ log(1/δ)γs

aΓ (s+ 1)n

 (1/n)
∑n
i=1Σ

2
γ/2(Xi ,Xi)

aΓ (s+ 1)(2γ)−s
{1 + oγ (1)}

6

1 +

√
log(1/δ)γs

2aΓ (s+ 1)n
+

2
s+1

2 κ log(1/δ)γs

aΓ (s+ 1)n

 AΓ 2(s+ 1)(2γ)−2s

aΓ (s+ 1)(2γ)−s
{1 + oγ (1)}
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=

Aa Γ (s+ 1)
(2γ)s

+

√
A2Γ (s+ 1)log(1/δ)

21+2sa3γsn
+

2(1−s)/2κA log(1/δ)
a2n

 {1 + oγ (1)} ,

that is

EhL(h;X) 6 E‖ω‖2
Aa Γ (s+ 1)

(2γ)s
+

√
A2Γ (s+ 1)log(1/δ)

21+2sa3γsn
+

2(1−s)/2κA log(1/δ)
a2n

 {1 + oγ (1)} ,

(4.A.24)

with probability larger than 1− δ over X.

Conclusion of the proof

Continuing from (4.A.22), we proved that with probability larger than 1 − δ (over h) for any

δ > pe−M
2/(2λ̂1) + δ′ ,

L(h;X) 6
EhL

P(EM ∩B)
+ 2s/2+3

Eω‖ω‖M

√
p

2
log

 1

δ − δ′ − pe−M2/(2λ̂1)

{1 + oγ (1) +∆γ,n}1/2 ,

where ∆γ,n =
√

2log(1/δ)γs

aΓ (s+1)n + 2(s+3)/2κ log(1/δ)γs

aΓ (s+1)n {1 + oγ (1)}.
Hence if one sets δ′ and M such that

δ′ =
δ
4

and pe−M
2/[2λ̂1] =

δ
4
> P(EcM ) ,

then M =
√

2λ̂1 log(4p/δ) and with probability larger than 1− 2δ over h and X

L(h;X) 6
EhL(h;X)

1− δ2
+ 2s/2+3

Eω‖ω‖
√
pλ̂1 log

(2 + 4p
δ

)
{1 + oγ (1) +∆γ,n}1/2 .

Theorem 3.3.2 in [Zwa05] provides with probability larger than 1− δ for any δ > 0 the inequality

|λ̂1 −λ1| 6
2 + 3

√
log(3/δ)
√
n

,

which entails combined with Lemma 4.B.1

λ̂1 6
EA(X)Γ (s+ 1)

γs
{1 + oγ (1)}+

2 + 3
√

log(3/δ)
√
n

.

Hence with probability larger than 1− 2δ

L(h;X) 6
EhL(h;X)

1− δ2
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+ 2s/2+3
Eω‖ω‖

√
p log

(2 + 4p
δ

)EA(X)Γ (s+ 1){1+oγ (1)}

γs
+

2 + 3
√

log(3/δ)
√
n

[1 + oγ (1) +∆γ,n
]

6
EhL(h;X)

1− δ2

+ 2s/2+3
Eω‖ω‖

√√
p log

(2 + 4p
δ

)EA(X)Γ (s+ 1)
γs

+
3
√

log(3/δ)
√
n

+
3 · 2

s+3
2 κ

√
log(3/δ) log(1/δ)γs

aΓ (s+ 1)n3/2

{1+oγ,n(1)} ,

(4.A.25)

where the ’oγ,n(1)’ term converges to 0 when both γ and n tend to infinity.

This upper bound suggests that one must have γs = o(n3/2) so that L(h;X) converges to 0 with

high probability. However it is easy to see that this condition is not necessary by deriving an

alternative upper bound for L(h;X) that is simpler but less tight. A basic Markov inequality

entails with probability larger than 1− δ over h

L(h;X) 6
1
δ
EhL(h;X) , (4.A.26)

so that with probability larger than 1− 3δ, L(h;X) is smaller than

EhL(h;X)
1− δ/2

min


1
δ
,1 +

2s/2+3
Eω‖ω‖

√
p log

(2+4p
δ

){
EA(X)Γ (s+1)

γs +
3
√

log(3/δ)√
n

+
3·2

s+3
2 κ
√

log(3/δ) log(1/δ)γs

aΓ (s+1)n3/2

}
{1+oγ,n(1)}

EhL(h;X)


.

Finally, (4.A.24) provided the following upper bound with probability larger than 1− δ over

the sample X

EhL(h;X) 6 E‖ω‖2
Aa Γ (s+ 1)

(2γ)s
+

√
A2Γ (s+ 1)log(1/δ)

21+2sa3γsn
+

2(1−s)/2κA log(1/δ)
a2n

 {1 + oγ (1)} ,

and with probability larger than 1− 4δ over h and X,

L(h;X) 6 E‖ω‖2
Aa Γ (s+ 1)

(2γ)s
+

√
A2Γ (s+ 1)log(1/δ)

21+2sa3γsn
+

2(1−s)/2κA log(1/δ)
a2n

min
(1
δ
,1 + ξγ,n

)
{1+oγ (1)} ,

where ξγ,n is defined by

ξγ,n =

2s/2+3
Eω‖ω‖

√
p log

(2+4p
δ

){
EA(X)Γ (s+1)

γs +
3
√

log(3/δ)√
n

+
3·2

s+3
2 κ
√

log(3/δ) log(1/δ)γs

aΓ (s+1)n3/2

}
E‖ω‖2

{
A
a
Γ (s+1)
(2γ)s +

√
A2Γ (s+1)log(1/δ)

21+2sa3γsn
+ 2(1−s)/2κA log(1/δ)

a2n

}
(1− δ/2)

{1 + oγ,n(1)},



4.B. Additional lemmas 89

and converges to 0 when γ,n→ +∞ and γ = o(n3/(2s)).

4.B Additional lemmas

4.B.1 Covariance eigenvalues in an RBF RKHS

Lemma 4.B.1. Let (λr )r be the eigenvalues of the covariance operator Σγ . Let supp(P ) = {x ∈ X
∣∣∣

∀ε > 0, P(d2(x,X) < ε) > 0}. Assume that the distribution of X admits no point mass and that there
exists a function A : supp(X)→R

∗
+ and s > 0 such that

∀x ∈ supp(X) , P

(
d2(x,X) 6 t

)
∼ A(x)ts , when t→ 0 .

Then for any integer r,

λr ∼
[EXA(X)]Γ (s+ 1)

γs
, when γ → +∞ ,

where Γ (s) =
∫ +∞

0 xs−1e−xdx denotes the Gamma function.

Proof. Let r > 0 be any integer. The r-th eigenvalue λr of Σγ satisfies the following equation

λr = EX,X′e
−γd2(X,X′)ψr (X)ψr (X

′) ,

where X ′ is an independent copy of X and ψr is the corresponding eigenvector of the covariance

function C(x,x′) = Ekγ (X,x)kγ (X,x′) in L2(P ).

Let M > 0 be some arbitrary quantity. By conditioning,

λr = pξ− + ξ+ , (4.B.27)

where

p = P (A−) , A− =
{
d2(X,X ′) 6

M
γ

}
, A+ =

{
d2(X,X ′) >

M
γ

}
,

ξ− = E

(
e−γd

2(X,X′)ψr (X)ψr (X
′)
∣∣∣∣∣A−) , ξ+ = E

(
e−γd

2(X,X′)ψr (X)ψr (X
′)11A+

)
.

It is straightforward that

p = EXPX′

(
d2(X,X ′) 6

M
γ

)
∼ [EXA(X)]Ms

γs
. (4.B.28)

Under the event A−, d2(X,X ′) converges to 0 if M satisfies M = oγ (γ). Therefore, the continuity
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of the inner product 〈., .〉γ and the kernel kγ implies ψr (X ′) = 〈ψr , kγ (X ′)〉 = 〈ψr , kγ (X ′)〉+ oγ (1) =

ψr (X) + oγ (1) so that

ξ− = E

(
e−γd

2(X,X′)ψr (X)ψr (X
′)
∣∣∣∣∣A−) = E

(
e−γd

2(X,X′)[ψ2
r (X) + ε]

∣∣∣∣∣A−)
= EXψ

2
r (X)EX′

(
e−γd

2(X,X′)
∣∣∣∣∣A−) [1 + oγ (1)] , (4.B.29)

where the ’o(γ)’ term put outside of the expectation comes from the boundedness of ε since

ε = ψr (X)(ψr (X ′)−ψr (X)) 6 ‖ψr‖‖kX‖‖kγ (X ′ , .)− kγ (X, .)‖ 6 2‖ψr‖2 < +∞ .

Let g(t;x) the function that satisfies g(t;x)→ 0 when t→ 0 for all x and P(d2(X,X ′) 6 t) =

A(x)(1 + g(t;x))ts. Fubini’s Theorem entails

EX′

(
e−γd

2(x,X′)
∣∣∣∣∣A−) = EX′

(
[−e−y]

y=+∞
y=γ‖x−X′‖2

∣∣∣∣∣A−)
= EX′

(∫ +∞

γ‖x−X′‖2
e−ydy

∣∣∣∣∣A−)
=

∫ +∞

0
e−yEX′

(
11{γd2(x,X′)6y}

∣∣∣∣∣A−)dy

=
∫ +∞

0
e−yP

(
d2(x,X ′) 6 y/γ

∣∣∣∣∣A−)dy

=
∫ M

0
e−y

P

(
d2(x,X ′) 6 y/γ

)
P (d2(x,X ′) 6M/γ)

dy +
∫ +∞

M
e−ydy

=
∫ M

0
e−y

[1 + g(y/γ ;x)]ys/γs

[1 + g(M/γ ;x)]Ms/γs
dy + e−M

=
1 + oγ (1)

Ms γ(s+ 1,M) + e−M

∼
γ→+∞

Γ (s+ 1)
Ms ,

and therefore

ξ− ∼ EXψ
2
r (X)EX′

(
e−γd

2(x,X′)ψ2
r (x)

∣∣∣∣∣A−) ∼ Eψ2
r (X)

Γ (s+ 1)
Ms =

Γ (s+ 1)
Ms , (4.B.30)

ifM satisfiesM→ +∞ andM = oγ (γ). Here γ(., .) denotes the lower incomplete Gamma function

γ(s,x) =
∫ x

0 e
−yys−1dy.Combining (4.B.28) and (4.B.30) yields

pξ− ∼
EA(X)Γ (s+ 1)

γs
.

It remains to show that ξ+ is negligible in relation to γ−s.

We use the convexity of exp(−x) that provides the inequalities e−x 6 e−M − (e−M − e−(M+M̄))(x−



4.B. Additional lemmas 91

M)/M̄ when M 6 x 6M + M̄ for some M̄ >M, and e−x > e−M − e−M (x −M) for x 6M + 1.

ξ+ = Ee−γd
2(X,X′)ψ2

r (X)11A+
− 1

2
Ee−γd

2(X,X′)[ψr (X)−ψr (X ′)]211A+

6 e−ME

(
1− 1− e−M̄

M̄
[γd2(X,X ′)−M]

)
ψ2(X)11{M/γ6d2(X,X′)6(M+M̄)/γ}

+ exp(−(M + M̄))

− 1
2
E

{
[e−M − e−M (γd2(X,X ′)−M)][ψ(X)−ψ(X ′)]211B

}
6 e−M

[
P(B̄)E

(
ψ2
r (X)

∣∣∣∣ B̄)+ e−M̄ +
1
2
E

(
[ψr (X)−ψr (X ′)]211B

)]
6 e−M

[
P(B̄)E

(
ψ2
r (X)

∣∣∣∣ B̄)+ e−M̄ +
1
2
E

(
[ψr (X)−ψr (X ′)]2

)]
, (4.B.31)

where B̄ = {M/γ 6 d2(X,X ′) 6 (M + M̄)/γ} and B =
{
M/γ 6 d2(X,X ′) 6 (M + 1)/γ

}
.

It is shown that ξ+ = o(e−M ) by checking that the rhs of (4.B.31) tends to 0. First,

E

(
ψ2
r (X)

∣∣∣∣ B̄) = EX

(
ψ2
r (X)EX′ |B̄(1|X)

)
= EXψ

2
r (X) = 1 ,

and choosing M̄→ +∞ such that M̄ = oγ (γ) implies P(B̄)→ 0 and exp(−M̄)→ 0. Finally,

E

(
[ψr (X)−ψr (X ′)]2

)
= 2− 2E

[
ψr (X)ψr (X

′)
∣∣∣∣∣ B]

6 2[Eψ2
r (X) +Eψ2

r (X ′)] = 4 .

Hence ξ+ = Oγ (e−M ) and setting M = q log(γ) for some q > s leads to λr ∼ EA(X)Γ (s+ 1)γ−s.

4.B.2 Asymptotic orthonormality of Gaussian processes

Lemma 4.B.2. Consider p independent zero-mean Gaussian processes h1, . . . ,hp with covariance
Σγ = EX∼P kγ (X, ·)⊗2 for some probability measure P . Then these p variables are asymptotically
orthonormal when γ → +∞, that is

∀1 6 i 6 p, ‖hi‖2γ −→γ→+∞
1 a.s. ,

and

∀1 6 i, j 6 p, i , j, 〈hi ,hj〉γ −→γ→+∞
0 a.s. .

Proof. Consider the eigendecomposition Σγ =
∑
r>1λrΨ

⊗2
r where (Ψr )r form an orthonormal
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basis of H(kγ ). On the first hand,

Eh‖h‖2γ = EhTr(h⊗2) = Tr(Σγ ) = EXTr(k⊗2
X ) = Ekγ (X,X) = 1 .

On the other hand, since 〈h,Ψr〉γ are independent zero-mean Gaussians of respective variances

λr ,

Var(‖h‖2γ ) = Var

∑
r>1

〈h,Ψr〉2γ

 =
∑
r>1

Var
(
〈h,Ψr〉2γ

)
= 2Tr(Σ2

γ ) .

According to Lemma A.2.2, Tr(Σ2
γ ) converges to 0 as γ → +∞. Therefore Var(‖h‖2γ ) converges to

0 and ‖h‖2γ converges almost surely to its mean 1.

If i , j, then E〈hi ,hj〉γ = 0 since hi and hj are zero-mean and independent. Also

Var(〈hi ,hj〉γ ) = E〈hi ,hj〉2γ = Ehi 〈Σγhi ,hi〉γ = Tr(Σ2
γ )→ 0 ,

hence 〈hi ,hj〉γ → 0 almost surely.



Chapter5
A New Method for Online Outlier

Detection

In Chapter 4, we have described the probabilistic behaviour of random projections of an embed-

ded variable in the RKHS of a Gaussian RBF kernel. As a reminder, we established that most of

those projections converge weakly to a so-called scale-mixture of isotropic Gaussians when the

hyperparameter of the kernel tends to infinity. The goal of the present chapter is to illustrate

the usefulness of the aforementioned result in a practical problem, that is the problem of outlier
detection. To this aim we describe a new method for outlier detection that is based on random

projections in an RKHS.

5.1 The problem of outlier detection

Outlier detection (OD) is often mentioned in the literature under several alternative names such

as anomaly detection or novelty detection, yet all refer to the same goal: to identify observations in

a given dataset that depart from a "normal" statistical behaviour governing the majority of the

dataset. Such "abnormal" observations are called outliers, while the non-outliers are called inliers
in the following.

The latter definition of the problem may seem vague and actually there is no clear consensus

on a proper definition of an outlier in the related literature. Indeed, the literature about OD is

abundant and consists in many different kinds of approaches as pointed out in the extensive

review of [Pim+14]: probabilistic methods, distance-based methods or information-theoretic

methods, among others. Each of these different classes of methods stems from a different

characterization of outliers. For instance, a probabilistic approach assumes that the observations

have been drawn from some probability distribution and outliers are points that lie in low-density

regions, whereas a distance-based method labels as outliers observations that are abnormally
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distant from most of the dataset and a domain-based approach assumes that the inliers lie in a

subset of the space where data take values. All in all, the types of methods mentioned above can

be deemed "domain-based" since they all eventually lead to define an acceptation region of the

data space that contain most of the inliers and almost no outliers: in a probabilistic point of view,

such an acceptation region corresponds to the region where the density function of the "normal"

distribution is above a certain threshold; in a distance-based approach, this region consists in

points whose distance to the rest of the dataset is smaller than some threshold.

Defining such an acceptation region is subject to two kinds of errors: labeling a inlier as

an outlier (false alarm error) and calling an outlier a non-outlier (missed detection error). It is

desired to control the probabilities of committing these types of errors. A convenient framework

to achieve this goal is that of probabilistic methods for OD, that is the inliers are assumed to

have been drawn from a known distribution so that the probability of false alarm error becomes

available. However, the shortcoming of such methods is that the working model may not fit the

actual data at all. Therefore our concern is to access the error probabilities while avoiding any

restrictive assumption about the data distribution.

5.1.1 Formalized problem

From now on, the problem is formalized as follows. Consider a stream of X -valued data

X1,X2, . . . ,Xn,X,

for some set X . We assume throughout this chapter that X is endowed with a metric d(·, ·).

The n previous points X1, . . . ,Xn are assumed to be independently drawn from a common

distribution P and represent the inliers. The goal is to test whether the new point X was

generated by P or by an alternative distribution P1. Note that this formulation is similar

to homogeneity testing, where one tests the null-hypothesis that two samples X1, . . . ,Xn and

X ′1, . . . ,X
′
m come from the same underlying distribution. The difference lies in the fact that one

of the two samples consists of only one observation — that is reduced to X in our case. Since

it is impossible to estimate the underlying distribution of X on the basis of one observation,

some assumptions about the possible alternative distribution P1 are necessary to make the

problem tractable. Thus outlier detection consists in determining a region of X that contains

most of the inliers and we are naturally led to define an outlier as an observation that lies

outside of the support of the inlier distribution P — which is denoted supp(P ) and defined

formally as supp(P ) = {x ∈ X | ∀ε > 0, PX∼P (d(X,x) < ε) > 0}. This assumption allows to get

consistency results (i.e. almost surely detect an outlier as n grows to infinity) as we will see later

in Section 5.3.2.

Therefore the outlier problem can be cast as the problem of testing the null-hypothesis H0
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against the alternative hypothesis H1 which are both defined as H0 : X ∼ P ,
H1 : X ∼ P1 where P1 ∈ {Q : ν (supp(P )∩ supp(Q)) = 0} ,

where ν is a positive measure on X such that P and P1 are absolutely continuous with respect to

ν.

Note that we have presented the outlier problem in an online framework, that is single

observations are assumed to arrive one after the other and are tested sequentially. This is

opposed to batch OD, where a full sample is directly available in its entirety and a small sized

subsample of outliers must be identified — see for instance the method proposed by [Rot06]

mentioned in Section 3.4.2. Surprisingly, OD is often primarily formulated in the batch version

and an online version is designed later — for instance OD with one-class SVM was first conceived

in a batch fashion in [Sch+01] then in an online manner as in [GD03]. However, batch OD is

typically more difficult than online OD since in the latter case a subsample of inliers is readily

given and can serve as a reference, whereas in the former case the whole sample — outliers

included — must be used to estimate useful quantities which may lead to erroneous estimations

(especially if poorly robust estimators are used). Therefore we chose to formalize the OD problem

in an online way as a more natural starting point.

5.1.2 Existing methods

As the extensive review by [Pim+14] shows, numerous methods for OD have been proposed in the

literature. We focus on two fairly recent ways of performing OD: one-class Support Vector Machine
(oc-SVM) and kernel Principal Component Analysis (kernel PCA). SVM and kernel PCA have been

already introduced in Section 2.3.1 and Section 2.3.2 respectively. These two techniques are

kernel methods and as such, they are more general than OD methods performed solely in the

input space X — in particular, the set X may take an arbitrary form.

One-class SVM

From a probabilistic point of view, the OD problem is linked to the distribution of the inliers —

which may be represented by a density function f if the input space X is Rd . When it comes to

define an acceptation region A , a good candidate is a subset of X on which the density f take

large values, say

A =
{
x ∈ X

∣∣∣∣ f (x) > τ
}
, (5.1.1)

where τ > 0 is some prescribed threshold. Defining A this way requires to have access to the

density function f which is usually unknown in practice. Therefore an estimator for f — based

on a sample of inliers X1, . . . ,Xn — is required. However estimating a density function may be a
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difficult task, especially when X is a high-dimensional space where the curse of dimensionality

arises and has to be circumvented by means of Gaussian assumptions [Mog02] or sparsity

assumptions [LLW07; Vad+11] . That being said, estimating f is just an intermediate problem

thus we should not be concerned about the accuracy of such estimation. More precisely, we are

solely interested in the location of small density regions of X , hence even an estimate of f which

poorly approximates f on high density regions may eventually allow to correctly detect outliers.

