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Foreword

This thesis presents the new design of the Verified Polyhedra Library (VPL), which im-
plements an abstract domain of polyhedra. Polyhedra are sets of points delimited by affine
constraints. They can be equivalently defined by their generators, i.e. their vertices in the
bounded case. Written in OC, the VPL provides polyhedral operators that are certified
in C, such as inclusion testing, intersection or convex hull. Polyhedra have many uses in
program analysis, coming from their ability to express affine relations between variables. For
instance, in compilation, the polytope model allows representing sets of reachable values for
indexes in nested loops. The application we will be interested in is static analysis by abstract
interpretation, which tries to establish the validity of assertions in programs.

The VPL was originally designed by Fouilhé (2015) during his PhD thesis, under the
supervision of Michaël Périn and David Monniaux, at Verimag. It was part of the VERASCO
project (Jourdan et al., 2015), which aimed at creating the first static analyzer fully certified in
C. This project emerged from a need of the C-certified C compiler COMPCERT (Leroy,
2009). Roughly, this compiler produces a correct binary code provided that the source code is
free of undefined behaviours, which are numerous in the C standard (Yang et al., 2011). The
goal of VERASCO was to discard this assumption, by formally ensuring the absence of such
behaviours.

The VPL was then created as a relational abstract domain for VERASCO. Thus, the library
had to be certified in C. Most polyhedra libraries work in double description, using both
generators and constraints. This framework has the advantage of taking the best of each
side. But switching from one representation to the other is done by Chernikova’s algorithm,
which suffers from an exponential worst-case complexity in the size of inputs and outputs.
Moreover, implementing a certified double description library would imply the proof of this
algorithm, which is far from being straightforward. Instead, A. Fouilhé chose to focus on the
constraints-only representation. A generators-only library could have been attempted, but it
was avoided for two reasons. First, in abstract interpretation, it is common to see hypercubes,
for which the generators representation has an exponential size in the number of variables.
Second, operators are easy to certify in constraints-only, thanks to Farkas’ lemma.

Fouilhé et al. (2013) evaluated the VPL efficiency in terms of execution time compared
to other polyhedra libraries: the Parma Polyhedra Library (Bagnara et al., 2008) and the
NEWPOLKA library, both available in APRON (Jeannet and Miné, 2009). They concluded that
the overall performance of those libraries was similar. The expensive operators of constraints-
only representation were found to be variable elimination and convex hull. They both rely on
orthogonal projection, that was therefore the bottleneck of VPL, limiting the scalability of the
whole library. Indeed, Fourier-Motzkin elimination is the standard algorithm for projection in
constraints-only, and it has an exponential complexity in the number of eliminated variables.
Thus, improving the projection operator is mandatory for the VPL to achieve scalability.

Contributions

My work takes place in the STATOR project, a 5-year research project started in 2013, that
focuses on developing new methods for static analysis of software. My contributions improve
several aspects of the VPL:
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Scalability. The VPL now contains a solver for Parametric Linear Programming (PLP)
problems, which is a powerful and generic tool. In particular, the two expensive operators
in constraints-only that are variable elimination and convex hull are now encoded as such.
The performance gain comes from a normalization constraint for avoiding the generation
of redundancies, which can become numerous during intermediate steps of Fourier-Motzkin
elimination.

New Algorithmics. In addition to PLP, the VPL now benefits from two new algorithms.
First, a fast minimization algorithm for eliminating redundant constraints from a polyhedron
representation. It is based on a raytracing process to avoid as much as possible the solving
of costly linear programming (LP) problems. Second, a conflict-based algorithm for extracting
implicit equalities from inequalities. It is more efficient in particular when there is no equality
to be found: while the standard algorithm solves one LP problem for each inequality of the
polyhedron, our solution needs only one in that case.

Handling of Polynomial Guards. The VPL provides two algorithms for over-approximating
the effect of polynomial guards on a polyhedron. The first one extends the intervalization pro-
cess of Miné (2006), that replaces some variables of nonlinear products by intervals. It is
implemented directly in C, exploiting a proof by refinement. The second one exploits Han-
delman (1988)’s theorem to find affine constraints dominating the polynomial on the polyhe-
dron. To obtain the tightest constraints in every direction, the problem is once again encoded
in PLP.

Floating Point. When certification is not needed, for instance within intermediate compu-
tations, we try to avoid the overhead of rational operations by using floating point numbers
as much as possible. In particular, we use LP solvers in floating point such as GLPK when
possible.

Certification. The certification system has been redesigned in order to be more general
and easier to debug. The idea is to exploit type polymorphism to preserve – for free! –
some properties from C to OC by extraction. This led to an innovative and powerful
certification framework named Polymorphic Factory Style, in which all VPL operators are
now implemented.

Overview of the Thesis
The thesis is split into two parts, one focusing on new algorithmics and the other on C

development. Before that, Chapter 1 provides the basics about certified polyhedral calculus.
It details the different operators required in an abstract domain and defines their soundness
criteria, that often boil down to proving polyhedral inclusions. Then, a section is dedicated
to Farkas’ lemma, a crucial result for the VPL since it provides a straightforward certificate
format for proving polyhedral inclusions. The chapter ends with an introduction to linear
programming, necessary to compute those certificates.

Part I focuses on improving the library overall performances and scalability. It begins
with the minimization algorithm by raytracing in Chapter 2. After detailing the challenges
of redundancy removal, the algorithm is expressed in terms of polyhedral cones, so that it
can be applied both to constraints and generators. Then, we give the results of experiments
performed on random polyhedra, and show how raytracing scales compared to the standard
minimization when the dimension and the number of constraints grows.

Chapter 3 presents the encodings of projection and convex hull as PLP problems. We
introduce the normalization constraint, and we prove that it avoids the generation of redun-
dancies in results. Again, experiments show that projection by PLP scales much better than
the standard Fourier-Motzkin elimination.

Chapter 4 introduces three methods to handle polynomials guards. First, we present our
enhanced intervalization, that splits the space depending on the sign of some affine subterms
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of the polynomial. This involves an oracle to rewrite the polynomial so that those subterms
syntactically show up. After that, we detail a method that relies on the conversion of polyno-
mials into the Bernstein basis. From the coefficients in this basis, one can extract some points
whose convex-hull form an over-approximation. It is not implemented in the VPL though,
because it works on generators. Finally, the last section deals with Handelman’s theorem,
and how it can be exploited to determine over-approximating polyhedra. Basically, it extends
Bernstein’s linearization by considering products of constraints of the input polyhedron, in-
stead of starting from an initial hypercube like Bernstein’s bases. To evaluate the method, we
implemented it as a decision procedure for the  solver 4, to solve satisfiability problems
of semialgebraic sets. Despite the shallow embedding and the absence of clause learning, the
results were pretty convincing compared to other solvers.

Chapter 5 gives some details on the implementation of our PLP solver. It also describes
the problem of degeneracy that can occur.

The subject of Part II is the C certification of the VPL. It begins with an introduction
to the C proof assistant. After illustrating the basics of a C proof on a simple polyhedral
inclusion, Chapter 6 discusses three different approaches of certification, and in particular
how to embed untrusted code within a C development.

The subject of Chapter 7 is the embedding of untrusted code in C proofs without in-
troducing a certificate format, that can be hard to develop and debug. Our solution, the
Polymorphic Factory Style (PFS), is illustrated on the certification of the projection operator.
Its flexible power is then attested on the more complex case of convex hull.

Chapter 9 deals with the certification of Handelman’s linearization.
The last chapter gives some details about the VPL implementation. It ends with a de-

scription of an alternative abstract domain of polyhedra based on another representation: the
partition in regions resulting from a PLP execution.





Chapter 1

A Certified Abstract Domain of
Polyhedra

Convex polyhedra are mathematical objects defining a geometrical space. They appear in
many fields such as static analysis and compilation, are at the heart of Linear Programming
(LP), and are widely used in combinatorial optimization. In this thesis, polyhedra are involved
in the formal certification of programs, by static analysis based on abstract interpretation.

This chapter defines the different operators for computing with polyhedra. We will see that
the correctness of each operator boils down to proving an inclusion between two polyhedra.
This inclusion is decidable thanks to Farkas’ Lemma which naturally leads to an encoding of
the inclusion as a LP problem. After introducing the theory of linear programming, we will
detail on examples the seminal method for solving LP problems: the simplex algorithm.

1.1 Checking Programs with Polyhedra

1.1.1 Static Analysis by Abstract Interpretation
A static analyzer is a software that proves assertions on programs. An assertion is a

property, sometimes user-defined, that must hold for every executions of the program. Focusing
on numeric variables, properties of interest could be the absence of arithmetic overflow or
array index out of bounds. To establish the validity of an assertion, the analyzer must find an
inductive invariant that entails it. An invariant is a predicate that is true at each execution of
the program. In a loop, we say that an invariant is inductive when it is true at the beginning
and at the end of the loop body.

Analyzers based on abstract interpretation consider invariants within a particular class of
properties called an abstract domain (Cousot and Cousot, 1977), for which operations meet (u)
and join (t) are computable, and @ is decidable. Roughly, each program point is associated
to an abstract value, which represents the set of values that program variables can take at
this point. For example, the abstract domain of intervals attaches to each variable its range.
Initially, each variable at each program point has a range defined by its type, e.g. [0, 1] for
Booleans, Z for integers or Q for floats. Then, the analysis refines these ranges until a fixpoint
(i.e. an inductive invariant) is reached. An interval analysis is cheap and particularly useful
to detect arithmetic overflows. However, it is not powerful enough to validate an assertion
that requires handling relations between variables. For instance, consider the following C
code:

1 // precondi t ion : 0 ≤ x ≤ 10
2 void f(x){
3 int i;
4 int y = x;
5
6 for (i = 0 ; i < 100 ; i++){

11
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7 x++;
8 y++;
9 }
10
11 assert (x == y);
12 }

Using the precondition, an interval-based analysis could determine that at the end of the
loop x and y both belong to [100, 110], but it is not able to prove the assertion of line 11
because it requires keeping the information that x = y at each loop step. The abstract domain
of convex polyhedra has the ability to handle any kind of affine relation between variables.
We will return to our example after introducing the domain of polyhedra.

1.1.2 Convex Polyhedra
A set X is said convex if it fulfills the following property

∀x, y ∈ X, ∀α ∈ [0, 1], αx+ (1− α)y ∈ X

Intuitively it means that, for any two elements x, y of X, any point of the segment [x, y] also
belongs to X .

A convex polyhedron 1 is a convex set of points defined by flat facets that meet on edges
and vertices. In two dimensions, it is a polygon. A polyhedron can be bounded, in which case
it is called a polytope, or unbounded as in the figure of Example 1.1.

We restrict our program analysis to integer variables only. Floating-point variables are
more tricky to handle, since they induce rounding errors that must be over-approximated in
order to stay sound. Thus, we will mainly be interested in the integer points of a polyhedron
P , i.e. Zn ∩ [[P]]. But, computing with such sets is not easy, and sticking to standard convex
polyhedra is usually sufficient to prove the required assertions. We will therefore consider
convex polyhedra with rational coefficients.

More formally, a convex polyhedron can be defined equivalently in two manners: as
constraints or as generators.

1.1.2.1 Constraint Representation

A convex polyhedron P represents a set of points that satisfy a conjunction of constraints,
i.e.

[[P]] =

x |
p∧

j=1

n∑
i=1

ai,jxi ./j bj

 (1.1)

where x = (x1, . . . , xn) is a vector of rational variables, ./j∈ {≤, <,=}, and ai,j , bj ∈ Q (see
Example 1.1). The notation [[P]] describes the set of points represented by P , while P refers to
the set of constraints of the polyhedron. Thus, we say that a point x ∈ Qn lies within [[P]],
and that a constraint C : ax ./ b belongs to P . We qualify a constraint as affine when the
right-hand side bj is not zero. If bj = 0, we simply call it linear.

To simplify case studies in algorithms, we often convert constraints written with {≤
, <,=} into equivalent ones using only {≥, >,=}. Similarly, the equality symbol could be
avoided as any equation

∑n
i=1 aixi = b can be rewritten into the conjunction (

∑n
i=1 aixi ≥ b)∧

(
∑n

i=1 aixi ≤ b).
We refer to the number of constraints of P as |P|, or sometimes simply p. The polyhedron

that is unconstrained, meaning that it contains all points of Qn, is noted >. In other words,
[[>]] = [[{}]] = Qn.

1. In all the thesis, we deal only with convex polyhedra. For readability, we often omit the adjective convex.
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Example 1.1. The unbounded polyhedron P defined by the three affine constraints C1 :
2x1 ≥ 1, C2 : 2x2 ≥ 1, C3 : 2x1 − x2 ≥ 0 is shown on the figure above. A constraint is
represented as a dotted line, with a vector showing its direction. For instance, constraint
C1 is the half-space on the right of the vertical half-plane x1 = 1

2 . A polyhedron is the
intersection of half-spaces.

Matrix Notations. Convex polyhedra can be conveniently denoted using matrix notations.
In all the thesis, vectors are written in boldface lowercase, e.g. x = (x1, . . . , xn), and matrices
in boldface uppercase, to be distinguished from scalar values. For instance, a vector of 0
is written 0. The definition (1.1) of a polyhedron can be rewritten as Ax ≥ b, where A is
the matrix of ai,j ’s, and b is the vector of bj ’s. This notation works similarly with ≤ or =.
However, a system Ax ≥ b cannot represent strict constraints. When a polyhedron contains
both large and strict constraints, we therefore represent it with two systems A1x ≥ b1 and
A2x > b2.
We will denote by Qp×n the set of matrices with p rows and n columns with coefficients in
Q. Here, A ∈ Qp×n and b,x ∈ Qn×1. The jth row of the system Ax ≥ b corresponds to the
jth constraint

∑n
i=1 ai,jxi ≥ bj .

We will sometimes use the augmented matrix [A|− b] ∈ Qp×n+1 associated to a system
Ax ≥ b, that is the matrix A concatenated with the column vector −b. Indeed, a system
Ax ≥ b is equivalent to Ax− b ≥ 0, i.e.

[A|− b]

(
x
1

)
≥ 0

Dimension of a Polyhedron. Given a polyhedron P : Ax ≥ b made only of inequalities,
we say that aix = bi is an implicit (or implied) equality if P ⇒ (aix = bi), meaning that all
points of [[P]] satisfy the equality. For instance, x1 = 1 is an implicit equality that can be
deduced from x1 ≥ 1 ∧ x1 ≤ 1. Let P = {x ∈ Qn | A1x ≥ b1, A2x > b2} and let A1x = b1 be
the system of implicit equations in A1x ≥ b1. Then the dimension of P is dim (P) = n − ρ,
where ρ is the rank of matrix A1 Cook et al. (1998, Property 6.15 p.212).
From a more topological point of view, we can think of dim (P) as the maximal dimension of
an open ball that can be fully contained in P . A polyhedron P defined on Qn and of dimension
n is said to be of nonempty interior, or of full dimension. The interior of a polyhedron P is
written P̊ , and a point within [[P̊]] is noted x̊.
Given a polyhedron P : Ax ≥ b of dimension n, the set aix = bi associated to a constraint
aix ≥ bi ∈ P is a facet  of P if aix = bi is an hyperplane of dimension n − 1. In particular,
the hyperplane of any irredundant constraint of P that does not induce an implicit equality is
a facet of P . In the following, we may abusively designate by facet both a constraint and its
bounding hyperplane. The context should not leave any doubt on the nature of the so called
object.
Most polyhedra library – including VPL– handle equalities and inequalities separately. When
building a polyhedron, the first step often consists in extracting explicit and implicit equalities
from the input set of constraints. Note that the VPL uses a particularly efficient algorithm



14 CHAPTER 1. A CERTIFIED ABSTRACT DOMAIN OF POLYHEDRA

for extracting implicit equalities, presented in Chapter 8. Operators on polyhedra usually
have a special treatment for equalities, much simpler as they rely on linear algebra instead of
linear programming. Then, algorithms can be applied more easily by assuming that polyhedra
have nonempty interior. Therefore, we will generally present algorithms on full-dimension
polyhedra.

1.1.2.2 Generator Representation

A convex polyhedron P can also be defined as the convex combination of generators:
vertices vi and rays ri. A ray represent a direction in which the polyhedron is unbounded.

[[P]] =

x | x =

|v|∑
i=1

βivi +

|r|∑
i=1

λiri, βi, λi ≥ 0,

|v|∑
i=1

βi = 1


By convexity, any convex combination of the vertices – i.e.

∑
i βivi for some βi’s ≥ 0 such

that
∑

i βi = 1 – belongs to [[P]]. P is also stable by translating any point of [[P]] along rays.
The generator representation usually contains a third structure called line, which reduces

the representation size: one line stands for two opposite rays.

Example 1.2. The polyhedron P of Example 1.1 can be defined by the two vertices v1 :(
1
2 , 1
)
, v2 :

(
1
2 ,

1
2

)
and the two rays r1 : (1, 0) , r2 : (1, 1).

1.1.2.3 Double Description

Most polyhedra libraries — such as the Parma Polyhedra Library (Bagnara et al., 2008),
the NEWPOLKA library included in APRON (Jeannet and Miné, 2009), Polylib (Loechner
and Clauss, 2010), and CDD (Fukuda, 2016) — use both representations of polyhedra, which
is known as the double description framework (Motzkin et al., 1953; Fukuda and Prodon,
1996). The motivation behind that is simple: some operators have a better complexity in
one representation. Complexity will be discussed at the end of the next section, after the
introduction of polyhedral operators. For now, simply notice that having the double description
of a polyhedron makes computations cheaper, because one can choose the best representation
for each operator.

Chernikova’s Algorithm. The bottleneck of double description is the conversion from one
representation to the other, which is done by Chernikova (1968)’s algorithm. It is often
assimilated to the Fourier-Motzkin elimination (that we will introduce later in Algorithm 1.4),
because they solve closely linked problems (Fukuda and Prodon, 1996). Let us give the idea
of a conversion from constraints to generators. Starting from a set of generators representing
> (i.e. an origin vertex and one line per variable), Chernikova’s algorithm iteratively adds
constraints one by one. When adding a constraint, some generators are created while some
others become redundant. To limit the combinatorial explosion, the fast removal of those
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redundancies is crucial. Several criteria have been proposed for that purpose. For instance,
Le Verge (1992) gives an upper bound on the number of constraints saturated by a ray beyond
which it is redundant. Still, Chernikova’s algorithm has an exponential complexity in the size
of the inputs and outputs.

Unlike other libraries, the VPL has the particularity to use the constraints-only represen-
tation of polyhedra. This choice was made because of certification: there is no known method
to check in polynomial time that a system of inequalities is equivalent to a system of gener-
ators (Fukuda, 2004). Therefore, certifying a polyhedra library in double description would
require to develop and prove Chernikova’s algorithm directly in C. Moreover, to ensure
the soundness of a set of constraints, one can check constraints independently one by one.
In particular, the analysis stays sound if some constraints are missing. On the contrary, the
generator system must be certified globally.

1.1.2.4 Operations on Constraints

Let us introduce some useful notations for affine constraints. Recall that vectors are written
in boldface lowercase, to be distinguished from scalar values.

An affine constraint is of the form ax ./ b, where a,x ∈ Qn, b ∈ Q and ./∈ {≤, <,=, >,≥}.
The inner product of vectors a and x, i.e.

∑n
i=1 aixi, is denoted by 〈a,x〉 or simply ax. We

often refer to a constraint with an affine function C(x) ./ 0, where C(x) = ax− b. Sometimes,
we simply write C ./ 0, or even C when the context leaves no doubt about the sign of the
constraint.

Consider two constraints C1 : a1x ./1 b1 and C2 : a2x ./2 b2 with ./1, ./2∈ {≤, <,=}. We
define the following operations on constraints:

— Addition: C1+C2
def
= a1x+a2x ./ b1+ b2 with ./ = max(./1, ./2) for the total increasing

order induced by the sequence {=,≤, <}.
— Product by a scalar: α×C1

def
= α · a1x ./1 α · b1 and is defined only if α > 0 or if ./1 is

symbol =.
These operations work similarly with ./1, ./2∈ {≥, >,=}. Keep in mind that, to avoid confu-
sion, we will allow the addition of two constraints only if they share the same comparison
set (either {≤, <,=} or {≥, >,=}).

1.2 Certifying an Abstract Domain of Polyhedra
Following abstract interpretation theory, an abstract domain is a lattice, and therefore must

provide several operators such as inclusion testing, join or meet. This section introduces the
specification of the required polyhedral operators, and some additional ones that are useful
in practice, such as linearization. It also sketches the idea of their computation. We will give
criteria for their correctness, and explain how to verify their results. Actually, VPL operators
are not directly implemented and proved in C: they are certified a posteriori (Fouilhé
et al., 2013). Each operator has an oracle written in OC, that performs most complex
computations and returns a certificate in addition to its results. This certificate is then used
by a C checker to rebuild the certified result in C datastructures. The C part of the
VPL is detailed in Part II.

1.2.1 Polyhedral Operators
Abstract interpretation is a theory of sound approximation of the semantics of programs.

In this context, soundness means that each abstract value – for us, a polyhedron – must
over-approximate its associated concrete value, which is the set of actual values that can be
taken by program variables at a program point. Intuitively, the result of an analysis is sound
if it does not miss any behaviour: all reachable states of the program are covered. To ensure
that abstract values are always over-approximating their concrete value, each operator must
maintain this property.
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We can distinguish two kinds of operators: the purely geometrical ones (e.g. join, meet,
inclusion tests, projection) and those linked to program statements like guards and assign-
ments. The correctness of geometrical operators involves an inclusion, to check that their
actual result over-approximates the expected one. Other operators, like assignment, require
the checker to verify that their result satisfy their semantics. Still, we can always express
such operators in terms of geometrical ones. For instance, an assignment can be encoded as
a guard followed by a projection and a renaming, as detailed below.

Soundness does not require to prove that operators are precise, even if we could do it for
most of them. In the rest of the thesis, we will not distinguish between the terms soundness
and correctness, as they are similar to us.

Operators will be expressed using constraints-only representation. All along the section,
we consider three polyhedra

P :  
p∧

i=1

Ci(x) ≥ 0, P ′ :

p′∧
i=1

C ′
i(x) ≥ 0 and P ′′ :  

p′′∧
i=1

C ′′
i (x) ≥ 0

Inclusion Test. The inclusion of polyhedra, denoted by P v P ′ is the inclusion of their set
of points, i.e. [[P]] ⊆ [[P ′]]. Being able to generate certificates for inclusion is crucial: the
correctness of most operators boils down to proving polyhedral inclusions. The proof of an
inclusion can be split into p′ independent sub-proofs P v C ′

i, one for each constraint C ′
i

of P ′. Each one-constraint inclusion can then be tested thanks to Farkas’ lemma 1.5, given
later. Basically, P v C ′

i if and only if C ′
i can be expressed as a nonnegative combination of

constraints of P , i.e.

∃(λk)k∈{0,...,p} ∈ Q+, ∀x ∈ Qn, λ0 +

p∑
k=1

λkCk(x) = C ′
i(x)

As the whole domain correctness is based on it, this lemma is dedicated the whole section
§1.2.2.

Emptiness Test. A polyhedron is empty if its constraints are unsatisfiable. The empty poly-
hedron is noted P∅ or ⊥, and is represented by a single contradictory (constant) constraint,
such as −1 ≥ 0. Testing the emptiness of a polyhedron P is the same as proving P v P∅.
Theorem 1.6, stated later, is a variant of Farkas’ lemma for deciding this particular inclusion.
The idea is similar: P v P∅ if −1 ≥ 0 can be expressed as a nonnegative combination of
constraints of P , i.e.

∃(λk)k∈{0,...,p} ∈ Q+, ∀x ∈ Qn, λ0 +

p∑
k=1

λkCk(x) = −1

Variable Elimination. Given n > k, the projection onto Qk of a polyhedron P that constrains
points of Qn is the polyhedron P ′ such that

[[P ′]]
def
= {(x1, . . . , xk) ∈ Qn | ∃xk+1, . . . , xn ∈ Q, (x1, . . . , xk, xk+1, . . . , xn) ∈ [[P]]}

Without loss of generality, we can reorder the variables so that the eliminated ones are the
last n− k. In static analysis, projection is used to eliminate variables from a polyhedron, for
instance at the end of a statement block in a program analysis and also in the assignment
operator, defined below. Given a subset of indices I ( {1, . . . , n}, we denote by P\{(xi)i∈I}
the polyhedron P where the variables (xi)i∈I have been eliminated by projection. A resulting
polyhedron H is a correct over-approximation of P\{(xi)i∈I} if P v H and if xi is unbounded
in H, for all i in I .
In constraints-only, convex hull and assignment are implemented via projection, which makes
it a central part of our polyhedral domain. The classical algorithm for projecting variables
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is Fourier-Motzkin elimination, the principle of which is sketched in Algorithm 1.4. Fourier-
Motzkin suffers from an exponential complexity in the number of projected variables. A major
contribution of the VPL is to perform variable projection by Parametric Linear Programming
(PLP) (Maréchal et al., 2017), which is the subject of Chapter 3.

Example 1.3. Elimination of x3 from P : {−x1−2x2+2x3 ≥ −7, −x1+2x2 ≥ 1, 3x1−x2 ≥
0, x3 ≤ 10, x1 + x2 + x3 ≥ 5} by projection. The projected polyhedron is the grey shadow.

Join. The convex hull of two polyhedra, denoted by P ′tP ′′, is the smallest convex polyhedron
that includes P ′ and P ′′. Due to convexity [[P ′ t P ′′]] can be defined as the set of all convex
combinations between a point of [[P ′]] and a point of [[P ′′]]:

[[P ′ t P ′′]]
def
= {x = α · x′ + (1− α) · x′′ | x′ ∈ [[P ′]], x′′ ∈ [[P ′′]], 0 ≤ α ≤ 1} (1.3)

Elaborating on this remark, Benoy et al. (2005) expressed the convex hull as a projection
problem: P ′ t P ′′ can be obtained by eliminating variables x′, x′′ and α from 1.3, to get
constraints mentioning only x. This process and its certification are detailed in §7.3. A result
H is a correct over-approximation of [[P ′ t P ′′]] if it satisfies:

P ′ v H ∧ P ′′ v H (1.4)

Additionally, the VPL provides another implementation of convex hull, directly encoded as a
PLP problem exploiting (1.4), hence not involving projection. This is discussed in §3.6.

Example 1.5. The convex hull of P ′ : {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} and P ′′ : {−1 ≤ x1 ≤
0, −1 ≤ x2 ≤ 0} is { x1 ≥ −1, x2 ≥ −1, x1 + x2 ≤ 1, x2 − x1 ≤ 1, x1 − x2 ≤ 1}.

Minimization. A constraint Ck ≥ 0 is redundant w.r.t. P if it is a logical consequence
of the other constraints of P , i.e.

∧
i 6=k Ci(x) ≥ 0 ⇒ Ck(x) ≥ 0. Informally, it implies that
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Suppose we want to eliminate variable xl from polyhedron Ax ≤ b, which corresponds to
the projection operator defined above. Fourier-Motzkin elimination is a classical algorithm
to perform this projection. The idea is to combine every possible pair of rows where xl

has opposite signs, in order to make it vanish. We split rows of Ax ≤ b into three groups
I+, I− and I0 according to their coefficient for xl: aix ≤ bi is in I+ if ail > 0, in I− if
ail < 0 and in I0 otherwise. As we may multiply any row by a positive scalar without
changing the set of solutions, we can isolate xl by rewriting the system into

xl +
1
ail

a′
ix

′ ≤ bi
ail

, if (aix ≤ bi) ∈ I+

−xl +
1

−ail
a′
ix

′ ≤ bi
−ail

, if (aix ≤ bi) ∈ I−

a′
ix

′ ≤ bi, if (aix ≤ bi) ∈ I0
where x′ =


x1

. . .
xl−1

xl+1

. . .
xn


and a′

i is the ith row of A with the lth coefficient deleted. This system has a solution if
and only if the following one has a solution.

1
−ajl

(a′
jx

′ − bj) ≤ xl ≤ 1
ail

(bi − a′
ix

′), ∀(aix ≤ bi) ∈ I+, ∀(ajx ≤ bj) ∈ I−

a′
kx

′ ≤ bk, ∀(akx ≤ bk) ∈ I0
(1.2)

The value for xl can be chosen if and only if the gap between its lower and upper bounds
is nonnegative. By rewriting inequalities in the usual form, Ax ≤ b is thus equivalent to

( 1
ail

a′
i +

1
−ajl

a′
j)x

′ ≤ bi
ail

+
bj
ajl

, ∀(aix ≤ bi) ∈ I+, ∀(ajx ≤ bj) ∈ I−

a′
kx

′ ≤ bk, ∀(akx ≤ bk) ∈ I0

Variable xl no longer appears in this system. Note that it may contain much more
constraints than the initial one: the Fourier-Motzkin elimination could produce O

(
( |P|

2 )2
k)

constraints when eliminating k variables of a polyhedron with |P| constraints (Simon
and King, 2005). Indeed, eliminating variable xl from P generates a polyhedron with∣∣I0∣∣+|I+|∗|I−| constraints. The worst case is obtained when I0 = {} and |I+| = |I−| = |P|

2 ,
meaning that xl appears in all constraints, half of the time with a negative coefficient.
Then,

∣∣P\{xl}
∣∣ = ( |P|

2

)2. Eliminating k variables one after the other leads to the complexity
claimed above.

Proposition 1.1. Fourier-Motzkin elimination preserves unsatisfiability.

Proof. The proposition is a direct consequence of the following result: Let A′x′ ≤ b′ be
the result of the Fourier-Motzkin elimination of xl from Ax ≤ b. Then for any point x′ =
(x1, . . . , xl−1, xl+1, . . . , xn) satisfying A′x′ ≤ b′, there exists xl such that x = (x1, . . . , xn)
satisfies Ax ≤ b. This holds because, as pointed out above in (1.2), the constraints of A′x′ ≤ b′

are built exactly in such a way.
In other words, if A′x′ ≤ b′ is non empty, then so is Ax ≤ b. The contraposition of this
result leads to the proposition.

Algorithm 1.4 – Fourier-Motzkin elimination
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Ck is useless in the sense that adding it does not change the geometrical space delimited by
P . Redundancies must be eliminated in order to maintain concise representations and avoid
useless computations in subsequent operations. The previous implication can be reformulated
as x ∈ [[P \ {Ck}]] ⇒ x ∈ [[Ck ≥ 0]] which reveals that deciding the redundancy of Ck w.r.t.
P amounts to decide the inclusion P v {Ck ≥ 0}. The minimization is sound as long as it
only removes constraints, since this process can only build over-approximations of the input
polyhedron. We also want the minimization to be precise, meaning that it does not remove
any irredundant constraint, but we do not have to prove it. The VPL benefits from an efficient
algorithm for minimizing (Maréchal and Périn, 2017), which is the subject of Chapter 2.

Meet. The intersection of two polyhedra, denoted by P ′ u P ′′, is the conjunction of their
constraints followed by a minimization to remove redundant ones. In other words, given
P ′ = A′x ≤ b′ = { C ′

1, . . . , C
′
p′} and P ′′ = A′′x ≤ b′′ = { C ′′

1 , . . . , C
′′
p′′}, then

P ′ u P ′′ =

(
A′

A′′

)
x ≤

(
b′

b′′

)
= { C ′

1, . . . , C
′
p′} ∪ { C ′′

1 , . . . , C
′′
p′′}

The correctness criterion is the same as for minimization: as long as the result constraints
are a subset of { C ′

1, . . . , C
′
p′} ∪ { C ′′

1 , . . . , C
′′
p′′}, it is a correct over-approximation of P ′ u P ′′.

Guard. The effect of a guard g on a polyhedron P is the set of points of [[P]] that satisfy the
predicate g, i.e. {x ∈ [[P]] | g(x)} . When the guard g is a conjunction of affine constraints, i.e. a
polyhedron G, the result is simply the intersection P uG. If the guard can be transformed into
an equivalent disjunction of polyhedra, G1∨ . . .∨Gk, the effect of the guard is approximated by
the polyhedron (P u G1) t . . . t (P u Gk). The correctness of this approximation is guaranteed
by the correctness of u and t.
When a guard cannot be expressed as an abstract value of the domain, it is always possible to
return P . In the case of polynomial expressions, specific linearization algorithms can exploit
the guard.

Linearization. When a guard is a polynomial constraint Q(x) ≥ 0, the abstract domain must
still provide an output. The result must be a polyhedral over-approximation of the constraint,
that is a polyhedron P ′ such that {x ∈ [[P]] | Q(x) ≥ 0} ⊆ [[P ′]]. This operation, called lineariza-
tion, has two variants in the VPL that are addressed in Chapter 4. The first one extends the
intervalization process of Miné (2006), where some variables of products are replaced by inter-
vals (Boulmé and Maréchal, 2015). The second one is a new algorithm involving Handelman’s
theorem for representing positive polynomials over a polyhedron (Maréchal et al., 2016).

Assignment. When the right-hand side of an assignment is an affine expression f , the
effect of x := f on a polyhedron P corresponds to the intersection of P with the polyhedron
encoding the equality {x̃ = f}, where x̃ is a fresh variable that denotes the new value of x. The
fresh variable x̃ will be renamed into x after elimination of the old value of x by projection.
Formally, the effect of x := f on P is the polyhedron(

(P u {x̃ = f})\{x}
)
[x̃/x].

Assignment is thus treated as a combination of a guard, a projection and a renaming.

Widening. The principle of abstract interpretation is to automatically find inductive loop
invariants. The standard fixpoint computation based on Kleene iteration can fail if the abstract
domain does not satisfy the ascending chain condition, or it can simply be too long to converge
toward a fixpoint. The usual approach is to use a widening operator, which consists in guessing
an invariant by analyzing the first iterations of a loop. The VPL uses the widening operator
of Halbwachs (1979) that finds an invariant by discarding constraints whose constant term
changes from one iteration to the other. The abstract domain does not need to certify the
candidate invariants provided by widening: the analyzer checks their inductiveness by itself.
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Table 1.6 – Complexity of polyhedral operators where p is the number of constraints, n the
dimension, and g the number of generators. LP (p, n) is the time required to solve a LP
problem with p constraints and n variables.

Operator Constraints Generators Both
inclusion O(p LP (p, n)) O(g LP (g, n)) O(png)

join O(np2n+1) O(ng) O(ng)
meet O(np) O(ng2n+1) O(np)

widening O(p LP (p, n)) O(g LP (g, n)) O(png)
guard O(n) O(ng2n+1) O(n)

assignment O(np2) O(ng) O(ng)

Example of Polyhedral Analysis. Going back to the C code of §1.1.1:
1 // precondi t ion : 0 ≤ x ≤ 10
2 void f(x){
3 int i;
4 int y = x;
5
6 for (i = 0 ; i < 100 ; i++){
7 x++;
8 y++;
9 }
10
11 assert (x == y);
12 }

Let us summarize the behaviour of a polyhedral abstract domain, focusing on variables x
and y. Before entering the loop, at line 5, the abstract value is P0

def
= {y = x, 0 ≤ x ≤ 10}.

Let us unroll the first iteration of the loop: After statement x++, the polyhedron becomes
{y = x − 1, 1 ≤ x ≤ 11}. Then, the effect of y++ gives P1

def
= {y = x, 1 ≤ x ≤ 11}.

Trying to infer an inductive invariant, we compute the convex hull of P0 and P1, which is
P ′
0

def
= {y = x, 0 ≤ x ≤ 11}. We can then unroll a second time the loop, starting from P ′

0.
After the ith unrolling of the loop body, our abstract value will be {y = x, 0 ≤ x ≤ 10 + i}.
To avoid unrolling the loop a hundred times, the widening operator removes the constraints
that change from one iteration to the other, i.e. x ≤ 10 + i. Finally, we obtain the inductive
invariant {y = x, 0 ≤ x}, which is able to prove the assertion of line 11.

1.2.1.1 Operators Complexity

Table 1.6, taken from (Singh et al., 2017), gives the complexity for each operator in
constraints-only, generators-only, and double description frameworks. It shows that oper-
ator join is the weakness of constraints-only representation, whereas the meet operator is the
most expensive one for generators. Obviously, knowing both representations allows using the
cheapest representation for each operator.

As mentioned before, the bottleneck of double description is Chernikova’s conversion of
representation. Some double description libraries, such as PPL, can apply lazy techniques:
by delaying computations until a result is really needed, they can chain operations in one
representation without triggering Chernikova’s algorithm if it is not worth it.

1.2.2 Farkas’ Lemma
Farkas’ lemma allows deciding a polyhedral inclusion. This is a seminal result that we shall

use all along the thesis, hence before giving the variant that suits our needs in the VPL, let us
see a brief overview of the other ones. Originally established in (Farkas, 1902), it was stated
in several variants through the years. Some of them are given in the book “Combinatorial
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Optimization” by Cook et al. (1998, Corollary A.2 p. 326), from which most following proofs
are taken. Note that all results given in that section are valid for both R and Q, but we will
give them in Q since we use them in that way. One of the most famous variant is analogous
to the following well-known result in Gaussian elimination.

Theorem 1.2 (Gauss). Given n,m ∈ N∗, A ∈ Qm×n and b ∈ Qm, exactly one of the following
assertions is true:

— ∃x ∈ Qn, Ax = b

— ∃y ∈ Qm, yᵀA = 0 and yᵀb 6= 0

This result is known as a theorem of alternatives, because it states that exactly one of two
systems of equations has a solution. Farkas’ lemma extends this theorem to the existence of
a solution in a system Ax ≤ b. Instead of Gaussian elimination, it is based on the Fourier-
Motzkin elimination procedure that eliminates a variable from a system of inequalities. Now,
let us prove our first variant of Farkas’ lemma. Note that, given a vector y ∈ Qm, notation
y ≥ 0 stands for element-wise comparison, i.e. ∀i ∈ {1, . . . ,m}, yi ≥ 0.

Lemma 1.3 (Farkas (for inequalities)). Given n,m ∈ N∗, A ∈ Qm×n and b ∈ Qm, exactly one
of the following assertions is true:

— ∃x ∈ Qn, Ax ≤ b

— ∃y ∈ Qm, y ≥ 0 and yᵀA = 0, yᵀb < 0

Proof. Inspired from Cook et al. (1998, Theorem A.1 p. 326).
Suppose Ax ≤ b has a solution x̃ and suppose that there exists a vector ỹ ≥ 0 such that

ỹᵀA = 0 and ỹᵀb < 0. Then, we obtain the contradiction

0 > ỹᵀb ≥ ỹᵀ(Ax̃) = (ỹᵀA)x̃ = 0

Therefore, both assertions cannot be simultaneously true.
Now, suppose that Ax ≤ b has no solution. Let us prove by induction on the dimension

of x that ∃y ∈ Qm, y ≥ 0 and yᵀA = 0, yᵀb < 0. When x is a single variable x ∈ Q, then
A is a single column a. In that case, the unsatisfiability of Ax ≤ b can be reduced to two
contradictory constraints, say Ci and Cj , that yield an empty interval for x. In other words,
there are two rows of ax ≤ b satisfying aix ≤ bi and ajx ≤ bj where ai > 0, aj < 0, and bi

ai
<

bj
aj
.

These two constraints define the empty interval bj
aj
≤ x ≤ bi

ai
. Now, by defining the vector y

as 1 in the ith coordinate, − ai

aj
for the jth and 0 otherwise, we have yᵀa = ai − ai

aj
aj = 0 and

bi
ai

<
bj
aj
⇔ bi <

ai

aj
bj ⇔ bi − ai

aj
bj < 0⇔ yᵀb < 0. Thus, the property holds in dimension one.

When the system Ax ≤ b has a greater dimension, say x = (x1, . . . , xn), apply Fourier-
Motzkin elimination to obtain a system A′x′ ≤ b′ with one less variable, i.e. x′ = (x1, . . . , xn−1).
Since Fourier-Motzkin preserves unsatisfiability (Proposition 1.1, page 18), A′x′ ≤ b′ has no
solution either. By induction hypothesis, ∃y′ ≥ 0 and y′ᵀA′ = 0, y′ᵀb′ < 0. The last step is
to reconstruct y from y′ such that y ≥ 0, yᵀA = 0 and yᵀb < 0.

Let p (resp. p′) be the number of constraints of Ax ≤ b (resp. A′x′ ≤ b′). As we saw in
the Fourier-Motzkin elimination, each constraint of A′x′ ≤ b′ is a positive combination of
constraints of Ax ≤ b. Thus, ∀i ∈ {1, . . . , p′}, ∃(λik)k∈{1,...,p} ≥ 0 such that

a′
i =

p∑
k=1

λikak

or equivalently

∀j ∈ {1, . . . , n}, a′ij =
p∑

k=1

λikakj


(1.5)

b′i =

p∑
k=1

λikbk (1.6)
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Let us build a vector y from y′ such that yᵀA = 0:

y′ᵀA′ = 0 by induction hypothesis

⇔ ∀j ∈ {1, . . . , n},
p′∑
i=1

y′ia
′
ij = 0

⇔ ∀j ∈ {1, . . . , n},
p′∑
i=1

y′i

(
p∑

k=1

λikakj

)
= 0 by (1.5)

⇔ ∀j ∈ {1, . . . , n},
p∑

k=1

(
p′∑
i=1

y′iλik

)
akj = 0

Thus, by defining the vector y as ∀k ∈ {1, . . . , p}, yk
def
=
∑p′

i=1 y
′
iλik, we have

∀j ∈ {1, . . . , n},
p∑

k=1

ykakj =

p∑
k=1

 p′∑
i=1

y′iλik

 akj = 0

which is equivalent to yᵀA = 0. Moreover, y ≥ 0 since λik ’s are nonnegative and y′ ≥ 0 by
induction hypothesis. Finally, let us verify that yᵀb < 0:

yᵀb =
p∑

k=1

ykbk

=
p∑

k=1

(
p′∑
i=1

y′iλik

)
bk by definition of yk

=
p′∑
i=1

y′i

(
p∑

k=1

λikbk

)
=

p′∑
i=1

y′ib
′
i by (1.6)

= y′ᵀb′

< 0 by induction hypothesis

From this lemma, we can easily prove the variant that was actually stated by Farkas.

Corollary 1.4 (Farkas). Given n,m ∈ N∗, A ∈ Qm×n and b ∈ Qm, exactly one of the following
assertions is true:

— ∃x ∈ Qn, x ≥ 0 and Ax = b

— ∃y ∈ Qm, yᵀA ≥ 0, yᵀb < 0

Proof. From Cook et al. (1998, Corollary A.2 p. 327).
Let us encode the equality Ax = b as two inequalities Ax ≥ b and Ax ≤ b. The system

Ax = b and the constraint x ≥ 0 corresponds to A
−A
−I


︸ ︷︷ ︸

A′

x ≤

 b
−b
0


︸ ︷︷ ︸

b′

Then, Ax = b has a nonnegative solution if and only if A′x ≤ b′ has a solution. Applying
the previous Lemma 1.3 to A′x ≤ b′ ends the proof.

The variant that we will use to determine polyhedral inclusions is the following one. It
builds upon Corollary 1.4 to show that the non-empty polyhedron {C1 ≥ 0, . . . , Cp ≥ 0} is
included into the single-constraint polyhedron {C ′ ≥ 0} if and only if C ′ can be expressed as
a nonnegative affine combinations of C1, . . . , Cp.
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Theorem 1.5 (Farkas generalized). Let C1, . . . , Cp and C ′ be p + 1 affine forms from Qn to Q.
Assume {

x ∈ Qn |
p∧

i=1

Ci(x) ≥ 0

}
6= ∅ (†)

Then, {
x ∈ Qn |

p∧
i=1

Ci(x) ≥ 0

}
⊆ {x ∈ Qn | C ′(x) ≥ 0} (‡)

if and only if

∃λ0, . . . , λp ∈ Q+, ∀x ∈ Qn, λ0 +

p∑
i=1

λiCi(x) = C ′(x)

Proof.
(⇐) : Assume ∃λ0, . . . , λp ∈ Q+, ∀x ∈ Qn, λ0 +

∑p
i=1 λiCi(x) = C ′(x). Let x̃ ∈ Qn such that

∀i ∈ {1, . . . , p}, Ci(x̃) ≥ 0. Then, C ′(x̃) = λ0+
∑p

i=1 λiCi(x̃) ≥ 0 since the λi’s are nonnegative.
Thus, the required inclusion holds.
(⇒) : Assume (‡), and let us prove that C ′ is a nonnegative affine combination of C1, . . . , Cp.
Let us define matrices

Aᵀ =


0 . . . 0 1
a11 . . . a1n b1
. . .
ap1 . . . apn bp

 and b =


a′1
. . .
a′n
b′


such that for i ∈ {1, . . . , p}, Ci(x) =

∑n
j=1 aijxj + bi and C ′(x) =

∑n
j=1 a

′
jxj + b′ = bᵀx. By

Corollary 1.4, there are two cases:
Either ∃λ ∈ Qp+1, λ ≥ 0 and Aλ = b. Then, λᵀAᵀ = bᵀ, and we are done.

Or ∃y ∈ Qn+1, yᵀA ≥ 0, yᵀb < 0, which is equivalent to Aᵀy ≥ 0 and bᵀy < 0. A
point y that satisfies yᵀA ≥ 0 may exist because we assumed in (†) that the polyhedron
{ C1 ≥ 0, . . . , Cp ≥ 0} is not empty; it means that ∀i ∈ {1, . . . , p}, Ci(y) ≥ 0. However,
bᵀy < 0, i.e. C ′(y) < 0. Thus, y is a point of { C1 ≥ 0, . . . , Cp ≥ 0} that does not
belong to {C ′ ≥ 0}, which contradicts (‡). Hence, this alternative of Corollary 1.4 cannot
happen.

Example 1.7. The Farkas combination of the form λ0 + λ1C1 + λ2C2, with λ0 = 2, λ1 = 2
and λ2 = 1, proves that P : { C1 : −x1 ≥ −1, C2 : −x1 − x2 ≥ −2} implies C ′ : −3x1 − x2 ≥
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−6. Indeed, C ′ = 2 + 2C1 + C2.

In other words, the non-empty polyhedron defined by constraints C1(x) ≥ 0, . . . , Cp(x) ≥ 0
implies C ′(x) ≥ 0 if and only if C ′ is a nonnegative affine combination of C1, . . . , Cp. This
combination is called the Farkas combination of C ′ in terms of P . It exists if and only if the
system Aλ = b defined in the proof has a nonnegative solution λ. This system being itself a
polyhedron, we have therefore expressed the polyhedral inclusion as an emptiness test. This
problem is addressed in the following lemma.

Theorem 1.6 (Unsatisfiability criterion). Let C1, . . . , Cp be p affine forms from Qn to Q. The
polyhedron defined by

P =

{
x ∈ Qn |

p∧
i=1

Ci(x) ≥ 0

}
is empty if and only if

∃λ0, . . . , λp ∈ Q+, ∀x ∈ Qn, λ0 +

p∑
i=1

λiCi(x) = −1

Proof.
(⇐) : Suppose ∃λ0, . . . , λp ∈ Q+, ∀x ∈ Qn, λ0+

∑p
i=1 λiCi(x) = −1. Assume there exists a point

x̃ ∈ P . By definition of P , λ0 +
∑p

i=1 λiCi(x̃) ≥ 0, which contradicts λ0 +
∑p

i=1 λiCi(x̃) = −1.
Thus, there is no such x̃ and P is empty.
(⇒) : Suppose P = ∅, meaning that the constraints of P are unsatisfiable. Then, by Propo-
sition 1.1, the projection of P on any subspace is also empty. The proof is similar to that of
Lemma 1.3. We eliminate each variable of P by Fourier-Motzkin elimination, until there is
only one left, say xn. Since P = ∅, we end up with a contradictory constraint a ≥ xn ≥ b with
b > a. Then, a ≥ b ≡ a − b ≥ 0 ≡ a−b

|a−b| ≥ 0 ≡ −1 ≥ 0 as b > a. Recall that Fourier-Motzkin
eliminates one variable by making nonnegative combinations of rows of the input polyhedron.
Thus, by multiplying the coefficients obtained by the successive variable eliminations, we can
express constraint −1 ≥ 0 as a nonnegative combination of constraints of P .

Certifying a Polyhedral Inclusion. Farkas’ lemma 1.5 gives a criterion to test the inclusion
of a polyhedron in a single constraint. Generalizing this result to the inclusion P v P ′ of two
polyhedra P : Ax ≥ b and P ′ : A′x ≥ b′ is simple. It suffices to concatenate into a matrix Λ
each Farkas combination λi that proves the one-constraint inclusion P v [[A′

ix ≥ b′i]]. Thus,
P v P ′ if and only if there exists a matrix Λ ∈ Q+|P′|×|P| of Farkas combinations such that λᵀ

1

. . .
λ∣T∣P′∣∣


︸ ︷︷ ︸

Λ

(
0 1
A −b

)
︸ ︷︷ ︸

F

= [A′|− b′] (1.7)

If Λ exists, its ith row is a vector λᵀ
i representing the Farkas combination of the ith constraint

of P ′ in terms of P . The first row of matrix Λ is similar to the one that appears within the
proof of Theorem 1.5, to handle the λ0’s.

Example 1.8. Let us show that P : {C1 : x1 + x2 ≥ 1, C2 : x1 − x2 ≥ 2, C3 : x1 ≥ 0}
is included into P ′ : {C ′

1 : 3x1 + x2 ≥ 4, C ′
2 : 2x1 − x2 ≥ 2}. P is included in C ′

1 because
C ′

1 = 1 + 2C1 + C2. Thus, its associated Farkas combination is λ1 = (1, 2, 1, 0)ᵀ. Similarly,
the Farkas combination of C ′

2 in terms of P is λ2 = (0, 0, 1, 1) since C ′
2 = C2 + C3.
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Thus, the matrix Λ
def
=

(
λᵀ
1

λᵀ
2

)
shows that P v P ′, because

(
1 2 1 0
0 0 1 1

)
︸ ︷︷ ︸

Λ


0 0 1
1 1 −1
1 −1 −2
1 0 0


︸ ︷︷ ︸

F

=

(
3 1 −4
2 −1 −2

)
︸ ︷︷ ︸

[A′|−b′]

Matrix Λ is a certificate that proves P v P ′. Computing Λ requires solving LP problems, but
checking that the inclusion holds is easy once Λ is known. It suffices to compute the matrix
product ΛF of (1.7), and check that it is equal to the right hand side (the operator result).
This is how the correctness of the VPL is ensured: an untrusted oracle produces a matrix
of certificates Λ, verified by a checker developed and certified in C. Actually, the VPL
provides an optimization of this verification process: instead of checking that equation (1.7)
holds and returning the oracle result [A′|− b′], the certified operator can directly output the
product ΛF . Indeed, this result is sound by construction, and it saves a matrix equality check
in C. See Part II for more details about the VPL certification.

1.3 Solving Linear Programming Problems
Convex Optimization. Convex optimization is a field of mathematical optimization prob-
lems, that focuses on problems of the form

minimize f0(x)

subject to
fi(x) ≥ 0, i = 1, . . . ,m

where functions f0, f1, . . . , fm : Rn → R are convex, i.e. satisfy

fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1]

This property means that, for every two points x
def
= (x1, . . . , xn) and y

def
= (y1, . . . , yn), the seg-

ment [(x1, . . . , xn, fi(x)), (y1, . . . , yn, fi(y))] dominates the curve of fi on [x,y], as illustrated
on Fig. 1.9. Note that we denote by [x,y] the segment joining x and y, i.e. the set of points
{αx+ (1− α)y | 0 ≤ α ≤ 1}. Some interesting properties of convex functions make them par-
ticularly well-suited for optimization. For instance, a local minimum is also a global one and
if the objective is strictly convex – i.e. satisfies the previous property with a strict comparison
sign, and α ∈]0, 1[ – then the minimum is unique. Linear programming problems, introduced
in the next section, are particular instances of convex optimization problems, focusing on
affine functions. For more information on convex optimization, I refer the interested reader
to the book of Boyd and Vandenberghe (2004).