All in all, it may be more optimal to bypass the estimation of f and to consider an acceptation

region A where the density f is replaced by some proxy function g that could achieve the goal

of detecting outliers as well.

Following this rationale, let us rewrite (5.1.1) by replacing f by such a function g. Assuming

that g belongs to some RKHS H(k) with reproducing kernel k : X ×X → R, the reproducing

property yields g(x) = 〈g,k(x, ·)〉H(k) for every x ∈ X . Therefore a point x ∈ X belongs or not to A

according to the value of

sgn
(
〈g,k(x, ·)〉H(k) − τ

)
.

In other words, inliers and outliers are separated in the RKHS by the hyperplane

H =
{
h ∈H(k)

∣∣∣∣ 〈g,h〉H(k) − τ = 0
}
,

which looks like the decision boundary of an SVM (Section 2.3.1). However the difference with

standard SVM is that the training set essentially consists of inliers instead of two identified

classes with comparable sizes. This leads to a special kind of SVM called one-class SVM (oc-SVM)

that was introduced by [Sch+01].

Instead of separating two given classes of points, oc-SVM separates the whole given sample

from the origin in the RKHS, which is done through the following optimization scheme

minimize 1
2‖g‖

2
H(k) + 1

νn

∑n
i=1 ξi − τ over g ∈ H, τ ∈R, ξ1, . . . ,ξn ∈R+

such that 〈g,k(Xi , ·)〉H(k) > τ − ξi for all 1 6 i 6 n ,
(5.1.2)

where ν ∈ (0,1] is some parameter whose influence is discussed below.

By maximizing τ , the solution of (5.1.2) maximizes the distance between the embedded data

and H , yet allows a few points to be misclassified via the slack variables ξ1, . . . ,ξn for a better

generalization error as in the standard SVM. Despite the different format, the parameter ν plays

a similar role as C in the standard SVM that is controlling how many observations are allowed

to be misclassified. For instance Proposition 4 in [Sch+01] states that ν is an upper bound on

the proportion of declared outliers within the training set. However, this does not imply that

the probability of committing a false alarm error when testing new points is also bounded by

ν. More recently in [VV06], theoretical error bounds are provided for oc-SVM, however the

bounded error is the classification error which encompasses false alarm errors and the error of
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missing an outlier altogether. Similarly [SHS09] derives upper bounds for the classification error

for density level detection (which is a problem related to outlier detection) through SVM. All in

all this lack of control on error probabilities constitutes one weak point of oc-SVM.

Kernel PCA

[Hof07] proposed to use kernel PCA to detect outliers in order to improve on the performance of

one-class SVM.

In Section 2.3.2, we have introduced kernel PCA as a non-linear extension of principal

component analysis. As a reminder, kernel PCA consists in applying standard PCA in the feature

space instead of the input space. More precisely, kernel PCA seeks out principal components

ϕ1, . . . ,ϕp ∈ H(k) which form an orthonormal family of vectors in H(k) and are such that the

subspace V spanned by ϕ1, . . . ,ϕp captures most of the variance of the embedded data.

The main idea of [Hof07] is to use the reconstruction error to detect outliers. The reconstruction

error RE(x) for a point x ∈ X is defined by

RE(x) =
∥∥∥k̃(x, ·)−ΠV k̃(x, ·)

∥∥∥2
H(k)

,

where ΠV denotes the projection operator onto the subspace V and k̃(x,x′) = 〈k(x, ·)−µ,k(x′ , ·)−
µ〉H(k) is the re-centered kernel with µ = (1/n)

∑n
i=1 k(Xi , ·).

A test point X is declared an outlier if the corresponding reconstruction error RE(X) is

larger than some critical value τ > 0. In other words the acceptation region in the RKHS is the

τ-neighborhood of the subspace V . [Hof07] argues that when k is a translation-invariant kernel

that is k(x,x′) = κ(x − x′) for some κ : X → R, this acceptation region encloses the embedded

inliers more tightly than the acceptation region yielded by oc-SVM. This is due to the fact that

embedded points all lie on the same sphere S0 of H(k) when k is a translation-invariant kernel.

In this case, it is known that the intersection of S0 with the separating hypersphere of oc-SVM

coincides with the intersection of S0 and the decision boundary S provided by Support Vector

Domain Description (SVDD) [TD99] — which is also a sphere. Therefore oc-SVM and SVDD

classify points in the same way. Since oc-SVM amounts to define the decision boundary as a

sphere, it does not take into account possible heterogeneous variances of the embedded data

along different directions in the RKHS, unlike kernel PCA. For this reason, kernel PCA yields a

smallest acceptation region that encloses inliers in the RKHS hence kernel PCA is less prone to

accepting actual outliers as inliers than oc-SVM.

Note that parametric OD methods that involve density estimation are contained in kernel

PCA, since OD with Parzen window density estimation can be seen as a special case of OD with

kernel PCA (as long as a positive definite kernel is involved). A Parzen window density estimator

f̂ is of the form f̂ (x) = (1/nh)
∑n
i=1K ((x − xi)/h) whereK(·) is some real positive function satisfying∫

K(t)dt = 1 and h > 0 is the bandwidth parameter. It turns out that OD with f̂ coincides with

kernel PCA when choosing a number p of principal component equal to p = 0. In this case, the
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projector ΠV is equal to 0 and the reconstruction error RE(x) writes

RE(x) =

∥∥∥∥∥∥∥k(x, ·)− 1
n

n∑
i=1

k(xi , ·)

∥∥∥∥∥∥∥
2

H(k)

= k(x,x) +
1
n2

n∑
i,j=1

k(xi ,xj )−
2
n
k(xi ,x) .

Since k is chosen as a translation-invariant kernel, k(x,x) = κ(0) is constant, and (1/n2)
∑n
i,j=1 k(xi ,xj )

does not depend on x as well. Therefore, an outlier x corresponds to a large value of RE(x) which

in turn corresponds to a small value of (1/n)
∑n
i=1 k(xi ,x). The latter quantity matches the Parzen

window density estimator with K(z) = hκ(hz). On the other hand, outlier detection with kernel

PCA can be seen as a special case of [DRT14].

The main drawback of kernel PCA is its expensive computational cost. Indeed, finding

the principal components ϕ1, . . . ,ϕp involves the eigendecomposition of the Gram matrix K =[
k(xi ,xj )

]
16i,j6n

which is done in O(n3) time. Only considering the p first principal components

actually requires an execution time of order O(n2p). However the optimal value of p is not

known, hence the OD algorithm must be reiterated for several possible values of p (up to the

case p = n) in order to observe which choice of p yields the best performance — for instance this

is done to compute the criterion proposed by [XWX14] to select the optimal p.

5.2 New approach for outlier detection

5.2.1 Principle

We propose a new kernel-based method for outlier detection that circumvents the respective

shortcomings of the two methods presented in Section 5.1.2. This new approach mostly relies on

the results in Chapter 4 about the distribution of low-dimensional projections in Gaussian RBF

kernel spaces, which will allow for a control of the probability of false alarm error.

Using the notation in Section 5.1.1, we assume a sample X1, . . . ,Xn,X is available where

X1, . . . ,Xn ∼ P are i.i.d. X -valued variables representing the inliers and X is a test point. Besides,

we consider the Gaussian RBF kernel kγ defined as

kγ (x,x′) ∆= exp
(
−γd2(x,x′)

)
for every x,x′ ∈ X ,

and parameterized by γ > 0.

Our method is twofold. In the first step, a subspace Vn of H(kγ ) is randomly selected and

defined as

Vn = Span(h1, . . . ,hp) ,
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where h = (h1, . . . ,hp) are p i.i.d. zero-mean Gaussian processes with covariance function Σγ,n(·, ·):

Σγ,n(x,x′) ∆=
1
n

n∑
i=1

kγ (Xi ,x)kγ (Xi ,x
′) for every x,x′ ∈ X ,

that is the empirical estimator of Σγ (x,x′) = EX1∼P
[
kγ (X1,x)kγ (X1,x

′)
]
.

In the second step, the embedded test point kγ (X, ·) ∈ H(kγ ) is projected onto Vn. The

projection of kγ (X, ·) onto Vn is represented via the p-variate vector pVn(X) whose entries are

the coordinates of the projection with respect to the basis h. Since h forms asymptotically an

orthonormal basis of Vn when γ → +∞ (see Lemma 4.3.1), pVn(X) can be simply defined as

pVn(X) ∆=
(
〈kγ (X, ·),h1〉H(kγ ) . . . 〈kγ (X, ·),hp〉H(kγ )

)>
=

(
h1(X) . . . hp(X)

)>
.

Finally we are in a position to introduce the test statistic

Sn(X) ∆= γs
∥∥∥pVn(X)

∥∥∥2
, (5.2.3)

where ‖ · ‖ is the Euclidean norm of Rp and s > 0. When X = R
d , we set s = d/2.

Whether X is an outlier or an inlier, Sn(X) exhibits two distinct behaviours.

If H0 is true (X is an inlier), Proposition 4.3.5 states that when n→ +∞ and γ grows slowly to

infinity compared to n , the distribution γs/2pVn(X) is close to that of a random variable sG where

G is a N (0, Ip) Gaussian vector and s2 is a copy of γsΣγ (X1,X1) independent of G and where

X1 ∼ P , which defines a scale-mixture of (isotropic) Gaussians (SMG). Therefore the Continuous

Mapping Theorem and the continuity of ‖·‖2 entail that Sn(X) is well-approximated by a variable

s2Q2 whereQ2 ∼ χ2(p) is independent of s. Note that by Lemma A.2.1, s2 = γsΣγ (X1,X1) �
γ→+∞

1

so that the distribution of Sn(X) is not asymptotically reduced to a Dirac distribution at 0 —

hence the γs term in (5.2.3).

If H1 is true (X is an outlier), Sn(X) converges almost surely to 0. To see this, note that since

h1, . . . ,hp have Σγ,n(·, ·) as a covariance function, then

Vn ⊆ V = Span
{
kγ (x, ·)

∣∣∣∣ x ∈ supp(P )
}

P − almost surely .

On the other hand, since an outlier X lies outside the support of P by definition, then for any

x ∈ supp(P )

〈kγ (x, ·), kγ (X, ·)〉H(kγ ) = exp
(
−γd2(x,X)

)
= O(e−γd

2(X)) −→
γ→+∞

0 ,

where d(X) = inf
{
d(X,x)

∣∣∣∣ x ∈ supp(P )
}

denotes the distance between X and the support of P . It
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follows that kγ (X, ·) is asymptotically orthogonal to the subspace V — hence also to the subspace

Vn almost surely — when γ → +∞ in such a way that

Sn(X) = γs‖pVn(X)‖2 = OP1
(γse−2γd2(X)) −→

γ→+∞
0 .

Now we are in a position to decide whether X is an outlier or not. Let us introduce the p-value

PV(X) = Ps2,Q2

(
Sn(X) > s2Q2

)
, (5.2.4)

where the probability is evaluated solely over s2 and Q2. Given a confidence level α ∈ (0,1), the

null-hypothesis H0 is rejected if and only if PV(X) < α.

Note that we did not consider renormalized projections p̃Vn(X) = Σ−1/2
γ,n (X,X)pVn(X) whereas

we saw in Chapter 4 that they converge weakly to a N (0, Ip) instead of a SMG, which would

have yielded a simpler null-distribution for our statistic. The problem is that when X is an

outlier, p̃Vn(X) is no more guaranteed to converge almost surely to 0 unlike pVn(X). This is due

to the fact that the renormalizer Σ1/2
γ,n(X,X) tends faster to 0 when X is an outlier than otherwise.

Indeed whenX is an outlier, Σγ,n(X,X) = (1/n)
∑n
i=1 k

2
γ (X,Xi) 6 exp

(
−2γd2(X)

)
and since Sn(X) =

O(e−γd
2(X)) as said above, so that there is no guarantee that ‖p̃Vn(X)‖2 = Sn(X)/Σγ,n(X,X) tends

to 0 a.s. under the alternative.

5.2.2 Practical implementation

This section presents in detail how our OD method is set up in practice.

For every j = 1, . . . ,p, hj can be written as hj = (1/
√
n)

∑n
i=1u

(j)
i kγ (Xi , ·) where the variables

{u(j)
i }16i6n,16j6p are i.i.d. N (0,1) Gaussians. This leads to the following matrix formulation of

pVn(X)

pVn(X) = n−1/2Ukx ,

where U = [u(j)
i ]j,i ∈Mp,n(R) and kx = (kγ (X1,X) . . . kγ (Xn,X))> ∈Rn.

This way the test statistic Sn(X) writes

Sn(X) = γs‖pVn(X)‖2 = n−1γsk>x U>Ukx .

The next step consists in determining the p-value PV(X) of the test as defined in (5.2.4). Intro-

ducing Fχ2(p)(t) = P(Q2 > t) the cumulative distribution function (cdf) of the χ2(p) distribution,

PV(X) alternatively reads

PV(X) = Es2

[
Fχ2(p)

(
Sn(X)
s2

)]
, (5.2.5)
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where the mean is taken only over s2. However s2 is a copy of γsΣγ (X1,X1) (X1 ∼ P ) while

Σγ and the distribution P of X′ are unknown, therefore PV(X) needs to be estimated. To this

aim, we can consider for each i = 1, . . . ,n the quantities ŝi = γsΣγ,−i(Xi ,Xi) where Σγ,−i(Xi ,Xi) =

1/(n− 1)
∑
j,i k

2
γ (Xj ,Xi) is an estimate of Σγ (Xi ,Xi) (conditionally to Xi).

This leads to the estimated p-value P̂V(X)

P̂V(X) =
1
n

n∑
i=1

Fχ2(p)

Sn(X)

ŝ2
i

 .
However, the estimation of the p-value may be improved upon in terms of execution time. Actu-

ally, computing the quantities ŝi requires to access the whole Gram matrix K = [kγ (X1,Xj )]16i,j6n

which involves the computation of its n(n − 1)/2 entries, then for each i = 1, . . . ,n calculating

Σγ,−i(Xi ,Xi) takes in the order of n operations. All in all, the computational cost is of order O(n2).

This quadratic time can be reduced to linear time through a low-rank approximation of K by the

methods presented in Section 2.4. Such a method yields an approximation of K as

K 'UU> with U ∈Mn,r (R) , (5.2.6)

where r is much smaller than n. Using this matrix factorization, each Σγ,−i(Xi ,Xi) can be

approached as follows

Σγ,−i(Xi ,Xi) =
1

n− 1
e>i K2ei −

1
n− 1

' 1
n− 1

e>i UWU>ei −
1

n− 1
, (5.2.7)

where W = U>U ∈ Mr(R) and (e1, . . . , en) is the canonical base of R
n. W can be calculated

beforehand in O(r2n) time. Then the computation of Σγ,−i(Xi ,Xi) through (5.2.7) takes O(r2)

operations, hence a total computation time of order O(r2n) linear with respect to n. The influence

of the choice of r is discussed later in Section 5.4.1.

Low-rank approximation of the Gram matrix

Two different ways of approximating the Gram matrix as in (5.2.6) can be used. The first one

involves the Nyström method (Section 2.4.1). As a reminder, Nyström method consists in

randomly picking a subset I of cardinality r uniformly over {I ⊆ {1, . . . ,n} | card(I ) = r} and

approaching K by

K 'K·,IK−1
I ,IKI ,· ,

where K·,I = [Kij ]16i6n,j∈I , KI ,I = [Kij ]i,j∈I and KI ,· = K>·,I . In this case U = K·,IK−1/2
I ,I . Let

[ŝnysti ]2 = γsΣnystγ,−i (Xi ,Xi) where Σnystγ,−i (Xi ,Xi) denotes the approximation of Σγ,−i(Xi ,Xi) based on
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the Nyström method. We define the corresponding estimated p-value as

P̂ V nyst(X) =
1
n

n∑
i=1

Fχ2(p)

 Sn(X)

[ŝnysti ]2

 .
The second method to approximate K uses Random Kitchen Sinks (Section 2.4.2). To be able to

apply this method, we need to assume that X = R
d endowed with the usual Euclidean norm ‖ · ‖.

Under this assumption, kγ (x,x′) = exp
(
−γ‖x − x′‖2

)
corresponds to the Fourier transform of the

N (0,2γId) Gaussian measure and can be approached as in (5.2.6) with

U = r−1


cos(w>1 X1) sin(w>1 X1) . . . cos(w>r X1) sin(w>r X1)

...
...

. . .
...

...

cos(w>1 Xn) sin(w>1 Xn) . . . cos(w>r Xn) sin(w>r Xn)

 ,
where w1, . . . ,wr ∼N (0,2γId) i.i.d. Let [ŝRKSi ]2 = γsΣRKSγ,−i (Xi ,Xi) where each ΣRKSγ,−i (Xi ,Xi) denotes

the approximation of Σγ,−i(Xi ,Xi) based on RKS. We define the corresponding estimated p-value

as

P̂ V RKS (X) =
1
n

n∑
i=1

Fχ2(p)

 Sn(X)

[ŝRKSi ]2

 .

5.3 Theoretical analysis

When testing a point X, there are two ways of committing an error: either by labeling X as an

outlier while it is not (false alarm error) or by accepting X as an inlier while it is an outlier

(missed detection error). In the following, we call false alarm rate the probability of a false alarm

error, and missed detection rate the probability of a missed detection rate. In the hypothesis

testing terminology, the false alarm rate corresponds to a Type-I error and missed detection

rate to a Type-II error. The aim of this section is to study theoretically how those two kinds of

error are controlled for our OD method. In order not to overload theoretical developments, our

analysis focuses on the version of our OD procedure that relies on the exact p-value PV(X).

5.3.1 False alarm rate

When X ∼ P , Theorem 4.3.5 in Chapter 4 provides an upper bound of the general form

∆2
(
γs/2pVn(X),sG

)
6 C1γ

−s/2 +C2γ
s/2n−1/2 , (5.3.8)

with high probability over h1, . . . ,hp and X1, . . . ,Xn and where γ denotes the parameter of the

kernel kγ . Here ∆(·, ·) is some distance between distributions on R
p and s > 0 is some quantity
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related to the distribution P — for instance s = D/2 when X = R
D and d(·, ·) is the Euclidean

distance.

The bound in (5.3.8) shows that the weak convergence of the null-distribution of Sn(X) to

s2Q2 holds when γ and n both grow to infinity and γ = o(n1/s). More precisely, the right hand

side of (5.3.8) is minimized by setting every additive terms of the bound at the same rate n−1/4,

that is by setting γ = Cn1/(2s) for some constant C > 0. However this does not tell much about

the rate of convergence of the actual false alarm rate P(P V (X) < α |H0) to the prescribed level of

confidence α. Theorem 5.3.1 thereafter fills this gap and its proof can be found in Section 5.A.1.

Theorem 5.3.1. Let X ∼ P and assume there exists a bounded, continuous function A : X →R+ and
s > 0 such that

∀x ∈ supp(P ) , PX′∼P
(
d2(x,X ′) 6 t

)
∼ A(x)ts , when t→ 0 ,

where supp(P ) = {x ∈ X
∣∣∣ ∀ε > 0, PX′∼P (d2(x,X ′) < ε) > 0} defines the support of P and A(x) = 0 for

every x < supp(P ). Also assume that A(·) is lower bounded by some a > 0 on its support.

Then for any α,δ ∈ (0,1), the actual false alarm rate is bounded as follows

P

(
P V (X) < α

∣∣∣∣ H0

)
6 α +Cpτ

−2
α EX [A(X)]

√
2log(1/δ)Γ (s+ 1)γs

an

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n

 {1 + oγ (1)}

+ 2Cpτ
−2
α γsδ , (5.3.9)

where τα is the α-quantile of the null distribution sG with G ∼ N (0, Ip), κ is a numerical constant
and Cp only depends on p.

One could use the upper bound (5.3.9) as a proxy to control the actual false alarm rate by

choosing a (near-)optimal γ in a closed form. The problem is that such a closed form expression

would involve some terms in the upper bound which depend on quantities related to the inlier

distribution P — as an example when X = R
D and d(·, ·) is the Euclidean distance, A(·) is related

to the density function f of P . But as we mentioned earlier, OD methods are made to avoid

the complete estimation of the density function of P . In Section 5.5, we address the problem of

selecting γ by presenting a procedure based on grid search and a one-sample test statistic.