1.3.1 Linear Programming
As §1.2.2 pointed out, deciding a polyhedral inclusion requires solving a system of affine

inequalities, i.e. finding a point within a polyhedron. A Linear Programming (LP) problem is
a convex optimization problem of the form

minimize cᵀx

subject to
Ax ≥ b
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Figure 1.9 – Example of convex function: f(x) = x2 − 2x+ 5.

Solving this problem consists in minimizing the linear objective function cᵀx =
∑n

i=1 cixi over
polyhedron Ax ≥ b. Variables x = (x1, . . . , xn) are called decision variables. An optimal
solution is a point x? – often noted with a superscript star – of the polyhedron Ax ≥ b such
that for all x satisfying Ax ≥ b, cᵀx? ≤ cᵀx. The value cᵀx? is called the optimal value.
A LP problem is said satisfiable if the polyhedron Ax ≥ b, called the feasible space, is
nonempty. If so, a point x of the polyhedron is called a feasible solution. Otherwise, the
problem is unsatisfiable. A problem is unbounded if it is feasible and if there is no optimal
solution, meaning that the objective function can decrease infinitely on the polyhedron. If the
problem is bounded, having a polyhedral feasible space ensures that at least one of its vertices
is an optimal solution. An optimal solution is not necessarily unique, for several points can
lead to the optimal value.

Example 1.9.1. Consider the polyhedron P : {C1 : 2x1 ≥ 1, C2 : 2x2 ≥ 1, C3 : 2x1 −
x2 ≥ 0} of Example 1.1 and the directions of optimization z1 = ( 12 , 0), z2 = (1,− 1

4 ) and
z3 = ( 1

10 ,−
1
3 ). The following LP problem has an optimal value of 1

4 , which is reached in
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all points of segment [v1,v2]. In particular, both vertices v1 and v2 are optimal solutions.

minimize zᵀ
1x i.e. 1

2
x1

subject to
2x1 ≥ 1

2x2 ≥ 1

2x1 − x2 ≥ 0

The next LP problem has also an optimal value of 1
4 , which is only reached in v1.

minimize zᵀ
2x i.e. x1 −

1

4
x2

subject to
2x1 ≥ 1

2x2 ≥ 1

2x1 − x2 ≥ 0

(LP 1.8)

The last problem is unbounded.

minimize zᵀ
3x i.e. 1

10
x1 −

1

3
x2

subject to
2x1 ≥ 1

2x2 ≥ 1

2x1 − x2 ≥ 0

Solving LP Problems. There exists two main categories of algorithms for solving LP prob-
lems:

— Interior point methods start from a point in the interior of the feasible space. These
methods are iterative algorithms that compute a sequence of interior points, as the
name suggests, each time closer to the optimum. One of the most famous is the barrier
method (Boyd and Vandenberghe, 2004), in which the sequence of interior points follows
a central path. This path is determined by a combination of the objective function, that
guides the path towards the optimum, and a barrier function that keeps points inside the
feasible space. A barrier function is designed to have a reasonable behaviour inside the
feasible space, and to diverge close to frontiers. The barrier method has a guaranteed
precision, meaning that given an error ε, there exists a (computable) bound on the number
of steps needed to reach an ε-close of the optimum.

— The simplex algorithm starts from a vertex of the feasible space, and moves from one
vertex to another until an optimum is reached. The “moving” operation (actually called
the pivot) is designed so that each iteration increases the current objective value.

Solving LP problems is a mean to check polyhedral inclusions. Proving Ax ≤ b v A′x′ ≤ b′

boils down to determining a Farkas combination as given in Equation (1.7) (p.24), that we recall
here:  λᵀ

1

. . .
λ∣T∣P′∣∣


︸ ︷︷ ︸

Λ

(
0 1
A −b

)
= [A′|− b′]
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To prove that this equation holds, we need the exact coefficients of the Farkas combination
(the matrix Λ). The simplex algorithm is more suitable for certification, since the interior
point method gives an approximated solution.

The next section introduces the simplex algorithm. The reader may notice that we in-
troduced linear programming to find solutions of a system of affine inequalities, which is
a satisfiability problem. But what we defined so far were optimization problems. Actually,
finding a feasible solution is the initialization step of the simplex algorithm. We will see that
initialization and optimization are very similar steps, for they are based on the same operation:
the pivot.

1.3.2 The Simplex Algorithm
Understanding the simplex algorithm is important to follow the rest of the thesis, especially

when we will address Parametric Linear Programming. This section summarizes the basics
and introduces the vocabulary that will be needed later. We restrict our presentation to our use
case where decision variables are nonnegative rationals. Note that nonnegativity constraints
are not explicitly written in the system of constraints: they are assumed by the restricted
algorithm that we will see below. In the general algorithm, variables are instead attached to
an interval of values – not necessarily bounded. Here, we thus consider that each variable
belongs to [0,+∞[. For more details about LP and the general simplex algorithm, refer to the
seminal book of Chvátal (1983).

The overall principle of the simplex algorithm is to start from a vertex of polyhedron
Ax ≥ b and travel from one vertex to another, until the optimum is reached. If the optimum
exists, it is always reached on a vertex. The first phase – finding a starting vertex – is called
initialization, and the second one is the optimization phase.

Echelon Form. In practice, the algorithm puts the system of constraints and the objective
function in echelon form 2, as in Gaussian elimination. We will see that it syntactically exposes
the currently visited vertex and that it indicates how to find a neighbor vertex that improves
the objective value. An echelon form matrix of n rows and m columns is the concatenation
of the identity matrix In and a n× (m− n) matrix.

Example 1.10. Here is an example of echelon form matrix.

1 0 0 −2 1
0 1 0 3 0
0 0 1 0 2

We abusively say that
0 1 0 −2 1
1 0 0 3 0
0 0 1 0 2

is also in echelon form.

We abusively say that a system is in echelon form if we can find a reordering of the columns
that syntactically gives an echelon form matrix as defined above.

Before solving the problem, the simplex algorithm transforms each inequality of the problem
into an equation, by adding slack variables. An inequality ax ≥ b is changed into ax− s = b,
introducing an additional constraint s ≥ 0. These two constraints are equivalent provided that
the added slack variable s, which represents the gap between ax and b, is nonnegative. Recall
that, in our restricted version of the simplex algorithm, nonnegativity constraints are not
explicitly written in the system of constraints. Thus, s is implicitly considered nonnegative. 3

2. What we call echelon form is usually known as reduced row echelon form.
3. Note that for a strict inequality ax > b, the additional variable s is required to be strictly positive. To represent

such variable in the general simplex algorithm, we would attach an open interval ]0,+∞[ to s.



1.3. SOLVING LINEAR PROGRAMMING PROBLEMS 29

Dictionaries. To put a system of affine equations in echelon form, we partition the set of
variables – both decision and slack variables – into a set B of basic variables and a set N
of nonbasic ones. The set of basic variables forms the basis. Once the partition is chosen,
the system of equations and the objective function are then rewritten so that basic variables
become expressed in terms of nonbasic ones, leading to an echelon form. When rewritten in
this way, the system is called a dictionary: each basic variable is associated with an equation
that gives its expression in terms of nonbasic variables.

Example 1.10.1. Adding slack variables to the problem (LP 1.8) of Example 1.9.1 gives

2x1 − s1 = 1
2x2 − s2 = 1

2x1 − x2 − s3 = 0
z = x1 − 1

4x2

where z denotes the objective function. We can rewrite this system of equations into an
echelon form by selecting a set of basic variables. With B = {x1, x2, s3} and N = {s1, s2},
we obtain the following dictionary

x1 =
1

2
s1 +

1

2

x2 =
1

2
s2 +

1

2

s3 = s1 −
1

2
s2 +

1

2

z =
1

2
s1 −

1

8
s2 +

3

8

(Dict. 1.9)

To clearly see that this system is in echelon form, let us write its augmented matrix. For a
better understanding, each row of the matrix is preceded by the basic variable that is defined
by the row, and the system of equations is written in the same form on the right hand side.
The last row represents the objective function.

S
def
=

x1

x2

s3

z

z x1 x2 s1 s2 s3
0 1 0 − 1

2 0 0 − 1
2

0 0 1 0 − 1
2 0 − 1

2

0 0 0 −1 1
2 1 − 1

2

1 0 0 − 1
2

1
8 0 − 3

8


x1 − 1

2s1 −
1
2 = 0

x2 − 1
2s2 −

1
2 = 0

s3 − s1 +
1
2s2 −

1
2 = 0

z− 1
2s1 +

1
8s2 −

3
8 = 0

By reordering the columns to take into account the partition into basic and nonbasic vari-
ables, the identity matrix appears on the left hand side.

x1

x2

s3

z

x1 x2 s3 z s1 s2
1 0 0 0 − 1

2 0 − 1
2

0 1 0 0 0 − 1
2 − 1

2

0 0 1 0 −1 1
2 − 1

2

0 0 0 1 − 1
2

1
8 − 3

8



A dictionary is a way of syntactically representing a point and its associated solution.
A dictionary (or equivalently its basis) is said feasible if, by giving the value 0 to each
nonbasic variable and by evaluating basic ones accordingly, the obtained point belongs to
the feasible space. Note that, when giving the value 0 to each nonbasic variable, the value
of a basic variable is reduced to the constant term of its associated equation and the value
of the objective function z is the constant term of its associated equation. For instance
in Example 1.10.1, the dictionary B = {x1, x2, s3} and N = {s1, s2} gives the feasible point
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(s1 = 0, s2 = 0, s3 = 1
2 , x1 = 1

2 , x2 = 1
2 ) associated to the value z = 3

8 . Looking at the
feasible space in Example 1.9.1, we see that the point

(
x1 = 1

2 , x2 = 1
2

)
corresponds to vertex

v2.
Any partition into basic and nonbasic does not necessarily give an initial dictionary that

is feasible. Indeed, each equation of the dictionary must define exactly one basic variable.
For instance, in Example 1.10.1, the basis B = {x1, s1, s3} is not allowed because the second
equation x2 = 1

2s2 +
1
2 would be left with no basic variables. We say that such a basis is not

well-defined: it cannot express the system of equations. Note that a dictionary can be well-
defined but infeasible. For instance, the basis B = {x1, s2, s3} gives the following dictionary,
which is well-defined but infeasible because s2 has the negative value −1.

x1 =
1

2
s1 +

1

2
s2 = 2x2 − 1

s3 = s1 − x2 + 1

z =
1

2
s1 −

1

4
x2 +

4

8

The simplex algorithm can start with an infeasible but well-defined dictionary that will be
repaired during the initialization phase.

Pivoting. The core operation of the simplex algorithm is the pivot. It consists in swapping
a basic variable xb ∈ B with a nonbasic one xn ∈ N : xb leaves the basis while xn enters it.
To do so, xn is expressed in terms of xb and other nonbasic variables. This expression is then
propagated in the dictionary to eliminate xn from other equations. Obviously, this is possible
only if xn appears in the equation associated to xb. Otherwise, there is no way to express
xn in terms of xb. If well chosen, a pivot changes a feasible dictionary (and its associated
feasible point) into another feasible one: this is how the simplex algorithms travels from one
vertex to another. In practice, a pivot is applied on dictionaries like a pivot in the Gaussian
elimination, but the choice of the pivoting variables (xn, xb) must obey some rules that will
be detailed.

Example 1.10.2. Let us perform a pivot on dictionary (Dict. 1.9) (and it associated ma-
trix S) of Example 1.10.1 between variables s3 (the leaving variable) and s2 (the enter-
ing variable). The equation defining s3 in terms of nonbasic variables in (Dict. 1.9) is
s3 = s1 − 1

2s2 +
1
2 , which corresponds to the third row of S. As we want the coefficient of

s2 to become 1, let us multiply this equation by 2 and isolate s2: s2 = 2s1 − 2s3 + 1. Then,
we use this definition of s2 to eliminate it in other rows. This operation is equivalent to the
substitution of s2 by 2s1−2s3+1. The resulting dictionary (and its associated matrix) are:

x1 =
1

2
s1 +

1

2
x2 = s1 − s3 + 1

s2 = 2s1 − 2s3 + 1

z =
1

4
s1 +

1

4
s2 +

1

4

(Dict. 1.10)

x1

x2

s2

z

z x1 x2 s1 s2 s3
0 1 0 − 1

2 0 0 − 1
2

0 0 1 −1 0 1 −1
0 0 0 −2 1 2 −1

1 0 0 − 1
4 0 − 1

4 − 1
4
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The new basis is {x1, x2, s2}. The feasible point corresponding to this dictionary is (x1 =
1
2 , x2 = 1), which is vertex v1 from Example 1.9.1.

1.3.2.1 Optimization Phase

Let us see how to reach the optimum value from a feasible system of constraints. Since
we wish to minimize the objective value, the idea is to look for a nonbasic variable xn with
a negative coefficient in the objective function. Since variables are assumed nonnegative,
increasing the value of xn will decrease the objective value. As nonbasic variables have value
0 in dictionaries, increasing the value of xn can only be done if it enters the basis. Then, we
need a basic variable to leave the basis to let some room for xn.

For instance, in dictionary (Dict. 1.9) from Example 1.10.1, the objective is expressed as
z = 1

2s1−
1
8s2+

3
8 . As s2 ≥ 0, by increasing s2, the objective value will decrease by the quantity

− 1
8s2. Optimality is eventually reached because the simplex algorithm always increases the

entering variable (s2 here) as much as possible, being careful not to violate any constraint.
Let us study equations of the dictionary to find an equation that could limit the increase of
s2.

— x1 = 1
2s1 +

1
2 : s2 does not appear in this equation.

— x2 = 1
2s2 +

1
2 : By increasing s2, we must ensure that x2 stays nonnegative. Here, s2 has

a positive coefficient in the definition of x2. Thus, increasing s2 will increase as well the
value of x2: this equation does not limit the increase of s2.

— s3 = s1− 1
2s2 +

1
2 : By changing s2, we must ensure that s3 stays nonnegative. This time,

s2 has a negative coefficient in the definition of s3. Thus, increasing s2 will decrease the
value of s3. The maximal suitable value for s2 is reached when − 1

2s2 +
1
2 = 0, which is

s2 = 1.

s2 increase is limited by the equation of s3, thus this equation is chosen as definition of s2:
s2 enters the basis and s3 leaves it. The pivot operation given in Example 1.10.2 performs the
swapping and leads to the new objective function of (Dict. 1.10) which is z = 1

4s1+
1
4s2+

1
4 . It

no longer contains any negative coefficient, meaning that there is no more way to minimize
the objective: an optimum has been reached!

To summarize, the optimization phase consists in iterating the three following steps:

1. Find a variable xn ∈ N with a negative coefficient in the objective function. If there is
no such xn, an optimum has been reached.

2. Find the variable xb ∈ B that limits the most the increase of xn. If there is no such
xb, it means that there is no limit to the increase of xn, and therefore the problem is
unbounded.

3. Perform the pivot xb ↔ xn. Go back to step (1).

1.3.2.2 Initialization Phase

Before the optimization phase, we must find a feasible dictionary (i.e. associated to a
feasible point). Suppose the initial LP problem was defined as follows.

minimize cᵀx

subject to
aix ≥ bi, ∀i ∈ {1, . . . , p}
xi ≥ 0, ∀i ∈ {1, . . . , n}

(LP 1.11)

Chvátal (1983) introduces an auxiliary variable y ≥ 0 and defines an auxiliary problem that
finds a feasible basis, if such exists:
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minimize y

subject to
aix+ y ≥ bi, ∀i ∈ {1, . . . , p}
xi ≥ 0, ∀i ∈ {1, . . . , n}
y ≥ 0

(LP 1.12)

Problem (LP 1.11) has a solution if and only if the optimal value for y in (LP 1.12) is 0. Let
us try to solve (LP 1.12). First, we add the slack variables (si)i∈{1,...,p}:

minimize y

subject to
aix+ y − si = bi, ∀i ∈ {1, . . . , p}
xi ≥ 0, ∀i ∈ {1, . . . , n}
si ≥ 0, ∀i ∈ {1, . . . , p}
y ≥ 0

Let us write the dictionary where all slack variables are basic:

si = aix+ y − bi, ∀i ∈ {1, . . . , p}
z = y

This LP problem has a feasible point: choosing xi = 0 and y = max {0} ∪ {bi | i = 1, . . . , p}
produces nonnegative values for all slack variables si = y − bi. Then, if y = 0, the basis
B = {si | i ∈ {1, . . . , p}} leads to a feasible dictionary for the initial problem (LP 1.11).
Otherwise, it means that this dictionary gives a negative value for at least one si. The
dictionary can be fixed by performing one single pivot, with y entering the basis so that it
can take a value greater than 0. Actually, y should have value max {0} ∪ {bi | i = 1, . . . , p} to
ensure a nonnegative value for all si = y− bi when xi = 0. In fact, the standard pivoting rule
that we described before will adjust the value y.

The leaving variable, say s`, is the slack variable with the minimal value in the dictionary.
After this pivot y ↔ s`, s` will have value 0, and every other si will be nonnegative, leading
to a feasible dictionary for (LP 1.12). Then,

— Either the minimal value for y is 0, in which case the final dictionary of the auxiliary
problem can easily be converted into a feasible dictionary for the initial problem, by
simply replacing y by 0.

— Or the minimal value for y is strictly positive, in which case the initial problem (LP 1.11)
is infeasible.

Complexity of the Simplex Algorithm. Although the ellipsoid algorithm shows that ratio-
nal LP problem resolution belongs to P, the simplex algorithm has an exponential worst case
complexity in the number of vertices of the feasible space (Chvátal, 1983). Still, it behaves
much better in practice.
The efficiency of the algorithm is sensitive to the choice of the entering variable in the first
step of the optimization phase. The simplest choice is the use of a lexicographic order on
variables: when two or more variables are eligible for entering the basis at the same time, pick
the minimal one for the lexicographic order. Bland (1977) showed that this heuristic ensures
the termination of the simplex algorithm.

Implementation in the VPL. A. Fouilhé implemented the general simplex algorithm in
the VPL, meaning that decision variables are not assumed nonnegative. It can handle strict
inequalities by manipulating a symbolic error ε: it gives symbolic values of the form (q, d · ε)
with q, d ∈ Q to coordinates of vertices. (q, d) is a solution to x > 0 if q > 0 or (q = 0∧d > 0).
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Chapter 2

A Minimization Algorithm by
Raytracing

We presented in §1.2.1 the minimization operator in constraints-only, for removing re-
dundant constraints from a polyhedron representation. In general, deciding redundancies is
expensive as it requires solving one LP problem for each constraint. The goal of this chapter
is to introduce a new and efficient minimization algorithm based on raytracing, implemented
in the VPL. It consists in launching rays starting from a point within the polyhedron and
orthogonal to its bounding hyperplanes. A constraint first encountered by one of these rays
is irredundant. Since this procedure is incomplete (for a finite number of launched rays),
LP problem resolutions are still required for the remaining undetermined constraints. This
work was published and presented at the 18th International Conference on Verification, Model
Checking, and Abstract Interpretation (Maréchal and Périn, 2017), in Paris. As we will see,
this algorithm is expressed in terms of polyhedral cones and can therefore be applied either
on constraints or generators.

2.1 Redundancy in Polyhedra
The addition of new constraints or generators introduces redundancies which must be

removed to reduce memory consumption and avoid useless computations in subsequent op-
erations. The emergence of redundancies is illustrated by the figure of Example 2.1: when
constraint C ′ is added into Pa to form Pb, constraints C3 and C4 become redundant. Con-
versely, the addition of points v1,v2,v3 into Pb generates Pa and makes v′

1 and v′
2 redundant.

As explained in Algorithm 1.4(p. 18), in constraints-only representations, redundant con-
straints tend to grow exponentially during the computation of a projection by Fourier-Motzkin
elimination (Simon and King, 2005). For a description by generators, the same pitfall oc-
curs in Chernikova’s conversion when a polyhedron is sliced with a constraint (Fukuda and
Prodon, 1996). This motivates the search for efficient ways of detecting redundancies.

Characterization of Redundancy. A ray rk is redundant if it is a nonnegative combination
of some other rays. A point vk is redundant if it is a convex combination of the other
generators, i.e. vk =

∑
i 6=k βivi +

∑
i λiri for some βi, λi ≥ 0 with

∑
βi = 1. Back to the figure

of Example 2.1, equations v′
1 = 1× v1 + 2× r1 and v′

2 = 1× v3 + 1× r1 prove the redundancy
of v′

1 and v′
2 in Pa. Therefore, these equations account for certificates of redundancy.

Intuitively, a constraint is redundant if it is useless, in the sense that adding it does not
change the geometrical space delimited by the polyhedron. Formally, as explained by Farkas’
lemma 1.5 in §1.2.2, a constraint Ck is redundant if it is a nonnegative combination of other
constraints.

35
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Example 2.1. Let Pa be defined equivalently by constraints {C1 : x2 − x1 <= 1, C2 :
x2 − x1 ≥ 5, C3 : x1 ≥ 1, C4 : x1 + x2 ≥ 0} or by generators {v1 : (1, 2), v2 : (1,−1), v3 :
( 52 ,−

5
2 ), r1 : (1, 1)}. Let Pb be defined equivalently by constraints {C1 : x2 − x1 <= 1, C2 :

x2 − x1 ≥ 5, C ′ : x1 ≥ 4} or by generators {v′
1 : (4,−1), v′

2 : (4, 5), r1 : (1, 1)}. The
equations C3 = 3+C ′ and C4 = 13+ (2 ×C ′) + (1×C2) are the Farkas decompositions of
C3 and C4. They act as certificates of redundancy. Indeed,

C3 : x1 − 1 ≥ 0 ≡ 3 + (x1 − 4 ≥ 0)

and
C4 : x1 + x2 ≥ 0 ≡ 13 + 2× (x1 − 4 ≥ 0) + (x2 − x1 − 5 ≥ 0)

If only one representation is available – as generators or as constraints – discovering
redundancy requires solving LP problems of the form “does there exist nonnegative scalars
satisfying some linear equations?”:

∃λ0, . . . , λ|p| ≥ 0, Ck =
|p|∑

i=1,i6=k

λiCi + λ0 (1) for constraints

∃λ1, . . . , λ|r| ≥ 0, rk =
|r|∑

i=1,i6=k

λiri (2) for rays

∃β1, . . . , β|v|, λ1, . . . , λ|r| ≥ 0, vk =
|v|∑

i=1,i6=k

βivi +
|r|∑
i=1

λiri (3) for vertices

∧
|v|∑

i=1,i6=k

βi = 1
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Polyhedral Cones. The way to reconcile those three definitions of redundancy is to switch
to polyhedral cones. A polyhedral cone is defined by x ∈ Qn | x =

|r|∑
i=1

λiri, λi ≥ 0

  

where ri’s are vectors of Qn. These vectors act as rays in the generator representation of a
polyhedron. Therefore, a polyhedral cone is a special case of polyhedron, defined only by a
finite set of rays and a single vertex, that is the origin 0

def
= (0, . . . , 0). This vertex can be

kept implicit since 0 is necessarily part of any such cone (obtained with λi = 0,∀i = 1.. |r|).
As a consequence, a constraint of a polyhedral cone has no constant term, which leads to
a homogeneous system of constraints. From now on, since we only consider cones that are
polyhedra, we will omit the adjective “polyhedral” and simply talk about “cones”.
The trick to change a polyhedron P – represented as constraints – into a cone is to associate
an extra variable η to the constant term b as follows (Wilde, 1993) (see Example 2.2 below):
for any η > 0,

Ax ≤ b ≡ η(Ax) ≤ ηb ≡ A(ηx)− ηb ≤ 0 ≡ [A| − b]

(
ηx
η

)
≤ 0

Goldman and Tucker (1956) proved that x ∈ Qn belongs to P if and only if (x 1) ∈ Qn+1

belongs to the cone {x′ ∈ Qn+1 | [A|− b]x′ ≤ 0}. Using this transformation, operators on
polyhedra can be implemented as computations on their associated cones producing a cone
that, once intersected with the hyperplane η = 1, is the expected polyhedron. We switch back
to general polyhedra in illustrations as they are easier to draw (they have one dimension less
than their cone).
Note that there is a technicality with this transformation into cone: when testing the emptiness
of a polyhedron P represented as a cone, one must have in mind that a cone is never empty,
it necessarily contains 0. The emptiness test then becomes P 6= ∅ iff ∃(x1, . . . , xn, η) ∈ Cone(P)
with η > 0.
Considering cones simplifies the presentation: the constant term of constraints vanishes and
the vertices disappear from definitions. This reconciles constraints-only and generators repre-
sentations, in the sense that the minimization algorithm works on both. We end up with the
same definition of redundancy for constraints (1’) and for generators (2’): a vector is redundant
if it is a nonnegative combination of the other vectors. In particular, the constant term λ0

that appears in the Farkas decomposition of a redundant constraint is no longer necessary
because of the absence of constant terms in constraints. Thus, a constraint Ck (resp. a ray
rk) is redundant if

∃λ1, . . . , λ|p| ≥ 0, Ck =
|p|∑

i=1,i6=k

λiCi (1’) for constraints

∃λ1, . . . , λ|r| ≥ 0, rk =
|r|∑

i=1,i6=k

λiri (2’) for rays
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Example 2.2. Consider the unbounded polyhedron P = {2x1 ≥ 1, x2 ≥ 1
2 , 2x1 − x2 ≥ 0},

that was the running example of Chapter 1. Following the transformation given above, its
associated cone is Cone(P) = {2x1η ≥ η, x2η ≥ 1

2η, 2x1η − x2η ≥ 0, η ≥ 0} ≡ {2y1 − y3 ≥
0, y2 − 1

2y3 ≥ 0, 2y1 − y2 ≥ 0, y3 ≥ 0} with the change of variable y1 = x1η, y2 = x2η
and y3 = η. This cone is displayed (truncated) on the figure above. It starts from the
origin (0, 0, 0) and extends to infinity in the direction of four rays (one for each constraint
of Cone(P). When η = 1, we retrieve P, which is the blue area.

Deciding Redundancy. The redundant/irredundant status of a constraint or a ray depends
on the satisfiability of an existential problem (1’,2’) involving linear equations but also in-
equalities (

∧
i λi ≥ 0). As we saw in §1.2.2, such a problem does not fall within the realm of

linear algebra but in that of linear programming for which the simplex algorithm is a standard
solver (see §1.3 for a introduction). In practice, the simplex performs much better than its
theoretical exponential complexity – but still remains a costly algorithm. So, much research
has been devoted to identifying many cases where the simplex can be avoided. Wilde (1993)
and Lassez et al. (1993) suggest several fast redundancy-detection criteria before switching to
the general LP problem:

— The quasi-syntactic redundancy test considers pairs of constraints and looks for
single constraint redundancies of the form C ′ = λC with λ > 0, e.g. C ′ : 4x1 − 6x2 ≥ 2
is redundant w.r.t. C : x1 − 3x2 ≥ 1 since C ′ = 2× C.

— The bound shifting test exploits the implication ax ≤ b =⇒ ax ≤ b′ if b ≤ b′. Hence,
when the coefficients of two constraints C and C ′ only differ on b and b′ with b ≤ b′ then
C ′ is redundant and the certificate is C ′ = C + (b′ − b).

— The combination of single variable inequalities such as x1 ≤ b1 and x2 ≤ b2 entails
for instance the redundancy of C : 2x1 + 3x2 ≤ b with 2b1 + 3b2 ≤ b. The corresponding
certificate is C = 2× (x1 ≤ b1) + 3× (x2 ≤ b2) + (2b1 + 3b2 − b).

While these criteria can detect certain redundancies at a low cost, the raytracing algorithm
that we shall present exploits the other side of redundancy and provides a fast criterion to
detect irredundant constraints. The combination of the two approaches limits the usage of the
simplex to constraints that are neither decided by our criteria nor by those of Wilde (1993)
and Lassez et al. (1993).

2.2 Certifying a Minimization of Polyhedra
In this section we recall the standard algorithm for minimizing a polyhedral cone rep-

resented as a set of constraints. It has been extended in the VPL 0.1 to produce on-the-fly
certificates of correctness, precision and minimality.

Minimizing a polyhedral cone P consists in removing all redundant constraints such that
the result, PM , represents the same geometrical space, i.e. [[P]] = [[PM ]]. Two certificates are
needed to prove that equality:
(1) one for the inclusion [[P]] ⊆ [[PM ]] which guarantees the correctness of the minimization

and
(2) another one for [[PM ]] ⊆ [[P]] which justifies its precision.

A third certificate (3) ensures the minimality of the result showing that all constraints of PM

are irredundant.
Certificate (1) must prove that each point of [[P]] belongs to [[PM ]], which means that each

constraint of PM must be a logical consequence of the constraints of P . In the particular case
of minimization, inclusion (1) is trivial because PM is obtained by only removing constraints
from P , which necessarily leads to a larger set of points. A syntactic test is sufficient to
retrieve the constraints of PM in P in order to prove inclusion (1). By contrast, the existence
of certificates for (2) and (3) is not straightforward but the consequence of the following
corollary, that is a rephrasing of Farkas’ lemma for polyhedral cones.
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Corollary 2.1 (Farkas’ lemma for cones). Let C1, . . . , Cp and C ′ be vectors in a n-dimensional
space. Then,

(I) either C ′ is redundant and there exists a Farkas decomposition of C ′ that is a nonnegative
linear combination of linearly independent vectors from C1, . . . , Cp, i.e. C ′ = λ1C1 + . . .+
λpCp for some scalars λ1, . . . , λp ≥ 0.

(II) or C ′ is irredundant and there exists a n-dimensional vector w such that C ′(w) > 0 and
C1(w), . . . , Cp(w) ≤ 0.

Proof. It is a straightforward consequence of Theorem 1.5 (p.23).
(I): It is exactly implication (⇒) of Theorem 1.5. As we said earlier, because we work on
cones, the constant term λ0 of the Farkas decomposition C ′ = λ0+λ1C1+ . . .+λpCp vanishes.
(II): It is proven by the contraposition of implication (⇐) of Theorem 1.5.

Algorithm 2.3: The standard minimization algorithm
Input : A set of constraints {C1, . . . , Cp}.
Output: PM = the irredundant constraints of {C1, . . . , Cp}

(R, I) = the redundancy and irredundancy certificates
PM ← {C1, . . . , Cp}
for C ′ in {C1, . . . , Cp} do

switch simplex

(
∃λi ≥ 0, C ′ =

∑
Ci∈PM\C′

λiCi

)
do

case  (λ): do R← R ∪ {(C ′,λ)} ; PM ← PM \ C ′

case  (w): do I ← I ∪ {(C ′,w)}

return (PM , R, I)

The standard minimization algorithm (Algorithm 2.3) exploits the redundancy criterion
(I) of the corollary which was already illustrated in Example 2.1. The existence of a Farkas
decomposition of C ′ is decided by solving a LP problem. The feasibility phase of the simplex
algorithm is designed to answer such questions. The second phase of the simplex, called
optimization phase, is not triggered in this case. If the simplex algorithm returns a solution λ
then the pair (C ′,λ) is recorded as a certificate of precision (2) which proves that the removed
constraint was indeed redundant. To get rid of all the redundancies, Algorithm 2.3 executes
the simplex algorithm for each constraint.

Given an existential LP problem, the simplex can return either a solution or an expla-
nation of the lack of solution. The proof of Farkas’ lemma and the simplex algorithm
have strong connections which result in an interesting feature of the VPL simplex: call-
ing simplex(∃λi ≥ 0, C ′ =

∑
i λiCi) returns either (λ) or (w) such that C ′(w) >

0
∧

i Ci(w) ≤ 0. Conversely, simplex(∃w, C ′(w) > 0
∧

i Ci(w) ≤ 0) returns either (w)
or (λ) such that C ′ =

∑
i λiCi. This feature is a consequence of Corollary 2.1 and

requires no additional computation. For more details about the computation of λ and w, the
interested reader can refer to (Fouilhé, 2015).

When the simplex returns (w), the irredundancy criterion (II) of the corollary tells
that C ′ is irredundant and must be kept in the set of constraints. Algorithm 2.3 builds
the certificate of minimality (3) by associating a witness point w to each constraint of the
minimized polyhedron PM .

While the standard algorithm focuses on criterion (I), we revisit the corollary paying
attention to the geometrical interpretation of criterion (II): when a constraint C ′ is irredundant,
its associated bounding hyperplane is a facet 1 of the polyhedron separating the inside from
the outside. Part (II) of the corollary ensures that we can exhibit a witness point w, outside
of [[P]], satisfying all constraints of P except C ′. The raytracing algorithm that we present in
the next section efficiently discovers such witness points.

1. Actually, a facet here abusively designates both a constraint and its bounding hyperplane. What is important
here is that a facet is irredundant.
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Figure 2.4 – The ray starting at the interior point x̊ and orthogonal to a constraint C meets
C and possibly others constraints.

2.3 An Efficient Minimization Algorithm
Building up on the geometric interpretation of Corollary 2.1, we present here a new mini-

mization algorithm for polyhedral cones that brings two major improvements: it reduces the
number of calls to the simplex algorithm and limits the number of constraints they involve.
The key idea of the algorithm is to trace rays starting from a point in the interior of the
cone. The first hyperplane encountered by a ray is a facet of the polyhedron, i.e. an irre-
dundant constraint. Unfortunately, with a limited number of rays, some facets can be missed
depending on the cone and the position of the interior point. This raytracing procedure is
thus incomplete and LP problem resolutions are still required for the remaining undetermined
constraints.

While the simplex algorithm is used in the standard minimization to discover Farkas
decompositions, we rather use it to get closer to a witness point, and only when all previous
rays failed to prove the irredundancy of a constraint. Of course, if the constraint is redundant,
the simplex algorithm returns no witness point w at all but an explanation of its failure which
is nothing else than a Farkas decomposition proving the redundancy.

2.3.1 The Facet Detection Criterion
We now detail the process of finding witness points by raytracing (Algorithm 2.6). We

consider a cone P with a nonempty interior. 2 Then, there exists a point x̊ in [[P̊]]. The basic
operation of our algorithm consists in sorting the constraints of P with respect to the order
in which they are hit by a ray, i.e. a half-line starting at the interior point x̊ and extending
along a given direction d.

Consider the constraint C(x) ≤ 0. The hyperplane of the constraint is {x | C(x) = 0}, i.e.
the set of points orthogonal to vector C, since C(x) is 〈C,x〉 for cones. The ray starting at
x̊ and extending in direction d is the set of points {x(t) | x(t) = x̊ + t × d, t ≥ 0}. Let us
assume that the ray hits the C-hyperplane at point xc. Then, there exists tc ≥ 0 such that
xc = x̊+ tc × d and so, xc − x̊ = tc × d. Therefore, the distance ||x̊− xc|| is just a scaling by
|tc| of the norm ||d||. Hence, by computing |tc| for each constraint we will be able to know in
which order the constraints are hit by the ray. Prior to computing tc we check if the ray can
hit the constraint, meaning that C and d are not orthogonal, i.e. C(d) 6= 0. Then, we use the
fact that xc ∈ {x | C(x) = 0} to get tc = −C(x̊)

C(d) . Indeed,

0 = C(xc) = C(x̊+ tc × d) = C(x̊) + tc × C(d).

Hence, the basic operation of our raytracing algorithm consists in two evaluations of each
constraint C of P at x̊ and d in order to compute the scalar tc. Let us explain how we exploit
this information to discover actual facets of P .

Note that any direction could be used to sort the constraints w.r.t. the order of intersection
by a ray. We choose successively as direction d of the ray the opposite direction of the normal
vector of each bounding hyperplane of P . This heuristic (from lines 7 to 9 in Algorithm 2.6)
ensures that each hyperplane will be hit by at least one ray. As illustrated by Fig. 2.4, a
direction d

def
= −C necessarily intersects the C-hyperplane and may potentially cross many other

2. Equalities are extracted beforehand. Finding redundancies in a set of equalities is the same as finding dependent
vectors in a family, which is standard in linear algebra.
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constraints for some values of t. Considering a direction di = −Ci, we sort the intersected
hyperplanes w.r.t. the increasing order of the scalar t, which is proportional to the distance
between the interior point x̊ and the intersection point x(t) of an hyperplane and the ray
(x̊,di). We obtain a sorted intersection list of pairs (t, St) where St is the set of the (possibly
many) constraints vanishing at x(t). If a constraint C is not hit by the ray (because C(di) ≤ 0),
then C is not added to the intersection list. The head pair provides the constraints which are
encountered first by the ray. At the heart of our algorithm is the following proposition: “If the
head of an intersection list is a pair (t, {C}) with a single constraint, then C is a facet of P ;
otherwise we cannot conclude from this list.” This will be proved in §2.3.2 (Proposition 2.3)
when we will come to the generation of witness points.

Example 2.5. This figure shows the detection of some facets of a polyhedron by looking at
their intersections with rays starting from an interior point x̊ and orthogonal to a constraint.
The doubly-circled intersection points show the first constraint hit by a ray.

Here are the sorted intersection lists obtained for this polyhedron. The list Ii records the
constraints met along (x̊,−Ci) from x̊ orthogonally to the hyperplane of Ci. It satisfies
ti < t′i < t′′i < t′′′i .

I1 = [ (t1, {C1}); (t′1, {C5, C6}); (t′′1 , {C2}) ] I2 = [ (t2, {C2}); (t′2, {C6}); (t′′2 , {C3}); (t′′′2 , {C1}) ]
I3 = [ (t3, {C3}); (t′3, {C2}); (t′′3 , {C4}) ] I4 = [ (t4, {C5}); (t′4, {C4}); (t′′4 , {C3}) ]
I5 = [ (t5, {C5}); (t′5, {C1, C4}) ] I6 = [ (t6, {C1}); (t′6, {C6}); (t′′6 , {C2}) ]

These lists reveal that C1, C2, C3 and C5 are facets of P ; C1 and C5 are even confirmed
twice. Our criterion fails to decide the status of C4 and C6 because, in any of the considered
directions, they are never encountered first. This situation is legitimate for the redundant
constraint C6 but also happens for C4 even though it is a facet of P .

At this point (line 10 of Algorithm 2.6), we run the simplex algorithm to determine the
irredundancy of the remaining constraints. In order to keep LP problems as small as possible,
we build them incrementally as follows. Consider an undetermined constraint Ci and let Ii be
the intersection list resulting from the direction di = −Ci. We illustrate the algorithm on the
case of a single head constraint as it is the most frequent one. We pose a LP problem to find
a point x′

i satisfying Ci(x
′
i) > 0 ∧ C ′(x′

i) ≤ 0, where C ′ is the single constraint that appears
at the head of Ii. As said earlier, C ′ is a facet because it is the first hyperplane encountered
by the ray. If the head set contains several constraints we cannot know which one is a facet,
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thus we add all of them in the LP problem (lines 13-14 of Algorithm 2.6). We distinguish
two cases depending on the satisfiability of the existential LP problem: If the problem of line
15 is unsatisfiable, the simplex returns (λ), Ci is redundant w.r.t. C ′ and the Farkas
decomposition of Ci is λ × C ′. Otherwise, the simplex exhibits a point x′

i which satisfies
Ci(x

′
i) > 0 ∧ C ′(x′

i) ≤ 0. Here, we cannot conclude on Ci’s redundancy since x′
i is a witness

showing that Ci is irredundant w.r.t. C ′ alone, but Ci could still be redundant w.r.t. the other
constraints.

Algorithm 2.6: Raytracing algorithm
Input : A set of constraints P = {C1, . . . , Cp} ; a point x̊ ∈ P̊
Output : PM : minimized version of P
Data : LP [i]: Linear Programming problem associated to Ci ; I[i]: intersection list

of Ci

Function: intersectionList(d, {C1, . . . , Cq}) returns the intersection list obtained by
intersecting {C1, . . . , Cq} with ray d

1 Function updateFacets (I[i], PM , P)
2 if head (I[i]) = (tF , {F }) then
3 PM ← PM ∪ {F }
4 P ← P \ F
5 return (PM , P)

6 PM ← ∅ ; LP ← arrayOfSize(p) ; I ← arrayOfSize(p)

7 for Ci in P do /* First step of raytracing with orthogonal rays */
8 I[i]← intersectionList ((x̊,−Ci), P)
9 (PM , P)← updateFacets (I[i], PM , P)

10 while P 6= ∅ do
11 for Ci in P do
12 (t, S)← head(I[i])
13 for C in S do
14 LP [i]← LP [i] ∧ C(x′

i) ≤ 0

15 switch simplex (∃x′
i, Ci(x

′
i) > 0 ∧ LP [i]) do

16 case  (x′
i): do

17 I[i]← intersectionList ((x̊,x′
i − x̊), P ∪ PM )

18 (PM , P)← updateFacets (I[i], PM , P)
19 case  (λ): do P ← P \ Ci /* Ci is redundant */
20

21 return PM

To check the irredundancy of Ci, we launch a new ray (x̊,x′
i − x̊) from x̊ to x′

i. As
before, we compute the intersection list of this ray with all the constraints but this time we
know for sure that Ci will precede C ′ in the list. This property is a pure technicality given in
Proposition 2.2 below. Then, we analyze the head of the list: if Ci is the single first element,
then it is a facet. Otherwise the first element, say C ′′, is added to the LP problem, which is
now asked for a point x′′

i such that Ci(x
′′
i ) > 0 ∧ C ′(x′′

i ) ≤ 0 ∧ C ′′(x′′
i ) ≤ 0 resulting in a new

(x̊,x′′
i − x̊). The way we choose rays guarantees that the previous constraints C ′, C ′′, ...

will always be hit after Ci by the next ray. Therefore, ultimately the constraint Ci will be
hit first by a ray, or it will be proved redundant. Termination is guaranteed because the first
constraint struck by the new ray is either Ci and we are done, or a not already considered
constraint and there is a finite number of constraints in P . Observe that this algorithm builds
incremental LP problems which contain only facets that were between x̊ and the hyperplane
of Ci at some step.
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Example 2.6.1. In the previous example, we found out that C1, C2, C3 and C5 were
facets. To determine the status of C4, we solve the LP problem ∃x′

4, C4(x
′
4) > 0∧C5(x

′
4) ≤ 0

because C5 is the head of I4. The simplex finds such a point x′
4 and the next step is to

compute the intersection list corresponding to (x̊,x′
4 − x̊). This list will reveal C4 as an

actual facet.
Similarly, the intersection list I6 of the example suggests to solve the LP problem ∃x′

6,
C6(x

′
6) > 0 ∧ C1(x

′
6) ≤ 0 to launch a new ray toward C6. This problem is satisfiable and

the simplex returns (x′
6). Then, we compute the intersection list corresponding to

(x̊,x′
6 − x̊) and this time the head of the list is C2. We thus add C2 to the previous LP

problem and call the simplex on ∃x′′
6, C6(x

′′
6) > 0 ∧ C1(x

′′
6) ≤ 0 ∧ C2(x

′′
6) ≤ 0. This problem

has no solution: the simplex returns (λ = (1, 1)) showing that C6 is redundant and
its Farkas decomposition is C6 = 1× C1 + 1× C2.

Proposition 2.2. Let Ci, C
′ be two constraints of a polyhe-

dron P, and let x̊ ∈ P̊ . Let x′
i be a point such that Ci(x

′
i) > 0

and C ′(x′
i) ≤ 0. Then (x̊,x′

i − x̊) intersects Ci at some
point x(tCi). Moreover, assume it crosses C ′ at x(tC′), then
tCi

< tC′ .

Proof. Because Ci(x̊) < 0 and Ci(x
′
i) > 0 then (x̊,x′

i −
x̊) necessarily crosses Ci, say at x(tCi

) with 0 < tCi
< 1,

since x(t = 0) is x̊ and x(t = 1) is x′
i. As both ends of

the line segment [x̊,x′
i] satisfy C ′, then 1 < tC′ . Thus,

tCi
< 1 < tC′ .

Strict Inequalities. So far, we presented the raytracing algorithm with an input cone made
of nonstrict inequalities only. But, there is no obstacle to the use of strict inequalities. Indeed,
they already appear during the call to the simplex (line 15 of Algorithm 2.6), when we specify
to violate one constraint. Therefore, the LP-solver that we use must be able to handle strict
inequalities. As we saw at the end of §1.3, the rational LP solver implemented in the VPL
has this ability: it gives symbolic values of the form (q, d · ε) with q, d ∈ Q to coordinates of
vertices. (q, d) is a solution to x > 0 if q > 0 or (q = 0 ∧ d > 0). For floating-point solving, we
can rewrite strict inequalities of the form C(x) > 0 into C(x) ≥ ε, where the value for ε must
be provided, close to 0, but not too much to avoid rounding errors.

2.3.2 Irredundancy Certificates
Let us explain how we compute witness points from the intersection lists defined in the

previous section. In the following, to ease understanding, we will denote a constraint by F if
we know that it is a facet, and by C when we do not know if it is redundant. Let us come back
to the list of the intersections of constraints of P with a ray {x(t) | x(t) = x̊ + t × d, t ≥ 0}
for a direction d.

Proposition 2.3. If the head of an intersection list contains a single constraint F , then we can
build a witness point satisfying the irredundancy criterion of Corollary 2.1 which proves that F
is a facet:

(a) For a list [(tF , {F })], we take the witness wa = x̊+ (tF + 1)× d
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(b) For a list [(tF , {F }) ; (t′, S′) ; . . .] with at least two pairs, we define the witness wb =

x̊+ tF +t′

2 × d.

Proof. Let us prove that these witness points attest that F is an irredundant constraint.
According to Corollary 2.1, it amounts to proving that, for wa (resp. wb),∧

C∈P\F

C(w) ≤ 0 ∧ F (w) > 0

Let us first study the sign of F (x(t)) at point x(t) = x̊+ t× d. Note that

F (x(t)) = F (x̊+ t× d) = F (x̊) + t× F (d). (†)

By construction, F (x(tF )) = 0 then, by equation (†), −F (x̊) = tF × F (d). Recall that tF ≥ 0,
F (d) 6= 0 since the ray hits F and F (x̊) < 0 because x̊ ∈ P̊ . Thus, F (d) and tF are necessarily
positive. Consequently, F (x(t)) = F (x̊) + t × F (d) is positive for any t > tF . Hence, in case
(a) F (wa)

def
= F (x(tF + 1)) > 0 and in case (b) F (wb)

def
= F (x( tF +t′

2 )) > 0 since tF < tF +t′

2 < t′.
Let us now study the sign of C(x(t)) for constraints other than F :

(a) Consider the list [(tF , {F })]. By construction, it means that no other constraint C of P is
struck by the (x̊,d), i.e. whatever the value t ≥ 0, the sign of C(x(t)) = C(x̊)+t×C(d)
does not change. As C(x(t=0)) = C(x̊) < 0 because x̊ ∈ P̊ , we can conclude that
∀t ≥ 0, C(x(t)) < 0. Thus, in particular, C(wa)

def
= C(x(tF + 1)) < 0 for any C ∈ P \ F .

(b) Consider now the list [(tF , {F }); (t′, S′); . . .]. A constraint C that appears in the set
S′ vanishes at point x(t′) with t′ > tF ≥ 0. The previous reasoning (†) (on F ) based
on equation C(x(t)) = C(x̊) + t × C(d) is valid for C, hence proving C(d) > 0. Thus,
C(x(t)) is negative for t < t′ (zero for t = t′ and positive for t′ < t). Finally, C(wb)

def
=

C(x( tF +t′

2 )) < 0 since tF +t′

2 < t′. The same reasoning applies to any other pair (t, St) in
the tail of the list.

Example 2.7. Consider the polyhedron Pb from Example 2.1, made of constraints C1,
C2, C3, C4 and C ′, where C3 and C4 are redundant. The figure shows the witness points
w1, w2, w

′
1, w

′
2 of constraints C1, C2 and C ′. The irredundancy of C ′ is confirmed three

times by different rays respectively orthogonal to C ′, C3 and C4, leading to witnesses w′
1
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(twice) and w′
2. Our algorithm could take advantage of this situation: if we pick up the ray

orthogonal to C3 (or C4) before that of C ′, constraint C ′ will be accidentally confirmed and
thus the ray orthogonal to C ′ does not need to be considered.

2.3.3 Minimizing Generators
So far, to ease the understanding, we presented the raytracing for the constraints-only

representation of polyhedra, but it works as well for generators. Indeed, we manipulated con-
straints as vectors and all our explanations and proofs are based on inner product. Moreover,
Corollary 2.1 is not limited to constraints, it holds for any vector space and can be rephrased
for generators. This time the irredundancy certificate for a generator g′ is a vector n such
that 〈g1,n〉 , . . . , 〈gp,n〉 ≤ 0 and 〈g′,n〉 > 0. Such a vector defines a hyperplane orthogonal to
n, i.e. {x | 〈n,x〉 = 0}. It is called a separating hyperplane because it isolates generator g′

from the other ones.

Example 2.8. The figure shows the separating hyperplanes defined by n1,n2,n3 and n4.
They respectively justify the irredundancy of v1,v2,v3 and r1 in Pa. The hyperplane de-
fined by n4 vouches for the irredundancy of r1 because it satisfies 〈n4, g〉 ≥ 0 for all
g ∈ {v1,v2,v3,v

′
1,v

′
2} and 〈n4, r1〉 < 0. No hyperplane n can isolate v′

1 or v′
2 from other

vertices while ensuring 〈n, r1〉 ≥ 0 because vectors v′
2 − v1 and v′

1 − v3 are colinear with
r1.

2.3.4 Using Floating Point in Raytracing
It is possible to make raytracing even more efficient by using floating point numbers in-

stead of rationals, both in LP problem resolutions and distance computations. The rational
coefficients of constraints are translated into floating point numbers. It introduces a loss in
precision which does not jeopardize the result because the certificate checking controls the min-
imization process. Therefore, we must generate exact (i.e. rational) certificates from floating
point computations. The solution we propose differs depending on the kind of certificate.
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Witness Points. Checking a certificate of irredundancy consists in evaluating the sign of
Ci(w) for all constraints Ci of P with the provided witness point w. A witness point w must
then be given with rational coefficients to avoid sign errors if Ci(w) is too close to 0. Thus,
the witness point wF obtained with floating point computations is translated into a rational
one wQ, without loss of precision (each floating point 0.d1...dm10e is changed into a rational
d1...dm

10m 10e). Then we check the irredundancy certificate with wQ and the rational version of
the constraints. If the verification passes, then wQ is indeed a witness point. In the rare case
of failure, i.e. when a constraint is wrongly labeled irredundant, using the exact simplex of
the VPL on the LP problem will fix the approximation error by directly providing a rational
witness point or a Farkas witness of redundancy.

Farkas Decompositions. To prove a redundancy we need to exhibit the Farkas decompo-
sition of the redundant constraint. To obtain an exact decomposition from the floating LP
solution, we record which constraint is actually part of the decomposition. What is needed
from the floating point solution is the set of basic variables and an ordering of the nonnull
λi coefficients to speed up the search in exact simplex. Then, we run the exact simplex on a
LP problem involving only those constraints to retrieve the exact Farkas decomposition.

2.4 Experimental Results
This section is devoted to the comparison of three minimization algorithms:
— The Standard Minimization Algorithm (sma). The standard Algorithm 2.3 of §2.2

is available in the VPL since version 0.1. It works on rationals and can generate
certificates of precision, minimality and correctness. The VPL implementation carries
an optimization: the LP problem of Algorithm 2.3 is built only once before testing the
redundancy of each constraint. Initially it is composed of all the constraints {C1, . . . , Cn}.
Then, for each Ci ∈ {C1, . . . , Cn}, it checks Ci’s redundancy w.r.t. other constraints
present in the LP problem. If Ci is shown redundant, it is removed from the LP problem
and the algorithm continues with Ci+1. It means that the redundancy of the following
constraints Ci+1, . . . , Cn will be tested taking into account only irredundant constraints
of {C1, . . . , Ci}.

— The Rational Raytracing Algorithm (rra).  and  use the same LP solver, thus
comparing their running time is relevant to estimate the efficiency of raytracing w.r.t.
the standard algorithm.

— The Floating point Raytracing Algorithm (fra).  implements raytracing with float-
ing point as explained in §2.3.4. LP problems are solved by the GNU Linear Programming
it (Makhorin, 2000–2017) which provides an efficient simplex algorithm in floating point.

These three algorithms are all implemented in the current version (0.2) of the VPL. For
computing the exact Farkas decomposition that proves a constraint’s irredundancy, the three
algorithms ultimately rely on the VPL simplex algorithm in rational. They use the same datas-
tructures (e.g. for constraints), allowing reliable timing comparisons between them. Moreover,
they share the same pre-processing step of finding a point within the polyhedron interior.
This point is obtained after extraction of implicit equalities from the set of constraints (see
Chapter 8). The time measurements given below include this step but not the reconstruction
of exact certificates from floating-point witnesses.

The representativeness of the polyhedra encountered in practice is a recurrent issue in
experiments, since the generated polyhedra depend on the verification tool and the program
under analysis. Their dimension can range from four variables, e.g. in a tuned analysis of a
C program, to a thousand in analyzes of L programs. Moreover, verification tools pay
attention to limit their use of polyhedra to a small number of variables and constraints, as
polyhedra are known to be costly. They often switch to interval domains if these limits are
exceeded, hence polyhedra encountered in actual analyzes are often small. This is an obstacle
for evaluating our minimization as it is designed to be more efficient with higher numbers
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(a) : C = 35, V = 10, D = 50%, R = [0%, 90%] (b) : C = [20, 50], V = 10, D = 50%, R = 50%

(c) : C = 100, V = 10, D = [10%, 80%], R = 50% (d) : C = 50, V = [2, 50], D = 50%, R = 50%

Figure 2.9 – Execution time in milliseconds of  (blue),  (red) and  (green) depending
on respectively (a) redundancy, (b) number of constraints, (c) density and (d) number of
variables. On each curve, a point is the average time for minimizing 50 polyhedra that share
the same characteristics.

of variables and constraints. Therefore, we created our own benchmarks made of polyhedra
randomly generated from different characteristics that are detailed in the next paragraph.

Benchmarks. Throughout the paper, we focused on cones to simplify both
notations and explanations. However, our algorithm works for general con-
vex polyhedra and we build our experiments as follows. To compare the
three algorithms, we asked them to minimize polyhedra that were generated
randomly from four parameters that will be detailed further: the number of
variables (V ∈ [2, 50]), the number of constraints (C ∈ [2, 50]), the redundancy
rate (R ∈ [0%, 90%]) and the density rate (D ∈ [10%, 80%]). Each constraint
is created by giving a random integer between -100 and 100 to the coefficient
of each variable, within the density rate. All constraints are attached the
same constant bound ≤ 20. Such polyhedra have a convex potatoid shape,
shown on the right hand side. We do not directly control the number of generators but we
count them using the APRON interface 3 to polyhedral libraries in double description. Among
all our measurements, the number of generators ranged from 10 to 6400 and this number
grows polynomially in the number of constraints. These benchmarks cover a wide variety of
polyhedra and our experiments show that raytracing is always more efficient.

Redundancy Rate. The effect of redundancy on execution time is displayed on Fig. 2.9(a).
These measures come from the minimization of polyhedra with 10 variables and 35 constraints,
and a redundancy rate ranging from 0% to 90% of the number of constraints. To generate a

3. http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/index.html

http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/index.html
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(a) (b)

Figure 2.10 – (a) : C = 50, V = [2, 50], D = 50%, R = 50% ; (b): number of generators associated
to polyhedra tested in (a).

redundant constraint, we randomly pick two constraints and produce a nonnegative combina-
tion of them. We took care to avoid redundancies that can be discarded by the fast detection
criteria of §2.1. The graph clearly shows that raytracing has a big advantage on polyhedra
with few redundancies. This phenomenon was expected: raytracing is good at detecting ir-
redundancy at a low cost.  becomes similar to raytracing when the redundancy rate is
high. This is explained by the implementation details given in previous paragraphs: when a
redundant constraint is found, it is removed from the LP problem. Thus, if the redundancy
rate reaches a very high level, the LP problem becomes smaller and smaller at each iteration,
lowering the impact of using floating point. Moreover, the heuristic used by our algorithm
never hits if almost all constraints are redundant, which makes the raytracing computations
useless. To be fair between raytracing and the standard algorithm, we set the redundancy rate
at 50% in other experiments.

Number of Constraints. Fig. 2.9(b) measures the minimization time depending on the num-
ber of constraints for polyhedra with 10 variables.  and  scale better w.r.t. the number
of constraints than : experiments show that when C ranges from 20 to 50 constraints, 
has a quadratic evolution compared to raytracing algorithms.

Density Rate. The density of a polyhedron is the (average) rate of nonnull coefficients
within a constraint. For instance, a density of 60% with 10 variables means that on average,
constraints have 6 nonnull coefficients. Fig. 2.9(c) shows the execution time for 10-dimensional
polyhedra with 100 constraints, where the density rate D goes from 10% to 80%. The raytracing
algorithms are almost insensitive to density, whereas the execution time of the standard
algorithm blows up with density. Actually, having a lot of nonnull coefficients in constraints
tends to create huge numerators and denominators because a pivot in the simplex performs
many combinations of constraints. The coefficient explosion does not happen in  because
LP problems are much smaller in the raytracing algorithms.

Number of Variables. The effect of the dimension on execution time is shown on Fig. 2.9(d).
Whereas raytracing seems linearly impacted by the dimension,  has a behaviour that may
look a bit strange. After a dramatic increase of execution time, the curve falls down when
the dimension reaches the number of irredundant constraints, which is half the given number
of constraints as the redundancy rate equals 50%.  finally joins and sticks to  curve.
This phenomenon may be explained if we take a look at the number of generators. Indeed,
when V ≥ C, the number of generators becomes close to the number of constraints, as shown
on Fig. 2.10. Recall that the simplex algorithm travels from one vertex to another until the
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optimal value is reached. If the number of generators is low, few pivots are then needed to
solve the LP problem. This makes  competitive even with more LP problems to solve.
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(a) : C = [20, 50], V = 10, D = 50%, R = 50% (b) : C = 50, V = [2, 50], D = 50%, R = 50%

Figure 2.12 – Execution time in milliseconds (log scale) of  (blue),  (red),  (green)
and NEWPOLKA (purple) depending on respectively (a) the number of constraints and (b) the
number of variables.

Table 2.11 shows results for several values of dimension and number of constraints. Again,
each cell of this table gives the average values resulting from the minimization of 50 convex
potatoids, with a density and a redundancy both fixed at 50%. For each pair (number of
variables × number of constraints), Table 2.11 gives the number of LP problems that were
solved and their size (i.e. the number of constraints they involve) on average. It contains
also the computation time of the minimization in milliseconds and the speed up of raytracing
compared to . Results of Table 2.11 show that for small polyhedra, either in dimension
or in number of constraints, raytracing does not help. Indeed, for such small LP problems,
the overhead of our algorithm is unnecessary and leads to time losses. Raytracing becomes
interesting for larger polyhedra, where the speed improvement is significant. For instance, 
is 80 times faster with 10 variables and 100 constraints than . The gain can be explained
by the number of LP problems solved and their average size, noticeably smaller in raytracing
than in . As expected, raytracing is faster with floating point.

We also compare our algorithms with the NEWPOLKA, a double description library avail-
able in APRON. 4 As an illustration, Fig. 2.12 adds the minimization time computed with
APRON for the same tests as Fig. 2.9(b) and (d), with a log scale. Not surprisingly the mini-
mization time of APRON is significantly larger than that of ,  and , as it must first
compute the representation as generators using Chernikova’s algorithm. The linear behaviour
of APRON in log scale (Fig. 2.12(a)) shows the exponential complexity of the conversion from
constraints to generators. The behaviour of APRON in Fig. 2.12(b) is the same as  and is
directly correlated to the number of generators, as mentioned above.

2.5 Redundancy in the Double Description Framework
The raytracing algorithm has been designed to minimize polyhedra in single representation,

but its principle can be reused in the double description framework, where it could quickly
detect irredundant constraints. Redundancy is easier to detect when the two representations
of a polyhedron are available. Let the pair (C ,G ) denote the set of constraints and the set
of generators of a polyhedron in Qn and (CM ,GM ) be its minimal version. A constraint
C ∈ C is irredundant if it is saturated by at least n irredundant generators, i.e. ∃g1, . . . , gn ∈
GM , 〈C, gi〉 = 0. Similarly, a generator g ∈ G is irredundant if it is the intersection of at least
n irredundant constraints i.e. ∃C1, . . . , Cn ∈ CM , 〈Ci, g〉 = 0. Think for instance of a line in
2 being defined by two points and a point being the intersection of at least two lines.

The principle of the minimization algorithm is the following (Halbwachs, 1979): build the
Boolean saturation matrix S of size |C |×|G | defined by S[C][g] := (〈C, g〉 = 0), then iteratively

4. http://apron.cri.ensmp.fr/library/

http://apron.cri.ensmp.fr/library/
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remove constraints (and the corresponding rows of S) which are insufficiently saturated and
do the same for generators (and columns of S) until reaching a stable matrix. The remaining
constraints and generators form the minimal version (CM ,GM ) which mutually justify the
irredundancy of each other. This algorithm is appealing compared to its counterpart in single
representation but the number of evaluation of 〈C, g〉 is huge when each variable xi ranges
in an interval [li, ui]. Such a product of intervals can be represented by 2n constraints (two
inequalities li ≤ xi ∧ xi ≤ ui per variable) which corresponds to 2n vertices. The opposite
phenomenon (2n vertices corresponding to 2n constraints) also exists but hardly ever occurs
in practice (Benoy et al., 2005). Therefore, the size of S is n2n+1.

To limit the computations, the saturation matrix is not fully constructed. Let us summarize
the improved algorithm (Wilde, 1993):
(1) Some constraints are removed by the fast redundancy detection mentioned in §2.1.
(2) The irredundant generators of GM are constructed from the remaining constraints using

Chernikova’s algorithm with some optimized adjacency criteria (Le Verge, 1992; Fukuda
and Prodon, 1996; Zolotykh, 2012). The adjacency criterion ensures that the construction
cannot produce redundant generators (Motzkin et al., 1953).

(3) Finally, the saturation matrix is built to remove the constraint redundancies but a row
is only completed if the constraint never finds enough saturating generators, otherwise
the computation of the row is interrupted.

We believe that our orthogonal raytracing phase can be used at step (3) to quickly discover
irredundant constraints, which therefore do not have to be confirmed by the saturation matrix.
The cost of this initial raytracing is reasonable: C rays and 2×|C | evaluations per ray resulting
in 2× |C |2 computations of inner products. It could therefore benefit to minimization in the
double description framework especially when |C | << |G | as in hypercubes.



Chapter 3

Minimizing Operators via
Parametric Linear Programming

In Chapter 1, we presented the projection operator as the bottleneck of constraints-only
representation. It is used in the computation of assignments, Minkowski sums and convex
hulls. In §1.2, we introduced Fourier-Motzkin elimination which is the standard algorithm for
projection, but suffers from an exponential complexity in the number of eliminated variables,
due to the generation of many redundant constraints during intermediate projection steps.
Fourier-Motzkin elimination is not an issue for assignment, which only requires the elimina-
tion of a single variable. But, its complexity becomes a problem for convex hull computation:
Benoy et al. (2005)’s encoding of the convex hull P ′ t P ′′ ⊆ Qn as a projection yields the
elimination of n + 1 variables in a polyhedron of dimension 2n + 1. The same pitfall occurs
for Minkowski sum, as it is computed with a similar encoding.

The high cost of general convex polyhedra was long deplored. It motivated studying re-
stricted classes of polyhedra, with simpler and faster algorithms, such as octagons (Miné,
2006); and even these were found to be too slow, motivating recent algorithmic improve-
ments (Singh et al., 2015). Instead, this thesis revisits the domain of polyhedra with different
algorithms.

Our work on projection was inspired by Howe and King (2012)’s attempt to avoid gener-
ating redundant constraints by replacing Fourier-Motzkin elimination with a formulation in
Parametric Linear Programming (PLP), which they solved by an ad hoc algorithm. Their PLP
encoding was formulated as the enumeration of all vertices in a sliced polyhedral cone of
Farkas combinations. Unfortunately, their implementation is not available. We took the more
direct approach and expressed the PLP encoding of projection directly in terms of constraints:
the objective function becomes a Farkas combination to minimize. Fouilhé (2015) showed
that a result free of redundancies requires adding a normalization constraint in the encod-
ing, which is somehow equivalent to slicing the cone of solutions in Howe and King (2012).
Here, I take a step further and developed a generic PLP-solver exploiting insights by Jones
et al. (2007, 2008). The solver is implemented in OC, works over rationals and generates
C-certificates of correctness of its computations.

This work was published and presented during the 24th Static Analysis Symposium (Maréchal
et al., 2017), in New York.

Parametric Linear Programming. Parametric Linear Programming is an extension of Lin-
ear Programming, that was presented in §1.3, where the constants in the constraints or the
coefficients in the objective function may be replaced by affine combinations of parameters (Gal
and Nedoma, 1972).
Parameters may appear in the right-hand side of constraints or in the objective function to
optimize, but not in both. In the primal version, the unknowns v and p of a standard linear
optimization problem [A′|A′′](v|p)ᵀ ≤ b can be split into decision variables, the v, which
will be set to an optimal value whereas the parameters p will remain free. The system is

53
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equivalent to A′v ≤ b−A′′p where the right hand side now depends on parameters. Note that
instantiating p brings us back to a standard LP problem. The goal of this parametric problem
is to compute a generic solution parameterized by p. Parameters naturally arise when the
objective function to optimize is a bilinear form on products λi×xj . Such nonlinear problems
fall into the field of PLP if one unknown is a nonnegative decision variable and the other
is considered as a parameter. This problem is the dual version of the previous one. In the
thesis, we will be interested only in this dual form.

In the following, we start by introducing PLP on projection. Then, we will see how to
encode convex hull directly as a Parametric Linear Optimization Problem (PLOP). The PLP-
solver that we developed in the VPL is detailed in Chapter 5.

3.1 Projection via Parametric Linear Programming

Naive Fourier-Motzkin elimination produces O
(
( |P|

2 )2
k) constraints when eliminating k

variables of a polyhedron with |P| constraints (Simon and King, 2005). Most of them are
redundant: indeed, the number of faces of the projected polyhedron is O(|P|k) (Monniaux,
2010, §4.1).This follows from McMullen’s bound on the number of n − k − 1-faces of the
polyhedron (McMullen, 1970; McMullen and Shepard, 1971). Therefore, removing the redundant
constraints is costly, whatever the efficiency of the minimization algorithm.

Example 3.1. This figure shows the geometrical space defined by the polyhedron P = {C1 :
−x1−2x2+2x3 ≥ −7, C2 : −x1+2x2 ≥ 1, C3 : 3x1−x2 ≥ 0, C4 : −x3 ≥ −10, C5 : x1+x2+x3 ≥
5} and its projection on dimensions (x1, x2) resulting from the elimination of variable x3.
Eliminating variable x3 from P – noted P\{x3} – by Fourier-Motzkin elimination consists in
combining constraints with opposite signs for x3. Constraints that do not involve x3 remain
unchanged. This process retains constraints C2, C3 and produces two new constraints:
C1 +2×C4 : −x1− 2x2 ≥ −27 and C4 +C5 : x1 + x2 ≥ −5. By Farkas’ Lemma, the latter is
redundant w.r.t. C2 and C3 as it can be expressed as a nonnegative combination of C2 and
C3.

Jones et al. (2008) then Howe and King (2012) noticed that the projection of a polyhedron
can be expressed as a PLOP. In fact, PLP naturally arises when trying to generalize Fourier-
Motzkin method to eliminate several variables simultaneously. In this chapter, we achieve
the work initiated by Howe and King (2012) and followed by Fouilhé (2015), whose goal was
to compute the projected polyhedron without generating redundant constraints. Let us first
explain their approach.

Example 3.1.1. As a consequence of Farkas’ lemma, any constraint implied by {C1, . . . , C5}
is a nonnegative combination of them, written λ0 +

∑5
i=1 λiCi with λi ≥ 0, i.e.

λ0 + λ1(−x1 − 2x2 + 2x3) + λ2(−x1 + 2x2) + λ3(3x1 − x2)
+ λ4(−x3) + λ5(x1 + x2 + x3) ≥ −7λ1 + λ2 − 10λ4 + 5λ5
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The left-hand side of the inequality can be rearranged to reveal the coefficient of each
variable xi and we can bring the right-hand side term to the left.

λ0 + (−λ1 − λ2 + 3λ3 + λ5)x1 + (−2λ1 + 2λ2 − λ3 + λ5)x2

+ (2λ1 − λ4 + λ5)x3 − (−7λ1 + λ2 − 10λ4 + 5λ5) ≥ 0
(3.1)

Then, any instantiation of that inequality with λi canceling the coefficient of x3, i.e. that
satisfies (α) 2λ1 − λ4 + λ5 = 0, is an over-approximation of P\{x3}. Indeed, it does not
involve x3 and as a Farkas combination, it is by construction a logical consequence of P .
Constraints found by the Fourier-Motzkin elimination of x3 correspond to the solutions
(λ0, . . . , λ5) ∈ {(0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 2, 0), (0, 0, 0, 0, 1, 1)} of Equation (α).
Note that it is possible to eliminate several variables simultaneously by setting an elimination
equation for each variable that must be discarded.

We give here a first formulation of a projection as a PLOP. We will refine it later, as
it is not sufficient to avoid redundancies in the projected polyhedron. Given a polyhedron
P = {C1 : a1(x) ≥ b1, . . . , Cp : ap(x) ≥ bp} on variables x1, . . . , xn, the projection of P by
elimination of k variables xe1 , . . . , xek can be obtained as the solution of the optimization
problem:

minimize z(x) def
= λ0 +

p∑
i=1

λi × (ai(x)− bi)

subject to

(F ) λ0 ≥ 0, . . . , λp ≥ 0

(†)
p∑

i=0

λi = 1

(α) αe1(λ) = 0, . . . ,αek(λ) = 0

(PLOP 3.2)

where x
def
= (x1, . . . , xn), λ

def
= (λ0, . . . , λp) and αi(λ) denotes the coefficient of xi in the refor-

mulation of the objective as

α0(λ) +α1(λ)× x1 + . . .+αn(λ)× xn

like in Equation (3.1) of Example 3.1.1. The unknowns λi’s are the decision variables of the
PLOP: the solver must find a solution for them. Note the inequalities (F ) from Farkas’ Lemma
in addition to the (α) equations defining a projection. This problem has a parametric objective:
the objective function z(x) depends on parameters x1, . . . , xn due to the terms ai(x) in the
coefficients of the decision variables. This problem belongs to parametric linear programming
because once x1, . . . , xn are fixed, it boils down to linear programming: both the objective
function and the constraints become affine functions of the decision variables.

An additional constraint (†), here
∑

i λi = 1, is needed to prevent the solver from obtaining
the optimal solution λ = 0 which is always valid in a projection problem, whatever the
parameter values. The (†) condition only excludes this useless null solution because any other
solution can be scaled so that

∑
i λi = 1. The presence of λ0 in the objective can seem useless

and strange to readers who are familiar with linear programming: the solution λ0 = 1 and
λ1 = . . . = λp = 0 becomes feasible and generates a trivially redundant constraint Ctriv : 1 ≥ 0.
The role of λ0 will become clear when we will introduce the normalization constraint in §3.4.

Example 3.1.2. The elimination of x3 via PLP is defined by two matrices: O is built from
[− b|A]

ᵀ and encodes the objective. The other one captures the requirement (α) and (†).
As usual in solvers, Farkas constraints (F ) are left implicit.
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minimize

z(x) def
= (1, x1, x2, x3)ᵀ

O︷ ︸︸ ︷ 0 1 7 -1 0 10 -5
0 0 -1 -1 3 0 1
0 0 -2 2 -1 0 1
0 0 2 0 0 -1 1




1
λ0

...
λ5


︸ ︷︷ ︸

[− b|A]ᵀ

subject to
(†)︷ ︸︸ ︷(

-1 1 1 1 1 1 1
0 0 2 0 0 -1 1

)
︸ ︷︷ ︸

α


1
λ0

...
λ5

= 0

(PLOP 3.3)

This formulation of the projection is sound. Unfortunately, it may still generate redun-
dant constraints: the solutions (λ0, . . . , λ5) ∈ {(1,0,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0, 1

3
,0,0, 2

3
,0),

(0,0,0,0, 1
2
, 1
2
)} include the trivial constraint 1 ≥ 0 and 1

2 × C4 +
1
2 × C5 which is equivalent to

the redundant constraint C4+C5 found by Fourier-Motzkin elimination. The normalization
constraint of §3.4 will solve this point.

3.2 Polyhedron as Solution of a PLOP
In the previous section we encoded the projection of a polyhedron as a PLOP. For inter-

preting the result of a PLP-solver as a polyhedron we need to go one step further into the
field of PLP and look at the solutions of a PLOP.

The general form of a PLOP that stems from projection is

minimize z(x) def
= λ0 +

p∑
i=1

λi × (ai(x)− bi)

subject to
λ0, . . . , λp ≥ 0

(†)
p∑

i=0

λi = 1,

αλ = 0

(PLOP 3.4)

where x is the vector of parameters (x1, . . . , xn); (ai(x)−bi) are affine forms on the parameters;
and α is a matrix. In a projection problem the system of equations αλ = 0 constrains the
decision variables λ1, . . . , λp but not λ0.

The solution z? is a concave, piecewise affine function, mapping the parameters to the
optimal solution:

z? def
= x 7→


z?

1(x) if x ∈ R1

...
z?

r(x) if x ∈ Rr

(3.5)

Each piece z?
i is an affine form over x, obtained by instantiating the objective function z with

a solution λ; hence a piece can also be denoted by z?
λ. Each z?

i is associated to a region of
optimality Ri that designates the set of x for which the minimum of z?(x) is z?

i (x). Regions
of optimality are polyhedra; that will be clear in §3.3 when we will explain how they are
computed by our solver. They form a quasi-partition of the space of parameters: their union
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covers Qn and the intersection of the interior of two distinct regions is empty, i.e. ∀i 6= j,
[[R̊i]]∩ [[R̊j ]] = ∅. They however do not form a partition because two regions Ri,Rj may overlap
on their frontiers; then, their solutions z?

i ,z?
j coincide on the intersection.

From optimal function to polyhedron. A PLOP can be thought of as a declarative de-
scription of the projection operator. The solution z? can be interpreted as a polyhedron P?

that is the projection of an input polyhedron P . This requires some explanations:
— Due to the Farkas conditions λ0, . . . , λp ≥ 0 which preserve the direction of inequalities,

the objective function of (PLOP 3.4), i.e. λ0+
∑p

i=1 λi× (ai(x)− bi) can be interpreted as
a constraint implied by the input polyhedron P = {C1 : ai(x) ≥ b1, . . . , Cp : ai(x) ≥ bp}.
Actually, for a given λ, the statement z?

λ(x) ≥ 0 is equivalent to the constraint

λ0 +

p∑
i=1

λi × ai(x) ≥
p∑

i=1

λi × bi (3.6)

— Minimizing the objective ensures that the λ0-shift of the constraint will be minimal,
meaning that the constraint z?

λ(x) ≥ 0 will be tightly adjusted.
— The requirement αλ = 0 captures the expected effect of the projection. Thus, any

solution λ defines a constraint zλ(x) ≥ 0 of the polyhedron P?.
Now recall that a polyhedron is a set of points that satisfy affine inequalities. Therefore,

it is natural to define [[P?]] as {x | z?(x) ≥ 0}. The following lemma proves that this set of
points is a polyhedron.
Lemma 3.1.

{x | z?(x) ≥ 0} =
r⋂

k=1

{x | z?
k(x) ≥ 0}

Proof. Let us prove the mutual inclusion.
(⊆) Pick up a point x′ ∈ {x | z?(x) ≥ 0}. By definition of z? as a piecewise function defined

on the whole space of parameters, there exists i such that x′ ∈ Ri and z?(x′) = z?
i (x

′).
It follows that z?

i (x
′) ≥ 0 since x′ belongs to the set of points where z? is nonnegative.

Moreover, the fact that x′ belongs to Ri – the region of optimality of z?
i in a minimization

problem – ensures that z?
k(x

′) ≥ z?
i (x

′) for all k and therefore, z?
k(x

′) ≥ 0 for all k.
Thus, x′ ∈ {x | z?

k(x) ≥ 0} for all k = 1..r. Finally, x′ ∈
r⋂

k=1

{x | z?
k(x) ≥ 0}.

(⊇) Pick up a point x′ ∈
⋂r

k=1{x | z?
k(x) ≥ 0}. Then, x′ belongs to at least one region Ri

because the regions form a (pseudo) partition of the whole space of parameters Qn, i.e.⋃r
k=1Rk = Qn. Yet, the affine piece that defines z? on x′ is z?

i and z?(x′) = z?
i (x

′).
Moreover, all the affine pieces of z? are nonnegative on x′ since x′ ∈

⋂r
k=1{x | z?

k(x) ≥
0}. Then, in particular z?

i (x
′) ≥ 0 and the same goes for z?(x′). Finally, x′ ∈ {x |

z?(x) ≥ 0}.

Constructing the vector inequality Z?x ≥ b? that defines the polyhedron P? is straightfor-
ward from the solution z?. It suffices to get rid of the regions of optimality and to interpret
each affine piece of z? as an inequality:

{x | z?(x) ≥ 0} =
⋂r

k=1{x | z?
k(x) ≥ 0} by Lemma 3.1

= {x |
∧r

k=1z?
k(x) ≥ 0}

= {x |
∧r

k=1 〈z?k, x〉 − b?k ≥ 0}
= {x | Z?x ≥ b?}.

Let us detail this construction. Each piece z?
k of the solution is a affine form over x and

z?
k(x) ≥ 0 defines a constraint in the form (3.6) which can be written

∑n
i=1 z

?
ki xi ≥ b?k

i.e. 〈z?k, x〉 ≥ b?k for some vector z?
k = (z?k1, . . . , z

?
kn) and some constant b?k. It follows from

Lemma 3.1 that the set of points x where z?(x) is nonnegative is a polyhedron defined by
the vector inequality Z?x ≥ b? where the rows of Z? are the vectors z?

1 , . . . , z
?
r and b? is the

column vector (b?1, . . . , b
?
r)

ᵀ.
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Example 3.1.3. On our running projection problem (PLOP 3.3), the PLP-solver returns
the following optimal function, and the instantiation of the decision variables λi that defines
each affine piece:

z? def
= (x1, x2) 7→



z?
2 : −x1 + 2x2 − 1 on R2 (for λ2 = 1)

z?
3 : 3x1 − x2 on R3 (for λ3 = 1)

z?
4 : − 1

3x1 − 2
3x2 + 9 on R4 (for λ1 = 1

3 , λ4 = 2
3 )

z?
5 : 1

2x1 + 1
2x2 + 5

2 on R5 (for λ4 = 1
2 , λ5 = 1

2 )

z?
1 : 1 on R1 (for λ0 = 1)

from which we construct the polyhedron

P? =

Z?︷ ︸︸ ︷
−1 2 0

3 −1 0

− 1
3 − 2

3 0

1
2

1
2 0

0 0 0


x︷ ︸︸ ︷x1

x2

x3

 ≥

b?︷ ︸︸ ︷
1
0
−9
− 5

2

−1

 =



C : −x1 + 2x2 ≥ 1

C : 3x1 − x2 ≥ 0
1
3C+

2
3C : − 1

3x1 − 2
3x2 ≥ −9

1
2C+

1
2C : 1

2x1 +
1
2x2 ≥− 5

2

Ctriv : 0 ≥ −1


Variable x3 does not appear anymore in the constraints of P? because its column in Z? is
made of 0. The regions of optimality, shown on the figure above, form a pseudo-partition
of the whole space of parameters (x1, x2): regions R2, . . . ,R5 are unbounded; the central
triangle is the region R1 associated to the constant affine form z?

1 = 1 which produces the
trivial constraint Ctriv : 0 ≥ −1. Each facet of P? (shown as bold lines in the figure) is the
intersection of a region of optimality Ri with the space where the associated affine form z?

i

evaluates to zero. We retrieve constraints equivalent to those of Example 3.1, including the
redundant constraint 1

2×C4+
1
5×C5, generated by z?

5. Examining the drawing of the regions
reveals that z?

5 does not vanish on its region of optimality, i.e. [[z?
5 = 0]]∩[[R̊5]] = ∅. Actually,

this phenomenon characterizes redundant constraints. We will prove in Lemma 3.6 (§3.4)
that [[z?

i = 0]] ∩ [[R̊i]] 6= ∅ ensures the irredundancy of the constraint z?
i ≥ 0 in P?.
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3.3 Principle of a PLP solver
In the following, we only sketch how our PLP-solver works. The details of implementation

will be discussed later, in Chapter 5. Our algorithm is based on recent work by Jones et al.
(2007) with some improvements: our implementation reuses the fast simplification of regions
from Chapter 2 and performs exact computations in rationals so as to avoid rounding errors.

The algorithm for solving a PLOP is a generalization of the simplex algorithm which we
presented in §1.3. First, each inequality C` :

∑n
i=1 a`i λi ≤ b` is changed into an equality∑n

i=1 a`i λi+λn+` = b` by introducing a slack variable variable λn+` ≥ 0. Second, the objective
function is added to the system as an extra equation defining the variable z as a linear
form z =

∑n
i=1 oiλi. Then, as we saw for the simplex algorithm, it pivots as in Gaussian

elimination until its reaches an equivalent system of equations where the optimality of z
becomes syntactically obvious. Let us take an example.

Example 3.1.4. To illustrate the behavior of a LP-solver, such as the simplex, let us
instantiate the objective of (PLOP 3.3), e.g. with x1 = 5, x2 = 11, x3 = 1, to obtain a
non-parametric version: z def

= λ0 − 18λ1 + 16λ2 + 4λ3 + 9λ4 + 12λ5. The simplex chooses
the basis B = {λ1, λ4}, meaning that λ1 and λ4 are defined in terms of the other decision
variables N = {λ0, λ2, λ3, λ5}. It exploits equations (†) and (α) of (PLOP 3.3) and gets

λ1 = −1

3
λ0 −

1

3
λ2 −

1

3
λ3 −

2

3
λ5 +

1

3
(i)

λ4 = −2

3
λ0 −

2

3
λ2 −

2

3
λ3 −

1

3
λ5 +

2

3
(ii)

z = λ0 + 16λ2 + 4λ3 + 21λ5 (iii)

Now, it is clear that choosing λ0, λ2, λ3, λ5 greater than 0 would increase the value of z
because their coefficient is positive in (iii). Thus, since decision variables are nonnegative,
the minimum value of z is reached for λ0 = λ2 = λ3 = λ5 = 0 which entails λ1 = 1

3 and
λ4 = 2

3 using equations (i) and (ii). This example summarizes the principle of the standard
simplex algorithm.

Now consider our projection problem (PLOP 3.3) with its parametric objective

z(x1, x2, x3)
def
= λ1(−x1 − 2x2 + 2x3 + 7) + λ2(−x1 + 2x2 − 1) + λ3(3x1 − x2)

+λ4(−x3 + 10) + λ5(x1 + x2 + x3 − 5) + λ0

Our PLP-solver uses the previous instantiated problem to discover the useful pivots (i) and
(ii). Then, it replays the same rewritings on the parametric objective: λ1 and λ4 are replaced
with their expression in (i) and (ii). Those substitutions are efficiently implemented using
the matrix representation of (PLOP 3.3): they boil down to the addition of combinations of
rows of (†) and α to those of O. We end up with the following parametric objective:

−1

3
x1 −

2

3
x2 + 9︸ ︷︷ ︸

z?

4

+ λ0
1

3
(x1 + 2x2 − 24)︸ ︷︷ ︸

≥0:C4.1

+ λ2
2

3
(−x1 + 4x2 − 15)︸ ︷︷ ︸

≥0:C4.2

+ λ3
1

3
(10x1 − x2 − 27)︸ ︷︷ ︸

≥0:C4.3

+ λ5
1

3
(5x1 + 7x2 − 39)︸ ︷︷ ︸

≥0:C4.4

We recognize z?
4 which is the 4th piece of z? and other terms involving the remaining

λ-variables; their coefficients are labelled C4.1, . . . , C4.4. The argument for optimality used
in the non-parametric version can be generalized: the minimality of z?

4 holds if the para-
metric coefficients of the remaining variables are nonnegative. Indeed, increasing the
values of λ0, λ2, λ3, λ5 (which must be nonnegative) would make the objective value grow.
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The nonnegativity of C4.1, . . . , C4.4 defines the region of optimality R4 of z?
4 as the poly-

hedron {C4.1, C4.2, C4.3} constraining the parameters (x1, x2), as shown on the figure of
Example 3.1.3. Note that C4.4 is actually redundant with respect to C4.1, C4.2 and C4.3. It
is thus eliminated from the representation of R4 using our efficient minimization algorithm,
and therefore does not appear on the figure.

3.4 The Normalization Constraint
The previous sections showed how to compute the optimal solution of a PLOP and how to

interpret the solution z? as a polyhedron P? =
∧r

k=1 (z?
k(x) ≥ 0). Still, the representation of

P? may not be minimal: some constraints z?
k(x) ≥ 0 may be redundant in P?, e.g. z?

5(x) ≥ 0
is Example 3.1.3. We could remove those redundancies afterwards but, as noticed by Howe
and King (2012), it is highly preferable to prevent their generation by adding a normalization
constraint to the PLOP. We adapt their intuition to our formulation of the problem and
we bring the proof that it indeed avoids redundancies. This requires making a detour via
normalized solutions to explain the expected effect of a normalization constraint.

3.4.1 Normalizing the Solution of the Projection Problem
Let us normalize the function z? so that it evaluates to 1 on a given point x̊ chosen within

the interior of P?. Formally, we consider a solution

z̃?
(x)

def
=

z?(x)

z?(x̊)
or equivalently ∀k, z̃?

k(x)
def
=

z?
k(x)

z?
k(x̊)

The key point of this transformation is that the space [[z? ≥ 0]], which is the polyhedron P?

of interest, is unchanged. The normalized solution z̃?
will differ from the original one but

must fulfills [[z̃?
≥ 0]] = [[z? ≥ 0]] which is true on the main functions if it holds on each of

their pieces, i.e. ∀k, [[z̃?

k ≥ 0]] = [[z?
k ≥ 0]]. The normalization preserves the nonnegativity space

of each z?
k because 1z?

k(x̊)
is a positive scalar: indeed, x̊ belongs to the interior of P?, i.e.

[[
∧

k z?
k > 0]] by Lemma 3.1.

Example 3.2. Normalizing the solution only changes the inclination of the z?
k ’s, not the

space where they cross 0. This can easily be illustrated on one-variable constraints. Con-
sider three constraints C1 : 2x ≥ 5, C2 : x ≤ 12 and a redundant one C3 : x ≥ 2, correspond-
ing to three affine forms z?

1(x) = 2x−5, z?
2(x) = 12−x and z?

3(x) = x−2. On the left-hand
side we plotted the functions z = z?

i (x) for i ∈ {1, 2, 3} and, on the right-hand side, their
normalizations w.r.t. the point x̊ = 3.

The most interesting consequence of the normalization is that a constraint is redundant iff its
normalized affine form is nowhere minimal. This property does not hold on the non-normalized
forms. For instance, in Example 3.2, although C3 is redundant w.r.t. C1 and C2, z?

3 is minimal
w.r.t. z?

1 and z?
2 on x ∈ [3, 7]. On the contrary, considering the normalized forms, z̃?

3 is no
longer minimal, thus it will be absent from the piecewise solution of a minimization problem.
The proof of this result (stated later as Theorem 3.2), which validates Howe and King (2012)’s
intuition, is one contribution of this thesis.
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Last, but not least, the normalized pieces are not computed a posteriori from the original
solutions: our goal is to prevent their generation. Instead, irredundant pieces are obtained
directly by enforcing the normalization of the objective through an additional constraint z(x̊) =
1. Recall from (PLOP 3.4) that the objective of the PLOP is z(x) def

= λ0+
∑p

i=1 λi× (ai(x)−bi).
Then, the normalization constraint becomes

λ0 +

p∑
i=1

λi × (ai(x̊)− bi) = 1 (‡)

where the ai(x̊)’s are coefficients in Q, obtained by evaluating the constraints of the input
polyhedron at x̊. The normalization constraint replaces the previous requirement (†)

∑
i λi = 1

in the PLOP: like (†) it excludes the solution λ0 = . . . = λp = 0.

R2
def
= −23x1 + 51x2 < 58 ∧ 9x1 − 13x2 > −6

R3
def
= 9x1 − 13x2 < −6 ∧ 321x1 − 37x2 < 810

R4
def
= 321x1 − 37x2 > 810 ∧ −23x1 + 51x2 > 58

Example 3.3. Let us go back to our running projection example of Example 3.1.3. On the
figure, bold lines represent the space [[z̃?

(x) = 0]]. Our PLP-solver applied on the normalized
PLOP only builds the irredundant constraints z̃?

2 ≥ 0, z̃?

3 ≥ 0 and z̃?

4 ≥ 0 associated to the
regions displayed on the figure above.

Note that we must be able to provide a point x̊ in the interior of P? while P? is not already
known. Finding such a point is obvious for projection, convex-hull and Minkowski sum. It
is feasible because the operators based on PLP are applied on polyhedra with non-empty
interior; the treatment of polyhedra with equalities is explained below. For projection, x̊ is
obtained from a point x in the interior of the input polyhedron P . Removing the coordinates
of variables marked for elimination provides a point x̊ that will be in the interior of the
projected polyhedron P?.

Handling of Equalities. In the VPL, polyhedra are stored as a set of inequalities I and a
set of equalities E such that I contains no equality, neither implicit nor explicit. The process
of extracting implicit equalities from inequalities is detailed in Chapter 8. When eliminating
a variable xi that belongs to an equality e from E, say e :

∑
j ajxj = b, we rewrite e so that

xi is expressed in terms of the other variables: xi = b −
∑

j 6=i ajxj . Then, we replace each
occurency of xi in I by b−

∑
j 6=i ajxj . Now, I does not talk anymore about xi, and we simply

remove equation e from E.

3.4.2 Projection via Normalized PLP is Free of Redundancy
The advantage of PLP over Fourier-Motzkin comes from the following theorem:

Theorem 3.2. Let z̃? def
= min{z̃?

1, . . . , z̃?

r} be the optimal solution of a normalized paramet-
ric minimization problem. Then each solution z̃?

k that is not the constant function x 7→ 1 is
irredundant w.r.t. polyhedron [[z̃?

≥ 0]].



62CHAPTER 3. MINIMIZING OPERATORS VIA PARAMETRIC LINEAR PROGRAMMING

Proof. Theorem 3.2 is a direct consequence of three intermediate results:
(1) Each region of optimality in a normalized PLOP is a cone pointed in x̊ (Lemma 3.4);

(2) Each piece z̃?

k which is not constant, is decreasing on its region of optimality along
half-lines starting at x̊ (Lemma 3.5);

(3) Each piece z̃?

k that crosses 0 on its region produces an irredundant constraint (Lemma 3.6).

Let us summarize the key facts that are needed for exposing the proof of the lemmata:
projection via PLP leads to a parametric linear minimization problem whose solution is a
function z̃?

defined by pieces {z̃?

1 on R1, . . . , z̃?

r on Rr}; each Rk is the region of optimality
of z̃?

k, meaning that among all the pieces z̃?

k is the minimal one on Rk, i.e. Rk = {x | z̃?
(x) =

z̃?

k(x)}. By construction, z̃?
(x) is the minimum of {z̃?

1(x), . . . , z̃?

r(x)} and z̃?
(x̊) = z̃?

1(x̊) =

. . . = z̃?

r(x̊) = 1 is enforced by the (‡)-normalization constraint.
This is where λ0 comes into play: the fact that λ =

(1, 0, . . . , 0) fulfills (‡) and (α), hence leading to the constant
function z?

λ = 1, sets an upper-bound on z?. The constant
piece z?

λ = 1 arises among the solutions of a normalized PLOP
when the resulting polyhedron P? is unbounded as illustrated
alongside. Therefore, any minimal piece z̃?

k, which evaluates to
1 on x̊, can not grow on its region of optimality otherwise it
would not be minimal compared to z?

λ = 1. Thus, z̃?

k is either
constant and equal to 1 or it satisfies

∀x ∈ R̊k, z̃?

k(x) < 1 (3.7)

which entails its decline on the infinite cone R̊k as meant by the
forthcoming Lemma 3.5, causing its nullification in R̊k, hence
its irredundancy (Lemma 3.6).

The proofs make an intensive usage of the following lemma.

Lemma 3.3. For any affine form “af”, any points x̊ and x and
any scalar µ,

af(x̊+ µ× (x− x̊)) = af(x̊) + µ× af(x)− µ× af(x̊)

Proof. An affine form af is a linear form f plus a constant a, that is af(x) = a+ f(x). Then,

af(x̊+ µ× (x− x̊)) = a+ f(x̊+ µ× (x− x̊))
= a+ f(x̊) + µ× f(x)− µ× f(x̊)  because f is linear
= a+ f(x̊) + µ× f(x) + (µ× a− µ× a)− µ× f(x̊)
= (a+ f(x̊)) + µ× (a+ f(x))− µ× (a+ f(x̊))
= af(x̊) + µ× af(x)− µ× af(x̊)

Lemma 3.4 (Normalized Regions are cones pointed in x̊).

∀x ∈ Qn, x ∈ R̊i ⇒ x̊+ µ(x− x̊) ∈ R̊i, ∀µ > 0.

Proof. Consider x ∈ R̊i, µ > 0 and let z̃?

j be the piece that is minimal at x̊+ µ(x− x̊), i.e.

z̃?

j (x̊+ µ(x− x̊)) = z̃?
(x̊+ µ(x− x̊))

def
= min

k

{
z̃?

k(x̊+ µ(x− x̊))
}

(3.8)

Let us prove that j 6= i leads to a contradiction. Since z̃?

j is affine, z̃?

j (x̊+µ(x−x̊)) = z̃?

j (x̊)+µ×
z̃?

j (x)−µ×z̃?

j (x̊). And z̃?

j (x̊) = 1 by normalization. Thus, z̃?

j (x̊+µ(x−x̊)) = 1−µ+µ×z̃?

j (x).

The same reasoning leads to z̃?

i (x̊+ µ(x− x̊)) = 1− µ+ µ× z̃?

i (x). Moreover, z̃?

j (x) > z̃?

i (x)
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as x ∈ R̊i, z̃?

i ’s region of optimality. Then, 1 − µ + µ × z̃?

j (x) > 1 − µ + µ × z̃?

i (x) as µ > 0

and finally, z̃?

j (x̊ + µ(x − x̊)) > z̃?

i (x̊ + µ(x − x̊)) which contradicts (3.8). Thus, j = i and
z̃?

(x̊+ µ(x− x̊)) = z̃?

i (x̊+ µ(x− x̊)) meaning that x̊+ µ(x− x̊) ∈ Ri.
It remains to be proven that x̊+µ(x− x̊) cannot lie in a boundary of Ri and thus belongs

to R̊i. Recall that, by construction, a boundary is the intersection of two adjacent regions,
say Ri and Rj (with i 6= j), and their affine forms are equal on the boundary. This would
mean z?

j (x̊+ µ(x− x̊)) = z̃?
(x̊+ µ(x− x̊)) = z̃?

i (x̊+ µ(x− x̊)). We already proved that it is
unsatisfiable.

Lemma 3.5 (Normalized solutions decrease along their region of optimality). Either z̃?

k is the
constant function x 7→ 1, or it decreases on lines of Rk starting at x̊, i.e.

∀x ∈ R̊k, ∀µ > 1, z̃?

k(x) > z̃?

k(x̊+ µ(x− x̊)).

Proof. Assume x ∈ R̊k. Let µ > 1, then

z̃?

k(x) > z̃?

k(x̊+ µ(x− x̊))

⇔ z̃?

k(x) > z̃?

k(x̊) + µ× z̃?

k(x)− µ× z̃?

k(x̊) because z̃?

k is affine
⇔ z̃?

k(x) > 1− µ+ µz̃?

k(x) because z̃?

k(x̊) = 1

⇔ 0 > (1− µ)− z̃?

k(x)(1− µ)

⇔ 0 > (1− µ)(1− z̃?

k(x))

⇔ 0 < 1− z̃?

k(x) because (1− µ) < 0

⇔ z̃?

k(x) < 1

This last inequality holds as we already noticed in Equation (3.7) that if z̃?

k is not the constant
function x 7→ 1, then z̃?

k(x) < 1, ∀x ∈ R̊k.

Lemma 3.6 (Irredundancy of solutions that meet 0 on their region of optimality).(
[[z̃?

k = 0]] ∩ [[R̊k]]
)
6= ∅ ⇒ z̃?

k ≥ 0 is irredundant w.r.t. z̃?
≥ 0.

Proof by contradiction. Consider z̃?

k, a piece of z̃?
such that [[z̃?

k = 0]]∩[[R̊k]] 6= ∅. Let us assume
that z̃?

k is redundant. Then, by Farkas’ lemma, ∃ (λj)j 6=k ≥ 0, ∀x ∈ Qn,
∑

j 6=k λjz̃?

j (x) ≤ z̃?

k(x).

Let x be a point of the nonempty set [[z̃?

k = 0]] ∩ [[R̊k]]. Then z̃?

k(x) = 0, as x ∈ [[z̃?

k = 0]], and
the previous Farkas inequality becomes∑

j 6=k

λjz̃?

j (x) ≤ 0 (3.9)

Since x ∈ R̊k, then, z̃?

k(x) < z̃?

j (x) for j 6= k by definition of Rk as the region of optimality of
z̃?

k. More precisely, 0 < z̃?

j (x) since x ∈ [[z̃?

k = 0]]. Therefore, 0 < λjz̃?

j (x) for j 6= k as λj ≥ 0.
Then, summing up this inequality for all j 6= k, we obtain

0 <
∑
j 6=k

λjz̃?

j (x) (3.10)

Inequalities (3.9) and (3.10) are contradictory, proving thereby that z̃?

k is irredundant.

Regions with Empty Interior. They can appear as solutions of a PLOP. Yet, Lemmas 3.4,
3.5 and 3.6 speak only about regions’ interior. This is because the reasoning we developed
to prove that normalization ensures irredundancy is not valid on regions with empty interior
(i.e. regions lying within the frontier of another region). For instance, consider two adjacent
regions R1 and R2 with nonempty interiors. By continuity of the PLP solution, z̃?

1 and z̃?

2
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Figure 3.4 – R3
def
= R1 uR2 has an empty interior.

coincide on R1 u R2, i.e. z̃?

1(x) = z̃?

2(x), ∀x ∈ R1 u R2. Let us call R3 the region reduced
to the frontier between R1 and R2, i.e. R3 = R1 u R2. We can prove that R3 has an
empty interior (this comes from the regions forming a quasi-partition of the space). Moreover,
z̃?

3(x) = z̃?

1(x) = z̃?

2(x), ∀x ∈ R3. In particular, this equality holds where z̃?

3 vanishes, hence
(
[[z̃?

3 = 0]] u [[R3]]
)
@
(
[[z̃?

1 = 0]] u [[R1]]
)

∧(
[[z̃?

3 = 0]] u [[R3]]
)
@
(
[[z̃?

2 = 0]] u [[R2]]
)

Thus, z̃?

3 is redundant w.r.t. z̃?

1 and z̃?

2: z̃?

3 could be either equal to z̃?

1, z̃?

2, or even a
combination of them, as illustrated on Fig. 3.4.
Without further precautions, the PLP solver could unfortunately discover such undesirable
regions. A simple trick avoids generating regions with empty interiors: the solver exclusively
focuses on open regions, i.e. regions that are defined only by strict inequalities. The missing
value z̃?

(x) for a point x lying in a frontier F can then be retrieved easily by continuity:
z̃?

(x) = z̃?

k(x) where z̃?

k is the solution associated to a region adjacent to F .

3.5 Experiments
Benchmarks. We reused the benchmark suite that we designed for min-
imization (§2.4). It contains polyhedra generated randomly from several
characteristics: number of constraints, number of variables and density (ra-
tio of the number of zero coefficients by the number of variables). Constraints
are created by picking up a random integer between -100 and 100 as coeffi-
cient of each variable. All constraints are attached the same constant bound
≤ 20. These polyhedra have a potatoid shape, as shown on the right-hand
side figure.

We compare three libraries on projection/minimization problems: NEW-
POLKA (Jeannet and Miné, 2009) as representative of the double description
framework, VPL 0.1 based on Fourier-Motzkin elimination (Fouilhé, 2015), and our implemen-
tation based on PLP. As we produce polyhedra in minimized form, we asked NEWPOLKA
and VPL to perform a minimization afterwards.
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We did not consider the Parma Polyhedra Library (PPL) in our experiments because, as
far as we know, PPL and NEWPOLKA rely on the same underlying algorithms, and both
are based on the double description framework. Our objective is not to be faster than these
libraries for the projection operator; it is rather to improve the scalability of the constraints-
only representation. Thus, the most relevant comparison lies between the PLP-based projection
and Fourier-Motzkin elimination. The comparison with NEWPOLKA is done to give a general
picture.

In addition to the number of constraints C, the density D and the number of variables V ,
we consider the effect of the projection ratio P (number of projected variable over dimension,
which is the total number of variables). Fig. 3.5 shows the effect of these characteristics on
execution time (in seconds). The vertical axis is always displayed in log scale, for readability.
Each point is the average execution time for the projection and minimization of 100 polyhedra
sharing the same characteristics. On each problem we measure the execution time, with a
timeout fixed at 300 seconds. We tuned the timeout value to let NEWPOLKA and PLP provide
a result, excluding only Fourier-Motzkin on too large computations.

Fourier-Motzkin Elimination in the VPL. Projection in VPL 0.1 is done by Fourier-
Motzkin elimination that can only remove variables one by one. As mentioned earlier, this
algorithm generates many redundant constraints and the challenge of a good implementation
is their fast removal. Fouilhé’s implementation in the VPL 0.1 uses well-known tricks for
removing constraints that can be shown redundant by syntactic arguments (see §2.1). When
syntactic criteria fail to decide the redundancy of a constraint, the VPL calls a LP solver.
However, as Fouilhé (2015, 3.2.3, p. 76) shown, removing redundancies between the successive
elimination of two variables forbids the use of Kohler’s criterion, which says that when
eliminating k variables, a constraint resulting from the combination of k + 2 constraints is
redundant.