5.3.2 Missed detection rate

We call missed detection rate the probability of committing a missed detection error, which is

denoted by βn

βn = PX

(
P V (X) > α

∣∣∣∣ H1

)
= PX

(
Sn(X) > τα

∣∣∣∣ H1

)
,
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where PX is taken with respect to X and τα is the α-quantile of s2Q2. In the hypothesis testing

terminology, out OD procedure is said to be consistent if βn → 0 when n grows to infinity.

Theorem 5.3.2 thereafter provides an upper bound for βn that entails the consistency of our

method. The proof of Theorem 5.3.2 is provided in Section 5.A.2.

Theorem 5.3.2 (Missed detection rate). LetX ∼ P1 , P and assume the same assumptions concerning
the distribution P as in Theorem 5.3.1.

Let F denote the cdf of d(X) = inf{‖X − x‖ : x ∈ supp(P )} with X ∼ P1.

Then for any δ ∈
(

np
(np)2+1 ,np

)
, there exists an event with probability (over h) larger than 1− (2−

np/δ)−np/2e−(np−δ)/2 under which

βn 6 F

 s log(2γ) + log(n) + log
(

1
aΓ (s+1)

)
+ 2log(1/α)

p + 2
√

2log(1/α)
p + log(δ) + oγ,n(1)

2γ

 , (5.3.10)

where α ∈ (0,1) is the prescribed confidence level and oγ,n(1) −→
γ,n→+∞

0.

Note that Theorem 5.3.2 only assumes that the tested point X was generated by an alternative

distribution P1 different than P but not necessarily with a support distinct from the support

of P . However the upper bound in (5.3.10) decreases to 0 only if the alternative H1 holds, that

is supp(P1) ∩ supp(P ) is negligible. In this case the distance d(X) between X and supp(P ) is

P1-almost surely non-null hence F(0) = 0. On the other hand, when the sample size n gets larger,

the hyperparameter γ is "allowed" to increase as well while still controlling the false alarm rate

at level α according to the analysis done in Section 5.3.1. For instance, we saw that setting

γ ∝ n1/(2s) leads to an asymptotic control of the false alarm rate. With this choice of γ and

when n grows to infinity, the upper bound in (5.3.10) entails that βn decreases to 0 at the rate

O(F(log(n)n−1/(2s))) which tends to 0 since F(0) = 0. This way Theorem 5.3.2 guarantees that our

OD procedure is consistent against H1.

Let us discuss the influence of some key quantities on the upper bound (5.3.10). First of

all, since F is a cdf hence an increasing function, the upper bound increases when the lower

bound a of A(·) gets smaller. To understand how a small a worsens the performance of our OD

method, it may be helpful to resort to the multivariate case X = R
d with d(·, ·) as the Euclidean

distance in which case A(x) ∝ f (x) and f (·) is the density of P (Proposition 4.3.2 in Chapter 4).

In this case, a must be interpreted as an indicator of the values of f on small density regions.

Therefore depending on the form of f , a small a may be influential in two different ways. The

first case is when the distribution P is highly unbalanced, that is there is a large discrepancy

between highest and smallest values of f . Thus a small a means that P is mostly concentrated on

a smaller subset of its support. In this case our OD algorithm is likely to mistake this subset of

supp(P ) as the entire support. In order to keep the false alarm rate at the prescribed level α, the

OD procedure is compelled to compensate by erroneously "completing" this highly concentrated

part of supp(P ) with a "dumb" subset of X outside of supp(P ), hence a larger missed detection
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rate. The second case is when P is concentrated homogeneously across its support — ideally

when P is a uniform distribution. In this situation, a small a entails that supp(P ) is a large subset

of Rd hence the inliers sample X1, . . . ,Xn tends to be sparsely spread across supp(P ) so that it is

more difficult for our OD algorithm to determine the boundary of supp(P ), which leads to poor

performance.

The shape of the cdf F in the vicinity of 0 also influences the bound of βn in the following

sense. If F(t) decreases to 0 when t→ 0 at a large speed, then the upper bound decreases to 0 at

a faster rate as well hence better performances. On the other hand, a fast decrease of F(t) near

t = 0 means that outliers tend to lie far from the boundary of supp(P ). Therefore a small missed

detection rate is expected, which is confirmed by the bound.

As for the confidence level α, reducing α makes the upper bound larger. In hypothesis testing

terms, a smaller Type-I error α is supposed to make the Type-II error βn larger. Thus the bound

reflects well the expected influence of α on βn.

5.4 Numerical results

5.4.1 False alarm and missed detection rates

In this section, we empirically observe the false alarm and missed detection rates on simulated

data, in particular we discuss on the influence of the parameters γ and p on those two types of

errors.

We apply our OD procedure on the synthetic dataset "spiral" displayed in Figure 5.1. The

blue dots represent the inliers, that are distributed on a spiral-shaped subset of R2. n = 500

inliers are generated to form the training set. The test set is made of 200 other inliers and 200

outliers, the latter corresponding to the red dots in Figure 5.1. Each observation in the test set is

tested on the basis of the n = 500 inliers of the training set. The results on the tested inliers (resp.

outliers) are averaged out to get false alarm rates (resp. missed detection rate).

Figure 5.2 shows the false alarm rates obtained when applying our OD method on the 200

test inliers, for several values of γ ranging from 0.1 to 3000 and several values of p ranging

from 2 to 500. The prescribed level of confidence was set at α = 0.05, so that false alarm rates

close to 0.05 are expected. For γ up to 75 and p smaller than 10, the actual false alarm rates are

satisfyingly close to 0.05. However when γ takes values beyond γ = 100, the false alarm rate

is no longer controlled, being as high as 0.805 when γ = 3000 and p = 500. This is consistent

with Theorem 4.3.5 which implies that γ must not be too large compared to n in the empirical

setting. On the other hand, the bound of Theorem 4.3.5 also suggested that a larger p had a bad

impact on the distributional approximation of Sn(X) and in practice, the control of the type-I

error seems to be significantly worsened by larger values of p, especially when γ > 25.

Figure 5.3 displays the corresponding missed detection rates. As foretold by Theorem 5.3.2,

the missed detection rate tends to 0 whenever γ → +∞ and decreases when p increases. Note
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Figure 5.1 – "Spiral" synthetic dataset
γ 0.1 1 5 25 50 75 100 500 1000 3000

p = 2 0.054 0.060 0.052 0.052 0.058 0.060 0.062 0.124 0.219 0.452
10 0.061 0.046 0.058 0.061 0.062 0.075 0.086 0.260 0.400 0.667
25 0.043 0.050 0.067 0.068 0.079 0.080 0.096 0.296 0.450 0.730
50 0.045 0.042 0.059 0.071 0.083 0.092 0.106 0.311 0.469 0.759

100 0.027 0.043 0.067 0.071 0.084 0.096 0.106 0.317 0.477 0.779
500 0.054 0.034 0.068 0.075 0.090 0.101 0.114 0.320 0.488 0.805

Figure 5.2 – False alarm rates with the "spiral" dataset
γ 0.1 1 5 25 50 75 100 500 1000 3000

p = 2 0.947 0.950 0.807 0.074 0.018 0.012 0.009 0.001 0 0
10 0.950 0.947 0.446 0.012 0.005 0.001 0 0 0 0
25 0.972 0.920 0.245 0.007 0 0 0 0 0 0
50 0.966 0.906 0.142 0.004 0 0 0 0 0 0

100 0.989 0.866 0.09 0.003 0 0 0 0 0 0
500 0.988 0.798 0.054 0.001 0 0 0 0 0 0

Figure 5.3 – Missed detection rates with the "spiral" dataset

however that the observation of small type-II errors is amplified by loosely controlled type-I

errors for large γ or p, since a larger Type-I error entails a smaller Type-II error.

The same experiments were conducted when using Nyström and Random Kitchen Sinks

approximations as in Section 5.2.2. For Nyström method, false alarm and missed detection

rates were measured for the same range of values of γ and p as above, in a first time for a

small rank r = 50 and in the second time for a larger rank r = 400. The same was done for

RKS with r = 50 and r = 300. The results are shown in Figures 5.4 to 5.7. When r is large

enough (r = 400 for Nyström and r = 300 for RKS), performances comparable to those without

Gram matrix approximation are observed. For Nyström with r = 400, choosing 25 6 γ 6 50 and

p = 2 yields false alarm rates of about 0.6 and a missed detection rate below 0.01. Similarly

for RKS with r = 300, setting γ = 50 and p = 2 yields a false alarm rate of 0.06 and a missed
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detection rate of 0.009. As long as r is large enough, the parameters γ and p show similar effects

as previously, that is increasing γ and/or p decreases the missed detection rate and increases

the false error rate. In particular the effect of a larger p on the false error rate seems to be more

visible when Nyström/RKS approximation are used. This may be due to the fact that such an

approximation implicitly consists in projecting embedded data onto a low-dimensional subspace

in the RKHS (for instance, the subspace spanned by a small subsample of the embedded dataset

for Nyström method). Therefore before projecting onto Vn, the projected points does not lie

in a high-dimensional RKHS but in a low-dimensional subspace of this RKHS, and this low

dimensionality may prevent the weak convergence to a SMG from occurring hence the less

controlled false alarm rates when p is not negligible compared to r.

All in all when it comes to calibrating γ and p, only false alarm rate control matters, since γ

and p can be set as large as wanted when only considering missed detection error. In other words,

optimizing the parameters is only constrained by false alarm rate control. This is advantageous

since false alarm rate is related to the inlier distribution which is accessible as many inliers are

available unlike outliers. A tuning procedure is proposed in details later in Section 5.5.



108 CHAPTER 5. A New Method for Online Outlier Detection

γ 5 25 50 100 1000
p = 2 0.044 0.032 0.012 0.001 0

10 0.060 0.010 0.001 0 0
25 0.058 0.008 0 0 0
50 0.065 0.007 0 0 0

100 0.062 0.009 0 0 0
500 0.056 0.009 0 0 0

γ 5 25 50 100 1000
p = 2 0.819 0.124 0.065 0.058 0.119

10 0.465 0.048 0.047 0.055 0.071
25 0.273 0.060 0.044 0.068 0.070
50 0.153 0.046 0.063 0.068 0.077

100 0.115 0.035 0.044 0.047 0.085
500 0.090 0.062 0.058 0.063 0.091

Figure 5.4 – False alarm rates (left) and missed detection rates (right) with the "spiral" dataset
and the Nyström approximation with r = 50

γ 5 25 50 100 1000
p = 2 0.053 0.060 0.061 0.098 0.137

10 0.065 0.074 0.084 0.192 0.230
25 0.078 0.086 0.098 0.225 0.256
50 0.068 0.087 0.102 0.238 0.260

100 0.074 0.089 0.108 0.251 0.259
500 0.072 0.096 0.111 0.255 0.269

γ 5 25 50 100 1000
p = 2 0.059 0.009 0.003 0 0

10 0.006 0 0 0 0
25 0.001 0 0 0 0
50 0 0 0 0 0

100 0 0 0 0 0
500 0 0 0 0 0

Figure 5.5 – False alarm rates (left) and missed detection rates (right) with the "spiral" dataset
and the Nyström approximation with r = 400

γ 5 25 50 100 1000
p = 2 0.062 0.072 0.080 0.100 0.406

10 0.082 0.143 0.206 0.323 0.888
25 0.117 0.209 0.294 0.484 0.971
50 0.110 0.255 0.392 0.566 0.991

100 0.132 0.313 0.442 0.623 0.997
500 0.151 0.379 0.503 0.679 1

γ 5 25 50 100 1000
p = 2 0.801 0.044 0.007 0.001 0

10 0.395 0.002 0 0 0
25 0.165 0 0 0 0
50 0.097 0 0 0 0

100 0.063 0 0 0 0
500 0.043 0 0 0 0

Figure 5.6 – False alarm rates (left) and missed detection rates (right) with the "spiral" dataset
and Random Kitchen Sinks approximation with r = 50

γ 5 25 50 100 1000
p = 2 0.057 0.053 0.060 0.073 0.250

10 0.060 0.080 0.094 0.127 0.524
25 0.071 0.090 0.110 0.163 0.637
50 0.072 0.093 0.136 0.181 0.682

100 0.073 0.098 0.135 0.189 0.705
500 0.075 0.108 0.147 0.201 0.726

γ 5 25 50 100 1000
p = 2 0.820 0.054 0.009 0.001 0

10 0.446 0.005 0 0 0
25 0.222 0.001 0 0 0
50 0.133 0 0 0 0

100 0.087 0 0 0 0
500 0.058 0 0 0 0

Figure 5.7 – False alarm rates (left) and missed detection rates (right) with the "spiral" dataset
and Random Kitchen Sinks approximation with r = 300

5.4.2 Comparison with other methods

We compare our OD method with the two existing OD methods presented in Section 5.1.2,

that are oc-SVM and kernel PCA. These two latter methods use the same Gaussian RBF kernel
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Figure 5.8 – ROC curves for our OD method (blue), oc-SVM (red) and kernel PCA (green), tested
on synthetic "Spiral" dataset (left plot) and real-life "Cancer" dataset (right plot).

with parameter γ > 0 as ours. This comparison is done according to two criteria: detection

performance and execution time.

Detection performance

To assess the detection performances of the three competing methods, we applied them to two

different datasets:

• Synthetic dataset: it is the same "spiral" dataset as the one used in Section 5.4.1. The

training set contains n = 500 inliers, and the tested set contains 200 inliers and 200 outliers.

• Real-life dataset: it is the "cancer" dataset from the UCI machine learning repository 1. It

consists of 569 instances split into two groups, one with 357 instances labeled "benign"

— these will be the inliers — and 112 instances labeled "malignant" — the outliers. Each

instance is described by 10 covariates, and each covariate has been renormalized to have

unit variance. The training set contains n = 200 instances, which yields a tested set with

157 inliers and 112 outliers.

For each method and dataset, a ROC curve is produced. For our method and kernel PCA, it

consists in considering a varying threshold τ > 0 and rejects each tested observation X if and only

if Sn(X) < τ or RE(X) > τ . For the oc-SVM, the parameter ν is set at several values spanning the

interval (0,1]. Varying τ or ν yields couples of false positives/true positives pairs that constitutes

the ROC curve.

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Besides, each method is applied several times for several different values of its parameter, and

the chosen parameters are those that maximize the AUC (area under curve). Namely, our method

is parameterized by the pair (γ,p) that has optimal values (100,50) for the "spiral" dataset and

(0.05,100) for the "cancer" dataset. Oc-SVM is only parameterized by γ that is optimal at γ = 3

for "spiral" and 0.05 for "cancer". Finally kernel PCA is parameterized by (γ,p) where p is the

number of kept principal component, with optimal values (50,50) for "spiral" and (0.8,5) for

"cancer".

Obtained ROC curves are displayed in Figure 5.8. One important observation to make is that

the ROC curve of oc-SVM does not go below a certain level of false positive rate. For instance, it

stays above approximately 0.07 for "spiral" and 0.10 for "cancer". Remember that ν controls the

proportion of declared outliers in the training set. However when ν is set close to 0, the actual

proportion of declared outliers among the tested actual outliers tends to increase back to large

values instead of tending to 0. This shows empirically the lack of control on the false alarm error

when using oc-SVM.

As for performance, it can be readily observed that oc-SVM yields a smaller AUC than kernel

PCA — as expected — and our method on both datasets. Depending on the dataset, kernel PCA

achieves a slightly larger AUC ("spiral" dataset) or our method performs better ("cancer" dataset).

In either case, the gap between the two methods is relatively small.

In order to decide between our method and kernel PCA, let us take a look at computation

costs.

Execution time

In Figure 5.9, the execution time (in seconds) of the three competing methods are represented

with respect to n. In addition, the version of our procedure using Nyström approximation

and Random Kitchen Sinks are also represented. The parameter r — the rank of the low-rank

approximation of the Gram matrix in Nyström method and RKS — is set at r = 50. As expected,

kernel PCA is the most time-consuming method, with a running time up to 5 times larger than

our procedure when n = 3000. Nyström method and RKS improves on the computational cost of

our method, reducing the execution times up to about 2 times. Finally, oc-SVM is the fastest of

all compared methods, achieving a 2 seconds running time when n = 3000.

As discussed in Section 5.1.2 when introducing kernel PCA, the high computational cost of

kernel PCA is due to the eigen-decomposition of the Gram matrix which is of order O(n3). On

the other hand, we saw in Section 5.2.2 that the most time-consuming step in our procedure is

the estimation of the p-value P̂V(X) because of the computation of the quantities Σγ,−i(Xi ,Xi) for

i = 1, . . . ,n, which all in all costs O(n2) in time but still outperforms kernel PCA computationally

speaking. Nyström method or RKS reduces this computational cost down to O(nr2) where r

is the rank of the approximate Gram matrix. Note that Nyström method or RKS can also be

applied to kernel PCA, however using a low-rank approximate Gram matrix restricts the number

of possible kept principal components.
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Figure 5.9 – Execution times (in seconds) with respect to n of our OD method (blue, solid),
our method combined with Nyström approximation (cyan, dashed), our methods combined
with Random Kitchen Sinks (dark blue, dotted), oc-SVM (red, dot-dash) and kernel PCA (green,
long-dashed).

5.5 Parameter selection

This section presents a procedure to select the parameters γ and p of our OD method in practice.

In Section 5.4.1, it was observed that optimal parameters are mostly linked to false alarm rate

control. Thus the parameters can be chosen solely on the basis of the inliers sample X1, . . . ,Xn ∼ P .

Let I = {1, . . . ,n0} be indexes of a subsample of X1, . . . ,Xn with n0 < n. For every i ∈ I ,

let si = Sn−n0
(Xi) be the OD statistic applied to Xi when using the subsample {Xj }j<I as the

inliers sample. Our selection procedure relies on a Kolmogorov-Smirnov-like statistic KS(γ,p)

that compares the empirical cumulative distribution function (cdf) of s(1), . . . , s(n0) to the cdf of

ŝ2Q2 where ŝ2 follows the empirical distribution of {ŝi}16i6n as defined in Section 5.2.2 and is

independent of Q2 ∼ χ2(p). Namely, KS(γ,p) is defined as

KS(γ,p) = sup
t>0

∣∣∣∣∣∣∣∣ 1
n0

n0∑
i=1

11{s(i)6t} −
1
n

n∑
j=1

Fχ2(p)

(
t
ŝj

) ∣∣∣∣∣∣∣∣
=

n0max
i=0

∣∣∣∣∣∣∣∣ in0
− 1
n

n∑
j=1

Fχ2(p)

(
s(i+1)

ŝj

)∣∣∣∣∣∣∣∣∨
∣∣∣∣∣∣∣∣ in0
− 1
n

n∑
j=1

Fχ2(p)

(
s(i)
ŝj

)∣∣∣∣∣∣∣∣ ,
where Fχ2(p) denotes the cdf of the χ2(p) distribution and s(0) 6 s(1) 6 . . . 6 s(n0+1) are the ordered

s1, . . . , sn with s(0) = 0 and s(n0+1) = +∞.

Given a range of parameter values γ1 < γ2 < . . . < γm and p1 < p2 < . . . < pq, we compute every

quantity KS(γj ,pl) for every 1 6 j 6m and 1 6 l 6 q. For each fixed pl , the plot {KS(γj ,pl)}16j6m
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Figure 5.10 – Values of K̃S(γ,p) for several values of γ and p in the case of the "spiral" dataset

is smoothed out by computing the moving averages K̃S(γj ,pl) = (1/2T )
∑T
k=−T KS(γj + k,pl) for

every 1 + T 6 j 6m− T and some T > 0.

We computed the KS(γj ,pl) for the "spiral" dataset of section 5.4.1 with n0 = n/2 = 250. The

obtained smoothed out curves {K̃S(γj ,pl)}j,l are displayed in Figure 5.10. In our experiment γ

takes values ranging from 1 to 300 (2000 different values within [1;100], 100 within [100;200]

and 50 within [200;300]), p is ranging from 2 to 500 and we set T = 200.

For each fixed p, the curve {K̃S(γj ,p)}j describes a convex function, hence admitting a global

minimum at some γ = γ∗(p). Hence it would be natural to choose γ∗(p) as the optimal γ for

a fixed p. However the statistics s1, . . . , sn0
were calculated on the basis of an inlier sample of

smaller size n−n0 < n. To get a more accurate optimal γ for an inlier sample of full size n, we

propose to multiply γ∗(p) by a correction term (n/(n − n0))1/(2s) where s is the same quantity

occurring in (5.3.8). Indeed in Section 5.3.1 it was suggested that the optimal γ had the form

γ∗ = Cn1/(2s) for some constant C > 0. Finally the optimal pair (γ∗,p∗) is chosen as

p∗ ∈ argmin
16l6q

{K̃S(γ∗(pl),pl)} and γ∗ =
(

n
n−n0

)1/(2s)

γ∗(p∗) .

Note that when X = R
D endowed with the Euclidean metric, s is readily given as s = D/2

according to Proposition 4.3.2 in Chapter 4.

In our simulations, we found p∗ = 2 and γ∗ = (500/250)1/268 ' 96.17 as optimal values.

According to the results in Figure 5.3, this corresponds to a false alarm rate around 0.062 and a
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missed detection rate around 0.009.

5.A Technical details

5.A.1 Proof of Theorem 5.3.1

Let α ∈ (0,1) be the prescribed level of confidence and τα the α-quantile of the distribution of

s2Q2 where Q2 ∼ χ2(p).

The goal is to find an upper bound for the gap between α and the actual false alarm rate

P(Sn(X) < τα). Introducing the notation Bα that denotes the ball of Rp centered around 0 and of

radius τ1/2 and G ∼N (0, Ip),

P(Sn(X) < τα) = α +P(Sn(X) < τα)−α

= α +P(γs/2pVn(X) ∈ Bα)−P(sG ∈ Bα)

= α +EX,h,s,G

{
11Bα (γs/2pVn(X))− 11Bα (sG)

}
.

Standard calculations entail that the Fourier transform of 11Bα (·) is (2π)p/2
∫

11Bα (x)e−iξ
>x =

τ
p/2
α ‖ξ‖−p/2Jp/2(τα‖ξ‖)

∆= g(ξ) for every ξ ∈Rp, where Jp/2(·) denotes the Bessel function of the first

kind Jp/2(t) = (t/2)p/2√
piΓ ((p+1)/2)

∫ π
0 sinp(y)e−it cos(y)dy. Since g(ξ) is an integrable function of ξ, 11Bα (·)

is the inverse Fourier transform of g that is 11Bα (x) = (τα/2π)p/2
∫
‖ξ‖−p/2Jp/2(τα‖ξ‖)eix

>ξdξ.

It follows

P(Sn(X) < τα) = α +EX,X1,...,Xn,h,s,G

{
(τα/2π)p/2

∫
‖ξ‖−p/2Jp/2(τα‖ξ‖)

[
eiγ

s/2ξ>pVn (X) − eisξ
>G

]
dξ

}
=

Fubini
α + (τα/2π)p/2

∫
‖ξ‖−p/2Jp/2(τα‖ξ‖)

[
EX,X1,...,Xn,he

iγs/2ξ>pVn (X) −Es,Geisξ
>G

]
dξ

(5.A.11)

= α + (τα/2π)p/2
∫
‖ξ‖−p/2Jp/2(τα‖ξ‖)

[
EX,X1,...,Xne

− γ
s

2 Σγ,n(X,X)‖ξ‖2 −EXe−
γs

2 Σγ (X,X)‖ξ‖2
]
dξ

6 α +
1
2

(τα/2π)p/2
(∫
‖ξ‖−p/2+2|Jp/2(τα‖ξ‖)|dξ

)
EX,X1,...,Xn

[
γs |Σγ,n(X,X)−Σγ (X,X)|

]
,

since x 7→ e−x/2 is a 1/2-Lipschitz function, which yields more simply

P(Sn(X) < τα) 6 α +Cpτ
−2
α EX,X1,...,Xn

[
γs |Σγ,n(X,X)−Σγ (X,X)|

]
, (5.A.12)

where Cp = (1/2)(2π)−p/2
∫
‖ξ‖−p/2+2|Jp/2(‖ξ‖)|dξ after a change of variable was made.

Fixing X, Lemma A.2.4 provides the following inequality that holds on the event ΩX with



114 CHAPTER 5. A New Method for Online Outlier Detection

probability larger than 1− δ over the sample X1, . . . ,Xn

γs |Σγ,n(X,X)−Σγ (X,X)| 6 γsΣγ (X,X)

√
2log(1/δ)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n
[1 + oγ (1)]

 ,
which combined with Lemma A.2.1 yields

γs |Σγ,n(X,X)−Σγ (X,X)| 6 A(X)

√
2log(1/δ)Γ (s+ 1)γs

an

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n

 {1 + oγ (1)} .

(5.A.13)

Plugging (5.A.13) into (5.A.12) and conditioning with respect to ΩX leads to

P(Sn(X) < τα) 6 α +Cpτ
−2
α EX

{
EX1,...,Xn

[
γs |Σγ,n(X,X)−Σγ (X,X)|

∣∣∣∣ΩX

]
+ 2γsδ

}
6 α +Cpτ

−2
α EX [A(X)]

√
2log(1/δ)Γ (s+ 1)γs

an

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n

 {1 + oγ (1)}

+ 2Cpτ
−2
α γsδ , (5.A.14)

where we used the inequality |Σγ,n(X,X)−Σγ (X,X)| 6 2. This leads to the result of the lemma.

Note that we could have tried to plug directly the upper bound of Theorem 4.3.5 into (5.A.11)

in the following way

P(Sn(X) < τα) = α + (τα/2π)p/2
∫
‖ξ‖−p/2Jp/2(τα‖ξ‖)

[
EX,he

iγs/2ξ>pVn (X) −Es,Geisξ
>G

]
dξ

6 α + (τα/2π)p/2
∫
‖ξ‖−p/2|Jp/2(τα‖ξ‖)|

∣∣∣φγspVn (X)(ξ)−φsG(ξ)
∣∣∣dξ

6 α + (τα/2π)p/2
(∫
‖ξ‖−p |Jp/2(τα‖ξ‖)|2

∣∣∣φγspVn (X)(ξ)−φsG(ξ)
∣∣∣2 dξ

)1/2

= α +C∆(γspVn(X),sG) ,

where φU denotes the characteristic function for any random variable U and C is some constant.

Theorem 4.3.5 asserts an inequality of the form ∆2(γspVn(X),sG) 6 C1γ
−s/2 +C2γ

s/2n−1/2 for

some constants C1 and C2. However setting γ ∝ n1/(2s) to minimize this upper bound would

entail a convergence of the actual false alarm rate to α of order O(n−1/8) which is very slow. On

the other hand, (5.A.14) yields for γ ∝ n1/(2s) a convergence of order O(
√

log(n)n−1/4).

5.A.2 Proof of Theorem 5.3.2

We must derive an upper bound for the probability P

(
P V (X) > α

∣∣∣∣ H1

)
which can be also ex-

pressed as P
(
Sn(X) > τα

∣∣∣∣ H1

)
where τα satisfies P(s2Q2 < τα) = α.
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For every j = 1, . . . ,p, let hj = (1/
√
n)

∑n
i=1u

(j)
k kγ (Xi , ·) where u(j)

1 , . . . ,u
(j)
n ∼ N (0,1) indepen-

dently so that h1, . . . ,hp are independent zero-mean Gaussian processes with covariance function

Σγ,n(·, ·) = (1/n)
∑n
i=1 kγ (Xi , ·)kγ (Xi , ·). Let d(x) = inf{‖x − y‖ : y ∈ supp(P )} denotes the distance

between x and the support of P .

Then,

Sn(X) = γs‖pVn(X)‖2 = γs
p∑
j=1

〈hj , kγ (X, ·)〉2H(kγ ) = (γs/n)
p∑
j=1

n∑
k,l=1

u
(j)
k u

(j)
l e
−γ(d2(X,Xi )+d2(X,Xj ))

6 (γs/n)
p∑
j=1

n∑
k,l=1

|u(j)
k ||u

(j)
l |e

−2γd2(X)

6 γs
p∑
j=1

n∑
l=1

[u(j)
l ]2e−2γd2(X)

6 γsnp[1 + εn]e−2γd2(X) ,

where εn = oP (1) as n→ +∞ because of the Law of Large Numbers.

Let us bound 1 + εn with high probability. For any δ > 0 and λ ∈ (0,np/2), exponential

Markov’s inequality yields

P (1 + ε > δ) = PV 2∼χ2(np)

(
V 2 > npδ

)
6 EV 2eλV

2
e−λnpδ = (1− 2λnp)−np/2e−λnpδ ,

which is minimized at λ = 1/(2δ) − 1/(2np). Therefore for any δ ∈
(

np
(np)2+1 ,np

)
, the event Bδ

defined by

Bδ = {1 + ε 6 δ} ,

holds with probability larger than 1− (2−np/δ)−np/2e−(np−δ)/2.

From now on we assume that the event Bδ holds true. Therefore

P (Sn(X) > τα) 6 P
(
d2(X) <

log(γsnpδ) + log(1/τα)
2γ

)
.

By Lemma A.2.1 and writing a = inf{A(x) : x ∈ supp(P )} > 0 and X1 ∼ P ,

s2 = γsΣγ (X1,X1) =
A(X1)Γ (s+ 1)

2s
[1 +A−1(X1)oγ (1)]

>
aΓ (s+ 1)

2s
[1 + oγ (1)] ,
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which leads to

τα >
aΓ (s+ 1)F−1

χ2(p)(α)

2s
[1 + oγ (1)] ,

where F−1
χ2(p) denotes the quantile function of the χ2(p) distribution.

Therefore introducing F as the c.d.f. of d2(X)

P (Sn(X) > τα) 6 EεnF


log(npδ) + s log(2γ) + log

(
1

aΓ (s+1)

)
+ log

(
1

F−1
χ2(p)

(α)

)
+ oγ (1)

2γ

 .
By the exponential Markov’s inequality for any λ > 0

α = Fχ2(p)(F
−1
χ2(p)(α)) 6 e

λF−1
χ2(p)

(α)
EV 2∼χ2(p)e

−λV 2
= e

λF−1
χ2(p)

(α)
(1 + 2λ)−p/2 ,

hence setting λ such that (1/2)log(1 + 2λ) = log(1/α)/p+ ε for some ε > 0

log

 p

F−1
χ2(p)(α)

 6 log
(

pλ

(p/2)log(1 + 2λ)− log(1/α)

)
= log

(
e(2/p) log(1/α)+2ε − 1

2ε

)
6 (2/p) log(1/α) + 2ε+ log

(
1 +

log(1/α)
pε

)
6

(2 + 1/ε) log(1/α)
p

+ 2ε

=
2log(1/α)

p
+ 2

√
2log(1/α)

p
,

where we used the inequalities ex − 1 6 xex and log(1 + x) 6 x and set ε =
√

log(1/α)/(2p) to

minimize the bound.

This leads to

P (Sn(X) > τα) 6 F

 log(n) + s log(2γ) + log
(

1
aΓ (s+1)

)
+ 2log(1/α)

p + 2
√

2log(1/α)
p + log(δ) + oγ (1)

2γ

 ,
hence proving Theorem 5.3.2.



Chapter6
A One-Sample Test for Normality in

Hilbert Spaces

This chapter presents a test for normality in general Hilbert spaces (including RKHS) based

on the maximum mean discrepancy (MMD). It can be read independently of Chapter 4 and

Chapter 5.

6.1 Introduction

Non-vectorial data such as DNA sequences or pictures often require a positive definite kernel k

so that further analysis is then carried out in the associated reproducing kernel Hilbert space

(RKHS) H(k) where data are embedded into through the feature map x 7→ k(x, .). For many

applications, kernelized data — or even more general high-dimensional data — are assumed

to fit a specific type of distribution, often a Gaussian distribution. For instance supervised and

unsupervised classification are performed in [BFG15] by modeling each class as a Gaussian

process. In [Rot06], outliers are detected by modelling embedded data as a Gaussian random

variable and by removing points lying in the tails of that Gaussian distribution. This key

assumption is also made in [SKK13] where a mean equality test is used in high-dimensional

setting. Moreover, Principal Component Analysis (PCA) and its kernelized version Kernel PCA

[SSM97] are known to be optimal for Gaussian data as these methods rely on second-order

statistics (covariance). Besides, a Gaussian assumption allows to use Expectation-Minimization

(EM) techniques to speed up PCA [Row98].

Depending on the (finite or infinite dimensional) structure of the RKHS, Cramer-von-Mises-

type normality tests can be applied, such as Mardia’s skewness test [Mar70], the Henze-Zirkler

test [HZ90] and the Energy-distance test [SR05]. However these tests become less powerful

as dimension increases (see Table 3 in [SR05]). An alternative approach consists in randomly

117
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projecting high-dimensional objects on one-dimensional directions and then applying univariate

test on a few randomly chosen marginals [Cue+06]. This projection pursuit method has the

advantage of being suited to high-dimensional settings. On the other hand, such approaches

also suffer a lack of power because of the limited number of considered directions (see Section

4.2 in [Cue+06]).

[Gre+07a] introduced the Maximum Mean Discrepancy (MMD) which quantifies the gap

between two distributions through distances between two corresponding elements in an RKHS.

The MMD approach has been used for two-sample testing [Gre+07a] and for independence test-

ing (Hilbert Space Independence Criterion, [Gre+07b]). However to the best of our knowledge,

MMD has not been applied in a one-sample goodness-of-fit testing framework.

Our main contribution presented in this chapter is to devise a one-sample statistical test of

normality for data taking values in an RKHS, by means of the MMD principle. This implies that

we will consider a second kernel k̄ defined on H(k) and handle elements in the second RKHS

H(k̄) to build our MMD-based test. However it must be remarked that our test also suits the case

where H(k) is replaced by a more general Hilbert space. Therefore to avoid confusion due to this

two levels of RKHS, we present our test as dealing with data in a general Hilbert space.

Our test features two possible applications: testing the normality of the data but also

testing parameters (mean and covariance) if data are assumed Gaussian. The latter application

encompasses many current methods that assume normality to make inferences on parameters,

for instance to test the nullity of the mean [SKK13] or to assess the sparse structure of the

covariance [SW03; BT11].

Once the test statistic is defined, a critical value is needed to decide whether to accept or reject

the Gaussian hypothesis. In goodness-of-fit testing, this critical value is typically estimated by

parametric bootstrap. Unfortunately, parametric bootstrap requires parameters to be computed

several times, hence heavy computational costs (i.e. diagonalization of covariance matrices). Our

test bypasses the recomputation of parameters by implementing a faster version of parametric

bootstrap. Following the idea of [KY12], this fast bootstrap method "linearizes" the test statistic

through a Fréchet derivative approximation and thus can estimate the critical value by a weighted
bootstrap (in the sense of [Bur00]) which is computationally more efficient. Furthermore our

version of this bootstrap method allows parameters estimators that are not explicitly "linear" (i.e.
that consist of a sum of independent terms) and that take values in possible infinite-dimensional

Hilbert spaces.

Finally, we illustrate our test and present a sequential procedure that assesses the rank of a

covariance operator. The problem of covariance rank estimation is adressed in several domains:

functional regression [CJ10; BMR13], classification [Zwa05] and dimension reduction methods

such as PCA, Kernel PCA and Non-Gaussian Component Analysis [Bla+06; Die+10; DJS13]

where the dimension of the kept subspace is a crucial problem.

Here is the outline of the chapter. Section 6.2 sets our framework and Section 6.3 recalls the

notion of MMD and how it is used for our one-sample test. The new normality test is described
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in Section 6.4, while both its theoretical and empirical performances are detailed in Section 6.5

in terms of control of Type-I and Type-II errors. A sequential procedure to select covariance rank

is presented in Section 6.6.

6.2 Framework

Let (H,A) be a measurable space, and Y1, . . . ,Yn ∈ H denote a sample of independent and identically
distributed (i.i.d.) random variables drawn from an unknown distribution P ∈ P , where P is a set

of distributions defined on A.

In our framework, H is a separable Hilbert space endowed with a dot product 〈 . , . 〉H and

the associated norm ‖.‖H (defined by ‖h‖H = 〈h,h〉1/2H for any h ∈ H). Our goal is to test whether

Yi is a Gaussian random element (r.e.) of H. A Gaussian r.e. in a general Hilbert space is defined

similarly as a Gaussian r.e. in an RKHS (see Definition 3.1.4).

Definition 6.2.1. (Gaussian random element in a Hilbert space)
Let (Ω,F ,P) a measure space, (H,F ′) a measurable space whereH is a Hilbert space, and Y :Ω→H
a measurable map.
Y is a Gaussian r.e. of H if 〈Y ,h〉H is a univariate Gaussian random variable for any h ∈ H.
Assuming that EY ||Y ||H < +∞, there exists m ∈ H such that:

∀h ∈ H, 〈m,h〉H = EY 〈Y ,h〉H ,

and a (finite trace) operator Σ :H→H satisfying:

∀h,h′ ∈ H, 〈Σh,h′〉H = cov(〈Y ,h〉H,〈Y ,h′〉H) .

m and Σ are respectively the mean and the covariance operator of Y . The distribution of Y is denoted
N (m,Σ).

More precisely, the tested hypothesis is that Yi follows a Gaussian distribution N (m0,Σ0),

where (m0,Σ0) ∈ Θ0 and Θ0 is a subset of the parameter space Θ. 1 Following [LR05], let us

define the null hypothesis H0 : P ∈ P0, and the alternative hypothesis H1 : P < P \P0 where the

subset of null-hypotheses P0 ⊆ P is

P0 = {N (m0,Σ0) | (m0,Σ0) ∈Θ0} .

The purpose of a statistical test T (Y1, . . . ,Yn) of H0 against H1 is to distinguish between the

null (H0) and the alternative (H1) hypotheses. It requires two elements: a statistic n∆̂2 (which

1The parameter space Θ is endowed with the dot product 〈(m,Σ), (m′ ,Σ′)〉Θ = 〈m,m′〉H + 〈Σ,Σ′〉HS(H), where HS(H)
is the space of Hilbert-Schmidt (finite trace) operators H→H and 〈Σ,Σ′〉HS(H) =

∑
i≥1〈Σei ,Σ′ei〉H for any complete

orthonormal basis (ei )i≥1 of H. Therefore, for any θ ∈Θ, the tensor product θ⊗2 is defined as the operator Θ→Θ,θ′ 7→
〈θ,θ′〉Θθ. For any θ ∈Θ and h̄ ∈H(k̄), the tensor product h̄⊗θ is the operator Θ→H(k̄),θ′ 7→ 〈θ,θ′〉Θ h̄.
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we define in Section 6.4.1) that measures the gap between the empirical distribution of the

data and the considered family of normal distributions P0, and a rejection region Rα (at a

level of confidence 0 < α < 1). H0 is accepted if and only if n∆̂2 < Rα . The rejection region is

determined by the distribution of n∆̂2 under the null-hypothesis such that the probability of

wrongly rejecting H0 (Type-I error) is controlled by α.

6.3 Characteristic kernels on a Hilbert space

Within our framework the goal is to compare P the true distribution of the data with a Gaussian

distribution P0 =N (m0,Σ0) for some (m0,Σ0) ∈Θ0. To achieve this goal, we rely on the notion of

Maximum Mean Discrepancy (MMD) introduced previously in Section 2.3.3. Given a charac-

teristic kernel k̄ on H, we consider the following Hilbert space embedding of distributions of

H

µ̄ :M+
1,k̄

(H)→H(k̄), P 7→ µ̄P =
∫
k̄(h, ·)P (dh) ,

whereM+
1,k̄

(H) ⊆M+
1 (H) whereM+

1 (H) denotes the set of probability measures onH andM+
1,k̄

(H)

is the subset of probability measures P on H for which µ̄P is well defined.

Hence the quantity of interest is

∆2 =
∥∥∥µ̄P − µ̄P0

∥∥∥2
H(k̄)

. (6.3.1)

For the sake of simplicity, we use the notation

µ̄N (m,Σ) =N [m,Σ]

to denote the Hilbert space embedding of a Gaussian distribution.

It remains to choose a kernel k̄ defined on the Hilbert space H that is characteristic. Several

criteria for a kernel to be characteristic have been investigated [Fuk+09; Sri+10; CS10; SFL11].

However most of these criteria are relevant for input spaces such as compact topological spaces,

R
d with a finite d ∈N∗ or more generally locally compact Haussdorf spaces. The only exception

is the case of integrally strictly positive definite kernels 2(see Theorem 7 in [Sri+10]) defined on

a general topological space, but proving that a kernel is integrally strictly positive definite may

be a difficult task.

In the following, we introduce two examples of kernels defined on the Hilbert space H and

show that they are characteristic. Firstly, we consider the exponential kernel

∀x,y ∈ H, k̄(x,y) = exp(〈x,y〉H) .