Projection Ratio. Fig. 3.5(a) gives the time measurements when projecting polyhedra of
15 constraints, 10 variables and a density of 50%, with a projection ratio varying from 10
to 90%. Fourier-Motzkin is very efficient when projecting a small number of variables. Its
exponential behavior mainly occurs for high projection ratio, as it eliminates variables one
after the other and the number of faces tends to grow at each projection. PLP is not suitable
when there are only few variables to project, e.g. in the case of a single assignment. On the
contrary, it becomes interesting compared to Fourier-Motzkin elimination when the projection
ratio exceeds 50%, i.e. when projecting more than half of the variables. This ratio is always
reached when computing Minkowski sums or convex hulls by projection (§3.6). It can also be
the case on exits of program blocks where a whole set of local variables must be forgotten.
As PLP usefulness grows with a high projection ratio we will focus on the case P = 75%,
studying the effect of other characteristics.

Number of Constraints. Fig. 3.5(b) shows the time measurements when projecting polyhedra
with 8 variables, a density of 50% and a projection ratio of 75% (i.e. elimination of 6 variables).
The number of constraints varies in [8, 60]. While Fourier-Motzkin blows up when reaching
15 constraints, PLP and NEWPOLKA scale better and the curves shows that PLP wins when
the number of constraints exceeds 35.

Dimension. The evolution of execution time in terms of dimension is given in Fig. 3.5(c).
With 20 constraints, the exponential behavior of Fourier-Motzkin elimination emerges. PLP
and NEWPOLKA show similar curves with an overhead for PLP on a log scale, i.e. a
proportionality factor on execution time. It would be interesting to see the effect of dimension
beyond 20 variables, which takes considerable time since it requires increasing the number of
constraints. Indeed, when the dimension is greater than the number of constraints, polyhedra
have a really special shape with very few generators and the comparison would be distorted.
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(a) : C = 15, V = 10, D = 50%, P = [10%, 90%] (b) : C = [8, 60], V = 8, D = 50%, P = 75%

(c) : C = 20, V = [4, 19], D = 50%, P = 75% (d) : C = 10, V = 8, D = [30%, 90%], P = 75%

Figure 3.5 – Execution time in seconds of NEWPOLKA (blue), Fourier-Motzkin (red) and PLP
(green) depending on respectively (a) projection ratio, (b) number of constraints, (c) number
of variables and (d) density.

Density. The effect of density on execution time is shown on Fig. 3.5(d). NEWPOLKA and
PLP are little sensitive to density. The case of Fourier-Motzkin can be explained: Elimination
of a variable x with Fourier-Motzkin consists in combining every pair of constraints having
opposite signs for x. The more non-zero coefficients within the constraints, the greater the
number of possible combinations.

What can we conclude from these experiments? On small problems, our projection
is less efficient than that of a double description (DD) library but the shape of the curves of
NEWPOLKA and PLP is similar on a logarithmic scale, meaning that there is a proportionality
factor between the two algorithms. This is an encouraging result as projection – and the
operators encoded as projection – are the Achilles heel of constraints-only representation
(exponential complexity with Fourier-Motzkin elimination) whereas it is linear in the number
of generators in DD. On the other hand, the conjunction operator, which, in constraints-only
representation, consists in the union of two sets followed by a minimization, is less efficient
in DD because it triggers one step of Chernikova’s algorithm per constraint.

Extracting Intervals from Polyhedra. Let us highlight an interesting property of projection
by PLP. Static analyzers often ask for the interval in which lies a variable xi to check for
instance if it exceeds the bounds induced by its type (i.e. if it wraps). Even if the expected
result is the range of a variable, polyhedra are sometimes needed to produce a much more
precise interval than other abstract domains. When the generators are known, obtaining the
range of a variable xi in a polytope consists in computing the minimum and maximum of the
ith component among the vertices. In constraints-only, it requires solving two LP problems:
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minimize xi

subject to
(x1, . . . , xn) ∈ P

(LP 3.11)
minimize − xi

subject to
(x1, . . . , xn) ∈ P

(LP 3.12)

Problem (LP 3.11) (resp. (LP 3.12)) returns the minimum (resp. maximum) value reachable by
xi in P . These two bounds give the interval for xi.
Another way to obtain the interval of variable would be to project every other variables. With
Fourier-Motzkin elimination, this would clearly be a bad idea, since this algorithm has an
exponential complexity in the number of eliminated variables. In contrast, it is worth noticing
that the projection by PLP solves exactly the two standard LP problems. The reason is simple:
when eliminating n−1 variables from a polyhedron with n variables, the resulting polyhedron
has exactly one dimension. The solution of such a PLOP has at most two regions, because
there is no way to split a line into three parts that share a point (the normalization point x̊).
Hence, the PLP solver only explores two regions.

3.6 Convex Hull via Parametric Linear Programming

3.6.1 Encoding the Convex Hull as a Projection
In constraints-only, the standard way of computing a convex hull is to express points of

P ′ t P ′′ as convex combinations of points of P ′ and P ′′, i.e.

[[P ′ t P ′′]] = {x | x′ ∈ P ′, x′′ ∈ P ′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = α′ · x′ + α′′ · x′′}

By rewriting the belonging of a point in a polyhedron with matrix notations, we get

{x | A′x′ ≥ b′, A′′x′′ ≥ b′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = α′ · x′ + α′′ · x′′} (3.13)

where P ′ def
= A′x′ ≥ b′ and P ′′ def

= A′′x′′ ≥ b′′. Then, eliminating variables α′, α′′, x′ and x′′

from this set leads to P ′ tP ′′. But we cannot use directly the projection operator because the
set of points (3.13) is defined with a nonlinear constraint x = α′ · x′ + α′′ · x′′. To overcome
this issue, we apply the changes of variable y′ := α′ · x′ and y′′ := α′′ · x′′. By multiplying
matrix A′x′ ≥ b′ by α′ and A′′x′′ ≥ b′′ by α′′, we obtain equivalent systems A′y′ ≥ α′ · b′ and
A′′y′′ ≥ α′′ · b′′. The set of points (3.13) is now described as

{x | A′y′ ≥ α′ · b′, A′′y′′ ≥ α′′ · b′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = y′ + y′′}

We can exploit x = y′ + y′′ to replace y′′ by x − y′. Similarly, equation α′ + α′′ = 1 allows
replacing α′′ with 1− α′. Finally, the convex hull is obtained by eliminating variables y′ and
α′ from the following polyhedron.

{x | A′y′ ≥ α′ · b′, A′′(x− y′) ≥ (1− α′) · b′′, 1 ≥ α′ ≥ 0} (3.14)

This encoding of convex hull as a projection is due to Benoy et al. (2005). The convex hull
operator was implemented that way in VPL 0.1, see (Fouilhé, 2015) for more details.

Once equipped with a PLP solver, we investigated a direct encoding of the convex hull
as a PLOP defining the tightest polyhedron P such that P ′ v P ∧ P ′′ v P . For now, we
focus on polyhedra with nonempty interior, meaning that they contain no equalities, neither
implicit nor explicit. The handling of equalities requires one single extra variable in the PLOP
encoding, and is addressed later.

3.6.2 Convex Hull of Two Polyhedra with Nonempty Interior
Consider two polyhedra with nonempty interior P ′ : A′x ≥ b′ and P ′′ : A′′x ≥ b′′ formed

of respectively p and p′ constraints. We denote by P : Ax ≥ b the polyhedron equal to P ′tP ′′.
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By Farkas’ lemma, the condition P ′ v P (resp. P ′′ v P) enforces each constraint of P to
be a nonnegative affine combination of constraints of P ′ (resp. P ′′). Henceforth, for each
constraint aix ≥ bi of P , the following equations must be satisfied

∃λ′
0, . . . , λ

′
p ∈ Q+, λ′

0 +
p′∑

k=1

λ′
k(a

′
k − b′k) = ai − bi

∧

∃λ′′
0 , . . . , λ

′′
p ∈ Q+, λ′′

0 +
p′′∑
k=1

λ′′
k(a

′′
k − b′′k) = ai − bi

Exploiting the equalities and separating the linear parts (ai) from the constants (bi), it can be
reformulated using matrix notations as

∃λ′ = (λ′
1, . . . , λ

′
p′) ∈ Q+1×p′ , λ′′ = (λ′′

1 , . . . , λ
′′
p′′) ∈ Q+1×p′′ , ∃λ′

0, λ
′′
0 ∈ Q+,

λ′A′ = ai = λ′′A′′ (3.15)
λ′
0 + 〈λ′, b′〉 = bi = 〈λ′′, b′′〉+ λ′′

0 (3.16)
Equation (3.15) decomposes into n equations, each one focusing on the coefficient ai,j of
variable xj :

∀j ∈ {1, . . . , n},
k=p′∑
k=1

λ′
ka

′
kj = aij =

k=p′′∑
k=1

λ′′
ka

′′
kj

Equation (3.16) ensures that the Farkas combination in terms of P ′ has the same constant
term as the combination in terms of P ′′.

Encoding the Convex Hull as a Parametric Problem. Computing the convex hull comes
down to calling a PLP-solver to enumerate the tightest constraints satisfying equations (3.15)
and (3.16). As we did for projection, we set as objective function to minimize a bilinear affine
form on coefficients of a Farkas combination and on parameters which define constraints of P .
Here, there are two input polyhedra P ′ and P ′′, and the result must be an overapproximation
of both. We choose arbitrarily to express the objective as a combination of constraints of P ′.
Equations (3.15) and (3.16) will ensure that it will also be a combination of constraints of P ′′.
The objective function is thus λ′

0 +
∑p′

k=1 λ
′
k(a

′
k(x) − b′k), where a′

kx ≥ b′k are the constraints
of P ′.

The PLOP encoding needs to be normalized in order to obtain a result free of redun-
dancy. We apply the same normalization principle used for projection: we add constraint
λ′
0+
∑p′

k=1 λ
′
k(a

′
k(x̊)− b′k) = 1, which specifies that the objective function must evaluate to 1 on

a point x̊ lying within P̊ , as explained in §3.4. Since the considered polyhedra have nonempty
interiors, x̊ can be chosen as any point of [[P̊ ′]] ∪ [[P̊ ′′]]. If a point in the interior of P ′ or P ′′

is already known, we reuse it. Here is the PLOP encoding the convex hull.

minimize z(x) def
= λ′

0 +

p′∑
k=1

λ′
k(a

′
k(x)− b′k)

subject to
(1) λ′A′ = λ′′A′′

(2) λ′
0 + 〈λ′, b′〉 = 〈λ′′, b′′〉+ λ′′

0

(‡) λ′
0 +

p′∑
k=1

λ′
k(a

′
i(x̊)− b′i) = 1

λ′
k ≥ 0, ∀k = 0, . . . , p′

λ′′
k ≥ 0, ∀k = 0, . . . , p′′

(PLOP 3.17)

where the λ′
k ’s, λ′′

k ’s, λ′
0 and λ′′

0 are the (p′ + p′′ + 2) decision variables of the PLOP;
x

def
= (x1, . . . , xn) are the parameters.
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Example 3.6. Let us apply the PLOP encoding of the convex hull on polyhedra P ′ : {x1 ≥
0, x2 ≥ 0, −x1 − x2 ≥ −1} and P ′′ : {0 ≥ x1 ≥ −1, 0 ≥ x2 ≥ −1}. The associated matrix
systems are

P ′ :

 1 0
0 1
−1 −1

(x1

x2

)
≥

 0
0
−1

 and P ′′ :


1 0
−1 0
0 1
0 −1

(x1

x2

)
≥


−1
0
−1
0


The chosen normalization point x̊ is

(
− 1

2 ,−
1
2

)
. The encoding applied on this example is:

minimize z(x) def
= λ′

0 + λ′
1x1 + λ′

2x2 + λ′
3(−x1 − x2 + 1)

subject to
(1) λ′

1 − λ′
3 = λ′′

1 − λ′′
2

(1′) λ′
2 − λ′

3 = λ′′
3 − λ′′

4

(2) λ′
0 − λ′

3 = −λ′′
1 − λ′′

3 + λ′′
0

(‡) λ′
0 −

1

2
λ′
1 −

1

2
λ′
2 = 1

λ′
i ≥ 0, ∀i ∈ {0, . . . , 3}

λ′′
i ≥ 0, ∀i ∈ {0, . . . , 4}

(PLOP 3.18)

Equation (1) and (1’) refer to Equation (1) of (PLOP 3.17). Indeed,

λ′ A′ = λ′′ A′′

≡
(
λ′
1 λ′

2 λ′
3

)  1 0
0 1
−1 −1

 =
(
λ′′
1 λ′′

2 λ′′
3 λ′′

4

) 
1 0
−1 0
0 1
0 −1


≡

{
λ′
1 − λ′

3 = λ′′
1 − λ′′

2

λ′
2 − λ′

3 = λ′′
3 − λ′′

4
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Similarly, Equation (2) refers to Equation (2) of (PLOP 3.17):

λ′
0 + 〈λ′, b′〉 = 〈λ′′, b′′〉 + λ′′

0

≡ λ′
0 +

(
λ′
1 λ′

2 λ′
3

) 0
0
−1

 =
(
λ′′
1 λ′′

2 λ′′
3 λ′′

4

)
−1
0
−1
0

 + λ′′
0

≡ λ′
0 − λ′

3 = −λ′′
1 − λ′′

3 + λ′′
0

Finally, Equation (‡) is the normalization constraint applied on x̊ =
(
− 1

2 ,−
1
2

)
.

The PLP-solver returns the regions R1 to R5 given in the right hand side figure. The
associated set z̃?

≥ 0 is the expected polyhedron { x1 ≥ −1, x2 ≥ −1, x1+x2 ≤ 1, x2−x1 ≤
1, x1 − x2 ≤ 1}.

3.6.3 Convex Hull of General Polyhedra
Now, let us extend the previous encoding to the convex hull of two general polyhedra.

When one of the two polyhedra contains an equality, their convex hull may have an empty
interior. In such a case, it is not possible to choose a point x̊ within the resulting polyhedron
to compute the normalization constraint, needed in the PLOP. To solve this issue, we add a
variable ε to “simulate thickness” in the missing dimension. Each equality a′

i(x) = b′i of P ′

is replaced with the two inequalities a′
i(x) − ε ≤ b′i ∧ a′

i(x) + ε ≥ b′i. In the same way, each
equality a′′

i (x) = b′′i of P ′′ is replaced with a′′
i (x) − ε ≤ b′′i ∧ a′′

i (x) + ε ≥ b′′i . Thanks to this
trick, it becomes possible to find x̊, build the normalization constraint, and solve the PLOP.
The resulting constraints will contain occurrences of ε that we discard by setting ε to 0.

Updating the PLOP encoding. Adding this additional dimension forces to slightly adapt
the PLOP encoding: ε is not treated as a standard parameter. In particular, ε should not be
constrained by Equation (1) of (PLOP 3.17), which states that the coefficient of each parameter
xi should be equal in the Farkas combination of constraints of P ′ and P ′′. As ε will be 0
at the end, this constraint would be useless. Even worse, it leads to imprecise results, as
illustrated on the example below.

Example 3.7. Consider the one-dimensional polyhedra P ′ : {x = 0} and P ′′ : {x ≥ 1}. As
said above, equality x = 0 is rewritten into {x− ε ≤ 0, x+ ε ≥ 0}. This allows to determine
a point x̊ in the interior of [[P ′]] ∪ [[P ′′]], for instance we consider x̊ = (x ← 0, ε ← 1) in
the interior of P ′. Following encoding (PLOP 3.17), and considering ε as any variable, we
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obtain these constraints:

minimize λ′
0 + λ′

1(ε− x) + λ′
2(x+ ε)

subject to
(1)− λ′

1 + λ′
2 = λ′′

1

(1′)λ′
1 + λ′

2 = 0

(2)λ′
0 = λ′′

0 − λ′′
1

(‡)λ′
0 + λ′

1 + λ′
2 = 1

λ′
i ≥ 0, ∀i ∈ {0, . . . , 2}

λ′′
i ≥ 0, ∀i ∈ {0, 1}

Giving this problem to the PLOP solver, the result will be >, instead of the true convex
hull {x ≥ 0}. Looking at the constraints of P ′, the only point λ leading to x ≥ 0 is
(λ′

0 ← 0, λ′
1 ← 0, λ′

2 ← 1). The corresponding solution is x+ ε ≥ 0, which is equivalent to
x ≥ 0 when ε = 0. However, this point λ is unreachable because of constraint (1′), which
states that the coefficient of ε in the combination of P ′ (here λ′

1 + λ′
2) must be equal to its

coefficient in the combination of P ′′ (here 0). Removing this constraint from the encoding
leads to the correct result.

Projection Versus PLP. We believe that the encoding of convex hull as a PLOP is somehow
equivalent to that of Benoy et al. (2005) by projection. Still, our encoding by PLP has the
advantage of being more direct and leads to a simpler implementation. Moreover, the inclusion
certificates are obtained directly from the decision variables λ′ and λ′′, while Fouilhé (2015)
had to deal with tedious rewritings to retrieve them from the projection result.

3.7 Conclusion on PLP-Based Operators
We have shown how the projection operator can be formulated as a PLOP instance. This

approach was made practical by the combination of an efficient PLP solver and a normalization
constraint ensuring that the solutions of the PLOP are free of redundancy. Our experiments
show that projection via PLP scales better when projecting lots of variables, which happens in
particular during the computation of a convex hull thanks to Benoy et al. (2005)’s encoding.
This makes the VPL competitive with other libraries in double description, and much faster
on problems that have exponential generator representations.

Fourier-Motzkin elimination stays useful for projecting a small number of variables, e.g.
in an assignment computation. Ideally, the projection operator should provide heuristics to
choose between Fourier-Motzkin and PLP, depending on the size of input polyhedra and the
number of variables to eliminate.

More generally, we explained how the solution of a PLOP can be seen as a polyhedron
by considering an objective function that corresponds to a Farkas combination of some input
constraints. It means that other operators can be expressed in that way; we illustrated this
claim by encoding the convex hull operator as such. In the following chapter, we will see
a PLOP encoding for computing approximations of semialgebraic sets, that can therefore be
used as a linearization operator.





Chapter 4

Linearization

4.1 Polyhedral Approximation of Multivariate Polynomi-
als

The principle of linearization is to approximate nonlinear relations with linear ones. As for
other operators of the abstract domain, the approximation is sound if it contains the original
nonlinear set, meaning that a linearization operator must over-approximates the nonlinear set.
In this work, we consider polynomial expressions formed of (+, −, ×), such as 4−x×x−y×y.
More general algebraic expressions, including divisions and root operators, may be reduced
to that format; for instance y =

√
x2 + 1 is equivalent to y2 = x2 + 1 ∧ y ≥ 0 (Néron, 2013).

In this chapter, symbol Q shall represent a polynomial expression on the variables x1, .., xn

of a program. We focus on the linearization of inequalities, since equalities and negations
can be changed into disjunctions of conjunctions of inequalities, as for affine constraints. For
example ¬(Q1 = Q2) ≡ (Q1 < Q2 ∨Q1 > Q2).

Nonlinear expressions occur for instance when addressing computations over matrices,
computational geometry, automatic control, distance computations and in programs that ap-
proximate transcendental functions (sin, cos, log, etc.) by polynomials (Chevillard et al., 2009,
2010).

Example 4.1. Consider the following C code fragment.
1 int x,y,z;
2 if (x ≥ 1 && y ≥ −2 && x ≥ y && x ≤ 5− y){
3 if(x ∗ x+ y ∗ y ≤ 4)
4 z = y * x;
5 else
6 z = 0;

73
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7 }

The first guard defines the polyhedron P = {x ≥ 1, y ≥ −2, x− y ≥ 0, x+ y ≤ 5}. The disc
Q = {(x, y) | x2 + y2 ≤ 4} corresponds to the second guard. The octagon PQ that appears
on the figure is a polyhedral over-approximation of Q. The polyhedron P ′ def

= P u PQ is a
polyhedral over-approximation of P ∩Q.

To deal with such programs, we need to extend the guard operator of the abstract domain
to semialgebraic sets. A semialgebraic set, abbreviated as SAS, has the following form{

 x ∈ Qn |
q∧

i=1

Qi(x) ./i 0

}

where Qi ∈ Q[X] and ./i∈ {≥, >}. We can see the similitude between a polyhedron and an
SAS: affine constraints have been replaced by polynomials. A polyhedron is thus a particular
SAS. Actually, many properties of polyhedra extend to SAS. For instance, a finite intersection
of SAS is an SAS, and SAS are closed under projection onto linear subspaces. SAS benefit
from more properties: they are closed under finite union, and under complement operator.

As said in §1.2, the effect of an assignment x := e on a polyhedron P can be reduced to a
guard using this encoding. (

(P u {x̃ = e})\{x}
)
[x̃/x].

where x̃ is a fresh variable. When e is nonlinear, we split the equality x̃ = e into a guard
x̃ ≤ e∧ x̃ ≥ e, hence we can exclusively focus on the linear over-approximation of polynomial
guards. Then, the assignment encoding will produce a valid over-approximation.

The effect of a nonlinear guard Q ≥ 0 on a polyhedron P consists in the intersection of the
set of points of P with Q

def
= {x ∈ Qn | Q(x) ≥ 0}. We approximate P ∩Q by a polyhedron P ′

such that P ∩Q ⊆ P ′. Computing, instead, a polyhedral enclosure PQ of the set Q would not
be a practical solution: it can be very imprecise, e.g. if Q = {(x, y) | y ≤ x2}, then PQ = Q2.
Moreover, it is superfluous work: only three of the eight constraints of polyhedron PQ on the
figure of Example 4.1 are actually useful for P ′.

In the following, we shall introduce three linearization techniques. §4.2 details an interval-
ization process where some variables are replaced with intervals. §4.3 shows a linearization
operator based on Bernstein basis: the matrix of coefficients of a polynomial written in the
Bernstein basis defines an over-approximating polyhedron. Finally, §4.4 introduces a new lin-
earization technique exploiting Handelman (1988)’s theorem: it cancels nonlinear monomials
of Q by using products of constraints of P .

4.2 Intervalization
Linearizing the effect of 0 ≤ Q on P by intervalization consists in replacing some variables

of nonlinear products by intervals of constants. These intervals are infered from the initial
polyhedron P . For instance, from P = {x1 ≥ 1, x2 ≥ −2, x1 − x2 ≥ 0, x1 + x2 ≤ 5}, we
can deduce that x1 ∈ [1, 7] and x2 ∈ [−2, 3], as shown on the figure of Example 4.1. Thus,
x2
1 + x2

2 ≤ 4 can be intervalized into [1, 7]x1 + [−2, 3]x2 ≤ 4. If a variable has no upper (resp.
lower) bound in P , then its interval has the form [α,+∞[ (resp. ]−∞, β]).

At this point, we have affine constraints with interval coefficients. A conjunction of such
constraints is an interval polyhedron (Chen et al., 2009). To go back to standard convex
polyhedra, one must eliminate interval coefficients. This is done by computing an affine
interval [f1, f2] – where bounds are either constant, affine forms of x or infinite – such that
Q ∈ [f1, f2] holds in P , i.e. ∀x ∈ P, f1(x) ≤ Q(x) ≤ f2(x). Then, a guard 0 ./ Q is
approximated by 0 ./ [f1, f2] which is defined by cases on ./. For instance, 0 ≤ [f1, f2] ⇔
∃y, (f1 ≤ y ≤ f2) ∧ (0 ≤ y), which is itself equivalent to 0 ≤ f2. Other cases are:

./ ≤ = 6=
0./ [f1, f2] 0≤f2 0≤f2∧ f1≤0 0<f2∨ f1<0
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Affine intervals are computed using heuristics inspired from Miné (2006), except that in order
to increase precision, we dynamically partition the input polyhedron P according to the sign
of some affine subterms. For instance,

[1, 7]x1 + [−2, 3]x2 ≤ 4

⇔ 0 ≤ 4− [1, 7]x1 − [−2, 3]x2

⇔ 0 ≤ 4 + [−7,−1]x1 + [−3, 2]x2

⇔ if x2 ≥ 0 then 0 ≤ 4 + [−7x1,−x1] + [−3x2, 2x2]
if x2 < 0 then 0 ≤ 4 + [−7x1,−x1] + [2x2,−3x2]

⇔ if x2 ≥ 0 then 0 ≤ [4− 7x1 − 3x2, 4− x1 + 2x2]
if x2 < 0 then 0 ≤ [4− 7x1 + 2x2, 4− x1 − 3x2]

⇔ if x2 ≥ 0 then 0 ≤ 4− x1 + 2x2

if x2 < 0 then 0 ≤ 4− x1 − 3x2

Here, to compute an interval approximating [−3, 2]x2, we need to split the analysis according
to the sign of x2. If x2 ≥ 0, then [−3, 2]x2 is bounded by [−3x2, 2x2], otherwise it is bounded
by [2x2,−3x2]. We do not need to split on the sign of x1 to bound [−7,−1]x1 because we
know that x1 is positive (by hypothesis, it belongs to [1, 7]), hence a bound of [−7x1,−x1]. This
heuristic for sign partitioning is detailed in §4.2.1. At the end, we are only interested in the
upper bound of each interval, because 0 ≤ [f1, f2]⇔ 0 ≤ f2.

Implementation Insights. Our certified linearization is built on a two-tier architecture: an
untrusted OC oracle uses heuristics to select intervalization strategies and a C-certified
procedure applies them to build a correct-by-construction result. These strategies are listed
below; they finely tune the precision-versus-efficiency trade-off of the linearization.
The sign partitioning procedure is implemented in C at the top of the polyhedral domain.
This part of the library was designed for VERASCO and works on integers. Thus, contrary
to other linearization techniques that come in further sections (Bernstein and Handelman’s
linearization), our intervalization is available only on integers and does not work on the usual
VPL datastructures. It actually manipulates an abstract syntax for expressions and constraints.
In particular, it handles conditions defined with symbols ∧, ∨, ≤, = and 6=. Symbol < is not
used because it can always be expressed in terms of ≤ on integers. Extending this technique
to rationals would require some implementation and proof work to integrate that module in
the VPL core. In particular, interval arithmetic is a bit more tedious in rationals, since it
cannot get rid of open bounds like with integers.

Proof in Coq. The proof of our intervalization was done by Sylvain Boulmé. Based on
a refinement technique, the proof ended up to be small (about 2000 lines of code, 1000 of
which taken by a certified interval domain). This work was published and presented at the
6th international conference on Interactive Theorem Proving (Boulmé and Maréchal, 2015) in
Nanjing, China.

Let us now introduce our list of rewriting heuristics. In the following, Q denotes polyno-
mials and f denotes affine terms.

4.2.1 Our Interval-Based Strategies
Constant Intervalization. Let Q = f1 × . . . × fq . Our fastest strategy applies a constant
intervalization operator π: π(Q) over-approximates the polynomial Q by an interval where
affine terms are reduced to constants. It means that each occurrence of each variable is
intervalized: π(Q) = π(f1 × . . . × fq) = π(f1) × . . . × π(fq). It uses a naive integer interval
domain built as an overlay of the polyhedral one. Arithmetic operations + and × follow the
usual definition of intervals (Miné, 2006):
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[`, u] + [`′, u′]
def
= [`+ `′, u+ u′], and

[`, u]× [`′, u′]
def
= [min(E),max(E)] where E = {` · `′, ` · u′, u · `′, u · u′}.

Example 4.2. On x ∈ [3, 10], the constant intervalization of (3x−15)×(4x−3) gives interval
π(3x− 15)× π(4x− 3) = [3× 3− 15, 3× 10− 15]× [4× 3− 3, 4× 10− 3] = [−6, 15]× [9, 37] =
[−222, 555], as shown on the left-hand side figure. The right-hand side figure shows the
constant intervalization for the same but expanded polynomial, i.e. π(12x2 − 69x + 45) =
[−537, 1038], highlighting the great impact of factorization on π.

Ring Rewriting. It is difficult to find a factorization minimizing π results: as illustrated in
Example 4.2, π is very sensitive to rewritings. For instance, consider a polynomial Q1 such
that π(Q1) = [0, n], with n ∈ N+. Then π(Q1 −Q1) returns [−n, n] instead of the precise result
0. Such imprecision also occurs in barycentric computations like Q2

def
= Q1×f1+(n−Q1)×f2:

if affine terms f1, f2 are bounded by [`, u], then π(Q2) returns 2n · [`, u] instead of n · [`, u].
Moreover, if we rewrite Q2 into an equivalent polynomial Q1 × (f1 − f2) + n · f2, then π
returns n · [2` − u, 2u − `]. If ` > 0 or u < 0, then this is strictly more precise than π(Q2),
but the situation is reversed otherwise. Consequently, our oracle begins with simplifying the
polynomial before trying to factorize it conveniently. The following heuristics give more details
about the rewriting strategies of the oracle.

Sign Partitioning. In order to find more precise bounds than those given by π(Q), we look
for an affine interval [fl, fu] bounding Q. Assume Q is of the form Q′ × f , with f an affine
term and Q′ a polynomial. Assume π(Q′) = [`′, u′]. Depending on the sign of f , we deduce
affine bounds of Q in the following way:

— if 0 ≤ f , then Q′ × f ∈ [`′ · f, u′ · f ]
— if f < 0, then Q′ × f ∈ [u′ · f, `′ · f ]

When the input polyhedron P imposes the sign of f , we discard one of these two cases and the
other is the affine approximation of Q′×f . Otherwise, we split the analysis for each sign of f .
The resulting interval of affine terms is computed by convex hull as follows. Considering Q as
a function of x, we call y the variable associated to Q(x), i.e. y = Q(x). Thus, we are looking
for an interval [fl, fu] such that ∀x ∈ P, fl(x) ≤ y ≤ fu(x). Building upon this, intervals
[`′ · f, u′ · f ] and [u′ · f, `′ · f ] are rewritten as polyhedra over variables x and y, respectively
P u{0 ≤ f(x)}u{`′ · f(x) ≤ y ≤ u′ · f(x)} and P u{f(x) < 0}u{u′ · f(x) ≤ y ≤ `′ · f(x)}. Then,
we compute the convex hull of these two polyhedra, and normalize the resulting constraints
so that y have a coefficient equal to 1 in each constraint. By considering only constraints
involving y, we obtain two bounds for y that constitute the interval of affine bounds of Q.
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Example 4.2.1. Consider Q = (3x − 15) × (4x − 3) with x ∈ [3, 10]. Let us illustrate the
benefit of sign partitioning. After constant intervalization of the right term (4x− 3), which
gives π(4x − 3) = [9, 37], we obtain the two affine terms (3x − 15) · 9 and (3x − 15) · 37. As
shown on the left figure, for x ∈ [3, 10], these two terms are not comparable: the two lines
cross when 3x − 15 = 0. Thus, we cannot conclude that Q ∈ [(3x − 15) · 9, (3x − 15) × 37]
nor that Q ∈ [(3x− 15) · 37, (3x− 15) · 9], since it is not true on the whole input polyhedron
3 ≤ x ≤ 10.

To get an interval of affine terms bounding Q, we need to partition the space at the point
where these two terms are equal, i.e. at the point where 3x − 15 = 0 which is x = 5.
Then, by intervalizing in both cells, we get the affine intervals shown on the right figure.
Intervalizing (4x − 3) on cell x < 5 gives [9, 17], and [17, 37] on cell x ≥ 5. Thus, on
x < 5, (3x − 15) × π(4x − 3) = (3x − 15) × [9, 17] = [51x − 255, 27x − 135] and on x ≥ 5,
(3x− 15)× π(4x− 3) = (3x− 15)× [17, 37] = [51x− 255, 111x− 555]. Finally, to obtain an
interval of affine terms bounding Q, we must compute the convex hull of both sides. The
associated polyhedron appears as the dotted polyhedron on the figure, and leads to interval
[51x− 255, 87x− 315].

More generally, we split the polyhedron P into a partition of polyhedra (Pi)i∈I according to
the sign of some affine subterms of polynomial Q. Then, we recursively call our oracle on each
cell Pi to obtain an affine interval [fi, f ′

i ] bounding Pi. Finally, 0 ./ Q is over-approximated
by computing the convex hull of all 0 ./ [fi, f

′
i ]. The main drawback of sign partitioning is a

worst-case exponential blow-up if applied systematically.
Let us now illustrate sign partitioning on the previous barycentric-like computation of

Q′
2

def
= Q1× (f1− f2)+n · f2. Our certified procedure partitions the sign of right affine subterms

(here, the sign of f1 − f2). Recall that π(Q1) = [0, n], we obtain Q′
2 ∈ [n · f2, n · f1] in cell

0 ≤ f1 − f2, and Q′
2 ∈ [n · f1, n · f2] in cell f1 − f2 < 0. The convex hull of the two affine

intervals leads to n · [`, u] as the over-approximation of Q′
2, as we expect for such a barycentre.

Note that sign partitioning is also sensitive to ring rewriting. In particular, the oracle may
rewrite a product of affine terms f1 × f2 into f2 × f1, in order to discard f1 instead of f2 by
sign partitioning.

Focusing. Focusing is a ring rewriting heuristic that may increase the precision of sign
partitioning. Given a product Q

def
= f1 × f2, we define the focusing of f2 at center n as the

rewriting of Q into Q′ = n · f1 + f1 × (f2 − n). Thanks to this rewriting, the affine term n · f1
still appears after sign partitioning whereas it would have been discarded in Q.

For instance, let π(f1) = [`1, u1], π(f2) = [`2, u2], and let n ∈ Q such that 0 ≤ n ≤ `2. Sign
partitioning bounds Q by interval [`1 · f2, u1 · f2] whereas Q′ is bounded by [`1 · f2 + n · (f1 −
`1), u1 · f2 − n · (u1 − f1)]. The former is more precise than the latter:

[`1 · f2 + n · (f1 − `1), u1 · f2 − n · (u1 − f1)] ⊆ [`1 · f2, u1 · f2]

since n, (f1 − `1) and (u1 − f1) are nonnegative. Under these assumptions, the precision is
maximal when n = `2.
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Applied carelessly, focusing may also decrease the precision. Consequently, on a product
Q′′ × f2 where π(f2) = [`2, u2], our oracle uses the following heuristic, which cannot decrease
the precision: if 0 ≤ `2, then focus f2 at center `2; if u2 ≤ 0, then focus f2 at center u2;
otherwise, do not change the focus of f2.

Example 4.2.2. Consider Q = (3x−15)×(4x−3) with x ∈ [3, 10]. Here, π(4x−3) = [9, 37].
As 9 > 0, the focusing heuristic applies on 9, which rewrites Q into Q′ = 9.(3x−15)+(3x−
15)(4x−12). Affine intervalization of Q′ is done by sign partitioning of (4x−12). Because we
chose to focus on the lower bound of π(4x−3), we obtain a partition where cell 4x−12 < 0 is
empty, as shown on the figure. As π(3x−15) = [−6, 15], we get 9.(3x−15)+[−6, 15](4x−12)
i.e. Q′ ∈ [3x− 63, 87x− 315]. Precision comes from the emptiness of cell 4x− 12 < 0, which
avoids the convex hull computation that usually follows sign partitioning.

Intervalizations of this figure and that of Example 4.2 have similar running times, but the
latter gives strictly more precise results. The intervalization resulting from sign partitioning
(see Example 4.2.1) is globally more precise than the two others but also more expensive (two
constant intervalizations plus one convex-hull instead of one single constant intervalization).

Static vs Dynamic Intervalization During Partitioning. Computing the constant bounds
of an affine term inside a given polyhedron invokes a linear programming procedure:

[minimize f(x) subject to Ax ≤ b,maximize f(x) subject to Ax ≤ b]

In dynamic mode, operator π exploits cells resulting from sign partitioning to compute bounds
of an affine form on demand using LP. For a faster but less precise use of π, one may invoke
it in static mode, where bounds are obtained using a pre-computed map σ that associates each
variable of Q with its range in the initial polyhedron Ax ≤ b.
For instance, let us consider the sign partitioning of Q

def
= f1 × f2 in the context 0 < `, u and

−` ≤ f2 ≤ f1 ≤ u. In cell 0 ≤ f2, static mode bounds Q by [−`.f2, u.f2], whereas dynamic
mode bounds Q by [0, u.f2]. In cell f2 < 0, both modes bound Q by [u.f2,−`.f2]. On the join
of these cells, both modes give the same upper bound. But the lower bound is −`.u for static
mode, whereas it is `.u

`+u (f2 + `)− `.u for dynamic mode, which is strictly more precise.

Combination of Strategies. Two distinct linearization strategies may lead to incomparable
polyhedra. For instance, even if strategy of Example 4.2.1 is globally better than those of
Example 4.2 and Example 4.2.2, the result of Example 4.2.2 is more precise than Example 4.2.1
around the bottom left corner. Here, we can improve precision by computing the intersection
of these polyhedra. Let us remark here that a sequence of two strategies gives more precise
results than intersecting independent runs of these strategies: the second run may benefit
from data discovered by the first one. This is illustrated in Example 4.3 below. We use this
trick in order to ensure that our linearization necessarily improves and benefits from results
of a naive but quick constant intervalization.
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4.2.2 Design of Our Implementation
We now describe our procedure in details. Example 4.3 illustrates this description on a

concrete guard. For a guard 0 ./ Q, our certified procedure first discovers and extracts the
affine part of Q, rewriting it into Q′ + f where f is an affine term and Q′ a polynomial. The
goal of this step is to avoid intervalizing the affine part of Q, and to keep the non-affine part
small – in terms of number of monomials. Typically, if Q′ is syntactically equal to zero, we
simply apply the standard affine guard 0 ./ t. Otherwise, we build the map σ for the variables
of Q′. Then, we compute 0 ./ [` + t, u + t] where [`, u] is the result of π(Q′) for static map σ.
As mentioned earlier, this ensures that the resulting linearization necessarily improves and
benefits from this first constant intervalization. In particular, if this guard is unsatisfiable at
this point, the rest of the procedure is skipped. Otherwise, we invoke our external oracle on
Q′ and σ. This oracle returns a polynomial Q′′, which is a rewriting of Q′, enriched with tags
on subexpressions. We handle three tags to direct the intervalization:

— AFFINE expresses that the subexpression is affine;
— STATIC expresses that the subexpression has to be intervalized in static mode;
— INTERV expresses that intervalization is done using only π (instead of sign partitioning).

At last, a special tag SKIP_ORACLE inserted at the root of Q′′ indicates that it is not worth
attempting to improve naive constant intervalization, e.g. because Q′ is a too big polynomial
and any attempt would be too costly. When this special tag is absent, our certified procedure
checks that Q′ = Q′′ using a syntactic equality after normalization of the polynomials with
Grégoire and Mahboubi (2005)’s procedure, available in the C standard distribution. If
Q′ 6= Q′′, the program simply raises an error corresponding to a bug in the oracle. If Q′ = Q′′,
the certified procedure applies the intervalization process, guided by the tags added by the
oracle.

Design of Our External Oracle. Our external oracle ranks variables according to their
priority to be discarded by sign partitioning: The priority rank is mainly computed from the
size of intervals in the pre-computed map σ: unbounded variables must not be discarded
whereas variables with a single value are always discarded by static intervalization. Our
oracle also tries to minimize the number of distinct variables that are discarded: variables
appearing in many monomials have a higher priority. Then, it factorizes variables with the
highest priority. The oracle also interleaves factorization with focusing. Our oracle is written
in 1300 lines of OC code.

Example 4.3. Let us consider the effect of our linearization procedure on guard x×(y−2) ≤
z in a context P = (0 ≤ x) ∧ (x + 1 ≤ y ≤ 1000) ∧ (z ≤ −2). First, note that a constant
intervalization of z − x× (y − 2) would bound it in ]−∞, 997], and thus would not deduce
anything useful from this guard.

Instead, our procedure rewrites the guard into 0 ≤ Q′+f with Q′ def
= −x×y and f

def
= z+2x.

Then, it computes map σ
def
= {x 7→ [0, 999], y 7→ [1, 1000]} and applies constant intervalization

on Q′, leading to Q ∈]−∞, 0]. As you may notice, approximating 0 ≤ z−x× (y−2) requires
only an upper-bound on Q′, and our procedure does not compute the useless lower bound.
From this first approximation of 0 ≤ Q′ + f , it deduces 0 ≤ f .

Then, our oracle, invoked on Q′ and σ, decides to focus the term y at center 1 and thus
rewrites Q′ as Q′′ def

= −x+x× (1−y). Here, it only intervalizes the nonlinear part x× (1−y)
using sign partitioning on 1− y. Knowing that 0 ≤ z + 2x (coming from 0 ≤ f ) and z ≤ −2
(by hypothesis), we have 1 ≤ x. We can thus deduce that 1 − y ≤ −x ≤ −1. Therefore,
because 1−y < 0 and 1 ≤ x, sign partitioning on 1−y bounds x× (1−y) by ]−∞, 1−y]. At
last, we now approximate 0 ≤ Q′ + f by 0 ≤ 1− y − x+ f . In fact, this implies 0 ≤ z which
contradicts z ≤ −2. Hence, our polyhedral approximation of x × (y − 2) ≤ z detects that
this guard is unsatisfiable in the given context. Finally, we can reduce guard x× (y− z) ≤ z
to false in the context P .

As a conclusion, let us remark that the first approximation leading to 0 ≤ f is necessary
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to the full success of the second one.

In the following, we introduce two other linearization techniques. We will compare them
with intervalization afterwards, in §4.5.

4.3 Bernstein’s Linearization
In this section, we introduce a linearization technique based on the approximation of

multivariate polynomials using the Bernstein basis. Given a polyhedron P and a polynomial
Q defined on variables (x1, ..., xl), we want to over-approximate P∧(Q ≥ 0). As Q is expressed
in the canonical basis C, the method consists in converting Q into a Bernstein basis B. Then,
from the coefficients of Q in B, we can deduce a polyhedron containing P ∧ (Q ≥ 0).

Note that, because a standard Bernstein basis for multivariate polynomials on (x1, . . . , xl)
is defined on [0, 1]l, it can only represent polytopes which allow deducing bounded intervals
for all variables, meaning that P can be over-approximated by a product of intervals [a1, b1]×
. . . × [al, bl]. We will see that such products can be scaled to [0, 1]l. The Bernstein basis can
actually be defined directly on polytopes (instead of an over-approximating box), by expressing
points as convex combinations of its vertices (Clauss et al., 2009). This extension will not be
treated here.

We begin by giving reminders about the Bernstein basis, and some clues about the con-
version from the canonical to the Bernstein basis. Then, we will show how to obtain an
over-approximating polyhedron from Bernstein coefficients.

This work was initiated by the following “well known statement”: Bernstein coefficients give
a polyhedral approximation of a polynomial. To our knowledge, in the literature, the result on
the univariate case is implicitly extended to the multivariate case. This section provides the
missing elements and proofs of Bernstein’s linearization: actually, Bernstein coefficients are
associated to points distributed along a regular mesh of [0, 1]l.

We will compute a Bernstein representation of a polynomial in two steps: Consider a
polynomial QC, defined in the canonical basis C on

∏l
i=1[ai, bi]. First, QC is scaled to [0, 1]l.

For readability, we will denote the initial polynomial as QC(x), where x ∈
∏l

i=1[ai, bi], and
the scaled one by Q′

C(t), where t ∈ [0, 1]l. Then, Q′
C(t) is converted into Q′

B(t) expressed in a
Bernstein basis B.

4.3.1 Bernstein Representation of Polynomials
4.3.1.1 The Bernstein Basis

The Univariate Bernstein Basis. We begin by recalling the univariate Bernstein basis,
following notations of Farouki (2012)’s survey. The univariate Bernstein basis B of degree n
is the set of polynomials bnk defined on t ∈ [0, 1] as

bnk (t)
def
=

(
n

k

)
(1− t)n−ktk, k = 0, ..., n

These polynomials form a basis B of the space of polynomials on [0, 1]. Thus, any polynomial
Q(t) with t ∈ [0, 1] can be written in the Bernstein basis

Q(t)
def
=

n∑
k=0

ckb
n
k (t), t ∈ [0, 1], ck ∈ Q

A remarkable property of Bernstein polynomials is that the coefficients ck allow deducing
control points. As we shall see further, the convex hull of these control points contains the
graph of the polynomial itself.
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Example 4.4. The figure shows the polynomial Q(t) = −t3 − t2 + 2t. The Bernstein poly-
nomial of degree 3 corresponding to Q is

0

(
3

0

)
× (1− t)3t0 +

2

3

(
3

1

)
× (1− t)2t1 + 1

(
3

2

)
× (1− t)1t2 + 0

(
3

3

)
× (1− t)0t3

From the Bernstein coefficients (0, 2
3 , 1, 0), we obtain the four control points (the dots) of the

figure: Each coefficient (in the order given above) is placed on a regular mesh of [0, 1], i.e.
{0, 1

3 ,
2
3 , 1}. The four control points are then

(
0, 0
)
,
(
1
3 ,

2
3

)
,
(
2
3 , 1
)

and
(
1, 0
)
.

Since we are manipulating multivariate polynomials, we need to define the multivariate
Bernstein basis. Let us introduce first some useful notations.

Multi-indices. Following the notations from Ray and Nataraj (2012), let l be the number of
variables, let I = (i1, ..., il) ∈ Nl be a multi-index and xI def

= xi1
1 × ... × xil

l be a multi-power.
We define a partial order on multi-indices by I ≤ J ⇔ ∀k ∈ {1, . . . , l}, ik ≤ jk. We extend the
binomial coefficient to multi-indices:

(
J
I

)
=
(
j1
i1

)
× . . .×

(
jl
il

)
.

The Multivariate Bernstein Basis. The Bernstein basis B of degree N = (n1, ..., nl) on
t = (t1, ..., tl) ∈ [0, 1]l is defined as

BN
I (t) = bn1

i1
(t1)× ...× bnl

il
(tl), I ≤N (4.1)

A multivariate polynomial expressed in this basis is written

Q(t) =
∑
I≤N

cIB
N
I (t), t ∈ [0, 1]l, cI ∈ Q

The Bernstein basis B respects the following properties:

∀I ≤N , ∀t ∈ [0, 1]l, BN
I (t) ∈ [0, 1] (4.2)

∀t ∈ [0, 1]l,
∑
I≤N

BN
I (t) = 1 (4.3)

Property (4.3) is called the partition-of-unity property. The two properties allow handling the
Bernstein basis elements as coefficients of a convex combination: given points a0, ...,aN ∈ Ql

and t ∈ [0, 1]l, the point a =
∑

I≤N aIB
N
I (t) is a convex combination of a0, ...,aN . It means

that a belongs to the convex hull of a0, ...,aN .
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Rough Approximation. The partition-of-unity property can be used to get a rough approx-
imation of a polynomial Q.

∑
I≤N

min {cI | I ≤N}BN
I (t) ≤

Q(t)︷ ︸︸ ︷∑
I≤N

cIB
N
I (t) ≤

∑
I≤N

max {cI | I ≤N}BN
I (t)

≡ min {cI | I ≤N}
∑
I≤N

BN
I (t)︸ ︷︷ ︸

=1

≤
∑

I≤N

cIB
N
I (t) ≤ max {cI | I ≤N}

∑
I≤N

BN
I (t)︸ ︷︷ ︸

=1

≡ min {cI | I ≤N} ≤
∑

I≤N

cIB
N
I (t) ≤ max {cI | I ≤N}

We obtain two constant bounds:

∀t ∈ [0, 1]l, min {cI | I ≤N} ≤ Q(t) ≤ max {cI | I ≤N}

This approximation is a first step toward a precise over-approximation. It already has a good
precision, but we can do better: in the following, we take advantage of all control points to
get tight approximations of the polynomial all around its graph.

4.3.1.2 From Canonical to Bernstein Basis

In this section, we show how to convert a polynomial from the canonical basis C to a
Bernstein basis B with the conventional method explained by Ray and Nataraj (2012). 1 As the
standard Bernstein basis is defined on [0, 1]l, a polynomial QC defined as QC(x) =

∑
I≤N dIt

I

on [a1, b1] × ... × [al, bl] in C needs to be scaled and shifted into [0, 1]l. For k ∈ {1, . . . , l}, let
σk : [0, 1]→ [ak, bk] be an affine mapping function. We are looking for the coefficients d′I such
that

∀(t1, ..., tl) ∈ [0, 1]l, Q′
C(t1, ...tl)

def
= QC(σ1(t1), ..., σl(tl)) = QC(x1, . . . , xl) =

∑
I≤N

d′Ix
I

where xk = σk(tk) ∈ [ak, bk]. These coefficients d′I can be expressed in terms of the dI ’s in the
following way :

d′I = (b− a)I
N∑

J=I

dJ

((
J

I

)
aJ−I

)
, I ≤N , a = (a1, ..., al), b = (b1, ..., bl) (4.4)

Example 4.5. Let us take the example QC = −x2
1 − x2

2 + 4 with x1 ∈ [1, 7], x2 ∈ [−2, 3].
The degree of QC is the multi-index N = (2, 2), meaning that x1 and x2 have maximum
degree 2. The coefficients of QC are d(0,0) = 4, d(2,0) = d(0,2) = −1 and dI = 0 for all others

1. This conversion algorithm has been implemented and proved in the Prototype Verification System by Muñoz
and Narkawicz (2013).
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multi-indices I . To illustrate Equation (4.4), we detail the computation of d′(2,0):

d′(2,0) =
(
(7− 1)2

)
×
(
(2 + 3)0

)
×

(2,2)∑
J=(2,0)

((
J

(2,0)

)
× dJ ×

(
1j1−2

)
×
(
(−2)j2−0

))
= 36×

(
(2,0)
(2,0)

)
(−1)(12−2)× ((−2)0−0) because d(2,1) = d(2,2) = 0

= −36

The transformation scales and shifts polynomial QC(x1, x2) = −x2
1 − x2

2 + 4 defined on
[1, 7]× [−2, 3], providing a polynomial Q′

C(t1, t2) = −36t21 − 25t22 − 12t1 + 20t2 − 1 on [0, 1]2.
When (t1, t2) ranges over [0, 1]2, the pink polynomial Q′

C covers the image of the blue one
QC on [1, 7]× [−2, 3].

Now, given a polynomial
∑

I≤N d′It
I in C defined on [0, 1]l, the classical method to compute

the Bernstein coefficients cI is :

cI =
∑
J≤I

(
I
J

)(
N
J

)d′J
As Ray and Nataraj (2012) shown, the translation from C to B using this formula has a

complexity of O(n2l).

Example 4.5.1. We can now compute the Bernstein representation of the scaled polyno-
mial Q′

C = −36t21 − 25t22 − 12t1 + 20t2 − 1 from Example 4.5:

Q′
B = −B(2,2)

(0,0) + 9B
(2,2)
(0,1) − 6B

(2,2)
(0,2) − 7B

(2,2)
(1,0) + 3B

(2,2)
(1,1)

−12B(2,2)
(1,2) − 49B

(2,2)
(2,0) − 39B

(2,2)
(2,1) − 54B

(2,2)
(2,2)

In the following, we will determine a polyhedron over-approximating Q′
B from its coef-

ficients. Then, by reversing the scaling functions σk, this polyhedron will scale so that it
over-approximates QC.

4.3.2 Polyhedron from Bernstein Coefficients
Now, given a polytope P , let us see how to build a polyhedron over-approximating P∧(Q ≥

0) from the Bernstein coefficients of Q′
B. As said previously, we can deduce intervals for each

variable from P . Let us call [ai, bi] the interval associated with variable xi, i = 1, ..., l. Let Pbox

denotes the product of intervals [a1, b1]× ...× [al, bl] and suppose QC is defined on Pbox. In the
following, we use σ(x) for the vector (σ1(x1), ..., σl(xl)), where σk is the affine function mapping
[0, 1] to [ak, bk] defined in §4.3.1.2. The transformation of §4.3.1.2 provides a polynomial Q′

C

whose image on [0, 1]l coincides with the image of the original polynomial QC on Pbox. Since
Q′

C is defined on [0, 1]l, there exists a Bernstein representation of Q′
C as

Q′
B(t) =

∑
I≤N

cIB
N
K (t), t ∈ [0, 1]l, cI ∈ Q

from which we obtain the set V ′ of control points whose first l dimensions form a regular
l-dimensional mesh:

V ′ = {v′
I | I ≤N}

where I = (i1, . . . , il)
N = (n1, . . . , nl)

v′
I =

(
i1
n1

, ..., il
nl
, cI

)
Let us define P ′

V as the convex hull of the control points of V ′. P ′
V is a polyhedron, and

its vertices belong to V ′, but not all points of V ′ are vertices of P ′
V : some can lay in the
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interior of P ′
V . We will now prove that P ′

V is an over-approximation of Q′
B, meaning that

∀(t1, . . . , tl) ∈ [0, 1]l, (t1, . . . , tl, Q′
B(t1, . . . , tl)) ∈ P ′

V .
We start by giving in the following lemma the Bernstein coefficients of a polynomial

reduced to a single variable R(t)
def
= tk.

Lemma 4.1. Let k ∈ N, 1 ≤ k ≤ l and N = (n1, . . . , nl).

tk =
∑

I=(i1,...,il)≤N

ik
nk

BN
I (t), t ∈ [0, 1]l

Proof. We generalize to multivariate polynomials the proof of Farouki (2012) for the uni-
variate case. Let us define the truncated multi-index I \ k as (i1, ..., ik−1, ik+1, ..., il) and
t \ k as (t1, . . . , tk−1, tk+1, . . . , tl). Let t ∈ [0, 1]l and consider the Bernstein polynomial
R(t)

def
=
∑

I≤N
ik
nk

BN
I (t). We will show that R(t) = tk.

Recall the definition (4.1) of BN
I as the product bn1

i1
(t1)× ...×bnl

il
(tl) for I = (i1, . . . , il) ≤N .

Let us split BN
I into bnk

ik
(tk)×B

N\k
I\k (t \ k) to reveal the Bernstein monomial associated to tk.

R(t) =
∑

(I\k)≤(N\k)

ik=0,...,nk

ik
nk

bnk
ik
(tk)×B

N\k
I\k (t \ k)

=
∑

(I\k)≤(N\k)

ik=0,...,nk

ik
nk

(
nk

ik

)
tikk (1− tk)

nk−ik ×B
N\k
I\k (t \ k) by definition of bnk

ik
(tk)

As the terms of the sum corresponding to ik = 0 vanish, we can start the summation at
ik = 1. We can therefore exploit the property of the binomial coefficients ik

nk

(
nk

ik

)
=
(
nk−1
ik−1

)
, for

ik ≥ 1. Thus,
R(t) =

∑
(I\k)≤(N\k)

ik=1,...,nk

(
nk − 1

ik − 1

)
tikk (1− tk)

nk−ik ×B
N\k
I\k (t \ k)

With the change of variable i′k = ik − 1,

R(t) =
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

(
nk−1
i′k

)
t
i′k+1
k (1− tk)

nk−1−i′k ×BN\k
I\k (t \ k)

= tk×
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

(
nk − 1

i′k

)
t
i′k
k (1− tk)

nk−1−i′k︸ ︷︷ ︸ ×BN\k
I\k (t \ k) we recognize bnk−1

i′k

= tk×
∑

(I\k)≤(N\k)

i′k=0,...,nk−1

bnk−1
i′k

(tk) ×BN\k
I\k (t \ k)

= tk×
∑

I≤N ′
BN ′

I (t \ k)

Finally, by the partition-of-unity property of the Bernstein basis of degree N ′ def
= (n1, ..., nk −

1, ..., nl), we obtain
R(t) = tk ×

∑
I≤N ′

BN ′

I (t \ k)︸ ︷︷ ︸
= tk × 1

Thanks to Lemma 4.1, we can relate the set V ′ of control points to the Bernstein coefficients
of Q′

B. For each indeterminate t1, . . . , tl, we associate the Bernstein coefficients given in the
lemma. Similarly, we associate to Q′

B its Bernstein coefficients cI as follows: ∀t = (t1, . . . , tl) ∈
[0, 1]l, 

t1
...
tl

Q′
B(t)

 =


∑

I≤N
i1
n1

BN
I (t)

...∑
I≤N

il
nl
BN

I (t)∑
I≤N cIB

N
I (t)

 =
∑
I≤N


i1
n1

...
il
nl

cI

BN
I (t) =

∑
I≤N

v′
I BN

I (t) (4.5)
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Recall that
∑

I≤N v′
I BN

I (t) is a convex combination of the points v′
I (properties (4.3) and

(4.2)). Thus, Equation (4.5) means that any point (t1, ..., tl, Q′
B(t)) of the graph of Q′

B can be
expressed as a convex combination of the control points v′

I . In other words, (t1, ..., tl, Q′
B(t))

belongs to P ′
V , the convex hull of the points v′

I . Therefore, P ′
V is an over-approximation of

the set {(t1, ..., tl, Q′
B(t)) | t ∈ [0, 1]l}.

So far, we defined a polynomial Q′
B on [0, 1]l, which is equivalent to the original QC

on
∏l

i=1[ai, bi]. This gives a polyhedral over-approximation P ′
V using Bernstein coefficients.

We now have to scale P ′
V to obtain a polyhedral approximation of {(x1, . . . , xl, QC(x)) | x ∈∏l

i=1[ai, bi]}.
Let us define PV as the convex hull of the elements of

V = {vI | I ≤N}
where I = (i1, . . . , il)

N = (n1, . . . , nl)

vI =
(
σ1

(
i1
n1

)
, ..., σl

(
il
nl

)
, cI

)
The l first coordinates of vI are scaled using the mapping functions σi : [0, 1] → [ai, bk]. The
last coordinate is unchanged since the image of Q′

B on [0, 1]l coincides with that of Q on∏l
i=1[ai, bi]. The following lemma shows that the equation of Lemma 4.1 is preserved by σ.

Lemma 4.2. Let k ∈ N, 1 ≤ k ≤ l. Let σk : t 7−→ αt+ β, α, β ∈ Q be an affine function.

σk(tk) =
∑
I≤N

σk

(
ik
nk

)
BN

I (t), t ∈ [0, 1]l

Proof. Let t ∈ [0, 1]l and consider the Bernstein polynomial R(t)
def
=
∑

I≤N σk

(
ik
nk

)
BN

I (t). We
will show that R(t) = σk(tk).

R(t) =
∑

I≤N

σk

(
ik
nk

)
BN

I (t)

=
∑

I≤N

(
α ik

nk
+ β

)
BN

I (t)

= α

( ∑
I≤N

ik
nk

BN
I (t)

)
+ β

( ∑
I≤N

BN
I (t)

)

= α

( ∑
I≤N

ik
nk

BN
I (t)

)
+ β by the Property (4.3)

= αtk + β by Lemma 4.1
= σk(tk)

The last step of the construction of our polyhedral over-approximation of QC on Pbox reuses
the σ-transformation relating QC and Q′

C:

∀t = (t1, . . . , tl) ∈ [0, 1]l, σ(t)
def
= (σ1(t1), . . . , σl(tl)) ∈ Pbox

Then,
∀x ∈ Pbox, ∃t ∈ [0, 1]l, Q(x) = Q(σ(t)) = Q′

B(t)


x1

...
xl

Q(x)

 =


σ1(t1)
...

σl(tl)
Q(σ(t))

 =


σ1(t1)
...

σl(tl)
Q′

B(t)

 =
∑
I≤N


σ1

(
i1
n1

)
...

σl

(
il
nl

)
cI

BN
I (t) =

∑
I≤N

vIB
N
I (t) (4.6)

Equality (4.6) implies that any point (x1, . . . , xl, Q(x)) of the graph of Q can be expressed
as a convex combination of the vI ’s. Thus (x1, . . . , xl, Q(x)) belongs to PV , the convex hull of
the vI ’s. Hence PV is an over-approximation of the set {(x1, . . . , xl, Q(x)) | x ∈ Pbox}.
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Example 4.5.2. With our running example, PV is the convex hull of the red points shown
on the left figure, where we can see that the surface {(x1, ..., xl, Q(x)) | x ∈ Pbox} is clearly
inside PV . Moreover, the right figure shows that the points of V form a l-dimensional mesh.

Recall that we are looking for a polyhedron over-approximating P ∧ (Q ≥ 0). We have
built the polyhedron PV that contains the set {(x1, ..., xl, Q(x)) ∈ Ql+1 | x ∈ Pbox}, but we are
looking for an over-approximation of {x ∈ P | Q(x) ≥ 0}, i.e. the subspace of P where Q is
nonnegative. In order to approximate that subspace of Ql, we have to eliminate one dimension
(that of Q(x)) by projection. We take into account the constraint Q ≥ 0 by considering the
polyhedron

P+
V = PV ∩ {(x1, ..., xl, xl+1) ∈ Ql+1 | xl+1 ≥ 0}

P+
V is the intersection of PV with the half space where xl+1 is nonnegative. It contains the

set {(x1, ..., xl, Q(x)) | x ∈ Pbox, Q(x) ≥ 0}.
We compute PV

+
\{xl+1}, the projection of P+

V onto Ql. It is an over-approximation of
{x ∈ Pbox | Q(x) ≥ 0}. Recall that P ⊆ Pbox by construction of Pbox as the product

∏l
i=1[ai, bi]

of the ranging intervals of x1, . . . , xl in P . Therefore, P ′ def
= PV

+
\{xl+1} u P approximates

{x ∈ P | Q(x) ≥ 0}. Finally, the polyhedron P ′ captures the effect of the guard Q ≥ 0 on the
polyhedron P .

Example 4.5.3. In order to approximate the space where the polynomial (the blue surface)
Q(x1, x2) = −x2

1 − x2
2 + 4 is nonnegative on Pbox (the enclosing box), we compute the

intersection of the polyhedron PV (from Example 4.5.2) with the half space where x3 ≥ 0
(above the red plane x3 = 0). We obtain P+

V , the green polyhedron of the figure.
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(a) (b)

Example 4.5.4. The starting polyhedron P = {(x1, x2) | x1− 1 ≥ 0, x2 +2 ≥ 0, x1− x2 ≥
0, −x1−x2+5 ≥ 0} is represented in orange. The circle {(x1, x2) | Q(x1, x2) = −x2

1−x2
2+4 ≥

0} is drawn in blue. Figure (a) shows PV
+
\{xl+1} in green. Figure (b) shows P ′ = PV

+
\{xl+1}uP

in green. It over-approximates the effect of the guard x2
1 + x2

2 ≤ 4 on P .

4.3.3 Polyhedron Refinement
There exists two methods for improving the precision of Bernstein approximations: degree

elevation of the basis and interval splitting. In both cases, the goal is to find control points
closer to Q.

— Degree elevation consists in converting QC into a Bernstein basis of higher degree,
leading to a finer regular mesh. The number of points in the mesh is the number of
Bernstein monomials BN

I such that I ≤ N . Thereby, the set V contains more control
points, hence more adjusted to the graph of QC. Thus, their convex hull PV is closer to
QC, as shown on Fig. 4.6.

— The principle of interval splitting is to split the initial box [a1, b1]× ...× [al, bl] on a point
(x1, . . . , xl) in the box (when ai 6= xi 6= bi, ∀i ∈ {1, . . . , l}). This process gives k different
boxes, and k = 2l if we split in every dimensions. For each of these boxes, we get an
expression of Q in the basis B from which we can build Vi, and we obtain k times more
points in V = V1 ∪ . . . ∪ Vk. This refinement is efficient as we don’t need to convert QC

from C to B for each box, we can deduce the expression of Q′
B on another box directly

from its expression in the original one thanks to an algorithm by De Casteljau (Muñoz
and Narkawicz, 2013). The result is a disjunction of polyhedra PV1 , . . . ,PVk

. Note that
the increase of precision on each box can be lost by the convex hull if we must return
only one polyhedron. The difficulty is to find a priori the good point where to split to
get an actual gain in precision.

The main drawback of these methods is that, although they refine the over-approximating
polyhedron PV , they increase the number of its faces as well. A polyhedron with many faces
leads to more computation.

4.3.4 Toward Certification in Coq
Bernstein’s linearization was only implemented as a prototype in Sage. It was not added

into the VPL because it requires computing the range of each variable, which costs solving
two LP problems per variable, and because the result is a set of vertices, the control points of
V . To obtain a polyhedron in constraints, it is then necessary to run Chernikova’s algorithm
to switch to the constraints-only representation. This conversion is exactly what we want to
avoid in the VPL. This makes Bernstein’s linearization not well-suited for our library.

Besides, certifying Bernstein’s linearization in C, even with certificate checking, would
have required a lot of work. The change of basis can be done externally and provided as
a certificate to C. It consists in the coefficients cI of Q′

B and the mapping function σ.
With this certificate, it is quite straightforward to develop in C a checker that decides the
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(a) (b)

Figure 4.6 – Representation of Q(x) = −x3−x2+2x in red. (a): PV deduced from a Bernstein
basis of degree 3. (b): PV deduced from a Bernstein basis of degree 10.

equality QC(σ(t)) =
∑

I≤N cIB
N
I (t): it can be done by expanding both sides of the equality

and compare each monomial coefficient. Actually, for validating Handelman’s linearization,
we implemented such a checker and proved its correctness in C (see Chapter 9). Remark
that the polynomial equality must be checked each time the linearization operator is called.
On the contrary, the following lemmas in polyhedra and Bernstein basis are proved once for
all, but their proof can be a bottomless pit.
(1) The properties (4.2) and (4.3) of the Bernstein basis (p.81).
(2) The convex hull of the control points of V forms an over-approximation of {(x1, . . . , xl, Q(x)) |

x ∈ Pbox}.
Yet, even if we overcome these obstacles, the problem of certifying the equivalence between

a polyhedron represented as generators and one represented as constraints remains. This was
discussed in §1.1.2.3.

4.4 Handelman’s Linearization
In this section, we present a linearization algorithm based on Handelman’s theorem, which

gives a way to express a positive polynomial as a nonnegative combination of products of
affine constraints. This work was published and presented at the 17th international conference
on Verification, Model Checking, and Abstract Interpretation (Maréchal et al., 2016), in St.
Petersburg, Florida.

Consider an input polyhedron P = {C1 ≥ 0, . . . , Cp ≥ 0} defined on variables (x1, . . . , xn) ∈
Qn and a polynomial guard Q ≥ 0. Our goal is to find an affine term α0 +

∑n
i=1 αixi denoted

by f such that P ⇒ f > Q, meaning that f is an upper bound of Q on P . By transitivity,
we will conclude that P ∧ (Q ≥ 0) ⇒ P ∧ (f > 0), which can be expressed in terms of sets as
[[P ∧ (Q ≥ 0)]] ⊆ [[P u (f > 0)]]. This indicates that P u (f > 0) is an over-approximation of
P ∧ (Q ≥ 0) This linearization based on Handelman’s theorem is expressed as a Parametric
Linear Optimization Problem (PLOP), and provides several affine constraints f1, . . . , fk ≥ 0
whose intersection with P forms the approximation of P ∧ (Q ≥ 0).

4.4.1 Representation of Positive Polynomials on a Polytope
Notations. A multi-index I = (i1, ..., in) ∈ Nn is a vector of exponents, such that xI def

=
xi1
1 · · ·xin

n . We define the set of Handelman products associated to a polyhedron P = {C1 ≥
0, . . . , Cp ≥ 0} as the set HP of all products of constraints Ci of P :

HP = {Ci1
1 × · · · × Cip

p | (i1, . . . , ip) ∈ Np}

Given a multi-index I = (i1, . . . , ip), HI def
= Ci1

1 × . . .× C
ip
p denotes an element of HP .
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Example 4.7. Let us recall the linearization problem P ∧ (Q ≥ 0) of Example 4.1 (p.73):
P = {x1 ≥ 1, x2 ≥ −2, x1−x2 ≥ 0, x1+x2 ≤ 5} and Q = 4−x2

1−x2
2. With this polyhedron,

H(0,2,0,0) = (x2 + 2)2, H(1,0,1,0) = (x1 − 1)(x1 − x2) and H(1,0,0,3) = (x1 − 1)(−x1 − x2 + 5)3

all belong to HP .

The HI ’s are nonnegative polynomials on P as products of nonnegative constraints of P .
Handelman’s representation of a positive polynomial Q on P is

Q(x) =
∑
I∈Np

λI︸︷︷︸
≥0

HI︸︷︷︸
≥0

(x) with λI ∈ Q+ (4.7)

The λI ’s form a certificate that Q is nonnegative on P . Handelman’s theorem states the non-
trivial opposite implication: any positive polynomial on P can be expressed in that form (Han-
delman, 1988)(Schweighofer, 2002, Th. 5.5)(Prestel and Delzell, 2001, Th. 5.4.6)(Lasserre, 2010,
Th. 2.24); a similar result already appeared in Krivine (1964)’s work on decompositions of
positive polynomials on semialgebraic sets.

Theorem 4.3 (Handelman). Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a polytope where each Ci is an
affine form over x ∈ Qn. Let Q be a positive polynomial on P, i.e. Q(x) > 0 for all x ∈ P . Then
there exists a finite subset I of Np and λI ∈ Q+ for all I ∈ I, such that

Q =
∑
I∈I

λIH
I

This does not necessarily hold if Q is only assumed to be nonnegative. Consider the
inequalities x+1 ≥ 0 and 1−x ≥ 0 and the nonnegative polynomial x2. Assume the existence
of a decomposition (4.7) and apply it at x = 0: Q(0) = 0 =

∑
λ(i1,i2)1

i11i2 . But, since 1i11i2 > 0
whatever the value of (i1, i2) ∈ N2, then λ(i1,i2) = 0, ∀(i1, i2) ∈ N2. This null decomposition is
absurd.

Note that one can look for a Handelman representation of a polynomial even on unbounded
polyhedra: its positivity will then be ensured. The existence of such representation is not
guaranteed though. A sufficient condition for Q is that it is bounded by a concave function.
Indeed, any tangent curve of such concave function is an affine function dominating Q.

A common use of Handelman’s representation of a polynomial Q − ∆ is to determine
a constant bound ∆ of Q on P . For instance, Boland and Constantinides (2011) use it to
compute an upper bound of the polynomial, in x and the error ε, which defines the cascading
round-off effects of floating-point calculation. Schweighofer (2002)’s algorithm can iteratively
improve such a bound by increasing the degree of the HI ’s. We present here another use of
Handelman’s theorem: we are not interested in just one bound but in a whole set of affine
constraints dominating the polynomial Q on P .

A similar use of Handelman’s theorem appeared in the context of linearization for generat-
ing polynomial invariants (Bagnara et al., 2005). Intuitively, as we mention in §4.4.2.2, their
approach considers nonlinear products as additional variables. Thereby, an SAS becomes a
polyhedron in higher dimension.
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The idea of replacing nonlinear expressions by new variables was also applied by Ben Sassi
et al. (2012), to find out if a polynomial is positive over a positive semi-definite set, in the
context of reachability analysis for discrete-time polynomial dynamical systems. To do so,
they compute lower bounds of the polynomial that, if tight enough, ensure the positivity of
the polynomial. These bounds are found as optimal solutions of LP problems that are defined
as follows. The polynomial is rewritten in the Bernstein basis, and elements BN

I of the basis
are replaced by fresh variables, leading to an affine form that is used as objective function
to minimize. The properties of the Bernstein basis (see (4.2) and (4.3) §4.3.1.1) give affine
constraints between these additional variables. Ben Sassi et al. (2015) extend this work to
Lyapunov function synthesis, and improve the approximation by considering another property
of the Bernstein basis, namely the induction relation between Bernstein polynomials. They
also compare this approach (and Handelman-based linearizations, which both produce LP
problems) with relaxations by sum-of-squares (SOS) programs.

4.4.2 Linearization as a PLOP

Recall that we are looking for an affine constraint f def
= α0 +

∑n
i=1 αixi that approximates a

non-linear guard Q, meaning that f > Q on P . According to Theorem 4.3, if P is bounded,
f−Q (which is positive on the polytope P) has a Handelman representation as a nonnegative
linear combination of products of constraints of P , i.e.

∃I ⊂ Np, f−Q =
∑
I∈I

λIH
I , λI ∈ Q+, HI ∈HP (4.8)

Relation (4.8) ensures that there exists some nonnegative combinations of Q and some HI ∈
HP that cancel the monomials of degree >1 and lead to affine forms:

α0 + α1x1 + . . .+ αnxn = f= 1 ·Q+
∑
I∈Np

λIH
I

This decomposition is not unique in general: given a set of Handelman products, there
exists several ways of canceling nonlinear monomials of Q, each of which leading to a
distinct affine form fi. The principle of our algorithm is to take advantage of the non-
uniqueness of representation to get a precise approximation of the guard: we suppose that
a set I = {I1, . . . , Iq} of multi-indices is given and we show how to obtain every possible
affine form fi that can be expressed as Q +

∑`=q
`=1 λ`H

I` . Each of these fi bounds Q on P
and their conjunction forms a polyhedron that over-approximates the set P ∧ (Q ≥ 0). A
major difference between our work and previous work by Schweighofer (2002) and Boland
and Constantinides (2011) is that we are not interested in a constant bound α0 but an affine
bound α0 + α1x1 + . . . + αnxn which still depends on parameters x1, . . . , xn. We now show
that our problem belongs to the class of parametric linear problems; §4.4.3 then describes the
heuristics used to determine I .

Example 4.7.1. For Q = 4 − x2
1 − x2

2 and P = {C1 : x1 − 1 ≥ 0, C2 : x2 + 2 ≥, C3 :
x1 − x2 ≥ 0, C4 : −x1 − x2 + 5 ≥ 0}, we choose I = {I1, . . . , I15} such that

HI1 = H(0,0,0,0) = 1 HI9 = H(0,0,0,2) = (−x1 − x2 + 5)2

HI2 = H(1,0,0,0) = x1 − 1 HI10 = H(1,1,0,0) = (x1 − 1)(x2 + 2)
HI3 = H(0,1,0,0) = x2 + 2 HI11 = H(1,0,1,0) = (x1 − 1)(x1 − x2)
HI4 = H(0,0,1,0) = x1 − x2 HI12 = H(1,0,0,1) = (x1 − 1)(−x1 − x2 + 5)
HI5 = H(0,0,0,1) = −x1 − x2 + 5 HI13 = H(0,1,1,0) = (x2 + 2)(x1 − x2)
HI6 = H(2,0,0,0) = (x1 − 1)2 HI14 = H(0,1,0,1) = (x2 + 2)(−x1 − x2 + 5)
HI7 = H(0,2,0,0) = (x2 + 2)2 HI15 = H(0,0,1,1) = (x1 − x2)(−x1 − x2 + 5)
HI8 = H(0,0,2,0) = (x1 − x2)

2
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4.4.2.1 The PLOP Encoding

Considering the products {HI1 , . . . , HIq}, finding a Handelman representation of f−Q can
be expressed as a LP problem. Relation (4.8) amounts to finding λ1, . . . , λq ≥ 0 such that

f = 1 ·Q+
`=q∑̀
=1

λ`H
I` = (λQ, λ1, . . . , λq)︸ ︷︷ ︸

λᵀ

· (Q,HI1 , . . . , HIq )ᵀ︸ ︷︷ ︸
Hᵀ

Q·M= =

α0 + α1x1 + . . .+ αnxn λᵀ · Hᵀ
Q ·M

= =

Mᵀ · (α0, . . . , αn, 0, . . . , 0) = Mᵀ · HQ · λ

where:
(1) HQ is the matrix of the coefficients of Q and the HI` organized with respect to M, the

sorted list of monomials that appear in the Handelman products generated by I .
(2) the column vector λ = (λQ, λ1, . . . , λq)

ᵀ = (1, λ1, . . . , λq)
ᵀ characterizes the combination

of Q and the HI` . Coefficient λQ is set to 1 since we want the affine form f to dominate
Q. This is why f is expressed as Q plus something nonnegative.

The product HQ · λ is a vector α
def
= (α0, . . . , α|M|−1)

ᵀ representing the constraint

α0 + α1x1 + . . .+ αnxn +

|M|−1∑
i=n+1

αi · (M)i

where (M)i denotes the ith monomial of M. Since we seek an affine constraint f we are
finally interested in finding λ ∈ {1} × (Q+)q such that HQ · λ = (α0, . . . , αn, 0, . . . , 0)

ᵀ. By
construction, each such λ gives an affine constraint f that bounds Q on P .

Example 4.7.2. Here is the matrix HQ associated to Q
def
= 4−x2

1−x2
2 and the Handelman

products from Example 4.7.1 with respect to M = [1, x1, x2, x1x2, x
2
1, x

2
2].

Q HI1 HI2 HI3 HI4 HI5 HI6 HI7 HI8 HI9 HI10 HI11 HI12 HI13 HI14 HI15

1
x1

x2

x1x2

x2
1

x2
2


4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
0 0 1 0 1 -1 -2 0 0 -10 2 -1 6 2 -2 5
0 0 0 1 -1 -1 0 4 0 -10 -1 1 1 -2 3 -5
0 0 0 0 0 0 0 0 -2 2 1 -1 -1 1 -1 0
-1 0 0 0 0 0 1 0 1 1 0 1 -1 0 0 -1
-1 0 0 0 0 0 0 1 1 1 0 0 0 -1 -1 1


The choices λQ = λ6 = λ7 = 1 and every other λ` = 0 are a solution to the problem

HQ · λ = (α0, α1, α2, 0, 0, 0)
ᵀ. We obtain HQ · λ = (9,−2, 4, 0, 0, 0)ᵀ that corresponds to

9−2x1+4x2+0×x1x2+0×x2
1+0×x2

2. Thus, f= 9−2x1+4x2 is a constraint that bounds
Q on P, as shown on Example 4.7.3.
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(a) (b)

Example 4.7.3. (b) is the cut at z = 0 of (a), where z is the vertical axis, in which we
added the polyhedron P = {x1−1 ≥ 0, x2+2 ≥ 0, x1−x2 ≥ 0, −x1−x2+5 ≥ 0}: the circle
Q of (b) appears in (a) as the intersection of the surface z = Q(x1, x2)

def
= 4−x2

1−x2
2 (the blue

curve) with the plane z = 0 (the red one). The polyhedral approximation of Q is the inclined
yellow plane z = f(x1, x2)

def
= −2x1 +4x2 +9 that dominates Q. It cuts the plane z = 0 along

the green line L1 in (a) which is reported in (b). The line L1 is the frontier of the affine
constraint −2x1 + 4x2 + 9 ≥ 0. The filled area is the polyhedron P ∧ (−2x1 + 4x2 + 9 ≥ 0)
that over-approximates P ∧ (Q(x1, x2) ≥ 0).

Any solution λ of the problem HQ · λ = (α0, . . . , αn, 0, . . . , 0)
ᵀ is a polyhedral constraint f

that bounds Q on P . Among all these solutions we are only interested in the best approxi-
mations. One constraint fi > Q is better than another fj > Q at point x if fi(x) < fj(x). It
then appears that for a given point x we are looking for the polyhedral constraint f > Q that
minimizes its value on that point. Therefore, we define a linear minimization problem that
depends on some parameters: the point x of evaluation.

Finally, finding the tightest affine forms fi that bound Q on P with respect to a given set of
indices I can be expressed as the PLOP given below. As said in §3.3, the solution of a PLOP
is a function mapping parameters to optimal values for decision variables λ. For (PLOP 4.9),
the solution is a function associating an affine form fi (corresponding to a point λ) to the
region of the parameter space where fi is optimal. The over-approximation of P ∧ (Q ≥ 0) that
we return is then P

d
i fi(x) ≥ 0.

minimize f
def
= α0 + α1x1 + . . .+ αnxn

def
= Q+

q∑
`=1

λ`H
I`

subject to
HQ · (λQ, λ1, . . . , λq)

ᵀ = (α0, . . . , αn, 0, . . . , 0)
ᵀ

λQ = 1, λ` ≥ 0, ∀` ∈ {1, . . . , q}

(PLOP 4.9)

where
(1) λ1, . . . , λq are the decision variables of the PLOP
(2) x1, . . . , xn are the parameters
(3) α0, . . . , αn are kept for the sake of presentation, in practice they are substituted by their

expression issued from HQ · λ.
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Example 4.7.4. In our running example, the objective f, i.e. Q+
∑`=15

`=1 λ`H
I` , is

4 + λ1 + λ2(x1 − 1) + λ3(2 + x2) + λ4(x1 − x2) + λ5(5− x1 − x2) + λ6(1− 2x1) + λ7(4 + 4x2)

+λ9(25− 10x1− 10x2)+λ10(2x1−x2− 2)+λ11(x2−x1)+λ12(6x1+x2− 5)+λ13(2x1− 2x2)

+λ14(10− 2x1 + 3x2) + λ15(5x1 − 5x2).

In practice we use this presentation (without α) which exhibits the parametric coefficients
in x1, x2 of each variable λ`. Nonlinear monomials do not appear since the problem imposes
the non-linear part of Q+

∑`=15
`=1 λ`H

I` to be canceled, i.e.

x1x2(−2λ8 + 2λ9 + λ10 − λ11 − λ12 + λ13 − λ14)
+ x2

1(−1 + λ6 + λ8 + λ9 + λ11 − λ12 − λ15)
+ x2

2(−1 + λ7 + λ8 + λ9 − λ13 − λ14 + λ15)

The solutions of the problem are the vectors λ that minimize the objective and cancel the
coefficients of x1x2, x2

1 and x2
2.

Example 4.7.5. The solution of (PLOP 4.9) instantiated on our running example is a
decision tree with five optimal solutions λ at leaves:

z?
def
= (x1, x2)→



z?
1 : 4x1 −2x2 +9 on R1

z?
2 : −5x1 −5x2 + 33

2 on R2

z?
3 : 4x1 −14x2 +57 on R3

z?
4 : −2x1 +4x2 on R4

z?
5 : −5x1 +x2 +6 on R5

where
R1 = x2 > −2 ∧ x1 > 1 ∧ x1 < 4 ∧ 2x1 + 6x2 < 5 ∧ 2x1 − 2x2 > 3

R2 = 2x1 + 6x2 > 5 ∧ −2x1 + 2x2 > −9 ∧ x1 + x2 < 5 ∧ x1 − x2 > 0 ∧ 4x1 > 7

R3 = 2x1 − 2x2 > 9 ∧ x1 + x2 < 5 ∧ x2 > −2 ∧ x1 > 4

R4 = x1 + x2 < 2 ∧ −2x2 + 2x2 > −3 ∧ x1 > 1

R5 = x1 + x2 > 2 ∧ x1 − x2 > 0 ∧ 4x1 < 7

Remark that all regions are open (i.e. defined only with strict inequalities), for the reasons
given in §3.5. Each of the five solutions z?

i is interpreted as constraint z?
i ≥ 0. These five

constraints appear as the lines L1 to L5 in the figures above, where Li
def
= [z?

i = 0]. Their
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conjunction with P forms the polyhedron P ′ which over-approximates P ∧ (Q ≥ 0). P ′ is
delimited by P and the constraints z?

1,z?
2 and z?

5 returned by the parametric simplex; z?
3

and z?
4 are redundant.

4.4.2.2 Normalizing the PLOP

To avoid generating redundant constraints like z?
3 and z?

4 in Example 4.7.5, we can add
a normalization constraint in the PLOP encoding, as we did for projection and convex hull
in Chapter 3. The normalization constraint is defined by forcing the objective function to
evaluate to 1 at a point x̊ in the interior of the result, i.e.

Q(x̊) +

q∑
`=1

λ`H
I`(x̊) = 1, for some x̊ ∈ [[P̊ ′]] (‡)

where P ′ is the approximation of P ∧ (Q ≥ 0), i.e. P ′ = P
d

i(z?
i ≥ 0). However, we meet two

obstacles in normalizing the PLOP of Handelman’s linearization:
(1) It is not that easy to find a point within [[P̊ ′]]

(2) The constant term 1 of the normalization constraint is not suitable for Handelman’s
linearization.

Finding a Normalization Point. Finding a point within [[P̊ ′]] is not as trivial as it was
for projection or convex hull. Here, P ′ is not an over-approximation of the input one P :
it is precisely the opposite. Thus, a point inside P̊ has no guarantee to lie in [[P̊ ′]]. The
trick to determine a normalization point is to notice that the PLOP encoding of Handelman’s
linearization actually corresponds to a projection. To see that, let us call HIk

lin the Handelman
product HIk where all nonlinear monomials have been renamed by a new variable. For
instance, renaming x2

1 as x3 and x1x2 as x4, the Handelman product HI12 = (x1−1)(−x1−x2+5)
from Example 4.7.1 becomes HI12

lin = −x3−x4+6x1+x2−5. We claim that eliminating these new
variables by projection leads to the same result as (PLOP 4.9). Indeed, this PLOP is designed to
cancel the coefficient of nonlinear monomials, which can be seen as extra variables to eliminate
by projection. The polyhedron we are projecting here is P

dq
`=1 H

I`
lin ≥ 0. As for projection (see

§3.4.1 p.60), we can find a point of the result [[P̊ ′]] by picking up x ∈ [[P̊]]
⋂q

`=1 H
I`
lin > 0 and

delete the non-pertinent coefficients (from variables corresponding to nonlinear monomials).

Finding a Suitable Constant. The constant 1 of the normalization constraint was chosen
arbitrarily. Any positive value would have been correct for normalizing projection or convex-
hull, since any constraint of the result can be scaled accordingly. This does not work for
Handelman’s linearization, because variable λQ is fixed to 1 instead of being only specified as
nonnegative like others λi’s. Indeed, encoding (PLOP 4.9) is designed to produce affine forms
fi such that

fi(x) > Q(x), ∀x ∈ P (?)

But if Q(x̊) > 1, then there exists no affine form that fulfills both (‡) and (?).
To fix this issue, we could replace the constraint λQ = 1 by λQ > 0 in (PLOP 4.9). Then, f
would no longer dominate Q on P . Instead, we would get f > λQQ for some λQ > 0. In this
case, f ≥ 0 would still give a correct over-approximation of Q ≥ 0. Note that it is wrong if
λQ = 0, hence the strict positivity required for λQ.

4.4.3 Heuristics and Certificates
We previously assumed a given set of Handelman products to be considered in (PLOP 4.9);

our implementation actually uses Schweighofer products (SI), which generalize Handelman’s
ones as shown by Theorem 4.4 below. We shall now describe the oracle that generates the
products together with a certificate of nonnegativity, then the heuristics it uses.
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Theorem 4.4 (Schweighofer, 2001). Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a polytope where each Ci

is an affine form over x ∈ Qn. Let Qp+1, . . . , Qq ∈ Q[X]. Then Q > 0 on P ∧{Qp+1 ≥ 0, . . . , Qq ≥
0} if and only if

Q = λ0 +
∑
I∈Nq

λI · SI , λ0 ∈ Q∗+, λI ∈ Q+

where S(i1,...,iq) = Ci1
1 · · ·C

ip
p ·Qip+1

p+1 · · ·Q
iq
q .

Schweighofer products are products of polyhedral constraints of P and polynomials (Qi)
i=q
i=p+1.

They are obviously nonnegative on the set P ∧ {Qp+1 ≥ 0, . . . , Qq ≥ 0}. From a certification
point of view, the key property of the polynomials resulting from Handelman or Schweighofer
products is their nonnegativity on the input polyhedron. Therefore, heuristics must attach
to each product a nonnegativity certificate as its representation in the OC/C type
nonNegCert given below. The C checker, detailed in Chapter 9, contains the proof that
this type only yields nonnegative polynomials by construction.

type nonNegCert = C of N with [[C(i)]] = Ci ≥ 0 of P
| Square of polynomial [[Square (p)]] = p2 ≥ 0 ∀p ∈ Q[X]
| Power of N ∗ nonNegCert [[Power (n, S)]] = Sn with S ≥ 0
| Product of nonNegCert list [[Product (L)]] = ΠS∈L S ≥ 0

Design of the Oracle. The oracle treats the input polynomial Q as the set M of its nonlinear
monomials and maintains a set MC of already-canceled monomials. Each heuristic looks for
a monomial m in M it can apply to, checks that it doesn’t belong to MC and generates a
product S or H for it. Monomial m is then added to MC and the nonlinear monomials of S
that are different from −m are added to M . The oracle finally returns a list of couples formed
of a product H or S. The heuristics are applied according to their priority. The most basic of
them consists in taking every Handelman product whose degree is smaller than or equal to
that of Q. If solving (PLOP 4.9) fails with these products, we increase the maximum degree
up to which all the products are considered. Theorem 4.3 ensures eventual success. However,
the number of products quickly becomes so large that this heuristic is used as a last resort.

Targeted Heuristics. The following heuristics aim at finding either Handelman products HI

or Schweighofer products SI which cancel a given nonlinear monomial m. Besides a monomial
canceling m, a product may contain nonlinear monomials which need to be eliminated. The
heuristics guarantee that these monomials are of smaller degree than m when the polyhedron
is bounded, thereby ensuring termination. Otherwise, they try to limit the degree of these
additional monomials as much as possible, so as to make them easier to cancel. As before,
we consider an input polyhedron {C1 ≥ 0, . . . , Cp ≥ 0} with Ci : aix ≥ bi. In the following,
we wish to cancel monomial m def

= cm × xe1
1 · · ·xen

n , with cm ∈ Q.

Extraction of Even Powers. This heuristic builds on squares being always nonnegative
to apply Schweighofer’s theorem in an attempt to simplify the problem. The idea is to
rewrite m into m = m′ × (xε1

1 . . . xεn
n )

2 where m′ def
= cm × xδ1

1 . . . xδn
n , with δj ∈ {0, 1}. The

heuristic recursively calls the oracle in order to find a product S canceling m′. Then,
S × (xε1

1 . . . xεn
n )

2 cancels the monomial m. If WS is the nonnegativity certificate for S, then
Product [WS ;Square (xε1

1 . . . xεn
n )] is that of the product.

Simple Products. Consider a monomial m = cm×x1 · · ·xn where cm ∈ Q, as can be produced
by the previous heuristic. We aim at finding a Schweighofer product S that cancels m, and
such that every other monomial of S has a degree strictly smaller than that of m. We
propose an analysis based on intervals, expressing S as a product of variable bounds, i.e.
xj ∈ [lj , uj ] where lj , uj ∈ Q. For each variable xj , we may choose either constraint xj+ lj ≥ 0
or −xj + uj ≥ 0, so that the product of the chosen constraints contains x1 · · ·xn with the
appropriate sign. Moreover, other monomials of this product are ensured to have a degree
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smaller than that of m. The construction of a product of bounds is guided by the following
concerns (for the full details, see Appendix A).

— The sign of the canceling monomial must be opposite to that of m.
— The bounds that are available in the input constraints are used in priority. It is possible

to call the VPL to deduce additional bounds on any variable from the input constraints.
However, finding a new bound requires solving a LP problem.

— The selected bounds should exist, which is not necessarily the case if the input polyhedron
is not a polytope. If too many bounds don’t exist, the heuristic fails.

Thanks to Farkas’ lemma, each implied bound on a variable (xj + lj or −xj + uj) can be
expressed as a nonnegative linear combination of the input constraints, i.e.

∑p
i=1 βijCi for

some βij ≥ 0 solutions of a linear problem. The combination reduces to Ci if Ci is already a
constraint of the input polyhedron P . The resulting product of bounds can then be expressed
as follows.

∏
j∈L

(xj + lj)×
∏
j∈U

(−xj + uj) =
∏

j∈L∪U={1,...,n}

( p∑
i=1

βij · Ci)
)
, βij ≥ 0

The right-hand side expression is then refactorized with the Ci’s kept symbolic, so that the
Handelman products appear. This case is illustrated in the following example.

Example 4.8. We illustrate the behavior of the oracle on the polynomial Q = x2
2 − x2

1x2 +
x1x2 − 85 and still the same polytope

P = {C1 : x1 − 1 ≥ 0, C2 : x2 + 2 ≥ 0, C3 : x1 − x2 ≥ 0, C4 : 5− x1 − x2 ≥ 0}.

The oracle starts with M = {x1x2,−x2
1x2, x

2
2} and processes the monomials in order.

(x1x2) For eliminating x1x2, the simple product heuristic uses constraint C1 : x1 − 1 ≥ 0
and the combination C1+C4 = (x1−1)+(−x1−x2+5) which entails the upper bound
−x2 + 4 ≥ 0 on x2. Their product (x1 − 1)(−x2 + 4) = −x1x2 + 4x1 + x2 − 4 cancels
x1x2 and the expansion C1 · (C1 + C4) = C2

1 + C1C4 reveals the useful Handelman
products: H1

def
= C2

1 = x2
1− 2x1 +1 and H2

def
= C1C4 = −x2

1− x1x2 +6x1 + x2− 5. They
are returned with their certificates of nonnegativity: Power (2, C1) and Product [C1;C4].
Then, x1x2 is added to MC as well as the new monomials x2

1 and −x2
1, which are not

placed in M since opposite monomials cancel each other.
(−x2

1x2) The heuristic for squares splits the term −x2
1x2 into m′×x2

1 and lets the oracle deal
with m′ def

= −x2. The simple product heuristic reacts by looking for a constraint with
the term +x2 and as few variables as possible: C2 : x2+2 ≥ 0 fulfills these criteria. The
calling heuristic builds the Schweighofer product S3

def
= x2

1 ·C2 = x2
1x2+2x2

1 that cancels
−x2

1x2, and returns S3 with its certificate of nonnegativity Product [Square (x1);C2].
Then, the oracle removes x2

1x2 from the working set and places it into the set of
cancelled monomials.

(x2
2) The heuristic on squares cannot produce x2

2 × (−1) with a certificate of nonnegativity
for −1. The last heuristic is then triggered and finds two Handelman’s products that
generate (−x2

2): H4
def
= C2C3 = (x2 + 2)(x1 − x2) = x1x2 − x2

2 + 2x1 − 2x2 and H5
def
=

C2C4 = (x2 +2)(5−x1−x2) = 5x2−x1x2−x2
2 +10− 2x1− 2x2. H4 is preferred since

it does not introduce a new monomial – indeed x1x2 ∈MC – whereas H5 would add
−x2

2 to the working set M .
Finally the oracle returns the four polynomials with their certificates. The expanded

forms of H1,H2, S3,H4 are installed in the matrix HQ and each of them is associated with a
decision variable λ1, . . . , λ4. The parametric simplex computes all the nonnegative, minimal,
affine constraints f of the form 1 · Q + λ1 ·H1 + λ2 ·H2 + λ3 · S3 + λ4 ·H4. With such few
products, it returns only one affine constraint f = Q+2H2 +S3 +H4 = 13x1 + x2− 95 from
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Figure 4.9 – The polytopes resulting from three iterations of Handelman’s linearization: P0 =
P, Pi = HL (Pi−1, 4 − x2 − y2 ≥ 0). P1, P2 and P3 are respectively composed of 5, 9 and 36
constraints.

which we build a polyhedral over-approximation of the set P ∧ (Q ≥ 0) as P u f ≥ 0. The
VPL reveals that this polyhedron is empty, meaning that P ∧ (Q ≥ 0) is unsatisfiable.

4.4.4 Experiments in Satisfiability Modulo Theory
Handelman’s linearization is now part of the VPL. It is split into two parts: an OC

oracle, defined in the previous section, uses heuristics to select the most promising Handelman-
Schweighofer products S1, . . . , Sq, then it runs the parametric simplex to find coefficients
λ1, . . . , λq such that Q +

∑
λiSi is affine. The result is fed into a checker implemented and

proved correct in C. The architecture of the checker is detailed in Chapter 9.

Increasing precision. We show on Fig. 4.9 the results of Handelman’s linearization on the
running example. We chose the subset {HI1 , . . . , HI15} from Example 4.7.1, meaning that we
are faced with a 15-variables LP problem. Precision can be increased without degree elevation
by iterating Handelman’s linearization (HL ): P0 = P, Pi+1 = HL (Pi, Q ≥ 0). The linearization
operator of the VPL computes this sequence until reaching a fixpoint, i.e. Pk+1 = Pk, or a time
limit. The sequence is decreasing with respect to inclusion since HL (Pi, Q ≥ 0) = Pi

d
i fi ≥ 0

is by construction included in Pi.

Evaluation on Satisfiability Modulo Theory. Although our contribution applies to static
analysis, we met troubles in finding real programs where precise nonlinear approximations
play a decisive role in analyses. Therefore, we performed our experimental evaluation on
Satisfiability Modulo Theory () solvers, because the  community has a standard set of
nonlinear benchmarks from -LIB, which the static analysis community lacks. The satis-
fiability of a quantifier-free formula of first-order linear arithmetic over the reals is usually
decided by a “()” (Ganzinger et al., 2004) combination of a propositional solver and a deci-
sion procedure for conjunctions of linear inequalities based on the simplex algorithm (Dutertre
and de Moura, 2006a,b). Nonlinear formulas are more challenging; some solvers implement a
variant of cylindrical algebraic decomposition, a very complex and costly approach (Jovanovic
and de Moura, 2012); some replace the propositional abstraction of () by a direct search
for a model (de Moura and Jovanovic, 2013).

Showing emptiness of semialgebraic sets. A  solver for nonlinear real arithmetic using
the () architecture enumerates conjunctions of nonlinear inequalities, each of which
having to be tested for satisfiability. We show the unfeasibility of the conjunction of affine
constraints C1 ≥ 0, . . . , Cp ≥ 0 and nonlinear ones Q1 ≥ 0, . . . , Qq ≥ 0 by computing the
sequence of approximations: P0 = {C1 ≥ 0, . . . , Cq ≥ 0}, Pi+1 = HL (Pi, Qi ≥ 0). Polynomials
are added one after the other, meaning that Qi+1 is linearized with respect to the previous
polyhedral approximation Pi. If at some point Pk = ∅, it means that the conjunction is
unsatisfiable, as our approximation is sound. Otherwise, as it is not complete, we cannot
state on the satisfiability. Such a procedure can thus be used to soundly prune branches in
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Figure 4.10 – Comparison between CVC4+VPL and other  solvers on Quantifier-Free
Nonlinear Real Arithmetic benchmarks.

() search. Furthermore, the subset of constraints appearing in the products used in the
emptiness proof is unsatisfiable, and thus the negation of its conjunction may be used as a
learned clause.

We evaluated Handelman’s linearization with conjunctions arising from deciding formu-
las from the Quantifier-Free Nonlinear Real Arithmetic (QF_NRA) benchmark, from -LIB
2014 (Barrett et al., 2010). These conjunctions, that we know to be unsatisfiable, are mostly
coming from approximations of transcendental functions as polynomial expressions. We added
Handelman’s linearization as a theory solver for the  solver 4 (Deters et al., 2014). The
calls to our linearization follow a factorization step, where for instance polynomial guards
such as x2

1−x2
2 ≥ 0 are split into two cases (x1+x2 ≥ 0∧x1−x2 ≥ 0 and x1+x2 ≤ 0∧x1−x2 ≤ 0),

in order to provide more constraints to the input polyhedron.
The comparison of our contribution with the state of the art  solvers Z3 (de Moura

and Bjørner, 2008), Yices2 (Dutertre, 2014), -RAT (Corzilius et al., 2012) and raSat (Khanh
et al., 2014) was done on the online infrastructure StarExec (Stump et al., 2014). Fig. 4.10
is a cactus plot showing the number of benchmarks proved unsatisfiable depending on time.
Table 4.11 shows the summary for each  solver on the same benchmarks. Both illustrate that
linearization based on Handelman’s representation, implemented as a non-optimized prototype,
gives fast answers and that its results are precise enough in many cases. Note that our
approach also provides an easy-to-verify certificate, as opposed to the cylindrical algebraic
decomposition implemented in Z3 for example. Indeed, if the answer of the VPL is that
the final polyhedral approximation is empty, then the nonzero coefficients in the solution λ of
(PLOP 4.9) give a list of sufficient Schweighofer products. Together with the nonlinear guards,
the conjunctions of the original constraints involved in these products are actually sufficient
for emptiness. As mentioned above, in a  solver the negation of this conjunction may be
used as a learned theory lemma. However, due to engineering issues we have not been able
to fully integrate this procedure into 4 by sending back minimized learned lemmas. Over
a total of 4898 benchmarks, adding our method (represented in the figure as curve cvc4+vpl)
allows 4 to show the unsatisfiability of 1030 more problems. Failure in showing emptiness
may come from strict constraints since up to now, our solver considers each inequality as
nonstrict.

4.5 Linearization in the VPL
We presented three operators for approximating the effect of a polynomial guard on a

polyhedron:

1. A variant of intervalization, that replaces some variables of nonlinear products by inter-
vals, themselves eliminated by sign partitioning;
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Table 4.11 – Summary of  solvers results

 solver 
4


4

+V
PL

ra
Sa
t


-
RA

T
Yi
ce
s2

Z3

Number of unsat found 2657 3687 3561 3965 4669 4864
total execution time (s) 148 425 5936 7639 17356 3463

2. Bernstein’s linearization, where the coefficients of the polynomial expressed in the Bern-
stein basis gives a bounding polyhedron;

3. Handelman’s linearization, finding dominating affine forms by looking at a Handelman
representation of the polynomial.

Only approaches (1) and (3) are implemented in the VPL, but the three of them were initially
tested as prototypes in Sage. They give results with different shape, as illustrated on Fig. 4.12.
Figure (a) shows a constant intervalization that bounds Q in a box. Figure (b) shows a part
of the regular mesh on which Bernstein coefficients are placed. Figure (c) shows the concave
piecewise affine shape of the approximation, resulting from the use of a PLP solver.

Our linearization operators are directly usable in abstract interpretation: besides linear
expressions, the VPL now accepts polynomials as well. Apart from handmade examples, we
actually did not find programs manipulating integers where the linearization improves the
global analysis result: nonlinearity is too sparse in such programs. We believe that lineariza-
tion could have an impact on the analysis of floating-point computations where polynomials
appear more naturally in programs for approximating transcendental functions and in the
analysis of the round-off errors (Boland and Constantinides, 2011).

Handelman’s linearization already proved to be useful in satisfiability modulo theory solv-
ing. A simple coupling of the VPL with the competitive  solver 4 improved notably
the performance of that solver on nonlinear arithmetic. In contrast to cylindrical algebraic
decomposition, which is a complete approach, our method may fail to prove a true property.
However, it provides easy-to-check certificates for its results.

Even if it is less precise than Handelman’s linearization, intervalization is still useful.
Thanks to its fast execution time, it can be used as a first linearization step. If lucky, it could
discard by itself an unsatisfiable nonlinear guard. Otherwise, it can still provide additional
affine constraints for Handelman’s linearization.
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(a) Intervalization (b) Bernstein’s linearization

(c) Handelman’s linearization

Figure 4.12 – Approximations using the three linearization techniques applied on the polyno-
mial guard x2 + xy + y2 ≥ 0.