2A kernel k̄ :H×H→R is said integrally strictly definite positive iff
∫
k̄(x,y)µ(dx)µ(dy) > 0 for every finite non-zero

signed Borel measure µ on H.
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Secondly, we cover the case of the Gaussian RBF kernel

∀x,y ∈ H, k̄(x,y) = exp
(
−γ‖x − y‖2H

)
,

parameterized by γ .

Proposition 6.3.1 (Exponential kernel). The exponential kernel k̄(x,y) = exp(〈x,y〉H) defined on a
separable Hilbert space H is characteristic (for the class of probability measures P for which µ̄P is well
defined).

Proposition 6.3.1. Let C > 1. Cauchy-Schwarz’s inequality entails

C‖µ̄P − µ̄Q‖2H(k̄)
= sup
g∈H(k̄), ‖g‖H(k̄)61

C
∣∣∣〈g, µ̄P − µ̄Q〉H(k̄)

∣∣∣
= sup
g∈H(k̄), ‖g‖H(k̄)6C

∣∣∣EX∼P g(X)−EY∼Qg(Y )
∣∣∣

> sup
‖w‖H=1, 06t6

√
2log(C)

∣∣∣EX∼P et〈X,w〉H −EY∼Qet〈Y ,w〉H ∣∣∣ ,
where we restricted ourselves to functions g of the form g = et〈w,·〉H to get the last inequality.

Therefore if ∆(P ,Q) = 0 then
∣∣∣EX∼P et〈X,w〉H −EY∼Qet〈Y ,w〉H ∣∣∣ = 0 for every ‖w‖H = 1 and 0 6

t 6
√

2log(C). It follows that every marginals 〈X,w〉H and 〈Y ,w〉H follow the same univariate

distribution. Finally since H is a separable Hilbert space, the Cramer-Wald theorem ([Cue+06],

Proposition 2.1) entails that P =Q.

Proposition 6.3.2 (Gaussian kernel). Let k̄(x,y) = exp(−γ‖x−y‖2H) be a Gaussian kernel with γ > 0

and assume that H is a separable Hilbert space. Then k̄ is a characteristic kernel.

Proof of Proposition 6.3.2. Since H is assumed separable, there exists an orthonormal Hilbertian

basis (ei)i>1 ofH. Consider some operator T :H→H defined by T =
∑
i>1ϕie

⊗2
i where

∑
i>1ϕi <

+∞ and ϕi > 0 for every i > 1. Then there exists a zero-mean Gaussian process G with covariance

operator 2γT that is well defined in H (since 2γT has a finite trace). The first step of the proof

consists in proving that the "proxy" kernel k̄T (x,y) = exp(−γ‖T 1/2(x − y)‖2H) defined on H is

characteristic — here T 1/2 =
∑
i>1ϕ

1/2
i e⊗2

i . Following Theorem 7 from [Sri+10], it suffices to

prove that k̄T is integrally strictly positive definite, that is
∫ ∫

k̄T (x,y)ν(dx)ν(dy) > 0 for every

non-zero signed Borel measure ν on H. Let ν be such a measure,∫ ∫
k̄T (x,y)ν(dx)ν(dy) =

∫ ∫
EG

{
ei〈x−y,G〉H

}
ν(dx)ν(dy)

= EG |ϕν(G)|2 > 0 (6.3.2)

where ϕν(G) =
∫
ei〈x,G〉Hν(dx) denotes the Fourier transform of the measure ν.
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Algorithm 1 Kernel Normality Test procedure

Input: Y1, . . . ,Yn ∈ H, k̄ :H×H→R (kernel) and 0 < α < 1 (test level).

1. Compute K =
[
〈Yi ,Yj〉

]
i,j

(Gram matrix).

2. Compute n∆̂2 (test statistic) from (6.4.3) that depends on K and k̄ (Section 6.4.1)

3. (a) Draw B (approximate) independent copies of n∆̂2 under H0 by fast parametric
bootstrap (Section 6.4.2).

(b) Compute q̂α,n (1−α quantile of n∆̂2 under H0) from these replications.

Output: Reject H0 if n∆̂2 > q̂α,n, and accept otherwise.

If (6.3.2) is null, then ϕG is null almost everywhere (with respect to the distribution of G).

Since the eigenvalues `i of T are non-null, the Gaussian distribution of G is supported on the

entire H, therefore ν is a null measure which leads to a contradiction. Thus k̄T is integrally

strictly positive definite, hence characteristic.

In the second step, we relate the embedding µ̄T corresponding to k̄T to the embedding µ

corresponding to the Gaussian kernel k̄(x,y) = exp(−γ‖x − y‖2H). Note that for every probability

measure P on H,

µ̄T [P ](·) = EX∼P k̄T (X, ·) = EX∼P k̄(T 1/2X,T 1/2(·)) = µ̄[T 1/2P ](T 1/2(·)) ,

that is µ̄T = A o µ̄ o B where A : f ∈ H(k̄) 7→ f oT 1/2 and B : P 7→ T 1/2P where T 1/2P is the

probability measure of a random variable T 1/2X with X ∼ P . Since k̄T is characteristic, µ̄T is an

injective map, which entails that µ̄ is also injective and that k̄ is characteristic.

6.4 Kernel normality test

This section introduces our one-sample test for normality based on the quantity (6.3.1). As

said in Section 6.2, we test the null-hypothesis H0 : P ∈ {N (m0,Σ0) | (m0,Σ0) ∈Θ0} where Θ0 is

a subset of the parameter space. Therefore our procedure may be used as test for normality

or a test on parameter if data are assumed Gaussian. The test procedure is summed up in

Algorithm 1.

6.4.1 Test statistic

As in [Gre+07a], ∆2 can be estimated by replacing µ̄P with the sample mean

ˆ̄µP = µ̄P̂ = (1/n)
n∑
i=1

k̄(Yi , .) ,
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where P̂ = (1/n)
∑n
i=1 δYi is the empirical distribution. The null-distribution embeddingN [m0,Σ0]

is estimated by N [m̃, Σ̃] where m̃ and Σ̃ are appropriate and consistent (under H0) estimators of

m0 and Σ0. This yields the estimator

∆̂2 = ‖ ˆ̄µP −N [m̃, Σ̃]‖2
H(k̄)

,

which can be written by expanding the square of the norm and using the reproducing property

of H(k̄) as follows

∆̂2 =
1
n2

n∑
i,j=1

k̄(Yi ,Yj )−
2
n

n∑
i=1

N [m̃, Σ̃](Yi) + ‖N [m̃, Σ̃]‖2
H(k̄)

. (6.4.3)

Proposition 6.4.1 ensures the consistency of the statistic (6.4.3).

Proposition 6.4.1. Assume that P is GaussianN (m0,Σ0) where (m0,Σ0) ∈Θ0 and (m̃, Σ̃) are consis-
tent estimators of (m0,Σ0). Also assume that EP k̄(Y ,Y ) < +∞ and N [m,Σ] is a continuous function
of (m,Σ) on Θ0. Then ∆̂2 is a consistent estimator of ∆2.

Proof. First, note that µ̄P exists since Ek̄(Y ,Y ) < +∞ implies Ek̄1/2(Y ,Y ) < +∞. By the Law of

Large Numbers in Hilbert Spaces [HP76], ˆ̄µP −→n→∞ µ̄P P -almost surely since E‖k̄(Y , ·)− µ̄P ‖2H(k̄)
=

Ek̄(Y ,Y ) −Ek̄(Y ,Y ′) ≤ Ek̄(Y ,Y ) +E
2k̄(Y ,Y ′) < +∞. The continuity of N [m,Σ] (with respect to

(m,Σ)) and the consistency of (m̃, Σ̃) yield N [m̃, Σ̃]
P−a.s.−→
n→∞

N [m0,Σ0] P -a.s.. Finally, the continuity

of ‖ · ‖2H leads to ∆̂2 P−a.s.−→
n→∞

∆2.

The expressions for N [m̃, Σ̃](Yi) and ‖N [m̃, Σ̃]‖2
H(k̄)

in (6.4.3) depend on the choice of k̄. Those

are given by Propositions 6.4.2 and 6.4.3 when k̄ is Gaussian and exponential. Note that in these

cases, the continuity assumption of N [m,Σ] required by Proposition 6.4.1 is satisfied.

Before stating Propositions 6.4.2 and 6.4.3, the following notation is introduced. For a

symmetric operator L :H→H with eigenexpansion L =
∑
r≥1λrΨ

⊗2, its determinant is denoted

|L| =
∏
r≥1λr . For any q ∈R, the operator Lq is defined as Lq =

∑
r≥1λ

q
r11{λr>0}Ψ

⊗2
r .

Proposition 6.4.2. (Gaussian kernel case) Let k̄(., .) = exp(−σ‖.− .‖2H) where σ > 0. Then,

N [m̃, Σ̃](.) = |I + 2σ Σ̃|−1/2 exp
(
−σ ||(I + 2σ Σ̃)−1/2(.− m̃)||2H

)
,

‖N [m̃, Σ̃]‖2
H(k̄)

= |I + 4σ Σ̃|−1/2 .

Proposition 6.4.3. (Exponential kernel case) Let k̄(., .) = exp(〈., .〉H). Assume that the largest eigen-
value of Σ̃ is smaller than 1. Then,

N [m̃, Σ̃](.) = exp
(
〈m̃, .〉H +

1
2
〈Σ̃., .〉H

)
,

||N [m̃, Σ̃]||2 = |I − Σ̃2|−1/2 exp
(
‖(I − Σ̃2)−1/2m̃‖2H

)
.
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The proofs of Propositions 6.4.2 and 6.4.3 are provided in Appendix 6.B.1.

For most estimators (m̃, Σ̃), the quantities provided in Propositions 6.4.3 and 6.4.2 are

computable via the Gram matrix K =
[
〈Yi ,Yj〉H

]
1≤i,j≤n

. For instance, assume that (m̃, Σ̃) are the

classical estimators (m̂, Σ̂) where m̂ = (1/n)
∑n
i=1Yi and Σ̂ = (1/n)

∑n
i=1(Yi − m̂)⊗2. Let In and Jn be

respectively the n×n identity matrix and the n×nmatrix whose all entries equal 1,H = In−(1/n)Jn
and Kc =HKH be the centered Gram matrix. Then for any � ∈R,∣∣∣I +�Σ̂

∣∣∣ = det
(
In +
�

n
Kc

)
,

where det(.) denotes the determinant of a matrix and∥∥∥(I +�Σ̂)−1/2Yi
∥∥∥2
H =

[
(In +
�

n
Kc)
−1

]
i,i

,

where [.]ii denotes the entry in the i-th row and the i-th column of a matrix.

6.4.2 Estimation of the critical value

Designing a test with confidence level 0 < α < 1 requires to compute the 1−α quantile of the

n∆̂2 distribution under H0 denoted by qα,n. Thus qα,n serves as a critical value to decide whether

the test statistic ∆̂2 is significantly close to 0 or not, so that the probability of wrongly rejecting

H0 (Type-I error) is at most α.

Classical parametric bootstrap

In the case of a goodness-of-fit test, a usual way of estimating qα,n is to perform a parametric

bootstrap. Parametric bootstrap consists in generating B samples of n i.i.d. random variables

Y
(b)
1 , . . . ,Y

(b)
n ∼ N (m̃, Σ̃) (b = 1, . . . ,B). Each of these B samples is used to compute a bootstrap

replication

[n∆̂2]b = n‖ ˆ̄µbP −N [m̃b, Σ̃b]‖2
H(k̄)

, (6.4.4)

where ˆ̄µbP , m̃b and Σ̃b are the estimators of µP , m and Σ based on Y b1 , . . . ,Y
b
n .

It is known that parametric bootstrap is asymptotically valid [SMQ93]. Namely, under H0,

∀b = 1, . . . ,B,
(
n∆̂2, [n∆̂2]b

) L−→
n→+∞

(U,U ′) ,

where U and U ′ are i.i.d. random variables. In a nutshell, (6.4.4) is approximately an

independent copy of the test statistic n∆̂2 (under H0). Therefore B replications [n∆̂2]b can be

used to estimate the 1−α quantile qα,n of n∆̂2 under the null-hypothesis.

However, this approach suffers heavy computational costs. In particular, each bootstrap repli-

cation involves the estimators (m̃b, Σ̃b). In our case, this leads to compute the eigendecomposition
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of the B Gram matrices Kb = [〈Y bi ,Y
b
j 〉]i,j of size n×n hence a complexity of order O(Bn3).

Fast parametric bootstrap

This computational limitation is alleviated by means of another strategy described in [KY12].

Let us consider in a first time the case when the estimators of m and Σ are the classical empirical

mean and covariance m̂ = (1/n)
∑n
i=1Yi and Σ̂ = (1/n)

∑n
i=1(Yi − m̂)⊗2. Introducing the Fréchet

derivative [FSG08] D(m,Σ)N at (m,Σ) of the function

N :Θ→H(k̄), (m,Σ) 7→N [m,Σ] ,

our bootstrap method relies on the following approximation

√
n
(

ˆ̄µP −N [m̂, Σ̂]
)
'
√
n

 ˆ̄µP − N [m0,Σ0]︸      ︷︷      ︸
=µ̄P under H0

−D(m0,Σ0)N [m̂−m0, Σ̂−Σ0]


' 1
√
n

n∑
i=1

[k̄(Yi , .)− µ̄P ]

−D(m0,Σ0)N [Yi −m0, (Yi −m0)⊗2 −Σ0] . (6.4.5)

Since (6.4.5) consists of a sum of centered independent terms (under H0), it is possible to generate

approximate independent copies of this sum via weighted bootstrap [Bur00]. Given Zb1 , . . . ,Z
b
n

i.i.d. real random variables of mean zero and unit variance and Z̄b their empirical mean, a

bootstrap replication of (6.4.5) is given by

1
√
n

n∑
i=1

(Zbi − Z̄
b)

{
k̄(Yi , .)−D(m0,Σ0)N [Yi , (Yi −m0)⊗2]

}
. (6.4.6)

Taking the square of the norm of (6.4.6) in H(k̄) and replacing the unknown true parameters m0

and Σ0 by their estimators m̂ and Σ̂ yields the bootstrap replication [n∆̂2]bf ast of n∆̂2

[n∆̂2]bf ast
∆=
∥∥∥∥√n( ˆ̄µbP −D(m̂,Σ̂)N [m̂b, Σ̂b]

)∥∥∥∥2

H(k̄)
, (6.4.7)

where

ˆ̄µbP = (1/n)
n∑
i=1

(Zbi − Z̄
b)k̄(Yi , .) ,

m̂b = (1/n)
n∑
i=1

(Zbi − Z̄
b)Yi ,
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Σ̂b = (1/n)
n∑
i=1

(Zbi − Z̄
b)(Yi − m̂b)⊗2.

Therefore this approach avoids the re-computation of parameters for each bootstrap replica-

tion, hence a computational cost of orderO(Bn2) instead ofO(Bn3). This is illustrated empirically

in the right half of Figure 6.1.

Fast parametric bootstrap for general parameter estimators

The bootstrap method proposed by [KY12] used in Section 6.4.2 requires that the estimators

(m̃, Σ̃) can be written as a sum of independent terms with an additive term which converges to

0 in probability. Formally, (m̃, Σ̃) = (m0,Σ0) + (1/n)
∑n
i=1ψ(Yi) + ε where Eψ(Y ) = 0, Var(ψ(Y )) <

+∞ and ε
P−→

n→+∞
0. However there are some estimators which cannot be written in this form

straightforwardly. This is the case for instance if we test whether data follow a Gaussian with

covariance of fixed rank r (as in Section 6.6). In this example, the associated estimators are

m̃ = m̂ = (1/n)
∑n
i=1Yi (empirical mean) and Σ̃ = Σ̂r =

∑r
s=1 λ̂sΨ̂

⊗2
s where (λ̂s)s and (Ψ̂s)s are the

eigenvalues and eigenvectors of the empirical covariance operator Σ̂ = (1/n)
∑n
i=1(Yi − µ̂)⊗2.

We extend (6.4.7) to the general case when Θ0 , Θ and the estimators (m̃, Σ̃) are not the

classical (m̂, Σ̂). We assume that the estimators (m̃, Σ̃) are functions of the empirical estimators m̂

and Σ̂, namely there exists a differentiable mapping T such that

(m̃, Σ̃) = T (m̂, Σ̂), where T (Θ) ⊆Θ0 and T |Θ0
= IdΘ0

.

Under this definition, (m̃, Σ̃) are consistent estimators of (m,Σ) when (m,Σ) ∈Θ0. This kind of

estimators are met for various choices of the null-hypothesis:

• Unknown mean and covariance: (m̃, Σ̃) = (m̂, Σ̂) and T is the identity map IdΘ ,

• Known mean and covariance: (m̃, Σ̃) = (m0,Σ0) and T is the constant map T (m,Σ) =

(m0,Σ0),

• Known mean and unknown covariance: (m̃, Σ̃) = (m0, Σ̂) and T (m,Σ) = (m0,Σ),

• Unknown mean and covariance of known rank r: (m̃, Σ̃) = (m̂, Σ̂r ) and T (m,Σ) = (m,Σr )

where Σr is the rank r truncation of Σ.

By introducing T , we get a similar approximation as in (6.4.5) by replacing the mapping

N :Θ0→H(k̄) with NoT :Θ0→H(k̄). This leads to the bootstrap replication

[n∆̂2]bf ast :=
∥∥∥∥√n( ˆ̄µbP −D(m̂,Σ̂)(NoT )[m̂b, Σ̂b]

)∥∥∥∥2

H(k̄)
. (6.4.8)

The validity of this bootstrap method is justified in Section 6.4.2.
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Finally we define an estimator q̂α,n of qα,n from the generated B bootstrap replications

[n∆̂2]1
f ast < . . . < [n∆̂2]Bf ast (assuming they are sorted)

q̂α,n = [n∆̂2](b(1−α)Bc) ,

where b.c stands for the integer part. The rejection region is defined by

Rα = {n∆̂2 > q̂α,n} .

Validity of the fast parametric bootstrap

Proposition 6.4.4 hereafter shows the validity of the fast parametric bootstrap as presented in

Section 6.4.2. The proof of Proposition 6.4.4 is provided in Section 6.B.2.

Proposition 6.4.4. Assume EP k̄1/2(Y ,Y ), Tr(Σ) and EP ||Y −m0||4 are finite. Also assume that T is
continuously differentiable on Θ0.

If H0 is true, then for each b = 1, . . . ,B,

(i)
√
n
(

ˆ̄µP −N [m̃, Σ̃]
) L−→
n→+∞

GP −D(m0,Σ0)(NoT )[UP ]

(ii)
√
n
(

ˆ̄µbP −D(m̂,Σ̂)(NoT )[m̂b, Σ̂b]
) L−→
n→+∞

G′P −D(m0,Σ0)(NoT )[U ′P ]

where (GP ,UP ) and (G′P ,U
′
P ) are i.i.d. random variables in H(k̄)×Θ.

If otherwise H0 is false, (ii) still holds true (as long as m0 and Σ0 are well defined with respect to P ).
Furthermore, GP and UP are zero-mean Gaussian r.v. with covariances

Var(GP ) = EY∼P (k̄(Y , .)− µ̄P )⊗2

Var(UP ) = EY∼P
[
Y −m0, (Y −m0)⊗2 −Σ

]⊗2

cov(GP ,UP ) = EY∼P (k̄(Y , .)− µ̄P )⊗
[
Y −m0, (Y −m0)⊗2 −Σ0

]
.

By the Continuous Mapping Theorem and the continuity of ‖.‖2
H(k̄)

, Proposition 6.4.4 guaran-

tees that the estimated quantile converges almost surely to the true one as n,B→ +∞, so that the

type-I error equals α asymptotically.

Note that in [KY12] the parameter subspace Θ0 must be a subset of Rp for some integer p ≥ 1.

Proposition 6.4.4 allows Θ0 to be a subset of a possibly infinite-dimensional Hilbert space (m

belongs to H and Σ belongs to the space of finite trace operators H→H).

Figure 6.1 (left plot) compares empirically the bootstrap distribution of [n∆̂2]bf ast and the

distribution of n∆̂2. When n = 1000, the two corresponding densities are superimposed and

a two-sample Kolmogorov-Smirnov test returns a p-value of 0.978 which confirms the strong

similarity between the two distributions. Therefore the fast bootstrap method seems to provide

a very good approximation of the distribution of n∆̂2 even for a moderate sample size n.
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Figure 6.1 – Left: Comparison of the distributions of n∆̂2 (test statistic) and [n∆̂2]bf ast (fast
bootstrap replication) when n = 1000. A Kolmogorov-Smirnov two-sample test applied to our
simulations returns a p-value of 0.978 which confirms the apparent similarity between the two
distributions. Right: Comparison of the execution time (in seconds) of both classical and fast
bootstrap methods.