Chapter 5

Parametric Linear Programming
Problem Solving

In §1.3, we introduced Linear Programming (LP), that focuses on problems of the form

minimize cᵀλ

subject to
Aλ ≥ b

It consists in minimizing the linear objective function cᵀλ =
∑p

i=1 ciλi over polyhedron Aλ ≥
b.

In §1.3.2, we detailed the simplex algorithm for solving LP problems. Further, in Chapter 3
and §4.4, we encoded some polyhedral operators as Parametric Linear Optimization Problems
(PLOP). For its part, a PLOP manipulates two kinds of indeterminates: decision variables de-
noted by λ = (λ1, . . . , λp) and parameters denoted by x = (x1, . . . , xn), following our notations
of Chapter 3. In a PLOP, parameters can appear in the objective function or in the right hand
side of constraints, but not in both.
(1) When parameters are in the right hand side of constraints, the PLOP has the form

minimize cᵀλ

subject to
Aλ ≥ b+Dx

The right hand side of the system of constraints now contains the product Dx, meaning
that each constraint aiλ ≥ bi has been changed into aiλ ≥ bi + dix, where the bound
depends on parameters. This form of PLOP called the polytope model (Feautrier, 1996)
is used in compilation for instance to determine reachable values for indices in nested
loops, depending on a parameter N that typically represents the size of an array. For
instance, consider the following code fragment:

for(i=0 ; i < N ; i++){
for(j=0 ; j < i ; j++){

...
}

}

The set of reachable values for (i,j) can be represented as a Z-polytope, that is the set of
integers points of a polytope P , i.e. Zn ∩P . Some variables fixed at the beginning of the
execution, such as N, can be considered as parameters. One could ask for the reachable
values of (i,j) as a function of N. The PIP solver (for Parametric Integer Programming)
of Feautrier (1988) was designed to solve such integer PLP problems.

101
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(2) When parameters are in the objective function, the PLOP has the form

minimize c(x)ᵀλ

subject to
Aλ ≥ b

Each coefficient ci of the objective function has been replaced by an affine function ci(x)
of some parameters x = (x1, . . . , xn). The objective function is therefore bilinear in the
decision variables and in the parameters. Constraints are unchanged in this setting.

We will focus on the second form of PLOP where parameters appear in the objective
function. There are two ways of extending the standard simplex algorithm to deal with
parameters:

— either adapt the choice of the entering variable in the basis;
— or instantiate the parameters in the objective function with a parametric point, and

generalize the optimal value to a region in space.
The first method is implemented in PIPlib; we will detail it in the next section. It gives

a good introduction to PLP because it is only a small variation of the standard simplex
algorithm. In this setting, the result of a PLOP is given as a decision tree, where edges
are labelled with conditions on the parameters x and leaves are valuations of the decision
variables λ. So, we will call this method the tree-exploration parametric simplex. The PLP
solver of the VPL follows the second method, that we will present in §5.2.

5.1 Tree-Exploration Parametric Simplex
Let us briefly recall how the optimization phase of the simplex algorithm works. To

minimize the objective value, the algorithm looks for a variable with a negative coefficient in
the objective. Since variables are assumed nonnegative, increasing this variable will decrease
the objective value. In the parametric version, coefficients in the objective are affine forms of
parameters, i.e. ci(x). Thus the sign of these coefficients generally depends on x. The solver
must explore two cases for each coefficient, depending on their sign.

For instance, consider the following parametric problem:

minimize x1λ1 + x2λ2 i.e. c1(x1, x2) = x1 and c2(x1, x2) = x2

subject to
λ1 + λ2 ≤ 5

− λ1 ≤ 1

− λ2 ≤ 2

− λ1 + λ2 ≤ 0

λ1, λ2 ≥ 0

(PLOP 5.1)

Like in the standard simplex algorithm, the first step is to transform inequalities into
equalities by adding slack variables. We obtain the following dictionary, which is equivalent
to (PLOP 5.1) provided that slack variables s1, . . . , s4 are nonnegative.

s1 = − λ1 − λ2 + 5

s2 = λ1 + 1

s3 = λ2 + 2

s4 = λ1 − λ2

z = x1λ1 + x2λ2

(Dict. 5.2)

The basis B = {s1, s2, s3, s4} is feasible and gives the solution (λ1 = 0, λ2 = 0, s1 = 5, s2 =
1, s3 = 2, s4 = 0). The value of the objective associated to this point is x1 × 0 + x2 × 0 = 0.
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To minimize the objective value, the idea is to pick a variable that has a negative coefficient
in the current objective x1λ1 + x2λ2 and to increase it as much as possible, such that the
dictionary remains satisfiable. Thus, we look for the sign of the coefficients ci(x). Due to its
parametric nature, in general the sign of ci(x) cannot be decided. So, we build an exploration
tree which considers two cases ci(x) < 0 and ci(x) ≥ 0. Since in our example c1(x)

def
= x1 and

c2(x)
def
= x2, we first look at the coefficient x1: we assume x1 < 0 and obtain a branch leading

to one or several optimal solutions depending on the sign of x2. Later, we will assume x1 ≥ 0
and explore a second branch.

Let us execute the algorithm for the branch x1 < 0 to clearly see what type of results
appears. Variable λ1 is entering the basis. As in the standard simplex algorithm, we must find
the more restricting equation for the increase of λ1; this will determine the variable leaving
the basis. The limiting equation is s1 = 5− λ1 − λ2 which prevents λ1 from exceeding 5. The
pivot operation is the same as in standard LP: exchanging λ1 ↔ s1 leads to B = {λ1, s2, s3, s4},
associated to the solution (λ1 = 5, λ2 = 0, s1 = 0, s2 = 6, s3 = 2, s4 = 5) and the objective
value becomes 5x1.

λ1 = − s1 − λ2 + 5

s2 = − s1 − λ2 + 6

s3 = λ2 + 2

s4 = − 2λ2 − s1 + 5

z = − x1s1 + (x2 − x1)λ2 + 5x1

(Dict. 5.3)

For the next iteration, we look again for a variable whose coefficient is negative in the
objective: −x1 cannot be negative because we made the assumption x1 < 0. However,
none of our assumptions prevents x2 − x1 from being negative. Again, we explore two
branches where the first one shall assume x1 < 0 ∧ x2 − x1 < 0 whereas the other one
shall assume x1 < 0 ∧ x2 − x1 ≥ 0. In the first of these two branches, the variable en-
tering the basis is λ2, and the most limiting equation is s4 = −2λ2 − s1 + 5 – it imposes
the upper bound 5

2 on λ2 – hence s4 is the leaving variable. The new feasible solution
is
(
λ1 = 5

2 , λ2 = 5
2 , s1 = 0, s2 = 7

2 , s3 = 9
2 , s4 = 0

)
, B becomes {λ1, λ2, s2, s3}, the objective

value is 5x1+5x2

2 and we end up with the following dictionary.

λ1 = − s1
2

+
s4
2

+
5

2

s2 =
s4
2
− s1

2
+

7

2

s3 = − s4
2
− s1

2
+

9

2

λ2 = − s4
2
− s1

2
+

5

2

z =
−x1 − x2

2
s1 +

x1 − x2

2
s4 +

5x1 + 5x2

2

Recall that we are examining a region of the space of parameters defined by R = x1 <
0 ∧ x2 − x1 < 0. With these assumptions, neither −x1−x2

2 nor x1−x2

2 can be negative. This can
be assessed by checking the unsatisfiability of R u −x1−x2

2 < 0 and R u x1−x2

2 < 0. Thus, there
is no more way to improve the current objective, meaning that the optimum has been found
for this region of the parametric space. Going back to (Dict. 5.3), the second branch assumes
x1 < 0 ∧ x2 − x1 ≥ 0, thus there is no remaining decision variable with a negative coefficient
in the objective −x1s1 + (x2− x1)λ2 +5x1, and the optimum for this region is 5x1. The region
where x1 < 0 has been fully explored and leads to two different optimal solutions depending
on x2. At this point, the space where x1 ≥ 0 still needs to be analyzed, so the next iteration
starts from (Dict. 5.2) with the assumption x1 ≥ 0, and computations are conducted in the
same way.

Solution Shape. The parametric simplex returns a function z? of the parameters x1, . . . , xn

that associates an optimum to each region of the parametric space. The tree-exploration
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version of the parametric simplex explores the parametric space by building an exploration
tree where edges are assumptions on the sign of parametric coefficients. The solution z? can
therefore be represented as a decision tree. For instance, the solution of (PLOP 5.1) is the
following:

5x1+5x2

2 5x1
5x1+5x2

2 0 0

x1 < 0

x2 − x1 < 0 x2 − x1 ≥ 0

x1 ≥ 0

x2 < 0

x1 + x2 < 0 x1 + x2 ≥ 0

x2 ≥ 0

The piecewise affine solution z? can be summarized as

z∗(x1, x2) =



5x1+5x2

2 if x1 < 0 ∧ x2 − x1 < 0

5x1 if x1 < 0 ∧ x2 − x1 ≥ 0

5x1+5x2

2 if x1 ≥ 0 ∧ x2 < 0 ∧ x1 + x2 < 0

0 if x1 ≥ 0 ∧ x2 < 0 ∧ x1 + x2 ≥ 0

0 if x1 ≥ 0 ∧ x2 ≥ 0

Our experiments tend to show that this algorithm produces many branches that lead to the
same solution. It means that some regions of the parametric space are unnecessarily split on
non-significant conditions. This observation suggested another exploration scheme, already
noticed by Jones et al. (2007).

5.2 Algorithm by Generalization
In this section, we present the PLP solver implemented in the VPL. We will focus on

normalized problems (as defined in §3.4), since this is what we need to solve in the VPL.
Recall that normalization induces a particular geometry of regions: they become polyhedral
cones, pointed in the normalization point x̊.

Our PLP solver extends the standard simplex algorithm using an approach inspired from
Jones et al. (2007). Instead of splitting the exploration at each parametric coefficient like
the tree-exploration simplex does, it builds upon the fact that, by instantiating the objective
function on a point x to obtain a non-parametric objective and by solving the corresponding
standard LP problem, the optimal solution can be generalized to a whole region of the para-
metric space. Actually, the objective is kept symbolic in the dictionary, but when looking for
a variable with a negative coefficient in the objective, we instantiate parametric coefficients on
x to determine their sign.

For instance in (Dict. 5.2) that we recall here, we instantiate the objective z(x) = x1λ1+x2λ2

with x
def
= (x1 = −1, x2 = 1), that covers the case where coefficient x1 is negative and x2 is

positive.

s1 = − λ1 − λ2 + 5

s2 = λ1 + 1

s3 = λ2 + 2

s4 = λ1 − λ2

z = x1λ1 + x2λ2
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The coefficient of λ1 in the instantiated objective is negative, thus the standard LP resolution
will pivot on λ1 to obtain (Dict. 5.3):

λ1 = − s1 − λ2 + 5

s2 = − s1 − λ2 + 6

s3 = λ2 + 2

s4 = − 2λ2 − s1 + 5

z = − x1s1 + (x2 − x1)λ2 + 5x1

Again, we instantiate parametric coefficients on (x1 = −1, x2 = 1) and we see that none of
them is negative. It means that we have reached an optimum for this particular x, associated
to the basis {λ1, s2, s3, s4}; the optimum is obtained by replacing nonbasic variables by 0
in the parametric objective. We obtain an objective z?(x) = 5x1 which is optimal at x =
(x1 = −1, x2 = 1). In fact, the current objective value 5x1 is optimal for all points where its
parametric coefficients are nonnegative, i.e. on −x1 ≥ 0∧x2−x1 ≥ 0. Hence, those constraints
define a whole region of the parametric space that share the same optimum 5x1.

In general, once the instantiated LP problem is solved, we generalize it to a new region by
taking the conjunction of the sign conditions on the parameterized coefficients. If the objective
function is denoted by

∑m
i=1 ci(x)λi, the associated region R is

R =

m∧
i=1

(ci ≥ 0)

This set of constraints is a polyhedron, and it can contain redundancies that we eliminate
using our raytracing algorithm presented in Chapter 2.

Algorithm 5.1: PLP solver of the VPL.
Input : A parametric LP problem sx
Output: A set of regions and their associated optimal solution Solutions = {(Ri,z?

i )}
Data : instantiation_points: a list of tuples (Ri,f ≥ 0,w), where w is a witness

point of f ≥ 0, which is a frontier of Ri

adjustPoint (R,w, regions): returns either A(R,Ri), meaning that
we already know a region Ri ∈ regions such that R and Ri are adjacent; or
A(w′) where w′ is a point along the ray (x̊,w) – with x̊ ∈ R̊ – that is not
contained in any known region.
((R0,z?

0), witness_points)← instantiateAndGeneralize (sx, 0)
instantiation_points← witness_points
Solutions← {(R0,z?

0)}
while instantiation_points 6= [] do

(R,f ≥ 0,w)← head (instantiation_points)
switch adjustPoint (R,w, regions(Solutions)) do

case A(R,Ri) do
instantiation_points←tail (instantiation_points) /* crossing frontier f
leads to a known region */

case A(w′) do
((R′,z?′), witness_points)← instantiateAndGeneralize (sx, w′)
instantiation_points←concat (instantiation_points, witness_points)
Solutions← Solutions ∪ {(R′,z?′)}

return Solutions

To get the full PLP solution, we must find several regions, so that their union covers
the whole parametric space. To do so, we look for instantiation points that are outside of
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the regions we already know. Actually, the minimization process provides such points. As
detailed in §2.3, raytracing attaches to each irredundant constraint ci ≥ 0 a witness point wi

such that
ci(wi) < 0 and ∀j 6= i, cj(wi) ≥ 0

In other words, wi is a point outside of R that violates only ci ≥ 0. Such points are perfect
to pursue our exploration of the parametric space by crossing one frontier of R. Because
regions are all polyhedral cones pointed on x̊, any frontier of any region separates exactly two
regions. Thus, starting from a region R0, crossing once each frontier ci ≥ 0 of R0 gives us
all neighbouring regions of R0. There is a technicality here: crossing a frontier a bit too far
can miss a neighbouring region. The adjacency test of §5.2.1 detects such cases and adjusts
the witness point. Then, we go on by exploring those neighbours and step by step, this process
leads to the full partition of the parametric space into regions. Picking a point wi across
the frontier ci ≥ 0 but close to it gives a good chance to discover a neighbouring region by
instantiating the PLOP with wi, optimizing and generalizing to a region.

Algorithm Overview. Based on the previous intuition, let us sketch the algorithm of our
PLP solver, given in Algorithm 5.1:
(1) Instantiate the PLOP on a parametric point (any point is suitable, since we will ultimately

cover the whole space).
(2) Generalize the solution to a region R
(3) Minimize R to obtain a list of witness points. Go back to (1), this time instantiating the

PLOP with these new witness points.
(4) Stop when all regions are discovered.

5.2.1 The Halting Condition: Adjacency Test
We said that the algorithm stops when all regions are discovered. This needs some extra

explanations.
Consider a region Ri, whose minimization led to a witness point w associated to a frontier

f ≥ 0 of Ri. Suppose the instantiation of the PLOP with w gave a new region Rj . To ensure
that we do not miss any region, we must prove that for each frontier f of each region Ri, the
set of discovered regions contains a region Rj which is adjacent to Ri on f .

First, we can look at their constraints: if Ri and Rj are adjacent, they share the crossed
frontier f , meaning that f ≥ 0 is a frontier of Ri while −f ≥ 0 is a frontier of Rj . If there
is no such common frontier f , then they are not adjacent and there is a region in between.
But, sharing a common frontier is not a sufficient condition, as illustrated by the following
example.
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Example 5.2. The figure shows two regions Ri and Rj that share a common frontier
f

def
= 1 − x1. Rj has been obtained by instantiating the PLOP on w, which is the witness

point of f ≥ 0 i.e. x1 ≤ 1 in Ri. Constraint −f ≥ 0, i.e. x1 ≥ 1, is present in Rj , but Ri

and Rj are not adjacent.

Efficient Adjacency Test. To check adjacency between Ri and Rj , one could look at the
dimension of Ri u Rj u (f = 0). If the dimension is 0, it means that this intersection is
reduced to the normalization point x̊ (which is shared by all regions, by construction due to
the normalization) and thus Ri and Rj are not adjacent. Otherwise, the two regions intersect
on a frontier and are therefore adjacent. However, this adjacency test is expensive, since it
involves the intersection operator.
Adjacency can be checked in a much cheaper way by exploiting the optimal solutions z?

i and
z?

j associated respectively to Ri and Rj . Indeed, the intersection between Ri and Rj is the
space where z?

i and z?
j are equal. Thus, if Ri and Rj are adjacent on f , then any point

x ∈ [[f = 0]] must fulfill z?
i (x) = z?

j (x).
Finally, our adjacency test is the following. We pick any point x ∈ [[f = 0]] such that x 6= x̊.
To do so, we simply pick n − 1 random coordinates x1, . . . , xn−1 and adjust the last one xn

accordingly. Then, Ri and Rj are adjacent if and only if z?
i (x) = z?

j (x).

5.2.2 Adjusting Points Before Instantiation
Like before, consider a region Ri, the minimization of which led to a witness point w,

associated to a constraint f ≥ 0 of Ri. Before instantiating the PLOP with a witness point,
we must be sure that this point does not lie within any already discovered region. Let Regions
be the set of regions already discovered by the algorithm. By construction, w is outside of
Ri, but it could be in an already known region Rj (see Example 5.2.1). To obtain a point w′

outside of every discovered regions, we reuse the raytracing algorithm along a ray (x̊i,w)
where x̊i is the interior point of Ri. If Ri and Rj are not adjacent, it will provide a witness
point w′ satisfying {

f(w′) < 0
∃ constraint (fj ≥ 0) ∈ R, fj(w

′) < 0
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Example 5.2.1. The figure shows two non-adjacent regions Ri and Rj . Point w is a
witness point of x1 ≤ 1 in Ri, obtained by minimization of Ri. The interior point of Ri that
was used during the minimization is x̊i. We wish to cross frontier x1 ≤ 1, that is exploring
the parametric space beyond constraint x1 ≤ 1, but the associated witness point w lies in
region Rj that we already know. We must therefore adjust w: we launch a ray (x̊i,w);
it hits f

def
= 1−x1 at point hi and encounters a first frontier of Rj at point hj . Then, we take

he point w′ as the middle of the segment [hi,hj ]. This point will then be used to instantiate
the PLOP, and to find the missing region between Ri and Rj .

5.3 Degeneracy

In standard linear programming, when the value of all basic variables are strictly positive, a
pivot will necessarily lead to a strictly better solution. But, when a basic variable λB has value
0, we say that the basis is degenerate: by pivoting on λB , we will obtain another dictionary
that represents the same feasible solution, hence associated to the same objective value.

Example 5.3. The following dictionary contains a basis degeneracy, because the basic
variable λ4 has value 0.

λ1 = λ2 + λ3 + 2

λ4 = 2λ2 − λ3

z = 2λ2 + λ3 + 1

(Dict. 5.4)

The current objective value is 1, reached on the feasible point (λ1 = 2, λ2 = 0, λ3 = 0, λ4 =
0). By pivoting λ3 ↔ λ4, we obtain

λ1 = 3λ2 − λ4 + 2

λ3 = 2λ2 − λ4

z = 4λ2 − λ4 + 1

(Dict. 5.5)

The feasible point associated with this dictionary is still (λ1 = 2, λ2 = 0, λ3 = 0, λ4 = 0),
and the objective value remains 1.
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Cycling. Starting from a degenerate dictionary D, when several degenerate pivots follow
each other, there is a risk that the simplex algorithm may find D again. At this point, if
the pivoting heuristic is deterministic, the algorithm is cycling. As we mentioned in §1.3.2.2
(p.32), some heuristics such as Bland’s rule avoid this phenomenon.

Degeneracy is particularly problematic in PLP solving: basis degeneracy induces false
frontiers that divide regions into subregions that share the same optimal solution. For instance,
consider the dictionary of a region with the following objective function:

z =
∑
i∈N

ciλi

This objective is optimal as long as the parametric coefficients ci(x) are nonnegative. Hence,
the region associated with this dictionary is

∧
i∈N ci ≥ 0. Suppose that this basis is degenerate,

meaning that a basic variable λB has value 0 in the dictionary. Then, by pivoting λB with
any nonbasic variable λk, we would cross frontier ck ≥ 0 and reach another region where
ck < 0. But, since λB has value 0, the objective value would not be changed by this pivot.
Thus, the new region would share the same optimal solution as the previous one. This is a
big issue: a subdivision brings nothing more than useless computations. In our experiments,
we found that the encoding of convex hull as a PLOP generates many degenerate bases.

To avoid degeneracy, Jones et al. (2007) propose to define a lexicographic order on decision
variables, and to adapt the pivoting rule so that degenerate pivots become forbidden. We have
not implemented this optimization in our PLP solver yet.
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Chapter 6

Introduction to Coq Certification

One does not simply prove an imperative program. Its conditionals are guarded by
more than just Boolean expressions. There are loops there that do not terminate,
and C is ever watchful. It is a tricky paradigm, riddled with mallocs,
corruptions and deadlocks. The very pointer you deallocate is a potential
exception. Not with ten thousand PhD students could you do this. It is folly.

As we mentioned many times, the VPL is certified in the proof assistant C, using some
untrusted OC oracles. In this chapter, we introduce useful concepts related to C. We
will also discuss the exploitation of OC code into a C development.

6.1 The Struggle of Certification
Venturing into the formal certification of a program is a big decision to make. It requires

a lot of efforts and guides the software design towards unusual directions: it must be written
while thinking of its proof. For instance, it is often helpful to implement two versions f_1
and f_2 of the same function, f_1 being efficient and f_2 easy to prove. Then, by showing that
both functions are equal for all inputs, properties proved on f_2 propagate to f_1. Similarly,
this duplication of functions can be applied on datastructures. For instance, the C standard
library provides two modules for integers: module nat represents Peano integers that are
convenient for proofs, whereas module N implements binary integers.

All these investments are sometimes rewarded. Yang et al. (2011) looked for bugs in C
compilers by generating random tests that cover a wide subset of C. Among the compilers
they experimented, there was COMPCERT, which is proved correct in C (Leroy, 2009): it
preserves semantics between source code and compiled code. Yang et al. could find some
bugs in COMPCERT, but only in the uncertified frontend part, and all the middle-end bugs
they found in all other compilers were absent in COMPCERT. This is a remarkable success,
proportional to the efforts required to reach it: The certified part of the compiler (that excludes
for instance parsing processes) uses 11 intermediate languages from C to the executable code.
Each intermediate language is given formal semantics and handles a particular compilation
step (type elimination, loop simplifications, CFG construction, etc.). The transformation from
one language to the following is proved to preserve semantics.

CompCert is marketed commercially by Absint GmbH. Its users most notably include Airbus
Avionics and Simulation Products (Bedin França et al., 2012).

Interactive Theorem Provers. There are several theorem provers, among which the famous
Isabelle/HOL and C. Both are based on powerful higher-order logics, which differ on some
aspects. C logic is a dependent type theory known as the calculus of inductive constructions.
A dependent type is a type that depends on a value. For instance, one can define the type

113
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of pairs of integers that are relatively prime. Isabelle/HOL logic does not provide such rich
types.
Although both provers encourage proof automation, Isabelle/HOL offers more decisive tactics
to do so. It is designed for an intensive use of the powerful sledgehammer tactic, that invokes
several external solvers trying to discharge the goal in one shot. C also provides some
automatic tactics, such as omega or ring, but they are usable only in specific cases. The
following sections gives more details on C, its proof language, and its ability to use external
oracles.

6.2 The Coq Proof Assistant
C is a tool designed to verify theorem proofs. These theorems can come from very

different thematics, from pure mathematical theory – e.g. algebra or arithmetic – to properties
satisfied by a program.

C provides its own programming language named G. The user can interactively
prove that the program satisfies a specification he has written in the same language. During
the redaction of a proof, the user manipulates a set of goals to prove, and a set of premises.
Then, applying tactics – defined in the language V – transforms premises and goals
until there is no goal left to prove.

6.2.1 A Basic Example of Handmade Coq Proof
Knowing the basics and vocabulary of C is recommended to read Part II. Hence, this

section gives a really simple example of C proof and introduces basic concepts, such as
lemmas, goals, subgoals, tactics, etc. If you never saw a C proof, this part should be
helpful. For a complete overview, please refer to (Chlipala, 2013), which is available online
for free, or to (Bertot and Castéran, 2004). Otherwise, simply skip to the next section.

As mentioned earlier, most proofs needed in the VPL are polyhedral inclusions. So, as an
introduction, let us prove in C that the polyhedral inclusion (2 ≤ x) ∧ (0 ≤ x + 2y) v (4 ≤
3x + 2y) holds for integers. The interface of COQIDE is split into three parts: the writing
panel, where the user writes code and proofs, the feedback panel, displaying the current state
of the proof and a last panel showing error messages and replies to queries.

First, let us define the lemma that we will prove. Note that Z is the C type for integers (Z).

Lemma ex_incl : ∀ (x y : Z),
2 ≤ x → 0 ≤ x + 2*y → 4 ≤ 3*x + 2*y.

This lemma, named ex_incl, is a currified version of the polyhedral inclusion given above.
The right arrow → stands here for implication. But, following Curry-Howard correspondence,
→ is also the usual type constructor of functional programming. Therefore, a lemma can be
seen and used as a function, the parameters of which are the quantified variables.

The feedback panel shows:

1 subgoal
______________________________________(1/1)
∀ x y : Z, 2 ≤ x → 0 ≤ x + 2 * y → 4 ≤ 3 * x + 2 * y

It informs that there is currently one subgoal to prove, with no hypothesis (or premise). The
first step of the proof is to “declare” our two integer variables x and y:

intros x y.

1 subgoal
x, y : Z
________________________(1/1)
2 <= x -> 0 <= x + 2 * y -> 4 <= 3 *

x + 2 * y
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intros is a tactic and as such, it transforms the current state of premises and goals. The
variables are now part of the hypotheses set, and the universal quantifier has vanished from
the goal. Then, thanks to intros, we assume 2 ≤ x and 0 ≤ x + 2y by naming the two first
terms Hx and Hxy.

intros Hx Hxy.

1 subgoal
x, y : Z
Hx : 2 <= x
Hxy : 0 <= x + 2 * y
________________________(1/1)
4 <= 3 * x + 2 * y

The key idea of this inclusion proof is the Farkas combination (4 ≤ 3x + 2y) = 2 × (2 ≤
x) + 1 × (0 ≤ x + 2y). To prove it, we will use two lemmas taken from the module ZArith
of the standard C library (The Coq Development Team, 2016): Zplus_le_compat (addition of
two constraints) and Zmult_le_compat_l (product of a constraint with a nonnegative scalar).

Zplus_le_compat : ∀ n m p q : Z,
n ≤ m → p ≤ q → n + p ≤ m + q

Zmult_le_compat_l : ∀ n m p : Z,
n ≤ m → 0 ≤ p → p * n ≤ p * m

Let us begin by applying the first one. We cannot use it directly since C awaits a goal of
the form n + p <= m + q, and our current one is 4 <= 3 * x + 2 * y. Note that in the lemma,
n, m, p and q do not necessarily correspond to scalars or variables, but more generally to terms
in Z. For example, p can be instantiated with 3 * x. Still, to apply the lemma, each side of the
inequality must be a sum. Thus, let us rewrite 4 as 4 + 0 and 3*x + 2*y as (2*x)+ (x+2*y),
exhibiting the Farkas combination.

replace 4 with (4 + 0) by auto.
replace (3 * x + 2 * y) with
((2 * x) + (x + 2 * y)) by ring.

1 subgoal
x, y : Z
Hx : 2 <= x
Hxy : 0 <= x + 2 * y
________________________(1/1)
4 + 0 <= 2 * x + (x + 2 * y)

Tactic replace replaces a term with another in the goal, provided a proof of equality between
them. Proving that 4 equals 4 + 0 can be done immediately with the tactic auto. The second
rewriting is a bit more tedious, so we apply the powerful tactic ring that solves any ring
equation. The goal has now the good shape to apply lemma Zplus_le_compat. A lemma can be
called thanks to tactic apply, and is treated like a function which parameters are the bound
terms. C can infer universally quantified parameters from the goal. Here, all instantiations
n = 4, m = 2 * x, p = 0 and q = x + 2 * y can be guessed by C. Thus, we can simply type
apply Zplus_le_compat instead of apply (Zplus_le_compat 4 (2*x)0 (x+2*y)).

apply Zplus_le_compat.

2 subgoals
x, y : Z
Hx : 2 <= x
Hxy : 0 <= x + 2 * y
_____________________(1/2)
4 <= 2 * x
_____________________(2/2)
0 <= x + 2 * y
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When applying a lemma, C requires to prove that each premise of the lemma holds. Here,
we end up with two subgoals, one for each premise of lemma Zplus_le_compat. The second
one is trivial, as it is exactly assumption Hxy. Let us discard it.

(* Switch to the subgoal 2 * )
Focus 2.
assumption.

1 subgoal
x, y : Z
Hx : 2 <= x
Hxy : 0 <= x + 2 * y
________________________(1/1)
4 <= 2 * x

The last step is to prove that 2 ≤ x ⇒ 4 ≤ 2x. Lemma Zmult_le_compat_l given above will
do the job. Again, we need our goal to be syntactically of the form p*n <= p*m. Let us rewrite
4 as 2*2, and apply the lemma.

replace 4 with (2*2) by ring.
apply Zmult_le_compat_l.

2 subgoals
x, y : Z
Hx : 2 <= x
Hxy : 0 <= x + 2 * y
________________________(1/2)
2 <= x
________________________(2/2)
0 <= 2

Again, two subgoals appear when applying Zmult_le_compat_l, one for each premise of the
lemma. Subgoal 1 corresponds to assumption Hx, while subgoal 2 is discharged by the intuition
tactic, which ends the proof.

6.2.2 Toward Automation

Actually, experienced users try to avoid such fragile proof scripts. Indeed, changing one
scalar value of the lemma breaks the proof, which makes it quite weak. For instance, to show
that 3 ≤ 3x+ 2y instead of 4 ≤ 3x+ 2y the Farkas combination 2× (2 ≤ x) + 1× (0 ≤ x+ 2y)
gives 4 ≤ 3x+ 2y, and the final argument is that 4 ≤ 3x+ 2y ⇒ 3 ≤ 3x+ 2y. This proof thus
involves the transitivity of ≤, which was not needed in the proof of lemma ex_incl

Instead of making such “handmade proofs”, it is highly preferable to automatize them as
much as possible. C offers several tools to do so. One can build lemma stacks, and tell
C to try to apply them when using tactic auto. It is also possible to declare user-defined
tactics that pattern matches the goal and applies different tactics depending on its shape. For
our example, the following tactic does the job, but the goal needs to be already in the form
4 <= (2*x)+ (x + 2*y), i.e. rewritten so that the Farkas combination syntactically appears.

Ltac tac_incl :=
repeat match goal with
| [H : ?a ≤ ?b |- ?a ≤ ?b] ⇒ assumption
| [|- ?a + ?b ≤ ?c + ?d] ⇒ apply Zplus_le_compat
| [H : ?a ≤ ?b |- ?n * ?a ≤ ?n * ?b] ⇒ apply Zmult_le_compat_l
| [H : ?a ≤ ?b |- ?c ≤ ?n * ?b] ⇒ replace c with (a * n) by ring
| [|- ?a ≤ ?c + ?d] ⇒ replace a with (a + 0) by ring
| [|- 0 ≤ ?a] ⇒ intuition

end.
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(a) (b) (c)

Figure 6.1 – Three methods of certification: certified computation, certificate generation and
Logical Consequences Factories.

Lemma ex_incl2 : forall (x y : Z),
2 <= x -> 0 <= x + 2*y -> 4 <= (2*

x) + (x + 2*y).
Proof.

intros.
tac_incl.

No more subgoals.

This tactic provides a proof that is a bit more robust than the previous one. For instance, it
allows proving (2 ≤ x)∧(0 ≤ x+2y) v (4 ≤ 5x+6y), still provided that the Farkas combination
syntactically appears in the goal.

There exist powerful decision procedures for some specific cases. For instance, tactic omega
can solve any system of inequalities in Z. Actually, lemmas ex_incl and ex_incl2 can all be
solved directly by this tactic.

When the good Farkas combination is known, inclusion proofs involve only simple results
on inequality, such as lemmas Zplus_le_compat and Zmult_le_compat_l, or the transitivity of ≤.
The hard part is to find the combination, which requires a LP solver as we saw in §1.2. We
could write a LP solver in C and provide the Farkas combination to an automatic proof.
But writing programs in C restricts us in several points. For instance, we are limited to
C datastructures (that were designed in the first place for proofs, not efficiency) and we
must prove that any recursive function that we define terminates. Instead, we prefer to use
OC and C oracles to perform complex computations and determine Farkas combinations.
The next section details how to embed uncertified programs within C code.

6.3 Three Certification Approaches
In this section, we will introduce several ways to prove a program correct using C. First,

let us make a distinction between two paradigms of certification: static versus dynamic.

— Static certification: Basically, it corresponds to proving that a program satisfies a
specification, once for all. It means that it requires no runtime verification. In C, the
proof system roughly boils down to type-checking: by the Curry-Howard correspondence,
a proof of a proposition A is a term of type A. Thus, we could say that a program proved
by static certification is verified at compilation.
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— Dynamic (or a posteriori) certification: The program generates certificates that are
a posteriori verified – during the execution – by a checker which is statically verified.
Note that dynamic certification does not necessarily involve any non-C oracle: a C
function can itself produce certificates checked at runtime!

These two paradigms are two distinct ways of thinking certification. This choice affects the
whole program design. On the one hand, the static point of view brings total correctness: the
program is certified for any input and there is no runtime verification. On the other hand, a
posteriori certification provides simpler and shorter proofs, which can be desirable for tricky
algorithms. Moreover, C proofs can be hard to maintain: it is not rare to see a correct
proof become invalid in a new version of C. This encourages to make proofs as simple
as possible. However, a posteriori certification is restricted to partial correctness only. The
property proved on the program is ensured provided that the oracle terminates withouth any
crash or exception, and that the certificate is correct.

The polyhedral operators of the VPL are a posteriori certified: following an idea from
Besson et al. (2007), an oracle computes the Farkas combinations proving the needed inclu-
sions. In the VPL, Fouilhé et al. (2013) improved this technique: instead of computing Farkas
combinations afterwards, they are gathered directly along the operators.

Now, let us study three certification approaches and compare their Trusted Computing Base
(TCB), which represents the amount of code that must be trusted to consider the certification
correct. We will take as example the polyhedral operator is_empty, that checks for the existence
of a point of Qn satisfying the constraints of an input polyhedron. In the following, we describe
a polyhedron as a list of constraints of type Cstr.t. The type for is_empty is thus Cstr.t list
-> bool. We compare three ways of certifying in C that a true answer from is_empty ensures
the emptiness of its input polyhedron. The three certification approaches are schematized on
Figure 6.1.

6.3.1 Autarkic Approach
The whole software could be directly implemented and proved correct in C following an

autarkic approach (Barendregt and Barendsen, 2002). While dynamic certification is available
in the three approaches, autartkic approach is the only one that allows static certification. It
also offers the smallest TCB: an autarkic program involves only the C proof-checker, which
is alone to be trusted. Most tactics and theorems are proved this way.

However, autarkic certification is very development-time consuming. C is complex to use
and to learn, writing proofs is difficult, and takes a lot of time. Also, a good understanding
of type theory is necessary. This is in my opinion the main obstacle: the initial effort needed
to enter the C world is significant, as it is hard to build non-trivial proofs without knowing
much about the underlying theory. Despite this, the C community does not stop growing,
as well as the C core.

The autarkic approach is restrictive: it forbids the use of efficient C libraries like GMP (for
multi-precision arithmetic) or GLPK (for linear programming). It enforces using exclusively
C datastructures, which significantly slows down executions. This is why in practice, C
programs are often exported and executed in OC by extraction.

Extraction. Extraction is a built-in C process that allows translating C code into
OC, H or S (Pierre Letouzey, 2008, 2004). The interest of extraction is
that it somehow preserves properties proved on C functions. Basically, it gets rid of all
proof terms and keeps the computational part. Running an extracted program has several
advantages. First, the user can use certified software without installing C. Second, it
allows exploiting uncertified oracles, as the next section will highlight. Third, an extracted
program can be used more easily within a large non-C development. Indeed, C being
purely functional, it can be hard to link with other tools. Still, it makes the TCB grow, adding
the extraction process and the OC compiler into the trusted core.

Several C developments are used after extraction, such as the C compiler COMPCERT (Leroy,
2009), or its dedicated static analyzer VERASCO (Jourdan et al., 2015).
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6.3.2 Skeptical Approach with Certificates.
The VPL uses uncertified code through a skeptical approach. Unlike most polyhedra li-

braries, VPL uses the constraints-only representation of polyhedra in order to ease its certifica-
tion in C. Certifying a double-representation library would require to prove the correctness
of Chernikova’s conversion algorithm. Instead, the initial VPL developer A. Fouilhé looked
for efficient polyhedra operators in constraint-only representation. Its abstract domain is thus
designed in a two-tier architecture:

1. A backend, combining OC and C code, provides a set of untrusted oracles that
perform efficient but unproved computations;

2. A C frontend uses the backend oracles to provide the certified operators of the abstract
domain.

Each of these oracles outputs a certificate allowing a certified checker – developed in C –
to easily compute a certified result (see Figure 6.1(b)). Linking the frontend to the backend
is done by translating the former from C to OC thanks to extraction. The software is
finally compiled by OC into binaries. Therefore, the C extraction process is part of the
TCB, in addition to the C proof-checker and the ML compiler.

Implementing this skeptical approach requires first to introduce a certificate format that
captures the information needed to prove the correctness of the polyhedral operators. For-
tunately, proving their correctness reduces to verifying implications between polyhedra, in
conjunction with other simple verifications that depend on the operator. For instance, testing
whether a polyhedron P is empty is done by showing that P v P∅, where P∅ is a single
contradictory constant constraint, such as 0 ≥ 1. The emptiness of P∅ is thus itself checkable
by a simple rational comparison.

Recall that such inclusions can be proved by exhibiting a Farkas combination in terms of
P that yields P∅. In the skeptical approach, a OC oracle for is_empty returns a certificate
as the list of coefficients that represents this combination. The OC type of the oracle is
thus
Back.is_empty: Cstr.t list -> Cert.t option

where the None answer means that the input polyhedron is not empty, and a Some answer gives
a certificate of type Cert.t allowing to establish the polyhedron emptiness. From Cert.t, the
frontend computes the result of the combination with its own certified C datastructures and
obtains 0 ≥ 1.

Certificate generation does not guarantee the absence of bugs in the oracle. For instance,
the backend may not terminate normally on some inputs. This approach ensures actually
a partial correctness property: when the oracle terminates and provides a certificate, the
frontend uses the certificate to compute a certified result satisfying the formal specification
of the operator. It detects if the backend went wrong and can then fail or return a trivially
correct – but weak – result.

In an informal discussion, A. Fouilhé stated that the VPL certificates were more complex
than sketched above and that the code generating them was particularly difficult to develop
and debug. He concluded that simplifying this process would be helpful.

6.3.3 Skeptical Method with LCF Style
In order to completely avoid the handling of certificates, one could be tempted by another

style of skeptical certification, called LCF style. The name LCF stands for “Logic for Com-
putable Functions”, a prover at the origin of ML where theorems were handled through an
abstract datatype (Gordon et al., 1978). This LCF style is still at the heart of HOL provers.

This style is much lighter than the preceding one, because it avoids the introduction of a
certificate format – i.e. an abstract syntax – in order to represent the certified computations.
Instead, the OC oracle uses a factory of certified operators (i.e. the “Factory” of Fig. 6.1(c))
to perform trusted computations. The key idea is that such a factory can only build logical
consequences of some given set of axioms. Thus, in our use, LCF style also means Logical
Consequences Factories style.
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For is_empty, the oracle manipulates two versions of each constraint: the untrusted
one, named BackCstr.t, manipulated by the oracle, and the one extracted from C, named
FrontCstr.t, on which the oracle can only apply factory operators. Given an empty polyhedron,
the backend uses an untrusted solver to find the contradictory Farkas combination and then
builds a certified combination of type FrontCstr.t using the factory operators extracted from
C. Then, the frontend only has to check that the resulting constraint is 0 ≥ 1.
Back.is_empty: (BackCstr.t * FrontCstr.t) list -> FrontCstr.t option

This style of certification relies on one assumption: the frontend can trust results produced
by an external oracle that uses its certified operators. This is not true in general: making
FrontCstr.t an abstract datatype is not sufficient to forbid an imperative OC program to
cheat by returning a contradictory constraint from a previous run. Hence, this naive LCF
style is unsound for certification.



Chapter 7

Certification by Polymorphic
Factories

In the previous chapter, we introduced skeptical certification that allows embedding uncer-
tified code into a C development. We have seen that the two existing skeptical approaches
have weaknesses:

— The skeptical approach with certificates is sound, but it requires a certificate format that
can be hard to implement and debug.

— The skeptical approach with LCF style is easier to develop but can be unsound.
To get advantages of both approaches, we introduce in this chapter the Polymorphic LCF

Style, that we abbreviate as PFS (for Polymorphic Factories Style) for convenience, for devel-
oping correct-by-construction oracles in a skeptical approach. More precisely, a PFS oracle can
be trusted to preserve some invariant without the need for an intermediate certificate. This
design pattern was introduced by Sylvain Boulmé, and we experimented it by reimplementing
the certification features of the VPL: it simplifies both C and OC parts.

Let us illustrate PFS on operator is_empty, on which we introduced the three certification
approaches in §6.3, that checks for the existence of a point of Qn satisfying the constraints
of an input polyhedron. Recall that, in LCF style, the type of is_empty in the OC oracle
(i.e. the backend) would be
Back.is_empty: (BackCstr.t * FrontCstr.t) list -> FrontCstr.t option

where BackCstr.t and FrontCstr.t are respectively the type of backend and frontend constraints.
PFS consists in abstracting the certified datatype FrontCstr.t by a polymorphic type 'c in

the oracle, and providing the oracle with operators on this datatype grouped in a factory of type
'c lcf. Polymorphism ensures that the oracle can only produce correct results by combining
its inputs using the operators of the factory. In other words, the type of the is_empty oracle
becomes
Back.is_empty: 'c lcf -> (BackCstr.t * 'c) list -> 'c option

Polymorphism of PFS brings the soundness that was missing in the naive LCF style.
Results produced by oracles are correct by construction provided that the operators of the
factory preserve the desired correctness property. We will explain how such correctness proofs
are elegantly expressed in C from the type of PFS oracles (see §7.2). Furthermore, PFS
makes our oracles flexible. In particular, we can easily profile or debug oracles, simply by
changing the factory. If necessary, we can still produce certificates as in the original VPL
using an adequate factory, or even disable the certification for efficiency using a “do-nothing”
factory.

The performances of the original version of the VPL were analyzed by Fouilhé et al. (2013).
They are comparable with those of PPL (Bagnara et al., 2008) and NEWPOLKA (Jeannet and
Miné, 2009), two state-of-the-art – but unverified – polyhedra libraries. Our new design seems
to have a little benefit on VPL performances. More significantly, it simplifies the development
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while keeping the same TCB than the original version. Thanks to PFS, the number of lines
of code in the VPL modules at the interface of OC and C was divided by two, both for
OC and C sides. And it gives simpler and more readable code.

Currently, the soundness proof of our approach is partial. On the one hand, we are able
to prove that our reasonings on PFS oracles – which are actually parametricity reasonings
(Wadler, 1989) – are correct. Indeed, they apply a weak parametricity property of polymorphic
types, that we call parametric invariance. This property had been formalized on  F with
higher-order references a la ML (Birkedal et al., 2011; Ahmed et al., 2002; Appel et al., 2007).
S. Boulmé adapted this proof on a subset of imperative ML. This is well outside of my area
of expertise, and I refer the interested reader to (Boulmé and Maréchal, 2017a).

On the other hand, we have not yet proved that our particular way to invoke C extraction
is perfectly sound w.r.t. the actual OC compiler. We only conjecture that it is. However,
to our best knowledge, none of the real world developments that mix C and OC code,
including the certified compiler CompCert (Leroy, 2009), come with such a proof; they rely
on similar conjectures.

Actually, we are not the first to relate C extraction with parametricity reasoning. In
a sense, Bernardy and Moulin (2012); Bernardy and Guilhem (2013) already looked for a
generalization of C extraction in order to internalize some parametricity reasonings within
dependent type theory. The novelty of our proposal is to use parametricity as a very cheap
approach to reason about imperative ML code in C. To our knowledge, since the proposal
to get “theorems for free” from parametricity by Wadler (1989), this paper describes its first
application to the certification of realistic software, indeed implemented within widespread
tools like C and OC.

In the next section, we incrementally detail PFS on a slightly more complex example:
operator proj. It also illustrates why the original LCF style is unsound in this context.
§7.2 shows how to use PFS in C proofs. §7.3 reveals the flexible power of polymorphic
factories thanks to operator join. Benoy et al. (2005) have shown how to derive a simple
implementation of operator join from proj. We show that the certification of Benoy’s join
boils down to defining a well-chosen instance of the factory expected by operator proj. With
this approach, the certification of Benoy’s join becomes elegant and straightforward, whereas
the one of Fouilhé et al. (2013) was cumbersome because of many certificate rewritings.

7.1 PFS Oracle Explained on Projection
This section gives a tutorial on PFS oracles, illustrated on operator proj of the abstract

domain of polyhedra. This operator was presented in §1.2.1 with its standard algorithm
(Fourier-Motzkin elimination), and we gave another encoding as a PLOP in Chapter 3. But
in our two-tier approach, the correctness proof of proj does not need to consider these imple-
mentation details.

Let us consider the example of Figure 7.1. Predicate P0 expresses that q is the result of the
Euclidean division of x by 3, with r as remainder. Predicate P1 “instantiates” P0 with x = 15.
Then, predicate P ′

1 corresponds to the computation of ∃r,P1 (as a polyhedron on Q).

P0
def
=

 x = 3 · q + r
∧ r ≥ 0
∧ r < 3

[C1]
[C2]
[C3]

P1
def
= P0 ∧ x = 15 [C4]

P ′
1

def
=

 x− 15 = 0
∧ q − 4 > 0
∧ 5− q ≥ 0

[C ′
1]

[C ′
2]

[C ′
3]

Figure 7.1 – Computation of P ′
1 as “projP1 r”

In the following, we assume that for proving the correctness of our surrounding software
(typically, a static analyzer), we do not need to prove P ′ ⇔ ∃x,P but only (∃x,P)⇒ P ′. Thus,
we only want to prove the correctness of proj as defined below.
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Definition 7.1 (Correctness of proj). Function proj is correct iff any result P ′ for a computation
(projP x) satisfies (P ⇒ P ′) ∧ x 6∈ V (P ′) where V (P ′) is the set of variables appearing in
P ′ with a non-null coefficient.

The condition x 6∈ V (P ′) ensures that variable x is no longer bound in P ′. As dynamically
checking this condition is fast and easy, we only look for a way to build P ′ from P that
ensures by construction that P ⇒ P ′. For this purpose, we exploit Farkas’ lemma as follows.
Internally, in the frontend, we handle constraints in the form “t ./ 0” where t is a linear term
and ./∈ {=,≥, >}. Hence, each input constraint “t1 ./ t2” is first normalized as “t1 − t2 ./ 0”.
Then, we generate new constraints using only the two operations of Definition 7.2. Obviously,
such constraints are necessarily implied by P .

Definition 7.2 (Linear Combinations of Constraints). We define operations + and · on nor-
malized constraints by

— (t1 ./1 0) + (t2 ./2 0)
def
= (t1 + t2) ./ 0

where ./
def
= max(./1, ./2) for the total increasing order induced by the sequence =, ≥, >.

— n · (t ./ 0)
def
= (n · t) ./ 0

under preconditions n ∈ Q and, if ./∈ {≥, >} then n ≥ 0.

For example, P ′
1 is generated from P1 by the script on

the right hand-side. Here tmp is an auxiliary constraint,
where variable x has been eliminated from C1 by rewrit-
ing using equality C4.

tmp ← C4 +−1 · C1

C ′
1 ← C4

C ′
2 ← 1

3 · (C3 + tmp)
C ′

3 ← 1
3 · (C2 +−1 · tmp)

In the following, we study how to design – in OC– a certified frontend Front.proj that
monitors Farkas’ combinations produced by an untrusted backend Back.proj. §7.2 will then
formalize Front.proj in C.

7.1.1 Simple (but Unsound) LCF Style
In a first step, we follow the LCF style introduced in §6.3. We thus consider two datatypes

for constraints: modules BackCstr and FrontCstr define respectively the representation of
constraints for the backend and the frontend.
Each module is accessed both in the backend and in
the frontend, but the frontend representation is ab-
stract for the backend. Hence, the visible interface of
FrontCstr for the backend is given on the right-hand
side. Type Rat.t represents Q, and add and mul repre-
sent respectively operators + and · on constraints.

module FrontCstr: sig
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

end

Going back to our example, P ′
1 is firstly computed from P1 using backend constraints.

This representation allows finding the solution by efficient computations, combining complex
datastructures, GMP rationals and even floating-point numbers. On the contrary, the frontend
representation of constraints is based on certified code extracted from C. In particular, it
uses internally the certified rationals of the C standard library, where integers are repre-
sented as lists of bits. Once a solution is found, the backend thus rebuilds this solution in the
frontend representation. For example, the following function builds the certified constraints
of P ′

1 from constraints of P1, according to the previous Farkas combinations. Here, rational
constants are written with an informal notation.

let build_P '1 (l: FrontCstr.t list): FrontCstr.t list =
match l with
| c1::c2::c3::c4::_ ->

let coeff = 1/3 and tmp = FrontCstr.add c4 (FrontCstr.mul −1 c1) in
[ c4;

FrontCstr.mul coeff (FrontCstr.add c3 tmp);
FrontCstr.mul coeff (FrontCstr.add c2 (FrontCstr.mul −1 tmp)) ]

| _ -> failwith "unexpected input"
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But making Back.proj return such a function is not so convenient. It is simpler to make
Back.proj compute the certified constraints (of type FrontCstr.t), in parallel to its own compu-
tations. Hence, we propose a first version of Back.proj, called Back.proj0, with the following
type.
Back.proj0: (BackCstr.t * FrontCstr.t) list -> Var.t -> FrontCstr.t list

Let us define two certified functions:
— occurs: Var.t -> FrontCstr.t -> bool such that occurs x c tests whether x ∈ V (c);
— export: FrontCstr.t -> BackCstr.t that converts a frontend constraint into a backend

one.
Then, we implement Front.proj as follows:

let Front.proj (p: FrontCstr.t list) (x: Var.t): FrontCstr.t list =
let bp = List.map (fun c -> (export c, c)) p in
let p' = List.map snd (Back.proj0 bp x) in
if List.exists (occurs x) p'
then failwith "oracle error"
else p'

Ideally – mimicking a LCF-style prover – function Back.proj0 uses type FrontCstr.t as a
type of theorems. It derives logical consequences of a list of constraints (of type FrontCstr.t)
by combining them with FrontCstr.mul and FrontCstr.add. Like in a LCF-style prover, there
is no explicit “proof object” as value of this theorem type.