6.5 Test performances

6.5.1 An upper bound for the Type-II error

Let us assume the null-hypothesis is false, that is P ,N (m0,Σ0) or (m0,Σ0) <Θ0. Theorem 6.5.1

gives the magnitude of the Type-II error, that is the probability of wrongly accepting H0. The

proof can be found in Appendix 6.B.3.

Before stating Theorem 6.5.1, let us introduce or recall useful notation :

• ∆ =
∥∥∥µ̄P − (NoT )[m0,Σ0]]

∥∥∥
H(k̄)

,

• qα,n = Eq̂α,n ,

• m2
P = EP ||D(m0,Σ0)(NoT )[Ψ (Y )]− k̄(Y , .) + µ̄P ||2H(k̄)

,

whereΨ (Y ) = (Y−m0, [Y−m0]⊗2−Σ0) andD(m0,Σ0)(NoT ) denotes the Fréchet derivative ofNoT at

(m0,Σ0). According to Proposition 6.4.4 and the continuous mapping theorem, q̂α,n corresponds

to an order statistic of a random variable which converges weakly to
∥∥∥G′P −D(m0,Σ0)(NoT )[U ′P ]

∥∥∥2
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(as defined in Proposition 6.4.4). Therefore, its mean qα,n tends to a finite quantity as n→ +∞. L

and m2
P do not depend on n as well.

Theorem 6.5.1. (Type II error) Assume supx,y∈H0
|k̄(x,y)| = M < +∞ where Y ∈ H0 ⊆ H P -almost

surely and q̂α,n is independent of n∆̂2.
Then, for any n > qα,n∆−2

P

(
n∆̂2 ≤ q̂α,n

)
≤ exp

−
n
(
∆−

qα,n
n∆

)2

2m2
P +CmPM1/2(∆2 − qα,n/n)

f (α,B,M,∆) , (6.5.9)

where

f (α,B,M,∆) = (1 + on(1))
(
1 +

CP b

C′∆2M1/2mP
√
αB

+
oB(B−1/2)

C ′′∆4Mm2
P

)
,

and C,C′ ,C
′′

are absolute constants and CP b only depends on the distribution of [n∆̂2]bf ast .

The first implication of Proposition (6.5.1) is that our test is consistent, that is

P(n∆̂2 ≤ q̂α,n |H0 false) −→
n→+∞

0 .

Furthermore, the upper bound in (6.5.9) reflects the expected behaviour of the Type-II error

with respect to meaningful quantities. When ∆ decreases, the bound increases (alternative more

difficult to detect). When α (Type-I error) decreases, qα,n gets larger and n has to be larger to get

the bound. The variance term m2
P encompasses the difficulty of estimating µ̄P and of estimating

the parameters as well. In the special case when m and Σ are known, T = Id and the chain rule

yields D(m0,Σ0)(NoT ) = (DT (m0,Σ0)N )o(D(m0,Σ0)T ) = 0 so that m2
P = E||φ̄(Y )− µ̄P ||2 reduces to the

variance of ˆ̄µP . As expected, a large m2
P makes the bound larger. Note that the estimation of the

critical value which is related to the term f (α,B,M,∆) in (6.5.9) does not alter the asymptotic

rate of convergence of the bound.

Remark that assuming that q̂α,n is independent of n∆̂2 is reasonable for a large n, since n∆̂2

and q̂α,n are asymptotically independent according to Proposition 6.4.4.

6.5.2 Empirical study of type-I/II errors

Empirical performances of our test are inferred on the basis of synthetic data. For the sake of

brevity, our test is referred to as KNT (Kernel Normality Test) in the following.

One main concern of goodness-of-fit tests is their drastic loss of power as dimensionality

increases. Empirical evidences (see Table 3 in [SR05]) prove ongoing multivariate normality tests

suffer such deficiencies. The purpose of the present section is to check if KNT displays a good

behavior in high or infinite dimension.
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Figure 6.2 – Type-I and type-II errors of KNT (+ blue), Energy Distance (◦ black), and Henze-
Zirkler (4 red). Two alternative distributions are considered: HA1 (rows 1 and 3) and HA2 (rows
2 and 4). Two settings are considered: d = 2 (left) and d = 100 (right).
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Besides, note that in the following section, k̄ is defined as a Gaussian kernel (see Proposi-

tion 6.4.2) with arbitrarily fixed parameter (σ = 1).

Finite-dimensional case (Synthetic data)

Reference tests. The power of our test is compared with that of two multivariate normality tests:

the Henze-Zirkler test (HZ) [HZ90] and the energy distance (ED) test [SR05]. The main idea of

these tests is briefly recalled in Appendix 6.A.1 and 6.A.2.

Null and alternative distributions. Two alternatives are considered: a mixture of two

Gaussians with different means (µ1 = 0 and µ2 = 1.5 (1,1/2, . . . ,1/d)) and same covariance

Σ = 0.5 diag(1,1/4, . . . ,1/d2), whose mixture proportions equals either (0.5,0.5) (alternative

HA1) or (0.8,0.2) (alternative HA2). Furthermore, two different cases for d are considered: d = 2

(small dimension) and d = 100 (large dimension).

Simulation design. 200 simulations are performed for each test, each alternative and each n

(ranging from 100 to 500). B is set at B = 250 for KNT. The test level is set at α = 0.05 for all tests.

Results. In the small dimension case (Figure 6.2, left column), the actual Type-I error of all

tests remain more or less around α (±0.02). Their Type-II errors are superimposed and quickly

decrease down to 0 when n ≥ 200. On the other hand, experimental results reveal different

behaviors as d increases (Figure 6.2, right column). Whereas ED test lose power, KNT and HZ

still exhibits small Type-II error values. Besides, ED and KNT Type-I errors remain around the

prescribed level α while that of HZ is close to 1, which shows that its small Type-II error is

artificial. This seems to confirm that HZ and ED tests are not suited to high-dimensional settings

unlike KNT.

Infinite-dimensional case (real data)

Dataset and chosen kernel. Let us consider the USPS dataset which consists of handwritten

digits represented by a vectorized 8 × 8 greyscale matrix (X = R
64). A Gaussian kernel

kG(·, ·) = exp(−τ2|| · − · ||2) is used with τ2 = 10−4. Comparing sub-datasets "Usps236" (keep-

ing the three classes "2", "3" and "6", 541 observations) and "Usps358" (classes "3", "5" and "8",

539 observations), the 3D-visualization (Figure 6.3, top panels) suggests three well-separated

Gaussian components for “Usps236” (left panel), and more overlapping classes for “Usps358”

(right panel).

References tests. KNT is compared with Random Projection (RP) test, specially designed for

infinite-dimensional settings. RP is presented in Appendix 6.A.3. Several numbers of projections

p are considered for the RP test : p = 1,5 and 15.

Simulation design. We set α = 0.05 and 200 repetitions have been done for each sample size.

Results. (Figure 6.3, bottom plots) RP is by far less powerful KNT in both cases, no matter

how many random projections p are considered. Indeed, KNT exhibits a Type-II error near

0 when n is barely equal to 100, whereas RP still has a relatively large Type-II error when

n = 400. On the other hand, RP becomes more powerful as p gets larger as expected. A large
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enough number of random projections may allow RP to catch up KNT in terms of power. But

RP has a computational advantage over KNT only when p = 1 where the RP test statistic is

distribution-free. This is no longer the case when p ≥ 2 and the critical value for the RP test is

only available through Monte-Carlo methods.

6.6 Application to covariance rank selection

6.6.1 Covariance rank selection through sequential testing

Under the Gaussian assumption, the null hypothesis becomes

H0 : (m0,Σ0) ∈Θ0 ,

and our test reduces to a test on parameters.

We focus on the estimation of the rank of the covariance operator Σ. Namely, we consider a

collection of models (Mr )1≤r≤rmax such that, for each r = 1, . . . , rmax,

Mr = {P =N (m,Σr ) |m ∈H(k) and rk(Σr ) = r} .

Each of these models correspond respectively to the following null hypotheses

H0,r : rank(Σ) = r, r = 1, . . . , rmax ,

and the corresponding tests can be used to select the most reliable model.

This can be seen as a case of multiple hypothesis testing, that could be solved through

methods such as Benjamini-Hochberg procedure [BH95]. However such procedures usually

impose to perform all of the tests and to sort all of the corresponding p-values. In order to

eventually perform only a few tests, the null-hypothesesH0,r are tested in a sequential procedure

which is summarized in Algorithm 2. This sequential procedure yields an estimator r̂ defined as

r̂
∆= min

r̃

{
H0,r rejected for r = 1, . . . , r̃ − 1 and H0,r̃ accepted

}
.

or r̂ ∆= rmax if all of the hypotheses are rejected.

Sequential testing to estimate the rank of a covariance matrix (or more generally a noisy

matrix) is mentioned in [Rat03] and [RS00]. Both of these papers focus on the probability to

select a wrong rank, that is P(r̂ , r∗) where r∗ denotes the true rank. The goal is to choose a level

of confidence α such that this probability of error converges almost surely to 0 when n→ +∞.

There are two ways of guessing a wrong rank : either by overestimation or by underestimation.

Getting r̂ greater than r∗ implies that the null-hypothesis H0,r∗ was tested and wrongly rejected,

hence a probability of overestimating r∗ at most equal to α. Underestimating means that at least
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Algorithm 2 Sequential selection of covariance rank

Input: Gram matrix K = [k̄(Yi ,Yj )]i,j , confidence level 0 < α < 1

1. Set r = 1 and test H0,r

2. If H0,r is rejected and r < rmax, set r = r + 1 and return to 1.

3. Otherwise, set the estimator of the rank r̂ = r.

Output: estimated rank r̂

one of the false null-hypothesis H0,1, . . . ,H0,r∗−1 was wrongly accepted (Type-II error). Let βr (α)

denote the Type-II error of testing H0,r with confidence level α for each r < r∗. Thus by a union

bound argument,

P(r̂ , r∗) ≤
r∗−1∑
r=1

βr (α) +α . (6.6.10)

The bound in (6.6.10) decreases to 0 only if α converges to 0 but at a slow rate. Indeed, the

Type-II errors βr (α) grow with decreasing α but converge to zero when n→ +∞. For instance in

the case of the sequential tests mentioned in [Rat03] and [RS00], the correct rate of decrease for

α must satisfy (1/n) log(1/α) = on(1).

6.6.2 Empirical performances

In this section, the sequential procedure to select covariance rank (as presented in Section 6.6.1)

is tested empirically on synthetic data.

Dataset A sample of n zero-mean Gaussian with covariance Σr∗ are generated, where n ranges

from 100 to 5000. Σr∗ is of rank r∗ = 10 and its eigenvalues decrease either polynomially (λr = r−1

for all r ≤ r∗) or exponentially (λr = exp(−0.2r) for all r ≤ r∗).
Benchmark To illustrate the level of difficulty, we compare our procedure with an oracle

procedure which uses the knowledge of the true rank. Namely, the oracle procedure follows our

sequential procedure at a level αoracle defined as follows

αoracle = max
1≤r≤r∗−1

PZ (n∆̂2
r ≤ Zr ) ,

where n∆̂2
r is the observed statistic for the r-th test and Zr follows the distribution of this statistic

under H0,r . Hence αoracle is chosen such that the true rank r∗ is selected whenever it is possible.

Simulation design To get a consistent estimation of r∗, the confidence level α must decrease

with n and is set at α = αn = exp(−0.125n0.45). Each time, 200 simulations are performed.

Results The top panels of Figure 6.4 display the proportion of cases when the target rank

is found, either for our sequential procedure or the oracle one. When the eigenvalues decay

polynomially, the oracle shows that the target rank cannot be almost surely guessed until
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Figure 6.4 – Top half: Probabilities of finding the right rank with respect to n for our sequential
test (• red) and the oracle procedure (4 blue); bottom half: probabilities of overestimating the
true rank with the sequential procedure compared with fixed alpha (+ green). In each case,
two decreasing rate for covariance eigenvalues are considered : polynomial (left column) and
exponential (right column).

n = 1500. When n ≤ 1500, our procedure finds the true rank with probability at least 0.8 and

quickly catches up to the oracle as n grows. In the exponential decay case, a similar observation

is made. This case seems to be easier, as our procedure performs almost as well as the oracle

when n ≥ 600. In all cases, the consistency of our procedure is confirmed by the simulations.

The bottom panels of Figure 6.4 compare α with the probability of overestimating r∗ (denoted

by p+). As noticed in Section 6.6.1, the former is an upper bound of the latter. But we must

check empirically whether the gap between those two quantities is not too large, otherwise the

sequential procedure would be too conservative and lead to excessive underestimation of r∗. In

the polynomial decay case, the difference between α and p+ is small, even when n = 100. The

gap is larger in the exponential case but gets narrower when n > 1500.
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Figure 6.5 – Illustration of the robustness of our sequential procedure under a noisy model.

6.6.3 Robustness analysis

In practice, none of the modelsMr is true. An additive full-rank noise term is often considered

in the literature [CTT14; JH12]. Namely, we set in our case

Y = Z + ε (6.6.11)

where Z ∼ N (m,Σr∗ ) with rk(Σr∗ ) = r∗ and ε is the error term independent of Z. Note that the

Gaussian assumption concerns the main signal Z and not the error term whereas usual models

assume the converse [CTT14; JH12].

Figure 6.5 illustrates the performance of our sequential procedure under the noisy model

(6.6.11). We set H = R
100, n = 600, r∗ = 3 and Σr∗ = Σ3 = diag(λ1, . . . ,λ3,0, . . . ,0) where λr =

exp(−0.2r) for r ≤ 3. The noise term is ε = (λ3ρ
−1ηi)1≤i≤100 where η1, . . . ,η100 are i.i.d. Student

random variables with 10 degrees of freedom and ρ > 0 is the signal-to-noise ratio.

As expected, the probability of guessing the target rank r∗ decreases down to 0 as the signal-

to-noise ratio ρ diminishes. However, choosing a smaller level of confidence α allows to improve

the probability of right guesses for a fixed ρ. without sacrificing much for smaller signal-to-noise

ratios. This is due to the fact that each null-hypothesis H0,r is false, hence the need for a smaller
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α (smaller Type-I error) which yields greater Type-II errors and avoids the rejection of all of the

null-hypotheses.
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6.A Goodness-of-fit tests

6.A.1 Henze-Zirkler test

The Henze-Zirkler test [HZ90] relies on the following statistic

HZ =
∫
R
d

∣∣∣Ψ̂ (t)−Ψ (t)
∣∣∣2ω(t)dt , (6.A.12)

where Ψ (t) denotes the characteristic function ofN (0, I), Ψ̂ (t) = n−1 ∑n
j=1 e

i〈t,Yj 〉 is the empirical

characteristic function of the sample Y1, . . . ,Yn, and ω(t) = (2πβ)−d/2 exp(−||t||2/(2β)) with β =

2−1/2[(2d + 1)n)/4]1/(d+4). The H0-hypothesis is rejected for large values of HZ. Note that the

sample Y1, . . . ,Yn must be whitened (centered and renormalized) beforehand.

6.A.2 Energy distance test

The energy distance test [SR05] is based on

E(P ,P0) = 2E||Y −Z || −E||Y −Y ′ || −E||Z −Z ′ || (6.A.13)

which is called the energy distance, where Y ,Y ′ ∼ P and Z,Z ′ ∼ P0. Note that E(P ,P0) = 0 if and

only if P = P0. The test statistic is given by

Ê =
2
n

n∑
i=1

EZ ||Yi −Z || −EZ,Z ′ ||Z −Z ′ ||

− 1
n2

n∑
i,j=1

||Yi −Yj || , (6.A.14)

where Z,Z ′ i.i.d.∼ N (0, I) (null-distribution). HZ and ED tests set the H0-distribution at P0 =

N (µ̂, Σ̂) where µ̂ and Σ̂ are respectively the standard empirical mean and covariance. As for the

Henze-Zirkler test, data must be centered and renormalized.

6.A.3 Projection-based statistical tests

In the high-dimensional setting, several approaches share a common idea consisting in projecting

on one-dimensional spaces. This idea relies on the Cramer-Wold theorem extended to infinite

dimensional Hilbert space.

Proposition 6.A.1. (Prop. 2.1 from [Cue+06]) Let H be a separable Hilbert space with inner product
〈·, ·〉, and Y ,Z ∈ H denote two random variables with respective Borel probability measures PY and PZ .
If for every h ∈ H, 〈Y ,h〉 = 〈Z,h〉 weakly then PY = PZ .
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[Cue+06] suggest to randomly choose directions h from a Gaussian measure and perform a

Kolmogorov-Smirnov test on 〈Y1,h〉, . . . ,〈Yn,h〉 for each h, leading to the test statistic

Dn(h) = sup
x∈R
|F̂n(x)−F0(x)| (6.A.15)

where F̂n(x) = (1/n)
n∑
i=1

11{〈Yi ,h〉≤x} is the empirical cumulative distribution function (cdf) of

〈Y1,h〉, . . . ,〈Yn,h〉 and F0(x) = P(〈Y ,h〉 ≤ x) denotes the cdf of 〈Z,h〉.
Since [Cue+06] proved too few directions lead to a less powerful test, this can be repeated for

several randomly chosen directions h, keeping then the largest value for Dn(h). However the test

statistic is no longer distribution-free (unlike the univariate Kolmogorov-Smirnov one) when the

number of directions is larger than 2.

6.B Proofs

Throughout this section, 〈., .〉 (resp. ||.||) denotes either 〈., .〉H or 〈 . , .〉H(k̄) (resp. ||.||H or ||.||H(k̄))

depending on the context.

6.B.1 Proof of Propositions 6.4.2 and 6.4.3

Consider the eigenexpansion of Σ̃ =
∑
i≥1λiΨ

⊗2
i where λ1,λ2, . . . is a decreasing sequence of

positive reals and where {Ψi}i≥1 form a complete orthonormal basis of H.

Let Z ∼ N (m̃, Σ̃). The orthogonal projections 〈Z,Ψi〉 are N (0,λi) and for i , j, 〈Z,Ψi〉 and

〈Z,Ψj〉 are independent. Let Z ′ be an independent copy of Z.

• Gaussian kernel case : k̄(., .) = exp(−σ‖ · − · ‖2H)

Let us first expand the following quantity

N [m̃, Σ̃](y) = EZ exp
(
−σ ||Z − y||2

)
= EZ exp

−σ∑
r≥1

〈Z − y,Ψr〉2


=
+∞∏
r=1

EZ exp

−σ∑
r≥1

〈Z − y,Ψr〉2
 (6.B.16)

=
+∞∏
r=1

EZ exp
(
−σ〈Z − y,Ψr〉2

)
=

+∞∏
r=1

(1 + 2σλr )
−1/2 exp

(
−σ
〈m̃− y,Ψr〉2

1 + 2σλr

)
=

∣∣∣I + 2σ Σ̃
∣∣∣−1/2

exp(−σ〈(I + 2σ Σ̃)(y − m̃), y − m̃〉)
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We can switch the mean and the limit in (6.B.16) by using the Dominated Convergence theorem

since for every N ≥ 1 ∣∣∣∣∣∣∣
N∏
r=1

exp
(
−σ〈Z − y,Ψr〉2

)∣∣∣∣∣∣∣ ≤ 1 < +∞ .

The second quantity ||N [m̃, Σ̃]||2 is computed likewise

||N [m̃, Σ̃]||2 = EZ,Z ′ exp
(
−σ ||Z −Z ′ ||2

)
= EZ,Z ′ exp

−σ∑
r≥1

〈Z −Z ′ ,Ψr〉2


=
+∞∏
r=1

EZ,Z ′ exp

−σ∑
r≥1

〈Z −Z ′ ,Ψr〉2


=
+∞∏
r=1

EZEZ ′ (exp(−σ〈Z −Z ′ ,Ψr〉) | Z)

=
+∞∏
r=1

EZ (1 + 2σλr )
−1/2 exp

(
−σ 〈m̃−Z,Ψr〉

2

1 + 2σλr

)

=
+∞∏
r=1

(1 + 2σλr )
−1/2

EU∼N (0,λr ) exp
(
− σU2

1 + 2σλr

)

=
+∞∏
r=1

(1 + 2σλr )
−1/2

(
1 +

2σλr
1 + 2σλr

)−1/2

=
+∞∏
r=1

(1 + 4σλr )
−1/2

=
∣∣∣I + 4σ Σ̃

∣∣∣−1/2

• Exponential kernel case : k̄(., .) = exp(〈·, ·〉H)

Let us first expand the following quantity

N [m̃, Σ̃](y) = EZ exp(〈Z,y〉)

= EU∼N (〈m̃,y〉,〈Σ̃y,y〉) exp(U )

= exp(〈m̃,y〉+ (1/2)〈Σ̃y,y〉).