Unfortunately, this approach is unsound. We now provide an example which only involves
two input polyhedra that are reduced to a single constant constraint. Let us imagine an oracle
wrapping function memofst given below. Assuming that it is first applied to the unsatisfiable
constraint 0 ≥ 1, this first call returns 0 ≥ 1, which is a correct answer. However, when it
is then applied to the satisfiable constraint 2 ≥ 0, this second call still returns 0 ≥ 1, which
is now incorrect! This unsoundness is severe, because even a faithful programmer could, by
mistake, implement such a behavior while handling mutable datastructures.

let memofst:FrontCstr.t -> FrontCstr.t =
let first = ref None in
fun c ->

match !first with
| None -> (first := Some c); c
| Some c' -> c'

7.1.2 Generating an Intermediate Certificate
To be protected against lying backends, we could introduce an intermediate datastructure

representing a trace of the backend computation. Then, the frontend would use this trace to
rebuild the certified result using its own certified datastructures. Such a trace has the form of
an Abstract Syntax Tree (AST) and is called a certificate. This approach was used by Fouilhé
et al. (2013) to design the first version of the VPL. In the following, we detail the process of
certificate generation and why we prefer avoiding it.

We define below a certificate type named pexp. It represents a type of polyhedral com-
putations, and depends on type fexp that corresponds to Farkas combinations. Constraints
are identified by an integer. In pexp, we provide a Bind construct for computing auxiliary
constraints like tmp in the example of P ′

1.

type fexp =
| Ident of int
| Add of fexp * fexp
| Mul of Rat.t * fexp

type pexp =
| Bind of int * fexp * pexp
| Return of fexp list
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Example 7.2. Here is an example of certificate for P ′
1, where each input constraint Ci is

represented by “Ident i”:
Bind (5, Add (Ident 4, Mul (−1, Ident 1)),

Return [ Ident 4;
Mul (1/3, Add (Ident 3, Ident 5));
Mul (1/3, Add (Ident 2, Mul (−1, Ident 5))) ])

The intermediate constraint tmp is bound to identifier 5.

Next, we easily implement in C a Front.run interpreter of pexp certificates (corresponding
to the “checker” part of Fig. 6.1, p.117) and prove that it only outputs a logical consequence of
its input polyhedron.
Front.run: pexp -> (FrontCstr.t list) -> (FrontCstr.t list)

Recall that when a pexp uses certificate identifiers that have no meaning w.r.t. Front.run, the
latter fails. For the following, we do not need to specify how identifiers are generated and
attached to constraints. We let this implementation detail under-specified.

Now, we need to turn our Back.proj0 into a function Back.proj1 where each BackCstr.t
constraint in input is associated to a unique identifier.
Back.proj1: (BackCstr.t * int) list -> Var.t -> pexp

However, Back.proj1 is more complex to program and debug than Back.proj0. Indeed, in
LCF-style, certified operations run “in parallel” to the oracle. On an oracle bug (for instance, if
the oracle multiplies an inequality by a negative scalar), the LCF-checker raises an error right
at the point where the bug appears in the oracle: this makes debugging of oracles much easier.
On the contrary, in presence of an ill-formed certificate, the developer has to understand where
the ill-formness comes from in its oracle. Moreover, an oracle like Back.proj1 needs to handle
constraint identifiers for Bind according to their semantics in Front.run. This is particularly
painful in operations like the join operator of §7.3, which involve several spaces of constraint
names (one for each “implication proof”). This consideration motivates the introduction of
our new design pattern, where incorrect handling of constraint names is statically forbidden,
thanks to the OC typechecker.

7.1.3 Polymorphic LCF Style
We generalize LCF style in order to solve its soundness issue. We also conjecture that the

approach of §7.2 provides a sound link between the backend and a C extracted frontend,
without the need for an intermediate AST. Moreover, an AST can still be generated if needed
for another purpose (see Chapter 8).

Our idea is very simple: instead of abstracting the “type of theorems” (i.e. FrontCstr.t)
using an ML abstract datatype, we abstract it using ML polymorphism. Intuitively, the lying
function memofst from Section 7.1.1 exploits the fact that we have a static type of theorems,
defined once and for all. But, when we interpret constraints of the result P ′ as theorems,
they are relative to a given set of axioms: the input constraints of P . Hence, we need to have
a dynamic type, generated at each call to the oracle. Using ML polymorphism, we actually
express that our oracle is parameterized by any of such dynamic type of theorems.

In practice, the type FrontCstr.t used in backend oracles, such as Back.proj, is replaced by
'c. In order to allow the backend to build new “theorems” – i.e. Farkas combinations – we
introduce a polymorphic record type lcf (acronym of Logical Consequences Factory).
type 'c lcf = {

add: 'c -> 'c -> 'c;
mul: Rat.t -> 'c -> 'c

}

Then, the previous oracle Back.proj0 that we defined for the simple LCF style is generalized
into



126 CHAPTER 7. CERTIFICATION BY POLYMORPHIC FACTORIES

Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list

Intuitively, function Back.proj0 could now be redefined as (Back.proj {add=FrontCstr.add; mul
=FrontCstr.mul}).

The type of the Back.proj implementation must generalize the above signature, and not
simply unify with it. This directly forbids the memofst trick. Indeed, if we remove the type
coercion from the preceding code of memofst, the type system infers that memofst: '_a -> '
_a where '_a is an existential type variable introduced for a sound typing of references, as
described in Wright (1995) and Garrigue (2002). Hence, a cheating usage of memofst would
prevent the Back.proj implementation from having an acceptable type.

7.2 Formalizing the Frontend in Coq

In order to program and prove Front.proj in C, we need to declare Back.proj and its
type in C. This is achieved by turning Back.proj into a C axiom, itself replaced by the
actual OC function at extraction. However, such an axiom may be unsound w.r.t. a
runtime execution. In particular, a C function f satisfies ∀x, (f x) = (f x). But, an OC
function may not satisfy this property, because of side-effects or because of low-level constructs
distinguishing values considered equal in the C logic. §7.2.1 recalls the may-return monad
introduced by Fouilhé and Boulmé (2014) to overcome this issue. §7.2.2 explains how PFS
oracles are embedded in this approach.

7.2.1 Coq Axioms for External OCaml Functions

Let us consider the C example on the right
hand-side. It first defines a constant one as the
Peano natural number representing 1. Then, it
declares an axiom test replaced at extraction
with a function oracle. At last, a lemma congr
is proved, using the fact that test is a function.
The following OC implementation of oracle
makes the lemma congr false at runtime:
let oracle x = (x == one)

Definition one: nat := (S O).

Axiom test: nat → bool.
Extract Constant test ⇒ "oracle".

Lemma congr: test one = test (S O).
auto.

Qed.

Indeed (oracle one) returns true whereas (oracle (S O)) returns false, because == tests
the equality between pointers. Hence, the C axiom is unsound w.r.t this implementation. A
similar unsoundness can be obtained if oracle uses a reference in order to return true at the
first call, and false at the following ones.

Fouilhé and Boulmé (2014) solve this problem by axiomatizing OC functions using a
notion of non-deterministic computations. For example, if the result of test is declared to
be non-deterministic, then the property congr is no more provable. For a given type A, type
?A represents the type of non-deterministic computations returning values of type A: type ?A
can be interpreted as P(A). Formally, the type transformer “ ? . ” is axiomatized as a monad
that provides a may-return relation  A: ?A→ A→ Prop. Intuitively, when “k : ?A” is seen as
“k ∈ P(A)”, then “k  a” means that “a ∈ k”. At extraction, ?A is extracted like A, and its
binding operator is efficiently extracted as an OC let-in. See (Fouilhé and Boulmé, 2014)
for more details.

For example, replacing the test axiom by “Axiom test : nat → ?bool” avoids the above
unsoundness w.r.t the OC oracle. The lemma congr can still be expressed as below, but
it is no longer provable.

∀ b b', (test one) b → (test (S O)) b' → b=b'.
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7.2.2 Reasoning on PFS Oracles in Coq
Let us now sketch how the frontend is formalized in C. We define the type Var . t as

positive – the C type for binary positive integers. We build the module FrontCstr of
constraints encoded as radix trees over positive with values in Qc, which is the C type for
Q. Besides operations add and mul, module FrontCstr provides two predicates: ( sat c m )
expresses that a model m satisfies the constraint c ; and ( noccurs x c ) expresses that variable
x does not occur in constraint c.

sat: t → (Var.t → Qc) → Prop.
noccurs: Var.t → t → Prop.

We also prove that sat is preserved by functions add and mul. Then, these predicates are
lifted to polyhedra p of type ( list FrontCstr . t ) .

Definition sat p m := List.Forall (fun c ⇒ FrontCstr.sat c m) p.
Definition noccurs x p := List.Forall (FrontCstr.noccurs x) p.

Because front_proj invokes a non-deterministic computation (the external oracle as detailed
below), it is itself a non-deterministic computation. Here is its type and its specification:

front_proj: list FrontCstr.t → Var.t → ?(list FrontCstr.t).
Lemma front_proj_correctness: ∀ p x p',

(front_proj p x)  p' → (∀ m, sat p m → sat p' m) ∧ noccurs x p'.

We implement front_proj in PFS, as explained in §7.1.3. First, we declare a lcf record
type containing operations for frontend constraints. These operations do not need to be
declared as non-deterministic: in the C frontend, they will be only instantiated by pure
C functions. Then, back_proj is defined as a non-deterministic computation. The type of
back_proj is given uncurried in order to avoid nested “?” type transformers. At extraction,
this axiom is replaced by a wrapper of Back.proj from §7.1.3.

Record lcf A := { add: A → A → A; mul: Qc → A → A }.
Axiom back_proj: ∀ {A},

((lcf A) * (list (FrontCstr.t * A))) * Var.t → ?(list A).

Like in §7.1.3, back_proj receives each constraint in two representations: an opaque one of
polymorphic type A and a clear one of another type. For simplicity, we consider that type
FrontCstr . t is used as the clear representation. 1

Now, let us sketch how we exploit our polymorphic back_proj to implement front_proj
and prove its correctness. For a given p : ( list FrontCstr . t ) , parameter A of back_proj
is instantiated with wcstr ( sat p ) where wcstr ( s ) is the type of constraints satisfied by any
model satisfying s. In other words, wcstr ( sat p ) is the type of logical consequences of
p, i.e. the type of its Farkas combination. Hence, instantiating parameter A of back_proj
by this dependent type expresses that combinations from the input p and from the lcf op-
erations are satisfied by models of p. Concretely, ( front_proj p x ) binds the result of
( back_proj ( ( mkInput p ) , x ) ) to a polyhedron p ’ and checks that x does not occur in p ’ .

Record wcstr(s: (Var.t → Qc) → Prop) :=
{ rep: FrontCstr.t; rep_sat: ∀ m, s m → FrontCstr.sat rep m }.

mkInput: ∀ p, lcf(wcstr(sat p)) * list(FrontCstr.t * wcstr(sat p)).

Actually, we can see rep_sat above as a data-invariant attached to a rep value. This invariant
is trivially satisfied on the input values, i.e. the constraints of p. And, it is preserved by lcf
operations. These two properties are reflected in the type of mkInput. The polymorphism of
back_proj is a way to ensure that back_proj preserves any data-invariant like this one, on
the output values.

1. In order to avoid unnecessary conversions from FrontCstr.t to BackCstr . t (that would be hidden in
back_proj wrapper), our actual implementation uses instead an axiomatized type which is replaced by “BackCstr.t”
at extraction: this is similar to the implementation of Fouilhé and Boulmé (2014).
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7.3 The Flexible Power of PFS Illustrated on Convex Hull
This section provides an advanced usage of polymorphic factories through the join operator.

It illustrates the flexible power of PFS, by deriving join from the projection operator of §7.1.3.
On this join oracle, PFS induces a drastic simplification by removing many cumbersome
rewritings on certificates. Indeed, we simply derive the certification of the join operator by
invoking the projection operator on a direct product of factories. As we detail below, such a
product computes two independent polyhedral inclusions, in parallel.

We presented operator join in §1.2.1. To summarize, it approximates the union of two
polyhedra P ′ ∪ P ′′. But in general, such a union is not a convex polyhedron. Operator join
thus overapproximates this union by the convex hull P ′ t P ′′ that we define as the smallest
convex polyhedron containing P ′ ∪ P ′′. 2

Example 7.3. For instance, given P ′ def
= {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} and P ′′ def

= {x1 ≤
0, x2 ≤ 0, x1 ≥ −1, x2 ≥ −1} then, as illustrated on the figure, P ′ t P ′′ def

= {x1 ≥ −1, x2 ≥
−1, x1+x2 ≤ 1, x2−x1 ≥ −1, x2−x1 ≤ 1}.

The correctness of join, given in Definition 7.3, is reduced to two implications themselves
proved by Farkas’ lemma. More precisely, on a computation (join P ′ P ′′), the oracle produces
internally two lists of Farkas combinations that build a pair of polyhedra (P1,P2) satisfying
P ′ ⇒ P1 and P ′′ ⇒ P2. Then, the front-end checks that P1 and P2 are syntactically equal. If
the check is successful, it returns polyhedron P1.

Definition 7.3 (Correctness of join). Function join is correct iff any result P for a computation
(join P ′ P ′′) satisfies (P ′ ⇒ P) ∧ (P ′′ ⇒ P).

7.3.1 Extended Farkas Factories
The factory operations of Definition 7.2 are sufficient to compute any result of a projection,

but they do not suffice for the convex-hull and more generally for proving all kinds of polyhedra
inclusions. The definition 7.4 given here completes this set of operations, to handle polyhedra
with equalities and strict inequalities.

Definition 7.4 (Extended Farkas Combination). Besides operations + and · of Definition 7.2,
an extended Farkas combination may invoke one of the three operations:

— weaken: ⇓ (t ./ 0)
def
= t ≥ 0, for all linear term t and ./∈ {=,≥, >}.

2. Actually, there exists cases where the convex hull of two polyhedra is not a polyhedron. See (Fouilhé, 2015) for
more details.
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— cte(n, ./)
def
= n ./ 0 assuming n ∈ Q and n ./ 0.

— merge: (t ≥ 0) & (−t ≥ 0)
def
= (t = 0), for all linear term t.

From now on, we only consider extended Farkas combi-
nations and omit the adjective “extended”. Definition 7.4
leads to extend our factory type as given on the right
hand-side.
Here, constant top of the factory encodes constraint 0 =
0 and is a shortcut for cte(0,=). Hence, this equality is
neutral for operations + and · on constraints. It is thus
a very convenient default value in our PFS oracles.
Fields weaken and merge correspond respectively to op-
erators ⇓ and &. Type cmpT is our enumerated type of
comparisons representing {≥, >,=}.

type 'c lcf = {
top: 'c;
add: 'c -> 'c -> 'c;
mul: Rat.t -> 'c -> 'c;
weaken: 'c -> 'c;
cte: Rat.t -> cmpT -> 'c;
merge: 'c -> 'c -> 'c;

}

7.3.2 Encoding Join as a Projection
Following an encoding of Benoy et al. (2005), proj can be expressed as a projection problem.

We already presented this process in §3.6.1. We saw that computing the convex hull of
P ′ : A′x ≤ b′ and P ′′ : A′′x ≤ b′′ is equivalent to eliminating variables y′,y′′, α′ and α′′ from
the following polyhedron H:

H def
= {x | A′y′ ≥ α′ · b′, A′′y′′ ≥ α′′ · b′′, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = y′ + y′′} (7.1)

Example 7.3.1. For our previous example, H is the set of points x
def
= (x1, x2) that satisfy

y′1 ≥ 0, y′2 ≥ 0, −y′1 − y′2 ≥ −α′

−y′′1 ≥ 0, −y′′2 ≥ 0, y′′1 ≥ −α′′, y′′2 ≥ −α′′

α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1
x1 = y′1 + y′′1 , x2 = y′2 + y′′2

The presence of equalities or strict inequalities requires an additional pass that follows the
projection, involving operators weaken and merge of the factory. We will omit this step here in
order to keep our explanations simple. Moreover, as mentioned in §3.6.1, encoding (7.1) can
be done more efficiently by considering fewer variables, exploiting the fact that α′′ = 1 − α′

and y′′ = x − y′. But as this complicates the understanding and does not affect much the
certification, we will not consider this improvement here.

In the following, we compare certificate style to PFS for proving join from the results
of proj. In order to have a simpler presentation, we limit ourselves here to the case where
polyhedra contain only non strict inequalities.

7.3.3 Proving Join with Certificates
As previously explained about Definition 7.3, the correctness of join is ensured by building

P from two Farkas combinations, one of P ′ and one of P ′′. Fouilhé (2015) described how
to extract such combinations from the result of the projection of H. Built in a skeptical way
with certificates, Fouilhé’s version of join has the following type:

Back.join1 : (BackCstr.t * int) list -> (BackCstr.t * int) list ->
pexp * pexp

It takes the two polyhedra P ′ and P ′′ as input, and each of their constraint is attached to a
unique identifier, as explained in Section 7.1.2. It returns two certificates of type pexp, one for
each inclusion P ′ ⇒ P and P ′′ ⇒ P of Definition 7.3.
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Let us now detail how Fouilhé retrieves such certificates from the projection of H. Consider
operator Back.proj1_list that extends Back.proj1 from §7.1.2 by projecting several variables one
after the other instead of a single one. Assume that Back.proj1_list H [x1, . . . , xq] returns
(P, Λ) where Λ is a certificate of type pexp showing that P is a logical consequence of H.
Actually, as explained in §1.2.2, Λ can be viewed as a matrix where each line contains the
coefficients of a Farkas combination of H, and it fulfills

Λ · H = P (7.2)

Fouilhé showed that Λ can be decomposed into three parts: Λ1 speaking about constraints of
P ′, Λ2 speaking about constraints of P ′′ and Λ3 speaking about remaining constraints.

{x | A′y′ ≥ α′ · b′︸ ︷︷ ︸
Λ1

, A′′y′′ ≥ α′′ · b′′︸ ︷︷ ︸
Λ2

, α′ ≥ 0, α′′ ≥ 0, α′ + α′′ = 1, x = y′ + y′′︸ ︷︷ ︸
Λ3

}

Note that equation (7.2) holds whatever the value of variables α′, α′′, y′ and y′′. The
key idea is to assign values to the projected variables α′, α′′, y′ and y′′ in encoding (7.1).
Considering assignment σ1

def
= (α′ = 1, α′′ = 0, y′′ = 0), it becomes

{x | A′y′ ≥ b′︸ ︷︷ ︸
Λ1

, 0 ≥ 0︸ ︷︷ ︸
Λ2

, 1 ≥ 0, 0 ≥ 0, 1 + 0 = 1, x = y′︸ ︷︷ ︸
Λ3

}

that simplifies into
{x | A′x ≥ b′︸ ︷︷ ︸

Λ1

, 1 ≥ 0︸ ︷︷ ︸
Λ3

} (7.3)

which is equivalent to P ′. Let us call λ the coefficient of 1 ≥ 0 in Λ3. Then, we deduce from
(Λ1 ·A′)x ≥ b′ + λ · (1 ≥ 0) = P that P ′ ⇒ P . The same reasoning applied with assignment
σ2

def
= (α′ = 0, α′′ = 1, y′ = 0) leads to P ′′ ⇒ P .

7.3.4 Proving Join with a Direct Product of Polymorphic Factories
In PFS, the oracle of join has the following type :

Back.join : 'c1 lcf -> (BackCstr.t * 'c1) list ->
'c2 lcf -> (BackCstr.t * 'c2) list -> 'c1 list * 'c2 list

Polyhedra P ′ and P ′′ come with their own polymorphic type, respectively 'c1 and 'c2. The
polymorphic type of Back.join ensures that it returns a pair of polyhedra (P1,P2) of type
'c1 list * 'c2 list such that P ′ ⇒ P1 and P ′′ ⇒ P2. In practice, P1 and P2 should represent
the same polyhedron. As a consequence, Back.join must take as parameters two factories, one
for each polymorphic type.

We said that to compute the convex hull, join eliminates variables α′, α′′, y′ and y′′ from
H. Recall that the projection operator that we defined for PFS in Section 7.1.3 has type
Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list

As we did for the certificate approach, let us define Back.proj_list that extends Back.proj by
eliminating a list of variables.
Back.proj_list: 'c lcf -> (BackCstr.t * 'c) list -> Var.t list -> 'c list

At this point, we instantiate the factory of Back.proj_list in order to produce the pair of
polyhedra with their two distinct polymorphic types. Indeed, although the parameter 'c lcf
of Back.proj_list is designed to be provided by the frontend, nothing prevents it from being
tuned by the backend. This is where the flexibility of PFS comes into play! We combine the
two factories of types 'c1 lcf and 'c2 lcf into a new one of type ('c1*'c2)lcf as follows.
let factory_product (lcf1: 'c1 lcf) (lcf2: 'c2 lcf) : ('c1 * 'c2) lcf =
{

top = (lcf1.top, lcf2.top);
add = (fun (c1,c2) (c1',c2') -> lcf1.add c1 c1', lcf2.add c2 c2');
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mul = (fun r (c,c') -> lcf1.mul r c, lcf2.mul r c');
weaken = (fun (c,c') -> lcf1.weaken c, lcf2.weaken c');
cte = (fun r cmp (c,c') -> lcf1.cte r cmp c, lcf2.cte r cmp c');
merge = (fun (c1,c1') (c2,c2') -> lcf1.merge c1 c1', lcf2.merge c2 c2');

}

This new factory computes with frontend constraints from P ′ and P ′′ in parallel: it corresponds
to the direct product of the two Farkas factories. Still, to be able to use such a factory, each
backend constraint must be attached to a frontend constraint of type 'c1 * 'c2.

Constraints of P ′ – that have type (BackCstr.t * 'c1) – are converted into type (BackCstr
.t * ('c1 * 'c2)) by being attached to constraint lcf2.top of type 'c2. Similarly, constraints
of type (BackCstr.t * 'c2) are attached to constraint lcf1.top of type 'c1. Then, we apply
the changes of variable y′ := α′ · x′ and y′′ := α′′ · x′′ that occur in the encoding of join
as a projection, explained in §3.6.1. But actually, we do not need to apply these changes of
variables on frontend constraints. As mentioned earlier, the two Farkas combinations of join
are found by evaluating the result of the projection of H on two assignments, respectively σ1

and σ2. This evaluation makes variables y′ and y′′ both vanish, as in Equation (7.3). Thus, to
build the frontend version of constraints of H, we evaluate them directly on each assignment
as follows:

BackCstr.t → BackCstr.t *
(

'c1 * 'c2
)

A′x′ ≥ b′


A′

1x
′ ≥ b′1 → A′

1y
′ ≥ b′1 ,

( [
A′

1y
′ ≥ α′b′1

]
σ1︸ ︷︷ ︸

A′
1x

′≥b′1

, [0 = 0]σ2

)
...

A′
px

′′ ≥ b′p → A′
py

′ ≥ b′p ,
( [

A′
py

′ ≥ α′b′p
]
σ1︸ ︷︷ ︸

A′
px

′≥b′p

, [0 = 0]σ2

)

A′′x′′ ≥ b′′


A′′

1x
′′ ≥ b′′1 → A′′

1y
′′ ≥ b′′1 ,

(
[0 = 0]σ1

,
[
A′′

1y
′′ ≥ α′′b′′1

]
σ2︸ ︷︷ ︸

A′′
1 x′′≥b′′1

)
...

A′′
qx

′ ≥ b′′q → A′′
qy

′′ ≥ b′′q ,
(

[0 = 0]σ1
,

[
A′′

qy
′′ ≥ α′′b′′q

]
σ2︸ ︷︷ ︸

A′′
q x′′≥b′′q

)

Finally, we add constraints α′ ≥ 0, α′′ ≥ 0, α′+α′′ = 1. As all the others, these constraints
need to have type BackCstr.t * ('c1 * 'c2). However, they contain variables α′ and α′′ that
were not present in the input polyhedra P ′ and P ′′. Here again, we build directly their
evaluation in σ1 and σ2. Constraints 1 ≥ 0 and 0 ≥ 0 are built in types 'c1 or 'c2 thanks to
operator cte from factories lcf1 and lcf2. Note that α′ + α′′ = 1 is not given here because it
evaluates to (0 = 0, 0 = 0), and can therefore be discarded.

BackCstr.t → BackCstr.t * ( 'c1 * 'c2 )

α′ ≥ 0 → α′ ≥ 0 , ( [α′ ≥ 0]σ1︸ ︷︷ ︸
1≥0

, [α′ ≥ 0]σ2︸ ︷︷ ︸
0≥0

)

α′′ ≥ 0 → α′′ ≥ 0 , ( [α′′ ≥ 0]σ1︸ ︷︷ ︸
0≥0

, [α′′ ≥ 0]σ2︸ ︷︷ ︸
1≥0

)

Example 7.3.2. Let us focus on the proof that P ′ and P ′′ both imply −x1−x2 ≥ −1, which
is a constraint of P ′ tP ′′. We build H as described above, and obtain from its projection a
frontend constraint, that is

(−x1 ≥ 0, 0 ≥ 0) + (−x2 ≥ 0, 0 ≥ 0) + (1 ≥ 0, 0 ≥ 0) + (0 ≥ 0, −x1 − x2 ≥ −1)

= (−x1 − x2 ≥ −1, −x1 − x2 ≥ −1)
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The left hand side of each term is the frontend constraint of type 'c1, and the one on the
right hand side is of type 'c2. From P ′ point of view, we obtain −x1 − x2 ≥ −1 as the
combination of −x1 ≥ 0, −x2 ≥ 0 and the constant constraint 1 ≥ 0 that comes from α′ ≥ 0.
On the other hand, −x1−x2 ≥ −1 is a constraint of P ′′ and is directly returned as a frontend
constraint of type 'c2. The projection returns such results for each constraint of the convex
hull P ′ t P ′′.

In conclusion, with a well chosen factory, we define our PFS join as a simple call to
proj_list. This makes our implementation much simpler than Fouilhé’s one, where the two
certificates of join are obtained from the one of proj_list by tedious rewritings that perform
on-the-fly renamings of constraint identifiers.

7.4 Related Works
The skeptical approach has been pioneered in the design of two interactive provers, A-

 (de Bruijn, 1968) and LCF (Gordon et al., 1979). Both provers reduce the soundness of
a rich mathematical framework to the correctness of a small automatic proof checker called
the kernel. But, their style is very different. LCF is written as a library in a functional
programming language (ML) which provides the type of theorems as an abstract datatype. Its
safety relies on the fact that objects of this type can only be defined from a few primitives (i.e.
the kernel). Each of them corresponds to an inference rule of Higher-Order Logic in natural
deduction. On the contrary, A introduces a notion of proof object and implements
the kernel itself as a typechecker, thanks to Curry-Howard isomorphism. LCF style is more
lightweight – both for the development and the execution of proof tactics – whereas the proof
object style allows a richer logic (e.g. with dependent types). Nowadays, the kernel of skepti-
cal interactive provers is still designed according to one of this style: C has proof objects
whereas HOL provers are in LCF style.

Since the 90’s, the skeptical approach is also applied in two kinds of slightly different con-
texts: making interactive provers communicate with external solvers like M (Harrison and
Théry, 1998), and verifying the safety of untrusted code, like in “Proof Carrying Code” (Necula,
1997). In C, it is also applied to the design of proof tactics communicating with external
solvers (Besson, 2006; Grégoire et al., 2008; Armand et al., 2010; Blech and Grégoire, 2011;
Armand et al., 2011; Magron et al., 2015), and to certify stand-alone programs like compilers
or static analyzers which embed some untrusted code (Tristan and Leroy, 2008; Besson et al.,
2010; Jourdan et al., 2015; Blazy et al., 2015).

Beyond interactive provers, producing certificates of unsatisfiability has become mandatory
for state-of-the-art Boolean SAT-solvers. Indeed, certificates of unsatisfiability have been
required for the UNSAT tracks since SAT Competition 2013. In 2016, they were required – in
DRAT format (Wetzler et al., 2014) – for all solvers in the Main track of the SAT Competition.

Actually, there are now so many works related to the skeptical approach that it seems
impossible to be exhaustive. With respect to all these works, we propose a design pattern,
the Polymorphic LCF Style (abbreviated as PFS), in order to certify in C the results of an
untrusted ML oracle. We illustrated this degisn on the new implementation of the VPL. In
PFS, oracles produce these witnesses as ordinary ML values (e.g. linear constraints). In other
words, instead of building an AST that the C frontend uses to compute the certified value,
the oracle directly generates this value by using certified operators of the C frontend. This
provides several advantages over AST style. First, it makes the oracle development easier.
Ill-handling of certified operators is much straightforward to debug. Without an AST to build,
it naturally removes cumbersome details such as handling of binders. Second, polymorphism
ensures that oracle results are sound by construction. In the polyhedra library, it means that
oracles can only produce logical consequences of their input. This property is proved for free
from the types of the oracles, in the spirit of the “theorems for free” coined by Wadler (1989). At
last, polymorphism makes witness generation very flexible and modular. Generating a compact
AST is still possible if necessary. The next chapter applies this process for the embedding of
an oracle within a C tactic.
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We strongly believe that PFS could be used with other applications. For instance, the
nonlinear support based on Handelman’s theorem that we explained in §4.4 could be easily
certified using a factory that provides nonlinear multiplications. Actually, we provide a proof
in C of this linearization in Chapter 9. This proof is anterior to our PFS development and
uses a standard skeptical approach by certificates. Chapter 9 will show that the handling of
certificates and their associated proofs are much more complex than the building of a factory.

Also, certifying UNSAT answers of a Boolean SAT-Solver can be achieved by a similar
approach, by using resolution proofs instead of Farkas certificates (Keller, 2013). This seems
to indicate than our approach is also relevant to a large class of coNP-hard problems.





Chapter 8

A Coq Tactic for Equality
Learning

Several C tactics solve goals containing linear inequalities: omega and lia on integers;
fourier or lra on reals and rationals (The Coq Development Team, 2016; Besson, 2006). In
this chapter, we provide yet another tactic for proving such goals. This tactic – called vpl 1

– is currently limited to rationals. It is built on the top of the VPL and its main feature
appears when it cannot prove the goal. In this case, whereas above tactics fail, our tactic
“simplifies” the goal. In particular, it injects as hypotheses a complete set of linear equalities
that are deduced from the linear inequalities in the context. Then, many C tactics – such
as congruence, field or even auto – can exploit these equalities, even if they cannot deduce
them from the initial context by themselves. By simplifying the goal, our tactic both improves
the user experience and proof automation.

Let us illustrate this feature on the following – almost trivial – C goal, where Qc is the
type of rationals on which our tactic applies.

Lemma ex1 (x:Qc) (f:Qc → Qc):
x≤1 → (f x)<(f 1) → x<1.

This goal is valid on Qc and Z, but both omega and lia fail on the Z instance without providing
any help to the user. Indeed, since this goal contains an uninterpreted function f, it does
not fit into the pure linear arithmetic fragment. On the contrary, this goal is proved by two
successive calls to the vpl tactic. As detailed below, equality learning plays a crucial role in
this proof: the rewriting of a learned equality inside a non-linear term (because under symbol
f) is interleaved between deduction steps in linear arithmetic. Of course, such a goal is also
provable in Z by  solving tactics, such as the verit tactic of SMTC (Armand et al., 2011)
or the one of Besson et al. (2011). However, such  tactics are also “prove-or-fail”: they
do not simplify the goal when they cannot prove it. Conversely, our tactic may help users in
their interactive proofs, by simplifying goals that do not fully fit into the scope of existing 
solving procedures.

The tactic learns equalities from conflicts between strict inequalities detected by a LP
solver. This algorithm can be viewed as a special but optimized case of “conflict driven clause
learning” – at the heart of modern DPLL procedures (Silva et al., 2009). On most cases, it
is strictly more efficient than the naive equality learning algorithm previously implemented in
the VPL. In particular, our algorithm is cheap when there is no equality to learn. We have
implemented this algorithm in an OC oracle, able to produce proof witnesses for these
equalities. We will detail the generation of witnesses. Their embedding in C proofs was
done by Sylvain Boulmé, and we will not address this here. In particular, it exploits the PFS
framework of Chapter 7 to produce optimized certificates. For more details, refer to (Boulmé
and Maréchal, 2017b).

1. Available on http://github.com/VERIMAG-Polyhedra/VplTactic.
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8.1 Specification of the VPL Tactic
Let us now introduce the specification of the vpl tactic. As mentioned above, the core of

the tactic is performed by an oracle programmed in OC, and called reduce. This oracles
takes as input a polyhedron P and outputs a reduced polyhedron P ′ such that P ′ ⇔ P and
such that the number of constraints in P ′ is lower or equal to that of P .

As we saw in Chapter 2, a polyhedron may be suboptimally written. In particular, some of
its constraints may be implied by the others. Moreover, a set of inequalities can imply implicit
equalities, such as x = 0 that can be deduced from x ≥ 0∧−x ≥ 0. Definition 8.2 characterizes
polyhedra without implicit equalities.

Definition 8.1 (Complete set of linear equalities). Let E be a set of linear equalities and I
be a set of linear inequalities. E is said complete w.r.t. I if any linear equality deduced from
the conjunction E ∧ I can also be deduced from E alone, meaning that I contains no equality,
neither implicit nor explicit. Formally, E is complete if and only if for all linear terms t1 t2,

(E ∧ I ⇒ t1 = t2) implies (E ⇒ t1 = t2) (8.1)

Definition 8.2 (Reduced Polyhedron). A polyhedron P is reduced if and only if it satisfies the
following condition.

— If P is unsatisfiable, then P is a single constant constraint like 0 > 0 or 0 ≥ 1. In other
words, its unsatisfiability is checked by one comparison on Q.

— Otherwise, P contains no redundant constraint and is syntactically given as a conjunction
E∧I where polyhedron I contains only inequalities and where polyhedron E is a complete
set of equalities w.r.t. I .

Having a reduced polyhedron ensures that any provable linear equality admits a pure
equational proof which ignores the remaining inequalities.

Specification of the Tactic. Roughly speaking, a C goal corresponds to a sequent Γ ` T
where context Γ represents a conjunction of hypotheses and T a conclusion. In other words,
this goal is logically interpreted as the meta-implication Γ ⇒ T . The tactic transforms the
current goal Γ ` T through three successive steps.

— First Step. The goal is equivalently rewritten into

Γ′, [[P]](m) ` T ′

where P is a polyhedron and m an assignment of P variables. For example, the ex1
goal is rewritten as [[P1]](m1) ` False, where

P1
def
= {x1 ≤ 1, x2 < x3, x1 ≥ 1}

m1
def
= { x1 7→ x; x2 7→ (f x); x3 7→ (f 1) }

Hence, [[P]](m) corresponds to a conjunction of inequalities on Q that are not necessarily
linear, because m may assign arbitrary C terms on Q to variables of P . Actually,
[[P]](m) contains at least all (in)equalities on Q that appear as hypotheses of Γ. Moreover,
if T is an inequality on Q, then an inequality equivalent to ¬T appears in [[P]](m) and
T ′ is proposition False. 2 This step is traditionally called reification in C tactics.

— Second Step. The goal is equivalently rewritten into

Γ′, [[P ′]](m) ` T ′

where P ′ is the reduced polyhedron computed from P by our reduce oracle. For instance,
polyhedron P1 found above is reduced into

P ′
1

def
= {x1 = 1} ∧ {x2 < x3}

2. Here, T ⇔ (¬T ⇒ False) because comparisons on Q are decidable.
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— Third Step. If P ′ is unsatisfiable, then so is [[P ′]](m), and the goal is finally discharged.
Otherwise, given E the complete set of equalities in P ′, equalities of [[E]](m) are rewritten
in the goal. For example, on the ex1 goal, our tactic rewrites the learned equality “x=1”
into the remaining hypothesis. In summary, a first call to the vpl tactic transforms the
ex1 goal into

x=1, ( f 1 ) < ( f 1 ) ` False
A second call to vpl detects that hypothesis ( f 1 ) < ( f 1 ) is unsatisfiable and finally
proves the goal.

In the description above, we claim that our transformations on the goals are equivalences.
This provides a guarantee to the user: the tactic can always be applied on the goal, without loss
of information. However, in order to make the C proof checker accept our transformations,
we only need to prove implications, as detailed in the next paragraph.

The Proof Built by the Tactic. The tactic mainly proves the two following implications
which are verified by the C kernel:

Γ′, [[P]](m) ` T ′ ⇒ Γ ` T (8.2)
∀m, [[P]](m) ⇒ [[P ′]](m) (8.3)

Semantics of polyhedra [[.]] is encoded as a C function, using binary integers to encode
variables of polyhedra. After simple propositional rewritings in the initial goal Γ ` T , an
OC oracle provides m and P to the C kernel, which simply computes [[P]](m) and
checks that it is syntactically equal to the expected part of the context. Hence, verifying
implication (8.2) is mainly syntactical.

For implication (8.3), our reduce oracle actually produces a C AST, that represents a
proof witness that allows expressing each constraint of P ′ as a Farkas combination of P
constraints. In practice, this proof witness is a value of a C inductive type. A C function
called reduceRun takes as input a polyhedron P and its associated witness, and computes P ′.
A C theorem ensures that any result of reduceRun satisfies implication (8.3). Thus, this
implication is ensured by construction, while – for the last step of the tactic described above
– the C kernel computes P ′ by applying reduceRun.

8.2 Using the Tactic
Combining solvers by exchanging equalities is one of the basis of modern  solving,

as pioneered by approaches of Nelson-Oppen (Oppen, 1980) and Shostak (1984). This section
illustrates how equality learning in a interactive prover mimics such equality exchange, in
order to combine independent tactics. While much less automatic than standard  solving,
our approach provides opportunities for the user to compensate “by hand” for the weaknesses
of a given tactic.

The main aspects of the vpl tactic are illustrated on the following goal. It contains
two uninterpreted functions f and g such that f’s domain and g’s codomain are the same
uninterpreted type A. As we will see below, in order to prove this goal, we need to use its last
hypothesis – of the form “g (. . .) <> g ( 1 3 ) ” – by combining equational reasoning on g and on
Qc field. Of course, we also need linear arithmetic on Qc order.

Lemma ex2 (A:Type) (f:A → Qc) (g:Qc → A)
(v1 v2 v3 v4:Qc) :
6*v1 - v2 - 10*v3 + 7*(f(g v1)+1) ≤ -1
→ 3*(f(g v1)-2*v3)+4 ≥ v2-4*v1
→ 8*v1 - 3*v2 - 4*v3 - f(g v1) ≤ 2
→ 11*v1 - 4*v2 > 3
→ v3 > -1
→ v4 ≥ 0
→ g((11-v2+13*v4)/(v3+v4)) <> g(13)
→ 3 + 4*v2 + 5*v3 + f(g v1) > 11*v1.
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The vpl tactic reduces this goal to the equivalent one given below (where typing of variables
is omitted).

H5: g((11-(11-13*v3)+13*v4)/(v3+v4))=(g 13)
→ False

vpl: v1 = 4-4*v3
vpl0: v2 = 11-13*v3
vpl1: f(g(4-4*v3)) = -3+3*v3
______________________________________(1/1)
0 ≤ v4 → (3#8) < v3 → False

Here, three equations vpl, vpl0 and vpl1 have been learned from the goal. Two irredundant
inequalities remain in the hypotheses of the conclusion – where (3#8) is the C notation
for 3

8 . The bound v3 > −1 had disappeared because it is implied by (3#8) < v3. By taking
v3 = 1 , we can build a model satisfying all the hypotheses of the goal – including (3#8) < v3
– except H5. Thus, using H5 is necessary to prove False.

Actually, we provide another tactic which automatically proves the remaining goal. This
tactic, called vpl_post, combines equational reasoning on Qc field with a bit of congruence. 3
Let us detail how it works on this example. First, in backward reasoning, hypothesis H5
is applied to eliminate False from the conclusion. We get the following conclusion (where
previous hypotheses have been omitted).

______________________________________(1/1)
g((11-(11-13*v3)+13*v4)/(v3+v4))=(g 13)

Here, backward congruence reasoning reduces this conclusion to

______________________________________(1/1)
(11-(11-13*v3)+13*v4)/(v3+v4)=13

Now, the field tactic reduces the conclusion to

______________________________________(1/1)
v3+v4 <> 0

Indeed, the field tactic mainly applies ring rewritings on Qc while generating subgoals for
checking that denominators are not zero. Here, because we have a linear denominator, we
discharge the remaining goal using the vpl tactic again. Indeed, it gets the following unsat-
isfiable polyhedron in hypotheses.

v4 ≥ 0 ∧ v3 >
3

8
∧ v3+ v4 = 0

Let us remark that lemma ex2 is also valid when the codomain of f and types of variables
v1,. . .,v4 are restricted to Z and operator “/” means the Euclidean division. However, both
omega and lia fail on this goal without providing any help to the user. This is also the
case of the verit tactic of SMTC because it deals with “/” as a non-interpreted symbol
and can only deal with uninterpreted types A providing a decidable equality. By assuming
a decidable equality on type A and by turning the hypothesis involving “/” into “g((11-
v2+13*v4)) <> g(13*(v3+v4))”, we get a slightly weaker version of ex2 goal which is proved
by verit.

This illustrates that our approach is complementary to  solving: it provides less au-
tomation than  solving, but it may still help to progress in an interactive proof when 
solvers fail.

8.3 The Reduction Algorithm
The specification of the reduce oracle is given in §8.1: it transforms a polyhedron P into

a reduced polyhedron P ′ with a smaller number of constraints and such that P ′ ⇔ P . §8.3.3
and §8.3.4 describe our implementation. In preliminaries, §8.3.1 gives a sufficient condition,

3. It is currently implemented on the top of auto with a dedicated basis of lemma.
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through Lemma 8.6, for a polyhedron to be reduced. This condition leads to learn equalities
from conflicts between strict inequalities as detailed in §8.3.2 and §8.3.3. In our proofs and
algorithms, we only handle linear constraints in the restricted form t ./ 0. But, for readability,
our examples use the arbitrary form t1 ./ t2.

8.3.1 A Refined Specification of the Reduction
Definition 8.3 (Echelon Polyhedron). An echelon polyhedron is written as a conjunction E∧ I
where polyhedron I contains only inequalities and where polyhedron E is written “

∧
i∈{1,...,k} xi−

ti = 0” such that each xi is a variable and each ti is a linear term, and such that the two following
conditions are satisfied. First, no variable xi appears in polyhedron I . Second, for all integers
i, j ∈ {1, . . . , k} with i < j then xi does not appear in tj .

Intuitively, in such a polyhedron, each equation xi − ti = 0 actually defines variable xi as
ti. As a consequence, E ∧ I is satisfiable if and only if I is satisfiable.

Definition 8.4 (Strict Version of Inequalities). Let I be a polyhedron containing only inequal-
ities. We note I> the polyhedron obtained from I by replacing each nonstrict inequality “t ≥ 0”
by its strict version “t > 0”. Strict inequalities of I remain unchanged in I>.

Geometrically, polyhedron I> is the interior of polyhedron I . Hence if I> is satisfiable
(i.e. the interior of I is non empty), then polyhedron I does not fit inside an hyperplane.
The following Lemma 8.6 is only a reformulation of this trivial geometrical fact. Let us first
introduce another corollary of Farkas’ lemma that will be useful for the proof of Lemma 8.6.

Corollary 8.5. Let us consider a satisfiable polyhedron I written
∧k

j=1 tj ./j 0 with ./j∈ {≥, >}.
Then, I> is unsatisfiable if and only if there exists k nonnegative rationals (λj)j∈{1,...,k} ∈ Q+

such that
∑k

j=1 λjtj = 0 and ∃i ∈ {1, . . . , k}, λi > 0.

Proof.
(⇐): Suppose k nonnegative rationals (λj)j∈{1,...,k} such that

∑k
j=1 λjtj = 0 and some index

i ∈ {1, . . . , k} such that λi > 0. It means that there is a Farkas combination of 0 > 0 in terms
of I>. Thus by Farkas’ lemma, I> is unsatisfiable.
(⇒): Let us assume that I> is unsatisfiable. Then there exists k nonnegative rationals
(λj)j∈{1,...,k} such that at least one of them is positive and

∑k
j=1 λjtj = −λ, with λ ≥ 0. This

result is an extension of Corollary 1.6 (p.24). Let x be a point of I . By definition, we have∑k
j=1 λjtj(x) = λ′ with λ′ ∈ Q+. But since I is satisfiable, any nonnegative combination of

constraints of I is feasible, i.e.
∑k

j=1 λjtj = λ′ with λ′ ∈ Q+. Thus, −λ=λ′=0.

Lemma 8.6 (Completeness from Strict Satisfiability). Let us assume an echelon polyhedron
E ∧ I without redundant constraints, and such that I> is satisfiable.
Then, E ∧ I is a reduced polyhedron.

Proof. Let us prove property (8.1) of Definition 8.1, i.e. that E is complete w.r.t. I . Because
t1 = t2 ⇔ t1− t2 = 0, without loss of generality, we only prove property (8.1) in the case where
t2 = 0 and t1 is an arbitrary linear term t.

Let t be a linear term such that E ∧ I ⇒ t = 0. In particular, E ∧ I ⇒ t ≥ 0. By Farkas’
lemma, there are k + 1 nonnegative rationals (λj)j∈{0,...,k} such that t = λ0 +

∑k
j=1 λjtj .

Moreover, since I> is satisfiable, then by Corollary 8.5, forall (λ′
j)

k
j=1 ∈ Q+,

∑k
j=1 λ

′
jtj > 0.

Suppose by contradiction that a constraint of I appears in the Farkas combination of t in
terms of E∧ I . Then, the Farkas combination t = λ0+

∑k
j=1 λjtj is positive, which contradicts

the initial hypothesis t = 0. Thus, E ⇒ t ≥ 0.
A similar reasoning with E ∧ I ⇒ t ≤ 0 finishes the proof that E ⇒ t = 0.

Lemma 8.6 gives a strategy to implement the reduce oracle. If the input polyhedron P
is satisfiable, then try to rewrite P as an echelon polyhedron E ∧ I where I> is satisfiable.
The next step is to see that from an echelon polyhedron E ∧ I where I> is unsatisfiable, we
can learn new equalities from a minimal subset of I> inequalities that is unsatisfiable. The
inequalities in such a minimal subset are said in conflict.
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8.3.2 Conflict Driven Equality Learning
Conflict Driven Clause Learning (CDCL) is a standard framework of modern DPLL SAT

solving (Silva et al., 2009). Given a set of nonstrict inequalities I, we reformulate the satisfia-
bility of I into this framework by considering each nonstrict constraint t ≥ 0 of I as a clause
(t > 0) ∨ (t = 0). Hence, our literals are either strict inequalities or equalities.

Let us run a CDCL SAT solver on such a set of clauses I . This “thought experiment” will
simply help to interpret our equality learning algorithm – presented in the next sections – as a
particular optimization of the generic clause learning algorithm. First, let us imagine that the
SAT solver assumes all literals of I>. Then, an oracle decides whether I> is satisfiable. If so,
then we are done. Otherwise, by Corollary 8.5, the oracle returns the unsatisfiable constant
constraint 0 > 0 that is written

∑
j∈J λjtj where for all j ∈ J , λj > 0 and (tj > 0) ∈ I>. The

CDCL solver learns the new clause
∨

j∈J tj = 0 equivalent to ¬I> under hypothesis I .
In fact, a simple arithmetic argument improves this naive CDCL algorithm by learning

directly the conjunction of literals
∧

j∈J tj = 0 instead of the clause
∨

j∈J tj = 0. Indeed, since∑
j∈J λjtj = 0 (by Corollary 8.5) and ∀j ∈ J, λj > 0, then each term tj of this sum must be 0.

Thus, ∀j ∈ J, tj = 0.
In the following, we learn equalities from conflicts between strict inequalities in an ap-

proach inspired from this naive CDCL algorithm. Whereas the number of oracle calls for
learning n equalities in the naive CDCL algorithm is Ω(n), our additional arithmetic argu-
ment limits this number to O(1) in the best cases.

8.3.3 Building Equality Witnesses from Conflicts
Let us now detail our algorithm to compute equality witnesses. Let I be a satisfiable

inequality set such that I> is unsatisfiable. The oracle returns a witness combining n + 1
constraints of I> (for n ≥ 1) that implies a contradiction:

n+1∑
i=1

λi · I>i where λi > 0

By Corollary 8.5, this witness represents a contradictory constraint 0 > 0 and each inequality
Ii is nonstrict. Each inequality Ii is turned into an equality written I=i , which is proved by

Ii &
1

λi
·

n+1∑
j=1, j 6=i

λj · Ij

where & is the merge operator that we defined in §7.3.1. This operator takes two inequalities
t ≥ 0 and −t ≥ 0 to prove t = 0. Here, 1

λi
·
∑n+1

j=1, j 6=i λj · Ij = −Ii. Hence, each equality
I=i is proved by combining n + 1 constraints. Proving (I=i )i∈{1,...,n+1} in this naive approach
combines Θ(n2) constraints.

We rather propose a more symmetric way to build equality witnesses which leads to a
simple linear algorithm. Actually, we build a system of n equalities noted (Ei)i∈{1,...,n} such
that, for i ∈ {1, . . . , n}, Ei corresponds to the unsatisfiability witness where the i-th “+” has
been replaced with a “&”: (∑i

j=1 λj · Ij
)

&
(∑n+1

j=i+1 λj · Ij
)

This system of equations is proved equivalent to system (I=i )i∈{1,...,n+1} thanks to the following
correspondence. 

I=1 = 1
λ1
· E1

I=n+1 = − 1
λn
· En

∀i ∈ {2, . . . , n}, I=i = 1
λi
· (Ei − Ei−1)

This also shows that one equality I=i is redundant, because (I=i )i∈{1,...,n+1} contains one more
equality than (Ei)i∈{1,...,n}.
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In order to use a linear number of combinations, we build (Ei)i∈{1,...,n} thanks to two lists
of intermediate constraints (Ai)i∈{1,...,n} and (Bi)i∈{2,...,n+1} defined by{

A1
def
= λ1 · I1

for i from 2 up to n, Ai
def
= Ai−1 + λi · Ii{

Bn+1
def
= λn+1 · In+1

for i from n down to 2, Bi
def
= Bi+1 + λi · Ii

Then, we build Ei
def
= Ai & Bi+1 for i ∈ {1, . . . , n}.

Example 8.1. Let us detail the computation of the reduced form of the following polyhedron
P .

P
def
=


I1 : x1 + x2 ≥ x3,
I2 : x1 ≥ −10,
I3 : 3x1 ≥ x2,
I4 : 2x3 ≥ x2,
I5 : − 1

2x2 ≥ x1

P is a satisfiable set of inequalities. Thus, we first extract a complete set of equalities E
from constraints of P by applying the previous ideas. We ask a LP solver for a point sat-
isfying P>, the strict version of P . Because there is no such point, the solver returns the
unsatisfiability witness I>1 + 1

2 · I
>
4 + I>5 (which reduces to 0 > 0). By building the two

sequences (Ai) and (Bi) defined previously, we obtain the two equalities

E1 : x1 + x2 = x3 proved by (x1 + x2 ≥ x3)︸ ︷︷ ︸
A1: I1

& (x3 ≥ x1 + x2)︸ ︷︷ ︸
B2:

1
2 ·I4+I5

E2 : x1 = − 1
2x2 proved by (x1 ≥ − 1

2x2)︸ ︷︷ ︸
A2: I1+

1
2 ·I4

& (− 1
2x2 ≥ x1)︸ ︷︷ ︸
B3: I5

Thus, P is rewritten into E ∧ I with

E
def
=
{
E1 : x1 + x2 = x3, E2 : x1 = − 1

2x2

}
I

def
= {I2 : x1 ≥ 10, I3 : 3x1 ≥ x2}

To be reduced, the polyhedron must be in echelon form, as explained in Definition 8.3.
This implies that each equality of E must have the form xi − ti = 0, and each such xi must
not appear in I . Here, let us consider that E1 defines x2. To be in the form t = 0, E1 is
rewritten into x2− (x3−x1) = 0. Then, x2 is eliminated from E2, leading to E′

2 : x1+x3 = 0.
In practice, our oracle goes one step further by rewriting x1 (using its definition in E′

2) into
E1 in order to get a reduced echelon system E′ of equalities:

E′ def
= {E′

1 : x2 − 2x3 = 0, E′
2 : x1 + x3 = 0}

Then, variables defined in E′ (i.e. x1 and x2) are eliminated from I, which is rewritten into

I ′
def
= {I ′2 : −x3 ≥ −10, I ′3 : −x3 ≥ 0}

The last step is to detect that I ′2 is redundant w.r.t. I ′3 with a process indicated in the next
section.