Expanding ||N [m̃, Σ̃]||2,

||N [m̃, Σ̃]||2 = EZ,Z ′ exp(〈Z,Z ′〉)

= EZ,Z ′ exp

∑
i≥1

〈Z,Ψi〉〈Z ′ ,Ψi〉


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=
∞∏
i=1

EZ,Z ′ exp(〈Z,Ψi〉〈Z ′ ,Ψi〉) . (6.B.17)

We can switch the mean and the limit by using the Dominated Convergence theorem since∣∣∣∣∣∣∣
N∏
i=1

exp(〈Z,Ψi〉〈Z ′ ,Ψi〉)

∣∣∣∣∣∣∣ a.s.−→
N→∞

exp(〈Z,Z ′〉) ≤ exp
(
||Z ||2 + ||Z ′ ||2

2

)
,

and

EZ,Z ′ exp
(
||Z ||2 + ||Z ′ ||2

2

)
=

[
EZ exp

(
||Z ||2

2

)]2

= Ek̄1/2(Z,Z) < +∞ .

The integrability of k̄1/2(Z,Z) is necessary to ensure the existence of the embedding N [m̃, Σ̃]

related to the distribution of Z. As we will see thereafter, it is guaranteed by the condition

λ̂1 < 1.

For each i,

EZ,Z ′ exp(〈Z,Ψi〉〈Z ′ ,Ψi〉) = EZEZ ′ (exp(〈Z,Ψi〉〈Z ′ ,Ψi〉) | Z)

= EZ exp
(λi

2
〈Z,Ψi〉2

)
= (1−λ2

i )−1/2 (6.B.18)

Plugging (6.B.18) into Equation (6.B.17),

||N [m̃, Σ̃]||2 =
∞∏
i=1

(1−γ2
i )−1/2 =

∣∣∣I −Σ2
∣∣∣−1/2

. (6.B.19)

(6.B.19) is well defined only if
∣∣∣I −Σ2

∣∣∣ > 0. As we have assumed that λi < 1 for all i, it is

positive. The non-nullity also holds since

∞∏
i=1

[1−λ2
i ] = exp

− ∞∑
i=1

log

 1

1−λ2
i


 ≥ exp

− ∞∑
i=1

 1

1−λ2
i

− 1




= exp

− ∞∑
i=1

λ2
i

1−λ2
i


≥ exp

(
−Tr(Σ2)

1−λ2
1

)
. (6.B.20)

where we used the inequality: log(x) ≤ x − 1. Since Σ is a finite trace operator, its eigenvalues

converge towards 0 and λ2
i ≤ λi < 1 for i large enough. Thus, Tr(Σ2) is finite and it follows from

(6.B.20) that
∣∣∣I −Σ2

∣∣∣ > 0.
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6.B.2 Proof of Theorem 6.4.4

The proof of Proposition 6.4.4 follows the same idea as the original paper [KY12] and broadens

its field of applicability. Namely, the parameter space does not need to be a subset of Rd anymore.

The main ingredient for our version of the proof is to use the CLT in Banach spaces [HP76]

instead of the multiplier CLT for empirical processes ([Kos07], Theorem 10.1).

We introduce the following notation :

• θ0 = (m0,Σ0) denotes the true parameters

• θn = (m̂, Σ̂) denotes the empirical parameters

• For any θ = (m,Σ) and y ∈ H, Ψθ(y) = (y −m, (y −m)⊗2 −Σ).

• θb0,n = (1/n)
∑n
i=1(Zbi − Z̄

b)Ψθ0
(Yi) and θbn = (1/n)

∑n
i=1(Zbi − Z̄

b)Ψθn(Yi)

As a first step, we prove that√n( ˆ̄µP − µ̄P ),n−1/2
n∑
i=1

Ψθ0
(Yi),
√
nµ̄b

P̂
,
√
nθb0,n

 L−→
n→+∞

(GP ,UP ,G
′
P ,U

′
p) , (6.B.21)

where (GP ,UP ) and (G′P ,U
′
P ) are i.i.d. (jointly) Gaussian random variables in H(k̄) ×Θ. To do

this, we need to write the left hand side of (6.B.21) as a sum of i.i.d. terms to apply the CLT for

Hilbert spaces [HP76]. As a preliminary step, we have to rewrite
√
nµ̄b

P̂
and
√
nθb0,n as follows

√
nµ̄b

P̂
= n−1/2

n∑
i=1

Zbi (k̄(Yi , ·)− µ̄) +
√
nZ̄b(µ̄− ˆ̄µ) = n−1/2

n∑
i=1

Zbi (k̄(Yi , ·)− µ̄) + oP (1)

√
nθb0,n = n−1/2

n∑
i=1

Zbi Ψθ0
(Yi)−

√
nZ̄b(m− m̂, Σ̂−Σ) =

√
nZ̄b + oP (1) ,

where
√
nZ̄b

L−→
n→+∞

N (0,1) (from the classical CLT) and (m̂, Σ̂)→ (m0,Σ0) almost surely from the

Law of Large Numbers (LLN) in Banach spaces (Theorem 2.1, [HP76]). More precisely, in our case,

the LLN holds if E‖Y −m0‖2 and E‖(Y −m)⊗2 −Σ0‖2 are finite, which is the case by assumption

since E‖Y −m0‖2 = Tr(Σ0) < +∞ and E‖(Y −m0)⊗2 − Σ0‖2 = E‖Y −m0‖4 + Tr(Σ0 − Σ2
0) < +∞.

Likewise ˆ̄µ→ µ̄ a.s. since E‖k̄(Y , ·)− µ̄‖2 = Ek̄(Y ,Y )− ‖µ̄‖2 < +∞ by assumption.

Therefore the lhs in (6.B.21) can be written as√n( ˆ̄µP − µ̄P ),n−1/2
n∑
i=1

Ψθ0
(Yi),
√
nµ̄b

P̂
,
√
nθb0,n

 = n−1/2
n∑
i=1

Wi + oP (1) , (6.B.22)

where Wi =
(
k̄(Yi , ·)− µ̄P ,Ψθ0

(Yi),Z
b
i (k̄(Yi , ·)− µ̄),Zbi Ψθ0

(Yi)
)

for i = 1, . . . ,n are i.i.d. terms.

Now we are in a position to apply the CLT in Hilbert spaces ([HP76],Theorem 3.5) to

n−1/2 ∑n
i=1Wi so that (6.B.22) entails (6.B.21). In particular the CLT holds if Wi are of mean 0
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and finite variance. Clearly, EWi = 0. As for the finite variance condition, let us first introduce

the covariance operators C1,C
b
1 :H(k̄)→H(k̄), C2,C

b
2 :Θ→Θ as follows

C1 = EY (k̄(Y , .)− µ̄P )⊗2

C2 = EYΨθ0
(Y )⊗2

Cb1 = EZb ,Y [Zb]2(k̄(Y , ·)− µ̄)⊗2 = C1

Cb2 = EZb ,Y [Zb]2Ψ ⊗2
θ0

(Y ) = C2 .

Wi is of finite variance if for every (g,u,g ′ ,u′) ∈ H(k̄)×Θ ×H(k̄)×Θ , E〈(g,u,g ′ ,u′),W 〉2 < +∞.

Remark that E〈(g,u,g ′ ,u′),W 〉2 6 4
(
2Tr(C1)(‖g‖2 + ‖g ′‖2) + 2Tr(C2)(‖u‖2 + ‖u′‖2)

)
so it suffices to

show that Tr(C1) and Tr(C2) are finite. This is the case since Tr(C1) = EP k̄(Y ,Y )−||µ̄P ||2 < +∞ and

Tr(C2) = EP ||Y − µ0||4 + Tr(Σ0 −Σ2
0) < +∞ by assumption. Therefore, the CLT in Hilbert spaces

yields

√
n( ˆ̄µP − µ̄P )

L−→
n→+∞

GP ∼ GP (0,C1)

n−1/2
n∑
i=1

Ψθ0
(Yi)

L−→
n→+∞

UP ∼ GP (0,C2)

√
n ˆ̄µbP

L−→
n→+∞

G
′
P ∼ GP (0,C1)

√
nθb0,n

L−→
n→+∞

U
′
P ∼ GP (0,C2) .

Furthermore since (GP ,UP ) and (G
′
P ,U

′
P ) are jointly Gaussian and

cov
(√
n ˆ̄µbP ,

√
n( ˆ̄µP − µ̄P )

)
= 0, cov

(√
nθb0,n,n

−1/2 ∑n
i=1Ψθ0

(Yi)
)

= 0

cov
(√
n ˆ̄µbP ,n

−1/2 ∑n
i=1Ψθ0

(Yi)
)

= 0, cov
(√
nθb0,n,

√
n( ˆ̄µP − µ̄P )

)
= 0 ,

the limit Gaussian processes (GP ,UP ) and (G
′
P ,U

′
P ) are independent. Besides, (GP ,UP ) and

(G
′
P ,U

′
P ) share the same cross-covariance operator C1,2 :Θ→H(k̄) since

C1,2 = cov

√n( ˆ̄µP − µ̄P ),n−1/2
n∑
i=1

Ψθ0
(Yi)

 = EY (k̄(Y , .)− µ̄P )⊗Ψθ0
(Y )

Cb1,2 = cov
(
Zb(k̄(Y , ·)− µ̄),ZbΨθ0

(Y )
)

= E[Zb]2C1,2 = C1,2 ,

therefore (GP ,UP ) and (G
′
P ,U

′
P ) are i.i.d. .

Since Dθ0
(NoT ) is assumed continuous w.r.t. θ0, we get by the continuous mapping theorem
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that √n( ˆ̄µP − µ̄P )−Dθ0
(NoT )[n−1/2

n∑
i=1

Ψθ0
(Yi)],

√
nµ̄b

P̂
−Dθ0

(NoT )[
√
nθb0,n]]

 ,

converges weakly to (
GP −Dθ0

(NoT )[UP ],G
′
P −Dθ0

(NoT )[U
′
P ]

)
.

To get the final conclusion of Proposition 6.4.4, we have to prove two things.

First, under the assumption that P =N (T (θ0)) (H0 is true), considering the Fréchet derivative

Dθ0
(NoT ) of NoT at θ0 yields the following Taylor approximation

√
n( ˆ̄µP −NoT [θn]) =

√
n( ˆ̄µP − µ̄P )−

√
n(NoT [θn]−NoT [θ0])

=
√
n( ˆ̄µP − µ̄P )−Dθ0

(NoT )[
√
n(θn −θ0)] + oP (

√
n||θn −θ0||)

=
√
n( ˆ̄µP − µ̄P )−Dθ0

(NoT )[n−1/2
n∑
i=1

Ψθ0
(Yi)]

+ oP (
√
n||θn −θ0||)

L−→
n→+∞

GP −Dθ0
(NoT )[UP ] ,

because
√
n(θn − θ0) converges weakly to a zero-mean Gaussian and by using the continuous

mapping theorem with the continuity of θ0 7→Dθ0
N and of ||.||Θ .

Secondly, whether H0 is true or not,

√
n ˆ̄µbP −Dθn(NoT )[

√
nθbn] =

√
n ˆ̄µbP −Dθ0

(NoT )[
√
nθb0,n] +Dθn(NoT )[

√
n(θb0,n −θ

b
n)]︸                           ︷︷                           ︸

:=(a)

+Dθ0
(NoT )[

√
nθb0,n]−Dθn(NoT )[

√
nθb0,n]︸                                               ︷︷                                               ︸

:=(b)

.

we must check that both (a) and (b) converge P -almost surely to 0.

Since θn(ω)→ θ0 P -almost surely and Dθ(NoT ) = (DT (θ)N ) o (DθT ) is continuous w.r.t. θ, then

(a) =

n−1/2
n∑
i=1

(Zi − Z̄)

︸                 ︷︷                 ︸
−→N (0,1)

Dθn(NoT )[(m0 −mn,Σ0 −Σn︸                ︷︷                ︸
→0 a.s.

)]
P−a.s.−→
n→+∞

0 ,

and

(b) =Dθ0
(NoT )[

√
nθb0,n]−Dθn(NoT )[

√
nθb0,n] −→ 0 P -almost surely ,
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so that it follows

√
nµ̄b

P̂
−Dθn(NoT )[

√
nθbn] −→ G

′
P −Dθ0

(NoT )[U
′
P ] ,

hence the conclusion of Proposition 6.4.4.

6.B.3 Proof of Theorem 6.5.1

The goal is to get an upper bound for the Type-II error

P(n∆̂2 ≤ q̂ |H1) . (6.B.23)

In the following, the feature map from H(k) to H(k̄) will be denoted as

φ̄ :H(k)→H(k̄), y 7→ k̄(y, .) .

Besides, we use the shortened notation q := Eq̂α,n,B for the sake of simplicity (see Section 6.5.1

for definitions).

1. Reduce n∆̂2 to a sum of independent terms

The first step consists in getting a tight upper bound for (6.B.23) which involve a sum of

independent terms. This will allow the use of a Bennett concentration inequality in the

next step.

Introducing the Fréchet derivative Dθ0
(NoT ) of NoT at θ0, n∆̂2 is expanded as follows

n∆̂2 =n
∥∥∥ ˆ̄µP − (NoT )(θn)

∥∥∥2

=n
∥∥∥ ˆ̄µP − µ̄P + (NoT )(θ0)− (NoT )(θn) + µ̄P − (NoT )(θ0)

∥∥∥2

=n
∥∥∥ ˆ̄µP − µ̄P +Dθ0

(NoT )(θ0 −θn) + o(‖θ0 −θn‖) + µ̄P − (NoT )(θ0)
∥∥∥2

=

∥∥∥∥∥∥∥ 1
√
n

n∑
i=1

{
φ̄(Yi)− µ̄P −Dθ0

(NoT )(Ψ (Yi))
}
+
√
n (µ̄P − (NoT )(θ0)) + on

(
‖
√
n(θ0 −θn)‖

)∥∥∥∥∥∥∥
2

:=n∆̂2
0 +n∆2 + 2nSn + ε . (6.B.24)

where

∆̂2
0 =

1
n2

n∑
i,j=1

〈Ξ(Yi),Ξ(Yj )〉 ,

Sn =
1
n

n∑
i=1

〈µ̄P −NoT (θ0),Ξ(Yi)〉 ,
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Ξ(Yi) = φ̄(Yi)− µ̄P −Dθ0
(NoT )(Ψ (Yi)) ,

and ε = oP (1) almost surely.

n∆̂2
0 is a degenerate U-statistics so it converges weakly to a sum of weighted chi-squares

([Ser80], page 194).
√
nSn converges weakly to a zero-mean Gaussian by the classic CLT

as long as E〈µ̄P −NoT (θ0),Ξ(Yi)〉2 is finite (which is true since k̄ is bounded). It follows

that ∆̂2
0 becomes negligible with respect to Sn when n is large. Therefore, we consider a

surrogate for the Type-II error (6.B.23) by removing ∆̂2
0 with a negligible loss of accuracy.

Plugging (6.B.24) into (6.B.23)

P(n∆̂2 ≤ q̂) =P(n∆̂2
0 +n∆2 + 2nSn ≤ q̂ − ε)

6P(n∆̂2
0 +n∆2 + 2nSn ≤ q̂) . (6.B.25)

Finally, using ∆̂2
0 ≥ 0 and conditioning on q̂ yield the upper bound

P(n∆̂2 ≤ q̂ | q̂) ≤ P

 n∑
i=1

f (Yi) ≥ nŝ

 , (6.B.26)

where

f (Yi) := 〈µ̄P −NoT (θ0),Ξ(Yi)〉 , ŝ := ∆2 −
q̂

n
. (6.B.27)

2. Apply a concentration inequality

We now want to find an upper bound for (6.B.26) through a concentration inequality,

namely Lemma A.1.2 with ξi = f (Yi), t = nŝ, ν2 = Var(f (Yi)) and f (Yi) ≤ c = M̄ (P -almost

surely).

Lemma A.1.2 combined with Lemma 6.B.3 and 6.B.2 yields the upper bound

P(
n∑
i=1

f (Yi) ≥ nŝ | q̂) ≤exp
(
− nŝ2

2ν2 + (2/3)Mνŝ

)
11 ŝ≥0 + 11 ŝ<0

≤exp
(
− nŝ2

2ϑ2 + (2/3)Mϑŝ

)
11 ŝ≥0 + 11 ŝ<0

:=exp(g(ŝ))11 ŝ≥0 + 11 ŝ<0 := h(ŝ) , (6.B.28)

where

M :=
(
4 +
√

2
)
∆M1/2 , ν2 ≤ ϑ2 := ∆2m2

P ,

and m2
P = E‖Ξ(Y )‖2.
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3. "Replace" the estimator q̂α,n with the true quantile qα,n in the bound

It remains to take the expectation with respect to q̂. In order to make it easy, q̂ is pull out

of the exponential term of the bound. This is done through a Taylor-Lagrange expansion

(Lemma 6.B.4).

Lemma 6.B.4 rewrites the bound in (6.B.28) as

exp
(
− ns2

2ϑ2 + (2/3)Mϑs

){
1 +

3n

2Mϑ
exp

(
3|q̃ − q|
2Mϑ

)
11 s̃≥0|ŝ − s|

}
, (6.B.29)

where

s = ∆2 −
q

n
, s̃ = ∆2 −

q̃

n
, q̃ ∈ (q∧ q̂,q∨ q̂) ,

and s ≥ 0 because of the assumption n > qL−2.

The mean (with respect to q̂) of the right-side multiplicative term of (6.B.29) is bounded by

1 +
3n

2Mϑ

{
Eq̂

(
exp

(
3|q̃ − q|
Mϑ

)
11 s̃≥0

)}1/2 √
Eq̂(ŝ − s)2 ,

because of the Cauchy-Schwarz inequality.

On one hand, E(q̂−q)2 →
B→+∞

0 (Lemma 6.B.1) implies E(q̃−q)2 →
B,n→+∞

0 and thus q̃ →
B,n→+∞

q∞ weakly where q∞ = limn→+∞ qα,n (that is almost surely for q∞ is a constant). Hence

Eq̂

(
exp

(
3|q̃ − q|
Mϑ

)
11 s̃≥0

)
= Eq̂

([
1 +

oB(|q̂ − q|)
Mϑ

]
11 s̃≥0

)
≤ 1 +

Eq̂(oB(|q̂ − q|)11 s̃≥0)

Mϑ
.

Since the variable |q̃−q|11 s̃≥0 is bounded by the constant |nL2 −q| ∨ |q| for every B, it follows

from the Dominated Convergence Theorem

1 +
Eq̂(oB(|q̂ − q|)11 s̃≥0)

Mϑ
= 1 +

oB(1)

Mϑ
(6.B.30)

On the other hand, Lemma 6.B.1 provides

E(ŝ − s)2 =
E(q̂ − q)2

n2 ≤
C1,P +αC2,P /B

n2αB
≤

CP b

n2αB
. (6.B.31)

so that an upper bound for the Type-II error is given by

(3
2

+ on(1)
)

exp
(
− ns2

2ϑ2 + (2/3)Mϑs

){
1 +

3CP b

2Mϑ
√
αB

+
oB(B−1/2)

M
2
ϑ2

}
. (6.B.32)
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which one rewrites as

exp

−
n
(
∆−

q

n∆

)2

2m2
P +CmPM1/2(∆2 − q/n)

f1(B,M,∆) ,

where

f1(B,M,∆) = (3/2 + on(1))
(
1 +

CP b

C′∆2M1/2mP
√
αB

+
oB(B−1/2)

C ′′∆4Mm2
P

)
,

and C = (2/3)(4 +
√

2), C′ = 2(4 +
√

2)/3 and C
′′

= (4 +
√

2)2.

Theorem 6.5.1 is proved.

6.B.4 Auxiliary results

Lemma 6.B.1. (Theorem 2.9. in [BT12]) Assume α < 1/2. Then,

Var(q̂α,n) ≤
CP b
αB

, (6.B.33)

where CP b only depends on the bootstrap distribution (of [n∆̂2]bf ast).