8.3.4 Description of the Algorithm
The pseudo-code of Algorithm 8.2 describes the reduce algorithm. For simplicity, the

construction of proof witnesses is omitted. To summarize, the result of reduce is
— either “Contrad(c)” where c is a contradictory constraint
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Algorithm 8.2: Pseudo-code of the reduce oracle
Function reduce (E ∧ I)

(E, I)← echelon(E, I);
switch isSat (I) do

case U (λ) do return C(λᵀ · I) ;
case S (_) do

while  do
switch isSat (I>) do

case U (λ) do
(E′, I ′)← learn(I,λ);
(E, I)← echelon(E ∧ E′, I ′);

case S (x) do
I ← minimize(I,x);
return R(E, I);

— or “Reduced(P ′)” where P ′ is a satisfiable reduced polyhedron.

The input polyhedron is assumed to be given in the form E∧I, where E contains only equalities
and I contains only inequalities. First, polyhedron E∧I is echeloned: function echelon returns
a new system E ∧ I where E is an echelon system of equalities without redundancies (they
have been detected as 0 = 0 during echeloning and removed) and without contradiction (they
have been detected as 1 = 0 during echeloning and inserted as a contradictory constraint
−1 ≥ 0 in I). Second, the satisfiability of I is tested by function is_sat. If is_sat returns
Unsat (λ), then λ is a Farkas combination yielding a contradictory constant constraint written
λᵀ · I . Otherwise, I is satisfiable and reduce enters into a loop to learn all implicit equalities.

At each step of the loop, the satisfiability of I> is tested. If is_sat returns Unsat (λ), then
a new set E′ of equalities is learned from λ and I ′ contains the inequalities of I that do not
appear in the conflict. After echeloning the new system, the loop continues.

Otherwise, is_sat returns Sat(x) where x is a model of I>. Geometrically, x is a point in
the interior of polyhedron I . Point x helps function minimize detect and remove redundant
constraints of I : it can be used as an interior point for the raytracing algorithm described in
Chapter 2. At last, reduce returns E ∧ I, which is a satisfiable reduced polyhedron because
of Lemma 8.6.

Variant. In a variant of this algorithm, we avoid testing the satisfiability of I before entering
the loop (i.e. we avoid the first step of the algorithm). Indeed, the satisfiability of I can
be directly deduced from the witness returned by is_sat(I>). If the combination of the
linear terms induced by the witness gives a negative number instead of 0, it means that I
is unsatisfiable. However, we could make several loop executions before finding a witness
showing that I is unsatisfiable: I can contain several implicit equalities which do not imply
the unsatisfiability of I and that may be discovered first. We do not know which version is
the more efficient. It probably depends on the kind of polyhedra the user is upon to use.

8.4 Conclusion

We described a C tactic that learns equalities from a set of linear rational inequalities.
It is less powerful than C SMT tactics (Armand et al., 2011; Besson et al., 2011) and than
the famous sledgehammer of ISABELLE (Böhme and Nipkow, 2010; Blanchette et al., 2013).
But, it may help users to progress on goals that do not exactly fit into the scope of existing
 solving procedures.
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This tactic uses a simple algorithm that follows a kind of conflict driven clause learning.
This equality learning algorithm only relies on an efficient SAT solver on inequalities able to
generate nonnegativity witnesses. Hence, it seems generalizable to arbitrary polynomials. We
may also hope to generalize it to totally ordered rings like Z.

In the previous version of the VPL, Fouilhé also reduced polyhedra as defined in Defini-
tion 8.2. It implemented equality learning in a more naive way: for each inequality t ≥ 0 of the
current (satisfiable) inequalities I, the algorithm checks whether I ∧ t > 0 is satisfiable. If not,
equality t = 0 is learned. In other words, each learned equality derives from one satisfiability
test. Our new algorithm is more efficient, since it may learn several equalities from a single
satisfiability test. Moreover, when there is no equality to learn, the new algorithm performs
only one satisfiability test, whereas the previous version checks all inequalities one by one.

Our tactic is still a prototype. Additional works are required to make it really robust in
interactive proofs. For example, the user may need to stop the tactic before the rewritings of the
learned equalities are performed, for instance when some rewriting interferes with dependent
types. The user can invoke instead a subtactic vpl_reduce, and apply these rewritings “by
hand”. The maintainability of such user scripts thus depends on the stability of the generated
equalities and their order w.r.t. small changes in the input goal. A first step toward stability
would be to make our tactic idempotent by keeping the goal unchanged on a already reduced
polyhedron. However, we have not yet investigated these stability issues.





Chapter 9

Certification of Handelman’s
Linearization

In §4.4, we presented Handelman’s linearization that aims at over-approximating the effect
of a polynomial guard Q ≥ 0 on a polyhedron P = {C1 ≥ 0, . . . , Cp ≥ 0}. Let us summarize
the whole process.

First, an oracle chooses a set of Schweighofer products (SI)I∈I . Recall that such products
have general form Ci1

1 · · ·C
ip
p ·Qip+1

p+1 · · ·Q
iq
q : they are composed of affine forms C1 ≥ 0, . . . , Cp ≥ 0

and polynomials Qp+1 ≥ 0, . . . , Qq ≥ 0. Then, the chosen SI ’s are used to define a PLOP
encoding that looks for affine functions of the form

f(x) = Q(x) +
∑
I∈I

λIS
I(x) (9.1)

By construction, each product SI is nonnegative on P ∧ {Qp+1 ≥ 0, . . . , Qq ≥ 0}. This entails
f ≥ Q on P , hence P ∧ (Q ≥ 0) ⊆ P u (f ≥ 0).

In practice, our heuristics for choosing I (detailed in §4.4.3) can only produce Schweighofer
products of two forms:
(1) HJ×(xε1

1 · · ·xεn
n )

2, where HJ is a Handelman product, i.e. of the form Cj1
1 ×. . .×C

jp
p . The

right part (xε1
1 · · ·xεn

n )
2 results from a heuristic that extracts even powers of polynomials.

(2) (
∏

Fλ(P))× (xε1
1 · · ·xεn

n )
2, where Fλ(P) is the Farkas combination

∑p
j=1 λjCj . This form

results from the “Simple Products” heuristic, that cancels nonlinear monomials by finding
products of variable bounds (i.e. xj+lj ≥ 0 or −xj+uj ≥ 0). A variable bound is obtained
from a Farkas combination Fλ(P), found by solving a LP problem.

Like the rest of the VPL, Handelman’s linearization is certified a posteriori. An OC
oracle chooses the set of Schweighofer products, and provides nonnegativity certificates used
by a C checker. The certificate format schweighofer that we use covers both cases (1) and
(2):

Definition natIndex : Type := list nat.

Definition squares : Type := list (PExpr * N).

Definition QIndex : Type := list Q.

Definition schweighofer : Type := natIndex * squares * (list QIndex.t).

natIndex is the type for multi-indices of natural integers. An element of this type represents an
index J associated to a Handelman product, i.e. HJ = Cj1

1 × . . .×C
jp
p . Type squares represents

a product of polynomials with even exponents. A pair (p,ε) : (PExpr * N) represents p2×ε.
Here, PExpr is the type of polynomial expressions over rationals, that comes from the setoid
theory of C. Type QIndex is a list of rationals that represents the vector λ of a Farkas
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combination Fλ(P). A list of QIndex represents a product of such Farkas combinations, i.e.∏
Fλ(P). Finally, type schweighofer represents a product of the three other types of products:

natIndex, squares or list QIndex.
The following section gives the design of our C checker for such certificates.

9.1 Design of the Coq Checker
Basically, the proof of Handelman’s linearization boils down to proving that “products and

sums of nonnegative elements are nonnegative”. But, as often in C, some subtleties appear.
In particular, we will manipulate two types for polynomials: type QTerm.t that implements an
abstract syntax for general arithmetic expressions in the VPL, and type PExpr, that we will
use to efficiently test polynomial equality. These two types will induce conversions from one
to the other, that must be proved in C.

When generating a Schweighofer product SI , the oracle attaches to it a nonnegativity
certificate of type schweighofer given above. To build the affine form f , the oracle provides the
set (represented as a list) of Schweighofer products (SI)I∈I and their associated coefficients
λI that give the expression of f in Equation (9.1). The C type for this certificate is the
following:

Definition certificate : Type := list (Q * schweighofer)

In addition to a certificate, the oracle provides two other elements:
— The affine form f resulting from the linearization. It is given in type QTerm.t, the type

of general terms over Qc in the VPL. Qc is the type of irreducible rationals of C, it is
a dependent type associating a fraction with a proof of irreducibility, contrary to Q that
are arbitrary fractions.

— A map τ indexed by natIndex that guides C into the computation of Handelman
products. The creation of this map is detailed in the next section.

The result returned by the oracle is finally given in the following type:

Record oracle_result : Type := mk{
f : QTerm.t;
certif : certificate;
τ : Map(natIndex → list natIndex)}.

In C, we implement a function checker for verifying an oracle_result. Roughly, it checks
that f is actually affine and that it is nonnegative on P . If it is the case, checker returns an
affine form (of type QAffTerm.t) equal to f.

Definition checker (P : list Cstr.t) (Q : QTerm.t) (r : oracle_result)
: QAffTerm.t :=
let f' := compute_solution P Q r in

if f'
PExpr
= to_PExpr r.(f)

then let (te,aft) := QTerm.affineDecompose r.(f) in

if te
PExpr
= 0PExpr

then aft
else failwith CERT "eq_witness : f is not linear" trivial

else failwith CERT "eq_witness : f and f' differ" trivial.

This function takes the input polyhedron P (given as a list of constraints), the input polynomial
Q, and the oracle result r. Function compute_solution builds f'def= Q+

∑
I∈I λIS

I from the oracle
result. When computing f', compute_solution checks that each coefficient λI provided by the
oracle is actually nonnegative. We prove a lemma ensuring that any result of compute_solution
is nonnegative on P . Then, the checker compares f' with the solution r.(f) returned by the
oracle. If f' 6= r.(f), it means that the certificate provided by the oracle is wrong, and an
alarm informing on an oracle bug is raised. In that case, the checker returns trivial, which
is a constant of type QAffTerm.t representing the trivial constraint 1 ≥ 0. If f' = r.(f), r.(f) is
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ensured to be nonnegative on P , since f' is. After that, a certified procedure affineDecompose
splits r.(f) into two terms (te,aft), aft being the affine part of r.(f). If te 6= 0PExpr, another
alarm is raised: the result is not affine as claimed by the oracle! Otherwise, it means that the
nonlinear part te of r.(f) is null, hence r.(f) is proved affine.

In fact, the function r.(f) returned by the oracle is not really necessary for the proof.
The checker could simply prove that the function f' it has built is affine, and return it. The
equality test performed by the checker between f' and r.(f) is an additional verification
(both of the certificate generation and the C functions) ensuring that the computation of
f' went as expected. Indeed, this computation involves many datastructures, conversions and
certificates, and even if f' is proved nonnegative, it is not straightforward that it ends up
equal to r.(f).

To summarize, the checker verifies that r.(f) is nonnegative by building a polynomial f'
(that should be equal to r.(f)) from the certificates provided by the oracle. Then, it checks
that r.(f) is affine by testing if its nonlinear part is null. If either of these two conditions is
false, the checker returns a trivial (but weak) constraint 1 ≥ 0 and raises an alarm. Thus, in
any case, the following theorem holds:

Lemma checker_pos (P : list Cstr.t) (Q : QTerm.t) (r : oracle_result) :
∀ (x : Mem.t),
x ∈ P

→ 0PExpr

PExpr

≤ eval_PExpr (to_PExpr Q) x

→ 0QAffTerm

QAffTerm

≤ eval_QAffTerm (checker P Q r) x

This theorem states that, given a memory x (representing a point mapping variables of P to
rational coefficients), if x lies in the input polyhedron P and satisfies guard 0 ≤ Q, then it
also satisfies guard 0 ≤ f , where f is the affine function returned by checker.

As mentioned above, the proof of this theorem boils down to proving that products and sums
of nonnegative elements are nonnegative. The difficulty comes from the multiple datastructures
that we use to represent terms:

— Constraints of P have type Cstr.t, which are radix trees mapping variables to their
coefficient in the constraint.

— The input polynomial Q is given in type QTerm.t, which is the type of general arithmetic
expressions in the VPL.

— The oracle result r.(f) is also given in type QTerm.t, to be easily proved affine thanks to
function affineDecompose.

— The term f' built by compute_solution is in type PExpr, which is more efficient to test
equality between polynomials.

Manipulating all those types requires writing conversion functions from one type to another.
Moreover, expressing theorem checker_pos needs the definition of semantics for each type (to
evaluate a polynomial on a point). Therefore, an important part of this C development
consists in proofs of semantics preservation during the conversion between the different types
for polynomials.

The following section summarizes the implementation of function compute_solution, that
builds the affine form f' from the certificate provided by the oracle.

9.2 Computing Handelman Products in Coq
As we saw, a Schweighofer product can be defined from a Handelman product, i.e. a

product of the form
HJ def

= Cj1
1 · · ·Cjp

p

Let us call (HJ )J∈J the set of Handelman products involved in all chosen Schweighofer
products (SI)I∈I . Blindly computing each Handelman product HJ from scratch would be
too costly, especially with C datastructures. Among all the chosen products HJ ’s, lots of
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them share a common subproduct. For instance, with three constraints, H(2,1,3) = C2
1 ·C2 ·C3

3

and H(1,2,1) = C1 · C2
2 · C3 have a common subproduct which is H(1,1,1). Indeed, H(2,1,3) =

H(1,0,2) ·H(1,1,1) and H(1,2,1) = H(0,1,0) ·H(1,1,1). A nonnull multi-index J is a subproduct of
J ′ and J ′′ if and only if J ≤ J ′ and J ≤ J ′′ where ≤ denotes the element-wise comparison
of multi-indices that we defined in §4.3.1.1:

J ≤ J ′ ⇔ ∀k, jk ≤ j′k

Multiplying polynomials in C representation is costly. Therefore, we will try to limit
the number of multiplications by exploiting common subproducts as much as possible. To
do so, the type oracle_result defined above provides a map τ associating a multi-index J
(representing a Handelman product HJ ) to a decomposition in subproducts, given as a list
of multi-indices. For instance, to compute products H(2,1,3),H(1,2,1) and H(1,1,3), one possible
map τ would be:

(2, 1, 3) → (1, 0, 2), (1, 1, 1)
(1, 2, 1) → (1, 1, 1), (0, 1, 0)
(1, 1, 3) → (1, 1, 1), (0, 0, 2)
(0, 0, 2) → (0, 0, 1), (0, 0, 1)
(1, 0, 2) → (1, 0, 0), (0, 0, 2)
(1, 1, 1) → (1, 0, 0), (0, 1, 0), (0, 0, 1)

When the index J of a product is unitary, meaning that it contains one coefficient 1 and other
coefficients are 0, this product cannot be decomposed: it corresponds to a single constraint
Ci, and we denote this index as Ui.

To compute Handelman products, function compute_solution will build another map σ in
C, associating a multi-index J to its Handelman product HJ , which is a polynomial of
type PExpr. To prove theorem checker_pos, we will exploit an invariant of σ saying that any
polynomial it contains is nonnegative. To ensure this, σ must be entirely built in C in the
following way:

— First, each unitary multi-index Ui is associated in σ with the input constraint Ci, which
is nonnegative by hypothesis.

— Then, Handelman products are computed by multiplying polynomials that are already
present in σ, and therefore nonnegative.

To avoid redundant calculus, each polynomial of σ will be computed following decompo-
sitions given by τ . For instance, with C1 : x1 − 1 ≥ 0, C2 : x2 +2 ≥ 0 and C3 : 3− x1 − x2 ≥ 0,
suppose we wish to compute Handelman products H(2,1,3),H(1,2,1) and H(1,1,3). The map σ,
built following instructions from τ , would be:

(1, 0, 0) → H(1,0,0) = x1 − 1
(0, 1, 0) → H(0,1,0) = x2 + 2
(0, 0, 1) → H(0,0,1) = 3− x1 − x2

(1, 1, 1) → H(1,0,0) ·H(0,1,0) ·H(0,0,1)

= −x2
1x2 − x1x

2
2 − 2x2

1 + 2x1x2 + x2
2 + 8x1 − x2 − 6

(0, 0, 2) → H(0,0,1) ·H(0,0,1)

= x2
1 + 2x1x2 + x2

2 − 6x1 − 6x2 + 9
(1, 0, 2) → H(1,0,0) ·H(0,0,2)

= x3
1 + 2x2

1x2 + x1x
2
2 − 7x2

1 − 8x1x2 − x2
2 + 15x1 + 6x2 − 9

(1, 1, 3) → H(1,1,1) ·H(0,0,2) = ...
(1, 2, 1) → H(1,1,1) ·H(0,1,0) = ...
(2, 1, 3) → H(1,0,2) ·H(1,1,1) = ...

Thanks to τ , we computed H(2,1,3),H(1,2,1) and H(1,1,3) with 7 multiplications. Computing
a Handelman product HJ from scratch requires

∑
k jk − 1 multiplications. Hence, computing

naively these three products would involve 12 multiplications.
Now, let us see how τ is built by the OC oracle. Then, we will show how σ is represented

in C, and how it is built from τ .
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Algorithm 9.1: The building of map τ .
Input : A set J of multi-indices to decompose
Output: A map τ containing decompositions of multi-indices of J into subproducts
τ ← empty_map
while J 6= ∅ do

K ← argmax
J′

{
||J ′||

∣∣∣#{ J ∈ J | J ′ ≤ J} ≥ max
(
2, |J |

2

)}
if K = None then

for J ∈ J do

τ.addAssociation

HJ → H(1,0,...,0) ·H(1,0,...,0)︸ ︷︷ ︸
j1 times

· · ·H(0,...,0,1) ·H(0,...,0,1)︸ ︷︷ ︸
jm times


J ← ∅

else
for J ∈ J , K ≤ J do

τ.addAssociation
(
HJ → HK ·HJ−K

)
J ← J \ {J}
J ← J ∪ {J −K}

return τ

9.2.1 Construction of the Map τ .

The algorithm used by the OC oracle to build the map τ is given in Algorithm 9.1. Let
us explain the idea. Given a list J of Handelman products to compute, we try to find the
“highest” multi-index K such that HK is a subproduct of “many” HJ ’s, where “highest” and
“many” are left to specify:

— To define “highest”, we need to be able to compare two multi-indices. To do so, we
define a preorder among multi-indices, induced by the Euclidian norm ||J || def=

√(∑
i ji

2
)
.

Another norm could have been chosen, but the Euclidian one appears to behave better on
the cases we tested, in the sense that it builds a smaller map, hence less multiplications
to compute.

— We will consider indices K such that HK is a subproduct of at least half of the HJ ’s,
with a minimum of 2.

More formally, we look for a multi-index K defined as

K
def
= argmax

J′

{
||J ′||

∣∣∣∣#{ J ∈ J | J ′ ≤ J} ≥ max

(
2,
|J |
2

)}
(9.2)

where argmax
J′

designates the index J ′ on which the maximal norm is reached.

Then, J and τ are updated as follows. Let us call J1, . . . ,Jm the multi-indices of J from
which K is a subproduct. Then, J1, . . . ,Jm are removed from J , and they are decomposed
in τ as

HJi → HK ·HJi−K , ∀i ∈ {1, . . . ,m}

where Ji − K is the element-wise substraction. Then, J is augmented with K and K −
J1, . . . ,K − Jm, which are the new Handelman products to decompose. The algorithm then
iterates until J becomes empty.

If at some point, no multi-index K can be found by (9.2), it means that among all products
(HJ )J∈J , none of them share any common subproduct. All these HJ ’s are thus decomposed
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into unitary products:

HJ → H(1,0,...,0) ·H(1,0,...,0)︸ ︷︷ ︸
j1 times

· · ·H(0,...,0,1) ·H(0,...,0,1)︸ ︷︷ ︸
jm times

9.2.2 Making Maps Indexed by Multi-Indices in Coq
The C standard library provides a functor FMapAVL that takes as input a module M of

totally ordered elements, and builds a map indexed by elements from M. A module M is totally
ordered if it fulfills the following properties:

Parameter t : Type.

Parameter eq : t → t → Prop.
Parameter lt : t → t → Prop.

Axiom eq_refl : ∀ x : t, eq x x.
Axiom eq_sym : ∀ x y : t, eq x y → eq y x.
Axiom eq_trans : ∀ x y z : t, eq x y → eq y z → eq x z.

Axiom lt_trans : ∀ x y z : t, lt x y → lt y z → lt x z.
Axiom lt_not_eq : ∀ x y : t, lt x y → ¬ eq x y.

Inductive Compare (X : Type) (lt eq : X → X → Prop) (x y : X) : Type :=
| LT : lt x y → Compare lt eq x y
| EQ : eq x y → Compare lt eq x y
| GT : lt y x → Compare lt eq x y.

Parameter compare : ∀ x y : t, Compare lt eq x y.

Definition eq_dec : ∀ x y : t, {eq x y} + {¬ eq x y}.

In our case, M.t is type natIndex that represents an index J , which is implemented as a
list of integers – type nat of C.

We define the usual lexicographic order over indices. In the following, J [n] designates the
nth element of list J , and J [: k] is the sublist [J [0], . . . ,J [k−1]]. Let J1 and J2 be two indices.
They are equal if they have the same length, and if their coefficients are equal:

J1 = J2 ⇔ (length(J1) = length(J2)) ∧ (∀i ∈ {1, . . . , length(J1)}, J1[i] = J2[i])

J1 < J2 either if J1 is a sublist of J2, or if they are equal until the (k − 1)th element, and
J1[k] < J2[k]:

J1 < J2 ⇔

{
(length(J1) < length(J2) ∧ J1 = J2[: length(J1)])

∨
(∃k ∈ N, k < length(J1), k < length(J2), J1[k] < J2[k] ∧ J1[: k] = J2[: k])

(9.3)

Let us give these operators in C. Note that nth : i l d returns the ith element of list l;
d is a default element returned by nth if l does not have i+1 elements.

Definition eq (I1 I2 : t): Prop :=
length I1 = length I2 ∧
∀ i:nat, ∀ d:N.t, (i < length I1 → nth i I1 d = nth i I2 d).

Definition lt (I1 I2 : t) : Prop :=
∀ d:N.t,
(length I1 < length I2 ∧ ∀ i:nat, i < length I1 → nth i I1 d = nth i I2 d)
∨ (∃ k:nat, k < length I1 ∧ k < length I2

∧ N.lt (nth k I1 d) (nth k I2 d)
∧ ∀ i:nat, i < k → nth i I1 d = nth i I2 d).
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With these two definitions, we can prove each property of an ordered type. eq_refl, eq_sym
and eq_trans can be proved by induction on i. As lt is defined with a disjunction, lt_trans
is a bit more tedious to prove: we must prove transitivity for all cases of (9.3).

After proving that natIndex is an ordered type, we can now build maps indexed by natIndex
in C. The map τ , built by the OC oracle, has type Map(natIndex -> list natIndex). The
map σ that we shall build now has type Map(natIndex -> PExpr). Let us see how to compute
σ from τ .

9.2.3 Construction of Map σ

Function cons_map takes as input τ , and the map σ initialized with input constraints Ci’s
of P . cons_map will fill σ with the Handelman products that have a decomposition in τ . First,
τ is changed into a list of association L of type list (natIndex * (list natIndex)) thanks
to function elements. We make sure that L is sorted according to the dependency between
multi-indices: elements that are subproducts of others come first.

Then, we iterate on L: each multi-index J is computed by multiplying the subproducts
coming from its decomposition in τ . If everything went as expected, those subproducts should
exist in σ: they have been computed in a previous iteration. If one of them is missing, it
means that the oracle is buggy and has produced a wrong map τ . In that case, an alarm
is raised, and the missing subproduct is replaced by 1PExpr to maintain the nonnegativity
invariant of σ.

Definition find (J : natIndex) (σ : Map(natIndex →PExpr)) : PExpr :=
match find J σ with
| Some p ⇒ p
| _ ⇒ failwith CERT "find : a subproduct is missing in σ" 1PExpr

end.

Definition compute_product (subproducts : list natIndex)
(σ : Map(natIndex →PExpr)) : PExpr :=
fold_right

(fun J p ⇒ (find J σ)
PExpr
× p)

1PExpr

subproducts.

Definition cons_map (τ : Map(natIndex → list natIndex))
(σ : Map(natIndex →PExpr)) : Map(natIndex → PExpr) :=
let L = elements τ in
fold_right
(fun (J, subproducts) σ′ ⇒

let polynomial = compute_product subproducts σ′ in
add_association J polynomial σ′)

σ L.

Finally, given an oracle_result, function compute_solution uses cons_map to build map
σ. It can then exploit σ to compute Q+

∑
I∈I λIS

I .

9.3 Coq Code of Handelman’s Linearization
The certification of Handelman’s linearization is implemented in about 2000 lines of C

code:
— 600 lines for the definition of natIndex as an ordered type, to be able to declare a map

type indexed by natIndex.
— 250 lines of semantics preservation between Q and Qc.
— 650 lines to build map τ from the oracle results, to define and prove the function

compute_solution that computes f ′ = Q+
∑

I∈I λIS
I , and to prove theorem checker_pos.
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— 400 lines to define type PExpr of polynomials over Qc, its semantics, and some conversions
between PExpr and QTerm.t.

Most tedious parts came from the multiple types for representing polynomials, that require
lemmas ensuring semantics preservation. Manipulating elements from Q and Qc at the same
time in proofs is particularly painful.

We presented the certification of the linearization of a polynomial guard Q ≥ 0 when the
approximation is a single affine form f . But, as presented in §4.4, Handelman’s linearization
produces several such affine forms fi. Actually, our proof covers this general case and handle
a list of oracle_result.

This C development would have been greatly simplified if realised in PFS (see Chapter 7).
Indeed, we could make a factory for computing Schweighofer products, ensuring that only
nonnegative polynomials are generated. This would avoid the need of maps τ and σ: products
would be computed in C datastructures directly by the OC oracle using operations from
the factory. In particular, the type natIndex that was used to build these maps would no
longer be necessary, as well as the proof that it is an ordered type. Roughly, PFS would make
obselete half the number of lines of code in the certification of Handelman’s linearization.
Actually, the use of PFS in the VPL came when the proof of Handelman’s linearization was
already finished, and we did not found the time to adapt it yet.



Conclusion

The goal of this work was to improve the scalability of the VPL, without jeopardizing the
certification. The most expensive operators of the library were projection and convex hull,
hence we looked for new algorithms to compute them.

Now, projection can be encoded as a PLP problem. As a consequence, several variables
can be eliminated at the same time, and the result is free of redundancies thanks to a
normalization constraint. Our comparison between the two algorithms for projection, namely
Fourier-Motzkin elimination and PLP, shows that our new encoding scales better (see §3.5).

In addition, I extended the VPL to the handling of nonlinear constraints with two ap-
proaches: intervalization and Handelman’s linearization. This latter showed interesting per-
formances in proving the emptiness of semialgebraic sets from the  community (see §4.4.4).

The certification process of the VPL in C has been reworked, following an innovative
framework named Polymorphic Factory Style (PFS) initiated by Sylvain Boulmé. By combining
LCF style with type polymorphism, PFS provides a lightweight approach of certification that
avoids cumbersome handling of certificates.

In this chapter, I present the current status of the VPL, and the testing framework that
I implemented for evaluating its performances. Then, we will see several research directions
that could follow this work.

Current Status of the VPL Implementation
Distribution. The source code of the VPL is available on GitHub. 1 Compilation and instal-
lation instructions are given on the GitHub webpage. It can also be installed via an OPAM
package, distributed via GitHub. The library currently contains about 25K lines of OC,
14K lines of C (mostly written by Sylvain Boulmé, extracted into 11.5K lines of OC),
and 1600 lines of C++ (written by Hang Yu).
With the help of David Bühler, we made a binding of the VPL for the static analyzer FRAMA-C
. It is for now available only on a developer branch of the FRAMA-C development.

Functors. In the VPL, vectors (which represent the linear part of constraints) are imple-
mented as radix trees indexed by positive variables, encoded as binary integers. These datas-
tructures date back to the initial version of the library. They were chosen with the belief that
polyhedra are sparse data; yet they are not sparse in intermediate computations. Simpler and
more adaptable structures could be beneficial, based for instance on OC maps indexed by
standard integers.
Following this idea, I started functorizing the VPL modules, so that the constraint type
could be changed. This work is not finished yet; it was not possible to adapt the simplex
algorithm written by A. Fouilhé, because its implementation heavily exploits the current tree
structure of vectors. Completing the functorization could allow changing the constraint type
and introducing hash-consing to optimize the involved memory space. We could also adapt
the datastructures for further needs:

— scalars could be directly implemented as Flint rationals, and polyhedra as Flint matrices
on which the C++ algorithms can operate;

1. https://github.com/VERIMAG-Polyhedra/VPL
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Figure 9.2 – Scheme of the test infrastructure.

— constraints could be encoded with integers coefficients and a single rational number
representing their gcd.

Flags. The VPL has a module Flags containing several mutable variables for customizing
operators. By changing them, the user can for example choose the algorithm used for projection
(between Fourier-Motzkin elimination or PLP), or for the convex hull (by projection or directly
by PLP). It is also possible to choose the type of scalar values used internally by the PLP
solver, between floats, GMP rationals or rationals with symbolic error, as defined in §1.3.2.2
(p.32).

Regression Testing. The VPL comes with a battery of regression tests that cover a large
part of the library. Most of them were implemented by A. Fouilhé in the previous version,
and were adapted to the new datastructures. In particular, operators are tested with different
values for the flags detailed above. In total, about 3300 tests are executed.

Testing Infrastructure
To evaluate the VPL performances, we developed a testing infrastructure, sketched on

Fig. 9.2. It was used for the evaluation of minimization by raytracing (in §2.4) and for
projection via PLP (in §3.5). The idea behind this infrastructure is the following: it is hard to
compare different abstract domain implementations while running an analysis. It requires a
lot of engineering work to connect these libraries into a single analyzer, which is even more
unpleasant when they are written in different languages. Moreover, analyzers are often not
designed for an optimal use of the polyhedra abstract domain: they make an intensive use of
the interval abstract domain, and ask for instance a lot of intervals bounding expressions and
subexpressions, resulting in useless and punishing computations.

Trace Format. We propose to evaluate libraries outside of analyzers. To do so, we define
a trace format (given in Fig. 9.3) for storing and replaying calls to the abstract domain. It
associates a unique identifier to store each abstract value, in order to avoid recomputing
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it during subsequent operations. For instance, the call P3 := P1 || P2 reuses the internal
representation of P1 and P2 in the abstract domain to compute their convex hull P3.

Trace Interpreter. The testing infrastructure comes with an interpreter of traces, written in
OC and named Trace_Runner. Given a trace file, the interpreter runs it on a given library.
For now, two libraries can be used: NEWPOLKA (via the OC interface of APRON) and
VPL. Trace_Runner is callable by command line and offers several parameters to customize the
execution. In addition to the library choice, these parameters allow changing flag values for
the VPL.
For instance, the trace used for the experiments on projection via PLP (in §3.5) is the following:

P1 := load P_20_10.poly
P2 := P1 \ [v1,v3,v4]
P3 := min P2

It computes the minimized representation of the polyhedron resulting from the elimination of
a list of variables from an input polyhedron loaded from file P_20_10.poly. This file contains
a polyhedron given as a matrix of rational coefficients.

Trace Generation. To obtain traces, two options are available: either write them by hand
(or by script), or ask the VPL used as an abstract domain in an analyzer to generate them.
Indeed, the VPL module UserInterface, which is the abstract domain interface of the VPL,
can keep track of each operation that has been called during an execution. Thus, by using
the VPL within a static analyzer such as FRAMA-C , we can record the calls to the abstract
domain made by a real analyzer. Then, this sequence of operations can be replayed on several
libraries to compare their performance, regardless of the analyzer.

Test Monitoring. The testing infrastructure provides a P script to monitor a whole set
of tests. The script is fed with a parametric trace, that is, a trace where some data is missing,
such as the input file where to load a polyhedron. For instance, a parametric version of the
previous script could be:

P1 := load %s
P2 := P1 \ [%s]
P3 := min P2

Here, the polyhedron to load and the list of variables to eliminate are left to be defined by
the test campaign, which instantiates the parametric trace with actual values, and launches
Trace_runner. An instantiation of the parametric trace form an instance of test.

XML Result File. Trace_runner provides timing results and stores them into an XML file.
It also associates additional information to these time measurements:

— the instance, i.e. parameters with which the parametric trace was instantiated;
— the name of the machine that ran the tests;
— the library used;
— the flags given to Trace_runner.

Before running a test instance, the P script that manages the test campaign looks if
the exact same test already appears in the XML result file. If it is not the case, it launches
Trace_runner and adds the results in the XML file. An example of such XML file is given in
Appendix B.

Curve Generation. The testing infrastructure provides a tool to finally generate curves
from the XML result file. The user specifies what he wants in abscissa (e.g. the number of
constraints), in ordinate (e.g. the execution time for the projection operator) and the machine
on which the tests have been done. Then, a python script will generate a plot with one curve
per different combination (library×flag set).
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trace ::=
Pident := operation

| load filename (* load polyhedron from f i l e * )
| trace \n trace (* sequence of t races * )

operation ::=
polyhedron && condition (* assume * )

| polyhedron && polyhedron (* meet * )
| is_bottom polyhedron (* i s _bo t tom * )
| assert condition in polyhedron (* asse r t * )
| assignments in polyhedron (* assignments * )
| polyhedron || polyhedron (* j o in * )
| polyhedron + polyhedron (* Minkowski sum * )
| polyhedron \ variables (* pro jec t i on * )
| polyhedron widen polyhedron (* widening * )
| upper_bound term in polyhedron (* get upper bound * )
| lower_bound term in polyhedron (* get lower bound * )
| itv term in polyhedron (* get i n t e r v a l * )
| min polyhedron (* minimization * )

polyhedron ::=
Pident

| top (* unbounded polyhedron * )

Pident ::= {P} (0..9)+ (* unique i d e n t i f i e r * )

assignments ::=
[]

| (var := term) :: assignments

condition ::=
true

| false
| condition /\ condition (* conjunct ion * )
| condition \/ condition (* d i s junc t ion * )
| not (condition) (* negation * )
| term <= term
| term >= term
| term = term

term ::=
var (* va r i a b l e * )

| [-] (0..9)+ / (1..9)+ (* r a t i ona l sca la r * )
| term + term (* sum * )
| term * term (* product * )

variables ::=
[]

| var :: variables

var ::= {v} (0..9)+

Figure 9.3 – Trace format of the testing infrastructure.
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Benchmark Generators. Aside from the testing infrastructure, we also provide a series of
SageMath scripts to generate polyhedra benchmarks. Each script focuses on a particular shape
of polyhedra: sphere approximations, rotated hypercubes, cylinder approximations, etc. These
scripts generate a set of random polyhedra fulfilling several user-defined parameters, such
as the number of variables, constraints, density, etc. They output polyhedra as matrices of
rational coefficients, loadable by the trace interpreter with the load command defined in the
trace format.

Distribution. We plan to distribute the whole testing infrastructure on GitHub, with our
benchmark generators. Before that, we need to adapt our trace format, to make it as easy as
possible to parse. We also plan to extend the format to make it more powerful, e.g. by adding
a loop structure.

Toward a PLP Abstract Domain
Two operators are now encoded as PLP problems in the VPL: projection and convex hull.

The library scalability has been greatly improved by this new encoding of the projection, mainly
by avoiding the generation of redundant constraints. Yet, the convex hull suffers a lot from
basis degeneracy (defined in §5.3), which still makes it a costly operation.

To overcome this issue, we propose to keep and exploit the partition in regions – resulting
from a PLP solving – of a polyhedron. We believe that the partitioning could be exploited to
speed up further operations based on PLP, especially the convex hull. For instance, consider
two polyhedra P ′ and P ′′, and their region partitioning, respectively (R′

i)i∈I and (R′′
j )j∈J .

Assume we want to compute the convex hull P = P ′ t P ′′ using the PLP encoding presented
in §3.6. We believe that this computation could be significantly faster by reusing regions R′

i’s
and R′′

j ’s.

Example 9.4. Consider P ′ def
= {x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} and P ′′ def

= {x1 ≤ 0, x2 ≤
0, x1 ≥ −1, x2 ≥ −1}. The left figure shows the region partitioning of P ′ into three regions,
normalized in x̊′. The right figure shows the region partitioning of P ′′ into four regions,
normalized in x̊′′.

Several constraints of P are constraints of P ′ or P ′′. To decide if a constraint c′ ≥ 0 of
P ′ will still appear in the convex hull P , it suffices to check if P ′ v (c′ ≥ 0). Similarly, a
constraint c′′ ≥ 0 of P ′′ will be kept into P if P ′′ v (c′′ ≥ 0). Building upon this remark, our
idea is to keep each region R′

i or R′′
j that is the support of a constraint that is not discarded

by the convex hull. Technically, the regions should be renormalized on the same point inside
the resulting polyhedron P . We can reuse the normalization point x̊′ of P ′, hence limiting
the renormalization to regions of R′′

j . Indeed, by construction x̊′ ∈ ˚[[P ′]], thus x̊′ ∈ ˚[[P]]. So,
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x̊′ is a convenient normalization point for the PLOP encoding of the convex hull P ′ t P ′′.
Renormalizing a region is straightforward: each frontier is transformed so that it crosses the
new normalization point x̊′ instead of x̊′′.

At this point, we have a set of regions (some from R′
i’s, some others from renormalized

R′′
j ’s) all normalized on the same point x̊′. They form an incomplete partition of P into

regions. Finally, all we have left to do is to compute the last constraints of P (that are not
constraints of P ′ or P ′′), by finding the missing regions of our incomplete partition. To do
so, we initialize our PLP solver with the regions that we already know. The solver will then
finish the job and compute only the missing regions.

Example 9.4.1. The figure shows the incomplete partition of region that we obtain after
renormalization of useful regions of P ′′. The only constraint of P ′ that will not be discarded
for P ′tP ′′ is x1+x2 ≤ 1. Thus, the region associated to x1+x2 ≤ 1 is kept. Two constraints
of P ′′ will be kept for the convex hull P ′ t P ′′: x1 ≥ −1 and x2 ≥ −1. The figure shows the
renormalization of their corresponding regions on the point x̊′.

This idea encourages working into a new direction, that is trying to maintain the region
partitioning associated to a polyhedron. This is a kind of new double description, where the
generators are replaced with a partition into regions. Most operators on polyhedra could be
adapted to maintain the region partitioning without difficulty.

Future Work
In addition to the new representation of polyhedra discussed in the previous section, our

work on the VPL can be extended in several directions.

VPL Implementation. The current implementation already provides all the operators re-
quired to use the VPL as an abstract domain. Several flags, mentioned earlier, let the user
choose between the available algorithms, e.g. between Fourier-Motzkin elimination and PLP
for the projection operator. Still, some work is needed to provide a user-friendly library, most
of it related to documentation. Even if the user-level interface is documented, many modules
still need a precise documentation, such as the debug module that allows printing a lot of
data about the execution of the operators.
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Distribution. Some engineering work is needed on the VPL to touch a wider used commu-
nity. First, we need to finish the functorization process mentioned earlier. Then, we plan to
build a user interface compliant with that of Apron, which is widely spread among polyhedra
users. We would like also to integrate the VPL into SageMath.

Use of Polyhedra in Static Analyzers. The integration of the VPL as an abstract domain in
the FRAMA-C static analyzer (EVA) reveals that it was not meant to use polyhedra. Replacing
calls to the interval abstract domain by requests on polyhedra results in inefficiency, and not
in a great increase in precision since many heuristics are guided by the range of variables.
We started some discussion with David Bühler and Boris Yakobowski from the FRAMA-C
team in order to use polyhedra only where the interval abstract domain failed to prove an
assertion.

Testing Infrastructure. The testing infrastructure must be generalized to be usable with
libraries in C, J, C++ and OC. It will provide a platform for a real comparison of
several implementation of polyhedra including the NEWPOLKA and PPL (in C), the Fast
Polyhedra library (in C++) and the VPL (in OC). We started discussing with Martin
Vechev’s team at ETH Zurich on this subject.

Factorization in Handelman’s Linearization. Handelman’s linearization can be used to
decide the satisfiability of a conjunction of polynomial constraints but requires to delineate
the exploration space as a polyhedron. In our experiments (§4.4.4), we failed to show unsat-
isfiability when the problem provided no initial polyhedron. Then, we started an investigation
with Bruno Grenet, from LIRM, on extracting linear factors from polynomial constraints in
order to get an initial polyhedron.

Constraint Programming. In Constraint Programming, solvers try to cover the solution
with a finite union of elements, in order to obtain an approximation to an arbitrary precision.
To find new disjunctions, solvers rely on a split operator to divide elements into several pieces.
Then, each piece is recursively split so that useless elements (that do not contain any point of
the solution) are discarded, and the remaining ones are close enough to the solution.
Polytopes are usually split into two parts. The cutting direction can be chosen following
several heuristics (Pelleau et al., 2013), for instance

— splitting along the variable with the widest range;

— or splitting the segment joining the two farthest vertices.

To get a split operator that gives more than two pieces, I propose to use the partition into
regions resulting from a PLP operator, which gives one piece per constraint of the initial
polytope. By changing the position of the normalization point, the precision of the mesh could
be finely tuned.

Integer Programming. We received many demands for a VPL domain on integers, meaning
that polyhedra are implicitly intersected with Zn, as it is done in the polyhedron model for
compiler optimization. This is a topic that we did not consider yet but that could be interesting
and challenging.

PLP Encodings. The PLP solver is a generic tool, which is the dual version of the PIP
solver by Feautrier (1988). There are probably some problems in other domains which can
expressed as a PLP problem, for instance in controller synthesis and model predictive control
design (Rubagotti et al., 2014).
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Precision Certificates by PLP. Finally, the PLP solver could help us certifying the precision
of the VPL operators. Let us take the example of variable elimination. On the one hand, it is
not clear how to certify the precision of a projection computed by Fourier-Motzkin elimination:
one should probably prove that all possible combinations of constraints that eliminate the
variable have been tried. This boils down to proving directly Fourier-Motzkin in C. On the
other hand, PLP provides some kind of precision certificates: the optimal dictionary obtained
in each region. Such a dictionary proves that the associated solution is optimal as long as
the parametric coefficients of its objective are nonnegative, meaning that we are in the region.
Then, to show that no constraint is missing in the result, we need to prove that the regions
we have discovered form a partition of the whole space of parameters. We have ideas on how
to address this challenge but this requires some extra-work.



Appendix A

Handelman’s Heuristics: LP
Problem Definition

Here, we show how we implement the “simple products” heuristic, defined in §4.4.3. The
goal is to find a product of variables bounds (of the form xj + lj ≥ 0 or −xj + uj ≥ 0) able
to cancel a monomial m = cm × x1 · xn. But, finding a variable bound requires solving a LP
problem. Thus, we wish to minimize the use of variable bounds that we do not already know.
In the following, we define a LP problem to choose such variable bounds.

Constants. Let us define constant values.

hasSupi =

{
0 if xi has no upper bound in P
1 otherwise

hasInfi =

{
0 if xi has no lower bound in P
1 otherwise

knownSupi =

{
1 if the upper bound of xi is known
0 otherwise

knownInfi =

{
1 if the lower bound of xi is known
0 otherwise

s =

{
1 if cm ≥ 0
0 otherwise

This last variable encodes the sign of coefficient cm.

Decision Variables. Let us now define the decision variables of the LP problem. For each
variable xi, we must choose either an upper or a lower bound to cancel xi. The product of all
bounds must have the good sign to cancel m. The following variable yi encodes that choice:

yi =

{
1 if we select the upper bound of xi

0 if we select the lower bound of xi

We will also need a decision variable k ∈ N to encode the sign restriction of the product.

Objective Function. The objective is to minimize the number of times we choose a bound
that is unknown. If yi = 1 and knownSupi = 0, it means that we choose the upper bound of
xi, but it is unknown. Thus, we count 1. Similarly, we count 1 if yi = 0 and knownInfi = 0.
The sum to minimize is therefore∑

i

yi(1− knownSupi) + (1− yi)(1− knownInfi)
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=
∑
i

yi(knownInfi − knownSupi) + knwonInfi + 1

The constant part knwonInfi + 1 is not important for us: only the values for yi’s do matter.
Finally, the objective to minimize is∑

i

yi(knownInfi − knownSupi)

Constraints. We specify that, if xi has no upper bound, then we must choose the lower
bound, i.e. ¬hasSupi ⇒ ¬yi:

hasSupi − yi ≥ 0, ∀i

Similarly, if xi has no lower bound, then we must choose the upper bound, i.e. ¬hasInfi ⇒ yi:

hasInfi + yi ≥ 1, ∀i

Finally, we specify that the coefficient of the product of interval bounds we are building, say
m′, has opposite sign to m. In m′, each upper bound brings a negative coefficient (−xi+ui ≥ 0),
while lower bounds bring positive coefficients (xi + lj ≥ 0). Thus, the sign of m′’s coefficient
is positive if the number of upper bounds chosen is even, and negative otherwise. Thus, the
following constraint have the wanted effect:∑

i

yi = 2k + s

If s = 1, i.e. if cm is positive, then
∑

i yi must be odd, and the coefficient of m′ is negative.
On the contrary, if s = 0, i.e. if cm is negative, then

∑
i yi must be even and the coefficient of

m′ is positive.
Finally, the LP problem that we solve is the following:

minimize
∑
i

yi(knownSupi − knownInfi)

subject to
hasSupi − yi ≥ 0, ∀i
hasInfi + yi ≥ 1, ∀i∑

i

yi = 2k + s

(LP A.1)
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Example of XML Result File

The parametric trace is given in tag trace. An instance is defined by an instantiation of
all parameters. Then, for each instance, we store the time measurements of all operators for
each execution of the instantiated trace, depending on the library, the values of flags, and the
machine used.

1 <?xml vers ion =”1 .0” ?>
2 <data>
3 <trace>P1 := load %s\nP2 := P1 \ [%s]\nP3 := min P2\n</trace>
4 <instance>
5 <parameters>
6 <param i="0">P_100_8_0_8_4_0</param>
7 <param i="1">v1,v2,v3,v4,v5,v6</param>
8 </parameters>
9 <Lib name="VPL">
10 <flags>
11 <flag type="min">classic</flag>
12 <flag type="proj">fm</flag>
13 <flag type="join">barycentric</flag>
14 <flag type="plp">raytracing</flag>
15 <flag type="scalar">rat</flag>
16 <flag type="lp">splx</flag>
17 </flags>
18 <timings>
19 <assume unit="ns">7947523</assume>
20 <assume unit="readable">7.94ms</assume>
21 <project unit="ns">245429</project>
22 <project unit="readable">245.42us</project>
23 <min unit="ns">585</min>
24 <min unit="readable">585.0ns</min>
25 <total unit="ns">8193537</total>
26 <total unit="readable">8.19ms</total>
27 </timings>
28 <hostname>carlit</hostname>
29 </Lib>
30 <Lib name="VPL">
31 <flags>
32 <flag type="min">raytracing</flag>
33 <flag type="proj">plp</flag>
34 <flag type="join">plp</flag>
35 <flag type="plp">raytracing</flag>
36 <flag type="scalar">rat</flag>
37 <flag type="lp">splx</flag>
38 </flags>
39 <timings>
40 <assume unit="ns">7074286</assume>

163



164 APPENDIX B. EXAMPLE OF XML RESULT FILE

41 <assume unit="readable">7.7ms</assume>
42 <project unit="ns">3418744</project>
43 <project unit="readable">3.41ms</project>
44 <min unit="ns">416</min>
45 <min unit="readable">416.0ns</min>
46 <total unit="ns">10493446</total>
47 <total unit="readable">10.49ms</total>
48 </timings>
49 <hostname>carlit</hostname>
50 </Lib>
51 <Lib name="Apron">
52 <timings>
53 <assume unit="ns">1148569</assume>
54 <assume unit="readable">1.14ms</assume>
55 <project unit="ns">35549</project>
56 <project unit="readable">35.54us</project>
57 <min unit="ns">287367</min>
58 <min unit="readable">287.36us</min>
59 <total unit="ns">1471485</total>
60 <total unit="readable">1.47ms</total>
61 </timings>
62 <hostname>carlit</hostname>
63 </Lib>
64 </instance>
65 <instance>
66 <parameters>
67 <param i="0">P_100_8_0_8_4_1</param>
68 <param i="1">v1,v2,v3,v4,v5,v6</param>
69 </parameters>
70 <Lib name="VPL">
71 <flags>
72 <flag type="min">classic</flag>
73 <flag type="proj">fm</flag>
74 <flag type="join">barycentric</flag>
75 <flag type="plp">raytracing</flag>
76 <flag type="scalar">rat</flag>
77 <flag type="lp">splx</flag>
78 </flags>
79 <timings>
80 <assume unit="ns">6601215</assume>
81 <assume unit="readable">6.60ms</assume>
82 <project unit="ns">119739</project>
83 <project unit="readable">119.73us</project>
84 <min unit="ns">542</min>
85 <min unit="readable">542.0ns</min>
86 <total unit="ns">6721496</total>
87 <total unit="readable">6.72ms</total>
88 </timings>
89 <hostname>carlit</hostname>
90 </Lib>
91 <Lib name="VPL">
92 <flags>
93 <flag type="min">raytracing</flag>
94 <flag type="proj">plp</flag>
95 <flag type="join">plp</flag>
96 <flag type="plp">raytracing</flag>
97 <flag type="scalar">rat</flag>
98 <flag type="lp">splx</flag>
99 </flags>
100 <timings>
101 <assume unit="ns">6908881</assume>
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102 <assume unit="readable">6.90ms</assume>
103 <project unit="ns">3324538</project>
104 <project unit="readable">3.32ms</project>
105 <min unit="ns">448</min>
106 <min unit="readable">448.0ns</min>
107 <total unit="ns">10233867</total>
108 <total unit="readable">10.23ms</total>
109 </timings>
110 <hostname>carlit</hostname>
111 </Lib>
112 <Lib name="Apron">
113 <timings>
114 <assume unit="ns">1041667</assume>
115 <assume unit="readable">1.4ms</assume>
116 <project unit="ns">31039</project>
117 <project unit="readable">31.3us</project>
118 <min unit="ns">266202</min>
119 <min unit="readable">266.20us</min>
120 <total unit="ns">1338908</total>
121 <total unit="readable">1.33ms</total>
122 </timings>
123 <hostname>carlit</hostname>
124 </Lib>
125 </instance>
126 </data>
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