Lemma 6.B.2. Let f be defined as in (6.B.27). If Y ∈ H0 ⊆H P -almost surely and supx,y∈H0
|k̄(x,y)| =

M, then for any y ∈ H0

|f (y)| ≤M := (4 +
√

2)∆
√
M . (6.B.34)

Proof.

|f (y)| =
∣∣∣〈µ̄P −NoT (θ0),Dθ0

(NoT )(Ψ (y))− φ̄(y) + µ̄P 〉
∣∣∣

≤∆
∥∥∥Dθ0

(NoT )(Ψ (y))− φ̄(y) + µ̄P
∥∥∥

≤ ∆

([
lim
t→0

EZ,Z ′∼NoT (θ0+tΨ (y))k̄(Z,Z) + k̄(Z ′ ,Z ′)− 2k̄(Z,Z ′)
]1/2

+
√
k̄(y,y) +

√
Ek̄(Y ,Y ′)

)
≤ ∆

(√
M +
√
M +
√

2M +
√
M +
√
M

)
≤ ∆(4 +

√
2)
√
M :=M .
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Lemma 6.B.3.

ν2 ≤ ϑ2 := ∆2m
(2)
P . (6.B.35)

Proof.

ν2 := Var(f (Y )) = Ef 2(Yi)

=E〈µ̄P −NoT (θ0),Dθ0
(NoT )(Ψ (Y ))− φ̄(Y ) + µ̄P 〉2

≤ ∆2
E

∥∥∥Dθ0
(NoT )(Ψ (Y ))− φ̄(Y ) + µ̄P

∥∥∥2︸                                        ︷︷                                        ︸
:=m2

P

.

Lemma 6.B.4. Let h be defined as in (6.B.28). Then,

h(ŝ) ≤ exp
(
− ns2

2ϑ2 + (2/3)Mϑs

){
1 +

3n

2Mϑ
exp

(
3|q̃ − q|
2Mϑ

)
11 s̃≥0|ŝ − s|

}
, (6.B.36)

where

s = ∆2 −
q

n
, s̃ = ∆2 −

q̃

n
, q̃ ∈ (q∧ q̂,q∨ q̂) .

Proof. A Taylor-Lagrange expansion of order 1 can be derived for h(ŝ) since the derivative of h

h′(x) = − (2/3)nMϑx2 + 4nϑ2x

(2ϑ2 + (2/3)Mϑx)2 exp
(
− nx2

2ϑ2 + (2/3)Mϑx

)
11x≥0 ,

is well defined for every x ∈ R (in particular, the left-side and right-ride derivatives at x = 0

coincide).

Therefore h(ŝ) equals

h(s) + h′(s̃)(ŝ − s)

= exp
(
− ns2

2ϑ2 + (2/3)Mϑs

)[
1 + exp(g(s)− g(s̃))g ′(s̃)11 s̃≥0(ŝ − s)

]
, (6.B.37)

where

s = ∆2 −
q

n
, s̃ = ∆2 −

q̃

n
, q̃ ∈ (q∧ q̂,q∨ q̂) ,

and s ≥ 0 because of the assumption n > q∆−2.
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For every x,y > 0, |g ′(x)| ≤ 3n/(2Mϑ) and then |g(x)− g(y)| ≤ 3n|x − y|/(2Mϑ). It follows

|g ′(s̃)| ≤ 3n

2Mϑ
,

and

exp(g(s)− g(s̃)) ≤ exp
( 3n

2Mϑ
|s − s̃|

)
= exp

(
3|q̃ − q|
2Mϑ

)
.

Lemma 6.B.4 is proved.



Chapter7
General Conclusion and Perspectives

7.1 Nearly Gaussian marginals in an RKHS

In Chapter 4, we have evidenced that most p-dimensional projections of an embedded distribu-

tion in the RKHS of a Gaussian RBF kernel are close to some scale-mixture of Gaussians and

derived a practical application to outlier detection from this observation in Chapter 5. Besides

we also showed that with a proper renormalization of such a kernel, those projections become

close to aN (0, Ip) Gaussian distribution instead. However a straightforward application of this

result is yet to be devised. In the following, we consider a few practical issues for which said

result could be useful:

• Dimension reduction. In the multivariate setting, Non-Gaussian Component Analysis

or NGCA [Bla+06; Die+10; DJS13] is a method of dimension reduction that relies on

the assumption that a d-variate random vector X (with large d) can be decomposed as

X = X0 +X⊥ where X0 lies on a p-dimensional subspace V of Rd and the noisy term X⊥
is Gaussian. Hence the goal of NGCA is to reconstruct V . However as mentioned in

Chapter 4, existing results in R
d state that most marginals of such X when d is large are

close to a scale-mixture of Gaussians instead of a Gaussian, which is not compatible with

the assumptions of NGCA. That being said, embedding X into the RKHS of a renormalized

Gaussian RBF kernel would yield nearly Gaussian marginals in most directions in the

kernel space. Therefore it would be of interest to devise a kernel extension of NGCA

to find the few remaining directions with non-Gaussian marginals. Such an extension

is not straightforward since multivariate NGCA relies on a rewriting of the assumed

decomposition of X in terms of its density, but in an infinte-dimensional RKHS there

exists no canonical Haar measure (i.e. a shift-invariant measure) in the RKHS to define a

density as in R
d . NGCA could be adapted to the kernel case by considering for instance

moment-generating functions instead of densities.
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• Sampling from a known distribution. Given a density f of a distribution in R
d , sampling

a sequence x1, . . . ,xn ∈ Rd that emulates an i.i.d. sample from f is usually done through

Monte Carlo Markov Chain methods [LLC10]. This class of methods generates a Markov

chain x1,x2, . . . where the distribution of the xi converges weakly to an equilibrium distri-

bution of density f . Albeit popular, these methods suffer some issues, typically a slow

convergence of the Markov chain to the desired distribution, either because of a strong

dependence between the successive samples or because of small acceptation rates. In such

cases, a long Markov chain must be generated in practice, which leads to an intensive

computational burden. Our result could be the basis of an alternative take on this sampling

problem without using Markov chains. Indeed we could sample an i.i.d. sample from a

N (0, Ip) Gaussian directly in a subspace of the RKHS and revert to the input space to find

the corresponding sample that would look like an i.i.d. sample from f 1. This "revert"

step would be the challenging part of such a sampling procedure since a given point in an

RKHS does not admit an exact pre-image in the input space. However there exist several

approaches to solve this problem [SSM97; BWS04].

7.2 Outlier detection

In Chapter 5, we introduced a new kernel-based method based on random projections in an

RKHS (induced by a Gaussian RBF kernel) to perform outlier detection in an online setting. Our

proposed method has the advantage of bypassing shortcomings of one-class SVM and kernel

PCA — that are the lack of false alarm rate control for one-class SVM and a high computational

cost for kernel PCA. Furthermore, we have provided theoretical guarantees about performances

of our algorithm — in particular for missed detection rate — whilst such guarantees are lacking

for kernel PCA to the best of our knowledge.

The next step would be to transpose our OD method to the batch framework, where inliers

and outliers are all provided at once in one sample. The problem to solve is that the random

generation of the projection subspace Vn in the RKHS depends on the empirical covariance

function Σγ,n(·, ·) which estimates the covariance of the embedded inliers. However in a batch

setting, this covariance would be estimated on the basis of inliers and outliers all together. This

problem could be tackled by resorting to robust covariance estimators. In this case one should

check that asymptotic results provided in Chapter 4 still holds with such estimators.

7.3 Normality test in Hilbert spaces

In Chapter 6, we introduced a new normality test suited to high-dimensional Hilbert spaces,

that was based on an MMD statistic constructed from a characteristic kernel k̄. Investigating the

1The density f would appear in the computations through the equivalent term given in Lemma A.2.1 combined with
Proposition 4.3.2
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influence of the kernel k̄ on the performance of the test would be of interest. In the case where k̄

is a Gaussian RBF kernel for instance, a method to optimize the Type-II error with respect to the

hyperparameter of k̄ would be welcomed. It turns out to be a challenging task. In the literature

about hypothesis testing with the MMD, one of the few papers addressing this issue is [Gre+12b]

which optimizes a homogeneity test over convex combinations of a basis of kernels, but at the

cost of modifying the MMD statistic to resort to a less powerful test.

We applied successfully a fast parametric bootstrap procedure that reduces the computa-

tional costs of our test from cubic to quadratic time with respect to the sample size n. However

a quadratic execution time may still be too high when n becomes very large. For two-sample

MMD tests, a linear time statistic can be devised to speed up the test (see Section 6 in [Gre+12a]).

However there are two issues: firstly the corresponding test is typically less powerful, and sec-

ondly it cannot be straightforwardly applied to the one-sample setting because of the estimation

of the parameters (mean and covariance).

Finally, the choice of the level α for the sequential procedure (covariance rank selection) is

another subject for future research. Indeed, an asymptotic regime for α has been exhibited to

get consistency, but setting the value of α when n is fixed remains an open question.
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AppendixA
Technical lemmas

A.1 Some useful concentration inequalities

Lemma A.1.1 (McDiarmid’s inequality). Let X1, . . . ,Xp be i.i.d. random variables taking values
in some set X . Let L : X p → R be some real-valued function and assume there exists there exists
c1, . . . , cp > 0 such that

∀j = 1, . . . ,p, sup
x1,...,xj ,x

′
j ,...,xp∈X

|L(x1, . . . ,xj , . . .)−L(x1, . . . ,x
′
j , . . .)| 6 cj .

Then for any t > 0

P

(
L(X1, . . . ,Xp)−EL(X1, . . . ,Xp) > t

)
6 exp

− 2t2∑p
j=1 c

2
i

 .

Lemma A.1.2. (Bennett’s inequality, Theorem 2.9 in [BLM13]) Let ξ1, . . . ,ξn i.i.d. variables bounded
by c and with variance bounded by ν.
Then, for any ε > 0

P

 n∑
i=1

ξi −nEξ1 ≥ ε

 ≤ exp
(
− ε2

2nν + 2cε/3

)
. (A.1.1)

In other words, with probability larger than 1− δ,

n∑
i=1

ξn 6 Eξ1 +

√
2ν log(1/δ)

n

1 +κc

√
log(1/δ)
nν

 ,

where κ is an absolute constant.
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A.2 Auxilary lemmas used in Chapter 4 and Chapter 5

Lemma A.2.1. Let X ∼ P and assume there exists a function A : X → R and s > 0 such that
P(d2(X,x) 6 t) = A(x)ts[1 + o(1)] as t → 0 for any x ∈ supp(P ) and A(x) = 0 for any x < supp(P ).
Also assume that supp(P ) is a compact subset of X and (t,x) 7→ P(d2(x,X) 6 t) is continuous. Then
for any x ∈ supp(P ),

Σγ (x,x) =
A(x)Γ (s+ 1)

(2γ)s
{
1 +A−1 (x)oγ (1)

}
a.s. ,

when γ → +∞, where the ’oγ (1)’ term is uniformly bounded with respect to x.

Proof. By definition

Σγ (x,x) = EXk
2
γ (X,x) = Ee−2γd2(x,X) .

Fubini’s Theorem entails

EXe
−2γd2(x,X) = EX [−e−y]

y=+∞
y=2γd2(x,X)

= EX

∫ +∞

2γd2(x,X)
e−ydy

=
∫ +∞

0
e−yEX11{2γd2(x,X)6y}dy

=
∫ +∞

0
e−yP

(
d2(x,X) 6

y

2γ

)
dy

Introduce the function g(t;x) satisfying P(d2(x,X) 6 t) = A(x)(1 + g(t;x))ts and g(t;x)→ 0
when t→ 0.

EXe
−2γd2(x,X) =

A(x)
(2γ)s

∫ +∞

0
e−yysdy +

A(x)
(2γ)s

∫ +∞

0
e−yysg(y/2γ ;x)dy

=
A(x)
(2γ)s

Γ (s+ 1) +
A(x)
(2γ)s

∫ f (γ)

0
e−yysg(y/2γ ;x)dy

+
A(x)
(2γ)s

∫ +∞

f (γ)
e−yysg(y/2γ ;x)dy , (A.2.2)

where f (γ) is some arbitrary function such that f (γ) = o(γ) when γ → +∞.
On the first hand, g : R+ × supp(P ) → R is continuous since (t,x) 7→ PX(d2(X,x) 6 t) and

x 7→ A(x) are continuous. Therefore since supp(P ) is assumed compact, [0, f (γ)/(2γ)]× supp(P )
is a compact for the product topology of R+ ×X and by the continuity of g hence of |g |, the image
|g | ([0, f (γ)/(2γ)]× supp(P )) is a compact of R+, namely |g |([0, f (γ)/(2γ)]×supp(P )) = [0,Cγ ] with
Cγ > 0. Cγ is decreasing with respect to γ and decreases to 0 when γ → +∞ since g is continuous
and g(0;x) = 0 for every x ∈ supp(P ). It follows∫ f (γ)

0
e−yysg(y/2γ ;x)dy 6 Cγ

∫ f (γ)

0
e−yysdy 6 Cγ

∫ +∞

0
e−yysdy 6 CγΓ (s+ 1) = oγ (1) ,

where the ’oγ (1)’ term is uniformly bounded with respect to x.



A.2. Auxilary lemmas used in Chapter 4 and Chapter 5 163

On the other hand, we show that the last additive term in (A.2.2) is negligible before γ−s for
a proper choice of f (γ).∫ +∞

f (γ)
e−yysg(y/2γ ;x)dy 6

∫ +∞

f (γ)
e−yys

(
(2γ)s

A(x)f s(γ)
− 1

)
dy

6
(2γ)s

A(x)f s(γ)
Γ (s+ 1, f (γ)) , (A.2.3)

where Γ (., .) denotes the upper incomplete Gamma function.
Equivalent terms for Γ (., t) when t→ +∞ are well-known and yield

Γ (s+ 1, f (γ)) ∼ f s(γ)e−f (γ) ,

hence an equivalent for (A.2.3) is A(x)−1(2γ)s exp(−f (γ)) which converges to 0 if f (γ) =
q log(γ) with q > s for instance. (Note that such a choice for f (γ) still fulfills the condition
f (γ) = o(γ))

Lemma A.2.2. With the same assumption as Lemma A.2.1,

Tr(Σ2
γ ) ∼ EA(X)Γ (s+ 1)

(2γ)s
,

as γ → +∞.

Proof. Tr(Σ2
γ ) is expressed as follows

Tr(Σ2
γ ) = EX〈ΣγkX , kX〉γ

∆= Eδ2
X .

By Lemma A.2.1 and Slutsky’s lemma, (2γ)2sδ2
X converges weakly to A(X)Γ (s + 1) when γ →

+∞. Therefore, since A is assumed continuous and bounded, the weak convergence implies
E(2γ)2sδ2

X → EA(X)Γ (s+ 1) hence the result of the lemma.

Lemma A.2.3. Write δXX′ = Σγ (X,X ′) where X,X ′ are two i.i.d. random variables. When γ → +∞,

EδXX′ ∼
EXA

2(X)Γ 2(s+ 1)
γ2s .

Proof. By definition of δXX′ ,

EδXX′ = E〈ΣγkX , k′X〉γ
= EX,X′ ,X′′ 〈k

⊗2
X′′
kX , kX′ 〉γ

= EX,X′ ,X′′ kγ (X ′ ,X)kγ (X
′′
,X)

= Ee−γ{d
2(X,X′)+d2(X,X

′′
)}

= EX

[(
EX′e

−γd2(X,X′)
)2]

= EX

[
Σγ/2(X,X)

]2
.
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Lemma A.2.1 entails

EδXX′ = EX

{
A2(X)Γ 2(s+ 1)

γ2s [1 +A−1(X)oγ (1)]2
}

=
EA2(X)Γ 2(s+ 1)

γ2s [1 + oγ (1)] ,

since EA(X) < +∞ because of the boundedness of A(.).

Lemma A.2.4. Assume a = inf{A(x) : x ∈ supp(P )} > 0 and A = sup{A(x) : x ∈ supp(P )} < +∞. Then∣∣∣∣∣∣Σγ,n(x,x)

Σγ (x,x)
− 1

∣∣∣∣∣∣ 6
√

2log(1/δ)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n
{1 + oγ (1)}

 ,

with probability at least 1− δ. Here κ is an absolute constant.

Proof. Since Σγ,n(x,x) = (1/n)
∑n
i=1 k

2
γ (Xi ,x), Lemma A.1.2 can be applied with c = 1 and

VarX(k2
γ (X,x)) 6 Ek4

γ (X,x) = Σ2γ (x,x) = ν which entails with probability at least 1− δ

∣∣∣Σγ,n(x,x)−Σγ (x,x)
∣∣∣ 6√

2ν log(1/δ)
n

1 +κ

√
log(1/δ)
nν

 ,

where K is an absolute constant.
Therefore with high probability

∣∣∣∣∣∣Σγ,n(x,x)

Σγ (x,x)
− 1

∣∣∣∣∣∣ 6
√

2log(1/δ)
n

√
Σ2γ (x,x)

Σγ (x,x)

1 +κ

√
log(1/δ)
nν


=

√
2log(1/δ)γs

aΓ (s+ 1)n

1 +κ

√
log(1/δ)(2γ)s

aΓ (s+ 1)n
{1 + oγ (1)}

 ,

since by Lemma A.2.1 and introducing a = inf{f (x) : x ∈ supp(f )} > 0,√
Σ2γ (x,x)

Σγ (x,x)
=

(4γ)−s/2√
A(x)Γ (s+ 1)(2γ)−s

[1 + oγ (1)] 6
γs/2√
aΓ (s+ 1)

[1 + oγ (1)]

and

ν = Σ2γ (x,x) > aΓ (s+ 1)(2γ)−s[1 + oγ (1)] .





Gaussian Models and Kernel Methods

Abstract

Kernel methods have been extensively used to transform initial datasets by mapping them into a so-called
kernel space or RKHS, before applying some statistical procedure onto transformed data. In particular,
this kind of approach has been explored in the literature to try and make some prescribed probabilistic
model more accurate in the RKHS, for instance Gaussian mixtures for classification or mere Gaussians for
outlier detection. Therefore this thesis studies the relevancy of such models in kernel spaces. In a first
time, we focus on a family of parameterized kernels - Gaussian RBF kernels - and study theoretically the
distribution of an embedded random variable in a corresponding RKHS. We managed to prove that most
marginals of such a distribution converge weakly to a so-called ”scale-mixture” of Gaussians - basically a
Gaussian with a random variance - when the parameter of the kernel tends to infinity. This result is used
in practice to device a new method for outlier detection. In a second time, we present a one-sample test
for normality in an RKHS based on the Maximum Mean Discrepancy. In particular, our test uses a fast
parametric bootstrap procedure which circumvents the need for re-estimating Gaussian parameters for
each bootstrap replication.

Keywords: kernel methods, rkhs, normality test, outlier detection

Modèles Gaussiens et Méthodes à Noyaux

Résumé

Les méthodes à noyaux ont été beaucoup utilisées pour transformer un jeu de données initial en les
envoyant dans un espace dit « à noyau » ou RKHS, pour ensuite appliquer une procédure statistique sur
les données transformées. En particulier, cette approche a été envisagée dans la littérature pour tenter
de rendre un modèle probabiliste donné plus juste dans l’espace à noyaux, qu’il s’agisse de mélanges de
gaussiennes pour faire de la classification ou d’une simple gaussienne pour de la détection d’anomalie.
Ainsi, cette thèse s’intéresse à la pertinence de tels modèles probabilistes dans ces espaces à noyaux. Dans
un premier temps, nous nous concentrons sur une famille de noyaux paramétrée - la famille des noyaux
radiaux gaussiens - et étudions d’un point de vue théorique la distribution d’une variable aléatoire projetée
vers un RKHS correspondant. Nous établissons que la plupart des marginales d’une telle distribution est
asymptotiquement proche d’un « scale-mixture » de gaussiennes - autrement dit une gaussienne avec une
variance aléatoire - lorsque le paramètre du noyau tend vers l’infini. Une nouvelle méthode de détection
d’anomalie utilisant ce résultat théorique est introduite. Dans un second temps, nous introduisons un test
d’adéquation basé sur la Maximum Mean Discrepancy pour tester des modèles gaussiens dans un RKHS.
En particulier, notre test utilise une procédure de bootstrap paramétrique rapide qui permet d’éviter de
ré-estimer les paramètres de la distribution gaussienne à chaque réplication bootstrap.

Mots clés : méthodes à noyaux, rkhs, test de normalité, détection d’anomalie

Laboratoire de Mathématiques Paul Painlevé
UMR 8524 CNRS - Université Lille 1 – 59655, Villeneuve d’Ascq Cedex – France
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